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Abstract

The goal of this thesis is to solve some problems in dependence modeling. Under special
assumptions, we use Tankov [2011]’s result to give sharp bounds on variance of the sum
of two random variables with partial information available and point out some drawbacks
in his method. Thus, two different methods based on convex ordering are proposed. We
show the one inspired by Bernard and Vanduffel [2014] may fail and provide an improved
method. This thesis then discusses the compatible matrix problem. We characterize the
covariance matrix for sums of normal distributed random variables to reach the minimum
variance in dimensions three and four. This result is supported with application on variance
bounds with background risk. The last part reviews some existing dependence measures
and a new multivariate dependence measure focusing on the sum of random variables is
introduced with properties and estimation method.

Each chapter ends with a conclusion and future research directions.
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Chapter 1

Introduction

1.1 Motivation and Recent Works

Given a probability space (Ω,F , P ), a random vector X = (X1, ..., Xd) is a mapping from
Ω to Rd measurable with respect to F (see Billingsley [2008]). The dependence structure
of X refers to the joint distribution function,

F (x1, ..., xd) := P (X1 ≤ x1, ..., Xd ≤ xd)

for any (x1, ..., xd) ∈ Rd.

This problem has been studied for centuries under different contexts, see Fréchet [1956],
Hoeffding [1940], Hardy et al. [1952] and Tchen [1980] for early history.

Modeling multivariate dependence is important because data is multivariate (see Joe
[1997] for problems in multivariate data modeling). Given marginal distributions, a func-
tion copula is introduced to model the multivariate dependence structure. Early references
include Fréchet [1956], Hoeffding [1940], Kimeldori and Sampson [1975], see Schweizer
[1991] and Dall’Aglio [1991] for a short history of copula, Embrechts [2009] for recent
developments and potential future work.

Copula has applications in many practical problems, including engineering, biology,
weather forecasting, Markov processes (see Darsow et al. [1992]), risk management (see
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Embrechts et al. [2003b], Embrechts et al. [2002]) and finance (see Genest et al. [2009]).
Its use in actuarial science is introduced by Carriere and Chan [1986].

One central problem of dependence modeling is to investigate the bounds on distribution
of the sum S = X1 + .... + Xd. Earliest references date back to 1981 by Makarov [1982]
and Frank et al. [1987].

When dimension d = 2, this problem can be studied via the use of copula. The situation
becomes more complex with the existence of partial information available on the copula.
Tankov [2011] introduces the improved Fréchet bounds which is sharper than the classical
Fréchet-Hoeffding bounds. This is a generalization of Nelsen [2007]’s result. Nelsen [2007]
and Sadooghi-Alvandi et al. [2013] give the best-possible bounds when knowing the value
of the copula at a given point and at several points separately; Nelsen et al. [2001] and
Nelsen et al. [2004] give the improved bounds when a measure of association in terms of
the copula and the diagonal sections are given, also see Beliakov et al. [2007], Nelsen and
Ubeda-Flores [2005], Nelsen and Úbeda-Flores [2012] for related works. See Rachev and
Rüschendorf [1998] and Rachev and Rüschendorf [1994] for earlier results on improvement
of Fréchet bounds.

The improved Fréchet bounds have many applications in quantitative risk management
such as the portfolio selection problems (see Bernard et al. [2014a] and Bernard et al.
[2014b] for details), optimal investment strategies (see Bernard and Vanduffel [2011]),
uniform distribution theory (Hofer and Iacò [2014]), option pricing (see Tankov [2011],
Rapuch and Roncalli [2001]).

However, the problem is not fully solved as the result in Tankov [2011] does not give a
sharp bounds on copulas in some cases. Bernard et al. [2012] extends Tankov [2011]’s result
by giving a weaker sufficient condition for the quasi-copulas to be copulas and Bernard et al.
[2013a] further extends Tankov [2011]’s result.

For d ≥ 3, copula is not that useful as the bounds on S = ∑d
i=1Xi also depend on

marginals (see Bernard et al. [2014]). Convex ordering is introduced here. The upper
bounds for a general d and the lower bound for d = 2 is given in Denuit et al. [1999].
Related work include Dhaene et al. [2002] and Wang and Wang [2011]. The sharp lower
bound when n ≥ 3 is studied in Bernard et al. [2014] and generalized in Jakobsons et al.
[2014], also see Cheung and Lo [2013], Cheung and Lo [2014]. Some numerical methods to
approximate bounds are studied in Bernard and Mcleish [2014], Puccetti and Rüschendorf
[2012], Embrechts et al. [2013], Puccetti [2013], Embrechts et al. [2014a], Bernard and
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Vanduffel [2014], see Aas and Puccetti [2014] for a real case study. With partial information
available in different situations, improved bounds on the sum are studied in Cheung and
Vanduffel [2013] and Cheung [2008].

In quantitative risk management, by viewing risk factors as random vectors, we can use
convex ordering to study bounds on the sum S, which is described as risk aggregation (see
an overview in Embrechts and Puccetti [2010b]). This is useful for financial institutions to
give more accurate risk assessment of portfolio and can be helpful for industry regulators
and risk managers. There are mainly three problems being studied under two situations,
with no or partial information available:

1. Bounds for the sum of dependent risk, namely

m+(s) = inf{P (S < s) : Xi has marginal Fi, i = 1, ..., d}

and
M+(s) = sup{P (S < s) : Xi has marginal Fi, i = 1, ..., d}.

See Rüschendorf [1982] and Embrechts et al. [2003a] for a short history of this problem,
Wang et al. [2013] for a review on the existing results, also Embrechts and Puccetti [2006],
Bernard et al. [2014], Rüschendorf [1991], Embrechts and Puccetti [2010a], Embrechts et al.
[2013] for study of this problem under partial information available.

2. Bounds on the industry benchmark, Value-at-risk (VaR) (see Jorion [2007]), which is
closely related to problem 1. See Embrechts et al. [2014a] for a short history, see Embrechts
et al. [2003a], Wang et al. [2013], Wang and Wang [2013], Jakobsons et al. [2014] for the
context of no information available and Bernard et al. [2013b], Kaas et al. [2009], Bernard
et al. [2014], Bernard and Vanduffel [2014], Denuit et al. [1999], Bignozzi and Tsanakas
[2013], Werner [2002], Mesfioui and Quessy [2005] with partial information available. See
Alexander and Sarabia [2012] Kerkhof et al. [2010] for the worst VaR scenario. The issue
of asymptotic equivalence of worst VaR and worst TVaR is studied in Embrechts et al.
[2014b], Wang [2014], Embrechts et al. [2014a], Bernard et al. [2014] and Puccetti et al.
[2013].

3. Bounds on other convex risk measures or coherent risk measures (see Artzner et al.
[1999], Delbaen [2002], Kusuoka [2001]) Related work see Cont [2006], Kaas et al. [2009],
Valdez et al. [2009], Bignozzi and Tsanakas [2013], Jakobsons et al. [2014], Bäuerle and
Müller [2006].
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Of course this is not a complete list and the problem is not fully solved especially when
partial information is available.

Other application of convex ordering include bounds on option pricing: see Albrecher
et al. [2008], d’Aspremont and El Ghaoui [2006], Hobson et al. [2005], Rogers and Shi
[1995], Vanmaele et al. [2006], Keller-Ressel and Griessler [2011], Curran [1994], Vanduffel
et al. [2008], Dhaene et al. [2005].

1.2 Setting and Notation

This section gives some definitions and theorems, which are used throughout the thesis.
All the random vectors X in this thesis are continuous and we only focus on the sum
S = X1 + ...+Xd where each (Xi)1≤i≤d has fixed and known marginal.

1.2.1 Definitions

We first recall some definitions and theorems that can be found in Nelsen [2007]. A d-
variate distribution function with U [0, 1] margins is called copula, denoted as: C. It has
the formal definition as follows.

Definition 1.2.1. C : [0, 1]d −→ [0, 1] is a copula if and only if
(i) C(u)= 0 if min(u)= 0
(ii) C is d-increasing, i.e. for all a < b, the volume of C in a hypercube [a,b] is non-
negative.
(iii) C has uniform margins, i.e. C(u) =ui if u= (1, .., 1, ui, 1, ..., 1) for i = 1, ..., d.

The volume of C at [a,b] is given by,

4[a,b]C =
2∑

id=1
...

2∑
i1=1

(−1)
∑d

j=1 ijC(u1,i1 , ..., ud,id) (1.1)

where

uj,ij =

aj, if ij = 1
bj, if ij = 2.

(1.2)
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We focus on the bivariate copula C : [0, 1]2 −→ [0, 1] in the following. Then the volume
is just C(a1, a2) + C(b1, b2)− C(a1, b2)− C(b1, a2).

Given random variables X1, X2, ...Xd following some joint distribution function H,
where each Xi has marginal distribution Fi, i = 1, ..., d, we can use copula C to model the
dependence structure between (Xi)1≤i≤d. This is a result of Sklar′s theorem as follows
(see page 18 from Nelsen [2007]).

Theorem 1.2.2. (Sklar’s theorem)
(i) For any joint distribution function H, with margins Fi, i = 1, ..., d, there exists a copula
C such that

H(x) = C(F1(x1), ..., Fd(xd)),x ∈ Rd. (1.3)

Such C is unique if Fi, i = 1, ..., d are continuous.
(ii) Given a d-variate copula C, and univariate distribution function Fi, i = 1, ..., d, H
defined in equation (1.3) is a distribution function with margins Fi, i = 1, .., d.

The following is the definition of generalized inverse of an distribution function F .

Definition 1.2.3. (Generalized inverse of F , see more details in appendix of Embrechts
et al. [2005])

F−1(y) = inf{x ∈ R : F (x) ≥ y} y ∈ [0, 1] (1.4)

and inf ∅ =∞.

Definition 1.2.4. (Independence copula)
Given u ∈ [0, 1]d, C is called an independence copula (denoted as ∏) if the following holds,

C(u) =
d∏
i=1

ui :=
∏

(u).

Then we recall some definitions on stochastic orders from Müller and Stoyan [2002].

Definition 1.2.5. (Concordance order)
X = (X1, ..., Xd) ≺ Y = (Y1, ..., Yd) means X is smaller than Y in concordance order, if
both

P (X1 ≤ t1, X2 ≤ t2, ..., Xd ≤ td) ≤ P (Y1 ≤ t1, Y2 ≤ t2, ..., Yd ≤ td) (1.5)
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and
P (X1 > t1, X2 > t2, ..., Xd > td) ≤ P (Y1 > t1, Y2 > t2, ..., Yd > td)

hold for all (t1, t2, ..., td) ∈ Rd.

Definition 1.2.6. (Convex order)
X is less than Y in convex order (written X ≤cx Y), if Ef(X) ≤ Ef(Y) for all convex
functions f : Rd −→ R such that the expectations exist.

1.2.2 Simulation of a Copula in Two Dimensions

We define the derivative of the copula with respect to u and denote it as Cu(v).

Definition 1.2.7.

Cu(v) = ∂C(u, v)
∂u

= lim
4u→0

C(u+4u, v)− C(u, v)
4u

= P [V ≤ v|U = u] (1.6)

From Theorem 2.27 of Nelsen [2007], Cu(v) exists for almost all u. Cu(v) is also called
conditional copula, denoted as C(v|u).

The following is a procedure to simulate the copula C, which is used in the examples
when we want to plot the support set (u, v) on the 2-dimensional u-v graph:

• Step 1. Generate a variate U that is uniform on (0, 1);

• Step 2. Generate a variate T that is uniform on (0, 1) and independent of U ;

• Step 3. For n sufficiently large, k = bUnc, let u = k
n
, v = j

n
for j = 1, ..., n− 1. We

compute Cu in an approximate form as,

Cu(j) =
C(k+1

n
, j
n
)− C( k

n
, j
n
)

1
n

(1.7)

where Cu is a vector and Cu(j) is the jth component;

• Step 4. We find the generalized inverse V = C−1(T ) as follows. First find the index
j such that the following holds, then we denote this j as j̃

j̃ = min{j ∈ 1, .., n− 1 : Cu(j) > T} (1.8)
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Second,

V = j̃

n+ 1; (1.9)

• Step 5. Plot (U, V ) on a graph to visualize the support of the copula C.

• We repeat step 1 to 5 for a large number of times.

This procedure of copula simulation is known as the conditional distribution method, (see
Section 2.9 of Nelsen [2007]) and it can easily be extended to higher dimensions (see Mai
and Scherer [2012]).

1.2.3 Comonotonicity and Countermonotonicity

We now introduce the classical Fréchet-Hoeffding bounds, these are general bounds for all
the copulas C when there is no information at all about C.

Theorem 1.2.8. (Fréchet-Hoeffding bounds)
Suppose C is a bivariate copula, for any (u, v) ∈ [0, 1]2, we have

W (u, v) := max{0, u+ v − 1} ≤ C(u, v) ≤ min{u, v} := M(u, v). (1.10)

Both W and M are copulas.

If random variables have copula M or W , we say they are comonotonic or counter-
monotonic.

When dimension d ≥ 3, for any (u1, ..., ud) ∈ [0, 1]d, comonotonicity can still be defined
by the upper Fréchet-Hoeffding bound M(u1, ..., ud) = min{u1, ..., ud}, which is a copula
such that

C(u1, ..., ud) ≤M(u1, ..., ud).

However, W (u1, ..., ud) = max{∑d
i=1 ui − d + 1, 0} is not a copula anymore. See Lee and

Ahn [2014] for multidimensional extension of countermonotonicity. One special case of the
most negative dependence structure is that (X1, ..., Xd) being completely −mixable, the
followings are some basic concepts which are used in the thesis. They are cited from Wang
et al. [2013].
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Definition 1.2.9. (Completely mixable and jointly mixable distributions)
1. A univariate distribution function F is n− completely mixable (n-CM) if there exist n

identically distributed random variables X1, ..., Xn with the same distribution F such that

P (X1 + ...+Xn = C) = 1 (1.11)

for some C ∈ R.
2. The univariate distribution functions F1, ..., Fn are jointly mixable (JM) if there exist
n random variables X1, ..., Xn with distribution functions F1, ..., Fn, respectively, such that
Equation (1.11) holds for some C ∈ R.

Theorem 1.2.10. 1. Suppose F1, ..., Fn are JM with finite variances σ2
1, ..., σ

2
n. Then

max
1≤i≤n

σi ≤
1
2

n∑
i=1

σi (1.12)

2. Suppose Fi is N(µi, σ2
i ) for i = 1, ..., n. Then F1, ..., Fn are JM if and only if Equation

(1.12) holds.

See Wang and Wang [2011], Puccetti et al. [2012], Wang and Wang [2014], Wang [2014],
Puccetti and Wang [2014] for some recent developments of complete mixability.

The following proposition is first derived by Müller [1997], see Dhaene et al. [2002],
Kaas et al. [2009] for more details.

Theorem 1.2.11. For random variables (Xi)1≤i≤n with marginals (Fi)1≤i≤n, the sharp
upper convex ordering bound is F−1

1 (U) + ...+F−1
n (U), called the comonotonic dependence

scenario,
X1 +X2 + ...+Xn ≤cx F−1

1 (U) + ...+ F−1(U)

and the sharp lower convex ordering bound is obtained when n = 2, called the counter-
monotonic dependence scenario,

F−1
1 (U) + F−1

2 (1− U) ≤cx X1 +X2

where U ∼ U [0, 1].
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1.3 Thesis Contributions and Overview

The main contributions of this thesis are as follows:

In Chapter 2, we study bounds on variance of the sum of two random variables X + Y

with partial information available under some special conditions. This part is based on the
work of Tankov [2011]. We propose another method inspired by Bernard and Vanduffel
[2014] and an improved one to get the same bounds with Tankov [2011]’s method. In
particular, the central problem is as follows.

(A) With partial information available on the dependence structure ((X, Y )’s copula C)
of (X, Y ) on area F ⊂ [0, 1]2, Tankov [2011] gives sharp upper and lower bounds (denoted
as A and B respectively) of C. Then we get sharp upper and lower bounds of Var(X + Y )
as,

Var(X∗ + Y ∗) ≤ Var(X + Y ) ≤ Var(X̃ + Ỹ )

where (X∗, Y ∗) has copula B and (X̃, Ỹ ) has copula A. There are two drawbacks of Tankov
[2011]’s method. First, these copula bounds A and B are only sharp under some special
conditions and we do not know the necessary conditions for them to be sharp. Second, the
computation to get Var(X∗ + Y ∗) and Var(X̃ + Ỹ ) can be very lengthy, which is shown in
Chapter 2. Third, it is not straightforward to extend this method to dimension n ≥ 3.

Thus we propose another method as follows.

(B) Since we already know the dependence structure of (X, Y ) on area F , we only
need to get an upper and lower bound of (X + Y )|(X, Y ) /∈ F . By Theorem 1.2.11, do
the following convex order bounds give sharp bounds (the same result with method A) of
Var(X + Y )?

F−1
X|(X,Y )/∈F(U)+F−1

Y |(X,Y )/∈F(1−U) ≤cx ((X + Y )|(X, Y ) /∈ F) ≤cx F−1
X|(X,Y )/∈F(U)+F−1

Y |(X,Y )/∈F(U),

where U ∼ U [0, 1].

We show that this method may fail to give sharp bounds and propose an improved
version based on the similar technique by splitting the area [0, 1]\F . The difficulty of this
problem is to choose the right way to split area [0, 1]\F .

In Chapter 3, this thesis discusses the compatible covariance matrix problem for sums
of normal distributed random variables S = X1 + ...+Xn to reach the minimum variance.
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Under the assumption of complete mixability (see Definition 1.2.9 ), we characterize such
matrix when n = 3 and 4. This result is supported with applications on variance bounds
with background risk.

In Chapter 4, we give an overview on existing dependence measures. A new multivariate
dependence measure focusing on the sum of random variables is then introduced with
properties and estimation method.

We give conclusions and future research directions at the end of each chapter and a
small summary of the whole thesis in Chapter 5.
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Chapter 2

Bounds on Variance with Partial
Information on Dependence

This chapter is organized as follows. In Section 2.1, we give some background knowledge,
including some theorems and definitions. In Section 2.2, we give one special example of
calculating upper and lower bounds of Var(X + Y ) using improved Fréchet bounds from
Tankov [2011] and two conjectures. In Section 2.3, we try a first attempt in getting bounds
of Var(X+Y ) using Bernard and Vanduffel [2014]. We try a second attempt in Section 2.4
and propose an improved bounds using convex order. Section 2.5 gives some conjectures
and an example on how to get these improved bounds. Section 2.6 gives the conclusion
and future research directions while Section 2.7 is an appendix, including some simulation
details from Sections 2.3 - 2.5.

2.1 Background of Chapter 2

We start this chapter with some useful lemmas and a corollary.

Lemma 2.1.1. If U ≥ 0, V ≥ 0 are two random variables with distribution functions FU
and FV , then

E[UV ] =
∫ F−1

V (1)

0

∫ F−1
U (1)

0
P (U ≥ u, V ≥ v)dudv (2.1)
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Proof.
∫ F−1

V (1)

0

∫ F−1
U (1)

0
P (U ≥ u, V ≥ v)dudv

=
∫ F−1

V (1)

0

∫ F−1
U (1)

0
E[I(U≥u,V≥v)]dudv

=E[
∫ F−1

V (1)

0

∫ F−1
U (1)

0
I(U≥u,V≥v)dudv] by Fubini theorem

=E[
∫ U

0

∫ V

0
dudv] since U ≤ F−1

U (1), V ≤ F−1
V (1)

=E[UV ].

(2.2)

Corollary 2.1.2. (Corollary of Lemma 2.1.1) Given random vector (X, Y ) having copula
C, if we have point-wise upper and lower copula bounds A and B such that

B(u, v) ≤ C(u, v) ≤ A(u, v)

for any (u, v) ⊂ [0, 1]2. Then, the following inequality holds,

Var(X∗ + Y ∗) ≤ Var(X + Y ) ≤ Var(X̃ + Ỹ )

where X∗, X̃,X and Y ∗, Ỹ , Y have same marginals respectively, (X∗, Y ∗) has copula B and
(X̃, Ỹ ) has copula A.

Proof.

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )
= Var(X) + Var(Y ) + 2 [E(XY )− E(X)E(Y )] .
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Let FX , FY be the marginal distribution functions for X, Y , and we know FX∗ = FX̃ =
FX , FY ∗ = FỸ = FY . By Lemma 2.1.1

E[XY ] =
∫ F−1

X (1)

0

∫ F−1
Y (1)

0
P (X ≥ x, Y ≥ y)dxdy

=
∫ F−1

X (1)

0

∫ F−1
Y (1)

0
(1− P (X ≤ x)− P (Y ≤ y) + P (X ≤ x, Y ≤ y)) dxdy

=
∫ F−1

X (1)

0

∫ F−1
Y (1)

0
(1− FX(x)− FY (y) + C(FX(x), FY (y))) dxdy.

Since

B(FX∗(x), FY ∗(y)) = B(FX(x), FY (y)) ≤ C(FX(x), FY (y)) ≤ A(FX(x), FY (y)) = A(FX̃(x), FỸ (y)),

the inequality follows.
Lemma 2.1.3. For a copula C and ∀x, y, u, v ∈ [0, 1], the following inequality holds,

C(x, y)− (x− u)+ − (y − v)+ ≤ C(u, v) ≤ C(x, y) + (u− x)+ + (v − y)+ (2.3)

Proof. See page 71 of Nelsen [2007] for a proof.

We make use of the concept of copulas introduced in Section 1.2. When some partial
information on dependence is available, Tankov [2011] finds the improved Fréchet bounds.
To present his result, we first define quasi-copulas.
Definition 2.1.4. (Quasi-copula)
A two-dimensional quasi-copula is a function Q : [0, 1]2 → [0, 1] with the following proper-
ties,
(i) Q satisfies the boundary conditions: Q(0, u) = Q(u, 0) = 0 and Q(1, u) = Q(u, 1) = u

for all u ∈ [0, 1].
(ii) Q is increasing in each argument.
(iii) Q has the Lipschitz property: |Q(u2, v2) − Q(u1, v1)| ≤ |u2 − u1| + |v2 − v1| for all
(u1, v1, u2, v2) ∈ [0, 1]4.
Theorem 2.1.5. (Improved Fréchet bounds from Tankov [2011])
Let S be a compact subset of [0, 1]2, and let Q be a quasi-copula. Let

CS = {C ′ is a copula | C ′(a, b) = Q(a, b), ∀(a, b) ∈ S} (2.4)
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and
QS = {Q′ is a quasi-copula | Q′(a, b) = Q(a, b), ∀(a, b) ∈ S}. (2.5)

Define

AS,Q(u, v) := min{u, v, min
(a,b)∈S

{Q(a, b) + (u− a)+ + (v − b)+}},

BS,Q(u, v) := max{0, u+ v − 1, max
(a,b)∈S

{Q(a, b)− (a− u)+ − (b− v)+}}.
(2.6)

Then
(i) AS,Q and BS,Q are quasi-copulas satisfying

BS,Q(u, v) ≤ Q′(u, v) ≤ AS,Q(u, v) ∀(u, v) ∈ [0, 1]2 (2.7)

for every Q′ ∈ QS and

AS,Q(a, b) = BS,Q(a, b) = Q(a, b) ∀(a, b) ∈ S. (2.8)

This means that AS,Q and BS,Q are the best-possible bounds of the set QS. Since a copula
is also a quasi-copula, CS ⊂ QS, then AS,Q and BS,Q are also bounds of the set CS, which
is

BS,Q(u, v) ≤ C ′(u, v) ≤ AS,Q(u, v) ∀(u, v) ∈ [0, 1]2 (2.9)

for every C ′ ∈ CS.
(ii) If the set S is increasing (i.e, for all (a1, b1) ∈ S and (a2, b2) ∈ S, either a1 ≤ a2 and
b1 ≤ b2 or a1 ≥ a2 and b1 ≥ b2.), then BS,Q is a copula; if the set S is decreasing (i.e, for
all (a1, b1) ∈ S and (a2, b2) ∈ S, either a1 ≤ a2 and b1 ≥ b2 or a1 ≥ a2 and b1 ≤ b2.), then
AS,Q is a copula. This gives the best-possible bounds of CS.

The following theorem from Bernard et al. [2013a] is an extension of Theorem 2.1.5,
which gives weaker sufficient conditions for AS,Q and BS,Q to be copulas.

Theorem 2.1.6. If S is a compact set satisfying the following property:

∀(a0, b0) ∈ S,∀(a1, b1) ∈ S, (a0, b1) ∈ S, (a1, b0) ∈ S. (2.10)

Furthermore, suppose Q is a quasi-copula such that ∀(a0, b0), (a1, b1) ∈ S with a0 < a1,
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b0 < b1, we have

Q(a1, b1) +Q(a0, b0)−Q(a0, b1)−Q(a1, b0) ≥ 0, (2.11)

then AS,Q and BS,Q are copulas. Note Equation (2.11) is automatically satisfied when Q

is a copula.

2.2 Upper and Lower Bounds of Var(X+Y ) Using Im-
proved Fréchet Bounds from Tankov [2011]

2.2.1 When Knowing Dependence Structure on [0, a]× [0, b]

Proposition 2.2.1. Fix a, b ∈ (0, 1) and assume random vector (X, Y ) has U [0, 1] marginals.
Let F denote a subset [0, a] × [0, b] of [0, 1]2, if we know (X, Y ) has independence copula
C when (X, Y ) = (FX(X), FY (Y )) ∈ F . Then by Corollary 2.1.2, the lower bound of
Var(X + Y ) is:

Var(U + V ) = a3b3

3 − 2a3b2

3 + a3b

3 −
2a2b3

3 + 3a2b2

2 − a2b+ ab3

3 − ab
2 + ab,

where (U, V ) has copula BF ,C with marginals U [0, 1]. Note that this is the improved Fréchet
lower bound as in Theorem 2.1.5.

Proof. From Equation (2.6), BF ,C is defined as

BF ,C(u, v) = max{0, u+ v − 1, max
(x,y)∈F

{C(x, y)− (x− u)+ − (y − v)+}}. (2.12)

From Theorem 2.1.6, we know BF ,C is a copula since C is a copula and area F meets the
sufficient conditions. Since

Var(U + V ) = Var(U) + Var(V ) + 2Cov(U, V )

= 1
12 + 1

12 + 2[E(UV )− E(U)E(V )]

= 2E(UV )− 1
3 .

(2.13)
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Since F−1
U (1) = 1, F−1

V (1) = 1, by Lemma 2.1.1,

E[UV ] =
∫ 1

0

∫ 1

0
P (U ≥ u, V ≥ v)dudv

=
∫ 1

0

∫ 1

0
(1− P (U ≤ u)− P (V ≤ v) + P (U ≤ u, V ≤ v)) dudv

=
∫ 1

0

∫ 1

0

(
1− u− v +BF ,C(u, v)

)
dudv

=
∫ 1

0

∫ 1

0
BF ,C(u, v)dudv

=
∫ 1

0

∫ 1

0
uvI(u,v)∈Fdudv︸ ︷︷ ︸

1©

+
∫ 1

0

∫ 1

0
BF ,C(u, v)I(u,v)∈U1dudv︸ ︷︷ ︸

2©

+
∫ 1

0

∫ 1

0
BF ,C(u, v)I(u,v)∈U2dudv︸ ︷︷ ︸

3©

+
∫ 1

0

∫ 1

0
BF ,C(u, v)I(u,v)∈U3dudv︸ ︷︷ ︸

4©

,

(2.14)

where the 1©, 2©, 3©, 4© parts are shown in Figure 2.1.

v

u

b

1

a 10

F U1

U2U3

Figure 2.1: When F = [0, a]× [0, b]

We need to get the support set to simplify the expressions 1©− 4©.

The followings are three cases to simplify parts 2©− 4© respectively, treating C as a general
copula. Denote C(x, y)− (x− u)+ − (y − v)+ by H(x, y).

Case 1: (u, v) ∈ U1 : When (u, v) ∈ U1, we have a ≤ u ≤ 1, 0 ≤ v ≤ b. Since 0 ≤ x ≤
a, 0 ≤ y ≤ b, from Equation (2.3), we can see H(x, y) can not achieve its maximum
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H(u, v), but as H(x, y) = C(x, y)− (y − v)+ in this case, we can let y = v, pick x = a. So
max

0≤x≤a,0≤y≤b
H(x, y) = C(a, v).

Thus we get BF ,C(u, v) = max{0, u+ v − 1, C(a, v)}.
We further simplify BF ,C(u, v) and focus on cases when BF ,C(u, v) is not 0. Since if it is
0, then Bu(v) = 0, then B−1

u (0) = 0. There is no support set here.
Case 1.1: BF ,C(u, v) = u+ v − 1
This is when u+ v − 1 ≥ max{0, C(a, v)} = C(a, v). Then Bu(v) = 1.
Case 1.2: BF ,C = C(a, v).
This is when C(a, v) ≥ max{0, u+ v − 1}, then Bu(v) = 0.

Case 2: (u, v) ∈ U2 : When (u, v) ∈ U2 we have a ≤ u ≤ 1, b ≤ v ≤ 1. Since 0 ≤
x ≤ a, 0 ≤ y ≤ b, then (x − u)+ = (y − v)+ = 0, so H(x, y) = C(x, y). Thus

max
0≤x≤a,0≤y≤b

H(x, y) = C(a, b) as C is increasing in x and y.
So BF ,C(u, v) = max{0, u+ v − 1, C(a, b)}.
Case 2.1: BF ,C(u, v) = u+ v − 1
This is when u+ v − 1 ≥ max{0, C(a, b)} = C(a, b), then Bu(v) = 1.
Case 2.2: BF ,C(u, v) = C(a, b)
This is when C(a, b) ≥ max{0, u+ v − 1}, then Bu(v) = 0.

Case 3: (u, v) ∈ U3 : When (u, v) ∈ U3, we have 0 ≤ u ≤ a, b ≤ v ≤ 1. Similar to case 1,
we get max

0≤x≤a,0≤y≤b
H(x, y) = C(u, b).

So BF ,C(u, v) = max{0, u+ v − 1, C(u, b)}.
Case 3.1: BF ,C(u, v) = u+ v − 1
This is when u+ v − 1 ≥ max{0, C(u, b)}, then Bu(v) = 1.
Case 3.2: BF ,C(u, v) = C(u, b)
This is when C(u, b) ≥ max{0, u+ v − 1}, then Bu(v) = ∂C(u,b)

∂u
.

Now we take C(u, v) = uv as the independence copula. The support set is plotted in Panel
A of Figure 2.2, which is the same as the simulation result in Panel B of Figure 2.2. The
simulation result is generated by a MATLAB program following the simulation procedure
stated in Section 1.2.2 where a=b=0.5 .
The detail in calculating the support set is as follows.
For BF ,C , when (u, v) ∈ F , BF ,C(u, v) = C(u, v) = uv.
Case 1: (u, v) ∈ U1 :
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v

u

b

1

a 10

F U1

U2U3

Panel A Panel B

Figure 2.2: Panel A: Plot of the support set. Panel B: Simulation of the support set when
a = b = 0.5.

Follows from the general case in the beginning, we have

BF ,C(u, v)I(u,v)∈U1 =

av if u+ v − 1 ≤ C(a, v) = av

max{0, u+ v − 1} if C(a, v) = av ≤ max{0, u+ v − 1}

=⇒ Bu(v) =

1 if u+ v − 1 ≥ C(a, v) = av

0 if C(a, v) = av ≥ max{0, u+ v − 1}.

(2.15)

This is just

Bu(v) =

1 if v ≥ 1−u
1−a

0 if v ≤ 1
a

max{0, u+ v − 1}.
(2.16)

So we get

v = B−1
u (t) =


1−u
1−a if t > 0
0 if t = 0.

(2.17)

So the support set lies on v = 1−u
1−a . When (u, v) ∈ U1, we have a ≤ u ≤ 1, 0 ≤ v ≤ b. To

keep 0 ≤ v ≤ b, we need 0 ≤ 1−u
1−a ≤ b =⇒ 1 − b + ab ≤ u ≤ 1. Since (1 − b + ab) − a =
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(1− a)(1− b) ≥ 0, we get1− b+ ab ≤ u ≤ 1
a ≤ u ≤ 1

=⇒ 1− b+ ab ≤ u ≤ 1. (2.18)

So the support set here is ΓU1 := {1− b+ ab ≤ u ≤ 1, 0 ≤ v ≤ b|v = 1−u
1−a} and BF ,C on U1

is shown in Figure 2.3.

(a, 0)

(a, b)

(1, 0)

av

u+ v − 1

Figure 2.3: Case 1: (u, v) ∈ U1

So

BF ,CI(u,v)∈U1(u, v) =


av if a ≤ u ≤ 1− b+ ab, 0 ≤ v ≤ b

av if 1− b+ ab ≤ u ≤ 1, 0 ≤ v ≤ 1−u
1−a

u+ v − 1 if 1− b+ ab ≤ u ≤ 1, 1−u
1−a ≤ v ≤ b.

(2.19)

Case 2: (u, v) ∈ U2 :
Since

BF ,CI(u,v)∈U2 =

u+ v − 1 if u+ v − 1 ≥ C(a, b) = ab

C(a, b) if C(a, b) = ab ≥ max{0, u+ v − 1}

=⇒ Bu,3(v) =

1 if u+ v − 1 ≥ C(a, b) = ab

0 if C(a, b) = ab ≥ max{0, u+ v − 1}.

(2.20)

Then

Bu(v) =

1 if v ≥ ab+ 1− u
0 if C(a, b) = ab ≥ max{0, u+ v − 1}.

(2.21)
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Similar to case 1,

v = B−1
u (t) =

ab+ 1− u if t > 0
0 if t = 0.

(2.22)

So the support set lies on v = ab+ 1− u. When (u, v) ∈ U2, we have a ≤ u ≤ 1, b ≤ v ≤ 1.
To keep b ≤ v ≤ 1, we need b ≤ ab + 1 − u ≤ 1 =⇒ ab ≤ u ≤ ab + 1 − b. Since
ab+ 1− b = 1 + b(a− 1)︸ ︷︷ ︸

≤0

≤ 1 and ab ≤ a, then

ab ≤ u ≤ ab+ 1− b
a ≤ u ≤ 1

=⇒ a ≤ u ≤ ab+ 1− b. (2.23)

So the support set here is ΓU2 := {a ≤ u ≤ ab+ 1− b, b ≤ v ≤ 1|v = ab+ 1− u}, and BF ,C
on U2 is shown in Figure 2.4.

(a, b)

(a, 1)

(1, b)
ab

u+ v − 1

Figure 2.4: Case 2: (u, v) ∈ U2

So

BF ,CI(u,v)∈U2(u, v) =


u+ v − 1 if a ≤ u ≤ 1, ab+ 1− a ≤ v ≤ 1
u+ v − 1 if ab+ 1− v ≤ u ≤ 1, b ≤ v ≤ ab+ 1− a
ab if a ≤ u ≤ ab+ 1− v, b ≤ v ≤ ab+ 1− a.

(2.24)

Case 3: (u, v) ∈ U3 :
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Since

BF ,C(u, v) =

u+ v − 1 if u+ v − 1 ≥ max{0, C(u, b)} = ub

C(u, b) if C(u, b) = ub ≥ max{0, u+ v − 1}

=⇒ BF ,C(u, v) =

u+ v − 1 if u+ v − 1 ≥ max{0, C(u, b)} = ub

C(u, b) = ub if C(u, b) = ub ≥ max{0, u+ v − 1}.

(2.25)

Then

Bu(v) =

1 if v ≥ 1 + ub− u
b if ub ≥ max{0, u+ v − 1}.

(2.26)

Since ub ≥ max{0, u + v − 1} implies ub ≥ u + v − 1 and v ≥ 1 − u; or ub ≥ 0 and
v < 1− u. This is equivalent to ub− u + 1 ≥ v ≥ 1− u or v < 1− u, which is equivalent
to 1 + ub− u ≥ v.
So

Bu(v) =

1 if v ≥ 1 + ub− u
b if v ≤ 1 + ub− u.

(2.27)

Then

v = B−1
u (t) =

0 if t < b

1 + ub− u if t ≥ b.
(2.28)

So the support set lies on v = 1 +ub−u. When (u, v) ∈ U3, we have 0 ≤ u ≤ a, b ≤ v ≤ 1.
To keep b ≤ v ≤ 1, we need b ≤ 1 + ub− u ≤ 1 =⇒ 0 ≤ u ≤ 1.
So the support set here is ΓU3 := {(u, v) ∈ U3|v = 1 + ub− u}, and BF ,C3 on U3 is shown
in Figure 2.5.

(0, b)

(0, 1)

(a, b)

ub

u+ v − 1

Figure 2.5: Case 3: (u, v) ∈ U3

21



So

BF ,CI(u,v)∈U3(u, v) =


u+ v − 1 if 0 ≤ u ≤ a, 1 + ub− u ≤ v ≤ 1
ub if 0 ≤ u ≤ a, 1 + ab− a ≤ v ≤ 1 + ub− u
ub if 0 ≤ u ≤ a, b ≤ v ≤ ab+ 1− a.

(2.29)

In summary, BF ,C = uvI(u,v)∈F +BF ,CI(u,v)∈U1 +BF ,CI(u,v)∈U2 +BF ,CI(u,v)∈U3 and the last
three terms are given in Equations (2.19), (2.24) and (2.29).

By Equation (2.14),

1© =
∫ b

0

∫ a

0
uvdudv = 1

4a
2b2. (2.30)

By Equation (2.19),

2© =
∫ b

0

∫ 1−b+ab

a
avdudv +

∫ 1

1−b+ab

∫ 1−u
1−a

0
avdvdu+

∫ 1

1−b+ab

∫ b

1−u
1−a

u+ v − 1dvdu

= a2b3

2 − a2b2

2 − ab3

2 + ab2

2 + ab3

6 −
a2b3

6 + b3

6 −
a2b3

6

= a2b3

6 − a2b2

2 − ab3

3 + ab2

2 + b3

6 .

(2.31)

By Equation (2.24),

3© =
∫ 1

ab+1−a

∫ 1

a
(u+ v − 1)dudv +

∫ ab+1−a

b

∫ 1

ab+1−v
(u+ v − 1)dudv

+
∫ ab+1−a

b

∫ ab+1−v

a
(ab)dudv

= a3b3

6 − a3b2

2 + a3b

2 −
a3

6 −
a2b3

2 + 3a2b2

2 − a2b+ ab3

2 − ab
2 + ab

2 −
b3

6 + 1
6 .

(2.32)

22



By Equation (2.29),

4© =
∫ a

0

∫ 1

1+ub−u
(u+ v − 1)dvdu+

∫ a

0

∫ 1+ub−u

1+ab−a
(ub)dvdu

+
∫ a

0

∫ ab+1−a

b
(ub)dvdu

= a3b2

6 − a3b

3 + a3

6 −
a2b2

2 + a2b

2 .

(2.33)

Then

E(UV ) = 1©+ 2©+ 3©+ 4©

= a3b3

6 − a3b2

3 + a3b

6 −
a2b3

3 + 3a2b2

4 − a2b

2 + ab3

6 −
ab2

2 + ab

2 + 1
6 ,

(2.34)

so

Var(U + V ) = a3b3

3 − 2a3b2

3 + a3b

3 −
2a2b3

3 + 3a2b2

2 − a2b+ ab3

3 − ab
2 + ab. (2.35)

Example 2.2.2. To check whether our calculated variance is right, we compare Equation
(2.35) with the simulation result. We simulate pairs of points (U, V ) which has copula BF ,C
according to the simulation procedure in Section 1.2.2 and calculate the variance of (U+V ).
The sample size is n here. Denote the simulated variance of U + V as ̂Var(U + V ). We
take several choices of a, b and look at the error as the absolute difference of the simulated

̂Var(U + V ) and the calculated Var(U + V ) when n is some large number. The error is
denoted as

εn = | ̂Var(U + V )− Var(U + V )|. (2.36)

Proposition 2.2.3. Fix a, b ∈ (0, 1) and assume random vector (X, Y ) has U [0, 1] marginals.
Let F denote a subset [0, a] × [0, b] of [0, 1]2, if we know (X, Y ) has independence copula
C when (X, Y ) = (FX(X), FY (Y )) ∈ F . Then by Corollary 2.1.2, the upper bound of
Var(X + Y ) is:

Var(U + V ) = 2a3b3

3 − 4a3b2

3 + 2a3b

3 − 4a2b3

3 + 5a2b2

2 − a2b+ 2ab3

3 − ab2 + 1
3 ,
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a b ε50 ε500 ε5000
0.1 0.3 0.0085 0.0032 0.0029
0.4 0.6 0.0149 0.0031 0.0015
0.5 0.5 0.0137 0.0059 0.0001
0.9 0.63 0.0103 0.0078 0.0003

Table 2.1: Simulation error of Var(U + V ) when (U, V ) has copula BF ,C

where (U, V ) has copula AF ,C with marginals U [0, 1]. Note that this is the improved Fréchet
upper bound as in Theorem 2.1.5.

Proof. From Equation (2.6), AF ,C is defined as

AF ,C(u, v) = min{u, v, min
(x,y)∈F

{C(x, y) + (u− x)+ + (v − y)+}}. (2.37)

From Theorem 2.1.6, we know AF ,C is a copula since C is a copula and area F meets the
sufficient conditions. Similarly,

Var(U + V ) = 2E(UV )− 1
3

(2.38)

and

E[UV ] =
∫ 1

0

∫ 1

0
uvI(u,v)∈Fdudv︸ ︷︷ ︸

5©

+
∫ 1

0

∫ 1

0
AF ,C(u, v)I(u,v)∈U1dudv︸ ︷︷ ︸

6©

+
∫ 1

0

∫ 1

0
AF ,C(u, v)I(u,v)∈U2dudv︸ ︷︷ ︸

7©

+
∫ 1

0

∫ 1

0
AF ,C(u, v)I(u,v)∈U3dudv︸ ︷︷ ︸

8©

.

(2.39)

We need to get the support set to simplify the expressions 5©− 8©.
Similar to the proof in Proposition 2.2.1, the followings are three cases to simplify parts
6©− 8© respectively, treating C as a general copula. Denote C(x, y)− (x− u)+− (y− v)+

by G(x, y).

Case 1: (u, v) ∈ U1 :
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This is when a ≤ u ≤ 1, 0 ≤ v ≤ b. By Equation (2.3), G(x, y) can not achieve its mini-
mum at (u, v) = (x, y) since 0 ≤ x ≤ a. Fix y = v, G(x, y) = C(x, v) +u−x, its minimum
depends on the choice of C.

Case 2: (u, v) ∈ U2 :
This is when a ≤ u ≤ 1, b ≤ v ≤ 1. As 0 ≤ x ≤ a, 0 ≤ y ≤ b, we have G(x, y) =
C(x, y) + u− x+ v − y. min

0≤x≤a,0≤y≤b
G(x, y) depends on the choice of C.

Case 3: (u, v) ∈ U3 :
This is when 0 ≤ u ≤ a, b ≤ v ≤ 1. Similar to case 1, (x, y) = (u, v) is not achievable. Fix
x = u, G(x, y) = C(u, y) + v − y.

Now we take C(u, v) = uv as the independence copula. The support set is plotted in
Panel A of Figure 2.6, which is the same as the simulation result in Panel B of Figure 2.6.
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v

u

b

1

a 10

F U1

U2U3

Panel A Panel B

Figure 2.6: Panel A: Plot of the support set. Panel B: Simulation of the support set when
a = b = 0.5.

The detail in calculating the support set is as follows.
For AF ,C , when (u, v) ∈ F , AF ,C(u, v) = C(u, v) = uv.

Case 1: (u, v) ∈ U1 :
Follows from the general case, we get AF ,C(u, v) = min{u, v, min

0≤x≤a
{xv + u − x}} =

min{u, v, av + u− a} = min{v, av + u− a} since av + u− a ≤ u.
So

AF ,C(u, v)I(u,v)∈U1 =

av + u− a if av + u− a ≤ v

v if v ≤ av + u− a

=⇒ Au(v) =

1 if av + u− a ≤ v

0 if v ≤ av + u− a.

(2.40)

Then

v = A−1
u (t) =


u−a
1−a if t > 0
0 if t = 0.

(2.41)

When (u, v) ∈ U1, we have 0 ≤ v ≤ b, so 0 ≤ u−a
1−a ≤ b =⇒ a ≤ u ≤ a + b − ab, since
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1− (a+ b− ab) = (1− a)(1− b) ≥ 0, so

a ≤ u ≤ 1
a ≤ u ≤ a+ b− ab
a+ b− ab ≤ 1

=⇒ a ≤ u ≤ a+ b− ab. (2.42)

So the support set here is ΓU1 := {a ≤ u ≤ a + b− ab|v = u−a
1−a} and AF ,C on U1 is shown

in Figure 2.7.

(a, 0)

(a, b)

(1, 0)

av + u− a

v

Figure 2.7: Case 1: (u, v) ∈ U1

So

AF ,CI(u,v)∈U1(u, v) =


av + u− a if a ≤ u ≤ a+ b− ab, u−a1−a ≤ v ≤ b

v if a ≤ u ≤ a+ b− ab, 0 ≤ v ≤ u−a
1−a

v if a+ b− ab ≤ u ≤ 1, 0 ≤ v ≤ b.

(2.43)

Case 2: (u, v) ∈ U2 :
Follows from the general case, we get

AF ,C(u, v) = min{u, v, min
0≤x≤a,0≤y≤b

{xy+u−x+v−y}} = min{u, v, ab+u−a+v−b}. (2.44)
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Since

AF ,CI(u,v)∈U2 =


u if u ≤ min{v, ab+ u− a+ v − b}
ab+ u− a+ v − b if ab+ u− a+ v − b ≤ min{u, v}
v if v ≤ min{u, ab+ u− a+ v − b}

=⇒ Au(v) =

0 if v ≤ min{u, ab+ u− a+ v − b}
1 if v > min{u, ab+ u− a+ v − b}.

(2.45)

which is

Au(v) =

1 if v ≥ u, v ≥ a+ b− ab or v ≤ a+ b− ab, u ≤ a+ b− ab
0 if otherwise.

(2.46)

Then

v = A−1
u (t) =

u if t > 0, v ≥ a+ b− ab
0 if otherwise.

(2.47)

So the support set here lies on v = u when v ≥ a + b − ab. When (u, v) ∈ U2, we have
b ≤ v ≤ 1, a ≤ u ≤ 1. Since a + b − ab ≥ a and a + b − ab ≥ b, then the support set is
ΓU2 := {(u, v) ∈ U2|v = u, v ≥ a+ b− ab} and AF ,C on U2 is shown in Figure 2.8.

(a, b)

(a, 1)

(1, b)

u
v

ab+ u− a+ v − b

Figure 2.8: Case 2: (u, v) ∈ U2
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So

AF ,CI(u,v)∈U2(u, v) =



u if a ≤ u ≤ a+ b− ab, a+ b− ab ≤ v ≤ 1
u if a+ b− ab ≤ u ≤ v, a+ b− ab ≤ v ≤ 1
v if a+ b− ab ≤ u ≤ 1, b ≤ v ≤ a+ b− ab
v if v ≤ u ≤ 1, a+ b− ab ≤ v ≤ 1
ab+ u− a+ v − b if a ≤ u ≤ a+ b− ab, b ≤ v ≤ a+ b− ab.

(2.48)

Case 3: (u, v) ∈ U3 :
Follows from the general case, since v ≤ ub+ v − b for u ∈ [0, a] and v ∈ [b, 1], we get

AF ,C(u, v) = min{u, v, min
0≤y≤b

{uy + v − y}} = min{u, v, ub+ v − b} = min{u, ub+ v − b}.
(2.49)

Since

AF ,C(u, v) =

u if u ≤ ub+ v − b
ub+ v − b if u > ub+ v − b

=⇒ Au(v) =

1 if u ≤ ub+ v − b
b if u > ub+ v − b,

(2.50)

which is

Au(v) =

1 if v ≥ u− ub+ b

b if v < u− ub+ b.
(2.51)

Then

v = A−1
u (t) =

u− ub+ b if t > b

0 if otherwise.
(2.52)

So the support set here is ΓU3 := {(u, v) ∈ U3|v = u− ub+ b} and AF ,C on U3 is shown in
Figure 2.9.
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(0, b)

(0, 1)

(a, b)

u

ub+ v − b

Figure 2.9: Case 3: (u, v) ∈ U3

So

AF ,CI(u,v)∈U3(u, v) =


u if 0 ≤ u ≤ a, a+ b− ab ≤ v ≤ 1
u if 0 ≤ u ≤ v−b

1−b , b ≤ v ≤ a+ b− ab
ub+ v − b if v−b

1−b ≤ u ≤ a, b ≤ v ≤ a+ b− ab.
(2.53)

In summary, AF ,C = uvI(u,v)∈F + AF ,CI(u,v)∈U1 + AF ,CI(u,v)∈U2 + AF ,CI(u,v)∈U3 and the last
three terms are given in Equations (2.43), (2.48) and (2.53).

By Equation (2.39),

5© =
∫ b

0

∫ a

0
uvdudv = 1

4a
2b2. (2.54)

By Equation (2.43),

6© =
∫ a+b−ab

a

∫ b

u−a
1−a

(av + u− a)dvdu+
∫ a+b−ab

a

∫ u−a
1−a

0
vdvdu+

∫ 1

a+b−ab

∫ b

0
vdvdu

= −1
6(a− 1)(a+ 1)b3 + b3

6 −
ab3

6 + 1
2b

2(ab− a− b+ 1)

= −1
6a

2b3 + ab3

3 −
ab2

2 −
b3

6 + b2

2 .

(2.55)
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By Equation (2.48),

7© =
∫ a+b−ab

a

∫ 1

a+b−ab
udvdu+

∫ 1

a+b−ab

∫ v

a+b−ab
ududv

+
∫ 1

a+b−ab

∫ a+b−ab

b
vdvdu+

∫ 1

a+b−ab

∫ 1

v
vdudv +

∫ a+b−ab

a

∫ a+b−ab

b
(ab+ u− a+ v − b)dvdu

= 1
2(a− 1)2(b− 1)b(a(b− 2)− b)− 1

6(a− 1)2(b− 1)2(2a(b− 1)− 2b− 1)

+ 1
2(a− 1)a(b− 1)2(a(b− 1)− 2b)− 1

6(a− 1)2(b− 1)2(2a(b− 1)− 2b− 1)

+ 1
2(a− 1)a(b− 1)b(a+ b)

= a3b3

3 − a3b2

2 + a3

6 −
a2b3

2 + a2b2 − a2

2 + b3

6 −
b2

2 + 1
3 .

(2.56)

By Equation (2.53),

8© =
∫ a

0

∫ 1

a+b−ab
udvdu+

∫ a+b−ab

b

∫ v−b
1−b

0
ududv +

∫ a+b−ab

b

∫ a

v−b
1−b

(ub+ v − b)dudv

= a3b

2 −
a3

2 −
a2b

2 + a2

2 + a3

6 −
a3b

6 −
1
6a

3(b− 1)(b+ 1)

= −1
6a

3b2 + a3b

3 −
a3

6 −
a2b

2 + a2

2 .

(2.57)

Then

E(UV ) = 5©+ 6©+ 7©+ 8©

= a3b3

3 − 2a3b2

3 + a3b

3 −
2a2b3

3 + 5a2b2

4 − a2b

2 + ab3

3 −
ab2

2 + 1
3 ,

(2.58)

so

Var(X + Y ) = 2a3b3

3 − 4a3b2

3 + 2a3b

3 − 4a2b3

3 + 5a2b2

2 − a2b+ 2ab3

3 − ab2 + 1
3 . (2.59)

Example 2.2.4. To check this calculated variance of (U + V ), we fixed the same pairs of
a, b as in Example 2.2.2 and compare the theoretical variance with the simulated variance
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in Table 2.2.

a b ε50 ε500 ε5000
0.1 0.3 0.0222 0.0093 0.0074
0.4 0.6 0.0319 0.0072 0.0020
0.5 0.5 0.0240 0.0129 0.0011
0.9 0.63 0.0268 0.0030 0.0008

Table 2.2: Simulation error of Var(U + V ) when (U, V ) has copula AF ,C

Corollary 2.2.5. (Variance bounds using improved Fréchet bounds)
Fix a, b ∈ (0, 1) and assume random vector (X, Y ) has U [0, 1] marginals. Let F denote a
subset [0, a]× [0, b] of [0, 1]2, if we know (X, Y ) has independence copula C when (X, Y ) =
(FX(X), FY (Y )) ∈ F . Then sharp upper and lower bounds of Var(X + Y ) are as follows,

a3b3

3 − 2a3b2

3 +a
3b

3 −
2a2b3

3 + 3a2b2

2 − a2b+ ab3

3 − ab
2 + ab

≤Var(X + Y ) ≤
2a3b3

3 − 4a3b2

3 +2a3b

3 − 4a2b3

3 + 5a2b2

2 − a2b+ 2ab3

3 − ab2 + 1
3 .

Proof. This directly follows from Propositions 2.2.1, 2.2.3 and Corollary 2.1.2.

32



2.2.2 When Knowing Dependence Structure on [0, a1]× [0, b1] and
[a2, 1]× [b2, 1]

v

u

b1

b2

1

a1 a2 10

F1

F2

U1 U2

U3 U4 U5

U6 U7

Figure 2.10: When F = F1 ∪ F2

Remark 2.2.6. Fix a1, b1, a2, b2 ∈ (0, 1) where a1 < a2, b1 < b2. Let F = F1 ∪ F2 denote
a subset [0, a1]× [0, b1] ∪ [a2, 1]× [b2, 1] of [0, 1]2 (see Figure 2.10), let C(u, v) = uv be an
independence copula. From Equation (2.6) of Theorem 2.1.5, AF ,C is defined as

AF ,C(u, v) = min{u, v, min
(x,y)∈F

{C(x, y) + (u− x)+ + (v − y)+}}. (2.60)

Under this case, whether AF ,C is a copula depends on the choice of a1, b1, a2, b2. For in-
stance, when a1 = 0.1, b1 = 0.2, a2 = 0.7, b2 = 0.6, AF ,C is a copula, see Panel A of Figure
2.11. When a1 = 0.1, b1 = 0.3, a2 = 0.6, b2 = 0.5, AF ,C is not a copula, see Panel B of
Figure 2.11, where ∂C(u,v)

∂u
is decreasing when v = 0.3. (See Equation (1.6) for details.)
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Panel A Panel B

Figure 2.11: Panel A: Simulation plot when a1 = 0.1, b1 = 0.2, a2 = 0.7, b2 = 0.6.
Panel B: Simulation plot of ∂C(u,v)

∂u
when v = 0.3 where

a1 = 0.1, b1 = 0.3, a2 = 0.6, b2 = 0.5.

Following Remark 2.2.6, we give two conjectures which give weaker sufficient conditions
for AF ,C and BF ,C to be copulas.

Conjecture 2.2.7. Fix a1, b1, a2, b2 ∈ (0, 1) where a1 < a2, b1 < b2. Let F = F1 ∪ F2

denote a subset [0, a1] × [0, b1] ∪ [a2, 1] × [b2, 1] of [0, 1]2(see Figure 2.10), let C(u, v) be a
given copula. When

C(a2, b2) + C(a1, b1) ≥ a1 + b1
1,

then AF ,C (see Equation 2.60) is a copula.

Conjecture 2.2.8. Fix a1, b1, a2, b2 ∈ (0, 1) where a1 < a2, b1 < b2. Let F = F1 ∪ F2

denote a subset [0, a1]× [b2, 1] ∪ [a2, 1]× [0, b1] of [0, 1]2 (see Figure 2.12), let C(u, v) be a
given copula. When

a2 + b2 ≥ C(a1, b2) + C(a2, b1) + 1,

then BF ,C (see Equation 2.12) is a copula.
1This actually comes from the condition to make Figure 2.18 a valid plot.
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U7
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F1 U6

Figure 2.12: When F = F1 ∪ F2

2.3 Upper and Lower Bounds of Var(X + Y ) Using
Bernard and Vanduffel [2014]

The following proposition will be used in both Sections 2.3 and 2.4.

Proposition 2.3.1. Given random variables (X, Y ) having U [0, 1] marginals, let IS be the
indicator variable corresponding to the event (X, Y ) ∈ S, assume that we know the copula of
(X, Y ) on area F ⊂ [0, 1]2 and conditional distributions FX|(X,Y )∈Ui , FY |(X,Y )∈Ui , i = 1, ...,m
where each Ui ⊂ [0, 1]2,∪mi=1Ui = [0, 1]\F ,Ui ∩ Uj = ∅, i 6= j. Then we have the following
convex order bounds:

IF(X + Y ) +
m∑
i=1

IUi
(
F−1
X|(X,Y )∈Ui(U) + F−1

Y |(X,Y )∈Ui(1− U)
)
≤cx X + Y

≤cx IF(X + Y ) +
m∑
i=1

IUi
(
F−1
X|(X,Y )∈Ui(U) + F−1

Y |(X,Y )∈Ui(U)
)
, (2.61)

where U ∼ U [0, 1] is independent of all IF , IUi , i = 1, ...,m.

Proof. Let F := {(X, Y ) ∈ F}, Ui := {(X, Y ) ∈ Ui}, G2i−1 := FX|Ui , G2i := FY |Ui , i =
1, ...,m.

35



For any convex function v(x) and each i = 1, ...,m, by Theorem 1.2.11,

E(v(G−1
2i−1(U) +G−1

2i (1− U))) ≤ E(v(X + Y )|Ui) ≤ E(v(G−1
2i−1(U) +G−1

2i (U))). (2.62)

Since Ui and U are independent, this is just,

E(v(G−1
2i−1(U) +G−1

2i (1− U))|Ui) ≤ E(v(X + Y )|Ui) ≤ E(v(G−1
2i−1(U) +G−1

2i (U))|Ui).
(2.63)

Then
E(v(X + Y )) = E(v(X + Y )|F )P (F ) +

m∑
i=1

E(v(X + Y )|Ui)P (Ui). (2.64)

Since we have

E(v(IF(X + Y ) +
m∑
i=1

IUi(G−1
2i−1(U) +G−1

2i (1− U))))

=E(v(IF(X + Y ) +
m∑
i=1

IUi(G−1
2i−1(U) +G−1

2i (1− U)))|F )P (F )

+
m∑
i=1

E(v(IF(X + Y ) +
m∑
i=1

IUi(G−1
2i−1(U) +G−1

2i (1− U)))|Ui)P (Ui)

=E(v(X + Y )|F )P (F ) +
m∑
i=1

E(v(G−1
2i−1(U) +G−1

2i (1− U))|Ui)P (Ui),

and similarly,

E(v(IF(X + Y ) +
m∑
i=1

IUi(G−1
2i−1(U) +G−1

2i (U))))

=E(v(X + Y )|F )P (F ) +
m∑
i=1

E(v(G−1
2i−1(U) +G−1

2i (U))|Ui)P (Ui).

Then by Equations (2.63) and (2.64),

E(v(IF(X + Y ) +
m∑
i=1

IUi(G−1
2i−1(U) +G−1

2i (1− U)))) ≤ E(v(X + Y )) ≤

E(v(IF(X + Y ) +
m∑
i=1

IUi(G−1
2i−1(U) +G−1

2i (U))))
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So we get Equation (2.61).

Remark 2.3.2. Note in Equation (2.62), the inequality is a result of Theorem 1.2.11, but
not of Proposition 2 from Kaas et al. [2000].

The following proposition is inspired by Bernard and Vanduffel [2014].

Proposition 2.3.3. Fix some 0 < a < 1 and 0 < b < 1 such that F = [0, a] × [0, b] and
U = [0, 1]2\F (See Figure 2.13).

v

u

b

1

a 10

F

U

Figure 2.13: When F = [0, a]× [0, b] and U = [0, 1]2\F

We have the following assumptions:

1. X, Y are two random variables follows F1 and F2 distributions where Fi, i = 1, 2 are
U [0, 1] distribution;
2. pf := P ((X, Y ) ∈ F), hence pu := P ((X, Y ) ∈ U) is also known as pu = 1− pf ;
3. The conditional distribution (X, Y )|(X, Y ) ∈ F is known, denote

H(x, y) := F(X,Y )|(X,Y )∈F(x, y) = P (X ≤ x, Y ≤ y|(X, Y ) ∈ F); (2.65)

4. U is a standard uniformly distributed random variable and is independent of the event
(X, Y ) ∈ F ;
For some x ∈ [0, 1], denote

G1(x) := FX|(X,Y )∈U(x) := P (X ≤ x|(X, Y ) ∈ U);
G2(x) := FY |(X,Y )∈U(x) := P (Y ≤ x|(X, Y ) ∈ U).

(2.66)

37



We assume 1,2,3,4, bounds on variance are

Var(I(X+Y )+(1−I)(G−1
1 (U)+G−1

2 (1−U))) ≤ Var(X+Y ) ≤ Var(I(X+Y )+(1−I)(G−1
1 (U)+G−1

2 (U)))
(2.67)

where I is the indicator variable corresponding to event “(X, Y ) ∈ F” as

I := I(X,Y )∈F

and G1, G2, G
−1
1 , G−1

2 are computed in Lemma 2.3.8.

Remark 2.3.4. If we change the marginal distributions F1, F2 of X and Y , we can still
get bounds on variance following the similar technique in Proposition 2.3.3.

Remark 2.3.5. Though G1 and G2 (see Equation (2.66)) are defined as distributions
conditioned on (X, Y ) ∈ U , G1 and G2 do not depend on the copula between X and Y ,
where (X, Y ) ∈ U (see Lemma 2.3.8).

Before proving Proposition 2.3.3, we use the following proposition to show that the
assumptions are equivalent to the assumptions imposed on Proposition 2.2.5 in Section
2.2.

Proposition 2.3.6. Given Figure 2.13, under assumptions 1,2 of Proposition 2.3.3, fixing
the conditional distribution of (X, Y )|(X, Y ) ∈ F (denoted as H(x, y), see Equation (2.65))
is equivalent to fixing the copula C of (X, Y ) ∈ F .

Proof. “⇒ ” When (x, y) ∈ F , 0 ≤ x ≤ a, 0 ≤ y ≤ b, then

H(x, y) = P (X ≤ x, Y ≤ y,X ≤ a, Y ≤ b)
P ((X, Y ) ∈ F) = P (X ≤ x, Y ≤ y)

P ((X, Y ) ∈ F) = C(x, y)
pf

. (2.68)

So C(x, y) = pfH(x, y), (x, y) ∈ F .
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“⇐ ” If X, Y has fixed copula C when (X, Y ) ∈ F , by Equation (2.68),

H(x, y) =



C(x, y)
pf

if x ≤ a, y ≤ b

C(x, b)
pf

if x ≤ a, y > b

C(a, y)
pf

if x > a, y ≤ b

C(a, b)
pf

if x > a, y > b,

(2.69)

which means H is fixed.

Corollary 2.3.7. Given Figure 2.13, assumptions 1,2,3,4 in Proposition 2.3.3 are equiv-
alent to assumptions in Proposition 2.2.5 on producing the bounds on variance.

Proof. This follows directly by using Proposition 2.3.6.

Now we prove Proposition 2.3.3.

Proof. (Proof of Proposition 2.3.3) Let F := {(X, Y ) ∈ F}, F c := {(X, Y ) ∈ U}. By
Proposition 2.3.1, take m = 1, v(x) = x2, we have

E((I(X + Y ) + (1− I)(G−1
1 (U) +G−1

2 (1− U)))2) ≤ E((X + Y )2) ≤
E((I(X + Y ) + (1− I)(G−1

1 (U) +G−1
2 (U)))2).

Since G−1
1 (U) ∼ G1 = FX|F c , G

−1
2 (U), G−1

2 (1− U) ∼ G2 = FY |F c ,

E(X|F c) = E(G−1
1 (U)), E(Y |F c) = E(G−1

2 (U)) = E(G−1
2 (1− U)).

So

E(X + Y ) = E(X + Y |F )pf + E(X + Y |F c)(1− pf )
= E(X + Y |F )pf + E(G−1

1 (U) +G−1
1 (U)|F c)(1− pf )

= E(X + Y |F )pf + E(G−1
1 (U) +G−1

1 (1− U)|F c)(1− pf )
= E(I(X + Y ) + (1− I)(G−1

1 (U) +G−1
2 (U)))

= E(I(X + Y ) + (1− I)(G−1
1 (U) +G−1

2 (1− U))).
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By Equation (2.3), we get inequality (2.67).

Now we calculate the variance bounds Var(I(X + Y ) + (1− I)(G−1
1 (U) +G−1

2 (1−U)))
and Var(I(X + Y ) + (1− I)(G−1

1 (U) +G−1
2 (U))) in Proposition 2.3.3.

Lemma 2.3.8. Given Figure 2.13, we assume 1,2,3,4 in 2.3.3. For x ∈ [0, 1],

G1(x) =


x−C(x,b)
1−C(a,b) when x ≤ a
x−C(a,b)
1−C(a,b) when x > a

(2.70)

and

G2(x) =


x−C(a,x)
1−C(a,b) when x ≤ b
x−C(a,b)
1−C(a,b) when x > b.

(2.71)

For y ∈ [0, 1],

G−1
1 (y) =

inf{0 ≤ x ≤ a : x− C(x, b) = ypu} when y ≤ G1(a)
ypu + pf when y > G1(a)

(2.72)

and

G−1
2 (y) =

inf{0 ≤ y ≤ b : x− C(a, x) = ypu} when y ≤ G2(b)
ypu + pf when y > G2(b),

(2.73)

where C(x, y) = pfH(x, y). (See Remark 2.3.6.)

Proof. First, pf = P (X ≤ a, Y ≤ b) = C(F1(a), F2(b)) = C(a, b). So pu = 1 − pf =
1− C(a, b).
For x ∈ [0, 1],

G1(x) = P (X ≤ x, (X, Y ) ∈ U)
P ((X, Y ) ∈ U) =


P (X≤x,Y≥b)

pu
=: 1© when x ≤ a

P (X≤a,Y≥b)+P (a<X≤x,0≤Y≤1)
pu

=: 2© when x > a.

(2.74)
The two cases are shown in Figure 2.14.
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Figure 2.14: Graphs on calculating G1

When x ≤ a,

1© = P (X ≤ x)− P (X ≤ x, Y < b)
1− pf

= F1(x)− C(F1(x), F2(b))
1− pf

= x− C(x, b)
1− C(a, b) .

(2.75)

When x > a,

2© = P (X ≤ a)− P (X ≤ a, Y ≤ b) + P (a < X ≤ x)
1− C(a, b)

= a− C(a, b) + x− a
1− C(a, b) = x− C(a, b)

1− C(a, b) .
(2.76)

So

G1(x) =


x−C(x,b)
1−C(a,b) when x ≤ a
x−C(a,b)
1−C(a,b) when x > a.

(2.77)

On the other hand, for a fixed x ∈ [0, 1]

G2(x) = P (Y ≤ x, (X, Y ) ∈ U)
P ((X, Y ) ∈ U) =


P (Y≤x,X≥a)

pu
=: 3© when x ≤ b

P (Y≤b,X≥a)+P (b<Y≤x,0≤X≤1)
pu

=: 4© when x > b.

(2.78)
The two cases are shown in Figure 2.15.
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Figure 2.15: Graphs on calculating G2

When x ≤ b,

3© = P (Y ≤ x)− P (X ≤ a, Y ≤ x)
1− pf

= F2(x)− C(F1(a), F2(x))
1− pf

= x− C(a, x)
1− C(a, b) .

(2.79)

When x > b,

4© = P (Y ≤ b)− P (X ≤ a, Y ≤ b) + P (b < Y ≤ x)
1− C(a, b)

= b− C(a, b) + x− b
1− C(a, b) = x− C(a, b)

1− C(a, b) .
(2.80)

So

G2(x) =


x−C(a,x)
1−C(a,b) when x ≤ b
x−C(a,b)
1−C(a,b) when x > b.

(2.81)

To calculate G−1
i (U) for i = 1, 2, first fix y ∈ [0, 1], take i = 1, look at the generalized

inverse G−1
1 (y) = inf{0 ≤ x ≤ 1 : G1(x) = y}. Since G1 is a distribution function, it

is non-decreasing in x, and G1(a) = a−C(a,b)
1−C(a,b) , we can now divide G−1

1 (y) into two cases:
y ≤ G1(a) and y > G1(a).
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So

G−1
1 (y) =

inf{0 ≤ x ≤ a : x−C(x,b)
1−C(a,b) = y} when y ≤ G1(a)

inf{1 ≥ x > a : x−C(a,b)
1−C(a,b) = y} when y > G1(a)

=⇒ G−1
1 (y) =

inf{0 ≤ x ≤ a : x− C(x, b) = ypu} when y ≤ G1(a)
ypu + pf when y > G1(a).

(2.82)

By symmetry,

G−1
2 (y) =

inf{0 ≤ y ≤ b : x− C(a, x) = ypu} when y ≤ G2(b)
ypu + pf when y > G2(b).

(2.83)

Then we calculate bounds on variance assuming C is the independence copula.

Lemma 2.3.9. Given Figure 2.13, we assume 1,2,3,4 in Proposition 2.3.3, take C(u, v) =
uv the independence copula, then

Var(G−1
1 (U) +G−1

2 (1− U)) = a2b2((4− 3b)b+ a2(−3 + 8b− 4b2) + 2a(2− 7b+ 4b2))
12(ab− 1)2

(2.84)

and

Var(G−1
1 (U) +G−1

2 (U)) =


a4b+2a3(b−1)b+a2b3−2a(b3+2)+4

3(a−1)(ab−1) − (a2b+ab2−2)2

(2−2ab)2 if a ≤ b

ab4+2ab3(a−1)+a3b2−2b(a3+2)+4
3(b−1)(ab−1) − (a2b+ab2−2)2

(2−2ab)2 if a ≥ b.

(2.85)

Proof. When C(u, v) = uv, then from Lemma 2.3.8,

G1(x) =


x−xb
1−ab when x ≤ a
x−ab
1−ab when x > a

(2.86)
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G2(x) =


x−ax
1−ab when x ≤ b
x−ab
1−ab when x > b.

(2.87)

For y ∈ [0, 1],

G−1
1 (y) =


y(1−ab)

1−b when y ≤ G1(a)
y(1− ab) + ab when y > G1(a)

(2.88)

G−1
2 (y) =


y(1−ab)

1−a when y ≤ G2(b)
y(1− ab) + ab when y > G2(b).

(2.89)

We calculate Var(G−1
1 (U) +G−1

2 (1− U)) first. Since

Var(G−1
1 (U) +G−1

2 (1−U)) = E[(G−1
1 (U) +G−1

2 (1−U))2]− (E[G−1
1 (U)] +E[G−1

2 (1−U)])2

(2.90)
and

E[G−1
1 (U)] =

∫ 1

0
G−1

1 (u) · 1du

=
∫ G1(a)

0

u(1− ab)
1− b du+

∫ 1

G1(a)
[u(1− ab) + ab]du.

(2.91)

Since G1(a) = a−ab
1−ab ,

Equation (2.91) =
∫ a−ab

1−ab

0

u(1− ab)
1− b du+

∫ 1

a−ab
1−ab

[u(1− ab) + ab]du

= a2b

2ab− 2 −
a2

2ab− 2 + a2 − 1
2ab− 2

=a2b− 1
2ab− 2 .

(2.92)

By Equation (2.89),

G−1
2 (1− u) =


(1−u)(1−ab)

1−a when u ≥ 1−G2(b)
(1− u)(1− ab) + ab when u < 1−G2(b).

(2.93)
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So

E[G−1
2 (1− U)] =

∫ 1

0
G−1

2 (1− u) · 1du

=
∫ 1−G2(b)

0
[(1− u)(1− ab) + ab]du+

∫ 1

1−G2(b)
[ (1− u)(1− ab)

1− a ]du.
(2.94)

Since G2(b) = b−ab
1−ab ,

Equation (2.94) =
∫ 1− b−ab1−ab

0
[(1− u)(1− ab) + ab]du+

∫ 1

1− b−ab1−ab

[ (1− u)(1− ab)
1− a ]du

= b2 − 1
2ab− 2 + (a− 1)b2

2ab− 2

=ab2 − 1
2ab− 2 ,

(2.95)

E[(G−1
1 (U) +G−1

2 (1− U))2] =
∫ 1

0
[G−1

1 (u) +G−1
2 (1− u)]2du. (2.96)

Since
G1(a) = a− ab

1− ab ≤
1− b
1− ab = 1−G2(b), (2.97)

then

G−1
1 (u) +G−1

2 (1− u) =


u(1−ab)

1−b + (1− u)(1− ab) + ab if u ≤ G1(a)
u(1− ab) + ab+ (1− u)(1− ab) + ab if G1(a) ≤ u ≤ 1−G2(b)
u(1− ab) + ab+ (1−u)(1−ab)

1−a if 1−G2(b) ≤ u

=


ab2u−bu+b−1

b−1 if u ≤ G1(a)
1 + ab if G1(a) ≤ u ≤ 1−G2(b)
a2(b−bu)+au−1

a−1 if 1−G2(b) ≤ u.

(2.98)
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So Equation (2.96) =
∫ G1(a)

0
(ab

2u− bu+ b− 1
b− 1 )2du+

∫ 1−G2(b)

G1(a)
(1 + ab)2du+

∫ 1

1−G2(b)
(a

2(b− bu) + au− 1
a− 1 )2du

= a(b− 1) (a2b2 + 3ab+ 3)
3ab− 3 − (a− 1)(b− 1)(ab+ 1)2

ab− 1 + (a− 1)b (a2b2 + 3ab+ 3)
3ab− 3

= a3(−(b− 2))b2 + a2b (2b2 − 3b+ 3) + 3a(b− 1)b− 3
3ab− 3 .

(2.99)

So

Var(G−1
1 (U) +G−1

2 (1− U)) = Equation (2.96)− (Equation (2.92) + Equation (2.95))2

=a
2b2((4− 3b)b+ a2(−3 + 8b− 4b2) + 2a(2− 7b+ 4b2))

12(ab− 1)2 .

(2.100)

Then we calculate Var(G−1
1 (U) +G−1

2 (U)).
Since

Var(G−1
1 (U) +G−1

2 (U)) = E[(G−1
1 (U) +G−1

2 (U))2]− (E[G−1
1 (U)] +E[G−1

2 (U)])2, (2.101)

and by Equation (2.92), we already know

E[G−1
1 (U)] = a2b− 1

2ab− 2 . (2.102)

By Equation (2.89),

E[G−1
2 (U)] =

∫ 1

0
G−1

2 (u) · 1du

=
∫ 1

G2(b)
[u(1− ab) + ab]du+

∫ G2(b)

0
[u(1− ab)

1− a ]du.
(2.103)
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Since G2(b) = b−ab
1−ab ,

Equation (2.103) =
∫ 1

b−ab
1−ab

[u(1− ab) + ab]du+
∫ b−ab

1−ab

0
[u(1− ab)

1− a ]du

= b2 − 1
2ab− 2 + (a− 1)b2

2ab− 2

=ab2 − 1
2ab− 2 ,

(2.104)

and
E[(G−1

1 (U) +G−1
2 (U))2] =

∫ 1

0
[G−1

1 (u) +G−1
2 (u)]2du. (2.105)

The value of G−1
1 (u) +G−1

2 (u) depends on whether a ≤ b or a ≥ b.

Case 1: a ≤ b

As
G1(a) = a− ab

1− ab ≤
b− ab
1− ab = G2(b), (2.106)

then

G−1
1 (u) +G−1

2 (u) =


u(1−ab)

1−b + u(1−ab)
1−a if u ≤ G1(a)

u(1− ab) + ab+ u(1−ab)
1−a if G1(a) ≤ u ≤ G2(b)

2u(1− ab) + 2ab if G2(b) ≤ u

=


u(a+b−2)(ab−1)

(a−1)(b−1) if u ≤ G1(a)
−abu+ u(ab−1)

a−1 + ab+ u if G1(a) ≤ u ≤ G2(b)
−2abu+ 2ab+ 2u if G2(b) ≤ u.

(2.107)
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So
∫ 1

0 [G−1
1 (u) +G−1

2 (u)]2du =
∫ G1(a)

0
(u(a+ b− 2)(ab− 1)

(a− 1)(b− 1) )2du+
∫ G2(b)

G1(a)
(−abu+ u(ab− 1)

a− 1 + ab+ u)2du

+
∫ 1

G2(b)
(−2abu+ 2ab+ 2u)2du

= a3(b− 1)(a+ b− 2)2

3(a− 1)2(ab− 1) + 3a3b2 + 3(a− 2)a3b+ (a− 2)2a3 + ((10− 7a)a− 4)b3

3(a− 1)2(ab− 1)

+ 4 (b3 − 1)
3ab− 3

= a4b+ 2a3(b− 1)b+ a2b3 − 2a (b3 + 2) + 4
3(a− 1)(ab− 1) .

(2.108)

So

Var(G−1
1 (U) +G−1

2 (U)) = Equation (2.108)− (Equation (2.92) + Equation (2.104))2

=a
4b+ 2a3(b− 1)b+ a2b3 − 2a (b3 + 2) + 4

3(a− 1)(ab− 1) − (a2b+ ab2 − 2)2

(2− 2ab)2 .

(2.109)

Case 2: b ≤ a

As
G1(a) = a− ab

1− ab ≥
b− ab
1− ab = G2(b), (2.110)

then

G−1
1 (u) +G−1

2 (u) =


u(1−ab)

1−b + u(1−ab)
1−a if u ≤ G2(b)

u(1− ab) + ab+ u(1−ab)
1−b if G2(b) ≤ u ≤ G1(a)

2u(1− ab) + 2ab if G1(a) ≤ u

=


u(a+b−2)(ab−1)

(a−1)(b−1) if u ≤ G2(b)
(b−2)u(1−ab)

b−1 + ab if G2(b) ≤ u ≤ G1(a)
−2abu+ 2ab+ 2u if G1(a) ≤ u.

(2.111)
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So
∫ 1

0 [G−1
1 (u) +G−1

2 (u)]2du =
∫ G2(b)

0
(u(a+ b− 2)(ab− 1)

(a− 1)(b− 1) )2du+
∫ G1(a)

G2(b)
((b− 2)u(1− ab)

b− 1 + ab)2du

+
∫ 1

G1(a)
(−2abu+ 2ab+ 2u)2du

= (a− 1)b3(a+ b− 2)2

3(b− 1)2(ab− 1) + a3 (−7b2 + 10b− 4) + 3a2b3 + 3a(b− 2)b3 + (b− 2)2b3

3(b− 1)2(ab− 1) + 4 (a3 − 1)
3ab− 3

= ab4 + 2ab3(a− 1) + a3b2 − 2b(a3 + 2) + 4
3(b− 1)(ab− 1) .

(2.112)

So

Var(G−1
1 (U) +G−1

2 (U)) = Equation (2.112)− (Equation (2.92) + Equation (2.104))2

=ab
4 + 2ab3(a− 1) + a3b2 − 2b(a3 + 2) + 4

3(b− 1)(ab− 1) − (a2b+ ab2 − 2)2

(2− 2ab)2 .

(2.113)

In summary,

Var(G−1
1 (U) +G−1

2 (U)) =


a4b+2a3(b−1)b+a2b3−2a(b3+2)+4

3(a−1)(ab−1) − (a2b+ab2−2)2

(2−2ab)2 if a ≤ b

ab4+2ab3(a−1)+a3b2−2b(a3+2)+4
3(b−1)(ab−1) − (a2b+ab2−2)2

(2−2ab)2 if a ≥ b.

(2.114)

Proposition 2.3.10. (Minimum Variance)
Given Figure 2.13, assuming 1,2,3,4 in Proposition 2.3.3, if we take C(u, v) = uv, the

independence copula, then the lower bound of Var(X + Y ) is:

Var
(
I(X + Y ) + (1− I)(G−1

1 (U) +G−1
2 (1− U))

)
= a3b3

3 − 2a3b2

3 + a3b

3 −
2a2b3

3 + 3a2b2

2 − a2b+ ab3

3 − ab
2 + ab, (2.115)

where U,G1, G2, I are defined in Proposition 2.3.3.
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Proof. Denote A1 := G−1
1 (U), A2 := G−1

2 (1−U), from Proposition 2.3.3, we know Var(X+
Y ) ≥ Var(I(X + Y ) + (1− I)(A1 + A2)). So we only need to prove

Var(I(X + Y ) + (1− I)(A1 + A2)) (2.116)

=a
3b3

3 − 2a3b2

3 + a3b

3 −
2a2b3

3 + 3a2b2

2 − a2b+ ab3

3 − ab
2 + ab. (2.117)

Denote (I(X + Y ) + (1− I)(A1 + A2)) := Z, then by the conditional variance formula,

Var(Z) = E[Var(Z|I)] + Var[E(Z|I)].

And

Z|I =

X + Y |I = 1
A1 + A2|I = 0.

(2.118)

So
E[Z|I = 1] = E(X + Y |(X, Y ) ∈ F). (2.119)

To calculate Equation (2.119), we need to know the distribution of X|(X, Y ) ∈ F and
Y |(X, Y ) ∈ F .
For any x ≥ 0,

FX|(X,Y )∈F(x) = P (X ≤ x, (X, Y ) ∈ F)
P ((X, Y ) ∈ F) =


P (X ≤ x, Y ≤ b)
P (X ≤ a, Y ≤ b) if x ≤ a

P (X ≤ a, Y ≤ b)
P (X ≤ a, Y ≤ b) if x > a

=


bx

ab
= x

a
if x ≤ a

1 if x > a.

(2.120)

So X|(X, Y ) ∈ F follows U [0, a]. Due to symmetry, Y |(X, Y ) ∈ F follows U [0, b].
So

Equation (2.119) = E(X|(X, Y ) ∈ F) + E(Y |(X, Y ) ∈ F) = a

2 + b

2 . (2.121)

Since when (X, Y ) ∈ F , (X, Y ) follows independence copula,

Var[Z|I = 1] = Var(X+Y |(X, Y ) ∈ F) = Var(X|(X, Y ) ∈ F)+Var(Y |(X, Y ) ∈ F) = a2

12+ b2

12 .
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As U is independent of I, then A1 = G−1
1 (U) and A2 = G−1

2 (1 − U) are independent of I,
by Equations (2.91) and (2.94),

E[Z|I = 0] = E(A1 + A2|I = 0) = E(A1 + A2) = a2b+ ab2 − 2
2(ab− 1) ,

by Lemma 2.4.2,

Var[Z|I = 0] = Var(A1 + A2|I = 0) = Var(A1 + A2) = Equation (2.100) := ♦.

So

E[Var[Z|I]] = a2 + b2

12 P (I = 1) + (♦)P (I = 0)

= a2 + b2

12 pf + (♦)pu

= a2 + b2

12 ab+ (1− ab)(♦)

= ab (4a3(b− 1)2b− a2 (8b3 − 14b2 + 4b+ 1) + 4a(b− 1)b2 − b2)
12(ab− 1) .

(2.122)

And

E[E[Z|I]] = a+ b

2 · P (I = 1) + a2b+ ab2 − 2
2(ab− 1) P (I = 0)

= a+ b

2 (ab) + a2b+ ab2 − 2
2(ab− 1) (1− ab)

= 1.

(2.123)

So

Var(E(Z|I)) = E[E2(Z|I)]− E2[E[Z|I]]

= (a+ b

2 )2 · P (I = 1) + (a
2b+ ab2 − 2
2(ab− 1) )2 · P (I = 0)− 12

= −ab(a+ b− 2)2

4ab− 4 .

(2.124)
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We add Equations (2.122) and (2.124) together to get the answer,

Var(Z) = a3b3

3 − 2a3b2

3 + a3b

3 −
2a2b3

3 + 3a2b2

2 − a2b+ ab3

3 − ab
2 + ab. (2.125)

This is the same equation as Equation (2.35).

Proposition 2.3.11. (Maximum Variance)
Given Figure 2.13, assuming 1,2,3,4 in Proposition 2.3.3, if we take C(u, v) = uv, the

independence copula, then the upper bound of Var(X + Y ) is:

Var
(
I(X + Y ) + (1− I)(G−1

1 (U) +G−1
2 (U))

)
=

−
a3(b−2)b+3a2b2−2a(b3+1)+2

6(a−1) if a ≤ b

− b3(a−2)a+3a2b2−2b(a3+1)+2
6(b−1) if a ≥ b,

(2.126)
where U,G1, G2, I are defined in Proposition 2.3.3. The two equations above can also be
written as

− (min(a, b))3(max(a, b)− 2) max(a, b) + 3a2b2 − 2 min(a, b)((max(a, b))3 + 1) + 2
6(min(a, b)− 1) .

(2.127)

Proof. Denote B1 := G−1
1 (U), B2 := G−1

2 (U), from Proposition 2.3.3, we know Var(X +
Y ) ≤ Var(I(X + Y ) + (1− I)(B1 +B2)). So we only need to prove

Var(I(X + Y ) + (1− I)(B1 +B2)) (2.128)

=

−
a3(b−2)b+3a2b2−2a(b3+1)+2

6(a−1) if a ≤ b

− b3(a−2)a+3a2b2−2b(a3+1)+2
6(b−1) if a ≥ b.

(2.129)

Denote (I(X + Y ) + (1− I)(B1 +B2)) := Z, then by the conditional variance formula,

Var(Z) = E[Var(Z|I)] + Var[E(Z|I)].

And

Z|I =

X + Y |I = 1
B1 +B2|I = 0.

(2.130)
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From proof in Proposition 2.3.10,

E[Z|I = 1] = a+ b

2 (2.131)

and
Var[Z|I = 1] = a2 + b2

12 .

As U is independent of I, then B1 = G−1
1 (U) and B2 = G−1

2 (U) are independent of I, by
Equations (2.92) and (2.104),

E[Z|I = 0] = E(B1 +B2|I = 0) = E(B1 +B2) = a2b+ ab2 − 2
2(ab− 1) .

When a ≤ b, by Lemma 2.4.2,

Var[Z|I = 0] = Var(B1 +B2|I = 0) = Var(B1 +B2) = Equation (2.109) := ♦.

So

E[Var[Z|I]] = a2 + b2

12 P (I = 1) + (♦)P (I = 0)

= a2 + b2

12 pf + (♦)pu

= a2 + b2

12 ab+ (1− ab)(♦)

= a4b (−2b2 + 4b+ 3) + a3b (−6b2 + 8b− 19) + a2b (4b3 + 3b2 − 12b+ 28)
12(a− 1)(ab− 1)

− a (7b3 − 12b2 + 16b+ 4)− 4
12(a− 1)(ab− 1)

(2.132)

And from proof in Proposition 2.3.10,

Var(E(Z|I)) = −ab(a+ b− 2)2

4ab− 4 . (2.133)
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We add Equations (2.132) and (2.133) together to get the answer,

Var(Z) = −a
3(b− 2)b+ 3a2b2 − 2a (b3 + 1) + 2

6(a− 1) . (2.134)

Similarly, when a ≥ b,

Var(Z) = −−2 (a3 + 1) b+ 3a2b2 + (a− 2)ab3 + 2
6(b− 1) . (2.135)

In summary,

Var(I(X + Y ) + (1− I)(B1 +B2)) =

−
a3(b−2)b+3a2b2−2a(b3+1)+2

6(a−1) if a ≤ b

− b3(a−2)a+3a2b2−2b(a3+1)+2
6(b−1) if a ≥ b

(2.136)

This is different from Equation (2.59).

Corollary 2.3.12. (Variance bounds using Bernard and Vanduffel [2014]) Given Figure
2.13, assuming 1,2,3,4 in Proposition 2.3.3, if we take C(u, v) = uv, the independence
copula, then upper (sharp) and lower bounds (not sharp) of Var(X + Y ) are as follows,

a3b3

3 − 2a3b2

3 + a3b

3 −
2a2b3

3 + 3a2b2

2 − a2b+ ab3

3 − ab
2 + ab ≤ Var(X + Y ) ≤

− (min(a, b))3(max(a, b)− 2) max(a, b) + 3a2b2 − 2 min(a, b)((max(a, b))3 + 1) + 2
6(min(a, b)− 1) .

(2.137)

Proof. This directly follows from Proposition 2.3.3, 2.3.10 and 2.3.11.

2.4 Improved Upper and Lower Bounds of Var(X + Y )
Using Convex Order Bounds

From both the theoretical result (see Equations (2.3.10) and (2.3.11)) and the simulation
details (see Sections 2.7.2 and 2.7.3 of Appendix 2.7), the lower variance bound derived
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using Bernard and Vanduffel [2014] is sharp but the upper bound is not (see Corollary
2.3.12). So now we propose another method using convex order bounds and call it improved
bounds, which give sharp bounds on variance.

Proposition 2.4.1. Fix some 0 < a < 1 and 0 < b < 1 such that F = [0, a] × [0, b],
U1 = [a, 1] × [0, b], U2 = [a, 1] × [b, 1] and U3 = [0, a] × [b, 1]. We have the following
assumptions:
1. X, Y are two random variables following U [0, 1];
2. (X, Y ) has copula C on area F ;
3. U is U [0, 1] independent of events “(X, Y ) ∈ F , (X, Y ) ∈ Ui, i = 1, 2, 3”.
For some x ∈ [0, 1], denote

G2i−1(x) := FX|(X,Y )∈Ui(x), G2i(x) := FY |(X,Y )∈Ui(x), i = 1, 2, 3,

then bounds on variance are

Var(IF(X + Y ) +
3∑
i=1

IUi(G−1
2i−1(U) +G−1

2i (1− U)) ≤ Var(X + Y ) ≤

Var(IF(X + Y ) +
3∑
i=1

IUi(G−1
2i−1(U) +G−1

2i (U)) (2.138)

Proof. The proof is similar with the proof in Proposition 2.3 just by replacing m = 3.

Assume we know how the masses are distributed on area [0, 1]2\F , then we calculate
these improved bounds under special case.

Proposition 2.4.2. (Minimum Variance) Given Figure 2.16 and assumptions in Propo-
sition 2.4.1, if we take C as the independence copula, then

Var
(
IF(X + Y ) +

3∑
i=1

IUi(G−1
2i−1(U) +G−1

2i (1− U))
)

= a3b3

3 − 2a3b2

3 + a3b

3 −
2a2b3

3 + 3a2b2

2 − a2b+ ab3

3 − ab
2 + ab, (2.139)

which is the same as Equation (2.35), where U ∼ U [0, 1].
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Figure 2.16: When F = [0, a]× [0, b]

Proof.

G1(x) = FX|(X,Y )∈U1(x) = P (X ≤ x, t1 ≤ X, Y ≤ b)
P (a ≤ X ≤, Y ≤ b) = x− t1

b− ab
if a ≤ x ≤ t1. (2.140)

Since G1(t1) must be 1, we get t1 = 1− b+ ab. So G−1
1 (u) = u(b− ab) + 1− b+ ab.

Similarly,

G2(x) = FY |(X,Y )∈U1(x) = P (Y ≤ x, a ≤ X, Y ≤ b)
P (a ≤ X, Y ≤ b) = x− ax

b− ab
= x

b
if x ≤ b, (2.141)

so G−1
2 (u) = ub.

G3(x) = FX|(X,Y )∈U2(x) = P (X ≤ x, a ≤ X, Y ≥ t2)
P (a ≤ X, Y ≥ b) = x− a

1− a− b+ ab
, (2.142)

so G−1
3 (u) = u(1− a− b+ ab) + a.

G4(x) = FY |(X,Y )∈U2(x) = P (a ≤ X ≤ t1, b ≤ Y ≤ x)
P (a ≤ X, b ≤ Y ) = x− b

1− a− b+ ab
when x ≤ t2,

(2.143)
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so G−1
4 (u) = u(1− a− b+ ab) + b. When x = t2, G4(t2) = 1, so t2 = 1− a+ ab.

G5(x) = FX|(X,Y )∈U3(x) = P (X ≤ x,X ≤ a, b ≤ Y )
P (X ≤ a, b ≤ Y ) = x− bx

a− ab
= x

a
, (2.144)

so G−1
5 (u) = au.

G6(x) = FY |(X,Y )∈U3(x) = P (t2 ≤ Y ≤ x,X ≤ a)
P (X ≤ a, b ≤ Y ) = x− (1− a+ ab)

a− ab
, (2.145)

so G−1
6 (u) = u(a− ab) + 1− a+ ab.

For convenience, denote A2i−1 := G−1
2i−1(u), A2i := G−1

2i (u), i = 1, 2, 3.
Define another random variable T such that,

T =



1 if IF = 1
2 if IU1 = 1
3 if IU2 = 1
4 if IU3 = 1.

(2.146)

Denote Z := IF(X + Y ) + IU1(G−1
1 (U) + G−1

2 (1 − U)) + IU2(G−1
3 (U) + G−1

4 (1 − U)) +
IU3(G−1

5 (U) +G−1
6 (1− U)). Then Var(Z) = E(Var(Z|T )) + Var(E(Z|T )).

And the distributions of (X, Y )|(X, Y ) ∈ F are computed in Proposition 2.3.10, thus

E(Var(Z|T )) =
4∑
i=1

P (T = i)Var(Z|T = i)

= abVar(X + Y |(X, Y ) ∈ F) + (b− ab)Var(A1 + A2|(X, Y ) ∈ U1)
+ (1− a− b+ ab)Var(A3 + A4|(X, Y ) ∈ U2) + (a− ab)Var(A5 + A6|(X, Y ) ∈ U3)

= −1
6a

3b3 + a3b2

12 + a3b

12 + a2b3

12 + ab3

12 ,
(2.147)

Var(E(Z|T )) =
4∑
i=1

P (T = i)E2(Z|T = i)−
( 4∑
i=1

P (T = i)E(Z|T = i)
)2

= a3b3

2 − 3a3b2

4 + a3b

4 −
3a2b3

4 + 3a2b2

2 − a2b+ ab3

4 − ab
2 + ab.

(2.148)
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So
Var(Z) = a3b3

3 − 2a3b2

3 + a3b

3 −
2a2b3

3 + 3a2b2

2 − a2b+ ab3

3 − ab
2 + ab.

This result is the same equation with lower bound of Var(X+Y ) when using the improved
Fréchet lower bound (Equation (2.35)).

Proposition 2.4.3. (Maximum Variance) Given Figure 2.17 and assumptions in Propo-
sition 2.4.1, take C as the independence copula, then

Var(IF(X+Y )+
3∑
i=1

IUi(G−1
2i−1(U)+G−1

2i (U)) = 2a3b3

3 −4a3b2

3 +2a3b

3 −
4a2b3

3 +5a2b2

2 −a2b+2ab3

3 −ab
2+1

3 ,

which is the same as Equation (2.59), where U ∼ U [0, 1].

v
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t1

t2b
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a 10

F U1

U2U3

Figure 2.17: When F = [0, a]× [0, b]

Proof. Based on Figure 2.17, note hereGi is different from theGi in the proof of Proposition
2.4.2.

G1(x) = FX|(X,Y )∈U1(x) = P (X ≤ x, a ≤ X ≤ t1, Y ≤ b)
P (a ≤ X, Y ≤ b) = x− a

b− ab
if a ≤ x ≤ t1. (2.149)

Since G1(t1) must be 1, we get t1 = a+ b− ab. So G−1
1 (u) = u(b− ab) + a.
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Similarly,

G2(x) = FY |(X,Y )∈U1(x) = P (Y ≤ x, a ≤ X ≤ t1, Y ≤ b)
P (a ≤ X, Y ≤ b) = x− ax

b− ab
= x

b
if x ≤ b, (2.150)

so G−1
2 (u) = ub.

G3(x) = FX|(X,Y )∈U2(x) = P (X ≤ x, t1 ≤ X, Y ≥ t2)
P (a ≤ X, b ≤ Y ) = x− a− b+ ab

1− a− b+ ab
, (2.151)

so G−1
3 (u) = u(1− a− b+ ab) + a+ b− ab.

G4(x) = FY |(X,Y )∈U2(x) = x− a− b+ ab

1− a− b+ ab
, (2.152)

so G−1
4 (u) = u(1− a− b+ ab) + a+ b− ab.

G5(x) = FX|(X,Y )∈U3(x) = P (X ≤ x,X ≤ a, b ≤ Y ≤ t2)
P (X ≤ a, b ≤ Y ) = x− bx

a− ab
= x

a
, (2.153)

so G−1
5 (u) = au.

G6(x) = FY |(X,Y )∈U3(x) = x− b
a− ab

, (2.154)

so G−1
6 (u) = u(a− ab) + b.

For convenience, denote Ai := G−1
i (u), i = 1, ..., 6.

Define another random variable T such that,

T =



1 if IF = 1
2 if IU1 = 1
3 if IU2 = 1
4 if IU3 = 1.

(2.155)

Denote Z := IF(X +Y ) + IU1(G−1
1 (U) +G−1

2 (U)) + IU2(G−1
3 (U) +G−1

4 (U)) + IU3(G−1
5 (U) +

G−1
6 (U)). Then Var(Z) = E(Var(Z|T )) + Var(E(Z|T )).
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And

E(Var(Z|T )) =
4∑
i=1

P (T = i)Var(Z|T = i)

= abVar(X + Y |(X, Y ) ∈ F) + (b− ab)Var(A1 + A2|(X, Y ) ∈ U1)
+ (1− a− b+ ab)Var(A3 + A4|(X, Y ) ∈ U2) + (a− ab)Var(A5 + A6|(X, Y ) ∈ U3)

= a3b3

6 − 7a3b2

12 + 5a3b

12 −
7a2b3

12 + 3a2b2 − 3a2b+ a2 + 5ab3

12 − 3ab2 + 3ab− a+ b2 − b+ 1
3 ,

(2.156)

Var(E(Z|T )) =
4∑
i=1

P (T = i)E2(Z|T = i)− E2(Z)

= a3b3

2 − 3a3b2

4 + a3b

4 −
3a2b3

4 − a2b2

2 + 2a2b− a2 + ab3

4 + 2ab2 − 3ab+ a− b2 + b.

(2.157)

So
Var(Z) = 2a3b3

3 − 4a3b2

3 + 2a3b

3 − 4a2b3

3 + 5a2b2

2 − a2b+ 2ab3

3 − ab2 + 1
3 .

This result is the same equation with upper bound of Var(X+Y ) when using the improved
Fréchet upper bound (Equation (2.59)).

Corollary 2.4.4. (Improved variance bounds) Given Figure 2.13, assuming 1,2,3 in Propo-
sition 2.4.1, if we take C as the independence copula, then upper and lower bounds of
Var(X + Y ) are as follows,

a3b3

3 − 2a3b2

3 +a
3b

3 −
2a2b3

3 + 3a2b2

2 − a2b+ ab3

3 − ab
2 + ab

≤Var(X + Y ) ≤
2a3b3

3 − 4a3b2

3 +2a3b

3 − 4a2b3

3 + 5a2b2

2 − a2b+ 2ab3

3 − ab2 + 1
3 .

Proof. This directly follows from Propositions 2.4.1, 2.4.2 and 2.4.3.
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2.5 Relation between Improved Bounds and Improved
Fréchet Bounds

Conjecture 2.5.1. Assume (X, Y ) has known copula on area F ⊂ [0, 1]2 and unknown
dependence structure on area [0, 1]2\F , then improved bounds on variance using convex
order bounds (see Proposition 2.3.1) are sharp if and only if improved Fréchet bounds are
sharp (i.e., AF ,C and BF ,C are copulas.)

Using Conjecture 2.5.1 and 2.2.7, we give an example to illustrate how to produce the
improved upper bound using convex order bounds.

v

u

b1

b2

1

a1 a2 10

F1

F2

U1 U2

U3 U4 U5

U6 U7

t1
t2

t3
t4

Figure 2.18: Comparisons of simulation and sketch of improved bounds using convex
order, a1 = 0.1, b1 = 0.2, a2 = 0.7, b2 = 0.6.

Remark 2.5.2. One difficult part of using the improved bounds to get variance bounds is
that the right way to distribute the probability masses on the unknown area U . One possible
solution includes treating the problem as a linear programming problem. By Corollary
2.1.2, maximizing or minimizing Var(X + Y ) is equivalent to maximizing or minimizing
E[XY ]. Fix some large number n, we approximate X and Y by discrete distributions as
follows: X = xi := i

n
, 1 ≤ i ≤ n where pi := P (X = xi) = 1

n
; Y = yi := i

n
, 1 ≤ i ≤ n where
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qi := P (Y = yi) = 1
n
. Denote pi,j := P (X = xi, Y = yj). Then E[XY ] =

n∑
i=1

n∑
j=1

pi,jxiyj =
n∑
i=1

n∑
j=1

pi,j
ij

n2 . So we max
pi,j

n∑
i=1

n∑
j=1

pi,j
ij

n2 or min
pi,j

n∑
i=1

n∑
j=1

pi,j
ij

n2 subject to



0 ≤ pi,j ≤ 1∑n
i=1

∑n
j=1 pi,j = 1

∀i,∑n
j=1 pi,j = pi = 1

n

∀j,∑n
i=1 pi,j = pj = 1

n

pi,j = piqj = 1
n2 when (xi, yj) ∈ F .

Example 2.5.3. Given F1 = [0, a1] × [0, b1],F2 = [a2, 1] × [b2, 1] where a1 < a2, b1 <

b2, a2b2 > a1 + b1 − a1b1 and Figure 2.18, assume (X, Y ) has independence copula on area
F1,F2. To produce the improved bounds on variance, we first plot the simulation of the
copula using Tankov’s method, then split the [0, 1]2 rectangles based on the simulation.
Denote G2i−1(x) = FX|(X,Y )∈Ui(x), G2i(x) = FY |(X,Y )∈Ui(x), i = 1, 2, ..., 7, then improved
upper bound on variance is defined as

Var
(
IF1(X + Y ) + IF2(X + Y ) +

7∑
i=1

IUi(G−1
2i−1(U) +G−1

2i (U))
)

where U is U [0, 1].
By Conjecture 2.2.7, when a2b2 > a1 + b1− a1b1 holds, AF ,C is a copula. So by Conjecture
2.5.1, improved bounds are sharp and the plot is well-defined based on the condition
a2b2 > a1 + b1 − a1b1.
Then we show how to get Gi(x).

G1(x) = FX|(X,Y )∈U1(x) = P (X ≤ x, a1 ≤ X ≤ t1, Y ≤ b1)
P (a1 ≤ X ≤ a2, Y ≤ b1) = x− a1

b1 − a1b1

for a1 ≤ x ≤ t1.

By G1(t1) = 1, we get t1 = a1 + b1 − a1b1. So G−1
1 (u) = u(b1 − a1b1) + a1.

G2(x) = FY |(X,Y )∈U1(x) = x

b1
,
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so G−1
2 (u) = ub1.

Based on the plot of Figure 2.18, G3(x) = G4(x) = G11(x) = G12(x) = 0.

G5(x) = FX|(X,Y )∈U3(x) = P (X ≤ x,X ≤ a1, b1 ≤ Y ≤ t3)
P (X ≤ a1, b1 ≤ Y ≤ b2) = x

a1
,

so G−1
5 (u) = ua1.

G6(x) = FY |(X,Y )∈U3(x) = x− b1

a1 − a1b1
,

so G−1
6 (u) = u(a1 − a1b1) + b1. By G6(t3) = 1, we get t3 = a1 + b1 − a1b1. Notice t3 = t1.

G7(x) = FX|(X,Y )∈U4(x) = P (t1 ≤ X ≤ x, t3 ≤ Y ≤ t4)
P (a1 ≤ X ≤ a2, b1 ≤ Y ≤ b2) = x− t1

t2 − t1
,

G8(x) = FY |(X,Y )∈U4(x) = x− t3
t2 − t1

.

By G8(t4) = 1, we get t4 − t3 = t2 − t1. So t2 = t4.

We know (X, Y ) are independent when (X, Y ) ∈ F2,

P (X ≥ a2, Y ≥ b2) = P (X ≥ a2)P (Y ≥ b2) = 1− a2 − b2 + a2b2,

G9(x) = FX|(X,Y )∈U5(x) = P (a2 ≤ X ≤ x, t4 ≤ Y ≤ b2)
P (a2 ≤ X, b1 ≤ Y ≤ b2) = x− a2

1− a2
,

G10(x) = FY |(X,Y )∈U5(x) = x− t4
b2 − a2b2

.

By G10(b2) = 1, we get t4 = a2b2.
So G−1

7 (u) = u(t2 − t1) + t1 = u(a2b2 − a1 − b1 + a1b1) + a1 + b1 − a1b1, G
−1
8 (u) = u(a2b2 −

a1− b1 +a1b1) +a1 + b1−a1b1, G−1
9 (u) = u(1−a2) +a2, G

−1
10 (u) = u(b2−a2b2) +a2b2. From

Figure 2.18, we need t3 < t4, which is a2b2 > a1 + b1−a1b1, this is given in the proposition.

G13(x) = FX|(X,Y )∈U7(x) = P (t2 ≤ X ≤ x, b2 ≤ Y )
P (b2 ≤ X ≤ a2, b2 ≤ Y ) = x− a2b2

a2 − a2b2
,

G14(x) = FY |(X,Y )∈U7(x) = P (b2 ≤ Y ≤ x, t2 ≤ X ≤ a2)
a2 − a2b2

= x− b2

1− b2
.

Then G−1
13 (u) = u(a2 − a2b2) + a2b2, G−1

14 (u) = u(1− b2) + b2.

For convenience, denote Ai := G−1
i (u) for i = 1, 2, ...14 except 3, 4, 11, 12. Define another
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random variable T such that

T =



1 if IF1 = 1
2 if IF2 = 1
3 if IU1 = 1
4 if IU3 = 1
5 if IU4 = 1
6 if IU5 = 1
7 if IU7 = 1.

Denote Z := IF1(X + Y ) + IF2(X + Y ) + ∑7
i=1 IUi(G−1

2i−1(U) + G−1
2i (U)). Then Var(Z) =

E(Var(Z|T )) + Var(E(Z|T )). Var(Z) can be computed. The procedure is similar if we
want improved lower bound, just replace G−1

2i (U) with G−1
2i (1− U).

2.6 Conclusion of Chapter 2 and Future Work

In this chapter, for any random variables X and Y , we give upper and lower bounds of
Var(X + Y ) under the condition that X and Y are independent when (X, Y ) ∈ [0, a] ×
[0, b], a, b ∈ (0, 1). Three methods are used: 1. the use of copula bounds from Tankov [2011]
(see Section 2.2), 2. the use of bounds from Bernard and Vanduffel [2014] (see Section 2.3)
3. the use of improved bounds (see Section 2.4). Method 1 and 3 gives the same result and
they are sharp bounds, while method 2 does not give sharp upper bound. The computation
of improved bounds is much simpler than the use of copula bounds from Tankov [2011].
We give an example in Section 2.5.3 on how to calculate it.

There are many open questions remaining in this chapter:

1. Several Conjectures 2.2.7, 2.2.8, 2.5.1 are not proved. Conjectures 2.2.7 and 2.2.8
give weaker sufficient conditions than in Bernard et al. [2013a] for AF ,C , BF ,C to be copulas.

2. We illustrate with very special examples, assuming (X, Y ) have the independence
copula when (X, Y ) ∈ [0, a]× [0, b]. More complex examples can be done.

3. We do not find necessary conditions for improved Fréchet bounds to be copulas.
If Conjecture 2.5.1 is proved, improved bounds can be investigated as a way to give the
necessary condition.
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4. The lower variance bound using Bernard and Vanduffel [2014] is sharp while the
upper bound is not. So what is the sufficient condition for bound using Bernard and
Vanduffel [2014] to be sharp?

5. In Example 2.5.3, we see that the right way to split the rectangle and distribute the
masses in Figure 2.18 is a key step to get the improved bounds. What will be a valid split
for the bounds to be sharp? When the improved Fréchet bounds are not sharp, does there
still exist a split that gets sharp bounds?

6. In Figure 2.11, the simulation plot in Panel A gives a copula while the simulation
plot in Panel B does not. This looks quite like a shuffle of the copula (see Mikusinski
et al. [1992], Durante et al. [2009], Durante and Fernández-Sánchez [2010], Durante and
Sánchez [2012], Trutschnig and Fernández Sánchez [2013], Ruankong et al. [2013] for detail
on shuffles) but the slopes may not be +1,−1. Can we find sufficient conditions to ensure
that it is a copula?

7. We only study bounds on variance, all the methods in Sections 2.2, 2.3, 2.4 can be
used to study bounds on other convex risk measures.

2.7 Appendix to Chapter 2

2.7.1 Checking Equations (2.115) and (2.134)

Since our computation in Section 2.3 is quite long, we verify that our Equations (2.115)
and (2.134) are right with the following 4 steps:

• Step 1
Simulate n pairs of uniform distributed random variables (X, Y ) which have copula
BF ,C . Fix some a, b, check G1(x) and G2(x) empirically and plot them against the
theoretical result: Equations (2.86) and (2.87). To approximate G1(x) empirically,
as it is defined as (2.74), if we want to approximate P ((X, Y ) ∈ U), since P ((X, Y ) ∈
U) = P (X > a or Y > b),∑n

i=1 I{Xi>a or Yi>b}

n
−→ P (X > a or Y > b) when n→∞, (2.158)
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by the law of large numbers. Figures 2.19, 2.20, 2.21, 2.22 are comparisons of the
empirical G1, G2 and theoretical G1, G2 when n = 1000.

Figure 2.19: Comparison of empirical G1, G2 and theoretical G1, G2 when
a = 0.1, b = 0.3.

Figure 2.20: Comparison of empirical G1, G2 and theoretical G1, G2 when
a = 0.4, b = 0.6.
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Figure 2.21: Comparison of empirical G1, G2 and theoretical G1, G2 when
a = 0.5, b = 0.5.

Figure 2.22: Comparison of empirical G1, G2 and theoretical G1, G2 when
a = 0.9, b = 0.63.

Plots in Figure 2.19, 2.20, 2.21, 2.22 look right in terms of Equations (2.86) and
(2.87).

• Step 2
To check G−1

1 and G−1
2 , we fix some a, b and take in some y = G1(x), G2(x) to Equa-

tions (2.88), (2.89). Since G1, G2 are strictly increasing, the right result should give:

G−1
1 (G1(x)) = x and G−1

2 (G2(x)) = x. (2.159)

So we pick the same 4 pairs of a, b as above and plot (x,G−1
1 (G1(x))), (x,G−1

2 (G2(x)))
against y = x. All the four pairs give same graphs as in Figure 2.23,
So Equations (2.88) and (2.89) are right.

• Step 3
To check Equation (2.100), we simulate n uniformly distributed numbers u and cal-
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Figure 2.23: Comparison of G−1
1 , G−1

2 and y = x.

culate Var(G−1
1 (u) + G−1

2 (1 − u)), the result is shown in Table 2.3. Here n = 1000,
the theoretical result refers to Equation (2.100).

a b empirical result theoretical result error
0.1 0.3 0.0001 0.0001 0.0000
0.4 0.6 0. 0064 0.0064 0.0000
0.5 0.5 0.0062 0.0069 0.0007
0.9 0.63 0.0313 0.0308 0.0005

Table 2.3: Error between the empirical result and the theoretical result of
Var(G−1

1 (U) +G−1
2 (U))

In a similar way, we check Equation (2.114) in Table 2.4.

a b empirical result theoretical result error
0.1 0.3 0.3269 0.3224 0.0046
0.4 0.6 0.3030 0.3014 0.0016
0.5 0.5 0.2992 0.3056 0.0063
0.9 0.63 0.2549 0.2614 0.0064

Table 2.4: Error between the empirical result and the theoretical result of
Var(G−1

1 (U) +G−1
2 (1− U))
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• Step 4
To check Equation (2.115), which is Equation (2.116), we take n pairs of (X, Y ) in
step 1 and n uniformly distributed random variables u to get

Var(I(X + Y ) + (1− I)(G−1
1 (u) +G−1

2 (1− u)),

the result is shown in Table 2.5. Here n = 1000, the theoretical result refers to
Equation (2.115).

a b empirical result theoretical result error
0.1 0.3 0.0113 0.0201 0.0089
0.4 0.6 0.0897 0.0942 0.0046
0.5 0.5 0.0987 0.0990 0.0002
0.9 0.63 0.1458 0.1427 0.0031

Table 2.5: Error between the empirical result and the theoretical result of
Var(I(X + Y ) + (1− I)(G−1

1 (U) +G−1
2 (1− U))

Then we check Equation (2.128), Var(I(X + Y ) + (1− I)(B1 +B2)) in Table 2.6, the
theoretical result refers to Equation (2.136). Equation (2.136) looks good, however,

a b empirical result theoretical result error
0.1 0.3 0.3358 0.3327 0.0031
0.4 0.6 0.3227 0.3184 0.0043
0.5 0.5 0.3195 0.3229 0.0034
0.9 0.63 0.2399 0.2425 0.0026

Table 2.6: Error between the empirical result and the theoretical result of
Var(I(X + Y ) + (1− I)(B1 +B2))

this does not coincide with Equation (2.59) (which calculated using improved Fréchet
upper bound). Table 2.7 is a comparison between Equations (2.136) and (2.59), which
refer to theoretical result of Var(I(X + Y ) + (1 − I)(B1 + B2)) and upper variance
bound calculated using improved Fréchet upper bound.
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a b (2.136) (2.59) error
0.1 0.3 0.3327 0.3251 0.0076
0.4 0.6 0.3184 0.2529 0.0655
0.5 0.5 0.3229 0.2500 0.0729
0.9 0.63 0.2425 0.1914 0.0511

Table 2.7: Comparison between Equations (2.136) and (2.59)

Table 2.8 contains both empirical results of Equations (2.136) and (2.59), denoted as
empirical1 and empirical2 respectively, n = 1000.

a b empirical1 empirical2 error
0.1 0.3 0.3263 0.3335 0.0072
0.4 0.6 0.3145 0.2407 0.0738
0.5 0.5 0.3282 0.2563 0.0720
0.9 0.63 0.2462 0.1836 0.0626

Table 2.8: Empirical results of Equations (2.136) and (2.59) when n = 1000.

Table 2.9 contains the above comparison when n = 5000.

a b empirical1 empirical2 error
0.1 0.3 0.3290 0.3200 0.0090
0.4 0.6 0.3120 0.2584 0.0537
0.5 0.5 0.3271 0.2442 0.0830
0.9 0.63 0.2470 0.1896 0.0574

Table 2.9: Empirical results of Equations (2.136) and (2.59) when n = 5000

2.7.2 Checking Bounds Using Bernard and Vanduffel [2014] by
Deriving Copula Directly

This section is to check the copula of upper variance bound using Bernard and Vanduffel
[2014] is indeed the same with the copula (X, Y ) in Equation (2.126).
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Proposition 2.7.1. If we start with assumptions 1,2,3,4 in Proposition 2.3.3 and take C
as the independence copula, then the copula of (X, Y ) in the upper bound of Var(X + Y ),
Var(X + Y ) = Var(I(X + Y ) + (1− I)(G−1

1 (U) +G−1
2 (U))) is

CBv(x, y) := min(x, a)min(y, b) +min(G1(x), G2(y))(1− ab), x, y ∈ [0, 1]

Proof. For x, y ∈ [0, 1], V1, V2 are independent U [0, 1] which are independent ofG−1
1 (U), G−1

2 (U)

P (X ≤ x, Y ≤ y) =P (X ≤ x, Y ≤ y, I = 1) + P (X ≤ x, Y ≤ y, I = 0)
=P (V1 ≤ x, V2 ≤ y, V1 ≤ a, V2 ≤ b) + P (G−1

1 (U) ≤ x,G−1
2 (U) ≤ y, V1 ≥ a, V2 ≤ b)

+ P (G−1
1 (U) ≤ x,G−1

2 (U) ≤ y, V1 ≥ a, V2 ≥ b)
+ P (G−1

1 (U) ≤ x,G−1
2 (U) ≤ y, V1 ≤ a, V2 ≤ b)

=P (V1 ≤ min(x, a), V2 ≤ min(y, b))
+ P (G−1

1 (U) ≤ x,G−1
2 (U) ≤ y)(P (V1 ≥ a, V2 ≤ b)

+ (P (V1 ≥ a, V2 ≥ b) + (P (V1 ≤ a, V2 ≥ b))
= min(x, a) min(y, b) + min(G1(x), G2(y))(1− ab)

The comparisons of the simulation of CBV and simulation of the copula of Equation
(2.126) are in Figures 2.24 and 2.25.

2.7.3 Another Approach for Comparing (X,Y) Simulated from
Bounds Using Bernard and Vanduffel [2014] and Tankov
[2011]

First, we start with assumptions in Proposition 2.3.3 and take C as the independence
copula. We simulate (X, Y ) from upper bounds in Equation (2.67) as follows: we simulate
n uniformly distributed random variables U . If U ≤ pf = ab, simulate (X, Y ) following
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Figure 2.24: Comparisons of copula of the upper variance bound using Bernard and
Vanduffel [2014] derived directly and by simulation, where a=0.1, b=0.3 (left), a=0.4,

b=0.6 (right).

Figure 2.25: Comparisons of copula of the upper variance bound using Bernard and
Vanduffel [2014] derived directly and by simulation, where a=0.5, b=0.5 (left), a=0.9,

b=0.63 (right).

the given copula (independence copula here). Denote

H1(x) :=P (X ≤ x|(X, Y ) ∈ F) = P (X ≤ x,X ≤ a, Y ≤ b)
P ((X, Y ) ∈ F)

=


P (X≤x,Y≤b)

pf
if x ≤ a

P (X≤a,Y≤b)
pf

if x > a

=


bx
ab

= x
a

if x ≤ a
ab
ab

= 1 if x > a.
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Similarly,

H2(y) =


y
b

if y ≤ b

1 if y > b.

We simulate independent V1, V2 ∼ U [0, 1], let X = H−1
1 (V1), Y = H−1

2 (V2); if U > pf = ab,
we simulate (X, Y ) = (G−1

1 (U), G−1
2 (U)). Then plot (X, Y ) on the graph.

Second, we plot the copula of (X, Y ) from upper bound derived using improved Fréchet
bound, which is Equation (2.37).
Similarly, we plot (X, Y ) from lower bounds with n = 1000. In Figures 2.26, 2.27, 2.28,
2.29, the left figure is the lower bound and the right is the upper bound. For the upper
bound, (X, Y ) do not coincide.

Figure 2.26: Comparison of (X, Y ) generated from bounds using Bernard and Vanduffel
[2014] and improved Fréchet bounds, where a=0.1, b=0.3.
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Figure 2.27: Comparison of (X, Y ) generated from bounds using Bernard and Vanduffel
[2014] and improved Fréchet bounds, where a=0.4, b=0.6.
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Figure 2.28: Comparison of (X, Y ) generated from bounds using Bernard and Vanduffel
[2014] and improved Fréchet bounds, where a=0.5, b=0.5.

Figure 2.29: Comparison of (X, Y ) generated from bounds using Bernard and Vanduffel
[2014] and improved Fréchet bounds, where a=0.9, b=0.63.

2.7.4 Simulations of Improved Bounds Using Convex Order

Figures 2.30, 2.31 and 2.32, 2.33 include the simulations of lower and upper improved
bounds from Section 2.5 under different pairs of a, b. They coincide with simulations of
variance bounds derived using improved Fréchet bounds.
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Figure 2.30: Simulation of lower improved bounds, a=0.1, b=0.3 (left), a=0.4, b=0.6
(right).

Figure 2.31: Simulation of lower improved bounds, a=0.5, b=0.5 (left), a=0.9, b=0.63
(right).
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Figure 2.32: Simulation of upper improved bounds, a=0.1, b=0.3 (left), a=0.4, b=0.6
(right).

Figure 2.33: Simulation of upper improved bounds, a=0.5, b=0.5 (left), a=0.9, b=0.63
(right).
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Chapter 3

Bounds on Variance with
Background Risk

This chapter is organized as follows. In Section 3.1, we give the covariance matrix for
Var(∑n

i=1Xi) to reach its minimum where each Xi is normal distributed. Sections 3.1.1
and 3.1.2 deal with cases n = 3 and 4 respectively. We apply our result in Section 3.2 by
deriving sharp bounds for the variance of the sum S = ∑n

i=1Xi when n = 3 and 4. Every
Xi is normal distributed and we have additional information on a given risk factor Z such
that the distribution of (Xi, Z) is given. See Bernard et al. [2014] for more details. In
Section 3.3, rearrangement algorithm from Puccetti and Rüschendorf [2012] is introduced
to approximate the minimum of Var(X1 + ...+Xn) with the existence of a background risk
Z. Two examples on Pareto risks are presented. Section 3.4 gives a short conclusion and
future research directions of Chapter 3.

3.1 Dependence among Normal Variables Such That
Var(∑di=1Xi) = 0

Given random variables Xi ∼ Fi, 1 ≤ i ≤ d, what is the covariance matrix for Var(∑d
i=1Xi)

reaches minimum? In this section, this question is answered when d = 3, 4 with assump-
tions that Fi is normal distribution N(µi, σ2

i ) where σi > 0. We introduce several useful
definitions and propositions first, more details can be found in Horn and Johnson [2012].
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Definition 3.1.1. A real symmetric d× d matrix M is called positive-semidefinite if

xTMx ≥ 0

for all x in Rd.

Definition 3.1.2. A matrix M is diagonally dominant if

|aii| ≥ Σj 6=i|aij|,∀i,

where aij denotes the entry in the ith row and jth column.

Lemma 3.1.3. A real symmetric diagonally dominant matrix M with non-negative diag-
onal entries is positive-semidefinite.

Proposition 3.1.4. If Xi ∼ N(µi, σ2
i ), i = 1, ..., d, d ≥ 3, the sufficient condition for a

matrix M to be a covariance matrix for (Xi)1≤i≤d is:
(i) M is a real symmetric, positive-semidefinite matrix with diagonal element mi,i = σ2

i ;
(ii) each element of M satisfies −1 ≤ mi,j

σiσj
≤ 1.

Remark 3.1.5. Condition (ii) in Proposition 3.1.4 is not necessary. We can get condition
(ii) by using the positive-semidefinite in condition (i). For ∀i, j, by Definition 3.1.1, take
x = [0...0... 1

σi
.... 1

σj
...0...0]T . Since xTMx ≥ 0, we get mi,j ≥ −1. Similarly, take x =

[0...0...− 1
σi
.... 1

σj
...0...0]T to get mi,j ≤ 1. For convenience, we leave condition (ii) here.

3.1.1 Case of 3 Normal Distributed Random Variables

We start with a special case.

Proposition 3.1.6. Assume that X1, X2, X3 ∼ N(0, 1), the covariance matrix for Var(X1+
X2 +X3) = 0 is 

1 −1
2 −

1
2

−1
2 1 −1

2
−1

2 −
1
2 1


Proof. By Lemma 3.1.3, this matrix is positive-semidefinite and it clearly satisfies con-
ditions (i), (ii) in Proposition 3.1.4. Then Var(X1 + X2 + X3) = Var(X1) + Var(X2) +
Var(X3)+2Cov(X1, X2)+2Cov(X1, X3)+2Cov(X2, X3) = 1+1+1−2· 12−2· 12−2· 12 = 0.
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Proposition 3.1.7 is the generalization of Proposition 3.1.6.

Proposition 3.1.7. Assume random variables Xi ∼ N(µi, σ2
i ), i = 1, 2, 3,

(i) when max
1≤i≤3

σi ≤
1
2Σ3

i=1σi, then the covariance matrix for Var(X1 +X2 +X3) = 0 is


σ2

1
σ2

3−σ
2
1−σ

2
2

2
σ2

2−σ
2
1−σ

2
3

2
σ2

3−σ
2
1−σ

2
2

2 σ2
2

σ2
1−σ

2
2−σ

2
3

2
σ2

2−σ
2
1−σ

2
3

2
σ2

1−σ
2
2−σ

2
3

2 σ2
3



(ii) when max
1≤i≤3

σi >
1
2Σ3

i=1σi, WLOG, assume max
1≤i≤3

σi = σ1, if the covariance matrix is


σ2

1 −σ1σ2 −σ1σ3

−σ1σ2 σ2
2 σ2σ3

−σ1σ3 σ2σ3 σ2
3


then Var(X1 +X2 +X3) reaches its minimum: (σ1 − 1

2Σ3
i=1σi)2.

Proof. (i) When max
1≤i≤n

σi ≤
1
2Σn

i=1σi, X1, X2, X3 are jointly mixable (see Theorem 1.2.10).
Then X1 +X2 +X3 = C a.s. for some C ∈ R.
So

X1 =C −X2 −X3 a.s.

Var(X1) =Var(C −X2 −X3)
σ2

1 =σ2
2 + 2Cov(X2, X3) + σ2

3

Cov(X2, X3) =σ
2
1 − σ2

2 − σ2
3

2 .

Similarly, Cov(X1, X2) = σ2
3−σ

2
1−σ

2
2

2 , Cov(X1, X3) = σ2
2−σ

2
1−σ

2
3

2 . We do not need to check this
is a covariance matrix since this is the only possible solution.
(ii)
This proof follows from the proof in Wang et al. [2013].
When σ1 > σ2 + σ3,

Var(X1 +X2 +X3) ≥ (σ1 −
√

Var(X2 +X3))2 ≥ (σ1 − (σ2 + σ3))2
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Var(X1+X2+X3) reaches (σ1−(σ2+σ3))2 when taking X1 = σ1Z+µ1, Xi = −σiZ+µi, i =
2, 3 where Z ∼ N(0, 1).

3.1.2 Case of 4 Normal Distributed Random Variables

The following is a generalization of Proposition 3.1.7 under case (i) in dimension d = 4.

Proposition 3.1.8. Assume Xi ∼ N(µi, σ2
i ), max

1≤i≤4
σi ≤

1
2Σ4

i=1σi, the covariance matrix
for Var(Σ4

i=1Xi) = 0 is


σ2
1 ρ1,2σ1σ2 ρ1,3σ1σ3 −σ1(σ1 + ρ1,2σ2 + ρ1,3σ3)

ρ1,2σ1σ2 σ2
2 −σ1σ2(A+ ρ1,2)− ρ1,3σ1σ3 σ1σ3(B + ρ1,3)

ρ1,3σ1σ3 −σ1σ2(A+ ρ1,2)− ρ1,3σ1σ3 σ2
3 σ1σ2(C + ρ1,2)

−σ1(σ1 + ρ1,2σ2 + ρ1,3σ3) σ1σ3(B + ρ1,3) σ1σ2(C + ρ1,2) σ2
4


(3.1)

where

A = σ2
1 + σ2

2 + σ2
3 − σ2

4
2σ1σ2

, B = σ2
1 − σ2

2 + σ2
3 − σ2

4
2σ1σ3

, C = σ2
1 + σ2

2 − σ2
3 − σ2

4
2σ1σ2

(3.2)

and where ρ1,2, ρ1,3 need to satisfy the following constraints:
(i) When σ2 + σ3 ≥ σ1 + σ4,


Case 1

Left panel
of Figure 3.1



A1(ρ1,2) ≤ ρ1,3 ≤ A6, if A7 ≤ ρ1,2 ≤ ρA1,A5

A5 ≤ ρ1,3 ≤ A6, if ρA1,A5 ≤ ρ1,2 ≤ ρA2,A6

A5 ≤ ρ1,3 ≤ A2(ρ1,2), if ρA2,A6 ≤ ρ1,2 ≤ A8.

(3.3)

When σ2 + σ3 ≤ σ1 + σ4,


Case 2

Right panel
of Figure 3.1



A3(ρ1,2) ≤ ρ1,3 ≤ A6, if − 1 < ρ1,2 ≤ ρA3,−1

−1 ≤ ρ1,3 ≤ A6, if ρA3,−1 ≤ ρ1,2 ≤ ρA2,A6

−1 ≤ ρ1,3 ≤ A2(ρ1,2), if ρA2,A6 ≤ ρ1,2 ≤ A8,

(3.4)

81



where

A1(ρ1,2) = −σ1 − ρ1,2σ2 − σ4

σ3
, A2(ρ1,2) = −σ1 − ρ1,2σ2 + σ4

σ3

A3(ρ1,2) = −(A+ ρ1,2)σ2

σ3
− σ2

σ1
, A5 = −B − σ2σ4

σ1σ3

A6 = −B + σ2σ4

σ1σ3
, A7 = −σ3σ4

σ1σ2
− C

A8 = σ3σ4

σ1σ2
− C, ρA1,A5 = (σ2 − σ1)σ4

σ1σ2
−D

ρA2,A6 = (σ1 − σ2)σ4

σ1σ2
−D, ρA3,−1 = (σ1 − σ2)σ3

σ1σ2
− A

(3.5)

where A,B,C are defined in Equation (3.2) and D = σ2
1+σ2

2−σ
2
3+σ2

4
2σ1σ2

.

ρ1,3

ρ1,2

A6

A5
A1 A2

A7 A8

ρA1,A5

ρA2,A6

ρ1,3

ρ1,2

A6

−1
A3 A2

−1 A8

ρA3,−1

ρA2,A6

Case 1: σ2 + σ3 ≥ σ1 + σ4 Case 2: σ2 + σ3 ≤ σ1 + σ4

Figure 3.1: Illustrations of how to choose ρ1,2, ρ1,3

(ii) The sufficient condition for the covariance matrix to be positive-semidefinite, is
L1 > 0 where

L1 = (ρ2
1,2 − 1)(ρ2

1,3 − 1)− (ρ1,2(ρ1,3 + σ1σ2) + ρ1,3σ1σ3 + σ1σ2A)2 . (3.6)
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Proof. WLOG, we arrange
σ1 ≥ σ2 ≥ σ3 ≥ σ4. (3.7)

Denote ρi,j := Corr(Xi, Xj), the covariance matrix is symmetric, so it is

M :=


σ2

1 ρ1,2σ1σ2 ρ1,3σ1σ3 ρ1,4σ1σ4

ρ1,2σ1σ2 σ2
2 ρ2,3σ2σ3 ρ2,4σ2σ4

ρ1,3σ1σ3 ρ2,3σ2σ3 σ2
3 ρ3,4σ3σ4

ρ1,4σ1σ4 ρ2,4σ2σ4 ρ3,4σ3σ4 σ2
4

 (3.8)

Since Var(Σ4
i=1Xi) = 1TM1, let M1 = 0, we need



σ1 + ρ1,2σ2 + ρ1,3σ3 + ρ1,4σ4 = 0
ρ1,2σ1 + σ2 + ρ2,3σ3 + ρ2,4σ4 = 0
ρ1,3σ1 + ρ2,3σ2 + σ3 + ρ3,4σ4 = 0
ρ1,4σ1 + ρ2,4σ2 + ρ3,4σ3 + σ4 = 0.

(3.9)

It implies in particular that


Var(X1) = Var(X2 +X3 +X4)
Var(X2) = Var(X1 +X3 +X4)
Var(X3) = Var(X1 +X2 +X4)
Var(X4) = Var(X1 +X2 +X3)

(3.10)

and that 
Var(X1 +X2) = Var(X3 +X4)
Var(X1 +X3) = Var(X2 +X4)
Var(X1 +X4) = Var(X2 +X3).

(3.11)
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So from Equation (3.9),


ρ1,4 = −σ1+ρ1,2σ2+ρ1,3σ3
σ4

ρ2,3 = −σ2
1+2ρ1,2σ1σ2+σ2

2+2ρ1,3σ1σ3+σ2
3−σ

2
4

2σ2σ3

ρ2,4 = σ2
1−σ

2
2+2ρ1,3σ1σ3+σ2

3−σ
2
4

2σ2σ4

ρ3,4 = σ2
1+2ρ1,2σ1σ2+σ2

2−σ
2
3−σ

2
4

2σ3σ4
.

(3.12)

Then we get the covariance matrix M in terms of ρ1,2 and ρ1,3. To simplify writing, let

A = σ2
1 + σ2

2 + σ2
3 − σ2

4
2σ1σ2

, B = σ2
1 − σ2

2 + σ2
3 − σ2

4
2σ1σ3

, C = σ2
1 + σ2

2 − σ2
3 − σ2

4
2σ1σ2

. (3.13)

So M =
σ2

1 ρ1,2σ1σ2 ρ1,3σ1σ3 −σ1(σ1 + ρ1,2σ2 + ρ1,3σ3)
ρ1,2σ1σ2 σ2

2 −σ1σ2(A+ ρ1,2)− ρ1,3σ1σ3 σ1σ3(B + ρ1,3)
ρ1,3σ1σ3 −σ1σ2(A+ ρ1,2)− ρ1,3σ1σ3 σ2

3 σ1σ2(C + ρ1,2)
−σ1(σ1 + ρ1,2σ2 + ρ1,3σ3) σ1σ3(B + ρ1,3) σ1σ2(C + ρ1,2) σ2

4


(3.14)

Now we only need to determine ρ1,2 and ρ1,3 and the matrix M (3.8) should be positive-
semidefinite.
Fix ρ1,2 = ρ and assume −1 < ρ < 1, since ρ1,4, ρ2,3, ρ2,4, ρ3,4 are functions in terms of ρ1,2

and ρ1,3, we only need to get a range of ρ1,3 in terms of ρ to investigate the existence of all
the parameters.
If −1 ≤ ρ1,4 ≤ 1, by Equation (3.12),

−σ1 − ρσ2 − σ4

σ3︸ ︷︷ ︸
:=A1

≤ ρ1,3 ≤
−σ1 − ρσ2 + σ4

σ3︸ ︷︷ ︸
:=A2

. (3.15)

Similarly, by −1 ≤ ρ2,3 ≤ 1 and Equation (3.12),

−2ρσ1σ2 − σ2
1 − σ2

2 − σ2
3 + σ2

4 − 2σ2σ3

2σ1σ3︸ ︷︷ ︸
:=A3

≤ ρ1,3 ≤
−2ρσ1σ2 − σ2

1 − σ2
2 + 2σ2σ3 − σ2

3 + σ2
4

2σ1σ3︸ ︷︷ ︸
:=A4

.

(3.16)
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To simplify writing, we write A3 = −(A + ρ1,2)σ2
σ3
− σ2

σ1
, A4 = −(A + ρ1,2)σ2

σ3
+ σ2

σ1
where A

is defined in Equation (3.13).
Similarly, by −1 ≤ ρ2,4 ≤ 1 and Equation (3.12),

−σ2
1 + σ2

2 − 2σ2σ4 − σ2
3 + σ2

4
2σ1σ3︸ ︷︷ ︸
:=A5

≤ ρ1,3 ≤
−σ2

1 + σ2
2 + 2σ2σ4 − σ2

3 + σ2
4

2σ1σ3︸ ︷︷ ︸
:=A6

. (3.17)

Also, we write A5 = −B − σ2σ4
σ1σ3

, A6 = −B + σ2σ4
σ1σ3

where B is defined in Equation (3.13).
Similarly, by −1 ≤ ρ3,4 ≤ 1 and Equation (3.12),

−σ2
1 − σ2

2 + σ2
3 − 2σ3σ4 + σ2

4
2σ1σ2︸ ︷︷ ︸
:=A7

≤ ρ ≤ −σ
2
1 − σ2

2 + σ2
3 + 2σ3σ4 + σ2

4
2σ1σ2︸ ︷︷ ︸
:=A8

. (3.18)

Also, we write A7 = −σ3σ4
σ1σ2
− C,A8 = σ3σ4

σ1σ2
− C where C is defined in Equation (3.13).

We first compare A5, A6 with −1, 1.

Case 1: σ2 + σ3 ≥ σ1 + σ4

A5 − (−1) = −(σ1 − σ3)2 + (σ2 − σ4)2

2σ1σ3
≥ 0, (3.19)

so A5 ≥ −1.

A6 − 1 = −(σ1 + σ3)2 + (σ2 + σ4)2

2σ1σ3
, (3.20)

so A6 ≤ 1.
As A1 = −σ2

σ3
ρ− σ1+σ4

σ3
, A3 = −σ2

σ3
ρ+ σ2

4−σ
2
1−σ

2
2−σ

2
3−2σ2σ3

2σ1σ3
, A1, A2, A3, A5 are parallel lines.

A1 − A3 = (σ2 + σ3)2 − (σ1 + σ4)2

2σ1σ3
≥ 0, (3.21)

so A1 ≥ A3.

A4 − A2 = (σ1 − σ4)2 − (σ2 − σ3)2

2σ1σ3
≥ 0, (3.22)

so A4 ≥ A2.
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Now we compare A7, A8,−1, 1.

A7 − (−1) = −(σ1 − σ2)2 + (σ3 − σ4)2

2σ1σ2
≥ 0, (3.23)

so A7 ≥ −1.
Since σ1 ≥ σ2 ≥ σ3 ≥ σ4,

A8 − 1 = −(σ1 + σ2)2 + (σ3 + σ4)2

2σ1σ2
≤ 0, (3.24)

so A8 ≤ 1.
When A5 = A1,

ρ = −σ
2
1 − 2σ1σ4 − σ2

2 + 2σ2σ4 + σ2
3 − σ2

4
2σ1σ2

:= ρA1,A5 .

Now define D := σ2
1+σ2

2−σ
2
3+σ2

4
2σ1σ2

, then ρA1,A5 = (σ2−σ1)σ4
σ1σ2

−D.

ρA1,A5 − A7 = σ4(σ2 − σ1 + σ3 − σ4)
σ1σ2

≥ 0,

so ρA1,A5 ≥ A7.

When A1 = A6,

ρ = −σ
2
1 − 2σ1σ4 − σ2

2 − 2σ2σ4 + σ2
3 − σ2

4
2σ1σ2

:= ρA1,A6 ,

ρA1,A6 − A7 = −σ4(σ1 + σ2 − σ3 + σ4)
σ1σ2

≤ 0,

so ρA1,A6 ≤ A7.
And ρA2,A6 − ρA1,A5 = 2σ4( 1

σ2
− 1

σ1
) ≥ 0. When A2 = A5,

ρ = −σ
2
1 + 2σ1σ4 − σ2

2 + 2σ2σ4 + σ2
3 − σ2

4
2σ1σ2

:= ρA2,A5 ,

A8 − ρA2,A5 = σ4(σ3 + σ4 − σ1 − σ2)
σ1σ2

≤ 0,

so A8 ≤ ρA2,A5 .
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When A2 = A6,

ρ = −σ
2
1 + 2σ1σ4 − σ2

2 − 2σ2σ4 + σ2
3 − σ2

4
2σ1σ2

:= ρA2,A6 .

Also, write ρA2,A6 = (σ1−σ2)σ4
σ1σ2

−D.

A8 − ρA2,A6 = σ4(σ2 + σ3 + σ4 − σ1)
σ1σ2

≥ 0,

so A8 ≥ ρA2,A6 .
Now we get an area for choosing ρ, ρ1,3 except checking L1 > 0. Panel A in Figure 3.2 is
a sketch of the shape of the area, the shaded area is the acceptance area for ρ, ρ1,3 (How
the line intercept x, y coordinate is not clear). Panel B in Figure 3.2 is a simulation plot
using MATLAB with σ1 = 8, σ2 = 7.5, σ3 = 6.5, σ4 = 3 where the four red lines denote
+1,−1, cyan lines denote A1, A2, green lines denote A3, A4, black lines denote A5, A6, blue
lines denote A7, A8. The white area is the acceptance area for (ρ, ρ1,3) which has the same
shape as in Panel A of Figure 3.2.

ρ1,3

ρ1,2

A6

A5
A1 A2

A7 A8

ρA1,A5

ρA2,A6

Panel A Panel B

Figure 3.2: Panel A: Sketch of the area under case 1.
Panel B: Simulation of the area under case 1
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Case 2: σ2 + σ3 ≤ σ1 + σ4

By Equations (3.19), (3.20), (3.21), (3.22), (3.23), (3.24), we get

A5 ≤ −1, A6 ≤ 1, A1 ≤ A3, A4 ≥ A2, A7 ≤ −1, A8 ≤ 1.

Next we need to decide how the lines intersect with each other to see the shape of the area.
When A2 = A6,

ρ = −σ
2
1 + 2σ1σ4 − σ2

2 − 2σ2σ4 + σ2
3 − σ2

4
2σ1σ2

:= ρA2,A6 .

When −1 = A3,

ρ = −σ
2
1 + 2σ1σ3 − σ2

2 − 2σ2σ3 − σ2
3 + σ2

4
2σ1σ2

:= ρA3,−1.

Also, write ρA3,−1 = (σ1−σ2)σ3
σ1σ2

− A.

ρA2,A6 − ρA3,−1 = (σ3 − σ4)(−σ1 + σ2 + σ3 + σ4)
σ1σ2

≥ 0,

so ρA2,A6 ≥ ρA3,−1.
When A3 = A6,

ρ = −σ2 − σ3 − σ4

σ1
:= ρA3,A6 ,

−1− ρA3,A6 = σ2 + σ3 + σ4 − σ1

σ1
≥ 0,

so −1 ≥ ρA3,A6 .

ρA3,−1 − (−1) = −σ
2
1 − 2σ1(σ2 + σ3) + σ2

2 + 2σ2σ3 + σ2
3 − σ2

4
2σ1σ2

= (σ2 + σ3 + σ4 − σ1)((σ1 + σ4)− (σ2 + σ3)
2σ1σ2

≥ 0,
(3.25)

so ρA3,−1 ≥ −1.
And

A8 − ρA2,A6 = σ4(σ2 + σ3 + σ4 − σ1)
σ1σ2

≥ 0,
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so A8 ≥ ρA2,A6 .

When A2 = −1,
ρ = σ3 + σ4 − σ1

σ2
:= ρA2,−1,

ρA2,−1 − A8 = (σ1 + σ2 − σ3 − σ4)(σ2 + σ3 + σ4 − σ1)
2σ1σ2

≥ 0,

so ρA2,−1 ≥ A8.
Similarly, we get a sketch of the area in Panel A of Figure 3.3. Panel B of Figure 3.3 is
a simulation plot using Matlab with σ1 = 10, σ2 = 6, σ3 = 5, σ4 = 4 where the four red
lines denote +1,−1, cyan lines denote A1, A2, green line denotes A3, A4, black lines denote
A5, A6, blue lines denote A7, A8. The white area is the acceptance area for (ρ, ρ1,3) which
has the same shape as in Panel A of Figure 3.3.

ρ1,3

ρ1,2

A6

−1
A3 A2

−1 A8

ρA3,−1

ρA2,A6

Panel A Panel B

Figure 3.3: Panel A: Sketch of the area under case 2
Panel B: Simulation of the area under case 2

In summary, every colored equation in the following corresponds to the colored area in
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Panel A of Figures 3.2 and 3.3.

When σ2 + σ3 ≥ σ1 + σ4,


A1(ρ) ≤ ρ1,3 ≤ A6, if A7 ≤ ρ ≤ ρA1,A5

A5 ≤ ρ1,3 ≤ A6, if ρA1,A5 ≤ ρ ≤ ρA2,A6

A5 ≤ ρ1,3 ≤ A2(ρ), if ρA2,A6 ≤ ρ ≤ A8,

(3.26)

when σ2 + σ3 ≤ σ1 + σ4,


A3(ρ) ≤ ρ1,3 ≤ A6, if − 1 ≤ ρ ≤ ρA3,−1

−1 ≤ ρ1,3 ≤ A6, if ρA3,−1 ≤ ρ ≤ ρA2,A6

−1 ≤ ρ1,3 ≤ A2(ρ), if ρA2,A6 ≤ ρ ≤ A8.

(3.27)

An area works for both cases is,
max
ρ

(A1, A3) ≤ ρ1,3 ≤ A6 if max(A7,−1) ≤ ρ ≤ min(ρA1,A5 , ρA3,−1)

max(−1, A5) ≤ ρ1,3 ≤ A6 if max(ρA1,A5 , ρA3,−1) ≤ ρ ≤ ρA2,A6

max(−1, A5) ≤ ρ1,3 ≤ A2(ρ) if ρA2,A6 ≤ ρ ≤ A8.

(3.28)

To ensure the positive-semidefinite of M , we use Cholesky decomposition here: every real
symmetric, positive-semidefinite matrix M can be written as M = LLT where L is a
lower triangular matrix with real and non-negative diagonal entries, and LT denotes the
conjugate transpose of L (see Golub and Van Loan [2012]). If we can find such matrix
L, then the matrix M is positive-semidefinite. Note L is not unique when M is positive-
semidefinite matrix but not positive definite. Let Li,j denotes the entries of L. By the
Cholesky-Banachiewicz and Cholesky-Crout algorithms (see Golub and Van Loan [2012])
and by M = LLT ,


σ2
1 ρ1,2σ1σ2 ρ1,3σ1σ3 ρ1,4σ1σ4

ρ1,2σ1σ2 σ2
2 ρ2,3σ2σ3 ρ2,4σ2σ4

ρ1,3σ1σ3 ρ2,3σ2σ3 σ2
3 ρ3,4σ3σ4

ρ1,4σ1σ4 ρ2,4σ2σ4 ρ3,4σ3σ4 σ2
4

 =


L1,1 0 0 0
L2,1 L2,2 0 0
L3,1 L3,2 L3,3 0
L4,1 L4,2 L4,3 L4,4



L1,1 L2,1 L3,1 L4,1

0 L2,2 L3,2 L4,2

0 0 L3,3 L4,3

0 0 0 L4,4



=


L2

1,1 L1,1L2,1 L1,1L3,1 L1,1L4,1

0 L2
2,1 + L2

2,2 L2,1L3,1 + L2,2L3,2 L2,1L4,1 + L2,2L4,2

0 0 L2
3,1 + L2

3,2 + L2
3,3 L3,1L4,1 + L3,2L4,2 + L3,3L4,3

0 0 0 L2
4,1 + L2

4,2 + L2
4,3 + L2

4,4


(3.29)
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Then

Lj,j =
√
Mj,j − Σj−1

k=1L
2
j,k,

Li,j = 1
Lj,j

(Mi,j − Σj−1
k=1Li,kLj,k) for i > j,

(3.30)

where Mi,j denotes the entry of M. We need Lj,j 6= 0 to make this algorithm work.

L1,1 = σ1 > 0, L2,1 = ρ1,2σ2, L3,1 = ρ1,3σ3, L4,1 = ρ1,4σ4 = −σ1 − ρ1,2σ2 − ρ1,3σ3,

L2,2 =
√
σ2

2 − ρ2
1,2σ

2
2, (L2,2 > 0⇒ ρ1,2 6= ±1),

L3,2 = 1
L2,2

(M3,2 − L3,1L2,1) = 1√
1− ρ2

1,2
(ρ2,3σ3 − ρ1,3ρ1,2σ3)

= −2ρ1,2ρ1,3σ2σ3 + 2ρ1,2σ1σ2 + 2ρ1,3σ1σ3 + σ2
1 + σ2

2 + σ2
3 − σ2

4

2σ2
√

1− ρ2
1,2

,

L4,2 = 1
L2,2

(M4,2 − L4,1L2,1)

= 1√
1− ρ2

1,2
(ρ2,4σ4 − ρ1,2ρ1,4σ4)

=

(
2ρ2

1,2 − 1
)
σ2

2 + 2σ1(ρ1,2σ2 + ρ1,3σ3) + 2ρ1,2ρ1,3σ2σ3 + σ2
1 + σ2

3 − σ2
4

2σ2
√

1− ρ2
1,2

,

L3,3 =
√
σ2

3 − L2
3,2 − L2

3,1,

(we need σ2
3 − L2

3,2 − L2
3,1 > 0 here)

L4,3 = 1
L3,3

(M4,3 − L4,1L3,1 − L4,2L3,2),

L4,4 =
√
M4,4 − L2

4,1 − L2
4,2 − L2

4,3 = 0.

(3.31)

If we pick ρ1,2 ∈ (−1, 1), then the only condition for M to be positive-semidefinite is
σ2

3 − L2
3,2 − L2

3,1 > 0,

σ2
3 − L2

3,2 − L2
3,1 = σ2

3
1− ρ2

1,2
[(1− ρ2

1,2)(1− ρ2
1,3)− (ρ2,3 − ρ1,2ρ1,3)2]︸ ︷︷ ︸

L1

> 0, (3.32)
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which is:

L1 = (ρ2
1,2 − 1)(ρ2

1,3 − 1)− (ρ1,2(ρ1,3 + σ1σ2) + ρ1,3σ1σ3 + σ1σ2A)2 > 0. (3.33)

The following is an example on how to use Proposition 3.1.8.

Example 3.1.9. When Xi ∼ N(µi, σ2
i ), where µi ∈ R and σ1 = 10, σ2 = 6, σ3 = 5, σ4 = 4,

the covariance matrix for Var(Σ4
i=1Xi) = 0 is


100 −95
2 −25

2 −40
−95

2 36 −25
2 24

−25
2 −25

2 25 0
−40 24 0 16

 (3.34)

Proof. By Proposition 3.1.8, Equations (3.2) and (3.5), A = 29
24 , B = 73

100 , C = 19
24 , D = 127

120 .
Then by Equation (3.28), we can choose

ρ1,2 = ρA2,A6 = (σ1 − σ2)σ4

σ1σ2
−D = −19

24 ,

ρ1,3 = A6 = −B + σ2σ4

σ1σ3
= −1

4 ,

which satisfy constraint (ii) in Proposition 3.1.4 (In addition, ρ1,2 = ρA2,A6 , ρ1,3 = A6 always
satisfy constraint (ii)). Then we check constraint (i) using Equation (3.33), L1 = 1811

5184 is
indeed positive. So by the matrix in Equation (3.1), A = 29

24 , B = 73
100 , C = 19

24 , we get the
covariance matrix.

Conjecture 3.1.10. In Proposition 3.1.8, we get a set of constraints for ρ1,2, ρ1,3 under 2
cases (σ2 + σ3 ≤ σ1 + σ4 and σ2 + σ3 ≥ σ1 + σ4) respectively. An area works for both cases
is:

max
ρ1,2

(A1, A3) ≤ ρ1,3 ≤ A6 if max(A7,−1) ≤ ρ1,2 ≤ min(ρA1,A5 , ρA3,−1)

max(−1, A5) ≤ ρ1,3 ≤ A6 if max(ρA1,A5 , ρA3,−1) ≤ ρ1,2 ≤ ρA2,A6

max(−1, A5) ≤ ρ1,3 ≤ A2(ρ1,2) if ρA2,A6 ≤ ρ1,2 ≤ A8.

(3.35)
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There are some constants (in terms of σi) satisfy Equation (3.35) such as ρ1,2 = ρA2,A6 , ρ1,3 =
A6. However, L1 > 0 needs to be checked.

For n ≥ 5, a similar method can be used but there is a larger number of constraints
and the feasible set for the correlation coefficients is in dimension ≥ 2.

3.2 Bounds on Variance with Background Risk

3.2.1 Case of 3 Normal Distributed Random Variables

Both Sections 3.2.1 and 3.2.2 can be seen as an application of Section 3.1.

Proposition 3.2.1. Assume X1, X2, X3 follow N(0, 1) marginals, Z is a background risk
and (Xi, Z) has BVN(ρi), i = 2, 3. The maximum and minimum variance Var(X1 +X2 +
X3) when Z = X1 are 3 + 2(ρ2 + ρ3) + 2ρ2ρ3 − 2

√
(1− ρ2

2)(1− ρ2
3) and 3 + 2ρ2 + 2ρ3 +

2
√

(1− ρ2
2)(1− ρ2

3) + 2ρ2ρ3 respectively.

Proof. In general,

Var(X1 +X2 +X3)
= Var(X1) + Var(X2) + Var(X3) + 2Cov(X1, X2) + 2Cov(X1, X3) + 2Cov(X2, X3)
= 3 + 2ρ2 + 2ρ3 + 2Cov(X2, X3).

(3.36)

And 2Cov(X2, X3) = Var(X2 +X3)− Var(X2)− Var(X3) = Var(X2 +X3)− 2.

Var(X2 +X3) = E((X2 +X3)2)− E(X2 +X3)2 = E((X2 +X3)2) = E(E((X2 +X3)2|Z))
= E(E((X2|Z +X3|Z)2)).

(3.37)

To get the maximum and minimum variance, we just need to maximize and minimize
E((X2|Z +X3|Z)2).
Let U2, U3 follow U [0, 1] independently of Z, and F2|Z , F3|Z be the conditional distributions
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of X2|Z,X3|Z. Then X2|Z +X3|Z = F−1
2|Z(U2) + F−1

3|Z(U3), so by Theorem 1.2.11,

F−1
2|Z(U) + F−1

3|Z(1− U) ≤cx X2|Z +X3|Z ≤cx F−1
2|Z(U) + F−1

3|Z(U)

where U ∼ U [0, 1] independent of Z. Then

E((F−1
2|Z(U) + F−1

3|Z(U))2) ≥ E((X2|Z +X3|Z)2) ≥ E((F−1
2|Z(U) + F−1

3|Z(1− U))2).

Since Z = X1 and (Xi, Z) ∼ BVN(ρi), Xi|X1 = x1 ∼ N(ρix1, 1− ρ2
i ), i = 2, 3.

We calculate the minimum variance first. Denote Y2 := F−1
2|X1=x1

(U), Y3 := F−1
3|X1=x1

(1−U),
then

Yi ∼ N(ρix1, 1− ρ2
i ),

Yi − ρix1√
1− ρ2

i

∼ N(0, 1),

since Y2, Y3 move countermonotonically and let Φ denote the distribution function of
N(0, 1),

Y2 − ρ2x1√
1− ρ2

2

= Φ−1(U), Y3 − ρ3x1√
1− ρ2

3

= Φ−1(1− U).

So
Y2 + Y3 =

√
1− ρ2

2Φ−1(U) + ρ2x1 +
√

1− ρ2
3Φ−1(1− U) + ρ3x1.

Since Φ−1(U) and Φ−1(1− U) are symmetric to 0,

Y2 − ρ2x1√
1− ρ2

2

= −Y3 − ρ3x1√
1− ρ2

3

=⇒ Y3 =−

√
1− ρ2

3√
1− ρ2

2

(Y2 − ρ2x1) + ρ3x1

=−

√
1− ρ2

3√
1− ρ2

2

(
√

1− ρ2
2Φ(U) + ρ2x1 − ρ2x1) + ρ3x1

=−
√

1− ρ2
3Φ−1(U) + ρ3x1.
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So
F−1

2|X1
(U) + F−1

3|X1
(1− U) = (

√
1− ρ2

2 −
√

1− ρ2
3)Φ−1(U) + (ρ2 + ρ3)X1.

Since U,X1 are independent and Φ−1(U), X1 ∼ N(0, 1),

Var(F−1
2|Z(U) + F−1

3|Z(1− U))

=Var((
√

1− ρ2
2 −

√
1− ρ2

3)Φ−1(U) + (ρ2 + ρ3)X1)

=Var((
√

1− ρ2
2 −

√
1− ρ2

3)Φ−1(U)) + 2Cov((
√

1− ρ2
2 −

√
1− ρ2

3)Φ−1(U), (ρ2 + ρ3)X1)
+ Var((ρ2 + ρ3)X1)

=(
√

1− ρ2
2 −

√
1− ρ2

3)2 + 0 + (ρ2 + ρ3)2

=2(1 + ρ2ρ3 −
√

(1− ρ2
2)(1− ρ2

3)),

E(F−1
2|Z(U) + F−1

3|Z(1− U)) = E((
√

1− ρ2
2 −

√
1− ρ2

3)Φ−1(U) + (ρ2 + ρ3)X1) = 0.

Then

E((F−1
2|Z(U) + F−1

3|Z(1− U))2) =Var(F−1
2|Z(U) + F−1

3|Z(1− U)) + E2(F−1
2|Z(U) + F−1

3|Z(1− U))

=(2(1 + ρ2ρ3 −
√

(1− ρ2
2)(1− ρ2

3))).

So by Equations (3.36), (3.37), the minimum of Var(X1 +X2 +X3) is

3 + 2ρ2 + 2ρ3 + E(2(1 + ρ2ρ3 −
√

(1− ρ2
2)(1− ρ2

3)))− 2

=3 + 2(ρ2 + ρ3) + 2ρ2ρ3 − 2
√

(1− ρ2
2)(1− ρ2

3).
(3.38)

Then we calculate the maximum variance, denote Y2 := F−1
2|X1=x1

(U), Y3 := F−1
3|X1=x1

(U),

similar to above, Yi − ρix1√
1− ρ2

i

∼ N(0, 1), let Yi − ρix1√
1− ρ2

i

= Φ−1(U) so that Y2, Y3 move comono-

tonically.
So

F−1
2|X1

(U) + F−1
3|X1

(U) = Y2 + Y3 = (
√

1− ρ2
2 +

√
1− ρ2

3)Φ−1(U) + (ρ2 + ρ3)x1.
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Since U,X1 are independent and Φ−1(U), X1 ∼ N(0, 1),

E((F−1
2|Z(U) + F−1

3|Z(U))2) =Var(F−1
2|Z(U) + F−1

3|Z(U)) + E2(F−1
2|Z(U) + F−1

3|Z(U))

=Var((
√

1− ρ2
2 +

√
1− ρ2

3)Φ−1(U) + (ρ2 + ρ3)X1) + 02

=(
√

1− ρ2
2 +

√
1− ρ2

3)2 + (ρ2 + ρ3)2

=2 + 2
√

(1− ρ2
2)(1− ρ2

3) + 2ρ2ρ3.

(3.39)

So by Equations (3.36), (3.37), the maximum of Var(X1 +X2 +X3) is

3 + 2ρ2 + 2ρ3 + 2
√

(1− ρ2
2)(1− ρ2

3) + 2ρ2ρ3.

We now illustrate Proposition 3.2.1 with a comparison of unconstrained and constrained
maximum (Panel A, C, E) and minimum (Panel B, D, F) variance under different assump-
tions on ρ2. In Figure 3.4, the lines with ∗ and solid lines indicate respectively the maxi-
mum unconstrained variance on Panel A, C, E and the minimum unconstrained variance
on Panel B, D, F.

When X1, X2, X3 are comonotonic, F1(X1) = F2(X2) = F3(X3) = U , then Var(X1 +
X2+X3) gets the maximum variance Var(F−1

1 (U)+F−1
2 (U)+F−1

3 (U)) = Var(3Φ−1(U)) = 9.
The minimum of Var(X1 +X2 +X3) is 0 since X1, X2, X3 are jointly mixable (see Definition
1.2.9). The two cases correspond to the lines with ∗.
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Panel A: ρ2 = 1, ρ3 ∈ [−1, 1] Panel B: ρ2 = 1, ρ3 ∈ [−1, 1]

Panel C: ρ2 = 0, ρ3 ∈ [−1, 1] Panel D: ρ2 = 0, ρ3 ∈ [−1, 1]

Panel E: ρ2 = −1, ρ3 ∈ [−1, 1] Panel F: ρ2 = −1, ρ3 ∈ [−1, 1]

Figure 3.4: Comparisons of unconstrained variance and constrained variance when ρ2 = 1
with ρ3 varies from -1 to 1.

We apply Proposition 3.1.6 under the assumption that ρ2 = ρ3. As can be seen from
the Panel B of Figure 3.5, Var(X1 + X2 + X3) reaches minimum 0 when ρ2 = ρ3 = −1

2 ,
which is Cov(X1, X2) = Cov(X1, X3) = −1

2 .
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Panel A: ρ2 = ρ3 ∈ [−1, 1] Panel B: ρ2 = ρ3 ∈ [−1, 1]

Figure 3.5: Comparison of unconstrained variance and constrained variance in
proposition 3.2.1 when ρ2 = ρ3

3.2.2 Case of 4 Normal Distributed Random Variables

The following proposition is a generalization of Proposition 3.2.1 in dimension d = 4.

Proposition 3.2.2. Assume X1, X2, X3, X4 follow N(0, 1) marginals, Z is a background
risk and (Xi, Z) has BVN(ρi), i = 1, 2, 3. The maximum and minimum variance Var(X1 +
X2 +X3 +X4) when Z = X4 are

4 + 2ρ1 + 2ρ2 + 2ρ3 + 2
√

(1− ρ2
1)(1− ρ2

2) + 2
√

(1− ρ2
1)(1− ρ2

3) + 2
√

(1− ρ2
2)(1− ρ2

3)
+ 2ρ1ρ2 + 2ρ1ρ3 + 2ρ2ρ3

and 
(ρ1 + ρ2 + ρ3 + 1)2 if max

1≤i≤3

√
1− ρ2

i ≤
1
2Σ3

i=1

√
1− ρ2

i

(max
1≤i≤3

√
1− ρ2

i −
1
2Σ3

i=1

√
1− ρ2

i )2 if max
1≤i≤3

√
1− ρ2

i >
1
2Σ3

i=1

√
1− ρ2

i .
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Proof. In general,

Var(X1 +X2 +X3 +X4)
= Var(X1) + Var(X2) + Var(X3) + Var(X4) + 2Cov(X1, X2) + 2Cov(X1, X3) + 2Cov(X1, X4)
+ 2Cov(X2, X3) + 2Cov(X2, X4) + 2Cov(X3, X4)
= 4 + 2ρ1 + 2ρ2 + 2ρ3 + 2Cov(X1, X2) + 2Cov(X1, X3) + 2Cov(X2, X3).

(3.40)

And

2Cov(X1, X2) + 2Cov(X1, X3) + 2Cov(X2, X3) = Var(X1 +X2) + Var(X1 +X3) + Var(X2 +X3)− 6,

then

Var(X1 +X2) + Var(X1 +X3) + Var(X2 +X3) = E((X1 +X2)2) + E((X1 +X3)2) + E((X2 +X3)2)
= E(E((X1 +X2)2 + (X1 +X3)2 + (X2 +X3)2|Z))
= E(E((X1|Z +X2|Z)2 + (X1|Z +X3|Z)2 + (X2|Z +X3|Z)2)).

(3.41)

To get the maximum and minimum variance, we just need to maximize and minimize
E((X1|Z +X2|Z)2 + (X1|Z +X3|Z)2 + (X2|Z +X3|Z)2).
For the upper bound, the argument is similar with the proof of Proposition 3.2.1, we have

E((F−1
1|Z(U) + F−1

2|Z(U))2) + E((F−1
1|Z(U) + F−1

3|Z(U))2) + E((F−1
2|Z(U) + F−1

3|Z(U))2)
≥E((X1|Z +X2|Z)2) + E((X1|Z +X3|Z)2) + E((X2|Z +X3|Z)2)

where U ∼ U [0, 1] independent of Z, F1|Z , F2|Z , F3|Z are the conditional distributions of
X1|Z,X2|Z,X3|Z.
Since Z = X4 ∼ N(0, 1) and (Xi, Z) ∼ BVN(ρi), Xi|X4 = x4 ∼ N(ρix4, 1− ρ2

i ), i = 1, 2, 3,
U and X4 are independent. WLOG, by Equation (3.39),

E((F−1
1|Z(U) + F−1

2|Z(U))2) = 2 + 2
√

(1− ρ2
1)(1− ρ2

2) + 2ρ1ρ2,

E((F−1
1|Z(U) + F−1

3|Z(U))2) = 2 + 2
√

(1− ρ2
1)(1− ρ2

3) + 2ρ1ρ3,
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E((F−1
2|Z(U) + F−1

3|Z(U))2) = 2 + 2
√

(1− ρ2
2)(1− ρ2

3) + 2ρ2ρ3.

So by Equations (3.40), (3.41), the maximum of Var(X1 +X2 +X3 +X4) is

4 + 2ρ1 + 2ρ2 + 2ρ3 + 2 + 2
√

(1− ρ2
1)(1− ρ2

2) + 2ρ1ρ2

+ 2 + 2
√

(1− ρ2
1)(1− ρ2

3) + 2ρ1ρ3 + 2 + 2
√

(1− ρ2
2)(1− ρ2

3) + 2ρ2ρ3 − 6

= 4 + 2ρ1 + 2ρ2 + 2ρ3 + 2
√

(1− ρ2
1)(1− ρ2

2) + 2
√

(1− ρ2
1)(1− ρ2

3) + 2
√

(1− ρ2
2)(1− ρ2

3)
+ 2ρ1ρ2 + 2ρ1ρ3 + 2ρ2ρ3.

To get the minimum variance,

Var(X1+X2+X3+X4) = E[E[(X1+X2+X3+X4)2|X4]] =
∫ ∞
−∞

E((X1+X2+X3+X4)2|X4 = x4)dF4(x4),

fixing X4 as a constant x4, we only need to minimize

E((X1+X2+X3+X4)2|X4 = x4) = E((X1|X4 = x4+X2|X4 = x4+X3|X4 = x4+X4|X4 = x4)2).
(3.42)

Since we know Xi|X4 = x4 ∼ N(ρix4, 1− ρ2
i ), i = 1, 2, 3, denote

Xi|X4 = x4 := ρix4 +
√

1− ρ2
iWi,

where Wi ∼ N(0, 1).
Then,

Equation (3.42) = (ρ1 + ρ2 + ρ3 + 1)2x2
4 + E[(

√
1− ρ2

1W1 +
√

1− ρ2
2W2 +

√
1− ρ2

3W3)2].

Now we minimize E[(
√

1− ρ2
1W1 +

√
1− ρ2

2W2 +
√

1− ρ2
3W3)2] using Proposition 3.1.7.

Case 1: When max
1≤i≤3

√
1− ρ2

i ≤
1
2Σ3

i=1

√
1− ρ2

i .

min{E[(
√

1− ρ2
1W1 +

√
1− ρ2

2W2 +
√

1− ρ2
3W3)2]} = 0. So,

min{Var(X1 +X2 +X3 +X4)} =
∫ ∞
−∞

(ρ1 + ρ2 + ρ3 + 1)2x2
4dF4(x4)

= (ρ1 + ρ2 + ρ3 + 1)2E(X2
4 ) = (ρ1 + ρ2 + ρ3 + 1)2
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Case 2: When max
1≤i≤3

√
1− ρ2

i >
1
2Σ3

i=1

√
1− ρ2

i .

min{E[(
√

1− ρ2
1W1 +

√
1− ρ2

2W2 +
√

1− ρ2
3W3)2]} = (max

1≤i≤3

√
1− ρ2

i −
1
2Σ3

i=1

√
1− ρ2

i )2.

So

min{Var(X1 +X2 +X3 +X4)}

=
∫ ∞
−∞

((ρ1 + ρ2 + ρ3 + 1)2x2
4 + (max

1≤i≤3

√
1− ρ2

i −
1
2Σ3

i=1

√
1− ρ2

i )2)dF4(x4)

=(ρ1 + ρ2 + ρ3 + 1)2 + (max
1≤i≤3

√
1− ρ2

i −
1
2Σ3

i=1

√
1− ρ2

i )2.

3.3 Case of Non-normal Distributed Random Vari-
ables

3.3.1 Rearrangement Algorithm

Rearrangement algorithm (RA) is introduced in Puccetti and Rüschendorf [2012], here is
a description on how to use it. Given a n× d matrix A as


a11 a12 ... a1d

. . . .

. . . .

an1 an2 ... and

 (3.43)

we rearrange the entries within each column to obtain row sums with minimal variance.
(variance of (Σ1≤i≤da1i,Σ1≤i≤da2i, ...,Σ1≤i≤dani) is the smallest.)

Step 1. For jth column, 2 ≤ j ≤ d, order the elements oppositely to the sum of the
other columns Σ1≤i≤d,i 6=jaij.

Step 2. Redo step 1 for each jth column, 1 ≤ j ≤ d.

When there are d risks Xi, 1 ≤ i ≤ d with a background risk Z which takes k values
in {z1, ..., zk}, we can still use rearrangement algorithm to approximate the minimum of
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Var(∑d
i=1Xi) since

Var(
d∑
i=1

Xi) = E

[
Var(

d∑
i=1

Xi|Z)
]

︸ ︷︷ ︸
1©

+ Var
[
E(

d∑
i=1

Xi|Z)
]

︸ ︷︷ ︸
2©

(3.44)

Then
1© =

k∑
j=1

P (Z = zj)Var
(

d∑
i=1

(Xi|Z = zj)
)
. (3.45)

For each Z = zj, we have submatrix Aj =

a11 a12 ... a1d a1,d+1

. . . . .

. . . . .

an1 an2 ... and an+1,d+1

 (3.46)

where ai,d+1 = zj. If we know Xi|Z = zj with some cumulative probability function Fi,j,
then for some large number n, we generate F−1( t

n+1), t = 1, ..., n as ai,t in the submatrix
Aj. Then we approximate the minimum of Var

(∑d
i=1(Xi|Z = zj)

)
by using RA on the

submatrix Aj. Now we evaluate 2©,

2© = E

(
E2(

d∑
i=1

Xi|Z)
)
− E2

(
E(

d∑
i=1

Xi|Z)
)

= E

(
E2(

d∑
i=1

Xi|Z)
)
− E2(

d∑
i=1

Xi)

=
k∑
j=1

P (Z = zj)
(
E(

d∑
i=1

Xi|Z = zj)
)2

−
(

d∑
i=1

E(Xi)
)2

=
k∑
j=1

P (Z = zj)
(

d∑
i=1

E(Xi|Z = zj)
)2

−
(

d∑
i=1

E(Xi)
)2

.

(3.47)

If we know the distribution function of each Xi|Z = zj, i = 1, ..., d, j = 1, ..., k and the
marginal distribution of every Xi, i = 1, ..., d, then 2© can be computed.
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3.3.2 Application with 2 Pareto Risks

We start with an example. Consider two random variables X1, X2 and a background risk
Z such that P (Z = 3) = P (Z = 4) = 1

2 . Suppose Xi|Z = z ∼ Pareto(iz), z = 3 or 4, i =
1 or 2, then the minimum variance Var(X1 +X2) is

Γ(2
3)Γ(5

6)
Γ(3

2) +
Γ(7

8)Γ(3
4)

Γ(13
8 ) − 490669

176400 ≈ 0.4325 (3.48)

where Γ is the Gamma function.

Proof. (Proof of Formula (3.48))

Var(X1 +X2) = E [Var(X1 +X2|Z)]︸ ︷︷ ︸
1©

+ Var [E(X1 +X2|Z)]︸ ︷︷ ︸
2©

, (3.49)

1© = P (Z = 3)Var(X1|Z = 3 +X2|Z = 3) + P (Z = 4)Var(X1|Z = 4 +X2|Z = 4)

= 1
2Var(X1|Z = 3 +X2|Z = 3) + 1

2Var(X1|Z = 4 +X2|Z = 4).
(3.50)

We consider the two terms separately. First when X1|Z = 3 ∼ Pareto(3) and X2|Z = 3 ∼
Pareto(6). Denote (X1|Z = 3) = X̃1, (X2|Z = 3) = X̃2, then

E(X̃1) = 1
2 , E(X̃2) = 1

5 ,Var(X̃1) = 3
4 ,Var(X̃2) = 3

50 ,

Var(X̃1 + X̃2)
=Var(X̃1) + 2Cov(X̃1, X̃2) + Var(X̃2)

=3
4 + 2

(
E
(
X̃1X̃2

)
− 1

2 ·
1
5

)
+ 3

50
= 61

100 + 2E
(
X̃1X̃2

)
.

(3.51)

By Lemma 2.1.1,

E[X̃1X̃2] =
∫ ∞

0

∫ ∞
0

P (X̃1 ≥ u, X̃2 ≥ v)dudv

=
∫ ∞

0

∫ ∞
0

(
1− P (X̃1 ≤ u)− P (X̃2 ≤ v) + P (X̃1 ≤ u, X̃2 ≤ v)

)
dudv.

(3.52)
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To get the minimum of E[X̃1X̃2], let X̃1, X̃2 be antimonotonic, thus X̃1 = F−1
X̃1

(U) =
F−1
X1|Z=3(U), X̃2 = F−1

X̃2
(1− U) = F−1

X2|Z=3(1− U) where U ∼ U [0, 1] is independent of Z. If
X ∼ F where F is the distribution function of a Pareto(θ) distribution (θ > 1), then F (x) =
1−(1+x)−θ. Let F (X) = U for some U ∼ U [0, 1], then X = F−1(U) = (1−U)− 1

θ−1. Then
X̃1 = F−1

X̃1
(U) = (1−U)− 1

3−1, X̃2 = F−1
X̃2

(1−U) = U−
1
6−1, so the minimum of E[X̃1X̃2] is:

E
[
((1− U)− 1

3 − 1)(U− 1
6 − 1)

]
= E

[
(1− U)− 1

3U−
1
6 − (1− U)− 1

3 − U−
1
6 + 1

]
. (3.53)

And

E
[
(1− U)− 1

3U−
1
6
]

=
∫ 1

0
u−

1
3 (1− u)− 1

6du

=
∫ 1

0

Γ(2
3 + 5

6)
Γ(2

3)Γ(5
6)u

2
3−1(1− u) 5

6−1du ·
Γ(2

3)Γ(5
6)

Γ(2
3 + 5

6) =
Γ(2

3)Γ(5
6)

Γ(3
2)

(3.54)

because the integral term is equal to 1 as it is the density of BETA(2
3 ,

5
6). Further-

more, E
[
(1− U)− 1

3
]

=
∫ 1

0 (1 − u)− 1
3du = 3

2 and E[U− 1
6 ] =

∫ 1
0 u
− 1

6du = 6
5 . Therefore

Equation (3.53) can be simplified to Γ( 2
3 )Γ( 5

6 )
Γ( 3

2 ) − 17
10 .

So
min (Var((X1|Z = 3) + (X2|Z = 3))) =

2Γ(2
3)Γ(5

6)
Γ(3

2) − 279
100 . (3.55)

Second, when X1|Z = 4 ∼ Pareto(4) and X2|Z = 4 ∼ Pareto(8), then we find that

E(X1|Z = 4) = 1
3 , E(X2|Z = 4) = 1

7 ,Var(X1|Z = 4) = 2
9 ,Var(X2|Z = 4) = 4

147 .

Similarly, we get

min (Var((X1|Z = 4) + (X2|Z = 4))) =
2Γ(7

8)Γ(3
4)

Γ(13
8 ) − 1234

441 . (3.56)

So by Equations (3.50), (3.55), (3.56), we obtain

the minimum of equation 1© =
Γ(2

3)Γ(5
6)

Γ(3
2) +

Γ(7
8)Γ(3

4)
Γ(13

8 ) − 246439
88200 . (3.57)
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By Equation (3.47),

2© = P (Z = 3)
( 2∑
i=1

E(Xi|Z = 3)
)2

+ P (Z = 4)
( 2∑
i=1

E(Xi|Z = 4)
)2

− E2
( 2∑
i=1

E(Xi|Z)
)

= 1
2 ·
(1

2 + 1
5

)2
+ 1

2 ·
(1

3 + 1
7

)2
− (E [E(X1|Z)] + E [E(X2|Z)])2

= 31609
88200 −

(
E
( 1
Z − 1

)
+ E

( 1
2Z − 1

))2

= 31609
88200 −

(
P (Z = 3) · 1

3− 1 + P (Z = 4) · 1
4− 1 + P (Z = 3) · 1

6− 1 + P (Z = 4) · 1
8− 1

)2

= 2209
176400 .

(3.58)

Then by Equations (3.57), (3.58),

min (Var(X1 +X2)) = 1©+ 2© =
Γ(2

3)Γ(5
6)

Γ(3
2) +

Γ(7
8)Γ(3

4)
Γ(13

8 ) − 490669
176400 ≈ 0.4325, (3.59)

and Equation (3.48) is proved.

In general, it is not possible to compute these bounds explicitly. It is thus helpful
to approximate them. To do so, we use the RA developed by Puccetti and Rüschendorf
[2012]. We can then compare this result with the approximation from RA. Following the
procedures described in Section 3.3.1, here d = 2, k = 2, z1 = 3, z2 = 4, the discretization
size n = 108, we conduct RA on each submatrix Aj,

min(Var((X1|Z = 3) + (X2|Z = 3))) = 0.6542,

min(Var(((X1|Z = 4) + (X2|Z = 4)))) = 0.1803,

so
min(Var(X1 +X2)) = 1

2 · 0.6542 + 1
2 · 0.1803 + 2209

176400 = 0.4298, (3.60)

which is very closed to the theoretical result in Equation (3.59).
Now we treat Pareto distribution as discrete distributions using discretization to get an
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approximation of the minimum variance, which is

min (Var((X1|Z = 3) + (X2|Z = 3)))
=Var(F−1

X1|Z=3(U) + F−1
X2|Z=3(U))

≈
n∑
i=1

(
F−1
X1|Z=3( i

n+ 1) + F−1
X2|Z=3(1− i

n+ 1)
)2
· 1
n
−
((

n∑
i=1

F−1
X1|Z=3( i

n+ 1) + F−1
X2|Z=3(1− i

n+ 1)
)
· 1
n

)2

.

Take n = 106,

min (Var((X1|Z = 3) + (X2|Z = 3))) ≈ 0.879287− 0.471526 = 0.6353,

similarly,

min (Var((X1|Z = 4) + (X2|Z = 4))) ≈ 0.358293− 0.128374 = 0.1790,

then
min(Var(X1 +X2)) ≈ 0.40715,

which is slightly smaller than our result from RA (see Equation (3.60)).

3.3.3 Application with 3 Pareto Risks

There are random variables X1, X2, X3 with background risk Z such that P (Z = 3) =
P (Z = 4) = 1

2 . Suppose Xi|Z = z ∼ Pareto(iz), z = 3 or 4, then the minimum of
Var(X1 +X2 +X3) is 0.3803 using RA approximation.

Proof. Following the procedures described in Section 3.3.1, here d = 3, k = 2, z1 = 3, z2 =
4, the discretization size n = 106, we conduct RA on each submatrix Aj,

min(Var((X1|Z = 3) + (X2|Z = 3) + (X3|Z = 3))) = 0.5748,

min(Var(((X1|Z = 4) + (X2|Z = 4) + (X3|Z = 4)))) = 0.1526,

so
min (E [Var(X1 +X2 +X3|Z)]) = 1

2 · 0.5748 + 1
2 · 0.1526 = 0.3637.
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Since X1|Z = 3 ∼ Pareto(3), X2|Z = 3 ∼ Pareto(6), X3|Z = 3 ∼ Pareto(9),

E(X1|Z = 3) = 1
2 , E(X2|Z = 3) = 1

5 , E(X3|Z = 3) = 1
8 .

Since X1|Z = 4 ∼ Pareto(4), X2|Z = 4 ∼ Pareto(8), X3|Z = 4 ∼ Pareto(12),

E(X1|Z = 4) = 1
3 , E(X2|Z = 4) = 1

7 , E(X3|Z = 4) = 1
11 .

Var (E [X1 +X2 +X3|Z])

=P (Z = 3)
( 3∑
i=1

E(Xi|Z = 3)
)2

+ P (Z = 4)
( 3∑
i=1

E(Xi|Z = 4)
)2

− E2
( 3∑
i=1

E(Xi|Z)
)

= 85567729
170755200 −

(
E
( 1
Z − 1

)
+ E

( 1
2Z − 1

)
+ E

( 1
3Z − 1

))2

≈0.016628.
(3.61)

So
min (Var(X1 +X2 +X3)) = 0.3637 + 0.016628 = 0.3803.

3.4 Conclusion of Chapter 3 and Future Work

In this chapter, we give characterizations of the covariance matrix of normal distributed
(X1, ..., Xn) so that Var(X1 + ... + Xn) reaches minimum. An application has been done
on deriving upper and lower bounds of Var(X1 + ...Xn) with knowing the distribution of
(Xi, Z) where Z is a background risk. (Xi)1≤i≤n are normal distributed here. Only case
n = 3, 4 are studied here.

There are some open questions remaining in this chapter:
1. Conjecture 3.1.10 is not proved.
2. All of our result can be generalized to dimension n ≥ 5.
3. We only focus on normal distributed random variables. For non-normal ones, the RA

can be used to get an approximation of the minimum variance. The compatible covariance
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matrix for sum of non-normal random variables to reach minimum variance can be studied
in the future. See Chaganty and Joe [2006] for related work on correlation matrix of
Bernoulli random variables.

4. Our result can be applied to many areas in risk management, such as the implied
correlation problem in option pricing.
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Chapter 4

A New Multivariate Dependence
Measure

This chapter is organized as follows, Section 4.1 is a summary of the existing bivariate
dependence measures. Section 4.2 reviews some existing multivariate dependence measures.
We introduce our new multivariate dependence measure % in Section 4.3 with its properties
(see Section 4.3.1) and estimation method (see Section 4.3.2). Section 4.4 gives a short
conclusion.

4.1 Existing Bivariate Dependence Measures

This section is a review of some dependence measures of bivariate data, which can mostly be
found in Nelsen [2007] and Joe [1997]. Nelsen [2007] makes a difference between measures
of concordance and measures of dependence, but we ignore this subtle difference.

To measure dependence between two variables, we can use Kendall’s τ , Spearman’s
ρ, Gini’s γ or Blomqvist’s β defined as follows. All (X, Y ) below are continuous random
variables.

Definition 4.1.1. (Kendall’s τ for a vector (X, Y ) of continuous random variables with
joint distribution H)

τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0],
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where (X1, Y1) and (X2, Y2) are independent and identically distributed random vectors,
each with joint distribution function H.

τX,Y = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1,

where C denotes the copula of (X, Y ).

Definition 4.1.2. (Spearman’s ρ for vector (X, Y ) with copula C)

ρX,Y = ρ(F1(X1), F2(X2)),

where ρ is the linear correlation defined as ρ(X, Y ) = cov(X,Y )√
var(X)var(Y )

.

ρX,Y = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3,

where C denote the copula of (X, Y ).

Before the following definition, we recall copulas M and W defined in Theorem 1.2.8.

Definition 4.1.3. (Gini’s γ for vector (X, Y ) with copula C)

γX,Y = 2
∫ 1

0

∫ 1

0
(|u+ v − 1| − |u− v|)dC(u, v)

According to Nelsen [2007], Gini’s γ “measures a concordance relationship or distance
between C and monotone dependence (i.e, comonotonic and countermonotonic defined in
Section 1.2.3), as represented by the copulas M and W”. In addition, there are measures
of association based on the “distance” (such as Lp, lp-distance) between C and M ,W , (see
Chapter 5.3.2 of Nelsen [2007], Conti [1993], Gideon and Hollister [1987].

Definition 4.1.4. (Blomqvist β)

βX,Y = P [(X − x̃)(Y − ỹ) > 0]− P [(X − x̃)(Y − ỹ) < 0],

where x̃ and ỹ are medians of X and Y .

βX,Y = 4C
(1

2 ,
1
2

)
− 1,
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where C is the copula of (X, Y ).

According to Schmid et al. [2010], Blomqvist β “can be interpreted as a normalized
difference between the copula C and the independence copula at (1

2 ,
1
2)”. Some other

measures of association between two variates include Spearman’s foot-rule, denoted as φ.

Definition 4.1.5. (Spearman’s foot-rule where C is the copula of X and Y )

φX,Y = 1− 3
∫ 1

0

∫ 1

0
|u− v|dC(u, v)

By Genest et al. [2010], it is “an alternative to the correlation in the pairs (R1, S1), ..., (Rn, Sn)
of ranks associated with a random sample (X1, Y1), ...(Xn, Yn) from some continuous bi-
variate distribution H(x, y) = P (X ≤ x, Y ≤ y)”.

Nelsen [2007] defines a kind of measure of association as measure of dependence on
page 208, including:

Definition 4.1.6. (Schweizer and Wolff’s σ)

σX,Y = 12
∫ 1

0

∫ 1

0
|C(u, v)− uv|dudv

In addition, according to Schweizer and Wolff [1981] and Nelsen [2007], the following
“normalized measure of distance between the surfaces z = C(u, v) and z = uv” yields a
symmetric nonparametric measure of dependence.

Definition 4.1.7. For any p, 1 ≤ p <∞,
(
kp

∫ 1

0

∫ 1

0
|C(u, v)− uv|pdudv

)1/p
,

where kp is a constant chosen so that the above quantity is 1 when C = W or M .

Nelsen [2007] gives many other examples such as (90
∫ 1

0
∫ 1

0 |C(u, v) − uv|2dudv)1/2,
4 supu,v∈[0,1] |C(u, v)− uv|, but we can not present all of them.

Tail dependence refers to measuring the likelihood of observing simultaneous small or
large values.
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Definition 4.1.8. (Upper tail dependence λU and lower tail dependence λL)

λU = lim
t→1−

P [Y > G−1(t)|X > F−1(t)],

λL = lim
t→0+

P [Y ≤ G−1(t)|X ≤ F−1(t)],

where X and Y are continuous random variables with distribution functions F and G,
respectively.

We end this section with the informational measure of dependence from Linfoot [1957],
although the list of dependence measures is far from being exhaustive.

Definition 4.1.9. (Informational coefficient of correlation r1)

r1 =
√

1− e−2r0 ,

where r0 is defined as follows,

r0 =
∫ ∫

(p(x, y) log p(x, y)− p(x)q(y) log[p(x)q(y)])dxdy,

where X, Y are continuous variables with joint probability density distribution p(x, y) and
p(x), q(y) are the probability density distributions of X, Y .

By Linfoot [1957], it is invariant under a change of parameterization X ′ = f(X), Y ′ =
g(Y ). All the measures of associations here are defined when (X, Y ) are continuous, see
Mesfioui and Quessy [2010] for the situation when (X, Y ) are not continuous.

4.2 Existing Multivariate Dependence Measures

4.2.1 Multivariate Dependence Measures Depending on the Cop-
ula Only

All the measures of association mentioned in Section 4.1 have different versions of multi-
variate generalizations, we list some of them mentioned in Schmid et al. [2010].

112



Definition 4.2.1. (Generalization of Kendall’s tau by Joe [1990])

τ(X) = Σd
k=d′wkP{(D1, ..., Dd) ∈ Bk,d−k}

with d′ = b(d+ 1)/2c and Bk,d−k being the subset of x = (x1, ..., xd) in Rd with k positive
components and d − k negative or k negative components and d − k positive. There are
some additional constraints about wk given in Joe [1990]. τ ’s representation given in terms
of the copula is given by

τ(C) = 1
2d−1 − 1

{
2d
∫

[0,1]d
C(u)dC(u)− 1

}
.

Some other multivariate versions of Kendall’s tau can be found in Nelsen [1996], Nelsen
[2002] and Taylor [2007].

Definition 4.2.2. (Generalizations of Spearman’s rho by Schmid and Schmidt [2007])

ρ1(C) =
∫

[0,1]d C(u)du−
∫

[0,1]d
∏(u)du∫

[0,1]dM(u)du−
∫

[0,1]d
∏(u)du = hρ(d)

{
2d
∫

[0,1]d
C(u)du− 1

}
,

where hρ(d) = (d+ 1)/{2d − (d+ 1)}.
Another version is

ρ2(C) = hρ(d)
{

2d
∫

[0,1]d

∏
(u)dC(u)− 1

}
,

where ∏(u) = ∏n
i=1 ui denotes the independent copula.

Nelsen [1996] proposes another version as ρ3 = (ρ1 + ρ2)/2. Some other multivariate
extensions can be found in Ruymgaart and van Zuijlen [1978], Wolff [1980] and Stepanova
[2003].

Definition 4.2.3. (Generalization of Blomqvist’s beta )

β(C) = C(1/2)−∏(1/2) + C(1/2)−∏(1/2)
M(1/2)−∏(1/2) +M(1/2)−∏(1/2)

= hβ(d){C(1/2) + C(1/2)− 21−d},
(4.1)

where C denotes the survival function, C(u) = P (U ≥ u), hβ(d) := 2d−1

2d−1−1 and 1/2 :=
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(1/2, ..., 1/2).

Definition 4.2.4. (Generalization of Gini’s gamma by Behboodian et al. [2007] )

γ(C) = 1
b(d)− a(d)

[∫
[0,1]d
{A(u) + A(u)}dC(u)− a(d)

]
,

where normalization constants a(d) and b(d) are of the form:

a(d) =
∫

[0,1]d

{
A(u) + A(u)

}
du1...dud = 1

d+ 1 + 1
2(d+ 1)! +

d∑
i=0

(−1)i
(
d

i

)
1

2(i+ 1)! ,

and
b(d) =

∫
[0,1]d
{A(u) + A(u)}dM(u) = 1−

d−1∑
i=1

1
4i ,

where A(u) = {M(u) +W (u)}/2,u ∈ [0, 1]d and A denotes the survival function of A.

According to Schmid et al. [2010], Joe [1989] introduces relative entropy (also known
as Kullback-Leibler divergence, see Kullback and Leibler [1951], Kullback [1997]) as an
information-based measure of association, defined as follows.

Definition 4.2.5. (Relative entropy of a random vector X = (X1, ..., Xd) with copula C)

δ(X) =
∫
Rd

log
[

f(x)∏d
i=1 fi(xi)

]
f(x)dx,

where f is the density of the distribution of X and (fi)1≤i≤d are the marginal distributions.

δ(X) = δ(C) =
∫

[0,1]d
log[c(u)]c(u)du,

where c is the density of the copula C.

4.2.2 Multivariate Dependence Measures Depending on the Mul-
tivariate Distribution

Some other multivariate dependence measures depending on the multivariate distribution
include:
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Definition 4.2.6. (From Dhaene et al. [2014], dependence measure ρc of a random vector
X with non-degenerate margins)

ρc(X) = Var(S)− Var(S⊥)
Var(Sc)− Var(S⊥) = Σd

i=1Σj<iCov(Xi, Xj)
Σd
i=1Σj<iCov(Xc

i , X
c
j )
,

where Xc = (Xc
1, X

c
2, ..., X

c
d) is a random vector with the same marginal distributions

as X but with comonotonic components. Sc = ∑d
i=1X

c
i , and S⊥ = ∑d

i=1 X
⊥
i , where

X⊥ = (X⊥1 , X⊥2 , ..., X⊥d ) is a random vector with the same marginal distributions as X but
with independent components.

By Dhaene et al. [2014], ρc measures dependence in X indirectly through the distri-
bution of the sum S of its components, focusing on the aggregate risk rather than on the
copula or joint distribution function itself.

The following dependence measure based on comonotonicity by means of product mo-
ment is motivated by ρc.

Definition 4.2.7. (From Zhang and Yin [2014]) The dependence measure ρ(X) of a ran-
dom vector X with non-degenerate margins is defined as

ρ(X) = E[∏d
i=1Xi]−

∏d
i=1E[Xi]

E[∏d
i=1X

C
i ]−∏d

i=1E[Xi]
,

provided the expectations exist, where Xc is a comonotonic random vector.

4.3 A New Multivariate Dependence Measure Depend-
ing on the Multivariate Distribution

Now we introduce a new multivariate dependence measure, denoted as % in the Definition
4.3.1 below. It also focuses on the aggregate risk just as ρc in Definition 4.2.6.

Definition 4.3.1. (New multivariate dependence measure %)

%(X) =

∑
all partitions S

φ(
∑
i∈S

Xi,
∑
i∈S

Xi)

number of ways to partition S into 2 parts ,
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where φ is some existing 2-dimensional dependence measure. In particular, given a matrix
of data X = (X1, X2, ..., Xn−1, Xn), divide {1, ..., n} into 2 parts, {1, ..., n} = S

⋃
S, S

⋂
S =

∅. We denote by C the set that consists of all these partitions such that neither S nor S is
empty,

%(X) = 1
2n − 2

∑
S∈C

φ(
∑
i∈S

Xi,
∑
i∈S

Xi).

Note that each partition appears twice in the summation.

4.3.1 Properties

We now introduce its properties. We assume that the 2-dimensional dependence measure
φ in Definition 4.3.1 is a concordance measure and recall its definition from Lee and Ahn
[2014].

Definition 4.3.2. (2-dimensional measure of concordance)
Let X and X∗ be bivariate random vectors with distribution functions H = C(F1, F2)

and H∗ = C∗(F ∗1 , F ∗2 ), respectively. A numeric measure κ(H) (or κ(X)) is a measure of
concordance if it satisfies the following axioms. (Here X = (X1, X2), X∗ = (X∗1 , X∗2 ) are
2-variate random vectors and Fi, F

∗
i are the marginals for Xi, X

∗
i , i = 1, 2, C,C∗ are the

copulas for (X,X∗). See Definition 1.2.1 for definition of a copula.)
[S1]. −1 ≤ κ(H) ≤ 1, κ(M(F1, F2)) = 1, κ(∏(F1, F2)) = 0, and κ(W (F1, F2)) = −1 where
M,W are defined in Theorem 1.2.8, ∏ is the independence copula.
[S2]. If C ≺ C∗(e.g, C is smaller than C∗ in concordance order, C(u) ≤ C∗(u) for all
u ∈ [0, 1]2. ), then κ(H) ≤ κ(H∗).
[S3]. If a sequence of joint distribution functions, {H1, H2, ...}, converges pointwise to H,
then limi→∞ κ(Hi) = κ(H);
[S4]. κ(X1, X2) = κ(X2, X1)1;
[S5]. κ(C#

1 (F1, F2)) = κ(C#
2 (F1, F2)) = −κ(H) where C#

i is the copula associated with a
random vector (X1, ..., Xi−1,−Xi, Xi+1, ..., Xd).

Taylor [2010] extends Definition 4.3.2 to a multivariate measure of concordance.

Definition 4.3.3. (Multivariate measure of concordance)
Let X and X∗ be d-variate random vectors with distribution functions H = C(F1, ..., Fd)

1Observe that it is a permutation of {1, 2}.
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and H∗ = C∗(F ∗1 , ..., F ∗d ), respectively. A numeric measure κ(H) (or κ(X)) is a measure of
concordance if it satisfies the following axioms.
[A1]. (Normalization) κd(H) ≤ 1, κd(M(F1, ..., Fd)) = 1 and κd(

∏(F1, ..., Fd)) = 0;
[A2]. (Monotonicity) If (X1, ..., Xd) ≺ (Y1, ..., Yd), then κd(X1, ..., Xd) ≤ κd(Y1, ..., Yd);
[A3]. (Continuity) If Fk is the joint distribution function of the random vector (Xk1, ..., Xkd)
and F is the distribution function for (X1, ..., Xd). If Fk → F, then κd(Xk1, ..., Xkd) →
κd(X1, ..., Xd);
[A4]. (Permutation Invariance) If (i1, ..., id) is a permutation of (1, ..., d), then κd(Xi1 , ..., Xid) =
κ(X1, ..., Xd);
[A5]. (Duality) κd(−X1, ...,−Xd) = κd(X1, ..., Xd);
[A6]. (Reflection Symmetry Property; RSP) ∑ε1,...,εd κd(ε1X1, ..., εdXd) = 0 where each
εi = ±1 and the sum is over all possible combinations of ±1;
[A7]. (Transition Property; TP) There exists a sequence of numbers {rd}, where d ≥ 2,
such that for every n-tuple of continuous random variables (X1, ..., Xd), we have

rd−1κd−1(X2, ..., Xd) = κd(X1, X2, ..., Xd) + κd(−X1, X2, ..., Xd).

To prove Proposition 4.3.7, we need the following propositions.

Proposition 4.3.4. (Recalled from p199 of Embrechts et al. [2005])
X1, ..., Xd are comonotonic if and only if

(X1, ..., Xd) =d (v1(Z), ..., vd(Z)) (4.2)

for some random variables Z and increasing functions v1, ..., vd, where notation “ =d ”
means both sides of the equation have the same distributions.

Proposition 4.3.5. Given random vectors X = (X1, ..., Xd), if each component is comono-
tonic, then for a fixed partition S ∪ S = {1, ..., d}, ∑i∈S Xi and ∑i∈S Xi are still comono-
tonic.

Proof. For U ∼ U [0, 1], sinceX1, ..., Xd are comonotonic, (X1, ..., Xd) =d (F−1
X1 (U), ..., F−1

Xd
(U)),

then ∑
i∈S

Xi =d
∑
i∈S

F−1
Xi

(U) = g1(U), (4.3)
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where g1(·) := ∑
i∈S F

−1
Xi

(·) is increasing, and
∑
i∈S

Xi =d
∑
i∈S

F−1
Xi

(U) = g2(U) = g2 ◦ g−1
1 (

∑
i∈S

Xi), (4.4)

where g2(·) := ∑
i∈S F

−1
Xi

(·) is increasing. Since g2 ◦ g−1
1 is still increasing, by Proposition

4.3.4, ∑i∈S Xi and ∑i∈S Xi are comonotonic.

Proposition 4.3.6. If random vectors X and Y satisfy

X = (X1, ..., Xd) ≺ Y = (Y1, ..., Yd), (4.5)

then for a fixed partition S ∪ S,

A =:
∑
i∈S

Xi,
∑
j∈S

Xj

 ≺
∑
i∈S

Yi,
∑
j∈S

Yj

 := B.

Proof. For convenience, denote the cardinality |S| = p, |S| = q where p+ q = d. We list

S = {i1, ..., ip}, S = {j1, ..., jq}.

By Equation (4.5),

∂d

∂t1∂t2...∂td
FX1,...,Xd(t1, ..., td) ≤

∂d

∂t1∂t2...∂td
FY1,...,Yd(t1, ..., td),

so the joint density functions of X and Y satisfy,

fX1,...,Xd(t1, ..., td) ≤ fY1,...,Yd(t1, ..., td),

for all (t1, ..., td) ∈ Rd.
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Now for any fixed pairs of (x, y) ∈ R2,

P (
∑
i∈S

Xi ≤ x,
∑
j∈S

Xj ≤ y)

=P (Xi1 ≤ x−
∑

i∈S\{i1}
Xi, Xj1 ≤ y −

∑
j∈S\{j1}

Xj)

=
∫ ∞
−∞

...
∫ ∞
−∞

∫ y−
∑

j∈S\{j1}
xj

−∞

∫ x−
∑

i∈S\{i1}
xi

−∞
fX1,...,Xd(x1, ..., xd)dxj1dxi1 ...dxipdxjq

≤
∫ ∞
−∞

...
∫ ∞
−∞

∫ y−
∑

j∈S\{j1}
xj

−∞

∫ x−
∑

i∈S\{i1}
xi

−∞
fY1,...,Yd(x1, ..., xd)dxj1dxi1 ...dxipdxjq

=P (
∑
i∈S

Yi ≤ x,
∑
j∈S

Yj ≤ y).

Similarly,
P (
∑
i∈S

Xi > x,
∑
j∈S

Xj > y) ≤ P (
∑
i∈S

Yi > x,
∑
j∈S

Yj > y).

So A ≺ B.

Proposition 4.3.7. In Definition 4.3.1, given a d-variate random vector X = (X1, ..., Xd),
when d = 2, %d(X) = φ(X); when d ≥ 3, if φ is a measure of concordance, then %d is not
necessarily a measure of concordance. In particular, % satisfies axioms A1-A6 but not A7.

Proof. When d = 2,

%2 ((X1, X2)) = φ(X1, X2) + φ(X2, X1)
2 = φ(X1, X2).

When d ≥ 3, we will check A1-A7.

[A1]. %d(X) ≤ 1 since each φ(∑i∈S Xi,
∑
i∈S Xi) ≤ 1.

If X has comonotonic components, for each partition S ∪ S = {1, ..., d}, by Proposition
4.3.5, ∑i∈S Xi and ∑

i∈S Xi are still comonotonic Then each φ(∑i∈S Xi,
∑
i∈S Xi) = 1, so

%d(M(F1, ..., Fd)) = 1. Similarly, %d(
∏(F1, ..., Fd)) = 0 since when (X1, ..., Xd) is indepen-

dent, ∑i∈S Xi and ∑i∈S Xi are independent.
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[A2]. If (X1, ..., Xd) ≺ (Y1, ..., Yd), then for each partition S ∪ S, by Proposition 4.3.6,∑
i∈S

Xi,
∑
j∈S

Xj

 ≺
∑
i∈S

Yi,
∑
j∈S

Yj

 ,
so

φ

∑
i∈S

Xi,
∑
j∈S

Xj

 ≤ φ

∑
i∈S

Yi,
∑
j∈S

Yj


by the monotonicity of φ. Then %d(X1, ..., Xd) ≤ %d(Y1, ..., Yd).

[A3]. Consider a sequence of random vectors {(Xk1, ..., Xkd)}k∈N and (X1, ..., Xd) with joint
distribution functions F and Fk such that Fk → F , this also means (Xk1, ..., Xkd) →d

(X1, ..., Xd). Now for each fixed partition S ∪ S, define function gS : Rd → R2:

gS(X1, ..., Xd) = (
∑
i∈S

Xi,
∑
i∈S

Xi).

Clearly, gS is continuous. By continuous mapping theorem (see Theorem 2.3 of Van der
Vaart [2000]),

gS(Xk1, ..., Xkd)→d gS(X1, ..., Xd),

then by continuity of φ,

φ(
∑
i∈S

Xki,
∑
i∈S

Xki)→d φ(
∑
i∈S

Xi,
∑
i∈S

Xi),

for every S. So
%(Xk1, ..., Xkd)→d %(X1, ..., Xd).

[A4]. If (i1, ..., id) is a permutation of (1, ..., d), then clearly %(Xi1 , ..., Xid) = %(X1, ..., Xd)
since we still get the same set of partitions after permutation.
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[A5]. By the duality of φ,

%(−X1, ...,−Xd) = 1
2n − 2

∑
S∈C

φ(−
∑
i∈S

Xi,−
∑
i∈S

Xi)

= 1
2n − 2

∑
S∈C

φ(
∑
i∈S

Xi,
∑
i∈S

Xi) = %(X1, ..., Xd).

[A6]. ∑
ε1,...,εd

%(ε1X1, ..., εdXd) = 1
2n − 2

∑
ε1,...,εd

(
∑
S∈C

φ(
∑
i∈S

εiXi,
∑
i∈S

εiXi)),

there is an even number of terms in the sum. So for a fixed set of {ε1, ..., εd} and each S,
we can pair φ(∑i∈S εiXi,

∑
i∈S εiXi) with φ(∑i∈S −εiXi,

∑
i∈S εiXi), by φ’s property (see

S5 of Definition 4.3.2), we get

φ(
∑
i∈S

εiXi,
∑
i∈S

εiXi) + φ(
∑
i∈S
−εiXi,

∑
i∈S

εiXi) = 0.

So ∑ε1,...,εd %(ε1X1, ..., εdXd) = 0.

A7 clearly does not hold for different φs (since then % is a completely different depen-
dence measure). For fixed φ, A7 still does not hold, see the counterexample in Example
4.3.8.

Example 4.3.8. Given d = 3, assume (Y, Y, Y ) has marginals U [0, 1]. (X1, X2, X2) has
marginals exp(1), where X1 and X2 are independent. Assuming A7 holds, we can get a
contradiction.

Proof. We pick φ = ρs, the Spearman’s rho, which is a measure of concordance satisfying
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A1-A7. Assuming A7 holds, then for the 3-tuple of continuous random variable (Y, Y, Y ),

r2%2(Y, Y ) = %3(Y, Y, Y ) + %3(−Y, Y, Y )

r2 = 1
23 − 2 [2ρs(Y, 2Y ) + 2ρs(Y, 2Y ) + 2ρs(Y, 2Y )]

+ 1
23 − 2 [2ρs(−Y, 2Y ) + 2ρs(Y, 0) + 2ρs(Y, 0)]

r2 = ρs(Y, 2Y ) + 1
3 [ρs(−Y, 2Y ) + 2ρs(Y, 0)] .

(4.6)

Y and 0 are independent, so ρs(Y, 0) = 0, ρs(−Y, 2Y ) = −ρs(Y, 2Y ) (This is by A5 and A6
and it only works in dimension 2). By the fact that Y and 2Y are comonotonic, we get
ρs(Y, 2Y ) = 1, so r2 = 2

3 .
Then we take another pair of 3-tuple random variables (X1, X2, X2), if A7 holds, this r2

should stay the same.

r2%2(X2, X2) = %3(X1, X2, X2) + %3(−X1, X2, X2)

r2 = 1
3 [ρs(X1, 2X2) + ρs(X2, X1 +X2) + ρs(X2, X1 +X2) + ρs(−X1, 2X2)]

+ 1
3 [ρs(X2,−X1 +X2) + ρs(X2,−X1 +X2)]

r2 = 2
3 [ρs(X2, X1 +X2)− ρs(X2, X1 −X2)] .

(4.7)

Then we take (X2, X1, X2),

r2%(X1, X2) = %(X2, X1, X2) + %(−X2, X1, X2)

0 = 1
3[ρs(X2, X1 +X2) + ρs(X1, 2X2) + ρs(X2, X1 +X2) + ρs(−X2, X1 +X2)

+ ρs(X1, 0) + ρs(X2, X1 −X2)]
−ρs(X2, X1 −X2) = ρs(X2, X1 +X2).

(4.8)
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So Equation (4.7) becomes

r2 = 4
3ρs(X2, X1 +X2)

= 4
3ρ (FX1(X1), FX2+X3(X2 +X3))

= 4
3ρ(1− e−X1 , 1− e−(X1+X2)(1 +X1 +X2)).

(4.9)

Since both FX1(X1) and FX2+X3(X2 +X3) follow U [0, 1],

E (FX1(X1)) = E (FX2+X3(X2 +X3)) = 1
2 ,

Var (FX1(X1)) = Var (FX2+X3(X2 +X3)) = 1
12 ,

and X1, X2 has moment generating function

E(etX1) = E(etX2) = 1
1− t ,

for t < 1.
So

E(e−X1) = E(e−X2) = 1
2 , E(e−2X1) = 1

3 ,

and
E(X1e

−2X1) =
∫ ∞

0
x1e
−3x1dx1 = 1

9 ,

E(X1e
−X1) =

∫ ∞
0

x1e
−x1dx1 = 1

4 ,

E(FX1(X1)FX1+X2(X1 +X2) = E[1− e−X1 + e−2X1−X2 − e−X1−X2+
e−2X1−X2X1 − e−X1−X2X1 + e−2X1−X2X2 − e−X1−X2X2]

= 11
36 .

(4.10)
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So by Equation (4.9),

r2 = 4
3 ·

E(FX1(X1)FX1+X2(X1 +X2))− E(FX1(X1)E(FX1+X2(X1 +X2))√
Var(FX1(X1))Var(FX1+X2(X1 +X2))

= 4
3 ·

11
36 −

1
2 ·

1
2√

1
12 ·

1
12

= 8
9 ,

(4.11)

which is different from the r2 we get from Equation (4.6) (r2 = 2
3). There is a contradiction,

so A7 can not hold.

Remark 4.3.9. Note by Proposition 4.3.5 and property A1 of %, given X, % can be written
as

%(X) =

∑
S∈C

φ

∑
i∈S

Xi,
∑
i∈S

Xi


∑
S∈C

φ

∑
i∈S

Xc
i ,
∑
i∈S

Xc
i

 ,

where Xc = (Xc
1, ..., X

c
d) is a comonotonic random vector and S, C are defined in Definition

4.3.1.

Definition 4.3.10. (d-countermonotonic from Lee and Ahn [2014]) A d-variate random
vector X is called d-countermonotonic with (f1, ..., fd) if there exist non-decreasing contin-
uous functions f1, ..., fd on R and a support, B, of X, which satisfy the following conditions:
i. f1(s1), ..., fd(sd) are strictly increasing functions at (s1, ..., sd) = (x1, ..., xd),
ii. ∑d

j=1 fi(xi) = 1,
for any (x1, ..., xd) ∈ B.

We give a counterexample in Example 4.3.11 that d-countermonotonic is not the nec-
essary condition to ensure %(X) = −1.

Example 4.3.11. If X1 ∼ Pareto(2), X2, X3 ∼ Pareto(1), denote Ui = Fi(Xi), i = 1, 2, 3,
and

U1 + U2 + U3 = c

for some constant c, then X1, X2, X3 are 3-countermonotonic. But X1 + X2 and X3 are
not 2-countermonotonic (anticomonotonic).
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Proof. First, note that U1 and U2 can be independent, for instance, take U1 = U,U2 =
Ũ , U3 = 1−U− Ũ where U and Ũ are independent. We assume U1 and U2 are independent
in this example and c = 1.
Then,

X1 +X2 = F−1
1 (U1) + F−1

2 (U2) = (1− U1)−1/2 + (1− U2)−1 − 2,

X3 = F−1
3 (1− U1 − U2) = (U1 + U2)−1 − 1.

If X1 +X2 and X3 are independent, then there are f1, f2 strictly increasing on the support
set such that

f1
(
(1− U1)−1/2 + (1− U2)−1 − 2

)
+ f2

(
(U1 + U2)−1 − 1

)
= c2 (4.12)

for some constant c2. Define f̃1(x) = f1(x− 2), f̃2(x) = f2(x− 1)− c2, where x belongs to
the support set. Then f̃1, f̃2 are still strictly increasing. Thus Equation (4.12) becomes

f̃1
(
(1− U1)−1/2 + (1− U2)−1

)
= −f̃2

(
(U1 + U2)−1

)
. (4.13)

Since f̃2 has inverse function f̃2
−1 on its support set, Equation (4.13) becomes,

(−f̃2)−1 ◦ f̃1︸ ︷︷ ︸
:=g

(
(1− U1)−1/2 + (1− U2)−1

)
= (U1 + U2)−1.

Now we take 2 pairs of (U1, U2) =
(

3
4 ,

2
3

)
, (Ũ1, Ũ2) =

(
8
9 ,

1
2

)
, then

(1− U1)−1/2 + (1− U2)−1 = 5 = (1− Ũ1)−1/2 + (1− Ũ2)−1.

However,
(U1 + U2)−1 = 12

17 6= (Ũ1 + Ũ2)−1 = 18
25 .

So function g is not well-defined. There are no such functions f1, f2.

Thus when we take φ as a measure of concordance, φ(X1 +X2, X3) > −1, so %(X) > −1
here. Now we give a sufficient condition to ensure %(X) = −1.

Definition 4.3.12. (Σ− countermonotonic from Puccetti and Wang [2014])
A random vector X is said to be Σ− countermonotonic if for any vector a ∈ {0, 1}d, a ·X
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and (1− a) ·X are countermonotonic.

Proposition 4.3.13. X is Σ− countermonotonic, if and only if %(X) = −1.

Proof. “⇒” For any partition S ∪ S = {1, ..., d}, take a = (a1, ..., ad) such that for each
1 ≤ i ≤ d,

ai =

1 if i ∈ S
0 if i ∈ S

then a ·X and (1− a) ·X are countermonotonic. This means
∑
i∈S

Xi and
∑
i∈S

Xi are coun-

termonotonic. So by Definition 4.3.2, φ(
∑
i∈S

Xi,
∑
i∈S

Xi) = −1, %(X) = −1.

“⇐” Fix some a ∈ {0, 1}d, we look at a ·X and (1− a) ·X. Denote a = (a1, ..., ad). We
define the set S as following: for each 1 ≤ i ≤ d, if ai = 1, put index i into set S. Thus
set S contains all the index i such that ai = 1; set S contains all the index i such that
ai = 0. So a ·X =

∑
i∈S

Xi and (1− a) ·X =
∑
i∈S

Xi. Since %(X) = −1 and we use the same

notations as in Definition 4.3.1, each φ

∑
i∈S

Xi,
∑
i∈S

Xi

 = −1, thus
∑
i∈S

Xi and
∑
i∈S

Xi are

countermonotonic.

Since this a can be any vector in {0, 1}d, we get a ·X and (1− a) ·X are Σ−countermonotonic.

In Proposition 4.3.7, we prove that %d(X) = 1 if X = (X1, ..., Xd) is a comonotonic
random vector. Its reverse direction also holds.

Proposition 4.3.14. For any random vector (X, Y ), if φ satisfies: φ(X, Y ) = 1⇒ (X, Y )
are comonotonic. Then given a d-variate random vector X = (X1, ..., Xd), if %d(X) = 1,
we have X is a comonotonic random vector.

Proof. When d = 2, %(X) = φ(X), this automatically holds.
When d ≥ 3, if %(X) = 1, since for each S, φ(∑i∈S Xi,

∑
i∈S Xi) ≤ 1, then φ(∑i∈S Xi,

∑
i∈S Xi) =

1. So ∑
i∈S Xi and ∑

i∈S Xi comonotonic. In particular, there exist increasing functions
gi, 1 ≤ i ≤ d such that gi(Xi) = ∑

j 6=iXj. For k 6= i,

Xk + gk(Xk) = Xi + gi(Xi).
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As gi, gk are increasing, when Xk is increasing, Xk + gk(Xk) is increasing, which is when
Xi is increasing. So Xk is an increasing function of Xi, thus Xk and Xi are comonotonic.
This holds for all the i and k. By Theorem 3 of Dhaene et al. [2002], the random vector
X is comonotonic when its component is pairwise comonotonic.

Definition 4.3.15. A random vector X = (X1, ..., Xd) is said to be positively orthant
dependent (POD) if both

P (X1 ≤ x1, ..., Xd ≤ xd) ≥
d∏
i=1

P (Xi ≤ xi), for all (x1, x2, ..., xd) ∈ Rd

and
P (X1 > x1, ..., Xd > xd) ≥

d∏
i=1

P (Xi > xi), for all (x1, x2, ..., xd) ∈ Rd

hold.

Proposition 4.3.16. If a random vector X is POD, then %(X) ≥ 0.

Proof. We take a random vector Y = (Y1, ..., Yd), which has the same marginal as X.
Assume Y has independent components, then

P (X1 ≤ x1, ..., Xd ≤ xd) ≥
d∏
i=1

P (Xi ≤ xi) =
d∏
i=1

P (Yi ≤ xi) = P (Y1 ≤ x1, ..., Yd ≤ xd)

and

P (X1 > x1, ..., Xd > xd) ≥
d∏
i=1

P (Xi > xi) =
d∏
i=1

P (Yi > xi) = P (Y1 > x1, ..., Yd > xd)

for all (x1, x2, ..., xd) ∈ Rd.
So Y ≺ X. By Proposition 4.3.7, A1 and A2 properties of %(Y ), we get %(X) ≥ %(Y) =
0.
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4.3.2 Estimation

In this section, we introduce some ways to estimate % given a sample of X. One simple
way is replacing bivariate measure φ by its sample version φ̂ to get the estimate of %.
Another way is described as follows. Given a matrix of data of d-dimensional X =

(X1, ...,Xd), each column Xj = (X1,j, X2,j, ..., Xn,j)T , 1 ≤ j ≤ d. Let Si =
d∑
j=1

Xi,j for

each 1 ≤ i ≤ n, and ˜(Ii,j)1≤i≤n,1≤j≤d ∼ Bernoulli(0.5) independently. We select those

0 <
d∑
j=1

˜Ii,j < d, and denote Ii,j =
 ˜Ii,j|0 <

d∑
j=1

˜Ii,j < d

. Now we define the estimator %̂ of

% as

%̂(X) = 1
n

n∑
i=1

φ

 d∑
j=1

Ii,jXi,j, Si −
d∑
j=1

Ii,jXi,j

 . (4.14)

Proposition 4.3.17. Recall Definition 4.3.1 of %, %̂ is an unbiased estimator of %. In
particular,

E(%̂) = 1
2d − 2

∑
S∈C

φ

∑
j∈S

Xj,
∑
j∈S

Xj


Proof. Fix the ith sample, then we omit i in the subscript now, (Ij)1≤j≤d = (Ii,j)1≤j≤d, (Xj)1≤j≤d =
(Xi,j)1≤j≤d.
If i1 = i2 = ... = id = 0 or 1, then

P (I1 = i1, I2 = i2, ..., Id = id) = P (Ĩ1 = i1, Ĩ2 = i2, ..., Ĩd = id|0 <
d∑
j=1

Ĩj < d) = 0.
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If ij ∈ {0, 1}, j = 1, ..., d and 0 < ∑d
j=1 ij < d,

P (I1 = i1, I2 = i2, ..., Id = id) = P (Ĩ1 = i1, Ĩ2 = i2, ..., Ĩd = id|0 <
d∑
j=1

Ĩj < d)

= P (Ĩ1 = i1, Ĩ2 = i2, ..., Ĩd = id)
P (0 < ∑d

j=1 Ĩj < d)

=
∏d
j=1 P (Ĩj = ij)

1− P (∑d
j=1 Ĩj = 0)− P (∑d

j=1 Ĩj = d)

=
1
2d

1− 2 · 1
2d

= 1
2d − 2 .

So

E

φ
 d∑
j=1

IjXj, Si −
d∑
j=1

IjXj


=φ(X1, X2 + ...Xd) · P (I1 = 1, I2 = ... = Id = 0)

+ ...+ φ(X1 +X2 + ...Xd−1, Xd) · P (I1 = I2 = ...Id−1 = 1, Id = 0)

= 1
2d − 2

∑
S∈C

φ

∑
j∈S

Xj,
∑
j∈S

Xj

 .

4.4 Conclusion of Chapter 4 and Future Work

In this chapter, we propose a new multivariate dependence measure % focusing on the
sum of random variables. We have derived its properties and studied how to estimate
it. Future work on % includes deriving more properties, other estimation methods and
its applications. The asymptotic normality, robustness and statistical inference associated
with the estimator can be studied. See Bernard and Mcleish [2014] for one application to
designing algorithms to minimize the variance of the sum.
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Chapter 5

Conclusion and Future Work

This thesis studies bounds on variance under partial information available, the compatible
matrix problem and gives a new multivariate dependence measure. Conclusion and future
directions of each part have been given in Sections 2.6, 3.4 and 4.4. The following topics
are beyond the scope of this thesis and thus left to future work:

1. In both Chapters 2 and 3, we study bounds on variance with partial information on
dependence: in Chapter 2, we know the copula on some restricted area S. In Chapter 3,
we assume that we know the interaction with some background factor Z. It is natural to
ask whether there is some relationship between the two problems.

2. The covariance matrix given in Chapter 3 can be studied in terms of other probability
distributions. When n ≥ 4, the matrix is not unique anymore. When n→∞, do the entries
of the matrix converge to any value or follow any distribution? This problem is related to
random matrix theory (see Tao [2012]).

3. This thesis deals almost exclusively with the variance but it can be extended to
other risk measures, or to study the distribution of the sum.

4. We have only worked on sums of random variables. Our work can be extended to
bounds on f(X1, ..., Xn) for other functions f such as stop-loss premiums, exotic options.

5. This thesis only focuses on dependence of continuous random variables, see Nešlehová
[2004] for discussion on non-continuous random variables.
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