
Erosion, Self-Organization, and
Procedural Modeling

by

Alexei Pytel

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2015

c© Alexei Pytel 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Procedural modeling of natural objects such as coastlines and terrains in combination
with their characteristic erosion features involves integration of appropriate physical mod-
els with the procedural approach and culminates in the development of physically-based
simulations. I have invented a modeling paradigm for designing this type of simulations in
a way that generalizes formation of complex relationships between erosion features, such as
the tributary relationship. My generalization uses self-organization to define where erosion
occurs and how it propagates rather than emphasizing the exact mechanism of erosion
and the details of what happens during each erosion event. Propagation of state changes
due to self-organization can also lead to emergence of fractal character, which is essential
for modeling of natural objects, without explicit fractal synthesis. I successfully apply my
methodology to procedural modeling of dunes, coastlines, terrains that undergo hydraulic
erosion due to channel networks, and 3D channel networks that form underground.

v

Acknowledgements

I would like to thank my examination committee for their help: Drs. Stephen Mann,
William B. Cowan, Justin W. L. Wan, Jonathan Li, and W. Randolph Franklin. I am
grateful to my supervisor, Dr. Stephen Mann, for his guidance and support.

As a student of CGL, I have benefited from a great learning atmosphere and many
research opportunities. I would be ignorant of many key concepts in computer graphics if
the CGL faculty, especially Dr. William B. Cowan, did not share their knowledge with me.

Many thanks to student members of CGL and the HCI lab for creating a fun envi-
ronment for learning and research: Elodie, Matt, and Tyler, for friendly discussions of
research ideas; Andrew, Eugene, Kate, Marshall, Philippe, Richard, Tiffany, and Yasu, for
lab events.

Thanks to David for suggestions on programming with OpenGL.

This research was partially funded by NSERC.

vii

Table of Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

2 Background and Previous Work 7

2.1 Fractals . 7

2.1.1 Self-Similarity . 8

2.1.2 Self-Affinity . 10

2.1.3 Fractional Brownian Motion . 11

2.1.4 Spectral Character of fBm . 13

2.1.5 Fractal Synthesis . 14

2.1.6 Spectral Analysis of Terrains . 22

2.2 Self-Organized Criticality . 23

2.3 Models and Simulations of Erosion . 25

2.3.1 Dunes . 25

2.3.2 Hydraulic Features . 26

2.3.3 Coastlines . 30

2.3.4 Caves and Subterranean Channels 31

2.4 Hydrogeomorphologic Aspects of Erosion Features 33

ix

2.4.1 Hypsometric (Area-Altitude) Analysis of Terrains 34

2.4.2 Formation of Subterranean Channels by Dissolution 36

2.4.3 Morphometric Analysis of Caves . 40

2.5 Multi-Agent Systems . 42

3 Simulation Framework 47

3.1 Motivation . 48

3.1.1 Fractal Character . 48

3.1.2 Scaling Issues . 49

3.1.3 Relaxed Self-Organized Criticality and Avalanching 50

3.2 High-Level Design of the Framework . 52

3.2.1 Towards a New Modeling Framework 52

3.2.2 Agent-Guided Procedural Modeling 53

3.2.3 Infrastructure for Self-Organized Simulations 54

4 Modeling with Self-Organization and Avalanching 57

4.1 Dunes . 57

4.1.1 Werner Dunes . 58

4.1.2 Dunes with Avalanching . 59

4.1.3 Use of the Common Modeling Framework 62

4.2 Coastlines . 62

4.2.1 Sapoval Coastlines . 63

4.2.2 Coastlines Based on Local Perimeter 65

4.2.3 Coastlines with More Avalanching 67

4.2.4 Extensions for Modeling Applications 68

4.2.5 Use of the Common Modeling Framework 69

4.3 Rivers and River Basins . 71

4.3.1 Hydraulic Erosion Simulation . 73

x

4.3.2 Effect on Spectral Density and Hypsometry 77

4.3.3 Emergent Behavior of Channel Networks 79

4.3.4 New Method of Terrain Modeling 81

4.4 Discussion of Terrain Simulations . 86

4.4.1 Use of Avalanching in Modeling . 86

4.4.2 Evaluation of Framework . 86

4.4.3 Water-Column Algorithms . 89

4.4.4 Evaluation of Results . 93

4.4.5 Terrain Analysis and Comparisons 98

5 Subterranean Channels 107

5.1 Challenges in Simulating Channel Behavior in 3D 108

5.2 Model and Simulation . 110

5.2.1 Protochannel Stage . 111

5.2.2 Channel Growth and Linkage Stage 112

5.3 Results . 115

5.3.1 Caves Created Using Two-Stage Simulation 117

5.4 Discussion of Subterranean Channel Simulation 122

5.4.1 Use of Avalanching and Framework 122

5.4.2 Evaluation of Results . 125

6 Conclusion 129

6.1 Contributions and Themes . 129

6.2 Observations about Modeling . 132

6.2.1 Procedural Modeling . 132

6.2.2 Simulation Parameters . 133

6.3 Future Work . 133

APPENDICES 135

xi

A Additional Details 137

A.1 Spectral Density of fBm . 137

A.2 River Rendering . 138

A.3 Voxel Polygonization . 140

A.3.1 Main Algorithm . 140

A.3.2 Non-Manifold Edge and Vertex Removal 141

A.4 Voxel Thinning . 143

A.5 Fast Marching . 145

A.6 Hardware and Software . 147

B Alternative Models 149

B.1 Coastline Erosion on GPU . 149

B.1.1 GPU Computing Concepts . 149

B.1.2 Restatement for GPU Computation 150

B.1.3 Results . 153

References 157

xii

List of Tables

2.1 Morphometric analysis of Klimchouk. 41

2.2 Morphometric analysis of Frumkin et al. 42

4.1 Comparison of simulated dunes. 61

4.2 Simulation parameters for dunes. 62

4.3 Simulation parameters for Figure 4.4. 64

4.4 Simulation parameters for Figure 4.5. 66

4.5 Simulation parameters for Figure 4.6. 68

4.6 Simulation parameters for Figure 4.12. 76

4.7 Simulation parameters for Figure 4.15. 81

4.8 Performance of coastline simulations. 88

4.9 Performance of hydraulic simulations. 89

4.10 Geographic parameters of elevation datasets from Southern Ontario. 99

5.1 Simulation parameters for modeled caves. 121

5.2 Performance of cave simulations. 125

5.3 Morphometric indices of modeled caves. 127

A.1 Hardware and software specifications. 147

B.1 Simulation parameters for GPU coastline simulations. 155

xiii

List of Figures

1.1 Flow of model development. 2

1.2 Simulation examples. 4

2.1 Self-similar objects. 9

2.2 fBm terrains and their coastlines. 12

2.3 fBm synthesis. 15

2.4 Diamond-square construction and 4-8 subdivision. 16

2.5 Interpolation in diamond-square construction and 4-8 subdivision. 17

2.6 Fractal mountain construction. 19

2.7 Noise-summing construction. 20

2.8 Illustration of the creasing artifact. 21

2.9 River-like channel modeled using squig. 28

2.10 Erosion model of Rodŕıguez-Iturbe. 29

2.11 Hypsometric curve families. 34

2.12 Categories of hypsometric forms. 35

2.13 Examples of unsual hypsometric forms. 36

2.14 Protochannel development. 37

2.15 Protochannel behavior during breakthrough. 37

2.16 Interaction between channels. 38

2.17 Cross-sections of dissolution channels. 40

xv

3.1 Relaxed-SOC fractal character. 51

4.1 Werner dune model. 58

4.2 Shadowing and protection principles. 59

4.3 Dune model with more avalanching. 60

4.4 Coastline erosion based on global perimeter. 64

4.5 Coastline erosion based on local perimeter. 66

4.6 Coastline erosion with additional avalanching. 67

4.7 Combining coastline simulations with different parameters. 68

4.8 Construction of island interior. 69

4.9 Coastline simulation implementation. 70

4.10 Organization of flow into channels. 72

4.11 Specialized water-column algorithm. 74

4.12 Hydraulic erosion results. 77

4.13 Hydraulic erosion of fBm landscape. 78

4.14 Tributary capture. 79

4.15 Modes of valley evolution. 80

4.16 Interpolation strategies in new terrain modeling method. 83

4.17 Additional terrain examples. 85

4.18 Comparison of water-column algorithms part 1. 91

4.19 Comparison of water-column algorithms part 2. 92

4.20 Comparison with channels on a sand hill. 94

4.21 Evaluation of terrain examples. 97

4.22 Analysis of elevation datasets from Southern Ontario. 100

4.23 Analysis of terrains created with Terragen (part 1). 101

4.24 Analysis of terrains created with Terragen (part 2). 102

4.25 Erosion model of Rodŕıguez-Iturbe used for terrain modeling. 103

4.26 Analysis of terrains created with World Machine. 104

xvi

5.1 Problem domain representation in 2D and 3D channel simulations. 109

5.2 Generalization of 2D water simulation. 110

5.3 Pressure zones in protochannel development. 111

5.4 Model for interaction between channels. 113

5.5 Protochannel simulation results. 115

5.6 Channel growth simulation in 2D. 116

5.7 Alternative mode of channel growth. 116

5.8 Channel growth simulation in 3D. 117

5.9 Modeled cave example 1. 118

5.10 Modeled cave example 2. 119

5.11 Modeled cave example 3. 120

5.12 Additional cave screenshots. 121

5.13 More cave screenshots. 122

5.14 Thinning of caves. 126

6.1 Summary of contributions (Part 1). 130

6.2 Summary of contributions (Part 2). 131

A.1 River rendering pipeline. 139

A.2 Non-manifold edge removal. 142

A.3 Non-manifold vertex removal. 142

A.4 Voxel thinning. 144

B.1 GPU reduction. 150

B.2 Perimeter calculation for GPU coast model. 151

B.3 GPU implementation of coastline simulation. 153

B.4 Results of GPU coastline simulation. 153

B.5 Performance of GPU coastline simulation. 154

B.6 Closer look at dependence in GPU coastline simulation. 155

B.7 Performance of third generation CPU coastline simulation. 156

xvii

Chapter 1

Introduction

When geometric representation of objects for use in computer graphics is achieved with
procedural modeling, one of the modeling goals is typically the development of a construc-
tion procedure that encapsulates aspects of shape that are tedious or impossible to create
by hand. An algorithmic solution to such modeling problems is desirable, since a well-
designed construction algorithm offers the flexibility of generating similar shapes without
changing the basic structure of the algorithm. One of the most popular examples of pro-
cedural modeling is that of fractal shapes, which can be difficult to draw without using
a computer due to both the large amount of detail they may possess and because their
defining mathematical properties need to be translated into algorithmic form for drawing.

Procedural construction of geometric models of physical objects is a closely related
modeling problem. In a basic form, the problem can be reduced to constructing frac-
tals, as fractals resemble many natural objects. For example, a random walk looks sim-
ilar to a coastline, because both objects can be considered to be planar curves and have
equal amounts of detail at different levels of magnification. However, a coastline con-
struction based on random walks also has some undesirable properties: it may contain
self-intersections and it can not create plausible outlying islands. In general, explicit frac-
tal synthesis motivated by a resemblance between a physical object and a fractal can not
capture aspects of the physical object that go beyond the resemblance, especially if the
resemblance has no deep physical meaning. Similarly, the lack of physical interpretation
also tends to be an obstacle for generalizing a construction procedure to include additional
features of the physical object.

A better solution to the modeling problem integrates a physical model with the proce-
dural approach. Intuitively, the appearance of an object might arise as a result of changes

1

it undergoes due to a natural process, such as erosion. A physical model of the process
can provide a formulation of the behavior and a corresponding simulation, which can be
incorporated into the construction algorithm of the procedural method. The difficulty
in developing procedural construction algorithms using this scheme comes from the way
the simulation component is abstracted from geometry. For example, it is possible that a
physically-based simulation is formulated in 1D, when the goal is to construct a 2D geo-
metric representation. This tends to be a problem with simulations built on reductionist
formulations that lack a way to express any behavior that is not explicit in the underlying
model. In general, the simulation may be structured based on a set of “rules” different
from the construction rules used in the procedural modeling component.

physical procedural object
model model model

simulation simulation appearance

self-organization

geometry

behavior

fractal
character

erosion
features

Figure 1.1: Flow of model development in procedural modeling with aspects of simulation
and self-organization.

One of the main themes of my research is to remedy the disconnection between the
physical and the procedural models by constraining the type of physical models to those
that incorporate principles of self-organization. I consider most simulations to exhibit
some aspects of self-organized behavior in the form of state-changing events that can cause
other events. For example, in a simulation of the heat equation, when the temperature of a
location is raised, that location propagates heat to its neighbors. Additionally, my approach
requires the simulations to be directly usable as a construction algorithm in the procedural
model, as illustrated in Figure 1.1. Since this requirement is met by simulations that are
structured around propagation of state changes between neighbors in a discretization of a
problem domain that eventually becomes the geometric representation of a given physical
object due to emergent behavior, I consider this requirement to be a constraint on the
type of self-organized behavior underlying the simulations. So, the scheme of Figure 1.1

2

also implies the main step of my development process for modeling a given object, which
is designing a simulation that acts on a geometric representation of the object and shapes
it according to a self-organized formulation of its behavior.

The restricted type of self-organized simulations that I use in my approach is capable of
constructing objects with fractal character in an implicit way, through emergent behavior.
Therefore my approach can be an alternative to procedural modeling based on explicit
fractal synthesis, but with a physical justification that links the construction procedure
to the dynamics of the corresponding physical system. The property of the simulations
that causes the fractal character to emerge is the propagation of state changes, which can
distribute themselves at different length scales in a fractal manner. A physical theory
of fractal dynamics called self-organized criticality (SOC) explains this behavior as the
avalanching property of a class of physical systems. However, propagation of state changes
similar to avalanching is not limited to the evolution of SOC systems. Therefore, in my
modeling approach I extend avalanching to a general modeling paradigm for developing
simulations that exhibit emergent behavior due to propagation of state changes.

In simulations of the effects of fluvial, thermal, and aeolian processes, the state chang-
ing avalanches take the form of avalanches of erosion, making construction of erosion-
related features a natural application of my modeling approach. Simulations of erosion
based on avalanching construct objects that exhibit both fractal character and erosion fea-
tures, which is a combination that is difficult to achieve using techniques based on explicit
fractal synthesis, due to their dissociation from physically-based models of erosion. The
avalanching paradigm also has the benefit of abstracting erosion-related behavior, so that
the modeling process for the physical systems that exhibit erosion can proceed in a unified
manner.

In general, modeling of features produced by erosion is desirable in procedural modeling,
because erosion features make models of natural landforms look realistic. This is another
reason why I have focused on developing my modeling paradigm to emphasize erosion and
also constrained the domain of my simulations to discretized 3D surfaces and volumes. The
discretization, in combination with my concept of self-organization in simulations, forms
the basis for a common procedural modeling framework that I have created to encompass
my methodology. I have applied my framework to modeling of various types of landforms,
such as dunes, coastlines, rivers, and caves. Here is a summary of my contributions:

1. I developed avalanching as a general modeling paradigm for self-organized simu-
lations and designed a corresponding agent-based framework for implementing the
simulations. I have shown that my methodology unifies the modeling process for

3

(a) coastline (c) rivers (e) protochannels

(b) island interior (d) terrain (f) cave channels

Figure 1.2: Simulation examples produced with my procedural modeling framework.

simulations of erosion-related features on terrains and inside porous rock. I also
demonstrated additional benefits of avalanching, such as controlling the amount of
folding in coastline shape and modeling rivers as channels that have width.

2. Among several coastline erosion models that I have implemented using my framework,
I contribute a coastline erosion model that uses the avalanching paradigm to change
the fractal character of the resulting coastline and control its “foldedness”. My
coastline model is also able to produce coastlines with mixed behavior and construct
island interiors (Figure 1.2(a, b)).

3. I contribute a model of river-like erosion on terrains (Figure 1.2c) that reproduces
several types of self-organized behavior: competition between emerging channels,
tributary capture, convergent and divergent flow, and formation of primary and sec-
ondary valleys. My model is also able to produce wider conduits created by con-
fluence of channels and realistically handle accumulation of water into flooded areas
and lakes. The latter two features are new for self-organized simulations based on
emergent behavior described by SOC.

4. I combine my coastline and terrain erosion models in a two-part method of modeling

4

terrains (Figure 1.2d). The first stage creates a terrain with controllable appearance
and desirable fractal and hypsometric characteristics, while the second stage adds
river-like channels and effects of diffusive and advective erosion caused by the flow
of water in the channels. Both stages accomplish their tasks using formulations of
erosions based on my avalanching paradigm. I evaluate the resulting terrains using
spectral and hypsometric (area-altitude) analysis. The novelty of my method is two-
fold: first, it is a procedural method that uses only self-organization principles to
create terrains with hydraulic erosion features, and, second, it unifies modeling of
erosion features associated with coastlines and rivers .

5. I contribute a two-stage model of subterranean channel growth due to dissolution.
The first stage describes protochannel development (Figure 1.2e) and the second stage
models further channel behavior (Figure 1.2f), generalized from my model of river-
like erosion. The novel feature of the second stage of the model is its combination
of self-organization of flow and pressure, which at the time of this writing makes my
model the only of its kind, as well as the most expressive procedural model of cave-
like channels in terms of its ability to represent a special type of zigzagging behavior
commonly exhibited by cave channels.

5

A man of true science uses but few
hard words, and those only when
none other will answer his purpose;
whereas the smatterer in science
thinks, that by mouthing hard
words, he proves that he
understands hard things.

The World in a Man-of-War
Herman Melville

Chapter 2

Background and Previous Work

2.1 Fractals

Many naturally occurring landforms, such as coastlines and terrains, have prominent fractal
characteristics. That is why, in a broad sense, all methods used to model such objects in
computer graphics rely on fractal synthesis. However, in some modeling contexts it is
possible to construct geometry by explicitly synthesizing a number of fractal objects whose
fractal character is appropriate in a high-level way. This application of fractal synthesis is
a part of a classical modeling approach, called ontogenetic modeling.

This chapter explains what it means for a shape to have a fractal character and describes
several methods of explicit fractal synthesis that are suitable for ontogenetic modeling. The
examples of fractal synthesis algorithms illustrate several issues that are relevant to the
development of my own modeling approach, which creates fractals implicitly. First, spectral
density is a useful tool for assessing such aspects of a fractal as roughness and self-affinity.

7

Second, fractal synthesis can suffer from several kinds of artifacts. Third, modeling based
on fractal character alone does not provide for the semantics of features that are necessary
to reproduce the effects of erosion.

2.1.1 Self-Similarity

It is possible to view a fractal as a set of geometric points. This interpretation makes it
simple to state some essential relationships between fractals.

Definition 1. Relationships between fractals.

Equality relationship: fractals F and G are equal if they are made up of the same set
of points up to a fixed translation or rotation.

“Part of” relationship: fractal G is a part of fractal F if the points of G are contained
in F up to a fixed translation or rotation.

Scaling relationship: the set of points in a fractal F can be scaled by a nonzero factor
s producing a new fractal s · F .

Self-similarity: a fractal F is self-similar if it can be divided into several identical parts
G1, G2, . . . , Gp and there is a scaling factor s such that s ·Gi = F for each Gi.

Let M be a generalized measure of length in dimension D. In other words, M measures
length for D = 1, area for D = 2, and so on. M is measured in the same units as εD,
where ε is the ruler size. Consider measuring the area of the square in Figure 2.1a, which
is self-similar with p = 9 and s = 3.

Since s = 3, using ε = 1
s

= 1
3

yields an area of
(

1
3

)2
for any one of the nine small

squares. To sum the areas of the small squares and obtain the area of the original square,
it is possible to either use the value of p, which is explicitly known due to self-similarity, or
to recover p using an observation about the relationship between p and s. This observation
is that p = sD for any D that is a positive integer.

It is clear that the square belongs to a class of objects that restrict the choice of p and s
in such a way that D can only be a positive integer. A type of fractals called deterministic
self-similar fractals (defined below) do not share this restriction. To define such objects, it
is necessary to generalize M to work in a dimension that is a positive real number. Based
on the example of measuring the area of the self-similar square, M must satisfy

8

(a) (b)

Figure 2.1: Self-similar objects: (a) [0, 1] × [0, 1], (b) diagram representing the Sierpinski
triangle.

M(F) = p ·M(Gi)

M(F) = sD ·M(Gi), (2.1)

where F and Gi are as in the definition of self-similarity. Note that the relationship p = sD

is recovered, but now D can be a positive real number.

Definition 2. A deterministic self-similar fractal is a self-similar object such that if it is
divided into p identical parts and it is self-similar to them with the corresponding scaling
factor s, then its dimension is D = log p

log s
and D is a positive real number.

Figure 2.1b shows the first few steps of constructing the Sierpinski triangle, but it should
be understood as if the construction was carried out completely. The entire construction
is self-similar to the colored part with parameters p = 3 and s = 2. It is also self-similar
to a single one of the shaded triangular regions with parameters p = 9 and s = 4. Thus
the fractional dimension of the Sierpinski triangle is log 9

log 4
= log 3

log 2
≈ 1.585.

Deterministic self-similar fractals, such as the Sierpinski triangle, are defined using the
exact relationship p = sD, which necessitates that the whole object is self-similar to p
identical parts, which become equal to the whole when scaled by a factor s. However,
p = sD arises from a notion of measurement as described in Equation 2.1. This makes a
further generalization possible.

Definition 3. A fractal is statistically self-similar, if for a given ruler size ε = 1
s

Equa-
tion 2.1 holds in an average sense, or, equivalently, the scaling relationship p = 1

εD
holds

on average.

9

The above definition makes use of an explicit ruler size in place of the fixed parameter
s. Similarly, it is possible to de-emphasize the parameter p. If F is a statistically self-
similar fractal, then M(F) ≈ p · εD in a statistical sense. So it is possible to express the

self-similarity relationship between F and its sub-parts, using p ≈ M(F)
εD

. If F is a curve,
this provides a way to measure its regular D = 1 length:

L(ε) =
M(F)

εD
· ε = C · ε1−D (2.2)

Thus, if F is a statistically self-similar curve, the plot of L measurements corresponding
to a set of selected ruler sizes ε should show a power relationship. The slope of a log-log
plot of the same data, called a Richardson plot, should be close to constant and can be
used to find the value of D. One of the first examples of this procedure was to estimate
the fractal dimension of the coast of Great Britain. Since the slope of the plot is nearly
constant, it is possible to conclude that the coastline is a statistically self-similar curve.
Kaye’s text provides a more detailed discussion of using Richardson plots to analyze fractal
curves [28]. I discuss fractal dimension of coastlines in the context of procedural modeling
in Section 4.4.4.

2.1.2 Self-Affinity

Interpreting fractals as sets of geometric points makes it possible to give the points coor-
dinate values. In a given coordinate system, the uniform scaling that characterizes self-
similarity is the same as equal scaling along all defined axes. This suggests a generalization
of the concept of self-similarity by allowing scaling that is not the same in all directions.
One generalization of this kind is self-affinity, which is usually stated in a functional setting.

Observe that some fractals can be expressed as graphs of functions. The present dis-
cussion is limited to considering functions of just one or two variables. In a 1D setting, the
graph of a function f(x) is the set of points {(x, f(x)) | x ∈ U}, where U is the domain of
f ; in a 2D setting, the graph is {(x, y, f(x, y)) | (x, y) ∈ U}. Now, distinguish the direction
of the ordinate axis and consider two ways to scale a graph:

(~x, f(~x)) 7→ (~x, f(b~x))

(~x, f(~x)) 7→ (~x, cf(~x))

10

To test f for self-similarity, set c = 1
b
, because the scaling should be uniform in all

directions. Select a subset of the graph and apply both scaling operations to it: (~x, f(~x)) 7→
(~x, 1

b
f(b~x)). The scaled subset should match the whole graph (up to a translation), which

can be written as f(~x) = b−1f(b~x). A generalization of this property motivates the
following definition of self-affinity. The text of Barabási and Stanley [2] contains a more
detailed discussion.

Definition 4. A function f is self-affine if f(~x) =
(

1
b

)α
f(b~x). The function is statistically

self-affine if the relationship holds in an average sense. The graph of f is a (statistically)
self-affine fractal.

Calculating the fractal dimension D of a self-affine fractal is less straightforward than
in the self-similar case. It is possible to cover the fractal with boxes whose size in D
dimensions is εD and recover the relationship p ≈ M(F)

εD
, which is characterized by D.

However, using this relationship to estimate D can lead to an ambiguity based on the size
of ε. Voss [68] discusses this issue in the context of fractional Brownian motion.

Mountains are an example of (statistically) self-affine fractals, because looking at moun-
tains from the side and zooming away from the horizon makes the mountain profile appear
flatter, suggesting unequal scaling in the height direction.

2.1.3 Fractional Brownian Motion

Definition 5. Fractional Brownian motion (fBm) is a statistically self-affine fractal that
can be expressed as the graph of a function B(~x) that satisfies

E(|∆B|) ∝ ||∆~x||H , (2.3)

where E denotes expected value and 0 < H < 1. In the special case when B is a function
of one variable and H = 1

2
, B becomes a trace of the familiar version of Brownian motion,

which is a random walk.

To see that fBm is self-affine consider that scaling ~x to b~x scales ||∆~x||H to bH ||∆~x||H .
Since the factor bH is a constant, the value of B(~x) also becomes scaled by bH since B(~x)
can be obtained from deltas via a summation. In other words, H = α from the definition
of self-affinity.

Now consider the 2D case in which fBm is a surface. Walking along this surface from
one point to another means taking several ∆~x steps in the domain, finding the appropriate

11

values of ∆B, and summing them to find the destination point. Each step can be viewed
as encountering a fault (a jump) in the surface that forces the walker to rise or descend by
the corresponding amount ∆B. Indeed, one way to model an fBm surface is to start with
a plane and apply a repeated faulting process to it, such that it selects an arbitrary line
in the domain and raises the surface on one side of the line. If the location of the faults
follows a Poisson distribution and the change in height across the faults has a Gaussian
distribution, the result approximates a Brownian (H = 1

2
) fractal. Saupe and Voss provide

more detail on this procedure [59, 68].

Mandelbrot proposes that synthesis of fBm traces can serve as a suitable model for
the Earth’s surface. The justification for this procedure is that the cumulative effect of
faulting produced by the motion of tectonic plates is to create a pattern of height changes
in a given direction that is similar to a trace of fBm [34].

(a) H = 0.3 D = 1.7 (b) H = 0.5 D = 1.5 (c) H = 0.7 D = 1.3 (d) H = 0.9 D = 1.1

Figure 2.2: The coastlines, or level sets, of fBm terrains. The bottom row shows fBm
terrains with different parameters H and the top row shows a corresponding level set, as
a set of islands. D is the fractal dimension of the coastline as a curve.

This type of fractal model for a planet suggests a unified perspective on coastlines and
terrains from the point of view of using fractals to generate them. Given a terrain, coastlines
can be produced by simply flooding it to a certain level. In other words, coastlines are
level sets of terrains. Constructing a level set of a graph of a self-affine function removes all
points except for those that are at a fixed height, which ends up removing the dimension in
which the full graph has to be scaled differently for the self-affine relationship to hold. So a
level-set of a self-affine fractal is self-similar. Therefore, it is consistent to model coastlines

12

as self-similar fractals and terrains as self-affine ones. Figure 2.2 illustrates this idea. In
Section 4.3.4 I propose a combined method of modeling terrains and coastlines that also
relies on the level set connection, but can produce additional hydraulic erosion features
caused by flow of water over the terrain.

2.1.4 Spectral Character of fBm

Informally, the Fourier transform allows a function to be represented in terms of complex
exponentials eiθ = cos θ + i sin θ. Such a representation is called a spectral or frequency
domain representation and contains information about the frequency and amplitude of
periodic signals (corresponding to the complex exponentials) that make up the behavior
of the function in question. Since under sufficiently general conditions the original space
domain function can be recovered with an inverse transform, the spectral representation
can be considered to uniquely determine the function.

To apply the above concepts to fractals such as fBm, consider that those fractals have
a functional representation and in practice are discretized on a grid. Therefore, let such a
fractal be represented as a complex array of N uniformly spaced samples: (f [0], . . . , f [N −
1]). The frequency domain representation is also going to be a similar array of N points
computed using the discrete version of the Fourier transform defined below.

Definition 6. The Discrete Fourier Transform (DFT) of (f [0], . . . , f [N−1]) and its inverse
are

F(f)[m] =
N−1∑
n=0

f [n]e
−2πinm

N (2.4)

F−1(f)[m] =
1

N

N−1∑
n=0

f [n]e
2πinm
N . (2.5)

Spectral density is a concept closely related to the Fourier transform. Although there
are several alternative definitions of spectral density, I have chosen the following definition,
because I intend to use the concept primarily in a qualitative way and in the setting of
functions discretized on a grid.

Definition 7. For a discretized set of samples f the spectral density is

S(f)[i] =
|F(f)[i]|2

∆s
, (2.6)

13

where 0 ≤ i < N , N is the number of samples, and ∆s is the uniform spacing between the
samples. S(f)[i] also corresponds to frequency θ = i∆s and can be equivalently denoted
as S(f)(θ).

This definition is sufficient to plot the spectral density and observe the important
frequency-domain property of fBm stated in Theorem 2.1.1. Additionally, the spectral
density plot can show whether a synthesized terrain contains all the detail its level of
discretization allows (i.e., all of the possible frequencies are present). It can also reveal
creasing artifacts in the space domain representation of the terrain.

Theorem 2.1.1. If an instance of fBm is discretized as a set of samples f , then for
β = 2H + 1

S(f)(θ) ∝ 1

θβ
. (2.7)

Because my definition of spectral density is not a common one, I include the proof of
the theorem in Appendix A.1. The power falloff relationship provides a way to compare
different ways of constructing fBm that are used in procedural modeling, as discussed in
the following section. Similarly, I use spectral density plots when I analyze the results
of my procedural modeling method, which involves generating approximately self-affine
terrains.

2.1.5 Fractal Synthesis

This section describes three methods of explicit fractal synthesis: spectral synthesis, ran-
dom midpoint displacement, and noise-summing. I use the spectral synthesis method to
illustrate Theorem 2.1.1 and introduce the triple-log plot of spectral density, which I use in
subsequent chapters to visually assess whether a terrain possesses an approximately self-
affine character (Sections 3.1.3, 4.3.2, 4.3.4, and 4.4.4). My examples of using the other
two construction methods, random midpoint displacement and noise-summing, also show
the utility of the spectral density plot and, together with a concluding discussion of onto-
genetic modeling, serve to highlight a possible weakness of procedural modeling schemes
based on fractals.

Discretization of a fractal on a grid combined with the recursive nature of fractal shape
make it tempting to model levels of detail in a fractal explicitly, i.e., in a multi-resolution
manner, which causes several artifacts, such as creasing (discussed further below and in
Section 3.1.2). A major aspect of the design of my own modeling scheme is implicit

14

synthesis of fractal character that avoids using separate levels of detail. In my simulations,
this is possible not only for terrains, but also for channel networks with streams of different
size, which can appear to exist on separate levels of detail.

Spectral Synthesis

Voss [68] explains that fBm, as a class of random functions, is characterized by its spectral
density. The effect of changing β in Equation 2.7 has an analogous effect to changing H
from the definition of fBm (Figure 2.2). As a consequence of this relationship, one way to
generate fBm is to synthesize the appropriate spectral density in the frequency domain and
use the inverse DFT to obtain space domain samples. Saupe [59] describes this procedure
in detail.

(a) (b)
0.205, 0.472

(c)

Figure 2.3: An fBm synthesis method. The plot in the center shows the magnitude of
frequency domain samples (rescaled and cut off), which are generated first. Inverse DFT
produces the result on the left. The triple-log plot on the right highlights a power rela-
tionship in the frequency domain. RMS error and R2 value for a linear fit are stated at
the bottom of the log plot.

Figure 2.3 demonstrates the construction procedure, which becomes statistically close
to fBm with larger number of grid samples. Note that the frequency domain plot displays
the magnitudes of frequency domain samples for convenience. These are proportional to

1
fβ0

with β0 = 1
2
β. The power relationship is apparent in the triple-log plot as a linear

falloff from its center. By comparison, the original plot of spectral density (Figure 2.3b) is
more difficult to interpret, especially when it comes to the values corresponding to smaller
frequences (away from the center) whose magnitude is small compared to the values in the
center of the plot.

I use spectral analysis as a tool for assessing the fractal character of terrains, including
those created procedurally with my method (Sections 4.4.4 and 4.4.5). To compare the

15

spectral density plots of different terrains more precisely, I fit a linear function to the
spectral density data and compute two values that characterize the quality of the fit: RMS
error and the coefficient of determination (Figure 2.3c). I state these two values at the
bottom of every log plot of spectral density. Section 2.1.6 provides the details of the
procedure.

Modern View of Random Midpoint Displacement

One of the basic methods of fractal synthesis is random midpoint displacement. It can
generate a fractal mountain from a coarse shape by subdividing it and adding a random
offset to the new vertices, generating increasingly finer levels of detail. In general such an
approach has two shortcomings: the creasing due to the dependence of finer scales on the
coarser ones and artifacts introduced by the subdivision process itself (without the random
offsets). Miller explores these issues for several types of random midpoint displacement
schemes, including a common one called diamond-square [37].

(a) (b)

Figure 2.4: (a) the diamond-square construction adds new vertices (in red) inside squares
then inside diamonds; (b) 4-8 subdivision adds new vertices (in red) in topologically the
same way.

Figure 2.4a illustrates the diamond-square construction, which produces a new level
of subdivison by adding new vertices inside grid squares followed by adding new vertices
inside diamonds. Note that it is necessary to carry out both steps to produce the next finer
subdivision level of a grid. Placement of the new vertices at the midpoint of the squares
and diamonds contributes to several types of artifacts in the interpolating surface of the
initial coarse shape: sharp peaks and regularly occurring bumps seen in Figure 2.5(a, b). I
propose to update the algorithm with a better interpolant, which avoids these problems by

16

using 4-8 subdivision, introduced by Velho and Zorin [67]. This is different from Miller’s
solution to the problem, which substantially pre-dates the work of Velho and Zorin.

Figure 2.4b shows the result of splitting a grid according to 4-8 subdivision, which is
topologically the same as the result of the diamond-square process. However, 4-8 sub-
division adjusts the position of existing vertices when it adds new ones, resulting in an
interpolant that is C4 everywhere except at vertices of degrees other than 4 and 8, which
are the only types of vertices created by the subdivision process. Degree 8 vertices ap-
pear because 4-8 subdivision treats a grid as having additional edges (shown in grey in
Figure 2.4b) that split quadrilaterals into triangles in a parity-based pattern.

Compared with the grid-based definition of the diamond-square process the extra edges
allow each step of 4-8 subdivision to use the same procedure (splitting of the grey edges in
Figure 2.4b). Moreover, 4-8 subdivision is in a well-defined state after every step, which
makes it possible to avoid increasing discretization density more than necessary due to
applying the subdivision steps two at a time. One further advantage of 4-8 subdivision
is that it readily extends to an adaptive scheme that increases subdivision density locally
near fine features. I use the adaptive variant of 4-8 subdivision in Section 5.3.1.

(a) (b) (c) (d)

Figure 2.5: Comparison of the results of interpolation in the diamond-square construction
and 4-8 subdivision: (a)-(b) front and back views of the result of the diamond-square
construction, (c) result of 4-8 subdivision with the coarse shape frozen as in the diamond-
square construction, (d) 4-8 subdivision applied everywhere in the interior of the grid.

Figure 2.5 compares the results of applying the diamond-square process (a, b) and 4-8
subdivision (c) to an initial coarse shape determined by a 3×3 grid of points, in which the

17

central point is raised above others. Figure 2.6 completes the fractal mountain modeling
process by adding random displacement to the two interpolants. The diamond-square
interpolant suffers from regularly occurring bumps and a sharp peak. Even if they can
be hidden by random displacements, these artifacts are unavoidable consequences of poor
interpolant shape. In contrast, the 4-8 interpolant does not produce the bumps and can
also smooth away the sharp peak in the initial shape (Figure 2.5d). However, neither type
of interpolant solves the fundamental problem of statistical dependence between fine and
coarse detail in this type of construction.

As an example of using the triple-log density plot to assess scaling behavior of fractals,
compare the plots in Figures 2.6d and 2.3c. The presence of the approximately linear falloff
in Figure 2.6d demonstrates that random midpoint displacement is an approximation of
fBm.

18

(a) (b) (c)

0.131, 0.602

0.142, 0.608

(d)

Figure 2.6: Fractal mountains constructed with the classic diamond-square process (top
row) and the modernized algorithm that uses 4-8 subdivision (bottom row): (a) fractal
mountain, (b) periodized version, (c) DFT of the periodized version (rescaled and cutoff),
(d) triple log plot of DFT (rescaled).

Noise-Summing

A technique frequently used in computer graphics to approximate the results of more so-
phisticated methods, noise-summing starts with an irregular function and combines it with
scaled down versions of itself in a multi-level way. The summation creates an approximate
fractal character by introducing detail at different length scales. A common choice for the
underlying function is a noise function, which is a special function with irregular bumps,
not a fractal noise.

Figure 2.7 shows the result of applying the noise-summing procedure to Perlin’s simpli-
cial noise [22]. Summing Perlin’s noise is a common procedure for approximating fBm [38].

19

(a) (b)

0.073, 0.837

0.071, 0.848

0.099, 0.723

(c)

Figure 2.7: Fractal terrain constructed via summing varying numbers of noise levels (num-
ber of levels doubles in each row): (a) terrain, (b) periodized version, (c) triple log plot of
DFT (rescaled).

The spectral density plot of the result exhibits the characteristic 1
fβ

falloff, but does not

contain many of the higher frequencies, which correspond to finer levels of detail (frequency
increases towards the edges of the plot). This example demonstrates that the spectral den-
sity plot can be used to determine whether a construction procedure creates fine or coarse
detail. It is desirable that a finished terrain contains as much detail as possible for its
discretization density. In particular, the terrain will appear too smooth if it is missing
detail corresponding to the higher frequencies.

Comparing Figures 2.3c and 2.7c shows that many levels of summing are needed to
produce the highest frequencies possible at a given discretization density. Using so many
levels of noise is computationally expensive. As a general implication for modeling, explicit

20

addition of one or several levels of detail using a procedure like noise-summing is unlikely
to provide the object with a full range of detail that its discretization density can support.

Ontogenetic Modeling

Modeling a mountain or a terrain with an approximation to fBm produced with the
diamond-square algorithm or noise summing is an example of the approach called on-
togenetic modeling, i.e., modeling based on visible morphological character. This approach
is advocated by Musgrave among others [38] for its ends-driven simplicity. Although the
method is not physically-based, its use of fBm is fundamentally justified, because the shape
of many natural objects contains 1

fβ
noise [68].

Figure 2.8: Illustration of the creasing artifact.

Explicit fractal synthesis used in ontogenetic modeling can be challenging to apply to
problem settings that involve a diverse set of features. If these features appear to exist on
different scales, it can be tempting to model them as a multi-level pyramid that can be
later composited into a single object. However, Mandelbrot [34] warns that such human-
recognized features can be illusory. Furthermore, combining distinct levels of detail can
create an artifact called creasing.

Creasing appears because the combining can only be done differentially by offsetting
the finer levels from the coarser ones. This introduces statistical dependences between the
finer features, because they are combined with the same (or bordering) coarser features.
The statistical dependence typically manifests itself visually as sharp creases, which can
be made less apparent by smoothing. The effect of the shape of the coarsest level on the
complete object can be especially noticeable. Figure 2.8 demonstrates a terrain, reproduced
here from Section 4.4.5, that contains a visible grid of creases.

Another challenge for using fractal synthesis to model objects with a diverse set of
features is related to modeling objects affected by erosion. Some erosion features can be
related in complicated ways. For example, one stream can capture another as a tributary,
resulting in a wider stream. Similarly, a river can create a lake by flooding a valley. The

21

semantics of such feature relationships can not be easily expressed in terms of fractals in
a procedural way, even though it might be possible to model these features manually from
pieces of fractals. However, a manual or automated process that naively combines fractals
will be exposed to similar issues as modeling using explicit levels of detail.

Therefore, for my modeling approach, I have chosen a scheme (Chapter 3) that empha-
sizes physically-based creation of features, such as rivers, and creates approximate fractal
character in an implicit way, as a secondary goal. Since my approach does not involve
combination of multi-resolution features, it avoids the concomitant issues. However, the
method may be unable to prevent artifacts such as creasing from arising due to extrinsic
factors, such as initial conditions. That is why when I designed simulations based on my
method and framework, I still had to consider issues related to ontogenetic modeling.

2.1.6 Spectral Analysis of Terrains

For a terrain to approximate fBm (i.e., to exhibit self-affine fractal character), the terrain’s
spectral density must approximate the characteristic spectral density falloff of fBm. I have
developed the following procedure to compare spectral densities numerically. The results
of the procedure are two numbers, RMS (root mean square error) and the coefficient of
determination (R2), which I report with every spectral density plot.

1. Collect the data D = {(r0, z0), . . .} from the logarithmic plot of spectral density.

2. Compute the least squares fit of D to a linear function L.

3. Find a transformation T that maps L to z(r) = 1− r.
4. Compute the least squares fit of T (D) to z(r) = 1− r.
5. Report RMS and R2 from the previous step.

Note that the data D (step 1) are in cylindrical coordinates, but the spectral density
plots use rectangular coordinates. This limitation is due to the difficulty of drawing the
necessary curved elements on a logarithmic cylindrical plot. So, it is necessary to apply
the conversion ri =

√
x2
i + y2

i to the raw data of the plot; the z coordinate is unchanged.

Additionally, some of the raw data of the plots have to be removed before the analysis.
First, not all of the data are independent, because the frequency domain samples corre-
sponding to the spectral density plot encode a real function. Roughly, about half of the
data points have to be rejected for this reason, leaving 32770 for a 256×256 plot. Second,

22

data points with z < ε and data points in the 3×3 area in the center of the plot have to be
similarly removed, because log 0 is undefined. I choose ε = 0.001, which typically results
in about 0.03% data points rejected and never more than 3% with the following exception:
in some cases the spectral density plots have missing higher frequencies, such as the plots
in Figures 2.7, 4.23, and 4.26, so that about 6% of the data have to be removed, improving
the fit for the remaining data.

For a base of comparison, I generated 33 fBm terrains with varying seeds and H in
the range of [0.5, 0.98]. Voss states that H = 0.8 is a good choice for modeling of many
natural phenomena [68]. The resulting range for RMS was [0.199, 0.223]; the range for R2

was [0.331, 0.526]. So, to assess the falloff in a given plot of spectral density I carry out the
analysis procedure and compute the RMS error and R2 value. Values of RMS closer to 0
and values of R2 closer to 1 indicate that the linear fit is better. However, a logarithmic
plot of spectral density with RMS < 0.199 or R2 > 0.526 suggests that the corresponding
frequency domain data contains less noise than fBm.

2.2 Self-Organized Criticality

Self-organized criticality (SOC) is a theory of fractal dynamics in which a physical system
approaches an attractor state that is scale-free. This state is also called a critical state of
the system. Scale freedom is a concept related to self-similarity: when the features of a self-
similar object are examined with a ruler of a given size (i.e., under different magnification
levels), they are independent of the scale. That the critical state is scale-free implies that
a SOC process creates geometric features on all scales of the objects that it acts on, or
for all frequencies in the spectral representation. In general, avalanches of changes tend to
occur, causing the changes to be distributed over a range of scales.

A pile of sand is one of the simplest examples of a physical system obeying the theory
of SOC. The dynamics of this system cause the grains of sand to slip down steep slopes
and the resulting changes to the shape of the sandpile propagate via avalanches. By the
time the sandpile reaches the attractor state, the avalanches have propagated throughout
the entire system (in a statistical sense) and the features of the resulting landscape are not
tied to a specific length scale.

Duran [14] illustrates this behavior with the following 2D sandpile model. The sandpile
is discretized into slabs of sand of a fixed size. Slipping of sand occurs when the addition or
transport of a slab violates the sandpile’s angle of repose. The slabs can form avalanches
because the model requires a moving slab to transport the one directly underneath it.
Otherwise, introduction of more sand would only cause slabs to move one at a time.

23

The main implication of SOC for modeling applications, such as procedural modeling
of terrains, is the possibility of constructing shapes with fractal character in an implicit
way via self-organization. In particular, slipping of material due to a slope constraint is a
model of thermal erosion that causes material to break off and fall down due to weathering.
The following list summarizes SOC properties and why they are valuable for procedural
modeling.

Self-organization: The critical state of a SOC simulation is an attractor state. This is a
benefit for modeling, as the solution to the geometric modeling problem is also the
state to which the physical simulation converges. Additionally, self-organization de-
emphasizes the importance of the initial conditions of a SOC simulation in producing
the characteristic shape associated with the attractor state.

Link to dynamics: SOC simulates the evolution of certain physical systems by making
an explicit connection to the dynamics of the systems. This is a major advantage
over other modeling techniques that do not provide a justification for their method
in terms of physics. In particular, SOC is suitable for modeling the shape of objects
produced by fluvial and aeolian erosion.

Fractal character: SOC models produce objects that exhibit statistical self-similarity
without a need for explicit fractal synthesis. In some modeling contexts, such as the
sandpile example, this is all that is needed to capture the relevant aspects of the
shape of the physical system being modeled. However, to make it possible to adjust
the distribution of features in the attractor state in some way (such as by making one
locality appear rougher, for example), it is necessary to re-introduce some notion of
scale back into the system. Re-introducing scale generally means that the physics of
the adjusted system no longer respects SOC. This type of adjustment is also difficult
to control since dynamics, self-organization, and fractal character are inter-related in
SOC.

Avalanching: The state changing events that lead a SOC system to the critical state
occur in such a way that the probability of such an event occurring in a given location
increases if similar events have previously taken place there. In other words, state
changes are likely to cause chain reactions, or avalanches. I use this property to
simulate SOC-like physically-based self-organization in new modeling contexts and
adjust features that result from this process in useful ways.

24

2.3 Models and Simulations of Erosion and Material

Transport

My main goal is to design a procedural modeling framework that can construct various
types of erosion features in a common way. However, there exist many physical models of
erosion, as transport of material due to erosion is subject to complicated dynamics, which
are different in each specific case. Furthermore, not all conceptual models easily translate
into algorithms for procedural modeling of geometry. This section discusses some previous
work that includes both models of the physical phenomena related to erosion and modeling
of the effects of erosion in a geometric sense. At a high-level my own modeling approach is
a new way to develop a class of physically-based models of erosion for incorporation into
simulations that construct geometry suitable for computer graphics applications.

2.3.1 Dunes

The development and evolution of aeolian sand dunes occurs due to the transport of sand
grains by wind, primarily by a process called saltation. A sand particle undergoes saltation
when the aerodynamic forces that it experiences cause it to lift, moving away from the
surface. Eventually, the lift force diminishes and the particle sinks back to the surface in
a characteristic parabola-like trajectory.

Kroy et al. [31] present a model of this process for isolated 1D dune profiles based
on a sophisticated analysis of surface shear stress. This model shows how under certain
assumptions a Gaussian hill can evolve into a characteristic dune shape. Specifically, the
profiles can form a slip face, which is a steep slope on the lee side of the dune. The
functional setting used in this model is a limitation that prevents it from being extended
to a method capable of constructing 3D geometric models of dune fields.

Diniega et al. [12] take a similar approach to model interactions between dunes. As
smaller dunes, which move faster, catch up to larger ones, the dunes combine into a com-
plex, followed either by coalescence or ejection of a smaller dune in the downwind direction.
This information allows dune interactions to be classified based on characteristic variables
of the participating dunes. The final model of Diniega et al. operates on two separate
scales: it computes characteristic variables for each dune at the scale of individual dunes
and uses that information to determine what happens when the dunes collide at the scale
of the entire dune field. This is a model of dune field behavior only and is not directly
applicable to constructing dunes geometrically.

25

Werner [71] presents a 2D model in which the development of dunes occurs in a self-
organized way, based on the emergent properties of simplified dynamics of sand transport.
The essential feature of the proposed simulation is that each discrete slab of sand has a
probability of being transported a fixed distance in the wind direction. At the end of the
trajectory it can either be deposited or wind can transport it again. In a variation of
this basic procedure, there is no sand transport out of a shadow zone, which is a location
shielded from the wind due to the height of its neighbors. In addition to moving in
the wind direction, sand can also slip downslope when the erosion and deposition events
violate the angle of repose constraint by oversteepening a slope. This self-organized model
of sand transport is capable of constructing dune field geometry that reproduces several
different types of dunes found in nature. The simulated dunes also exhibit certain kinds of
realistic behavior, such as smaller dunes moving faster than larger ones. Werner provides
an interpretation of this phenomenon in terms of attractor dynamics, which suggests a
decoupling of dune development from the small-scale aerodynamics of sand transport.

Onoue and Nishita [42] synthesize terrains with dunes and sand ripples by using a
model that is similar to Werner’s. However, the simulation of Onoue and Nishita computes
a variable amount of sand and a trajectory of a variable length for each transport event.
These computations involve a heuristic, which affects sand transport in a way similar to
shadowing.

I have chosen to follow Werner’s approach to support construction of dunes within
my framework. The main reason is that more sophisticated reductionist approaches to
modeling dunes are not directly applicable in a computer graphics context, as it is not
their goal to construct a 3D shape that looks like a dune field. However, the reductionist
models of dune physics are still helpful, since they provide information about the behavior
of dunes.

2.3.2 Hydraulic Features

A large fraction of the literature on terrain generation is different from the focus of my
research in one of two ways: emphasis on manual modeling techniques rather than proce-
dural modeling and lack of emphasis on the synthesis of hydraulic erosion features. This
distinction is necessary for a clear discussion of relevant previous work that follows, as
procedural modeling frameworks combine ideas from many areas and can be difficult to
classify. For instance, many interactive terrain modeling frameworks use noise (i.e., a
building block of procedural modeling) to either generate additional surface detail or hide
transitions between manually placed features [20, 65, 23]. Additionally, fractal synthesis

26

can be driven by elevation data, such as in the terrain generation method of Parberry [45],
resulting in terrains with the same distribution of heights as natural eroded terrains, but
without erosion features like rivers.

A key concept that characterizes interactive approaches to terrain modeling is the use
of control curves to specify the shape of terrain features. Control curves have been used
to directly control the shape of fractal terrains [63], as locations for placement of patches
from exemplar terrains [72], as deformations in combination with voxel carving [20], and
as constraint curves for parameters such as elevation and roughness [23]. Notably, the use
of exemplar terrains in the method of Zhou et al. [72] allows the synthesized terrain to
incorporate some erosion features. However, since the patches are small compared to the
terrain the burden of modeling a large river network falls on the user. The control curve
concept may be realized not only in terms of splines, but also in terms of a combination of
discretized paths in a graph representing the terrain and cross-sectional profiles defining
the shape of terrain features [57].

In contrast to the modeling frameworks discussed above, there is a body of previous
work that contains true procedural modeling techniques that specifically emphasize for-
mation of hydraulic erosion features, usually by simulation. Kaye presents some early
work on simulating percolation of water through a 2D medium and random walks in a 3D
porous solid [28]. This type of simulation does not involve erosion, but it does address the
problem of modeling features associated with erosion, because it produces random walks
that are reminiscent of rivers in the 2D case. The connection of this modeling problem
to percolation theory is important historically, because it predates Mandelbrot’s work on
fractals.

On the other hand, it is possible to model river-like features in a purely synthetic way
by using fractals. Mandelbrot [34] describes such an approach that uses squigs, which are a
type of recursively-constructed curve. Prusinkiewicz and Hammel [49] integrate the squig
construction with a fractal mountain construction in a terrain modeling system. Figure 2.9
shows a river-like squig that I generated using my shape grammar system [25].

Terrains created using affine fractals like in the essays of Saupe and Voss [59, 68] can
serve as initial conditions for hydraulic simulations. For instance, the modeling method of
Musgrave et al. [39] synthesizes a terrain with locally-varying fractal character and applies
an explicit hydraulic erosion simulation to it.

Water simulation algorithms commonly appear as the main component of hydraulic
erosion simulations. Musgrave’s simulation is a type of water-column algorithm that assigns
a volume of water to each node of a terrain and transports excess water from a location to all
of its neighbors. The method of Roudier and Peroche [56] is similar, but transports excess

27

Figure 2.9: A river-like channel modeled using a squig.

water only to the lowest neighbor. However, when computing the associated amount of
erosion Roudier and Peroche use additional parameters having to do with the stratification
and faults in the underlying terrain. Additionally, the erosion computations rely on a graph
of flow paths to determine the upstream locations for each node. This is similar to the
area map concept, which is described further below.

In general, the water-column method stands out as a simple and versatile method of
simulating shallow water flow that can be adapted to different situations. For instance,
O’Brien and Hodgins [40] describe a variant of the algorithm that uses a formulation of
water flow based on hydrostatics and apply it to animating splashing water. To compute
water transport between neighbors in their version of the algorithm, Chiba et al. [9] use a
velocity field obtained from particle motion, which makes their method more appropriate
for mountain scenery, where the motion of water can vary a lot. Olsen [41] uses the water-
column method as a practical game-oriented algorithm for constructing eroded terrains.
Št’ava et al. [69] use a hydrostatic scheme similar to that of O’Brien and Hodgins in an
interactive GPU-based simulation of hydraulic erosion. Grønneløv and Jensen [21] extend
the water-column algorithm for use with an adaptively subdivided terrain.

As an alternative to the water-column method, more sophisticated types of water sim-
ulation have also been used to model the effects of hydraulic erosion. For example, Krǐstof
et al. [30] have demonstrated such a use of a water simulation based on smoothed particle
hydrodynamics (SPH). In their approach, Chen et al. [8] develop a similar SPH-based sim-
ulation and also perform laboratory experiments of levee erosion that allow the computer
simulation to be validated. Kamalzare et al. [27] enhance the SPH-based simulation with
a model of hydraulic conductivity of the soil.

Modeling schemes of another type do not involve a bona fide water simulation and
instead emphasize expected inter-relationships between the position of features like rivers

28

(a) (b)

Figure 2.10: Erosion model of Rodŕıguez-Iturbe and Rinaldo: (a) erosion acting on fBm
terrain, (b) drainage area map displayed using bars that correspond to the logarithm of
area.

and hills. The approach of Doran and Parberry [13] uses software agents to place features
appropriately. Other approaches start by creating a plausible river network and then
reverse engineering the terrain that fits it [4, 20, 65, 19].

One of the main ideas of a book by Rodŕıguez-Iturbe and Rinaldo [55] is that self-
organized criticality is a valid new way of understanding the evolution of river channels.
For a demonstration the authors present several versions of an algorithm for simulating a
river network as a graph that encodes a “contributes water to” relationship. This graph, or
area map, provides the information necessary to calculate the contributing area that drains
at the location of each node. Computation of the drainage graph based on eight possible
directions for each node of a regular grid is called the D8 algorithm. In the simulations
of Rodŕıguez-Iturbe and Rinaldo discrete erosion events cause the nodes of the area map
to become linked up as tributaries are captured. The authors go on to discuss the scaling
properties and optimality of the emergent drainage network.

Figure 2.10 illustrates the erosion model of Rodŕıguez-Iturbe and Rinaldo according
to my implementation (Section 4.4.5). Locations with the most contributing area are
situated downstream, as seen in the visualization of the area map (the height of the bars is
the logarithm of the drainage area). Note that rivers in the network are infinitesimally thin
and that they stop upon reaching a local minimum. Additionally, many river segments are
parallel because their direction is limited to one of eight possibilities according to the D8
algorithm.

Perron et al. [46] apply the area map concept in a more realistic way due to a PDE
formulation for the amount of erosion at each site. This model of erosion can be either
diffusion-dominated or advection-dominated. The authors study the growth of primary

29

and secondary valleys corresponding to these two cases.

As with other types of simulations, the implementation of hydraulic erosion in my
framework bridges the gap between physical models, such as SOC and percolation, and
constructing geometry for computer graphics applications. The SOC model of Rodŕıguez-
Iturbe and Rinaldo is a suitable starting point to achieve this goal. However, as discussed
by Tarboton [64], there are a few challenges with using area maps, such as handling of
combinations of convergent and divergent flow and consistent classification of flow direc-
tions near local minima. The improved version of the D8 algorithm, called D∞, splits
the flow from each site between two of its neighbors, making grid artifacts less apparent.
However, simulation of water collecting near a local minimum remains a major limitation
for a terrain modeling application that needs to track the evolution of lakes, as opposed
to the evolution of channel networks that area maps are suited for. One other modeling
limitation is ambiguity in deriving the width of rivers from an area map.

To resolve these issues, I have chosen not to use the area map concept in my model
and replace it with a specialized version of the water-column algorithm. This lets my
simulation produce lakes that gradually fill up and become drained by rivers. Explicit
simulation of water flow in my model also makes it possible for river networks to become
wider downstream due to input from the tributaries. My water-column algorithm is also
more flexible than D8 and D∞, because it allows water to flow from one site to any
combination of its neighbors. Finally, I have adopted a PDE formulation similar to that
of Perron et al. to model diffusion-dominated erosion features.

The design of my framework relies on using agents to organize the specific simulations,
including the hydraulic one. This relates my hydraulic erosion model to other terrain
modeling frameworks (e.g., the method of Doran and Parberry [13]) that also use agents
for constructing geometry. My model is also related to the modeling techniques that use
fractal synthesis, although the fractal characteristics of the erosion features that my model
produces arise in an implicit way due to self-organization.

2.3.3 Coastlines

One way to model coastlines is to synthesize fractal curves of an appropriate dimension.
For example, a looping Brownian trail divides the plane into interior and exterior regions,
despite any self-intersections. The border between these regions can serve as a coastline.
Ward provides examples of this construction [70]. Rauch uses trails of fBm in a similar
way [52]. However, as explained in Section 2.1.3, a more appropriate use of fBm in this
context is to synthesize an fBm terrain and use its level sets as coastlines.

30

Sapoval et al. [58] propose the following model of coastline erosion based on SOC. In
a grid of square finite elements that represent a region of land surrounded by ocean, the
coastlines are identified in an implicit way as the subset of land blocks that border on
ocean blocks. There is a force F that acts uniformly on each finite element of the coast
and can erode it based on its intrinsic resistance R and degree of exposure to the ocean. As
erosion events occur, the total perimeter of the coast L becomes longer, which attenuates
F according to the formula

F (t) =
f

1 + gL(t)
L(0)

. (2.8)

The parameters controlling the shape of the coast are constants f and g, as well as the
distribution of R. Acceptable results can be achieved with uniformly random R values.
The parameter f scales the force, while the parameter g scales the damping effect. The
resulting shape of the coast is a statistically self-similar fractal and is an attractor state of
the model.

Sapoval’s model of coastlines uses self-organization in a similar way to Werner’s model
of dunes and Rodŕıguez-Iturbe’s model of river basins. By selecting Sapoval’s approach
as a starting point for constructing islands in my framework, I have been able to use a
unified infrastructure for modeling all three landform types. I have also been able to extend
Sapoval’s model in several ways that are useful in different modeling scenarios.

In particular, applying my avalanching modeling paradigm has allowed me to develop
an extended model that can produce coastlines of different roughness. My approach also
allows coastlines with different properties to develop side-by-side and plausible interiors
for islands to be generated. I use a variant of my island interior generation algorithm to
construct initial conditions for my method of modeling terrains with rivers, corresponding
to the idea (described in Section 2.1.3) that coastlines are self-similar curves that are
level-sets of self-affine terrains.

2.3.4 Caves and Subterranean Channels

One particularly difficult modeling problem associated with the effects of hydraulic erosion
is procedural synthesis of channels that result from dissolution of carbonate rock, such
as limestone, by subterranean water flow. This physical process gives rise to a type of
landscape called karst and a class of caves called karstic caves. However, hydraulic erosion

31

in karst has several analogues, such as evacuation of melt water in ice and aeolian erosion
in sandstone, which can produce pseudokarstic landforms with similar topology.

This makes modeling of general dissolution caves a broad problem that involves many
different morphological sub-types, channels and systems of channels of different sizes, and
a variety of behavior exhibited by the channels as they carve the material that surrounds
them. Therefore, I distinguish two modeling sub-problems; first, the more abstract problem
of simulating the behavior of the channels as they grow and link up according to such
parameters as the presence of fractures in the surrounding rock, and, second, the problem
of constructing a cave system in all of its detail, such as conduits with different cross-
sections, dissolution features on the walls of conduits, and speleothems, or structures formed
by deposition, such as stalagmites. This division into sub-problems parallels the convention
used in some literature to refer only to enterable human-sized passages as caves.

Fractures that affect the permeability of the rock matrix that contains forming un-
derground channels cause them to twist and turn in a manner not unlike that of rivers
running above the ground. Furthermore, 3D channels link up into branching networks in a
manner similar to the 2D case, although capture of tributaries is a more complex behavior
in 3D (Section 2.4.2). One of the modeling approaches proposed by Boggus and Crawfis [6]
approximates the branching appearance of 3D channels with a 2D simulation of river-like
flow according to the area map concept (Section 2.3.2). As the scheme constrains any
constructed channels to lie in a plane, the heightmap representing the floor of the channels
is mirrored to create their ceiling.

Complexity of geometric data structures is a major obstacle to simulating more general
channels that can form arbitrary loops in 3D and features like multiple levels of passages
connected with waterfalls. Another modeling framework by Boggus and Crawfis [7] is based
on a specialized data structure called a prismfield, which is a type of generalized heightmap
capable of modeling overhangs. However, the framework is intended for sculpting caves
manually without the benefit of procedural modeling. The manual modeling problem is
perhaps better solved as part of a complete terrain modeling package, as exemplified by the
Arches framework developed by Peytavie et al. [47]. Arches incorporates implicit surface
modeling tools, so it can be used to create terrains with caves, and it also provides tools for
sweeping out passages with complicated cross-sections and appropriately placing collapsed
rock, which are necessary for modeling some types of cave passages.

The modeling framework of Cui et al. [11] retains procedural modeling capability, but
dispenses with simulation of water flow. The framework represents both cave chambers and
speleothems with voxels that are later polygonized into a mesh representation. The voxel-
based approach proves to be suitable for creating a plausible cave environment consisting

32

of a tubular passage with a cross-section derived from a noise function, stalactites, and
stalagmites. However, the level of detail is too great to use the method to construct a
network of passages, and the method lacks a model for simulating the development of such
a network in the first place. The framework of Cui et al. also does not model the growth of
speleothems. The growth of stalactites and stalagmites has been simulated by Tortelli and
Walter [66] using a simple approach that works directly on the polygonal representation of
the speleothems.

I approach modeling of subterranean channels with an emphasis on procedural elements
and self-organization, similar to how I model river-like channels (Sections 2.3.2 and 4.3.1).
In particular, I use my avalanching modeling paradigm with a specialized water flow sim-
ulation to construct channel networks based on emergent behavior of individual channels,
whose growth depends on their proximity to other channels. However, my model of the
growth of the constituent subterranean channels is different from the 2D case, because of
the effects of pressure that can cause water to creep upward along fractures or pores.

The novel part of my model for the 3D channels is combined self-organization of flow
and pressure that matches rules of channel development known from hydrogeomorphology
(Section 2.4.2). This formulation is sufficient to capture the most important aspects of the
phenomenology of channel growth that reflect development history of the constituent chan-
nels and produce channel networks with complex topology. However, my model emphasizes
channel behavior and does not also make provisions for the development of complicated
cross-sections and speleothems. This allows me to implement the model using a uniform
voxel discretization in my modeling framework and avoid management of level of detail
issues. Furthermore, construction of speleothems may be treated as a separate problem
that can be deferred to one of the existing models.

2.4 Hydrogeomorphologic Aspects of Erosion Features

Procedural modeling of natural landforms can utilize a varying degree of insight into the
shape of the landforms: from ontogenetic modeling that is based on visual appearance
alone to modeling via simulation of relevant physical processes. Information about shape
is valuable both for development of models and subsequent comparison of synthetic land-
forms to real ones. This section discusses two methods of evaluating the aggregate shape of
landforms from hydrogeomorphology: hypsometric analysis of terrains modified by water
and morphometric analysis of caves. Additionally, this section discusses the phenomenol-
ogy of cave-like channel formation (i.e., the behavior of the channels that results in their
characteristic shape). I use the aggregate shape properties to evaluate the landforms that

33

I produce with my simulations. The phenomenology of 3D channel formation serves as a
guideline for the development of my model of subterranean channels.

2.4.1 Hypsometric (Area-Altitude) Analysis of Terrains

Hypsometric (area-altitude) plots can help understand the effects of erosion on the mor-
phology of a landscape. The abscissa of the coordinate system of the plots is cross-sectional
area lying above a given height; the ordinate is the height. Normalization of the values on
the plots allows hypsometric curves to be compared without consideration for the dimen-
sions of the terrains they represent. Strahler [62] designed a family of curves that closely
correspond to most hypsometric plots obtained from real world data. The following equa-
tion produces the model curves using two parameters: the ratio of a to d and the exponent
z.

f(x) =

(
d− ((d− a)x+ a)

((d− a)x+ a)

a

d− a

)z
(2.9)

0 10

1

(a)

0 10

1

(b)

0 10

1

(c)

Figure 2.11: Families of hypsometric curves: (a) a
d

= 0.01, (b) a
d

= 0.1, (c) a
d

= 0.5. Each
plot contains curves for several representative values of z.

Figure 2.11 shows some representative hypsometric curves. Qualitatively, the curves
tend to have a concavity in the upper part and a convexity in the lower part, although it
is possible for a curve to be entirely convex or concave. The curves that transition from
convexity to concavity approximately in the middle correspond to terrains that are near the
equilibrium stage of erosion. Generally, evolution of terrains involves three broad stages:
youthful, equilibrium (or mature), and old age. In terms of hypsometry, the equilibrium and
old age stages are indistinguishable except in the situations when isolated rock outcroppings

34

called monadnocks are present. Therefore Strahler suggests classifying hypsometric forms
as inequilibrium, equilibrium, and monadnock.

The inequilibrium category of curves has a larger integral than the equilibrium stage,
while the monadnock category has a smaller integral. As monadnocks eventually collapse,
normalization of the height and area restores the hypsometric curve to its equilibrium
shape, which is roughly symmetric about the center of the curve. Figure 2.12 illustrates
the three categories of curves.

(a) inequilibrium (b) equilibrium (c) monadnock

Figure 2.12: Qualitative categories of hypsometric forms.

Hypsometric curves can help evaluate the relationship between area and altitude in syn-
thetic terrains produced with procedural terrain modeling applications. If the method used
to model a terrain involves a simulation of hydraulic erosion, then the hypsometric curve of
the terrain should qualitatively fit one of the three categories of Figure 2.12. Otherwise, the
pattern of erosion on the terrain can not be considered to match a natural archetype. For
example, terrains with hypsometric curves such as those shown in Figure 2.13 are unusual
and can be considered unacceptable output for an algorithm that is expected to synthesize
plausible terrains. I assess the hypsometric character of the terrains that I generate with
my simulations in Sections 4.3.2, 4.3.4, and 4.4.4.

35

(a) (b) (c)

Figure 2.13: Examples of unusual hypsometric forms: (a) completely convex, (b) multiple
inflection points, (c) convexity and concavity reversed.

2.4.2 Formation of Subterranean Channels by Dissolution

The scientific description of underground channels according to hydrogeomorphology ac-
counts for many variations in the phenomenology of channel development that have been
observed in karstic landforms associated with the presence of channels. These variations
can be attributed to the effects of the structure and chemical composition of the rock ma-
trix, as well as the patterns of flow between sources and sinks. From a procedural modeling
perspective, not all such variables are of equal importance, as the modeling process tends
to emphasize abstraction and generality. Therefore, my discussion of channel formation in
this section is based on the text of Ford and Williams [17], but omits a lot of the detail that
is not essential to formulating a procedural modeling perspective, such as the chemistry of
dissolution. Additionally, I make the simplifying assumption that there is no variation in
flow input (e.g., seasonal) and emphasize formation of channels below the watertable.

When water flows through a porous matrix it initially encounters substantial resistance
and creates protochannels, which consequently may take a long time to grow. The flow in-
side the protochannels is increasingly impeded, as the pores surrounding each protochannel
become filled with water and pressurized consistently with the flow from the protochan-
nels’ source. In the isotropic case (Figure 2.14a) the protochannels can be expected to
grow radially to produce a wormiform network similar to experiments performed by Mc-
Duff et al. [36], who injected acid into carbonate rock and used CT scanning to image the
dissolution patterns. However, it is more typical that protochannels develop in a preferred
direction due to the presence of fracture planes in the rock, as well as the effects of gravity
and pressure (Figure 2.14b).

Eventually, a protochannel may reach a fracture or cavity in the rock where resistance to
flow is lower. Following this event, called breakthrough, flow inside the protochannel rapidly

36

(a) (b) (c)

Figure 2.14: Protochannel development: (a) isotropic case, (b) growth, (c) breakthrough
and eventual channel.

increases as the protochannel and the surrounding pores drain into the low resistance area.
The concomitant erosion enlarges the protochannel, now referred to as a channel, and
increases its carrying capacity, which causes more erosion, as shown in Figure 2.14c. If the
source and the sink have a large capacity for flow, channel growth following breakthrough
can remove much of the rock containing the original protochannels.

(a) (b) (c)

Figure 2.15: Protochannel behavior during breakthrough: (a) pressure grows around
source, (b) protochannel nears low pressure zone around sink, (c) pressure drops after
breakthrough.

Figure 2.15 illustrates the development of protochannels before and just after break-
through in more detail. When the rock matrix impedes flow, it creates a differential of
pressure between the pressurized region surrounding the source and the low pressure zone

37

around the sink. The figure shows this using idealized pressure isolines and a cross-section
of the idealized pressure surface. As a protochannel breaks through, the pores in its vicin-
ity drain to the sink and the pressure within the surrounding rock drops. However, as long
as the channel is saturated, the pressure around the source will continue to be at least
slightly larger than around the sink due to drag along the walls of the channel.

The effects of pressure also help to explain the behavior of systems with multiple inputs,
as shown in Figure 2.16. Prior to breakthrough, pressurization about each source creates
pressure zones that act as obstacles to protochannel development, since protochannels
develop towards areas of low pressure. After breakthrough, the breaking through channel
creates a pressure gradient around itself that may allow it to capture neighboring channels
as tributaries after they redirect themselves according to the gradient. As the effect of
decrease in pressure propagates, additional channels may become linked in a sequence.
However, it is also possible that the sink’s area of low pressure is large enough for several
nearby channels to begin growing towards it without any of the channels increasing the
extent of the low pressure zone first. This case typically occurs when the permeability of
the rock matrix around the sink is high due to the presence of fractures, so that it remains
at a pressure close to the sink’s, as the low resistance to flow prevents formation of large
pressure differentials. Figure 2.16b shows the two possible modes of development.

(a) (b) (c)

Figure 2.16: Interaction between channels: (a) pressure zones, (b) tributary capture, (c)
phreatic loops.

In one situation that sometimes occurs in nature the rock contains bedding planes that
are inclined from horizontal and additional fractures perpendicular to the bedding planes.
Water enters along the bedding planes in an equally-spaced sequence of sources similarly
to Figure 2.16(b, c) and initially forms a sequence of approximately parallel protochannels.
When a propagating sequence of tributary captures occurs as described above, the channels

38

link up in a zigzag pattern that alternates between following bedding planes and fractures
perpendicular to them (Figure 2.16c). A single instance of this pattern is called a phreatic
loop, since it is usually found in the zone of rock below the watertable called the phreatic
zone. This shape can also arise between any two nearby channels in the phreatic zone, as
one breaks through to the other. Note that pressure causes water to flow up in one side of
the zigzags.

More generally, as channels are guided by fractures and permeability of the rock matrix,
their appearance can become visually similar to random walks. One of the first studies of
cave morphology from the point of view of fractal analysis was undertaken by Laverty [32],
who determined that the fractal dimension of several representative cave sections was
between 1.0 and 1.5. This range is similar to that for coastline segments (Section 4.4.4)
and includes 4/3, the fractal dimension of a self-avoiding 2D random walk.

However, the range does not include 5/3, the fractal dimension of a self-avoiding 3D
random walk. There may be several reasons for this: first, procedures for estimating
fractal dimension are approximate and rely on survey data, which do not perfectly describe
the shape of the cave where multiple channels meet or channel cross-section is irregular.
Second, Laverty sampled only five data sets. Third, caves of the type considered by Laverty
are likely to be constrained vertically or horizontally. There may be caves of the maze type
(not evaluated by Laverty) whose development is closer to a 3D random walk, but they also
tend to be formed by water flowing in one general direction, for example by warm water
rising due to a hot spring. Furthermore, Laverty’s analysis concerns aggregate fractal
character, so that the shape of an individual cave component can be arbitrary (e.g., close
to a 3D random walk, or without fractal character).

Another aspect of channel formation is how the cross-sectional shape of the channels
develops according to the structure of the rock matrix and the flow regime. Figure 2.17
illustrates some of the cross-section archetypes and provides some examples. Phreatic
channels are saturated with water flow, so their walls erode nearly uniformly and their
cross-section tends to be roughly circular. If the phreatic channel is situated along a
bedding plane, or a joint (i.e., vertical fracture), then the shape is closer to an ellipse, or
teardrop, respectively (Figure 2.17(a, b)). If a channel exposes multiple bedding planes,
its cross-section contains rectangular elements (Figure 2.17c).

A more complicated cross-sectional shape can arise (dashed lines in Figure 2.17a) when
a channel begins to develop according to a phreatic flow regime, but later its growth
outpaces the amount of water arriving from the source. In this situation, the water flow
carves a canyon in the floor of the channel. Reduction of water flow inside large channels
can also lead to collapse of the ceiling, especially in stratified rock (Figure 2.17c). Such

39

(a) (b) (c) (d) Cave of the
Winds, CO

(e) Howe Caverns,
NY

(f) Krueger’s Cave,
MN

(g) Howe Caverns,
NY

(h) Mystery Cave,
MN

Figure 2.17: Archetypes of cross-sectional shapes of channels: (a) formed at bedding plane,
(b) formed at joint, (c) extended past several strata. Examples: (d) – (h).

complications make cross-sections poor descriptors of channel shape for modeling. While it
is possible to classify the cross-section of the cave in (d), as a combination of the types in (a)
and (c), the cross-sections are not well-defined in (e) and (f): (e) is an extremely wide space
between bedding planes and (f) does not have a clear sense of direction, which is necessary
to find a defining cross-section. Additionally, the cave passage in (g) demonstrates the
complexity of the canyon type, which can sweep out a shape with an extremely variable
cross-section.

2.4.3 Morphometric Analysis of Caves

Cave surveys provide most of the information regarding the geometric shape of cave pas-
sages. However, the complicated 3D shape of the passages causes many problems during
exploration, measurement, and subsequent interpretation of the collected data. In par-
ticular, surveying involves taking measurements of cross-sections at survey stations in a
process that discretizes the shape of the cave and can fail to capture its salient features,
especially in places with complicated topology where the cross-sections are not always well-
defined. Furthermore, cross-section measurements are typically limited to specification of
a rectangular shape, leading to many ambiguous cases during subsequent reconstruction of

40

the cave as a digital model. For example, an O-shaped configuration of passages may be a
chamber with a column in the middle or two channels that surround an obstacle, resulting
in different estimations of length.

unconfined confined
range average range average

network density
(
m
m2

)
0.012− 0.023 0.017 0.049− 0.406 0.167

areal coverage (%) 3.77− 8.55 6.17 13.56− 58.51 29.74
porosity (%) 0.15− 0.77 0.40 1.1− 12 5.0

L : W 4676.41− 218254 61569.4 798.06− 135940 16417
W (m) 2.52− 4.56 3.77 0.65− 4.53 2.04

Table 2.1: Morphometric analysis of Klimchouk [29] with optimized cave fields.

On the other hand, cave survey data can be used to reliably calculate a variety of
aggregate shape measurements, or morphometric indices, that are sufficient for many com-
parisons between caves. Morphometric analysis is also applicable directly to cave plans,
which is an advantage as most explored caves do not have digital surveys. Out of the differ-
ent sets of morphometric indices discussed by Piccini [48] the ones used by Klimchouk [29]
and Frumkin and Fischhendler [18] are the best fit for analysis of procedurally-generated
caves. I have combined them into the following set.

Afield: The area of the cave field, or the polygon surrounding the plan map.

Vblock: The volume of the cave block, estimated as the product of Afield and the vertical
range of the cave.

Network density: The ratio of the cave’s length to Afield.

Areal coverage: The ratio of the cave’s area to Afield, expressed as a percentage.

Porosity: The ratio of the cave’s volume to Vblock, expressed as a percentage.

W : The average width of the cave’s passages, estimated as the ratio of the cave’s area to
its total length.

L : W : The ratio of the cave’s length to W .

These morphometric indices have been shown to be effective for making meaningful
comparisons between some common cave types. For example, Klimchouk [29] found an

41

order of magnitude or a factor of 5 difference in network density, areal coverage, and
porosity between two classes of caves: confined and unconfined (Table 2.1). Similarly, there
are some apparent morphometric differences between the chamber and confined caves in
the data of Frumkin and Fischhendler [18] although the authors have chosen to classify
caves into types by defining chamber caves to have L : W < 20 (Table 2.2).

The indices can be both estimated from a cave plan and calculated more accurately from
a 3D model, which is advantageous for two reasons. First, it should be possible to use any
existing cave data for comparisons. Second, as length, area, and volume can be calculated
more accurately from a 3D model, more accurate analysis can be made with these indices
in the future when more digital surveys are made (i.e., the indices are future-proof). As for
procedural models of caves, they already contain all the necessary information to determine
these indices.

chamber confined
network density

(
m
m2

)
0.01− 0.25 0.07− 0.35

areal coverage (%) 20− 80 10− 40
L : W 2− 20 20− 4000
W (m) 2− 100 0.9− 8.0

Table 2.2: Morphometric analysis of Frumkin and Fischhendler [18] with rectangular cave
fields.

Klimchouk [29] notes that a passage that branches away from the major part of a
cave is likely to increase Afield disproportionately, causing indices dependent on Afield
to be significantly underestimated. So, instead of a rectangular area, he uses the area
of a polygon that “reasonably closely embraces the plan of the cave” and argues that
the resulting values are better for making comparisons despite some subjectivity in the
definition of the bounding polygon. In the future, accuracy of comparisons can be likely
improved if a standardized procedure for optimizing the shape of the cave field can be
established. Until that time I believe that the best option is to compute all of the indices
with both rectangular and optimized fields.

2.5 Multi-Agent Systems

The concept of an intelligent agent has different meanings depending on the area of ap-
plication, such as artificial intelligence, distributed systems, and computer graphics. For

42

clarity, I give my own definition that fits the application of multi-agent systems (MAS) to
the modeling that I am considering and the appropriate background literature.

An agent is a computational primitive that encapsulates the local state associated with
a distinct position in a simulation space. The agent can make decisions based on that state
and change itself or its neighborhood. Agents can communicate directly, particularly if they
are neighbors in the simulation space, or indirectly through artifacts in the environment.
A system of agents is a collection of agents designed for solving a particular problem via
simulation of actions taken by the agents. The problem space can be separate from the
simulation space, in which case a translation step is needed to turn the structure that the
agents have formed in the simulation space into a solution of the concrete problem.

This kind of MAS resembles particle systems in computer graphics, but can exhibit
more complicated behavior due to the additional interactions between the agents and the
accumulation of state in their configurations and environment. The additional complex-
ity of MAS allows for emergent behavior and makes it easier to encode rules needed for
procedural modeling of geometry. However, the full power of expression may not be nec-
essary in all cases, as demonstrated by one of the earliest examples of using a MAS for
procedural modeling: a framework for modeling plants as particle system trails designed
by Reeves [53].

Whether agent systems can serve as models of complex systems depends on the agents’
interactive ability. In my definition of MAS, agents can interact with each other and their
environment in simulation space according to the spatial position of each agent and the
environment artifacts found in the agent’s neighborhood. Benenson and Torrens [5] define
a similar system of “geographic automata” with additional provisions that make it more
convenient to model agent mobility. Interactions between the automata can successfully
represent several types of behavior of humans and infrastructure entities in urban systems,
including phenomena resulting from adaptation to spatial constraints.

Schlechtweg et al. [60] describe a MAS called RenderBots that is capable of generating
images in a bottom-up way by composing elements such as stipples, hatches, and mosaic
pieces. In this system the simulation space is an input image augmented with additional
information, such as area masks and coordination artifacts for the agents. The simulation
causes the agents to move and place the graphic elements that form the resulting image.
Jones and Saeed [26] use MAS in a similar way in an image enhancement system called
PixieDust. One difference between the two frameworks is that PixieDust includes provi-
sions for modifying the underlying image based on the global features that emerge during
the simulation.

Despite the local formulation of agent behavior encoded by a MAS, the global features

43

that emerge can contain significant information about the entire simulation space. For
example, Lemmens et al. have used MAS to implement bee- and ant-based navigation
algorithms [33]. In this case, the agent space is the environment to be navigated and the
result of the simulation is a set of routes through that environment. The way in which
the paths emerge is a primary example of stigmergy, or self-organization of agents using
artifacts.

Mason et al. [35] propose the coalition paradigm to match configurations of agents
in simulation space with compositions of features in the problem space. Coalitions are
hierarchical groups of agents that contain a sufficient amount of information to construct
an object in the problem space. By joining and leaving these groups, coalition-forming
agents can synthesize artistic compositions of pre-defined elements.

My approach for modeling erosion features utilizes a MAS to provide the common frame-
work for implementing different kinds of erosion simulations that rely on self-organization.
Since the main goal of the simulations is to produce geometry that exhibits erosion fea-
tures, the MAS in my system is specialized for working with that geometry as a concrete
simulation space. In my 2D simulations of erosion on terrains, the terrain geometry is a
grid-like graph whose nodes are vertices and edges correspond to triangle edges that con-
nect the vertices. In this case, the agents are stored in the nodes of the graph and find their
neighbors using the graph’s edges. The graph’s nodes alternate between having degrees
four and eight, as in 4-8 subdivision (Section 2.1.5). In my 3D simulations, the geometry
is a regular grid of voxels, which is interpreted as a graph whose nodes are the voxels and
the edges are defined implicitly between each voxel and 26 voxels that are adjacent to it
on the grid. In this case, the agents are stored in the voxels and use the voxels’ indices on
the grid to recover their neighbors.

Communication between agents in my MAS is similar to the other frameworks I have
discussed in this section and can occur between agents at the same location (i.e., vertex
or voxel), between neighbors, and between any two agents that can reach each other by
searching the underlying graph. I have used both direct communication, in which one agent
changes the state of another, and communication based on artifacts, which I have found
to be convenient from an engineering point of view even though it is not fundamentally
different from direct communication. The agents of my MAS can join different types of
groups and define the properties of a geometric feature similar to coalition-forming agents,
but do not make an explicit use of the coalition paradigm. Having done a case study of
coalition-forming agents [50], I believe that coalition rules are redundant for controlling
agents that already behave according to a physical model.

From a computational perspective, I have implemented a typical self-organized sim-

44

ulation of erosion by using the MAS framework to encode a set of algorithms that can
be either combinatoric in nature (e.g., marking nodes of the problem domain graph for
participation in simulation) or related to iteratively solving a discretized PDE. A group
of agents can encapsulate either type of algorithm by using its constituent agents to store
appropriate values and update them according to a common procedure. Note that the
mapping between agent types and algorithms does not have to be one-to-one, especially if
agents that play the role of communication artifacts are required. Nevertheless, the rela-
tionship between a group of agents and a procedure that modifies the underlying geometry
makes it is unnecessary for more than one agent of each type to exist at a given location,
which I assume as a simplification. The largest number of agent groups I have used is
five in my terrain simulation that combines several algorithms involving coastlines, terrain
level sets, water transport, and erosion (Section 4.3.4). The power of MAS to express
diverse algorithms and encapsulate them so that they can be combined in different ways
are key aspects of my MAS framework that make it particularly suitable for my method of
procedural modeling. I discuss implementation of the framework further in Sections 3.2.2
and 3.2.3.

45

It’s easy to invent unnecessarily
complex solutions.

Frans Kaashoek

Chapter 3

Simulation Framework

My modeling framework provides a general approach to constructing characteristic fea-
tures of different kinds of erosion. The procedural nature of my approach involves several
modeling sub-problems: development of conceptual or physically-based models of systems
undergoing erosion, development of algorithms for constructing erosion features through
simulation of the systems’ behavior, and fitting the models to my simulation framework.
I have observed that fractal character appropriate for erosion features can arise in an
emergent way through simulations based on self-organization principles. Therefore, I have
used self-organization to unify physical models of erosion and simulations in my model-
ing approach and developed avalanching, a pattern of emergent behavior, into a common
modeling paradigm.

In the first part of the chapter, I discuss some aspects of fractal character appropriate for
erosion features and the motivation for avalanching as the basis for my modeling framework.
In the second part, I detail the infrastructure of my framework, which is based on a multi-
agent system (MAS).

47

3.1 Motivation

Although the shapes of natural objects have a tendency to contain fractal character, there
are numerous issues with using explicit fractal synthesis as the foundation of a procedural
modeling approach. In particular, it may be a challenging task to determine how fractal
features combine in one object and develop an appropriate modeling process that is also
general enough to be applicable to other types of objects. Therefore, I develop a different
concept, avalanching, as the foundation of my modeling approach. Avalanching produces
fractal character in an emergent manner (i.e., implicitly) and leads to a modeling process
that is based on simulating physical erosion processes in a common way.

3.1.1 Fractal Character

The geometric shape of real-world eroded landforms can take on various fractal character-
istics. For example, it is possible to model a geographic feature as a fractal and estimate its
fractal dimension using such an approach as the Richardson plot procedure for coastlines
(discussed in Section 2.1.1). It is also possible to broaden the scope of the analysis and
determine whether the landform exhibits a scaling relationship that fits the behavior of
self-affine fractals (defined in Section 2.1.2).

However, there is an underlying problem with using fractal synthesis as a modeling
approach: while real world objects may share some characteristics of their shape with
certain types of fractals, it may not be the case that a description in terms of fractals
captures their shape completely. This approach can especially suffer if it only depends
on a single parameter like fractal dimension. Furthermore, fractal synthesis does not
offer a common algorithm that can serve as a foundation for the type of modeling that
I am considering, which can involve terrains with such diverse features as river channels
and dunes. An attempt to make it suitably general can lead into the trap of using a
superposition of human-recognized features in place of proper fractal scaling, which is
something Mandelbrot cautions against doing [34].

Nevertheless, fractal analysis informs the design of my framework by requiring that the
shape of the produced objects exhibits fractal scaling and respects scaling issues discussed
below. In particular, the shape of many natural objects contains fractal noise whose
spectral density varies as 1

fβ
with 1

f
noise being especially common [68]. So, even though

my framework does not explicitly use fractal synthesis as the means of modeling, one of its
aims is to produce objects that exhibit this type of noise. In this way my approach is similar
to a general way of modeling with fractals called ontogenetic modeling (Section 2.1.5).

48

3.1.2 Scaling Issues

Generating detail at different levels of scale is a central concern when modeling fractal-
like objects. First of all, natural objects exhibit fractal-like properties only at a range of
scales. For example, the shape of coastlines is considered to be a self-similar fractal, but
it is unclear what the shape is like on the scale of meters or centimeters. In other words,
there is an intrinsic limitation on the smallest scales that can be considered to obey fractal
theory.

However, for most modeling problems this limitation can be overlooked, as long as
modeling detail on that range of scales is not part of the problem. Indeed, this lower
limit on scale size parallels the limits of discretization density in modeling techniques that
represent objects discretely. For this reason it is acceptable to consider an object to be a
fractal if it displays fractal scaling on as few as three separate scales [38].

The situation can become more complicated when the range of scales is limited in
another way. Some natural objects exhibit different kinds of fractal properties over different
scale ranges. The scale at which a shift in behavior occurs is referred to as the cross-over
scale. If the modeling problem involves a range of scales that includes a cross-over scale,
then it is necessary to model the two regimes of behavior on each side of the scale.

The second issue is that different fractal-like behavior can coexist on the same scale
by being spatially distributed, i.e., located on different parts of an object. For example,
a coastline may be rougher (which is a sign of a higher fractal dimension) on one side of
an island, than on another. One of the challenges in modeling such an object is that it is
necessary to model the two types of behavior separately. It would be a mistake to start
with a coarse shape where the two types of coastlines “diverged” and then apply the same
differential changes to the entire island. This would result in an island with (statistically)
the same properties along the entire length of its coastline, which could be verified by
comparing any two stretches of the coastline at a scale much smaller than that of the
starting coarse shape.

There exist many techniques for creating objects that exhibit fractal-like features over
a range of scales. Some of them explicitly generate detail at different scales and combine
them, but doing this tends to produce the creasing artifact. Creasing is most often asso-
ciated with techniques that model each level of detail separately, resulting in a multi-level
pyramid of features, and then combine the levels into a single object. What causes the
artifact to appear is that the combining can only be done in a differential way: the finer
levels are offset from the coarser levels. This introduces statistical dependences between
the finer features, simply because they are combined with the same (or bordering) coarser

49

features. The statistical dependence typically manifests itself visually as sharp creases,
which can be made less apparent by using sophisticated ways of combining the detail levels
(see also Section 2.1.5).

Instead of a hierarchical top-down approach, some modeling problems can be solved in
a bottom-up way. In particular, algorithms that simulate emergent behavior can produce
fractal character and avoid creasing artifacts, at least in principle. A practical modeling
problem solved using self-organized simulations is likely to require an amount of top-down
control in the form of initial conditions that can be set according to some coarse shape.
Although such constraints can introduce creasing, they can also serve as a natural way to
combine different kinds of fractal behavior on the same object.

3.1.3 Relaxed Self-Organized Criticality and Avalanching

Many existing models of erosion demonstrate a common pattern of emergent behavior that
involves erosion features becoming more pronounced over time. This is particularly true of
the models that have an explicit link to SOC and its avalanching property (Section 2.2).
Some examples of these models include sandpiles of Duran [14] (Section 2.2), coastlines of
Sapoval et al. [58] (Section 2.3.3), and river networks of Rodŕıguez-Iturbe and Rinaldo [55]
(Section 2.3.2). However, applications of SOC can not include modeling of terrains as a
whole, because they can have self-affine features, while the fractal character of SOC is
self-similar. Models of erosion such as the one of Št’ava et al. [69] can be more flexible
when it comes to fractal scaling, but they do not have an explicit link to avalanching.

In my erosion simulations I use avalanching with an additional parameter, which is a
radius that represents a notion of scale. In the case of erosion on a terrain, an event that
erodes a feature lying in the distinguished height direction also promotes further erosion of
features situated within the neighborhood defined in the domain by the avalanching radius
with the domain directions treated isotropically. The effect of my version of avalanching is
to change the scaling of features in the radius from self-similar to self-affine, which makes it
possible to extend self-organization principles of SOC to modeling erosion-related features
of terrains. I give this modeling paradigm the following separate definition.

Definition 8. Avalanching (as a modeling paradigm) is an emergent behavior of state
changing events that results from one event explicitly increasing the likelihood of a similar
event occurring within a neighborhood of the original event.

In Figure 3.1 I provide two examples of relaxed-SOC erosion models that use avalanch-
ing to create approximately self-affine features. In the first model, oversteepening of local

50

slope causes material slippage, which can cause additional slippage at neighboring sites. I
based this model on the behavior of sand in the model of Duran. In the second model,
exposure of material causes it to corrode and disintegrate, exposing more material. I based
this model on coastline erosion of Sapoval et al. As Figure 3.1 (a, c) illustrates, the sand-
like model smoothes uniformly random initial conditions into a hilly terrain, while the
corrosion-like model causes a flat initial surface to develop pits and cracks.

(a) (b) (c)

0.151, 0.498

0.154, 0.456

(d)

Figure 3.1: Results of a sand-like (top row) and corrosion-like (bottom row) relaxed-SOC
simulations: (a) periodized initial conditions, (b) log plot of spectral density, (c) periodized
result, (d) final spectral density.

The corresponding spectral density plots in Figure 3.1 (b, d) demonstrate that in both
cases the shape of the resulting object exhibits approximately self-affine fractal scaling.
The non-uniform scaling associated with self-affine behavior is due to the separation of the
height direction from the isotropic domain neighborhood in my formulation of avalanch-
ing. The same kind of separation is responsible for self-affine terrains having self-similar
coastlines (Section 2.1.3).

What is especially significant about Figure 3.1 (b, d) is that self-affine features arise
despite the fact that the spectral density of one set of initial conditions is white noise (all
possible frequencies are present equally) and the other set of initial conditions is flat (no
frequencies are present). (Note that the central datum on the spectral density plots corre-
sponds to the average height of the initial terrain.) Therefore, my avalanching paradigm
can introduce a notion of scale into a system, both appropriately reshaping its spectral den-

51

sity and generating missing spectral frequencies. This independence from initial conditions
is similar to the same property of SOC.

3.2 High-Level Design of the Framework

In addition to avalanching, which acts as its conceptual foundation, my generalized frame-
work for modeling of landforms affected by erosion possesses two other main aspects. First,
the framework has a model of computation that it uses to express simulations of different
erosion processes. Second, the framework provides each simulation with a representation
of landform geometry as a graph that encodes a 2D or voxel grid. This section discusses
the development of these aspects of my framework and provides a list of features that are
necessary for a complete implementation. Chapters 4 and 5 contain simulation examples,
which illustrate the functionality of the framework concretely.

3.2.1 Towards a New Modeling Framework

Terrains are composed of geomorphologic features that can be formed through a complex
combination of processes related to the action of tectonic plates, volcanoes, and glaciers,
as well as different types of erosion. To model terrains at a reasonable cost procedural
modeling frameworks tend to adopt a simplified view of landform evolution. Musgrave’s
terrain modeling framework [39] mentioned in Section 2.3.2 is an archetype of this approach.
It generates a multifractal terrain and then erodes it using simulations of hydraulic and
thermal erosion. From the perspective of ontogenetic modeling (Section 2.1.5) the initial
conditions for the erosion simulation stand in for a combined result of tectonic processes,
while the subsequent erosion creates realistic erosion features that are difficult to produce
with fractal synthesis. From the perspective of physically-based modeling, the two-step
model is over-simplified, because only the erosion step involves a model of a physical
system. However, the first step may have a connection to Mandelbrot’s explanation of
fBm as a result of tectonic faulting (Section 2.1.3).

In my framework I simplify the terrain modeling problem in a new way by using a
common approach based on self-organization to model different types of erosion. My idea
is to express existing models of erosion in terms of avalanching (discussed in the previous
section) and leverage that generalization to reduce the effort required to design individual
simulations for creating features like coastlines and rivers. One of the challenges for the
generalization comes from the disparate ways adopted by the existing modeling methods

52

for representing the features they model (Section 2.3). For instance, Sapoval et al. [58]
represent their coastlines in an implicit way as the boundary between land and water
squares on a grid, while Rodŕıguez-Iturbe and Rinaldo [55] represent their river networks
as graphs.

A second challenge for the development of my framework is that the existing models
tend to have an abstract view of the features they generate, because they aim to demon-
strate certain physical phenomena instead. For example, in the coastline model of Sapoval
et al. the shape of the coastline is less significant than its evolution into a shape that can
resist erosion. Similarly, the width of rivers is disregarded by the river model of Rodŕıguez-
Iturbe and Rinaldo, as it is concerned with the emergent properties of the river network as
a whole. In respect to the design of my framework, any physically-based behavior inherited
from these models is an advantage, but I have made extensions to the models to make the
produced features more appropriate for computer graphics applications.

To summarize, the main goal of my framework is generalization of the modeling process
for erosion-related features of terrains, using physically-based self-organization principles.
As illustrations of using the common framework, I apply it to modeling of dunes, coasts,
and rivers (Chapter 4). Additionally, I use my framework to design a two-part terrain
modeling method similar to Musgrave’s: the first part uses self-organization to create
initial conditions for the second part that applies hydraulic erosion. This terrain modeling
algorithm is an illustration of using only self-organization to model terrains (Section 4.3.4).
Finally, I apply my framework to modeling of 3D cave-like passages, which is a modeling
problem with many aspects that have not been previously considered in the realm of
procedural modeling (Section 5).

3.2.2 Agent-Guided Procedural Modeling

In my simulation framework procedural modeling is agent-guided, i.e., carried out with the
help of a specialized MAS (Section 2.5). In general, MAS can benefit procedural modeling
tasks by making it easier to manipulate geometric features through an abstraction for
defining their extents (boundaries, areas, or volumes). For example, the presence of a
particular agent at a location on a mesh can select that site for participation in an algorithm
for constructing a hill. In this way a MAS can encode rules for controlling the distribution of
constructed features, as well as the relationships between them. Furthermore, the discrete
agents of MAS map to controlled features naturally, as they are also discretized within the
problem space.

This aspect of MAS plays a central role in the design of my modeling framework, which

53

executes erosion simulations on discretized domains, which are graphs representing terrain
meshes in 2D and grids of voxels in 3D. Discretization in terms of agents is especially
straightforward with some simulations, such as in the case of coastline erosion. In the
coastline simulation the agents can mark the location of the coast, making it unnecessary
to operate on the rest of the grid. Implementing simulations in terms of agents and their
behavior also has the added benefit of standardizing interoperation of multiple algorithms,
such as between simulations of different types of erosion on terrain.

As an alternative to algorithms of a combinatoric nature, a MAS can also express an
iterative scheme for solving a PDE using the finite difference method. In this case it is
necessary to instantiate an agent at each location inside a region in the problem domain
that corresponds to the domain of the PDE. For example, I use a PDE formulation for the
amount of erosion in my simulation of terrains undergoing hydraulic erosion due to channel
networks. The ability of MAS to encapsulate and combine different types of computation is
essential for my simulation-based approach to modeling, because of its procedural nature.

3.2.3 Infrastructure for Self-Organized Simulations

My modeling framework has two main components: a graph that represents a grid-based
discretization of a given problem setting and a facility for using that graph as a simu-
lation space for agent systems with customizable behavior. Discrete representations not
based on grids, such as triangulated irregular networks, or TINs, are also compatible with
MAS-based modeling, but I have chosen regular grids, since grids make it easier to solve
PDEs numerically and uniform sampling is necessary for my spectral analysis procedure
(Section 2.1.6). Furthermore, while the size of each triangle in a TIN may be optimized to
represent the initial conditions of an erosion algorithm, the TIN is not likely to be opti-
mal for the erosion features that the algorithm creates, necessitating frequent remeshing.
However, I treat the grid discretization as a graph similar to how TINs are commonly
represented, so that the vertices of the graph can correspond to the vertices of a mesh
representation of a terrain or the voxels of a 3D volume representing porous rock.

The graph encodes connectivity using two directed edges for each pair of neighbors.
In the 2D case, the edges correspond to the edges of triangles in the terrain mesh and
are stored explicitly as part of the mesh data structure. In the 3D case, the edges of a
voxel correspond to each of the 26 adjacent voxels and are not stored explicitly, as they
can be efficiently recovered from the indices of each voxel (e.g., there are two directed
edges between voxels (0, 0, 1) and (0, 0, 2)). In certain simulations, it becomes necessary
to augment graph edges with additional information such as the amount of water flowing

54

between a pair of adjacent nodes. I accomplish this by creating agents that store the extra
data.

Agent-based simulations can use the vertices of the graph as a set of locations where the
agents can situate themselves. Agents of the same type form groups that can store global
information, which controls their members’ behavior. For example, the global state can
contain a parameter that determines how far each agent should search when it performs
breadth-first search. The agents can also use the global storage to calculate the maximum
value of a set of values that they store locally. I have found that it is sufficient to have
at most one member of a group at each node, because each agent type corresponds (in a
many-to-one way) to a particular computation that is to be performed at the node once for
each iteration of a simulation. So, several types of agents can participate in a computation
task, but there is no need to perform the task multiple times.

To facilitate design of specific erosion simulations that use self-organization in a common
way, I have distinguished the following set of features as an infrastructure that all of the
simulations can rely on.

Agent group membership: Agent groups keep agents with different behaviors separate
and provide for sharing of global variables within a group, as well as inter-group
communication.

Registration: Agents can register and de-register at each vertex. It is convenient to
constrain an agent to be able to join only those locations where there are no agents
from the same group already present. Agent motion through simulation space consists
of registration and de-registration actions.

Agent lifetime: Existing agents can control where new agents enter the simulation. A
parity mechanism protects newly created agents from acting on the iteration when
they are created. Agents can also delete themselves from the simulation.

Communication: Agents can communicate directly by accessing other agents (of any
type) by location, or indirectly by placing communication artifacts, which are types
of agents that do not perform any actions.

Search primitives: To change or collect information about its environment, as well as to
communicate with other agents, an agent can perform one of several search algorithms
on the underlying graph. In the following list, the last two search primitives can
apply a custom filter to the edges of the underlying graph. For example, an agent
can execute a search that visits only uphill locations within a specified radius.

55

◦ neighbor search

◦ search based on a distance map computed via fast marching

◦ search along a ray with a given direction

◦ BFS (breadth-first search)

Quadratic fitting: Agents can obtain local first and second derivatives of a terrain by
using a quadratic fitting procedure based on the method of Feddema and Little [15].

Sand transport: Agents can remove and add discretized slabs of sand to a terrain, po-
tentially causing slippage.

Water-column algorithm: Agents have access to several versions of the water-column
algorithm for simulating water flow.

Fast marching: An alternative iteration scheme for agents that is based on numeric ap-
proximation of front evolution. The scheme can be used to compute a distance map
from several distinguished sites or structure neighbor-to-neighbor updates in general
(see Appendix A.5, Section 5.4.1, and Section 5.2).

56

In any natural problem the actual
conditions are of extreme
complexity and the first step is to
select those which have an essential
influence on the result.

The Internal Constitution
of the Stars

Arthur Stanley Eddington

Chapter 4

Modeling with Self-Organization and
Avalanching

In this chapter, I present a number of self-organized simulations for modeling various
landforms with erosion features, such as dune fields and river basins. I discuss the use of
my avalanching paradigm in those modeling contexts and its advantages. I also summarize
how I have implemented these simulations using my framework to illustrate how a common
framework is useful for this entire class of simulations. In particular, I describe my method
of avalanching-based terrain modeling and evaluate the terrains that I create using it.

4.1 Dunes

My simulation of dunes is based on Werner’s model and introduces my approach to pro-
cedural modeling using self-organization. By extending the model to use avalanching in

57

place of a geometric visibility test, I show that avalanching can serve as a foundation for
simulations of other types of erosion.

4.1.1 Werner Dunes

Werner’s model [71] for the development of dunes uses self-organization and is expressive
as a modeling method, since it can produce different kinds of dunes easily. Section 2.3.1
contains a summary of the original model. I have implemented my own version of this
model with two extensions. Figure 4.1 shows the results for two sets of initial conditions.

(a) First set of initial conditions (IC1)

(b) Second set of initial conditions (IC2)

Figure 4.1: Werner dune model: resulting dunes for two sets of initial conditions, colored
based on height; each row contains the initial conditions, followed by dunes with a coarse
slab size, post-processed results with a varying slab size, and the final result with extra
smoothing (left to right).

The first modification concerns the discretization of the slabs of sand in the model. I
believe that it is desirable for simulations to get a lot of work done in a small number of
iterations. That is why my version of the dune simulation uses a comparatively large slab
size at the start. However, I follow the main run with an additional phase that uses a
diminishing slab size. Specifically, the extra phase consists of two iterations with half the
original size, four with the quarter of the size, and so on, up to 2k iterations with 1

2k
of the

original size (for a small fixed k).

The second modification adds a final smoothing pass also consisting of a fixed number
of iterations. I have added this pass because the discretization of the wind direction in the

58

model results in noticeable grooves and smoothing hides this artifact. The smoothing in
this pass uses a simple mass diffusion equation of the following form

∂h(x, y)

∂t
= K ·∆h, (4.1)

where h(x, y) is the height at a given location (x, y), t corresponds to a discretized update
step, K is a constant, and ∆ stands for the Laplace operator. The idea for using such
an equation with this type of dune model comes from Onoue and Nishita [42] who use a
model similar to Werner’s.

4.1.2 Dunes with Avalanching

My alternative model of dune development operates in a similar way to the extended
Werner model from Section 4.1.1, except that it replaces the concept of shadowing with a
different one. In the original model, transport of sand can not start at a location that is
physically shadowed from wind by a higher sandpile along the ray in the upwind direction.
This type of shadowing has two main disadvantages.

(a) (b)

Figure 4.2: Shadowing and protection principles: (a) shadowing effect due to one site for
three wind directions can be interrupted by an intervening location, (b) protection effect
for a comparable wind regime without discrete wind directions.

First, it allows the discrete nature of the wind to have a bigger effect on the entire
model. Since transport occurs in a direction parallel to the wind, the shape of the generated
dunes contains grooves parallel to that direction. (Using more than one direction does not
sufficiently hide the artifact, especially if the number of wind directions is not large, which

59

is a performance constraint.) The effect of shadowing is to eliminate sand transport next
to some of these grooves, possibly making them even more pronounced.

Second, this type of shadowing leads to weak self-organization as the simulation runs.
A dependency exists only between locations on a line and transport events to or from a
given site may not affect any downwind locations at all, if there is an intervening bump
of sufficient height. In other words, one transport event has a poor chance of having an
avalanche effect. Dunes resulting from fewer transport events grow slower and appear to
be flatter after a fixed number of iterations.

I propose a different avalanching mechanism to be used in the context of this problem.
Instead of shadowing along a line, a specific site can contribute to the protection of any site
located in a cone downwind of it. The dimensions of the cone of protection correspond to
the wind regime. Protection of downwind locations is reduced by erosion and increased by
deposition. The effect of protection is to prevent transport of sand by wind from downwind
locations similar to shadowing based on the geometric test. The difference between the
concepts of shadowing and protection is further illustrated in Figure 4.2.

(a) First set of initial conditions (IC1)

(b) Second set of initial conditions (IC2)

Figure 4.3: Dune model with more avalanching: resulting dunes for two sets of initial
conditions, colored based on height; each row contains the initial conditions, followed by
dunes with a coarse slab size, post-processed results with a varying slab size, and the final
result with extra smoothing (left to right).

Figure 4.3 shows dunes created with the protection principle. In both types of simu-
lations the maximum slope between a site and its neighbor is limited by sand’s slope of
repose (taken to be 33.0◦ for dry sand [31]). So one way to compare the shape of the new
dunes with those produced by the old model is to count the number of sites with slope

60

within 10% of the slope of repose. I determined that the 10% range was necessary by trial
and error: the error was too large for a smaller range and too many data were rejected for
a larger range. As shown in Table 4.1, dunes based on the protection principle tend to be
significantly steeper than those based on shadowing.

The most significant feature of protection-based dunes is that their shadow zones are
determined in an emergent manner without the aid of a geometric visibility test. Table 4.1
also provides a comparison of the shadow zones in terms of the percentage of sites where
the result of the shadow test based on the protection principle disagrees with the geometric
test. The two shadowing principles can not agree exactly because the protection method
considers a range of wind directions, while the shadowing method only uses three wind
directions. Additionally, there is a substantial systematic error in the protection method,
as it considers the peaks and troughs of the dunes to be in shadow. Following removal of
sites on the peaks and troughs from consideration, % error values indicate that computation
of emergent shadow zones based on avalanching can replace the geometric shadowing test
for modeling purposes.

% near repose

IC1 19.7
IC2 3.4

(a)

% near repose % error
% error without % error
peaks/troughs reduction

IC1 50.8 36.5 10.1 72.4
IC2 10.2 20.8 1.7 91.9

(b)

Table 4.1: Comparison of simulated dunes: (a) shadowing-based and (b) protection-based.
Tables show % of sites within 10% of slope of repose and % error in protection-based
shadow zones viewed as an approximation of geometric visibility. The sites in the peaks
and troughs of the dunes are the largest source of disagreement.

The role played by avalanching in the two sets of dune simulations illustrates two
key aspects of my approach to procedural modeling. First, I rely on avalanching to create
complicated shapes from random initial conditions similar to the simulations in this section.
The second set of simulations makes it especially clear that the resulting shape of dunes is
exclusively due to avalanching, because I have formulated the new simulations to emphasize
avalanching more and avoid using any other computational primitive such as a geometric
visibility test. Second, in my method of procedural modeling I view avalanching as a
general-purpose modeling tool and use it to achieve multiple goals such as creating initial
terrains and also eroding them, which is similar to how I have used avalanching to replace
the visibility test in this section.

61

4.1.3 Use of the Common Modeling Framework

The implementations of both of the dune simulations map naturally to the functionality
of the common framework that I have developed. Each location in the problem domain
contains an agent, which is responsible for the addition and deletion of sand at the site. The
agents carry out the details of the erosion process by using the following two primitives.

Line search primitive: serves for finding upwind shadowing locations and the destina-
tion of each transport trajectory.

BFS search primitive: serves for maintaining the protection state during erosion and
deposition; the visited locations are limited to a cone as appropriate.

The framework also calculates second partial derivatives for each domain location by
locally fitting a quadratic surface. The dune simulations use these derivatives to implement
the smoothing process described by Equation 4.1.

k 3
K 5.0
iter. of Eq. 4.1 10
sim. iterations 20
slab size 5.0
wind direction ± π

12

grid size 256×128

(a)

principle wind strength Rs IC time (s)

shadowing 140.0 140.0
IC1 41.6
IC2 40.4

protection 80.0 120.0
IC1 67.3
IC2 55.7

(b)

Table 4.2: Simulation parameters for dunes in Figures 4.1 and 4.3: (a) common parameters,
(b) timing.

Table 4.2 lists simulation parameter values and timing numbers. Wind strength deter-
mines the distance that wind transports each slab of sand. In shadowing-based simulations,
the search radius Rs determines how far each site searches in the upwind direction to test
whether it is in shadow. In protection-based simulations, Rs determines the extent of the
cone of protection in the downwind direction.

4.2 Coastlines

In this section I develop a coastline erosion model that simulates erosion events that take
place at the land-ocean interface and cause the coastline to cave in. In my implementation

62

I use a discrete grid-like graph whose nodes can represent regions of land or ocean. Initially
the graph encodes a square landmass surrounded by water. My framework visualizes the
result of the modeling procedure as a mesh that differentiates land and water locations by
appropriately setting their height and color.

My models are extensions of the coastline model of Sapoval et al. [58] introduced in
Section 2.3.3. However, my discretization of the problem domain is different and I extend
the formulation of erosion in significant ways so that I can apply my avalanching paradigm
and solve new modeling problems. My avalanching principle changes the fractal character
of the resulting coastlines and controls how folded they can become. I provide additional
applications of my coastline models by using them to produce coastlines with mixed behav-
ior and construct island interiors. The latter procedure also forms a part of my two-stage
terrain modeling method described in Section 4.3.4.

4.2.1 Sapoval Coastlines

Sapoval’s model of coastline erosion introduced in Section 2.3.3 generates self-similar coast-
lines that result as a coast evolves under the action of a global erosion force. This process
is consistent with SOC, as eroding pieces of the coast weaken their neighbors and cause
erosion avalanches. The weakening of a coast segment is proportional to the increase in
exposure due to the missing neighbors. The force of erosion is determined by Equation 2.8
reproduced below:

F (t) =
f

1 + gL(t)
L(0)

.

The changing perimeter of the coast L(t) attenuates the force F . The parameter f
scales the initial value of F . Decreasing the parameter g encourages the evolving coastline
to become more folded to resist the erosion. However, to prevent F from being too strong,
a decrease in g has to be paired with a decrease in f . In general, the parameters have
to be selected carefully to avoid the two extremes when F is too high or too low and
the coast, respectively, erodes completely or remains close to its initial shape (which is a
square in the following examples). The model can respond drastically to small changes in
the parameters, an effect that is amplified by the dependence of F on the entire shape of
the coast. This is a weakness of the model, as the process of designing a coastline involves
a lot of trial and error.

Figure 4.4 shows coastlines produced using the global perimeter model. Table 4.3
contains the corresponding values of parameters f and g. The model tends to produce a

63

(a) (b) (c) (d)

Figure 4.4: Islands constructed using erosion model based on global perimeter. Small
islands are pruned in bottom row.

(a) (b) (c) (d)
f0 0.495 0.476 0.460 0.444
g 0.180 0.150 0.130 0.110

grid size 256×256

Table 4.3: Simulation parameters for Figure 4.4.

lot of small islands as a consequence of the attenuation of F by the combined perimeter
of the entire coastline. The relative sizes of the small and large generated islands suggests
that the scale of the entire construction is large in absolute terms (perhaps the scale of a
continent). The impression is erroneous since the construction is scale-free and an increase
in discretization density will cause even smaller islands to appear. It is difficult to use
Sapoval’s model to construct a single small island, because the evolution of a coastline
under the model will tend to both lengthen the coastline and split off smaller islands.

As a first approximation to solving this problem, I followed a simulation based on
Sapoval’s model with a step that extracts islands whose perimeter is larger than a threshold
value (24.0 grid units). My graph-centric representation of the problem setting helps with

64

this operation. Combined with the effect of discretization that hides detail smaller than
the grid size, the resulting island models (shown in the bottom row of Figure 4.4) come
closer to simulating the appearance of islands existing on a relatively small length scale.
In other words, large islands must have abundant small features (like in the top row of
Figure 4.4), so that removal of fine detail results in islands that appear to be smaller. A
more complete solution to this problem should introduce a notion of scale into the behavior
of the coastlines as they evolve (Section 4.2.3).

4.2.2 Coastlines Based on Local Perimeter

To better control the shape of the constructed islands, I changed F to be a local force
dependent on a local formulation of the coast perimeter:

F (t) =
f

1 + gLRp(t)
, (4.2)

where LRp is the length of the coast in a fixed radius Rp. The local perimeter and the
local F for a piece of the coast C can be calculated in two ways: by considering any
coast segment lying within Rp units of the location of C or by only considering coast
segments that form a contiguous coast with C. Figure 4.5 shows islands resulting from
both perimeter estimation strategies. The non-contiguous search tends to produce smaller
islands like the global perimeter model, but they stay close to the coast of the mainland
due to the limiting effect of the search radius Rp.

Besides controlling the creation of small islands, the local perimeter model determines
the behavior of erosion avalanches locally, which has three additional benefits. First, the
local model prevents coast segments on the opposite sides of an island from affecting
each other’s shape, which is more realistic than treating the entire coastline as a single
unit. Similarly, the local model also allows coastlines with different parameters to evolve
independently, which is a modeling problem considered in Section 4.2.4. Second, the local
perimeter method makes it easier to select values for the parameters f and g, because if
they result in a value of F that is too large for a significant part of the coast and it erodes,
the large erosion event does not necessarily doom the remaining coastline. The parameter
values for the islands in Figure 4.5 are given in Table 4.4.

The third benefit of the local perimeter model is an additional parameter for controlling
the shape of the islands. A smaller value of Rp results in more erosion, because a coastline
has less space for becoming folded in the circumscribed area. As Rp increases and the search

65

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Islands constructed using erosion model based on local perimeter, which is cal-
culated using contiguous (top row) and non-contiguous (bottom row) local search. Search
radius increases from left to right.

(a) (b) (c) (d) (e) (f)
f0 0.50
g 0.20 0.15

Rp 150 200 250 150 200 250
grid size 256×256

Table 4.4: Simulation parameters for Figure 4.5.

area covers the entire problem domain, the shape of the constructed coastline approaches
the coastline generated by the global perimeter method.

On the other hand, my modification of the model to control erosion locally is not
sufficient to control the length scale of the generated islands. The shape of the islands
produced by the local perimeter model approximates the statistically self-similar (i.e., scale-
free) fractal produced by Sapoval’s global perimeter model. In both cases, the process that
creates the fractal coastline depends on sampling its fractal properties (i.e., the perimeter

66

ratio) in an area, in a way similar to a procedure for estimating fractal dimension. The
difference is that Rp =∞ is a better approximation.

4.2.3 Coastlines with More Avalanching

My next modification of the model allows for the control of the length scale of the islands.
This effect corresponds visually to coarseness of an island’s coastline: a less folded coastline
indicates that the island is smaller in absolute terms. Additionally, such a small island
should not be surrounded by even smaller islands of the kind that the global perimeter
model tends to produce, as discussed in Section 4.2.1. I achieve these goals through the
introduction of additional avalanching into the model. Figure 4.6 shows a sequence of
generated islands with increasingly flatter coastlines.

(a) (b) (c) (d) (e) (f)

Figure 4.6: Additional avalanching makes coast less coarse by weakening neighbors of
erosion events. Amount of additional avalanching increases from left to right.

In my modified model, a segment of the coast can no longer withstand the erosion force
F indefinitely due to all-or-nothing erosion events. Instead, the new model lets each site
contain an amount of erodable material M , which plays the role of R for that site (initially
M = R) and decreases each iteration. Each coastline site’s M diminishes due to the action
of F by an amount kF (I use k = 1) and due to nearby erosion events. Each time any
site completely erodes (M = 0) it weakens its neighbors up to a fixed radius Ra away by
decreasing their value of M . The decrease in M starts at a constant value a at the center
of each erosion event and falls off to 0 at distance Ra. The effect of weakening in a radius
is similar to spheroidal erosion modeled by Beardal et al. [3]. The values of parameter a
used to produce the islands of Figure 4.6 are given in Table 4.5.

The additional scale-dependent avalanching makes coastlines less folded by causing
more erosion near each erosion event, so that folds straighten back out. In other words the
length of a coastline can no longer increase without bound and the resulting coastline shape
is no longer scale-free. Since the generated coastlines can no longer reach the scale-free

67

(a) (b) (c) (d) (e) (f)
a 0.0 0.05 0.075 0.10 0.15 0.175

Ra 25
grid size 256×256

Table 4.5: Simulation parameters for Figure 4.6.

state they continuously erode, which is consistent with Sapoval’s interpretation of coastline
dynamics in terms of SOC.

4.2.4 Extensions for Modeling Applications

Some real world coastlines are more folded on one side of a landmass than on the other. To
produce such an effect with the coastline models of this section, it is necessary to prevent
far away parts of one coastline from affecting a different coastline. This is made possible
by my local perimeter model of Section 4.2.2. Figure 4.7 demonstrates a generated island
with one type of coastline along its north and south boundaries and another along its west
and east sides.

(a) (b)

Figure 4.7: Coastline simulations from Figures 4.6a and 4.6d combined to produce a single
coastline: (a) parts of the coast that each simulation is responsible for, (b) result.

In a modeling application it is desirable to generate the interior of the islands as well.
I extended the coastline models to keep track of the coastline as it evolves and designate
certain previously existing coastlines as level sets of a terrain, with the newer coastlines
corresponding to higher level sets. To generate the interior of an island, I restart coastline
erosion with the currently existing coast as initial conditions. If the erosion stops due to
the attenuation of F by local or global perimeter, my algorithm increases the value of f
until the erosion resumes. As noted by Sapoval, the necessary change in F can be small
due to avalanching that will happen as the erosion proceeds.

68

Finally, my algorithm interpolates heights in the interior of the island based on the level
sets. The historic coastlines serve as plausible level sets according to the interpretation
of terrain level sets as coastlines discussed in Section 2.1.3. This is possible because my
algorithm treats generation of coastlines not as a problem of constructing curves, but
as the higher dimensional problem of generating level sets of a terrain. Figure 4.8 shows
three versions of a synthesized island terrain produced using nearest neighbor interpolation
between the level sets, an interpolation method based on Hermite splines, and a method
based on minimization of bending energy, which is generalized from interpolation used in
natural cubic splines. Section 4.3.4 contains a more complete discussion of this terrain
generation algorithm.

(a) (b) (c)

Figure 4.8: Interpretation of coastlines generated in the interior of islands as level sets.
Different methods of interpolating heights between level sets are possible.

4.2.5 Use of the Common Modeling Framework

To implement the coastline erosion simulations of previous sections using my common
modeling framework, I have represented coastlines as subgraphs of the problem domain

69

and used several types of agents to update the locations of the coastlines as they become
eroded. The graph-centric approach of my framework restricts the graph nodes that have to
be processed at each iteration to just those of the appropriate subgraphs. This is especially
true in the case of simulations based on the global perimeter model and simulations that
use the contiguous search to calculate local perimeter. Calculation of the local perimeter
relies on the framework’s BFS search primitive. The following list summarizes the types
of agents I have used and their roles.

coast mark agent: an artifact agent that marks the graph nodes that belong to the
current coastline. The agent stores the length that the local segments of the coastline
contributes to the total perimeter. This agent type is also used to determine the total
perimeter of each island when small islands are pruned in a post-processing step.

coast agent: always paired with a coast mark agent and responsible for destroying its
part of the coastline and designating new coastline nodes by controlling the lifetime
of all the associated agents. This agent type relies on the parameter values of a
coastline erosion model to make erosion decisions.

artifact agent: an additional artifact agent that marks previously eroded locations, thus
helping coast agents decide which of their neighboring nodes are located inland and
should be designated as part of the new coastline following an erosion event. This
type of agent also saves information about historic coastlines and helps with height
reconstruction based on level sets.

(a) (b)

Figure 4.9: Simulation of coastline evolution using graphs and agents. Green circles are
nodes associated with inland locations, blue circles are nodes that have eroded. Nodes
circled in black change their state due to agent action: (a) before erosion event at one site,
(b) after the event.

70

The purpose of artifact agents is to be a form of communication between other agents.
After querying nearby locations for the presence of the two artifact agent types and their
state, a coast agent can determine whether it should undergo erosion, as well as the neigh-
boring locations that should become the new coastline. Figure 4.9 illustrates the deletion
and creation of agents that occur during one erosion event. The nodes shown as unfilled
circles describe the location of the coastline and contain the pair of a coast and coast mark
agents. The previously eroded nodes contain artifact agents. As erosion occurs at a coast-
line node its labelling changes and a new artifact agent replaces its contents. In addition,
erosion creates new coast agent pairs to designate previously empty inland locations that
are nearby as parts of the new coastline.

4.3 Rivers and River Basins

This section describes my model of hydraulic erosion that uses self-organization to create
channels that capture tributaries, widen, and flood local minima. To simulate the totality
of these behaviors, which has not been demonstrated by any existing model based on self-
organization, I combine and extend the models of Rodŕıguez-Iturbe and Rinaldo [55] and
Perron et al. [46]. In particular, application of my avalanching paradigm is an extension
that allows channels to develop plausible width in my model.

I also contribute a more complete terrain modeling method that generates an initial
terrain for my hydraulic erosion simulation, resulting in a two-stage procedure entirely
based on self-organization of avalanching. The first stage of my method treats simulation
of coastline erosion features as the higher order problem of generating appropriate level
sets of the underlying terrain. In this way, my method uses self-organization to reproduce
the relationship between coastlines and terrains that is also a part of the formulation of
terrain modeling in terms of explicit fBm synthesis (Section 2.1.3). However, my method
produces physically-based hydraulic erosion features that are not found in fBm and uses
coastline and river erosion in combination that is novel compared to other simulation-based
approaches. My method successfully reproduces phenomenology of hydraulic erosion (i.e.,
channels emerge and become linked), and synthesizes an eroded terrain with approximately
affine scaling (Sections 2.1.4 and 3.1.3) and plausible hypsometry (Section 2.4.1).

My simulation of hydraulic erosion starts with a discretized heightmap that represents
a terrain and adjusts the height of the terrain at each site using a PDE formulation. The
amount of erosion tends to be higher in downstream areas and at sites where the local
slope of the terrain is high. This simulation of erosion results in a network of channels
on the surface of the terrain as water flow converges in a self-organized way. There is a

71

feedback relationship between the terrain and the channel network: the morphology of the
terrain directs the flow of water, while the flow of water reshapes the terrain via erosion.

(a) roof (b) mud bank

(c) sand hill (d) sand pile

(e) sand pile (f) limestone hill (g) limestone hill

Figure 4.10: Photographs of erosion left by flow of water organized into channels.

Photographs of channels left by hydraulic erosion in Figure 4.10 give the general ap-
pearance of the erosion features that I aim to simulate. However, there is water in the
channels of the terrains that I construct with my simulations. The appearance of rivers
is not trivial to render, because the surface of the water lies on the surface of the terrain
and requires additional geometry in the graphics pipeline. I provide more details about
rendering rivers in Appendix A.2.

As for some particular visual attributes of channel networks, Figure 4.10a shows the
result of nearly parallel flow on a flat substrate. Although distinct channels emerge they
can run close to each other for some distance before linking up. By contrast, tributary

72

capture occurs sooner in Figure 4.10c, resulting in a network with more branching. The
network in Figure 4.10b is reminiscent of a river network on a map. Rodŕıguez-Iturbe and
Rinaldo [55] discuss this type of self-similar scaling behavior in the context of their SOC
models of river basins.

4.3.1 Hydraulic Erosion Simulation

My approach to modeling hydraulic erosion relies on three main ideas. First, I use a
specialized water-column algorithm to simulate the flow of water on a terrain. Second,
I use the amount of local flow in a PDE formulation of erosion to determine how the
terrain changes at each site. Third, I set up additional erosion avalanches to accelerate
tributary captures and ensure that channels link up to form wider combined channels. The
specialized water-column algorithm and the use of the avalanching paradigm are the main
differences between my approach and the models of Rodŕıguez-Iturbe and Rinaldo [55]
and Perron et al. [46] that also use self-organization. Besides modeling the width of the
channels, the benefits of my approach also include the ability to model gradual flooding
of local minima and eventual breakthrough of the resulting lakes to nearby channels. The
existing models can not accurately determine the behavior of water near local minima of the
terrain, because they use the area map concept in place of a water simulation. Additionally,
algorithms based on the area map (e.g., the D8 algorithm) constrain drainage directions
at each site in a way that my water-column algorithm does not (Section 2.3.2).

The water-column algorithm is one of the simplest methods of simulating water flow
on a terrain (Section 2.3.2). It represents the level of water at each site on the terrain as
the combined height of a column of water present at the site and the local height of the
terrain. Neighboring sites exchange water to equalize their levels of water by following an
iterative procedure. In my version of the water-column algorithm the water distribution
strategy promotes concentration of water into channels by preventing diffusion, which is
necessary for modeling channel formation. I provide a comparison of my algorithm with
existing variants in Section 4.4.3.

Figure 4.11 illustrates the three main stages in the operation of my algorithm. In
Figure 4.11a the algorithm selects a site with excess water, finds n of its grid neighbors
that are lower, and sorts them in ascending order of combined ground and water height. In
subsequent n− 1 steps the algorithm takes water from the central site and uses it to raise
the level of water in m lowest neighbors to match the total height of (m + 1)-th neighbor
for m in [1, n− 1], as shown in Figure 4.11b. As a final step, the algorithm checks whether
the central site is still higher than its neighbors, in which case it equalizes all participating

73

water

ground

(a)

water

ground

(b)

water

ground

(c)

Figure 4.11: Stages of my specialized water-column algorithm.

locations to a common level, which is the dashed line in Figure 4.11c. The distribution of
water can stop at any step if the amount of water at the central site is exhausted. The
algorithm tracks the amount of water received by each location during the distribution
stage, which serves as the local magnitude of water flow in the rest of the simulation.

Perron et al. [46] use the following PDE formulation for the amount of erosion that
occurs on the terrain represented by the function z(x, y, t):

∂z

∂t
= D∆z −K(Am|∇z|n − θ) + U . (4.3)

The two main terms of this equation are the diffusion term containing the Laplacian ∆z
and the advection term containing the gradient ∇z. The constants D and K respectively
determine the amount of diffusion-based and advection-based erosion. The constant n is
typically chosen to be close to 1.0. The constant m can take on a range of values, but,
according to Rodŕıguez-Iturbe and Rinaldo, m = 0.5 has a physical significance because
of a relationship between stress and flow depth. Perron et al. use 0 for the constant θ, so
I do not include it in my formulation. The constant U represents fixed-rate uplift and is
necessary for modeling the test topography in Figure 4.15.

The value of A is the area that contributes water to a given location on the terrain.
The size of the contributing area determines the amount of water flow at the site. The
simplest way to approximate A in the discretized setting is to count upstream nodes in an

74

area map, or a graph that encodes the “contributes water to” relationship. This procedure
also discretizes the local flow direction, which leads to undesirable artifacts. Tarboton [64]
discuss alternative methods of calculating the area map, but two fundamental limitations
of the concept remain. First, area maps tend to emphasize either convergent or divergent
flow making combinations of the types of flow difficult to produce. Second, the way area
maps assign flow directions at sites near local minima of the terrain results in an arbitrary
drainage direction for the corresponding lake. Moreover, the size of the lake is not well-
defined, because area maps are based on the geometry of the terrain and do not involve
any calculation for the current amount of water at a site.

In my simulation of erosion I adapt the equation of Perron et al. by replacing A with a
quantity f derived from the flow computed by my water-column algorithm. The following
equation is the result:

∂z

∂t
=

{
max(fw∆∆z − f(wd|D~s|+ w0), zlow − z) if z > zlow,

fw∆∆z − fw0 if z ≤ zlow.
(4.4)

The division into two cases ensures that advective erosion can not make a site lower than
the height of its lowest neighbor zlow, since this type of erosion simulates the action of water
running downhill. The constants w∆ and wd respectively weight the amounts of diffusion-
based and advection-based erosion. D~s is the directional derivative in the direction of
steepest descent. The constant w0 is an optional fixed amount of erosion that occurs inside
the channels in addition to the other types of erosion. I scale all of the erosion terms by f ,
so that the total amount of erosion is greater inside the channels that form. I do not except
diffusion-based erosion from this scaling like Perron et al. under the assumption that the
terrain outside the channels is covered by vegetation, which makes it resist diffusion.

I introduce the effect of avalanching into the calculation of f . My water-column algo-
rithm provides the value fc as the local magnitude of flow. Using fc directly to calculate
erosion will result in scale-free networks similar to those of Rodŕıguez-Iturbe and Rinaldo.
In other words, river networks will have a graph-like (forest-like) appearance and in the
discrete domain their width will be as narrow as the discretization density allows (see Fig-
ure 2.10). For rivers to have width, channels with large flows must collapse their banks
and capture nearby flows. From the perspective of the avalanching paradigm, the erosion
events leading to the emergence of a channel should cause further erosion in its vicinity.
To achieve this effect my simulation contributes a fraction of fc at a given site to all of its
uphill neighbors within a search radius R = fcRmax, where Rmax is a fixed constant. The
sum of contributed flows at each site forms an additional flow map fa. I combine the two
flow maps into a single map f for Equation 4.4 using the following formula:

75

f = (wafa + wcfc)
m, (4.5)

where wa and wc are weighting constants and m is a constant exponent similar to the
exponent used with A, which f replaces.

From a modeling perspective, larger values for parameter w∆ result in more smoothing
along the channels. The parameter wd, as well as the parameters used in calculating f ,
control the degree of channel incision into the terrain. The weights wa and wc in the equa-
tion for f determine the relative importance of avalanching around sites with large flows.
The exponent m in the equation for f can make erosion in smaller channels comparatively
more noticeable if it is less than 1.0. The parameter w0 sets up additional erosion inside
all channels at the rate proportional to f , which also brings out small channels.

To solve Equation 4.4 I discretize z on the simulation grid and approximate its first and
second derivatives by locally fitting quadratic surfaces using the least squares method. This
operation is a feature of my common simulation framework. Having obtained discretized
z and its derivatives, I apply Gaussian iteration to achieve a forward Eulerian integration
step. I find it convenient to let the the right hand side of Equation 4.4 determine the step
size. In other words, the step size is absorbed into the parameters I use to scale the amount
of erosion.

Figure 4.12 shows some results of my hydraulic simulation with parameter values given
in Table 4.6. Each row of the figure contains a set of initial conditions, the resulting channel
network, and a plot showing hypsometric curves of the underlying terrain before and after
erosion. I discuss the hypsometry (introduced in Section 2.4.1) of the eroded terrains
further in the following sections. The terrain in Figure 4.12c is especially significant,
because it demonstrates the ability of my simulation to model convergent flow resulting
from downhill water runoff, as well as divergent flow resulting from an obstacle.

wa wc m w∆ wd w0 grid size
(a) 1.0 2.0 0.5 10.0 3.0 1.5

128×256(b) 2.0 1.0 1.0 10.0 3.0 0.0
(c) 2.5 1.5 0.5 5.0 3.0 0.5

Table 4.6: Simulation parameters for Figure 4.12.

76

0 10

1

(a)

0 10

1

(b)

0 10

1

(c)

Figure 4.12: Each row contains the initial conditions, followed by the generated river
network and the hypsometric curves of the topography before and after erosion (final
curves are heavier).

4.3.2 Effect on Spectral Density and Hypsometry

To evaluate the effects of my erosion algorithm on terrains I investigated the changes it
produces in the terrains’ spectral density and hypsometry. These properties of terrains are
relevant when extending an erosion algorithm to a complete procedural terrain modeling
application. The spectral properties of the generated terrains should exhibit the power
falloff characteristic of fBm as many natural terrains do (Section 2.1.3). The avalanching
paradigm used in my erosion simulation can act as a source of the affine fractal scaling
associated with the power falloff (Section 3.1.3). As for the terrains’ hypsometric properties,
they should tend to the hypsometric forms of Figure 2.12 (Section 2.4.1), especially the
monadnock and equilibrium forms, as the amount of erosion increases.

Applying my erosion algorithm to synthetic terrains like in Figure 4.12 may not pro-

77

duce these properties if the effects of erosion do not overwhelm the shape of the initial
terrain. In most situations like in Figures 4.12 and 4.13, the spectral density and the hyp-
sometry of the initial terrain are not significantly altered. This makes it possible to use
my simulation as a second stage in a terrain modeling method that begins by generating
a terrain with the natural spectral and hypsometric properties. The subsequent erosion
will add visually apparent erosion features like rivers to the terrain, but will not destroy
its original properties. I develop such a terrain modeling algorithm in Section 4.3.4.

(a)

0.202, 0.522

0.112, 0.488

(b)

0 10

1

(c)

Figure 4.13: Effects of hydraulic erosion on fBm landscape: (a) – (b) terrain before and
after erosion and corresponding log plots of spectral density, (c) hypsometric curves (darker
curve for eroded terrain).

Figure 4.13 shows the result of applying my erosion simulation to an fBm-generated
terrain. The spectral density plots in the figure demonstrate that the spectral properties
of the terrain are not altered significantly, with most of the changes confined to the highest
frequencies (away from the center of the plot). The hypsometric curves in the figure

78

show that the curves are nearly identical before and after erosion, similar to the curves in
Figure 4.12.

Figure 4.13c indicates that the hypsometric curve of fBm exhibits features appropriate
for terrains in erosion equilibrium: concavity in the upper part, convexity in the lower part,
and an inflection point. Therefore the aggregate appearance of fBm terrains is similar to
that of eroded terrains, even though the former does not contain any erosion features. If
the opposite were true, fBm would be less flexible as a modeling tool.

4.3.3 Emergent Behavior of Channel Networks

Effects of Avalanching

The characteristic shape of the channel networks created with my algorithm is mainly due
to avalanching. Erosion occuring at a given site can make it lower than its neighbors and
re-orient water flow towards it. This concentration of water flow can begin an avalanche
of erosion at the current site and downstream of it. Erosion events can also propagate
upstream, as a channel becomes more incised into the underlying terrain and the heights
along the bottom of the channel equalize with its lowest point downstream.

(a) (b) (c)

Figure 4.14: Erosion avalanches reorient flow in a channel network resulting in tributary
capture.

My method of calculating the approximation of flow f in Equation 4.4 also ensures that
the erosion at each site can be scaled by nearby large flows. At the macroscopic level this
behavior causes large rivers to become wider and capture tributaries in an area around
them. Figure 4.14 illustrates this behavior.

79

0 10

1

(a)

0 10

1

(b)

Figure 4.15: Modes of valley evolution differentiated by formation of secondary valleys:
(a) diffusion-dominated, (b) advection-dominated.

Evolution of Valleys

The equation of Perron et al., which is the basis of my PDE formulation of erosion (Equa-
tion 4.4), has two extreme solutions corresponding to diffusion-dominated and advection-
dominated erosion. The smoothing effect of diffusion-dominated erosion diminishes the
formation of secondary incisions that branch out from primary ones. Although I have
replaced some terms in the PDE with quantities derived from my water simulation, my
formulation retains the ability to produce these two types of erosion as long as the diffusion
term is not scaled by f . The scaling is a modeling decision necessary to allow smoothing
only inside the channels, i.e., the area not protected by vegetation. However, to reproduce
the model topographies of Perron et al. I allow smoothing to occur everywhere. Addition-
ally, I include a constant uplift term needed for these topographies. These two changes
result in the equation below.

∂z

∂t
=

{
max(w∆∆z − f(wd|D~s|+ w0) + wU , zlow − z) if z > zlow,

w∆∆z − fw0 + wU if z ≤ zlow.
(4.6)

Figure 4.15 shows the two model topographies with different types of erosion. Table 4.7
contains the corresponding parameter values. The figure also includes the hypsometric
curves of the terrains. The hypsometry of the advection-dominated terrain shows the
classic shape of the equilibrium evolution phase. On the other hand, the hypsometry
of the diffusion-dominated terrain does not fit the classification. This provides another
justification for my decision to restrict the effect of diffusion with the scaling term in my
main equation and focus on modeling advection-dominated terrains.

80

wa wc m w∆ wd w0 wU
(a) 0.1 1.0 1.0 20.0 3.0 0.0 0.03
(b) 0.0 1.0 0.3 3.0 5.0 0.0 0.30

Table 4.7: Simulation parameters for Figure 4.15 and Equation 4.6.

4.3.4 New Method of Terrain Modeling

Simulating hydraulic erosion addresses only one part of the terrain modeling problem, be-
cause it can only add erosion features to an existing terrain. A complete terrain modeling
method based on hydraulic erosion needs to incorporate a step to construct the initial con-
ditions for the erosion algorithm. So far, the examples in Section 4.3.1 used purely synthetic
initial terrains based on ramps and sinusoid shapes (although the use of sinusoid shapes
can be partially justified as an approximation of synclines, i.e., folds in terrains). The
example in Section 4.3.2 erodes an fBm terrain, which has a strong physical justification,
but presents some modeling difficulties associated with generating fBm (Section 2.1.5).
For example, fBm terrains created via spectral synthesis with an inverse Fourier trans-
form are periodic and difficult to control. This is why I have designed a procedure based
on self-organization to create terrains as a first stage for my hydraulic simulation. As
Section 4.3.2 shows, my erosion algorithm does not significantly change the spectral and
hypsometric properties of the underlying terrain, so the combined procedure benefits from
having the separate initial stage that creates a terrain with a controllable appearance that
also exhibits realistic fractal and hypsometric character.

The basic idea of the initial terrain algorithm comes from the erosion simulation of
Section 4.2 and its application to generating island interiors discussed in Section 4.2.4. So,
the first stage of my complete modeling method treats simulation of coastline erosion as
the higher order problem of generating appropriate level sets of the terrain containing the
coastlines. In this way, my method uses self-organization to reproduce the relationship
between coastlines and terrains that is also a part of the formulation of terrain modeling in
terms of explicit fBm synthesis (Section 2.1.3). However, my method produces physically-
based hydraulic erosion features that are not found in fBm and uses coastline and river
erosion in combination that is novel compared to other simulation-based approaches.

Besides providing a valuable connection between coastline and terrain modeling, my
use of the coastline erosion algorithm in the interior of the underlying terrain makes sense
in terms of the coastline model used by my algorithm. The coastline model is formulated
in an abstract way and is also applicable to any situation where a front of material “caves
in” due to exposure and weakening from its neighbors. Furthermore, flooding a terrain to

81

any level must produce a plausible coastline. Listing 4.1 outlines the first stage algorithm
in pseudocode form.

Listing 4.1: First stage of terrain generation algorithm.

1 seed e r o s i o n f r o n t s us ing a mask
2 l a b e l i n t e r i o r and e x t e r i o r o f f r o n t s c o n s i s t e n t l y (Section 4.2.5)
3 while uneroded s i t e s remain {
4 iterate c o a s t l i n e e r o s i o n model
5 d = each s i t e ’ s BFS d i s t anc e from l a s t l e v e l s e t
6 D = maximum such d i s t anc e
7 i f (D > th r e sho ld) {
8 f o r c e e r o s i o n event at s i t e s with d = 0
9 mark new l e v e l s e t

10 }
11 i f (e r o s i o n f r o n t i s stuck) perturb F (Equation 4.2)
12 }
13 a s s i g n he i gh t s to l e v e l s e t s l i n e a r l y
14 interpolate he i gh t s between l e v e l s e t s

The mask in line 1 initializes each location on the terrain as either high or low, so that
the erosion fronts begin at the boundary between the two types of locations and propagate
into the interior of the regions composed of the high locations. I have chosen the local
perimeter model for use in line 4 because its semantics allow for the possibility of mixing
erosion fronts with different properties. However, I have not found it necessary to exercise
fine-scale control over the shape of the level sets. Instead, the shape of the resulting terrain
depends on the specified mask of initially eroded locations, which become the lowest points
on the terrain. This mask is particularly suitable for setting up the areas of oceans and
rivers.

Figure 4.16 shows a simple terrain generated with this algorithm. The initial seed
is a single point in the center of the terrain. From a hypsometric point of view, this is
an ideal situation for my algorithm, because a small set of seeds results in initial fronts
with short perimeters, producing convexity in the hypsometric curve for low heights. This
effect is due to small fronts having a higher probability of using the entire area allowed
by the threshold distance in line 7. In contrast, fronts with large perimeters are likely to
have a few locations where erosion avalanches rush into the interior quickly violating the
threshold distance and causing a new level set to be created. The leftover sites increase in
height as a result. As for a similar effect that produces concavity in the part of the curve
corresponding to large heights, it is always guaranteed to occur, because level sets either
climb up hills and become shorter or run out of area and create hills. The latter situation
is apparent along the boundary of the terrain in Figure 4.16. Figure 4.17 shows terrains

82

generated with more interesting masks (painted by hand) and eroded with my hydraulic
simulation. This set of terrains uses a grid size of 256×256. I discuss the terrains’ spectral
and hypsometric qualities in Section 4.4.4.

(a)

0.102, 0.484

0.108, 0.504

0.118, 0.477

(b)

0 10

1

0 10

1

0 10

1

(c)

Figure 4.16: Comparison of interpolation strategies for use in the new terrain modeling
algorithm (nearest, Hermite, and variational): (a) generated terrain, (b) log plot of spectral
density, (c) hypsometric curve.

Figure 4.16 also compares different interpolation strategies for the height of the terrain
between the level sets. The method of the top row sets unassigned heights to the lower
of the two nearest level sets. The terrace-like stacking of the flat areas is apparent in

83

the generated terrain and the hypsometric plot. This illustrates the need for a better
interpolation method unless the terraces are explicitly required for a specific kind of terrain.
The method of the middle row uses a variant of Hermite interpolation similar to the
procedure of Hormann et al. [24]. The method of the bottom row uses the result of the
previous method as initial conditions and follows it with a relaxation procedure based
on an energy formulation similar to the procedure of Szeliski and Terzopoulos [63]. The
reduction in this approximate bending energy was 43.67%.

84

(a) (b) (c)

Figure 4.17: Additional examples of terrains constructed with the two-stage modeling
method: (a) mask specifying level set seeds, (b) initial conditions for hydraulic stage, (c)
final result.

85

4.4 Discussion of Terrain Simulations

In this section I discuss my methodology for developing self-organized simulations of ero-
sion, especially the role played by avalanching and my simulation framework. Additionally,
I carry out a detailed analysis of the water-column simulation component. I also analyze
the results of my erosion simulations.

4.4.1 Use of Avalanching in Modeling

As I stated in Section 3.2.1, my modeling approach uses physically-based self-organization
principles to generalize the modeling procedures for several types of geomorphologic fea-
tures. In applying this approach to simulations of dunes, coastlines, and rivers I identified
avalanching behavior in conceptual models of erosion, re-defined the conceptual models to
emphasize self-organization (and in some cases model new types of behavior, such as chan-
nel widening), and finally designed appropriate simulations using my common framework.
However, my approach does not merely re-define models of erosion in terms of avalanching,
but can serve as a conceptual model by itself, due to its abstract view of erosion.

In particular, my model of hydraulic erosion on terrains (Section 4.3.1) uses avalanching
to concentrate water into channels and promote tributary capture, while the amount of
erosion around the developing channel network is determined by a PDE also used in the
model of Perron et al. [46]. The self-organized behavior of the channels is a primary
part of the model, while the PDE formulation of erosion, which by itself is a type of
erosion model used in hydrogeomorphology, plays a secondary role. Furthermore, the use
of avalanching in my hydraulic erosion model is closely related to the flow of information
during its simulation: the channels communicate by competing for tributaries, tributary
capture causes a channel to carry more water downstream, and incision of rivers into the
terrain causes upstream locations to become drained. Therefore, the avalanching principle
leads to a high-level model of the entire erosion process without the need to specify the
details of water flow or how much material is removed. This allows avalanching to be used
to design new types of simulations.

4.4.2 Evaluation of Framework

The final step of my modeling approach is to develop a simulation according to principles of
self-organization by using appropriate facilities of my common simulation framework (Sec-

86

tion 3.2.3). To implement my simulations of dunes, coastlines, and rivers I have followed
the process outlined below.

1. Represent the feature to be modelled in a graph-centric way.

◦ The common framework maintains the graph that represents the entire problem
domain, while the subgraphs corresponding to individual features are identified
implicitly.

2. Identify the state variables to be tracked at the sites that belong to the features.

◦ The common framework provides for a MAS-based structure for storing and
updating the state, as well as communicating changes between neighbors.

3. Set up an iterative algorithm for updating the state variables to simulate evolution
of the features.

◦ The common framework provides various subroutines for computing updates
and communicating them throughout the problem domain. These include com-
putation of derivatives and different kinds of searches (Section 3.2.3).

4. Link the state variables to measurements (e.g., height) that can be visualized on a
terrain.

◦ The common framework displays the terrain, as well as markers that can be
used for debugging.

5. Provide initial conditions for the simulation.

Many of the design steps rely heavily on facilities provided by the common framework
showing how the framework can save work needed to design each specific simulation. I
discussed above how each specific simulation that I have implemented uses the common
code (Sections 4.1.3, 4.2.5, and 4.3.1). Speaking generally, a lot of the effort (steps 1, 2, and
4) is descriptive in nature and involves declaration and manipulation of variables. The only
conceptually difficult part, which has to be unique for each simulation, is step 3. It requires
the knowledge of the problem domain and an external definition of the processes that
cause the features being modelled to evolve. However, the common framework provides
computational building blocks needed to express the external concept in terms of state
changing avalanches of the avalanching paradigm.

Since the code of the simulations based on the common framework involves a lot of
trivial manipulation of variables (e.g., for setting up different types of initial conditions),
the size of the simulations in lines of code is not the best measure of the effort involved

87

in creating them. Nevertheless, I have computed the ratio of specific to common lines of
code for my simulations of dunes, coasts, and terrains with hydraulic erosion; respectively,
they are: 0.36 : 1, 0.47 : 1, and 0.64 : 1. The size of code specific to each simulation
is a reasonable proportion of the common code. In calculating these numbers I have
not included any code related to visualization, which would skew the results in favor of
the common framework. I have also not included the code needed for comparisons in
Section 4.4.3.

Performance

Computational costs typically associated with physics simulations are substantial. Addi-
tionally, the design of my simulations prioritizes capture of complex emergent behavior
over non-trivial performance enhancements. For these reasons, the modeling techniques
that my framework encapsulates are not real-time.

Table 4.8 summarizes the performance of my simulations of coastline erosion. Recall
that simulations in Figure 4.5 (a)–(c) use a search constrained to coastline locations, while
the simulations in (d)–(f) visit a much larger number of sites in a breadth-first manner.
This accounts for the large growth in runtime for the latter type of simulations. The design
of simulations with extra avalanching also includes visiting locations in a radius to weaken
them due to nearby erosion events. However, the weakening effect increases the amount of
erosion per iteration, so the total runtime is lower, as exemplified by the runtime for the
simulation in Figure 4.7.

4.5a 4.5b 4.5c 4.5d 4.5e 4.5f 4.7
grid size 256×256

runtime (s) 195 308 199 1444 2179 3724 78

Table 4.8: Performance of coastline erosion simulations.

To explore performance issues of my simulations further, I have implemented a version
of the coastline simulations as a GPU-based algorithm (see Appendix B.1 for details). Fully
leveraging GPU functionality required compromising the high-level model, but resulted in
an algorithm that was able to produce acceptable results many orders of magnitude faster.
However, direct comparison between the CPU and GPU coastline simulations is difficult
and does not immediately suggest a way to also speed up my hydraulic erosion simulations.

Table 4.9 summarizes the performance of my simulations of hydraulic erosion. Stage 1
refers to the algorithm for constructing an initial terrain suitable for erosion, which is the

88

first step of my combined two-stage terrain modeling method. The algorithm is based on my
coastline erosion model that uses local perimeter and a contiguous search (Figure 4.5 (a)–
(c)), so the performance of stage 1 should be similar to those coastline simulations. Stage 2
refers to the algorithm for simulating hydraulic erosion, which creates river channels on
top of a terrain. Its computational cost tends to be higher than that of stage 1, because
it can take many iterations to erode the terrain and uses searching in a radius to produce
an avalanching effect.

4.12a 4.12b 4.12c 4.17 (first) 4.17 (third)
grid size 128×256 256×256

stage 1 runtime N/A 2m 0s 2m 36s
stage 2 runtime 4m 27s 8m 6s 7m 27s 3m 51s 8m 13s

stage 2 iterations 300 450 450 50 150

Table 4.9: Performance of hydraulic erosion simulations.

The performance numbers of Table 4.9 may be compared to the running time of simu-
lations in World Machine, which is discussed in detail in Section 4.4.5. Similar to terrains
produced with my method, a terrain can be created in World Machine in two steps: syn-
thesis of a fractal terrain and simulation of erosion. However, simulation of erosion in
World Machine does not include a simulation of water flow, which makes the algorithm
much faster. A terrain like in Figure 4.26c with grid size 512×512 can be completed by
World Machine in about 14 seconds with a single worker thread. A 256×256 terrain takes
less than 2 seconds.

4.4.3 Water-Column Algorithms

Water-column algorithms have been used in both animation and erosion simulations. One
version of the algorithm uses a water distribution strategy based on averaging and is
exemplified by the work of Olsen [41]. I have implemented this type of water-column
scheme based on both a uniform average and a weighted one. The main idea of the scheme
is to transport a local excess of water to lower neighboring locations. Therefore, any local
bumps in the surface of the water become smaller with every iteration. The following is
high-level pseudocode for this type of water transport scheme:

Listing 4.2: Water-column algorithm based on averaging.

1 H = combined he ight at c e n t r a l s i t e
2 for each neighbor {

89

3 h = combined he ight at neighbor s i t e
4 i f (h < H) {
5 neighbor p a r t i c i p a t e s in d i s t r i b u t i o n
6 }
7 }
8
9 A = average combined he ight o f p a r t i c i p a t i n g s i t e s

10 W = water at c e n t r a l s i t e
11 X = min(W, H − A) // t o t a l amount o f water to t r a n s f e r
12
13 for each neighbor {
14 i f (neighbor p a r t i c i p a t e s) {
15 f = f r a c t i o n o f X weighted uni formly or by he ight d i f f e r e n c e
16 t ranspo r t f ∗X from c e n t r a l s i t e to neighbor
17 }
18 }

The second type of water-column algorithm adds virtual pipes that connect the water
columns and transports water based on a hydrostatic formulation of water flow inside of the
pipes. The hydrostatic approach is exemplified by the work of O’Brien and Hodgins [40]
and Št’ava et al. [69]. The main difference of this scheme from the simpler one based on
averaging is the explicit calculation of water flow (in volume per unit of time) inside the
pipes, which produces changes in water levels inside the water columns. So this scheme
has an explicit time step. Excess water is distributed to neighbors that are connected to
the central site by pipes with positive outward flow. There is an additional complication
that it can take time for a flow with large magnitude to reverse, so the direction of flow
in the pipes may temporarily stay out of sync with geometry. The following is high-level
pseudocode for my implementation of the scheme:

Listing 4.3: Water-column algorithm based on hydrostatic pipes.

1 for each pipe {
2 a = a c c e l e r a t i o n o f water in the pipe based on h y d r o s t a t i c p r e s su r e
3 update f low in the pipe us ing an Euler ian i n t e g r a t i o n step
4 }
5
6 V = volume f l ow ing out o f c e n t r a l s i t e during the cur rent time step
7 W = water at c e n t r a l s i t e
8
9 for each pipe {

10 s c a l e back f l ows so that V does not exceed W
11 }
12
13 s t a r t a new pass

90

14 for each neighbor {
15 s c a t t e r outgoing volume updates to ne ighbors
16 }
17
18 s t a r t a new pass
19 update water column with the d i f f e r e n c e o f incoming and outgoing volume

(a) (b) (c)

Figure 4.18: Comparison of water-column algorithms in combination with erosion: (a)
special algorithm from Section 4.3.1, (b) distribution based on uniform average, (c) distri-
bution based on weighted average. Water flows without causing erosion in the top row.

Figure 4.18 compares my specialized water-column algorithm from Section 4.3.1 with
the version that is based on averaging. The test case is a sloping terrain from Figure 4.12b
with a single source of water. In the top row the water flows without causing erosion
and in the bottom row the water-column simulations work in combination with the erosion
simulation from Section 4.3.1. In my algorithm lower locations are prioritized during water
distribution in such a way that if the available water runs out, the remaining neighbors
do not receive any water at all. In contrast, averaging-based algorithms will always con-
tribute a fraction of the available water to all lower locations. That is why my algorithm
concentrates water flow into proto-channels (these channels evolve into rivers if there is
erosion) earlier than the averaging-based algorithms, which spread the water over a much
larger area. However, combining both types of algorithms with erosion produces a single
dominant channel. The placement of the channel differs slightly in each case: my algo-
rithm identifies several potential paths that follow a sequence of local minima of the terrain
(Figure 4.18a top) and all three versions result in different segments of the paths becoming
the dominant ones.

Figure 4.19 compares my specialized algorithm (Figure 4.19a is reproduced for con-
venience) and the hydrostatic version. The time variable in the hydrostatic version can
artificially slow down the simulation to an arbitrary degree relative to other versions of

91

(a) (b) (c)

Figure 4.19: Comparison of water-column algorithms in combination with erosion: (a)
special algorithm from Section 4.3.1, (b) hydrostatic version, (c) hydrostatic version with
five times more iterations.

the water-column algorithm. That is why Figure 4.19c shows the results of running the
hydrostatic version for a larger number of iterations. I have found that the hydrostatic
version with ∆t close to 1.0 (s) produces water that is too “spiky” (i.e., the bumps in
the surface do not have time to equalize due to the errors in Euler integration), while
∆t = 0.2 (s) produces visually acceptable results. However, equalization of water based
on the flow in the virtual pipes happens slower than the direct distribution of water in
the other water-column algorithms. Consequently, when the hydrostatic algorithm oper-
ates together with the PDE formulation of erosion (Section 4.3.1) the water flow is slow
to react to erosion events, preventing a single concentrated channel from emerging. Even
after five times more iterations (about an order of magnitude longer in wall clock time)
the result of hydrostatic simulation with erosion looks like the result of my specialized
water simulation without erosion. So I conclude that it is impractical to combine the hy-
drostatic water-column algorithm with the PDE formulation of erosion of Section 4.3.1.
Additionally, both the averaging and the hydrostatic schemes spread water into large areas
surrounding the terrain’s local minima, which makes them more dependent on discretiza-
tion density than my specialized algorithm. If the input amount of water is held constant,
then intermediate locations originating at a higher discretization level will take water away
from locations originating at coarser levels; alternatively, the input amount of water may
be proportionally increased, changing the volume of water moving through the system.

92

4.4.4 Evaluation of Results

Dunes

I have used my modeling framework to implement a variant of Werner’s model of dune
formation and reformulate the model to use avalanching in place of a geometric visibility
test. The simplicity of the underlying model, which is based on transporting fixed amounts
of sand according to the test, makes it apparent that in the reformulated simulation it is
avalanching that is solely responsible for the complex emergent shape of the dunes. In
other words, my dune simulations present an application of avalanching that motivates
the development of my procedural modeling method, which has avalanching at its foun-
dation. Additionally, implementing dune simulations within my framework allows me to
demonstrate a larger diversity of avalanching-based simulations. However, the dunes that
I have produced using my simulations are not significantly different from those produced
by Werner, so I do not evaluate them.

Coastlines

I have been able to construct different kinds of coastlines using my framework and my
extended model of coastline erosion. Two results are especially significant: a range of
coastlines of varying roughness (Figure 4.6) and a combination of coastlines with different
roughness (Figure 4.7). These results illustrate the ability of my method to directly control
the shape of the coastlines in two ways that are necessary for modeling real world coastlines.

Richardson’s [54] measurements of coastlines provide empirical evidence for two phe-
nomena that correspond to these modeling problems. First, the roughness of coastlines
can vary a lot. According to Richardson’s data the fractal dimension of the coast of South
Africa is only 1.02, while that of the west coast of Great Britain is 1.25. Second, a given
stretch of a coastline can exhibit mixed fractal behavior. Richardson has found that the
east coast of Great Britain behaves differently from the west one and its fractal dimension
varies between 1.15 and 1.31.

I do not evaluate the validity of the fractal dimension of the coastlines I produce with
my method, because natural coastlines can have such a large range of dimensions. One
of the largest dimensions reported is 1.52 for the southern part of Norway [16]. Passing
any curve with fractal dimension between about 1.0 and 1.5 is too permissive for a test of
validity, as the range includes most “reasonable” curves that can pass for a coastline. In
contrast, fractals with dimension less than 1.0 are disconnected and fractals with dimension
significantly bigger than 1.5 get too close to space-filling curves that do not look like

93

coastlines. The degradation of coastlines with increasing fractal dimension is apparent in
Figure 2.2.

Terrains with Rivers

Rodŕıguez-Iturbe and Rinaldo [55] discuss several forms of behavior exhibited by real world
water channels, such as tributary capture. However, the authors overlook some other types
of behavior, such as gradual flooding of local minima and eventual breakthrough of the
resulting lakes to nearby channels. This decision originates from limitations of the area
map concept that Rodŕıguez-Iturbe and Rinaldo use in their simulations. Perron et al. [46]
provide a similar view of the emergent properties of real world rivers in respect to the
competition between nearby channels. They also state that erosion associated with the
channels can be advection-dominated or diffusion-dominated.

In my model of hydraulic erosion, I have used my own water simulation with avalanching
in place of the area map. Therefore, I have validated the behavior of channels formed
with my model by showing that the types of behavior mentioned above are reproduced.
Figure 4.14 shows channel capture and Figure 4.15 shows the two modes of valley evolution.
Figure 4.12a and Figure 4.13a contain lakes that are drained with rivers. The latter type
of behavior is an improvement relative to models of Rodŕıguez-Iturbe and Rinaldo and
Perron et al. that use self-organization, but it should be reproducible with other existing
simulations that emphasize fluid simulations, such as that of Št’ava et al. [69].

(a) (b)

Figure 4.20: Comparison with channels on a sand hill.

Figure 4.20 shows my attempt to reproduce the appearance of a real channel network
from one of the photographs in Figure 4.10. There are a lot of visual similarities between the
channels on the synthetic hill and its real-world counterpart. I suggest this correspondence
merely as a confirmation of the merits of my simulation, as comparisons between real and
simulated imagery can suffer from subjectivity. However, the similarities suggest that my
simulation is particularly suited for modeling channels in homogeneous substrates similar

94

to this hill. For applications that require modeling more varied terrains with different soil
properties, the initial conditions for my simulations would have to be be augmented with
zone information.

My terrain modeling method of Section 4.3.4 combines my hydraulic simulation with a
method for generating initial conditions for it. I justify the latter addition as a necessity for
modeling real terrains. Since I incorporate a step for specifying a mask for controlling the
initial distribution of heights into the algorithm, it becomes possible to apply the hydraulic
erosion simulation to a variety of topologies. This is illustrated in Figure 4.17.

To validate the generated terrains themselves, I analyze their spectral density and
hypsometry. I confirm that the spectral density is close to a power falloff characteristic
of affine fractal scaling, which is typical for my use of the avalanching paradigm. In some
cases, the highest frequencies do not fit the pattern by either being filtered out or instead
becoming too pronounced. However, I consider such violations acceptable, because they
tend to happen when there is too much diffusion in the erosion or it creates many small-scale
channels, respectively. The lowest frequencies can also break the falloff pattern, but they
are not significant, as they capture the distribution of heights in the terrain at the coarsest
level and can be skewed easily. For example, the central value on the spectral density plots
corresponds to the average height of the terrain, which can be made arbitrarily large by
changing the reference point relative to which the heights are measured.

As for the hypsometric curves of the terrains I generate, they tend to be qualitatively
similar to the equilibrium and monadnock hypsometric forms. It makes sense that the
inequilibrium stage, which may not exhibit distinct erosion features, is not typical for my
terrains. The concavity in the upper part of the terrains’ hypsometric curves results from
a property of my algorithm for generating initial terrains via level sets. For a hill, the
area above a level set drops off approximately quadratically. However, level sets with large
perimeters tend not to use all of their available area, increasing the area above a given
level set. Typically, this effect straightens out the hypsometric curve for heights in the
middle of the range. Figure 4.21 shows the spectral density and hypsometry for terrains
of Figure 4.17.

Some of the hypsometric curves in Figure 4.17 contain nearly horizontal segments in
the parts of the plots that correspond to low heights. Such segments indicate the presence
of nearly flat areas in the generated terrains, which arise because my erosion model tends
to flatten a terrain to its minimum height (except for the effect of parameter w0). In other
words, the generated terrains are cut off at a minimum level. Alternatively, my model can
be set up with more complicated boundary conditions similar to the terrains in Figure 4.15
to produce terrains that do not flatten and instead achieve equilibrium between uplift and

95

erosion. However, I have chosen not to tailor my model to the latter type of terrains,
because they represent a special case of terrain evolution that takes place over especially
long timescales†.

†A shorter presentation of the material up to this point can be found in Computers and Graphics [51].

96

0.104, 0.522

0.101, 0.528

0.100, 0.549

0.096, 0.536

(a)

0.110, 0.529

0.122, 0.455

0.120, 0.507

0.121, 0.348

(b)

0 10

1

0 10

1

0 10

1

0 10

1

(c)

Figure 4.21: Hypsometry and spectral density of terrains from Figure 4.17: (a) spectral
density before erosion, (b) spectral density after erosion, (c) hypsometric curve before and
after erosion (final curve is heavier).

97

4.4.5 Terrain Analysis and Comparisons

I have made a combination of spectral and hypsometric analysis my procedure for evaluat-
ing terrains, because spectral analysis helps identify fractal character, while hypsometric
analysis categorizes the effects of hydraulic erosion (when it is present). The two types of
analysis supplement each other, because spectral density concerns the frequency domain
properties of a terrain, while hypsometric analysis deals with the distribution of heights
and areas in the spatial domain.

In this section, I apply my analysis procedure to several kinds of terrains, including
natural terrain data sets and terrains created with proprietary procedural methods, to
further illustrate each part of the evaluation procedure and its significance for modeling
terrains procedurally. By applying the procedures to elevation data from southern Ontario,
I confirm that natural terrains can possess spectral and hypsometric properties that I have
aimed to achieve using my procedural modeling method. In the case of terrains synthesized
using Terragen, the analysis shows that terrains can be indistinguishable in terms of their
spectral density despite having different height distributions.

The examples in this section also serve as additional comparisons between my terrain
modeling method of Section 4.3.4 and other existing methods of modeling terrains.

Terrains from Southern Ontario

I have selected four sets of elevation data from the Ontario Ministry of Natural Resources
database for Southern Ontario [1]. Table 4.10 lists the geographic locations and extents of
the datasets in order of increasing size. The pattern of elevations of the first two datasets
is relatively extreme: the first one is a deep gorge (featuring a 41 meter waterfall) and the
second one contains an unusually shaped depression. The remaining two datasets describe
river valleys that I believe are likely to be representative of the majority of the surface of
Ontario.

Figure 4.22 provides several types of visualizations of the datasets produced using
ArcGIS software 10.2.2 for Desktop Advanced. The software suite includes ArcMap,
which can be used to compile map-like representations of the data (first from the left in
the figure), and ArcScene, which is used for 3D visualization (second from the left). The
figure also includes the spectral and hypsometric plots created according to my analysis
procedure.

The hypsometric curves of the first two datasets are mostly convex, confirming that
the datasets are atypical for terrains undergoing hydraulic erosion (Section 2.4.1). The

98

convex pattern can also be found in the terrain in Figure 4.12a, which is generated with
my erosion model and a synthetic underlying terrain, and in the terrain in Figure 4.23c
(below), which is generated with Terragen and the “canyonism” option. This suggests that
terrains with convex hypsometry can arise easily both in procedural modeling and in the
real world. However, in this type of terrains the effects of rock structure must predominate
over the effect of hydraulic erosion, resulting in the creation of gorges and canyons in place
of valleys.

The third and fourth dataset are composed predominantly of typical river valleys and
exemplify the type of hydraulic erosion that I aimed to reproduce using my modeling
method. Note that these two terrains possess spectral and hypsometric qualities that I
have identified as desirable for procedural modeling. In particular, the hypsometric curve
of the third terrain is of the monadnock type, while that of the fourth terrain is of the
equilibrium type (Section 2.4.1).

extent (km×km) location
Webster’s Falls 1.4×1.4 79◦59′6′′W and 43◦16′19′′N
Dundas Valley 9.17×9.17 80◦3′3′′W and 43◦12′39′′N

loc. near St. George 10.83×10.83 80◦17′10′′W and 43◦11′0′′N
Thames River 24.19×24.19 81◦21′57′′W and 43◦7′56′′N

Table 4.10: Geographic parameters of elevation datasets from Southern Ontario.

One way in which the natural terrains are different from the ones I have generated using
my method (e.g., those in Figure 4.17 is that the river channels are deeply incised into the
terrains where they cross the border of a dataset. In my model, erosion lowers the terrain
to a local minimum within the terrain grid, as a consequence of Equation 4.4. The result
is that a deep channel will flatten out if it reaches the border of the domain. That is why
the hypsometric curves of the terrains in Figure 4.17 tend not to have a convexity in the
lower part, but the curves of the terrains of the datasets in this section do. The easiest
way to fix this problem is to expand the domain to be larger than necessary and cut out
a part from the middle for analysis.

99

0 0.25 0.5 KM 0.067, 0.832 0 10

1

(a) Webster’s Falls

0 2 4 KM 0.064, 0.765 0 10

1

(b) Dundas Valley

0 2 4 KM

0.079, 0.684 0 10

1

(c) location near St. George

0 5 10 KM 0.087, 0.645 0 10

1

(d) Thames River

Figure 4.22: Analysis of elevation datasets from Southern Ontario. Left to right: map with
waterlines, 3D visualization, log plot of spectral density, hypsometric curve.

100

Terragen Classic

I have chosen to use Terragen Classic to generate a set of terrains for comparison with my
method, because the software is extremely well-known in the graphics community. Con-
ceptually, the program can be divided into two parts: a procedural modeling component
for terrains and a rendering component that simulates such effects as atmospheric scatter-
ing. Since my primary concern is with procedural modeling, I have turned off advanced
rendering effects in the visualizations that follow.

0.077, 0.765 0 10

1

(a) Perlin

0.077, 0.772 0 10

1

(b) Perlin with glaciation

0.071, 0.765 0 10

1

(c) Perlin with canyonism

Figure 4.23: Analysis of terrains created with Terragen (part 1). Left to right: generated
terrain, log plot of spectral density, hypsometric curve.

The procedural modeling component of the software consists primarily of explicit frac-
tal synthesis algorithms, which are similar to the algorithms of Section 2.1.5. So analyzing
terrains created with Terragen establishes a base of comparison between classical ontoge-
netic modeling and my method. Additionally, Terragen provides two options to modify

101

the results of “pure” fractal synthesis: glaciation, which simulates erosion in the low parts
of the terrain, and canyonism, which has the opposite effect of increasing terrain elevation
in high regions. Broadly speaking, the glaciation option produces results similar to large
scale hydraulic erosion.

Application of my analysis procedures to terrains that are created with explicit fractal
synthesis and modified according to the two options demonstrates how spectral and hypso-
metric properties of the terrains change in response to Terragen’s simple model of erosion.
Similarly, analysis of Terragen’s multifractal terrains that exhibit spatially-varying rough-
ness can also provide insight into the effects of erosion, which can locally smooth away
rough features.

Figure 4.23 contains analysis results for three types of terrain: generated using Perlin
noise (included for comparison with the others), generated with Perlin noise and modified
using glaciation, and generated with Perlin noise and modified using canyonism. The first
terrain is a simple approximation of fBm (see Figures 2.3 and 2.7). The effect of glaciation
and canyonism on spectral density is negligible. This is most likely due to the modifications
carrying out selective scaling of the terrain instead of flattening. However, the effect of the
two options on hypsometry is profound and can be used to differentiate the results.

0.076, 0.762 0 10

1

(a) multifractal Perlin

0.080, 0.756 0 10

1

(b) ridged Perlin

Figure 4.24: Analysis of terrains created with Terragen (part 2). Left to right: generated
terrain, log plot of spectral density, hypsometric curve.

Figure 4.24 contains analysis results for a multifractal Perlin terrain and a ridged Perlin
terrain. The hypsometry and spectral character of these two terrains is similar to an

102

unmodified Perlin terrain. This is expected, because these types of fractals are typically
used as slight improvements on the appearance of typical noise-based terrains: multifractal
noise varies spatially and contains rougher and smoother regions, while noise with ridges
attempts to differentiate valleys and peaks (they are mirrors of each other in typical noise
terrains).

Erosion Model of Rodŕıguez-Iturbe

The erosion model of Rodŕıguez-Iturbe and Rinaldo [55] (discussed more in Sections 2.3.2
and 4.3) describes the formation of river networks and contains several limitations that
prevent it from also being a method of procedural modeling of terrains. However, the model
uses the area map concept in a way that is similar to how many terrain modeling methods
operate (e.g., World Machine below). This is why I discuss the results of simulating the
model of Rodŕıguez-Iturbe and Rinaldo here. My implementation of the model using my
framework was straightforward and required a small amount of code, particularly because
iterative computation of the area map is easily expressed using my paradigm of iteration
with agents.

0.111, 0.523 0 10

1

Figure 4.25: Erosion model of Rodŕıguez-Iturbe used for terrain modeling. Left to right:
generated terrain, drainage area map, log plot of spectral density, hypsometric curve.

Figure 4.25 contains the result of simulating the model when applied to an fBm terrain,
as well as a visualization of the area map and the results of spectral and hypsometric
analysis. I have used an fBm terrain here, because the model makes no provisions for
generating a starting terrain, which is one of its weaknesses that prevent it from being a
procedural modeling method. A more serious drawback is that the rivers stop when they
reach a local minimum. If this had not been the case, the rivers would flow down the hills
at the top and bottom of the terrain and produce a substantial river flowing left or right.
Additionally, the rivers are infinitesimally thin and do not create any lakes.

103

World Machine

World Machine version 2.3 is a sophisticated terrain editor that combines several procedu-
ral modeling techniques with manual editing. The software can synthesize an infinite world
using explicit fractal synthesis, as well as simulate erosion. The overall workflow follows a
procedural paradigm based on a pipeline of modifications applied to a starting terrain. The
manual component of the editing is carried out through placement of control curves and
polygons (see Section 2.3.2 for a discussion of control curves in this context). Large scale
river networks that span multiple terrain tiles are perhaps best modelled manually with
control curves, as the procedural erosion in World Machine is applied separately to each
tile. However, an optional post-processing step attempts to match the visual appearance
of erosion features at tile borders using blending.

0.068, 0.835 0 10

1

(a) ridged noise terrain

0.073, 0.791 0 10

1

(b) terrain after channel erosion

0.075, 0.792 0 10

1

(c) terrain after channel erosion with sedimentation

Figure 4.26: Analysis of terrains created with World Machine. Left to right: generated
terrain (with flow lines in blue), log plot of spectral density, hypsometric curve.

Figure 4.26 shows the results of World Machine’s erosion simulation. Note that the

104

starting terrain is also generated with World Machine (using preset parameters for ridged
noise) and that it contains visible creasing (Sections 2.1.5 and 3.1.2). The presence of
creasing and absence of high frequencies in the spectral plots suggest that World Machine
is using a naive version of the random midpoint displacement method for fractal synthesis.

The channel erosion mode of the simulation displays a pattern of erosion that is ex-
tremely similar to that created according to the model of Rodŕıguez-Iturbe and Rinaldo
(above) including the behavior of streams stopping once they reach a local minimum.
World Machine solves this problem by simulating transport of sediment, but apparently
without incorporating a true water flow simulation, which also would have solved the prob-
lem (water flow simulation is the approach I have taken in my modeling method). Without
a water simulation World Machine can not produce any lakes based on simulated water
flow.

The sedimentation simulation fills in local minima and allows the erosion simulation
to produce visually pleasing flow networks, but at the expense of overly smoothing the
terrain. The procedural pipeline capability of World Machine makes it possible to mask
out the effect of sedimentation to preserve some sharp features, but overall the erosion
simulation seems more suited to creating small rills on the sides of hills rather than river
networks.

In conclusion, Terragen and World Machine contain many terrain modeling tools, but
erosion features that the software can produce have limitations due to the lack of an
explicit simulation of water flow like in my method. First, it is not possible to simulate
a river flooding a depression and later draining out of the resulting lake. Second, the
more extensive river networks produced using the sedimentation option in World Machine
depend greatly on smoothing the terrain so that local minima are filled. In other words,
World Machine’s simulation depends on the assumption that the terrain erodes easily (or,
alternatively, is subject to diffusion-dominated erosion (Figure 4.15a). So, erosion due to
small, nearly parallel streams is the most general and realistic type of erosion that can
be modeled using World Machine. In comparison, my method is more flexible and can
produce all of the following features: erosion due to short parallel streams (Figure 4.15b),
extensive river networks (Figure 4.12), and lakes (Figure 4.13).

In terms of my spectral analysis, I conclude that explicit fractal synthesis algorithms
of Terragen and World Machine create approximations to fBm using noise summing or
subdivision-based techniques. The resulting spectral densities tend to be less noisy than
fBm and sometimes lack the highest frequencies. When I implemented my versions of
these techniques, I observed similar results (Figure 2.6 and 2.7). The spectral densities of
natural terrains that I analyzed in this section also tend to be less noisy than those of my

105

fBm experiment (Section 2.1.6). Terrains generated with my method, which is based on
implicit fractal synthesis, are also slightly less noisy than fBm (Figure 4.21), but closer to
fBm than the other fBm approximations or natural terrains.

106

It was not a primitive beginning or a
slow evolution. It is as if the modern
human soul has awakened here.

Cave of Forgotten Dreams
Werner Herzog

Chapter 5

Subterranean Channels

In this chapter I present my approach to modeling 3D channel networks that form un-
derground due to dissolution (Sections 2.3.4 and 2.4.2). Although this modeling problem
shares some similarities with modeling of hydraulic erosion on terrains (Section 4.3.1),
there are no existing approaches based on procedural modeling and simulation that repro-
duce tributary capture behavior of subterranean channels, which is different in 3D due to
the effect of pressure. I develop a simulation of this behavior by using my avalanching
modeling paradigm to formulate a self-organized model of pressure and flow. Two addi-
tional components complete my procedural model of subterranean channel networks: first,
an initial stage that simulates formation of protochannels and, second, a formulation of
erosion that allows self-organized flow of the main model to create channels similarly to
my simulations of 2D channels.

I use a grid of voxels as the discretization for my simulations of subterranean channel
development. Each voxel element represents a unit of rock that can contain an amount of
water corresponding to its porosity. Additionally, the voxel grid can use porosity to rep-

107

resent bedding planes and fractures in the rock matrix. When erosion increases porosity
of the voxels inside channels, the faces of appropriate voxels become visualized via poly-
gonization. Protochannel development creates initial channels beginning at voxels that
contain sources of flow. Channel growth and linkage stage simulates flow from source vox-
els to sink voxels according to my self-organized model: flow concentrates into channels
and causes erosion. Tributary capture can occur when a channel is able to drain the rock
matrix in its vicinity and create a low pressure zone that redirects other channels.

Two aspects of my procedural model of channel development are particularly significant.
First, the expressive power of my avalanching paradigm allows the model to reproduce a
complicated pattern of tributary capture, called a phreatic loop, using emergent behavior.
This is essential for simulating realistic channel development in 3D and so far has not been
attempted in procedural modeling. Second, my model of pressure and flow provides for
self-organization of pressure in a novel fashion by using semantics similar to avalanching
in sand.

5.1 Challenges in Simulating Channel Behavior in 3D

Differences in problem domain representation and behavior of flow make it difficult to
extend simulations of 2D channels on top of terrains to simulations of subterranean channels
in 3D. In the 2D case, heightmaps serve as the discretization and flow is transmitted from
higher to lower sites, causing erosion that lowers the surface of the terrain. So a high
level model of 2D flow follows from the implied avalanching behavior that occurs when
eroded sites receive more flow and cause more erosion in their vicinity. On the other hand,
the growth of 3D channels is guided by fractures and permeability of the rock matrix, in
which they are embedded. The 3D setting can be discretized using a grid of voxels, whose
porosity values can represent both fractures and any other local variations in permeability.
However, flow in the voxel grid does not necessarily concentrate in voxels with low porosity
and the feedback behavior due to erosion as in 2D does not occur in the same way.

Figure 5.1 illustrates the differences between discretization based on heightmaps and
voxels (for 2D and 3D channel simulations, respectively) in terms of transmission of water
between neighbors that can occur during one iteration of a simulation. Water columns that
represent the amount of water at a terrain site can have unlimited size, while the capacity
of voxels is fixed. This constraint restricts which flow updates can be made. Assuming
that the flow should occur in a “downhill” direction as in the figure, higher neighbors can
always transmit water in the 2D case, but flow between voxels can encounter bottlenecks.

108

(a) (b)

Figure 5.1: Differences in problem domain representation between 2D and 3D channel
simulations: (a) flow based on water columns, (b) flow based on voxels.

Since the 3D simulation performs less work in one iteration on average, it is slower even
without accounting for the faster asymptotic growth of the number of grid units in 3D.

The main challenge in developing a simulation of channel behavior in 3D is the need
for a new model of water flow that can account for flow not only between higher and lower
sites like in terrain simulations, but also according to a pressure gradient that may be in a
vertical direction (Section 2.4.2). To motivate the formulation of a flow model suitable for
3D channel networks, I have adapted the water-column algorithm to use voxels similarly to
water columns by separating the 26 neighbors of a voxel according to their relative vertical
position. Any remaining capacity of the lower 9 neighbors is filled first, then the level of
water in the 8 neighbors on the same level is equalized (Figure 4.11).

Simulation of erosion based on the above flow algorithm variant produces two types
of channels, as shown in Figure 5.2. In the first example, the initial conditions consist of
a single source and a rock matrix of variable permeability that contains an impermeable
half-ramp half-block. Porosity is visualized as a range of colors, such that blue corresponds
to lowest porosity and red to maximum porosity. The water from the source slides down
the ramp as the model of water flow requires water to be transported to lower neighbors.
In the second example, the initial conditions consist of five sources and several layers of
rock with different porosity. The flow of water is in the vertical direction. Note that both
examples exhibit flow concentration that guides channels to link up, as in simulation of
water flow in terrains. However, water always falls through the rock matrix until it reaches
a sink or an impermeable layer, which is equivalent to a terrain discretized using voxels.
This limitation shows that a straightforward extension of the water-column algorithm is
not a valid generalization to 3D as it can not express flow behavior that is substantially
different from that on terrains. The fundamental limitation of the algorithm is that it

109

(a) (b)

(c) (d)

Figure 5.2: Generalization of water simulation from 2D to 3D: (a) half-ramp half-block,
(b) channels produced by 1 source, (c) layered block, (d) channels produced by 5 sources.

compares heights of neighbors, which implies that transport of water occurs relative to a
horizontal plane.

5.2 Model and Simulation

According to hydrogeomorphologic principles of channel development via dissolution (Sec-
tion 2.4.2), I distinguish two stages of channel development: the protochannel stage and
the channel growth stage. I make the simplifying assumption that protochannels and chan-
nels do not develop simultaneously (in different parts of the problem domain), although
they can coexist until protochannels are eroded or enlarged. Therefore, I develop separate
models for the two stages and simulate them in sequence. My main contributions are the
model and simulation of the channel growth stage.

110

5.2.1 Protochannel Stage

The goal of the protochannel stage is to create physically-motivated initial conditions for
the channel growth stage in the form of vestigial channels that grow out of each source,
elongate according to rock permeability and pressure differentials, and have not yet broken
through to a sink. As protochannels grow they compete for space by pressurizing the
pores of the rock in their vicinity, slowing down the development of affected protochannels
(Figure 2.16a). The first part of my model for protochannels accounts for this competition
by letting each protochannel’s source claim an area according to its pressure.

The second part of my model details the behavior of the protochannels as they grow.
Since I am assuming that the breakthrough has not occurred yet, the sinks are inactive
and the flow through the rock matrix is slow compared to the post-breakthrough flow.
Additionally, the pre-breakthrough flow is further constrained, because each source has
created a pressure zone of water-filled pores, which have to be displaced for flow to occur.
I assume that displacement of water in the pores happens extremely slowly due to drag
along the surface of the pores, so that pressure of interacting pressure zones can become
nearly equalized. Therefore, only local changes in porosity and a small local gradient of
flow affects the growth of each channel. I simulate the presence of an idealized small flow
gradient using a set of protosinks on the boundaries of each source’s pressure zone. In the
isotropic case, this causes the protochannels to branch out in all directions. Clustering the
protosinks results in protochannels that grow in a preferred direction.

(a) (b) (c) (d)

Figure 5.3: Pressure zones in protochannel development: (a)–(b) two sources with equal
pressure, (c)–(d) pressure of one source is higher.

I implement the first part of my protochannel model by using fast marching (Ap-
pendix A.5) to approximate the extent of each pressure zone according to distance to
closest source weighted by pressure. Using distance this way simulates the effect of a

111

larger pressure capturing more area before equalization, as illustrated in Figure 5.3. The
increase in area allows the protochannel system of the source with higher pressure to also
become larger. The following pseudocode outlines the necessary change to the fast march-
ing algorithm (corresponding to line 18 of Listing A.6). The variable max pressure is the
largest pressure of protochannel sources.

Listing 5.1: Distance update in protochannel model.

1 // recompute d i s t anc e f o r ne ighbors o f minimal s i t e P
2 for each neighbor N of P {
3 weight = max pressure / P. source . p r e s su r e
4 new distance = weight ∗ d i s t anc e (N, P. source)
5 i f (new dis tance < N. c u r r e n t d i s t a n c e) {
6 update d i s t ance }
7 }

I implement the second part of my protochannel model using a variant of the Ford-
Fulkerson flow network algorithm, which computes maximum flow in a network subject to
capacity constraints [10]. I have chosen this algorithm, because according to my model
the flow in protochannels is primarily affected by porosity, which acts like a capacity
constraint. Additionally, the neighbor adjacency relationship in the voxel discretization
extends the grid of voxels into a graph, similar to the graph-like representation of terrain
grids in my framework. The flow network algorithm assigns maximal flow to a set of nodes
lying between a source and a set of protosinks, whose location represents the direction of
protochannel growth. Following the path of maximal flow from a source creates a single
protochannel. I have found that to create a number of branching protochannels it is better
to follow paths of maximal flow from the sinks instead. Otherwise, it is difficult to judge
when branches should separate and the protochannels clump into a mass.

5.2.2 Channel Growth and Linkage Stage

My model for the channel growth stage describes the behavior of channels after break-
through, as well as how they self-organize to form a channel network. Figures 2.15 and 2.16
suggest that channel development is guided by pressure differentials that each channel cre-
ates in its vicinity. To formulate a complete model suitable for procedural modeling, I detail
three aspects of channel development: how pressure responds to erosion, how flow responds
to pressure, and how flow causes erosion. The connection between flow and erosion is sim-
ilar to the formulation that I use to simulate hydraulic erosion on terrains (Section 4.3.1).
However, the effect of pressure requires a completely new model that combines pressure
and flow, which I have developed using the avalanching paradigm.

112

Figure 5.4 illustrates how pressure responds to erosion in my model. In Figure 5.4a two
channels develop side by side at a similar level of pressure, until one of them undergoes
substantial erosion (e.g., breakthrough). Erosion causes a reduction in pressure as the rock
matrix drains of water (Figure 5.4b). If the sharp jump in pressure between the lowered
pressure and its original level in the second channel persists, then the rock between the
two channels must have an infinite resistance to flow and the channels will never interact.

(a) (b) (c) (d)

Figure 5.4: Model for interaction between channels: (a)–(c) pressure drops around one
channel causing redirection of another channel; (d) more realistic pressure drop off around
the main channel.

It is more realistic to consider the “wall” of rock between the channels to be penetrable,
similarly to the rest of the rock carrying the channels. In this case, I assume that the
resistance of the rock is such that pressure rises linearly with its thickness, leading to an
adjustment in pressure between the two channels shown in Figure 5.4c. The adjustment
in pressure can be interpreted in terms of a maximal rate of growth in pressure that the
rock can support, so that excess pressure forces water out of the pores until the pressure is
reduced. This behavior is similar to avalanching of sand grains on a slope that is steeper
than the slope of repose (Section 2.2). In my model, I use two angles to differentiate the
rate of growth in pressure inside channels and between them, as shown in Figure 5.4d.
Reduction in pressure such that the pressure gradient points away from a channel is the
main factor leading to linkage of channels in my model.

I implement the part of my model concerning pressure by adapting the fast marching
algorithm (Appendix A.5), which is ideally suited to simulating propagation of fronts.
When erosion causes a reduction in pressure at a given site, pressure gradient at nearby
locations may become oversteepened and an avalanche of changes may radiate outward,
like a front. The following pseudocode outlines the necessary changes to the fast marching
algorithm (corresponding to line 18 of Listing A.6). Note that I separate pressure from T ,
so that pressure values can be initialized to those computed in the protochannel stage of my

113

model while T controls the order of site discovery. I discuss an alternative implementation
in Section 5.4.1.

Listing 5.2: Pressure update in channel growth model.

1 // recompute p r e s su r e and T f o r ne ighbors o f minimal s i t e S
2 for each neighbor N of S {
3 choose a p p l i c a b l e s l ope k
4 new pressure = S . p r e s su r e + k ∗ d i s t anc e (N, S)
5 i f (new pressure < N. c u r r e n t p r e s s u r e) {
6 update p r e s su r e
7 N.T = 0}
8 }

To have flow respond to pressure in my model, I use a water transport simulation similar
to the generalization of the water-column algorithm discussed in Section 5.1. However, this
time I use a distribution strategy based on a weighted average, because of the increased
number of neighbors compared to the 2D case (Section 4.4.3). Unlike equalization of
water relative to the horizontal, this distribution scheme also avoids defining a preferred
direction and can represent flows between any set of neighbors (subject to the weighting).
The following pseudocode, which is similar to Listing 4.2, provides the details.

Listing 5.3: Voxel-based water transport algorithm.

1 for each neighbor N of S {
2 i f (N. capac i ty > N. contents && N. pr e s su r e < S . p r e s su r e) {
3 N p a r t i c i p a t e s in d i s t r i b u t i o n }
4 }
5
6 d i s t r i b u t e d = 0
7
8 for each neighbor N of S {
9 i f (N p a r t i c i p a t e s) {

10 update = weight (p r e s su r e d i f f e r e n c e) ∗ (N. capac i ty − N. contents)
11 update −= max(d i s t r i b u t e d + update − S . contents , 0)
12 d i s t r i b u t e d += update
13 N. content s += update }
14 }
15 S . contents −= d i s t r i b u t e d

Finally, I formulate the relationship between flow and erosion similarly to hydraulic
erosion on terrains, but with some simplifications. First, I calculate a flow value f from
central and contributed flows, fa and fc, respectively, analogously to Equation 4.5:

f = (wafa + fc)
m. (5.1)

114

Second, I use f to determine the corresponding amount of erosion in terms of the increase
in porosity P . The following equation is a simplified form of Equation 4.4, in which I
dispense with terms containing derivatives of P , because my discretization is coarse (i.e.,
each voxel contains only one sample). I do not incorporate terms based on the pressure
gradient, which may also affect erosion, because my formulation of flow already results in
more flow to neighbors with a greater difference in pressure.

∂P

∂t
= min(w0f, 1.0− P). (5.2)

5.3 Results

(a) (b) (c)

Figure 5.5: Protochannel simulation results. Sources are marked with arrows.

The protochannel stage of my simulation can construct several types of protochannel
systems exemplified in Figure 5.5. Figure 5.5a shows protochannels that branch from a
central “core” similar to experiments of McDuff et al. [36] (Section 2.4.2). The develop-
ment of protochannels in Figure 5.5b encounters obstacles due to pressure zones (shown
in different colors) of nearby inputs, according to a configuration with multiple ranks of
inputs. Figure 5.5c contains a longer system of protochannels.

To illustrate the behavior of my simulation of the channel growth stage, I first pro-
vide examples using a 2D version of the simulation, which makes it easier to visualize
pressure, flow, and the forming channels simultaneously. The top row of Figure 5.6 con-
tains a sequence of snapshots of developing channels, while the bottom row contains the
corresponding flow (blue bars) and pressure surface (visualized as a terrain with brown
color mapping to the highest value). The initial conditions for this simulation are three
protochannels constructed synthetically. There are three sources, which are located at

115

(a) (b) (c) (d)

Figure 5.6: Channel growth simulation in 2D. Top row: forming channels; bottom row:
pressure and flow.

the tops of the protochannels, and one sink, which is located along the right boundary of
the domain. Note that channel growth causes them to link up in a sequence by forming
phreatic loop patterns (Section 2.4.2). This behavior is possible due to avalanching of
pressure and flow that causes redirection of flow from one channel towards another.

(a) (b) (c)

Figure 5.7: Alternative mode of channel growth (in 2D) without formation of phreatic
loops.

Figure 5.7 demonstrates that my model of channel growth captures the alternative mode
of channel development that does not result in formation of phreatic loops (Section 2.4.2).
The alternative behavior occurs when the resistance of the rock matrix is low and the
protochannels are able to reach the sink without first going through a neighbor. In my
model resistance to flow corresponds to growth in pressure with rock thickness, which is
different for rock with and without a present channel. Therefore, to specify low resistance
in my model it is necessary to set the pressure growth rate for channel-free rock to be low.
So the configuration of channels in Figure 5.7 emerges when the rates are set to 0.0025 :

116

0.001 (for rock without and with channels, respectively), as compared to 0.05 : 0.001 for
Figure 5.6. However, the condition that the resistance of the rock matrix without channels
is low also implies that development towards a sink will be preferable over linking up
with a neighboring channel. My model supports this interpretation and the result of the
simulation remains the same as long as the ratio of the rates is not changed. For example,
the same channels emerge for rates set to 0.05 : 0.02.

(a) (b) (c)

Figure 5.8: Channel growth simulation in 3D. Top row: forming channels; bottom row:
pressure visualization.

Figure 5.8 shows the same pattern of channels as in Figure 5.6, but constructed using
the 3D version of my simulation. Each snapshot of the simulation is accompanied by
a volumetric visualization of pressure with blue and red corresponding to low and high
pressure, respectively. I use my own polygonization algorithm to create the surface of the
channels, which is defined in terms of the change in porosity between neighboring voxels
(Appendix A.3).

5.3.1 Caves Created Using Two-Stage Simulation

I use my two-stage simulation of 3D channels to model some realistic caves. The complete
process involves three steps. First, I create a set of initial conditions in the form of a
voxel volume representing rock of varying porosity and containing several cells marked as

117

sources. Second, I apply my protochannel simulation, which is the first simulation stage.
Third, I mark some cells as sinks and run the channel growth simulation, which is the
second simulation stage. In the following figures, the result of the first stage is shown with
additional erosion first, in order for the protochannels to be visible. In the second stage
the porosity of the formed protochannels is reset to their original values, which are lower
than the threshold for the empty test, so that the new channels become visible and grow
due to the action of the channel erosion simulation only.

(a) top (b) side (c) angled

Figure 5.9: Cave with three sources that form channels towards a single sink area.

The cave shown in Figure 5.9 contains three sources that, in the first simulation stage,
produce protochannels that branch away from the source locations. The second stage
replaces the protochannels with larger channels that converge to a single sink area, which
is composed of multiple cells. The channels corresponding to sources that are farther from
the sink area are able to reach it due to being captured as tributaries. The initial porosity
matrix contains spherical hill-like regions in which porosity decreases towards the center.
These obstacles cause both types of channels to meander, producing several noticeable

118

arches (visible in the side and perspective views).

(a) top (b) side (c) angled

Figure 5.10: Cave with four sources, two sink areas, and a pattern of perpendicular frac-
tures.

The cave shown in Figure 5.10 contains four sources and two sink areas. It develops
according to the presence of two horizontal bedding planes and a perpendicular fracture
plane, which cause both protochannels and cave passages to stay relatively planar as they
follow the pattern of fractures. In particular, there are two nearly vertical passages that
coincide with the location of the vertical fracture plane.

The initial conditions for the cave shown in Figure 5.11 represent a configuration of
bedding planes and fractures similar to the rock matrix in Figure 5.10, but with a denser
pattern of fractures and the bedding planes being inclined. The cave of Figure 5.11 forms
primarily due to the action of a single source area (i.e., several neighboring voxels intro-
ducing water into the system), which is paired with a sink area in the opposite wall of the
simulated volume. The result is a cave passage that is wider than those in the previous

119

(a) top (b) side (c) angled

Figure 5.11: Cave with one source area, one sink area, two weaker sources, and a pattern
of fractures and bedding planes.

figures. Additionally, there are two weak sources at the top of the simulated volume that
produce tributaries of the main channel. In nature, the large underground source could be
originating at a nearby lake, while the two weak sources could result from water collecting
at the ground level and entering through the inclined bedding planes, which are exposed
at the surface.

Figures 5.9–5.11 contain entire sets of cave passages, which may obscure each other.
To better show places where individual passages meet, Figure 5.12 provides some close-up
screenshots. The polygonizations of the cave surfaces in this set of images are adaptively
subdivided (Section 2.1.5 and Appendix A.3) to further improve visualization. For example,
the walls of a voxelized cave passage may contain two voxels that stick out into the passage
interior and touch diagonally. In this case, subdivision of the polygonization pulls the
surfaces of the voxels apart, which is a more plausible interpretation of the voxel data,
because a cave passage should not have sharp cubical shapes obstructing it.

120

(a) Figure 5.9 (b) Figure 5.10 (c) Figure 5.11

Figure 5.12: Additional cave screenshots with subdivision.

Table 5.1 lists the simulation parameters for caves in Figures 5.9–5.11. The ratio of the
rates of pressure growth outside and inside of channels (Prate : P channel

rate) is higher in this set
of simulations than in the simulations of Figures 5.6 and 5.7, because the resolution of the
voxel simulations is lower, while the channels should drain roughly proportional regions.
Section 5.4.1 provides more information about the grid sizes of the cave simulations. The
parameters w0, wa, and m are used in Equations 5.1 and 5.2, which determine the effect
of flow on erosion in a similar way to the model of hydraulic erosion from Section 4.3.1.

Figure Prate P channel
rate w0 wa m

5.9 0.50 0.001 0.15 0.25 1.0
5.10 0.50 0.001 0.15 0.25 1.0
5.11 0.85 0.001 0.10 0.40 1.0

Table 5.1: Simulation parameters for modeled caves.

121

(a) Figure 5.9 (b) Figure 5.10 (c) Figure 5.11

Figure 5.13: Additional cave screenshots with textures and screenspace water.

Figure 5.13 shows a different type of visualization of the caves with texturing. The
textures are applied procedurally based on slope and composited together based on masks
that are generated using Perlin noise. In addition, some of the images feature a water
surface, which is rendered in screenspace. The transparency and color of the water takes
depth into account.

5.4 Discussion of Subterranean Channel Simulation

In this section I discuss the modeling process for my simulation of 3D channel networks
and some of its similarities to simulations from Chapter 4. I also analyze the caves that I
have generated with my simulation.

5.4.1 Use of Avalanching and Framework

As the result of my modeling process, my procedural model of subterranean channel devel-
opment illustrates the benefits of avalanching as a modeling paradigm. Most importantly,
avalanching puts an emphasis on abstraction of erosion mechanics, which makes it possible
to use similar formulations of self-organized behavior in different contexts. For example,

122

avalanching behavior of erosion in my simulations of river-like and subterranean channels
allows both types of channels to develop plausible width in analogous ways. Similarly, my
conceptual model of self-organized pressure borrows ideas from avalanching in sand. In
other words, the abstract nature of self-organization according to avalanching makes for
an expressive modeling template. Although avalanching does not explicitly provide for the
emergence of such a specific pattern of erosion as the phreatic loop, nevertheless avalanch-
ing does encode the emergent behavior of flow and pressure leading to its formation.

To accomodate the subterranean channel simulation I have added two new facilities
to my common procedural modeling framework: fast marching (Appendix A.5) and voxel
thinning (Appendix A.4). The main use of fast marching is to re-calculate pressure at each
iteration of the simulation by making updates in a pattern similar to a front propagating
through the problem domain. I have chosen fast marching, because it performs the updates
in an optimal way using a heap that contains only a subset of all possible nodes in the
domain. However, the agent-centric structure of my framework suggests an alternative way
to express front propagation.

The alternative algorithm, outlined in pseudocode below, structures the state updates
similarly to breadth-first search and visits all nodes in the domain to make each round
of updates (like the majority of computation in the framework). Each iteration of the
alternative algorithm is much more expensive than fast marching, because state updates
occur only near the propagating front and visiting any other locations is a waste. However,
the alternative method has two benefits: first, it dispenses with the heap, which makes it
more amenable to parallelization, and second, it can lower pressure gradually in the loops
in line 4 and 17 according to a function of time, which is the way I first implemented
it. Although the two algorithms are similar in some ways, they illustrate two conceptu-
ally different ways to perform iteration within my framework that are useful in different
contexts.

Listing 5.4: Computation of pressure using front propagation between neighbors.

1 i n i t i a l i z e by f l a g g i n g s ink s i t e s as DOMAIN | FRONT
2
3 while f r o n t can be advanced {
4 v i s i t agents {
5 i f agent f l a g g e d FRONT {
6 update p r e s su r e us ing neighbor with lowest p r e s su r e }
7 }
8 v i s i t agents {
9 i f agent f l a g g e d FRONT {

10 for each neighbor {
11 i f neighbor v i o l a t e s p r e s su r e cons t ra in t ,

123

12 not f l a g g e d DOMAIN and not f l a g g e d TRANSITION {
13 f l a g neighbor TRANSITION }
14 }
15 }
16 }
17 v i s i t agents {
18 i f agent f l a g g e d FRONT {
19 i f does not e x i s t neighbor not f l a g g e d DOMAIN and not

f l a g g e d TRANSITION {
20 un f l ag agent FRONT }
21 } else i f agent f l a g g e d TRANSITION {
22 un f l ag agent TRANSITION
23 f l a g agent DOMAIN | FRONT
24 }
25 }
26 }

Performance

I have chosen to use a uniform voxel grid data structure for implementation of my 3D
erosion simulations, so that they are similar to my simulations of erosions on terrains in
terms of such computational primitives as visiting and updating neighbors. However, the
growth of storage and computation costs for the voxel-based 3D domain representation can
be mitigated with an adaptive space partitioning scheme, such as an octree. For example,
the simulation in Figure 5.6 indicates that there are sites whose values are never updated,
because no channels develop in their vicinity. Therefore, large regions of unaffected sites
can be replaced with a single large site, that can be subdivided only if erosion makes it
necessary.

Although it would be beneficial for simulation of larger domains, I did not attempt
to enhance my simulations in this way for two reasons. First, the benefit of an adaptive
space partition is not as great at coarse levels of discretization due to the higher cost of
accessing neighbors and additional maintenance of the data structure. Second, changes to
the discretization scheme would also have to be reflected in the MAS component of my
simulation framework, so that the complex data structures would make the basic principles
of my modeling methodology less clear. Nevertheless, in the future I would like to extend
my modeling framework in several respects, especially its capability for modeling of large
worlds (Section 6.3).

124

Figure grid size
stage 1 stage 2
runtime iterations runtime

5.9 60×60×20 1m 43s 240 22m 30s
5.10 40×60×25 1m 3s 180 9m 39s
5.11 70×50×15 4m 6s 180 12m 41s

Table 5.2: Performance of cave simulations.

5.4.2 Evaluation of Results

Morphometric indices (Section 2.4.3) are a natural choice for analyzing procedurally gen-
erated caves, as they have been developed for the purpose of comparisons between caves.
Futhermore, natural caves that have been studied can be classified into types according
to their morphometric indices, suggesting that the indices are well-chosen parameters of
shape. So comparison of the indices of generated caves to the value ranges in Tables 2.1
and 2.2 is a test that determines not only whether the generated caves possess some prop-
erties of real caves in general, but also whether the properties taken in combination fit a
particular type of cave.

To apply the test, it is necessary to interpret the size of the generated caves in physical
units, as some of the morphometric indices are not dimensionless. Computing W (average
passage width) for a procedural cave yields a value in units of cell size that corresponds to
the value of W in meters for the appropriate cave category. Comparison of the remaining
indices can then rely on the interpretation of cell size based on W and also confirm that
the unit conversion is sensible. I have used this procedure to define cell size to be 1 meter
for my caves.

I compute the morphometric indices in several steps, using thinning (Appendix A.4).
First, I apply a standard version of the thinning algorithm to the voxels of the cave, yielding
a skeleton of the cave in the form of voxels that lie approximately in the center of the cave’s
passages. I reason that traveling along the skeleton voxels is approximately equivalent to
moving along the survey centerline of a real cave. Therefore, I compute the length of the
cave by summing up length contributions from each voxel of the skeleton in such a way that
diagonally touching voxels contribute a length of

√
2 or

√
3, as appropriate. Figure 5.14

(center column) shows the voxel skeleton for some example caves.

Second, I apply thinning to the original voxels of the cave again, using only subiterations
that remove voxels in the top and bottom directions. The result is a flattened version of
the cave’s passages that cuts approximately through their center. Note that voxels in this
version of the skeleton do not have top or bottom neighbors. Similarly to computation of

125

(a) cave (b) skeleton (c) area skeleton

Figure 5.14: Thinning of voxelized caves used to compute morphometric indices.

length, I sum up area contributions from the voxels in the area skeleton. I use the neighbors
of each voxel (in the 3×3×3 neighborhood) to determine an approximate normal to the
surface represented by the voxel neighborhood. The direction of the normal determines
the area contribution from each face of a voxel. Figure 5.14 (rightmost column) shows the
area voxel skeleton for some example caves.

Third, I determine the cave field of the cave, which is an axis-aligned bounding rect-
angle, and optimize it, as suggested by Klimchouk [29] (Section 2.4.3). The area of the
optimized cave field is better for making comparisons of morphometric indices between
caves, but there is some subjectivity in how the optimized bounding polygon is deter-
mined. My procedure is to start with the rectangular cave field, draw an infinite vertical
cylinder with a fixed radius Ropt at each voxel and only keep that voxel in the cave field if
the cylinder contains a non-empty voxel. The result is an optimized cave field that fits the
voxels of the cave more closely than a bounding rectangle. Morphometric indices derived
from the area of the optimized cave field, which is computed according to my procedure,
are comparable to the indices reported for real caves by Klimchouk, as he finds that areas
of optimized cave fields are 2 to 5 times smaller than unoptimized ones, and this is true
for my computation, as well.

Finally, it is trivial to compute the rest of the morphometric indices given length, area,
and cave field values. Table 5.3 contains the results for several caves that I have created
procedurally. The definition of cave field affects only the indices in the first three rows of

126

Figure 5.9 Figure 5.10 Figure 5.11
network density

(
m
m2

)
0.317 (0.122) 0.462 (0.179) 0.277 (0.105)

areal coverage (%) 46.51 (17.94) 77.54 (30.05) 63.66 (24.05)
porosity (%) 5.59 (2.16) 8.74 (3.39) 14.06 (5.31)

L : W 193.5 191.1 79.25
W (m) 2.28 1.95 3.33

field Ropt (m) 12 8 8

Table 5.3: Morphometric indices of modeled caves. Values in parentheses use rectangular
cave field.

the table: network density, areal coverage, and porosity. For these three indices, the values
without parentheses use the optimized cave field definition and should be compared to
Table 2.1; the values in parentheses use the rectangular cave field and should be compared
to Table 2.2. The other two indices, length to width ratio and width, should be compared
to both tables.

The morphometry of the procedurally generated cave in the first column of Table 5.3
matches well with both data sets for real caves in the confined category. However, the
two real cave data sets have one dissimilarity: the range for the L : W value starts and
ends much higher in Klimchouk’s data. As a result, L : W for the procedural cave agrees
only with the data from Table 2.2. Observe that as a cave system becomes longer L can
increase indefinitely, while W can be expected to stay the same. Therefore, the dissimilarity
between the two data sets for real caves can be explained by the different lengths of the
caves that were analyzed. Analogously, the cave that I generated procedurally could better
fit the first real cave data set with larger L : W values if its length was increased, i.e., if the
simulation was carried out on multiple blocks of voxels and the results stitched together.
In that case, values of length, area, and volume would all increase linearly and the derived
indices would be unchanged (e.g., W = A : L), except for L : W , because it is the only
quantity that involves a non-linear function: L : W = L2 : A.

The second procedurally generated cave also exhibits the same disagreement in L : W
and additionally its network density and areal coverage are too high as compared to the
first real cave data set (13.8% and 32.5% increase compared to the maximum value of the
range, respectively). In other words, the procedural cave (and likely the second real cave
set relative to the first one, although they are difficult to compare due to the difference in
their definition of cave field) has values of L and A that are slightly too high for its value of
Afield, which means that the cave has relatively long passages that are clustered together.
This situation is characteristic for confined caves and my procedural cave example does

127

feature a pattern of planar fractures that guide the cave’s development.

The morphology of the third generated cave is slightly different from the others, as it
consists of one dominant channel, compared to the more elaborate channel networks of the
other two caves. Therefore, the third cave has the smallest L : W ratio, especially since it
also has the largest value of W . As before, the value of L : W is too low for the first data
set of real caves, but not for the second one. More importantly, the compact nature of the
third cave also causes it to have a lower network density, but higher areal coverage and
porosity. Optimization of the cave field in this situation brings A : Afield closer to one and
can also have the same effect on V : Vblock unless the passages of the cave are spread in the
vertical direction. This is why the areal coverage and the porosity of the third cave slightly
exceed (8.8% and 17% increase compared to the maximum value of the range, respectively)
the values for the first data set of real caves, which uses the optimized cave field value.

The caves created with my simulation possess morphometric indices that match the
confined category of both data sets of real caves. The indices of generated caves fit the
value ranges of the second data set, but have a tendency to exceed some values of the first
data set. The larger values compared to the first data set can be explained as the result of
either a large number of channels clustering in a small volume or the optimized cave field
being able to shrink around a compact channel network. Since longer caves can be expected
to spread out more, it is no surprise that the generated caves match the second data set
(longest cave 3540m) better than the first (longest cave 188km). Furthermore, comparison
of the generated caves with the first data set would likely improve if the generated caves
were longer. Note that if the goal is only to categorize the caves, the amounts by which
some of the values are exceeded are not significant, as the differences between index values
of different categories of caves can be as large as an order of magnitude.

I conclude that the caves produced with my simulation possess morphometric indices
that are appropriate for the confined cave category. The confined character is likely the
product of my decision to include more sources than sinks in my simulations to force chan-
nels to link up and produce more interesting caves. Additionally, my simulation causes
growing cave passages to realistically exploit weaknesses in the rock matrix, such as frac-
tures, which also has a net effect of preventing unconfined behavior.

128

Chapter 6

Conclusion

6.1 Contributions and Themes

I have explored an approach to modeling that combines physical simulations and procedu-
ral modeling by using principles of self-organization as the common element. In particular,
my use of self-organization requires both development of a model of the emergent behav-
ior of a physical system and formulation of a related concrete simulation that constructs
a geometric representation of the modeled objects. The modeling process includes my
avalanching modeling paradigm and common simulation framework, which I designed to
take advantage of avalanching. Because avalanching has a natural connection to erosion,
I have demonstrated my modeling approach by applying it to modeling of the effects of
erosion. Figures 6.1 and 6.2 present my contributions at a glance.

I have solved several new modeling problems using my avalanching paradigm and frame-
work. First, I have developed a model of self-organized channel networks that exhibit
widening of channels and flooding of low areas, where the former is a direct consequence
of avalanching. The flooding effect is produced by a water-column simulation, which can
be part of the model because of abstraction of erosion dynamics due to avalanching. The
main idea behind my modeling process for channel networks is to encapsulate behavior
like tributary capture with avalanching and have a water simulation that can respond to
erosion by concentrating water flow into the emerging channels.

Second, I developed a coastline model that uses avalanching to produce coastlines of
varying degree of foldedness. Because of the abstract nature of avalanching, this model
also extends to modeling of the interior of islands using the level set interpretation of

129

erosion-centric procedural modeling framework with MAS

generalized avalanching paradigm

coastline erosion model

river channel erosion model

comparison of water-column algorithms

terrain modeling method

evaluation of terrains based on hypsometric and spectral character

I

II

III

IV

V

+

+

Figure 6.1: Summary of contributions (Part 1 of 2).

coastlines on terrains. Third, I have combined coastline and terrain modeling to achieve a
procedural model with two novel features: construction of terrains with hydraulic erosion
features using only self-organization and unification of hydraulic erosion features related
to coastlines and rivers. Additionally, my model based on avalanching causes coastlines
to be self-similar level sets of self-affine (except for the effect of rivers) terrains, which is
motivated by the same relationship in explicit fractal synthesis of terrains, but achieved
using implicit fractal synthesis using avalanching.

130

Fourth, I used avalanching to generalize my model of 2D channel networks to 3D channel
networks. One of the main features of the generalization is a new model of water flow due
to a self-organized formulation of pressure. The use of self-organization in this context
makes my procedural model of cave-like channels unique.

subterranean channel erosion model

evaluation of caves based on morphometric analysis

VI

+

Figure 6.2: Summary of contributions (Part 2 of 2).

My demonstrations of modeling with avalanching use self-organization almost exclu-
sively, owing to self-organization in erosion. In other words, the modeling power of
avalanching comes from putting emphasis on where erosion occurs and how it propagates
rather than the exact mechanism of erosion and the details of what happens during each
erosion event. Therefore, one common theme in my modeling approach is repeated usage
of avalanching to encapsulate different aspects of a model. For example, in my combined
terrain modeling method avalanching creates initial conditions and channel erosion; simi-
larly, in my model of subterranean channels avalanching determines pressure changes and
simulates erosion.

Use of the avalanching paradigm as an abstraction for erosion-related behavior also
motivates unification of the modeling process for the physical systems that exhibit erosion,
such as dunes, coastlines, etc. This has been one of my primary goals in designing a common
procedural modeling framework for use with avalanching. The agent-based formulation
of the framework is helpful in achieving this goal, as the agent paradigm is based on
propagation of information between neighbors, which has the expressive power necessary for
simulation of erosion with avalanching. However, avalanching is the key to generalization,
because it offers abstraction that stimulates development of erosion models using common
principles.

131

6.2 Observations about Modeling

In the process of developing my modeling paradigm I have made several observations
regarding the use of simulations and fractal synthesis in the context of procedural modeling.
This section details these observations, which I believe can be of fundamental importance
in applying the procedural method effectively.

6.2.1 Procedural Modeling

I have found that several aspects of procedural modeling are particularly desirable in a pro-
cedural modeling framework. First, local state and computation similar to a MAS paradigm
provide a foundation for self-organized simulations, including simulations of erosion. This
type of computation can numerically solve PDEs, which are essential for expressing the
effect of erosion on the geometry of a landscape. Furthermore, the quantities used in a
PDE can themselves be computed using a simulation-based approach, as I have shown
with Equation 4.4 and the water-column algorithm.

Second, additional use of procedural modeling to produce initial conditions for a simu-
lation, such as in my two-stage terrain modeling method, makes it easier to model complex
objects. In general, a procedural model can be effective at capturing a particular behavior
that leads to the formation of features like rivers with tributaries, but creating a complex
landscape calls for modeling a composition of many kinds of features. I believe that this
aspect of the procedural modeling problem requires the use of additional simulation stages,
as I have shown with my simulations.

Third, division of physically-based simulations into components allows additional mod-
els to be formulated through combination, enhancing the versatility of the procedural
approach. For example, I have implemented several construction algorithms by having a
water simulation component, which can effect changes to geometry only in combination
with a formulation of erosion. So I have been able to follow the same high-level approach
to model rivers with valleys, terrains with coastlines, and 3D cave-like passages.

Fourth, some methods of fractal synthesis are more suitable for a particular model-
ing scheme than others. Since my modeling framework is based on simulation, I have
formulated a method to synthesize fractals implicitly, as a by-product of self-organized
simulations. Furthermore, my spectral analysis procedure shows that the result of some
fractal synthesis algorithms, especially approximations to fBm such as noise-summing, have
a tendency to be less noisy than fBm, similar to natural terrains. This deserves further
investigation.

132

6.2.2 Simulation Parameters

Use of parameters in procedural modeling that involves physically-based simulations is
problematic, because poorly-designed simulations may “work” only for a certain set of
parameter values. While I was developing my simulations, I tried to understand the effects
of the parameters I used, so that I could avoid the situation when a simulation produces
poor results for reasonable parameter values. Once I settled on the final versions of my
simulations, I ran any given simulation at most a few times, as it was necessary for modeling
an object for one of the figures. I tried my best not to “fish” for good parameter values or
use different random seeds to find a better output.

In realistic modeling contexts, specification of an object’s appearance may not be based
only on specific parameter values and in many cases initial conditions may be more im-
portant. For example, to create a model of the specific hill with erosion in Figure 4.20, I
needed to specify the rough shape of the hill manually as initial conditions. The subsequent
simulation qualitatively changed the appearance of the hill to include realistic patterns of
erosion, but the same effect could have been accomplished with many different settings for
erosion, especially according to a casual observer.

6.3 Future Work

In the future I would like to incorporate my simulation framework into a more general
content creation system and also develop additional functionality that can facilitate further
experimentation with the modeling process. I hope that by adding new features in the
following areas I might be able to discover more applications of my procedural modeling
method.

Grid freedom: One of the ultimate goals of procedural modeling is the ability to au-
thor large, high resolution virtual worlds. However, the computational demands of
physical simulations associated with a grid-like domain tend to increase rapidly with
grid resolution. Use of massively-parallel GPU architectures increases the ceiling on
the practical range of resolutions, but it is not a fundamental solution to the scaling
problem. It also comes at the expense of an additional stage of encoding data for
submitting it to the GPU and some constraints on the algorithm that are necessary to
make it GPU-friendly. Newer procedural modeling frameworks show that for certain
modeling problems an alternative approach to scaling is possible, which incorporates

133

top-down design elements and does not require a grid. I believe that my procedu-
ral modeling framework can be effectively extended to modeling of extremely large
worlds via a hybrid approach that will combine a simulation on a coarse grid with
an additional stage based on self-organization that will derive resolution-free detail
from the results of the simulation and construct output geometry with any given
resolution.

Flexible specification of initial conditions: While my modeling method emphasizes
procedural elements it also requires non-trivial initial conditions to be specified, es-
pecially when a simulation occurs in multiple stages (Figure 4.17). Top-down control
via constraints in initial conditions can extend the procedural approach so that it
becomes easier to apply to a given modeling problem. However, a system for con-
structing and applying the constraints must be sufficiently general and combine with
the procedural framework effectively, or the combination of the two will not gain in
flexibility.

Experiment infrastructure: Procedural models, particularly ones with physics-based
elements, tend to have a lot of parameters. Both when developing such models
and when using them to construct a desired object, it is necessary to appreciate
the effect of the parameters by experimenting many times with their values. This
is particularly important for multi-parameter models, because it can be difficult to
judge the relative importance of a single parameter or whether a combination of
parameter values can cause the model to transition from one type of behavior to
another (e.g., valley evolution modes in Section 4.3.3). So future development of my
framework can benefit from an additional layer of infrastructure that can facilitate
exploration of model parameter space via sets of scripted virtual experiments with
different parameter valuations. Such an experimentation module can be of general
use in scientific computation research and can be futher extended to incorporate
multiparameter optimization techniques.

Procedural detail generation: A fully-realized procedural virtual world does not only
consist of a terrain or a cave domain, but also many associated elements such as
rock piles and vegetation. These elements can be discrete such as grass on a terrain
or they can be blended with the underlying geometry, such as stalagmites in caves.
There exist many algorithms for procedural placement of objects, but for use with my
framework, it would be desirable to develop one that relied on similar self-organization
principles and information that could be collected from running my simulations,
instead of being a completely independent algorithm.

134

APPENDICES

135

Appendix A

Additional Details

A.1 Spectral Density of fBm

Theorem 2.1.1. If an instance of fBm is discretized as a set of samples f , then for
β = 2H + 1

S(f)(θ) ∝ 1

θβ
.

Proof. This proof is adapted from a continuous version by Saupe [59]. It considers the 1D
setting for simplicity.

Let f consist of N samples that are spaced ∆t apart. Define a new set of N samples
g[i] = 1

bH
f [i] that are spaced ∆tg = 1

b
∆t apart. In other words, g rescales f consistently

with the self-affinity property of fBm (for scaling factor b and exponent H).

Now observe that by definition of DFT, F(g) = 1
bH
F(f). This is because only ordinate

values are involved in the definition. As for spectral density, it is defined using quantities
in both of the scaling directions, so that S(g)(θ) = S(f)(θ) for θ = i∆sg.

There is a relationship between spacing in the time and frequency domains: ∆t∆s = 1
N

.
Using it and ∆tg = 1

b
∆t, the remaining variable ∆sg is determined: ∆sg = b∆s.

Putting everything together yields

S(f)(bi∆s) = S(f)(i∆sg) = S(g)(i∆sg) =
|F(g)[i]|2

∆sg
=

=

(
1

bH

)2 |F(f)[i]|2

b∆s
=

1

b2H+1
S(f)(i∆s).

137

For the next step it is necessary to interchange the roles of b and i by making i = 1.
Then b is a variable and θ can be obtained as θ = b∆s.

S(f)(bi∆s) =
1

b2H+1
S(f)(i∆s)

S(f)(b∆s) =
1

b2H+1
S(f)(∆s)

S(f)[b] =
1

b2H+1
S(f)[1]

S(f)[b] ∝ 1

b2H+1
or S(f)(b∆s) ∝ 1

(b∆s)2H+1

A.2 River Rendering

Rendering of terrains is a well-studied problem. Common approaches focus on texturing
a single triangle mesh by procedurally combining different kinds of textures and lighting
effects. However, it is not trivial to integrate the rendering of rivers into such a framework.

In my simulations, the amount of water is known at each mesh vertex and the rivers
are defined as locations where the column of water exceeds a threshold that corresponds to
the depth of the smallest channel left by erosion. My first attempt at rendering the rivers
was a procedural scheme that added the color of water to each triangle of the terrain based
on the height of water at the triangle’s vertices. This approach suffered from interpolation
artifacts and made the channels appear too flat. Re-lighting the channels to simulate depth
would be difficult without an explicit water surface.

My final approach to rendering rivers starts by extracting the geometry of the channels
as an explicit mesh that is offset from the mesh of the underlying terrain by the height of
water. The offset mesh accurately represents the surface of a river that runs down the side
of a hill with a curving profile. The second step of my rendering algorithm is to use the
water mesh in a rendering stage that post-processes the result of rendering the terrain by
modifying the terrain color in a way that simulates the presence of water of a given depth.
Figure A.1 presents a high-level overview of the process.

Listings A.1 and A.2 show partial GLSL code of the vertex and fragment shader for
water, respectively. The code for functions calc_pos and extinct_color is not essential
for describing the rendering pipeline and I have omitted it. The function calc_pos recon-
structs fragment position in eye coordinates from its depth. The function extinct_color

138

terrain simulation offset mesh

deferred
shading

water
shading

scene depth
lit color

result

Figure A.1: Pipeline for river rendering.

computes the effective color of the ground as seen through the layer of water covering it.
The extinction of other colors is what makes the water appear to be a darker blue the
deeper it is.

Listing A.1: GLSL vertex shader code for rendering water.

1 varying vec3 normal EC ;
2 varying vec3 pos EC ;
3
4 void main ()
5 {
6 normal EC = normalize (gl NormalMatrix ∗ gl Normal) ;
7 pos EC = vec3 (gl ModelViewMatrix ∗ gl Vertex) ;
8 gl Position = gl ModelViewProjectionMatrix∗gl Vertex ;
9

10 vec2 s c r e en = vec2 (gl Position . xy) ∗ vec2 (1 . 0 / gl Position .w) ;
11 gl TexCoord [0] . s t = 0 .5∗ s c r e en + vec2 (0 . 5) ;
12 }

Listing A.2: Partial GLSL fragment shader code for rendering water.

1 uniform vec2 viewport ; // w, h o f the render t a r g e t
2 uniform vec4 unpro jec t ; // near , far , s = cot (fov y /2) , a spect
3
4 varying vec3 normal EC ;
5 varying vec3 pos EC ;
6
7 void main ()
8 {

139

9 vec4 landc = textureRect (tun i tc , v iewport ∗ gl TexCoord [0] . s t) ;
10
11 vec3 pos land EC = c a l c p o s (gl TexCoord [0] . s t) ;
12 i f (pos land EC . z < 0 .001 − unpro jec t . y) discard ;
13 f loat d i s t = length (pos land EC − pos EC) ;
14
15 vec4 waterc = e x t i n c t c o l o r (landc , d i s t) ;
16 f loat wbdr = smoothstep (WFADELOW, WFADE HIGH, d i s t) ;
17
18 gl FragData [0] = mix(landc , waterc , wbdr) ;
19 }

A.3 Voxel Polygonization

To develop my 3D erosion simulations I have used my own algorithm for visualizing the
voxel data as a triangular mesh. The voxels represent cubes of material that are eroded to
varying degrees. So a simple way to construct a coarse visualization is to represent each
voxel that is eroded more than a given threshold with a cube. However, in such a repre-
sentation a channel made of side-by-side eroded voxels will be segmented by extraneous
cube faces, which can clutter the visualization. Moreover, the topology of the channel will
be incorrectly represented with multiple cubes and coincident (non-manifold) faces. The
goals of my visualization algorithm are to manage the topology of the constructed mesh
correctly and to create a coarse representation that can be subdivided to achieve smoother
shading.

A.3.1 Main Algorithm

In the first stage of my algorithm each full voxel (i.e., eroded less than a threshold value)
is represented with eight vertices and twelve triangles that implicitly connect the vertices
in the shape of a cube. Additionally, each vertex maintains a reference list that allows
neighboring cells to share their vertices. The algorithm merges vertices that belong to
coincident faces of neighboring full voxels by deleting one set of vertices and using their
reference lists to update all vertex pointers that used the deleted vertices. Then the
algorithm uses the remaining vertices to create two triangles for all faces that lie on the
boundary between a full and an empty cell. The triangles are added to a half-edge mesh
representation. The end result is that side-by-side occupied voxels appear to merge together
into a larger solid, while occupied voxels that are touching only diagonally stay separate.

140

Listing A.3: The main stage of voxel polygonization.

1 po lygon i ze () {
2 for each voxe l {
3 c r e a t e 8 v e r t i c e s and 8 r e f e r e n c e l i s t s
4 each ver tex i n i t i a l l y conta in s i t s e l f in i t s r e f e r e n c e l i s t
5 }
6 for each voxe l {
7 look at 3 f a c e s : +X, +Y, +Z
8 i f f a c e i s between two f u l l voxe l s {
9 c a l l merge vertex on the 4 v e r t i c e s o f the f a c e

10 }
11 }
12 for each voxe l {
13 look at a l l 6 f a c e s
14 i f voxe l i s f u l l and f a c e i s shared with an empty neighbor {
15 add (once) 4 v e r t i c e s o f the f a c e to the mesh
16 add 2 t r i a n g l e s o f the f a c e to the mesh
17 }
18 }
19 complete mesh boundary
20 c l ean up ver tex p o i n t e r s and r e f e r e n c e l i s t s
21 }
22
23 merge vertex () {
24 d e l e t e l i s t = r e f e r e n c e l i s t o f the ver tex to be de l e t ed
25 n e i g h b o r l i s t = r e f e r e n c e l i s t o f the other (neighbor) ver tex
26 for each r in d e l e t e l i s t {
27 po int r to neighbor ver tex
28 add r to n e i g h b o r l i s t
29 }
30 d e l e t e orphaned ver tex and r e f e r e n c e l i s t
31 }

A.3.2 Non-Manifold Edge and Vertex Removal

The voxelization algorithm must address two topological issues. First, the half edge mesh
can link a triangle to the wrong edge in the case of diagonally-touching cells and erroneously
create a non-manifold edge. Figure A.2 illustrates the scenario. Second, there is one
situation when the merging in the main stage is too aggressive and produces a non-manifold
vertex with two vertex loops. Figure A.3 displays the issue and the solution.

Non-manifold edge removal takes place during construction. When triangles are added
to the mesh, a correct edge match must be found if it exists. This is accomplished with a

141

(a) (b) (c)

Figure A.2: Configuration that can produce a non-manifold edge: (a) two layers of voxels
represented as 2D squares, (b) resulting mesh with coincident edges, (c) subdivided mesh.

hashmap of existing edges keyed by their midpoint. A correct match has the appropriate
endpoints and has one half-edge missing. This simple matching procedure is sufficient for
voxelization, as the surface becomes “closed up” around one of the coincident edges after
all triangles are added for one voxel.

(a) (b) (c)

Figure A.3: Configuration that can produce a non-manifold vertex: (a) two layers of voxels
represented as 2D squares, (b) interior view of mesh with error, (c) interior view of corrected
mesh.

Non-manifold vertex removal takes place during a post-processing stage that follows
the execution of the main stage of the voxelization algorithm. This part of the algorithm
works directly on the half-edge mesh representation to make the necessary changes. In a
half-edge mesh each edge has two half-edges that point in opposite directions. A vertex
has a link to one half-edge that it can use to visit all edges that are incident on it (i.e., its
vertex loop) and all of its neighbor vertices.

Listing A.4: Non-manifold vertex removal.

1 bool ver tex loop match (ver tex ∗ v , h a l f e d g e ∗ h)

142

2 {
3 go around v ’ s ver tex loop {
4 H = current h a l f edge
5 i f (H == h) return true ;
6 }
7 return f a l s e ;
8 }
9

10 f i x n m v e r t i c e s () {
11 for each ver tex v {
12 go around v ’ s ver tex loop {
13 c = current h a l f edge
14 n = v ’ s neighbor ver tex on the loop
15 i f (! ver tex loop match (n , pa i r (c)))
16 {
17 i f (n i s not marked) {
18 c r e a t e replacement ver tex R
19 po int R at pa i r (c)
20 mark n
21 po int the s t a r t o f ha l f−edges on n ’ s loop to R
22 }
23 }
24 }
25 update mesh with newly c rea ted v e r t i c e s
26 r e s e t ver tex marks
27 }

A.4 Voxel Thinning

In many applications a geometric object may be voxelized on a grid of white and black
voxels, where the set of black voxels B represents the approximate volume of the object.
After voxelization, it is possible to extract a voxelized medial skeleton of the object using
an operation called voxel thinning, in which black voxels are removed subject to topological
constraints. These constraints depend on the connectivity of the voxel space, defined as
an equivalence relationship based on neighbor adjacency.

On a cubic grid a given voxel has at most 26 neighbors and the corresponding type
of connectivity is denoted N26. Connectivity with all neighbors except the ones on the
corners of the 3×3×3 cube is denoted N18 and connectivity with neighbors in the six
primary directions (north, south, east, west, up, and down) is N6. Typically, black and

143

white voxels are considered to have different connectivity with one of the most common
combinations being (26, 6), or N26 connectivity for black voxels and N6 for white ones.

(a) (b) (c)

Figure A.4: Voxel thinning: (a) initial voxelized object, (b) skeleton produced by the
original algorithm of Palágyi et al. [44], (c) skeleton produced by an algorithm variant.

Adjacency between black and white voxels gives rise to several relationships. A border
point is a black point that is 6-adjacent to a white point. An isolated point is a black point
that has no black neighbors. During thinning only border points can be removed, since
doing otherwise would open up a hole in the interior of the object and change the topology.
More generally, the topology will not change as long as only simple points are removed.
The following two theorems allow a thinning algorithm to find simple points locally using
a set of criteria and iteratively remove them.

Theorem A.4.1 (Kong and Rosenfeld, 1989). Simplicity can be decided locally by testing
a criterion that applies to 3×3×3 voxel cubes.

Theorem A.4.2 (Saha and Chaudhuri, 1994). A black point p is simple in a (26, 6) voxel
space if and only if the following conditions hold:

1. N26(p) ∩ (B \ {p}) is not empty (p is not an isolated point);

2. N26(p) ∩ (B \ {p}) is 26-connected in itself;

3. (Z3 \B) ∩N6(p) is not empty (p is a border point);

4. (Z3 \B) ∩N6(p) is 6-connected in (Z3 \B) ∩N18(p).

Palágyi et al. provide an algorithm that implements the thinning procedure according
to the four criteria that characterize simple points [44]. The skeleton of the algorithm
is listed in pseudocode form below. Each iteration consists of several subiterations that
only remove border points exposed on one side (north, south, etc.). Figure A.4 shows

144

the results of applying this algorithm on a ring-like object with four holes. Note how the
topology is preserved during thinning. Figure A.4c shows the result after I have adjusted
the algorithm’s subiteration structure to prioritize border points based on the number of
exposed sides. I have found that this variant of the algorithm produces slightly more
regular skeletons.

Listing A.5: Voxel thinning.

1 do {
2 s u b i t e r a t i o n : th in in d i r e c t i o n U
3 s u b i t e r a t i o n : th in in d i r e c t i o n D
4 s u b i t e r a t i o n : th in in d i r e c t i o n E
5 s u b i t e r a t i o n : th in in d i r e c t i o n W
6 s u b i t e r a t i o n : th in in d i r e c t i o n N
7 s u b i t e r a t i o n : th in in d i r e c t i o n S
8 } while (p rog r e s s) ;
9

10 s u b i t e r a t i o n () {
11 fo r each p in voxe l space
12 i f (t e s t (p))
13 add p to candidate l i s t
14
15 fo r each element in candidate l i s t
16 i f (t e s t (element))
17 e ra s e element
18 }

A.5 Fast Marching

The boundary between two or more materials situated side by side can evolve as the
zones containing the materials deform or one material changes into another. Theoretical
and computational aspects of representing this behavior form the study of propagating
interfaces, or fronts. Numeric techniques for approximating moving interfaces have many
applications in computational physics. One possible formulation of front evolution is based
on the level set method, which makes the formulation especially amenable to numeric
approximation and offers a straightforward generalization from the 2D setting to 3D.

An (N − 1)-dimensional interface is represented with a surface Γ(t), where t is the
time variable. The interface, which is a set of closed curves in the 2D setting, starts
as a given shape Γ(0) and undergoes motion in the normal direction based on a speed
function F , which can encode local and global properties of the front, as well properties

145

of the environment that are independent of the front. As Γ evolves, its shape can become
complex, incorporating sharp creases and changes in topology. Fortunately Γ(t) can be
adequately represented as the zero level set of an N -dimensional function φ(~x, t):

Γ(t) = {~x|φ(~x, t) = 0}. (A.1)

This is an Eulerian formulation, because the underlying system of coordinates is fixed.
Using this formulation the fronts can be found as a solution to the equation

φt + F |∇φ| = 0. (A.2)

If F is always positive or negative, the equation can be re-stated in a simpler form without
the time variable. In this case the function T (~x) that gives the time at which the front
reaches the location ~x is well-defined (i.e., single-valued). The front Γ(t) can be re-stated
as {~x|T (~x) = t} and can be found by solving:

|∇T |F = 1. (A.3)

This is equivalent to the eikonal equation as long as F depends only on position.
Furthermore, in the special case when F is constant, the solution gives signed distance
from Γ(0), which makes the following algorithm a simple way to obtain a grid of samples
of signed distance from a given shape.

Sethian [61] provides the following algorithm, called fast marching, for numerically
solving Equation A.3 on a discrete grid. It involves computing new values of T in a narrow
band around known values with the updates taking place in an “upwind” order, from
smaller values of T to larger ones, which is similar to Dijkstra’s algorithm.

Listing A.6: Fast marching for propagating interfaces.

1 for each g r id po int {
2 i n i t i a l i z e a l i v e po in t s to po in t s on the i n i t i a l f r o n t
3 T = 0 for a l i v e po in t s
4 i n i t i a l i z e narrow band po in t s to ne ighbors o f a l i v e po in t s
5 i n i t i a l i z e f a r away po in t s to a l l other po in t s
6 T = i n f for f a r away po in t s
7 }
8
9 for each narrow band po int {

10 d = d i s t anc e to c l o s e s t a l i v e po int
11 T = d / F(i , j)

146

12 }
13
14 while narrow band i s not empty {
15 P = narrow band po int with s m a l l e s t T
16 mark P as an a l i v e po int
17 mark ne ighbors o f P that are not a l i v e as narrow band po in t s
18 recompute T for ne ighbors o f P that are not a l i v e
19 }

A.6 Hardware and Software

Table A.1 lists the hardware and software that I used for my project’s implementation. I
wrote my code in C++ and compiled it as a 32-bit application.

CPU AMD Athlon 4400+ 2.5 GHz
GPU Nvidia 7800 GTX

OpenGL 2.0.1

GLSL 1.10

Table A.1: Hardware and software specifications.

147

Appendix B

Alternative Models

B.1 Coastline Erosion on GPU

In this section I re-formulate a coastline erosion model from Section 4.2 to be more friendly
for procedural modeling applications. The alternative model captures the same physical
behavior as the original models (i.e., coastlines become folded to resist erosion), but allows
more freedom when it comes to defining what constitutes a coastline and calculating its
length. An implementation of the new model on GPU offers a substantial performance
increase. I follow up performance analysis of the GPU-based simulation by re-implementing
it on the CPU.

B.1.1 GPU Computing Concepts

A major part of the realtime rendering pipeline can be viewed more abstractly as a process
that reads data from input buffers, performs computation, and writes the result to output
buffers. The input and output buffers are typically distinct, as the extreme parallelism of
GPU computing relies on processing multiple data simultaneously. Accessing multiple data
to compute a single result is called a gather operation, while outputting multiple data is
called a scatter operation. In principle, scatter operations can be re-factored into multiple
gather operations, which is preferable for achieving optimal performance.

Similarly, performance considerations typically constrain the locations of the data ac-
cessed during gather operations. For example, computing the sum of the elements of a
rectangular array should be formulated in terms of multiple gather operations that can

149

Figure B.1: GPU reduction operation with two buffers.

be performed independently. Such a series of gather operations is called a reduction. Fig-
ure B.1 illustrates the process with two buffers. At each iteration, the GPU reads 2n×2n
locations from the input buffer and writes n×n results to the output buffer. To compute
each result the GPU performs a 2×2 gather operation. The input and output buffers
exchange their roles at the end of each iteration.

Reductions and basic gather operations are sufficient as primitives for solving many
computational problems. However, there can be different platforms that provide such GPU-
based computational facilities. Owens et al. [43] provides a more complete introduction to
GPU computing.

I have implemented these operations using fragment shaders operating on floating point
rectangular arrays. Mapping general GPU computing tasks to parts of the standard ren-
dering pipeline has several advantages, such as more intuitive use of GPU resources and
control over thread coherence. The main disadvantage of the approach is the difficulty of
adapting existing code to run on the GPU. The resulting algorithm that uses the GPU
pipeline can be much faster, but some features of the original algorithm have to be com-
promised.

B.1.2 Restatement for GPU Computation

In Section 4.2 I have discussed several coastline erosion models that describe how discrete
sections of the coast erode due to the action of the ocean. Simulating these models involves
such tasks as using neighbors to determine the degree of exposure to the ocean, computing
the perimeter of the coast, and updating the state of coastline sites affected by avalanching.
Some of these tasks map well to gather and reduction primitives from the previous section.
However, the avalanching in my most sophisticated coastline model is a scatter operation
that can potentially affect locations that are far away. Implementing this operation on the
GPU would require a prohibitive number of texture reads in a fragment shader.

150

Computation of the local perimeter seen by an individual coastline site is also a chal-
lenge. However, interpreting the model in terms of sampling coastline roughness (Sec-
tion 4.2.2) suggests approximating the effect of local perimeter by using global contribution
to the perimeter from fixed nearby regions. Stopping the reduction process early provides
this information.

0 1 2
3
456

7

12
4

21
4

4
1 2

4
2 1

(a)

7

4

5

6

3

0

1

2

(b) (c)

Figure B.2: Perimeter calculation for GPU coast model: (a) neighborhoods around each
site, (b) configurations with coastline interpretation, (c) example for a complete 3×3 neigh-
borhood.

To make the GPU-friendly model complete it is also necessary to define how the length
of the coastline can be obtained from the discretized land-ocean interface. The models
of Section 4.2 identified coastline sites on a discrete grid and connected them with graph
edges, summing the lengths of the edges to yield perimeter contributions. However, the
computational aspect of the new model limits it to operating on the discrete grid as it is
presented in textures to shader programs.

Figure B.2 describes a scheme that I have developed to obtain coastline edges from
a pixel grid in a consistent way. The algorithm examines a 3×3 neighborhood of each
pixel and separately examines each of the overlapping 2×2 quadrants. Since land areas
have value 1 and sea areas have value 0, the contents of the 2×2 areas can be represented
with a binary number. Each number corresponds to a configuration of coastline segments,
selected in such a way that the overlap between neighboring 3×3 and 2×2 areas produces a

151

contiguous set of segments that consistently separates water areas from land areas. There-
fore configurations of pixels can be interpreted as perimeter contributions in terms of two
types of segment lengths: straight and diagonal. The computation simplifies to evaluation
of a few simple conditionals as shown in Listing B.1.

Listing B.1: Local contribution to perimeter for GPU model.

1 f loat f u n c s i d e (int i) {
2 bool t e s t 1 = (i ==1) ;
3 bool t e s t 4 = (i ==4) ;
4
5 re turn f loat (t e s t 1) + f loat (t e s t 4) ;
6 }
7 (. . .)
8
9 // top t o p l e f t l e f t

10 ca s e s [0] = reg i on [1] + 2 ∗ r eg i on [0] + 4 ∗ r eg i on [7] ;
11
12 (. . .) // three more ca s e s
13
14 for (int i =0; i < 4 ; ++i) {
15 s i d e t o t a l += f u n c s i d e (ca s e s [i]) ;
16 d i a g t o t a l += func d iag (ca s e s [i]) ;
17 }
18
19 s i d e t o t a l ∗= s i t e . r ;
20 d i a g t o t a l ∗= s i t e . r ;
21
22 gl FragData [0] = vec4 (s i t e . r , s i d e t o t a l , d i a g t o t a l , s i t e . a) ;

Figure B.3 shows an overview of the complete GPU algorithm for simulating the new
version of the local perimeter erosion model. The procedure uses four floating point buffers
whose channels encode the following information: contents of the site (land or water),
contributions to the global perimeter, and intrinsic resistance of the site R (Section 2.3.3).
The perimeter shader program calculates each site’s contribution to the perimeter based
on its 3×3 neighborhood. The reduction stage sums up the contributions until the total
perimeter is known for each sector of a 2k×2k grid. For example, a 2×2 grid corresponds
to dividing the problem domain into quadrants and calculating the perimeter of each
separately, producing four output values (stored in a 2×2 grid). Finally, the erosion shader
uses the previous state of the simulation and the results of the reduction to change some
of the land sites to water sites based on Equation 4.2. When the erosion shader accesses
perimeter contributions for the fixed grid, they need to be bilinearly interpolated.

152

L

R

S D

perimeter reduction

erosion

Figure B.3: GPU implementation of coastline simulation.

B.1.3 Results

Figure B.4 shows some results of simulating the GPU-friendly model for grid size of 512×
512. For the final rendering both sea and land pixels are re-colored slightly, in order to
give them a more variable appearance. The land pixels start out as green and become
more sandy as their exposure to sea increases; the sea pixels become darker when they are
surrounded by land.

(a) initial conditions (b) result (c) initial conditions (d) result

Figure B.4: Results of GPU coastline erosion simulation.

Performance of the new simulation is substantially faster than that of its CPU counter-
part, which was on the order of minutes to hours (Section 4.4.2). The plots in Figure B.5
visualize several performance aspects of the new simulation. The total runtime is shown in
Figure B.5a. However, an increase in discretization density not only creates more sites for
processing but also requires more iterations for the coast to become sufficiently folded for

153

resisting erosion. The increase in the number of iterations is shown in Figure B.5b. The
plot in Figure B.5c avoids including the extra iterations in the runtime by measuring the
time necessary to complete ony the first 100 iterations.

27 28 29 210

103

104

(a) runtime (ms)

27 28 29 210
100

200

300

550

(b) iterations

27 28 29 210

103

(c) runtime for 100
iterations (ms)

Figure B.5: Performance of GPU coastline erosion simulation for grid sizes from 128×128
to 1024×1024.

I used a GPU with 24 pixel shader pipelines to measure performance. The runtime
measurement also includes some of the cost of setting up the computation buffers (some
of the GPU resources are not allocated until the computation begins), but it is lower than
resubmitting geometry in the CPU version of the algorithm. Note that all iterations on
the GPU perform the same amount of work, but this is not true for the CPU version.
Table B.1 lists parameters for the simulations used in the perfomance plots. The effects of
the parameters are essentially the same as in Section 4.2.2. The number of iterations is the
smallest multiple of 50 greater than the number of iterations required for convergence. A
test to determine exactly when the coastline stops evolving would cost a roundtrip every
iteration and greatly increase the total runtime (however, there are better options on newer
hardware).

The new model based on GPU computation is much faster and potentially has wider
applications for procedural modeling, as it operates by processing what is essentially binary
image data. Following coastline evolution the resulting land and sea areas are encoded in
textures and can be immediately used in an image synthesis pipeline, for example by acting
as a mask for removing objects outside the irregular boundary symbolized by the coastlines.
However, the new model has a slight drawback in comparison to CPU-based models that
use more accurate perimeter calculation.

The GPU model uses a relatively small number of evenly-spaced samples for the perime-

154

Figure grid f0 g offset iterations
B.5 128×128

0.5

0.230 2 100
B.5 256×256 0.175 2 200

B.4d & B.5 512×512 0.150 2 300
B.5 1024×1024 0.147 3 550

B.4b 512×512 0.120 2 250

Table B.1: Simulation parameters for GPU coastline simulations.

ter, making the initial shape of the coastline slightly noticeable in the final result. This
effect is visible in Figure B.4, which shows initial configurations that are more rounded
turning into more rounded final coastlines. However, the issue is isolated to the coarse level
of detail of the image and can additionally be hidden by randomized behavior of the coast-
line due to the resistances R. Figure B.6 shows two more results where the coarse-level
dependency on the initial shape is less apparent.

(a) (b)

Figure B.6: Closer look at dependence on initial conditions in GPU coastline simulation:
(a) situation when dependence is less apparent, (b) coarse-level dependency not present in
closeup.

I have also re-implemented the GPU simulation on the CPU for a better assessment
of performance gains due to changes in the conceptual model, as opposed to parallelism
of GPU architecture. This third generation simulation is serial and replaces summation
based on the reduction operation with simple loops. The asymptotic complexity of both
subroutines is the same, but summation via simple loops benefits from not having to
write out many intermediate results to main memory (this extra work is justified for a
reduction operation because it is executed by more than one thread). Figure B.7 contains

155

performance statistics collected by submitting the same workloads as in Figure B.5 for
the GPU version. The performance gain of the second generation GPU version over the
third generation CPU version is roughly between 3 and 30 for these workloads as shown
in Figure B.7c. This puts the third generation CPU version between the original CPU
models of Section 4.2 and the second generation GPU version in terms of performance, as
expected.

27 28 29 210

103

104

105

(a) runtime (ms)

27 28 29 210

103

104

(b) runtime for 100
iterations (ms)

27 28 29 210

5

10

15

20

25

30

(c) gain of GPU over
CPU version

Figure B.7: Performance of third generation CPU coastline erosion simulation for grid sizes
from 128×128 to 1024×1024.

156

References

[1] Digital Elevation Data and Digital Map of Southern Ontario. Canadian Geospatial
Data Resources. Toronto, ON: The Ontario Ministry of Natural Resources, 2008.
Available: University of Waterloo Geospatial Centre. Accessed on 09/26/2014.

[2] A.-L. Barabási and H. E. Stanley. Fractal Concepts in Surface Growth. Cambridge
University Press, 1995.

[3] M. Beardal, M. Farley, D. Ouderkirk, J. Smith, C. Rheimschussel, M. Jones, and
P. Egbert. Goblins by Spheroidal Weathering. Eurographics Workshop on Natural
Phenomena, pages 1–8, 2007.

[4] F. Belhadj and P. Audibert. Modeling Landscapes with Ridges and Rivers: Bottom
Up Approach. GRAPHITE, pages 447–450. ACM, 2005.

[5] I. Benenson and P. M. Torrens. Geosimulation: Automata-based Modeling of Urban
Phenomena. John Wiley & Sons, Ltd, 2004.

[6] M. Boggus and R. Crawfis. Procedural Creation of 3D Solution Cave Models. Technical
report, Ohio State University, 2009. TR19.

[7] M. Boggus and R. Crawfis. Prismfields: a Framework for Interactive Modeling of
Three Dimensional Caves. In ISVC, pages 213–221, 2010.

[8] Z. Chen, C. S. Stuetzle, B. M. Cutler, J. A. Gross, W. R. Franklin, and T. F. Zimmie.
Analyses, Simulations, and Physical Modeling Validation of Levee and Embankment
Erosion. Geo-Frontiers, pages 13–16, 2011.

[9] N. Chiba, K. Muraoka, and K. Fujita. An Erosion Model Based on Velocity Fields for
the Visual Simulation of Mountain Scenery. Journal of Visualization and Computer
Animation, 9:185–194, 1998.

157

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
pages 643–664. The MIT Press, 2nd edition, 2001.

[11] J. Cui, Y.-W. Chow, and M. Zhang. Procedural Generation of 3D Cave Models with
Stalactites and Stalagmites. International Journal of Computer Science and Network
Security, 11(8):94–101, 2011.

[12] S. Diniega, K. Glasner, and S. Byrne. Long-time Evolution of Models of Aeolian Sand
Dune Fields: Influence of Dune Formation and Collision. Geomorphology, 121:55–68,
2010.

[13] J. Doran and I. Parberry. Controlled Procedural Terrain Generation Using Software
Agents. IEEE, 2(2):111–119, 2010.

[14] J. Duran. Sands, Powders, and Grains: An Introduction to the Physics of Granular
Materials. Partially Ordered Systems. Springer, 2000.

[15] J. Feddema and C. Little. Rapid World Modeling: Fitting Range Data to Geometric
Primitives. volume 4 of IEEE Conference on Robotics and Automation, pages 2807–
2812, 1997.

[16] J. Feder. Fractals. Plenum Press, 1988.

[17] D. Ford and P. Williams. Karst Hydrogeology and Geomorphology. John Wiley &
Sons, Ltd, 2007.

[18] A. Frumkin and I. Fischhendler. Morphometry and Distribution of Isolated Caves
as a Guide for Phreatic and Confined Paleohydrological Conditions. Geomorphology,
67:457–471, 2005.

[19] J.-D. Génevaux, É. Galin, E. Guérin, A. Peytavie, and B. Beneš. Terrain Generation
Using Procedural Models Based on Hydrology. SIGGRAPH, 32(4):143:1–143:13, 2013.

[20] G. Greeff. Interactive Voxel Terrain Design Using Procedural Techniques. Master’s
thesis, Stellenbosch University, 2009.

[21] T. A. Grønneløv and A. E. Jensen. Procedural Planetary Landscapes with Continuous
Level of Detail. Master’s thesis, Technical University of Denmark, 2008.

[22] S. Gustavson. Simplex Noise Demystified. Technical report, Linköping University,
2005.

158

[23] H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, and E. Galin. Feature Based Terrain
Generation Using Diffusion Equation. Computer Graphics Forum, 29(7):2179–2186,
2010.

[24] K. Hormann, S. Spinello, and P. Schröder. C1-continuous Terrain Reconstruction
from Sparse Contours. Vision Modeling and Visualization, pages 289–297, 2003.

[25] J. Huang, A. Pytel, C. Zhang, S. Mann, E. Fourquet, M. Hahn, K. Kinnear, M. Lam,
and W. Cowan. An Evaluation of Shape/Split Grammars for Architecture. Technical
report, University of Waterloo, 2009. CS-2009-23.

[26] J. Jones and M. Saeed. Image Enhancement — An Emergent Pattern Formation
Approach via Decentralised Multi-agent Systems. Multiagent Grid Systems, 3(1):105–
140, 2007.

[27] M. Kamalzare, T. S. Han, M. McMullan, C. S. Stuetzle, T. F. Zimmie, B. M. Cutler,
and W. R. Franklin. Computer Simulation of Levee Erosion and Overtopping. Geo-
Congress, pages 1851–1860, 2013.

[28] B. H. Kaye. A Random Walk Through Fractal Dimensions. VCH Publishers, 1989.

[29] A. Klimchouk. Unconfined Versus Confined Speleogenetic Settings: Variations of
Solution Porosity. International Journal of Speleology, 35(1):19–24, 2006.

[30] P. Krǐstof, B. Beneš, J. Křivánek, and O. Št’ava. Hydraulic Erosion Using Smoothed
Particle Hydrodynamics. EUROGRAPHICS, 28(2), 2009.

[31] K. Kroy, G. Sauermann, and H. J. Herrmann. Minimal Model for Sand Dunes. Physical
Review Letters, 88(5):054301, 2002.

[32] M. Laverty. Fractals in Karst. Earth Surface Processes and Landforms, 12(5):475–480,
1987.

[33] N. Lemmens, S. de Jong, K. Tuyls, and A. Nowe. A Bee Algorithm for Multi-Agent
Systems: Recruitment and Navigation Combined. Proceedings of ALAG, an AAMAS
workshop, 2007.

[34] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, 1982.

[35] K. Mason, J. Denzinger, and S. Carpendale. Negotiating Gestalt: Artistic Expression
by Coalition Formation between Agents. 5th International Symposium on Smart
Graphics, Frauenwoerth Cloister, Germany, August 2005.

159

[36] D. McDuff, S. Jackson, C. Shuchart, and D. Postl. Understanding Wormholes in
Carbonates: Unprecedented Experimental Scale and 3D Visualization. Journal of
Petroleum Technology, 62(10):78–81, 2010.

[37] G. S. P. Miller. The Definition and Rendering of Terrain Maps. SIGGRAPH, 20(4):39–
48, 1986.

[38] F. K. Musgrave. A Brief Introduction to Fractals. In Texturing and Modeling: A
Procedural Approach, pages 429–445. Elsevier Science, 2003.

[39] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The Synthesis and Rendering of Eroded
Fractal Terrains. SIGGRAPH, pages 41–50. ACM, 1989.

[40] J. F. O’Brien and J. K. Hodgins. Dynamic Simulation of Splashing Fluids. Computer
Animation, pages 198–205, 1995.

[41] J. Olsen. Realtime Procedural Terrain Generation. Technical report, University of
Southern Denmark, 2004.

[42] K. Onoue and T. Nishita. A Method for Modeling and Rendering Dunes with Wind-
ripples. Pacific Graphics, pages 427–428, 2000.

[43] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips. GPU
Computing. Proceedings of the IEEE, 96(5):879–889, 2008.

[44] K. Palágyi, E. Balogh, A. Kuba, C. Halmai, B. Erdöhelyi, E. Sorantin, and K. Hauseg-
ger. A Sequential 3D Thinning Algorithm and Its Medical Applications. In Informa-
tion Processing in Medical Imaging, pages 409–415, 2001.

[45] I. Parberry. Designer Worlds: Procedural Generation of Infinite Terrain from Real-
World Elevation Data. Journal of Computer Graphics Techniques, 3(1):74–85, 2014.

[46] J. T. Perron, W. E. Dietrich, and J. W. Kirchner. Controls on the Spacing of First-
Order Valleys. Journal of Geophysical Research, 113, 2008. F04016.

[47] A. Peytavie, E. Galin, J. Grosjean, and S. Merillou. Arches: a Framework for Modeling
Complex Terrains. Computer Graphics Forum, 28(2):457–467, 2009.

[48] L. Piccini. Recent Developments on Morphometric Analysis of Karst Caves. Acta
Carsologica, 40(1):43–52, 2011.

160

[49] P. Prusinkiewicz and M. Hammel. A Fractal Model of Mountains with Rivers. Graph-
ics Interface, pages 174–180, 1993.

[50] A. Pytel. Creating Artistic Compositions Using Coalition-Forming Intelligent Agents.
Technical report, University of Waterloo, 2008. CS-2008-23.

[51] A. Pytel and S. Mann. Self-Organized Approach to Modeling Hydraulic Erosion Fea-
tures. Computers & Graphics, 37(4):280–292, 2013.

[52] E. Rauch. Fractal Brownian Islands Exhibit. http://groups.csail.mit.edu/mac/

users/rauch/islands/. Accessed on 10/19/2011.

[53] W. T. Reeves. Particle Systems — a Technique for Modeling a Class of Fuzzy Objects.
ACM Transactions on Graphics, 2(2):91–108, 1983.

[54] L. F. Richardson. The Problem of Continuity. General Systems Yearbook, 6:139–187,
1961.

[55] I. Rodŕıguez-Iturbe and A. Rinaldo. Fractal River Basins. Cambridge University
Press, 1997.

[56] P. Roudier and B. Peroche. Landscapes Synthesis Achieved through Erosion and
Deposition Process Simulation. Eurographics, 12(3):375–383, 1993.

[57] B. Rusnell, D. Mould, and M. Eramian. Feature-rich Distance-based Terrain Synthe-
sis. Visual Computer, 25(5–7):573–579, 2009.

[58] B. Sapoval, A. Baldassarri, and A. Gabrielli. Self-Stabilized Fractality of Seacoasts
through Damped Erosion. Physical Review Letters, 93(9), 2004.

[59] D. Saupe. Algorithms for Random Fractals. In The Science of Fractal Images, pages
71–113. Springer-Verlag, 1988.

[60] S. Schlechtweg, T. Germer, and T. Strothotte. RenderBots — Multi Agent Systems
for Direct Image Generation. Computer Graphics Forum, 24:283–290, 2005.

[61] J. A. Sethian. Theory, Algorithms, and Applications of Level Set Methods for Prop-
agating Interfaces. Technical report, University of California, Berkeley, 1995.

[62] A. N. Strahler. Hypsometric (Area-Altitude) Analysis of Erosional Topography. Ge-
ological Society of America Bulletin, 63(11):1117–1142, 1952.

161

http://groups.csail.mit.edu/mac/users/rauch/islands/
http://groups.csail.mit.edu/mac/users/rauch/islands/

[63] R. Szeliski and D. Terzopoulos. From Splines to Fractals. SIGGRAPH Computer
Graphics, 23(3):51–60, 1989.

[64] D. G. Tarboton. A New Method for the Determination of Flow Directions and Upslope
Areas in Grid Digital Elevation Models. Water Resources Research, 33(2):309–319,
1997.

[65] S. T. Teoh. RiverLand: An Efficient Procedural Modeling System for Creating
Realistic-Looking Terrains. ISVC, pages 468–479. Springer-Verlag, 2009.

[66] D. M. Tortelli and M. Walter. Modeling and Rendering the Growth of Speleothems
in Real-time. In GRAPP, pages 27–35, 2009.

[67] L. Velho and D. Zorin. 4–8 Subdivision. Computer-Aided Geometric Design,
18(5):397–427, 2001.

[68] R. F. Voss. Fractals in Nature: From Characterization to Simulation. In The Science
of Fractal Images, pages 21–69. Springer-Verlag, 1988.

[69] O. Št’ava, B. Beneš, M. Brisbin, and J. Křivánek. Interactive Terrain Modeling Using
Hydraulic Erosion. SCA, pages 201–210. Eurographics Association, 2008.

[70] M. Ward. Fractal Islands. http://davis.wpi.edu/~matt/courses/fractals/

islands.html. Accessed on 10/19/2011.

[71] B. T. Werner. Eolian Dunes: Computer Simulations and Attractor Interpretation.
Geology, 23(12):1107–1110, 1995.

[72] H. Zhou, J. Sun, G. Turk, and J. M. Rehg. Terrain Synthesis from Digital Elevation
Models. IEEE Transactions on Visualization and Computer Graphics, 13(4):834–848,
2007.

162

http://davis.wpi.edu/~matt/courses/fractals/islands.html
http://davis.wpi.edu/~matt/courses/fractals/islands.html

	List of Tables
	List of Figures
	Introduction
	Background and Previous Work
	Fractals
	Self-Similarity
	Self-Affinity
	Fractional Brownian Motion
	Spectral Character of fBm
	Fractal Synthesis
	Spectral Analysis of Terrains

	Self-Organized Criticality
	Models and Simulations of Erosion
	Dunes
	Hydraulic Features
	Coastlines
	Caves and Subterranean Channels

	Hydrogeomorphologic Aspects of Erosion Features
	Hypsometric (Area-Altitude) Analysis of Terrains
	Formation of Subterranean Channels by Dissolution
	Morphometric Analysis of Caves

	Multi-Agent Systems

	Simulation Framework
	Motivation
	Fractal Character
	Scaling Issues
	Relaxed Self-Organized Criticality and Avalanching

	High-Level Design of the Framework
	Towards a New Modeling Framework
	Agent-Guided Procedural Modeling
	Infrastructure for Self-Organized Simulations

	Modeling with Self-Organization and Avalanching
	Dunes
	Werner Dunes
	Dunes with Avalanching
	Use of the Common Modeling Framework

	Coastlines
	Sapoval Coastlines
	Coastlines Based on Local Perimeter
	Coastlines with More Avalanching
	Extensions for Modeling Applications
	Use of the Common Modeling Framework

	Rivers and River Basins
	Hydraulic Erosion Simulation
	Effect on Spectral Density and Hypsometry
	Emergent Behavior of Channel Networks
	New Method of Terrain Modeling

	Discussion of Terrain Simulations
	Use of Avalanching in Modeling
	Evaluation of Framework
	Water-Column Algorithms
	Evaluation of Results
	Terrain Analysis and Comparisons

	Subterranean Channels
	Challenges in Simulating Channel Behavior in 3D
	Model and Simulation
	Protochannel Stage
	Channel Growth and Linkage Stage

	Results
	Caves Created Using Two-Stage Simulation

	Discussion of Subterranean Channel Simulation
	Use of Avalanching and Framework
	Evaluation of Results

	Conclusion
	Contributions and Themes
	Observations about Modeling
	Procedural Modeling
	Simulation Parameters

	Future Work

	APPENDICES
	Additional Details
	Spectral Density of fBm
	River Rendering
	Voxel Polygonization
	Main Algorithm
	Non-Manifold Edge and Vertex Removal

	Voxel Thinning
	Fast Marching
	Hardware and Software

	Alternative Models
	Coastline Erosion on GPU
	GPU Computing Concepts
	Restatement for GPU Computation
	Results

	References

