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Abstract

Image segmentation is an important step in image processing, with many applications such as

pattern recognition, object detection, and medical image analysis. It is a technique that separates

objects of interests from the background in an image. Geometric active contour is a recent image

segmentation method that overcomes previous problems with snakes. It is an attractive method

for medical image segmentation as it is able to capture the object of interest in one continuous

curve.

The theory and implementation details of geometric active contours are discussed in this work.

The robustness of the algorithm is tested through a series of tests, involving both synthetic images

and medical images. Curve leaking past boundaries is a common problem in cases of non-ideal

edges. Noise is also problematic for the advancement of the curve. Smoothing and parameters

selection are discussed as ways to help solve these problems.

This work also explores the incorporation of the multi-resolution method of Gaussian pyramids

into the algorithm. Multi-resolution methods, used extensively in the areas of denoising and

edge-selection, can help capture the spatial structure of an image. Results show that similar

to the multi-resolution methods applied to parametric active contours, the multi-resolution can

greatly increase the computation without sacrificing performance. In fact, results show that with

successive smoothing and sub-sampling, performance often improves.

Although smoothing and parameter adjustment help improve the performance of geometric

active contours, the edge-based approach is still localized and the improvement is limited. Region-

based approaches are recommended for further work on active contours.
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Chapter 1

Introduction

Image segmentation, an image processing technique to separate objects from the background

in an image, is an important step in image processing with many applications such as machine

vision, face recognition, and medical image analysis.

In machine vision, robots can rely on cameras to give information about the surroundings,

such as identifying proper route or possible obstacles. Highway toll systems use cameras to extract

car license plates, and in manufacturing, images help discover possible defects in products such

as cracks or breakages.

These days, as terrorist threats loom and security systems become more in demand, face

recognition is an important area of research as computers help matches people to database profiles

through identifying face features. To be able to isolate face features such as eyes, mouth and eye

brows are difficult widely researched problems.

As health care systems and hospitals become more digitalized, medical image processing

plays a more important role. As an intermediate step, image segmentation is crucial in image

registration and classification problems. Furthermore, medical image segmentation offers help in

diagnosis and treatment in many situations. First of all, through 2-dimensional segmentation,

a 3-dimensional model can be reconstructed, which helps with visualization for diagnosis and
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CHAPTER 1. INTRODUCTION 2

aid in surgery. Also, doctors can estimate dimension (volume, area, length) of the object of

interest such as a tumor such that radiation therapy can be automated. With the trend of the

digitization of medical data, segmentation also helps form a digital atlas of the patient’s anatomy,

thus eliminating the need for patient specific tools [12].

1.1 Medical Imaging

Medical imaging evolved from the discovery of x-rays to the newest magnetic resonance image

(MRI). Commonly used techniques currently include x-ray, computer tomography (CT), ultra-

sound, MRI, and positron emmision tomography (PET). This section will briefly discuss the

nature of some of these images and the technology behind them.

1.1.1 X-ray

X-ray is the first and oldest medical imaging technique available to doctors for the visualization

of the body without surgery. It is generally noninvasive, except when used in methods such

as angiography where a radiopaque substance is injected into the bloodstream to highlight the

circulation in any part of the body [20]. However, X-rays have ionizing effects on the body and

therefore should not be repeatedly used. X-rays were first discovered by Wilhelm Röntgen in

1895. The technique involves having a film or screen containing a radiation-sensitive material

exposed to the x-rays transmitted through a region of the body. The developed film or excited

phosphorous screen exhibits a geometric pattern produced by the structures in the beam path

[20]. X-ray imaging is limited as the signal can be reduced due to the scattering of a large

percentage of radiation from the body, and much detail is lost in the radiographic process with

the superposition of 3D structural information onto a 2D surface. Therefore the 3D nature of

bones, muscles, ligaments and vessels are all hard to capture on X-ray. The use of X-rays is

usually limited to scanning bone. Fig. 1.1 shows an angiography of the left ventricle.
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Figure 1.1: A left ventricle angiography (courtesy of Fu Jin (fjin@engmail.uwaterloo.ca))

1.1.2 Ultrasound Image

An ultrasound image is based on using a propagating ultrasonic wave that partially reflects at the

interface between different tissues [23]. The reflections are measured as a function of time, and the

position of the tissue can thus be obtained if the velocity of the wave in the medium is known. As

the wave propagates through the body, diffraction, refraction, dispersion, and scattering occurs

and can affect the image quality. Speckle noise patterns due to scatter are common, but are

important to help the user distinguish between different tissues. There are also possible artifacts

due to reverberations when waves are reflected back and forth between the transducer and the

tissue. Ultrasound is commonly used for soft tissues, fluids, and small calcifications that are

preferably close to the patient’s body surface and not hidden by bony structures.
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1.1.3 Magnetic Resonance Image

Magnetic resonance imaging was developed in the early 1970s and has become a versatile and

clinically useful diagnostic imaging modality [20]. In contrast to X-ray and CT, MRI is a noninva-

sive imaging technology that does not use ionizing radiation. It is based on perturbing magnetic

fields with radiowaves. In MRI, hydrogen nuclei (protons) are imaged due to their strong mag-

netic moment and prevalence in the soft tissues of the body (water molecules). The signal being

measured can be controlled through modulation of the magnetic field and radiofrequency pulse

sequences used to alter the spins of protons in the structure being imaged.

MRI best captures human soft tissue anatomy, as it is able to provide high contrast between

soft tissues. In addition, its signal is not disturbed by bone. It is therefore used often to find

pathological changes such as tumours, haemorrhages and inflammations, and the central nervous

system where there are many bones [12].

Unlike many other medical imaging modalities, the contrast in an MR image depends strongly

upon the way the image is acquired. By altering RF and gradient pulses, and choosing relaxation

timings, it is possible to highlight different components in the object being imaged and produce

high contrast images. These two features facilitate segmentation. On the other hand, ideal

imaging conditions are never realized in practice. Image information is degraded considerably by

electronic noise, the bias field (intensity inhomogeneities in the RF field) and the partial-volume

effect (multiple tissue class occupation within a voxel), all of which cause classes to overlap in

the image intensity histogram. Moreover, MR images are not always high-contrast. Many T2-

weighted and proton density images have low contrast between gray matter and white matter

[29]. Fig. 1.2 shows an MRI of the brain.

1.2 Segmentation Methods

Popular image segmentation methods include thresholding, region-growing, and active contours.

Thresholding is the technique where an image is segmented based on peaks and valleys of the
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Figure 1.2: A brain MRI (courtesy of Merge Efilm)

histogram of a certain image feature, the simplest being pixel intensity. The method uses the

valleys as the thresholding limits for distinguishing the regions. The method is appropriate for

images with homogeneous regions but problematic with image flaws such as noise or broken edges.

Region growing divides an image into regions by grouping adjacent pixels with similar gray

values, resulting in boundaries between contrasting regions. Region growing techniques begin

with seed points, which grow by iteratively merging adjacent pixels with similar gray values.

Problems with the region growing technique are similar to thresholding, where noise and unclear

edges affect the performance greatly [20].

The method of active contours, also commonly known as snakes, on the other hand, involves

minimizing a so-called energy function which is based on certain properties of the desired object

boundary, for example the smoothness of the boundary curve and local gradient of the image.

Starting with an initial curve, sometimes in a seed form or user-defined, the curve expands and

contracts until the minimum energy function is found. This way, the resulting segmentation

avoids yielding broken boundaries even with the presence of noise and non-ideal edges. However,

there is the possibility of getting caught in local minima, influenced by the initial curve [20]. In

addition, since the curve flow is modeled by differential equations, iterative methods are used to

find the minimum and the computation speed is usually slow.
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1.3 Motivation

As mentioned in the beginning of this chapter, image segmentation is important in various ap-

plications. Most segmentations are still done by radiologists, however, as human vision is still

the most reliable and intelligent way of segmenting objects of interest. With high volume, high

resolution images such as MRI, the radiologist’s job is tedious. The demand to automate the

segmentation process is great and fully-automatic algorithms are much desired. Meanwhile, al-

though there exists a wide range of methods such as ones described in sec. 1.2 and approaches

devoted to medical image segmentation, the problem remains a challenging one, as medical im-

ages are plagued with poor contrast, noise, poorly-defined boundaries and complications such as

overlapping tissues that even the human eye may have difficulty in distinguishing. Furthermore,

while the imaging technology may contribute to difficult image artifacts, as discussed in section

1.1, human factors such as patient’s movement while doing a MRI scan also cause inconsistency

in image quality, making a fully automatic segmentation method difficult. The incorporation of

user interaction is common in commercial applications (e.g. 3D-DoctorTM), and there is also

much research in the incorporation of prior information such as shape [24] and texture [18].

This work examines closely a particular segmentation method called the geometric active

contour (proposed by [4], [13]), and attempts to incorporate multi-resolution methods to help

tackle the afore-cited problems with medical image segmentation.

1.4 Thesis Overview

The objective of this thesis is to examine the effectiveness of the geometric active contour method

in the segmentation of medical images and how the incorporation of multi-resolution methods

improve the process. Chapter two describes the active contour method. Chapter three shows

results from an implementation of a geometric active contour. Chapter four discusses multi-

resolution methods and their application to active contour methods. Chapter five describes
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the proposed approach and analyzes the results from implementing the method. Chapter six

summarizes and concludes the study.



Chapter 2

Active Contours and Level Sets

In recent years, techniques of active contours and curve evolution have been widely investigated

and applied to the image segmentation problem. Compared to other methods such as thresholding

and edge-based methods, the active contour model has the advantage of being less sensitive to

blurred edges and also avoiding broken contour lines. In general, active contour models are based

on deforming an initial contour C towards the boundary of the object to be detected, through

minimizing a functional designed such that its minimum is obtained at the boundary of the object.

Energy minimization involving components controlling the smoothness of the curve and one for

pulling the curve closer to the boundary is a common technique. There are two main types of

active contour models: parametric or geometric. Parametric, or “explicit”, active contours are

classical snake models first introduced by Kass et al. [9], where the curve is defined explicitly

by the curves points, and moves the points according to the energy function. The geometric

active contours, or ”implicit” active contours, on the other hand, implicitly represent the curve

by embedding the curve in a higher dimension function, and then evolve this function instead.

Both are discussed further in the next sections.

8
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2.1 Snakes

In the classical energy based snakes approach, first introduced by Kass et al. [9], the curve C

is associated with an energy given by Eq. 2.1, where p parametrizes the curve 0 ≤ p ≤ 1, α,

β, and λ are real positive constants. The first two terms control the smoothness of the contours

to be detected, where α controls the ”tension”, β controls the ”rigidity”, while the third term

is responsible for attracting the contour towards the object in the image. In this approach,

the curve is parameterized with points (xi, yi) and arclength. This method of parameterizing the

curve is known as the Langrangian approach (common in fluid mechanics problems), which focuses

attention on material particles as they move through the flow [17]. Although effective in giving

a continuous boundary, this approach cannot directly deal with changes in topology. The curve

points may ”tangle” and ”collide” as the curve evolves. It is thus crucial that prior knowledge is

obtained and a reasonable initial curve be set such that the algorithm gives meaningful results.

E(C) = α

∫ 1

0
|C ′(p)|2dp + β

∫ 1

0
|C ′′(p)|2dp− λ

∫ 1

0
|∇I(C ′(p))|dp (2.1)

2.2 Geometric Active Contours

Caselles et al. [4] and Malladi et al. [13], at around the same time, independently further

enhanced the idea of snakes by developing a curve evolution flow which can better accommodate

the object geometry and the changing topology as the curve evolves. The basic idea stems from

Euclidean curve shortening and the use of level sets when evolving the curve. First, let C=C(p,t)

be a smooth family of closed curves where t parameterizes the family and p the given curve,

0 ≤ p ≤ 1. consider the length functional [4]:

L(t) =
∫ 1

0
|∂C

∂p
|dp

Differentiating using integration by parts (where 〈 ~A, ~B〉 is the dot product of ~A, ~B),



CHAPTER 2. ACTIVE CONTOURS AND LEVEL SETS 10

L′(t) =
∫ 1

0

〈∂C
∂p , ∂2C

∂p∂t〉
|∂C

∂p |
dp

= −
∫ 1

0
〈∂C

∂t
,

1
|∂C

∂p |
∂

∂p

[
∂C
∂p

|∂C
∂p |

]
|∂C

∂p
|〉

Since

|∂C

∂p
|dp = ds

where ds is the arc-length, then

L′(t) = −
∫ L(t)

0
〈∂C

∂t
, κ ~N〉ds

since ∂ ~T
∂s = κ ~N , where κ is the curvature, ~T is the tangent, and ~N is the inward normal vector.

L(t) is decreasing most rapidly when ∂C
∂t = κ ~N .

In the work by Caselles et al. [4], this length-minimizing curve flow is modified through the

multiplication of an edge-detector function g(I) (g approaches 0 if it is an edge):

L(t) =
∫ 1

0
g(I)|∂C

∂p
|dp

Through the incorporation of the edge-detector, the flow moves to minimize the curve length

but stops at an edge. Similar to the earlier curve flow derivation, the curve evolution equation

becomes (derivation can be found in Appendix B in [4]):

∂C(t)
∂t

= g(I)κ ~N − (∇g · ~N) ~N (2.2)

The level-sets approach, first proposed by Osher and Sethian [16] is then incorporated into

the model to make it topology free. It assumes that the curve C is a level-set of a function φ,

so C coincides with the set of points φ=constant, which is usually set to 0, meaning that C is
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the 0-level-set of u. By embedding the evolution of C in that of u, topological changes of C(t)

are handled automatically. As was shown in the Appendix C in [4], if the planar curve C evolves

according to

∂C(t)
∂t

= β ~N

for a given function β, then the embedding function φ should deform according to

∂φ

∂t
= β|∇φ|

Therefore the geodesic active contour model becomes:

∂φ

∂t
= g(I)(κ + c)|∇φ|+∇g · ∇φ (2.3)

with a parameter c added to help speed up the convergence (note ~N = − ∇φ
|∇φ|).

An example of the level-set representation is shown in Fig. 2.1. The figure shows the level set

expanding outward at a uniform speed in all directions, and as time passes (t=0 to t=2) the level

set function (the right column) grows and the corresponding zero-level set curve (left column)

changes to a circle of bigger radius.

The object boundary is then given by the zero level-set of the steady state (φt=0) of this

flow. This approach is Eulerian, which focuses on a fixed point in space as time proceeds [17],

capturing the interface through the implicit function φ, as opposed to tracking the movement of

points as in the Langrangian approach with snakes.

2.2.1 Signed Distance Function

The higher-dimensional function φ(x,y,t) is usually set as a signed distance function:

φ(x, y, 0) = ±d(x, y)



CHAPTER 2. ACTIVE CONTOURS AND LEVEL SETS 12

Figure 2.1: Level-set representation: a circle represented by a level set function and expanded at

a uniform speed (based on [19])

where d(x,y) is the distance from (x,y) to the closest point on the curve C, and is positive if (x,y)

is outside the curve, negative if (x,y) is inside the curve. Fig. 2.2 illustrates the 2-dimensional

signed distance function of the set of 1-dimensional points 1,-1. The use of the signed distance

function simplifies the numerical scheme to be used, as will be further explained later in section

2.3. It also ensures a smooth surface for the evolution, avoiding potential convergence instabilities

due to numerical approximations.

2.3 Implementation of Geometric Active Contours

Implementing eq. 2.3 requires careful consideration of numerical schemes to ensure stable con-

vergence [13]. Furthermore, as level set function evolves, the function does not remain a signed
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Figure 2.2: Signed distance function (based on [15])

distance function and therefore periodical re-initialization is needed to keep the function as a

signed distance function. Also, because of the considerable computation involved, various algo-

rithms are introduced to help increase the speed. These implementation aspects are discussed

further in this section.

2.3.1 Numerical Schemes

First of all, the proper numerical methods are needed to ensure reasonable approximations for the

discretization of the partial differential equation. To discretize and solve the equation numerically,

finite difference approximations are needed. First order finite difference approximations of u(x,y)

can be derived from Taylor series expansion. Central difference, forward difference, and backward

difference approximations are shown in eqs. 2.4, 2.5, 2.6 respectively.

D0
xu = (ui+1,j−ui−1,j)

2∆x , D0
yu = (ui,j+1−ui,j−1)

2∆y
(2.4)
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D+
x u = ui+1,j−ui,j

∆x , D+
y u = ui,j+1−ui,j

∆y
(2.5)

D−
x u = ui,j−ui−1,j

∆x , D−
y u = ui,j−ui−1,j−1

∆y
(2.6)

To understand what appropriate numerical methods should be used, the problem is broken

down into three cases. Consider the general equation:

ut + ~V · ∇u = 0

where ~V is a speed term that moves the surface u. Consider the three cases where (1) ~V is an

externally generated speed function ~V (~x, t), or (2) self-generated velocity field ~V that depends

directly on the level set function u, or (3) a constant velocity field. Most of the material in this

section is taken from the chapters 1-7 in [15].

Externally Generated Velocity Field

First consider the simple first order partial differential wave equation, eq. 2.7, in one dimension,

where u=u(x,t), and a(x) is a given speed term that determines how fast the wave or each point

on the surface moves.

∂u

∂t
+ a(x)

∂u

∂x
= 0 (2.7)

Let ut = ∂u
∂t . Since the equation is evolved forward in time, a simple first-order forward

difference can be used for ut, as seen in eq. 2.8, where n indicates the iterations in time.

un+1 − un

∆t
+ anun

x = 0 (2.8)

The sign of an indicates whether the values of u are moving to the right or left. At grid point

xi, consider if ai > 0, the values of u are moving from left to right. To determine what value of u
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will land on the point xi at the end of a time step, one should look to the left of xi. Therefore, if

ai > 0, use backward difference for approximation and otherwise, use forward differencing. This

scheme of choosing the approximation to the spatial derivatives based on the sign of a is known

as upwind differencing, as seen in eq. 2.9.

ux = max(a, 0)D−
x u + min(a, 0)D+

x u (2.9)

Note that although ux can be approximated with central differencing, which is more accurate

(second-order accurate), simple central differencing is unstable with forward Euler time discretiza-

tion and the usual CFL conditions with ∆t ∼ ∆x, potentially leading to unwanted oscillations

[25].

Now, consider the equation of the form

ut + H(∇u) = 0 (2.10)

which is known as the general Hamilton-Jacobi equation where H can be a function of both

space and time, and is known as the ”Hamiltonian”. Eq. 2.7 is an example of H(∇u) = ~V ·
∇u in multi-dimension form. Note that Hamilton-Jacobi equations depend on (at most) the

first derivatives of u, and these equations are hyperbolic1. To estimate the numerical scheme,

hyperbolic conservation laws are used. For a convex function2 F where the resulting Hamiltonian

H(∇u) = F |∇u| is also convex, H(∇u) can be approximated as follows:

Hconvex(∇u) = max(F, 0)∇+ + min(F, 0)∇− (2.11)

where
1Eq. 2.13 introduced in the next section depends on the second derivatives of u, is parabolic, and is not an

example of a Hamilton-Jacobi equation.
2In N dimensions, a function F (x1, ..., xN ) is convex if F (λp+(1−λ)q) ≤ λF (p)+(1−λ)F (q) for all 0 ≤ λ ≤ 1,

p, q ∈ RN . Equivalently, F is convex if ∂2F
∂xi∂xj

≥ 0 for all i,j=1,2,....,N.
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∇+ = (max(D−
x u, 0)2 + min(D+

x u, 0)2 + max(D−
y u, 0)2 + min(D+

y u, 0)2)
1
2

∇− = (max(D+
x u, 0)2 + min(D−

x u, 0)2 + max(D+
y u, 0)2 + min(D−

y u, 0)2)
1
2

If F is a non-convex function, then the following scheme is used instead:

H(∇u) = Hconvex(∇u)− 1
2
αu(D+

x u−D−
x u)− 1

2
αv(D+

y u−D−
y u) (2.12)

where

αu = max
i,j

|D0
xu|

αv = max
i,j

|D0
yu|

Self-generated Velocity Field

Instead of a speed term (a) that varies spatially only, consider now a speed term that depends

directly on the level set function u. The equation changes from being a linear partial differential

equation to a non-linear one. In particular, consider the use of a speed term based on the surface

curvature, which is closer to the equation of interest (eq. 2.3). Eq. 2.13 shows such an equation,

where u is n-dimensional, κ is the curvature of u, and ∇u is its gradient.

ut + bκ|∇u| = 0 (2.13)

Compared with eq. 2.9, the term bκ|∇u| is parabolic and cannot be discretized with an

upwind approach [15]. When u is a signed distance function, |∇u| = 1, κ = ∆u, eq. 2.13 becomes

the heat equation, a basic equation of the parabolic model,
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ut + b∆u = 0 (2.14)

where u is the temperature and b is the thermal conductivity. Such parabolic equations need to be

discretized using central differencing since the domain of dependence includes information from

all spatial directions, as opposed to hyperbolic equations like eq. 2.7 [15]. Therefore, to discretize

eq. 2.13, κ is discretized using a second-order central differencing scheme (in two dimensions):

κ =
uxu2

y − 2uyuxuxy + uyyu
2
x

|∇u|3 (2.15)

For eq. 2.14, when |∇u| = 1, ∆u, the Laplacian of u, is given by

∆u = uxx + uyy (2.16)

and can be discretized using second-order accurate central differencing formula in each direction:

∂2u

∂x2
≈ D+

x D−
x u = D−

x D+
x u =

ui+1 − 2ui + ui−1

∆x2
(2.17)

Therefore having u as a signed distance function simplifies the discretization of bκ|∇u| by

substituting it with b∆u.

Constant Velocity Field

Consider eq. 2.18

ut + a|∇u| = 0 (2.18)

When u is a signed distance function, the equation reduces to ut = −a and if un is ini-

tially a signed distance function, it stays a distance function for all time. Using forward time

discretization, the solution of eq. 2.18 is straightforward:
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u = −a0t + u0 (2.19)

Therefore, using u as a signed distance function greatly simplifies the numerical scheme for

the case with a constant velocity field.

The CFL Condition

To ensure that small errors in the approximation are not amplified as the solution is evolving in

time, in other words, that the numerical scheme is stable, the Courant-Friedreichs-Lewy condition

(CFL condition) can be used [15]. The CFL condition asserts that the numerical solution should

propagate as fast as the physical solution, and it does so by restricting the time step:

δt <
∆x

max{|u|} (2.20)

where max{|u|} is chosen to be the largest value of |u| over the entire Cartesian grid.

Summary

Since both the first and last term are externally generated velocity fields while the second term

is curvature-dependent, eq. 2.3 is implemented as follows:

un+1 = un + δt
{

(max(cn, 0)∇+ + min(cn, 0)∇−)︸ ︷︷ ︸
upwind difference

+κ
√

(D0
x)2 + (D0

y)2︸ ︷︷ ︸
central difference

− (max(un, 0)D−
x + min(un, 0)D+

x + max(vn, 0)D−
y + max(vn, 0)D−

y )︸ ︷︷ ︸
upwind difference

}
(2.21)

where ∇g = (u, v) is the gradient of the edge detector (u is the x-component and v the y-

component).
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2.3.2 Signed Distance Function and Re-initialization

As seen in section 2.3.1, having the level set function as a signed distance function simplifies

numerical schemes, as in the cases of constant velocity field and curvature-dependent velocity

field. Furthermore, the level set function can develop noisy features and steep gradients that

are not amenable to finite-difference approximations. Keeping the level set function as a signed

distance function helps it to stay smooth enough to approximate its spatial derivatives with some

degree of accuracy.

Even if the level set function is set as a signed distance function at the beginning of the

evolution, it generally drifts away and does not stay as signed distance. Therefore periodic re-

initialization of the level set function as a signed distance function is needed to ensure smooth

evolution. How frequent the re-initialization is required depends on how sensitive the particular

numerical approach is to how accurately the level set function approximates a signed distance

function.

To set up the level set function as a signed distance function, the straightforward approach

would be to determine the distance to the closest curve point for every point in the set. A speedier

approach uses the idea of crossing times which can help locate and discretize the interface (at 0

level-set) [15]. The trick is to move the interface in the normal direction with speed term 1. For

each point, the time when the interface crosses over it is when the value at the point changes from

negative to positive or vice versa. Since the speed equals 1 and the level set is moved normal

to itself, this time, the so-called crossing time, is equal to the distance. For points inside the

interface, use speed= −1; for points outside the interface, use speed= 1. The advantage of the

crossing time method is that the interface does not have to be located beforehand.

Another approach re-initializes by solving the partial differential equation 2.22 [15]. Upon

convergence of the equation, |∇φ| = 1, thus establishing a signed distance function. This approach

is fast but is not as accurate, compared to the above two approaches as the sign function does not

provide very accurate information for pixels closed to the front. If φ is not smooth or φ is much
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steeper on one side of the interface than the other, it may cause the interface to move incorrectly

from the starting position. More functions that may provide a better estimate are discussed in

[15].

∂φ

∂t
= sign(φ)(1− |∇φ|) (2.22)

2.3.3 Front Propagation Algorithms

While a straight-forward implementation of the geometric active contour is to update the level

set function of all pixels in the image at each iteration, it is computationally expensive. To help

reduce the computation time, different algorithms were proposed, using different properties of the

level set function. Initially proposed in [6], and further analyzed in [1], the narrow band approach

evaluates the level set function only for a band of pixels close to the 0 level-set [19]. Fast march,

introduced in [21], on the other hand, simplifies the level set function by assuming the speed

function is always positive or negative and thus simplifies the computation needed. These two

methods are discussed in more detail in this section.

Narrow Band

Since the front propagates smoothly, it cannot propagate too fast and therefore only the values of

pixels close to the front changes at each iteration. In other words, during evolution, only a band

of pixels around the front, both outside and inside the front, need to be considered, as seen in fig.

2.3. Checks need to be made at each iteration to make sure that the front is evolving within the

band. When the front is close to the edge of the band, the band is re-initiated by establishing a

new band around the current front and its correct signed distance values [19].
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Figure 2.3: The use of narrow band for front propagation (based on [19])

Fast March

Consider when the speed term is either always positive or negative, and let T(x,y) be the time

at which the curves cross the point (x,y). Then, given

ut + F (x, y, z)|∇| (2.23)

the following can be obtained

|∇T |F = 1 (2.24)

which says that the gradient of arrival time surface is inversely proportional to the speed of the

front.

As discussed in sec 2.3.1, in the case of an externally generated speed term, the level set

function is discretized using eq. 2.11. Using the same numerical scheme, eq. 2.24 becomes:
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1
F 2

= max(D−
x T, 0)2 + min(D+

x T, 0)2 + max(D−
y T, 0)2 + min(D+

y T, 0)2 (2.25)

One can solve this equation iteratively, but it would take considerable computation. Since

for eq. 2.24, the front only propagates in one direction, the solution can be obtained using an

outward propagation scheme from the smallest T value3. The algorithm first finds the front point

with the smallest T value and then considers moving the front to its neighboring points. The

algorithm splits pixels into three categories: (1) alive, which are points already reached by the

front and their crossing times are known; (2) active, which are points that are candidates to

be reached by the front in the current iteration; and (3) far away, which are points that have

not been considered and their crossing times are unknown. Then the algorithm, as described

succinctly in [19], goes as follows:

1. Initialize

(a) Front pixels constitute the set of Alive pixels that are assigned to zero crossing time

[T=0]

(b) For each Alive pixel, its neighborhood pixels are examined. If they are not Alive pixels,

label them as Active pixels with T(i, j) = 1
F(i,j)

(c) Rest of the pixels are labelled as Far Away points with T(i, j) = ∞

2. Marching Forward

(a) Pixel with the smallest value of T within the Active set is selected. This pixel is

removed from the Active set and is labelled as Alive

(b) Neighboring pixels of the selected pixel are examined. If they are labelled as Far Away,

they will become Active. Update the T value of this and the existing Active set of

pixels according to eq. 2.25, selecting the largest possible solution to the quadratic

equation.
3This idea is further explained and proven in [21].
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(c) Repeat Marching Forward if active set is not empty

Although the fast march algorithm has lower computational cost, the main limitation remains

its assumption that the speed term is always positive or negative. This limits the choices of the

speed term, which, for instance, cannot be a curvature-dependent speed function. However, it

can still serve very well as a rough but fast initial attempt to boundary capturing, if the initial

front is set up as a seed inside the object. Then it is similar to region growing, where the front

propagates from a seed, outward until it hits a boundary. Also, it can be used for re-initialization

using the crossing time idea, as described in section 2.3.2, since the crossing time idea uses a

constant speed function of F=1 and F=-1.

2.4 Summary

The ideas of snakes and geometric active contour help solve the segmentation problem by at-

tempting to capture boundaries through a continuous curve. Geometric active contour overcomes

previous problems faced by snakes by using an Eulerian formulation of the evolution function in-

stead of a Langrangian approach, and is thus able to adapt to topology changes. Meanwhile,

the implementation can be computationally intensive and the methods narrow band and fast

marching are attempts to speed up the process and are introduced in this section.

The design of the energy function is crucial in the success of the boundary extraction and may

depend on the specific applications. While earlier work on active contours mainly focuses on the

use of edge as a feature in the energy function, recent works explore more use of statistics and

more regional or global approaches, as opposed to local edge information. Edge-based methods

have problems with poorly defined edges and noise, which may cause the evolution to be stuck

at a local optimum or evolve past weak edges.
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Geodesic Active Contour

Demonstration

To demonstrate how geometric active contours fair in segmentation, the geodesic active contour,

proposed by Caselles et al. [4] is implemented and tested. The evolution function (eq. 3.1) is

implemented, with parameters (c, β, ε), using numerical methods as described in section 2.3.1.

All parameters are set to 1 unless otherwise specified. The edge detector g(I) used is shown in

eq. 3.2, where k is a positive constant parameter (again, set to 1 unless otherwise specified). The

algorithm is implemented in Java and tested on a Celeron 433MHz computer with 192MB RAM.

Initial curve (a box) coordinates are given by the user.

∂φ

∂t
= g(βκ + c)|∇φ|+ ε∇g · ∇φ (3.1)

g =
1

1 + (∇I
k )2

(3.2)

The narrowband algorithm is implemented to speed up the process. The level set function

is re-initialized whenever ∇φ > 2 to keep the function smooth and remain as a signed distance

24
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function. ∇φ > 2 is picked arbitrarily and is found to give reasonable results while not being

too computationally exhausting. Note that re-initializing too often (such as setting ∇φ > 1)

may cause the level set to remain stationary. Re-initialization is done through the third method

introduced in sec. 2.3.2, using eq. 3.3 [25], which is a modified version of eq. 2.22. Since the

narrow band algorithm is used, the level set function is also re-initialized when the front reaches

the band boundary.

∂φ

∂t
= sign(φ)min(1, φ)(1− |∇φ|) (3.3)

The CFL condition as mentioned in sec 2.3.1 is maintained by ensuring that δt < 0.5
max{|u|} ,

and if not δt is adjusted to δt = 0.3
max{|u|} . Again, the constraints 0.5 and 0.3 are chosen arbitrarily

to conservatively fulfil the CFL condition.

The segmentation stops when the level set equation reaches steady state. This is done by

checking if there is change in the front length. When the number of front pixels remain the same

for a specified number of iterations (set to 500 in most cases), the algorithm stops.

The nature of each term in the evolution equation is first demonstrated. Then further tests are

shown to see performance of the algorithm under poorly defined edges and noise. The test images

used in this section are combination of 128x128 synthetic images and some medical images.

Note that the computation time not only depends on the image size but also the frequency

of re-initialization, which varies from image to image. This is because the frequency of re-

initialization differs from image to image, depending on smoothness of the propagation, and the

more frequent the re-initialization occurs, the more time it takes. It also varies from different

initializations and different time intervals. In this work, the computation time is included in the

figure captions for each example.
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3.1 Level Set Equation

As shown in eq. 3.1, there are three main speed terms that play a role in advancing the front.

First, let us consider the term g(I)κ|∇φ|. On its own without g(I), the term κ|∇φ| is a Euclidean

length minimizing term, thus keeping the evolving curve smooth. Multiplied by g(I), the speed

term is adjusted to stop at the boundary. In the case of an ideal edge, the term goes to 0 and

thus no movement, however large the curvature κ may be.

Fig. 3.1 and 3.2 demonstrate the evolution according to this term only. Although able to

adhere to some boundary, convergence is slow, and the curvature constraint limits the curve to a

minimal length, stopping the curve from reaching sharper corners and concave areas.

(a) (b) (c) (d) (e) (f)

Figure 3.1: Geodesic active contour with only the curvature term, a) initial, and after b) 5000,

c) 10000, d) 20000, e) 30000 and f) 36000 iterations. (13 minutes)

Now consider the constant advection term cg(I)|∇φ|. As it was shown in Figs. 3.1, 3.2, when

c=0 the convergence can be quite slow and this term is used to speed up the evolution. Fig.

3.3, 3.4 show how the constant advection term helps in pushing the curve closer to the boundary

and giving a faster convergence as compared to Fig. 3.1, 3.2. The constant c can also be used

to control the direction of curve flow. Since |∇φ| leads to an inward flow normal to the curve

(remember that ∂φ
∂t = β|∇φ| is equivalent to ∂C(t)

∂t = β ~N , where ~N is the inward normal), to

have an outward flow, c can be adjusted to a negative speed. Otherwise, unless the initial curve

is close enough to the edge, the boundary would not be captured since the front never advances
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(a) (b) (c) (d) (e) (f)

Figure 3.2: Geodesic active contour with only the curvature term, a) initial, and after b) 25000,

c) 50000, d) 75000, e) 100000 and f) 125000 iterations. (14 minutes)

within the vicinity of the edge. This dependence on the locality of edges means that the initial

curve should be set either completely inside or outside of the object of interest. The sign of c is

then set accordingly to move either inward or outward. Fig. 3.5 shows an example of outward

flow.

(a) (b) (c) (d) (e) (f)

Figure 3.3: Geodesic active contour with both the advection and curvature term, a) initial, and

after b) 2000, c) 4000, d) 5000, e) 6000 and f) 7000 iterations. (2 minutes)

The selection of c, as noted in several papers [22] [27], if chosen too large, can help with faster

convergence but may cause overshooting of the edge, especially when an edge is non-ideal, e.g.

blurred. This overshooting, highly likely when the edge is not strong, is prevented by the third

term in the equation, which is introduced in [4]. The third term ∇g · ∇φ (known as the doublet
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(a) (b) (c) (d) (e) (f)

Figure 3.4: Geodesic active contour with both the advection and curvature term, a) initial, and

after b) 5000, c) 10000, d) 15000, e) 200000 and f) 25000 iterations. (11 minutes)

(a) (b) (c) (d) (e) (f)

Figure 3.5: Geodesic active contour with both the advection and curvature term, outward motion,

a) initial, and after b) 1000, c) 3000, d) 5000, e) 7000 and f) 11000 iterations. (3 minutes)

term), because of ∇g, keeps the front around the vicinity of the edge. Fig. 3.6, 3.7 shows how

the third term helps locate the boundary in the case of a weak boundary.

Fig. 3.8, 3.9 show how the third term enables a closer and faster convergence, when compared

to the results in fig. 3.3, 3.4.

3.2 Contrast

Contrast of the image or edge affects the magnitude of the stopping force at the boundary. In

cases of poor contrast, although the edge magnitude is smaller, due to the doublet term, a low-
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(a) (b) (c) (d) (e) (f)

Figure 3.6: Geodesic active contour with advection and curvature terms, a) initial, and after b)

2000, c) 4000, d) 6000, e) 8000 and f) 10000 iterations. (2 minutes)

(a) (b) (c) (d) (e) (f)

Figure 3.7: Geodesic active contour with all terms, a) initial, and after b) 2000, c) 4000, d) 6000,

e) 8000 and f) 10000 iterations. (2 minutes)

(a) (b) (c) (d) (e) (f)

Figure 3.8: Geodesic active contour with all terms, a) initial, and after b) 1000, c) 2000, d) 4000,

e) 6000 and f) 8000 iterations. (3 minutes)
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(a) (b) (c) (d) (e) (f)

Figure 3.9: Geodesic active contour with all terms, a) initial, and after b) 2000, c) 5000, d) 8000,

e) 11000 and f) 16000 iterations. (7 minutes)

contrast but clearly-defined boundary can still be captured. Fig. 3.10 shows a test image with

low contrast.

(a) (b) (c) (d) (e) (f)

Figure 3.10: Test image with low contrast, a) initial, and after b) 1000, c) 2000, d) 4000, e) 6000

and f) 8000 iterations. (2 minutes)

3.3 Weak Edges

Since eq. 3.1 relies heavily on edge information from the image, when an edge is less than ideal,

e.g. blurred, or broken, the algorithm may ”leak” beyond the supposed boundary. See fig 3.11.

Further example of edge leakages can be seen in fig. 3.15, fig. 3.21.
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(a) (b) (c) (d) (e) (f)

Figure 3.11: Test image with blurred edge, a) initial, and after b) 1000, c) 3000, d) 5000, e) 7000

and f) 9000 iterations. (2 minutes)

3.4 Noise

Noise can greatly affect the segmentation results. Since the algorithm is edge-based and highly

localized, noise can present local optimums where the curve evolution will get stuck. See fig 3.12.

(a) (b) (c) (d) (e) (f)

Figure 3.12: Test image with gaussian noise (mean=0.1, s.d.=0.005), a) initial, and after b) 5000,

c) 10000, d) 15000, e) 20000 and f) 25000 iterations. (18 minutes)

3.5 Initialization

As mentioned in section 3.1, the algorithm is limited to a fixed direction of flow, according to

the constant advection term c. This limits the placement of the initial curve to either being
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completely exterior or interior to the real object boundaries.

3.6 Smoothing

It is generally helpful to smooth the image before applying geometric active contour. Most

commonly Gaussian smoothing is applied. The amount of smoothing plays an important role

in the success of the algorithm. Smoothing helps in eliminating noise that may hinder the

propagation of the front. Fig. 3.13 show the different results from different degrees of Gaussian

smoothing.

Figure 3.13: Noisy image with gaussian smoothing, first row: σ = 1; second row: σ = 1.2

Meanwhile, as the algorithm is quite sensitive to noise and weak edges, an adaptive smoothing

filter such as the Lee filter may improve the results. Fig. 3.14, 3.15, 3.16 shows a test on the

brain MRI image pre-processed with Gaussian smoothing and Lee filter smoothing. It can be

seen that without Gaussian smoothing, the propagation is quite affected by noise. With Gaussian

smoothing, it is slightly less prone to noise but suffers some edge leakage. The Lee filter avoids

noise about the same degree as Gaussian but more successful in avoiding edge leakage.
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(a) (b) (c)

(d) (e) (f)

Figure 3.14: Test image (courtesy of Merge Efilm) preprocessed without smoothing , a) initial,

and after b) 10000, c) 20000, d) 30000, e) 40000 and f) 50000 iterations.

3.7 Edge-detector

The most commonly used edge detector in PDE problems such as this, probably because of its

simplicity, is eq. 3.2. The equation is, again:
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(a) (b) (c)

(d) (e) (f)

Figure 3.15: Test image (from Fig. 3.14) preprocessed with Gaussian smoothing (5x5, σ = 1), a)

initial, and after b) 10000, c) 20000, d) 30000, e) 40000 and f) 50000 iterations.

g =
1

1 + (∇I
k )p

where p = 1, 2, and k a positive constant for edge magnitude adjustment. p = 2 is most commonly

used. It is a gradient-based edge-detector, where g(I) → 0 as ∇I →∞, and g(I) → 1 as ∇I → 0.

However, ideal edges rarely occur in real images and therefore, g(I) is never quite completely 0.
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(a) (b) (c)

(d) (e) (f)

Figure 3.16: Test image (from Fig. 3.14) preprocessed with Lee filter of window 5x5, a) initial,

and after b) 10000, c) 20000, d) 30000, e) 40000 and f) 50000 iterations.

In cases of weak edges, where the ∇I at the boundary not small enough, the algorithm can pass

the boundary, even with the doublet term, as shown in previous tests. A better edge detector,

less prone to noise, and more sensitive to real boundaries may improve the process. To verify, the

gradient-based edge detector, the Sobel edge detector [8], and the Canny edge detector [3] were

investigated. To ensure that the edge detector stays within the range of [0,1] and 0 indicating
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edges, the Sobel edge is normalized and then inverted using 1 − gsobel. Similarly, the Canny

edge detector is inverted using 1− gcanny. The Sobel detector is less sensitive to noise than the

gradient, while Canny is a commonly-used robust edge detector. The results, however, do not

show better propagation with the Canny edge detector. Fig. 3.17, 3.18, 3.19 show the results

of the algorithm on a straightforward synthetic image with sharp edges using the three edge

detectors. It is found that while Sobel gives the closest stop at the boundary, and gradient-based

one gives good results, Canny leaks through. Upon inspection of the edge functions (see fig.

3.20), it is found that Canny has a steeper band of edge values, where bands of edge values of

say 0.3 and 0.1 are close together, causing the algorithm to leak through. The Sobel edge map

on the other hand has a wider band of edge values that are small enough (< 0.2). Adjusting the

threshold of the Canny operator may help.

(a) (b) (c) (d) (e) (f)

Figure 3.17: Using gradient-based edge detector, a) initial, and after b) 1000, c) 2000, d) 3000,

e) 4000 and f) 5000 iterations.

3.8 Further Tests

The parameters c, β, and ε (see eq. 3.1) are added to help negotiate the performance of the

propagation. To see how the parameters affect each term in the level set equation and affect the

outcome of the convergence, these parameters are varied and tested on images. β controls the

curvature term, and c is the constant advection term which helps to push the propagation in a
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(a) (b) (c) (d) (e) (f)

Figure 3.18: Using Sobel edge detector, a) initial, and after b) 1000, c) 2000, d) 3000, e) 4000

and f) 5000 iterations.

(a) (b) (c) (d) (e) (f)

Figure 3.19: Using Canny edge detector, a) initial, and after b) 1000, c) 2000, d) 3000, e) 4000

and f) 5000 iterations.

certain direction and also speeds it up. The gradient-based detector is used and the image is

preprocessed with a 5x5 Gaussian filter, σ ≈ 1.

A spinal (lumbar vertebrae) MRI is tested. The image is difficult with MRI artifacts and noise

from neighboring tissues and fat. Furthermore, the boundary of the spinal cord is not always

clear and some are broken. To avoid getting stuck at noise or artifacts, a strong advection force

is needed. A strong curvature term, on the other hand, is needed to help prevent leakages at

broken edges and help the curve to stay smooth. Some results are shown in fig. 3.21. It can

be seen that tissue artifacts often still slow down or prevent the front from moving, even with

a strong advection term. Meanwhile leakages can be prevented from a stronger curvature term.
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Figure 3.20: a) Contour graph of the edge map using Sobel edge detector, b) using Canny edge

detector

However, a strong curvature term also keeps the front from advancing.

As can be seen from this demonstration, there is a trade-off between the advection term and

the curvature term. With a strong advection, the front avoids getting stuck at noise, but leakages

are more likely. With a strong curvature term, leakages are prevented, but the front potentially

misses correct identification of object of interest and also slows down the front propagation.

3.9 Recent Work

While geometric active contour is an improvement over snakes for boundary detection, with

the evolving contour’s ability to naturally split and merge, problems with noise and ill-defined

boundary remain problematic as previously discussed. Recent work aims to overcome these

shortcomings through the use of region-based energy functionals. Region-based, as opposed to

the classical edge-based energy functionals offer a more global view of the image, making it less
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Figure 3.21: Lumbar vertebrae MRI (courtesy of Robarts Research Institute), first row: curve

leaked out (c = −1, β = 1, ε = 1); second row: less leakage (c = −1, β = 3, ε = 1)

susceptible to the influence of noise and false edges.

Siddiqi et al. [22] proposed the addition of a weighted area functional in Caselles et al.’s

geodesic active contour equation [4]. The proposed equation is as follows:

∂φ

∂t
= α

(
gκ|∇φ|+∇g · ∇φ

)
+

1
2
div

((
x

y

)
g

)
|∇φ| (3.4)

The first term and second term are the same as the original geodesic active contour equation,

but the original constant advection term is replaced by the area functional. Although this ap-

proach improves in dealing with weak edges, there are still cases where “leakages” occur as the

curve evolves beyond the weak edge.

In the work by Chan et al. [5], instead of relying on the gradient of the image to detect objects

and boundaries, the Mumford-Shah functional is incorporated into the curve evolution equation.

The method computes the intensity variance in the selected region and minimizes it to find the
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correct segmentation. Although effective, the method applies only to bi-modal images, assuming

two homogeneous regions.

Other recent methods incorporate prior processing or information. Xie et al. [27] proposed

a region-based method which uses the idea of gradient vector flow [28], but instead of edge map

from the image, it incorporates forces obtained through the diffusion of the region segmentation

map. Although overcoming noise and weak edges, the method relies on region maps obtained

from prior segmentation and depends on the quality of the regions produced.

In [18], Paragios et al. introduce a supervised image segmentation technique which uses given

object samples for training to obtain the probability density distribution of the object. Then the

probability density distribution is used in computing a region likelihood term to be incorporated

into the curve evolution. This way, in addition to having the boundary term, a region-based term

is included as well in the curve evolution.

3.10 Summary

Results from an implementation of the geodesic active contour [4] are shown and analyzed in

this chapter. It can be seen that although adept at changing topology during evolution, geo-

metric active contours’ performance are limited by noise and quality of edges in the image. The

initial curve is also constrained to be placed either inside or outside of the object of interest.

Preprocessing such as Gaussian smoothing helps with smoother front propagation and a more

sophisticated edge detector such as the Sobel operator may improve the results, although care

may be required to choose the proper threshold while using the Canny operator. The method is

also computationally intensive.

Adjusting the parameters in the equation may help improve the performance of the algorithm,

but there is a trade-off between the advection term and the curvature term, and a compromise is

need to minimize getting stuck at local optimum and edge leakage.

Multi-resolution methods are often use to speed up computation and may help with avoiding
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local optimums. The next chapter discusses some common multi-resolution methods and their

applications in active contours.



Chapter 4

Multi-resolution Methods

Multi-resolution methods are commonly used in image denoising, compression, and segmentation.

Humans perceive objects as meaningful entities only over certain ranges of scale. Therefore

the notion of scale is important in the analysis and derivation of information in the image.

Problems such as image denoising and compression can make use of multi-resolution methods

to extract meaningful structures in the image through examining corresponding structures at

different scales, removing unnecessary and irrelevant details. There are different types of multi-

scale representations, including quad-tree, pyramids, scale-space representation, and wavelets [11].

In this section, quad-tree, pyramids, and scale-space and their applications in active contours are

discussed.

4.1 Quad-tree

Quad-tree is a tree-like representation of image data where the image is recursively divided into

smaller regions [11]. For an image I of size 2K × 2K , consider a measure f(I) of the grey-level

variation (e.g. standard deviation) in any region. Let I(K) denote the image at resolution level K.

If f(I(K)) is greater than some pre-specified threshold α, then divide I(K) into sub-regions I
(K−1)
j

42
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(j=1,..,p) according to some rule. The process is done recursively to all sub-images. Fig. 4.1

shows an example of a quad tree, using the difference between the maximum and the minimum

intensity as the criteria and with a threshold of 0.4.

(a) (b)

Figure 4.1: Quad-tree demonstration with a difference threshold of 0.4 using MATLABr

4.2 Pyramid

Pyramid representations of an image give a hierarchy of the image at different scales through

a sub-sampling operation with smoothing. For example for an image 2K × 2K , to construct a

pyramid, first there’s the sub-sampling, then for each pixel, a smoothing operation (a filter of

odd dimension in this example) is performed:

f (K−1)(x) =
N∑

n=−N

c(n)f (K)(2x− n)

where c denotes a set of filter coefficients. The choices of c can vary from averaging to Gaussian

of different variances.

Because of the use of sub-sampling, dealing with coarser levels of the image means operating

on a smaller image and hence less computation. Therefore, pyramids are often used to help reduce

computational complexity in algorithms.
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Fig. 4.2 shows an example of the pyramid representation.

Figure 4.2: Demonstration of the pyramid representation using MATLABr

4.3 Scale-space Representation

First introduced by Witkin [26], the scale-space representation of an image is an embedding of

the original signal into a one-parameter family of Gaussian kernels of increasing widths. The idea

is that by smoothing with a Gaussian kernel of increasing standard deviation σ, the structure

signal at the corresponding scale gets suppressed with a characteristic length less than σ. In other

words, at each successive coarser scale, the fine scale information gets suppressed.

For an image I : RN → R, the scale-space representation L : RN × R+ → R is defined by

L(·; 0) = I and

L(·; t) = g(·; t) ∗ I

where t ∈ R+ is the scale parameter, and g : RN × R+\{0} → R is the Gaussian kernel:

g(x; t) = 1
(2πt)N/2 e−ΣN

i=1x2
i /(2t) (x ∈ RN , xi ∈ R)
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The square root of the scale parameter, σ =
√

t is the standard deviation of the kernel g.

The multi-scale spatial derivative is then defined by

Lxn(·; t) = ∂xnL(·; t) = gxn(·; t) ∗ f

where gxn denotes a derivative of some order n.

4.4 Application to Active Contours

Multi-resolution methods have been employed often to help speed up the computation for active

contours. Geiger et al. [7], uses the pyramid structure to help speed up the dynamic programming

of the deformable contour. Instead of iterative methods for computing the minimum of the

evolution equation, Geiger et al. used dynamic programming which is guaranteed to find the

global minimum. The approach is capable of a speedup by a factor of 20, though at the expense

of losing the guaranteed optimality characteristics.

Akgul et al. [2] later improved on Geiger et al’s work through the use of scale-space repre-

sentation instead of pyramids. Since no sub-sampling has taken place, the method retains the

optimality of the dynamic programming of the contour while achieving faster optimization.

Mignotte et al. [14] also noted the problem with the use of pyramids over dynamic program-

ming of deformable contours, and proposed the use of a multi-grid approach to the algorithm.

The multi-grid method involves solving the energy function through an appropriate hierarchy of

subspaces, which contain constrained configurations describing the expected solution at differ-

ent scales. By relaxing these constraints over the subspaces, in effect adjusting the scale, the

method offers faster computation. Meanwhile, at each scale level, the image adopts the scale-

space representation, where no reduction of image data is applied, and thus with no loss of data

information.
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In [10], Leroy et al. perform the balloon snake model on an image pyramid and parameters

are automatically modified so that, at each scale, the maximal length of the curve is proportional

to the image size. Again, it is observed that the computation time for convergence is 55% shorter

with the multi-resolution method than the standard one. The authors also attempted a multi-

resolution parametrically deformable model using Fourier descriptors in which the curve is first

described by a single harmonic, then harmonics of higher frequencies are used so that precision

increases with the resolution. Results show that the process from few to more harmonics improve

the model’s stability and allows it to better capture irregular object boundaries.

These works indicate that multi-resolution methods are mainly used to reduce computation.

Multi-resolution methods are also mostly applied to parametric active contours. One work that

did apply multi-resolution methods to geometric active contours, not parametric, is by Paragios

[19], who used the pyramids method to help speed up a proposed region-based geometric active

contour, but without much discussion on how the sub-sampling on coarse resolutions may affect

the end results. Edge-based geometric active contour remains very sensitive to noise, and prone

to getting stuck at local optimums in such cases. It is the interest of this work to further explore

the use of the multi-resolution methods in edge-based geometric active contours.



Chapter 5

Multi-resolution Approach

As mentioned in Chapter 3, geometric active contours still have issues with noise and weak edges.

In this thesis, the incorporation of multi-resolution approach to the geometric active contour is

explored and modified to improve in these areas. The methodology is described in this section.

5.1 General Idea

There are three main concerns in the basic geometric active contour algorithm: handling of noise,

weak edge (blurred, broken), and initialization, which affects the direction of curve flow, inward

or outward. These problems can be attributed to the edge-based formulation which is highly

localized, and is unable to ”see” the object over the global perspective.

To acquire a more global perspective, the use of region rather than edge helps better identify

objects of interest, as is seen in recent literature as described in section 3.9. Similarly, multi-

resolution analysis is also intuitively a good tool for extracting information about the object of

interest, examining objects over different ranges of scale.

Fig. 5.1 shows the algorithm for incorporating the multi-resolution method for geometric

active contour. As shown in fig. 5.1, different resolutions of the image are used in the algorithm,

47
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Figure 5.1: Geometric active contour repeatedly applied to different resolution levels
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from coarse to original resolution. The results are shown in the next section.

5.2 Results

The Gaussian pyramid, as explained in section 4.2, is achieved through sampling the original

image and filtering it with a 5x5 Gaussian window (DC gain normalized to 1), σ pre-defined by

user, and is then further sampled and smoothed to obtain the different levels. The resizing of the

resulting curve from one resolution to a finer one is done through bilinear interpolation.

The algorithm is able to speed up the process considerably while capturing the desired bound-

ary. For example in fig. 5.2, it has significant decrease in computation (< 1 minute), compared

with same image without multi-resolution (see fig. 3.8, 3 minutes). Fig. 5.3 shows the noisy syn-

thetic image used before and, when compared with fig. 3.12, it is also much faster (5 minutes vs.

18 minutes). Also, with a large image such as the one in Fig. 5.4, 5.5 (512x512), the computation

time is reduced by as much as 18 times.

In terms of quality of results, the multiresolution approach shows better results. Note that

the degree of smoothing in both multi-resolution and non-multi-resolution approaches are the

same at the original resolution, thus ensuring a more compatible comparison. In the case of the

noisy image, as seen in Fig. 5.3, multi-resolution also yields a cleaner result, with fewer spots

caused by noise. This is due to the successive smoothing done in the multi-resolution method. In

the left ventricular angiography image, fig. 5.5, without multi-resolution, has the edge leakages,

whereas with multi-resolution, in fig. 5.4, the boundary is successfully captured.

5.3 Discussion

The obvious benefit of the multi-resolution approach is the considerable reduction in computation

time, as demonstrated with previous tests. This is due to the computation of fewer pixels when

working at coarse resolution levels. Meanwhile, the improvement in convergence is more subtle.
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(a)

(b)

Figure 5.2: Test image (from Fig. 3.8), σ = 1, a) at resolution level 1; b) at level 0 (full resolution)

(< 1 minutes)

The determination of the appropriate smoothing parameter is vital to the success of the algorithm,

and in this respect, it is similar to the non-multi-resolution approach, where too much smoothing

can cause significant loss of edge information, causing edge leakage, and too little smoothing

may cause front to be stuck at local optimum. However, there is a noticeable improvement in

capturing the right boundary in the multi-resolution approach. By starting at a coarse resolution

level, local optimums are removed, and the curve approaches the boundary with no interference,

and the front, at each successive resolution level, can adjust to edge information at finer levels. It

is also interesting to note that the sub-sampling also helps in preventing edge leakage. At coarse

resolution levels, weak edges are less noticeable and the curve is more likely to stay smooth and

not leak out. See fig. 5.6 for a sub-sampled image with the same amount of smoothing. The

algorithm succeeded without edge leakage.
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(a)

(b)

Figure 5.3: Test image (from Fig. 3.12) with gaussian noise (mean=0.1, s.d.=0.005), σ = 1, a)

at level 1; b) at level 0 (full resolution) (5 minutes)
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(a)

(b)

(c)

Figure 5.4: Ventricular angiography (courtesy of Fu Jin (fjin@engmail.uwaterloo.ca)), σ = 0.6,

a) at resolution level 2; b) at level 1; c) at level 0 (full resolution). (10 minutes)
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(a) (b) (c)

(d) (e)

Figure 5.5: Left ventricular angiography (from Fig. 5.4) without multi-resolution, σ = 0.6, a)

initial, and after b) 2000, c) 20000, d) 40000, and e) 58000 iterations. (180 minutes)
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(a) (b) (c)

(d) (e)

Figure 5.6: Left ventricular angiography (from Fig. 5.4), sub-sampled (128x128), σ = 0.6, a)

initial, and after b) 2000, c) 12000, d) 24000, and e) 36000 iterations. (8 minutes)



Chapter 6

Conclusions

In this work, active contours as a segmentation method are introduced and discussed. Active

contours at first are parametric curves that evolve according to image features such as edges,

and level sets are later incorporated as an improvement. Active contours that use level sets are

known as geometric active contours, and are the focus of this study. It is an attractive method

for medical image segmentation as it is able to capture the object of interest in one continuous

curve.

As geometric active contours are based in partial differential equations, careful numerical

methods are needed to implement the method properly. First order differences are used but

depending on the general direction of the curve movement, more sophisticated schemes are needed.

Such schemes are discussed in sec. 2.3.1. Re-initialization of the level set function is also needed

periodically to ensure the proper evaluation of the PDE, and constraints are placed on the time

interval. Since the algorithm requires iterating through the PDE, it is computationally intensive,

and the narrow band propagation algorithm is introduced and used as a way to speed up the

process.

The robustness of the algorithm is tested through a series of tests, involving both synthetic

images and medical images. Common problems occur when edges are blurred and broken, causing
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the curve to leak out. Also, noise causes the curve to be stuck before getting close to the boundary.

Smoothing can be very helpful and choosing the appropriate smoothing parameter is vital to the

success of the algorithm. Parameters in the equation can also be helpful in controlling the behavior

of the algorithm. However, a trade-off exists between the advection term and the curvature term,

where strong advection avoids getting stuck at local optimums but may lead to edge leakage, and

the curvature term helps prevent edge leakage but slows down or even stops front propagation.

The multi-resolution approach, specifically, a Gaussian image pyramid, is incorporated into

the geometric active contour. The approach speeds the process up considerably, as much as 18

times, and with successive smoothing and sub-sampling, performance improves. However, similar

to the single-resolution approach, choosing the appropriate smoothing parameter is important.

6.1 Contributions

This work has implemented the geometric active contour technique in [4], demonstrated its per-

formance under different settings such as noise, contrast, and parameters to the algorithm. It

proposed to incorporate the Gaussian pyramid into the geometric active contour algorithm and

found the incorporation to improve both the speed and segmentation results of the algorithm.

Through the implementation of the algorithm, the limitations of the algorithm are thoroughly

examined. Also, although a popular research area, most papers on geometric active contours

empirically determine the parameters in the equation and do not have selection criteria. This

work sets to examine the impact of parameters on the equation. Results show that while the

adjustment of advection and curvature terms may help, the localized nature of the edge-based

method makes it difficult for the parameters to have an impact, since certain areas of the image

would appreciate a larger advection term while others may desire a smaller one to prevent edge

leakage. There is a constant trade-off between the two terms.

This work also explored the incorporation of the multi-resolution method of Gaussian pyra-

mids into the algorithm. Although similar multi-resolution methods have been applied to para-
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metric active contours, as discussed in section 4.4, there is not much literature on its application

to the edge-based geometric active contour. Such an approach was mentioned or suggested in

papers such as [4], but not implemented. This work implemented the approach by performing

the geometric active contour method at different resolution levels and showed that similar to the

multi-resolution methods applied to parametric active contours, the multi-resolution can greatly

increase the computation speed without sacrificing performance. In fact, results show that with

successive smoothing and sub-sampling, performance often improves.

6.2 Future Work and Recommendations

Although parameters in the geometric equation can help shape the behaviour of the algorithm,

a trade-off exists between the advection and the curvature term. Even with the multi-resolution

approach, the smoothing is still global and although better at avoiding getting stuck at local

optimums, edge leakage is possible with weak edges. More emphasis should be placed on using

adaptive edge detectors and smoothing operators on the image to avoid noise and weak edge prob-

lems. Also, region-based approaches is promising in future work on active contour segmentation

methods.
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