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Abstract

During the past decade, a new class of knowledge representation has emerged

known as structured distributed representation (SDR). A number of schemes for

encoding and manipulating such representations have been developed; e.g. Pol-

lack’s Recursive Auto-Associative Memory (RAAM), Kanerva’s Binary Spatter

Code (BSC), Gayler’s MAP encoding, and Plate’s Holographically Reduced Rep-

resentations (HRR). All such schemes encode structural information throughout

the elements of high dimensional vectors, and are manipulated with rudimentary

algebraic operations.

Most SDRs are very compact; components and compositions of components

are all represented as fixed-width vectors. However, such compact compositions

are unavoidably noisy. As a result, resolving constituent components requires a

cleanup memory. In its simplest form, cleanup is performed with a list of vectors

that are sequentially compared using a similarity metric. The closest match is

deemed the cleaned codevector.

While SDR schemes were originally designed to perform cognitive tasks, none

of them have been demonstrated in a neurobiologically plausible substrate. Po-

tentially, mathematically proven properties of these systems may not be neurally

realistic. Using Eliasmith and Anderson’s 2003 Neural Engineering Framework, I

construct various spiking neural networks to simulate a general cleanup memory

that is suitable for many schemes.

Importantly, previous work has not taken advantage of parallelization or the

high-dimensional properties of neural networks. Nor have they considered the ef-
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fect of noise within these systems. As well, additional improvements to the cleanup

operation may be possible by more efficiently structuring the memory itself. In

this thesis I address these lacuna, provide an analysis of systems accuracy, capac-

ity, scalability, and robustness to noise, and explore ways to improve the search

efficiency.
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Chapter 1

Introduction

In everyday life we perform an astonishing variety of sensory recognition tasks.

To survive, we must be able to distinguish friend from foe, fair from foul, sweet

from sour, and so on. Recognition occurs at many levels of complexity; we can

distinguish black from white, discern letters on a page, detect objects in a scene,

and understand the difference between happiness and sadness.

Some algorithmic approaches to recognition involve serially searching through

large databases of knowledge, picking up the pertinent, and ignoring the irrelevant.

The computational resources required of these approaches are enormous—despite

operating in an ideal setting and using fast, solid state devices. In contrast, people

perform these tasks instantly and effortlessly, often with only partial and noisy in-

formation. Moreover, our ‘hardware’ is composed of slow, fragile neurons operating

in a noisy and uncertain environment.

To achieve this feat, the brain employs massive parallelism and redundancy.
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However, this is only part of the solution; one also needs a representation scheme

that is conducive to parallelization and is robust to noise. Traditional symbolic

schemes are representationally inadequate. Symbolic frameworks define operations

that manipulate simple representative units. This approach lacks neural plausibility

since it seems unlikely that a single neuron is responsible for representing a concept.

Rather, the representation of a concept is more likely to be a pattern of activation

distributed over a number of units. These distributed representations (DRs) have

been codified in many ways. Typically, they are high dimensional vectors that

encode information throughout the elements. Since the early 90s, researchers have

been exploring how such representations can be manipulated with rudimentary

algebraic operations to form structured distributed representations (SDRs). SDRs

are ideally suited for recognition tasks, since they provide a highly parallel and

efficient method for comparing both large and small scale structure.

The act of recognition, using fixed-width representations, requires a cleanup

memory, since these vectors are inherently noisy. A cleanup memory, in basic

terms, removes the noise from a noisy vector, in order to recover basic components.

Cleanup memories thus also facilitate pattern recognition, pattern completion and

object detection.

1.1 Motivation

SDRs represent the patterns of activation of the brain and are capable of symbolic

computation. As such, they offer a surprisingly short bridge between low-level

processing and high-level cognition. Yet, no attempts have been made at modeling
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SDR operations with realistic neurons. Plate (2000) shows that randomly connected

sigma-pi neurons can perform the rather complicated operations necessary for his

HRR scheme. However sigma-pi neurons are not very realistic, and Plate makes

no attempt at performing a cleanup memory with neurons. His work nevertheless,

shows that operations that are symbolically complex need not be so in a more

neurally plausible substrate.

On the other hand, some operations may turn out to be neurally unrealis-

tic. Relatively simple symbolic tasks may prove too difficult or unsustainable in

the noisy environment of the brain. For example, SDRs have impressive accuracy

and storage capacity that increases with higher dimensions. Will these properties

hold when implemented with plausible neurons? Three neurobiologically plausible

cleanup memories are presented in this paper to examine such issues.

In designing a cleanup circuit, we require a device that stores information in a

manner that can be efficiently searched and recalled. As such, cleanups can also be

used to quickly determine if an item is (or is not) in memory, thus providing a fast

method of comparing and branching signals. Thus in practical terms, the cleanup

networks we seek here are highly parallel, general-purpose search engines, that can

serve as realistic neural devices for pattern recognition and machine intelligence.

1.2 Thesis Overview

The next chapter provides background to the cleanup problem. It describes the

particular systems that require a cleanup memory, the mathematical formulation
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of the problem, a solution, and performance measurements of that solution.

Chapter 3 provides more background by introducing the Neural Engineering

Framework (NEF) that is used to create neurbiologically plausible networks. In

particular, the importance of neural representation, computation, and dynamics is

discussed. The discusion highlights features of the NEF that are pertinent for the

proposed cleanup circuits.

Chapter 4 combines the cleanup problem of chapter 2 with the NEF described

in chapter 3 to construct three plausible cleanup memories. We start with a tradi-

tional butterfly network implemented with plausible neurons. Then a novel function

cleanup is introduced that uses suitably chosen weights to ‘calculate’ the cleanup

function. Finally, we present the sparse cleanup which improves upon the function

network by producing sparse codes. An analysis of these networks and their relative

merits are discussed. Finally, the issue of learning is raised, and two preliminary

learning algorithms are proposed.

The last chapter concludes with suggestions for future work.
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Chapter 2

Background

To understand cognitive processes, one must understand what types of represen-

tations are likely to occur in the brain. In this section, we present a scheme that

is representationally adequate for cognitive manipulation. This scheme, as most,

requires a cleanup memory, which is discussed here in mathematical detail. We also

introduce some performance measures to gauge the quality of the cleanup and to

verify proposed properties.

2.1 Representation

One of the fundamental debates borne out of connectionist research is the issue of

representation (Fodor 1987; Fodor and McLaughlin 1990; Smolensky 1990; Gelder

1990; Chalmers 1990). How is information represented in a neural substrate so as

to facilitate human-like information processing? Here, we give a brief summary
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of two general types of representation, symbolic and distributed, and discuss their

suitability for cognitive processing.

2.1.1 Symbolic Representation

Researchers have had a long and successful history with symbol manipulating sys-

tems such as mathematics, formal languages, and traditional computation. Hence,

it is no surprise that initial attempts at human-like knowledge representation were

symbolic. In symbolic schemes, each piece of information is captured by a single

unit with an explicit format. In computer science terms, the representations are

like memory pointers; they provide access to the data they represent but bear no

resemblance to them.

Knowledge is derived from the structures these symbols form, and the operations

that are performed on them. Taking this to its theoretical extremes, Newell and

Simon combine symbol systems with universal computation (e.g. a Turing Machine)

and produce the Physical Symbol System Hypothesis (Newell and Simon 1976, p.

116):

A physical symbol system has the necessary and sufficient means for

general intelligent action.

By “necessary” Newell and Simon predict that “any system that exhibits general

intelligence will prove upon analysis to be a physical symbol system” (Newell and

Simon 1976, p. 116).
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While there is little doubt that humans can manipulate symbols, there are rea-

sons to believe that symbolic representation is psychologically unrealistic. First,

symbols are brittle. Minor damage to a symbol leads to a complete loss of the

concept. Second, symbolic representation is strongly propositional. While per-

forming well on language tasks such as formal logic and mathematics, they are very

awkward when dealing with non-language tasks requiring manipulation of images,

sounds, and smells. Third, symbols are not probabilistic. Symbols, in themselves,

cannot pick up the regularities in the environment. Fourth, symbolic representation

is not conducive to parallel computation. Most symbolic frameworks operate seri-

ally, using simple rules of cause and effect, rather than in parallel with recurrent,

non-linear dynamics.

Since symbol systems (e.g. a computer) and people are arguably instantiations

of a Universal Turing Machine (Eliasmith 2002), they are, in a sense, computation-

ally equivalent. However, claims of universality and equivalence are only true under

the assumption of infinite time and infinite resources (LeCun and Denker 1992).

Real physical computing devices are a product of compromise. The architecture of

different machines will produce very different computational efficiencies (Eliasmith

2002). For example, to circumvent the problems of noise, computer engineers have

developed devices that virtually eliminate noise in order to reliably process pristine

symbols. Nature, on the other hand, has designed something different; something

that operates asynchronously in and noisy environment; something in which each

component is highly unreliable; something that was designed to survive—not per-

form boolean logic.
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2.1.2 Distributed Representation

Connectionists, in contrast to symbolicists, have taken a wholly different view of

neural computation. Taking a cue from the architecture of the brain, they attempt

to model cognitive functions through artificial neural networks (ANN). These net-

works are graph-like structures where the nodes represent simplified neurons and

the edges are excitatory or inhibitory connections. Computational power is not

derived from moving symbols around, but rather from simple neural activation and

connection weights.

Corresponding with this new architecture, connectionists found a new type of

representation lying in the so-called hidden layers of their networks. While the

input and output of these networks were locally encoded (i.e. symbolic) vectors,

the activation patterns in the hidden layers formed something different. This layer

seemed to encode a mixture of input and output. Notably, the representation was

not symbolic; one could not point to a specific unit that represented a single item.

Instead the information was encoded throughout all the units. Unlike memory

pointers, these representations often resemble (statistically) the things they encode.

They could represent individual items, complex data structures, transformations, or

combinations thereof. These representations are known variously as sub-symbolic,

holistic or distributed representation.

To understand the nature of these encodings, the analysis of distributed repre-

sentation (DR) and the methods for making structured distributed representations

(SDR) has developed over the years. Their study has become the study of high-

dimensional representational spaces and transformations applied to them. It reveals
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a new kind of computing that is very different from that of traditional symbolic

machines. The encodings are stochastic patterns that typically take the form of

large random vectors (codevectors). Gunnar Sjödin (1997) explains further:

Stochastic computing derives its power from the unusual mathemati-
cal (geometric) properties of high-dimensional spaces and from the law
of large numbers. Algorithms that are imprecise or unreliable in low
dimensions converge to precise and reliable algorithms in high dimen-
sions, resulting in computational behaviour that is not possible with
deterministic methods.

Distributed representations do not suffer from the psychological shortcomings

of symbolic representation. First, they are not brittle but degrade gracefully; dam-

age to the representation leads to a graded loss of information—not a complete

loss. Second, distributed representations are not heavily language-centric and are

suitable in many diverse domains. Third, distributed representations are inher-

ently statistical in nature and can easily accumulate properties of the environment.

Fourth, these encodings are conducive to parallel computation. In particular, they

can execute traditional serial searches in one parallel step.

Yet, despite these non-symbolic properties, distributed schemes can nevertheless

perform high-level symbolic processing. Indeed, they must if they are to underwrite

human cognition. To illustrate the symbolic nature of SDR, we must first delve into

the mathematical foundations of these representations.
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2.1.3 Mathematics of Structured Distributed Representa-

tion

A number of schemes for representing and manipulating structured distributed

representations have been developed, e.g. Recursive Auto-Associative Memory

(RAAM) (Pollack 1990), Binary Spatter Code (BSC) (Kanerva 1996, 1997, 1998),

MAP encoding (Gayler 1998), and Holographically Reduced Representation (HRR)

(Plate 1994, 1995). For or a summary of the most modern schemes see Plate (1997).

The minimal operations underlying SDR are superposition, binding, and un-

binding.

Definition 1 Superposition is a merging operation that takes two vectors and cre-

ates a third which is similar to the original two. Using + as the superposition

operator and the metric, d, to measure similarity, we require

C = A + B such that d(A,C) ≈ 0 and d(B,C) ≈ 0 (2.1)

where A and B are random vectors.

Definition 2 Binding is a mixing operation that takes two vectors and produces

another which is not close to the original two. Marking ∗ as the binding operator,

we write

C = A ∗ B where d(A,C) and d(B,C) are large. (2.2)

Definition 3 Unbinding is the inverse of binding. We must be able to extract any

bound vector; typically, using the other bound vector as a cue. For example, using
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# to represent unbinding we need

A ∗ B#A ≈ B or equivalently d(A ∗ B#A,B) ≈ 0. (2.3)

Some schemes use an inverse (or pseudo-inverse) operation to facilitate unbind-

ing (e.g. A ∗ B ∗ A−1 ≈ B). Likewise, many other algebraic properties can be

useful. The examples in this paper assume associativity and commutativity under

binding and superposition, distributivity under binding and unbinding, and the ex-

istence of an identity and a zero. The encoding schemes of Holographically Reduced

Representation (HRR) and Binary Spatter Code (BSC) are summarized in table

2.1.

It is clear from the superposition requirement that no scheme can be exact; i.e.

we cannot drop the approximately equal signs in (2.1). Even an optimal solution

will generate noise. This is mostly a nuisance, but in some cases, distributed repre-

sentations can actually exploit this noise, for example, in probing operations (Plate

1995; Kanerva 1997).

The probing task involves finding marked items in a list. Traditionally, this

is executed serially by iteratively checking each item in the list for the particular

mark. In contrast, using SDRs, we can perform this search in one step by casting

the problem into a distributed form.

Example 1 Probing Task

Suppose the list X contains the items {A,B,C}, each of which can be marked by the

properties {p1, p2, p3}. First, we represent each item and property as HRR vectors.
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Operation HRR BSC

Representation
A = (a0, a1, . . . , an−1)
ai ∈ N(0, 1/n)

A = (a0, a1, . . . , an−1)
ai ∈ {−1, 1}

Superposition
Vector addition
C = A + B

Majority rules addition
C = sign(A + B + η)

Binding

C = A ∗ B

ci =
n−1
∑

j=0

ajbi−j

C = A ⊗ B
ci = aibi

Unbinding

C = A#B

ci =
n−1
∑

j=0

ajbi+j

C = A ⊗ B
ci = aibi

Similarity d(A,B) = 1 − (A · B)/‖A‖ ‖B‖ d(A,B) = 1 − (A · B)/‖A‖ ‖B‖
Inverse A−1 = (a0, an−1, an−2 . . . , a1) A−1 = A

Table 2.1: Distributed representation schemes. HRR uses real-valued vectors and
employs the holographic operations of circular convolution and correlation to per-
form binding and unbinding respectively. Note: all subscripts in HRR are taken
modulo-n. BSC vectors, on the other hand, work with binary elements, in this case
±1, and employs the XOR operator to perform both binding and unbinding. Ma-
jority rules vector addition is an element-wise vote where ties are broken randomly
with a small noise vector, η.
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Then we encode the entire list as a vector. For example, a particular list might be

encoded as

X = A ∗ p3 + B ∗ p2 + C ∗ p1 (2.4)

Now, to find which item has the property p2 in X, we simply unbind with p2:

X#p2 = (A ∗ p3 + B ∗ p2 + C ∗ p1)#p2

= A ∗ p3#p2 + B ∗ p2#p2 + C ∗ p1#p2

= η1 + (B + η2) + η3

≈ B

(2.5)

where each ηi is a nondescript codevector; i.e. noise. If the ηi are uncorrelated,

they will sum to another HRR vector and B can be recovered.

The final step in (2.5) follows from the superposition property (2.1). In practice,

however, we would like to recover B exactly. This example is endemic of a more

general problem: noise. Most operations will result in noisy vectors. Furthermore,

external noise will be present in realistic systems. In fact, the initial encodings of

input vectors may be noisy or incomplete. These vectors must be resolved before

further processing can continue. For these reasons, we must employ a cleanup

memory.
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2.2 Cleanup memory

A cleanup memory is a structure which, when given a noisy vector, will return the

closest match to an item in a collection of stored vectors. It is crucial to have an

effective cleanup function, for without one, repeated operations will quickly degen-

erate into noise. Surprisingly, a simple device like this can also perform powerful,

high-level symbolic operations.

Example 2 Simple Cleanup

Suppose the cleanup memory contains all the vectors in example 1; i.e. {A,B,C,

p1, p2, p3, X} are the clean vectors. If the cleanup is presented with a noisy vector,

A + η where η is a noise term, then the cleanup should output A. Similarly, when

presented with X#p2 the result should be B.

Functionally, cleanups are like classification devices used in the field of pattern

recognition. However, they differ in the types of objects they operate over. Classi-

fication typically operates with low dimensional, localist feature vectors and output

a symbolic token that represents the vectors class. On the other hand, the input

and output of a cleanup is always a high dimensional, distributed vector which, as

discussed earlier, is more appropriate for neural processing.

Cleanup memories have a number of uses other than noise reduction. They can

also execute pattern recognition, pattern completion, and object detection. A few

toy examples will illustrate this point.

Example 3 Pattern Completion
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Figure 2.1: Sitting bear. How can this image be represented?

Consider the scene portrayed in Figure 2.1. In HRR notation, the bear could be

represented literally as the sum of its parts:

bear = eyes + nose + paws + tail + teeth + ...

where each of the terms is a vector. Other vectors can be similarly composed of

their constituent parts (e.g. flowers and grass). Now, suppose {bear, flowers,

grass} are stored in a cleanup memory and upstream perceptual processes have

constructed the vector,

thing = paws + nose + eyes.

Because bear and thing are composed of similar vectors, they are likely to point in

a more similar direction than flower and grass. (In SDRs, this likelihood increases

with vector size.) Thus when thing is presented for cleanup, bear is likely to be
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returned. Notably, bear contains items that were missing in thing. Hence by

returning bear, the cleanup has effectively inferred, based on partial information,

that thing has a tail, teeth and other items associated with bear. In this very

simple manner, distributed representations and cleanup memories can accomplish

pattern recognition and completion.

Example 4 Object Detection

Now consider the HRR encoding of the entire scene:

scene = flower + bear + grass + ...

where the terms are codevectors generated by processes like the one discussed above.

The task now is to construct a device to detect dangerous elements in the scene.

A cleanup memory that contained bear and other harmful elements (not flower

or grass) can quickly perform this task. It would recognize bear as a danger and

consider the other vectors, flower and grass, as noise. Similarly, since these

vectors can represent anything, one can imagine other structures geared towards

detecting particular objects (friend, foe, food, etc...).

These examples exhibit some of the power of sub-symbolic computation. Cleanup

memories form an important and integral part of these systems and can be used to

either accumulate or ignore information.

It is clearly advantageous for an individual to have a fast danger detector like

the one described above, but is it possible that the brain could perform such opera-

tions? Previous work has shown that superposition, binding, and unbinding can be

implemented with realistic neurons (Eliasmith 2004; Conklin and Eliasmith forth-

coming), but what about the cleanup mechanism? Can a collection of neurons be
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configured to perform the cleanup operation? This is the central question of this

thesis. We will attempt to construct accurate and efficient cleanup systems using

a network of spiking neurons. This is done not only to give the systems biological

merit, but also to explore issues, that have not been tackled by related work, such

as accuracy and capacity performance under external noise.

2.3 Previous work

Plate (2003) notes that many artificial neural systems employ a form of cleanup

memory. BoltzCONS uses pull-out networks (Touretzky 1986, 1990), CRAM and

DCPS use cleanup circuits (Touretzky and Hinton 1985, 1988; Dolan 1989), TO-

DAM uses an R-system (Murdock 1982, 1983), BSC uses Sparse Distributed Mem-

ory (Kanerva 1988), and Plate himself uses a conventional list structure (Plate

2003). The implementation of these cleanup memories depend largely on the ar-

chitecture they work with. In the next section, we explicitly define a very generic

cleanup operation that operates over a set of codevectors with minimal constraints.

The functionality of cleanups is similar to associative memories (Willshaw et al.

1969; Kohonen 1977). An associative memory is a content-addressable structure

that builds associations between input and output items. They come in three

flavours: autoassociative, heteroassociative, and multiassociative. Autoassociative

memories learn to associate the input with itself. They are usually recurrent net-

works that, when given a cue, drift to a nearby attractor point. These attractor

points correspond to the clean vectors mentioned above. Popular network imple-

mentations include Hopfield nets (Hopfield 1982), and RAAMs (Pollack 1990). Like
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cleanups, autoassociative memories are capable of pattern recognition and comple-

tion.

One can view autoassociative memories as a form of cleanup since the output

is similar to the input. Heteroassociative memories, on the other hand, learn to

output a pattern that is different from its input. This is useful in stimulus/response

applications. In section 4.2, a network that is conducive to both forms of memory

is presented.

Multiassociative memories (Kolen and Pollack 1991) are associative memories

that take as input a composition of arbitrary items, but return a composition

of items only in memory; i.e. it cleans all the items at once. Unlike the previous

memories, these systems can return compositions that the system has never learned.

Attractor networks, in particular, are incapable of multiassociation, since they can

only return a single item. If one reads composition as a superposition of vectors,

then these networks are equivalent to heteroassociative memories. A formulation of

a cleanup memory that can output multiple items is described in the next section.

The material presented here is relatively novel in the sense that the majority of

neural systems 1) consider cleanup as an external operation that is not necessarily a

part of the system, and/or 2) are concerned with practical computation rather than

with biological credibility. The reason for 1) is that there exists a plain solution

to the problem that is readily implemented. We present a somewhat non-obvious

approximation to the solution that is essential in a neurally plausible context and

is particularly useful for multiassociation. The reason for 2) stems from the need

for simplicity of construction and ease of analysis. In chapter 3 a neural framework
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that alleviates many of these concerns is introduced. Both 1) and 2) dismiss the

importance of the brain and lead to cognitively improbable implementations (e.g.

list structures).

2.4 Mathematical definition

Before we present our solution, let us fully characterize the problem and discuss

some standard nomenclature used throughout this thesis.

Definition 4 Formally, we seek a cleanup operation, C, such that when given a cue

vector, x, it returns the closest vector in the set, S = {v1, v2, v3, . . . , vm}. All vectors

are of the same dimension, n, and all vi are the same length; usually ‖vi‖ = 1 or

more loosely E [‖vi‖] = 1. Thus, using the metric, d, we require,

C(x) = arg min
vi∈S

d(vi, x) (2.6)

We can store all vectors in an m×n matrix, M = [v1, v2, v3, . . . , vm]T , and define

the measure, d(·), as the normalized dot product of the two vectors.1 This choice

allows us to efficiently calculate the m-dimensional similarity vector, s = xMT ,

which is effectively the dot product of the cue vector with all the vectors in S. The

maximum value in s points to the clean vector.

1The dot product is not a true metric since, for example, it can be negative. Nevertheless, it
suffices as a practical and efficient similarity measure.
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Most of the cleanup memories presented here are subjected to external noise,

and an exact solution is never expected. Thus it might be computationally advan-

tageous, and hence more biologically plausible, to consider an approximation.

Definition 5 A useful approximation to the operation (2.6) can be accomplished

with fuzzy sets (Zadeh 1965). Rather than returning the single closest vector, it

outputs a weighted superposition of the closest vectors. The weights are determined

by a suitably defined membership function, µ(·). The resulting cleaned output,

Cµ(x) =
∑

vi∈S

µvi
(x)vi, (2.7)

is a vector that contains both the set of objects in S, and the degree of membership

of each. Cµ thus forms a concrete encoding of a fuzzy set.

This type of cleanup is useful for operations that return multiple answers as

in multiassociative systems. Also, Cµ can automatically return a near zero vector

if no suitable match is found. The max cleanup, C, on the other hand, must be

augmented with another mechanism that rejects vectors with low similarity.

Once again, using the dot product as a similarity measure, (2.7) can be written

as

Cµ(x) = µ(xMT )M = µ(s)M (2.8)

where, µ(s), returns the membership value of each element in s.

The effectiveness of these types of memory will depend on the distribution of

the stored vectors and the membership function. In Matlab notation, defining
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µ(s) = (s == max(s)) is equivalent to the optimal cleanup defined in (2.6). For

HRR vectors that are uniformly distributed, the expected similarity distribution of

a clean vector v and v plus k − 1 random vectors is N(1, k/n) (Plate 2003, p. 100)

Therefore, a natural membership function is the Gaussian function,

µ(s) = e−n(s−1)2/2k (2.9)

Normally, µ(s) ∈ [0, 1]m, but since useful information can be gained from vectors

that point in opposite directions, one can extend µ to return values in the range

[−1, 1] and define membership functions such that µ(s) = −µ(−s).2 Thus, a vector

that is nearly opposite to a clean vector will be weighted negatively and produce a

vector pointing in the same direction as the clean one. Therefore, to credit negative

information in HRR cleanups we use

µ(s) = e−n(s−1)2/2k − e−n(−s−1)2/2k (2.10)

Other forms of cleanup memory have additional features that may be useful in

some applications. For instance, some return the closeness measure (i.e. strength

or valence) to the cue (Plate 2003). If no match is found, some systems return

the cue rather than a zero vector. Here, we concentrate primarily on performing a

generic cleanup operation.

Table 2.2 gives a summary of variables used throughout this thesis.

2Of course, such an extension will have deleterious affects on the formalisms of fuzzy logic, but
it is useful with respect to (2.7)
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Symbol Description
n Vector size
m # of vectors in memory
S Set of all clean vectors
vi The ith vector in S

v A generic vector in S

M Memory matrix
x Cue vector
s Similarity vector
η Random noise vector

C(x) Cleanup function
Cµ(x) Weighted cleanup
d(u, v) Similarity measure: Normalized dot product
µ(·) Cleanup membership function
k Number of superposed vectors

Table 2.2: Cleanup symbols and operations.

2.5 Direct Solution

The above characterization of the problem admits a solution that can be directly

encoded in Matlab. We present here the results of this solution and motivate the

tools used for assessing its effectiveness. These results will serve as a benchmark

for other cleanup memories.

For consistency, the following tests will work with HRR vectors; that is, an n-

dimensional vector where each element is independently, identically, and normally

distributed with zero mean and a variance of 1/n (see Table 2.1). Additionally, all

the vectors in M are normalized.
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Figure 2.2: Performance of vectors in high dimensions. For each graph, 50 trials
are run where we compare a random cue vector, v, with a noise vector, η, a noisy
cue, v + η, and a cleaned vector, C(v + η). The cleanup usually recovers v (only
one mistake at n=10). Increasing the dimensionality of the vector, n, reduces the
variability in these calculations leading to more reliable operations.

2.5.1 Reliable recovery

First, in order to demonstrate some basic properties of cleanup memories, we per-

form a few tests. Figure 2.2 shows the effects that dimensionality has on vector

manipulations. Note how increasing n diminishes the amount of systemic noise,

making it easier to distinguish vectors that are similar from those that are random.

Furthermore, as n increases, two randomly chosen vectors become more and more

orthogonal. This property will hold for vectors where the elements are identically

distributed with a mean of zero.

Using the graphs in Figure 2.2 we can determine a threshold that separates

vectors that are random from those that are correlated.

By inspection, we see that a similarity measure above 0.8 is usually produced by

a cleanup operation and a measure below 0.5 is typically produced by two random

vectors. More precisely, we note that the expected similarity between vi and the
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normalized noisy vector, vi + η, is
√

1/2 < 0.8.3 Thus, if the similarity of a known

vector and its cleaned up version is greater than 0.8, we can say that the vector is

reliably recovered.

Given a particular encoding scheme, we can calculate a more precise threshold.

Plate, for example, uses numerical techniques to find the optimal threshold for HRR

vectors (Plate 2003, p. 100). The optimal value is not generally useful however,

since it depends on the number of superpositions, k, which is usually unknown.

Therefore, unless otherwise stated, a 0.8 demarcation is assumed throughout this

thesis.

2.5.2 Superposition Capacity

A natural question to ask of this kind of representation is: how many vectors can

one superpose and still reliably recover an item? We define the vector, uk, as the

superposition of a known clean vector, v, and k-1 random vectors, ηi:

uk = v +
∑k−1

i=1
ηi (2.11)

Since we expect ‖uk‖ ≈
√

k, the expected normalized dot product is

E [d(v, uk)] = E
[

v · uk/
√

k
]

=
√

1/k
(

E [v · v] +
∑k−1

i=1
E [v · ηi]

)

=
√

1/k

(2.12)

3This is proven later in eqn. (2.13) with α = β =
√

1/2
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Figure 2.3: Superposition capacity of higher dimensional vectors. In each graph we
compare the performance of the cleanup memory versus the similarity of an unclean
vector, uk.

since v and ηi are nearly orthonormal (E[v·ηi] = 0), and v is normalized (E[v·v] = 1).

The similarity of v with uk and a clean C(uk) is compared in Figure 2.3. The

results dramatically show how an efficient cleanup memory can enhance superpo-

sition capacity. For example at n=100, we can reliably recover (threshold=0.8) a

vector that has been corrupted by the superposition of 14 vectors with cleanup,

and only 2 without. There is even greater improvement for higher n.

2.5.3 Scalar Distortion

A more comprehensive performance measure can be determined by using scalar

distortion. We can generically define a corrupt vector, uα = αv + βη, where α

and β are positive constants such that α2 + β2 = 1, and η is a noise vector. This

produces a vector which is roughly unit length and has a parameterized signal-to-

noise term. Again, since two random vectors are nearly orthogonal (i.e. E[v·η] = 0),
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Figure 2.4: Scalar distortion tests. Each graph compares the similarity of a clean
vector v with the vectors uα and C(uα). Each measurement is the mean of 100
trials.

the expected similarity between v and uα is

E[d(v, uα)] = E[v · (αv + βη)]

= α E[v · v] + β E[v · η]

= α.

(2.13)

Figure 2.4 displays this linear relationship along with the performance improvement

that comes with the cleanup operation in higher dimensions.

Unlike the superposition capacity measure, these graphs simultaneously capture

the completely clean (α=1) and the completely noisy (α=0). Moreover, rather

than applying tests at every integer step, we can measure the performance at any

resolution. The graphs in Figure 2.4 are related to Figure 2.3 however. The number

of random superpositions, k, implied by α is

k = 1
/

α2 (2.14)
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Figure 2.5: Performance under various sparsification methods and levels. HRR
vectors are sparsified by a) randomly setting elements to zero with probability p
(indicated in legend), or b) setting small elements to zero given a threshold (legend
indicates the threshold as a fraction of σ=

√

1/n). The minimum intercepts of the
threshold line (at 0.8) and the performance curve, can serve as an overall indicator
of performance. In a), the cleanup is best with no sparsification. In b), a fraction
of 1 gives a good tradeoff between sparsity (66%) and performance (near optimal).

2.5.4 Performance measures

With these tests defined, we can now conduct controlled experiments to determine

optimal system parameters. For example, we can test the effects of sparsification

on HRR vectors. Sparse vectors (those with many zero elements) are thought to

be more energy efficient and biologically realistic. Vectors can be sparsified by

either randomly setting elements to zero with probability p, or by setting small

elements to zero given a threshold. Figure 2.5a shows, however, that sparsification

should be avoided in some cases. (We will come back to these graphs and discuss

sparsification in more detail in section 4.3).

Generally, it is desirable to use a single number to indicate performance rather
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Figure 2.6: Scalability performance of max cleanup under a variety of dimensions,
n, and number of clean vectors, m. Each sample point is the average α-intercept
over 100 trials. a) Generally, performance improves with n and b) performance
decreases slightly with m. Note that both graphs display the same data but at
different viewpoints

than analyzing a set of curves. Assuming that, in the limit, the distortion curves

are largely continuous and monotonically increasing, we can use the intercept of

the performance curve with the recoverability threshold as an overall performance

indicator (see Figure 2.5a).4 Smaller α-intercepts indicate better cleanup perfor-

mance.

The most generic parameters that influence the operation of a cleanup memory

are the dimensionality of the vectors, n, and the number of clean vectors, m. Figure

2.6 uses the α-intercepts to study the impact of changing n and m. We can convert

the α-axis into a superposition capacity axis using (2.14). Doing so confirms Plate’s

findings: the capacity, k, increases linearly with n and decreases slightly with m

(Plate 2003, pg. 237).

4Since the curves in our simulations are neither completely smooth nor monotonic, we can
have multiple intercepts. In these situations we simply take the smallest intercept.
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Figure 2.7: Scalability curves of max cleanup. Each line indicates a fixed superpo-
sition capacity, k = 2, 4, ..., 16 with lighter curves indicating larger k. The contours
are roughly linear, suggesting that m is exponential in n.

Finally, taking the data from Figure 2.6, converting the α-axis to measure su-

perposition capacity, and plotting the contour curves, yields Figure 2.7. This graph

is useful because it characterizes the relationship between n and m across fixed k

values. In this case, it suggests that m increases exponentially with n; i.e. we can

store exponentially more vectors by increasing n linearly. Again, this exemplifies

the benefits of computing in higher dimension.

2.6 Summary

Encoding concepts in memory using high-dimensional vectors is very different from

traditional symbolic representation. Rather than using a single unit that stands

for an object, this representation spreads information over many units. Distributed

representations are tolerant to noise, applicable to many modalities, and conducive

29



to parallel processing. With the addition of binding and unbinding operators,

they provide an elegant means for representing structure. As well, they support

new forms of computing that can be a neurally plausible alternative to symbolic

representation.

Many fixed-width schemes for representing structure have been invented that

exploit the properties of distributed representations. All store information in very

high dimensional vectors, all come with specific operations that can be applied to

them, and all are susceptible to systemic noise. Effectively using these complex

operations requires a cleanup memory; a structure that takes a noisy cue vector

and returns the closest match to a set of known clean vectors. Such a structure is

not only useful for noise reduction, but can also perform partial matching, pattern

completion, and high-level object detection.

There are a number of forms of cleanup memories in the neural modeling field.

Many are very specific to the particular architecture they support and none have

been shown to be biologically plausible. Here, we define a very general cleanup

memory that can be used with any scheme that employs fixed-width codevectors.

The mathematical characterization of the problem admits a straightforward solu-

tion which has been implemented and tested. The results reiterate the power of

computing in high dimensional spaces.

In this section, we have described a series of generic tools to test the effectiveness

of cleanup operations. This will be useful later when we construct a variety of

cleanup memories. These new memories, unlike the direct cleanup presented above,

and unlike the cleanup memories developed elsewhere, will be based on biologically
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realistic neurons.
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Chapter 3

Neural Engineering Framework

3.1 Towards Neural Engineering

In an attempt to understand brain function, many investigators have turned to

mathematical formalisms that are easily captured in computer algorithms. Popular

attempts fall under the general category of Artificial Neural Networks. Adequately

configured networks have shown success in the areas of pattern recognition, classi-

fication, and control (Rumelhart and McClelland 1986; Churchland and Seynowski

1994). With more ‘neurons’ and the right connections, it was hoped that these

networks would function in a manner congruent to the human brain.

However, ANN neurons are not at all like real neurons and one should not expect

too much from such networks, largely because it is unclear how to design them

for many tasks. The brain, to put it mildly, is incredibly complicated. There are

approximately 1010 neurons with at least 1013 connections—and there are thousands
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of different kinds of neurons. Real neurons are dynamic, nonlinear devices operating

in a noisy environment. They communicate with distinct action potentials (spikes)

rather than continuous analog values. Ignoring these important implementational

constraints may lead to cognitively unrealistic neural processing; difficult problems

may be overlooked, easy implementations may be missed, and useful insight may

remain obscured.

ANNs are popular because of their ease of implementation. Theoreticians, how-

ever, are becoming increasingly inspired by the mechanisms of real brains. More

general and useful principles have started to shape our understanding of the de-

sign of neural systems. These new principles of representation, computation, and

dynamics are a necessary step toward understanding cognitive functions. One syn-

thesis of these principles is found in Eliasmith and Anderson (2003).

In this section, we describe the methodology of the Neural Engineering Frame-

work (NEF) that is used here to construct biologically plausible neural networks for

cleanup. We begin by defining the types of neurons modeled and the parameters

that fall within biologically reasonable regimes. We then describe the characteristics

of an ensemble (or population) of neurons and suggest a plausible population-level

encoding and decoding relation with the relevant stimuli. Finally, we determine

how to instantiate higher-level dynamics using this population of neurons.

The description of the NEF here is necessarily brief. For a fuller and broader

explanation of the topics in this section consult Eliasmith and Anderson (2003),

from which most of the derivations presented here originate. In addition, neural

parameters that are particularly relevant for cleanup networks are highlighted.
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3.2 Neural cell dynamics

To model sub-symbolic operations at a neural level, we must first convert a code-

vector into an input current. This can be done with a generic linear transformation,

Ji (x) = αi

〈

φ̃i · x
〉

+ J bias
i + ηi (3.1)

where Ji(x) is the input current to neuron i, x is the codevector encoded by the

neuron, αi is a gain and conversion factor, J bias
i is a bias current that accounts for

background activity, and ηi models neural noise. The preferred direction vector, φ̃i,

models the fact that each neuron is known to have varying sensitivity to particular

dimensions (Georgopoulos et al. 1986).

The population of neurons in this model is a heterogeneous collection of leaky

integrate-and-fire (LIF) neurons. The time course of the somatic voltage in response

to the current in (3.1) evolves with the dynamics captured by (Koch 1998),

dVi/dt = − (Vi − Ji(x)R)
/

τRC
i (3.2)

where Vi is the somatic voltage, R is the leak resistance, τRC
i is the RC time

constant. The system is integrated until the membrane potential, Vi, crosses the

neurons threshold, Vth, at which point a δ(t− tin) spike is generated and Vi is reset

to zero for the duration of the refractory period, τ ref
i (see Figure 3.1).

To model a diverse population of typical neurons, we randomly select the neural

parameters. The gain and bias current, αi and J bias
i , are chosen such that the

34



0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Vth

Spike

τ
ref

time (ms)

vo
lta

g
e
 (

V
)

δ(t-tn)

tn

{
{
Sub-threshold

Super-threshold

τ
RC{

Figure 3.1: Time course of a leaky integrate-and-fire (LIF) neuron with constant
input (from Eliasmith and Anderson (2003) c©The MIT Press, reproduced with
permission).

maximum firing rates are between 200-400 Hz. The RC time constant is τRC
i =5 ms

and the refractory period is set to τ ref
i =1 ms. In addition, during the simulation,

independent Gaussian noise, ηi=N(0, 0.1), is injected into the soma to account for

various sources of neural noise.

The preferred direction vectors, φ̃i, are particularly important for the cleanup

networks presented in this thesis. Generally the φ̃i’s are drawn randomly from a

uniform distribution around the unit hyper-sphere. However, in some cases, neurons

are known to act independently of others. To model this, independent neurons are

set to have orthogonal preferred directions, while dependent neurons point along a

shared vector. This effectively divides an ensemble into a number of subpopulations

while increasing the representational accuracy of each independent component.
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3.3 Population encoding and decoding

These parameters now define a biologically plausible, heterogeneous population of

spiking neurons. Next we must address how these neurons can be used to represent

and process information about codevectors. This can be done by characterizing

1) how such information is encoded into the population of neurons, and 2) what

information can be decoded from the population.

Specifically, we understand communication between populations to be charac-

terized in terms of a nonlinear encoding process and a linear decoding process.

Encoding involves converting a quantity, x(t), into a spike train:

∑

n

δ(t − tin) = Gi [Ji(x(t))] (3.3)

where Gi [·] is the nonlinear function describing the rate at which spikes are pro-

duced (see Figure 3.2 for typical LIF responses), and Ji is the current in the soma

of the cell. Note that both the current and nonlinearity are explicitly described by

(3.1) and (3.2) respectively. Equation (3.3) captures the full encoding process from

a high-dimensional variable, x, to a one dimensional soma current, Ji, to a train of

spikes, δ(t − tin).

To understand how a neural system might use the information carried in a spike

train, we must be able to characterize a neurally plausible decoding. To do so we

need to understand how this information can be converted from spike trains back

into a relevant quantity. Somewhat surprisingly, a plausible means of characteriz-

ing this decoding is as a linear transformation of the spike train (Eliasmith and
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Figure 3.2: A random sampling of LIF tuning curves. Each curve describes the
spiking response, Gi [r], of an individual neuron.

Anderson 2003). Specifically, we can estimate the original stimulus vector x(t) by

decoding an estimate, x̂(t), using a linear combination of filters, hi(t), weighted by

the decoding vector, φi:

x̂(t) =
∑

in

δ(t − tin) ∗ hi(t)φi =
∑

in

hi(t − tin)φi (3.4)

where ‘∗’ indicates convolution (see Figure 3.3). These hi(t) are thus linear decoding

filters which, for reasons of biological plausibility, are taken to be the post-synaptic

currents (PSCs) in the subsequent neuron (Eliasmith and Anderson 2003).
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Figure 3.3: Population encoding and decoding of a square pulse followed by a ramp
signal. a) The input (gray line) and the decoding estimate, x̂(t) (black line), using a
population of 100 one dimensional LIF neurons. b) The encoding produces a raster
of spike trains, δ(t−tin), where tin indicates the nth spike for neuron i. Neurons are
separated at i=50 into ‘on’ and ‘off’ neurons (φ̃i=+1 and -1 respectively) and then
sorted by firing onset (the value of x for which Gi [Ji(x)]=0). c) As an example, the
rasters of neurons i=80, 50, and 35 are plotted with their PSC filtered counterpart,
hi(t − tin) = δ(t − tin) ∗ hi(t). Finally, the weighted sum all the filtered trains,
∑

in hi(t − tin)φi, yields the decoding estimate (black line in a)).
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3.4 Neural computation

After (Eliasmith and Anderson 2003), the optimal linear population decoding vec-

tors, φi, can be found by minimizing the error,

E =
1

2

〈

[x(t) − x̂(t)]2
〉

x,t

=
1

2

〈[

x(t) −
∑

in

(hi(t − tin) + ηi) φi

]2〉

x,t,η

(3.5)

where 〈·〉
x

denotes integration over the range of x, and ηi models the expected noise.

By optimizing with random noise, we ensure that fine tuning is not a concern, since

the decoding weights will be robust to minor fluctuations (i.e., 10% of the maximum

spike frequency in this model).

In some of the cleanup networks presented here, we want a population to trans-

form the signal it receives into something useful. Rather than encoding a variable,

we’d like it to represent a function. We can calculate the appropriate decoders by

simply minimizing over the required function (Eliasmith and Anderson 2003),

E =
1

2

〈[

f (x(t)) −
∑

in

(hi(t − tin) + ηi) φ
f(x)
i

]2〉

x,t,η

(3.6)

where we denote φf(x) as the decoding vector for computing f(x). Notably, this

calculation can be high dimensional. The details of this calculation are explained

in Appendix A along with a sampling technique that the cleanup ensembles take

advantage of.
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3.5 Higher level dynamics

A population of neurons can represent variables through non-linear encoding and

linear decoding, and perform computation with appropriate decoding weights. Now,

we can place these populations together to form higher level dynamic systems (Elia-

smith and Anderson 2003). Specifically, we can write the relevant dynamics of the

network in control theoretic form, i.e., employing one of the state equations that

comprises the foundation of modern control theory,

ẋ(t) = Ax(t) + Bu(t) (3.7)

where A is the dynamics matrix, B is the input matrix, u(t) is the input or control

vector, and x(t) is the codevector (see Figure 3.4a for a graphical depiction of this

equation). In general, these matrices and vectors can describe a wide variety of

dynamics.

Initially, this high-level characterization is divorced from neural-level, imple-

mentational considerations. However, it is possible to account for the intrinsic

neural dynamics by converting this characterization into a neurally relevant one

(Figure 3.4b). That is, assuming a model of postsynaptic currents (PSCs) given

by h (t) = τ−1e−t/τ , we can derive the following relation between Figure 3.4a and

Figure 3.4b (Eliasmith and Anderson 2003):

A′ = τA + I

B′ = τB

(3.8)
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Figure 3.4: Control theoretic block diagram for time invariant linear systems. a)
Diagram of the standard state equation, ẋ(t) = Ax(t) + Bu(t). b) Diagram of
neural state equation, x(t) = h(t)∗ [A′x(t) + B′u(t)]. Note that the dot is dropped
in the neural equation since the dynamics of the filter, h(t), accounts for integration.
We can convert a) into b) using (3.8).

So, in the time domain, our description of the high-level neurally plausible dynamics

becomes

x(t) = h(t) ∗ [A′x(t) + B′u(t)] . (3.9)

Notably, this transformation is general, and assumes nothing about the form of

A or B. So, given any behavioural system defined in the form of (3.7) (e.g. inte-

grators, oscillators, attractors, controlled filters, etc...), it is possible to construct

the neural counterpart by solving for A′ and B′.

To incorporate this high-level description of the dynamics with our previous

characterization of the neural representation, we must combine the dynamics of

(3.9), the encoding of (3.3), and the population decoding of x and u from (3.4).

For this purpose we take x̂ =
∑

jn hj(t − tjn)φx

j and û =
∑

kn hk(t − tkn)φu

k , which
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gives

∑

n

δ(t − tin)

=Gi

[

αi

〈

φ̃ix(t)
〉

+ J bias
i

]

=Gi

[

αi

〈

φ̃ih(t) ∗ [A′x̂(t) + B′û(t)]
〉

+ J bias
i

]

=Gi

[

αi

〈

φ̃ih(t) ∗
[

A′

∑

jn
hj(t − tjn)φx

j + B′

∑

kn
hk(t − tkn)φu

k

]〉

+ J bias
i

]

.

(3.10)

It is important to keep in mind that the temporal filtering is only done once, despite

this notation. That is, h(t) is the same filter as that defining the decoding of both

x(t) and u(t). More precisely, this equation should be written as

Gi

[

αi

〈

φ̃i

[

A′

∑

jn
hj(t − tjn)φx

j + B′

∑

kn
hk(t − tkn)φu

k

]〉

+ J bias
i

]

=Gi

[

∑

jn
ωijhj(t − tjn) +

∑

kn
ωikhk(t − tkn) + J bias

i

]

(3.11)

where ωij = αiA
′φx

j φ̃i and ωik = αiB
′φu

k φ̃i are the recurrent and input connection

weights respectively. These weights will now implement the dynamics defined by the

control theoretic structure from (3.7) in a neurally plausible network. Notably, this

characterization is very general (e.g., Eliasmith (in press) provides a comprehensive

account of controlled spiking attractor networks (i.e., point, line, ring, plane, cyclic,

and chaotic attractor networks) using these methods).

In theory, such dynamics can be useful in cleanup memories with recurrent con-

nections. However, simulations have shown that recurrent networks in high dimen-

sions are generally unstable. If such networks settle, it is often at an undesirable
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attractor point. Moreover, recurrent networks are incapable of multiassociation,

if they are constructed to settle at predefined attractors. Thus, for the circuits

presented here, we ignore the connections provided by matrix A′ and employ the

feedforward connections induced by B′.

We note that the weights can take on negative values, which is not biologically

realistic. Other work has developed a generic technique that employs interneurons

to make all weights the same sign (Eliasmith and Anderson 2003; Parisien and

Eliasmith forthcoming). However, this process is complex, does not substantially

affect the results of the network, and would take us far afield. So, for the models

presented here we have allowed negative weights.

Circuits derived in this manner were modeled using the Neural Engineering Sim-

ulator (NES), which is available as open source (http://www.sf.net/projects/nesim).

3.6 Summary

Constructing biologically plausible neural networks requires more than abstract

characterization of neurons as found in ANNs; it requires an understanding of

the principles of neural representation, computation, and dynamics. The Neural

Engineering Framework described here embodies such principles. We have shown

how an ensemble of neurons represents a variable through nonlinear encoding and

linear decoding, can perform computation (or transformations) through suitable

decoding weights, and can carry out a variety of dynamics defined by standard

control theory.
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This characterization presents new challenges, but as we will see, also offers new

solutions to problems that are not available by conventional means.
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Chapter 4

Cleanup Memory in NEF

We now apply the neural engineering principles discussed in Chapter 3 to the

cleanup problem defined in Chapter 2. This union offers a few extra challenges

not found in standard artificial approaches. First, in addition to the inherent noise

of distributed representations, more noise will be added to simulate the background

environment of the brain (e.g., spike jitter, thermal fluctuations, neurotransmitter

variations, etc...).

Second, the network simulations evolve over time. Operations are not expected

to occur instantaneously, but are delayed. Figure 4.1 displays the temporal and

noisy aspects of neural representation. To compare with the direct cleanup memory,

we take the ‘answer’ from these networks to be the final vector output. This

answer can be made more stable with another ensemble acting as a low pass filter

(Eliasmith in press), or using a broader filter (e.g. using a longer τ in the PSC

filter, h (t) = τ−1e−t/τ ). So all results presented here are lower bounds on achievable
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accuracy. Also, the dot product calculations in (2.8) will vary, and is only accurate

with respect to the amount of intrinsic and background noise in the system. Note

that the approximation to the vector improves with the number of neurons. In

fact, it has been shown (Eliasmith and Anderson 2003), that the error in the signal

drops as 1/N , where N is the total number of neurons used in representing a value.

Third, due to constraints on computational resources, there is a practical limit

to the number of neurons per ensemble one can numerically simulate. The total

number of neurons in an ensemble representing a vector can be written as N = nNe,

where n is the size of the vector and Ne corresponds roughly to the number of neu-

rons per vector element. One then must make a tradeoff between the size of the

vector and the accuracy of the representation of the elements. The effects of chang-

ing Ne are portrayed in Figure 4.1. In order to generate comparable simulations

over many trials, a practical maximum of N for available computational resources

is 1000 neurons; Ne is typically 10, leaving a maximum dimension of n=100. This

dimension is noticeably smaller than that typically used, which is usually greater

than 500.

Thus, due to time and memory constraints, these neural simulations will be

of relatively low quality cleanup memories. However, by presenting systems that

exhibit performance trends similar to the ideal solution at low dimensions, one can

extrapolate similar performance at higher dimensions.

Like other frameworks, the NEF admits many solutions to a given problem.

Here we present three networks that perform the cleanup operation: the ANN

inspired butterfly network, the function network which calculates the cleanup, and
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Figure 4.1: Neural ensemble representation of a 6-dimensional vector using a) Ne=5
and b) Ne=10 neurons per element. The total number of neurons is N = 6Ne. At
t=0.03 s, the ensemble goes from representing the zero vector to a random HRR
vector. At t=0.05, the signal has stabilized. We take the final output to be the last
signal value, in this case, at t=0.1. Dashed lines indicate the expected signals.

the sparse network which produces sparse encodings of clean vectors.

4.1 Butterfly nets

We first present a neural network that is inspired by the traditional bottleneck or

butterfly networks (Figure 4.2). Butterfly networks typically reduce the dimension-

ality of a vector by mapping it into a lower dimensional space. In this respect, they

are like traditional autoencoders, which learn sparse representations using back-

propagation. This circuit does not use any feedback, however, and we will return

to the issue of learning in section 4.4.
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4.1.1 Butterfly network

Recall that an approximate cleanup memory can be described as

Cµ(c) = µ(cMT )M = µ(s)M . (4.1)

One can take this definition and convert it into a three layer feed-forward network

as shown in Figure 4.2. This in turn can be converted to a spiking neural network,

but we must note a few differences in terminology. The ‘layers’, in this case, are

populations of neurons, the ‘units’ are vector elements represented by the neurons,

and the ‘weights’ are connection strengths between vector elements. These weights

are referred to as coupling weights to avoid confusion with neuron-to-neuron con-

nection weights described in (3.11).

As illustrated in Figure 4.2, the memory matrix is used to transform the cue

vector to and from the similarity space. Using M in this way effectively stores

the memory in the coupling weights. The middle layer represents the similarity

vector and also computes µ(s). The connection weights are easily derived using

the NEF (see equation (3.11)): ωij = αiM
T φc

j φ̃i between ensembles C and S , and

ωjk = αjMφ
µ(s)
k φ̃j between S and X. The decoding vector, φµ(s), can be calculated

using (3.6).

The nature of this network offers two optimizations. First, the encoding of a

vector element in each population does not depend on the encoding of any other

element. Therefore, we can improve the overall representational accuracy by forcing

the encoding to be independent. This is realized by simply adjusting the preferred
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Figure 4.2: Butterfly cleanup memory. The n-dimensional cue ensemble, C, is
connected to the similarity ensemble, S, using the memory matrix, MT , as the
coupling matrix. This effectively computes the dot product of the cue with every
vector in M . Ensemble S not only represents this m-dimensional similarity vector
but also computes the membership weight, µ(s). The second set of weights uses
the function output of S to create the weighted sum. The result, stored in X, is
the cleaned vector.

direction vectors, φ̃i, to only point along one particular dimension. Second, for

HRR vectors, the distribution of each element is N(0, 1/n). Hence, rather than

minimizing (3.6) over the usual range, [−1, 1], we can tune our neurons to better

represent the values between [−
√

1/n,
√

1/n].

The caliber of this network under various parameters is shown in Figure 4.3.

The number of neurons in a population is significant up to a point. While the

performance increases with Ne, there are diminishing returns. The performances

for Ne=5, 10, 20 are nearly indistinguishable. Thus, setting Ne greater than 10, in

these simulations, is unproductive.

It is important to realize that the performance of these networks are plagued

by three distinct sources of noise: external noise, which we impose upon the sys-
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Figure 4.3: Butterfly network performance under varying Ne and noise. The opti-
mal non-neural performance (using equation (2.6)) is marked with a dashed line.
a) Cleanup quality converges toward the optimum with more neurons. Ne=10 will
be sufficient in these simulations. b) The network performance is degraded but
also robust to various levels of background noise.

tem; internal representation noise, which is the inaccuracies engendered by neural

decoding; and internal SDR noise, which is the noise inherent in SDR operations.

As expected, external noise does diminish the overall performance of the sys-

tem. One would further expect that increasing levels of noise would proportionally

degrade these networks. Yet, for realistic noise values (σ2 ≤ 20%) no significant

trends were found. This is because the ensembles were designed to be robust to

external noise (see eq. (3.5)), and hence show no markedly adverse affects (Figure

4.3b).

Usually, the effects of this external noise are diminished as 1/Ne. However,

using a fixed Ne with independent neurons incurs a fixed amount of external and

internal representation noise in the network. This has a profound impact on the

scalability of the network since they dominate the internal SDR noise that one
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Figure 4.4: Scalability of butterfly network. Unlike SDR operations a) the perfor-
mance does not improve with n, and b) performance is significantly impaired by
increasing m.

expects to drop as 1/n. Thus, while performing relatively well at low dimensions,

it does not improve with higher dimensions (Figure 4.4a). Worse yet, the quality

of the cleanup is destroyed by increasing m (Figure 4.4b). A look at the overall

scalability in Figure 4.5 shows that the exponential relationship between n and m

has become flat. Thus, in this circuit, the exponential memory capacity of HRR

vectors does not hold when using plausible neurons. This suggests that this is not

an appropriate architecture for cognitive systems.

4.2 Function Cleanup

The butterfly cleanup has strong ties to traditional neural networks. It is, in fact,

formulated as a three layer feed forward network where the connections are coupling

weights specified by the memory matrix, M . This network could have been an

artificial neural network if one replaces the neurons with artificial neurons and
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Figure 4.5: Storage capacity graph (see 2.7) of butterfly nets. Storage capacity does
not increase with n. The normally exponential storage capacity is extinguished by
network noise.

casts the membership function as an activation function.1

Now, we present a network that has no ANN counterpart, that adheres more

closely to the principles of Neural Engineering, and performs better than the but-

terfly network.

4.2.1 Function sampling

The NEF allows for a more direct approach to constructing cleanup memories.

Recall that an ensemble can calculate an arbitrary transformation using suitable

weights. Therefore, by defining an appropriate cleanup function, we can calculate

φC(x). Thus, rather than using three populations of neurons, we can combine the

1In fact, it could be argued that all ANNs can be redefined into a neurally plausible network.
Of course, these artificial-cum-spiking neural networks would still have to deal with the added
problems of noise.
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entire butterfly network into a single ensemble.

Essentially, we require a mapping, C, such that, not only does C(vi) = vi,

but also that C(vi + η) = vi, where η is a small noise vector. This function can be

approximated using (3.6) and a sample of points (see Appendix A.2). The standard

sampling method uses points that are randomly and uniformly distributed over the

space of codevectors, thus producing a relatively full mapping of C. However, many

sample points would be required to ensure that all vi are reasonably approximated.

Alternatively, one could concentrate the sampling around the clean vectors,

thereby improving the representational accuracy around the clean vectors. This

approach suggests a learning technique that does not involve the calculation of

C(x), but only involves the presentation of the clean vectors. A comparison of these

two sampling techniques (Figure 4.6) concludes that the concentrated sampling is

superior.

Since the gaps in between vectors are not sampled, it would seem that they

would be ill-defined. However, given the smoothness of the LIF tuning curves, the

mapping of C in these regions will be smooth combination of the nearby points.

Experimental results verify that novel compositions can be recovered; i.e. C(vi +

vj +η) = vi+vj even though the vector, vi+vj, is never explicitly stored in memory.

Figures 4.7 and 4.8a show the results of the scalability analysis. The perfor-

mance is much better than the butterfly circuit, but is not as good as the optimal

cleanup. Given that the network is calculating C(x), the only source of discrepancy

is internal representative noise. Indeed, the circuit compares well to the optimal

cleanup with noise added to the cue (Figure 4.8b).
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Figure 4.7: Function cleanup performance under varying n and m. Performance
does improve with n, but is drastically curtailed by increasing m.
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Figure 4.8: Scalability analysis of function cleanup. a) The curves suggest a linear
rather than an exponential relationship between n and m. This is consistent with
b) the optimal solution with 10% noise.

Aside from cleaning up, this approach can be used for heteroassociative networks

as well. Rather than producing a clean version of the input, the system transforms

the input into another vector; i.e. C(xi + η) = C(xi) = yi, where xi and yi are

associated pairs.

4.3 Sparse Cleanup

Recent research suggests that neural encodings are often sparse (for an review see

Olshausen and Field (2004)). ‘Spareseness’ is used variously in the literature to

refer to two separate concepts: sparse vectors and sparse coding. Sparse vectors,

introduced earlier in section 2.5.4, are vectors with few non-zero elements. Sparse

coding is a neurobiological term that implies that few neurons are active in repre-

senting a value. An extreme version of sparse coding is the localist representation,

which uses a single neuron to represent an item.
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It is generally assumed that sparse vectors imply sparse coding. However, this

is not necessarily the case for biologically plausible neurons. Recall from (3.3) that

the spiking activity is a function of the input current and the tuning curve

∑

n

δ(t − tin) = Gi [Ji(x)]

= Gi

[

αi

〈

φ̃i · x
〉

+ J bias
i + ηi

]

(4.2)

Note, that it requires current to represent x = 0 (the sparsest vector), since Ji(0) =

J bias
i +η. Furthermore, even when Ji(x) = 0, Gi [0] may still produce spikes. Figure

3.2, in the previous chapter, depicts a few tuning curves that will spike with zero

current.

Given a cleanup memory that is inundated with random DR vectors, we expect

the typical output to be the zero vector. Hence, it would be very energy efficient

to not generate spikes when representing zero. Naturally, under this setting, sparse

coding will lead to a sparse vector and vice versa. Figure 4.9 exhibits a few tuning

curves that do not cross the origin and hence rarely spike at 0. Sparseness (in both

senses) can be increased by raising the minimum onset value. Figure 4.9 sets this

value to 0.2. A reasonable tradeoff between performance and sparsity (recall Figure

2.5b) is one standard deviation of the element distribution, σ=
√

1/n (making 66%

of vector zero). When set, the ensemble is incapable of representing values in the

range of ±σ, thus simultaneously producing a sparse vector that is also sparsely

coded.

In high dimensions, E[φ̃i · x] = 0, since φ̃i and x are randomly chosen and the

elements are distributed with a mean of 0. Thus most vectors, even clean ones, will
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Figure 4.9: A sampling of LIF tuning curves that do not spike when r ∈ [−0.2, 0.2].
Such curves can be used to sparsify HRR vectors.

produce nearly indistinguishable firing patterns. We are free, however, to point φ̃i

in any desired direction. An immediate choice is to point them in the same direction

as the clean vectors; i.e φ̃i = vj, where j is chosen randomly. This works well since

the neurons will fire maximally when presented with a clean vector, at which point,

only a few neurons will be active. However, when the number of neurons is close to

the number of clean vectors (N = nNe ≈ m), as in some of the simulations here,

the output becomes highly localist, since only a few neurons are used to represent

a vector. Such an encoding is brittle and does not represent its vector well under

noise.

A less sparse choice is to set the preferred direction vectors to a random super-

position of a few clean vectors; e.g. φ̃i = vj +vk +vl. The output will be less sparse

since more neurons will participate in the encoding, but it will also be less brittle,

more resilient to noise, and produce lower firing rates.
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Figure 4.10: Sparsification of spike rasters. a) Typical spike raster of the function
cleanup memory. Note the background firing during t ≤ 0.3 s—even though it is
representing 0. b) The sparse cleanup, however, has no code for 0 and only a few
neurons (22%) spike when presented with a clean vector. c) When presented with
an unknown vector, there is virtually no activity. Only 16% produce spikes and
they are at a very low frequency.

The cleanup performance of the sparse network is comparable to the function

network (not shown). In addition to sparse coding, this network also leads to a

natural learning strategy which we will discuss in the next section.

4.4 Learning

We have assumed, so far, an a priori lexicon of ‘true’ clean vectors. But where

do these clean vectors come from? Presumably, they are either inborn or originate

from experiences in the world. Individual experiences are too numerous, however,

and it would be impractical to store them all in a single matrix. Indeed, such

exhaustive storage is particularly pointless when the input is noisy or incomplete.

Also, the performance of the cleanup networks depend on the distribution of

the stored codevectors. Vectors that are close together are harder to distinguish
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from vectors that are far apart. In the tests performed earlier, these vectors were

randomly and uniformly distributed, hence nearly orthogonal. We expect vectors

that encode real world data to have some structure and will therefore be densely

packed in some areas.

The ANN literature emphasizes the need for unsupervised learning. To resolve

this issue, many learning rules have been found that capture the structure of the

input data. Of course, these rules are based on unrealistic neurons, and hence

invoke structures and methods with little biological basis.

In general, a learning rule updates connection weights between two populations,

which in our networks is formulated as

ωij = αiMφ̃iφj. (4.3)

Attempts at creating a neurally realistic, local learning rule have proven to be

fiendishly difficult, however. With the exception of one special case (Eliasmith and

Anderson 2003), the problem remains largely unsolved. Thus, this section proposes

preliminary learning strategies for the cleanup memory that may provide an avenue

for discovering such rules. Two approaches are proposed here to update ωij; one

does so by updating M and the other by updating φ̃i.

4.4.1 Adaptive SVD

One solution to the problems of size, distribution, and experience acquisition is

singular value decomposition (SVD) (Lawson and Hanson 1974). Briefly, SVD
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decomposes M into a product of three matrices:

M = USV T ≈ UkSkV
T
k (4.4)

where U ∈ R
m×m and V ∈ R

n×n are orthonormal matrices, and S ∈ R
m×n is a

pseudo-diagonal matrix containing the singular values. The k-subscripted matrices

are the original matrices reduced to k columns; that is, Uk ∈ R
m×k, Vk ∈ R

n×k, and

Sk ∈ R
k×k. The product of these reduced matrices form an MSE optimal, rank-k

approximation of M .

Thus, SVD calculates a very good set of k orthonormal vectors that span the

row-space of M . Therefore, rather than continually adding vectors to M , an adap-

tive SVD approximation can reduce experiences to principal components. These

components become the clean vectors. Additionally, SVD produces orthonormal

vectors, which is the ideal distribution for the cleanup memories defined here. In

these circuits, we only require Vk, which replaces M in the butterfly network, and

holds the clean vectors for the function network.

SVD is a complicated and expensive calculation, however. Is it possible that

the brain could perform such a feat? The neural network community has, in fact,

investigated this question for many years (for a unifying approach to these tech-

niques see Fiori (2003)). These approaches do not try to fully calculate the SVD,

but rather try to learn two orthonormal matrices, A ∈ R
m×k and B ∈ R

k×n, such

that they, respectively, span the column and row space of M . A simple learning

rule for calculating these matrices follows from the coupled dynamics (Weingessel
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and Hornik 1997),










∆A = κ
(

MB − ABT MT A
)

∆B = κ
(

MT A − BAT MB
)

(4.5)

where κ is the learning rate. We are interested in B for the cleanup networks.

Thus, the neural learning rule is

∆ωij = αi∆Bφ̃iφj. (4.6)

The matrix, B, then is stored in the connection weights. It is unclear, however,

where A and M might be located.

4.4.2 Self Organizing Neurons

The sparse cleanup in Section 4.3 simulates an environment in which clean vectors

are randomly added to preferred direction vectors. This random technique yields

surprisingly good results. A learning rule that achieves this performance is

∆φ̃i = κ(t)ri(t)xt (4.7)

where xt is the incoming stimuli, ri(t) ∈ [0, 1]n is a sparse random vector, and

κ(t) is a learning rate. This rule obviates the need for the memory matrix, M .

Unfortunately, the encoding becomes increasingly dense with each sampling of xt

as each φ̃i gradually approaches
∑

j vj, leading to very poor performance. The

standard solution to this problem is to define a learning rate, κ(t), that decays in

time. This ensures that vectors are not overlearned.
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The random selection rule, however, does not seem realistic since it is difficult to

postulate a biological explanation for ri(t). There are better methods of updating

φ̃i. We now propose a new learning rule, for the sparse network, based on Learning

Vector Quantization (LVQ) (Kohonen 1988, 1995).

LVQs are a class of competitive, unsupervised learning algorithms that are typ-

ically used in compression algorithms (Gersho and Gray 1992). The goal is to find

k representative “reconstruction” vectors, vi that divide the input data, xt, into a

number of clusters such that the items in the same cluster are similar. The LVQ

algorithm is straightforward. Find the closest vi to xt and move it, and only it, a

little towards xt. The other vectors are pushed away from xt. The learning rule is

simply,

∆vi = κ(t)µvi
(xt)[xt − vi] (4.8)

where, µvi
(xt) is 1 if vi is the closest to xt, and -1 otherwise. Computational effort

consists of calculating all µvi
(xt) and updating each vi accordingly. This burden

need not be so heavy however, when implemented with neurons.

Two features of our neural networks make the LVQ approach computationally

cheap. First, an important feature of SDRs is the ease of which structures can be

learned. Learned SDRs are simply the superposition of input vectors. Thus unlike

LVQ, we need not calculate [xt − vi], but merely update the vector by a factor of

x(t); this automatically moves vi towards xt. Secondly, (4.2) reveals that the input

similarity measure, (φ̃i · xt), is proportional to the input current, Ji(xt). Therefore,
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a natural mechanism for updating φ̃i in realistic neurons is

∆φ̃i = κ(t)µi(Ji(xt))xt. (4.9)

Notably, we can employ the more convenient membership function, µi(·), defined

in (2.10). One can adjust the variance in µi (hence the size of membership neigh-

bourhood) to regulate how receptive a neuron is to new data.

Effectively, this rule states that the weights are updated proportionally to the

neurons firing rate. This is precisely the standard biological Hebbian learning cap-

tured by the moto, “fire together, wire together”.

Additionally, clean vectors need not be (nearly) orthogonal, like the SVD so-

lution. Setting φ̃i of a large number of neurons to point in a particular direction,

effectively increases the sensitivity of the ensemble in that direction. In these sit-

uations, two clean vectors that point in nearly the same direction will be easily

distinguishable.

4.5 Summary

This chapter has presented three cleanup memories based on biologically plausible

neurons. Of the three, the ANN inspired butterfly network was the poorest per-

former. However, it offers more than just cleanup. It provides two signal paths:

one from the output layer and the other from the similarity layer. The similarity

code is very sparse since we expect only a few elements in s to be non-zero. Also,

the butterfly network transforms a vector from an n-dimensional space to an m-
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dimensional one. If m is smaller than n, the encoding will be very compressed.

Caution must be taken however, since too much sparsification and compression can

lead to a nearly localist representation particularly if the neurons are defined to be

independent.

The function cleanup is a much better network in terms of performance and

simplicity of design. It is more accurate, scales better, and is comparable to the

optimal cleanup memory with noise. Additionally, the method of calculating the

weights is applicable to heteroassociative memories. However, the output is a very

full vector, which is not energy efficient from a biological perspective.

By manipulating individual neuron parameters, the sparse cleanup is capable of

sparse coding and cleanup. Despite activating fewer neurons, the circuit maintains

the same level of performance as the function cleanup. Adjusting the preferred di-

rection to fire along a superposition of clean vectors effectively embeds the power of

high dimensional computation inside the neuron. The result is heightened sensitiv-

ity to clean vectors, very sparse encoding, and virtually no firing for unrecognized

vectors.

Postulating a set of clean vectors or a memory matrix poses an epistemological

problem which can be solved with an SVD-like deconstruction. These techniques

capture the statistics of the environment to yield a small set of orthonormal vectors

which are ideal for the cleanup circuits.

Alternatively, we can adaptively adjust the preferred direction vectors in re-

sponse to the input it receives. Features of the neurons modeled in the NEF make

it possible to embed an LVQ-like learning algorithm within the cell. The proposed

64



rule suggests a very natural method by which biologically plausible neural net-

works may learn cleanup. A general solution to learning cleanup networks remains

unsolved, however.
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Chapter 5

Conclusion and Future Work

Three realistic neural networks, that perform the cleanup task necessary for SDRs,

have been presented. Each step has provided deeper insights into the architecture

of neural devices.

The butterfly network shows that traditional ANN networks can be converted

into neurally plausible networks. However, it performs poorly as a cleanup. More

natural circuits can be constructed using the principles of neural engineering. The

function cleanup is such a network that has not been proposed by the ANN com-

munity, yet is more plausible and performs better than the butterfly network. Fur-

thermore, we find that we can improve the biological plausibility of the function

cleanup through sparse coding. Surprisingly, this reveals a new approach to learning

that embeds an old algorithm within cellular parameters. A fully neurobiologically

plausible learning rule, however, remains elusive. Further research is necessary to

find local rules that employ neurally realistic devices.
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This thesis has also shown that while SDR operations can be computed within

a plausible neural substrate, accurate performance of these networks were impeded

by noise. Rather than exhibiting the exponential storage capacity of the optimal

cleanup, the function and sparse cleanup showed linear capacity, and the butterfly

cleanup had become flat. These networks can be greatly improved. More neurons

in higher dimensions are required to adequately emulate the large vectors typically

employed. However, these circuits are currently constrained by available computa-

tional resources. While faster computers with more memory may provide modest

short-term gains, a more promising path is to research and develop newer algo-

rithms and techniques for modeling realistic networks. In particular, we need faster

and more memory efficient algorithms for solving the optimal decoders (A.6). Such

improvements will allow for larger more complex networks.
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Appendix A

Optimal Decoders

A.1 Function Decoding

Here we describe how to calculate the decoding vectors for approximating an ar-

bitrary function. Recall that the optimal decoding weights, φi, for approximating

the transformation, f(x), are found by minimizing the error,

E =
1

2

〈[

f (x(t)) −
∑

in

(hi(t − tin) + ηi) φi

]2〉

x,t,η

(A.1)

where 〈·〉
x

denotes integration over the range of x. First, we simplify this equation

by noting that the minimization over x, t and η can be minimized over the range

of x, and we write the filtered spike train in terms of its tuning curve,

hi(t − tin) + ηi = ai(x(t)) = ai(x) (A.2)
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Now, we can write our error term (A.1) as

E =
1

2

∫

[

f (x) −
∑

in

ai(x)φi

]2

dx (A.3)

Following the derivation of Eliasmith and Anderson (2003, Appendix A), we take

the derivative with respect to φi,

∂E

∂φi

= −1

2

∫

2

[

f (x) −
∑

jn

aj(x)φj

]

ai(x)dx

= −
∫

f (x) ai(x)dx +

∫

∑

jn

ai(x)aj(x)φjdx ,

(A.4)

and setting to zero gives

∫

f(x)ai(x)dx =
∑

jn

∫

ai(x)aj(x)φjdx (A.5)

We can write this in matrix-vector notation as, Υ = Γφ, where

Γij = 〈ai(x)aj(x)〉
x

Υi = 〈ai(x)f(x)〉
x

(A.6)

and solve, φ = Γ−1Υ.
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A.2 Point Sampling

For comprehensiveness, we make no assumptions about f(x), thereby ruling out

an analytic solution. Nevertheless, we can achieve close approximations with sim-

ple numerical techniques such as point sampling. Given a sample of points P =

{p1, p2, ..., pn}, we can approximate the integral in (A.6) with matrix summations:

Γij =
∑

p∈P

ai(p)aj(p)∆xp

Υi =
∑

p∈P

ai(p)f(p)∆xp.

(A.7)

where ∆xp is the area represented by point p. Assuming all areas are the same,

∆xp = ∆x, allows us to drop the term altogether when solving φ = Γ−1Υ.

The points over the range of x can be regularly sampled as in standard numerical

integration, randomly sampled as in Monte Carlo methods, or chosen at appropriate

locations where accuracy is desired.
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