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ABSTRACT 
 
Over the last decade in North America, an increasing number of microbiological drinking 

water regulations have been used to manage groundwater resources that are potentially 

influenced by surface water.  Regulations such as the Ontario Ministry of Environment 

Regulation 505, which requires at least a 60 day groundwater travel time between surface 

waters and drinking water wells, have been created with limited understanding of 

subsurface pathogen transport processes.  Groundwater Under Direct Influence studies 

(GUDI or GWUDI in USA) are conducted to assess the need to treat well water at an 

extraction point.  Currently, there is a lack of knowledge regarding factors that affect the 

transport of pathogens through porous media at the surface water-groundwater interface.  

Such information is required to supply sufficient quantities of drinking water in a cost 

effective and safe manner.  

Factors that affect pathogen transport through porous media include: properties of 

the pathogen (i.e. surface charge, size, and morphology), properties of the granular media 

(i.e. mineralogy, size, texture, angularity) and properties of the water (i.e. pH, ionic 

strength and content, and natural organic matter).  This study examines the effects of 

ionic strength, grain size and influent virus concentrations on pathogen transport in 

porous media.  Fourteen column tests were conducted using the bacteriophage MS2 and 

1.5 �m microspheres; two commonly used non-pathogenic surrogates representative of 

human viruses and bacteria, respectively.  Two size distributions of crushed silica sand, 

with median grain diameters of 0.7 and 0.34 mm, and two ionic strengths of 8 and 95 

mmol/L were used.  A 22 partial factorial design was used with a minimum of two 

replicates of each combination of the parameters.   
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The results show that complete breakthrough of both viruses and microspheres 

occurred in medium sand at low ionic strength.  It was found that increasing ionic 

strength by Ca2+ addition precluded breakthrough of MS2 in both the medium and fine 

sands.  This represents a greater than 8 log reduction in peak effluent concentration and 

essentially complete attenuation.   

In fine sand, with low ionic strength water, a 5 log reduction in peak MS2 

concentrations was observed.  In the same sand at high ionic strength, no MS2 broke 

through the column, corresponding to a greater than 8 log removal.  Since complete 

attenuation occurred in both grain sizes at high ionic strength, the effect of higher ionic 

strength in the fine sand was indistinguishable from the effect observed from raising the 

ionic strength in the medium sand.   

In contrast to the viruses, microsphere transport was essentially unaffected by 

increasing ionic strength under the conditions investigated.  A 1 log reduction in peak 

concentration was observed in the high ionic strength water in the medium sand.  In spite 

of this, grain size had a profound effect on the attenuation of microspheres.  There was no 

evidence of microsphere breakthrough in any of the fine sand columns at the low or high 

ionic strengths, yielding a greater than 5 log reduction in microsphere concentration 

associated with grain size alone.  The effect of varying virus concentration was also 

investigated.  It was found that varying the concentration of viruses between 105 and 107 

pfu/ml had no discernable effect on their observed transport characteristics; normalised 

peak breakthrough concentration, percent attenuation and retardation relative to a 

bromide tracer. 
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  Based on the results from this Thesis, in a riverbank filtration environment, there 

is reason to expect that, at comparable water qualities and in similar porous media,  

multiple logarithmic reductions of viruses and bacteria would occur over the much longer 

(than column length) flowpaths associated with RBF.  There is also reason to expect this 

attenuation capability to vary based on riverbank grain size and water chemistry. 
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� single collector attachment efficiency 
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�l inactivation rate of suspended microorganisms  
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Φmin2 secondary energy minimum 
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1. INTRODUCTION 
 
1.1 Why Study Viruses? 
 
Over the last 30 years several batch, column, and field studies of bio-colloid transport in 

groundwater have resulted in a considerable body of knowledge, theories, and empirical 

results.  A bio-colloid is any particle of colloidal size (i.e. 1 nm to 100 �m) that is living 

or derived from a living thing.  This definition includes protozoa, bacteria and viruses.    

Presently, it is known that many factors affect the subsurface transport of bio-colloids.  

These factors include: soil properties such as mineralogy, grain size, surface roughness 

and organic content; water properties such as pH, ionic strength, predation and 

competition from other microorganisms and;  properties of the bio-colloid itself such as 

isoelectric point and surface charge, surface morphology and size.  Thus far the research 

has not provided a coherent picture of how these factors concurrently affect bio-colloid 

transport.  Accordingly, the transport of bio-colloids in porous media remains a non-

predictive science, even at well characterized field sites (e.g. Flynn et al., 2004a).  

Although bio-colloid transport in the subsurface is not predictive, the concurrent 

impacts of some of the factors affecting transport are readily understood.  For example, 

the relative impact of the ratio of grain to bio-colloid size can affect whether or not size 

exclusion is significant in precluding transport.  This thesis set out to understand how the 

natural environment impacts the transport of pathogenic bio-colloids in the subsurface.   

Virus transport in the subsurface was chosen for study because despite copious 

amounts of data that indicate outbreaks in North America and throughout the world from 

viral aetiology, the transport of pathogenic viruses in groundwater is still poorly 

understood.  Moreover, due to their small size, viruses are more likely to be transported 
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(relative to larger pathogens) in porous media systems where size exclusion may play a 

substantial role in precluding bio-colloid transport.  The Ontario MOE (Ministry of the 

Environment) and the United States Environmental Protection Agency have set rules for 

groundwater supply wells in recent years, permitting wells outside of a sixty day pore 

water travel time from the nearest surface water source to be considered “true” 

groundwater wells, thereby precluding the need for treatment beyond disinfection 

(Ontario Regulation 505 and US EPA Surface Water Filtration Rule).  Several pathogen 

transport studies, however, have shown that 60 days may be inadequate for adequate 

retention and inactivation of enteric viruses (McKay et al., 1994; Schijven et al., 2000a).  

In contrast, many studies have shown 7 to 12 log removal of viruses over only a few 

metres of sand (Schijven et al., 2001; Niemi et al., 2004; Blanford et al., 2005).  As a 

result, regulators require improved guidance for assessing the risk of pathogen passage 

through the subsurface and into public water supplies.  One specific example of the need 

for improved regulatory guidance is the current lack of regulations or guidelines 

regarding the treatment of riverbank filtrate.  Riverbank filtration (RBF) is a low cost 

method of surface water treatment in which a well is drilled into the shallow aquifer 

adjacent to a river or lake.  As the well pumps water, the aquifer is recharged from the 

neighbouring surface water.  The various reported field and laboratory data regarding 

pathogen transport in the subsurface have put riverbank filtration wells under scrutiny 

(Kuehn and Mueller, 2000) and have yielded several regulatory frameworks (MOE and 

US EPA) for assessing the subsequent treatment needs for RBF well water.     

Of particular concern to health authorities and regulators are pathogenic viruses 

(Gerba, 1996).  There are five characteristics of viruses that contribute to their being a 
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significant cause of waterborne gastroenteritis in the world.  These are: 1) their small 

size, which often enables them to penetrate further into an aquifer (relative to larger 

protozoan and bacterial pathogens) (Jin and Flury, 2002), 2)  their resistance to 

conventional water treatment methods (e.g. Adenovirus is resistant to UV irradiation and 

Norwalk Virus is resistant to chlorination) (Keswick et al., 1985),  3) their low minimal 

infectious dose (between 1-10 viruses), 4) their ability to be aerosolized readily (in 

contrast to larger pathogens), which increases the likelihood of secondary (specifically 

airborne) spread throughout a densely populated community, and 5) their long (~30 days 

in some cases) asymptomatic residence time (e.g. Hepatitis E), during which no 

symptoms are present (Jameel, 1999).  For example, two large Hep E waterborne 

epidemics affected 40,000 people in India in 1954 (Grabow, 1997) and again in Kanpur, 

India in 1992 where 80,000 people were infected (Naik et al., 1992).  The purpose of the 

present investigation is to provide some fundamental knowledge regarding the effects of 

aquifer characteristics and ground water quality on the transport of viruses in a RBF 

context so that better regulatory guidelines for the treatment of RBF filtrate can be 

developed. 
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1.2 Objectives 
 
The ultimate goal of this thesis work was to provide some fundamental knowledge 

regarding the effects of aquifer characteristics and ground water quality on virus transport 

in RBF regimes.  After selecting the viruses and bacterial surrogates that would be 

utilised toward achieving this general research goal, the following objectives for 

achieving that goal were developed: 

1) Acquire the equipment and develop the skills and knowledge necessary for the 

growth, detection and storage of the bacteriophages MS2 and PhiX-174. 

2) Design a column appropriate for the study of virus transport at the anticipated 

experimental conditions (grain size, flow rate, virus adhesion characteristics) 

representative of a riverbank filtration setting.  

3) Evaluate the effects of grain size on virus and microsphere transport and retention 

using crushed silica sand of consistent roughness and mineralogy. 

4) Evaluate the effects of [Ca2+] induced ionic strength on virus and microsphere 

transport through crushed silica sand. 

5) Synthesize the research outcomes to provide regulatory and/or experimental 

guidance for further assessing the treatment requirements for riverbank filtrate. 
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2. BACKGROUND 
 
2.1 Pathogens in Ground and Surface Water: Problem Characterisation 
 
The connection between drinking water and disease outbreaks was first confirmed by 

John Snow in 1854.  By removing the handle of a pump in London, he was able to stop a 

large Cholera outbreak, and thus provided the first evidence of human disease associated 

with waterborne pathogens (Szewyk et al., 2000).  Since then, the twentieth century has 

seen an increasing awareness of the importance of water in transmitting disease.  As 

clinical and environmental microbiological detection methods have improved and 

contributed to a better understanding of the sources and variety of waterborne pathogens, 

previous assumptions about the safety of established drinking water practices have been 

swept aside.  An example of this increasing awareness would be the connection made 

between Cholera outbreaks and human sewage at the turn of the century after an outbreak 

in Hamburg, Germany.  Before the outbreak, the city’s sewage was discharged upstream 

of the city’s drinking water intake along the Elbe River.  The advancement in knowledge 

regarding the role of waterborne pathogens and disease provided the impetus to separate 

waste waters from drinking water sources and to chlorinate drinking waters (Szewzyk et 

al., 2000).  Although these practices effectively treat many traditional pathogens such as 

Cholera, the incidence of waterborne disease outbreaks still remains high (e.g. Schoenen, 

2001 and Macler and Merkle, 2000) because many new previously undetectable 

waterborne pathogens have been recognized; moreover, they are often resistant to 

chlorination (Gerba, 1996). 

The majority of known waterborne pathogens fall into three categories: protozoa, 

bacteria and viruses.  The following pathogens have been recognised as significant 
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problems by public health officials over the last several decades:  the protozoa, 

Cryptospordium parvum, Giardia intestinalis and Giardia lamblia; the bacteria, 

Escherichia coli O157, Campylobacter jejuni, Salmella enteritidis and Helicobacter 

pylori; and the viruses, Rotavirus, Hepatitis A, Hepatitis E, Norwalk-like Virus (NLV) 

and Adenovirus.  The path of human infection for each of these human pathogens is 

varied.  For example, the minimal infectious dose necessary to cause disease, varies 

between 1 and 100,000,000 in the group specified above, (Geldreich, 1996).  The 

minimal infectious dose is the number of pathogens that must be ingested by individuals 

in a population to result in at least 50 % of the people contracting the disease.  In the case 

of the pathogens specified above, the severity of the induced disease varies from flu like 

symptoms to death and the locations of infection include intestine, liver, kidneys, brain 

and lungs.  The relationship that a micro-organism has with humans guides the setting of 

regulations for drinking water quality (Toze, 1999) a process analogous to setting 

acceptable concentrations for inorganic and organic contaminants in the environment.  

Pathogens also vary in their sources and behaviour in the environment.  The 

sources of waterborne pathogens are not just restricted to human feces; they include 

water fowl, wild animals and almost every kind of domesticated animal (Geldreich, 

1996).  This leads to point sources such as sewage treatment plants and distributed 

sources of waterborne pathogens, such as water fowl.  Outside the host most pathogens 

enter a dormant stage where many normal metabolic activities are shut down, allowing 

them to stay infective for long periods of time.  In cold water, this survival time can be 

longer than 90 days (Geldreich, 1996) for some of these pathogens, providing a three 

month window of opportunity for the pathogen to be taken up by a suitable host and 
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multiply itself again.  Therefore, since pathogens are wide spread and persistent in 

surface water, it is important to understand their behaviour in a riverbank filtration 

setting, where natural disinfecting processes are relied upon to produced safe drinking 

water.      

 
2.2 Viruses 
 

With diameters of approximately 20 to 100 nm, waterborne viruses are the 

smallest of the three categories of pathogens.  Since size exclusion can be an important 

mechanism for purifying groundwater from pathogens, viruses may penetrate further into 

aquifers than larger classes of microorganisms such as protozoa (Lee and Kim, 2002).  

Viral infections may be initiated by a very low number of viruses and are usually 

excreted from an infected individual in very high numbers (Gerba et al., 1996).  Due to 

detection difficulty because of their small size and their inability to be grown in a nutrient 

broth (Wyn-Jones and Sellwood, 2001), the impact of viruses on public health has been 

the most underestimated of all the classes of waterborne pathogens and likely can account 

for the many outbreaks of gastro-enteritis around the world where a causative agent was 

not identified (Lee and Kim, 2002).  Viruses are known to be the main cause of 

gastroenteritis in the United States (Blacklow and Greenberg, 1991).  Clearly, preventing 

the passage of viruses into potable water supplies is critical to protecting public health.  

Since many waterborne viruses are ubiquitous in the environment, and have relatively 

low infectious doses there is a need to understand their transport in water supplies; 

however, the difficulty in detecting many viruses of public health significance has 

precluded extensive investigations of their transport in natural environments.  As a result, 
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bacteriophages (viruses that exclusively infect specific bacterial hosts) have emerged as 

readily quantifiable surrogates for viruses during transport investigations. 

 MS2 is likely the most studied bacteriophage reported in the water treatment 

literature.  MS2 has been studied in column experiments along with other pathogenic 

viruses (Redman et al., 1997) and bacteriophages (Dowd et al., 1998), in a variety of 

media types (You et al., 2003; Zhuang and Jin, 2003) and in field experiments along with 

bacterial pathogens (e.g. Schijven et al., 1999).  MS2 is approximately 23 nm in diameter, 

which is a similar size to many known waterborne pathogenic viruses (e.g. Norwalk Like 

Virus, Adenovirus).  It also is negatively charged at neutral pHs as are most reported 

pathogens.  Furthermore, MS2 can be quickly grown in high concentrations and easily 

detected at relatively low numbers using the plaque counting method at low expense 

(Adams, 1959).  For these reasons MS2 is frequently chosen over human viruses which 

are dangerous to work with and difficult to detect and grow (Jin and Flury, 2002). 

 
2.3 Pathogen Transport 
 

Historically it has been assumed that groundwater is generally safe from 

microbial contamination.  More recently it has been demonstrated that groundwater 

quality can be impacted by surface water, rainwater, and runoff water thereby 

compromising water quality (Lawson et al., 1991; Goss et al., 1998; Conboy and Goss, 

2000; Danon-Schaffer, 2001).  Goss et al. (1998) reported that 34% of 1200 southern 

Ontario, rural, shallow groundwater wells contained higher than acceptable faecal 

coliforms.  They were able to positively correlate both the age and the construction of the 

well to bacteria presence.   
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Other studies have confirmed that pathogens are able to rapidly and deeply 

penetrate into aquifers during heavy rainfall events (Chu et al., 2001).  It is therefore not 

surprising that several studies have revealed bacterial contamination of upper aquifers 

throughout large rural areas in Canada (Goss et al., 1998; Conboy and Goss, 2000).  

Some of these wells are Riverbank Filtration (RBF) wells located near a river, lake or 

stream where lateral, saturated-phase transport occurs.  Riverbank Filtration is where a 

drinking water production well is located near surface water, drawing a significant 

amount of its supply through the shallow aquifer in between the well and the lake or 

river.  RBF has long been regarded by water treatment specialists and hydrogeologists to 

be an important step in drinking water treatment and capable of reducing both chemical 

and microbiological contaminants significantly (Kuehn and Mueller, 2000).  As 

mentioned already, under new legislation in Ontario (MOE Regulation 505) and the 

United States (US EPA Surface Water Filtration Rule), such wells are considered as 

groundwater wells under the influence of surface water (GUDI or GWUDI) until proven 

otherwise.     

To understand the nature of saturated phase (e.g. RBF type) transport of 

protozoan, bacterial or viral contamination of aquifers, the advection-dispersion equation 

has been modified for use in the study of pathogen transport.  This equation allows a 

numerical modelling approach to predict the safety of valuable groundwater sources 

(Matthess et al., 1988; Schijven and Simunek, 2002).  The one-dimensional equations 

that attempt to describe the transport of small biocolloids such as viruses in porous media 

are:   
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where C is the pathogen concentration in water at time t, n is porosity, Dh is the 

hydrodynamic dispersion coefficient, x is the distance from the influent point, 	p is the 

average velocity of the pathogen over distance x, �b is the bulk density of the porous 

media, Skin is the concentration of pathogens attached to kinetic adsorption sites, Q is the 

inactivation rate, katt is the attachment rate coefficient and kdet is the detachment rate 

coefficient, and µ s and µ l are sorbed and liquid (or free) inactivation rates, respectively.   

These equations above (2-1 to 2-3) were modified by the removal of a term for 

equilibrium sorption (Seq) and the removal of a redundant term for attached virus 

inactivation in equation 2-2, which also appears as the last term in equation 2-3 (�s��Skin).  

The significance of these modifications will be discussed further below.  These equations 

have several limitations.  For example, this particular form of the equations assumes one 

type of kinetic physicochemical sorption site. Other models (e.g. Ryan and Elimelech, 

1996, and Schijven and Hassanizadeh, 2000) acknowledge the existence of two types of 

kinetic sites (Skin1, Skin2) as well as an equilibrium sorption site (Seq).  This is because it is 

not yet known whether attachment is equilibrium or kinetically limited in a dynamically 

flowing colloid-porous media system, although work is currently being done to 

understand this better (e.g. Loveland et al., 1996).  Schijven and Hassanizadeh (2000), 
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after a thorough review of available experimental evidence, concluded that in a flowing 

system (as appose to a static, batch system) attachment is almost always kinetically 

controlled.  It is important to know this distinction since different conceptual models 

result from a kinetically controlled perspective of virus attachment versus equilibrium 

controlled.  For example, if attachment to adsorption sites is equilibrium controlled then 

the saturation level of the adsorption sites would be controlled by equilibrium forces.  If, 

however, attachment is kinetically controlled the sites would never reach the saturation 

level determined by equilibrium forces since the rate of attachment would be too slow 

(Ryan and Elimelech, 1996; Schijven and Hassanizadeh, 2000).  As mentioned equation 

2-1 only describes one dimension.  Although three dimensional versions are available 

they are much more difficult to solve.  This is because several of the terms in these 

equations are difficult to evaluate even under controlled one dimensional laboratory 

conditions.  For example, few experiments have attempted to differentiate between 

attached and free deactivation rates of viruses (Grant et al., 1993; Rossi, 1994).  Schijven 

and Hassanizadeh (2000) presented an analytical derivation from these equations 

demonstrating that (assuming a constant detachment rate, kdet) the negative slope of the 

tail of a bacteriophage breakthrough curve is directly related to the attached virus 

deactivation rate.  Therefore, they recommended that bacteriophage transport 

experiments be carried out over enough time to measure the slope of the tail.  Another 

deficiency in these transport equations (2-1 to 2-3) is that in their current form, they do 

not account for size exclusion.  A description of this process and how researchers have 

recently proposed fitting it into the advection-dispersion equation (e.g. Foppen et al, 

2005) will be discussed later.  
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2.4 Processes in Pathogen Attenuation 
 
The migration of pathogens through porous media is controlled by advection, dispersion, 

physicochemical sorption to sediments, size exclusion and elimination.  Advection and 

dispersion are physical parameters controlled by the mixing of the fluids and the size of 

the pathogen.  Rate of dispersion is inversely related to colloid size.  Physicochemical 

sorption, size exclusion and elimination, are the main processes responsible for the 

attenuation of pathogens in groundwater (Matthess and Pekdeger, 1988; Mcgechan and 

Lewis, 2002; Stevik et al., 2004; Taylor et al., 2004; Tufenkji et al., 2004).  

Physicochemical sorption is the result of several forces that result in the attraction 

between pathogen and grain, when the distance between the two is small (approximately 

10 nm) (Ryan and Elimelech, 1996).  Size exclusion is also called filtration (e.g. Matthess 

and Pekdeger, 1988) or straining (e.g. Mcgechan and Lewis, 2002, Stevik et al., 2004, 

Tufenkji et al., 2004) in the literature.  Here, it describes the process of pathogen removal 

based on physical size, where the pathogen is too large to fit through the open cavity 

between grains in a packed porous media.  Elimination can result from natural 

inactivation of the pathogen or can involve predation from another organism.  While 

there are many factors influencing these three attenuation processes in the natural 

environment, they can be broken down into three categories: the properties of the 

geologic media, the water and the pathogen itself (Lawrence and Hendry, 1996).  In 

particular pathogens are retained more effectively as the water content drops (Chu et al., 

2001).  Thus heavy rains will allow further vertical penetration of pathogens into soil as 

well as extensive runoff into surface waters (Schäfer et al., 1998; Chu et al., 2001; 
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Shadford et al., 1997).  A survey of 76 parasitic outbreaks showed that almost all 

outbreaks were accompanied by high rainfall events (Schoenen, 2001). 

Since protozoa are the largest class of the pathogens discussed in this review, size 

exclusion effects are expected to be more important in preventing their penetration into 

groundwater sources.  Often groundwater outbreaks of protozoa have been observed 

when the water supply well was influenced by open water sources or when there was a 

direct conduit (through a failed well casing or a fracture) from the surface to the well 

screen (Donnelly and Stentifjord, 1997).  In spite of these observations, protozoa have 

been frequently observed in groundwater during a major rain event (Medema and 

Schijven, 2001; Graczyk et al., 2000).    

In saturated porous media, as in the case with riverbank filtration wells, some of 

the specific factors controlling the transport of pathogens are pore size, pH and the size 

and chemical makeup of the external shell of the pathogen (Lawrence and Hendry, 1996).  

This external chemical makeup results in a charge which is usually negative in polarity at 

near neutral water pHs (Schijven and Hassanizadeh, 2000).  The size difference between 

larger and smaller pathogens produces different transport characteristics.  For example, in 

a sand aquifer, bacteria will often be observed to travel at a higher speed than the mean 

groundwater velocity by following the faster, highly porous flow paths (Matthess et al., 

1988; Ginn et al., 2002; Taylor et al., 2004).  Viruses are shown to be retarded relative to 

the mean groundwater velocity (Woessner, 2001; Blanford et al., 2005).  It has also long 

been known that bacterial presence in surface water is closely tied to rainfall events 

(Schaffer and Parriaux, 2002).  Furthermore, extensive bacterial contamination of 
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aquifers has been found in several studies (Goss et al., 1998; Goody et al., 1998; Conboy 

and Goss, 2000).  

Factors controlling the transport of viruses include clay content, pH, water content 

in the porous media, and the presence of metals and metal oxides on the grains (Chu et 

al., 2001; Scandura and Sobsey, 1997).  It has been found that virus transport is most 

rapid when the clay content is low, when metal content is low, the pH is high (minimum 

8), and water content is high (Lawrence and Hendry, 1996).  In gravel aquifers travel 

distances of viruses over 900 m have been observed (Deborde et al., 1999).  

Table 2-1 summarizes some important virus transport studies that have been 

performed in the field and in laboratory columns.  It does not summarize all of the 

experimental work that has been reported regarding virus transport.  Only those studies 

relevant to the current work are elaborated upon here. 

All of the investigations summarized in Table 2-1 used medium to fine sand from 

various natural and synthetic sources.  Most of the studies focused on the relative 

transport of several species of viruses (e.g. Dowd et al., 1998), different mineralogical 

(Zhuang and Jin, 2003; Flynn et al., 2004) or chemically modified grain surfaces (You et 

al., 2003) or the pH and the ionic strength of the water (Bales et al., 1991; Redman et al., 

1997; Redman et al., 1999) and varying flow rates (Schijven et al., 2002; You et al., 

2003).  None of the reported column studies relevant to groundwater systems have 

investigated the effect of grain size by employing at least 2 different sizes of sand of 

similar mineralogy and angularity.  Further, although the impact of grain size on bacterial 

and protozoan transport has been in investigated (i.e. Tufenkji et al., 2004) this has not 

been discussed in the context of viruses.  It is possible that the impact of grain size on 
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virus transport has not been investigated because size exclusion is unlikely to be a 

significant process in virus attenuation in the subsurface. 
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Table 2-1 – Summary of Past Column Experiments with Viruses in Unconsolidated 
Porous Media 

Viruses 
Used Experimental Purpose Porous 

Media 

Pore 
Velocity 
(m/day) 

Column 
Dimensions 
(LxDi

*) (cm) 

Total 
Number 

of 
Column 

Runs 

Author 

MS2     
PhiX-
174 

PRD-1    
QB       

PM2 

observing differences in 
transport between 5 

bacteriophages 

Natural 
Brazos 

Alluvium 
Aquifer Sand 

150 78 x 5 2 Dowd et al., 
1998 

MS2   
PhiX-
174 

testing the effect of varying 
ionic strength on virus 

transport through Al-oxide 
coated sand 

Al-oxide 
coated 
crushed 

Silica Sand 

1.4 10 x 3.5 6 Zhang and 
Jin, 2003 

MS2  
PhiX-
174  

PRD-1 

evaluating effects of varying 
flow rate and virus type on 

attenuation of 3 viruses 
Dune Sand 1.5, 3.0 190 x 9 3 Schijven et 

al., 2002 

MS2  
PhiX-
174 

comparing attenuation of 2 
viruses through different 

column lengths at different 
flow rates 

Ottawa Sand 0.2 - 0.8  10.5, 20 x 
9.2 9 Jin et al., 

1997 

MS2  
PRD-1 

evaluating effects on 2 
viruses from varying Ca2+ 
and pH with hydrophobic 

modified silica grains 

Silica Beads 3.2 - 4.9 15 x 0.9 7 Bales et al., 
1991 

MS2  
PRD-1 

evaluating effects of soil 
types, column lengths and  

pH levels on attenuation of 2 
viruses 

Borden, 
Cape Cod 

and 
Cambridge 

Sands 

2.5 14.8, 10.6 x 
2.7 8 Kinoshita et 

al., 1993 

MS2  
Norwalk 

Virus 

Varying pH and comparing 
attenuation of MS2 with 

Norwalk   

Crushed 
Quartz Sand 22 18 x NA 6 Redman et 

al., 1997 

MS2 

Varying flow rate, pH and 
ionic content (cations and 
anions) on the effects of 

virus attenuation 

Mg-Al 
coated and 
uncoated 

sand 

 8 x 3.5  You et al., 
2003 

SJC3 
evaluating ionic strength and 

cation charge and type in 
bacteriophage transport 

Crushed 
Quartz Sand 21.6 20 x NA 13 Redman et 

al., 1999 

H40/1 
test the effect of different 

grain minerologies on virus 
transport through sands 

Kappelen 
Aquifer, 
Quartz, 
Granite, 

Calcite Sands 

60 20 x 2 25 Flynn et al., 
2004b 

* internal diameter 
NA = not available 
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Dowd et al. (1998) performed transport experiments in 73 cm (5 cm inner 

diameter) columns injecting five different bacteriophages over a range of sizes and 

isoelectric points (MS2, PRD1, Q�, PhiX-174, and PM2).  Their purpose was to test the 

correlation between viral transport and their respective isoelectric points.  The authors 

used porous material from a sandy aquifer (95% sand, 7% silt and 2% clay).  Although 

the artificial groundwater used was near neutral pH, they did not report an ionic strength.  

They also used two experimental set ups, one using a conventional batch, flow through 

column and the other was a continuous flow through column in which the column 

effluent was reinjected into the influent end.  This was done to simulate longer distances 

of travel through an aquifer.   

For the batch column, Dowd et al. (1998) injected 2.1 pore volumes of virus-

seeded groundwater into the influent and measured the effluent virus concentration over 

10 pore volumes of flushing with bacteriophage-free water.  The phages were introduced 

separately into the column (except MS2 and PhiX-174, which were introduced 

concurrently).  Influent bacteriophage influent concentrations (Co) ranged from 104 to 109 

pfu/ml.  The pore velocity was 150 m/day.  The authors were able to negatively correlate 

isoelectric point to bacteriophage attenuation within two size groups.  With the large 

diameter (~60 nm), bacteriophage PRD1 (69% attenuated with a pI of 4.2) was more 

attenuated than PM2 (30%, 7.3).  Similarly with the small phages (~24 nm), MS2 (46%, 

3.9) was more attenuated than PhiX-174 (2.5%, 6.6).  An exception to this trend was Q� 

(53%, 5.5), which was attenuated slightly more than MS2.  

The negative correlation between isoelectric point and attenuation that was 

observed by Dowd et al. (1998) is the opposite of the typical positive correlation one 
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would expect from negatively charged viruses and media.  This is because at neutral pH a 

low isoelectric point tends to indicate a more negatively charged virus, and therefore 

greater repulsion from the media.  It is possible that in these experiments either the media 

contained significant amounts of positively charged grains (e.g. metal oxides) or that the 

ionic strength of the water was high enough to reverse the normal repulsive forces 

between virus and grain (Loveland et al., 1996).  It is also possible that the different virus 

influent concentrations affected the outcomes, since these varied greatly.  No replicate 

analyses were reported for the batch column experiments. 

Pathogen attenuation in porous media systems can occur via several mechanisms 

that include physicochemical filtration, size exclusion, and die off (natural, predation, 

parasitism, competition etc).  Pathogen attenuation and transport can be considered as 

conceptually inverse processes, that is, more transport often implies less attenuation.  For 

example, as physicochemical filtration and size exclusion (i.e. straining) increase, 

pathogen attenuation increases while pathogen transport decreases.  Pathogen transport is 

not affected by die off, however.  Perceived pathogen transport can be affected by die off.  

These mechanisms are elaborated upon below.  

2.4.1 Physicochemical Attachment 
 

For small pathogens and coarse grained media, where size exclusion will not 

occur, the dominant process in pathogen attenuation consists of an interaction of several 

forces that result in process called physicochemical attachment (e.g. Schijven and 

Hassanizadeh, 2000) or filtration (Ryan and Elimelech, 1996; Ginn et al, 2002; Taylor et 

al, 2004).  Yao et al. (1971) described the forces involved in the transport of colloids to 
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grain surfaces.  Also important are those forces involved in the attachment and retention 

of those colloids, once sufficiently close to the grain surface (Ryan and Elimelech, 1996).  

The overall physicochemical removal of colloids by stationary grains has been 

described by two main processes which occur in sequence.  The first process necessary 

for attachment to occur is collision.  Once a collision occurs attachment depends on the 

net strength and orientation (attraction or repulsion) of short range forces.  These two 

sequential processes are described in equation 2-4 below (O’Melia, 1980, Elimelech and 

O’Melia, 1990):   

2-4 

oαηη =  

in which � is the overall single collector removal efficiency and � and �o are the 

attachment and collision efficiencies respectively.  Each of these parameters describe a 

process efficiency and are therefore between 0 and 1 (i.e. between 0 and 100%).  � is a 

fraction of the number of times a colloid sticks to a grain relative to the total number of 

collisions.  �o describes the fraction of the number of colloids striking the grain over the 

total number of colloids passing through the pore space and � represents the number of 

times a colloid sticks to a grain over the total number of colloids passing by the grain 

(Ryan and Elimelech, 1996).  
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Figure 2-1 – Mechanisms that Result in Contact Between Particles and Collectors (Vinten 
and Nye, 1985).  Fine dashed lines represent water flowpaths. 
 

Figure 2-1 provides a visual description of the physicochemical filtration and 

physical mechanisms that result in contact between particles (e.g. organisms) and 

collectors (e.g. sand grains).  The figure represents collision by diffusion, interception, 

sedimentation, and size exclusion.  Each of these mechanisms is discussed below, 

although size exclusion is treated separately since it is an exclusively physical process.  

The long range attractive forces not represented in Figure 2-1 are van der Waals forces 

(Ryan and Elimelech, 1996). 
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2.4.1.1 Forces Affecting Pathogen Transport to Grain Surfaces (�o) 
 
Diffusion 
 

Diffusion becomes more important as a transport mechanism for smaller 

pathogens such as viruses compared to larger ones, as can be seen in equation 2-5, which 

describes Brownian motion.  This equation is known as Einstein’s equation (Yao, 1971): 

2-5 

p
p d

kT
D

πµ3
=  

where Dp is particle diffusivity in water, k is the Boltzman constant (J/K), T is the 

absolute temperature (K), � is water viscosity (g/cm/s) and dp is the particle diameter 

(cm).  From this equation it can be seen that there is an inverse relationship between 

particle diffusivity and particle diameter.  Since viruses are several orders of magnitude 

smaller than protozoa and bacteria they will be able to diffuse more rapidly to an 

attachment site and in some cases may be removed more efficiently than larger 

pathogens.  Additionally, viruses may disperse further throughout the aquifer thereby 

diluting the concentration of these pathogens over three dimensions.  It may be important 

to consider that this dilution via dispersion may not be as noticeable in a short, one 

dimensional column, but may be a significant process acting to lower virus concentration 

in a three dimensional aquifer, apart from physicochemical attachment (equation 2-1). 

Interception 
 

In contrast to diffusion which has a greater effect on smaller pathogens, 

interception relies upon the tendency of objects to remain in motion, a property belonging 
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to larger colloids.  The likelihood of collisions occurring due to interception can be 

described by the ratio below: 

2-6 

c

p
o d

d
∝η  

Equation 2-6 shows that the greater the ratio of the particle diameter to collector diameter 

the more likely collision is to occur (Ryan and Elimelech, 1996).  �o is collision 

efficiency dp is particle (colloid) diameter and dc is the collector (grain) diameter.  This 

assumes that both particle and collector are perfectly spherical.  Also assumed is that at 

an infinite distance from the collector C = Co (influent concentration) and that C = 0 at a 

distance (dp + dc)/2 from the centre of the spherical collector.  As the particle size is 

increased relative to the collector size, the particle will tend to keep traveling in the same 

direction toward a curved grain surface rather than be subjected to the diverting forces 

caused by advective flux near each grain surface (Ryan and Elimelech, 1996).  Due to 

this phenomenon part of the exterior of a larger pathogen will always approach the grain 

closer and sooner than any part of a small pathogen. 

Sedimentation 
 

As with the processes of diffusion and interception, sedimentation is highly 

dependant on the size of the pathogen.  Like interception, sedimentation is proportional to 

pathogen size whereas diffusion is inversely proportionate to size.  This means that 

diffusion will tend to be the dominant transport process for small pathogens and 

sedimentation and interception will dominate the transport of large ones.  Sedimentation 

is the processes of downward movement of particles due to a difference in density.  This 

process can be described by Stokes’ Law in equation 2-7. 
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2-7 
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where Vs is the terminal settling velocity (cm/s), g is gravity (cm/s2) and �p and � (g/cm3) 

are the densities of the particle and water respectively.  Settling velocity is proportional to 

dp
2.  This equation requires that the particle is denser than the surrounding water (i.e. it is 

no longer valid if Vs is negative).  Stokes’ Law assumes that the particles are spherical, 

smooth and rigid.  These assumptions are not entirely valid for microorganisms, since 

they are rarely spherical and never smooth, because of various macromolecules extending 

from their surfaces.  They are also not perfectly rigid, since most microorganisms are 

deformable to various degrees.    

The above three processes contributing to collision efficiency have been 

integrated into one equation by Yao et al. (1971) and is applicable for a clean bead 

filtration where “deposition within pores has not significantly altered flow pattern or 

media characteristics” (Yao et al., 1971).  It also should be noted that the application of 

this equation to a single collector assumes that collector is perfectly spherical.  In 

addition it assumes that the collector diameter (dc) does not change, something that in fact 

does occur due to the build up of colloids on grain surfaces and biofilm (or bio-fouling) 

formation.    
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As stated previously, �o describes collision efficiency and must be between 0 and 1; any 

solutions to the above equation producing numbers outside of this range are invalid.  In 
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equation 2-8 above, �D, �I, and �G account for the processes of diffusion, interception and 

sedimentation respectively.  It is important to note that Yao et al. (1971) introduced this 

equation as a conceptual model and not as an analytical equation that can be rigorously 

applied to make accurate predictions.  This is partly because the preceding equation (2-8) 

assumes that the only mechanisms affecting collision efficiency are diffusion, 

interception and gravitation.  This equation also assumes that the system is at steady state 

with respect to flow rate and particle concentration (dC/dt = 0).  Another limitation is 

based on the aforementioned fact that this equation is based on a single collector.  In a 

granular filter or groundwater media, packed grains will limit the surface area available 

for collision and cause more complex flow patterns around each collector.  The 

recognition of this fact has led to the addition of an extra parameter to the above equation 

accounting for packed grains (Ryan and Elimelech, 1996).  The most commonly used 

extra parameter is As, known as Happel’s constant from the sphere-in-cell model 

(Happel, 1958).  A review of these additional factors accounting for grain packing can be 

found in Ryan and Elimelech, (1996).   Also available are other versions of equation 2-8 

by Spielman and Friedlander (1974) and Rajagopalan and Tien (1976).  Spielman and 

Friedlander’s (1974) solution for the single collector removal efficiency (�) is only 

applicable to small colloids (such as viruses) where interception and sedimentation do not 

occur.   This model also does not account for hydrodynamic interactions, such as flow 

fields around a grain, but rather only considers diffusion.  Although Rajagopalan and 

Tien’s (1976) equation for �o does account for interception and sedimentation (like Yao, 

1971) they also incorporate Happel’s constant As into each of the three terms contributing 
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to collision.  Like Spielman and Friedlander (1974), Rajagopalan and Tien (1976) do not 

account for hydrodynamic interactions around a grain in their term for diffusion.   

Equation 2-8 was applied to the experimental conditions in this thesis to test the 

predictions of this conceptual model against empirical data.  Figure 2-2 shows how �o 

changes with colloid size.  It should be noted that a minimum collision occurs at 1-3 �m.  

As mentioned, the collision of colloids smaller than this range is likely driven by 

diffusion, where larger colloids are driven by interception and sedimentation. 

 

Figure 2-2 – Collision Efficiency of Different Sized Colloids in Fine and Medium 
Grained Sand 
 

Figure 2-2 indicates collision efficiencies for both the fine and medium sand 

median grain sizes used in the present research.  These predict a lower collision rate in 

the medium sand than the fine sand possibly suggesting less physicochemical attachment 
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may occur in the medium grain sand as compared to the fine sand, assuming that the 

attachment efficiencies (�) are equal between the two grain sizes. 

2.4.1.2 Forces Affecting the Attachment and Retention of Pathogens on Grains (�) 
 

Once a colloid collides with the surface of a grain, whether or not it remains 

attached to the grain is described by the attachment efficiency �.  Since this is a process 

efficiency, as �o, it also must lie between 0 and 1 (i.e. 0 and 100%), or between no 

attachment and perfect attachment every time a colloid strikes a grain surface 

respectively.  The forces determining the attraction or repulsion between a colloid and 

grain at relatively close ranges are described by the Derjarguin-Landau-Verwy-Overbeek 

(DLVO) theory (Derjarguin and Landau, 1941, Verwey and Overbeek, 1948, Ryan and 

Elimelech, 1996).    
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Figure 2-3 – DLVO Colloid-Grain Attraction Theory (Schijven and Hassanizadeh, 2000) 
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The bold line in Figure 2-3 describes the sum of the forces between a colloid and 

grain surface.  � is the separation distance between the surface of the grain and the colloid 

at the primary energy minimum (Φmin1),  and �Born, �DL, �vdw are the Born energy, 

double layer repulsion and van der Waals attractive forces respectively.  If the potential 

energy is negative, there is attraction between the colloid and grain.  The above diagram 

is specific for the typical case in nature when both the colloid and grain carry a negative 

charge.  These energy profiles are characterized by a shallow secondary minimum (Φmin2) 

and a deep primary minimum (Φmin1) which in turn could represent two types of 

attachment sites.  The shallow site would be relatively further away from the grain 

surface and the attachment is based upon an attraction to the layer of cations around the 

negatively charged collector.  Therefore attachment is postulated to be weak with these 

types of attachment sites.  The primary minimum attachment site would have a stronger, 

more permanent hold on the colloid due to van der Waals forces.  This is reflected by the 

depth of the primary minimum.   

As the colloid approaches within a nanometer (10-9 m) of the grain, there is 

repulsion due to a double layer (dl) of ions surrounding the grain surface and a short 

range repulsive force called the Born energy (Ryan and Elimelech, 1996).  In the case 

where the grain and colloid carry opposite charges there is no positive potential energy 

impediment to the attachment of the colloid to the grain.  The DLVO energy curves in 

this case are characterized by a single deep minimum (Loveland et al., 1996). 

Although attachment efficiency (�) can be theoretically calculated from DVLO 

forces alone (Swanton, 1995, Ryan and Elimelech, 1996, Schijven and Hassanizadeh, 
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2000), in column experiments � is usually determined empirically, once a theoretical 

value for �o has been calculated, by equation 2-9 below: 

2-9 
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where C is the steady state column effluent concentration, Co is the influent, � is the 

porosity, L is the effective column length and dc is the median grain diameter (Yao et al., 

1971).  Equation 2-9 assumes spherical grains and a constant grain diameter in a clean 

filter bed.  Furthermore, direct comparisons of � between experiments are limited since 

changes in the flow rate, and grain shape could confound any attempt to compare 

attachment efficiencies resulting from different grain properties or water chemistries.  

Therefore, although the concept of attachment efficiency, in conjunction with collision 

efficiency is useful to visualize physicochemical attachment, it is very difficult to know 

either with any certainty, since one must be theoretically calculated to know the other.   

Further, both the theoretical equations for collision efficiency (and that for attachment 

efficiencies) rely on many simplifying assumptions, some that have already been 

mentioned.   

This semi-empirically derived attachment efficiency describes the ratio of the 

number of attachments that occur compared to the number of collisions.  Other 

approaches to calculating α include the IFBL (Interaction Force Boundary Layer) 

approximation (Swanton, 1995) and a method that uses the relative breakthrough (RB) of 

a colloid relative to a conservative tracer (Pieper et al., 1997, DeBorde et al., 1999).  

These methods are reviewed in Ryan and Elimelech (1996).  Some attachment 

efficiencies calculated by others work are reported in Table 2-2. 



 29 

Table 2-2 – Attachment Efficiencies � for Viruses from Column Studies (6-35 cm in 
length) Schijven and Hassanizadeh, 2000 

 
Virus Media Type pH NaCl � Reference 
MS2 Sand (Cape Cod) 5.7 0.1 0.007 Kinoshita et al. (1993) 
   7 0.1 0.01   
   8.2 0.1 0   
  Quartz 3.5 0.01 0.12 Penrod et al. (1996) 
   3.5 0.3 0.16   
   5 0.01 0.009   
   5 0.1 0.09   
    5 0.3 0.04   

 

The data in Table 2-2 demonstrate � is proportional to NaCl concentration 

(Penrod et al., 1996).  In contrast, little proportionality was found between � and pH in 

the Kinoshita et al. (1993) study.  This is in contrast to other authors that find � is highly 

(usually negatively) proportionate to pH (Loveland et al., 1996).    

The study by Penrod et al. (1996) shows the effect of increasing ionic strength on 

attachment efficiency (and overall removal) using NaCl.  These values were reported by 

Schijven and Hassanizadeh (2000).  Unfortunately, it was not reported which method 

(RB, IFBL or semi-emperical method from equation 2-9) was used in calculating these 

values.  The reported literature demonstrate that at similar experimental conditions (virus 

type, water chemistry, grain type and size), the attachment efficiency calculated for 

viruses often can differ over orders of magnitude, particularly when comparing laboratory 

and field results (Schijven and Hassanizadeh, 2000).  Therefore, collision efficiency 

remains a conceptual model and not a predictive tool for predicting virus and pathogen 

transport. 
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2.4.1.3 The Importance of Grain Size on Pathogen Removal Efficiency 

Equation 2-10 shows the single collector overall removal efficiency.  It is an 

analytical derivation that describes the removal of small colloids by a single spherical 

grain resulting in the overall removal efficiency (�).  

2-10 

2
caCU
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o ⋅⋅⋅
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π
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where I is the depositon rate (s-1) of colloids, U is the approach velocity (approximated by 

the darcy velocity), Co is the influent concentration and ac is the radius of the grain.  The 

single collector removal efficiency (�) can be related to the expected concentration of the 

colloid at the effluent end of a column with equation 2-9. When equation 2-10 is 

substituted into equation 2-9 (for ��o) it is apparent that the ln of the normalized effluent 

colloid concentration (C/Co) is related to the cubic inverse of the grain’s radius (ac).  In 

other words, as the grain size decreases, the concentration of the colloid decreases 

exponentially (to the power of 3) faster.  Although there are other forms of equation 2-10 

 describing � (interaction force boundary layer (IFBL) and Rajagolapan and Tien’s 

correlation equation, reviewed in Ryan and Elimelech, 1996), they all display similar 

dependence on particle size.  Thus, physicochemical colloid filtration theory predicts that 

media grain size can potentially have a substantial impact on colloid transport and 

attenuation porous media.    

2.4.2 Size Exclusion 
 

In contrast to physicochemical filtration, size exclusion is a strictly physical 

process.  Long considered to be a potentially significant process in the attenuation of 

pathogens in fine grained aquifers (e.g. Matthess and Pekdeger, 1988), size exclusion was 
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considered a separate process and not included in the modified advection-dispersion 

(equations 2-1 to 2-3) until recently when Foppen et al. (2005) incorporated straining into 

this equation.  They accomplished this by splitting up the deposition rate (
S/
t) into two 

terms, accounting for physicochemical sorption and straining, as demonstrated in 

equation 2-11 below:  

2-11 
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where SDEP accounts for the bulk concentration of pathogens retained due to pore size 

exclusion and STEMP is for physicochemical sorption.  This process is also known as 

mechanical straining and may best be explained by considering Figure 2-1. 

Matthess and Pekdeger (1988) first tried to quantify the effect of size exclusion 

with the following two equations. 
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102.0 ddk =  

where �SG is the geometrical suffusion security (an empirical term that represents a 

boundary condition where size exclusion will occur), dp is the diameter of the 

microorganism, Fs is the empirical transit factor for suffusion (an empirical factor 

describing the effect of a variety of indeterminate grain properties, such as morphology, 

angularity or packing configuration) often assumed to be 0.12 (Foppen et al., 2005), dk is 

the hydraulic equivalent diameter of pore canals and d10 is the grain diameter for which 

ten percent of the grains are smaller.  As long as �SG is greater than 1.5, no colloid 
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transport will occur (Matthess and Pekdeger, 1998; Foppen et al., 2005).  Fs would be 

smaller for more angular and rough grains.  It should also be mentioned that if pathogens 

are flexible, it may be possible for them to squeeze through smaller pore sizes than rigid 

microspheres of the same diameter.  Since porous media in nature have a non uniform 

distribution in grain size, based upon this equation (2-12), even medium sands may be 

able to strain out some bacteria.  Figure 2-4 shows the relative sizes of porous media and 

several common pathogens. 
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Figure 2-4 – Size comparison of common pathogens with common aquifer pores (Taylor 
et al., 2004) 

 

There have been several attempts to predict the effect of size exclusion on colloid 

transport through different sizes of porous media.  Tufenkji et al. (2004) demonstrated the 

importance of grain shape on the mechanical straining of Cryptosporidium and 
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microspheres.  They performed a set of column experiments that demonstrated the 

importance of pathogen size in the range of bacteria to protozoa in very well sorted (UC 

= 1.24), fine grained, crushed, silica sand.  The flow rate was 36 m/day with a pH of 5.7 

in 0.21 mm (d50) sand.  Using Cryptosporidium (3.6 �m) and various sized microspheres 

(4.1, 1.9, 1.0 and 0.32 �m), they tested the effects of increasing ionic strength (1, 3.16, 10 

mM KCl) on the attenuation of each of these colloids in the sand.   

When Tufenkji et al. (2004) investigated Cryptosporidium attenuation in columns 

of sand they found that although there was a perceivable reduction in peak concentration 

of the colloids at high ionic strength (C/Co = 0.1 in the two higher IS waters) oocysts 

broke through duplicate columns each at C/Co = 0.41 when low ionic strength water was 

utilized.  This indicated that attenuation was occurring in spite of the repulsive forces 

between the negatively charged pathogen and grain.  Based on a purely physicochemical 

understanding of attenuation, one would expect that complete breakthrough would occur 

at such a low ionic strength, since (as discussed previously) the attachment efficiency (�) 

would be expected to be very low.  Therefore, this attenuation was inferred to be caused 

by mechanical straining.   

To further test their hypothesis that mechanical straining (size exclusion) was 

responsible for this reduction in Cryptosporidium, another column experiment at identical 

conditions to the low IS run was performed using 4.1 �m microspheres instead (similar 

size to Cryptosporidium).  It was found, in duplicate runs, that similar reduction in peak 

concentration resulted from the use of these Cryptosporidium-sized microspheres (C/Co = 

0.41).  Since the surface properties, charge, roughness and isoelectric point are different 

between these two colloids, this suggested that the attenuation was being caused by 



 34 

something they had physically in common (i.e. only size) rather than something 

physicochemical in nature.  Physicochemical attachment is affected by changes in the 

surface properties of the colloid (Ryan and Elimelech, 1996).    

In further column experiments utilizing spherical glass beads (made of SiO2 like 

the crushed silica sand used earlier) of similar size and uniformity to the (angular) 

crushed sand, Tufenkji et al. (2004) showed that no attenuation of either the 

Cryptospordium or the microspheres (4.1 �m) occurred, suggesting that attenuation was 

related to grain shape rather than grain size.  This lent further credibility to the theory that 

a physical process rather than a physicochemical one was responsible for the attenuation.  

In a fourth set of experiments they passed all four sizes of microspheres (4.1, 1.9, 1.0 and 

0.32 �m) through the crushed silica sand yielding complete breakthrough of all sizes 

except the largest one.  Thus the authors concluded that mechanical straining could be a 

significant attenuation process with bacteria and protozoa sized pathogens in fine grained, 

angular sand. 

Tufenkji et al. (2004) showed that in some cases (e.g. very angular, crushed silica 

sand) the ratio of particle diameter to median grain diameter (dp/d50) need only be as high 

as 0.002 for significant straining to occur.  Although a direct comparison to Matthess and 

Pekdeger’s (1988) method for predicting pore size exclusion (based on the d10 value) is 

difficult, pore size exclusion at a dp/d50 of 0.002 certainly implies much greater retention 

than predicted by Matthess and Pekdeger’s equation 2-12.  In the larger protozoa and 

bacteria, pore size exclusion could be the dominant retardation factor while with viruses 

the most important factor is likely physicochemical sorptive forces (Matthess and 

Pekdeger, 1988; Schijven and Simunek, 2002).   



 35 

2.4.3 Elimination 
 

For protozoa, bacteria and viruses, as with most living things, survival time is 

inversely related to water temperature down to the freezing point (e.g. Schaffer, 2002).  

Thus the waterborne pathogens should be able to survive longer in the environment in 

winter and higher latitudes where water temperatures are cooler.  Other factors which 

affect the viability of pathogens are indigenous micro-organisms, which may lead to 

competition, predation and parasitism, pH, chemicals and nutrient content (Matthess et 

al., 1988; Lawrence and Hendry, 1996; Schijven and Hassanizadeh, 2000; Jin and Flury, 

2002).  The equation that is most commonly used to describe natural die-off or 

inactivation (viruses) is (Schijven and Hassanizadeh, 2000): 

2-14 
t

oeNN λ−=  

where N is the number (or concentration) of pathogens at time t.  No is the initial 

concentration of pathogens and � is a die off rate constant.  � is highly proportional to 

temperature, such that in warm waters this term is several orders of magnitude larger than 

in cold waters (4 ºC) (Schijven and Hassanizadeh, 2000).  Figure 2-5 shows the typical 

rate of decline for viruses at different water temperatures.  Also shown in this figure is 

the calculated die-off constant of MS2 contained in stock suspensions stored at 4 ºC in a 

refrigerator in the present research, calculated from equation 2-14.  
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Figure 2-5 - Inactivation Rates of MS2 and Poliovirus 1 at Different Temperatures (Yates 
et al., 1985) 
 

Since all pathogens are sensitive to temperature, assuming otherwise comparable 

conditions, warmer climates with warm surface water and groundwater temperatures will 

result in faster die off of harmful pathogens (Yates et al., 1985).   

Groundwater and surface water have both been found to contain every type of 

pathogens in every populated climate and region of the world (Chu et al., 2001).  In 

general, groundwater contains fewer organisms than surface water because of the 

combined attenuation processes of physicochemical attachment, size exclusion, and die-

off as the water enters the aquifers vertically through the partially saturated upper soil 

layers or horizontally via saturated riverbanks (Harvey, 1997; Ginn et al. 2002; Taylor et 

al. 2004).   

Computer models of pathogen transport both in surface water (Medema and 

Schijven, 2001; Schernewski and Jülich, 2001) and groundwater have been developed 
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(Matthess and Pekdeger, 1988; Schijven and Simunek, 1999; Schijven et al., 2000b; 

Schijven and Hassanizadeh, 2000; Chu et al., 2001; Ginn et al., 2002; Schijven and 

Simunek, 2002; Keller et al., 2004).  Lacking in these models, however, are the 

quantitative details of attenuation processes and the physical, chemical and biological 

factors which affect these processes must be better understood.  Therefore, the accuracy 

of these models is at best approximate in a well characterized column or field site 

(Schijven and Simunek, 2002; Flynn et al., 2004a).  Much carefully recorded experience 

with colloid transport is needed to challenge and refine old conceptual and analytical 

models of pathogen transport. 

 
2.5 Water Chemistry 
 
Table 2-3 shows some typical major ion concentrations encountered in riparian 

groundwater settings.  According to Freeze and Cherry (1979) and Appelo and Postma 

(1993) the only major ions missing from this table that contribute significantly to the 

ionic strength of a typical groundwater would be K+, Mg2+ and SO4
2-.  The experimental 

ionic conditions used in the current study only included Ca2+, Na+ and Cl-.  It has been 

found that Ca2+ is more effective in attenuation than other divalent cations.  Since K+, 

being a monovalent cation, has less effect than divalent cations on the retention of colloid 

retention (Redman et al., 1998).  No recent experiments have been done testing whether 

divalent anions affect the retention of colloids, rather traditional colloid filtration 

literature emphasizes the importance of cations (especially higher valent) in colloid 

retention (e.g. Ryan and Elimelich, 1996, Redman et al., 1998, McCarthy et al., 2002, 

Zhang and Jin, 2003, Xiqing et al., 2004).   
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Table 2-3 – Major Ion Concentrations in Natural Riparian and Groundwater Systems 

Setting and 
Location Reference Ca2+ 

mg/L 
Ca2+ 
mmol/L 

Na+ 
mg/L 

Na+ 
mmol/L 

Cl- 
mg/L 

Cl- 
mmol/L 

HCO3
- 

mg/L 
HCO3

- 
mmol/L 

Base Flow 
Recharge to 
stream, Scotland 

Soulsby et 
al., 1998 1 0.03 3 0.15 4 0.12 NR* NR* 

Riparian Glacial 
Outwash, 
Wisconsin 

K. Kim, 
2002 5 0.12 1 0.04 1 0.02 15 0.25 

Stream Water, 
Japan 

Ohrui and 
Mitchell, 
1999 

6 0.15 1 0.04 2 0.06 12 0.20 

Stream Water, 
Czech 

Peters et 
al., 1999 14 0.35 5 0.20 3 0.08 NR  NR 

Shallow riparian 
groundwater in 
rainy season, 
California 

Rains and 
Mount, 
2002 

35 0.87 17 0.74 8 0.23 275 4.51 

Riparian 
Groundwater, 
France, sand and 
gravel alluvium 
with some 
carbonates 

Negrel et 
al., 2003 60 1.50 20 0.87 16 0.45 244 4.00 

Shallow 
groundwater 
recharged from 
canal water in an 
arid region, 
Nebraska 

Harvey 
and 
Silbray, 
2001 

70 1.75 75 3.26 20 0.56 325 5.33 

Shallow Karst, 
North China 

Liu et al., 
2004 85 2.12 0.14 0.01 4 0.11 250 4.10 

Average US 
Groundwater 

Appelo & 
Postma, 
1993 

50 1.25 30 1.30 15 0.42 200 3.28 

  Average 41 1.01 19 0.81 9 0.24 189 3.09 
  Minimum 5 0.12 0.14 0.01 1 0.02 12 0.20 
  Maximum 85 2.12 75 3.26 20 0.56 325 5.33 
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Table 2-4 shows the range of water chemistries used in several past colloid and 

virus transport experiments.  McCarthy et al. (2002) observed significant increases in 

microsphere attenuation through fractured shale by varying the [Ca2+] from 0.1 to 1.0 

mmol/L.  Zhuang and Jin (2003) found that even small amounts of [Ca2+] (0.075 

mmol/L) resulted in a profound increase in the attenuation of MS2 and PhiX-174.  This 

increase was apparent even over other solutions of comparable ionic strength, but made 

up of monovalent cations (Na+ and K+).  In fact, Pillai et al. (1997) (not shown in Table 

2-4) demonstrated that the attenuation of a virus in crushed silica sand was unaffected by 

a ten fold increase in ionic strength, using monovalent cations (1 – 10 mmol/L Na+).  

Even a further ten fold increase in Na+ (10 – 100 mmol/L) only resulted in a 1 log 

reduction in peak breakthrough concentration.  In contrast, under the same water and soil 

conditions, a minor increase in Ca2+ (1-3 mmol/L) resulted in a 5 log reduction in peak 

concentration.  The same effect was observed using Mg2+ as the divalent cation.  Through 

the comparison and consideration of other reported results, the settings for this present 

work were determined to invoke a measurable effect on attenuation of pathogens at an 

environmentally relevant ionic strength (i.e. levels typical of shallow groundwaters).      
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Experimental Purpose Colloid Used Author Na K Ca Mg Cl NO 3 HCO 3 CO 3 S O 4 PO 4 I pH

Un its m m ol/L m m ol /L m m ol /L m m ol /L m m ol /L m m ol /L m m ol /L m m ol/L m m ol /L m m ol /L m m ol/L

C h arge 1 1 2 2 -1 -1 -1 -2 -2 -3
varying ionic st rength for 
virus t ransport  with Al-

oxide coated sand
MS2 and PhiX-174 Zhang and Jin, 2003

relat ing ionic st rength to 
colloid retent ion

silica microspheres
Elimelech et  al., 

2000
0.1-10 0.1-10 0.1-10

varying monovalent  and 
divalent  cat ion conc to 

effect  t ransport  of colloids 
in Shale fractures

0.1, 0.5, 1.0, 2.1 um 
carboxylate-modified latex 

microspheres

McCarthy, McKay 
and Bruner, 2002

5-30 0.1-1.0 0.2-30 0.3 - 30

using coated quartz 
(uncoated, hemat ite, 

polymer)

S5 and S139, 1-2 um rod 
shaped bacteria

McCaulou, Bales and 
McCarthy, 1994

0.25 0.02 0.05 0.14 0.10 0.02 0.14 0.19 1.02

PBS, low Ionic st rength P BS low IS Zhang and Jin, 2003 1.70 0.04 1.24 0.25 2

CBS, low ionic st rength CBS low IS Zhang and Jin, 2003 2.00 0.04 1.24 0.80 2

(divalent  cat  present ) AGW Zhang and Jin, 2003 1.5 0.051 0.075 0.082 0.365 1.5 2

relat ing saturat ion level to 
t ransport , AGW

Pseudomonas fluorescens 
P17

Jewet t  et  al., 1999 0.9 0.1 0.2 0.6 0.3 0.1 0.6 0.7 3.9

varying ionic strength and 
flow condit ions in glass 

beads
latex microspheres Xiqing et  al., 2004 6-50 6-50 6-50 6.92

varying pH and comparing 
t ransport  of MS2 w/ 

Norwalk in sand

MS2 and recombinant  (no 
RNA) Norwalk

Redman and Grant  et  
al., 1997 10 10 10 5, 7

clogging of limestone 
fractures, on sit e simulated 

GW >70 m deep

various indigenous biofilm 
secret ing bacteria

Ross, et  al., 2001 23.37 0.19 0.15 0.16 10.57 0.06 0.15 0.16 0.06 18.6 8.2

comparing soil types and 
pH levels

MS2 and P RD-1
Kinoshita, Bales, 
Gerba et  al., 1993

100 100 100 various

Phosphate buffered saline PBS Zhang and Jin, 2003 140 3 103 20 163

Carbonate buffered saline CBS Zhang and Jin, 2003 160 3 103 60 163

comparing t ransport  of 
viruses in sand, buffered 

AGW
MS2 and PhiX-174 Jin et  al., 1997 140 3.42 103 20 213 7.5

5 different  buffers at  different  ionic st rengths
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2.6 Scope of Present Work 
 
In light of the presented literature review, there is a need for better understanding of 

waterborne, viral pathogen transport from surface water to groundwater (Szewyk et al., 

2000).  The setting of regulations for set back distances and groundwater travel times of 

drinking water wells, such as GUDI (Ontario Regulation 505) needs to be based upon 

empirical knowledge and well tested theory of the transport of a range of sizes and types 

of human pathogens (Schijven et al., 2000a).  In spite of this need to understand transport 

of a range of pathogen types and sizes (Jin and Flury, 2002), only a few dozen studies 

have been published in which virus transport has been examined in columns or at field 

sites (Schijven and Hassanizadeh, 2000).  Of these studies, even fewer have been 

performed with both viruses and bacteria simultaneously (Scandura and Sobsey, 1997; 

Harvey et al., 1999; Schijven et al., 2000a; McCarthy et al., 2002; Pang et al., 2003).   

The relative impacts of physicochemical filtration and size exclusion (and the 

associated role of angularity and size distribution of porous media) on virus attenuation 

are not well understood.  To investigate these issues, many studies have utilized spherical 

beads (Ryan and Elimelech, 1996; Loveland et al., 1996; Schijven and Hassanizadeh, 

2000; Jin and Flury, 2002).  While spherical beads are useful for further developing 

physicochemical colloid filtration theory, since they better fit the assumptions implicit to 

those models (e.g. equation 2-8) (Ryan and Elimelech, 1996), they fail to realistically 

represent natural environments.  Accordingly, column studies conducted with these 

synthetic media often fail to indicate the field-scale transport behaviour of viruses 

(Schijven and Hassanizadeh, 2000; Flynn et al., 2004a), bacteria (Harvey, 1997) or 

protozoa (e.g. Tufenkji et al., 2004) in natural granular media.    
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Examining the attenuation abilities of angular porous media at different sizes and 

water chemistry with different ionic strengths, of known pathogens (viruses, bacteria and 

protozoa) is essential for providing guidance for the development of surface water-

groundwater interaction regulations such as that encountered in an RBF environment.  

Furthermore, concurrently investigating the predictions of physicochemical filtration 

theory and size exclusion, will enhance the fundamental understanding of colloid 

transport in porous media, with the ultimate goal being the development of improved 

quantitative models of bio-colloid transport in the subsurface. 
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3. MATERIALS AND METHODS 
 
3.1 Research Approach 
 
Figure 3-1 visually summarizes the tasks that were carried out to meet the experimental 

objectives and overall research goal of this thesis.  Prior to conducting laboratory 

investigations of bacteriophage and microsphere removal by porous media at conditions 

consistent with riverbank filtration, three general catagories of tasks needed to be 

completed.  These were: 1) microbiological tasks, 2) experimental apparatus development 

tasks, and 3) water chemistry selection tasks.  These tasks, along with the preliminary, 

factorial design, and additional column experiments are summarized in Figure 3-1.  The 

rationale for the experimental design, the specific components chosen, and the methods 

used will be discussed in this section. 
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Figure 3-1 - Development Stages for Virus and Microsphere Transport Column Studies 
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3.2 Factorial Design 
 
Pathogen concentration, media grain size, and water ionic strength impacts on bio-colloid 

attenuation were investigated utilizing a 22 factorial design experiment.  An additional 

experiment was conducted (in triplicate) to confirm that the influent bacteriophage 

concentration did not impact the research outcomes.  Each of the conditions of the 

factorial experiment were investigated in duplicate.  The experimental conditions during 

each of the column studies are summarized in Table 3-1 below. 

Table 3-1 – Summary of Experimental Conditions Utilized During the Column Studies 

   Influent Water Chemistry 
Influent Water 
Microbiology 

Run 
# Sand [Ca2+] 

(mmol/L) 
[Na+] 

(mmol/L) 
[Cl-] 

(mmol/L) 

Ionic 
Strength 
(mmol/L) 

MS2 
(pfu/mL) 

1.5 �m 
Microsphere 

(/mL) 
1 A Prototype run 1.E+06   
2 A 1 2 4 8 1.E+05   
3 A 1 2 4 8 1.E+07   
4 A 1 2 4 8 1.E+05 1.E+04 
5 A 1 2 4 8 1.E+07 1.E+04 
6 A 1 2 4 8 1.E+05 1.E+04 
7 A 1 2 4 8 1.E+07 1.E+04 
8 A 4.8 19.5 29.1 94.7 1.E+06 1.E+04 
9 A 4.8 19.5 29.1 94.7 1.E+06 1.E+04 
10 B 1 2 4 8 1.E+06 1.E+04 
11 B 1 2 4 8 1.E+06 1.E+04 
12 B 4.8 19.5 29.1 94.7 1.E+06 1.E+04 
13 B 4.8 19.5 29.1 94.7 1.E+06 1.E+04 
14 A 4.8 19.5 29.1 94.7 1.E+06 1.E+04 
15 A 4.8 19.5 29.1 94.7 1.E+06 1.E+04 

 

The impact of divalent cation concentration, Ca2+, was investigated at 1.0 and 4.8 

mmol/L corresponding to ionic strengths of 8 and 94.7 mmol/L.  This represents a range 

of reasonable shallow groundwater chemistries (see Table 2-3).  To isolate the impacts of 

grain size alone (i.e. exclusive of mineralogy, roughness, etc) on the subsurface transport 
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of pathogens, two different sand types (0.7 and 0.34 mm median grain size), possessing 

identical mineralogy and similar surface roughness were used.   

 
3.3 Research Rationale 
 
3.3.1 Bio-colloid Effects 
 

MS2 was the virus selected for this research because of its similarity in size to 

common human viruses and pI (isoelectric point).  The fact that MS2 has a similar pI 

(3.9) to human viruses means that it will carry the same negative charge at neutral pH, so 

the attachment efficiency is likely to be similar between both types of viruses.  MS2 

transport in natural media also has been studied extensively individually (Zhuang and Jin, 

2003; Schijven et al., 2002; Jin et al., 2000; Dowd et al., 1998; Jin et al., 1997) and in 

conjunction with human pathogenic viruses (Meschke and Sobsey, 2003; Schijven et al., 

2003; Redman et al., 1997).   

The transport of bacterial-sized (1.5�m) carboxylated microspheres was also 

investigated.  Microspheres are useful surrogates for human bacterial pathogen transport 

in natural (McCarthy et al., 2002) and engineered environments (Elimelech et al., 2000 

and Tufenkji et al., 2004), are comparable in size to many human pathogenic bacteria, 

and provide a tie-point to previously reported studies that have investigated pathogen 

transport in porous media systems at the laboratory and field scale (Côté, 2004 and 

Watling, 2004).  Microspheres were also included in this work to potentially demonstrate 

mechanistic differences between bio-colloid transport of viruses and bacteria.  Since 

many sizes of waterborne pathogens exist, an understanding of how bio-colloid size 

affects subsurface transport of pathogens is critical to providing regulatory guidance for 
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groundwater and GUDI drinking water systems; for example, determining well set back 

distances (from surface water) and requisite groundwater travel times.   

Table 3-5 lists the physical and chemical characteristics of some common 

bacteriophages and human viruses.  As indicated in that table, MS2 has an isoelectric 

point of pH 3.9.  At neutral pH, it can be inferred that MS2 has a negative charge.  

Relative to other bacteriophages, like PhiX-174 (with higher isoelectric points), it would 

be expected that MS2 would be less impeded in its movement through negatively charged 

silica sand, since the media grains would likely repel the like-charged virus surrogate. 

It was also expected that the size difference between the viruses (30 nm) and the 

bacteria-sized microspheres (1500 nm) would result in differences in subsurface transport 

characteristics.  The microspheres have a lower expected collision efficiency (Figure 2-2 

and Ryan and Elimelech, 1996) relative to MS2, possibly resulting in less relative 

attenuation by the same porous media.  The relative impact of fewer contact opportunities 

was concurrently investigated with the impact of media grain size, as it is possible that 

size exclusion plays a role in pathogen attenuation in finer sands (Foppen et al., 2004).   

3.3.2 Grain Size 
 

It is expected that decreasing the grain size of the soil will increase retention of 

both viruses and microspheres since the surface area of potential attachment surfaces is 

twice as great with the fine grained sand as the coarse one (Table 3-4).  Another reason to 

expect the fine grained sand to better retain viruses than the medium sand is based on 

colloid filtration theory (Ryan and Elimelech, 1996).  This has already been discussed 

Chapter 2.   
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Comparing the relative retention of microspheres by large and small media grain 

sizes may allow the discernment between electrostatic attachment and size exclusion 

pathogen attenuation mechanisms.  For example, if no pathogen surrogate attachment 

occurs in the medium sand but considerable attenuation occurs in the fine sand, it may be 

concluded that size exclusion contributed to the attenuation since most of the conditions 

affecting physicochemical attachment (water chemistry, flow, mineralogy, grain 

angularity and roughness) were the same in the fine and medium sand experiments.  

However, due to the dependence of overall attachment efficiency (�) on media grain size 

as specified by the single collector model (equation 2-10), and the overall increase in 

media grain surface area associated with using the finer sand, the process of size 

exclusion is difficult to prove incontrovertibly.  One of the advantages of carrying out the 

22 factorial design experiment is that interaction or synergy between the two effects 

(grain size and ionic strength) can be tested.  Based on colloidal filtration theory it is 

expected that attachment will increase with: 1) decreasing grain size (equation 2-10), 

because of the increase in surface area which allows more attachment, and increasing 

[Ca2+], because of the compression of the double layer of ions which lowers the repulsive 

energy threshold, allowing particles to move close enough to attach to grain surfaces 

(Figure 2-3) (Ryan and Elimelech, 1996).   

3.3.3 Soil Properties 
 
Porosity Estimates 
 

Media porosities were measured using the method of Brush et al. (1999).  In 

summary, 50 ml of media were weighed and poured into a 100 ml graduated cylinder, 
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containing 50 ml of water.  The unpacked media porosity was then estimated by the 

amount of water displaced by the bulk volume of the grains:   

3-1 

     
( )

sat

f

V

V−
=

100
ε  

 

where Vf is the final volume of the water and sand together, � is the unpacked porosity of 

the media, and Vsat is the saturated volume of sand.  This last term accounted for the 

slight change in measured sand volume, calculated after the sand was poured into the 

water.  The final volume of sand was used in the porosity calculations.  The estimated 

porosity values are presented below in Table 3-2.  The raw data for these measurements 

are shown in the Appendix in Table A-2.     

 
Table 3-2 – Physical Properties Sand Types Used in Column Experiments 
   

Code  Sand 

Median 
Grain 
Diameter 
(mm) 

Uniformity 
Coefficient 
(d60/d10) 

Porosity 
Bulk 
Density 
(g/cm3) 

A Indusmin 2010 0.7 1.9 0.43 1.43 

B Indusmin 4010 0.34 2.1 0.43 1.51 
 

Grain Size Analyses 

Sieve analyses of the two sands used in the present study were performed in 

triplicate (or duplicate) using approximately 800 g samples (Octagon 200 Test Sieve 

Shaker, Endocotts, London, England) for 20 min.  Figure 3-2 shows the grain size 

analyses of the sands used in the present experiments.  The raw data for these size 

distribution curves are shown in the Appendix in Table A-3 and Table A-5.   
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Figure 3-2 - Grain Size Curves of Sands Used Column Experiments 

3.3.4 Considering Grain Properties in from a Colloid Transport Perspective 

Table 3-3 summarizes the physical and mineralogical properties of these sands.  

The sand is crushed silica sand, over 99% pure quartz (Indusmin).  In crushed sand, 

unlike natural unconsolidated aquifer material, the grains are very angular.  Crushed sand 

was used to control media grain size effects while maintaining identical mineralogy and 

similar angularity.   

In the natural environment minerals weather in an order equal to Mohr’s scale of 

hardness (Klein and Hurlbut, 1985).  In this scale quartz is near the top in hardness (a 7, 

where 10 is diamond), whereas feldspars (6), calcite (3) and micas (2.5) are closer to the 

bottom of the scale and are therefore more easily weathered.  In the course of transport of 

mineral grains from their primary source (e.g. granite) to a deposition site, some minerals 

will be completely dissolved and others will be greatly reduced in size due to dissolution 
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over thousands of years of groundwater flow.  Quartz will tend to stay intact and remain 

more angular than then other common minerologies.  Therefore if a sand sample is taken 

from a riverbank site and separated according to size, it is likely that the finer, smoother 

grains will contain softer minerologies than the larger grains.  By using artificially 

created (crushed) size ranges, the problem of mineralogy-biased grain roughness and size 

is avoided.  Due to the predictions made in section 3.3.2. with regards to the importance 

of fine sand in attenuating colloids and reported data regarding microbial attenuation by 

sands containing positively charged metal-oxides (Loveland, 1996; Elimelech, 2000; You 

et al., 2003), it is known that a small percentage (~5 %) of fine grained mafic (frequently 

metal-oxide containing) media can contribute substantial increases in attenuation 

regardless of the size or composition of the (larger) median grain size.   

Media grains of identical mineralogy and similar angularity were chosen here to 

isolate the effects of media grain size on pathogen attenuation in subsurface materials.  

Flynn et al. (2004b) found that mineralogy can have a significant effect on bacteriophage 

transport.  Using pure feldspar, pure quartz, crushed granite, and pure calcite, they 

showed that the bacteriophage H40/1 was retained differently by the various media.  

Tufenkji et al. (2004) demonstrated that, compared to spherical silica crushed silica 

resulted in greater attenuation of microspheres and Cryptosporidium.  Thus, it is 

important to keep mineralogy and grain shape as consistent as possible when 

investigating size exclusion mechanisms of pathogen attenuation by porous media. 
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Table 3-3– Geologic properties of sand 
           Minerology (% by mass) 

Code 
Name Name 

Median 
Diameter 
(mm) 

Uniformity 
Coefficient 
(D60/D10) 

D10 
Hazen 

k 
(cm/s) 

Silica 
(SiO2) 

Iron 
(Fe203) 

Alumina 
(Al2O3) 

Calcia 
or 

Lime 
(CaO) 

Sand 
A 

Indusmin 
#2010 0.7 1.9 0.40 1.6E-01 99.7 0.08 0.2 0.02 

Sand 
B 

Indusmin 
#4010 0.34 2.1 0.18 3.2E-02 99.7 0.08 0.2 0.02 

 
The calculated uniformity coefficient and estimated Hazen conductivity values of 

the sands utilized in this investigation are listed in Table 3-3.  Both uniformity 

coefficients were low relative to those that would be expected in natural environments, 

indicating that the sands were very well sorted.  The anticipated conductivity was 

calculated using the Hazen equation:  

3-2 
k = d10

2 

This equation dictates that in loosely packed sand, the hydraulic conductivity is equal to 

the square of the grain diameter below which only 10% of the sample grains are smaller 

(Chapuis, 2004).  It is interesting to note that equations 2-12 and 2-13 (Matthess and 

Pekdeger, 1988) relate pore size exclusion to the inverse of d10.  Therefore the finest 10% 

of sand impacts both conductivity and size exclusion.  This relationship is logical since it 

is the finest grains that will fill the spaces between larger ones and therefore most greatly 

influence the median pore size for the entire packed column.   

The media surface areas were calculated assuming that each grain was perfectly 

spherical, using the relationship in equation 3-3 below. 

3-3 

pp d
M

A
⋅

=
ρ
6  
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where A is the total surface area, M is the mass of the sample, �p is the particle density 

and dp is the grain diameter.  This equation shows that if dp is doubled, while keeping M 

and �p constant, then A is reduced by 50%; that is, there is a linear, inverse relationship 

between grain diameter and total surface area.  The process of calculating theoretical 

surface area is outlined in Table 3-4.   

 
Table 3-4 - Theoretical Surface Area Calculations 
 

Name 
Average 
Diameter 

(mm) 

spherical 
surface 
area of 
average 

grain 
4*�*r2 

(mm2) 

Volume 
of sphere 
4/3*�*r3 
(mm3) 

density of 
quartz 

(g/mm3) 

mass 
per 

sphere 
(g) 

Total 
Mass in 
Packed 
Column 

(g) 

# of 
spheres 

in 
column 

Total 
Surface 

Area 
(mm2) 

Total 
Surface 

Area 
(m2) 

Indusmin 
#2010 0.7 1.539 0.180 2.67E-03 4.80E-04 900 1.9E+06 2.9E+06 2.9 

Indusmin 
#4010 0.34 0.363 0.021 2.67E-03 5.49E-05 900 1.6E+07 5.9E+06 5.9 

 
 

In one packed column (with length of 20 cm and diameter of 6.35 cm, as used in 

the present study) of uniformly sized medium sand (0.7 mm diameter) there are 2.9 m2 of 

media surface area (assuming spherical media grains).  A column of the fine sand (0.34 

mm diameter) would contain 5.9 m2 of surface area.  The distribution of the sand sizes 

and the angular, rather than spherical, shape increase the surface area of these media, 

however.  An assessment of the true surface area of these media was beyond the scope of 

the present investigation. 

3.3.5 Ca2+ Effects 

Table 3-5 compares MS2 to other well studied bacteriophages and human viruses.  

The following discussion will focus on the expected transport characteristics of MS2, but 
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this table reveals the similarity between MS2 and human viruses, so it is reasonable 

expect that these viruses would be attenuated similarly to MS2 (Redman et al., 1997).     

Table 3-5 – Physical and Chemical Characteristics of Some Common Bacteriophages and 
Human Viruses 

  
Diameter 

(nm) 
Genetic 
Material 

Isoelectric 
Point Source 

Bacteriophages       
MS2 20-26 ss RNA 3.9 McKay et al., 1993 
PhiX-174 23 ss DNA 6.6 Dowd et al., 1998 
T7 60 ds DNA  Rossi, 1994 
PRD-1 62  4.2 McKay et al., 1993 
Qbeta 24  5.3 Dowd et al., 1998 
PM2 60  7.3 Dowd et al., 1998 
       
Human Viruses       
Norwalk  38 ss RNA 5 Redman et al., 1997 
Echo 1 27 ss RNA 5-6.4 Zerda, 1982 
Coxsackie A21 27 ss RNA 4.8, 6.1 * Murray and Parks, 1980 
Poloiovirus 1 23 ss RNA 6.6 Bales et al., 1993 
          
* for two different conformational states   
 
 

In the case of MS2 transport in porous media, the effect of increasing divalent 

cation concentration is to block or screen the sands’ negative surface charges by double 

layer compression and allow the MS2 to be attracted to, instead of repelled by, the sand 

grain (e.g. Redman et al., 1999).  Therefore a decrease in MS2 transport would be 

expected as a result of an increase in [Ca2+], since the quartz media grains carry a 

negative surface charge.  It is also possible that an increase in [Ca2+] can enhance 

transport of bio-colloids, by reversing the normal attractive forces felt between oppositely 

charged grain and colloid.  This type of effect was observed by Zhuang and Jin (2003), 

who used positively charged aluminum oxide coated sand.  Using negatively charged 

PhiX-174 and MS2 they demonstrated that virus transport increased with increasing ionic 
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strength.  Similar effects were observed by Loveland et al. (1996), in which positively 

charged Fe-oxide coated sands were used.  Those authors observed an increase in the 

detachment of the bacteriophage PRD-1 with increasing ionic strength over a range of 

pH.  Similarly, Pillai et al., (1998) demonstrated that increasing [Ca2+] from 1 to 10 

mmol/L resulted in an additional 5 log reduction in peak breakthrough concentration of a 

wild bacteriophage, isolated from raw sewage.  They also demonstrated this effect using 

[Mg2+] over the same concentration range, resulting in a 4.5 log reduction in peak 

concentration of the virus.   

The results of the studies summarized above are consistent with colloid filtration 

theory.  As ionic strength increases, negatively charged viruses are surrounded by 

positively charged cations.  These cations screen the viruses’ negative charge and prevent 

it from approaching positively charged media grains.  Furthermore, Zhuang and Jin’s 

(2003) results showed that the effect of increasing ionic strength was much greater on 

MS2 than PhiX-174.  At high ionic strength, MS2 behaved almost as a conservative 

tracer whereas at low ionic strength it barely broke through the column; only after 12 

pore volumes was any MS2 detected in the column effluent.  This outcome was expected 

because MS2 (isoelectric point 3.9) is more negatively charged at neutral pHs than PhiX-

174 (6.6) and would therefore be more attracted to the positively charged Al-oxide coated 

grains under low ionic strength conditions. 

The electrostatic forces between like and oppositely charged particles at high and 

low ionic strength are described in Figure 3-3.  This figure indicates that at sufficiently 

high ionic strengths (and high enough cation charge) the normal electostatic forces 

between pathogens and media grains are reversed (Loveland et al., 1996).  
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Figure 3-3 – Electrostatic Forces Between Like and Oppositely Charged Particles at High 
and Low Ionic Strengths 
 

In the present study, 1.0 and 4.8 mmol/L concentrations of [Ca2+] were utilized 

because they represent a wide range of ionic strengths that may be encountered in the 

natural environment (Freeze and Cherry, 1979) and are therefore more likely to have 

discernable impacts on pathogen attenuation (as compared to a narrower range of ionic 

strengths). 
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3.4 Microbiology 
 
3.4.1 Bacteriophages  
 
Measuring Growth Kinetics of E. coli Host Strains 

Procedures for enumerating f-specific bacteriophages involve using a culture of 

host bacteria that are at the end of the exponential growth phase (Adams, 1959).  It is at 

this stage in the culture’s growth that the f-pili are expressed in numbers optimal for the 

infection of MS2.  The f-pili are the site of infection for f-specific bacteriophages such as 

MS2.  As a rule of thumb E. coli 15597, the host for MS2, are at the end of the 

exponential growth phase after 4 to 6 hours at 37°C.  To verify this rule of thumb, a 

suspension of E. coli was grown and optical density measurements were made.   

The growth kinetics of E. coli 15597 was characterized by measuring optical 

density over a period of 24 hours (wavelength 520 nm) (VERSA max tunable microplate 

reader, Molecular devices, USA).  Optical density or the obstruction of the passage of 

light through an inoculated broth is directly correlated to bacterial concentration.  The 96-

well plate was kept at 37°C on an intermittently shaking table (1 min of continuous 

shaking every 15 min).  100 ml of sterile (autoclaved) nutrient broth were inoculated with 

1 ml of a host bacteria culture (37 Cº) that had been grown in broth overnight (12 hours) 

on a continuously shaking tray.  After inoculation the new suspension was swirled by 

hand briefly.  0.2 ml of this newly inoculated broth were added to each of 12 wells on the 

microplate.  In addition, 12 wells were filled with sterile broth as indicators of potential 

contamination (negative controls).  The optical density of the material in each well was 

measured every 15 minutes and recorded by a computer.  These data yielded a growth 

curve indicative of the growth kinetics of the MS2 host. 
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Measuring Bacteriophage Concentration  
 

The double layer agar method was used to measure bacteriophage concentration 

(Adams, 1959).  Rossi (1994) demonstrated that in the initial contact between 

bacteriophage and their host bacteria, a minimal contact time (~1 min) was necessary for 

the optimal infection of host bacteria with bacteriophages.  This finding was significant 

because if bacteriophages and their hosts are mixed in a dilution tube and then introduced 

directly into top agar then less than one minute is available for mixing before the agar 

solidifies.  The double layer agar method used herein is outlined below. 

Preparing the Stock Suspension 
 

The stock suspension of MS2 (ATCC 15597-B1) was grown by adding 1 ml of 

MS2 in nutrient broth into a 200 ml culture of log phase E. Coli (ATCC strain 15597) 

that had been grown for 4-5 hours at 37 ˚C.  After overnight (12 hour) incubation the E. 

coli/MS2 suspension was centrifuged at 20,000 rpm for 20 minutes.  The supernatant was 

then filtered through a 0.2 �m filter (ZAPCAP-S Plus, Scheicher & Schuell, Dassel, 

Germany).  The filtrate was stored at 4 ºC in sterile 250 ml glass flasks.     

Measuring MS2 Concentration 
 

The procedure for measuring MS2 concentration is presented in this section.  The 

chemicals used in these experiments (NaCl, CaCl2 and Glucose) were supplied by EMD 

Chemicals Inc. (Darmstadt, Germany), and the growth media (Tryptone, Bacto-yeast 

extract, Bacto-agar) were obtained from Becton, Dickinson & Co. (Le Pont de Claix, 

France).   

To measure MS2 concentration, 1 ml of the MS2 liquid sample was serially 

diluted into each of 12 sterile test tubes containing 9 ml each of saline-calcium solution 
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containing 8.5 g NaCl and 0.22 g CaCl2 per 1 L of Milli Q™ water.  Each tube was 

lightly vortexed after the 1 ml sample was added.  After the bacteriophage had been 

serially diluted, 1 ml of 4-5 hr exponential phase (for maximal population expression of 

the f-pilus, the site of infection for MS2) E. coli culture was added to each tube and 

lightly vortexed (5 sec).  After 2 or 3 minutes, allowing for bacteriophage attachment, 

1 ml of the MS2/E. coli suspension was pipetted into a test tube containing 5 ml of 

molten top agar that had been cooled so it could be held with bare hands.  The MS2/E. 

coli molten agar suspension was poured over bottom agar in petri dishes and incubated at 

37°C.  After 12 hours, plaques appeared as clear spots in a cloudy lawn of E. coli.   

Plaques represent areas of killed host bacteria, initiated by at least one 

bacteriophage in the centre of the clear spot.  Once a bacterium is infected by the 

bacteriophage it lyses and releases bacteriophages (usually about 200) that then are able 

to infect neighbouring bacteria.  The process continues many times until by 6-8 hours the 

plaques become visible to the naked eye.  MS2 formed plaques approximately 3 mm in 

diameter.   

 
3.4.2 Enumerating Microspheres 
 

The general procedure for counting microspheres involved filtering (Filter 

assembly, Hoefer Scientific Instruments, San Fransisco, CA) a few millilitres (0.1-10 ml) 

of the sample through a 0.4 �m pore membrane (25 mm diameter, Polycarbonate 

Membrane Filters, Whatman 110607).  The sample volume depended on the expected 

concentration of microspheres in the sample; accordingly, some samples required 

reprocessing so that adequate, statiscally relevant counts were obtained.  The filters were 

mounted on microscope slides that were then sealed and stored at 4 ˚C.  Microspheres 
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were enumerated using epifluorescence microscopy.  The entire filter area was examined.  

The microsphere enumeration method is summarized below in point form. 

 
• Each sample was poured into sterile stainless steel cylindrical weights on top of a 

0.4 �m membrane supported by a 8 �m support filter (Nucleopore Track-Etch 

Membrane, Whatman Corp., Billerica, MA).  The samples were filtered under 

mild vacuum.  After filtration the membrane filter was carefully separated from 

the support filter using sterile tweezers and asceptic technique. 

• Each filter was carefully put on a separate microscope slide over a drop of 2 % 

DABCO (glycerol).  A cover slip was placed over the filter and then gently 

tapped down to spread the glycerol uniformly and to flatten out any wrinkles in 

the filter.  Care was taken to minimize the formation of air bubbles. 

• The edges of the cover slip were sealed with nail polish.  The slides were labelled 

and stored at 4ºC. 

• Microspheres were enumerated using epifluorescence microscopy at 100x 

magnification (Axioscop 2 Plus, Carl Zeiss, Empix, Toronto, Canada).  The entire 

25 mm2 filter area was examined. 

 
3.5 Column Design and Construction 
 
To assess bacteriophage transport in porous media at conditions representative of 

riverbank filtration; columns were designed so that they would be: 1) relatively 

inexpensive to build, 2) suitable for measuring bacteriophage and microsphere 

breakthrough curves within a reasonable time frame (< 5 days), and 3) operable in a 

manner that adequately represented riverbank filtration conditions.  Rapid assembly and 
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long lifetime were also desirable.  Mr. Shayne Giles of the University of Waterloo helped 

with the column design, which was based on that of Watling (2004).  That design utilized 

a PVC pipe with two hard plastic couplings sealed overtop of the PVC pipe at each end.  

Those couplings allowed caps to screw into each end of the column.  There were three 

noteworthy problems encountered with those columns:  1) the columns were poorly 

sealed since the only contact between the cap and the column were the threads (no o-ring 

was employed); 2) the coupling kept breaking because of the fatigue and perhaps outward 

pressure of screwing in the caps for every column test; and 3) the caps were hard to screw 

in and remove, requiring a pipe wrench and often incurring damage to the column.  Thus 

a new design was needed that could be rapidly assembled and sealed well.  The column 

designed for the present research was called the “Rapid Assembly/Disassembly Column 

Design”, and is shown in Figure 3-4.  Two of these columns were constructed.   

Column Length = 
20 cm

O-ring embedded into end 
of PVC column

Straight threads, 7/inch

Hole in Cap for 1/4 inch tubing

Screw-on Cap

2.5 inch 
Diameter 
PVC

-There should be a tapered zone between the O-ring and the 1/4 inch outflow hole

-A #70 mesh will be added flush with each of the column ends

-Two ends are identical

 

Figure 3-4 – Rapid Assembly/Disassembly Column Design 
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The main differences between the column design utilized in this investigation and 

that of Watling (2004) were:  1) the new design utilizes an over-screw design in which 

the cap screws over threaded PVC pipe rather than into a threaded coupling; and 2) an o-

ring was embedded into each end of the PVC column to make contact with the cap once 

tightened.  Detailed technical drawings of the Rapid Assembly/Disassembly Column 

Design are provided in the Appendix (Figure A-1, Figure A-2, and Figure A-3). 

 
3.6 Column Preparation and Operation 
 
One end of the column was sealed and then the column was dry-packed with sand.  

During this process, 50 g of sand were added to the column and then the material was 

tamped down with a clean medal rod.  This process was repeated until the column was 

filled.  The column was carefully sealed by brushing sand off the o-ring and slowly 

threading the cap to avoid the disruption of the seal by soil grains between the rubber o-

ring and the end of the thread cap.  After packing, the column was slowly filled in an 

upflow mode with degassed AGW (Artificial Groundwater) from the bottom up (5 

ml/min).  The water was degassed using helium gas passed through a submersed, clean 

air diffuser, for 30 minutes before use (20 L).  After saturating the column, 10 pore 

volumes of the prepared water of the same ionic strength (either 8 or 95 mmol/L) and 

composition as that in the spiked reservoirs, was pumped through each column to rinse 

the media of any impurities (colloids, chemicals etc).  

The pore volume of a packed column was estimated based on the measured 

porosity of the media and the known dimensions of the column.  One pore volume is 

equal to the volume of the column (�r2h, where r is the radius of the column and h is the 

length or height from one screen to the next), multiplied by the measured porosity for the 
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sand (�).  The flow rate was measured in 100 ml graduated cylinders at discrete intervals, 

usually every hour during a typical column experiment.  To visually demonstrate this 

method of calculating pore volume the irregular flow data from column runs 2 and 3 are 

respectively presented in Appendix D.  Flow was measured frequently (roughly every 20 

minutes for the first 5 hours, after this the flow was measured every time a sample was 

taken) during this experiment.  Since a leak that developed in one of the columns at 23.5 

minutes (0.13 pore volumes) after the start of the experiment, the experiment was 

temporarily stopped.   

After pre-rinsing with AGW, 2 pore volumes of spiked bacteriophage, 

microspheres and bromide seed suspension were pumped through the columns.  

Afterward, the columns were flushed with bacteriophage-free AGW for another 20 to 30 

pore volumes.   

The experimental apparatus is shown in Figure 3-5, which shows the reservoirs on 

the left hand side on magnetic stir plates.  Each of the 2 L Erlenmeyer flasks held 

separate spike suspensions for each of the columns.  The 20 L glass carboy contained the 

AGW used in the pre-spike rinse and post-spike flushes.  The peristaltic pump 

(Masterflex Peristaltic Pump, Barnant Co., Barrington, IL) in the centre of Figure 3-5 

drove the flow from the reservoirs to the columns, it operated on very low rpm’s (20-30 

rpm).  The utilization of lower rpm’s is important since the pulsing action of the 

peristaltic pump could result in temporal fluctuations in pore velocity that favour 

transport and detachment of colloids.  Several investigations have demonstrated that 

colloid attachment is inversely related to pore water velocity (Jin et al., 1997; Schijven et 

al., 2002; McKay et al., 2002).   
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Figure 3-5 - Experimental Apparatus Utilized During Column Studies  
 

After 2 pore volumes of spike suspension (bacteriophage, microspheres and 

bromide) had passed through the columns, bacteriophage-free artificial groundwater of 

identical chemistry to the spiked suspension (except without any NaBr) was flushed 

through each column for approximately another 30 pore volumes (60-72 hours).  15 ml 

samples were collected at least every 30 minutes until after 2 pore volumes of spiked 

suspension had passed through the columns.  After the first two pore volumes, 

increasingly longer periods were used in between sampling, up to 8 hours by the end of 

the experiment.  This sampling strategy was appropriate because changes in 

bacteriophage and bromide concentration during flushing were found to be very gradual.  

In a typical column experiment, once the first two pore volumes of spike suspension 

passed through the column a peak plateau was observed until the passage of 
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approximately 4 pore volumes, after which the effluent concentration of all spiked 

influent substances declined in what is referred to as the shoulder region (Schijven and 

Hassanizedah, 2000).  In the present experiments, the shoulder region typically lasted for 

another 4-5 pore volumes after the peak plateau.  After the shoulder region passed 

through the columns, the effluent concentrations of colloids (MS2 and microspheres) 

gradually tailed off to below their respective MDL’s (Method Detection Limits).  During 

tailing, approximately 20 samples were collected from each column and analyzed.     

A typical sampling schedule is provided in Table 3-6.  Single samples were 

collected in sterile 15 ml test tubes over intervals of approximately 6 minutes.  It was 

important for the ionic strength and ionic content be consistent for the duration of the 

injection experiment since these parameters were being evaluated for the effect they had 

on pathogen transport.  In several experiments the pH and conductivity were measured 

throughout the rinsing, spiking and flushing stages to ensure the provision of stable water 

chemistry.       
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Table 3-6 – Typical Sampling Schedule 

Time (hr) Pore Volumes Event or Sample # 

0 0 Pre-spike rinse with AGW 
12 10   
0 0 Switch to bacteriophage/microsphere/Br spiked water 
0.25 0.1 1 
0.5 0.2 2 
0.75 0.3 3 
1 0.4 4 
1.5 0.6 5 
2 0.8 6 
2.5 1.0 7 
3 1.3 8 
4 1.7 9 
4.8 2.0 Switch to bacteriophage/microsphere/Br-free AGW 
5 2.1 10 
6 2.5 11 
8 3.3 12 
10 4.2 13 
14 5.8 14 
22 9.2 15 
23 9.6 16 
29 12.1 17 
36 15.0 18 
46 19.2 19 
56 23.3 20 
72 30.0 21 

 

 
 

3.7 Measuring Bromide Concentration  
 
Sodium bromide (NaBr) (Fischer Scientific, Fair Lawn, NJ) was used as a conservative 

tracer to determine the hydrologic properties of the porous media (i.e. Darcy velocity and 

hydrodynamic dispersion) during the column experiments.  Ion chromatography (I.C.) 

(Dionex, Sunnyvale, CA) was used to measure the bromide concentration in the column 
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effluents.  A 1000 mg Br/L (ppm) stock solution was utilized to prepare the bromide 

standards.  The stock bromide solution was diluted into 1, 5, 10, 50, 100, 150 and 200 

ppm standards that were analyzed in duplicate to produce a calibration curve.  The 

bromide analysis is discussed further in the QA/QC section.   

 
3.8 Breakthrough Curve Analysis 
 
Peak normalised concentration, percent attenuation and retardation of the colloids relative 

to bromide tracer were utilized to analyze the breakthrough curves obtained during the 

column studies discussed herein.  The specifics of these methods are discussed in the 

following sections.  

3.8.1 Peak Normalised Concentration 

The peak breakthrough concentration (Cmax/Co, where Cmax is colloid 

concentration at the peak of the breakthrough curve and Co is the spiked influent 

concentration) describes the highest colloid concentration one might expect to observe in 

drinking water well near a pathogen contamination source.  Conceptually, given 

knowledge about minimum infectious dose for the particular pathogen and making some 

assumptions about source concentrations (Co), of pathogens, the normalised 

concentration can be used to ensure the safety of well water (e.g. Schijven et al., 1999).  

Peak normalised breakthrough concentration also can be used to estimate the overall 

virus/colloid removal efficiency (�) of the virus/colloid (equation 2-9).   

3.8.2 Percent Attenuation 

The total number of colloids in the column effluents was calculated by integrating 

each breakthrough curve.  The integral was approximated discretely.  This process is 

described in equation 3-4.  This estimated area under each curve is then multiplied by the 
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total pore space in the column resulting in an estimate of the total number of particles 

released in the effluent.  

3-4 

( ) ( ) ε⋅⋅�
�

	


�

�
�
�

�
�
�

� −
+

= 

=

−
−

c

i

n
ii

ii
eff Vvv

cc
P

1

1
1

2
 

 

where Peff is the total estimated number of particles released in the effluent, n is the 

number of plotted concentration points on curve, c is concentration of each point, v is the 

cumulative number of pore volumes at that point, Vc is the empty volume of the column 

and � is the porosity of the sand. 

The total number of particles injected in the column influent was estimated the 

following equation 3-5. 

3-5 

ospike CtfP ⋅⋅=inf  

 

in which Pinf is the total number of particles injected into the column, f is the flow rate 

(ml/hr) over the spiked time interval, tspike is the length of time over which the spike was 

added and Co is the influent particle concentration. 

Based on equations 3-4 and 3-5, the percent attenuation was calculated using 

equation 3-6: 
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3.8.3 Relative Retardation 

Relative retardation is the ratio between the tracer and colloid velocities, as 

described in equation 3-7:   
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3-7 

colloid

tracer

v
v

R =  

where vtracer is the measured velocity of the tracer through the media and vcolloid is the 

velocity of the colloid.  Assessing the velocities of each mobile substance required 

finding the point in time after spiking commenced when 50 % of the peak concentration 

(C50) in the breakthrough curve was initially reached.  This time was denoted t50.  Since 

the actual concentration at t50 was never directly measured, it was inferred by linear 

interpolation between the two neighbouring points; one earlier and one later than t50.   

 
3.9 Quality Assurance and Quality Control 

One common challenge of working with both microorganisms and inorganic 

chemicals, such as bromide, is being able to quantify the uncertainty associated with each 

reported concentration.  This uncertainty is characterised by the degree of accuracy and 

the amount of variability inherent in each method used for both sampling and analysis.  

Each method usually has a bias associated with it, a tendency to report higher or lower 

concentrations than actual.  Microsphere recovery studies using the same method and 

equipment as the present study report losses of over 60% (Watling, 2004).  In order to 

perform a recovery study an independently measured or known concentration solution 

must be used to assess the accuracy of the detection method in question.  In the present 

study, no such alternative detection method or prepared suspension was available for 

MS2 and therefore it was impossible to assess the accuracy or bias associated with the 

plaque counting method.  It is reasonable to say however, that the plaque forming method 

produces lower concentrations than actual, due to the necessity of attachment of each 

bacteriophage with a host bacteria and the possibility of clustering.  The accuracy of the 
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bromide data was able to be assessed by using known standards and calibration curves for 

each round of measurements. 

As well as accuracy, variability needed to be known for microspheres, viruses and 

bromide.  Variability for microspheres using the same equipment and similar methods as 

the present study was assessed in Watling (2004).  Using multiple samples from a 

suspension of known concentration the fluorescent microscopy counting method was 

found have a standard deviation within 20% of the mean.  This value is also known as the 

coefficient of variation.  Variability in measuring MS2 was assessed using triplicate plate 

analyses (Table B-1 and Table B-2 in the Appendix).  Within the valid counting range of 

plaques per plate of 30 to 300 pfu (You et al., 2003) the standard deviation was always 

within 10% of the mean, which is indicative of excellent reproducibility.  Variability in 

bromide analysis was estimated by the goodness of fit (R2) of each calibration curve to 

the data is discussed in section 3.9.3. 

There is a range of concentrations for which the reported accuracy and variability 

associated with each sample is valid.  Below this range variability increases due to 

sampling and analytical processes or background noise.  The concentration where this 

occurs is the method detection limit (MDL) and is reported below for each analysed 

substance.  The MDL for microspheres in this experiment was set to 20 microspheres per 

slide (Watling, 2004).  Based on Standard Methods (American Public Health Association, 

1995) the MDL for MS2 was set at 1 pfu per lowest dilution.  Since a zero dilution was 

frequently utilized (especially near the end of the breakthrough curve when 

concentrations were low), this resulted in an MDL of 1 pfu/ml.  An upper limit of 300 pfu 

per plate was also set for MS2 (You et al., 2003) since above this phage density it was 



 71 

found that plaques begin to overlap thereby reducing the perceived concentration of the 

original sample.   

One of the problems associated with reporting concentration values for particles is 

known as non-representative sampling.  Typical methods used for calculating an MDL 

for chemicals assume error, or deviations of observed concentrations from the true mean, 

to be normally distributed at low concentrations.  But as described in Emelko (2001) this 

is not a valid assumption for discrete particles such as microspheres and viruses.  This is 

because at low concentrations (< 20 particles per ml) the observed concentrations of a 

finite number of observations will be described by a Poisson distribution.  Since uniform 

distribution of discrete particles in space cannot be assumed (i.e. see section 3.9.1 below) 

and a concentration less than zero cannot be reported most of the observed concentrations 

will centre on the true mean, while a very few samples will happen to capture an 

unrepresentatively large number of particles for sample size.  A statistical approach for 

dealing with uncertainty in sampling and analysis of discrete particles at low 

concentrations is described and applied in Emelko (2001).  Although the MDL for 

microspheres was derived from this method, this approach was not incorporated in the 

calculation of an MDL for MS2 in the present study.  

3.9.1 Investigating the Evidence for Bacteriophage Clustering 
 

Without an electron microscope, it is difficult to assess the occurrence of virus 

clustering (aggregation) in experiments that use plaque forming units to evaluate virus 

concentration.  Bacteriophage clustering would be most likely to occur in the high 

concentration suspensions with minimal disturbance (e.g. mixing).  In the present work, 

the stock suspensions were kept refrigerated and contained bacteriophage concentrations 
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of ~109 pfu/ml.  The seed reservoirs contained lower concentrations of bacteriophages 

(~106 pfu/ml) that were mixed at low RPMs with a magnetic stir bar, a less likely 

environment for virus clusters than a standing solution.  An increase in equilibrium forces 

acting to distribute the viruses equally throughout the solution would be associated with 

the lower concentration of viruses (Schijven and Hassanizadeh, 2000); accordingly, any 

bacteriophage clusters would likely disperse.  The stirring action would likely further 

break up clusters.  Finally, after passing through the columns, bacteriophage clusters 

could possibly disaggregate as they follow the tortuous flow paths through the porous 

medium.  The implications of this reasoning are that one would expect that an ever 

greater back-calculated bacteriophage stock concentration with each dilution and/or 

mixing step from the original stock solution.  There was no indication of bacteriophage 

clustering during the investigation discussed herein.       

3.9.2 Controlling for Contamination in Bacteriophage Detection 
 

Bacteriophage controls were run alongside of each set of analyses for to control 

for contamination.  Table 3-7, lists the two different controls collected during 

bacteriophage analysis.   

Table 3-7 - Controls Collected During Bacteriophage Detection 

   Microorganisms Added     

Type 
Host 

Bacteria Bacteriophage Description Purpose 

Phage 
control yes no 

Exponential E coli culture in 
Saline solution is added to top 

agar 

To determine phage 
contamination among dilutions 

Saline 
control no no Saline solution is added to top 

agar 

To determine bacterial 
contamination in saline 

solution 
 
 



 73 

No bacterial contamination was found with the saline control.  The Phage control was 

useful because the small size of viruses sometimes permits them to be aerosolized 

(Greening et al., 2001), therefore there was potential for cross contamination between test 

tubes.  No cross contamination (>15 phage controls done with MS2) was observed during 

this research.  Although some bacterial contamination was found in a couple of the 

controls, this was determined to not likely effect the analysis for MS2 since it is very host 

specific.  The Saline and Phage controls can be seen in Table B-13 and Table B-14 

respectively. 

3.9.3 Measuring Bromide Concentration in Column Effluent 
 

One of the bromide calibration curves (1-200 ppm) obtained during the present 

investigation is presented in Figure 3-6.  Least squares linear regression was used to 

produce this curve which yielded an excellent coefficient of determination of 99.9 %. 

y = 6E+06x - 5E+06
R2 = 0.9982
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Figure 3-6 - Typical Ion Chromatography Calibration Curve for Br 
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The bracketed concentration zone, in between where sample standards were used, 

for bromide was from 1 to 100 mg/L.  In addition to generating calibration curves, one 

injection of known concentration (Check Standard) and one blank were analysed after 

every 10 sample measurements.  This was done to test for accuracy and contamination 

respectively and to indicate any analytical drift.  Using the method in Standard Methods 

(American Public Health Association, 1995) for calculating MDL for chemicals, the 

standard deviation of measured concentration of seven random 10 ppm standards was 

calculated.  These standards were pooled from across three separate ion chromatograph 

analyses.  These seven standards should have been taken every time a bromide analysis 

was performed. 

This standard deviation from these seven samples was multiplied by 3.14 and 

added to the real concentration to yield a MDL for bromide of 15 ppm.  All the bromide 

data and I.C. calibration curves are shown in Appendix D.  Each effluent sample was 

measured in duplicate and the average was taken in forming the breakthrough curves.   R2 

values were all very high on all the calibration curves indicating both high accuracy and 

low variability.  No blanks were shown to be contaminated since the measured bromide 

concentration was always below 1 ppm.  The calibration curves are in the Appendix 

(Figure C-1, Figure C-2, Figure C-3, Figure C-4 with supporting data in Table C-1, Table 

C-4, Table C-11, Table C-16 respectively).   
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4. RESULTS AND DISCUSSION 
 
This study examines the effects of ionic strength, media grain size, and influent virus 

concentration on pathogen transport in porous media.  Fourteen column tests were 

conducted using the bacteriophage MS2 and 1.5 �m  microspheres; two commonly used 

non-pathogenic surrogates representative of human viruses and bacteria, respectively.  

Two size distributions of crushed silica sand and two ionic strengths (1 and 10 mmol/L of 

Ca2+) were used.  A 22 factorial design was used with a minimum of two replicates of 

each combination of parameters.  The results of these experiments are discussed below. 

 
4.1 Microbiology 
 
4.1.1 Measuring the Concentration of MS2 in the Stock Suspension 
 

The figure below shows the appearance of plaque forming units (PFU) in the 

double layer agar technique.  The plaques represent areas of killed host bacteria, initiated 

by at least one bacteriophage in the centre of the clear circle.  MS2 (Figure 4-1) formed 

plaques of about 3 mm in diameter. 
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Note:  The large squares on the light box are 1 cm wide. 

 
Figure 4-1 - Plaques of MS2 in Lawn of Host Bacteria E. coli 15597 
 
 

Table 4-1 presents the results of the first attempt to quantify the concentration of 

MS2 in its stock suspension.  MS2 plaques were enumerated once at 18 hrs after the 

addition of the top agar (with MS2 and E. coli) to the Petri dish.  At this point, plaques 

were clearly evident on the plates.  Plaques were enumerated for a second time to assess 

counting variability after 40 hrs of incubation and to ensure that no more plaques appear 

after 18 hrs.  An examination of the replicate counts obtained after 40 hours of incubation 

indicates quite good reproducibility of low counts, as would be expected (with 

coefficients of variation < 10%).  When the plaque counts were high (~300 per plate) and 

near the upper limit of the ideal range of 30–300 pfu/plate suggested by You et al. (2003), 

the coefficient of variation went up to 12.6%, which is consistent with increased counting 
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error associated with closely clustered and occasionally overlapping plaques.  The mean 

stock MS2 concentration was found to be 9.3x108 pfu/ml.    

Table 4-1 - First Measurement of MS2 in Stock Suspension, October 23, 2004 
 

Dilution from 
Stock Solution 

Number of Bacteriophages per plate 
(pfu) 

40 hr 
Average 

(pfu) 

Standard 
Deviation of 
40 hr Count 

(pfu) 

Coefficient of 
Variation (%) 

40 hr 
Concentration of 

MS2 Stock 
Solution (pfu/ml) 

  18 
hrs 40 hrs         

Counting Trial # 1 2 3 4 5         

3.81E-06 307 299 300 379 297 318.8 40.2 12.6 8.36E+07 

4.77E-07 113 142 127 133 139 135.3 6.7 4.9 2.84E+08 

5.96E-08 79 88 94 100  94.0 6.0 6.4 1.58E+09 
7.45E-09 14 15    15.0 n/a n/a 2.01E+09 

9.31E-10 55 77 79 79   78.3 1.2 1.5 8.41E+10 

Mean*        6.48E+08 

Standard Deviation*               8.11E+08 

* including only 10-7 and 10-8 dilutions since other dilutions lay outside of statistically 
valid range (30-300 pfu/plate). 
 

Table 4-2 provides the results from the second attempt to quantify concentration 

of MS2 in the stock suspension.  Each sample was plated in triplicate.  Consistent with 

the previous results, the average stock MS2 concentration was 4.2x109 pfu/ml.  The 

standard deviation reached 30% of the mean in the 10-8 dilution; however, in the 10-7 

dilution coefficient of variation was found to be less than 4%.  Subsequent analyses 

(presented in the Appendix in Table B-2) demonstrated that the methodology produced 

reproducible results.  It was concluded that the MS2 enumeration method was being 

applied properly, as the observed results were consistent with what one would expect to 

observe with respect to variability and reproducibility in such plating methods (You et 

al., 2003).     
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Table 4-2 - Second Enumeration of MS2 in Stock Suspension, October 29, 2004 
 

Dilution from Stock 
Solution 

Number of Plaques per 
plate (pfu) 

Average 
(pfu) 

Standard 
Deviation 

(pfu) 

Coefficient 
of Variation 

(%) 

Concentration of 
MS2 Stock 

Solution (pfu/ml) 

Standard 
Deviation 

Converted to 
pfu/ml 

Plate # I II III   
        

1.00E-07 252 240 256 249.3 8.3 3.3 2.5E+09 8.3E+07 

1.00E-08 70 39 70 59.7 17.9 30.0 6.0E+09 1.8E+09 

1.00E-09 3 5 9 5.7 3.1 53.9 5.7E+09 3.1E+09 

Mean*              4.2E+09   

* excludes lowest dilution since the plaque densities are too low 
 

To further ensure adequate MS2 enumeration techniques were being utilized a 

third enumeration experiment was conducted.  The data from this experiment are 

summarized in Table 4-3.  The triplicate data in this table indicate good reproducibility in 

the statistically relevant range (~14% coefficient of variation).  Consistent with the 

previously discussed enumeration data (Table 4-1 and Table 4-2), the average stock MS2 

concentration was 1.5x109 pfu/ml. 

Table 4-3 - Third Enumeration of MS2 Stock Suspension, November 19, 2004 
 

Dilution from Stock 
Solution 

Number of Plaques per 
plate (pfu) 

Average 
(pfu) 

Standard 
Deviation 

(pfu) 

Coefficient of 
Variation (%) 

Concentration of 
MS2 Stock 

Solution (pfu/ml) 

Standard 
Deviation 

Converted to 
pfu/ml 

Plate # I II III           

9.09E-08 109 122 143 124.5 17.2 13.8 1.4E+09 1.9E+08 

9.09E-09 10 14 18 14.0 4.0 28.6 1.5E+09 4.4E+08 

9.09E-10 0 3 0 1.0 1.7 173.2 1.1E+09 1.9E+09 

Mean *             1.5E+09   

* excludes lowest dilution because counts were outside of the statistically significant 
range.  The average includes 10-9 dilution data because of low variability, despite counts 
just outside of the statistically significant range (You et al., 2003). 
 

The MS2 concentration in the stock suspension was monitored over time because 

bacteriophage deactivate over time (see Yates et al., 1985 and 2.4.3 Elimination).  The 

first 5 MS2 concentration points in Figure 4-2 (representing one stock solution) 
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demonstrates a rough gradual decline in MS2 over time.  This decline of approximately 

0.2 log per month (� = 0.016, where � is the die off rate constant from equation 2-14) at 

4°C is somewhat lower than but still consistent with other published MS2 deactivation 

rates (e.g. Yates et al., 1985; Schijven and Hassanizadeh, 2000).  The last four points of 

MS2 concentration data in Figure 4-2 represent a new stock suspension and are not 

included in the estimate of �.  The error bars on Figure 4-2 represent +/- one standard 

deviation (calculated from triplicate analyses of the same dilution tube).  The raw data are 

provided in tables (Table 4-1 to Table 4-3) and in Appendix B. 
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Figure 4-2 – Temporal Stability of MS2 
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4.1.2 Measuring Growth Kinetics of E. coli Host Strains 
 

The growth kinetics of E. coli 15597, the host strain for MS2, was characterized 

by measuring optical density over a period of 24 hours.  Five E. coli 15597 growth curves 

are presented in Figure 4-3.  Although a sixth curve was planned, the growth data were 

excluded because of an unusual lag period likely associated with an error in sample 

preparation.  As indicated in Figure 4-3, the latter portion of exponential growth was 

observed after approximately 180 to 300 minutes (3 to 5 hours) of growth at 37°C. This is 

consistent with the recommended time for an E. coli culture to grow at 37, prior to 

contact with MS2 in the molten top agar for plating (Adams, 1959).   
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Figure 4-3 - E. coli 15597 Growth Curve 

 
The five curves presented in Figure 4-3 were obtained from five different wells in 

the micro plate.  It was somewhat surprising to note the differences in absorbance 

magnitude between the curves.  This is in contrast to other authors that have reported 
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lower relative error when measuring E. coli growth with the spectrophotometer (e.g. 

Gabrielson et al., 2002).  Part of the reason for this variability in the present study could 

be that each well was inoculated separately.  It is therefore possible that differing 

amounts of E. coli culture were present in each well when incubation commenced.  In 

spite of this difference in magnitude, the overall shape of each curve is basically the 

same, especially in the initial, exponential zone, noted above. 

4.4 Column Tests 
 

The breakthrough curves of MS2, bromide and microspheres from 14 column 

experiments are discussed in this section (the sampling schedules and flow rates, detailed 

analyses of MS2 and microspheres are provided in the Appendix).  The column 

experiments were conducted two at a time.  Since each column had three mobile 

substances injected, each figure contains up to six breakthrough curves.  For each column 

run the first 2 pore volumes (along the abscissa) represent the period during which the 

spike suspension was injected.  Each of the subsequent figures contains the minimal 

detection limits (MDLs) for MS2 and microspheres; and the solid line represents the 

normalised MDL for microspheres (2000 spheres/L) (Watling, 2004).  The dashed line(s) 

represent the normalised MDL for the MS2 (1 pfu/ml) (American Public Health 

Association, 1995).  When there are two MDLs indicated for MS2 it is because two 

different influent concentrations of MS2 were used.  The indicators of transport 

(reduction in peak concentration, percent attenuation and retardation) are summarised 

after the breakthrough data have been presented.  The measured flow rates and influent 

concentrations of MS2 and microspheres are also provided and discussed with the 

transport indicators.   
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Experiments 2 and 3 investigated the impact of seeded MS2 concentration on 

breakthrough at low ionic strength conditions in the medium sand.  As the intention of 

these experiments was to focus on the impact of influent bacteriophage concentration on 

their transport in porous media, microsphere breakthrough was not evaluated.  The 

bromide and MS2 breakthrough curves obtained during experiments 2 and 3 indicated 

somewhat consistent profiles of MS2 passage through the porous media.  Evidence of 

breakthrough was observed after 1 pore volume of spiked flow had passed through the 

columns.  Both columns released MS2 (at levels of ~250 pfu/ml) for several pore 

volumes after the pulse input of spike suspension.    
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Figure 4-4 – Breakthrough Curves from Experiments 2 and 3 Investigating the Impact of 
Seeded MS2 Concentration on Breakthrough at Low Ionic Strength Conditions in 
Medium Sand. 
 

It should be noted that each of the bromide breakthrough curve drops below the 

MDL (15 ppm) after 6 pore volumes.  The MS2 breakthrough curves in Experiments 2 

and 3 suggest that attenuation or transport through the medium sand at low ionic strength 
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may be impacted by seeded MS2 concentration.  Although the basic shapes of the 

breakthrough curves are the same, the column with the lower influent MS2 concentration 

exhibited bacteriophage breakthrough at only 10% of the influent MS2 concentration 

whereas the column with the higher influent MS2 concentration exhibited breakthrough 

at 100% of the influent concentration.  Although the data indicate a difference between 

the normalized peak breakthrough concentrations, it should be noted that the difference is 

approximately one order of magnitude, which is likely statistically insignificant given the 

inherent uncertainty in plating analyses (Schmidt et al., 2005).   

It should be noted that during this experiment the flow was stopped 20 minutes 

into the spiking period due to an observed leak.  Flow to the column being fed the high 

concentration of MS2 was stopped for 50 minutes while the other column was stopped 

for 90 min.  This start-stop operation may also account for some of the differences in 

MS2 breakthrough observed during experiments 2 and 3.  Static water within the porous 

media may provide the viruses with more opportunity to diffuse to the grain surfaces, 

unhindered by turbulent, dynamic flowing water (McKay et al., 2002).  It is noteworthy 

that the two curves in Experiments 2 and 3 exhibit MS2 tailing after the initial spike 

passed through the columns since this was not observed in later experiments.  The MS2 

and bromide raw data are shown in the Appendix in Table B-2, Table C-2 and Table C-3, 

respectively.  The flow rates for experiments 2 and 3 are also shown in Appendix D.       

Experiments 4 and 5 reproduced experiments 2 and 3 to again investigate the 

effects of influent MS2 concentration on virus transport in porous media.  In addition, 

microspheres were added to the influent at approximately equal concentrations to each 

reservoir to compare the transport of bacterial surrogates with MS2 in medium sand at 
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low ionic strength.  The breakthrough profiles of all three injected substances 

demonstrate excellent similarity between the two columns; since each of the three sets of 

curves overly each other. 
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Figure 4-5 – Breakthrough Curves from Experiments 4 and 5 Investigating the Impact of 
Seeded MS2 Concentration on Breakthrough and Microsphere Transport at Low Ionic 
Strength Conditions in Medium Sand. 
 

Figure 4-5 compares transport of the conservative bromide tracer, bacteriophages 

and microspheres in medium sand at low ionic strength.  Unlike experiments 2 and 3 this 

experiment was conducted with the intended constant flow rate.  Complete breakthrough 

in (Cmax = 0) was observed with both MS2 and the microspheres.  In contrast to this 

agreement in peak breakthrough, while MS2 was retarded relative to bromide (R = 0.6) 

the microspheres broke through slightly earlier than bromide.  This may be due to the 

microspheres following preferential flow paths, where, because of their relatively larger 

size than viruses they would be excluded from smaller, more tortuous flow paths.  
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Breakthrough of bacteria in advance of bromide is commonly reported in the literature 

(Harvey et al., 1989; Woessner et al., 2001; Driese and McKay, 2004) and is often 

referred to as velocity biasing (Taylor et al., 2004).   

Also notable from the above figure is that, in contrast with the behaviour of later 

microsphere experiments, the microspheres exhibit tailing similar to the bacteriophages 

in experiments 2 and 3.  The tailing observed with the bacteriophages in experiments 2 

and 3 could be partially explained by the halting of flow, creating a more favourable 

environment for attachment to occur, but no such event occurred in experiments 4 and 5 

that could be a possible cause for the microsphere tailing.  It is possible that the 

microspheres were attracted to something unusual (such as organics or other 

contamination) in the porous media that did not have as great an effect on MS2.  The data 

from experiments 4 and 5 for MS2, microspheres and bromide are shown in the 

Appendix in Table B-3 and Table B-4, Table B-15, and Table C-5 and Table C-6 

respectively.   Table D-1 shows the flow rates and sampling schedule. 

Experiments 6 and 7 were conducted with medium sand with low ionic strength.  

In these experiments, the bromide breakthrough curves overlapped one another and the 

microspheres were reasonably close in peak breakthrough and retardation.  The two 

breakthrough curves for MS2, however, were quite different from one another and from 

the previous 4 column experiments that were conducted under similar conditions.  The 

column with the high influent MS2 concentration broke through with a 3 log reduction in 

peak concentration.  The other column effluent did not indicate any breakthrough of MS2 

when the lower influent bacteriophage concentration was utilized. 

 
 



 86 

 
 
 
 
 
 

1.0E-09

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Pore Volumes

C
/C

o

MS2 (high [MS2])
Br (low [MS2])
Br (high [MS2])
Microspheres (high [MS2])
Microspheres (low [MS2])

Microspheres MDL = 5.7x10-3

Low MS2 MDL = 7.1x10-6

High MS2 MDL = 4.2x10-9

 
 
Figure 4-6 – Breakthrough Curves from Experiments 6 and 7 Investigating the Impact of 
Seeded MS2 Concentration on Breakthrough and Microsphere Transport at Low Ionic 
Strength Conditions in Medium Sand. 
 

Overall microsphere attenuation was also different in the two columns (37 and 

66% for the columns fed high and low influent MS2 concentrations respectively).  These 

attenuations were higher than those observed during Experiments 4 and 5 under the same 

conditions (6 and 18% respectively).  Given the variability with the microsphere 

detection method and the range of differences between each of the paired columns, no 

statistically significant differences would be expected upon comparison of the amount of 

attenuation observed in Experiments 4 through 7.   



 87 

Consistent with experiments 4 and 5, MS2 breakthrough during Experiments 6 

and 7 was retarded relative to bromide (R = 0.6) whereas the microspheres broke through 

earlier than bromide.  These MS2 retardation results were almost identical to experiments 

4 and 5.  The MS2, microsphere and bromide data for experiments 6 and 7 are shown in 

the Appendix in Table B-5 and Table B-6, Table B-16, and Table C-7 and Table C-8 

respectively.  Flow rate and sampling schedule data are shown in Table D-2. 

Experiments 8 and 9 were also conducted using medium sand (like Experiments 2 

through 7); however, in these the ionic strength was increased to evaluate the effect of 

ionic strength on the transport of MS2 and microspheres in the porous medium.  The 

MS2, microsphere and bromide data from Experiments 8 and 9 are presented Figure 4-7.  

Since all of the parameters (e.g. grain size, colloid, flow rates, temperature) affecting 

collision efficiency, �o, (equation 2-8) remained unchanged from the previous 

experiments (2 through 7), it was inferred that any observed increase in overall removal 

of the colloids likely resulted from an increase in attachment efficiency, (�), which has 

been shown to be impacted by ionic strength (Kinoshita et al., 1993; Penrod et al., 1996).     
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Figure 4-7 – Breakthrough Curves from Experiments 8 and 9 Investigating the Effect of 
Raising Ionic Strength on the Transport of MS2 and Microsphere Medium Sand. 
 

In these experiments, a 3 log reduction in peak MS2 concentration relative to the 

influent (Co) in column A was observed.  Similar to column runs 6 and 7 where one 

column did not break through, column B yielded no MS2 in the effluent samples.  These 

differences were observed despite almost identical flow rates (Table 4-4), temperature, 

soil type and water chemistry (spiked and AGW), and similar influent MS2 

concentrations.  The reservoir concentrations of MS2 did not decline throughout the 

experiments, ruling out inactivation as a cause for the apparent complete attenuation of 

MS2 in column B.  Furthermore, no phage controls revealed MS2 contamination, ruling 

out contamination as the cause for apparent MS2 breakthrough in column A.  The fact 

that the microspheres and especially bromide broke through columns A and B in similar 

manner suggests that the two columns were packed similarly and had similar physical 

flow properties.  It is possible that something in column B, such as the soil (possibly 
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contaminated with organics) or components of the column (possibly contaminated with 

low levels of bleach residual from the cleaning process) acted on the sensitive 

bacteriophages to deactivate them.  Since they are not viable, microspheres would not be 

susceptible to deactivation. 

The MS2, microsphere and bromide data for experiments 8 and 9 are shown in the 

Appendix in Table B-7 and Table B-8, Table B-17, and Table C-9 and Table C-10  

respectively.  Table D-3 shows the flow rates and sampling schedule. 

The intent of experiments 10 and 11 was to investigate the effect of decreasing 

grain size from a medium to fine sand on virus and bacterial surrogate transport in porous 

media, while maintaining low ionic strength, consistent with those utilized in experiments 

2 through 7.  A sharp, consistent (between the two columns) reduction in both MS2 and 

microspheres during Experiments 10 and 11, was observed.  Comparing Experiments 2 

through 7 to Experiments 10 and 11, MS2 was reduced in peak concentration by 5 log 

over its influent concentration, microspheres were completely attenuated due to the 

decrease in median grain size by approximately half (from 0.7 mm to 0.34 mm).   
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Figure 4-8 – Breakthrough Curves from Experiments 10 and 11 Investigating the Effect 
of Decreasing Grain Size on the Transport of MS2 and Microsphere Breakthrough at 
Low Ionic Strength.  
 
 

Figure 4-8 demonstrates that fine sand attenuates MS2 more substantially than the 

medium sand (2010) (Figure 4-4 and Figure 4-5) at identical ionic strengths.  

Furthermore, no breakthrough of microspheres was observed during Experiments 10 and 

11.  It is also notable that the two MS2 breakthrough curves from Experiments 10 and 11 

essentially overlapped one another, demonstrating the potential for reproducibility in 

column experiments conducted in the manner reported herein.   

The MS2, microsphere and bromide data for experiments 10 and 11 are shown in 

the Appendix in Table B-9 and Table B-10, Table B-18, and Table C-12 and Table C-13 

respectively.  Flow rates and sampling schedule are shown in Table D-4. 
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Experiments 12 and 13 were performed in fine sand with high ionic strength 

source water.  Colloid filtration theory suggests that these conditions would favour 

colloid attenuation.  These predictions were experimentally verified in the present study 

and in many other studies.  Both MS2 and bacterial-sized microspheres were completely 

attenuated during these experiments, making it only possible to estimate a minimum 

attenuation capacity of the column under those experimental conditions.  This means that 

the grain size and ionic strength conditions used in this experiment were clearly able to 

attenuate higher concentrations of MS2 and microspheres but the maximum attenuation 

capacity is not known.     
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Figure 4-9 – Breakthrough Curves from Experiments 12 and 13 Investigating for 
Synergistic Effects on the Attenuation of MS2 and Microspheres when Grain Size was 
Decreased while Ionic Strength was Increased.  
 

Despite the aforementioned fact that experiments 12 and 13 did not resolve the 

question which motivated their performance, the results from Experiments 12 and 13 

indicated that complete attenuation of high levels of pathogen-like colloids could occur 

over the 20 cm of fine sand at high ionic strength (94.7 mmol/L) and calcium levels (4.8 
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mmol/L); conditions could reasonably be expected in an RBF setting (Table 2-3).  The 

bromide breakthrough data indicate that the packing and hydrodynamic behaviours of 

these columns are similar to the other 12 column experiments performed (see Table 4-4). 

It is important here to note that these experiments were conducted over a finite 

period of time (2 days).  The degree of attenuation observed at the experimental 

conditions utilized herein could increase or decrease depending on experimental period.  

Increasing attenuation could be caused by “ripening” of the grains as colloids build up on 

the grains and act as additional collectors, increasing the effective size of the grains and 

decreasing pore spaces.  This effect would tend to increase overall attenuation of colloids 

flowing through the media.  Decreased attenuation might result from a process known as 

“blocking” (Ryan and Elimelech, 1996) in which the number of attachment sites is 

limited.  Once these sites are all occupied, no more attachment occurs.  If the number of 

attachment sites is limited it would be expected that over longer column distances 

significantly more attenuation would occur, however, over time decreased attenuation in 

a column of fixed length might be expected.   

The MS2, microsphere and bromide data for experiments 12 and 13 are provided 

in the Appendix in Table B-11, Table B-19, and Table C-14 and Table C-15 respectively. 

Flow rates and sampling schedule are shown in Table D-5. 

 
Figure 4-10 displays the results from Experiments 14 and 15.  These experiments 

repeated Experiments 8 and 9, in which the effect ionic strength was evaluated.  The MS2 

and microsphere breakthrough data from Experiments 14 and 15 can be compared to 

those obtained during Experiments 2 through 7, to determine the effect of increased ionic 

strength on MS2 and microsphere transport in porous media.  Similar to column B in 
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experiments 8 and 9, no MS2 broke through in either column in Experiments 14 and 15, 

while only a small (1 log) reduction in peak microsphere concentration during these 

experiments.     
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Figure 4-10 – Breakthrough Curves from Experiments 14 and 15 Investigating the Effect 
of Raising Ionic Strength on the Transport of MS2 and Microspheres in Medium Sand 
(Repeat of Experiments 8 and 9). 

 

Comparison of Figure 4-10 and Figure 4-5 (and Figure 4-4) indicates that 

increasing the ionic strength reduced the peak effluent MS2 concentration by at least 5.5 

logs, since no MS2 broke through either column during Experiments 14 and 15.  

Consistent with previous column experiments in medium sand, the microspheres broke 

through early relative to bromide (R=1.1).  The MS2, microsphere, and bromide data for 

Experiments 14 and 15 are shown in the Appendix in Table B-12, Table B-20, and Table 
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C-17 and Table C-18 respectively.  Flow rates and sampling schedule data are shown in 

Table D-6. 

 
4.5 Column Test Results Summary 
 

Table 4-4 and Table 4-5 summarize the parameter levels, flow velocities, influent 

concentrations of MS2, microspheres and bromide and the three main transport 

characteristics of interest; peak breakthrough concentration, percent attenuation and 

relative retardation of MS2 and microspheres in each of the 14 column experiments 

discussed above.  The methods for calculating these values were discussed in Chapter 3. 

Table 4-4 – Bacteriophage Results Summary  
 
          Bacteriophage 

Column 
Run Column Ionic 

Strength 
Sand 
Size 

Measured 
Bromide 

Velocity using 
t50 (m/day) 

Influent 
Concentration 

(pfu/ml) 

Peak Virus 
Breakthrough 

(C/Co) 

Percent Virus 
Attenuated 

Relative 
Retardation of 

Virus (t50 MS2/t50 
Br) 

Normalized MDL 
(C/Co) (20 pfu/ml) 

2 & 3 Low   Low Med 1.7 2.1E+04 0.1 62.9 0.80 1.E-03 

2 & 3 High   Low Med 1.8 6.2E+06 1.1 -104.8 0.60 3.E-06 

4 & 5 Low Low Med 2.8 1.1E+05 1.9 -25 0.53 2.E-04 

4 & 5 High Low Med 2.9 2.8E+06 1.4 8.8 0.61 7.E-06 

6 & 7 Low Low Med 2.7 1.4E+05 < 1 E-04 100 NA 1.E-04 

6 & 7 High Low Med 2.7 3.4E+08 0.001 99.98 0.56 6.E-08 

8 & 9 A High Med 2.9 1.2E+08 0.001 99.992 0.61 2.E-07 

8 & 9 B High Med 2.7 6.3E+07 < 3E-07 100 NA 3.E-07 

14 & 15 A High Med 3.3 3.6E+05 < 6 E-05 100 NA 6.E-05 

14 & 15 B High Med 3.3 4.9E+05 < 4 E-05 100 NA 4.E-05 

10 & 11 A Low Fine 3.6 3.8E+07 0.00005 99.998 0.47 5.E-07 

10 & 11 B Low Fine 3.6 5.8E+07 0.00005 99.998 0.43 3.E-07 

12 & 13 A High Fine 4.6 2.3E+06 < 9 E-06 100 NA 9.E-06 

12 & 13 B High Fine 4.8 4.5E+06 < 4 E-06 100 NA 4.E-06 
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Table 4-5 – Microsphere Results Summary 
 
          Microspheres 

Column 
Run Column Ionic 

Strength 
Sand 
Size 

Measured 
Bromide 

Velocity using 
t50 (m/day) 

Influent 
Concentration 

(ms/ml) 

Peak 
Microsphere 

Breakthrough 
(C/Co) 

Percent 
Microsphere 
Attenuated 

Relative 
Retardation of 
Microspheres 
(t50 ms/t50 Br) 

Normalized MDL (C/Co) 
(20 

microspheres/sample) 

2 & 3 Low   Low Med 1.7 No Microspheres Used 

2 & 3 High   Low Med 1.8 No Microspheres Used 

4 & 5 Low Low Med 2.8 1.2E+03 1.61 18.4 1.06 2.E-03 

4 & 5 High Low Med 2.9 4.8E+02 1.29 5.9 0.78 4.E-03 

6 & 7 Low Low Med 2.7 5.9E+02 0.71 66.2 1.36 3.E-03 

6 & 7 High Low Med 2.7 1.1E+02 1.98 37.8 1.33 2.E-02 

8 & 9 A High Med 2.9 2.3E+03 0.38 73.6 1.22 9.E-04 

8 & 9 B High Med 2.7 1.8E+03 0.24 87.6 1.63 1.E-03 

14 & 15 A High Med 3.3 1.6E+04 0.11 91.7 1.11 1.E-04 

14 & 15 B High Med 3.3 1.7E+04 0.05 95.4 1.15 1.E-04 

10 & 11 A Low Fine 3.6 7.3E+03 < 3 E-04 100 NA 3.E-04 

10 & 11 B Low Fine 3.6 2.6E+03 < 8 E-04 100 NA 8.E-04 

12 & 13 A High Fine 4.6 3.1E+03 < 6 E-04 100 NA 6.E-04 

12 & 13 B High Fine 4.8 4.1E+03 < 5 E-04 100 NA 5.E-04 

 
 
4.6 Discussion 
 

The experimental results were surprising and unexpected in a few cases, such as 

observing the total attenuation of MS2 in one of the column experiments in the medium 

sand at low ionic strength (Experiments 6 and 7), while the other experiments showed 

little attenuation (Experiments 2 and 3, and 4 and 5) at the same experimental conditions.   

It was not surprising that increasing ionic strength had a substantial effect on MS2 

attenuation in porous media.  Pillai et al. (1997), under the same water and soil conditions 

demonstrated that a 3 times increase in Ca2+ (1-3 mmol/L) resulted in a 5 log reduction in 

MS2 peak effluent concentration.  Since ionic strength (or content such as charge and ion 

type) is not considered in the calculation of collision efficiency (�o) (eqation 2-8) this 

increase is likely a reflection of the importance of the ionic content of the double layer in 

increasing attachment efficiencies (�) (Ryan and Elimelech, 1996; Schijven and 

Hassanizadeh, 2000).   
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It was not necessarily expected that decreasing the median grain size by 50% 

would result in an additional > 5 log attenuation of microspheres since calculations only 

predict a slight increase in collision efficiency (�o) (see equation 2-8 and Figure 2-2) 

(which is directly related to overall removal efficiency (�)) due to physicochemical 

filtration alone.  Size exclusion estimates at this grain and microsphere size range 

(equations 2-12 and 2-13) do not predict that size exclusion will occur.  Microspheres 

showed little attachment, however, even at high ionic strength in the medium sand where 

only physicochemical attachment would be responsible for removal (since size exclusion 

is highly unlikely in a medium sand).  Therefore since physicochemical attachment does 

not appear to be important in microsphere removal in medium sand and equation 2-8 does 

not predict much increase in collision efficiency due to decreasing grain size, size 

exclusion could be a responsible process in attenuation in the fine sand.     

4.6.1 Contradictory Breakthrough Curves from Paired Columns 
 

Satisfactory explanations were not developed for all of the results obtained during 

the 14 column experiments.  For example, it is difficult to guess what caused the apparent 

total attenuation in one of the columns in experiments 6 and 7.  Further complicating 

things is that in column experiments 6 and 7, the column in which MS2 did breakthrough 

had lower normalized MS2 concentration than observed during the previous four column 

experiments (column runs 2 and 3 and 4 and 5) at identical ionic strength and porous 

media.  An attempt to explain these results will now be made.   

It is possible that MS2 deactivation affected the results observed in Experiments 6 

and 7.  Analysis of the MS2 reservoir throughout all experiments discourages this 

conclusion, however, because the influent concentration of MS2 remained essentially 
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constant throughout these experiments.  It is possible that some residual bleach was left 

over in the column that failed to produce a breakthrough of MS2.  This die off 

explanation, cannot fully account for the discrepancy in column experiments, since this 

could conceivably have a slight effect on virus attenuation, but nothing close to the 

radical more than 4 log reductions shown in experiments 6 and 7.  These contradictory 

MS2 column experiments will be alluded to only briefly in this discussion, but should not 

be forgotten as they are real data.   

Another anomalous result is seen when comparing experiments 8 and 9 and 14 

and 15.  These experiments were carried out to test the effect of raising ionic strength on 

virus and microsphere attenuation in medium sand.  While bromide and microspheres 

broke through in a similar fashion in all four experiments, indicating similar physical 

conditions (flow rate, grain size, media packing etc), all displayed complete (> 6 log) 

attenuation in MS2 except for column A in experiments 8 and 9, which broke through at 

a 4 log peak concentration reduction (99.992 % attenuation) over influent concentration 

(Co).  It is possible that an error was made in measuring the masses or in the addition of 

CaCl2 and NaCl to their respective reservoirs for columns A and B in experiments 8 and 

9.  Since separate reservoirs were used and small amounts of CaCl2 were added (~1 g), 

errors in measurement or losses to the sides of the Erlenmeyer flask reservoir for column 

A would produce a lower [Ca2+] in the spiked solution, possibly contributing to the 

attachment efficiency (�), yielding a higher breakthrough.          

It is difficult to assess whether the variable results from the present study are 

typical of colloid transport experiments since unfortunately, very few researchers publish 

replicate column runs.  Those researchers that have done multiple trials did not report 
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such variability in their findings as in the present investigation (e.g. Loveland et al., 1996; 

Pillai et al., 1997; Flynn et al., 2005).   

4.6.2 Influent Bacteriophage Concentration Effects 
 

The results showed that the concentration of the bacteriophage MS2 had little 

effect on its observed transport characteristics.  When one compares the results from 

paired column experiments 2 and 3 and 4 and 5, the normalised curves are very similar in 

overall shape, but, in the case of experiments 2 and 3, differ in the details (such as 

breadth of MS2 and bromide breakthrough peaks).  This difference may be likely related 

to the different amounts of time water flow was halted in each of the columns.  Static 

water conditions existed for a longer amount of time in the low MS2 concentration 

column, potentially allowing more time for the viruses to diffuse to attachment sites.  

This outcome in conjunction with the results from experiments 6 and 7 weaken the 

conclusion that concentration does not affect transport of viruses, since in two out of 

three of these paired column experiments, disparate experimental outcomes were 

observed, potentially related to inconsistent experimental conditions.  To demonstrate 

that influent virus concentration does not affect the transport characteristics of viruses, 

further experiments would need to be performed at conditions similar to those utilized 

during experiments 4 and 5, for which the attenuation and overall breakthrough curve 

shape (C/Co and retardation) results agree with one another reasonably well.  

4.6.3 Water Chemistry Effects 
 

A general trend of increasing MS2 and microsphere attenuation with ionic 

strength was observed that colloid filtration theory and other researcher’s experimental 

results support.  Colloid filtration theory predicts that colloids in a like-charged 
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(negative) media will be attenuated more by increasing ionic strength (e.g. Loveland et 

al., 1996, Ryan and Elimelech, 1996, Schijven and Hassanizadeh, 2000).  It is important 

to understand the relationship of ionic strength, specifically divalent cations, to virus and 

bacterial transport, given that natural or made-made fluctuations in riverbank 

groundwater chemistry often occur and may alter normal transport processes. 

Comparison of Experiments 4 and 5 (medium sand, low IS) to experiments 14 and 

15 (medium sand, high IS) indicates that increasing the calcium concentration and ionic 

strength in groundwater from 1 ([Ca2+]) and 4.8 mmol/L (IS) to 5 and 94.7 mmol/L 

respectively, will substantially impact the transport of MS2 through sand.  At low ionic 

strength, Experiments 4 and 5 yielded almost identical MS2 breakthrough curves with 

complete normalised breakthrough and little or no attenuation (8 and -25 %).  

Experiments 14 and 15, conducted with high ionic strength, yielded complete MS2 

attenuation with at least 8 log reduction in peak normalized MS2 concentration.  It should 

be noted that there was some variability in the observed outside of these model 

experimental results (2 and 3, 6 and 7 and, 8 and 9) which has already been noted above.   

Redman et al. (1999) found similar results to Experiments 4 and 5, and 14 and 15. 

Using a filamentous bacteriophage originally isolated from sewage.  When they raised 

the clean water influent [Ca2+] from 1 to 10 mmol/L in silica sand the normalised peak 

concentration went from 0 to 5 log (C/Co) reduction over a 20 cm column using the 

similar crushed silica sand (also from Indusmin).  A similar result was observed by 

increasing Mg2+ from 1 to 10 (4 log).   

In contrast to the complete attenuation of bacteriophages, in the high ionic 

strength experiments 14 and 15, the microspheres were only 91.7 and 95.4 % attenuated 
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respectively.  The four column runs at low ionic strength (medium sand) demonstrated 

18.4, 5.9 and 66.2, 37.8 % attenuation during experiments 4 and 5, and 6 and 7 

respectively.  So although an increase in attenuation can be demonstrated for 

microspheres at the high ionic strength, given the analytical uncertainty statistical 

significance cannot be demonstrated.   

4.6.4 Grain Size Effects 
 

A second trend observed was the increase in attenuation with decreasing grain 

size.  This argument is supported by colloid filtration theory.  Equations 2-9 and 2-10 

both show that attenuation will tend to increase with decreasing grain size.  Equation 2-8 

shows that collision efficiency, �o, is inversely correlated to grain size in two of the three 

terms contributing to collision, diffusion and interception.  Equation 2-10 indicates that 

overall removal efficiency (�) is inversely squared correlated to grain size.  Furthermore, 

equation 2-9, which describes normalized reduction in peak breakthrough concentration, 

dictates that C/Co is inversely logarithmic correlated to grain size.  This equation also 

incorporates �o, which, as mentioned above, already has two out three terms which have 

an inverse relationship to grain size.  One would expect then, that with colloids where 

sedimentation was not a significant term (such as small colloids, < 1 �m, see Figure 2-2, 

or colloids with a density equal to water) C/Co would then be inversely logarithmic-

squared correlated to grain size (dc).  This indicates that, based on colloid filtration theory 

and under the colloid size (or density) conditions described above, the peak colloid 

concentration would be expected to greatly decrease with even a slight decrease in grain 

size.  This statement must be qualified, however, since equation 2-9 must be taken as a 

whole, and there are other terms involved.  For instance, if attachment efficiency, 	, is 
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very low (as where a repulsive force acts between a colloid and a grain), then decreasing 

grain size may have little noticeable effect on reducing peak concentration. 

Microspheres were predicted to have a low collision efficiency, relative to MS2, 

because of their size (Figure 2-2).  Furthermore, the evident low attenuation of 

microspheres in the medium sand, at both low and high ionic strengths, indicates a low 

overall removal efficiency (�), suggesting a low attachment efficiency (�) between 

microsphere and grain (if attachment efficiency for microspheres was very high then one 

would expect a reasonably high overall removal efficiency).  Therefore, since 

physicochemical attachment seems to not be operating, it is possible that the large 

attenuation of microspheres observed by decreasing grain size could be attributed to size 

exclusion.   

Matthess and Pekdeger’s (1988) model for size exclusion (equation 2-13), does 

not guarantee size exclusion with any confidence, with a calculated suffusion security for 

the present study (in fine sand) of 0.04 where a suffusion security >1.5 is required to 

guarantee size exclusion.  It doesn’t rule out the possibility of size exclusion, however.  

In fact Tufenkji et al. (2004) demonstrated that in some cases (e.g. very angular, crushed 

silica sand) the ratio of particle diameter to median grain diameter (dp/d50) need only be 

as high as 0.002 for size exclusion to occur.  In the current study dp/d50 for microspheres 

and fine sand was 0.004.  Therefore with the microspheres, size exclusion could have 

contributed to the overall attenuation in the fine sand.   

Under the present experimental conditions it is impossible to know whether this 

attenuation was caused by physicochemical attachment or size exclusion (or a 

combination of both).  An alternative experimental design could be suggested that may 
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elucidate which processes are responsible for the observed attenuation.  This design 

would involve running each experiment for the first two days as in the present study, but 

after two days switching the influent suspension to an eluting solution to detach any 

microspheres that were (physicochemical) attached to the grains, while leaving, 

undisturbed any microspheres blocked in pores (personal communication with Phil 

Schmidt, 2005).       

Due to its very small size MS2 would not be expected to be retained by size 

exclusion in the fine sand.  Nevertheless, MS2 attenuation was greatly increased by the 

two fold reduction in grain size, resulting in a 5 log removal in the fine sand (experiments 

10 and 11), compared with little or no removal in the medium sand (experiments 2-7) at 

low ionic strength.   

 
4.6.5 Detachment and Tailing in Breakthrough Curves 
 

In some experiments greater attenuation of MS2 occurred than microspheres 

(experiments 6 to 9, 14 and 15).  This difference in retention may be accounted for by the 

concept of a shadow zone (Ryan and Elimelech, 1996).  The velocity of a fluid flowing 

passed a solid will decrease with proximity to the solid wall.  Therefore, because of its 

lower profile, an attached virus will be exposed to lower water velocities and weaker 

bond-disrupting forces than attached microspheres, 100 times larger in size.  The larger 

colloids may roll along the grain surface until they either come to rest on a part of the 

grain where not as great water velocities are (such as the side of the grain facing away 

from the oncoming flow) or these colloids could detach from the grain surface 

completely.  Due to their lower profile, viruses would be expected to remain attached 
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longer than microspheres and for the same reason may also be more homogeneously 

distributed over the surface of a grain.   

As well as being less attenuated than viruses, this potential for microsphere 

detachment may also explain the tailing demonstrated in experiments 4 and 5.  If 

microspheres are slowly detached over the course of days one would expect tailing to 

occur.  Further, if detachment occurs at a fixed rate then one would also expect the tail to 

be flat, which it is.   

Although microsphere tailing was not demonstrated in other experiments, 

experiments 2 and 3 showed significant flat tailing of MS2.  It is interesting that this did 

not occur in other experiments with MS2.  As mentioned, in experiments 2 and 3, the 

water flow was halted, and the viruses were left in static water for about an hour.  This 

static water may have allowed the viruses to diffuse more readily (than in flowing water) 

to attachment sites.  Once attached, these viruses could detach over the course of days 

once flowing water (favouring detachment) was resumed.   

Although in experiments 2 and 3, the MS2 tail was flat, Schijven and 

Hassanizadeh (2000) present an analytical derivation showing that (assuming a constant 

detachment rate) the negative slope of the tail of a bacteriophage breakthrough curve is 

directly related to the attached virus deactivation rate.  They recommended that 

bacteriophage transport experiments be carried out over enough time to measure the slope 

of the tail.  Schijven et al. (2002) (Table 2-1) demonstrated such breakthrough curves 

using the bacteriophages MS2, PhiX-174 and PRD1.  Their breakthrough curves 

demonstrated obvious sloped tailing over the course of 8 to 10 days from the start of the 

experiment.  Their experimental set up differed from the present study in a couple ways:  
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1)  they injected a pulse over 2 days in contrast to the 4-5 hours of spiked influent in the 

present study; 2)  they used a 2 metre long (9 cm width) column compared with the 20 

cm long (5 cm width) column used in the current study.  It is likely that injecting many 

more viruses into a much longer column would yield these observed tails over the next 

few days.  This may be because there were more viruses added per column and detached 

viruses are likely to re-attach 10 times more frequently in the 2 metre column than a 20 

cm column, thereby taking much longer to finally exit the column.   

It should be noted that much work has gone into individually quantifying both 

attached and free (unattached) deactivation rates of viruses (Grant, 1993; Rossi, 1994; 

Schijven and Hassanizadeh, 2000; Schijven et al., 2002).  In the present study, however, 

attached MS2 deactivation was assumed to not occur over the course of 2 days.  This is 

supported by the fact that no free deactivation was observed in any of the 14 reservoirs.   

Under appropriate experimental conditions (where sampling is continued long 

enough and where free deactivation rates are measured over the experimental period), 

natural (or eluent induced) tailing can provide much information about the processes 

(physicochemical attachment, size exclusion, deactivation) contributing to attenuation of 

pathogens in groundwater.  In the context of RBF, tailing may represent a sustained threat 

to drinking water quality after a pathogenically contaminated river water warning is long 

passed (e.g. a storm or an overflowing upstream wastewater treatment plant).  It is 

important therefore to understand not just the peak breakthrough concentrations in the 

effluent, but rather how long pathogens persist in the effluent after a spiked injection.  It 

is important to realize that, as shown above in a comparison of the results in the present 
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study with Schijven et al. (2002), column length or soil passage distance could produce 

very different pathogen transport results, not reflected by shorter columns. 

4.6.6 Non-constant Flow Rates 
 

In Table 4-4 one can see that higher pore velocities were used for the fine grain 

sand (average 4.2 m/day) than the medium sand (2.9 m/day).  The experiments were 

intended to be carried out at constant pore velocity.  Initial porosity measurements 

indicated that the fine sand had a higher porosity than the medium sand.  The flow rate 

(Q) of the columns was adjusted in order to keep the pore velocity constant.  After the 

column experiments had been completed, repeat measurements revealed the two 

porosities to be roughly equal.   

Colloid filtration theory predicts that virus removal (log (C/Co)) is negatively 

correlated to the inverse of flow velocity to the power of two thirds (Yao et al., 1971).  

This derivation assumes a clean filter bed and spherical grains.  Wang et al. (1981) 

verified this relationship in column experiments, however, utilizing poliovirus 1 and 

echovirus 1.  Table 3-5 shows that poliovirus and echovirus are similar to MS2 in size 

and genetics.  By substituting flow velocities of 2.9 to 4.1 m/day into this relationship, 

this produces a difference in normalised peak breakthrough concentration of about 0.2 

log.  Compared to the large attenuation rates demonstrated in these experiments, this does 

not represent a serious problem, but is a source of bias in the data.   

4.6.7 Application of Experimental Results to RBF 

While a column experiment is simplified in order to extract meaningful 

information about pathogen transport processes there are certain limitations in applying 

results from column experiments directly to a Riverbank Filtration environment.  These 
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limitations have already been mentioned in this thesis, but are now summarized in light 

of the results. 

From One Dimension to Three 

The column was one dimensional and the media were homogeneous in content 

and structure.  In a real riverbank aquifer there are three dimensions with considerable 

heterogeneity in mineralogical (and perhaps organic) content and hydraulic conductivity.  

This hydrogeological heterogeneity can lead to highly conductive conduits where 

groundwater passes easily through a Riverbank.  In bedrock, fractures often provide these 

rapid conduits for water to flow through.  This is a dramatically different environment 

from that used with packed sand columns in the current study.  Therefore, these results 

from the present investigation would only be valid when applied to unconsolidated 

media, preferably where the variability in grain size and mineralogy is well understood.      

Length 

Changing from the 20 cm length used in the present study to tens or hundreds of metres 

would be expected to result in different transport characteristics.  The results from the 

current study were encouraging since such a sharp reduction in viruses and bacteria-sized 

microspheres occurred over a short distance.  Other field studies, however, at similar flow 

rates and in medium sand (Schijven et al., 2000 and Blanford et al. 2005) have 

demonstrated a sharp initial reduction over the first several metres after the injection 

point and then a subsequent plateau in bacteriophage concentration that continued for 

many metres downgradient.  The authors suggest several possible reasons for this (e.g. 

oxidation of metals on grains in the area around injection wells forming metal-oxides 

which would attract colloids).  Regardless, it is clear that overall colloid transport 
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operates differently in the field than would be predicted from column experiments in the 

present study since a simple extrapolation from the 20 cm length used in this experiment 

to 20 m would imply complete attenuation of all colloids, but this is not what has been 

observed in the field.   

Further supporting the idea that scaling may be an issue in modelling a large scale 

environment is that in a similar experimental set up to the present study, by injecting a 

spiked influent (2 pore volumes) of several bacteriophages into 2 m columns, Schijven et 

al. (2002) also demonstrated tailing occurred after the initial peak had passed.   

Mineralogy and Organics 

Using mixtures of minerologies (calcite, quartz, feldspar) from a glacial aquifer in 

Switzerland, Flynn et al. (2004) demonstrated that calcite retained bacteriophages much 

greater than quartz or feldspar.  It is also well known that metal-oxides are effective 

mineralogical attachment sites for negatively charged colloids, since, unlike most natural 

porous media, metal-oxides carry a positive charged at neutral pH (Loveland et al., 1996 

and Zhuang and Jin, 2002).  Thus, mimicking aquifer-scale changes in mineralogy is 

impossible in such homogeneous columns. 

Water Quality 

In an RBF environment, ionic strength and chemical content would be expected to 

vary somewhat randomly in a river depending on precipitation levels.  A change in ionic 

strength could reverse the normal forces between pathogens and grains.  This in turn 

could result in the rapid passage of, normally attenuated, pathogens from surface water to 

the drinking water well. 

 



 108 

5. CONCLUSIONS AND RECOMMENDATIONS 
 
There are several processes that affect the transport of microorganisms in groundwater, 

these include physicochemical attachment, size exclusion and die off.  The relative 

contribution of each of these processes to the attenuation of pathogens is determined by 

the physical, chemical and biological properties of the microbe, the media and the water. 

This Thesis examined the effects of influent virus concentration, ionic strength, media 

grain size on pathogen transport in porous media.  Fourteen column tests were conducted 

using the non-pathogenic surrogates of human viruses and bacteria MS2 and 1.5 �m  

microspheres respectively.  Two sizes of crushed silica sand (0.7 and 0.34 mm median 

diameter) and two ionic strengths (1 and 10 mmol/L of Ca2+) were used.  A 22 factorial 

design was used to evaluate each of the parameters’ effects on pathogen transport.   

5.1 Conclusions 
 

• Complete normalised breakthrough (C/Co) in peak concentration and little (~60%) 

to no attenuation of viruses and microspheres was observed in low ionic strength 

water and medium sand. 

• When virus, microsphere and bromide breakthrough was observed, viruses tended 

to be retarded relative to a bromide tracer while microspheres tended to 

breakthrough slightly earlier than bromide.   

• Increasing ionic strength by increasing Ca2+ from 1 to 10 mmol/L increased 

attenuation of MS2 in both the medium and fine sands with a >6 log MS2 

reduction in both media, whereas only a 1 log reduction at in peak microsphere 

concentration (C/Co) in the medium sand was observed when Ca2+ concentration 

was increased.   
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• Decreasing the grain size resulted in a 5 log reduction in peak MS2 concentrations 

in low ionic strength water.  In both fine and medium sand at high ionic strength 

no MS2 broke through the columns (>6 log removal).  Thus the effect of ionic 

strength in fine sand was indistinguishable from the effect of ionic strength in the 

medium sand since complete attenuation were observed in both grain sizes at high 

ionic strength.   

• Grain size appeared to substantially affect microsphere attenuation.  No 

microspheres broke through any of the fine sand columns at the low or high ionic 

strength, yielding a minimum > 5 log reduction in peak microsphere concentration 

(or > 99.999 % overall attenuation).  With the current experimental set up it is 

impossible to discern which of the processes of physicochemical attachment or 

size exclusion (or both) were responsible for the attenuation of microspheres in 

the fine sand. 

• There was virtually no effect observed from varying the influent concentration of 

viruses (from 105 to 107 pfu/ml) on their observed transport characteristics; 

normalised peak breakthrough concentration, percent attenuation and retardation 

relative to a bromide tracer.   

5.2 Recommendations 
 

• There were several columns in which neither MS2 nor microspheres breakthrough 

was not observed.  Whenever high ionic strength was used, the complete 

attenuation of MS2 was observed.  When fine grain sand was used the 

microspheres were completely attenuated.  Therefore, it is recommended that an 

intermediate ionic strength and grain size be chosen in a future column 
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experiment with MS2 and microspheres.  This experiment would allow the effects 

of ionic strength and grain size to be quantified, since complete attenuation of 

MS2 and microspheres may not occur, allowing the attenuation capacity of the 

media to be assessed.   

• Ideally protozoa, bacteria and viruses should be injected together into undisturbed 

columns of riverbank aquifer material or a well studied and monitored RBF 

aquifer.  This experience could be applied to understanding of the effects of 

microbe size, grain size and ionic strength in an environment closer to RBF (i.e. 

heterogeneous mineralogy, broader grain size distribution, organics etc) as well as 

testing the validity of the results collected in column experiments from the present 

study.   

• A column experiment could be performed to evaluate the relative importance of 

size exclusion in the attenuation of bacteria-sized microspheres in the same fine 

grained sand used in this experiment.  This would consist of performing an 

experiment at low ionic strength in the fine sand.  After several pore volumes 

have passed through after the initial spike the ionic strength could be lowered (or 

an eluent added) to favour detachment of microspheres from physicochemical 

attachment sites.  The attached (physicochemical) microspheres should be 

released, while this alteration in water chemistry should not disturb the 

microspheres stuck in pores.  Thus the microspheres still in the column after 

several pore volumes of the eluent has passed through, could be inferred to be 

retained by size exclusion (personal communication with Phil Schmidt, 2005).   
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A. EXPERIMENTAL DESIGN CONSIDERATIONS 
Detailed Column Designs 
 
 

Cap Design, down-hole view

Threaded Cap 7/inch  (threads on 
inside)
Shelf for rubber O-ring seal

Outer diaameter of threaded 
(outside) PVC column

PVC washer glued to perimeter of 
screen 1/4 wide, 1/8 inch deep

# 70 SS screen

Rubber O-ring embedded halfway 
into end of column

Inner diameter of column

ID = 2 1/2 inches

OD

OD

Cap

Column

 
 
Figure A-1 - Cap Design, down-hole view 
 

Cap Design, 3-D conceptual view

Open end of threaded cap

Shelf for rubber O-ring seal

Threaded inner cap, equal diameter (OD) 
to the outside of the PVC column, 7 per 
inch

PVC washer glued to perimeter of 
screen 1/4 inch wide, 1/8 inch deep

#70 Stainless Steel screen

Tapered boring, 3 mm deep

1/4 inch bored hole

Peter Knappett,  June 10, 2004  
 
Figure A-2 - Cap Design, 3-D conceptual view 
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Rubber O-ring PVC washer 
glued to 
perimeter of 
screen 1/4 wide, 
1/8 inch thick

#70 SS screen
Tapered bore

2.5 inch PVC 
Column

Threads, 7 per inch Shelf for rubber 
O-ring seal

1/4 inch bored 
hole

SS Swagelock 
fitting

3 mm deep taper

Cap Design, center line x-section view

Peter Knappett, June 10, 2004

 
Figure A-3 - Cap Design, center line x-section view 

 
 
 
 
 
Target Operating Conditions 
 
 
Table A-1 shows the physical properties of the packed column.  As well, the conductivity 

and pH were monitored at the influent and effluent end in order to ensure that the 

flushing is complete and to monitoring the ionic strength and pH of the water throughout 

the experiment.   
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Table A-1– Target Operating Conditions of Columns 
Column Dimensions   

radius (cm) 3.175 
length (cm) 20 
volume (cm3) 633 
    
Grain Properties   

porosity  0.43 
pore volume (cm3) 272 
    
Darcy Velocity (ind)   

cm/day 200 
    
Flow Rate (dep)   
ml/hr 175 
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Soil Properties Measurements 
 
Table A-2 shows the different porosity measurements made on each of the sands.  

Indusmin 2010 was the medium sand and Indusmin 4010 was the fine sand used for the 

present investigation.  

 
Table A-2 - Porosity and Bulk Density Measurements on Silica Sands 

Date Indusmin 
Sand Type Vf 

Volume 
of water Vsat porosity bulk density 

p (g/cm3) 

25-11-2004 2010 75.3 50 51.3 0.494 1.36 
         
21-2-2005 2010 (MBE)* 79 50  0.42 1.45 
21-2-2005 2010 (MBE) 79.5 50  0.41 1.50 
         
7-6-2005 2010 (MBE) 78 50 50 0.44 1.37 
7-6-2005 2010 (MBE) 77.5 50 52.5 0.45 1.42 

        
average 
(MBE) 0.430 1.433 

         
21-2-2005 4010 78 50  0.44 1.49 
         
7-6-2005 4010 79 50  0.42 1.51 
7-6-2005 4010 79 50 53 0.42 1.53 
7-6-2005 4010 78.5 50 53 0.43   

        average 0.428 1.510 
* Different bag of sand than the first measurement 
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Table A-3 - Sieve Analysis Data for Medium Sand (Indusmin 2010) 
    Trial 1 

Screen 
# 

Aperture 
(mm) 

Mass 
Retained by 
each screen 

(g) 

Cumulative 
mass 

retained (g) 

mass passing 
through screen 

(g) 

percent of 
sample 
passing 
through 
screen  

10 2 0 0 510.5 100 
20 0.85 182.08 182.08 328.42 64.3 
30 0.6 199.83 381.91 128.59 25.2 
40 0.425 78.53 460.44 50.06 9.8 
50 0.3 39.5 499.94 10.56 2.1 
60 0.25 3.53 503.47 7.03 1.4 
100 0.149 5.82 509.29 1.21 0.2 
pan   1.21 510.5 0 0 

      
    Trial 2 

Screen 
# 

Aperture 
(mm) 

Mass 
Retained by 
each screen 

(g) 

Cumulative 
mass 

retained (g) 

mass passing 
through screen 

(g) 

percent of 
sample 
passing 
through 
screen  

10 2 0 0 820.09 100.0 
20 0.85 246.9 246.9 573.19 69.9 
30 0.6 325.28 572.18 247.91 30.2 
40 0.425 154.67 726.85 93.24 11.4 
50 0.3 73.95 800.8 19.29 2.4 
60 0.25 5.79 806.59 13.5 1.6 
100 0.149 11.17 817.76 2.33 0.3 
pan   2.33 820.09 0 0 

      
    Trial 3 

Screen 
# 

Aperture 
(mm) 

Mass 
Retained by 
each screen 

(g) 

Cumulative 
mass 

retained (g) 

mass passing 
through screen 

(g) 

percent of 
sample 
passing 
through 
screen  

10 2 0 0 813.85 100.0 
20 0.85 246.54 246.54 567.31 69.7 
30 0.6 306.89 553.43 260.42 32.0 
40 0.425 151.42 704.85 109 13.4 
50 0.3 84.22 789.07 24.78 3.0 
60 0.25 8.19 797.26 16.59 2.0 
100 0.149 13.51 810.77 3.08 0.4 
pan   3.08 813.85 0 0 
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Table A-4 - Sieve Analysis Summary for Medium Sand 

Screen # Aperture 
(mm) 

Average percent 
of sample 

passing through 
screen  

Standard 
Deviation 

10 2 100.0 0.0 
20 0.85 68.0 3.2 
30 0.6 29.1 3.5 
40 0.425 11.5 1.8 
50 0.3 2.5 0.5 
60 0.25 1.7 0.3 
100 0.149 0.3 0.1 

 
 
 
 
Table A-5 - Sieve Analysis Data for Fine Sand (Indusmin 4010) 
    Trial 1 

Screen 
# 

Aperture 
(mm) 

Mass 
Retained by 
each screen 

(g) 

Cumulative 
mass 

retained (g) 

mass passing 
through screen 

(g) 

percent of 
sample 
passing 
through 
screen  

20 0.85 0 0 277.68 100.0 
30 0.6 4.52 4.52 273.16 98.4 
40 0.425 64 68.52 209.16 75.3 
50 0.3 115.43 183.95 93.73 33.8 
60 0.25 33.77 217.72 59.96 21.6 
100 0.149 50.91 268.63 9.05 3.3 
140 0.103 6.6 275.23 2.45 0.9 
pan  2.45 277.68 0 0.0 

      
    Trial 2 

Screen 
# 

Aperture 
(mm) 

Mass 
Retained by 
each screen 

(g) 

Cumulative 
mass 

retained (g) 

mass passing 
through screen 

(g) 

percent of 
sample 
passing 
through 
screen  

20 0.85 0 0 727.81 100.0 
30 0.6 11 11 716.81 98.5 
40 0.425 169.52 180.52 547.29 75.2 
50 0.3 292 472.52 255.29 35.1 
60 0.25 82.48 555 172.81 23.7 
100 0.149 145.83 700.83 26.98 3.7 
140 0.103 19.33 720.16 7.65 1.1 
pan  7.65 727.81 0 0.0 
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Table A-6 - Sieve Analysis Summary for Fine Sand 

Screen # Aperture (mm) 

Average 
percent of 

sample 
passing 
through 
screen  

20 0.85 100.0 
30 0.6 98.4 
40 0.425 75.3 
50 0.3 34.4 
60 0.25 22.7 
100 0.149 3.5 
140 0.103 1.0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 129 

B. MICROBIOLOGY  
 
Bacteriophages 
 
MS2 Stock suspension data are presented in Table B-1.  Two stock suspensions were 

made December 15, 2004 and January 27, 2005.   

Table B-1 – Plaque Counting Concentration Measurements on MS2 Stock Suspension 
December 16, 2004        

Dilution from Stock 
Solution 

Number of Plaques per 
plate Average Standard 

Deviation  

Concentration 
of MS2 Stock 

Solution 
(pfu/ml) 

Standard 
Deviation 
Converted 
to pfu/ml 

Plate # I II III         
5.13E-08 9 10 10 9.7 0.6 1.88E+08 1.13E+07 

January 28, 2005        

Dilution from Stock 
Solution 

Number of Plaques per 
plate Average Standard 

Deviation  

Concentration 
of MS2 Stock 

Solution 
(pfu/ml) 

Standard 
Deviation 
Converted 
to pfu/ml 

Dilution\Plate # I II III         
5.64E-07 607 656 190 631.5 34.6 1.12E+09 6.14E+07 

This is back calculated stock concentration from reservoir measurements     
February 21, 2005          

Dilution from Stock 
Solution 

Reservoir 
Sample 
Name 

Number of Plaques 
per plate Average Standard 

Deviation  

Concentration of 
MS2 Stock 

Solution (pfu/ml) 

Standard 
Deviation 

Converted to 
pfu/ml 

 
Dilution\Plate #   I II III          

6.83E-08 R H 441 386 434 420.3 29.9 6.15E+09 4.38E+08  
6.83E-08 R L 172 163 176 170.3 6.7 2.49E+09 9.75E+07  

March 8, 2005      

Dilution from Stock 
Solution 

Number of Plaques per 
plate Average 

Concentration of 
MS2 Stock 

Solution (pfu/ml) 

Dilution\Plate # I II III     

5.13E-08 607     607.0 1.18E+10 
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Bacteriophage Measurements for Column Experiments 
 
Table B-2 – Column Effluent MS2 Data from Experiments 2 and 3 
MS2 High Resolution Data - Low Concentration  Volume of Column (cm3) =  598 

From Start of MS2 Plate count  Volume of water in packed column (ml) = 257 

Sample # Time 
(hr) Pore Volumes I II III tube # dilution MS2 

(pfu/ml) 
Standard 
Deviation 

Normalized 
MS2 Conc 

(C/Co) 

Normalized 
Standard 
Deviation 
(SD/Co) 

# MS2 
Released in 

Effluent 

3 2 1 0  0 0 1.0E+00 1.0E+00 0.0E+00 4.9E-05 0.0E+00 5.05E+01 
5 3 1 0 0 0 0 1.0E+00 1.0E+00 0.0E+00 4.9E-05 0.0E+00 6.11E+01 
6 3 1 0 0 0 1 9.1E-02 1.0E+00 0.0E+00 4.9E-05 0.0E+00 1.99E+05 
8 4 2  137 190 1 9.1E-02 1.8E+03 4.1E+02 8.7E-02 2.0E-02 1.04E+05 
9 5 2 160 133 137 1 9.1E-02 1.6E+03 1.6E+02 7.6E-02 7.8E-03 1.45E+06 
10 7 6 160 147 177 1 9.1E-02 1.8E+03 1.7E+02 8.6E-02 8.0E-03 1.74E+06 
11 10 13 184 152 166 0 1.0E+00 1.7E+02 1.6E+01 8.1E-03 7.8E-04 1.14E+05 
13 21 15 163 162 190 0 1.0E+00 1.7E+02 1.6E+01 8.3E-03 7.7E-04 3.65E+05 
15 27 23 168 194 188 0 1.0E+00 1.8E+02 1.4E+01 8.9E-03 6.6E-04   
           Total in Effluent 3.98E+06 

Influent  0 172 163 176 2 8.3E-03 2.1E+04 8.1E+02 Total in Influent 1.1E+07 
                    Percent Recovery 37.1 
             

MS2 High Resolution Data - High Concentration       

From Start of MS2 Plate count        

Sample # Time 
(hr) Pore Volumes I II III tube # dilution MS2 

(pfu/ml) 
Standard 
Deviation 

Normalized 
MS2 Conc 

(C/Co) 

Normalized 
Standard 
Deviation 
(SD/Co) 

# MS2 
Released in 

Effluent 

4 2 1 206 166 169 0 1.0E+00 1.8E+02 2.2E+01 2.9E-05 3.6E-06 8.73E+03 
6 3 1 192 109 195 0 1.0E+00 1.7E+02 4.9E+01 2.7E-05 7.9E-06 5.72E+04 
7 3 1 162 142 162 1 9.1E-02 1.7E+03 1.3E+02 2.8E-04 2.1E-05 2.88E+08 
8 4 2 152 144 235 4 6.8E-05 2.6E+06 7.4E+05 4.2E-01 1.2E-01 2.96E+08 
9 5 2 558 404 417 4 6.8E-05 6.7E+06 1.3E+06 1.1E+00 2.0E-01 3.83E+09 
10 7 6 141 126 150 4 6.8E-05 2.0E+06 1.8E+05 3.3E-01 2.9E-02 2.05E+09 
11 10 13 140 127 156 3 7.5E-04 1.9E+05 1.9E+04 3.0E-02 3.1E-03 6.59E+06 
12 11 13 157 162 122 2 8.3E-03 1.8E+04 2.6E+03 2.9E-03 4.3E-04 5.57E+06 
13 21 16 169 103 160 0 1.0E+00 1.4E+02 3.6E+01 2.3E-05 5.8E-06 2.43E+05 
14 25 22 160 121 172 0 1.0E+00 1.5E+02 2.7E+01 2.5E-05 4.3E-06 8.04E+04 
15 27 24 217 170 157 0 1.0E+00 1.8E+02 3.2E+01 2.9E-05 5.1E-06 3.04E+05 
16 34 31 197 134 152 0 1.0E+00 1.6E+02 3.2E+01 2.6E-05 5.3E-06   
           Total in Effluent 6.48E+09 

Influent  0 441 386 434 4 6.8E-05 6.2E+06 4.4E+05 Total in Influent 3.2E+09 
Influent*   421   4 6.8E-05 6.2E+06  Percent Recovery 204.8 

               
* mixing host with MS2 in dilution solution as aposed to in the top agar tube           
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Table B-3 – Column Effluent MS2 Data from Experiments 4 & 5, Low [MS2]  
MS2 High Resolution Data - Low Concentration Volume of Column (ml) =   598 

  From Start  Plate count Volume of water in packed column (ml) = 245 

Sample # Pore Volumes I II dilution MS2 
(pfu/ml) 

MS2 
averaged by 

sample # 
(pfu/ml) 

Normalized 
MS2 (C/Co) 

# MS2 
Released in 

Effluent 

4 0.7         

5 1.2 90 48 1.0E+00 6.9E+01     

6 1.6 237 199 1.0E-02 2.2E+04     

6 1.6 24 27 1.0E-03 2.6E+04 2.4E+04 2.1E-01 2.5E+06 

7 1.9 4 13 1.0E-04 8.5E+04     

7 1.9 81 60 1.0E-03 7.1E+04     

7 1.9 12 8 1.0E-04 1.0E+05 8.5E+04 7.7E-01 5.1E+06 

9 3.0 21  1.0E-04 2.1E+05     

9 3.0 1 3 1.0E-05 2.0E+05     

9 3.0 200 171 1.0E-03 1.9E+05     

9 3.0 17 19 1.0E-04 1.8E+05     

9 3.0 2 3 1.0E-05 2.5E+05 2.1E+05 1.9E+00 4.0E+07 

10 3.3 8 7 1.0E-04 7.5E+04     

10 3.3 0 0 1.0E-05 0.0E+00     

10 3.3 92 107 1.0E-03 1.0E+05     

10 3.3 9 6 1.0E-04 7.5E+04 6.2E+04 5.7E-01 1.2E+07 

11 4.6 0 1 1.0E-04 5.0E+03     

11 4.6 95 104 1.0E-01 1.0E+03     

11 4.6 22 12 1.0E-02 1.7E+03     

11 4.6 1 2 1.0E-03 1.5E+03 2.3E+03 2.1E-02 1.1E+07 

12 6.2 0 0 1.0E-04 0.0E+00     

12 6.2 0 0 1.0E-05 0.0E+00     

12 6.2 217 110 1.0E+00 1.6E+02     

12 6.2 18 14 1.0E-01 1.6E+02     

12 6.2 3 0 1.0E-02 1.5E+02 1.6E+02 1.4E-03 5.0E+05 

13 8.3 8 15 1.0E+00 1.2E+01     

13 8.3 1 0 1.0E-01 5.0E+00     

13 8.3 0 0 1.0E-02 1.0E+00 5.8E+00 5.3E-05 4.4E+04 

14 10.1 2 3 1.0E+00 2.5E+00     

14 10.1 0 0 1.0E-01 1.0E+00 1.8E+00 1.6E-05   

15 14.2 0 0 1.0E+00 1.0E+00 1.5E+00 1.4E-05   

16 16.6 0 0 1.0E+00 1.0E+00 1.0E+00 9.1E-06   

18 29.4 3 1 1.0E+00 2.0E+00     

18 29.4 1 0 1.0E+00 5.0E-01 1.3E+00 1.1E-05   

           

           

Influent 1  86 95 1.0E-03 9.1E+04 Total MS2 in Effluent 7.08E+07 

Influent 1 (trial 2) 117 110 1.0E-03 1.1E+05 Total MS2 in Influent 5.7E+07 

Influent 2  121 132 1.0E-03 1.3E+05 Percent MS2 Recovery 125.0 

    Average 1.1E+05     

      Standard Deviation 1.8E+04       
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Table B-4 – Column Effluent MS2 Data from Experiments 4 & 5, High [MS2]  
MS2 High Resolution Data - High Concentration Volume of Column (ml) =   598 

  From Start  Plate count Volume of water in packed column (ml) = 245 

Sample # Pore Volumes I II dilution MS2 
(pfu/ml) 

MS2 
averaged by 

sample # 
(pfu/ml) 

Normalized 
MS2 (C/Co) 

# MS2 
Released in 

Effluent 

4 0.7         
5 1.1 18 25 1.00E-04 2.2E+05 2.2E+05 7.5E-02 1.1E+07 

6 1.5 155 144 1.0E-04 1.5E+06 1.5E+06 5.2E-01 8.7E+07 

8 2.4 361 419 1.0E-04 3.9E+06 3.9E+06 1.4E+00 6.3E+08 

10 3.3 564 610 1.0E-03 5.9E+05 5.9E+05 2.1E-01 5.1E+08 

11 4.6 120 136 1.0E-02 1.3E+04     

11 4.6 15 21 1.0E-03 1.8E+04 1.5E+04 6.3E-03 1.0E+08 

12 6.2 333 352 0.1 3.4E+03     

12 6.2 175 168 1.0E-01 1.7E+03     

12 6.2 20 17 1.0E-02 1.9E+03 2.3E+03 6.5E-04 3.6E+06 

13 8.3 624 660 1 6.4E+02     

13 8.3 123 106 0.1 1.1E+03     

13 8.3 51 34 1.0E-01 4.3E+02     

13 8.3 5 2 1.0E-02 3.5E+02 6.4E+02 1.2E-04   

14 10.1 335 300 1 3.2E+02 3.2E+02 1.1E-04 1.3E+06 

15 14.2 0  1 1.0E+00     

15 14.2 1 0 1.0E+00 5.0E-01 7.5E-01 1.8E-07   

16 16.6 0 0 1 1.0E+00 1.0E+00 3.5E-07   

18 29.4 1  1 1.0E+00     

18 29.4 1 1 1.0E+00 1.0E+00 1.0E+00 3.5E-07   

           

           

       Total MS2 in Effluent 1.35E+09 

Influent 1  236 303 1.0E-04 2.7E+06 Total MS2 in Influent 1.5E+09 

   23 25 1.0E-05 2.4E+06 Percent MS2 Recovery 92.0 

Influent 1 (trial 2) 269 311 1.0E-04 2.9E+06     

   38 30 1.0E-05 3.4E+06     

    Average 2.8E+06     

      Standard Deviation 4.2E+05       
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Table B-5 – Column Effluent MS2 Data from Experiments 6 & 7, Low [MS2] Column 
MS2 High Resolution Data - Low Concentration Volume of Column (ml) = 598

  From Start  Plate count Volume of water in packed column (ml) = 245

Sample # Pore Volumes I II dilution MS2 (pfu/ml) Normalized MS2 
(C/Co) 

# MS2 
Released in 

Effluent 

3 0.7 0 0 1.E-01     

4 1.1 0 0 1.E+00     

5 1.7 0 0 1.E-01     

5 (trial 2) 1.7 0 0 1.E+00     

6 2.0 0 0 1.E+00     

7 2.5 0 0 1.E-01     

7 2.5 1 0 1.E-03     

7 (trial 2) 2.5 0 0 1.E+00     

8 2.9 0 0 1.E+00     

9 3.3 0 0 1.E-02     

9 (trial 2) 3.3 0 0 1.E+00     

11 4.7 0 0 1.E+00     

14 8.1 0 0 1.E+00     

16 11.6 0 0 1.E+00     

19 29.5 0 0 1.E+00     

          

Influent 0.1 11 17 1.E-04 1.4E+05    

          

      Total MS2 in Effluent 0.00E+00 

      Total MS2 in Influent 0.0E+00 

          Percent MS2 Recovery   
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Table B-6 – Column Effluent MS2 Data from Experiments 6 & 7, High [MS2] Column 
MS2 High Resolution Data - High Concentration Volume of Column (ml) = 598

  From Start  Plate count volume of water in packed column (ml) = 245

Sample # Pore Volumes I II dilution MS2 (pfu/ml) Normalized MS2 
(C/Co) 

# MS2 
Released in 

Effluent 

3 0.7 25 33 1.0E+00 2.9E+01 1.2E-07 3.1E+04 

4 1.1 60 74 1.0E-01 6.7E+02 2.8E-06 2.1E+06 

5 1.7 274 213 1.0E-02 2.4E+04 1.0E-04 3.3E+06 

6 2.0 66 76 1.0E-03 7.1E+04 3.0E-04 1.8E+07 

7 2.5 200 231 1.0E-03 2.2E+05 9.0E-04 1.1E+07 

8 2.9 14 11 1.0E-02 1.3E+03 5.2E-06 7.4E+04 

9 3.3 7 16 1.0E-01 1.2E+02 4.8E-07 1.1E+04 

10 3.9 14 47 1.0E+00 3.1E+01 1.3E-07 4.3E+03 

11 4.7 13 10 1.0E+00 1.2E+01 4.8E-08 2.6E+03 

12 5.4 20 12 1.0E+00 1.6E+01 6.7E-08 3.4E+03 

13 6.0 26 39 1.0E+00 3.3E+01 1.4E-07 1.2E+04 

14 8.2 7 9 1.0E+00 8.0E+00 3.3E-08 5.3E+03 

16 11.8 5 2 1.0E+00 3.5E+00 1.5E-08   

17 16.9 1 0 1.0E-01 5.0E+00 2.1E-08   

18 21.3 7 7 1.0E+00 7.0E+00 2.9E-08   

19 29.7 1 0 1.0E-01 5.0E+00 2.1E-08   

20 34.0 1 3 1.0E-01 2.0E+01 8.3E-08   

20 (trial 2) 34.0 11 0 1.0E+00 5.5E+00 2.3E-08   

          

Influent 1  270 410 1.0E-06 3.4E+08    

Influent 1 (trial 2) 26 14 1.0E-07 2.0E+08    

Influent 3  18 18 1.0E-07 1.8E+08    

    Average  2.4E+08    

    Standard Deviation 8.7E+07    

      Total MS2 in Effluent 3.44E+07 

      Total MS2 in Influent 1.7E+11 

          Percent MS2 Recovery 0.020 
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Table B-7 – Column Effluent MS2 Data from Experiments 8 & 9, Column A 
MS2 High Resolution Data - A   Volume of Column (ml) = 598
  From Start  Plate count Volume of water in packed column (ml) = 245

Sample # Pore Volumes I II dilution MS2 (pfu/ml) Normalized MS2 
(C/Co) 

# MS2 
Released in 

Effluent 

1 0.2        
2 0.3        
3 0.5 2 3 1.E-01 2.5E+01    

3 (trial 2) 0.5 5 2 1.E+00 3.5E+00 1.2E-07   
4 0.9 128 104 1.E-01 1.2E+03 1.0E-05 7.0E+04 
5 1.4 689 801 1.E-01 7.5E+03  5.3E+05 
5 1.4 8 6 1.E-03 7.0E+03    

5 (trial 2) 1.4 240 242 1.E-01 2.4E+03    
5 (trial 2) 1.4 21 25 1.E-02 2.3E+03 4.2E-05 2.1E+05 

6 1.9        
7 2.3 598 415 1.E-02 5.1E+04    
7 2.3 4 3 1.E-04 3.5E+04    

7 (trial 2) 2.3 120 132 1.E-02 1.3E+04    
7 (trial 2) 2.3 9 11 1.E-03 1.0E+04 2.4E-04 1.3E+06 

9 3.2 2 2 1.E-01 2.0E+01 1.7E-07   
10 3.7 0 2 1.E+00 1.0E+00 8.7E-09 1.5E+03 
11 4.2        
12 5.9        
13 7.7 1 5 1.E+00 3.0E+00 2.6E-08   
14 10.5 0 2 1.E-01 1.0E+01 8.7E-08   
14 10.5 1 1 1.E+00 1.0E+00 8.7E-09 0.0E+00 
15 12.7 15 6 1.E+00 1.1E+01 9.1E-08 3.1E+03 

15 (trial 2) 12.7 1 2 1.E+00 1.5E+00 1.3E-08   
16 15.2        
17 15.2 3 1 1.E+00 2.0E+00 1.7E-08   
18 16.4 12 11 1.E+00 1.2E+01 1.0E-07 2.0E+03 
19 17.3 18 10 1.E+00 1.4E+01 1.2E-07 2.9E+03 
20 18.6 18 3 1.E+00 1.1E+01 9.1E-08 4.2E+03 
21 19.2 2 2 1.E+00 2.0E+00 1.7E-08 9.7E+02 
22 19.8 11 18 1.E+00 1.5E+01 1.3E-07 1.3E+03 
          

Influent 1 13 10 1.E-07 1.2E+08    
Influent 1 (trial 2) 51 59 1.E-06 5.5E+07    

   5 10 1.E-07 7.5E+07    
          
      Total MS2 in Effluent 2.16E+06 
      Total MS2 in Influent 2.8E+10 
      Percent MS2 Recovery 0.008 
              99.9924 
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Table B-8 – Column Effluent MS2 Data from Experiments 8 & 9, Column B 
MS2 High Resolution Data - B   Volume of Column (ml) = 598
  From Start  Plate count Volume of water in packed column (ml) = 245

Sample # Pore Volumes I II dilution MS2 (pfu/ml) Normalized MS2 
(C/Co) 

# MS2 
Released in 

Effluent 

3 0.47 0 0 1.0E+00     
4 0.94 0 1 1.0E-01     
5 1.42 0 0 1.0E-01     
5 1.42 0 0 1.0E-02     
7 2.28 0 0 1.0E-02     
7 2.28 0 0 1.0E-03     
8 2.74 0 0 1.0E-01     
8 2.74 0 0 1.0E-02     
9 3.17 0 0 1.0E-01     

10 3.73 0 0 1.0E+00     
12 5.96 2 0 1.0E+00     
13 7.81 0 0 1.0E+00     
14 10.79 0 2 1.0E+00     
15 12.85 0 0 1.0E+00     
16 15.29 0 0 1.0E+00     
17 15.35 0 0 1.0E+00     
18 16.50 0 0 1.0E+00     
19 17.40 0 0 1.0E+00     
20 18.74 0 0 1.0E+00     
          

Influent 1 68 58 1.0E-06 6.3E+07    
      Total MS2 in Effluent 0.00E+00 
      Total MS2 in Influent 2.9E+11 
          Percent MS2 Recovery 0.0 
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Table B-9 – Column Effluent MS2 Data from Experiments 10 & 11, Column A 
MS2 High Resolution Data - A   Volume of Column (ml) = 598

  From Start  Plate count Volume of water in packed column (ml) = 245

Sample # Pore Volumes I II dilution MS2 
(pfu/ml) 

Normalized MS2 
(C/Co) 

# MS2 
Released in 

Effluent 

3 0.9 0 0 1.E-01 0.0E+00 0.0E+00   

4 1.2 5 3 1.E+00 4.0E+00 1.1E-07 1.8E+02 

5 1.8 13 8 1.E-01 1.1E+02 2.8E-06 7.6E+03 

6 2.3 55 68 1.E-01 6.2E+02 1.6E-05 4.9E+04 

7 2.8 71 98 1.E-01 8.5E+02 2.2E-05 8.4E+04 

8 3.2 72 84 1.E-01 7.8E+02 2.1E-05 8.4E+04 

9 3.8 154 191 1.E+00 1.7E+02 4.5E-06 8.2E+04 

9 3.8 5 25 1.E-01 1.5E+02 4.0E-06   

10 4.7 57 112 1.E+00 8.5E+01 2.2E-06 2.5E+04 

11 6.1 4 10 1.E+00 7.0E+00 1.8E-07 1.7E+04 

11 6.1 2 2 1.E-01 2.0E+01 5.3E-07   

12 6.2 0 0 1.E+00 0.0E+00 0.0E+00   

13 7.6 0 0 1.E+00 0.0E+00 0.0E+00   

17 12.1 0 0 1.E+00 0.0E+00 0.0E+00   

20 18.4 0 0 1.E+00 0.0E+00 0.0E+00   

          

Influent 1 0.1 301 458 1.E-05 3.8E+07    

   9 6 1.E-07 7.5E+07    

          

      Total MS2 in Effluent 3.48E+05 

      Total MS2 in Influent 2.6E+10 

          Percent MS2 Recovery 0.0013 
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Table B-10 – Column Effluent MS2 Data from Experiments 10 & 11, Column B 
MS2 High Resolution Data - B   Volume of Column (ml) = 598

  From Start  Plate count Volume of water in packed column (ml) = 245

Sample # Pore Volumes I II dilution MS2 
(pfu/ml) 

Normalized MS2 
(C/Co) 

# MS2 
Released in 

Effluent 

3 0.9 0 0 1.0E-01 0.0E+00 0.00E+00   

4 1.3 3 2 1.0E+00 2.5E+00 4.28E-08 1.2E+02 

5 1.9 20 25 1.0E-01 2.3E+02 3.85E-06 1.6E+04 

6 2.2 82 60 1.0E-01 7.1E+02 1.22E-05 4.7E+04 

7 2.7 74 96 1.0E-01 8.5E+02 1.46E-05 9.4E+04 

8 3.1 125 169 1.0E-01 1.5E+03 2.52E-05 1.2E+05 

9 3.8 144  1.0E+00 1.4E+02 2.47E-06   

9 3.8 13 28 1.0E-01 2.1E+02 3.51E-06 1.5E+05 

10 4.7 53 31 1.0E+00 4.2E+01 7.19E-07 2.8E+04 

11 6.2 9 11 1.0E+00 1.0E+01 1.71E-07 1.0E+04 

11 6.2 0 1 1.0E-01 5.0E+00 8.56E-08   

12 6.3 0 0 1.0E+00 0.0E+00 0.00E+00   

13 7.8 1 0 1.0E+00 5.0E-01 8.56E-09   

17 12.5 0 0 1.0E+00 0.0E+00 0.00E+00   

20 19.1 0 0 1.0E+00 0.0E+00 0.00E+00   

          

Influent 1 525 545 623 1.0E-05 5.8E+07    

   6 3 1.0E-07 4.5E+07    

          

      Total MS2 in Effluent 4.67E+05 

      Total MS2 in Influent 3.5E+10 

          Percent MS2 Recovery 0.0014 
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Table B-11 – Column Influent MS2 Data from Experiments 12 & 13 
MS2 Data - Column A     Volume of Column (ml) = 598 

  
From 
Start  Plate count Water in column (ml) =  245 

Sample # Pore 
Volumes I II dilution MS2 

(pfu/ml)     

3 NA* 0 0 1.E+00 ND    
3 NA 0 0 1.E-01 ND    
5 NA 0 0 1.E+00 ND    
5 NA 0 0 1.E-01 ND    
7 NA 0 0 1.E+00 ND    
7 NA 0 0 1.E-01 ND    
9 NA 0 0 1.E+00 ND    
9 NA 0 0 1.E-01 ND    
10 NA 0 0 1.E+00 ND    
11 NA 0 0 1.E+00 ND    
13 NA 0 0 1.E+00 ND    
16 NA 0 0 1.E+00 ND    
19 NA 0 0 1.E+00 ND    
21 NA 0 0 1.E+00 ND    
23 NA 0 0 1.E+00 ND    

          
Influent 
1  224 232 1.E-05 2.3E+07    
   42 35 1.E-06 3.9E+07    
          
        Total MS2 in Influent   1.6E+10 
* Not Applicable       
        
MS2 Data - Column B     Volume of Column (ml) = 598 

  
From 
Start  Plate count Water in column (ml) =  245 

Sample # Pore 
Volumes I II dilution MS2 

(pfu/ml)     

3 NA 1 0 1.E+00 ND    
3 NA 0 0 1.E-01 ND    
5 NA 2 1 1.E+00 ND    
5 NA 0 0 1.E-01 ND    
7 NA 1 1 1.E+00 ND    
7 NA 0 0 1.E-01 ND    
9 NA 0 0 1.E+00 ND    
9 NA 0 1 1.E-01 ND    
10 NA 0 0 1.E+00 ND    
11 NA 0 0 1.E+00 ND    
13 NA 0 0 1.E+00 ND    
16 NA 0 0 1.E+00 ND    
19 NA 0 0 1.E+00 ND    
21 NA 0 0 1.E+00 ND    
23 NA 0 0 1.E+00 ND    

          
Inflent 1  469 440 1.E-05 4.5E+07    
   44 48 1.E-06 4.6E+07    
          
        Total MS2 in Influent   3.2E+10 
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Table B-12 – Column Influent MS2 Data from Experiments 14 & 15 
MS2 Data - Column A     Volume of Column (ml) = 598 

  From Start  Plate count Water in column (ml) =  245 

Sample # Pore 
Volumes I II dilution MS2 

(pfu/ml)     

3 NA 0 0 1.E+00 ND    

5 NA 0 1 1.E-01 ND    

5 NA 0 0 1.E-03 ND    

8 NA 0 0 1.E-01 ND    

8 NA 0 0 1.E-03 ND    

11 NA 0 0 1.E-01 ND    

15 NA 0 0 1.E+00 ND    

19 NA 0 0 1.E+00 ND    
  (extra plate)        

Influent 1 40 30 37 1.E-04 3.6E+05    

   1 0 1.E-06 5.0E+05    
          

        Total MS2 in Influent   2.5E+08 

       
        
MS2 Data - Column B     Volume of Column (ml) = 598 

  From Start  Plate count Water in column (ml) =  245 

Sample # Pore 
Volumes I II dilution MS2 

(pfu/ml)     

3 NA 0 0 1.E+00 ND    

5 NA 0 0 1.E-01 ND    

5 NA 0 0 1.E-03 ND    

8 NA 0 0 1.E-01 ND    

8 NA 0 0 1.E-03 ND    

11 NA 0 0 1.E-01 ND    

15 NA 0 0 1.E+00 ND    

19 NA 0 0 1.E+00 ND    
          

Inflent 1  49 48 1.E-05 4.9E+06    
          

        Total MS2 in Influent   3.4E+09 
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Table B-13 – Saline Controls for Bacteria Contamination 

Detection Round Date Number of Colonies Notes 
Stock 18.10.2004 23   
Stock 21.10.2004 ND NBp 
Stock 23.10.2004 20   
Stock 28.10.2005 40   
Experiment 1 2.12.2004 ND   
Experiments 4 & 5 7.4.2005 ND   
Experiments 4 & 5 7.4.2005 ND   
* No bacteriophages were detected in this round of analyses 
 
 

Table B-14 – Bacteriophage Controls 

Detection Round Date Number of Plaques Notes 
Stock 28.10.2004 ND   
Stock 18.11.2004 ND   
Experiment 1 (Prototype Run) 1.12.2004 ND   
Stock 28.1.2005 ND   
Experiments 2 & 3 24.2.2005 ND NBp 
Experiments 4 & 5 28.3.2005 ND   
Experiments 4 & 5 28.3.2005 ND NBp 
Experiments 4 & 5 5.4.2005 ND NBp 
Experiments 4 & 5 11.4.2005 ND   
Experiments 4 & 5 11.4.2005 ND   
Experiments 4 & 5 21.4.2005 ND NB  
Experiments 4 & 5 22.4.2005 1   
Experiments 6 & 7 19.5.2005 ND   
Experiments 8 & 9 19.5.2005 ND   
Experiments 6 & 7 20.5.2005 ND   
Experiments 8 & 9 2.6.2005 ND   
Experiments 10 & 11, 12 & 13 7.6.2005 ND   
Experiments 14 & 15 14.6.2005 ND   
** No bacterial lawns were grown in this round of analyses 
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Microsphere Measurements for Column Experiments 
 
The measured concentrations in the effluent and reservoir samples were presented similar 

to MS2 and calculations on total microspheres released and in the influent were also 

identical to those used for MS2.  Unlike MS2 duplicate analyses were not performed 

because the entire effluent volume sample was frequently consumed in one analysis. 

Table B-15 – Column Effluent Microsphere Data from Column Experiments 4 & 5  
        Volume of Column (ml) = 598
Low MS2 Column    Microspheres 

Sample # Cumulative 
Pore Vol  Volume (ml) Count Concentration 

(msp/ml) 
Normalised 

(C/Co) 
# released in 

effluent 

4 0.7 12.1 163 13 0.01   
6 1.5 0.1 199 1990 1.61 2.1E+05 
8 2.4 1 87 87 0.07 2.4E+05 

10 3.3 5 111 22 0.02 1.2E+04 
13 8.3 9.9 154 16 0.01 2.4E+04 
17 21.3 12.2 35 3 0.00 3.1E+04 
         

Influent 1  0.1 23 230    
Influent 1 (trial 2) 1 1235 1235    

     Total Microspheres in Effluent 5.2E+05 
     Total Microspheres in Influent 6.4E+05 
        Percent Recovery 18.4 

       
       
        Volume of Column (ml) = 598
High MS2 Column    Microspheres 

Sample # Cumulative 
Pore Vol  Volume (ml) Count Concentration 

(msp/ml) 
Normalised 

(C/Co) 
# released in 

effluent 

3 0.4 12 ND 0    
4 0.7 12.6 398 32 0.07 1.2E+03 
5 1.2 1 71 71 0.15 5.5E+03 
6 1.6 7.8 TM*     
7 1.9 0.1 62 620 1.29 6.8E+04 
8 2.5 12.8 6000 469 0.97 7.5E+04 
9 3.0 8.8 TM     

10 3.3 13.2 286 22 0.04 5.6E+04 
11 4.6 11.8 53 4 0.01 4.3E+03 
14 10.1 6 43 7 0.01 8.2E+03 
17 21.3 11.6 38 3 0.01 1.5E+04 
         

Influent 1  0.05 2 40    
Influent 1 (trial 2) 1 482 482    
Influent 3  12.2 TM     

     Total Microspheres in Effluent 2.3E+05 
* Too Many    Total Microspheres in Influent 2.5E+05 

        Percent Recovery 5.9 
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Table B-16 - Column Effluent Microsphere Data from Column Experiments 6 & 7     
        Volume of Column (ml) = 598 
Low MS2 Column    Microspheres 

Sample # Cumulative Pore 
Vol  Volume (ml) Count Concentration 

(msp/ml) 
Normalised 

(C/Co) 
# released in 

effluent 

3 0.73 not taken  0    
4 1.08 10 4174 417 0.71 1.9E+04 
5 1.72 1 180 180 0.30 4.9E+04 
6 1.98 1 141 141 0.24 1.1E+04 
7 2.47 1 131 131 0.22 1.7E+04 
8 2.88 1 6 6 0.01 7.3E+03 
9 3.30 1 ND 0 0.00   
10 3.87 1 ND 0 0.00   
         

Influent   1 592 592 1.00   
         
     Total Microspheres in Effluent 1.0E+05 
     Total Microspheres in Influent 3.0E+05 
        Percent Recovery 33.8 

       
       
        Volume of Column (ml) = 598 
High MS2 Column   Microspheres 

Sample # Cumulative Pore 
Vol  Volume (ml) Count Concentration 

(msp/ml) 
Normalised 

(C/Co) 
# released in 

effluent 

3 0.73 not taken   0    
4 1.08 10 2076 208 1.98 9238 
5 1.74 1 154 154 1.47 30553 
6 2.00 1 215 215 2.05 12739 
7 2.48 1 106 106 1.01 19635 
8 2.89 1 8 8 0.08 5977 
9 3.31 1 ND 0 0.00   
10 3.87 1 ND 0 0.00   
         

Influent  1 105 105 1.00   
         
     Total Microspheres in Effluent 7.8E+04 
     Total Microspheres in Influent 1.3E+05 
        Percent Recovery 62.2 
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Table B-17 – Column Effluent Microsphere Data from Column Experiments 8 & 9     
        Volume of Column (ml) = 598
Column A    Microspheres 

Sample # Cumulative 
Pore Vol  Volume (ml) Count Concentration (msp/ml) Normalised 

(C/Co) 
# released 
in effluent 

3 0.47 5 386 77 0.03   
4 0.94 2 962 481 0.21 3.4E+04 
5 1.42 1 875 875 0.38 8.4E+04 
6 1.86 1 468 468 0.20 7.5E+04 
7 2.27 1 741 741 0.32 6.3E+04 
8 2.73 1 108 108 0.05 5.1E+04 
9 3.16 2 27 14 0.01 6.7E+03 

10 3.72 10 5 1 0.00   
         

Influent  0 231 2310    
     Total Microspheres in Effluent 3.1E+05 
     Total Microspheres in Influent 1.2E+06 
        Percent Recovery   26.4 

       
       
        Volume of Column (ml) = 598
Column B    Microspheres 

Sample # Cumulative 
Pore Vol  Volume (ml) Count Concentration (msp/ml) Normalised 

(C/Co) 
# released 
in effluent 

3 0.47 5 0 0 0.00   
4 0.94 2 846 423 0.24 2.5E+04 
5 1.42 1 61 61 0.03 3.0E+04 
7 2.27 1 221 221 0.13 3.1E+04 
9 3.16 10 36 4 0.00 2.6E+04 
         

Influent  0 175 1750    
     Total Microspheres in Effluent 1.1E+05 
     Total Microspheres in Influent 9.0E+05 
        Percent Recovery   12.4 
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Table B-18 – Column Effluent Microsphere Data from Column Experiments 10 & 11  
    Volume of Column (ml) =  598

Column A       Microspheres 

Sample # Cumulative 
Pore Vol  Volume (ml) Count Concentration 

(msp/ml) Normalised (C/Co) 
# released in 

effluent 

5 1.79 10 ND 0    
6 2.32 10 ND 0    
7 2.76 10 ND 0    
8 3.16 10 ND 0    
9 3.83 10 ND 0    
10 4.66 10 ND 0    

         

Influent    733 1.00   

     Total Microspheres in Effluent 0.0E+00 

     Total Microspheres in Influent 5.1E+05 

        Percent Recovery 0.0 

       

       

    Volume of Column (ml) =  598

Column B       Microspheres 

Sample # Cumulative 
Pore Vol  Volume Count Concentration 

(ms/ml) Normalised (C/Co) 
# released in 

effluent 

5 1.86 10 2 0    
6 2.25 10 ND 0    
7 2.72 10 ND 0    
8 3.14 10 ND 0    
9 3.82 10 1 0    
10 4.69 10 1 0    

         

Influent    256 1.00   

     Total Microspheres in Effluent 0.0E+00 

     Total Microspheres in Influent 1.5E+05 

        Percent Recovery 0.0 
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Table B-19 – Column Effluent Microsphere Data from Column Experiments 12 & 13   
    Volume of Column (ml) =  598 

Column A       Microspheres 

Sample # Cumulative 
Pore Vol  Volume (ml) Count Concentration 

(msp/ml) Normalised (C/Co) 
# released in 

effluent 

4 1.18 10 ND 0    

6 1.90 10 1 0    

         

Influent   310 3100    

     Total Microspheres in Effluent 0.0E+00 

     Total Microspheres in Influent 1.8E+06 

        Percent Recovery 0.0 

       

       

    Volume of Column (ml) =  598 

Column B       Microspheres 

Sample # Cumulative 
Pore Vol  Volume Count Concentration 

(ms/ml) Normalised (C/Co) 
# released in 

effluent 

4 1.11 10 ND 0    

6 1.98 10 2 0    

         

Influent   405 4050    

     Total Microspheres in Effluent 0.0E+00 

     Total Microspheres in Influent 2.5E+06 

        Percent Recovery 0.0 
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Table B-20 – Column Effluent Microsphere Data from Column Experiments 14 & 15   
    Volume of Column (ml) =  598
Column A     Microspheres 

Sample # Cumulative 
Pore Vol  

Volume 
(ml) Count Concentration 

(msp/ml) 
Normalised 

(C/Co) 
# released in 

effluent 

2 0.56 10 199 20 0.00   

3 0.92 2 1399 700 0.04 3.3E+04 

4 1.11 1 1793 1793 0.11 6.1E+04 

5 1.39 1 1046 1046 0.07 1.0E+05 

6 1.59 1 1802 1802 0.11 7.6E+04 

7 2.07 1 960 960 0.06 1.7E+05 

8 2.54 1 518 518 0.03 8.9E+04 

9 2.75 1 830 830 0.05 3.6E+04 

11 3.71 10 31 3 0.00 1.0E+05 
         

Influent  1609 15725 1.00   
Influent (trial 2)  1536 Total Microspheres in Effluent 6.7E+05 

     Total Microspheres in Influent 8.1E+06 
        Percent Recovery   8.3 

       
       
    Volume of Column (ml) =  598
Column B     Microspheres 

Sample # Cumulative 
Pore Vol  Volume Count Concentration (ms/ml) Normalised 

(C/Co) 
# released in 

effluent 

3 0.90 2 820 410 0.02   
4 1.08 1 693 693 0.04 2.6E+04 
5 1.35 1 729 729 0.04 5.0E+04 
6 1.56 1 799 799 0.05 4.0E+04 
7 2.02 1 800 800 0.05 9.6E+04 
8 2.48 1 583 583 0.04 8.2E+04 
9 2.69 1 559 559 0.03 3.0E+04 
11 3.63 1 6 6 0.00 6.9E+04 
         

Influent   1656 16560 1.00   
     Total Microspheres in Effluent 3.9E+05 
     Total Microspheres in Influent 8.5E+06 
        Percent Recovery   4.6 
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C. ION CHROMATOGRAPHY ANALYSES OF BROMIDE 
 
The analysis of bromide was carried out using Ion Chromatography as described in 

Standard Methods (American Public Health Association, 1995).  The results are plotted 

in Chapter 4, the supporting data and calibration curves are shown in this section.  Each 

series of analyses required the preparation of calibration standards, check standards and 

blanks to accompany the effluent samples.  Blanks and check standards were taken every 

ten injections to control for temporal drift in the Ion Chromatograph.  Duplicate 

injections were made yielding two bromide concentration values for each effluent 

sample.  In some rare cases, only one bromide concentration is reported for an effluent 

sample.  This is because sometimes only one value was reported by the Ion 

Chromatograph, possibly because something went wrong with the second injection.  

Although at least the first 12 effluent samples in each column experiment were analysed, 

sometimes the bromide concentrations were not reported by the Ion Chromatograph, 

indicating non-detects.   
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Bromide Data for Experiments 2 and 3 

y = 4E+06x + 276763
R2 = 0.9953
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Figure C-1 – Bromide Calibration Curve for Experiments 2 and 3 
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Table C-1 - Calibration and Check Standard Bromide Data for Experiments 2 and 3 

Standard 
Concentration Area Count 

Calculated 
Bromide 

Concentration 
(ppm) 

Calibration Curve    
0.5 1878343.15 NA 
0.5 1838418.71 NA 
1 3425789.84 NA 
1 3511631.22 NA 

2.5 7967148.08 NA 
2.5 9897296.21 NA 
5 22156114.49 NA 
5 27289540.86 NA 

12.5 4734221.57 NA 
12.5 3082374.85 NA 
25 7235886.06 NA 
25 13656549.47 NA 
50 18566043.21 NA 
50 12277026.89 NA 

100 28480651.13 NA 
100 25167212.94 NA 

     
Check Standards    

2.5 8105939.22 1.96 
2.5 8944133.82 2.17 
10 40723867.31 10.11 
25 83249115.53 20.74 
25 86092533.46 21.45 
50 188483266.7 47.05 
50 189592842.4 47.33 

     
Blanks    

0 5987013.02 1.43 
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Table C-2 - Bromide Data from Experiments 2 and 3, Low [MS2] Column 

Sample 
No. 

Pore 
Volume 

IC 
Sample 

No. 
Peak Area Br ppm 

1 0.56 1 4137140.06 0.97 
1 0.56 1 2971132.28 0.67 
3 0.80 3 149817.52 -0.03 
3 0.80 3 2576053.41 0.57 
4 0.86 4 1984014.34 0.43 
4 0.86 4 499834.03 0.06 
5 1.00 5 15404618.71 3.78 
5 1.00 5 13936176.19 3.41 
6 1.24 6 223778916.6 55.88 
6 1.24 6 224736141.9 56.11 
7 1.97 7 402795577 100.63 
7 1.97 7 416178267.9 103.98 
8 2.10 8 422515183.9 105.56 
8 2.10 8 429828676.4 107.39 
9 3.61 9 427941225.2 106.92 
9 3.61 9 427009592.8 106.68 

10 5.71 10 67245668.11 16.74 
10 5.71 10 63458520.96 15.80 
11 12.68 11 1936758.24 0.41 
11 12.68 11 1667215.28 0.35 
12 12.93 12 1464878.3 0.30 
12 12.93 12 715056.29 0.11 
13 15.29 13 1902968.06 0.41 
13 15.29 13 1902306.97 0.41 
14 21.48 14 2616545.56 0.58 
14 21.48 14 1084659.35 0.20 
15 23.29 15 2301654.7 0.51 
15 23.29 15 1730338.12 0.36 
16 29.96 16 3911599.84 0.91 
16 29.96 16 2446134.32 0.54 
17 33.32 17 1789947.15 0.38 
17 33.32 17 2551843.14 0.57 
18 33.32 18 512233.29 0.06 
18 33.32 18 829622.54 0.14 
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Table C-3 - Bromide Data from Experiments 2 and 3, High [MS2] Column 

Sample 
No. 

Pore 
Volume 

IC 
Sample 

No. 
Peak Area Br ppm 

1 0.20 20 350896.89 0.02 
1 0.20 20 2897776.77 0.66 
2 0.32 21 3460983.56 0.80 
2 0.32 21 3204412.37 0.73 
3 0.60 22 2801552.25 0.63 
3 0.60 22 2074551.44 0.45 
4 0.84 23 2871468.52 0.65 
4 0.84 23 2776788.99 0.63 
5 0.90 24 1754317.59 0.37 
5 0.90 24 2570971.66 0.57 
6 1.04 25 81508333.8 20.31 
6 1.04 25 80297334.72 20.01 
7 1.27 26 351319653.5 87.76 
7 1.27 26 344483944.1 86.05 
8 2.14 27 434844461.3 108.64 
8 2.14 27 374882617.2 93.65 
9 2.38 28 424090885.8 105.95 
9 2.38 28 433705807.5 108.36 

10 5.78 29 7618120.21 1.84 
10 5.78 29 7372120.87 1.77 
11 12.97 30 1998245.52 0.43 
12 13.22 31 488742.54 0.05 
12 13.22 31 2282400 0.50 
13 15.63 32 3282186.99 0.75 
13 15.63 32 3017699.69 0.69 
14 22.04 33 3796907.69 0.88 
14 22.04 33 1727377.18 0.36 
15 23.93 34 292551.48 0.00 
15 23.93 34 2244345.03 0.49 
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Bromide Data for Experiments 4 through 9 
 
The calibration curve for experiments 4 though 9 unfortunately lacked a standard point 

between 50 and 200 ppm bromide (normally a 100 ppm standard was included).  As well, 

the last (200 ppm) point did not lie on a straight line with the other 6 calibration points 

(1-50 ppm).  Therefore this last point was not used in calibrating the effluent samples due 

to a suspected low concentration. 
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Figure C-2 – Bromide Calibration Curve for Experiments 4 through 9 
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Table C-4 – Calibration and Check Standard Bromide Data for Experiments 4 to 9 

Standard 
Concentration Area Count 

Calculated 
Bromide 

Concentration 
(ppm) 

Calibration Curve   
1 5074592.17 NA 
1 4375741.21 NA 
2 8615137.19 NA 
2 8605989.06 NA 
5 19938621.21 NA 
5 19964846.42 NA 

10 41642096.82 NA 
10 42516893.61 NA 
20 81406020.59 NA 
20 82823355.7 NA 
50 232242756.7 NA 
50 233960804.7 NA 

200 320886094.1 NA 
200 323904579.1 NA 

     
Check Standards   

10 std 23756207.37 5.20 
10 std 20412860.42 4.47 
10 std 21365679.79 4.68 
10 std 21155639.51 4.63 
10 std 20540075.69 4.50 
5 std 42605371.19 9.33 
5 std 41221230.43 9.02 

     
Blanks    
blank ND 0.00 
blank 8612 0.00 
blank 787375.31 0.17 
blank 1779234.83 0.39 
blank 2916.00 0.00 
blank 2872.00 0.00 
blank 53760.68 0.01 
blank 864747.52 0.19 
blank 44225.89 0.01 
blank 1039468.16 0.23 
blank 29779.86 0.01 
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Table C-5 – Bromide Data from Experiments 4 and 5, Low [MS2] Column 
 

Sample No. Pore Volume IC Sample 
No. Peak Area Br ppm 

1L 0.1 17 4104149.86 0.90 
1L 0.1 17 6427820.4 1.41 
2L 0.3 18 6076668.69 1.33 
2L 0.3 18 3627541.06 0.79 
3L 0.4 19 4614786.45 1.01 
3L 0.4 19 5946964.05 1.30 
4L 0.7 20 6905365.52 1.51 
4L 0.7 20 4701003.08 1.03 
5L 1.2 21 304894698.1 66.75 
5L 1.2 21 324891865.3 71.13 
6L 1.6 22 561653646.9 122.96 
6L 1.6 22 554141028.4 121.32 
7L 1.9 23 563604726.4 123.39 
7L 1.9 23 556360808 121.81 
8L 2.5 24 546129923.2 119.57 
8L 2.5 24 547483564.8 119.86 
9L 3.0 25 392425036.1 85.91 
9L 3.0 25 392828994.4 86.00 

10L 3.3 26 115709116.8 25.33 
10L 3.3 26 115903569.5 25.38 
11L 4.6 27 4016149.94 0.88 
11L 4.6 27 4281926.21 0.94 
13L 8.3 28 2826986.84 0.62 
13L 8.3 28 5915004.42 1.29 
14L 10.1 29 5883624.33 1.29 
14L 10.1 29 4617683.36 1.01 
16L 14.2 30 4983760.28 1.09 
16L 14.2 30 5038895.94 1.10 
R1L  31 585190797.3 128.12 
R1L  31 588969432.9 128.94 
R3L  89 585058814.7 128.09 
R3L   89 591748004.2 129.55 
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Table C-6 – Bromide Data from Experiments 4 and 5, High [MS2] Column 
 

Sample No. Pore Volume IC Sample 
No. Peak Area Br ppm 

4H 0.7 4 5552000 1.22 
4H 0.7 4 5556000 1.22 
5H 1.1 5 373344604.8 81.74 
5H 1.1 5 331305235.6 72.53 
6H 1.5 6 529800212.6 115.99 
6H 1.5 6 534901661.1 117.11 
7H 1.9 7 548723940.3 120.13 
7H 1.9 7 552445661.1 120.95 
8H 2.4 8 539086251.7 118.02 
8H 2.4 8 541629600 118.58 
9H 3.0 9 311038000 68.10 
9H 3.0 9 350632931.7 76.76 

10H 3.3 10 81772000 17.90 
10H 3.3 10 81164000 17.77 
11H 4.6 11 104000 0.02 
11H 4.6 11 117964 0.03 
12H 6.2 12 6650801.82 1.46 
12H 6.2 12 5644102.33 1.24 
14H 10.1 13 5147339.01 1.13 
R1H  15 562871450.3 123.23 
R1H  15 565053877.7 123.71 
R3H  16 557668222.3 122.09 
R3H   16 564079539.5 123.50 
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Table C-7 – Bromide Data from Experiments 6 and 7, Low [MS2] Column 
 

Sample No. Pore Volume IC Sample 
No. Peak Area Br ppm 

1L 0.26 74.00 5353947.86 1.17 
1L 0.26 74.00 4788478.06 1.05 
2L 0.47 75.00 4675310.32 1.02 
2L 0.47 75.00 6311690.74 1.38 
3L 0.73 76.00 96874047.59 21.21 
3L 0.73 76.00 95577941.23 20.93 
4L 1.08 77.00 239831423.61 52.51 
4L 1.08 77.00 240538024.82 52.66 
5L 1.72 78.00 581933001.20 127.40 
5L 1.72 78.00 590938278.86 129.38 
6L 1.98 79 589903153.1 129.15 
6L 1.98 79 597979385.4 130.92 
7L 2.47 80 584733731.7 128.02 
7L 2.47 80 585102206.5 128.10 
8L 2.88 81.00 384502374.41 84.18 
8L 2.88 81.00 363717806.66 79.63 
9L 3.30 82.00 137954657.91 30.20 
9L 3.30 82.00 114571265.81 25.08 

10L 3.87 83.00 5417399.48 1.19 
10L 3.87 83.00 6879801.15 1.51 
11L 4.66 84.00 6159469.45 1.35 
11L 4.66 84.00 5740394.46 1.26 
12L 5.41 85.00 1261785.09 0.28 
12L 5.41 85.00 1254958.16 0.27 
13L 5.94 86.00 6528870.12 1.43 
13L 5.94 86.00 6477001.35 1.42 
R1L  87.00 605235239.08 132.51 
R1L  87.00 607374872.70 132.97 
R3L  88.00 592150712.70 129.64 
R3L   88.00 596035419.94 130.49 

 
 
 
 
 
 
 
 
 
 
 
 



 158 

Table C-8 – Bromide Data from Experiments 6 and 7, High [MS2] Column 

Sample No. Pore Volume IC Sample 
No. Peak Area Br ppm 

1H 0.26 60.00 4354605.13 0.95 
1H 0.26 60.00 2626771.16 0.58 
2H 0.47 61.00 4722822.16 1.03 
2H 0.47 61.00 5660254.20 1.24 
3H 0.73 62.00 133367925.36 29.20 
3H 0.73 62.00 137059876.43 30.01 
4H 1.08 63.00 284924051.86 62.38 
4H 1.08 63.00 277287628.20 60.71 
5H 1.74 64.00 519544569.08 113.75 
5H 1.74 64.00 511955770.52 112.08 
6H 2.00 65.00 589242858.86 129.00 
6H 2.00 65.00 585126792.17 128.10 
7H 2.48 66.00 550444357.95 120.51 
7H 2.48 66.00 539043805.10 118.01 
8H 2.89 67.00 319648746.72 69.98 
8H 2.89 67.00 323138008.41 70.75 
9H 3.31 68.00 183716672.17 40.22 
9H 3.31 68.00 198989903.42 43.57 

10H 3.87 69.00 39578286.04 8.66 
10H 3.87 69.00 39988196.91 8.75 
11H 4.67 70.00 4215270.63 0.92 
11H 4.67 70.00 5386521.43 1.18 
12H 5.41 71.00 3431780.67 0.75 
12H 5.41 71.00 3156072.12 0.69 
R1H  72.00 615015896.47 134.65 
R1H  72.00 617800303.66 135.26 
R3H  73.00 614657276.84 134.57 
R3H   73.00 617052137.75 135.09 
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Table C-9 – Bromide Data from Experiments 8 and 9, Column A 

Sample No. Pore Volume IC Sample 
No. Peak Area Br ppm 

3A 0.47 34.00 18685855.82 4.09 
3A 0.47 34.00 15039034.26 3.29 
4A 0.94 35.00 281084799.44 61.54 
4A 0.94 35.00 263536434.31 57.70 
5A 1.42 36.00 465964002.53 102.01 
5A 1.42 36.00 470195930.49 102.94 
6A 1.86 37.00 568920383.84 124.56 
6A 1.86 37.00 554469922.49 121.39 
7A 2.27 38.00 604813209.33 132.41 
7A 2.27 38.00 610467265.83 133.65 
8A 2.73 39.00 428481352.28 93.81 
8A 2.73 39.00 429701484.07 94.08 
9A 3.16 40.00 252707060.09 55.33 
9A 3.16 40.00 241413648.45 52.85 

10A 3.72 41.00 132053404.47 28.91 
10A 3.72 41.00 123709439.55 27.08 
11A 4.23 42.00 92147046.50 20.17 
11A 4.23 42.00 28108663.11 6.15 
R1A  44.00 616094168.42 134.88 
R1A  44.00 625178704.69 136.87 
R2A  45.00 655122959.77 143.43 
R2A   45.00 623452550.35 136.49 
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Table C-10 – Bromide Data from Experiments 8 and 9, Column B 

Sample No. Pore Volume IC Sample 
No. Peak Area Br ppm 

4B 0.94 49.00 206119257.2 45.13 
4B 0.94 49.00 202893149.9 44.42 
5B 1.42 50.00 474893349.5 103.97 
5B 1.42 50.00 446755893.7 97.81 
6B 1.86 51.00 567157543 124.17 
6B 1.86 51.00 596097421.6 130.51 
7B 2.28 52.00 604571477.3 132.36 
7B 2.28 52.00 577919044.7 126.53 
8B 2.74 53.00 479472373.8 104.97 
8B 2.74 53.00 479539792.2 104.99 
9B 3.17 54.00 221557082.7 48.51 
9B 3.17 54.00 207188470.2 45.36 

10B 3.73 55.00 104157306.9 22.80 
10B 3.73 55.00 95876927.01 20.99 
R1B  58.00 588678815.8 128.88 
R1B  58.00 590805790.4 129.35 
R2B  59.00 584121865.3 127.88 
R2B   59.00 583958067 127.85 
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Bromide Data for Experiments 10 through 13 
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Figure C-3 – Bromide Calibration Curve for Experiments 10 through 13 
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Table C-11 –Calibration and Check Standard Bromide Data for Experiments 10 through 13 

Standard 
Concentration Area Count Calculated Bromide 

Concentration (ppm) 

Calibration Curve   
1 5144177.84 NA 
1 4994361.41 NA 
2 9290681.16 NA 
2 9388581.58 NA 
5 25135651.7 NA 
5 23650832.51 NA 

10 45746960.58 NA 
10 45492168.77 NA 
20 108950491 NA 
20 106491398.6 NA 
50 254239981.3 NA 
50 255009360.9 NA 

100 557016215.3 NA 
100 557701872.1 NA 

     
Check Standards   

10 std 50669613.63 9.28 
10 std 45280262.82 8.38 
10 std 40239933.22 7.54 
10 std 37077821.63 7.01 
10 std 42930472.2 7.99 
10 std 36371696.6 6.90 
10 std 36399788.28 6.90 
10 std 35712604.83 6.79 

     
Blanks    

blank 64935.02 0.84 
blank 44779.57 0.84 
blank 51650.29 0.84 
blank 61732.59 0.84 
blank 916330.59 0.99 
blank 90668.99 0.85 
blank 59960.87 0.84 
blank 75309.12 0.85 
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Table C-12 – Bromide Data from Experiments 10 and 11, Column A 

Sample No. Pore Volume IC Sample 
No. Peak Area Br ppm 

1A 0.32 29 16529068.2 3.59 
1A 0.32 29 9101174.3 2.35 
2A 0.54 30 9928391.0 2.49 
2A 0.54 30 16270612.0 3.55 
3A 0.89 31 306991812.0 52.00 
3A 0.89 31 317100998.6 53.68 
4A 1.24 32 560462749.2 94.24 
4A 1.24 32 563204712.8 94.70 
5A 1.79 33 670399173.7 112.57 
5A 1.79 33 681743821.0 114.46 
6A 2.32 34 676685643.4 113.61 
6A 2.32 34 673300977.0 113.05 
7A 2.76 35 670568095.8 112.59 
7A 2.76 35 679349105.4 114.06 
8A 3.16 36 605238420.1 101.71 
8A 3.16 36 602327883.2 101.22 
9A 3.83 37 68407133.7 12.23 
9A 3.83 37 101746440.8 17.79 

10A 4.66 38 8769518.1 2.29 
10A 4.66 38 8014670.6 2.17 
11A 6.14 39 7338660.3 2.06 
11A 6.14 39 9195748.9 2.37 
12A 6.20 40 9742261.5 2.46 
12A 6.20 40 9033453.8 2.34 
R1A  41 687882713.1 115.48 
R1A   41 692031444.6 116.17 
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Table C-13 –Bromide Data from Experiments 10 and 11, Column B 

Sample No. Pore Volume IC Sample 
No. Peak Area Br ppm 

1B 0.33 42 6182920.0 1.86 
1B 0.33 42 7888317.2 2.15 
2B 0.56 43 9419717.0 2.40 
2B 0.56 43 7230574.7 2.04 
3B 0.93 44 263414400.1 44.74 
3B 0.93 44 260126533.6 44.19 
4B 1.30 45 538809966.8 90.63 
4B 1.30 45 539938280.3 90.82 
5B 1.86 46 683257883.5 114.71 
5B 1.86 46 632257197.7 106.21 
6B 2.25 47 634097173.2 106.52 
6B 2.25 47 634406904.2 106.57 
7B 2.72 48 635244331.0 106.71 
7B 2.72 48 629452023.2 105.74 
8B 3.14 49 474438768.7 79.91 
8B 3.14 49 462678187.3 77.95 
9B 3.82 50 56482062.0 10.25 
9B 3.82 50 26027472.5 5.17 

10B 4.69 51 8386629.6 2.23 
10B 4.69 51 8691837.9 2.28 
11B 6.25 52 8226905.3 2.20 
11B 6.25 52 7953949.5 2.16 
R1B  54 618035696.0 103.84 
R1B   54 605750205.8 101.79 
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Table C-14 – Bromide Data from Experiments 12 and 13, Column A 

Sample No. Pore Volume IC Sample 
No. Peak Area Br ppm 

1A 0.23 55 94591.1 0.85 
1A 0.23 55 44955.0 0.84 
3A 0.89 58 338315777.8 57.22 
3A 0.89 58 371713328.4 62.79 
4A 1.18 59 480658612.3 80.94 
4A 1.18 59 467077999.2 78.68 
5A 1.58 60 655743892.4 110.12 
5A 1.58 60 629740327.8 105.79 
6A 1.90 61 650180151.3 109.20 
6A 1.90 61 658757210.0 110.63 
7A 2.31 62 665742935.1 111.79 
7A 2.31 62 662004847.8 111.17 
8A 2.57 63 663197982.6 111.37 
8A 2.57 63 636700377.9 106.95 
9A 3.35 64 377863626.3 63.81 
9A 3.35 64 377974676.1 63.83 

10A 4.03 65 148844113.7 25.64 
10A 4.03 65 134417411.0 23.24 
11A 4.83 66 78803828.3 13.97 
11A 4.83 66 73968221.7 13.16 
12A 5.44 67 85945780.1 15.16 
R1A  68 640692087.9 107.62 
R1A   68 638522595.5 107.25 
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Table C-15 – Bromide Data from Experiments 12 and 13, Column B 

Sample No. Pore Volume IC Sample 
No. Peak Area Br ppm 

2B 0.39 70 51807121.5 9.47 
2B 0.39 70 14327875.0 3.22 
3B 0.92 71 363847003.9 61.47 
3B 0.92 71 379254617.5 64.04 
4B 1.22 72 484309422.3 81.55 
4B 1.22 72 467684494.4 78.78 
5B 1.64 73 576039287.0 96.84 
5B 1.64 73 586230341.2 98.54 
6B 1.98 74 626145823.0 105.19 
6B 1.98 74 636731921.3 106.96 
7B 2.40 75 622503532.8 104.58 
7B 2.40 75 618601544.5 103.93 
8B 2.67 76 645780784.4 108.46 
8B 2.67 76 630950846.7 105.99 
9B 3.47 77 287772313.2 48.80 
9B 3.47 77 287462751.1 48.74 

10B 4.18 78 139472363.4 24.08 
10B 4.18 78 130510968.2 22.59 
11B 5.00 79 78913983.8 13.99 
11B 5.00 79 79744573.7 14.12 
R1B  81 613306398.8 103.05 
R1B   81 638132042.0 107.19 
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Bromide Data for Experiments 14 and 15 
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Figure C-4 - Bromide Calibration Curve for Experiments 14 and 15 
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Table C-16 - Calibration and Check Standard Bromide Data for Experiments 14 and 15 

Standard 
Concentration Area Count 

Calculated 
Bromide 

Concentration 
(ppm) 

Calibration 
Curve    

1 4028404.7 NA 
1 3486231.4 NA 
2 7718047.5 NA 
2 11317758.4 NA 
5 30415742.0 NA 
5 22172009.9 NA 

10 42080099.0 NA 
10 53360399.5 NA 
20 99958824.7 NA 
20 98254381.1 NA 
50 243779663.6 NA 
50 248848493.6 NA 

100 521280432.9 NA 
100 534673751.1 NA 
200 1104525772.3 NA 
200 1106419799.3 NA 

     
Check Standards    

10 std 42694629.4 8.54 
10 std 62317383.3 12.46 

     
Blanks    

blank 3039650.7 0.61 
blank 221724.0 0.04 
blank 1253081.7 0.25 
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Table C-17 – Bromide Data from Experiments 14 and 15, Column A 

Sample 
No. 

Pore 
Volume 

IC 
Sample 

No. 
Peak Area Br ppm 

3 0.92 3 214363816.1 42.87 
3 0.92 3 284266145.4 56.85 
4 1.11 4 381444198.0 76.29 
4 1.11 4 364907332.3 72.98 
5 1.39 5 477474124.4 95.49 
5 1.39 5 480799636.4 96.16 
6 1.59 6 581069189.8 116.21 
6 1.59 6 591904306.1 118.38 
7 2.07 7 623306472.9 124.66 
7 2.07 7 632892754.3 126.58 
8 2.54 8 602090270.9 120.42 
8 2.54 8 599903759.0 119.98 
9 2.75 9 584524836.0 116.90 
9 2.75 9 584571309.3 116.91 

10 2.84 10 515985162.0 103.20 
10 2.84 10 524132123.8 104.83 
11 3.71 11 124688135.3 24.94 
11 3.71 11 129621891.2 25.92 

Res 1  15 670406309.9 134.08 
Res 1   15 641841666.9 128.37 

 
Table C-18 – Bromide Data from Experiments 14 and 15, Column B 

Sample 
No. 

Pore 
Volume 

IC 
Sample 

No. 
Peak Area Br ppm 

3 0.90 18 219457192.7 43.89 
3 0.90 18 183689062.7 36.74 
4 1.08 19 363576650.1 72.72 
4 1.08 19 361137834.1 72.23 
5 1.35 20 503172177.4 100.63 
5 1.35 20 529780973.3 105.96 
6 1.56 21 622297065.2 124.46 
6 1.56 21 592466286.0 118.49 
7 2.02 22 641982493.2 128.40 
7 2.02 22 611838586.4 122.37 
8 2.48 23 644961401.1 128.99 
8 2.48 23 579393890.2 115.88 
9 2.69 24 637199383.6 127.44 
9 2.69 24 640380138.0 128.08 

10 2.78 25 549992701.5 110.00 
10 2.78 25 585803964.0 117.16 
11 3.63 26 106027652.3 21.21 
11 3.63 26 157766451.2 31.55 

Res 1  30 625950807.9 125.19 
Res 1   30 646792147.2 129.36 
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D. OPERATION OF COLUMN EXPERIMENTS 
Sampling Schedule and Flow Rates from Column Experiments 
 
Table D-1 – Sampling Schedule and Flow Rate Data from Column Experiments 4 and 5, 
Medium Sand, Low Ionic Strength 
Time from Start  (hr:min:sec)           

Sample Interval   Low MS2 Reservoir High MS2 Reservoir   

From To 
Time 

Centre 
Point 

Sample 
# 

Flow 
Rate 

(ml/hr) 

Effluent 
Volume 

(ml) 

Effluent 
Volume 

(Pore Vol) 

Cumulative 
Pore Vol 

Flow 
Rate 

(ml/hr) 

Effluent 
Volume 

(ml) 

Effluent 
Volume 

(Pore Vol) 

Cumulative 
Pore Vol 

Pre-Spike Rinsing AGW                   
0:11:45 0:14:45 0:13:15  220    220     
0:15:15 0:18:15 0:16:45  190    190     
0:18:15 15:45:00 8:01:37  139    139     

15:53:30 16:02:45 15:58:08  149    149     
16:04:30 16:14:15 16:09:22  142    142     
16:16:00 16:21:30 16:18:45  218    218     
16:29:30 16:34:00 16:31:45  153    153     
Switch to MS2 Spiked Reservoirs (3 min slow)             

0:02:30 0:08:00 0:05:15 1 0    0     
0:11:00 0:15:00 0:13:00  218    218     
0:17:20 0:20:30 0:18:55  218 74 0.3 0.3 218 74 0.3 0.3 
0:20:30 0:25:10 0:22:50 2    0.3    0.3 
0:25:10 0:31:45 0:28:28  173 32 0.1 0.4 173 32 0.1 0.4 

   0:30:00 Res 1    0.4    0.4 
0:31:45 0:37:15 0:34:30 3    0.4    0.4 
1:00:00 1:05:30 1:02:45 4    0.4    0.4 
1:05:30 1:39:15 1:22:23  167 188 0.7 1.1 164 185 0.7 1.1 
1:39:20 1:46:05 1:42:42 5    1.1    1.1 
1:46:10 2:19:45 2:02:58  165 93 0.3 1.4 163 91 0.3 1.4 
2:19:45 2:25:30 2:22:37 6    1.4    1.4 
2:55:45 3:01:00 2:58:22 7   0.0 1.4 0  0.0 1.4 
3:01:00 3:07:45 3:04:23  169 135 0.5 1.9 0  0.0 1.4 
3:01:00 3:09:15 3:05:08  0  0.0 1.9 167 138.0 0.5 1.9 

Colloid-free AGW Spike Total 523 1.9 1.8   521 1.9 1.8 
3:44:15 3:53:00 3:48:38 8 0  0.0 1.8 0  0.0 1.8 
3:53:45 4:05:30 3:59:38  169 162 0.6 2.4 169 162.2 0.6 2.4 
4:39:50 4:45:15 4:42:32 9 0  0.0 2.4 0  0.0 2.4 
4:45:35 5:13:50 4:59:43  164 186 0.7 3.1 164 186.3 0.7 3.1 
5:13:50 5:20:40 5:17:15 10   0.0 3.1 0  0.0 3.1 
7:17:30 7:24:00 7:20:45 11 0  0.0 3.1 0  0.0 3.1 
9:50:30 9:55:30 9:53:00 12 0  0.0 3.1 0  0.0 3.1 
9:55:30 10:03:15 9:59:23  170 822 3.0 6.1 170 822 3.0 6.1 

13:11:15 13:17:10 13:14:12 13 0  0.0 6.1 0  0.0 6.1 
16:03:00 16:08:15 16:05:37 14 0  0.0 6.1 0  0.0 6.1 
16:08:15 16:13:00 16:10:37  171 1051 3.9 10.0 171 1051 3.9 10.0 
22:51:50 22:58:00 22:54:55 15 0  0.0 10.0 0  0.0 10.0 
   22:57:00 Res 2   0.0 10.0   0.0 10.0 
22:58:15 23:08:30 23:03:23  164 1135 4.2 14.2 164 1135 4.2 14.2 
26:41:00 26:46:30 26:43:45 16 0  0.0 14.2 0  0.0 14.2 
26:47:05 26:53:30 26:50:18  168 631 2.3 16.5 168 631 2.3 16.5 
34:15:30 34:21:00 34:18:15 17 0  0.0 16.5 0  0.0 16.5 
34:21:00 34:26:15 34:23:38  171 1294 4.8 21.2 171 1294 4.8 21.2 
   34:24:00 Res 3   0.0 21.2   0.0 21.2 
47:37:40 47:43:00 47:40:20 18 0  0.0 21.2 0  0.0 21.2 
47:43:00 47:53:00 47:48:00  165 2219 8.2 29.4 165 2219 8.2 29.4 
   47:48:00 Res 4   0.0 29.4   0.0 29.4 
    Cumulative Total   6326 29.47     6323 29.47   
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Table D-2 - Sampling Schedule and Flow Rate from Column Experiments 6 and 7, 
Medium Sand, Low Ionic Strength 
Time from Start (hr:min:sec)           

Sampled   High MS2 Reservoir Low MS2 Reservoir   

From To 
Time 

Centre 
Point 

Sample 
# 

Flow 
Rate 

(ml/hr) 

Effluent 
Volume 

(ml) 

Effluent 
Volume 

(Pore Vol) 

Cumulative 
Pore Vol 

Flow Rate 
(ml/hr) 

Effluent 
Volume 

(ml) 

Effluent 
Volume 

(Pore Vol) 

Cumulative 
Pore Vol 

Pre-Spike Rinsing AGW                   
0:00:00 0:02:00 0:01:00  660    660     
0:05:10 0:07:10 0:06:10  1680    1680     
0:54:00 0:58:00 0:56:00  1373    1410     
1:10:30 1:20:30 1:15:30  183    186     
1:32:45 1:41:50 1:37:17  185    185     

Switch to MS2 Spiked Reservoirs                  
0:01:00 0:11:00 0:06:00  147 27 0.1 0.1 147 27 0.1 0.1 
0:14:15 0:19:00 0:16:38  202   0.1 202  0.0 0.1 
0:19:00 0:24:10 0:21:35 1  44 0.2 0.3 0 44 0.2 0.3 
0:24:10 0:29:00 0:26:35  186 15 0.1 0.3 186 15 0.1 0.3 
0:37:00 0:42:30 0:39:45 2 0 42 0.2 0.5 0 42 0.2 0.5 
0:52:35 1:01:30 0:57:02  178 56 0.2 0.7 178 56 0.2 0.7 
1:01:30 1:06:30 1:04:00 3 0 15 0.1 0.7 0 15 0.1 0.7 
1:32:00 1:38:12 1:35:06 4 0 94 0.3 1.1 0 94 0.3 1.1 
1:38:30 1:46:20 1:42:25  176 24 0.1 1.2 176 24 0.1 1.2 
2:22:00 2:32:30 2:27:15  174  0.0 1.2 180  0.0 1.2 
2:32:30 2:38:00 2:35:15 5 0 150 0.6 1.7 0 155 0.6 1.7 
2:48:30 2:56:00 2:52:15  180 54 0.2 1.9 184 55 0.2 1.9 

Switch to bacteriophage-free AGW   522       528     
2:56:40 3:01:50 2:59:15 6 0 17 0.1 2.0 0 18 0.1 2.0 
3:32:10 3:40:00 3:36:05  184 117 0.4 2.4 180 115 0.4 2.4 
3:40:00 3:45:00 3:42:30 7 0 15 0.1 2.5 0 15 0.1 2.5 
4:16:50 4:22:00 4:19:25 8 0 113 0.4 2.9 0 111 0.4 2.9 
4:22:00 4:30:00 4:26:00  180 0 0.0 2.9 180 0 0.0 2.9 
5:03:00 5:08:00 5:05:30 9 0 114 0.4 3.3 0 114 0.4 3.3 
5:08:00 5:13:00 5:10:30  180  0.0 3.3 180  0.0 3.3 
5:53:45 5:59:05 5:56:25 10 0 153 0.6 3.9 0 153 0.6 3.9 
5:59:05 6:05:30 6:02:17  182  0.0 3.9 182  0.0 3.9 
6:58:35 7:05:00 7:01:47  182  0.0 3.9 182  0.0 3.9 
7:05:00 7:10:30 7:07:45 11 0 217 0.8 4.7 0 217 0.8 4.7 
8:15:20 8:17:15 8:16:18 12 0 203 0.7 5.4 0 203 0.7 5.4 
8:17:15 8:25:45 8:21:30  173  0.0 5.4 176  0.0 5.4 
8:52:05 9:01:20 8:56:42  175  0.0 5.4 178  0.0 5.4 
9:01:20 9:06:30 9:03:55 13 0 144 0.5 5.9 0 146 0.5 6.0 

12:23:00 12:28:55 12:25:57 14 0 591 2.2 8.1 0 602 2.2 8.2 
15:30:15 15:35:45 15:33:00 15 0 545 2.0 10.1 0 555 2.0 10.2 
15:35:45 15:51:50 15:43:48  160  0.0 10.1 162  0.0 10.2 
18:09:00 18:11:45 18:10:22 16 0 417 1.5 11.6 0 422 1.6 11.8 
26:49:00 26:54:30 26:51:45 17 0 1398 5.1 16.8 0 1414 5.2 16.9 
26:54:30 27:02:00 26:58:15  172  0.0 16.8 172  0.0 16.9 
33:44:50 33:50:30 33:47:40 18 0 1193 4.4 21.2 0 1193 4.4 21.3 
33:50:30 33:54:00 33:52:15  189  0.0 21.2 189  0.0 21.3 
45:50:20 45:56:30 45:53:25 19  2282 8.4 29.5  2282 8.4 29.7 
   45:52:00 Res 2   0.0 29.5   0.0 29.7 
45:56:35 46:07:30 46:02:03  168  0.0 29.5 170  0.0 29.7 
52:43:45 52:49:00 52:46:23 20  1152 4.2 33.8  1171.4 4.3 34.0 
52:49:00 52:57:10 52:53:05  165  0.0 33.8 169  0.0 34.0 
      Total (ml) 9715       9786     
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Table D-3 - Sampling Schedule and Flow Rates from Column Experiments 8 and 9, 
Medium Sand, High Ionic Strength 
Time from Start (hr:min:sec)           

Sampled   Column A Column B   

From To 
Time 

Centre 
Point 

Sample 
# 

Flow 
Rate  

(ml/hr) 

Effluent 
Volume  

(ml) 

Effluent 
Volume 
(Pore 
Vol) 

Cumulative 
Pore Vol 

Flow 
Rate  

(ml/hr) 

Effluent 
Volume  

(ml) 

Effluent 
Volume 

(Pore Vol) 

Cumulative 
Pore Vol 

Pre-Spike Rinsing AGW                   
about 6 L of Water or about 10 pore volumes overnight flush        

Switch to MS2 Spiked Reservoirs                  

0:03:00 0:11:10 0:07:05  169 31 0.1 0.1 169 31 0.1 0.1 

0:11:10 0:17:00 0:14:05 1 0 16 0.1 0.2 0 16 0.1 0.2 

0:25:00 0:30:30 0:27:45 2 0 38 0.1 0.3 0 38 0.1 0.3 

0:31:00 0:40:00 0:35:30  173 27 0.1 0.4 173 27 0.1 0.4 

0:40:00 0:45:30 0:42:45 3 0 16 0.1 0.5 0 16 0.1 0.5 

1:24:00 1:29:30 1:26:45 4 0 127 0.5 0.9 0 127 0.5 0.9 

1:29:30 1:37:00 1:33:15  172 22 0.1 1.0 172 22 0.1 1.0 

2:09:45 2:15:15 2:12:30 5 0 110 0.4 1.4 0 110 0.4 1.4 

   2:15:00 Res 1          

2:37:40 2:46:00 2:41:50  173 89 0.3 1.7 173 89 0.3 1.7 

2:50:40 2:56:30 2:53:35 6 0 30 0.1 1.9 0 30 0.1 1.9 

2:56:30 3:03:30 3:00:00  171 20 0.1 1.9 176 21 0.1 1.9 

Switch to bacteriophage-free AGW                 

3:29:45 3:35:15 3:32:30 7 0 91 0.3 2.3 0 93 0.3 2.3 

3:35:15 3:52:30 3:43:52  169 49 0.2 2.4 169 49 0.2 2.5 

4:14:30 4:20:30 4:17:30 8 0 79 0.3 2.7 0 79 0.3 2.7 

4:30:30 4:56:00 4:43:15  169 100 0.4 3.1 169 100 0.4 3.1 

4:56:00 5:01:45 4:58:53 9 0 16 0.1 3.2 0 16 0.1 3.2 

5:50:15 5:55:30 5:52:53 10 0 152 0.6 3.7 0 152 0.6 3.7 

6:20:10 6:34:30 6:27:20  170 110 0.4 4.1 170 110 0.4 4.1 

6:39:15 6:44:30 6:41:52 11 0 28 0.1 4.2 0 28 0.1 4.2 

9:24:15 9:30:00 9:27:07 12 0 468 1.7 5.9 0 468 1.7 6.0 

12:10:30 12:16:05 12:13:18 13 0 480 1.8 7.7 0 504 1.9 7.8 

12:16:05 12:23:00 12:19:32  173 20 0.1 7.8 182 21 0.1 7.9 

16:37:30 16:43:00 16:40:15 14 0 752 2.8 10.5 0 789 2.9 10.8 

19:55:30 20:01:00 19:58:15 15 0 578 2.1 12.7 0 561 2.1 12.8 

20:01:30 20:07:30 20:04:30  175 19 0.1 12.7 170 18 0.1 12.9 

23:49:10 23:55:10 23:52:10 16 0 664 2.4 15.2 0 645 2.4 15.3 

23:55:10 24:01:00 23:58:05 17 0 17 0.1 15.2 0 17 0.1 15.3 

   23:59:00 Res 2   0.0 15.2   0.0 15.3 

24:01:00 24:11:10 24:06:05  165 28 0.1 15.3 165 28 0.1 15.4 

25:50:00 25:55:30 25:52:45 18 0 287 1.1 16.4 0 287 1.1 16.5 

27:15:15 27:21:00 27:18:08 19 0 243 0.9 17.3 0 243 0.9 17.4 

29:13:30 29:23:00 29:18:15  171 347 1.3 18.6 171 347 1.3 18.7 

29:23:00 29:29:30 29:26:15 20 0 18 0.1 18.6 0 18 0.1 18.7 

30:18:30 30:27:30 30:23:00 21 0 165 0.6 19.2 0 165 0.6 19.3 

31:03:00 31:19:00 31:11:00  0 146 0.5 19.8 165 146 0.5 19.9 

31:19:00 31:25:00 31:22:00 22 0 17 0.1 19.8 0 17 0.1 19.9 

    Cumulative Total  5400       5429     
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Table D-4 - Sampling Schedule and Flow Rates from Column Experiments 10 and 11, 
Fine Sand, Low Ionic Strength 
Time from Start (hr:min:sec)           

Sampled   Column A Column B   

From To 
Time 

Centre 
Point 

Sample 
# 

Flow 
Rate  

(ml/hr) 

Effluent 
Volume  

(ml) 

Effluent 
Volume 
(Pore 
Vol) 

Cumulative 
Pore Vol 

Flow 
Rate  

(ml/hr) 

Effluent 
Volume  

(ml) 

Effluent 
Volume 
(Pore 
Vol) 

Cumulative 
Pore Vol 

Pre-Spike Rinsing AGW                   
about 4.5 L of Water            
Switch to MS2 Spiked Reservoirs                  

0:01:00 0:07:00 0:04:00  190 22 0.1 0.1 195 23 0.1 0.1 
0:09:45 0:19:45 0:14:45  159 34 0.1 0.2 165 35 0.1 0.2 
0:19:45 0:23:10 0:21:27 Br1 0 13 0.0 0.3 0 14 0.1 0.3 
0:23:20 0:28:00 0:25:40 1 0 18 0.1 0.3 0 19 0.1 0.3 
0:28:00 0:30:30 0:29:15  228 10 0.0 0.4 240 10 0.0 0.4 
0:30:30 0:33:45 0:32:07 Br2  12 0.0 0.4  12 0.0 0.4 
0:33:45 0:39:45 0:36:45  215 22 0.1 0.5 225 23 0.1 0.5 
0:39:45 0:45:00 0:42:22 2  17 0.1 0.5  18 0.1 0.6 
0:45:00 0:51:10 0:48:05  195 20 0.1 0.6 204 21 0.1 0.6 
0:51:10 1:02:00 0:56:35 Br3 0 30 0.1 0.7 0 32 0.1 0.8 
1:02:00 1:11:15 2:15:00  169 26 0.1 0.8 175 27 0.1 0.9 
1:11:15 1:16:30 1:13:52 3 0 18 0.1 0.9 0 19 0.1 0.9 
1:16:30 1:26:45 1:21:37  211 36 0.1 1.0 220 38 0.1 1.1 
1:26:45 1:32:40 1:29:42 Br4 0 21 0.1 1.1 0 22 0.1 1.1 
1:32:40 1:37:40 1:35:10  216 18 0.1 1.2 222 19 0.1 1.2 
1:37:45 1:43:40 1:40:42 4 0 22 0.1 1.2 0 22 0.1 1.3 
2:19:35 2:24:35 2:22:05 5 0 148 0.5 1.8 0 153 0.6 1.9 
2:24:35 2:32:45 2:28:40  217 30 0.1 1.9 224 31 0.1 2.0 
2:32:45 2:41:00 2:36:53 Br5 0 29 0.1 2.0 0 30 0.1 2.1 
2:41:10 2:53:30 2:47:20  212 44 0.2 2.2 221 46 0.2 2.2 
2:59:20 3:05:10 3:02:15 6 0 41 0.2 2.3 0 43  2.2 
3:05:45 3:11:45 3:08:45 Br6 0 23 0.1 2.4 0 24 0.1 2.3 

switch B to bacteriophage-free water              
3:19:25 3:34:45 3:27:05  209 80 0.3 2.7 221 85 0.3 2.7 

switch A to bacteriophage-free water              
3:34:45 3:39:50 3:37:18 7 0 18 0.1 2.8 0 19 0.1 2.7 
3:39:50 3:58:00 3:48:55 Br7 0 65 0.2 3.0 0 67 0.2 3.0 
3:59:15 4:06:00 4:02:37  213 28 0.1 3.1 222 30 0.1 3.1 

  4:03:00 4:03:00 Res 1   0.0 3.1 0  0.0 3.1 
4:06:00 4:10:30 4:08:15 8 0 16 0.1 3.2 0 17 0.1 3.1 
4:56:30 5:01:10 4:58:50 9 0 182 0.7 3.8 0 186 0.7 3.8 
5:01:10 5:07:10 5:04:10  215 22 0.1 3.9 220 22 0.1 3.9 
5:07:10 5:11:00 5:09:05 Br8 0 14 0.1 4.0 0 14 0.1 4.0 
5:59:21 6:03:51 6:01:36 10 0 192 0.7 4.7 0 200 0.7 4.7 
6:03:51 6:09:55 6:06:53  218 22 0.1 4.7 227 23 0.1 4.8 
7:48:25 7:52:40 7:50:33 11 0 380 1.4 6.1 0 402 1.5 6.2 
7:52:40 7:57:24 7:55:02  222 18 0.1 6.2 235 19 0.1 6.3 
9:21:20 9:25:43 9:23:32 12 0 0 0.0 6.2 0 0 0.0 6.3 
9:25:43 9:32:18 9:29:01  210 23 0.1 6.3 219 24 0.1 6.4 

11:10:30 11:16:00 11:13:15 13 0 367 1.4 7.6 0 380 1.4 7.8 
11:16:05 11:28:30 11:22:17  213 44 0.2 7.8 220 46 0.2 8.0 
13:13:20 13:17:45 13:15:32 14 0 383 1.4 9.2 0 399 1.5 9.4 
13:17:45 13:28:10 13:22:57  210 37 0.1 9.3 219 38 0.1 9.6 
14:53:40 14:58:30 14:56:05 15 0 317 1.2 10.5 0 330 1.2 10.8 
16:16:20 16:20:50 16:18:35 16 0 288 1.1 11.6 0 300 1.1 11.9 
17:00:50 17:05:15 17:03:02 17 0 156 0.6 12.1 0 162 0.6 12.5 
18:39:10 18:43:50 18:41:30 18 0 367 1.3 13.5 0 383 1.4 13.9 
22:38:20 22:42:40 22:40:30 19 0 888 3.3 16.7 0 928 3.4 17.3 
22:42:40 22:48:35 22:45:37  223 22 0.1 16.8 233 23 0.1 17.4 
24:50:01 24:54:12 24:52:07 20 0 431 1.6 18.4 0 454 1.7 19.1 
24:54:12 25:02:30 24:58:21  206 29 0.1 18.5 217 30 0.1 19.2 
27:00:57 27:05:30 27:03:14 21 0 422 1.6 20.1 0 445 1.6 20.8 
    Cumulative Total 5462       5704     
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Table D-5 - Sampling Schedule and Flow Rates from Column Experiments 12 and 13, 
Fine Sand, High Ionic Strength 

Time from Start (min)               
Sampled   Column A Column B   

From To 
Time 

Centre 
Point 

Sample 
# 

Flow 
Rate  

(ml/hr) 

Effluent 
Volume  

(ml) 

Effluent 
Volume 
(Pore 
Vol) 

Cumulative 
Pore Vol 

Flow 
Rate  

(ml/hr) 

Effluent 
Volume  

(ml) 

Effluent 
Volume 
(Pore 
Vol) 

Cumulative 
Pore Vol 

Pre-Spike Rinsing AGW                 
about 4 L of Water in 16 hrs          

Switch to MS2 Spiked Reservoirs                

0:00:15 0:06:15 0:03:15  200 21 0.1 0.1 210 22 0.1 0.1 

0:07:05 0:13:10 0:10:07  217 25 0.1 0.2 232 27 0.1 0.2 

0:13:10 0:18:00 0:15:35 1 0 18 0.1 0.2 0 18 0.1 0.2 

0:18:00 0:24:00 0:21:00  220 22 0.1 0.3 225 23 0.1 0.3 

0:24:00 0:28:20 0:26:10 2 0 16 0.1 0.4 0 16 0.1 0.4 

1:02:15 1:06:45 1:04:30 3 0 141 0.5 0.9 0 144 0.5 0.9 

1:24:30 1:29:00 1:26:45 4 0 79 0.3 1.2 0 83 0.3 1.2 

1:29:00 1:41:00 1:35:00  213 43 0.2 1.3 223 45 0.2 1.4 

1:55:00 2:00:00 1:57:30 5 0 67 0.2 1.6 0 70 0.3 1.6 

2:00:05 2:20:05 2:10:05  210 70 0.3 1.8 222 74 0.3 1.9 

2:25:00 2:25:00 2:25:00 6  17 0.1 1.9  18 0.1 2.0 

2:43:45 2:48:45 2:46:15  222 88 0.3 2.2 228 90 0.3 2.3 

2:48:45 2:54:40 2:51:42 7 0 22 0.1 2.3 0 22 0.1 2.4 

switch A to bacteriophage-free water               

switch B to bacteriophage-free water               

3:01:50 3:09:20 3:05:35  216 53 0.2 2.5 228 56 0.2 2.6 

3:09:30 3:14:30 3:12:00 8 0 19 0.1 2.6 0 20 0.1 2.7 

  3:14:00 3:14:00 Res 1 0  0.0 2.6 0  0.0 2.7 

4:09:27 4:13:49 4:11:38 9 0 212 0.8 3.3 0 217 0.8 3.5 

4:13:49 4:25:06 4:19:28  213 40 0.1 3.5 218 41 0.2 3.6 

5:02:20 5:06:45 5:04:33 10 0 146 0.5 4.0 0 151 0.6 4.2 

5:06:45 5:35:53 5:21:19  210 102 0.4 4.4 217 106 0.4 4.6 

6:03:10 6:09:00 6:06:05 11 0 116 0.4 4.8 0 120 0.4 5.0 

6:49:45 6:56:20 6:53:02 12 0 166 0.6 5.4 0 171 0.6 5.6 

9:16:05 9:20:35 9:18:20 13 0 513 1.9 7.3 0 534 2.0 7.6 

10:06:40 10:11:00 10:08:50 14 0 179 0.7 8.0 0 187 0.7 8.3 

10:11:00 10:24:30 10:17:45  213 48 0.2 8.2 222 50 0.2 8.5 

11:22:15 11:30:30 11:26:22 15 0 226 0.8 9.0 0 237 0.9 9.3 

11:30:30 11:43:20 11:36:55  206 44 0.2 9.2 215 46 0.2 9.5 

12:41:25 12:46:00 12:43:42 16 0 215 0.8 9.9 0 225 0.8 10.3 

13:41:00 13:48:15 13:44:37 17 0 213 0.8 10.7 0 223 0.8 11.2 

14:46:00 14:50:40 14:48:20 18 0 226 0.8 11.6 0 233 0.9 12.0 

14:50:40 14:59:30 14:55:05  217 32 0.1 11.7 224 33 0.1 12.1 

15:19:10 15:23:30 15:21:20 19 0 87 0.3 12.0 0 90 0.3 12.5 

20:16:45 20:21:15 20:19:00 20 0 1068 3.9 15.9 0 1129 4.1 16.6 

20:21:15 20:28:30 20:24:53  215 26 0.1 16.0 228 28 0.1 16.7 

22:42:15 22:46:39 22:44:27 21 0 495 1.8 17.8 0 524 1.9 18.6 

25:25:35 25:29:46 25:27:41 22 0 585 2.1 20.0 0 619 2.3 20.9 

27:41:30 27:45:27 27:43:29 23 0 487 1.8 21.8 0 515 1.9 22.8 

      Cumulative Total 5926       6205     
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Table D-6 - Sampling Schedule and Flow Rates from Column Experiments 14 and 15, 
Medium Sand, High Ionic Strength 
Time from Start (min)                   

Sampled   Column A Column B   

From To 
Time 

Centre 
Point 

Sample 
# 

Flow 
Rate  

(ml/hr) 

Effluent 
Volume  

(ml) 

Discrete 
Effluent 
Volume 

(Pore Vol) 

Cumulative 
Pore Vol 

Flow 
Rate  

(ml/hr) 

Effluent 
Volume  

(ml) 

Discrete 
Effluent 
Volume 

(Pore Vol) 

Cumulative 
Pore Vol 

Pre-Spike Rinsing AGW                   
about 3.5 L of Water in 16 hrs          

Switch to MS2 Spiked Reservoirs                  

0:00:00 0:02:30 0:01:15  264 11 0.0 0.0 264 11 0.0 0.0 

0:06:00 0:20:20 0:13:10  188 56 0.2 0.2 184 55 0.2 0.2 

0:20:30 0:25:25 0:22:57 1  16 0.1 0.3  16 0.1 0.3 

0:41:00 0:47:15 0:44:08 2  69 0.3 0.6  67 0.2 0.5 

1:13:25 1:18:35 1:16:00 3  98 0.4 0.9  96 0.4 0.9 

1:18:35 1:29:30 1:24:03  192 35 0.1 1.0 187 34 0.1 1.0 

1:29:30 1:34:45 1:32:08 4  17 0.1 1.1  16 0.1 1.1 

1:34:45 1:49:15 1:42:00  190 46 0.2 1.3 186 45 0.2 1.2 

1:49:15 1:58:30 1:53:52 5 0 29 0.1 1.4 0 29 0.1 1.4 

2:11:00 2:16:15 2:13:37 6 0 56 0.2 1.6 0 55 0.2 1.6 

2:51:30 2:57:00 2:54:15 7 0 129 0.5 2.1 0 126 0.5 2.0 

Switch to B-free water                   

3:33:45 3:36:05 3:34:55 8 0 128 0.5 2.5 0 125 0.5 2.5 

3:38:10 3:45:30 3:41:50  196 31 0.1 2.7 192 30 0.1 2.6 

3:47:50 3:53:30 3:50:40 9 0 26 0.1 2.7 0 26 0.1 2.7 

3:56:20 4:01:05 3:58:43 10 0 25 0.1 2.8 0 24 0.1 2.8 

5:08:30 5:13:40 5:11:05 11 0 238 0.9 3.7 0 233 0.9 3.6 

6:16:00 6:21:00 6:18:30 12 0 213 0.8 4.5 0 213 0.8 4.4 

7:38:15 7:51:15 7:44:45 13 0 286 1.0 5.5 0 286 1.0 5.5 

7:51:15 7:57:45 7:54:30 14 0 21 0.1 5.6 0 21 0.1 5.5 

8:00:45 8:08:20 8:04:32  190 33 0.1 5.7 190 33 0.1 5.7 

8:33:50 8:39:00 8:36:25 15 0 97 0.4 6.1 0 97 0.4 6.0 

11:35:45 11:41:30 11:38:37 17 i 0 578 2.1 8.2 0 578 2.1 8.1 

11:41:30 11:47:00 11:44:15 17 ii 0 17 0.1 8.3 0 17 0.1 8.2 

15:04:00 15:09:00 15:06:30 18 i 0 639 2.3 10.6 0 639 2.3 10.6 

15:09:00 15:15:00 15:12:00 18 ii 0 19 0.1 10.7 0 18 0.1 10.6 

23:42:03 23:47:05 23:44:34 19 0 1591 5.8 16.5 0 1567 5.8 16.4 

27:42:50 27:48:01 27:45:25 20 0 749 2.8 19.3 0 737 2.7 19.1 

29:23:40 29:29:00 29:26:20 21 0 314 1.2 20.5 0 309 1.1 20.2 

29:36:15 29:57:10 29:46:43  186 88 0.3 20.8 184 86 0.3 20.5 

32:22:45 32:27:50 32:25:18 22 0 468 1.7 22.5 0 461 1.7 22.2 

    Cumulative Total 6122       6051     
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Table D-7 – Flow Rates from Column Experiments 2 and 3 
  Low [MS2] Column High [MS2] Column 

Central 
Sampling 

Time 

Flow 
Rate  

(ml/hr) 

Discrete 
Flow 

Volume 
(ml) 

 Cumulative 
Pore 

Volumes 

Flow 
Rate  

(ml/hr) 

Discrete 
Flow 

Volume 
(ml) 

 Cumulative 
Pore 

Volumes 

0:00:00 849 25 0.09 814 24 0.09 

0:01:45 849 159 0.68 814 153 0.65 

0:13:00 849 0 0.68 814 0 0.65 

0:13:00 710 62 0.90 690 60 0.87 
0:18:15 710 0 0.90 690 0 0.87 
0:18:15 484 93 1.24 484 93 1.21 
0:29:45 484 0 1.24 484 0 1.21 
0:29:45 360 281 2.27 350 273 2.21 
1:16:30 360 0 2.27 350 0 2.21 
1:16:30 212 79 2.56 203 75 2.49 
1:38:45 212 0 2.56 203 0 2.49 
1:38:45 1155 34 2.69 1080 31 2.60 
1:40:30 1155 510 4.56 1080 477 4.36 
2:07:00 1155 0 4.56 1080 0 4.36 

Switched to Spiked Reservoirs after Rinsing       
2:07:00 129 35 4.69 129 35 4.49 
2:23:30 129 0 4.69 129 0 4.49 
2:25:46 0 0 4.69 129 18 4.55 
2:34:00 0 0 4.69 129 0 4.55 
3:22:00 0 0 4.69 129 30 4.66 
3:36:00 0 0 4.69 129 13 4.71 
3:42:00 137 63 4.93 131 61 4.93 
4:09:45 137 64 5.16 131 61 5.16 
4:37:53 130 51 5.35 130 51 5.35 
5:01:25 171 62 5.57 171 62 5.57 
5:23:03 170 190 6.27 170 190 6.27 
6:30:15 166 33 6.39 171 33 6.40 
6:42:00 166 45 6.56 171 46 6.57 

Switched High [MS2] column to colloid-free AGW     
6:58:17 167 17 6.62 171 18 6.63 

Switched Low [MS2] column to colloid-free AGW     
7:04:30 167 331 7.84 171 338 7.87 
9:03:15 168 544 9.84 168 544 9.87 

12:17:30 168 1810 16.49 173 1864 16.72 
23:04:05 172 676 18.97 176 692 19.26 
27:00:00 168 1606 24.87 174 1664 25.38 
36:33:40 165 2202 32.96 171 2282 33.76 
49:54:15 172 871 36.16 176 891 37.03 
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Flow During Column Experiments 2 and 3 
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Figure D-1 - Column Runs 2 & 3 High Concentration Flow Rate Graph 
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Figure D-2 - Column Runs 2 & 3 Low Concentration Flow Rate Graph 
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First Prototype Column Run 
 
Figure D-3 indicates MS2 and bromide breakthrough during the first trial column 

experiment utilizing a 10 cm, horizontally oriented column.  This figure indicates a rapid 

rise of both MS2 and bromide during the first hour of column operation.  MS2 and 

bromide concentrations during the first column experiment effluent plateau and then 

decline rapidly after 5 hours at which point the column influent is only AGW.  During 

this experiment MS2 reached a maximum breakthrough concentration of 50 % of the 

influent concentration after 3 hours and 30 minutes of column operation.  Although the 

column effluent was sampled for 72 hours after the introduction of MS2 no MS2 was 

detected in the column effluent after 13 hours operation. 
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Figure D-3 - Column Run 1, Normalised MS2 Breakthrough in 10 cm column, Medium 
Sand, Very High Ionic Strength 
 
 
 
 
 
 


