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Abstract 

Acute myeloid leukemia (AML) is an aggressive malignant disease characterized by poor 

patient outcome and suboptimal front-line chemotherapy. To identify novel anti-AML compounds, a 

high-throughput screen of a natural products library (n=800) was performed. This screen was 

performed against the AML cell line (TEX), which has several properties of leukemia stem cells, the 

cells responsible for disease pathophysiology and patient relapse.  Here, avocatin B was identified as 

a potent and novel anti-leukemia agent. Avocatin B, at concentrations as high as 20µM, had no effect 

on normal peripheral blood stem cell viability.  In contrast, it induced death of primary AML cells 

with an EC50 of 1.5-5.0 µM. Selective toxicity towards a functionally defined subset of primitive 

leukemia cells was also demonstrated. Avocatin B (3µM) reduced clonogenic growth of AML 

progenitor cells with no effect on clonogenic growth of normal hematopoietic stem cells. Further, 

treatment of primary AML cells with avocatin B (3µM) diminished their ability to engraft into the 

bone marrow of pre-conditioned, NOD/SCID mice (t18=6.5; p<0.001). Together, these results confirm 

that avocatin B is a novel anti-AML agent with selective toxicity towards leukemia and leukemia 

stem cells.  

Mechanistically, avocatin B induced reactive oxygen species (ROS)-dependent leukemia cell 

apoptosis that was characterized by the release of mitochondrial proteins, cytochrome c and apoptosis 

inducing factor (AIF).  Cytochrome c and AIF were detected in the cytosol of avocatin B treated TEX 

cells by flow cytometry. Avocatin B-induced apoptosis, as measured by the Annexin V/Propidium 

iodide assay, DNA fragmentation and PARP cleavage, and was abolished in the presence of anti-

oxidants confirming the functional importance of ROS. Next, we further evaluated the role of 

mitochondria in avocatin B-induced apoptosis. First, we generated leukemia cells lacking 

mitochondria by successive culturing in media containing ethidium bromide. The drastic (>80%) 

reduction in mitochondria was confirmed by nonyl acridine orange staining and flow cytometry and a 



 

iv 

 

near absence of the mitochondria specific proteins ANT and ND1, as measured by Western blotting. 

Avocatin B’s activity was abolished in leukemia cells lacking mitochondria. Next, we tested avocatin 

B in cells engineered to lack CPT1, the enzyme that facilitates transport of 16-20 carbon lipids into 

mitochondria. Avocatin B’s activity was abolished in cells with reduced CPT1 expression (>70% as 

measured by qPCR analysis). To further confirm the importance of CPT1 in avocatin B-induced 

death, we chemically inhibited CPT1 with etomoxir. Avocatin B’s activity was blocked in the 

presence of etomoxir, further demonstrating that avocatin B accumulates in mitochondria.  

Since avocatin B is a lipid that targets mitochondria and that mitochondria can oxidize fatty 

acids for energy, we next assessed the impact of avocatin B on fatty acid oxidation, using the 

Seahorse Bioanalyzer. Avocatin B inhibited leukemia cell fatty acid oxidation (>40% reduction in 

oxygen consumption at 10µM) and this occurred at a 10-fold less concentration than etomoxir, the 

standard experimental molecule used to probe this pathway.  Further, avocatin B treatment  resulted 

in a 50% reduction in levels of NADPH, an important co-factor generated during fatty acid oxidation 

that participates in catabolic processes during cell proliferation.  

Additionally, we demonstrated that autophagy was functionally important for avocatin B 

induced leukemia cell death. We reported increased autophagic activity through confocal microscopy 

and Western Blotting of autophagy specific proteins LC3B, ATG7, SQSTM1(p62) and BNIP3L(Nix). 

To further confirm the importance of autophagy in avocatin B-induced death, we generated cells with 

reduced ATG7, the protein involved in autophagosome formation. Avocatin B’s activity was 

abolished in these cells demonstrating that autophagy was essential for avocatin B’s activity.  

These results show that avocatin B accumulates in mitochondria to inhibit fatty acid oxidation 

and reduce NADPH to result in ROS-mediated activation of autophagy and apoptosis in leukemia 

cells. This highlights a novel AML-therapeutic strategy by which mitochondria are targeted to impair 

cellular metabolism leading directly to AML cell death.  
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Chapter 1: General Introduction 

1.1 Acute myeloid leukemia (AML) 

Acute myeloid leukemia (AML) is a devastating disease characterized by poor patient prognosis. 

Abysmal patient survival rates are due to high rates of disease relapse and failure to achieve remission 

due to two factors: 1) the treatment of AML is outdated, having been unchanged for the past 40 years [1-

3], and 2) the presence of leukemia stem cells (LSCs), which are responsible for drug resistance, as these 

are not targeted by current drugs, and disease propagation [4-6].  

 AML, a type of blood cancer, is a heterogeneous disease which results from the disruption of 

hematopoiesis resulting in hematopoietic insufficiency (Figure 1.1). The inadequate production of normal 

blood cells observed in AML is due to the uncontrolled proliferation and accumulation of immature 

myeloid cells, generally referred to as leukemic blasts, in the bone marrow [7]. AML is observed in 3-8 

per 100,000 people, with increasing incidence with age [8]. Approximately 12,000 people are diagnosed 

with AML in the United States annually, whereby 8,590 of them are predicted to die from the disease [9, 

10]. AML patients are faced with extremely poor prognosis, where patients 60 years or older have a 2-

year survival rate of less than 10% and median survival of less than 1 year. AML is the most common 

leukemia observed in adults, with a median patient age of 72 years old, and three quarters of patients with 

AML are 60 years of age or older [1, 9, 10]. Furthermore, AML accounts for 32% of cancer-related 

deaths in children [11]. 
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Figure 1.1. Schematic flow diagram of normal hematopoiesis and AML. In AML, myeloid stem cell 

differentiation is impaired resulting in the accumulation of immature myeloid cells. As a result, AML 

patients suffer from hematopoietic insufficiency due to lowered leukocyte and erythrocyte counts. 

Adapted from “Marieb, Elaine Nicpon,Hoehn, Katja. (2010) Human anatomy & physiology /San 

Francisco : Benjamin Cummings” using Servier Medical Art (Creative Commons Attribution 3.0 Unported 

License). 

1.1.1 Treatment 

AML therapy has essentially remained unchanged for the past 40 years. The first step in AML 

therapy, known as induction therapy, has relied on daunorubicin, an anthracycline, and the pyrimidine 

analog cytarabine as the backbone of chemotherapeutic treatment. This is known as the “3+7” treatment 

regimen, which consists of 3 days of daunorubicin (45-90mg/m
2
) followed by 7 days of intravenous 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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cytarabine (100-200 mg/m
2
) [1, 3, 11, 12]. Usage of daunorubicin and cytarabine in induction therapy 

causes remission in 65-75% of cases who are less than 60 years of age and 30-50% in patients older than 

60 years of age [1, 11, 13]. Induction therapy aims to achieve remission, which is characterized by the 

presence of less than 5% blasts in the bone marrow and to prevent the possibility of disease relapse. 

Treatment of older AML patients (e.g., >65) is complicated by increased resistance to therapy, 

and a higher incidence of co-morbidity and as these patients are less tolerant to the cytotoxicities of 

conventional chemotherapy [11, 13]. Daunorubicin and cytarabine are highly cytotoxic with side effects 

such as nausea, vomiting, pain, ataxia and haemorrhage. As such, only 30% of older AML patients 

receive treatment beyond supportive care [14]. This clearly warrants for the development of novel and 

safer AML treatment strategies. Current efforts have been made to improve complete remission rates 

whilst reducing cytotoxic side effects -such as increased dosing, the use of alternative anthracyclines (ie. 

Idarubicin), or the addition of other chemotherapeutic agents such as etoposide (topoisomerase II 

inhibitor), clofarabine, cladribine, and fludarabine (purine analogues). Unfortunately, no conclusive 

evidence has been generated to indicate that one treatment or new combinations should become the new 

chemotherapeutic standard [1, 9, 15]. 

1.2 Leukemia stem cells (LSCs) 

Leukemia is believed to be a hierarchical model similar to that of regular hematopoiesis with 

leukemia stem cells at the apex [16]. The first study supporting this involved the identification of a 

subpopulation of CD34+/CD38- AML cells that were capable of transplanting in an 

immunocompromised mouse, whereas the bulk population of cells were not [17]. Furthermore, serial 

transplantation of this cell subpopulation in mouse xenograft models displayed long-term engraftment as 

well as self-renewal properties [18]. This led to the belief that a subpopulation of LSCs is responsible for 

propagating and initiating disease. The discovery of LSCs that are responsible for the initiation and 

propagation of leukemia has great implications for the treatment of patients with this disease, as the 

discovery of LSC targeted therapies could dramatically improve overall patient survival rates [4]. 
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LSCs  comprise 0.1-1% of the blasts in AML and can be identified through morphological 

surface markers which differ from hematopoietic stem cells such as the absence of CD90 and the 

increased expression of CD34+/CD38- (which has shown initiation activity of leukemia), CD123 

(interleukin-3 receptor), CD45RA (naïve T cell marker), CD13 (myeloid antigen), CD44 (involved in 

cell-cell interactions and adhesion), CLL-1 (novel LSC antigen), CD96 (T cell receptor), TIM3 (T cell 

receptor), CD47 (involved in proliferation and adhesion), CD32 (B cell signal modulator), and CD25 

(interleukin-2 receptor) [4, 10, 19].  

Not only are LSCs implicated in disease propagation, they are also responsible for drug resistance 

resulting in eventual patient relapse. Unlike bulk AML blasts, LSCs possess adaptive properties that 

enable them to evade the cytotoxic effects of chemotherapeutics. Unlike bulk AML blasts, LSCs comprise 

0.1-1% of blasts and reside primarily in the bone marrow, which provides a protective niche from 

circulating chemotherapeutics [4, 10]. Furthermore, LSCs express the multidrug resistance efflux pump 

P-glycoprotein (ABCB1) that actively remove chemotherapeutics from the cell.  In addition, LSCs have 

been shown to reside mainly in the G0 cell cycle phase, implying that they are generally quiescent [4-6]. 

As current chemotherapeutics generally target fast cycling, proliferating cells, LSCs that are quiescent are 

generally unaffected. As such, future therapy must target LSCs to overcome drug resistance and disease 

relapse. 

1.3 Metabolic alterations in cancer cells 

In general, cancer cells have an altered metabolism allowing for the accumulation of metabolic 

intermediates that can be used as cellular building blocks to support increased cell division and thus 

conferring a growth advantage [20]. The most common alteration is the Warburg effect, a perturbation of 

glucose metabolism, where glycolysis is decoupled from pyruvate oxidation allowing for the collection of 

glucose-derived carbon molecules rather than oxidizing them to carbon dioxide [20].  
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Alteration of glutamine metabolism is often observed in cancer cells, where increased glutamine 

uptake is observed to generate reduced NADPH, which is integral for both lipid synthesis and the Krebs 

cycle [20, 21].   

Another type of metabolic alteration involves the oxidation of lipids and fatty acids (FAs). FAs 

are composed of a hydrocarbon chain with a terminal carboxyl group and are used as energy sources, 

membrane components and signaling molecules [20]. FAs originate from 2 sources: 1) exogenous sources 

or 2) from de novo FA synthesis. Normal human cells generally prefer exogenous sources of FAs, 

whereas tumor cells shift towards de novo FA synthesis [20]. 

The oxidation of fatty acids, also known as fatty acid oxidation (FAO), produces twice as much 

ATP compared to carbohydrates [21]. FAO takes place in mitochondria and peroxisomes, however; the 

mitochondria is the main site for FAO [22]. It consists of a cyclical series of reactions which shorten fatty 

acids (by 2 carbons), generating NADH, FADH2, and acetyl-CoA per cycle [21] (Figure 1.2). NADH and 

FADH2 enter the electron transport chain (ETC) to produce ATP whereas acetyl-CoA enters the Krebs 

cycle to generate ATP and further reducing equivalents for the ETC and other biological processes [21]. 

Chain shortening occurs via a cycle consisting of 4 enzymatic steps (Figure 1.2): (1) acyl-CoA 

dehydrogenase which dehydrogenates acyl-CoA fatty acid to 2-enoyl-CoA, (2) 2-enoyl-CoA hydratase 

which produces 3-hydroxyacyl-CoA, (3) 3-hydroxyacyl-CoA which is dehydrogenated by 3-hydroxyacyl-

CoA dehydrogenase to produce 3-ketoacyl-CoA and NADH, and (4) 3-ketoacyl-CoA thiolase which 

cleaves 3-ketoacyl-CoA to  produce a 2 carbon-shortened saturated acyl-CoA and an acetyl-CoA [22, 23].  

In order for FAs to undergo FAO, they must be transported into the mitochondria. Acyl-CoAs are 

incapable of crossing the mitochondrial membrane; therefore they must be transported by the carnitine 

shuttle. This is facilitated by carnitine palmitoyl transferase 1 (CPT1), which is found on the outer 

mitochondrial membrane and conjugates FAs with carnitine [21]. CPT1 is the rate limiting step of FAO 

as it exerts about 80% of control over the FAO pathway [23]. Once acyl-carnitines have entered the 
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mitochondria, CPT2, found on the inner mitochondrial membrane, reconverts the acyl-carnitines into 

usable acyl-CoAs to undergo FAO [22].  

 

 

 

Figure 1.2. Schematic diagram of fatty acid oxidation. Fatty acids are taken up into the mitochondria 

through CPT1 and CPT2 where they undergo a cyclical series of chain shortening reactions to generate 

NADH, acetyl-CoA and shortened acyl-CoA. Adapted from Houten et al. 2010 and Bartlett et al. 2004 

using Servier Medical Art (Creative Commons Attribution 3.0 Unported License). ACAD- acyl-CoA 

dehydrogenase; ECAH- 2-enoyl-CoA hydratase; HCAD- 3-hydroxyacyl-CoA dehydrogenase; KCAD- 3-

ketoacyl-CoA thiolase. 

FAO is essential for cell survival, whereby inhibition can lead to cell death through the 

accumulation of lipids (lipotoxicity) as well as deficiencies in metabolic intermediates [21, 24]. FAO is 

also implicated in the production of NADPH which allows for the recycling of reduced glutathione 

(GSH), which reduces oxidative stress through its antioxidant properties. Studies have demonstrated that 

ROS inhibits FAO and can be counteracted by antioxidants [25]. The reduction of NADP+ to NADPH is 

mediated by isocitrate dehydrogenases (IDHs) 1 and 2, which also catalyze the decarboxylation of 

http://creativecommons.org/licenses/by/3.0/


 

7 

 

isocitrate to α-ketoglutarate [26]. IDH2 (found in the mitochondria) and IDH1 (found in the cytosol) play 

a key role in lipid biosynthesis, antioxidant systems and oxidative respiration. NADPH generated by 

IDHs are provided to fatty acid synthase for de novo synthesis of fatty acids [26] and help defend cells 

against oxidative stress caused by ROS generated from lipid oxidation [26]. As NADPH cannot pass 

through the inner mitochondrial membrane, NADPH generated by IDH2 serves as a primary source of 

antioxidants to combat mitochondrial specific ROS [26]. The role of IDHs in protecting against oxidative 

stress have been confirmed as IDH deficiency results in increased oxidative DNA damage, increased ROS 

from lipid peroxidation and increased peroxide generation [27].  

1.3.1 Metabolic alterations in leukemia cells 

Recently, mitochondrial alterations have been observed in leukemia cells. Such alterations 

include increased mitochondrial biogenesis [28] and mitochondrial uncoupling as a result of increased 

expression of uncoupling protein 2 (UCP2) [29, 30]. UCPs are mitochondrial anion carriers which 

dissipate the mitochondrial proton gradient resulting in a reduction in oxidative phosphorylation [21]. As 

such, mitochondrial uncoupling imparts a metabolic shift to the oxidation of other carbon sources, such as 

fatty acids and glutamine, to fuel the Krebs cycle [29, 31]. This is evident through increased lactate 

generation by leukemia cells despite aerobic conditions [31]. This is in stark contrast to normal coupled 

mitochondria which rely mainly on the oxidation of glucose-derived pyruvate as a primary carbon source. 

Uncoupled mitochondria display a reduced mitochondrial proton gradient (∆ψM) resulting in an inability 

to generate ATP, forcing cells to rely on glycolysis to meet energy demands [29].    

These metabolic alterations confer many advantageous benefits to leukemia cells. First, the use of 

non-glucose carbon sources acts as a safeguard for biosynthetic capacity. The oxidation of glucose via the 

Krebs cycle can result in shunting of anabolic pathways [31]. For example, pyruvate transamination can 

generate products which can block downstream processes such as NADPH and ribose-5-phosphate 

biosynthesis [31]. Next, depending on glycolysis over oxidative phosphorylation allows leukemia cells to 

thrive in reduced oxygen environments such as the hypoxic bone marrow niche [31]. Given the fact that 
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oxidative phosphorylation depends on adequate oxygen concentrations, this would not be sustainable in 

hypoxic environments. Next, mitochondrial uncoupling promotes resistance to mitochondrial intrinsic 

apoptosis through up regulation of Bcl-2 and antagonism of Bax/Bak proteins [24, 31].  Recently, LSCs 

have also been shown to display an overexpression in Bcl-2, where Bcl-2 favors apoptosis resistance, and 

also displays antioxidant properties through the reduction of ROS generation and facilitating the import of 

reduced glutathione into the mitochondria [31, 32]. Finally, reduced dependence on oxidative 

phosphorylation favors the generation of biosynthetic intermediates from the Krebs cycle [20, 31]. A shift 

towards fatty acid carbon sources over pyruvate results in the production of one less NADH and FADH2, 

whilst still yielding the same carbon intermediate products [31]. Notably, inhibition of FAO sensitized 

leukemia cells to chemotherapeutics, and promoted the pro-apoptotic proteins Bax/Bak [24].  

Given the numerous metabolic alterations in leukemia and LSCs, this presents novel 

chemotherapeutic targeting strategies for the eradication of AML.  

1.4 Leukemia cell death 

Cells can undergo programmed cell death through three distinct pathways – apoptosis, autophagy 

and necrosis. Autophagy, which constitutes the recycling of cellular components, generally functions as a 

survival mechanism; however, prolonged autophagic signaling can lead to cell death [33]. Apoptosis is a 

regulated process by which cells activate catabolic enzymes (i.e., caspases) resulting in cell death [34]. 

Necrosis, which constitutes the premature death of cells by autolysis, was once thought to be an 

unregulated form of cell death; however, recent studies have shown that it can be regulated [34].   

1.4.1 Apoptosis 

Apoptotic cell death is characterized by the shrinking of the cell and nucleus, plasma membrane 

blebbing, cleavage of cytoskeleton proteins, chromatin condensation, nuclear fragmentation and the 

formation of apoptotic bodies [34]. It can be induced by many stimulants such as DNA damage, cell 

starvation, ROS, death receptor ligand binding and/or other cellular stressors [34]. An early indicator for 
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apoptosis involves the externalization of phosphatidylserine (PS) to the outer leaflet of the plasma 

membrane. This acts as a signaling mechanism for phagocytes to target apoptotic cells for degradation 

[35].  

Apoptosis can occur via two different but convergent pathways: the death receptor (extrinsic) and 

the intrinsic mitochondrial pathways (Figure 1.3) [34, 36]. Caspase activation will determine which 

pathway a cell is to be inducted to. The death receptor pathway is activated by the binding of tumour 

necrosis factors (TNF) to cell surface death receptors. Binding of the factors to receptors leads to the 

formation of a death-inducing signaling complex. Aggregation of this complex then triggers an initiator of 

death receptor apoptosis, caspase 8 [36].  This initiates a caspase cascade by which executioner caspases 

3, 6, or 7 are activated. The executioner caspases in turn cleave proteins associated with structural and 

metabolic processes leading to apoptotic cell death [36]. The DNA repair enzyme poly-ADP-ribose 

polymerase (PARP) is cleaved by caspases 3 and 7 resulting in DNA fragmentation, a hallmark of 

apoptosis [34].  
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Figure 1.3. Intrinsic mitochondrial pathway of apoptosis. Apoptotic stimuli initiate permeabilization of 

the mitochondrial membrane pore resulting in the release of pro-apoptotic proteins. This leads to 

activation of caspases 9, 3, 6 and 7 resulting in apoptosis. Release of AIF and EndoG induce caspase-

independent apoptosis through direct DNA fragmentation. Adapted from Samudio et al. 2010 using 

Servier Medical Art (Creative Commons Attribution 3.0 Unported License). 

 

The mitochondrial, or intrinsic, apoptotic pathway occurs as a result of mitochondrial dysfunction 

and is controlled by members of the BCL2 family [34].  Initiation of this pathway involves changes in the 

permeability of the outer mitochondrial membrane as a result of changes to the mitochondrial membrane 

potential, allowing for the release of pro-apoptotic proteins such as cytochrome c, EndoG and apoptosis 

inducing factor (AIF) [36]. Caspase 9 acts as a central mediator of this pathway, which is initiated by 

cytochrome c, and is responsible for the formation of a multiprotein complex called the apoptosome [36].  

http://creativecommons.org/licenses/by/3.0/
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Upon activation, the apoptosome mobilizes caspase 3, 6 and 7 which promote the cleavage of cellular 

proteins [34].  

Interestingly, apoptosis can also be induced independent of caspases. This is mediated by AIF and 

EndoG, which upon release from the mitochondria, translocates into the nucleus where it enacts large 

scale DNA fragmentation as well as chromatin condensation [36, 37]. AIF, is a flavoprotein which resides 

in the mitochondrial intermembrane space. Upon apoptosis induction and the permeabilization of the 

mitochondrial outer membrane, AIF is cleaved by cysteine proteases where is released into the cytosol to 

translocate into the nucleus [37].  AIF then interacts directly with DNA through its negatively charged 

surface, causing chromatin condensation and DNA fragmentation [38]. Activation of AIF induced cell 

death is strongly associated with exitotoxin drug treatment and growth factor deprivation [37, 39].  

1.4.2 Autophagy 

Autophagy constitutes the recycling of non-essential cellular components, damaged organelles or 

macromolecules and is a response mechanism to cellular stress that can arise from nutrient starvation, 

hypoxia, or drug treatment [33, 40-44]. Autophagy plays a role in tumour growth suppression, 

microorganism elimination and antigen presentation. Recycling of organelles or macromolecules is 

conducted by lysosomes in three different forms. In macroautophagy (generally referred to, and hereafter 

as autophagy) the double-membrane bound autophagosome, derived from the isolation membrane, 

envelops the material to be consumed and is then fused with a lysosome to form a single membrane 

bound unit called the autophagolysosome. In microautophagy, the lysosome engulfs the recyclable 

material via invagination of its membrane. In chaperone-mediated autophagy, cargo is delivered directly 

into the lysosomes by heat-shock proteins. Once delivered into the lysosome, acid hydrolases breakdown 

the ingested material into usable metabolic substrates. The formation of the autophagosome is closely 

regulated by a set of autophagy-related proteins (ATGs) [34].  

Most autophagy stimuli converge at the mammalian target of rapamycin (mTOR) and the class III 

phosphatidylinositol 3-kinase complex (PI3K), which serve as key autophagy regulators [42, 45]. The 
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core autophagy machinery required for autophagosome formation can be divided into four distinct 

groups: 1) ATG9 membrane protein, 2) unc-51-like kinase 1/2 (ULK1/2), 3) the PI3K complex, and 4) 

the microtubule-associated protein 1 light chain 3 alpha (LC3) and ATG12, a ubiquitin-like protein. 

Together, these proteins regulate the process of autophagy vesicle generation which can be divided into 

four steps: 1) initiation and nucleation, 2) elongation and closure, 3) maturation, and 4) degradation 

(Figure 1.4) [42, 44]. 

Initiation and nucleation. The beginning step to autophagy involves the formation of the isolation 

membrane. In starvation conditions, or another cell stressor conditions (such as oxidative stress), mTOR 

is inhibited resulting in dephosphorylation of ATG13. ATG13 then activates ULK1/2 via 

autophosphorylation resulting in the recruitment of focal adhesion kinase family interacting protein 

(FIP2000). The activated ULK-ATG-FIP2000 complex (mTORC) localizes to the developing isolation 

membrane to participate in elongation to promote a progression towards the complete autophagosome 

structure. In contrast, mTOR phosphorylates ATG13 preventing recruitment and activation of the ULK1/2 

complex during nutrient rich condition [42, 43]. Following initiation of the isolation membrane, 

nucleation arises when the PI3K complex binds to its core units such as Beclin 1 and p150. This complex 

resides on the isolation membrane and facilitates recruitment of other ATGs to the unit as well as 

produces phosphatidylinositol 3-phosphate, which is necessary for nucleation [8, 33, 42]. According to 

current consensus, the developing isolation membrane originates from the endoplasmic reticulum, the 

plasma membrane and the mitochondria [42]. 

Elongation and closure. The next step in autophagosome formation involves the development of 

the double-membrane-bound autophagosome from the precursor isolation membrane through the action 

of two ubiquitin-like conjugation systems: ATG12 and LC3 [8, 42, 43]. ATG12 is conjugated to ATG5 

by ATG7 and ATG10. Following, ATG16 conjugates to the complex and directs it to the phagophore. 

This complete complex is known as ATG16L (ATG12-ATG5-ATG16), and is essential for the formation 

of the autophagosome. ATG16L is also involved in aiding with the delivery of LC3 to the phagophore 

along with its lipidation [42]. The ubiquitin-like LC3 is a known marker of autophagy required for 
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generation of the autophagosome. LC3 undergoes post-translational c-terminal cleavage by the protease 

ATG4 to become its cytoplasmic form LC3-I. LC3-I is then conjugated with phosphatidylethanolamines 

(PE) to become LC3-II. This conjugation is mediated by ATG7, ATG3 and ATG16L. Upon lipidation, 

LC3-II can be inserted onto the surface of the autophagosomal membrane via its lipid moiety [33, 42-44].  

Maturation and degradation. This step involves the formation of the autophagolysosomes which 

consists of the fusion of autophagosomes to lysosomes. Unlike autophagosomes, autophagolysosomes are 

single-membrane bound vesicles which degrade the autophagosomes contents by acidic hydrolases and 

lysosomal proteases such as cathepsins. This fusion is mediated by RAB7 (RAS related protein), Beclin-1 

and LAMP-2 (lysosomal associated protein 2), however their mechanistic involvement remains to be well 

understood [42, 43]. Following degradation, broken down products are released into the cytosol as 

nutrients and pre-cursor building blocks [44]. 

Autophagy can be a highly selective process with adaptor molecules such as p62 (also known as 

sequestosome 1) which binds to ubiquinated targets, transports the targets to the lysosome, and binds to 

LC3-II to promote degradation [33, 43]. This highlights the importance of the ubiquitin-proteasome 

system in managing the selective targeting of autophagy. 

The role of autophagy in leukemia remains controversial as both the inhibition and activation of 

autophagy have been reported as promising treatment strategies [46]. Several reports suggest that 

activating autophagy leads to tumourigenesis by favoring atypical cell survival. Indeed, autophagy has 

been reported to promote tumour survival by restricting necrosis and inflammation and preventing cell 

death [47].  Additionally, autophagy-related gene (Atg)5 and Atg7 have been reported to promote cell 

survival [48] by allowing cancer cells to survive metabolic stress in response to nutrient deprivation. 

Further, in response to cell damage, autophagy can promote survival by removing damaged organelles. 

Given that many current chemotherapeutics induce metabolic stress and nutrient deprivation, the 

inhibition of autophagy is a promising strategy to increase treatment efficacy [49]. In contrast, there is 

strong evidence that autophagy induction acts as a tumor suppressor mechanism. Beclin 1, a regulator of 

autophagy responsible for autophagosome formation, has been linked to the stability and function of p53 
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[50], which is a crucial tumor suppressor protein that can initiate apoptosis [34]. Further, Atg12 promotes 

intrinsic apoptosis through inactivation of proteins of the anti-apoptotic Bcl-2 family [51].  In acute 

myeloid leukemia (AML), PI3K-Akt-mTOR, which is an essential signaling pathway for the activation of 

autophagy, is constitutively activated in 70-90% of patients and has been shown to contribute towards cell 

proliferation and drug resistance [52, 53].  Further, it has been experimentally demonstrated that 

rapamycin, a potent activator of autophagy, and rapamycin derivatives induce selective AML cell death 

[54, 55].   

 

Figure 1.4. Schematic illustration of autophagic vesicle generation. Formation of the autophagic vesicle 

consists of four steps: 1) Initiation and nucleation, 2) elongation and closure, 3) maturation, and 4) 

degradation. Initiation of the developing phagophore is dependent on the formation of the complex 

mTORC (ATG13-ULK1/2-FIP2000). Nucleation depends on the PI3K binding to its core partners Beclin 

1 and p150. Elongation and closure of the phagophore requires the formation of LC3-II through lipidation 

with phosphatidylethanolamine (PE). Maturation involves the fusion of the autophagosome and lysosome 

which is mediated by RAB2, Beclin 1 and LAMP2. Finally, degradation involves the lysing of cargo by 

cathepsins and subsequent release of broken down products. 
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1.5 Avocatin B 

To identify novel anti-cancer agents, our lab screened an 800 compound natural health products 

library to identify novel agents with anti-leukemia activity. Avocatin B (AVO), an avocado-derived lipid, 

was identified as the most potent compound at reducing leukemia cell viability. 

The avocado tree (Persea americana) originates from central America. Its fruit is highly 

consumed (1-2 per day) in various parts of Latin America without reports of any associated toxicity [56]. 

In fact, avocados are used in traditional herbal medicine for the treatment of various illnesses including 

hypertension, stomach ache, diarrhea and diabetes [57].  Avocado-derived phytochemicals also possess 

known chemopreventive characteristics [58]. These effects have been noted in malignant pleural 

mesothelioma, various carcinomas, various adenocarcinomas and oral cancer cell lines [58-60]. The 

chloroform extract (D003), prepared from the California Hass avocado, has displayed selective inhibition 

of pre- and malignant oral cancer cell lines [58]. D003 induced both death receptor and mitochondrial 

mediated apoptosis. D003’s activity was mediated by increases in ROS which were blocked using the 

anti-oxidant N-acetyl cysteine [58].  

Avocatin B, which consists of a 1:1 ratio of 1,2,4-trihydroxyheptadec-16-ene and 1,2,4-

trihydroxyheptadec-16-yne (Figure 1.5), is compound derived from the peel and seed of unripe avocado 

fruit which has been found to be cytotoxic towards a small panel of cancer cell lines [57, 61]. Activity has 

been reported in lung carcinoma, mammary adenocarcinoma, kidney carcinoma, pancreatic carcinoma 

with cytotoxicity in human prostate adenocarcinoma cells being nearly as potent as doxorubicin [57, 59]. 

Avocatin B has also been reported as a natural insecticide with potent activity in yellow fever mosquito 

larva, epimastigotes and trypomastigotes [57, 59].  
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Figure 1.5. Avocatin B’s chemical structure.  Avocatin B is an avocado derived compound consisting of 

1,2,4-trihydroxyheptadec-16-ene and 1,2,4-trihydroxyheptadec-16-yne (1:1 ratio). Image taken from 

ChemBankID:3198534. 
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Chapter 2: Objectives and Hypothesis 

The objectives of this project are:  

1. Characterize and evaluate avocatin B’s mechanism of action in acute myeloid leukemia cells in 

vitro and;  

2. Determine avocatin B’s efficacy in primary and primitive AML cells.  

 

These objectives fulfilled the hypothesis that:  

Avocatin B inhibits fatty acid oxidation to induce ROS-mediated autophagy and apoptosis in AML and 

LSCs.  

  

Short term goals:  

The short terms goals are to demonstrate avocatin B’s pre-clinical efficacy and determine 

avocatin B’s mechanism of action to further warrant investigation for the clinical application of treating 

acute myeloid leukemia.  

 

Long term goals:  

Upon successful completion of the aforementioned short term goals, the next steps would be to 1) 

determine pharmacokinetic properties and safety in animal models and 2) submit for Phase 1 clinical trial 

testing. 
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Chapter 3: Methods  

3.1 Methods 

3.1.1 Cell culture 

Leukemia (OCI-AML2,K562, HL60, KG1A; JURKAT, U937) cells were cultured in Iscove’s 

Modified Dulbecco’s Medium (IMDM) (Life Technologies; Grand Island, NY) or RPMI Medium (Life 

Technologies) supplemented with 10% Fetal Bovine Serum (FBS; Seradigm; Providence, UT) and 

antibiotics (100 units/ml of streptomycin and 100 µg/m of penicillin; Sigma Chemical; St. Louis, MO).  

TEX leukemia cells were cultured in 15% FBS, antibiotics and 2mM L-glutamine (Sigma Chemical), 

20ng/ml stem cell factor and 2ng/ml IL-3 (Peprotech; Hamburg Germany). Lentiviral transduced ATG7, 

SQSTM1(p62), CPT1 (a gift from Dr. Aaron Schimmer, Toronto, ON) and PPARα OCI-AML2 

knockdown cell lines (a gift from Dr. Aaron Schimmer, Toronto, ON) were maintained in IMDM (Life 

Technologies) supplemented with 10% FBS (Seradigm) and 1ug/mL puromycin (Sigma-Alrich).  

Primary human samples (fresh and frozen) were obtained from the peripheral blood of AML 

patients who had at least 80% malignant cells among the mononuclear cells and cultured at 37°C in 

IMDM, 20% FBS and antibiotics (see supplementary table 1 for clinical parameters). Normal GCSF-

mobilized peripheral blood mononuclear cells (PBSCs) were obtained from volunteers donating 

peripheral blood stem cells for allotransplant and were cultured similar to the primary AML samples. The 

collection and use of human tissue for this study was approved by the local ethics review board 

(University Health Network, Toronto, ON, Canada; University of Waterloo, Waterloo, ON, Canada). All 

cells were maintained in a humidified atmosphere containing 5% CO2 at a temperature of 37°C. Cells 

were passaged every 3-4 days and passages 1-20 were used.  

3.1.1.1 Long-term culture 

Cells were cultured ex vivo using a mouse bone marrow stromal co-culturing system allowing for 

the long term expansion and culture (months instead of days) of primary CD34+ cells [62] using the 
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mural stromal cell line MS-5 and human cytokine supplementation. MS-5 cells were received as a gift 

from Dr. John Dick (Ontario Cancer Institute, Toronto, ON). Co-cultures were grown in H5100 media 

(StemCell Technologies) supplemented with 1% penicillin/streptomycin (Seradigm), GM-CSF 20ng/mL, 

IL3 10ng/mL, G-CSF 20ng/mL, TPO 50ng/mL, Flt3 10ng/mL, IL7 20ng/mL, SCF 100ng/mL, and IL6 

20ng/mL (Peprotech).  

MS-5 cells were grown on 0.1% gelatin (Sigma-Aldrich) coated 12 well plates. 48 hours later, 

primary cells were added and allowed to grow. Media was changed once a week and upon full confluency 

(~1 month), cells were trypsinized with 0.25% trypsin/0.1% EDTA (Sigma-Aldrich). Primary cells were 

then harvested and separated from MS-5 cells using a 40-micron cell strainer (BD Biosciences, 

Mississauga, ON.  

3.1.2 CD34+ cell enrichment 

TEX and KG1A cells were enriched for CD34+ population using the CD34+ EasySep Positive 

Selection Kit (StemCell) and EasySep Magnet (StemCell).  Approximately 2-5x10
8
 cells were re-

suspended in a 5mL polystyrene tube in 1mL of PBS (Sigma-Aldrich) containing 2% FBS (Seradigm) 

and 1mM EDTA (Sigma-Aldrich) (enrichment buffer). EasySep Positive Selection Cocktail was then 

added at 100 µL/mL cells and allowed to incubate at room temperature for 15 minutes. EasySep Magnetic 

Nanoparticles were then added at 50 µL/mL cells and allowed to incubate 10 minutes at room 

temperature. The tube was then placed inside the EasySep Magnet and left aside for 5 minutes. 

Following, the supernatant fraction was poured out resulting in the magnetically labeled cells to remain in 

the tube. Cells were then re-suspended in enrichment buffer and magnetic separation was repeated for a 

total of 5 times. The positively selected cells were then verified by flow cytometry. 

3.1.3 Flow cytometry 

Unless otherwise noted, all flow cytometry assays were performed in 96 well plates using a 

Guava easyCyte 8HT (Millipore, Billerica, MA) and GuavaSoft (Millipore) flow cytometry software. All 
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assays performed involved an unstained control to set basal thresholds as well as single stain controls (for 

multi-stain assays) to set compensation. 

3.1.3.1 Mitochondrial membrane potential assessment  

Following drug treatments, 0.5x10
6
 cells were collected and washed in 0.5mL PBS (Sigma-

Aldrich). 1µL of 30µM Rhodamine123 (R123; Enzo Life Sciences, Farmingdale, NY) was added to each 

sample and then allowed to incubate for 20 minutes in a humidified atmosphere containing 5% CO2 at a 

temperature of 37°C. Samples were then washed and measured using flow cytometry. R123 is a cationic 

dye is used to monitor the membrane potential of the mitochondria (Δψm) [63]. 

3.1.3.2 Mitochondrial integrity assessment  

0.5x10
6
 cells were collected from each cell line to be assessed and washed in 0.5mL PBS (Sigma-

Aldrich). 1µL of 50µg/mL nonyl-acridine orange (NAO) (Enzo Life Sciences) was added to each 

sample and then allowed to incubate for 20 minutes in a humidified atmosphere containing 5% CO2 

at a temperature of 37°C. Following, samples were washed and measured using flow cytometry. NAO is a 

mitochondria specific dye that binds to the mitochondrial phospholid cardiolipin and is taken up into the 

mitochondria independent of Δψ [64]. 

3.1.3.3 Cell surface marker assessment 

1x10
5
 cells were collected from each cell line tested. 2µL of fluorescently-conjugated cell surface 

receptor antibody was added to each sample and allowed to incubate for 30 minutes in the dark at room 

temperature. Cells were then washed twice in PBS (Sigma-Aldrich) containing 5% FBS (Seradigm) and 

then read using flow cytometry. Antibodies used include FITC mouse anti-human CD38 (BD 

Biosciences), PE mouse anti-human CD33 (BD Biosciences), APC mouse anti-human CD19 (BD 

Biosciences), APC mouse anti-human CD34 (BD Biosciences) and BD CompBeads anti-mouse Ig, k 

particles (BD Biosciences) as a positive control. 
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3.1.3.4 Reactive oxygen species detection 

Reactive oxygen species (ROS) were detected using 2′,7′dichlorohydrofluorescein-diacetate 

(DCFH-DA; Sigma Chemical) and dihyodroethidium (DHE; Sigma Chemical).  DCFH-DA is hydrolyzed 

by intracellular esterase to produce a non-fluorescent DCFH product. It can then be oxidized by ROS to 

produce a highly fluorescent DCF product [65]. DHE is a superoxide indicator which upon contact with 

superoxide anions produces the fluorescent product 2-hydroxyethidium [66]. Following drug treatment, 

TEX cells (5x105) were collected and washed in PBS (Sigma-Aldrich). Cells were stained with 5μM 

(final concentration) DCFH-DA or 10μM DHE and allowed to incubate for 30 minutes in a humidified 

atmosphere containing 5% CO2 at 37°C. Samples were then washed in PBS and ROS was measured by 

flow cytometry. 

3.1.4 Palmitate, malonyl-CoA, acetyl-CoA, and oleic acid study 

To assess avocatin B’s activity on fatty acid biosynthesis, TEX cells were co-incubated with the 

end-products of major enzymatic reactions of the fatty acid biosynthesis pathway, and assessed using 

MTS and annexin/PI viability assays. It was hypothesized that supplementation would rescue cells from 

avocatin B induced cell death. Palmitate, malonyl-CoA, acetyl-CoA and oleic acid (Sigma-Aldrich) were 

complexed to delipidized BSA (Sigma-Aldrich) based on the method by Luo et al. [67], where a 100mM 

stock was prepared in ethanol and then diluted to a working concentration in a 10%BSA-H2O solution.  

3.1.5 Western blotting 

3.1.5.1 Whole-cell lysate preparation 

Following drug treatments, cells were washed with ice-cold PBS, and then lysed with chilled 

RIPA buffer (Sigma-Aldrich) supplemented with protease inhibitors (Sigma-Aldrich) for 20 minutes. 

Next, cells were centrifuged at 13,200RPM for 20 minutes at 4°C and the supernatant was collected.  
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3.1.5.2 Cell fractionation 

To separate cytosolic, mitochondrial and nuclear proteins, cell fractionation was performed using 

a protocol utilized by our collaborator Dr. Joe Quadrilatero (University of Waterloo, Department of 

Kinesiology). Following drug treatments, cells were washed with ice-cold PBS, and then lysed with 

chilled digitonin/sucrose buffer [250mM sucrose, 80mM KCl, and 50ug/mL digitonin] (Sigma-Aldrich). 

Next, the cytosolic fraction (supernatant) was collected through differential centrifugation at 16,000xg for 

10 minutes. The remaining fraction was then lysed with chilled muscle lysis buffer [20mM HEPES, 

10mM NaCl, 1.5mM MgCl, 1mM DTT, 20%, and 0.1% Triton X-100 at pH7.4] (Sigma-Aldrich). 

Following, the mitochondrial fraction (supernatant) was collected through differential centrifugation at 

1,000xg for 10 minutes. The nuclear fraction was retrieved by re-suspending the pellet in muscle lysis 

buffer and sonication for 2.5 second intervals for 20 seconds.  

3.1.5.3 BCA protein assay and sample preparation 

Total protein content was measured using the BCA protein assay. A standard curve was generated 

using bovine serum albumin (BSA) (Sigma-Aldrich) diluted in distilled water at concentrations ranging 

from 0mg/mL-1.0mg/mL. Diluted samples (tenfold) and standards were plated on a 96 well plate where 

200µL of bicinchoninic acid (BCA) working agent was added to each well (50 parts BCA:1 part copper 

II sulfate [Sigma-Aldrich]). The plate was then incubated for 30 minutes at 37°C. Optical density (OD) 

was then measured at 527nm using a spectrophotometer. Samples were prepared containing 30μg total 

protein, with ¼ sample buffer (240 mM Tris-HCl at pH 6.8, 6% w/v SDS, 30% v/v sucrose, 0.02% w/v 

bromophenol blue, and 50 mM DTT) volume and lysis buffer to a total volume of 30μl. Samples were 

heated at 95°C for 5 minutes and then loaded into polyacrylamide gel wells. 

3.1.5.4 SDS-PAGE  

Proteins were separated by SDS-PAGE in electrophoresis buffer (25 mM Tris base, 190 mM 

glycine, 3.5 mM sodium dodecyl sulfate) using a Mini Trans-Blot Cell (Bio-Rad, Hercules, CA), 
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followed by transfer of proteins onto a PVDF membrane (Bio-Rad) in transfer buffer (25 mM Tris base, 

190 mM glycine, 20% v/v methanol) using a Trans-Blot semi-dry transfer cell. Membranes were then 

blocked with 5% bovine serum albumin (BSA) in Tris-buffered saline (20 mM Tris base (TBS) plus 0.1% 

Tween (TBS-T) for 1 h at room temperature, followed by incubation with primary antibody added to 

blocking buffer overnight at 4°C. Membranes were washed three times with TBS-T, and then incubated 

with appropriate secondary antibody in blocking buffer for 1 h at room temperature. Membranes were 

washed five additional times with TBS-T. Western enhanced chemiluminescent substrate (ECL; GE 

healthcare; Baie d’Urfe, Quebec) was used to visualize proteins on a Kodak 4000MM Pro Imaging 

Station and Kodak Molecular Imaging software. 

3.1.5.5 Antibodies 

Antibody Isotype Molecular weight 

(kDa) 

Manufacturer 

AIF  mouse 57 Santa Cruz  

ANT1/2  goat 33 Santa Cruz  

Atg7 rabbit 78 Cell signaling  

Beclin-1 rabbit 60 Cell signaling  

Cytochrome c rabbit 14 Cell signaling  

ND1 goat 36 Santa Cruz  

Parkin mouse 50 Cell signaling  

PARP rabbit 89,116 Cell signaling  

SQSTM1/p62 rabbit 60 Cell signaling  

a-tubulin mouse 55 Santa Cruz  

LC3B rabbit 14,16 Cell signaling  

UCP2 Goat 70 Santa Cruz  

 

3.1.6 Cell growth and viability 

Cell growth and viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) reduction assay (Promega; 

Madison, WI) according to the manufacturer’s protocol and as previously described [68]. Cells were 

seeded in 96-well plates, treated with drug for 72 hours and optical density (OD) was measured at 490nm. 

Cell viability was also assessed by the trypan blue exclusion assay and by Annexin V and PI staining 

(Biovision; Mountainview, CA), as previously described [68].  Cell growth and viability under normoxic 
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(21% O2) and hypoxic conditions (1% O2) were measured using the sulforhodamine B assay, as 

previously described [69].  

3.1.7 Functional stem cell assays 

Clonogenic growth assays with primary AML and normal hematopoietic stem cells were 

performed, as previously described [68].  Briefly, CD34
+
 bone marrow-derived normal stem cells 

(StemCell Technologies; Vancouver, Canada) or AML mononuclear cells from patients with >80% blasts 

in their peripheral blood (4x10
5
 cells/ml) were treated with vehicle control or increasing concentrations of 

avocatin B and plated in duplicate by volume at 10
5
 cells/ml per 35 mm dish (Nunclon; Rochester, USA) 

in MethoCult GF H4434 medium (StemCell Technologies) containing 1% methylcellulose in IMDM, 

30% FBS, 1% bovine serum albumin, 3 U/ml recombinant human erythropoietin, 10
-4

 M 2-

mercaptoethanol (2ME), 2mM L-glutamine, 50ng/ml recombinant human stem cell factor, 10ng/ml 

recombinant human granulocyte macrophage-colony stimulating factor and 10ng/ml recombinant human 

IL-3. After 7-10 days of incubation at 37C with 5% CO2 and 95% humidity, the numbers of colonies 

were counted on an inverted microscope with a cluster of 10 or more cells counted as one colony. 

Mouse xenotransplant assays were performed as previously described [28, 70]. Briefly, AML 

patient cells were treated with 3.0µM avocatin B or dimethyl sulfoxide (DMSO) (as a control) for 48 

hours in vitro. Next, these cells were transplanted into femurs of sublethally irradiated, CD122 treated 

NOD/SCID mice and following a 6 week engraftment period, mice were sacrificed, femurs excised and 

bone marrow flushed and the presence of human myeloid cells (CD45
+
/CD33

+
/CD19

-
) were detected by 

flow cytometry. All animal studies were carried out according to the regulations of the Canadian Council 

on Animal Care and with the approval of the University Health Network, Animal Care Committee. 

3.1.8 High-throughput screen 

 A high throughput screen of a natural product library (n=800; Microsource Discovery Systems 

Inc.; Gaylordsville, CT) was performed as previously described [28, 68]. Briefly, TEX leukemia cells 

(1.5x10
4
/well) were seeded in 96-well polystyrene tissue culture plates.  After seeding, cells were treated 
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with aliquots (10µM final concentration) of the chemical library with a final DMSO concentration no 

greater than 0.05%. After 72 hours, cell proliferation and viability were measured by the MTS assay. 

3.1.9 Drug combination studies 

The combination index (CI) was used to evaluate the interaction between avocatin B and 

cytarabine.  TEX cells were treated with increasing concentrations of avocatin B in the presence and 

absence of cytarabine and after 72 hours cell viability was measured by the MTS assay. CI values, 

generated by the CalcuSyn median effect model, were used to evaluate whether the avocatin B/cytarabine 

combination was synergistic, antagonistic or additive.  CI values of <1 indicate synergism, CI=1 indicate 

additivity and CI>1 indicate antagonism [71, 72].  

3.1.10 mRNA detection 

Quantitative PCR were performed as previously described [73] in triplicate using an ABI 7900 

Sequence Detection System (Applied Biosystems) with 5 ng of RNA equivalent cDNA, SYBR Green 

PCR Master mix (Applied Biosystems, Foster City, CA, USA), and 400 nM of CPT1-specific primers 

(forward: 5’- TCGTCACCTCTTCTGCCTTT-3’, reverse: 5’-ACACACCATAGCCGTCATCA-3’,).  

Relative mRNA expression was determined using the ΔΔCT method as previously described [73]. 

3.1.11 Assessment of fatty acid oxidation and mitochondrial respiration 

Measurement of oxygen consumption rates were performed using a Seahorse XF24 extracellular 

flux analyzer (Seahorse Bioscience; North Billerica, MA). TEX cells were cultured in α-Minimum 

Essential Medium (Life Technologies) containing 1% FBS and plated at 1 x 10
5
 cells/well in poly-L-

Lysine (Sigma Chemical) coated XF24 plates. Cells were incubated with etomoxir (100µM; Sigma 

Chemical) or vehicle control for 30 minutes at 37°C in a humidified atmosphere containing 5% CO2.  

Next, palmitate (175µM; Seahorse Bioscience) or avocatin B (10µM) was added and immediately 

transferred to the XF24 analyzer. Oxidation of exogenous fatty acids was determined by measuring 

mitochondrial respiration through sequential injection of 5μM (final concentration) oligomycin, an ATP 

synthase inhibitor, (Millipore, Billerica, MA), 5μM CCCP, a hydrogen ion ionophore, (Sigma Chemical), 
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and 5μM rotenone (Millipore)/5μM antimycin A, which inhibit complex III activity, (Sigma Chemical). 

Fatty acid oxidation was determined by the change in oxygen consumption following oligomycin and 

CCCP treatment and prior to antimycin and rotenone treatment, according to the manufacturer’s protocol 

and as described in Abe et al. (2013) [74].  Data were analyzed with XF software (Seahorse Bioscience). 

3.1.12 NADPH detection 

 Nicotinamide adenine dinucleotide phosphate (NADPH) was measured by a commercially 

available Amplite™ Fluorimetric kit (AAT Bioquest; Sunnyvale, CA) according to the manufacturers’ 

protocol and as previously described [75], following incubation of increasing duration with avocatin B 

(10µM) or palmitate (175µM) in the presence or absence of etomoxir. Data are presented as a percent 

NADPH compared to control treated cells ± SD. 

3.1.13 Apoptosis measurements 

Apoptotic phenotype of Annexin V
+ 

(ANN)/Propidium Iodide (PI)
-
 was assessed using the 

ANN/PI assay, as previously described [76]. ANN binds to surface phosphatidylserine and PI transverses 

only disrupted plasma membranes to intercalate with DNA. Thus, measurements of ANN
+
/PI

-
 indicate 

apoptosis whereas ANN
+
/PI

+
, ANN

-
/PI

-
 indicate a dead or viable cell, respectively. Analysis of the sub 

G1 peak was performed by assessing cell cycle as previously described [68]. Briefly, TEX cells treated 

for 24 hours with 10µM avocatin B were harvested, washed with cold PBS and re-suspended in PBS and 

cold absolute ethanol. Cells were then treated at 37ºC for 30 min with 100 ng/mL of DNase-free RNase A 

(Invitrogen; Carlsbad, CA), washed with cold PBS, resuspended in PBS and incubated with 50 µg/mL of 

propidium iodine (PI) for 15 min at room temperature in the dark. DNA content was measured by flow 

cytometry and analyzed with the Guava Cell Cycle software (Millipore). Caspase activation was 

performed using a commercially available kit (Promega) and was performed according to the 

manufacturer’s protocol. Z-VAD-FMK (Sigma Chemical) was used as a pan-caspase inhibitor. Cleavage 

of poly (ADP) ribose polymerase (PARP), a DNA repair enzyme and a common downstream target of 

active caspase 3 and 7 were measured as previously described [76].  
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3.1.14 AIF and cytochrome c detection 

To determine avocatin B’s effect on the release of pro-apoptotic mitochondrial proteins 

cytochrome c and AIF, we used a flow cytometry-based assay as previously described [77, 78]. Briefly, 

pre-treated TEX cells (2 x10
5
) were collected and permeabilized in ice-cold digitonin buffer (50μg/ml, 

100mM KCl, in PBS) for 3-5 minutes on ice (until >95% cells were permeabilized, as assessed by trypan 

blue staining). Permeabilized cells were fixed in 4% paraformaldehyde (in PBS) for 20 minutes at room 

temperature, washed 3 times in PBS, and then resuspended in blocking buffer (0.05% saponin, 3% BSA 

in PBS) for 1 hour at room temperature. Cells were incubated overnight at 4°C with 1:200 cytochrome c 

antibody or AIF antibody (Santa Cruz Biotechnology) diluted in blocking buffer,  washed three times 

with PBS and then incubated for 1 hour at room temperature with 1:200 Alexa Fluor-488 donkey anti-

mouse IgG secondary antibody (Life Technologies) diluted in blocking buffer. Cells were washed three 

times in PBS and analyzed by flow cytometry using the BD FACS Calibur.  

3.1.15 Hypoxia experiments  

Cells were transferred to hypoxic culture chambers (MACS VA500 microaerophilic workstation, 

H35 HypoxyWorkStation; Don Whitley Scientific; UK) in which the atmosphere consisted of residual 

N2, 5% H2, 5% CO2 and 1% or 21% O2.  Cell growth and viability were measured by the sulforhodamine 

B assay (Sigma Chemical) following 72 hours of incubation. Data are presented as the % change in 

viability from 21%-1% oxygen.  

3.1.16 Autophagy detection 

Autophagy was detected by assessing lysosome size by confocal microscopy following cathepsin 

B staining, which increases in activity and intensity following autophagolysosome formation [79].  

Confocal microscopy of TEX cells was performed, as previously described [69]. Briefly, TEX cells (2.0 x 

10
5
) treated with avocatin B or vehicle control were incubated with Magic Red cathepsin B for 30 

minutes at 37
o
C, according to manufacturer’s instructions (ImmunoChemistry Technologies, 

Bloomington, MN). Cells were then imaged on a Zeiss LSM 700 confocal microscope (Carl Zeiss, 
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Germany) using a 40x objective. Images were analyzed using LSM image analysis software (Carl Zeiss, 

Germany). Representative micrographs shown. 

3.1.17 RNAi knockdown of Atg7 and p62 

Lentiviral transductions were performed as described by Spagnuolo et al. 2013 [73]. Briefly, 

OCI-AML 2 cells (5 x 10
6
) were centrifuged and re-suspended in 6.5 mL media containing protamine 

sulfate (5 μg/mL) and 1 mL of virus cocktail (containing the short hairpin RNA (shRNA) sequence and a 

puromycin antibiotic resistance gene) and incubated overnight at 37
o
C. Following, the virus was removed 

from suspension by centrifugation and the cells were washed and resuspended in fresh media containing 

puromycin (1 μg/mL). After two days, puromycin resistant live cells were plated for viability and growth 

assays. The shRNA coding sequences were: Atg7 (Accession No. NM_006395.1-685s1c1): 5’- 

CCAAGGTCAAAGGACGAAGAT-3’, Atg7 (Accession No. NM_006395.1-1520s1c1): 5’-

GCTTTGGGATTTGACACATTT-3’, SQSTM1/p62 (Accession No. NM_003900.4-783s21c1): 5’-

GAGGATCCGAGTGTGAATTTC-3’, SQSTM1/p62 (Accession No. NM_003900.2-325s1c1): 5’-

CCGAATCTACATTAAAGAGAA-3’. These experiments were performed by Elena Kreinin. 

3.1.18 Interrogation of chemogenomics database 

The chemogenomic expression profiles of avocatin B and rapamycin were assessed in a publicly 

available yeast chemogenomics database (http://chemogenomics.pharmacy.ubc.ca/HIPHOP).  The 

database identified the top 15 yeast genes sensitive to drug treatment, based on fitness defect scores 

(p<0.05), and were assessed for gene ontology biological processes associated with autophagy and/or 

vesicle-mediated transport using AmiGO (Gene Ontology Consortium), as previously described [80, 81].  

3.1.19 Statistical analysis 

Statistical analysis was conducted using GraphPad Prism 5.0 (GraphPad Software, USA) using 

Student’s t-test for comparing two data sets, or one-way analysis of variance (ANOVA) with Tukey’s 

post hoc test for comparing three or more data sets. Unless otherwise noted, all results are presented as 
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mean ± SD. For graphs, *=p<0.05, **=p<0.01, and ***=p<0.001 compared to control cells. Drug 

combination data were analyzed using Calcusyn software (Biosoft; UK). 
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Chapter 4 Results 

*Note: Unless otherwise stated, data was generated by Eric A. Lee. 

4.1.1 A high-throughput screen for novel anti-AML compounds identifies avocatin B  

 To identify novel compounds with anti-AML activity we screened a commercially available 

natural health products specific library against TEX leukemia cells. These cells possess several LSC 

properties, such as marrow repopulation and self-renewal [28, 73, 82, 83]. The compound which imparted 

the greatest reduction in viability was avocatin B (Figure 4.1A; left panel, arrow indicates avocatin B).  

Avocatin B is a 1:1 mixture of two 17-carbon lipids derived from avocados and belongs to a family of 

structurally related lipids [84] (Figure 4.1A right panel, Avocatin B’s structure [85]). We tested 4 avocatin 

lipid analogues and determined that avocatin B was the most cytotoxic (EC50: 1.5 ± 0.75µM; 

supplementary figure 4.1).  

Avocatin B’s selectivity toward leukemia cells was validated in primary AML samples and in 

peripheral blood stem cells (PBSCs) isolated from GCSF-stimulated healthy donors. Avocatin B, at 

concentrations as high as 20µM, had no effect on the viability of normal PBSCs (n=4). In contrast, 

avocatin B reduced the viability of primary AML patient cells (n=6) with an EC50 of 3.9 ± 2.5 µM, 

which is similar to other recently identified compounds with anti-AML activity [28, 69, 70, 86] (Figure 

4.1B; see supplementary table 1 for patient sample characteristics).   

Avocatin B was also tested in combination with cytarabine; the primary backbone of current 

clinical AML therapy. The Calcusyn median effect model was used to evaluate whether the avocatin 

B/cytarabine combination was synergistic, antagonistic or additive [71, 72]. The cytarabine-avocatin B 

combination synergistically induced cell death in TEX cells with combination index values of 0.20, 0.19, 

and 0.15, at EC 30, 50 and 80, respectively (Figure 4.1C).  

4.1.2 Avocatin B is selectively toxic toward leukemia progenitor and stem cells  

 Given the selectivity toward AML patient samples over normal hematopoietic cells, we next 

assessed avocatin B’s effects on functionally defined subsets of primitive human AML and normal cell 
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populations.  Adding avocatin B (3µM) into the culture medium reduced clonogenic growth of AML 

patient cells (n=3; supplementary table 1 for patient characteristics). In contrast, there was no effect on 

normal cells (n=3; Figure 4.1D; left panel).   In addition, treatment of primary AML cells with avocatin B 

(3.0µM) reduced their ability to engraft in the marrow of immune deficient mice (Figure 4.1D; right 

panel).   Taken together, avocatin B selectively targets primitive leukemia cells.  
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Figure 4.1. Avocatin B is selectively toxic toward AML cells. (A) (Left panel) A screen of a natural 

health product library identified avocatin B as the most potent compound at reducing TEX leukemia cell 

viability. Cells were incubated with compounds for 72 hours and cell growth and viability were measured 

by the MTS assay. Arrow indicates avocatin B. Experiment was performed by Dr. Paul Spagnuolo. 
(Right panel) Avocatin B’s structure[85]. (B) Avocatin B’s activity was tested in peripheral blood stem 

cells (PBSCs; n=4) isolated from GCSF stimulated donors or cells isolated from AML patients (n=6). 

Primary cells were treated with increasing avocatin B concentrations for 72 hours and viability was 

measured by the Annexin V (ANN)/Propidium Iodide (PI) assay and flow cytometry. Data are presented 

as log10 EC50 values. Experiment was partially performed by Princess Margaret Cancer Centre. 
(C) Avocatin B was tested in combination with cytarabine using Calcusyn software as detailed in the 

methods section. Experiments were performed twice in triplicate; representative figure shown. (D) (Left 

panel) Primary AML (n=3) and normal (n=3) cells were cultured with avocatin B (3µM) for 7-14 days 

and clonogenic growth was assessed by enumerating colonies (colony defined as >10 cells). Data are 

presented as % clonogenic growth compared to control ± SEM, similar to previously described [28, 87]. 

Experiments were performed twice in triplicate. Experiment was performed by Sarah Rota. (Right 

panel) AML cells from one patient were treated with avocatin B (3µM) for 48 hours or a vehicle control 

and then intrafemorally injected into sublethally irradiated, CD122 treated, NOD/SCID mice 

(n=10/group). After 6 weeks, human AML cells (CD45
+
/CD19

-
/CD33

+
) in mouse bone marrow were 

detected by flow cytometry. Experiment performed by Princess Margaret Cancer Centre.**p<0.01; 

***p<0.001.    
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4.1.3 Avocatin B’s selective cytotoxicity correlates with CD33+/CD34+ expression 

In Section 4.1.1, Avocatin was tested in a number of leukemia cell lines (TEX, KG1A, OCI-

AML2, JURKAT). Avocatin B was also tested in additional leukemia cell lines (HL60, U937, and K562) 

where avocatin B did not display potent toxicity towards these lines (Figure 4.2 left panel). Next, we 

performed phenotypic assessment for CD33+/CD19- (myeloid marker) and CD34+/CD38- (stem cell 

marker) of our tested cell lines to identify a correlation with avocatin B’s activity. Here, we reported that 

TEX cells display both high proportions of CD33+/CD19- and CD34+/CD38- fractions whereas neither 

of the other AML lines displayed this phenotype (Figure 4.2 right panel). Next, we aimed to assess 

whether avocatin B was selectively toxic to CD34+ enriched cells. Therefore we enriched the KG1A cell 

line for CD34 positive cells (Figure 4.3A) and treated it with avocatin B (Figure 4.3B). These cells were 

still insensitive to avocatin B, suggesting that avocatin B’s preferential toxicity is associated with 

CD33+/CD19- and CD34+/CD38- expression.  
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Figure 4.2. Avocatin B’s preferential toxicity is associated with CD33+/CD19- and CD34+/CD38- 

expression. (Left panel)  Avocatin B was tested in a panel of leukemia cell lines (TEX, KG1A, AML2, 

HL60, U937, K562 and Jurkat) over 72 hours. Viability was measured by the MTS assay and data are 

presented as mean percentage of live cells. (Right panel)  The expression of cell surface markers for 

myeloid cells, CD33+/CD19-, and stem cells, CD34+/CD38-, was measured in our AML cell lines by 

flow cytometry.  All experiments were performed three times in triplicate, representative figures are 

shown. 
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Figure 4.3. Assessing avocatin B in enriched CD34 KG1A cells. (A)  KG1A cells were enriched for 

CD34 positive cells using the CD34+ EasySep Positive Selection Kit and EasySep Magnet. This was 

confirmed by flow cytometry. Representative dot plots are shown. (B)  Enriched CD34 KG1A cells were 

incubated with avocatin B over 72 hours. Viability was measured using the MTS viability assay and data 

are presented as mean percentage of live cells. All experiments were performed three times in triplicate, 

representative figures are shown. 

4.1.4 Avocatin B induces mitochondria-mediated apoptosis 

 We next assessed the mode of avocatin B induced leukemia cell death. Externalization of 

phosphatidylserine, an early marker of apoptosis detected by Annexin V, was observed in live cells (i.e., 

ANN
+
/PI

-
) treated with avocatin B and flow cytometry 48 hours post treatment (Figure 4.4A; 

F3,7=19.09;p<0.05; see supplementary figure 4.2 for raw data). This coincided with the occurrence of 

DNA fragmentation (Figure 4.4B; F4,14=171.4;p<0.001), caspase activation (Figure 4.4C; 

F3,16=69.56;p<0.001) and PARP cleavage (Figure 4.4D), as measured by cell cycle analysis (see 

supplementary figure 4.3 for raw data), a caspase activation assay and Western blotting, respectively.   

To test whether death was dependent on caspase enzymes we co-incubated avocatin B with the 

pan-caspase inhibitor Z-VAD-FMK or the caspase-3 specific inhibitor QVD for 72 hours. Both inhibitors 
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only slightly protected from avocatin B-induced death (F4,9=2.714;p<0.01; Figure 4.4E). Since cell death 

can occur independent of caspase enzymes through the release of mitochondria localized proteins such as 

apoptosis inducing factor (AIF), we tested for the presence of AIF in cytosolic fractions of avocatin B 

treated TEX cells. However, given that AIF release involves mitochondrial outer membrane permeability 

and that we detected caspase activation; we also simultaneously tested for the presence of cytochrome c, 

which activates caspase enzymes following its release from the mitochondrial intermembrane space. Cells 

treated with avocatin B showed an increase in cytoplasmic concentrations of AIF (F4,20=8.211;p<0.001; 

Figure 4.4F) and cytochrome c (F4,20=13.57;p<0.001; Figure 4.4F). To further support this, Western 

Blotting revealed an increase in AIF protein expression in avocatin B treated cells (Figure 4.5). 

Another characteristic associated with mitochondria-mediated apoptosis is the dissipation of the 

mitochondrial membrane potential (ΔΨm). Dissipation of ΔΨm has been associated with mitochondrial 

outer membrane permeabilization (MOMP) and the release of cytochrome c [88, 89]. It has also been 

reported that ΔΨm disruption can lead to ROS generation resulting in MOMP [88]. As such, we 

investigated whether avocatin B disrupted ΔΨm in TEX leukemia cells. Avocatin B treatment caused a 

significant reduction in ΔΨm consistent with the release of cytochrome c and AIF (Figure 4.6). Therefore, 

avocatin B induced apoptotic death characterized by the release of the mitochondrial proteins AIF and 

cytochrome c. 
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Figure 4.4. Avocatin B induces mitochondria-mediated apoptosis. (A) TEX cells were treated with 10µM 

avocatin B for increasing duration and phosphatidylserine exposure in live cells (i.e., apoptotic 

phenotype; ANN
+
/PI

-
) and (B) DNA fragmentation were measured by flow cytometry. Data are presented 

as fold change in apoptotic phenotype and percent cells in sub G1 peak, respectively. (C) TEX cells were 

treated with 10µM avocatin B for increasing duration and caspase 3 and 7 activation and (D) cleavage of 

PARP, a substrate of caspase 3, were measured by a commercially available activation assay and Western 

blotting, respectively. (E) TEX cells were treated with 10µM avocatin B in the presence and absence of 

the pan caspase inhibitor Z-VAD-FMK (ZVAD) or the caspase-3 specific inhibitor Q-VD-OPh (QVD). 

Viability was measured after a 72 hour incubation period by the MTS assay. Data are presented as percent 

change in viability compared to controls ± SD. (F) TEX cells were treated with 10µM avocatin B for 

increasing duration and cytochrome c and AIF release were measured in cytoplasmic fractions by flow 

cytometry.  Data are presented as percent of cells releasing cytochrome c or AIF ± SD. All experiments 

were performed three times in triplicate, representative figures are shown. *p<0.05; **p<0.01;*** 

p<0.001.    
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Figure 4.5. Avocatin B increases AIF protein expression. Western Blot of AIF (67kDa) protein in TEX 

cells treated with 10μM avocatin B or DMSO control over 24, 48 and 72 hours. Ponceau staining was 

used to quantify equal loading of samples.  

 

 

Figure 4.6. Assessing avocatin B’s impact on ΔΨm. (Left panel) TEX cells were incubated with 10μM 

avocatin B over a 48 hour time course. ΔΨm was assessed by rhodamine 123 staining and flow 

cytometry. Data are represented as %cells with disrupted ΔΨm. (Right panel) Histogram plot displaying 

shift in rhodamine 123 fluorescence after 36 hour incubation with avocatin B. ***p<0.001. 

 

4.1.5 Avocatin B’s activity involves the fatty acid metabolism pathway 

Prior to this study, little has been published on the mechanism of avocatin B with only reports of 

activity in various solid cancer cell lines [59]. However, similarly structured avocado-derived compounds 

have been shown to inhibit acetyl-CoA carboxylase, a key enzyme in fatty acid biosynthesis [90]. As 

such, we aimed to explore whether avocatin B also affected the fatty acid biosynthesis pathway (Figure 

4.7). We co-incubated TEX cells with avocatin B and palmitate, the end product of the fatty acid 

biosynthesis pathway, and reported that palmitate abrogated avocatin B’s cytotoxicity (Figure 4.8).  
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Figure 4.7.  Schematic diagram of the fate of fatty acids in the cell. Fatty acids can undergo fatty acid 

oxidation to fuel the Kreb’s cycle or can be converted to monounsaturated fatty acids to contribute 

towards the phospholipid bilayer. Adapted from Samudio et al. 2010 and Carracedo et al. 2013 using 

Servier Medical Art (Creative Commons Attribution 3.0 Unported License). 

http://creativecommons.org/licenses/by/3.0/
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Figure 4.8. Avocatin B’s activity is dependent on the fatty acid metabolism pathway. (A)  TEX cells were 

co-incubated with 10µM avocatin B and increasing concentrations of palmitate over 72 hours. Viability 

was measured using the MTS viability assay and data are represented as mean percentage of live cells. 

(B) TEX cells were co-incubated with 50µM palmitate and increasing concentrations of avocatin B. 

Viability was measured using the ANN/PI flow cytometry assay and data are presented as mean 

percentage of live cells. All experiments were performed three times in triplicate, representative figures 

are shown. **p<0.01; ***p<0.001. 

 

Fatty acids, including palmitate, are produced by fatty acid synthase (FASN), a major enzyme 

involved in fatty acid biosynthesis, from the substrates acetyl-CoA, malonyl-CoA and NADPH [91, 92]. 

Given that palmitate rescued cells from avocatin B induced cell death, we investigated if avocatin B’s 

activity was dependent on FASN. We co-incubated TEX cells with avocatin B and orlistat, a chemical 

inhibitor of FASN (Figure 4.9A) [93]. Avocatin B’s activity was not affected by orlistat suggesting that 

its activity is not dependent on FASN.  

Upstream of FASN is acetyl-CoA carboxylase, an enzyme responsible for the production of the 

FASN substrate malonyl-CoA. Given that avocado-derived compounds with a similar structure to 
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avocatin B have been shown to inhibit acetyl-CoA carboxylase (ACC) [49], we investigated whether 

avocatin B’s activity was dependent on ACC. This was done by co-incubating avocatin B with acetyl-

CoA and/or malonyl-CoA (Figure 4.9B, C & D), which is produced by ACC. Unlike co-incubation with 

palmitate, acetyl-CoA and/or malonyl-CoA were not capable of affecting avocatin B’s activity in TEX 

cells indicating that ACC was not essential to its activity.  

 

Figure 4.9. Assessing avocatin B’s role in the fatty acid biosynthesis pathway. (A)  TEX cells were co-

incubated with 5µM avocatin B and increasing concentrations of the FASN inhibitor orlistat over 72 

hours. Viability was measured using the MTS viability assay and data are represented as mean percentage 

of live cells. (B) TEX cells were co-incubated with 10µM avocatin B and increasing concentrations of 

malonyl-CoA. Viability was measured using the MTS viability assay and data are represented as mean 

percentage of live cells. (C) TEX cells were co-incubated with 10µM avocatin B and increasing 

concentrations of acetyl-CoA. Viability was measured using the MTS viability assay and data are 

represented as mean percentage of live cells. (D) TEX cells were co-incubated with 10µM avocatin B and 

increasing concentrations of malonyl-CoA and acetyl-CoA. Viability was measured using the MTS 

viability assay and data are represented as mean percentage of live cells. All experiments were performed 

three times in triplicate, representative figures are shown.  
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Once fatty acids have been produced by FASN, they can be used as a metabolic fuel source 

through fatty acid oxidation, or they can be desaturated to monounsaturated fatty acids (MUFA) to 

contribute towards cellular tissues [94]. Stearoyl-CoA desaturase-1(SCD1) is an enzyme responsible for 

the conversion of saturated fatty acids to MUFAs. Oleic acid is the primary product from SCD1 [94]. To 

investigate whether avocatin B inhibited SCD1, we co-incubated avocatin B with oleic acid to see if could 

rescue cells from avocatin B’s cytotoxic effects (Figure 4.10).  Treatment with oleic acid failed to 

abrogate avocatin B’s activity indicating that its activity was unrelated to the MUFA pathway of fatty acid 

biosynthesis. Given that only palmitate rescued cells from avocatin B treatment, we chose to investigate 

downstream pathways such as fatty acid oxidation (next section). Thus, high palmitate concentrations 

rescue cells from death likely by outcompeting avocatin B for entry into mitochondria through CPT1. 
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Figure 4.10. Avocatin B’s activity is independent of the monounsaturated fatty acid biosynthesis 

pathway. (A)  TEX cells were co-incubated with 10µM avocatin B and increasing concentrations of oleic 

acid over 72 hours. Viability was measured using the MTS viability assay and data are represented as 

mean percentage of live cells. All experiments were performed three times in triplicate, representative 

figures are shown.  

4.1.6 Avocatin B inhibits fatty acid oxidation  

Apoptosis was characterized by the release of mitochondrial proteins following avocatin B 

treatment. Since avocatin B is a 17-carbon lipid and lipids of that size can enter the mitochondria and 

undergo fatty acid oxidation after they have been processed by carnitine palmitoyltransferase 1 (CPT1), 
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we evaluated the impact of avocatin B on fatty acid oxidation. Fatty acid oxidation produces acetyl-CoA 

which enters the TCA cycle to produce NADH, which fuels oxidative phosphorylation, and NADPH, an 

important co-factor that participates in catabolic processes during cell proliferation [95] and is the 

precursor of reduced glutathione - an important intracellular and mitochondrial antioxidant [96, 97] 

(Figure 4.11A). To test the effects of avocatin B on fatty acid oxidation, we measured mitochondrial 

bioenergetics of TEX cells pre-incubated with avocatin B or palmitate in the absence or presence of 

etomoxir by measuring the change in maximum oxygen consumption following oligomycin and CCCP 

treatment and prior to the addition of antimycin and rotenone, as described in Abe et al. (2013) [74]. As 

expected, treatment with palmitate increased the oxygen consumption rate (OCR), consistent with 

oxidation of exogenous fatty acid substrates and this increase was blocked by treatment with etomoxir, a 

CPT1 inhibitor (Figure 4.11B&C). Similarly, avocatin B reduced palmitate oxidation demonstrating that 

avocatin B inhibits the oxidation of exogenous fatty acids (F5,17=40.83;p<0.05; Figure 4.11B&C; arrows 

indicate the time when oligomycin, CCCP and antimycin/rotenone were added to the cells).  Future 

studies are needed to further determine the nature of CPT1’s preference for avocatin B over palmitate.   

4.1.7 Inhibiting fatty acid oxidation results in reduced NADPH and elevated ROS 

Inhibiting fatty acid oxidation can decrease NADPH and subsequently decrease antioxidant 

capabilities [75]. Thus, we tested the effect of avocatin B on NADPH levels in TEX leukemia cells. 

Avocatin B (10µM), similar to etomoxir (100µM), resulted in a 50% reduction in NADPH, an effect that 

was observed even in the presence of palmitate (175µM; F9,19=5.129;p<0.05; Figure 4.11D).   

Inhibition of fatty acid oxidation can reduce NADPH leading to reduced antioxidant capacity, 

elevated reactive oxygen species (ROS) and cell death [75]. ROS levels were tested in avocatin B treated 

cells using DCFH-DA and DHE, which measure general ROS and superoxide, respectively. TEX cells 

treated with avocatin B had a time-dependent increase in ROS levels as measured by DCFH-DA 

(F5,11=176.7;p<0.01; Figure 4.11E; see supplementary figure 4.4 for histogram data) and DHE 

(F5,11=36.75;p<0.01; Figure 4.11E; see supplementary figure 4.4 for histogram data). To test the 
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importance of ROS in avocatin B-induced death, we co-incubated cells with the antioxidants N-

acetylcysteine (NAC) or α-tocopherol (α-Toc). NAC neutralizes ROS through glutathione generation, 

which is reduced following NADPH depletion [75] and α-tocopherol is a lipid-based antioxidant that 

accumulates in organelle membranes, particularly mitochondria; to prevent lipid peroxyl radicals formed 

by ROS induced membrane damage [98]. Co-incubation with NAC (F3,7=70.55;p<0.05; Figure 4.11F, 

right panel) or α-tocopherol (F3,7=10.23;p<0.05; Figure 4.11F, right panel) abolished avocatin B-induced 

death. Daunorubicin (DNR) was used a negative control, as antioxidants do not protect against its 

cytotoxicity [99, 100]. Together, these results demonstrate that avocatin B reduces NADPH and that ROS 

is functionally important for avocatin B-induced death.  
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Figure 4.11. Avocatin B inhibits fatty acid oxidation resulting in reduced NADPH and elevated ROS. (A) 

Illustration of fatty acid oxidation in mitochondria. Long chain fatty acids (LCFA) enter the mitochondria 

via CPT1 for fatty acid oxidation to yield acetyl-CoA. Acetyl-CoA enters the TCA cycle to generate 

NADPH, an enzymatic co-factor and antioxidant. (ME: malic enzyme; IDH: isocitrate dehydrogenase; α-

KG: α-ketoglutarate).  (B) Oxidation of exogenous fatty acids was assessed by measuring the oxygen 

consumption rate (OCR) in TEX cells treated with palmitate (175µM), avocatin B (10µM), avocatin B 

and palmitate or palmitate and etomoxir (100µM). Arrows indicate the time when oligomycin, CCCP and 

antimycin/rotenone were added to the cells. Effects on fatty acid oxidation were measured with the 

Seahorse Bioanalyzer, as detailed in the methods section, and (C) quantified by peak area after 

oligomycin and CCCP treatment, as described by the manufacturer’s protocol and detailed in the 

methods. Data are presented as percent OCR compared to palmitate treated cells ± SD.  (D) NADPH was 

measured using the commercially available Amplite™ Fluorimetric Assay following treatment with 

avocatin B (10µM), palmitate (175µM) or etomoxir (100µM), according to the manufacturer’s protocol. 

Data are presented as a percent NADPH compared to vehicle control treated cells ± SD. (E) Reactive 

oxygen species (ROS) were measured in TEX cells treated with 10µM avocatin B for increasing time by 

DHE and DCFH-DA by flow cytometry. Data are presented as fold change in fluorescence, compared to 

vehicle control, ± SD from representative experiments. (F) TEX cells were treated with 10µM avocatin B 

in the presence or absence of the anti-oxidants, N-acetyl cysteine (NAC) or α-tocopherol (α-Toc). 

Daunorubicin (DNR) was used as a negative control.  Viability was measured by the ANN/PI assay and 

data are presented as mean percentage of viable cells (i.e., ANN
-
/PI

-
) ± SD from representative 

experiments. All experiments were performed three times in triplicate, representative figures are shown. 

*p<0.05; **p<0.01; ***p<0.001.    
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4.1.8 Assessing PPARα’s role in avocatin B mediated leukemia cell death 

Peroxisome proliferator-activated receptor (PPAR)α is a nuclear receptor protein that regulates 

FA oxidation and UCP expression, however its role in cancer cell proliferation remains unclear [20, 101, 

102]. In several cancer cell models however, activation of PPARα inhibited tumor growth [20]. To 

determine a possible role of PPARα, we tested avocatin B’s activity in PPARα knockdown cells. Cells 

lacking PPARα were equally sensitive to avocatin B as wild-type cells (Figure 4.12), suggesting that 

avocatin B’s effect on fatty acid oxidation is independent of PPARα. Although PPARα is central to FAO, 

PPAR transcription factors have multiple isoforms including PPAR delta and PPAR gamma. In fact, 

evidence suggests that a related family member PPAR delta is in fact required for the maintenance of 

HSCs and LSCs through FAO [21]. This result suggests that PPAR delta and PPAR gamma are related to 

avocatin B’s activity. Future studies should explore if PPAR delta and gamma play a role in regulating 

avocatin B’s activity.  

 

Figure 4.12. Avocatin B’s activity is independent of PPARα. (Left panel) mRNA expression 

demonstrating knockdown of PPARα in AML2 cells. Experiment performed by Princess Margaret 

Hospital. (Right panel) AML2 cells lacking PPARα   were co-incubated with increasing concentrations of 

avocatin B 72 hours. Viability was measured using the ANN/PI viability assay and data are represented as 

mean percentage of live cells. All experiments were performed three times in triplicate, representative 

figures are shown.  
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4.1.9 Mitochondria and CPT1 are functionally important for avocatin B-induced death 

We demonstrated that avocatin B inhibits fatty acid oxidation and induces apoptosis characterized 

by the release of mitochondrial proteins cytochrome c and AIF. Since avocatin B is a lipid and leukemia 

cells possess mitochondrial and metabolic alterations that increase their demand for fatty acid substrates 

[24], we hypothesized that avocatin B’s toxicity was related to its localization in mitochondria. To first 

test avocatin B’s reliance on mitochondria for cytotoxicity, we generated leukemia cells lacking 

functional mitochondria by culturing Jurkat-T cells in media supplemented with 50ng/ml of ethidium 

bromide (EtBr), 100mg/ml sodium pyruvate and 50µg/ml uridine, as previously described [103, 104].  

Following 60 days of passaging only live cells,  the presence of mitochondria were tested by flow 

cytometry following 10-nonyl acridine orange (NAO) staining and by Western blotting for mitochondrial 

specific proteins ND1 (i.e., complex 1) and adenine nucleotide translocator (ANT).  The significant 

reduction of mitochondria was confirmed, as cells co-cultured in EtBr containing media demonstrated a 

drastic reduction in NAO staining (supplementary figure 4.5) and a near absence of ND1 and ANT 

(Figure 4.13A). Avocatin B’s toxicity was abolished in cells lacking functional mitochondria, as 

measured by the ANN/PI assay (F2,12=6.509; p<0.001; Figure 4.13B).  Highlighting the utility of these 

cells in assessing mitochondrial participation in drug activity, we previously showed that cells lacking 

mitochondria were equally sensitive to their mitochondria containing controls when subjected to a 

compound that activates mitochondria-independent, calpain-mediated apoptosis [76].  

In hypoxic conditions (i.e., reducing oxygen concentrations), ATP production is shifted away 

from the mitochondrial pathways of oxidative phosphorylation and fatty acid oxidation toward glycolysis 

[105-107]. Thus, we compared avocatin B’s cytotoxicity in normoxic (21% oxygen) and hypoxic (1% 

oxygen) conditions. As controls, we tested drugs that directly target mitochondria such as antimycin and 

rotenone and drugs that do not directly target mitochondria such as cytarabine and daunorubicin. These 

controls demonstrated that the activity of mitochondria target drugs are reduced in hypoxic conditions 

whereas non-mitochondria target drugs are unaffected by these conditions. As expected, avocatin B’s 

activity was significantly reduced in conditions in which cellular metabolism is shifted away from 
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mitochondrial pathways (F4,24=98.51; p<0.0001; Figure 4.13C). However, it is important to note that 

although avocatin B’s activity was decreased in reduced oxygen; it did remain active at oxygen 

concentrations (i.e., 6.1% ± 1.7%[108]) found in bone marrow (supplementary figure 4.6). 

Excessive accumulation of fatty acids within the mitochondria increases the expression of 

uncoupling proteins (UCP) [109].  Thus, we measured expression of UCP2, the leukemia specific UCP 

[30], as an indirect measure of mitochondrial fatty acid accumulation by Western blotting. Treatment with 

avocatin B increased UCP2 protein expression in leukemia cells (Figure 4.13D).  

Figure 4.13. Mitochondria are functionally important for avocatin B-induced death. (A) Jurkat T cells 

were cultured in 50ng/ml of ethidium bromide, 100mg/ml sodium pyruvate and 50µg/ml uridine for 60 

days to create Jurkat-EtBr cells which lack functional mitochondrial. To confirm that Jukat-EtBr cells 

lack mitochondria, we measured the mitochondria specific markers adenine nucleotide translocator 

(ANT) and complex I (ND1) by Western blotting. (B) Avocatin B’s activity was tested in cells with 

(JURK) and with reduced (JURK-EtBr) mitochondria. Viability was measured by the ANN/PI assay and 

flow cytometry and data are presented as mean percentage of live cells (i.e., ANN
-
/PI

-
) ± SD from 

representative experiments. (C) TEX cells were grown in normoxic (21%O2) or hypoxic (1%O2) 

conditions and treated with avocatin B (2µM), antimycin A (1µM), rotenone (3µM), daunorubicin (5nM) 

or cytarabine (4nM). Cell viability was measured by the sulforhodamine B assay, as described in the 

methods, following a 72 hour incubation period. Data are presented as percent viable. Experiment 

performed by Princess Margaret Cancer Centre. (D) Uncoupling protein 2 (UCP2) was measured in 

whole cell lysates of avocatin B (10µM) or DMSO-control treated TEX cells by Western blotting. 

Arbitrary units (AU) are presented as fold change (compared to the 6 hour time point) and were 

calculated by dividing each treatment lane by the densitometry of its loading control. Densitometry was 

calculated as outlined in the methods. All experiments were performed three times in triplicate, 

representative figures are shown. *p<0.05; **p<0.01***; p<0.001. 
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Lipids of 16-20 carbon length enter mitochondria by the activity of CPT1 [110]. To determine the 

role of CPT1 in avocatin B-induced death we blocked CPT1 activity chemically with etomoxir and 

genetically using RNA interference. Etomoxir concentrations that did not reduce viability (100µM; 

F3,11=19.81;p<0.001; Figure 4.14A), abrogated avocatin B-induced cell death (F5,17=94.45;p<0.001; 

Figure 4.14B). As a genetic approach, we generated cells with reduced CPT1A gene expression (Figure 

4.14C, left panel). CPT1A knockdown cells were significantly less sensitive to avocatin B 

(F9,32=23.73;p<0.001; Figure 4.14C, right panel). Together, these results suggest that avocatin B is a lipid 

that localizes to the mitochondria and impairs fatty acid oxidation.  

 

Figure 4.14. CPT1 is functionally important for avocatin B induced death. (A) TEX cells were incubated 

with increasing concentrations of the CPT1 inhibitor etomoxir for 72 hours.  (B) Avocatin B’s (10µM) 

activity was tested in the presence of etomoxir (100µM; which does not impart toxicity) or (C) (right 

panel) in cells lacking CPT1A. (left panel) mRNA expression demonstrating knockdown of CPT1A. 

Experiment performed by Princess Margaret Cancer Centre.. Unless otherwise noted, viability was 

measured by the ANN/PI assay and flow cytometry and data are presented as mean percentage of live 

cells (i.e., ANN
-
/PI

-
) ± SD from representative experiments. All experiments were performed three times 

in triplicate, representative figures are shown. *p<0.05; **p<0.01***; p<0.001.    
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4.1.10 Avocatin B activates autophagy 

Treatment with avocatin B resulted in a delayed onset of death (i.e., after 24-48h), which was 

ROS-dependent (ROS increased after 18h of incubation) [111]. ROS-induced cell death can occur via 

apoptosis (type I programmed cell death) or autophagy (type II programmed cell death). Autophagy is 

classically activated by nutrient starvation [112] and autophagic cell death can occur following prolonged 

autophagic signaling [113]. Given the delayed onset of death that was characterized by increased levels of 

ROS [111] and that death follows inhibiting leukemia cells of an essential metabolic substrate (i.e., fatty 

acids), we assessed whether avocatin B activated autophagy. 

First, we interrogated databases derived from haploinsufficiency profiling (HIP) in yeast, a 

validated chemical genomics platform used to identify cellular response patterns [28, 80, 114, 115]. 

Briefly, HIP in Saccharomyces cerevisiae allows for the quantitative measurement of the relative drug 

sensitivity of 6000 yeast genes [115]. Avocatin B was tested in a yeast chemogenomic screen consisting 

of >3250 small molecules [116] and its chemogenomic profile was retrieved from the HIPHOP yeast 

chemogenomics database and interrogated for mechanistic sensitivities. Of the top 15 genes sensitive to 

avocatin B (p<0.05), 4 have known biological associations with autophagy and/or vesicle-mediated 

transport (Figure 4.15A). Notably, 3 out of the 4 identified genes belong to the SEC protein family, which 

are essential for autophagosome formation [117, 118]. We also compared avocatin B’s chemogenomic 

profile to rapamycin, a known autophagy inducer in mammalian cells. Similarly, 3 out of the top 15 genes 

sensitive to rapamycin have known biological associations with autophagy and/or vesicle-mediated 

transport (Figure 4.15A). Together, these findings suggest autophagy is mechanistically involved in 

avocatin B’s activity.  

 To assess whether avocatin B activates autophagy in leukemia cells, we examined changes in 

lysosome size following cathepsin B staining by confocal microscopy. Lysosome size was increased in 

avocatin B treated TEX cells consistent with the creation of autophagolysosomes (Figure 4.15B) [79, 

119]. A panel of autophagy markers was also tested by immunoblotting. Consistent with an autophagy 

response, avocatin B increased protein levels of Atg7, critical in autophagosome formation [42], and 
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mediated the conversion of LC3I to LC3II, a gold standard autophagy marker involved in autophagosome 

formation [42]. Moreover, avocatin B decreased protein levels of p62, an adaptor molecule that facilitates 

the interaction between ubiquitinated targets and LC3II [33] and Nix/BNIP3, a mitochondrial specific 

protein that is ubiquitinated prior to mitochondrial degradation [33, 120] (Figure 4.15C). Taken together, 

avocatin B activates autophagy in leukemia cells.  

 

 

Figure 4.15. Avocatin B induces autophagy. (A) Interrogation of avocatin B’s chemogenomic profile 

from a publicly available yeast chemogenomics database. (Left panel) Identification of genes related to 

autophagy and/or vesicle-mediated transport that are sensitive to avocatin B or rapamycin treatment. 

(Right panel) List of genes found in top 15 HET fitness scores related to autophagy and/or vesicle-

mediated transport that sensitive yeast to avocatin B or rapamycin treatment. (B) Avocatin B increases 

lysosome size as measured by confocal microscopy. Following a 24 and 48 hour incubation period with 

1.5μM avocatin B, TEX leukemia cells were stained with cathepsin B, a lysosomal protease, and 

lysosomes were observed by confocal microscopy. At 24 and 48 hours, the presence of larger vesicles is 

consistent with the formation of autophagolysosomes (representative figures shown). Experiment was 

performed by Dr. Paul Spagnuolo. (C) Avocatin B (1.5μM) increases protein levels of Atg7 and 

LC3B-II, and decreases protein levels of p62 and BNIP3L in TEX leukemia cells treated for 24 and 48 

hours. Proteins were measured by Western blotting and α-tubulin was used as a loading control. 

Experiment was partially performed by Elliott McMillan.  
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4.1.11 Autophagy is functionally important for avocatin B-induced death 

 We previously demonstrated that avocatin B induces selective leukemia cell death following the 

release of mitochondrial pro-apoptotic proteins cytochrome c and AIF [111]. Next, we aimed to evaluate 

whether autophagy was critical to avocatin B’s cytotoxicity. Thus, we generated Atg7 and SQSTM1/p62 

knockdown cell lines (Figures 4.16A &B). Consistent with previous reports demonstrating the importance 

of Atg7 in autophagy induction [121], Atg7 knockdown cells were significantly less sensitive to avocatin 

B (F6,24=53.07;p<0.001; Figure 4.16A, right panel). In contract, but similar to reports highlighting that 

genetic knockdown of SQSTM1/p62 increased autophagy signaling [122] and ROS levels leading to 

reduced viability of Ras transformed lung cancer cells [123],   knockdown of SQSTM1/p62 renders 

leukemia cells more sensitive to avocatin B (Figure 4.16B, right panel).  Indeed, basal ROS levels were 

elevated in SQSTM1/p62 knockdown cells compared to GFP controls (Figure 4.16C).  Collectively, these 

results suggest that autophagy is functionally important in avocatin B-induced death. 
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Figure 4.16. Autophagy is functionally important for avocatin B-induced death. (A) (Left panel) 

Immunoblots and densitometry showing protein levels of Atg7 in OCI-AML2 cells treated with scramble 

or 2 independent Atg7 vectors. Arbitrary units were normalized to loading controls (GAPDH) and 

standardization to GFP controls. Experiment was performed by Leonard Angka. (Right panel) 

Avocatin B was tested in cells lacking Atg7. Viability was measured by the ANN/PI assay and flow 

cytometry and data are presented as mean percentage of live cells (i.e., ANN
-
/PI

-
) ± SD from 

representative experiments.  (B) (Left panel) Immunoblots and densitometry showing protein levels of 

p62 in OCI-AML2 cells treated with GFP or 2 independent p62 vectors. Arbitrary units were calculated 

as above. Both bands of p62 were quantified, the top band represents the UBA-conjugated p62 protein. 

Experiment was performed by Leonard Angka. (Right panel) Avocatin B was tested in cells lacking 

SQSTM1 (p62). Viability was measured by the ANN/PI assay and flow cytometry and data are presented 

as mean percentage of live cells (i.e., ANN
-
/PI

-
) ± SD from representative experiments. (C) Basal ROS 

levels were detected in GFP and SQSTM1 knockdown cells using DCF-DA and DHE, as outlined in the 

methods. All experiments were performed three times in triplicate, representative figures are shown. 

*p<0.05; **p<0.01***; p<0.001.    

4.1.12 Establishing a methodology for the long-term culture of primary AML samples 

In our studies, we assessed avocatin B`s anti-leukemia activity in primary AML and normal 

CD34+ hematopoietic cells. In order to facilitate the long-term use of these cells, we used a mouse bone 

marrow stromal co-culturing system (Chapter 3: Methods) allowing for the long term expansion and 
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culture of primary AML and CD34+ normal cells [62]. Through co-culturing with stromal cells, we were 

able to create a simulated bone marrow microenvironment, which is essential in preventing cell 

differentiation and preventing apoptosis through the up regulation of anti-apoptotic proteins [124]. Using 

this co-culturing system, we were able to expand and grow primary cells for an extended period of time 

(Figure 4.17).  
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Figure 4.17. Bone marrow stromal co-culuring allows for the long term culture of primary cells. Cell 

counts of normal CD34+ hematopoietic cells co-cultured with mouse bone marrow stromal cells over a 

period of 25 days. Cells were counted using the trypan blue exclusion assay and a hemocytometer.  

 

 

 

4.2 Supplemental figures 

Table S4.1a. AML patient sample details used for annexin/PI 

 
Label # 

CD34 

(%) 
Interpretation 

AML1 77 
43~44,XX,dic(3;12)(p13;p11.2),-5,-7,+del(11)(q13),?dup(18)(q21q22),del(20)(q13.1), 

-22,+mar[cp10] 

AML2 88 44~48,XX,del(5)(q13q33),i(9)(p10),-18,add(20)(q13.3),+mar[cp17]/46,XX[3] 

AML3 87 46,XX,t(2;8)(p13;q22)[20].ish t(2;8)(MYC+;MYC-) 

AML4 1 NPM, Flt3-TKD 

AML5 60 ** 

AML5 77 Del 5q 

** Denotes unknown/not tested 
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Table S4.1b. AML patient sample details used for colony formation assays 

Label # 
CD34 

(%) 
Interpretation 

AML6 
** 

43,XY,del(5)(q13q33),-7,t(9;12)(q12;q12),der(16)t(16;17)(q12.1;q21), -17,-

18[4]/44,idem,+8[2]/46,XY[3] 

AML7 ** 46,XX,t(9;11)(p22;q23)[20] 

AML8 ** 46,XY,del(5)(q22q31)[20] 

** Denotes unknown/not tested 

 

 

 

Supplementary figure 4.1. Avocatin B is the most active avocado lipid analogue. (A) TEX cells were 

treated with increasing concentrations of avocado lipid analogues. Avocatin B imparted the greatest 

reducing in TEX cell viability. Data are presented as mean percentage of live cells (MTS assay) ± SD 

from representative experiments.  Experiments were performed three times in triplicate.  
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Supplementary figure 4.2. Kinetics of avocatin B-induced death.  TEX cells were treated with 10µM 

avocatin B and (A) apoptotic cells (ANN+/PI-) and (B) cell viability (ANN-/PI-) were measured by flow 

cytometry. Data are presented as mean percentage of apoptotic or live cells ± SD. All experiments were 

performed three times in triplicate.  

 

 

Supplementary figure 4.3. Cell cycle analysis of avocatin B treated TEX cells. TEX cells were 

incubated with avocatin B (10µM) over a 48 hour time course and cell cycle analysis was performed by 

propidium iodide staining and flow cytometry. Data are presented as percentage of cells per cell cycle 

phase ± SD from representative experiments. All experiments were performed three times in triplicate. 

***; p<0.001.    
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Supplementary figure 4.4. Avocatin B increases ROS. TEX cells were treated with 10µM avocatin B 

and DCFH-DA and DHE were measured at increasing time points by flow cytometry. Raw data showing 

the homogenous cell shift in DCFH-DA or DHE are shown.   
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Supplementary figure 4.5. Jurkat T cells cultured in ethidium bromide medium have reduced 

mitochondria. (A) Jurkat T cells were cultured in ethidium bromide media for 60 days and mitochondria 

were detected by nonyl acridine orange (NAO) staining, which binds to the mitochondria specific lipid, 

cardiolipin. (Left panel) Jurkat T cells demonstrate positive NAO staining whereas (right panel) Jurkat-

EtBr cells demonstrate a drastic reduction in NAO staining (~87%). 

 

 

 

Supplementary figure 4.6. Avocatin B’s cytotoxicity is dependent on [O2]. (A) TEX cells were grown in 

normoxic (21%O2) or hypoxic (3% and 1%O2) conditions and incubated with avocatin B (2µM) for 72 

hours. Cell viability was measured by the sulforhodamine B assay, as described in the methods. Data are 

presented as mean percentage of live cells ± SD. All experiments were performed three times in triplicate. 

***; p<0.001. Experiment performed by Princess Margaret Cancer Centre.   
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Supplementary figure 4.7. Avocatin B’s toxicity is dependent on basal levels of fatty acid oxidation. 

Basal levels of fatty acid oxidation were tested in TEX (avocatin B sensitive) and KG1a (avocatin B 

insensitive) cells were treated, as described in the methods sections.  
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Chapter 5: Discussion 

 A screen of a natural health product library identified avocatin B as a novel anti-AML agent. In 

vitro and pre-clinical functional studies demonstrated that it induced selective toxicity toward leukemia 

and leukemia stem cells with no toxicity toward normal cells. Mechanistically, we highlight a novel 

strategy to induce selective leukemia cell death where mitochondrial localization of avocatin B inhibits 

fatty acid oxidation leading to reduced levels of NADPH and ROS-dependent, caspase and AIF-mediated 

apoptosis.   

5.1 Avocatin B’s selectivity 

Avocatin B targets leukemia over normal cells. We propose this specificity is related to the 

leukemia cell’s altered mitochondrial characteristics, as a number of observations suggest avocatin B 

localizes in mitochondria. For example, (1) cells with significantly reduced mitochondria or (2) lacking 

the enzyme that facilitates mitochondrial lipid transport, CPT1, are insensitive to avocatin B; (3) chemical 

treatment with etomoxir, a CPT1 inhibitor, blocked avocatin B’s activity; (4) CPT1 only facilitates entry 

of lipids of avocatin B’s size into mitochondria (e.g., 16-20 carbons [110]; avocatin B:17 carbons [85]); 

and (5) UCP2 levels are increased following avocatin B treatment.  Leukemia cells contain higher 

mitochondrial mass [28] and greater demand for fatty acid substrates for metabolic activity [24] compared 

to normal hematopoietic cells [24]. Thus, given the leukemia cell’s mitochondrial phenotype, we propose 

that avocatin B accumulates with greater concentration in leukemia over normal cells, thus conferring its 

increased toxicity toward leukemia cells. 

In both normal CD34+ hematopoietic cells and peripheral blood stem cells, we reported that 

avocatin B imparted no toxicities at concentrations as high as 20µM whereas in primary AML cells, 

avocatin B had an EC50: 3.9 ± 2.5µM (chapter 4). These results suggest indeed that avocatin B’s 

selectivity resides in these differences between AML and normal hematopoietic cells.  
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To confirm avocatin B’s selectivity towards AML cells, Dr. Spagnuolo conducted a preliminary 

screen of avocatin B in other cell lines consisting of both cancer and normal models (Figure 5.1).  Here, it 

was reported that avocatin B only reduced the viability of leukemia cells tested, whilst normal cells, 

including kidney and lung, and other cancers, including myeloma and solid tumours, were unaffected by 

avocatin B treatment. This serves as a preliminary indicator that used as a chemotherapeutic, avocatin B 

will not impart toxicities into other body tissues.  

 

Figure 5.1. Avocatin B is sensitive towards leukemia cells. Various cancer and normal cell lines were 

incubated with increasing dose of avocatin B and incubated over 72 hours. Viability was assessed using 

the MTS assay and data are represented as mean percentage of live cells. This work was performed by Dr. 

Paul Spagnuolo at the Princess Margaret Cancer Hospital (Toronto, ON). Cell lines: HEK293 human 

embryonic kidney; MRC-7  human foetal lung; HT-1080  fibrosarcoma/connective tissue; Lp1 myeloma; 

4921 myeloma; Hela cervical cancer; HCT-116 colon carcinoma; MDA-468 Breast cancer; U937 

leukemia; TEX leukemia. 

 

In chapter 4, we established that avocatin B’s mechanism of action involves the inhibition of fatty 

acid oxidation. This is mechanism takes advantage of the altered metabolic preference for fatty acids 

present in leukemia cells over hematopoietic cells. Of concern however, is that fatty acid oxidation is 

important for energy homeostasis in cardiac muscles, skeletal muscles, liver and to some degree kidney, 

small intestines and adipose tissue [22, 23]. Patients with fatty acid oxidation defects have been  reported 

with hypoketonic hypoglycemia, cardiomyopathy and/or rhabdomyolysis [23].  As such, future animal 

studies should carefully monitor for any associated toxicities. 
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In chapter 4, we report that avocatin B inhibits fatty acid oxidation in leukemia cells at a 10-fold 

less concentration than the gold standard pharmacological inhibitor, etomoxir [24, 75, 125]. Etomoxir 

inhibits the CPT1 enzyme, which exerts about 80% control over the fatty acid oxidation pathway [23, 

125]. Notably, etomoxir inhibits avocatin B induced cell death indicating that avocatin B’s uptake into the 

mitochondria (chapter 4) is mediated by CPT1. CPT1 exists in 3 isoforms: CPT1A (expressed in the liver, 

kidney, lung, spleen, intestine, pancreas, ovary and fibroblasts), B (expressed in the heart, skeletal muscle, 

testis and brown adipocytes) and C (expressed only in the brain, however its function remains to be 

unknown) [22, 23].   In our studies, CPT1A knockout cells were insensitive to avocatin B treatment 

indicating that CPT1A is essential for leukemia mitochondrial import of avocatin B. In both normal lung 

and kidney cells (Figure 5.1), avocatin B did not cause any reduction in viability further suggesting that it 

may be selective only towards leukemia cells.  

In order for etomoxir to inhibit CPT1, it must first be converted to a CoA ester [126]. This 

mechanism is similar to the entry of fatty acids, which are CoA-esterified by acyl-CoA synthetase [127]. 

Although not formally tested, it is presumed that avocatin B, given its dependence on CPT1 for 

cytotoxicity, is also CoA-esterified by acyl-CoA synthetase prior to entry into mitochondria. As such, 

future studies should examine the role of acyl-CoA synthetase in avocatin B’s mechanistic activity. 

Given that avocatin B inhibits fatty acid oxidation, understanding the in vivo effects of clinically 

used fatty acid oxidation inhibitors may shed light onto avocatin B’s in vivo profile. To date, perhexiline, 

a CPT1 inhibitor, trimetazidine, a 3-ketoacyl-CoA thiolase inhibitor, and ranolazine, a 3-ketoacyl-CoA 

thiolase inhibitor, are approved for human use for the treatment of angina [21]. Inhibition of fatty acid 

oxidation shifts cardiac muscle metabolism towards glucose oxidation to increase myocardial efficiency 

in ischemic conditions [128].  Given these in vivo profiles, it is possible that avocatin B may exert a 

similar profile. 

In chapter 4, we report that avocatin B targets the mitochondria. This is demonstrated through 

cells lacking functional mitochondria displaying insensitivity to avocatin B treatment, through genetic and 
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pharmacological inhibition of CPT1, which facilitates fatty acid transport into the mitochondria, and 

through increased UCP2 expression (chapter 4). Given that the mitochondria is essential for energy 

production and exerts control over cell death, the mitochondria is a feasible target in cancer therapy [129]. 

Mitochondria are implicated in tumorigenesis and tumour progression as cancer cells possess mutations in 

mitochondrial respiratory chain resulting in inefficient ATP production and chromosomal instability 

[130].  In fact, mitochondria in cancer cells are structurally and functionally different from those found in 

normal cells [130, 131]. Cancer cell mitochondria have been reported with a different phospholipid 

mitochondrial membrane composition compared to normal cells [132] as  well as metabolic 

reprogramming (such as fatty acid oxidation in leukemia; chapter 1). The metabolic reprogramming 

observed in cancer cell mitochondria renders them more susceptible to mitochondrial disruption over non-

cancerous cells [133, 134]. Additionally, we report that avocatin B targets leukemia and leukemia stem 

cells through decreases in NADPH resulting in increased levels of ROS (chapter 4). Both breast cancer 

stem cells and leukemia stem cells have been found to express low levels of ROS and higher levels of 

antioxidants compared to blast cells [32, 135]. Given the numerous structural, physiological and 

functional differences in cancer cell mitochondria, targeting the mitochondria is a promising therapeutic 

approach.  

5.2 Mechanism of action 

Inhibition of fatty acid oxidation by avocatin B resulted in ROS-induced apoptosis. Apoptosis 

was mediated by the mitochondrial proteins cytochrome c and AIF, which are commonly released 

following ROS-induced increases in mitochondrial outer membrane permeability [136, 137].  Inhibiting 

fatty acid oxidation by blocking CPT1 with etomoxir resulted in ROS-dependent death of glioma cells 

caused by reduced concentrations of intracellular antioxidants attributed to decreased NADPH [75]. 

Similarly, we demonstrated that avocatin B-induced inhibition of fatty acid oxidation reduced NADPH 

levels and that antioxidant supplementation rescued cells from death.  NADPH is utilized for catabolic 

processes in proliferating cells and is the precursor of reduced glutathione, which counteracts the 
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detrimental effects of ROS [95, 138]. Our observed NADPH decrease (t=5h; Figure 4.11D) preceded 

ROS elevation (t=12h; Figure 4.11E), further confirming the relationship between inhibition of fatty acid 

oxidation, NADPH and ROS-dependent leukemia cell death.  Of note, in our experiments avocatin B 

accumulated in mitochondria and inhibited fatty acid oxidation and reduced NADPH at 10µM whereas 

other studies used etomoxir, which blocks fatty acid entry into mitochondria and reduces NADPH, at 

100µM [24] or 1000µM [75]. Together, these results point to a mechanism where avocatin B enters the 

mitochondria and potently inhibits fatty acid oxidation resulting in reduced NADPH and ROS-induced 

apoptosis.  

5.2.1 Decreased levels of NADPH cause increases in ROS 

Our studies report that the avocado-derived lipid avocatin B was selectively cytotoxic towards 

AML and AML progenitor cells. In contrast, it was not cytotoxic to normal hematopoietic cells (CD34+). 

Mechanistically, avocatin B inhibited fatty acid oxidation resulting in decreased levels of NADPH 

resulting in increased levels of ROS. NADPH is utilized for catabolic processes in proliferating cells and 

is necessary to regenerate reduced glutathione, which counteracts the detrimental effects of ROS [95, 

138].  Notably, Pike et al. (2011) reported that even in the presence of glutamine and glucose, which 

generates NADPH through the pentose phosphate pathway, inhibition of fatty acid oxidation displayed a 

decrease in NADPH [75]. This suggests that NADPH generated from fatty acid oxidation is critical for 

defense against oxidative stress. Coupled with the fact that NADPH cannot pass through the inner 

mitochondrial membrane, NADPH generated from fatty acid oxidation serves as an essential source of 

antioxidants to combat mitochondria specific ROS [26]. Indeed, studies have shown that the 

mitochondrial enzyme IDH2, which regenerates NADPH, is critical towards defending cancer cells 

against oxidative stress and promoting cell survival [75, 139]. Mutations in IDH1 and IDH2 have been 

observed in AML, with reports of low levels of ROS in mice with mutated IDH1 [26, 140]. As such, it is 

speculated that inhibition of IDH1 or IDH2 will cause increases in ROS leading to cell death. In fact, 

decreased expression of IDH2 in fibroblast cell lines resulted in increased ROS levels, mitochondrial 
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damage and DNA fragmentation [141].  Based on these reports, I believe that our observed reports of 

decreased NADPH, directly contribute towards the observed increased levels of ROS in avocatin B 

treated leukemia cells.  

5.2.2 Decreased NADPH and increased levels of ROS cause mitochondria-mediated 

apoptosis 

In our studies, we report that avocatin B induces mitochondria-mediated apoptosis through the 

release of pro-apoptotic proteins cytochrome c and AIF. These reports are supported by disruption of the 

ΔΨm (chapter 4), and subsequent activation of caspases 3 and 7 (chapter 4). Cytochrome c and AIF reside 

in the intermembrane space of the mitochondria, requiring mitochondrial outer membrane 

permeabilization (MOMP) in order to be released [36]. In chapter 4, we report that avocatin B treatment 

increases ROS levels while decreasing NADPH levels. Excessive ROS can induce apoptosis by 

modifying mitochondrial proteins such as mitochondrial permeability transition pore proteins, voltage-

dependent anion channel (VDAC) and adenine nucleotide translocase (ANT), resulting in cytochrome c 

and AIF release [142]. Further, NADPH is required for the regeneration of GSH. Studies have reported 

that mitochondrial GSH redox status is a key modulator of MOMP, and that decreases in GSH result in 

the redox modulation of ANT resulting in the release of cytochrome c and AIF [143, 144]. This coincides 

with our reports that avocatin B decreases both NADPH and GSH (chapter 4) resulting in mitochondria-

mediated apoptosis. 

5.2.3 Avocatin B’s effect on the fatty acid biosynthesis pathway 

Leukemia cells display a metabolic shift from the oxidation of glucose derived carbon sources to 

the oxidation of fatty acids [24]. As such, fatty acids play a pivotal role in providing carbon building 

blocks and growth factors to leukemia cells. In our studies, we report that avocatin B inhibits fatty acid 

oxidation resulting in autophagy and apoptosis activation. In chapter 4, we highlight how autophagy is 

activated as a result of deficiency in cellular building blocks and growth factors.  



 

65 

 

Given that leukemia cells rely on de novo fatty acid synthesis [20, 26], coupled with fact that 

avocatin B related compounds inhibit this pathway, we also explored avocatin B’s effect on the fatty acid 

biosynthesis pathway.  We reported, that supplementation with exogenous palmitate (chapter 4) can 

rescue leukemia cells from avocatin B induced death. Palmitate is the end product of the fatty acid 

biosynthesis pathway and is produced by FASN. FASN has been reported to be upregulated in many 

cancer types, while being expressed at very low levels in most normal human tissues [93]. Therefore, we 

co-incubated avocatin B with the FASN inhibitor orlistat, where it displayed no effect on avocatin B’s 

activity suggesting that its activity is independent of FASN. This indicates that avocatin B and palmitate 

may compete for entry into the mitochondria via CPT1 (Discussed in next section). Next, we further 

excluded the fatty acid biosynthesis pathway through co-incubation with malonyl-CoA, acetyl-CoA 

(acetyl-CoA carboxylase end products) and oleic acid (SCD1 end product), and showed that neither 

treatments could rescue cells from avocatin B induced cell death. These results suggest that avocatin B’s 

activity is independent of the fatty acid biosynthesis pathway, and is only reliant on the uptake and 

oxidation of fatty acids in the mitochondria.  

Interestingly, accumulation of malonyl-CoA, an intermediary fatty acid metabolite, can be 

cytotoxic to cells. Indeed, treatment of TEX cells with high concentration of malonyl-CoA reduced cell 

viability (chapter 5). Malonyl-CoA is a cytotoxic reversible inhibitor of CPT1 which prevents newly 

synthesized fatty acids from undergoing oxidation [92, 93]. Accumulation of malonyl-CoA, results in 

apoptosis onset as a result of the activation of pro-apoptotic proteins BNIP3, TRAIL and DAPK2 [93]. 

Similarly, we report that avocatin B induces autophagy activation through BNIP3 expression (chapter 4), 

which is involved in both autophagy and apoptosis onset. Future studies will need to explore the link 

between fatty acid oxidation, autophagy and apoptosis onset.        

5.2.4 Palmitate supplementation rescues TEX cells from avocatin B induced cell death 

In chapter 4, we report that palmitate supplementation rescues TEX cells from avocatin B 

treatment. These results present a number of associated questions. We reported that co-incubation with 
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avocatin B and palmitate display a reduction in fatty acid oxidation and reduced NADPH levels. Given 

that long-term palmitate supplementation rescues TEX cells, avocatin B may in fact compete with 

palmitate for entry into the mitochondria via CPT1. This mode of action would be similar to that of other 

drugs that compete with endogenous ligands to alter cellular responses, as is the case with tamoxifen that 

competes with estrogen to block proliferation [145] or anastrozole that competes for the aromatase 

inhibitor in breast and ovarian cancer treatments [146].   Studies exploring this potential competitive 

mechanism have yet to be performed, as such should be explored in future studies. 

5.2.5 Oxidation of odd-numbered lipids 

Avocatin B is a 1:1 ratio of two 17-carbon lipids derived from methanol extracted avocado pear 

seeds (Persea gratissima) [84]. Odd-numbered carbons are rare, not produced endogenously and obtained 

only from dietary sources [147, 148]. Moreover, they are not efficiently or preferentially oxidized. For 

example, mice fed diets containing radiolabelled odd and even-numbered fatty acids only accumulate 

odd-numbered fatty acids in adipose tissue (i.e., C15 and 17) [149]; odd-numbered fatty acids show 

consistent adipose accumulation [147, 150, 151]. In humans, lipids of 13, 15 and 17 carbon lengths are 

used as serum and adipose tissue biomarkers of dietary fat intake, as these fatty acids are more slowly 

catabolized compared to even-numbered fatty acids [148, 152]. Although they undergo the same pathway 

of oxidation, the terminal step of odd-numbered fatty acid oxidation produces 1 acetyl-coA and 1 

propionyl-CoA molecule whereas even-numbered fatty acids produce 2 acetyl-coA molecules [153]. 

Propionyl-CoA can then be converted to methylmalonyl-CoA by propinyl-CoA carboxylase and vitamin 

B12, at the expense of 1 ATP, which is in turn converted to succinyl-CoA that can enter the TCA cycle 

[151]. Since this alternate pathway requires energy and delays overall ATP production, the decreased 

metabolic activity (i.e., reduced acetyl-CoA production and/or decreased entry of fatty acid byproducts 

into the TCA cycle) likely explains our observed decrease in NADPH. As such, reduced NADPH not 

only results in elevated ROS but also indicates a decrease in overall metabolic activity. Thus, a novel 

pathway by which fatty acid oxidation can be inhibited in leukemia cells is by the odd-numbered carbon 
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lipid, avocatin B stalling or rendering less efficient the fatty acid oxidation pathway. This highlights a 

novel strategy to induce selective leukemia cell death by which preferential mitochondrial localization of 

avocatin B reduces leukemia cell metabolism and NADPH to increase ROS resulting in cell death.  

5.2.6 Lipotoxicity 

Alternatively, mitochondrial accumulation of fatty acids could have lipotoxic effects.  When in 

excess, fatty acids can accumulate inside the mitochondrial matrix where they are deprotonated, as a 

result of the proton gradient, creating fatty acid anions. These are converted by ROS into lipid peroxides 

that in turn cause damage to mitochondrial DNA, lipids and proteins within the mitochondrial matrix 

[154]. However, the generation of lipotoxic products requires ROS [155], therefore; avocatin B 

accumulation by itself would be insufficient to impart lipotoxicity. Thus once inside the mitochondria, 

avocatin B or avocatin B derivatives may be converted to lipotoxic byproducts and contribute to death but 

only after sufficient ROS production (i.e., following avocatin B-induced inhibition of fatty acid 

oxidation). In further support of this explanation, avocatin B increased UCP2 levels, consistent with 

mitochondrial accumulation [109], but this was observed only after 48 hours of treatment (i.e., UCP2 

expression follows our observed ROS elevation). In fact, a prevailing hypothesis is that the function of 

UCP upregulation is to drive fatty acid anions outside the mitochondrial matrix to reduce lipotoxicity 

[109, 156]. Thus, mitochondrial accumulation may contribute to death through lipotoxicity but this is not 

the underlying mechanism of avocatin B’s activity.  

5.3 Avocatin B induces autophagy 

We reported that the avocado-derived lipid avocatin B inhibits fatty acid oxidation that was 

followed by ROS-mediated leukemia and leukemia stem cell apoptosis [111]. Here, we report new 

evidence highlighting autophagy as an essential intermediate step in avocatin B-induced selective 

leukemia cell apoptosis. 

 In this study, we show that autophagy was critical to avocatin B’s toxicity. We demonstrated that 

autophagy was activated and that autophagy proteins were functionally important to avocatin B-induced 
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death. Given these findings, it seems likely that autophagy activation is due to prolonged deprivation of 

essential growth factors (e.g. fatty acid-derived metabolites and NADPH) that leads to the generation of 

ROS. Starvation is one of the most well-studied conditions that results in autophagy activation [46, 157]. 

Most autophagy stimuli converge at the protein complex mTORC1 which serves as a stimuli sensor, 

detecting nutrient and growth factor availability [45, 46]. Given that leukemia cells possess an abnormal 

mitochondrial phenotype characterized by a greater demand for fatty acid substrates [29, 31], we propose 

that inhibiting fatty acid oxidation activates autophagy by causing a significant deficiency in essential 

cellular building blocks. Similar to our previous study demonstrating that avocatin B-induced apoptotic 

cell death characterized by caspase activation and AIF release [111], serum deprivation in hippocampal 

HT22 neurons activated autophagy that resulted in caspase 3 and AIF-mediated apoptosis [39]. Moreover, 

we previously showed that avocatin B’s activity was ROS-dependent (as measured by DHE and DCF-

DA), as leukemia cells co-incubated with anti-oxidants block its activity[111]. Thus, it is likely that 

avocatin B-induced autophagy is activated by ROS following serum starvation. Indeed, accumulating 

evidence indicates that ROS plays an essential role in the activation of autophagy and that the 

mitochondria is the main source of ROS [120, 157, 158].  

 We have shown that avocatin B-induced apoptosis was characterized by release of the 

mitochondrial proteins cytochrome c and AIF [111].  In this study, we show that AML cells with 

significantly reduced autophagy proteins Atg7 and p62 are insensitive or increasingly sensitive to 

avocatin B’s cytotoxicity, respectively.  This indicates that autophagy plays a functional role in avocatin 

B’s death inducing mechanism. As such, avocatin B’s activation of autophagy must be involved in the 

induction of mitochondrial apoptosis. Similar to avocatin B, mitochondrial target drugs induce both 

autophagic and apoptotic responses. Arsenic trioxide and obatoclax induces both autophagy and apoptosis 

in leukemia cells [159, 160]; rottlerin induces both processes in prostate cancer cells [161].  Finally, 

APO866 and FK866 induce both autophagy and apoptosis as a result of NAD depletion in cells from 

various hematological malignancies, including AML [162].  Avocatin B reduced NADPH and NAD and 
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similar to APO866 and FK866’s activity, autophagy is activated following an induced deficiency of an 

essential cellular growth factor.  

 Avocatin B-mediated leukemia cell death is dependent on the induction of autophagy. As such, 

there is cross-talk between autophagy and apoptosis signaling pathways. Additional studies are needed to 

further elucidate the mechanism of this crosstalk following avocatin B treatment. In cancer cells, the 

combined activation of autophagy and apoptosis has been observed through DRAM1 (damage –regulated 

autophagy modulator 1), which is activated by p53 [42, 44]; Beclin 1 has been linked to p53 stability and 

function [50]. p53 is also linked to autophagy induction through the pro-apoptotic PUMA, which induces 

cytochrome c release [44]. In addition, Atg12 promotes intrinsic apoptosis through inactivation of the 

anti-apoptotic Bcl-2 family members Bcl-2 and Mcl-1 [51]. Future studies will evaluate the role of Beclin 

and p53 in avocatin B’s activity to further elucidate the means by which inhibition of fatty acid oxidation 

activates autophagy to induce apoptosis in leukemia.  

  In conclusion, avocatin B activates autophagy in response to increased levels of ROS as a result 

of fatty acid oxidation impairment. Autophagy is essential for avocatin B’s anti-leukemia activity which 

acts through the release of mitochondrial pro-apoptotic proteins cytochrome c and AIF. Given the 

observed findings, we highlight a novel mechanistic link between inhibition of fatty acid oxidation, 

autophagy and apoptosis.  

5.4 Avocatin B as a novel therapy for AML 

A major long-term goal of this project involves assessing avocatin B’s pre-clinical efficacy for its 

potential as a novel AML chemotherapeutic. Currently, avocatin B is not marketed for any indications, 

however our findings suggest that it can have anti-cancer effects.  

 Few compounds that inhibit fatty acid oxidation are currently approved for clinical use [95]. 

CPT1 inhibitors such as etomoxir and perhexiline are associated with hepatoxicity [163] and 

neurotoxicity [164], respectively, and are not approved for clinical use in North America. Other inhibitors 

such as trimetazidine, which inhibits 3-ketoacyl-CoA thiolase, an enzyme involved in fatty acid 
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catabolism and ranolazine, which blocks late sodium currents, have had clinical success for the treatment 

of angina [165, 166]. None of these compounds are approved for use in AML or other hematological 

malignancies.  Future studies are needed to asses avocatin B’s pharmacology and pharmacokinetics; 

however, initial assessment of avocatin B’s physicochemical properties suggests favorable tissue 

distribution. In particular, it possesses a high estimated partition coefficient (LogP = 8.9 [85]) indicating 

that it will accumulate in lipid-rich tissues such as adipose tissue and bone marrow. Given that LSCs 

reside in bone marrow, this could significantly enhance avocatin B’s therapeutic efficacy.  

 If avocatin B were to become a chemotherapeutic, we must first consider routes of administration. 

Based on Lipinski’s rule of five, avocatin B would be unsuitable for oral formulation due to its 6 

hydrogen bond donors, its LogP of 8.9, and its molecular weight of 570.88g/mol [85].  As such, avocatin 

B would need to be administered intravenously (IV). IV administration is not uncommon for the 

treatment of AML as current therapy consisting of cytarabine and daunorubicin are administered IV [1].   

 Although no specific pharmacokinetic data is available, mice treated with an ethanol avocado 

pear seed extract (Persea Americana) had an LD50 of 1200.75mg/kg body weight [167]. Nonetheless, 

future studies are needed to test the pharmacokinetics and safety of avocatin B prior to entering human 

trials. 

5.5 Limitations 

Avocatin B was initially identified in an 800 compound drug screen of the TEX leukemia cell 

line. A limitation of our study was the number of cell lines used to test and validate our reported results. 

When the US National Cancer Institute screens for novel anticancer drugs, it involves 60 different cells 

lines from 9 different types of tumours [168]. Unfortunately, we do not have access to that many different 

cell lines. Additionally, our drug displays activity in TEX, an AML cell line with LSC properties. To 

date, cell lines with similar properties are publicly unavailable through outlets such as ATCC. To 

compensate for this, we used avocatin B at higher concentrations in less sensitive cell lines to observe an 

effect (ie. OCI-AML2 cells). This was performed to validate avocatin B’s mechanistic effects. Given that 
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we reported avocatin B’s efficacy in primary AML patient samples as well as in mouse 

xenotransplantation models, we do not feel that the lack of cell line data mitigate the significance of our 

findings.   

 Another limitation is the number of primary AML patient samples tested. In our studies, we 

report avocatin B’s efficacy in 9 patient samples through the annexin V/PI viability assay and colony 

formation assays. Similar drug discovery studies have reported the use of ~20 primary AML patient 

samples [28, 114]. Unfortunately, our lab does not have direct access to patient samples. Through 

collaboration with Princess Margaret Cancer Hospital, we have been fortunate to obtain frozen aliquots of 

the primary AML samples that were tested in this study.   

5.6 Conclusions 

Given the need for the discovery of novel anti-leukemia and anti- leukemia stem cell drug 

candidates, the findings in this thesis have provided new insight for treatment strategies. Here, we report 

the discovery of avocatin B, an avocado-derived lipid, which selectively targets AML and leukemia stem 

cells through the inhibition of fatty acid oxidation. Avocatin B’s mechanism of action is unique to current 

AML treatment strategies, making it an ideal target for future AML therapy. Future studies will need to 

further elucidate avocatin B’s molecular target to characterize the cross talk that is observed between 

autophagy, apoptosis and fatty acid oxidation. Additionally, avocatin B’s safety and pharmacokinetic 

properties will need to be assessed in mouse models in order to validate its pre-clinical efficacy and 

safety. In conclusion, the findings of this thesis, has provided the groundwork to establishing avocatin B’s 

pre-clinical efficacy as a potential AML therapeutic and have elucidated a novel therapeutic strategy for 

the treatment of AML.  
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Appendix A: Research activity resulting from this program 

PUBLICATIONS AND MANUSCRIPTS 

Provisional patent application. Filed Oct 2014. Inventors: Spagnuolo PA, Schimmer AD, Lee EA 

 

Lee EA, Angka L, Kreinin, E, McMillan EM, Giaever G, Quadrilatero J, Schimmer AD, Spagnuolo PA. 

Autophagy is required for the activation of apoptosis following inhibition of fatty acid oxidation. In 

preparation. 

 

Lee EA, Angka L, Rota SG, Hurren R, Wang XM, Gronda M, Bernard D, Minden M, Mitchell A, Joseph 

JW, Datti A, Wrana J, Quadrilatero J, Schimmer AD, Spagnuolo PA. Targeting mitochondria with 

avocatin B induces selective leukemia cell death. Cancer Research. CAN-14-2676. Revisions Pending. 

2014. 

 

Nafissi N, Alqawlaq S, Lee EA, Foldvari M, Spagnuolo PA, Slavcev RA. DNA ministrings: highly safe 

and effective gene delivery vectors. Mol Ther Nucleic Acids. May 27 2014. 

 

Angka L, Lee EA, Rota SG, et al. Glucopsychosine increases cytosolic calcium to induce calpain-

mediated apoptosis of acute myeloid leukemia cells. Cancer letters. Mar 12 2014. 

 

PRESENTATIONS 

Oral presentation. Inhibition of fatty acid oxidation with avocatin B selectively targets AML cells and 

leukemia stem cells. American Society of Hematology Meeting 2014. San Francisco, CA. Dec 2014 

 

Guest lecture: Nutrition, metabolism and body temperature regulation. PHARM111 - Systems Approach 

to the Study of the Human Body 2. University of Waterloo, Waterloo, ON. July 2014 

 

Oral presentation. AVO: a novel inhibitor of fatty acid oxidation that induces selective leukemia cell 

death. 3-Minute Thesis Competition. University of Waterloo, Waterloo, ON. Mar 2014 

 

Poster. 45 - Avocatin B is a novel inhibitor of fatty acid oxidation that induces selective leukemia cell 

death. Till and McCulloch Meetings 2014. Ottawa, ON. Oct 2014 

 

Poster. AVO: a novel inhibitor of fatty acid oxidation that induces selective leukemia cell death 

Institute for comparative cancer investigation 2014. Guelph, ON. May 2014 
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