
A neural model of the motor control
system

by

Travis DeWolf

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctorate of Philosophy
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2014

c© Travis DeWolf 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis I present the Recurrent Error-driven Adaptive Control Hierarchy (REACH);
a large-scale spiking neuron model of the motor cortices and cerebellum of the motor con-
trol system. The REACH model consists of anatomically organized spiking neurons that
control a nonlinear three-link arm to perform reaching and handwriting, while being able to
adapt to unknown changes in arm dynamics and structure. I show that the REACH model
accounts for data across 19 clinical and experimental studies of the motor control system.
These data includes a mix of behavioural and neural spiking activity, across normal and
damaged subjects performing adaptive and static tasks.

The REACH model is a dynamical control system based on modern control theoretic
methods, specifically operational space control, dynamic movement primitives, and non-
linear adaptive control. The model is implemented in spiking neurons using the Neural
Engineering Framework (NEF).

The model plans trajectories in end-effector space, and transforms these commands
into joint torques that can be sent to the arm simulation. Adaptive components of the
model are able to compensate for unknown kinematic or dynamic system parameters, such
as arm segment length or mass. Using the NEF the adaptive components of the system
can be seeded with approximations of the system kinematics and dynamics, allowing faster
convergence to stability. Stability proofs for nonlinear adaptation methods implemented
in distributed systems with scalar output are presented.

By implementing the motor control model in spiking neurons, biological constraints such
as neurotransmitter time-constants and anatomical connectivity can be imposed, allowing
further comparison to experimental data for model validation. The REACH model is
compared to clinical data from human patients as well as neural recording from monkeys
performing reaching experiments. The REACH model represents a novel integration of
control theoretic methods and neuroscientific constraints to specify a general, adaptive,
biologically plausible motor control algorithm.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Chris Eliasmith, for all of his support and
guidance throughout my time at Waterloo. I would like to thank my wife, Julie, for all her
support throughout my degrees, as well as my parents and brother. I would also like to
thank the other lab members that made the journey with me, Daniel, Xuan, Trevor, and
Terry, and all the other members of the CNRG lab. I would also like to thank the whole
potluck crew and all the great friends we’ve made there and throughout the years!

iv

Dedication

I dedicate this to my amazing wife, Julie. If you read it with the right tone it’s actually
quite a romantic thesis.

v

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 State of the field . 2

1.3 Thesis structure . 3

2 Operational space control 5

2.0.1 Controlling in generalized coordinates 6

2.0.2 Controlling in operational space . 7

2.1 Controlling in the null space . 8

2.1.1 Example: Operational space control with secondary controller . . . 10

2.2 Handling singularities . 12

2.2.1 What is a singularity? . 12

2.2.2 Fixing the problem . 14

3 Dynamic movement primitives 16

3.1 Discrete DMPs . 17

3.1.1 Spreading basis function centers . 18

vi

3.1.2 Spatial scaling . 21

3.1.3 Temporal scaling . 23

3.2 Imitating a desired path . 23

3.3 Interpolating trajectories for imitation . 24

3.4 Controlling end-effector trajectories . 26

3.5 Incorporating system feedback . 27

3.6 Direct trajectory control vs DMP based control 30

3.7 Rhythmic DMPs . 31

3.7.1 Obtaining consistent and repeatable basis function activation 31

3.8 Other differences between discrete and rhythmic 33

3.8.1 Example . 35

3.9 Applications of DMPs . 35

4 Nonlinear adaptive control 40

4.1 Lyapunov’s direct method . 40

4.2 Stability analysis of a robot arm . 42

4.2.1 Basic system stability . 44

4.2.2 Stability moving to a target . 45

4.2.3 Zeroing steady-state position error 45

4.3 Bias adaptation for unknown dynamics . 47

4.3.1 Choosing an adaptation law for stability 49

4.4 Transform adaptation for unknown kinematics 50

4.5 Discussion . 52

5 Computational neuroscience background 53

5.1 Previous models . 53

5.1.1 MOSAIC and extensions . 58

5.1.2 Optimal feedback control theory as a framework for motor control . 58

vii

5.2 The Neural Optimal Control Hierarchy (NOCH) framework 60

5.2.1 NOCH: A brief summary . 61

5.2.2 The motor cortices: M1, PM, and SMA 63

5.2.3 The cerebellum . 64

5.2.4 The relation between cerebellar and cortical control 66

5.2.5 The basal ganglia . 67

5.2.6 Novel results from the NOCH . 69

5.3 Discussion . 72

6 Neural implementation 73

6.1 The Neural Engineering Framework . 73

6.1.1 Principle 1: Representation . 74

6.1.2 Principle 2: Transformation . 79

6.1.3 Principle 3: Dynamics . 80

6.2 Modeling complex functions in the NEF 82

6.2.1 Collapsing functions . 82

6.2.2 Independent variables in separate ensembles 84

6.3 Representing large values in the NEF . 87

6.4 Simplifying discrete DMPs . 89

6.5 Reworking nonlinear adaptive control for neural implementation 89

6.5.1 Bias adaptation for unknown dynamics 90

6.5.2 Transformation adaptation for unknown kinematics 95

6.6 Discussion . 103

7 The REACH model 104

7.1 REACH overview . 105

7.2 Non-neural implementation results . 109

7.2.1 Bias adaptation example . 109

viii

7.2.2 Transformation adaptation example 112

7.3 Neural implementation . 112

7.3.1 The pre-motor cortex . 112

7.3.2 The primary motor cortex . 117

7.3.3 The cerebellum . 118

7.4 Neural implementation results . 119

7.4.1 Reaching and handwriting . 119

7.4.2 Neural comparisons . 122

7.4.3 Neural activity correlation with movement parameters 124

7.4.4 Analysis of neural activity with jPCA 127

7.5 Discussion . 132

7.5.1 Predictions . 132

7.5.2 Future work . 134

7.5.3 Comparison with the NOCH . 136

7.6 Conclusions . 138

APPENDICES 139

7.7 Forward transformation matrices . 139

7.7.1 Forward transformation matrices in 2D 139

7.7.2 Forward transform matrices in 3D 144

7.8 Jacobians, velocity, and force . 147

7.8.1 Energy equivalence and Jacobians 148

7.8.2 Building the Jacobian . 150

7.8.3 Analyzing the Jacobian . 153

7.8.4 Using the Jacobian . 154

7.9 Accounting for mass and gravity . 155

7.9.1 Accounting for inertia . 156

7.9.2 Accounting for gravity . 161

References 162

ix

List of Tables

7.1 A table summarizing the correlations with movement parameters found in
neural recordings from different areas of the motor system. The model
representation identifies the signal in the model that carries information
about the given movement parameter. CB: cerebellum; M1: primary motor
cortex; PM: pre-motor cortex. 128

x

List of Figures

2.1 A two link arm moving to a target, encountering a kinematic singularity
causing instability in the control signal and erratic performance. The red
dot is the target position for the hand, the gray line is the path traced out
by the line during movement. When the elbow joint angle is equal to π the
Jacobian becomes singular and the control signal becomes unstable, causing
the undesired spasm along the way to the target. 13

2.2 A two link arm moving to a target, encountering a kinematic singularity
with the modified control signal, which filters unstable control signals in
degenerate directions, allowing the arm to move smoothly to its target. The
red dot is the target position for the hand, the gray line is the path traced
out by the line during movement. When the elbow joint angle is equal to
π the Jacobian becomes singular and the degenerate directions are set to 0
and the control signal remains stable. 15

3.1 Top: The basis functions activations displayed as a function of the canonical
system, x. Bottom: Bar plot - The weights assigned to each basis function.
Blue line - The weighted summation of each of the basis functions as the
canonical system moves from 1 to 0. 19

3.2 A plot of the activation of the Gaussian basis functions over time with an
even spacing of the centre points along x. As can be seen, this spacing leads
to a bunching of the activations early on. 20

3.3 A plot of the activation of the Gaussian basis functions over time placing
the centre points of the Gaussian basis functions using Eq. 3.6. This leads
to a more evenly spread activation. 21

xi

3.4 Path imitation with DMPs. A) Basic path imitation of a straight line and a
step function. B) Changing the goals of the DMPs to be equal to 2, without
scaling the forcing function appropriately. C) Changing the goals of the
DMPs to be equal to 2, scaling the forcing function appropriately. 22

3.5 An example of using the DMP trajectory imitation to follow a set of specified
trajectories with different numbers of basis functions. The more complex
a trajectory, the more basis functions are required to be able to accurately
follow it. 25

3.6 An example application of the DMP trajectory system for drawing the num-
bers 0-9. The light gray lines are the desired trajectories, the dark gray lines
are the paths drawn by the arm. The red dot represents the desired position
for the hand, specified by DMPs. 28

3.7 Drawing the number 3 when the DMP system is moving faster than the
plant can follow. The plant fails to draw the sharp corners of the 3. 29

3.8 The blue line shows how the canonical system evolves when the error is
0, representative of the plant being within tolerance of the position of the
DMP. The green line shows the dynamics of the canonical system when an
error, shown in the red line with an axis along the right side of the figure,
is introduced. 29

3.9 Drawing the number 3 using system feedback to slow down the canonical
system execution speed whenever the target point specified by the DMP
system gets too far ahead of the plant. 30

3.10 A comparison of direct trajectory control and DMP guided control for writ-
ing the word ‘kaplow’ as a single complex trajectory. The red line is the
desired trajectory and the black line is the path drawn by the arm. A)
Direct trajectory control. B) DMP guided control. 32

3.11 The DMP system guiding the plant through drawing the number ‘3’ at three
different scales. Normally, scaled along the y axis, and scaled along both
axes. No changes were made to the system aside from modifying the goal
state for the x and y DMPs. 33

3.12 A) Three basis functions laid out evenly between 0 and 2π. B) Repeated
activation of the basis functions. 34

3.13 Top: The kinematics recorded from tracking the hip, knee, and ankle angles
during human walking. Bottom: A DMP guided system directing a leg
model through the same motions. 36

xii

3.14 Left column: Teacher demonstration of a tennis swing. Right column: Imi-
tation of a tennis swing by a humanoid robot, taken from [159]. 37

3.15 An example of moving from a goal to a target while avoiding an obstacle.
Blue lines are the trajectories, the red ball is the obstacle, the white ball is
the target, and the green line represents the path taken when no obstacle is
present. Taken from [95]. 37

3.16 Correlations between the weight vectors of different graffiti characters (5
instances of each letter). Black represents a correlation of 1.0 and white
represents a correlation of 0.0 or below. Taken from [95]. 39

4.1 A single link pendulum with gravity. 48

5.1 An example of some of the trajectories generated using the model presented
in [116]. a) Ten test trials after training, where a target circle is placed
every 18ms throughout the trajectory. b) The same trials after training,
but where a perturbation is introduced after 300ms, showing the system is
able to recover after being disturbed. 54

5.2 Robot control using the Neurogrid neuromorphic hardware and a spiking
implementation of operational space control. 55

5.3 An overview of the MOSAIC system. An efference copy of the outgoing
motor command is sent to the forward modeling modules, which each focus
on learning the dynamics of the system in a different area of state space.
Given the system state the Responsibility Estimator assigns a weighting to
each of the Inverse Models, which each generate a proposed motor command
given the current and target states of the system. Each of the Inverse Models
is tied to a Forward Model in the area of state space that they optimize over,
and the Responsibility Estimator uses the accuracy of the Forward Model
state prediction to determine which Inverse Models should be in control of
movement in a specific area of state space. 57

5.4 The NOCH framework. This diagram embodies a high-level description of
the central hypotheses that comprise the Neural Optimal Control Hierarchy
(NOCH). The numbering on this figure is used to aid description, and does
not indicate sequential information flow. See text for details. 62

xiii

5.5 A comparison of spiking neuron activity from single cell recordings in mon-
keys (uppercase letters) and the model (lowercase letters). The activity in
monkeys was recorded from dorsal pre-motor and primary motor cortex. It
includes both pre-movement activity and activity during the execution of an
arm reach. Both sets of data stabilize during the pre-movement period, and
then display highly nonlinear activity during movement. The model con-
tained cells that displayed many of the salient properties of recorded cells.
Black movements are in the preferred direction of the cell and grey are in
the non-preferred direction. Each pair shows the model capturing a salient
feature of classes of cells identified by the experimentalists. For instance,
A/a show cells that generally respond well for movement initiation regard-
less of direction. B/b show cells whose preferred direction reverses during
movement (i.e., black and grey lines cross). C/c show cells with a reversal
and a biphasic response (i.e., black cells are ’on’, ’off’, ’on’). D/d show
cells with a preservation of preferred direction but a strong phase-shifted
response related to the preferred direction (i.e. black cells fire first and grey
cells second). Data from [31], with permission. 70

5.6 An example of the handwriting of SPAUN [50], created by an implementa-
tion of the NOCH framework (detailed in [40]). 71

6.1 An example of using the NEF to encode a 2D signal in a population of
four neurons. (a) The input signal, x = [sin(6t), cos(6t)]T . (b) The spikes
generated from each of the four neurons with input signal a, generated using
Eq. 6.1. (c) The input signal, which is a unit circle, shown in vector space
where the signal closer to the current time is darker. The encoders for each
of the neurons is also shown in vector space. (d) The firing rate responses
of the four neurons as a function of the degree of the input signal along
the unit circle. The different shapes of the responses are a result of the
randomly chosen gains, αi, and bias input current, Ibiasi , for each neuron i.
Figure reproduced from [50]. 75

6.2 X is a matrix with samples of the desired output signal in the rows and
columns representing the different dimensions of the input signal, A is the
matrix of neural responses where the rows indicate the different samples in X
and columns are the different neurons, and D is a matrix of decoders where
the rows represent the different neurons and the columns are the decoders
for each of the different dimensions of the output signal for that neuron. . 76

xiv

6.3 An example of decoding neural activity using the NEF for a 2D signal and
a population of 20 neurons, simulations performed with hi = .005. (a) The
input signal x = [sin(6t), cos(6t)]T in black and grey, respectively, and its
decoded estimate as a function of time. (b) The input signal and its decoded
estimate in vector space. The signal fades from black to white as a function
of time. (c) The spikes of the neural population over time, used to generate
the decoded signal shown in the first two plots. Figure reproduced from [50]. 77

6.4 Connecting two populations of 20 neurons each using the NEF. (a) The
connection weights are specified between A and B such that population B
represents the same signal as A. (b) The connection weights between A and
B are specified such that B represents the element-wise square of the signal
in A. Simulations are 1.2 seconds long, and all neurons have randomly chosen
encoder, gain, and bias terms. Figure reproduced from [50]. 78

6.5 A diagram of a generic neural system for implementing ordinary differential
equations using a recurrent connection on population A. System input from
neural population B, u(t), system state and output, x(t), and the equation
for the dynamics on the recurrent connection, f(x(t)), with the transfer
function, h(s), equal to the Laplace transform of the synaptic dynamics. . 80

6.6 Network 1: A first attempt at implementing the equation x = cos(y) + 3y−
sin(y+y2) in the NEF, by using separate neural populations to approximate
each of the nonlinearities in the equation. 82

6.7 Network 2: A more efficient implementation of the equation x = cos(y) +
3y+ sin(y+ y2) in the NEF, by reducing all of the calculations into a single
connection / function approximation. 83

6.8 A comparison of the network implementations shown in Figure 6.6 and Fig-
ure 6.7. On the left shows the results of each network (blue) compared to
the answer (red), with each population in each network implemented with
a total of 400 neurons. On the right the cumulative error of the signal from
each network is plotted, also looking at implementations of Network 2 with
different neuron numbers. 84

xv

6.9 An example of how specific properties of a neural population can be exploited
for efficient computation of certain functions. In this case, a piecewise func-
tion h(y) is being computed in both network, where h = y when y > 0 and
h = 0 otherwise. The first network is implemented with randomly chosen
parameters. The second network is specified such that the neurons do not
respond to any negative signals, making it better able to accurately compute
h(y). The cumulative error of the two networks is shown on the bottom. . 85

6.10 Network 1: An intuitive implementation of element-wise squaring of a vec-
tor, using a single neural ensemble to represent all of the elements of the
vector. 85

6.11 Network 2: A more efficient implementation of element-wise squaring of a
vector, by representing all of the variables in separate populations. 86

6.12 A comparison of the implementations in Figure 6.10 and Figure 6.11 for
implementing a 4-dimensional element-wise squaring. On the left shows
the results of each network compared to the answer (red); Network 1 has
400 neurons and Network 2 has 100 neurons in each population. On the
right the cumulative error from each network is plotted, also looking at
implementations of Network 2 with different total neuron numbers. 87

6.13 A comparison of the implementations with increasing the range of sampling
to be equal to the maximum value of the signals represented in the ensemble
versus scaling each signal to be between -1 and 1. On the left shows the
results of each network (blue) compared to the answer (red); each network
was implemented with 200 neurons. On the right the cumulative error from
each network is plotted. 88

6.14 The original canonical system dynamics compared with a linearly decaying
system that will be used for the neural implementation, here α = −.2. . . . 89

6.15 A diagram of the basic setup of a control system using a bias adaptation
component. The bias adaptation component (inside the dashed circle) takes
the system state q as input and the control signal u as a learning signal, and
outputs an approximation of the Jacobian, Ĵ. This signal is then summed
with u and sent out to the system under control. The hollow triangle denotes
a modulatory connection. 91

xvi

6.16 The structure of a neural network set up to implement the original formula-
tion of the nonlinear adaptive bias component. The matrix of basis functions
Yd is decoded from the neural activity of the first population, where each
of the elements of Yd is approximated through a set of decoders determined
with the methods described in Section 6.1. This matrix is passed to a second
population of neurons which applies the set of learned system parameters
θ̂θθd stored in its decoders. These decoders are updated through a learning
signal that is a function of the control signal u. 92

6.17 The structure of a neural network set up to implement the reworked for-
mulation of the nonlinear adaptive bias component. The basis functions
vector Xd is the neural activity of the population in the dashed line, and
the decoders of this population are the learned parameters θ̂θθd. These param-
eters are updated as a function of the control signal u. The hollow triangle
denotes a modulatory connection. 93

6.18 A diagram of the basic setup of a control system using a bias adaptation
component. The bias adaptation component (inside the dashed circle) takes
the system state q as input and the control signal u as a learning signal,
and outputs an approximation of the unknown forces, F̂unknown. This signal
is then sent to be summed with u and sent out to the system under control.
The hollow triangle denotes a modulatory connection. 96

6.19 The structure of a neural network set up to implement the modified formu-
lation of the nonlinear adaptive transform component. The matrix of basis
functions Zk is decoded from the neural activity of the first population,
where each of the elements of Zk is approximated through a set of decoders
determined with the methods presented in Section 6.1. This matrix is passed
to a second population of neurons which applies the set of learned system
parameters θ̂θθk stored in its decoders. These decoders are updated through
a learning signal that is a function of the task-space control signal ux and
system velocity q̇. 98

6.20 The structure of a neural network set up to implement the reworked formu-
lation of the nonlinear adaptive transform component. The basis functions
vector Xk is the neural activity of the population in the dashed line, and
the decoders of this population are the learned parameters θ̂θθk. These pa-
rameters are updated as a function of the control signal u and the system
velocity q̇. The hollow triangle denotes a modulatory connection. 101

xvii

7.1 Left: An overview of the model. Numbers identify major communication
pathways. Dashed lines indicate closed-loop feedback signals generated from
the senses. The premotor cortex (PM) generates a trajectory for the system
to follow with a sequence of (x, y) coordinates. The primary motor cortex
(M1) receives these target positions (1) from the sensory cortices (SCx)
and compares them to the current system state, received through (2). M1
combines this signal with locally stored Jacobians to transform the desired
hand movement commands into a low-level signal that is sent to the arm
and cerebellum (CB) along (3). The cerebellum (CB) projects an adaptive
signal to the body along (4) that compensates for velocity and movement
errors. The senses generate a closed-loop feedback signal along (5) that
is provided to the CB and SCx. Right: A picture of the three-link arm
controlled by the REACH model during a centre-out reaching task. 106

7.2 A diagram of reaching from a center point outward to eight equidistant
targets with an end-effector velocity based force field applied. The desired
path is the thin line, simulation reach is the thick line. A) Movement in
a force field before adaptation. B) Simulation results immediately after
adaptation with 1,000 neurons on the first trial. 110

7.3 A diagram of reaching from a center point outward to eight equidistant
targets with a joint velocity based force field applied. The desired path is
the thin line, simulation reach is the thick line. A) Movement in a force field
before adaptation. B) Simulation results immediately after adaptation with
1,000 neurons on the first trial. 111

7.4 A diagram of reaching from a center point outward to eight equidistant
targets with inaccurate inertia matrices for limb segments. The desired path
is the thin line, simulation reach is the thick line. A) Movement in a force
field before adaptation. B) Simulation results immediately after adaptation
with 20,000 neurons on the first trial. 111

xviii

7.5 Top: The path traced out by the arm during correction of incorrect Jacobian
kinematic parameters. On the left is the path as drawn out in Cartesian
coordinates, where points farther back in time are lighter. The red ellipse is
the target path. On the right the x and y dimensions of the trajectory are
plotted against time in black, with the target values plotted in red. Bottom:
A diagram of the root-squared error while learning to trace an ellipse using
the adaptive transform component. The error is calculated as the summed
root-squared distance from the target values during over each full trace of
the ellipse. 113

7.6 A model of the pre-motor cortex based on implementing dynamic movement prim-

itives. In this diagram the two DMPs are for the x and y paths followed by a

single trajectory. To generate different trajectories the system needs to specify

a different output from the forcing function into ẋ and ẏ. The solid arrow is a

normal connection, the solid circle is inhibitory. 114

7.7 The step function (start pulse) and dependent signals. Goal signals: The
input to the x and y point attractors, driving them to the initial points of
the trajectory while the step function is active and to the goal points of the
trajectory when the step function goes to zero. Oscillator: The step function
pushes the oscillator from its resting state at (.5, .5) to the top right of the
plot. Once the step function goes to zero the oscillator enters its limit cycle
activity pattern. Forcing function ramp: The step function inhibits this
output; when the step function goes to zero the forcing function integrates
one of the oscillator output dimensions. From this ramp signal both the x
(green) and y (red) forcing function are decoded. 115

7.8 The firing rates of the neurons as the represented signal changes. Saturation
of the neurons refers to a point (approximated by the dashed blue lines)
where differences in the represented value do not cause sufficient change
in the neural activity to accurately decode the signal. The decoded value
increases to the point of saturation and then grows no further, even with a
constantly growing input. 116

xix

7.9 A model of the primary motor cortex (M1). From a population representing the

system state, the adaptive Jacobian is projected into a population that performs

a dot product with the high-level control signal, ux. At the same time, ux, along

with q̇, is used to adapt the Jacobian, Ĵ
T

, which is projected into the dot product

population. The result of this dot product is the low level control signal u, which

is projected both to the cerebellum (CB) as a teaching signal, and the arm as a

control signal. The secondary control signal, unull which keeps the system close

to it’s resting position during movement, is also projected to the arm as well.

The solid arrow is a normal connection, the hollow diamond is a modulatory

connection used for learning. 117

7.10 A model of the cerebellum. System state information arrives from the sensory

cortices and spinal cord, and is then used to generate corrective control signals

sent to the arm. Mq̇ accounts for and cancels out the effects of inertia on the

system, and uadapt is an adaptive signal that corrects for unmodeled dynamics.

The teaching signal, u, comes from M1. The solid arrow is a normal connection,

the hollow diamond is a modulatory connection used for learning. 118

7.11 Top: Normal reaching from a center point outward to eight equidistant
targets, repeated five times. Human data, taken from [168], is on the left
and model simulation results are presented on the right. Bottom: The
mean (thin center line) and variance (thick grey line) of the velocity pro-
files for each of the eight reaches in the above figure. Human data, adapted
from [173], is displayed on the left, and model simulation results are pre-
sented on the right. A simple model of muscle responses has been applied
to account for the effects of muscle activation profiles, by convolving the
velocity signal with a skew-symmetric Gaussian. 120

7.12 A sample of one of the author’s handwriting (which was used to train the model)

compared with the model’ handwriting. These trajectories were learned from sin-

gle example presentations. A) Writing out the numbers 0-9, the author’s hand-

writing is above, the model’s below. B) Writing out the phrase ‘hello world’; the

author’s handwriting above, the model’s below. 121

xx

7.13 Reaching from a center point outward to eight equidistant targets with an
end-effector velocity based force field applied. Human subjects required ap-
proximately 750 trials to reach an average of 0.9 correlation with the original
reach trajectories. The model’s adaptation was significantly faster, requir-
ing less than two full trials to reach 0.9 correlation with the original reach
trajectories. Top: Movement with the force field applied, before adaptation.
Human data, taken from [168], are shown on the left, model simulation re-
sults are shown on the right. Bottom: Movement with the force field applied,
after adaptation. Human data, taken from [168], are shown on the left, and
model simulation results are shown on the right. 123

7.14 The arm tracing a circle starting with an incorrect internal model of the
system dynamics. Over time the system learns to correct this model by
adapting the Jacobian. Initial average tracking error across two cycles: 272.7
m, final average tracking error across two cycles: 64.6 m. 124

7.15 The arm performing 8 centre-out reaches with both bias and transformation
adaptation applied. A) Normal reaching. B) Reaching under a force-field
post adaptation. 125

7.16 Examining a neuron’s activity profile in response to the arm reaching out
to 8 surround-center targets over 5 trials. Top: original results from [66].
Bottom: model results. In both cases a clear preferred direction for the
neuron can be observed. 126

7.17 Plots of the neurons from the primary motor cortex correlating with various
high-level movement parameters, reflecting the same correlations found in
experimental research as detailed in Table 7.1. 129

7.18 Plots of the neurons from the cerebellum correlating with various high-level
movement parameters, reflecting the same correlations found in experimen-
tal research as detailed in Table 7.1. 130

7.19 jPCA analysis applied to reach data generated from monkeys and the model.
Results from the original analysis is on the left, and from model analysis
performed on randomly chosen neurons from the primary motor cortex on
the right. The color is determined by the starting position of the neural
activity. Both analyses exhibit a similar rotating path through the low-
dimensional state space over time. 131

xxi

7.20 A two-link revolute-revolute(RR) robot. Left: A configuration where the po-
sition of the end-effector is easily approximated by visual inspection. Right:
A configuration of the robot where the exact position of the end-effector is
unclear from visual inspection. 140

7.21 Two reference frames at the same origin, rotated q degrees. 141

7.22 Two reference frames with rotated q degrees and translated (3, 2) from each
other, and a point p = (2, 2) in reference frame 1. 142

7.23 A three link, planar revolute-revolute-revolute arm. The point end-effector
p is defined in the reference frame of the third link, and must be transformed
to the origin reference frame. 143

7.24 A three-link revolute-prismatic-prismatic (RPP) robot. 145

7.25 A serial 2-link robot arm, with joint angles θ0 and θ1. The reference frame
from the first joint is along the axes (x0, y0), and the reference frame of the
second joint is along the axes (x1, y1). 148

7.26 A two link arm extending along the (x, z) dimensions with y extending into
the diagram. The yellow circles represent the centres-of-mass (COM) of each
link. 156

xxii

Chapter 1

Introduction

1.1 Motivation

Control of movement is arguably the single most important responsibility of the brain in
an organism. It underwrites all interaction with the environment, allowing an organism
to exert control over its circumstances: if it’s hungry it can move towards and consume
food; if it’s cold it can seek out shelter and warmth; and if it needs to communicate it can
perform interpretive dance to convey its feelings to other organisms.

Gaining an understanding of the motor control system of the brain has the potential
to lead to large advancements in numerous fields. Insight into the kinds of algorithms
the brain uses will directly affect the development of control algorithms in the field of
robotics, as the brain remains a far more advanced, adaptable, and robust control system
than any current technology. Having a functional model of the neural structures of the
motor control system will allow for faster development and testing of treatments for neuro-
degenerative motor disorders, such as Parkinson’s or Huntington’s disease. Similarly, such
understanding could advance ideas into physiotherapy, suggesting more effective recovery
or training methods for patients and athletes. Finally, such motor control models will
allow for better brain-computer interface applications, including neural-prosthetics or the
development of avatar surrogates.

Studying the motor system can also serve as a means of addressing more cognitive
functions of the brain. Many higher-level processes use the same pathways and neural
circuits as the motor system, and can be thought of as performing similar functions to
the motor system with different input and output in a more abstract state space [49, 43].

1

Studying the motor control itself rather than these other systems has an advantage in that
motor output is observable, whereas the output of cognitive systems can be much more
difficult to measure directly.

Here I present and discuss the Recurrent Error-driven Adaptive Control Hierarchy
(REACH) model, which is the first model of its kind: a large-scale, adaptive, fully spiking
neural model of the motor cortices and cerebellum capable of generating and matching
behavioural and experimental data from 19 separate clinical and experimental studies.

1.2 State of the field

In the field of computational or theoretical neuroscience models of motor control can be
divided into one of two approaches: a neuro-scientific approach or a control theoretic
approach.

Neuroscientific approaches to motor control are largely geared towards characterizing
the basic anatomical elements and functions of the motor system. As such, they can be
considered a largely ‘bottom-up’ approach to motor control – that is, an approach that
attempts to identify the basic elements and functions of the system as a whole. Methods of
this approach include tracing of interconnections between different areas [21, 90], recording
single-cells to investigate neural sensitivity to different stimuli [61, 141], examining the
effects of neural activity on motor output through stimulation experiments [157, 59], and
observing lesioned animals or brain-damaged patients [85, 200]. This focus on specific,
isolated functions has resulted in theoretical models that tend to perform poorly when
tested in novel contexts [161, 105, 183]. As a result, such models often do not provide
general, unified explanations of motor system activity.

Control theoretic methods, on the other hand, can be considered a more ‘top-down’
approach to motor control. These methods focus on more global aspects of motor control,
such as movement optimization according to a cost-function [195], learning actions from
observation [17], the generalization of movements such that controlled systems are robust
to altered system dynamics or environmental changes [35], and so on. Much of the field,
however, will take some ‘biological inspiration’, usually an observation of some unique
phenomena of biological systems that is counter-intuitive in the context of current motor
control methods, but gain little further inspiration from biological systems. As a result,
mapping control-based behavioural models to biological systems proves difficult because the
proposed controllers are typically not constrained by neuro-computational considerations.

2

Contemporary work on the motor system typically applies one of these approaches,
focusing on either behavioural phenomena, such as stereotypical trajectories, velocity pro-
files [193], and motor learning ability [160, 132], or on neural phenomena, such as spiking
neuron activity profiles [30] and neural data analysis [32]. Models that take control the-
oretic methods and implement them in biologically plausible neural structures are scarce.
One reason for this apparent divide between behavioral and neural approaches is that it
has not been clear how to implement large-scale models encompassing both low-level neural
details and high-level behavioral characterizations.

Recent advances in large-scale neural modeling have focussed on how complex spiking
neural networks give rise to a variety of sophisticated behaviors we observe in humans
and other animals [50]. The largest such model is Spaun [50], which performs perceptual,
cognitive, and motor tasks. However, the motor system of that model is minimal: it
controls a two link linear arm, it can only draw digits from 0-9 (and does so poorly), it
is not fully implemented in spiking neurons, and it is unable to adapt to changes in the
environment or itself.

The methods used to develop the Spaun model, however, can be similarly used in the
development of more detailed, biologically plausible models of the motor control system.
These methods of implementing complex dynamical systems in spiking neural networks,
i.e. the Neural Engineering Framework [49], form the necessary bridge between control
theory and neuro-anatomically constrained implementations. While natural motor sys-
tems still remain far more robust, adaptive, and rapid than those that we are able to
engineer, recent advances in control theory have suggested various means of building more
advanced motor control systems [29, 97, 130]. Understanding how these control theoretic
advances may relate to the algorithms employed by the brain, can help narrow the search
for good approaches to motor control in engineering and robotics, while also improving our
understanding of neural mechanisms in support of clinical applications.

The development and implementation of these algorithms in a spiking neural network
is the focus of this thesis.

1.3 Thesis structure

The structure of this thesis is as follows. First, the relevant control theoretic algorithms
and methods, which make up the basis of the REACH dynamical system, are reviewed in
detail. Chapter 2 works through the development of operational space control algorithms,
starting with how to characterize a system and calculate its Jacobian matrices, through

3

to transforming control signals from operational space to generalized coordinates and how
to develop a null-space filter to prevent secondary control signals from interfering with
movement in the operational space. Chapter 3 discusses Dynamical Movement Primitives
and their applications in trajectory control. Behavioural level results of the REACH model
are used throughout this chapter to illustrate the effectiveness of the novel combination
of operational space control and DMPs. Chapter 4 reviews nonlinear adaptive control
which addresses the situation common to many control systems where some parameters
of the system are unknown. The derivation of two types of adaptation laws, for unknown
dynamics and kinematics, are worked through in detail to provide insight into how stability
of these systems can be guaranteed.

Chapter 5 switches then from reviewing control theory to reviewing previous biological
models of the motor control system. Several smaller models are discussed followed by
a review of the larger-scale computational models of motor control. Most prominently
the Neural Optimal Control Hierarchy framework is reviewed, which was the result of my
master’s thesis work, and serves as a foundation for the REACH model. Additionally,
several novel results from an implementation of the NOCH are presented, taken from work
done after my masters and presented in [50] and [40]. Chapter 6 works through the Neural
Engineering Framework and presents the changes required to the previously discussed
control theoretic methods for effective implementation in spiking neurons. Chapter 7 then
presents the REACH model in its entirety, with non-neural implementation results, a
detailed description of the neural implementation, and then neural implementation results
and analysis, along with a comparison to the NOCH framework and discussion of future
directions for the work.

There are several contributions of this thesis. The primary contribution is the design
and implementation of a large-scale fully spiking neuron model of the motor control system.
The amalgamation of the discussed control methods to form a behavioural level model of
the motor control system is also a novel contribution of this thesis. Additionally, several
novel proofs of stability for reformulations of the adaptive kinematics and dynamics control
laws originally presented by [170, 158, 29] are provided.

Throughout this thesis sections and structure are borrowed from previous writing I’ve
done throughout the course of my degree, drawing from posts on my research blog 1, a
paper published in the Journal of Neural Engineering [41], and a recently filed patent based
on a novel implementation of nonlinear adaptive control in distributed systems [42].

1http://www.studywolf.com

4

Chapter 2

Operational space control

In operational space control, one analytically derives the dynamics of the system, and
then uses this knowledge to cancel out undesired forces and generate a control signal that
moves the system through some task space, taking advantage of the passive dynamics
of the system. In addition to cancelling out undesired forces, another major feature of
operational space control is transforming force signals specified in operational space into
forces in generalized coordinates, solving any configuration redundancies and generating a
signal that can be applied to the plant.

Throughout this chapter the terms generalized coordinates and operational space will
be used. ‘Generalized coordinates’ refer to a state space description of the system such
that when given, all of the degrees of freedom (DOF) of the system are fully specified.
‘Operational space’, or ‘task space’, refers to a state space description of the system that
does not necessarily define all of the DOF, but is where the current task is taking place. For
example, in the control of a robot arm providing a state space description that specifies
joint angles and velocities fully describes the current state of the system, and so this
joint space description is considered to be in generalized coordinates. If the state space
description of the robot arm instead specifies the position of the end-effector, there are
potentially an infinite number of possible configurations for the arm to be in such that the
end-effector is at this position, and so end-effector space descriptions are not generalized
coordinates. Often we wish to plan trajectories in terms of end-effector space however, and
so end-effector space is often the operational (or task) space.

The methods for calculating the forces acting on serial robots are reviewed in the
appendix, along with a discussion of how to implement operational space control. This
chapter starts with an example of control in generalized coordinates and operational space,

5

and then discusses implementing secondary-controllers in the null-space of primary con-
trollers, with some final considerations regarding handling complications like singularities
in the Jacobian.

2.0.1 Controlling in generalized coordinates

Now that gravity and inertia have been accounted for, control is straightforward because the
undesirable dynamics of the system can be cancelled out and trajectories can be designed
as though the system behaved linearly. Cancelling inertia also means that the control of
each of the joints can be done independently, since their movements no longer affect one
another. The control system will then be comprised of a PD controller for each joint to
generate the desired forces, which will then be incorporated with terms to compensate for
inertia and gravity.

In the equation for system acceleration, Eq. 7.59, there are still some nonlinearities
unaccounted for due to Coriolis and centrifugal effects. These terms require highly accurate
models of the moments of inertia to properly cancel out, with measurements that are
difficult to attain. If the moments are incorrect the attempted compensation can actually
introduce instability into the system, so often these terms are ignored when building the
controller. While not addressed in operational space control, they are accounted for in
nonlinear adaptive control, which will be discussed in Chapter 4. For now however they
will be ignored.

Rewriting the system dynamics, Eq. 7.59, in terms of acceleration gives

q̈ = M−1(q)(u−C(q, q̇)− g(q)). (2.1)

Ideally, the control signal would be constructed

u = (M(q) q̈des + C(q, q̇) + g(q)), (2.2)

where q̈des is the desired acceleration of the system. This would result in system accelera-
tion

q̈ = M−1(q)((M(q) q̈des + C(q, q̇) + g(q))−C(q, q̇)− g(q)), (2.3)

q̈ = M−1(q)M(q) q̈des, (2.4)

q̈ = q̈des, (2.5)

which would be ideal. The unmodeled Coriolis and centrifugal effects cannot be accounted
for, so the instead the control signal is

u = (M(q) q̈des + g(q)), (2.6)

6

where M(q) is defined in Eq. 7.69 and g(q) is defined Eq. 7.86, using the Jacobians defined
in Section 7.9.1.

Using a standard PD control formula to generate the desired acceleration:

q̈des = kp (qdes − q) + kv (q̇des − q̇), (2.7)

where kp and kv are our gain values, and the control signal has been fully defined:

u = (M(q) (kp (qdes − q) + kv (q̇des − q̇)) + g(q)). (2.8)

2.0.2 Controlling in operational space

Given the robot arm shown in Figure 7.25 the goal in this example is to develop an
operational space controller. The generalized coordinates for this example will be joint
space, and the operational space is going to be the end-effector Cartesian coordinates
relative to the base reference frame.

The Jacobians for the end-effector of this robot were previously defined in Section 7.8.2.3:

Jee(q) =

[
−L0sin(q0)− L1sin(q0 + q1) −L1sin(q0 + q1)
L0cos(q0) + L1cos(q0 + q1) L1cos(q0 + q1)

]
. (2.9)

With Jee(q) end-effector forces can be transformed into joint space as shown in Sec-
tion 7.8 using Eq. 7.40:

u = JTee(q) Fx. (2.10)

Rewriting Fx as its component parts

Fx = Mxee(q) ẍdes, (2.11)

where ẍ is end-effector acceleration, and Mxee(q) is defined in Eq. 7.79, using Jacobians
from Section 7.9.1. Adding in a term to cancel the effects of gravity in joint space gives

u = JTee(q)Mxee(q)ẍdes + g(q), (2.12)

where g(q) is the same as in the previous example, defined in Eq. 7.86 using Jacobians
from Section 7.9.1. This controller converts desired end-effector acceleration into torque
commands, and compensates for inertia and gravity.

Defining a basic PD controller in operational space

ẍdes = kp(xdes − x) + kv(ẋdes − ẋ), (2.13)

and the full equation for the operational space control signal in joint space is:

u = JTee(q) Mxee(q)[kp(xdes − x) + kv(ẋdes − ẋ)] + g(q). (2.14)

7

2.1 Controlling in the null space

The last example comprises the basics of operational space control; describe the system,
calculate the system dynamics, transform desired forces from an operational space to the
generalized coordinates, and build the control signal to cancel out the undesired system
dynamics. Basic operational space control works quite well, but it is not uncommon to
have several control goals at once; such as ‘move the end-effector to this position’ (primary
goal), and ‘keep the elbow raised high’ (secondary goal) in the control of a robot arm.

If the operational space can also serve as generalized coordinates, i.e. if the system
state specified in operational space constrains all of the degrees of freedom of the robot,
then there is nothing that can be done without affecting the performance of the primary
controller. In the case of controlling a two-link robot arm this is the case. The end-effector
Cartesian space (chosen as the operational space) could also be a generalized coordinates
system, because a specific (x, y) position fully constrains the position of the arm.

But often when using operational space control for more complex robots this is not the
case. In these situations, the forces controlled in operational space have fewer dimensions
than the robot has degrees of freedom, and so it is possible to accomplish the primary goal
in a number of ways. The null space of this primary controller is the region of state space
where there is a redundancy of solutions; the system can move in a number of ways and
still not affect the completion of the goals of the primary controller. An example of this is
all the different configurations the elbow can be in while a person moves their hand in a
straight line. In these situations, a secondary controller can be created to operate in the
null space of the primary controller, and the full control signal sent to the system is a sum
of the primary control signal and a filtered version of the secondary control signal. In this
section the derivation of the null-space filter will be worked through for a system with only
a primary and secondary controller, but note that the process can be applied iteratively
for systems with further controllers.

The filtering of the secondary control signal means that the secondary controller’s goals
will only be accomplished if it is possible to do so without affecting the performance of the
first controller. In other words, the secondary controller must operate in the null space of
the first controller. Denote the primary operational space control signal, e.g. the control
signal defined in Eq. 2.8, as ux and the control signal from the secondary controller unull.
Define the force to apply to the system

u = ux + (I− JTee(q) JT+ee (q))unull, (2.15)

where JT+ee (q) is the pseudo-inverse of JTee(q).

8

Examining the filtering term that was added,

(I− JTee(q)JT+ee (q))unull, (2.16)

it can be seen that the Jacobian transpose multiplied by its pseudo-inverse will be 1’s all
along the diagonal, except in the null space. This means that unull is subtracted from itself
everywhere that affects the operational space movement and is left to apply any arbitrary
control signal in the null space of the primary controller.

Unfortunately, this initial set up does not adequately filter out the effects of forces that
might be generated by the secondary controller. The Jacobian is defined as a relationship
between the velocities of two spaces, and so operating in the null space defined by the
Jacobian ensures that no velocities are applied in operational space, but the required filter
must also prevent any accelerations from affecting movement in operational space. The
standard Jacobian pseudo-inverse null space is a velocity null space, and so a filter built
using it will allow forces affecting the system’s acceleration to still get through. What is
required is a pseudo-inverse Jacobian defined to filter signals through an acceleration null
space.

To acquire this acceleration filter, Eq. 2.15 will be substituted into the equation for
acceleration in the operational space, Eq. 7.73, which, after cancelling out gravity effects
with the control signal and removing the unmodeled dynamics, gives

ẍ = Jee(q)M−1(q)[JTee(q) Mxee(q) ẍdes − (I− JTee(q) JT+ee (q)) unull]. (2.17)

Rewriting this to separate the secondary controller into its own term

ẍ = Jee(q)M−1(q)JTee(q) Mxee(q) ẍdes − Jee(q)M−1(q)[I− JTee(q) JT+ee (q)] unull, (2.18)

it becomes clear that to not cause any unwanted movement in operational space the second
term must be zero.

There is only one free term left in the second term, and that is the pseudo-inverse.
There are numerous different pseudo-inverses that can be chosen for a given situation, and
here what is required is to engineer a pseudo-inverse such that the term multiplying unull

in the above operational space acceleration equation is guaranteed to go to zero.

Jee(q)M−1(q)[I− JTee(q)JT+ee (q)]unull = 0, (2.19)

this needs to be true for all unull, so it can be removed,

Jee(q) M−1(q)[I− JTee(q) JT+ee (q)] = 0, (2.20)

Jee(q) M−1(q) = Jee(q) M−1(q) JTee(q) JT+ee (q), (2.21)

9

substituting in using Eq. 7.79, which defines M(q),

Jee(q)M−1(q) = M−1
xee

(q)JT+ee (q), (2.22)

JT+ee (q) = Mxee(q) Jee(q) M−1(q). (2.23)

This specific Jacobian inverse was presented in [112] and is called the ‘dynamically consis-
tent generalized inverse’. Using this psuedo-inverse guarantees that any signal coming from
the secondary controller will not affect movement in the primary controller’s operational
space.

The null space filter cancels out the acceleration effects of forces in operational space
from a signal that is being applied as part of the control system. But it can also be
used to cancel out the effects of any unwanted signal that can be modeled. Given some
undesirable force signal interfering with the system that can be effectively modeled, a null
space filtering term can be implemented to cancel it out. The control signal in this case,
with one primary operational space controller and a null space filter for the undesired force,
looks like:

u = JTee(q) Mx(q) ẍdes − g(q)− JTee(q) JT+ee (q) uundesired force. (2.24)

2.1.1 Example: Operational space control with secondary con-
troller

Given a three link arm (revolute-revolute-revolute) operating in the (x, z) plane, shown
in Figure 7.23, this example will construct the control system for a primary controller
controlling the end-effector and a secondary controller working to keep the arm near its
joint angles’ default resting positions.

Let the system state be q = [q0, q1, q2]
T with default positions q0 =

[
π
3
, π
4
, π
4

]T
. The

control signal of the secondary controller is the difference between the target state and the
current system state

unull = kpnull(q
0 − q), (2.25)

where kpnull is a gain term.

Let the centres of mass be

com0 =

 1
2
cos(q0)

0
1
2
sin(q0)

 , com1 =

 1
4
cos(q1)

0
1
4
sin(q1)

 com2 =

 1
2
cos(q2)

0
1
4
sin(q2)

 ,
10

the Jacobians for the COMs are

J0(q) =

−1

2
sin(q0) 0 0

0 0 0
1
2
cos(q0) 0 0

0 0 0
1 0 0
0 0 0

 ,

J1(q) =

−L0sin(q0) + 1

4
sin(q01)

1
4
sin(q01) 0

0 0 0
L0cos(q0) + 1

4
cos(q01)

1
4
cos(q01) 0

0 0 0
1 1 0
0 0 0

 ,

J1(q) =

−L0sin(q0) + L1sin(q01)− 1

2
sin(q012) L1sin(q01)− 1

2
sin(q012) −1

2
sin(q012)

0 0 0
L0cos(q0) + L1cos(q01) + 1

2
cos(q012) L1cos(q01) + 1

2
cos(q012)

1
2
cos(q012)

0 0 0
1 1 1
0 0 0

 .

The Jacobian for the end-effector of this three link arm is

Jee =

[
−L0sin(q0)− L1sin(q01)− L2sin(q012) −L1sin(q01)− L2sin(q012) −L2sin(q012)
L0cos(q0) + L1cos(q01) + L2cos(q012) L1cos(q01) + L2cos(q012) L2cos(q012),

]
where q01 = q0 + q1 and q012 = q0 + q1 + q2.

Taking the control signal developed in Section 2.0.2

u = JTee(q) Mxee(q)[kp(xdes − x) + kv(ẋdes − ẋ)]− g(q), (2.26)

where Mee(q) is defined in Eq. 7.79 and g(q) is defined in Eq. 7.86 using the Jacobians
above, and kp and kv are gain terms, usually set such that kv =

√
kp, and adding in the

null space control signal and filter gives

u = JTee(q) Mxee(q)[kp(xdes − x) + kv(ẋdes − ẋ)]− (I− JTee(q)JT+ee (q))unull − g(q), (2.27)

where JT+(q) is the dynamically consistent generalized inverse defined in Eq. 2.23 and
unull is defined in Eq. 2.25.

11

2.2 Handling singularities

A final note for this chapter is on handling kinematic singularities, which quickly presents
itself as a problem during implementation of operational space control.

2.2.1 What is a singularity?

In a two link arm, a singularity happens whenever the elbow angle nears 0 or π. Figure 2.1
shows a demonstration of the system behaviour when this occurs. What is happening at the
point of instability is that the Jacobian for the end-effector has dropped rank and becomes
singular (i.e. non-invertible), and when calculating the mass matrix for operational space:

Mx(q) = (J(q) M−1(q)JT)−1(q) (2.28)

the values explode in the inverse calculation. Dropping rank means that the rows of the
Jacobian are no longer linearly independent, which means that the matrix can be rotated
such that it gives a matrix with a row of zeros. This row of zeros is the degenerate direction,
and the problems come from trying to send forces in that direction. To determine when
the Jacobian becomes singular its determinant can be examined; if the determinant of the
matrix is zero, then it is singular. Looking the Jacobian for the end-effector:

J(q) =

[
−L0sin(q0)− L1sin(q0 + q1) −L1sin(q0 + q1)
L0cos(q0) + L1cos(q0 + q1) L1cos(q0 + q1)

]
. (2.29)

When q1 = 0 it can be that sin(q0 + 0) = sin(q0), so the Jacobian becomes

J(q) =

[
−(L0 − L1)sin(q0) −L1sin(q0)
(L0 + L1)cos(q0) L1cos(q0)

]
(2.30)

which gives a determinant of

(L0 − L1)(−sin(q0))(L1)(cos(q0))− (L1)(−sin(q0))(L0 + L1)(cos(q0)) = 0. (2.31)

Similarly, when q1 = π, where sin(q0 + π) = −sin(q0) and cos(q0 + π) = −cos(q0), the
determinant of the Jacobian is

J(q) =

[
−(L0 − L1)sin(q0) L1sin(q0)
(L0 + L1)cos(q0) −L1cos(q0)

]
(2.32)

Calculating the determinant of this we get

(L0 + L1)(−sin(q0))(L1)(−cos(q0))− (L1)(sin(q0))(L0 + L1)(−cos(q0)) = 0. (2.33)

Note that while in these cases the Jacobian is a square matrix in the event that it is
not a square matrix, the determinant of J(q) JT (q) can be found instead.

12

Figure 2.1: A two link arm moving to a target, encountering a kinematic singularity causing
instability in the control signal and erratic performance. The red dot is the target position
for the hand, the gray line is the path traced out by the line during movement. When
the elbow joint angle is equal to π the Jacobian becomes singular and the control signal
becomes unstable, causing the undesired spasm along the way to the target.

13

2.2.2 Fixing the problem

When a singularity is occurring it can be detected, but now it must be handled such
that the controller behaves appropriately. This can be done by identifying the degenerate
dimensions and setting the force in those directions to zero.

First the SVD decomposition of M−1
x (q) = VSUT is found. To get the inverse of this

matrix (i.e. to find Mx(q)) from the returned V,S and U matrices is a matter of inverting
the matrix S:

Mx(q) = VS−1UT , (2.34)

where S is a diagonal matrix of singular values.

Because S is diagonal it is very easy to find its inverse, which is calculated by taking
the reciprocal of each of the diagonal elements.

Whenever the system approaches a singularity some of the values of S will start to
get very small, and when we take the reciprocal of them we start getting huge numbers,
which is where the value explosion comes from. Instead of allowing this to happen, a check
for approaching the singularity can be implemented, which then sets the singular values
entries smaller than the threshold equal to zero, canceling out any forces that would be
sent in that direction. A Python implementation of this algorithm follows:

Mx_inv = np.dot(JEE, np.dot(np.linalg.inv(Mq), JEE.T))

if abs(np.linalg.det(np.dot(JEE,JEE.T))) > .005**2:

if we’re not near a singularity

Mx = np.linalg.inv(Mx_inv)

else:

in the case that the robot is entering near singularity

u,s,v = np.linalg.svd(Mx_inv)

for i in range(len(s)):

if s[i] < .005: s[i] = 0

else: s[i] = 1.0/float(s[i])

Mx = np.dot(v, np.dot(np.diag(s), u.T))

A demonstration of the two-link arm moving through the same kinematic singularity
with the above method is shown in Figure 2.2.

14

Figure 2.2: A two link arm moving to a target, encountering a kinematic singularity with
the modified control signal, which filters unstable control signals in degenerate directions,
allowing the arm to move smoothly to its target. The red dot is the target position for the
hand, the gray line is the path traced out by the line during movement. When the elbow
joint angle is equal to π the Jacobian becomes singular and the degenerate directions are
set to 0 and the control signal remains stable.

15

Chapter 3

Dynamic movement primitives

The previous chapter developed methods for generating a control signal that was capable
of moving the system with precision. The question of how to move the system, however,
remained unaddressed. In this thesis trajectory generation will be performed through the
employment of dynamical movement primitives.

Dynamic movement primitives (DMPs) are a method of trajectory control / planning
developed by Dr. Stephan Schaal’s lab, first presented in [159], and later reformulated
to be more concise by Dr. Auke Ijspeert [97]. This work was motivated by the desire to
find a way to represent complex motor actions that can be easily adjusted without tuning
numerous parameters and with stability guarantees.

Complex movements have long been thought to be composed of sets of basic action
‘building blocks’ executed either in sequence or in parallel [23, 70] DMPs are a proposed
mathematical formalization of these primitives. The difference between DMPs and action
building blocks proposed elsewhere [37] is that DMPs are dynamical systems. The core
idea behind DMPs is to take a dynamical system with well-specified, stable behaviour and
add another term that pushes it to follow some interesting trajectory. There are two kinds
of DMPs: discrete and rhythmic. For discrete movements the basic system is a point
attractor, and for rhythmic movements the basic system is a limit cycle.

To picture DMPs as part of a full control system imagine two systems: an imaginary
system where trajectories are planned, and a real system which works to follow these
planned trajectories. DMPs are the imagined system which plan a trajectory for the real
system to follow.

A DMP has its own set of dynamics, which may or may not reflect the dynamics of the
real system. If the DMP system is planning a path for a hand to follow, then the current

16

state of the system is compared to the target state as specified by the DMP system and
a PD control signal is generated. This control signal specifies the forces for the system to
apply to the hand to move along the path specified by the DMP. A separate component
of the system must then take these hand forces and transform them into joint torques
or muscle activations that can be directly applied to the real system’s actuators. It is
important to keep in mind that the whole DMP framework is for generating a trajectory
to guide the real system, and does not directly interact with the real system.

Please also note that all of the code used to implement the systems described in this
chapter can be found online on my Github account at https://github.com/studywolf/

blog/tree/master/DMPs.

3.1 Discrete DMPs

As mentioned above, the basic dynamical system for the discrete DMP is a point attractor.
A point attractor’s dynamics evolve according to:

ÿ = αy(βy(g − y)− ẏ), (3.1)

where y and ẏ is the system state and velocity, respectively, g is the goal, and α and β
are gain terms. This is also well known as the equation for proportional derivative (PD)
control, which just drives the system in a straight line to the goal. To generate interesting
behaviour along the way to the target a ‘forcing’ term, f , will be added, making the system
dynamics:

ÿ = αy(βy(g − y)− ẏ) + f, (3.2)

Defining the nonlinear function f such that a desired path is followed by the system is a
non-trivial question. The crux of the DMP framework is that the method used to define
the forcing function f over time will give the problem a well-defined and flexible structure.
In addition, the function can be easily solved for and generalized both temporally and
spatially. To accomplish this, a simple dynamical system is introduced into the framework,
called the ‘canonical system’, denoted x. The canonical system evolves according to the
dynamics:

ẋ = −αxx, (3.3)

and is initialized to 1 at the beginning, decaying to 0 as specified by gain value αx. The
forcing function f is then defined as a function of the canonical system:

f(x, g) =
ΣN
i=1ψiwi
ΣN
i=1ψi

x(g − y0), (3.4)

17

https://github.com/studywolf/blog/tree/master/DMPs
https://github.com/studywolf/blog/tree/master/DMPs

where y0 is the initial position of the system, ψi is a Gaussian, defined

ψi = exp
(
−hi (x− ci)2

)
, (3.5)

and wi is a weighting for a given basis function ψi. By having the forcing function not
directly dependent on time, a temporal scaling can be achieved by altering the dynamics
of the canonical system, rather than having to choose different center points for the basis
functions, as discussed in Section 3.1.3.

The basis functions ψi are Gaussians centered along the canonical system state, ci, with
variance hi. The forcing function is a set of Gaussians that are activated as the canonical
system converges to 0. Their weighted summation is normalized, and then multiplied by
the x(g−y0) term, which acts as both a ‘diminishing’ and spatial scaling term. Its role as a
diminishing term ensures that the forcing function output will be reduced to 0 eventually,
and the point attractor dynamics will be able to take over such that the system will always
converge to the goal.

There are several important features of the DMP system as described to this point.
The first is that the basis functions are activated as a function of x, shown in the top
half of Figure 3.1. As the value of x decreases from 1 to 0, each of the Gaussians are
activated (centered) at different x values. The second feature is that each of these basis
functions are also assigned a weight, wi. These weights are displayed in the lower half of
Figure 3.1 in the bar plot. The output of the forcing function f is then the summation
of the activations of these basis functions multiplied by their weight, also displayed in the
lower half of Figure 3.1 in the blue line.

3.1.1 Spreading basis function centers

Because the canonical system does not converge linearly to the target, another step needs
to be taken in placing the centres of the basis functions to make sure that they’re activated
evenly because the basis functions activation is dependent on x. If the system was linear
then it would be easy to spread out the basis function activations as the system converged
to the target. But, with the canonical system dynamics as described above, x is not a
linear function of time. When the basis function activations are plotted against time, as
shown in Figure 3.2, we see that the majority are activated immediately as x moves quickly
at the beginning, and then the activations stretch out as the x slows down at the end.

In the interest of having the basis functions spaced out more evenly through time (so
that the forcing function has resources to still move the system along interesting paths as

18

Figure 3.1: Top: The basis functions activations displayed as a function of the canonical
system, x. Bottom: Bar plot - The weights assigned to each basis function. Blue line - The
weighted summation of each of the basis functions as the canonical system moves from 1
to 0.

19

Figure 3.2: A plot of the activation of the Gaussian basis functions over time with an even
spacing of the centre points along x. As can be seen, this spacing leads to a bunching of
the activations early on.

it nears the target), the Gaussian center points must be chosen more carefully. As it is
known that the system decays to 0 exponentially, the basis function centers can be spread
evenly by first specify the desired centers, c∗i , as if the system evolved linearly, then take
its negative logarithm:

ci = − log(c∗i) (3.6)

Additionally, the width of each of the Gaussian needs to be set slightly differently,
because the rate at which canonical system decreases slows over time. Consequently,
those Gaussians activated later will be activated for longer periods of time given the same
variance. To even it out the later basis function widths should be smaller. Through trial
and error, a variance that works well is

hi =
#BFs

3
2

ci
, (3.7)

which reads as the variance of basis function ψi is equal to the number of basis functions
raised to the power of 3

2
divided by the center of that basis function. With these specifica-

tions, the activation of the basis functions plotted against time is now well spaced out, as
shown in Figure 3.3.

20

Figure 3.3: A plot of the activation of the Gaussian basis functions over time placing the
centre points of the Gaussian basis functions using Eq. 3.6. This leads to a more evenly
spread activation.

3.1.2 Spatial scaling

Spatial scaling for DMP systems means that once the system has been set up to follow
a desired trajectory to a specific goal, that goal can be moved closer or farther away and
the path that is followed will be a scaled version of trajectory originally specified. This is
what the (g− y0) part of the forcing function permits. By scaling the activation of each of
the basis functions to be relative to the distance to the target, the system will cover more
or less distance.

For example, assume that there is a set of discrete DMPs set up to follow a given
trajectory as specified in Figure 3.4 A. The goals have been specified as 1 and .5 for the
two DMPs, which is where each DMP ends up, respectively. Everything has been specified
for these particular goals (1 and .5), but assume that the goal has been changed to 2,
and we would like to generalize the DMPs and get a scaled up version of this trajectory.
Without appropriately scaling the forcing function (using the (g − y0) term) the DMPs
traces a path as shown in Figure 3.4 B.

What has happened is that for these new goals the same weightings of the basis functions
were too weak to get the system to follow or desired trajectory. Once the (g − y0) term

21

Figure 3.4: Path imitation with DMPs. A) Basic path imitation of a straight line and
a step function. B) Changing the goals of the DMPs to be equal to 2, without scaling
the forcing function appropriately. C) Changing the goals of the DMPs to be equal to 2,
scaling the forcing function appropriately.

22

included in the forcing function, however, the DMP set traces a path as shown in Figure 3.4
C, which is the desired generalization.

3.1.3 Temporal scaling

For the system to generalize temporally it needs to be able to be run along the same
trajectory at any desired speed. Sometimes quick, sometimes slow, but always tracing
out the same path. To accomplish this another term needs to be added to the system
dynamics, τ ; a temporal scaling term. Given the system dynamics:

ÿ = αy(βy(g − y)− ẏ) + f, (3.8)

ẏ = ÿ ∗ dt (3.9)

ẋ = −αxx, (3.10)

to achieve temporal flexibility with τ these dynamics are rewritten:

τ ÿ = (αy(βy(g − y)− τ ẏ) + f), (3.11)

τ ẏ = ÿ ∗ dt (3.12)

τ ẋ = (−αxx). (3.13)

To slow down the system the temporal scaling term can be set τ to a value between 0
and 1, and to speed it up it can be set to be greater than 1.

3.2 Imitating a desired path

At this point the DMP system has been set up with a forcing term that can make the system
take an interesting path as it converges to a target point, and can scale both temporally
and spatially. An important step from this point is getting the system to follow a specific
desired trajectory, rather than whatever arises from some random weighting over the basis
functions. Ideally, this would work by providing the system a trajectory and have it be
able to work backwards and figure out the required forces.

The forcing term affects system acceleration, and by changing the weights on the basis
functions it’s possible to generate the appropriate force to push the system along the desired
trajectory. To figure out the required forces from the provided trajectory, yd (where bold

23

denotes a vector, in this case the time series of desired points in the trajectory), first
differentiate it twice to get the accelerations:

ÿd =
∂

∂t
ẏd =

∂

∂t

∂

∂t
yd. (3.14)

Once the required acceleration trajectory has been found, the effects of the base point
attractor system need to be removed. Since the dynamics of the base system are known
exactly, as specified in Eq. 3.11, these dynamics can be compensated for:

fd = ÿd − αy(βy(g − yd)− ẏd), (3.15)

Because the forcing term is comprised of a weighted summation of basis functions which
are activated through time, an optimization technique like locally weighted regression can
be used to choose weights over our basis functions such that the output matches the desired
force trajectory fd. Locally weighted regression sets up the weights to minimize:

Σtψi(t)(fd(t)− wi(x(t)(g − y0)))2, (3.16)

and the solution is

wi =
sTψψψifd
sTψψψis

, (3.17)

where

s =

 xt0(g − y0)
...

xtN (g − y0)

 , ψψψi =

 ψi(t0) . . . 0

0
. . . 0

0 . . . ψi(tn)

 (3.18)

Figure 3.5 shows an example of the system imitating a sine wave and a piecewise
function with different numbers of basis functions.

3.3 Interpolating trajectories for imitation

When imitating trajectories there can be some issues with having enough sample points
and fitting them to the canonical system’s timeframe. To get around these problems the
system can be set up such that the canonical system always runs for 1 second, and whenever
a trajectory is passed in to be imitated it gets scaled to be one second long. This can be
done easily in code using interpolation:

24

des ired path

0 20 40 60 80 100
time (ms)

4
3
2
1
0
1
2
3
4

sy
st

e
m

 t
ra

je
ct

o
ry DMP imitate path

0 20 40 60 80 100
time (ms)

0.5
0.0
0.5
1.0
1.5
2.0
2.5

sy
st

e
m

 t
ra

je
ct

o
ry DMP imitate path

10 BFs
30 BFs
50 BFs
100 BFs
10000 BFs

Figure 3.5: An example of using the DMP trajectory imitation to follow a set of specified
trajectories with different numbers of basis functions. The more complex a trajectory, the
more basis functions are required to be able to accurately follow it.

25

generate function to interpolate the desired trajectory

import scipy.interpolate

path = np.zeros((self.dmps, self.timesteps))

x = np.linspace(0, self.cs.run_time, y_des.shape[1])

for d in range(self.dmps):

create interpolation function

path_gen = scipy.interpolate.interp1d(x, y_des[d])

create evenly spaced sample points of desired trajectory

for t in range(self.timesteps):

path[d, t] = path_gen(t * self.dt)

y_des = path

The result is that now every trajectory is set up to run in the same time. This has the
benefit of allowing temporal scaling to affect all movements the same way, regardless of
the original length of the imitated path.

3.4 Controlling end-effector trajectories

As mentioned above, the dynamic movement primitive (DMP) framework was designed
for trajectory control. In Chapter 2 an operational space controller (OSC) was developed,
allowing forces to be specified in end-effector space. Here a set of DMPs is placed on top
of the OSC to drive the system through complex trajectories. The 3 link arm and its OSC
controller will be collectively referred to as ‘the plant’ throughout this section.

The DMPs here will be specifying the (x, y) trajectory of the hand, and the OSC will
take care of transforming the desired hand forces into torques that drive the arm as desired.
Additionally, a feedback signal with the (x, y) position of the hand will be sent back from
the plant to the DMP system.

To generate a force signal from the target (x, y) positions is straight-forward. A basic
control signal will be calculated by measuring the difference between the state of our DMP
system and the plant state. Formally,

u = kp(yDMP − y), (3.19)

26

where yDMP is the state of the DMP system, y is the state of the plant, and kp and is the
position error gain term.

To have the system trace out the DMP trajectory then requires stepping the DMP
system forward and setting gain values high enough that the plant is able to follow the
DMP’s trajectory.

Figure 3.6 shows a demonstration of a DMP controller following trajectories of digits,
comparable with those drawn by motor control system for Spaun [50], shown later in Chap-
ter 5, Figure 5.6. Both of the systems used to generate these numbers are not implemented
in neurons. As can be seen, the combination of DMPs and operational space control is
much more effective than the previous implementation [40].

3.5 Incorporating system feedback

One of the issues in implementing the control specified above is that some tuning has to
be done regarding how quickly the DMP trajectory moves, because the DMP system isn’t
constrained by physical dynamics, but the plant can move reliably only up to a certain
maximum velocity. Depending on the scaling of the movement, the DMP trajectory may
be telling the system to move a metre a second or an centimetre a second.

Figure 3.7 shows the arm drawing the number 3 when the DMP system is moving too
fast. The plant is unable to fully draw out the desired trajectories in places where the DMP
system moved too quickly. The only way to remedy this without feedback is to have the
DMP system move more slowly throughout the entire trajectory. It would be preferable
to allow the system to adjust on-the-fly. Essentially, it’s desirable to have the system to
go as fast as possible as long as the plant state is within some threshold distance. This is
how system feedback is used here.

It turns out to be straightforward to implement this: If the plant state falls behind the
DMP state, slow down the execution speed of the DMP to allow the plant time to catch
up. The do this a new term based on the system feedback is introduced into the canonical
system:

1

1 + αerr(yplant − yDMP)
. (3.20)

This new term slows down the canonical system when there’s an error. It can be thought
of as an additional scaling on the time step. Additionally, the sensitivity of this term can
be modulated using the scaling term αerr on the difference between the plant and DMP
states.

27

Figure 3.6: An example application of the DMP trajectory system for drawing the numbers
0-9. The light gray lines are the desired trajectories, the dark gray lines are the paths drawn
by the arm. The red dot represents the desired position for the hand, specified by DMPs.

28

Figure 3.7: Drawing the number 3 when the DMP system is moving faster than the plant
can follow. The plant fails to draw the sharp corners of the 3.

0 200 400 600 800 1000
Normalized time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x

normal rollout
error coupling

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

e
rr

o
r

Canonical system - discrete

error

Figure 3.8: The blue line shows how the canonical system evolves when the error is 0,
representative of the plant being within tolerance of the position of the DMP. The green
line shows the dynamics of the canonical system when an error, shown in the red line with
an axis along the right side of the figure, is introduced.

29

Figure 3.9: Drawing the number 3 using system feedback to slow down the canonical
system execution speed whenever the target point specified by the DMP system gets too
far ahead of the plant.

Figure 3.8 shows how this term affects the system by looking at the dynamics of the
canonical system when an error is introduced mid-run.

As can be seen, when the error is introduced the dynamics of the canonical system slow
down. Figure 3.9 shows an example of using this feedback term to slow down the execution
of the canonical system when drawing the number 3. The specified trajectory still isn’t
traced out exactly, but this can be remedied by increasing the αerr term to make the DMP
time-step decrease even further whenever the DMP gets ahead of the plant.

3.6 Direct trajectory control vs DMP based control

Using the above interpolation function it is possible to directly use the interpolation func-
tion’s output to drive the plant. When a controller is set up in this fashion, very precise
control of the end-effector is observed, more precise than the DMP control. The reason for
this is that the DMP system is approximating the desired trajectory using a set of basis
functions. Consequently some accuracy is lost in this approximation. Using the interpola-
tion function to drive the plant directly the desired trajectory can be traced exactly.

The accuracy difference between the two approaches becomes more evident when the
desired trajectories are especially complex. It’s possible to improve the performance of the
DMP guided system by choosing the centres of the basis functions dependent on the com-

30

plexity of the trajectory [204], but for simply replicating a provided trajectory directly the
direct trajectory control is simpler. Figure 3.10 shows a comparison of the two approaches
for guiding the plant through drawing the word ‘kaplow’.

From this figure we can see that using the interpolation function to guide the plant
gives the exact path that was specified, where using DMPs introduces additional error.
Additionally, the error introduced by using DMPs increases with the size of the desired
trajectory. Importantly, however, this is for comparing the drawing out of a given trajectory
exactly as it was defined. Often this is not the desired behaviour, as the scale of the
trajectory may need to be modulated to fit in some specific space. The strength of the
DMP framework is that what guides the trajectory is a dynamical system. This allows
interesting performance with simple changes to the parameters of the system. To generalize
the scale of the trajectory, all that needs to be changed is the goal of the system. Figure 3.11
shows the DMP system guiding the plant through drawing the number ’3’ normally, scaled
along the y axis, and then scaled along both axes, achieved by changing the goal for the x
and y DMPs.

3.7 Rhythmic DMPs

The implementation of rhythmic DMPs only requires a few slight modifications of the
discrete DMP case.

3.7.1 Obtaining consistent and repeatable basis function activa-
tion

First, consider the canonical system: In the discrete case the canonical system (which
drives the activation of the basis functions) decayed from 1 to 0 and then stopped. In
the rhythmic case the system should repeat indefinitely, so a reliable way of continuously
activating the basis functions in the same order is needed. A simple, repeating function
that can be used to accomplish this is the cosine function.

The idea is that the basis functions will be laid out along the range of 0 to 2π, and
the canonical system will be set to forever increase linearly. The difference between the
canonical system state and each of the center points will then be passed into the cosine
function. Because the cosine function repeats at 2π, a repeating spread of basis function
activations will be achieved. The cosine output can then be used in the Gaussian equa-
tion (with the gain and bias terms) and rhythmic activation of the basis function will be

31

A

B

Figure 3.10: A comparison of direct trajectory control and DMP guided control for writing
the word ‘kaplow’ as a single complex trajectory. The red line is the desired trajectory and
the black line is the path drawn by the arm. A) Direct trajectory control. B) DMP guided
control.

32

Figure 3.11: The DMP system guiding the plant through drawing the number ‘3’ at three
different scales. Normally, scaled along the y axis, and scaled along both axes. No changes
were made to the system aside from modifying the goal state for the x and y DMPs.

achieved. Formally,
ẋ = 1 (3.21)

ψ = exp(h ∗ cos(x− c)− 1), (3.22)

where x is the state of the canonical system, c is the basis function center point, and h is
a gain term controlling the variance of the Gaussian. Figure 3.12 displays the activations
of three basis functions with centers spread out evenly between 0 and 2π.

As long as our canonical system increases at a steady pace the basis functions will
continue to activate in a reliable and repeatable way.

Additionally, the placement of the center points of the rhythmic system is easier than
in the traditional discrete case because the rhythmic canonical system dynamics are linear.

3.8 Other differences between discrete and rhythmic

In the implementation of the rhythmic system, there are other differences that must also
be accounted for. The first is that there is no diminishing term in the rhythmic system,
because we wish the system to continuously activate the basis functions with the same
strength. The second is that setting the goal states for path imitation changes. Assuming
that the desired path is going to be a rhythmic pattern the goal state will be set as the

33

A

B

Figure 3.12: A) Three basis functions laid out evenly between 0 and 2π. B) Repeated
activation of the basis functions.

34

center point of the desired trajectory, calculated by finding the average position of the
trajectory along each dimension.

3.8.1 Example

As an example of rhythmic DMPs the locomotion pattern of humans during walking can be
imitated. The desired trajectory has been taken from human kinematics data 1, tracking
the position of the hip, knee, and ankle joint angles, and is shown in the top of Figure 3.13.
This means that the DMPs will be directing the trajectories in joint space, in contrast
to the discrete examples above where there was a DMP for the x and y positions of the
end-effector. In this example there are three DMPs; one for each joint. The bottom of
Figure 3.13 shows the implementation results.

3.9 Applications of DMPs

In this section, several of the applications of DMPs to different control problems are briefly
surveyed, to give a sense of how these techniques can be generalized.

One common implementation is to observational learning [159]. In this application
human movement was first tracked as a tennis racket was swung to generate the observed
trajectory. Specifically, the joint angles were tracked and a DMP generated to guide a
robotic system through a similar movement. The desired trajectory was followed by using
inverse kinematics, rather than through operational space control, as is done in this thesis.
Figure 3.14 shows an example of the robot swinging the tennis racket. Because of the
strong generalizability of DMPs, a visual system was able to identify the position of the
ball as it was thrown and update the goal position of the trajectory swing such that the
robot was able to follow the ball and hit it as it was thrown to different locations [159].

Obstacle avoidance is also natural to add to the DMP framework [95]. Because the
trajectory is generated from a dynamical system, all that is required is adding another
term to the dynamics that pushes the system away from any identified obstacles. In [95]
this is done by adding a force perpendicular to the object with a strength proportional to
how close the system is to the target. Figure 3.15 shows an example set of trajectories
reaching straight to a goal with an obstacle and obstacle avoidance term added to the
DMP dynamics.

1found here: http://www.sfu.ca/~leyland/Kin201%20Files/4%20Gait%20Analysis%20&

%20Angular%20Kinematics.pptx.pdf

35

http://www.sfu.ca/~leyland/Kin201%20Files/4%20Gait%20Analysis%20&%20Angular%20Kinematics.pptx.pdf
http://www.sfu.ca/~leyland/Kin201%20Files/4%20Gait%20Analysis%20&%20Angular%20Kinematics.pptx.pdf

Figure 3.13: Top: The kinematics recorded from tracking the hip, knee, and ankle angles
during human walking. Bottom: A DMP guided system directing a leg model through the
same motions.

36

Figure 3.14: Left column: Teacher demonstration of a tennis swing. Right column: Imita-
tion of a tennis swing by a humanoid robot, taken from [159].

Figure 3.15: An example of moving from a goal to a target while avoiding an obstacle.
Blue lines are the trajectories, the red ball is the obstacle, the white ball is the target, and
the green line represents the path taken when no obstacle is present. Taken from [95].

37

Another application of DMPs is to sensory processing, providing a corrective signal
based on current feedback compared to stereotypical sensory feedback on successful trials.
Specifically, a set of sensors report their signals during success trials of a given task, such as
grasping an object. These sensory trajectories are stored in a DMP and played out at the
same time as future trials. When there is a discrepancy between the stored feedback signals
and the current feedback trials the control signal is updated accordingly to try to bring
the sensory feedback in line with the trajectory from the successful trial. For example, if
a robotic manipulator is grasping a flashlight and a force sensor reports pressure feedback
from one of the fingers before expected, the manipulator can stop moving that finger,
or even move backwards, until the other fingers are in place, and then continue moving
forward.

Reinforcement learning methods for learning to optimize DMP trajectories have also
been developed, dubbed Policy Improvement through Path Integration (PI2) [185]. PI2 is
a batch learning algorithm that tracks the immediate cost of the trajectory throughout
movement, and then back-calculates the cost-to-go at each point in time with a reversed
cumulative summation. Noise is added to each of the weights on the basis functions, and
the differences in the cost-to-go across several trials are compared to approximate the value
function manifold, at which point the weights over the basis functions are adjusted to follow
the downward slope along the manifold. This method has proven highly efficient and been
used to learn effective trajectories for grasping objects [128], opening door handles [104],
impedance control [22], and simple games such as catching a ball on a string in a cup or
bouncing a ball attached to a ping pong paddle [206].

Additionally, categorization of movements is possible with DMPs, as similar movements
have similar weightings over the basis functions. Figure 3.16 shows a correlation plot of
the similarity between trajectories trained to imitate different graffiti letters, 5 of each let-
ter [95]. As can be seen, the trajectories for each letter corresponds most closely with other
letters that are the same. By performing this correlation measure on uncategorized trajec-
tories a reasonable categorization can by applied. Potential applications of this approach
to categorization is discussed at the end of Chapter 7.

The literature surrounding applications and extensions to the DMP framework is sub-
stantial. This work, combined with the biological plausibility of DMPs, serves to make the
incorporation of the DMP framework into neural models of the motor control system at-
tractive. Previously, evidence for systems generating basic movements and trajectories has
been based on the observations of ‘movement synergies’ in frogs and cats, where electrical
stimulation results in the leg converging to a target location or a repeated pattern of move-
ment [70, 37]. The argument for the biological plausibility of the DMP framework made
here is based on its success capturing various behavioural phenomena of motor control (e.g.

38

Figure 3.16: Correlations between the weight vectors of different graffiti characters (5
instances of each letter). Black represents a correlation of 1.0 and white represents a
correlation of 0.0 or below. Taken from [95].

generalizability, planning in operational space, etc), along with the natural implementation
of dynamical systems in recurrent neural networks (discussed in Chapter 6), and will be
continued in Chapter 7.

39

Chapter 4

Nonlinear adaptive control

Effective control of a system is dependent on having an accurate model of the system’s
dynamics. As discussed in Chapter 2, obtaining an accurate model of the system dynamics
is not an easy task; to the point that forces known to be affecting movement are not in-
cluded and accounted for in the control signal because small errors in the correction signal
can lead to system instability (e.g. Coriolis forces). Learning algorithms developed by Dr.
Jean-Jacques Slotine [170] have addressed the problem of developing accurate system mod-
els by starting with a simple model with the known dynamics, and introducing nonlinear
adaptive terms that learn to compensate for the errors introduced by the unmodeled dy-
namics. This chapter works through these algorithms and their derivations, showing how
the learning rules were created through Lyapunov function stability analysis. In Chapter 6
these methods are extended to work in a neurally plausible setting.

There are two types of learning algorithms that will be discussed, which can be dis-
tinguished by how they are applied to the original control signal. The first is an adaptive
‘bias’ term, which compensates for unknown dynamic forces, and is added to the origi-
nal control signal. The second is an adaptive ‘transform’ term, which compensates for
unknown kinematic variables, and is multiplied by the original control signal.

4.1 Lyapunov’s direct method

In the analysis of nonlinear systems Lyapunov’s direct method provides a means of proving
system stability at an equilibrium. An equilibrium is some state, 0, such that when the

40

system arrives at this state it does not leave it. A stable system is one such that starting
it near its desired operating point implies that it will remain around the point.

The framing of Lyapunov’s direct method is based on creating and analyzing a charac-
terization of the system such that it can be seen that the dynamics of the system will evolve
such that the system can be guaranteed to be stable, and ideally converge to equilibrium.
The idea behind this approach was based on the observation of physical systems and their
energy: If a system continuously dissipates energy then it will eventually settle down to
an equilibrium point. Proving a system to be stable can be accomplished by creating some
scalar function of the system state analogous to the energy function of physical systems
that is 0 at the equilibrium and positive everywhere else, and whose derivative is negative.
Intuitively this works because if the ‘energy’ of a system is dissipated over time and lower
bounded, it can be guaranteed to converge to the lower bound; which is in this case is an
equilibrium point.

There are three different basic types of stability in Lyapunov’s direct method: local
stability, local asymptotic stability, and global asymptotic stability. Informally,

• If the candidate function is locally positive definite and the derivative is locally
negative semi-definite, then the system is stable inside a given radius.

• If the candidate function is locally positive definite and the derivative is locally neg-
ative definite, then the system will always converge to the equilibrium state starting
inside a given radius.

• If the candidate function is globally positive definite and the derivative is globally
negative definite, then regardless of initial state the system will always converge to
equilibrium.

Denoting the Lyapunov function V (x), where x is the system state, these can be formally
written as

• Given
V (x) > 0 ∀x ∈ B, (4.1)

V̇ (x) ≤ 0 ∀x ∈ B, (4.2)

for some neighborhood B of the equilibrium, then the system is proven to be stable.

• Given
V (x) > 0 ∀x ∈ B, (4.3)

41

V̇ (x) < 0 ∀x ∈ B, (4.4)

for some neighborhood B of the equilibrium, then the system is proven to be locally
asymptotically stable.

• Given
V (x) > 0 ∀x ∈ R, (4.5)

||x|| → ∞ =⇒ V (x)(x)→∞, (4.6)

V̇ (x) < 0 ∀x ∈ R, (4.7)

then the system is proven to be globally asymptotically stable. The second condition
here is referred to as radial unboundedness, meaning that the radius of asymptotic
stability is unbounded.

Asymptotic stability is a very desirable feature of a system, but can be difficult to
prove with the above theorems because often V̇ (x) is only negative semi-definite, rather
than negative definite, and finding a Lyapunov function candidate with a negative definite
derivative can be very difficult. To skirt the difficulty of finding a candidate function with
a strictly negative derivative, the invariant set theorem can be used. An invariant set is
any set of states of a dynamical system where once the set has been entered the system
remains in that set. Some basic examples of invariant sets are equilibrium points or limit
cycles.

The local invariant set theorem says that given a continuous system with continuous
first partial derivatives and a scalar function V (x), assume

V̇ (x) ≤ 0 ∀x ∈ Ωl (4.8)

where Ωl is a bounded region where V (x) < l for some l > 0, and M is the union of all
invariant sets (e.g. equilibrium points and limit cycles) in Ωl. Then, as t→∞ the system
will go to M for any trajectory started in Ωl.

Using these tools asymptotic stability will be shown for autonomous adaptive systems.

4.2 Stability analysis of a robot arm

As discussed in Chapter 2, the dynamics of an n-link robotic arm are

M(q)q̈ + C(q, q̇) + g(q) = u, (4.9)

42

where M(q) ∈ Rn×n is the inertia matrix, u ∈ Rn is the joint torque applied to the robot,
g(q) is the gravitational force, and C(q, q̇) represents the centripetal and Coriolis forces.
Note that the effects of viscosity have been left out for simplicity.

Importantly, Ṁ(q)− 2C(q, q̇) is skew-symmetric [170] (i.e. aij = −aji where aij is the
element at row i column j). This is noteworthy because a skew-symmetric matrix A has
the property that vTAv = 0 for any vector v. The intuition behind the skew-symmetry
of Ṁ(q)− 2C(q, q̇) comes from the law of conservation of energy. This says that the time
derivative of the robot arm’s kinetic energy q̇TM(q)q̇ must be equal to the external power
input on the system. The fact that power equals velocity times force, and that the only
external forces acting on the system are the input u and the gravity term g(q), means
then that

1

2

d

dt
(q̇TM(q)q̇) = q̇T (u− g(q)). (4.10)

Expanding the right hand side,

1

2

d

dt
(q̇TM(q)q̇) =

1

2

(
q̈TM(q)q̇ + q̇TṀ(q)q̇ + q̇TM(q)q̈

)
. (4.11)

Each of the terms reduce to scalar values, and so are equal to their own transpose, i.e.

q̈TM(q)q̇ = (q̈TM(q)q̇)T = q̇TM(q)q̈, (4.12)

so the left hand side of Eq. 4.11 may be rewritten

q̇TM(q)q̈ +
1

2
q̇TṀ(q)q̇. (4.13)

Using Eq. 4.9 to substitute into Eq. 4.13 for M(q)q̈ gives

q̇T (u−C(q, q̇)q̇− g(q)) +
1

2
q̇TṀ(q)q̇. (4.14)

Rearranging terms gives

q̇T (u− g(q)) + q̇T
(

1

2
Ṁ(q)−C(q, q̇)

)
q̇. (4.15)

Setting Eq. 4.15 equal to the right hand side of Eq. 4.10 gives

q̇T (u− g(q)) + q̇T
(

1

2
Ṁ(q)−C(q, q̇)

)
q̇ = q̇T (u− g(q)), (4.16)

43

or

q̇T
(

1

2
M(q)−C(q, q̇)

)
q̇ = 0. (4.17)

Additionally, this equality means that

Ṁ(q) = 2C(q, q̇), (4.18)

which will allow us to substitute in 2C(q, q̇) for M(q) during analysis, which will also aid
in proving stability.

4.2.1 Basic system stability

Choose for a Lyapunov function candidate the kinetic energy of the system

V (q) =
1

2
q̇TM(q)q̇. (4.19)

This is an appropriate seeming candidate function because V (q) is a scalar function and
positive semi-definite (because the inertia matrix M(q) is symmetric and uniformly positive
definite for all q ∈ Rn), is radially unbounded (i.e. V (q)→∞ as ||q|| → ∞), and is lower
bounded by 0, obtained when q̇ = 0.

The derivative is as above:

V̇ (q) = q̇T (u− g(q)) + q̇T
(

1

2
Ṁ(q)−C(q, q̇)

)
q̇, (4.20)

V̇ (q) = q̇T (u− g(q)) , (4.21)

where Eq. 4.21 follows from Eq. 4.20 and Eq. 4.17.

Choosing the control signal
u = −Kvq̇ + g(q) (4.22)

where Kv is some symmetric positive definite gain matrix, Eq. 4.21 becomes

V̇ (q) = −q̇TKvq̇ ≤ 0. (4.23)

And so this system is globally asymptotically stable.

Clearly, though, this is an uninteresting system where the control signal simply cancels
out any motion.

44

4.2.2 Stability moving to a target

More interesting and relevant to the desired tasks is to have the system move to a target
location. To this end, define

q̃ = q− qdes, (4.24)
˙̃q = q̇− q̇des, (4.25)
¨̃q = q̈− q̈des. (4.26)

Choosing now for a Lyapunov function

V (q) =
1

2
˙̃qTM(q) ˙̃q, (4.27)

the derivative is

V̇ (q) = ˙̃qTM(q)¨̃q +
1

2
˙̃qTṀ(q) ˙̃q, (4.28)

V̇ (q) = ˙̃qT (u−C(q, q̇)q̇− g(q)−M(q)q̈des) +
1

2
˙̃qTṀ(q) ˙̃q, (4.29)

substituting in for the last term using Eq. 4.18 gives

V̇ (q) = ˙̃qT (u−C(q, q̇)q̇− g(q)−M(q)q̈des) + ˙̃qTC(q, q̇) ˙̃q, (4.30)

V̇ (q) = ˙̃qT (u− g(q)−C(q, q̇)q̇des −M(q)q̈des). (4.31)

Setting the control signal to

u = −Kv
˙̃q + g + C(q, q̇)q̇des + M(q)q̇des, (4.32)

and substituting in to Eq. 4.31 gives

V̇ (q) = − ˙̃qTKv
˙̃q ≤ 0, (4.33)

so once again the system is stable, and in this formulation the steady-state velocity error
is guaranteed to be 0 since ˙̃q must be 0 inside the invariant set.

4.2.3 Zeroing steady-state position error

This doesn’t guarantee that the system steady-state position error is zero, however, so the
problem must be reformulated again. By reworking the Lyapunov function to include an
extra term

V (q) =
1

2
˙̃qTM(q) ˙̃q +

1

2
˙̃qTKp

˙̃q, (4.34)

45

the derivative becomes

V̇ (q) = ˙̃qT (u− g(q)−C(q, q̇)q̇des −M(q)q̈des + Kp
˙̃q), (4.35)

so now a position correction signal must be included in the control signal to make the
system stable. Setting the control signal to

u = −Kp
˙̃q−Kv

˙̃q + g + C(q, q̇)q̇des + M(q)q̇des, (4.36)

and substituting into Eq. 4.35 gives once more

V̇ (q) = − ˙̃qTKv
˙̃q ≤ 0, (4.37)

so the system is once again globally asymptotically stable. But even though the control
signal drives the system towards the target position now, the steady-state position error is
not guaranteed to be zero. This is because being at an equilibrium point (where V̇ (q) = 0)
only guarantees that the velocity error is 0, because Eq. 4.37 contains ˙̃q = q̇ − q̇des, and
does not reflect anything about the position error of the system.

Define a new state representation

s = ˙̃q− λq̃, (4.38)

ṡ = ¨̃q− λ ˙̃q, (4.39)

where λ is some positive constant. This can be rewritten

s = q̇− q̇r, (4.40)

ṡ = q̈− q̈r, (4.41)

where q̇r = q̇des − λq̃, and q̈r = q̈des − λ ˙̃q.

Choosing now the Lyapunov function to be a function of s gives

V (s) =
1

2
sTM(q)s, (4.42)

and the derivative is now

V̇ (s) = sTM(q)ṡ +
1

2
sTṀ(q)s, (4.43)

= sTM(q)ṡ + sTC(q, q̇)s, (4.44)

= sT (M(q)q̈−M(q)q̈r + C(q, q̇)q̇−C(q, q̇)q̇r), (4.45)

= sT (u− g(q)−M(q)q̈r −C(q, q̇)q̇r). (4.46)

46

Setting the control signal equal to

u = −Kss + g(q) + M(q)qr + C(q, q̇)qr, (4.47)

where Ks is a symmetric positive definite matrix, and substituting into Eq. 4.46 gives

V̇ (s) = −sTKss ≤ 0. (4.48)

The system is globally asymptotically stable, and now it is guaranteed to have zero position
and velocity error when it enters the steady-state because V̇ contains s = q̇ − q̇r, which
must be zero when the system is at equilibrium.

4.3 Bias adaptation for unknown dynamics

In the design of the control signal in Eq. 4.47 it is assumed that a perfect model of the
system dynamics is known, specifically the effect of gravity g(q), the inertia matrix M(q),
and the effects of Coriolis and centripetal forces C(q, q̇). As discussed in Chapter 2 this
is often unrealistic, and most times the effects of the C(q, q̇) term is just ignored due to
complexity of modeling. Rather than attempting to analytically derive the dynamics, it
can be more convenient to learn them.

This turns out to be possible because of an interesting property of the dynamics first
presented in [113, 123]. Here the observation was made that the dynamics of a system can
be rewritten linearly in a set of select parameters, which are multiplied by a set of known
functions of the system state.

For example, given a basic pendulum system, as shown in Figure 4.1, the dynamics of
the system are

mq̈ + bq̇|q̇|+mgl sin(q) = u, (4.49)

where m is mass, bq̇|q̇| models drag on the system, mgl sin(q) = g(q) is the gravitational
torque, and u is the motor torque.

The Lyapunov candidate function

V (s) =
1

2
ms2, (4.50)

has derivative
V̇ (s) = ṡ(u−mq̈r − bq̇|q̇| −mgl sin(q)). (4.51)

47

q

g(q)

Figure 4.1: A single link pendulum with gravity.

The form of each of the different system dynamics terms here is a certain known function
of the system state multiplied by a constant value specific to the system. Rewriting this
in vector form

V̇ (s) = ṡ(u−Yd(q, q̇, q̈r)θθθd), (4.52)

where Yd(q, q̇, q̈r) =
[
q̈r q̇|q̇| sin(q)

]
, and θθθd =

[
m b mgl

]T
, Yd(q, q̇, q̈r) is the set

of known functions of the system state generic to all systems, and θθθd is the set of constants
specific to the system.

When the actual parameters of the system are known, the control signal of Eq. 4.47 is

u = −Kss+ Yd(q, q̇, q̈r)θθθd, (4.53)

and V̇ becomes
V̇ (s) = −Kss

2 ≤ 0. (4.54)

If, however, the constant parameters of the system are unknown, or can only be roughly
approximated, the control signal becomes

u = −Kss+ Yd(q, q̇, q̈r)θ̂θθd, (4.55)

where θ̂θθd is an approximation of θθθd. This then makes the derivative of V

V̇ (s) = −Kss
2 + sYd(q, q̇, q̈r)θ̃θθd, (4.56)

48

where θ̃θθd = θθθd − θ̂θθd. This means that V̇ is no longer guaranteed to be negative, and so the
system is not globally asymptotically stable. To address this, another term must be added
to the Lyapunov candidate function that will allow the derivative to be manipulated such
that the unknown error disappears.

4.3.1 Choosing an adaptation law for stability

Let the new Lyapunov candidate function be

V (s) =
1

2
ms2 +

1

2
θ̃θθ
T

dL−1
d θ̃θθd, (4.57)

where L−1
d is a symmetric positive definite matrix. The derivative of the second term is

d

dt
(
1

2
θ̃θθ
T

dL−1
d) =

1

2
(θ̇θθd −

˙̂
θθθd)

TL−1
d θ̃θθd +

1

2
θ̃θθ
T

dL−1
d (θ̇θθd −

˙̂
θθθd). (4.58)

Noting that θ̇θθd = 0, because it is a vector of constants, and that each term is equal to its
own transpose because they work out to scalar values, this can be rewritten

d

dt
(
1

2
θ̃θθ
T

dL−1
d) = − ˙̂

θθθTdL−1
d θ̃θθd, (4.59)

where
˙̂
θθθd specifies how θ̂θθd changes over time. The

˙̂
θθθd term is free to be specified as desired,

and the goal is to specify it such that it cancels out the error present in V̇ (s).

By choosing
˙̂
θθθd = LdY

T
d (q, q̇, q̈r)s, (4.60)

the derivative of V (s) becomes

V̇ (s) = −Kss
2 + sYd(q, q̇, q̈r)θ̃θθd −

˙̂
θθθTdL−1

d θ̃θθd, (4.61)

= −Kss
2 + sYd(q, q̇, q̈r)θ̃θθd − (LdY

T
d (q, q̇, q̈r)s)

TL−1
d θ̃θθd, (4.62)

= −Kss
2 + sYd(q, q̇, q̈r)θ̃θθd − sYd(q, q̇, q̈r)LdL

−1
d θ̃θθd, (4.63)

= −Kss
2 + sYd(q, q̇, q̈r)θ̃θθd − sYd(q, q̇, q̈r)θ̃θθd, (4.64)

= −Kss
2 ≤ 0, (4.65)

and the system is proven to be globally asymptotically stable. This means that the combi-
nation of the control law in Eq. 4.53 and the adaptation low specified in Eq. 4.60 guarantees
that the system will arrive at the target position and velocity even starting with imperfect
knowledge of the system dynamics.

49

4.4 Transform adaptation for unknown kinematics

As also discussed in Chapter 2, specifying the control signal in terms of movement of the
end-effector is desirable. Again, preferable to exact measurement of system parameters is
having a system that learns the constant parameters, and is able to adapt to any kinematic
changes that may occur in the system (for example picking up a tool that extends the
distance of the end-effector from the wrist). As in the case with bias adaptation, the idea
is to rewrite the kinematics of the system to be linear in some set of unknown system
parameters.

For example, given a basic two-link robot arm system with arm segment lengths l0 and
l1 for the first and second links, respectively, where x denotes the position of the end-
effector in Cartesian coordinates and q denotes joint angles, the Jacobian for this system
is

J(q) =

[
−l0 sin(q0) −l1 sin(q0 + q1)
l0 cos(q0) l1 cos(q0 + q1)

]
. (4.66)

Using the basic equation for a Jacobian matrix then gives

ẋ = J(q)q̇, (4.67)

= J(q)q̇ =

[
−l0 sin(q0) −l1 sin(q0 + q1)
l0 cos(q0) l1 cos(q0 + q1)

] [
q̇0
q̇1

]
, (4.68)

= J(q)q̇ =

[
−l0 sin(q0)q̇0 − l1 sin(q0 + q1)q̇1
l0 cos(q0)q̇0 + l1 cos(q0 + q1)q̇1

]
. (4.69)

Rewriting this by separating functions of the system state and system parameters gives

ẋ =

[
− sin(q0)q̇0 − sin(q0 + q1)q̇1 0 0

0 0 cos(q0)q̇0 cos(q0 + q1)q̇1

]
l0
l1
l0
l1

 , (4.70)

ẋ = J(q)q̇ = Yk(q, q̇)θθθk, (4.71)

where Yk(q, q̇) is the set of known functions of the system state and θθθk is the set of
kinematic parameters specific to this system.

The Lyapunov candidate function

V (s) =
1

2
q̇TM(q)q̇ (4.72)

50

has derivative
V̇ (q) = q̇T (u− g(q)), (4.73)

by letting the control signal be

u = −Ĵ
T

(q, θ̂θθk)Kpx̃−Kvq̇ + g(q), (4.74)

where x̃ = (x − xdes), and the Jacobian approximation Ĵ(q, θ̂θθk) is found by extracting

the relevant terms from the approximation of ẋ made with Yk(q, q̇)θ̂θθk. Substituting the
control signal into Eq. 4.73, the derivative becomes

V̇ (q) = −q̇TKvq̇− q̇T (Ĵ
T

(q, θ̂θθk)Kpx̃), (4.75)

which is not guaranteed to be less than or equal to 0, so the candidate function must be
modified.

Ideally, both the end-effector position error and the kinematics approximation error
will be in the derivative of the candidate function, so they are guaranteed to go to zero.
Choose a new Lyapunov candidate function

V (q) =
1

2
q̇TM(q)q̇ +

1

2
θ̃θθk

T
L−1
k θ̃θθk +

1

2
x̃TKpx̃, (4.76)

where Lk and Kp are symmetric positive definite matrices, θ̃θθk = (θθθk−θ̂θθk), and x̃ = (x−xdes).

The derivative of the second term is

d

dt
(
1

2
θ̃θθk

T
L−1
k θ̃θθk) =

˙̂
θθθTkL−1

k θ̃θθk, (4.77)

and the derivative of the third term is

d

dt
(
1

2
x̃TKpx̃) = ẋTKpx̃, (4.78)

= (J(q)q̇)TKpx̃, (4.79)

= q̇TJT (q)Kpx̃. (4.80)

The derivative of the full Lyapunov candidate function is then

V̇ (q) = q̇T (u− g(q)) +
˙̂
θθθTkL−1

k θ̃θθk + q̇TJT (q)Kpx̃. (4.81)

Substituting in the control signal specified in Eq. 4.74 into Eq. 4.81 gives

V̇ (q) = −q̇TKvq̇− q̇T Ĵ
T

(q, θ̂θθk)Kpx̃ +
˙̂
θθθTkL−1

k θ̃θθk + q̇TJT (q)Kpx̃, (4.82)

= −q̇TKvq̇ + q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ +
˙̂
θθθTkL−1

k θ̃θθk. (4.83)

51

Once again now the rate of change of the kinematics parameters is free to be determined.
Choose

˙̂
θθθk = LkY

T
k (q, q̇)Kpx̃. (4.84)

Substituting this learning rule in Eq. 4.83 becomes

V̇ (q) = −q̇TKvq̇ + q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ + (LkY
T
k (q, q̇)Kpx̃)TL−1

k θ̃θθk, (4.85)

= −q̇TKvq̇ + q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ + x̃TKpYk(q, q̇)LkL
−1
k θ̃θθk, (4.86)

= −q̇TKvq̇ + q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ + x̃TKpYk(q, q̇)θ̃θθk, (4.87)

= −q̇TKvq̇ + q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ + x̃TKp(J(q)− Ĵ(q, θ̂θθk))q̇, (4.88)

where the step between Eq. 4.87 and Eq. 4.88 comes from applying Eq. 4.71. Again the
last term can be rewritten as its own transpose because it reduces to a scalar term, which
allows Eq. 4.87 to be rewritten as

V̇ (q) = −q̇TKvq̇ + q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ + q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃,(4.89)

V̇ (q) = −q̇TKvq̇ ≤ 0, (4.90)

where the last two terms of Eq. 4.89 are now equivalent and so cancel out. This shows
that the combination of the learning rule specified in Eq. 4.83 and control law Eq. 4.74
guarantees that V̇ (q) will be negative semi-definite. Applying the invariant set theorem
this system is guaranteed to be globally asymptotically stable.

4.5 Discussion

The combination of the control methods presented in these last three chapters, operational
space control, dynamical movement primitives, and the nonlinear adaptive control methods
form the basis of the dynamical system for the REACH model, presented in Chapter 7.

The next two chapters will now focus on the biological side of computational models of
the motor control system, reviewing past models and methods for neural implementation.

52

Chapter 5

Computational neuroscience
background

In this chapter previous work related to modeling the motor control system or parts thereof
are reviewed. The chapter finishes with a discussion of the Neural Optimal Control Hierar-
chy (NOCH) framework, which was developed as part of my master’s thesis. Novel results
matching to experimental data generated in the first year of my PhD will be presented
at the end of the chapter. The discussion of the NOCH framework sets a context for the
REACH model, presented in Chapter 7, which is an update to and novel implementation
of a subset of the NOCH framework.

5.1 Previous models

This review begins by discussing models that focus on specific parts of the motor control
system, rather than the entire system. Of interest are those models that relate to the work
presented in Chapter 7, and so the review focuses on models of the cerebellum and motor
cortices, as well as models that address adaptive control or complex trajectory generation.

[125] presents a model based on an attractor network implementation that was able to
capture the stereotyped sudden transitions (STs) in the dorsal pre-motor cortex (PMd)
predicting forthcoming actions on a single-trial basis. The idea behind the model was
that there is a cascade of STs throughout the areas of the brain involved in motor control
starting with those areas that plan the movement (PMd) and down to areas executing
the movement, i.e. the primary motor cortex. While this model captured some of the

53

Figure 5.1: An example of some of the trajectories generated using the model presented
in [116]. a) Ten test trials after training, where a target circle is placed every 18ms
throughout the trajectory. b) The same trials after training, but where a perturbation
is introduced after 300ms, showing the system is able to recover after being disturbed.

neurophysiological phenomena of the motor system, it offers little in the way of mechanistic
explanation of the function of these areas.

In [116] the authors present a model able to achieve repeatable activation patterns by
training networks of rate neurons to converge to a specific path through the state space.
The authors suggest that a similar training mechanism and network could serve as a basis
for trajectory generation in the brain, by decoding the neural activity at different parts of
the path into a sequence of target positions. An example trajectory the system produced
is shown in Figure 5.1. While this model is able to perform some of the functionality
required by trajectory planning areas, it was implemented in rate neurons as opposed
to spiking neurons (the authors noted explicitly that how to implement their network
in spiking neurons was unclear), and lacks the generalizability of a trajectory generation
system based on dynamic movement primitives.

Recently, in [130] the authors implemented a spiking neuron system that performs the
transformation between task-space and low-level control signals, similar to our primary
motor cortex model, shown in Figure 5.2. The focus of the work here was the implemen-

54

Figure 5.2: Robot control using the Neurogrid neuromorphic hardware and a spiking im-
plementation of operational space control.

tation on neuro-morphic hardware and the controlling of a physical robotic arm, so no
comparisons were made to the motor control system of the brain. Additionally, the neural
network does not involve any secondary null-space controllers, as discussed in Chapter 2,
nor does it feature any of the nonlinear adaptation discussed in Chapter 4 which both
significantly extend the functionality of the REACH model.

The model presented in [164] is a partially-neural model that encompasses the motor
cortex and cerebellum. The authors employ internal models of the dynamics of the system,
learned in an anatomically grounded cerebellar circuit during fast movements to allow the
arm to move more precisely during ballistic movements. [164] demonstrates how internal
models associated with the cerebellum allow an arm to move precisely during ballistic
movements. The model is an extension to the virtual trajectory control hypothesis, which
states that rather than controlling muscle activation as an output of the system a set
of desired equilibrium muscle lengths and velocities is sent out to the body, which then
generates motion as a result of the muscle stiffnesses and differences between desired and
actual equilibrium lengths of each muscle. The authors acknowledge several limitations of
their model, however, including the lack of a biologically plausible learning rule, lack of
ability to model non-linear functions effectively, and the use of a simple two-link planar

55

arm with no redundant configuration space. Additionally, only the adaptive portion of the
cerebellum is modeled with neurons, without any discussion on how the rest of the system
functionality could be implemented in a neural network.

There are also a large number of models that focus less on behavioral data, and instead
attempt to capture specific neural observations. Many of the computational models of the
cerebellum fall into this category. They address the cerebellum’s role in activities ranging
from supervised learning [109, 132] to ballistic movement control [36, 74] to locomotive
and balance control [175, 139] suggesting a variety of neural mechanisms that would allow
these structures to perform different functions. In the REACH model the scope of the
cerebellum model is limited to supervised learning and ballistic movement control.

The primary motor cortex model presented in [189] demonstrated how output from the
motor cortex in the terms of activation of muscles can account for the high-level movement
parameters that have been previously correlated with neural activity during movement
recorded during experiments. This work serves as one of the inspirations for the low-level
output from the primary motor cortex in the model presented in this thesis. This model,
however, only shows how these correlations could be explained given a system that outputs
muscle activation signals, and does not explain how control systems could be implemented
in neural networks.

There is also more directly experimental research [30, 32], which has examined the ac-
tivity of neurons in motor cortex and argued for the existence of an underlying dynamical
system responsible for the activity and correlations seen. The methods in this and related
work are largely developed and used for the purposes of data analysis rather than hypoth-
esizing mechanisms that give rise to the data and resulting behaviours. These analyses
will be described further at the end of both this chapter and the next, where results from
the simulated neural activity of the model presented here is compared to the experimental
data collected in monkey studies.

There are two main previous large-scale models of the motor control system in the
literature that overlap with the work presented here. Both of these models are at a be-
havioural level, focused on capturing some of the central aspects of human movement and
not concerned with a biologically plausible implementation. The first, MOSAIC and its
extensions, focuses primarily on modeling the cerebellum. The second, the optimal feed-
back control framework, focuses primarily on modeling the output of the primary motor
cortex.

56

Figure 5.3: An overview of the MOSAIC system. An efference copy of the outgoing
motor command is sent to the forward modeling modules, which each focus on learning
the dynamics of the system in a different area of state space. Given the system state the
Responsibility Estimator assigns a weighting to each of the Inverse Models, which each
generate a proposed motor command given the current and target states of the system.
Each of the Inverse Models is tied to a Forward Model in the area of state space that they
optimize over, and the Responsibility Estimator uses the accuracy of the Forward Model
state prediction to determine which Inverse Models should be in control of movement in a
specific area of state space.

57

5.1.1 MOSAIC and extensions

The MOSAIC model [210] is a well-known large-scale computational model of the motor
control system, presented first in 1998 by Dr. Daniel Wolpert and Dr. Mitsuo Kawato.
The basic idea of a MOSAIC system is to exploit a mixture-of-experts structure to predict
the forward dynamics of the system. Each of the experts is trained to a specific area of
state space and they are coupled to an inverse dynamics model trained for the same area of
state space. These inverse models all receive the abstract control signal to be implemented
and output their estimate of the low-level control signal that will accomplish this task. The
output of the inverse models are then all weighted by an estimate of how well that controller
performs in that part of state space and summed. The ‘responsibility’ of each controller
for an area of state space is updated based on the accuracy of their counterpart forward
model prediction. An outline of the general system structure is shown in Figure 5.3.

Since its original presentation, the MOSAIC model has spawned a number of exten-
sions, including hierarchical MOSAIC [82], MOSAIC-MR [179] for multiple reward sce-
narios, MACOP [205] which looks at having multiple controllers for each part of state
space where each outputs control signals for different primitive actions and learns how to
weight these different actions such that the overall desired trajectory is carried out, and
MODEM [6] which reframed the idea of coupled forward and inverse models in the context
of a modularized hierarchical system structure.

Neuroanatomically, the original MOSAIC model proposed that the forward and inverse
models match well to the structure and assumed functionality of the cerebellum. Further
models have extended this mapping. In MODEM a sensorimotor hierarchy is divided into
a low and high level, with a ‘gate selector’ component that chooses among the high level
features to carry out a given task. The high level is proposed to be a basic model of the
motor cortex, and the function of the gate selector is proposed as an appropriate role for
the basal ganglia. All of these models are strictly behavioural, however, with no extensions
involving a neural implementation.

5.1.2 Optimal feedback control theory as a framework for motor
control

In [165] a framing of the motor control system in terms of optimal feedback control theory
is presented. The main ideas of optimal feedback control theory are the rejoining of trajec-
tory planning and execution, in that the trajectory is updated as the system moves in order
to take into account perturbations and obstacles, and the ‘minimum intervention principle’

58

which states that movement through the redundant solution space is not of concern, and
only movement that affects task-space trajectories is corrected. The basic assignment of
functions to anatomy in this proposed structure is that the primary motor cortex gener-
ates the optimal control signal, and the cerebellum is involved in online feedback based
correction.

This is a very similar framing of the problem as the one presented here developed from
operational space control methods. In terms of minimizing the energy of the system, the
methods discussed in Chapter 2 are optimal, and the control signal to move to the current
target is determined online using system feedback. The minimum intervention principle
is analogous to the idea of allowing movement in the null-space of the primary controller,
discussed in Chapter 2. But in the case of optimal feedback control the prevention of
movement in the operational space is based either on system feedback or model-prediction
rather than by calculating a filter to explicitly prevent any unwanted signals from affecting
task-space movement. Also, the incorporation of additional controllers is slightly trickier,
as these secondary goals are incorporated into the cost function and cannot be guaranteed
not to interfere with the completion of primary goals.

The main obstacle in using optimal feedback control theory as a model of the motor
control system is that it’s based on solving the Bellman equation, which is defined as the
cost of moving from the current state to the target optimally. Solving the Bellman equation
is a very difficult and computationally expensive task, and it is unclear how this problem
could be solved by biologically plausible algorithms and processes analogous to those used
in optimal feedback control [165].

Analytic solutions to the Bellman equation for nonlinear systems involves performing
singular value decomposition across a matrix representing all possible states weighted by
the desirability of being in those states given the current task [191]. Other possibly more
biologically plausible approaches to this solution, such as the iLQG method [194], involve an
iterative process using forward models, where an initial control policy is proposed and the
predicted effects are simulated. The results of this simulation are then used to modify the
control signal such that a more optimal outcome is achieved. This process is then repeated
until an optimal control policy is converged upon given the current model of the system, and
this process is repeated at the next time step, using the previously optimal control signal as
a seed for the next round of iterations. This process is extremely computationally intensive,
requiring many large matrix inverses, which it is not clear how to perform efficiently in a
neural implementation.

The use of DMPs for creating a non-autonomous system, i.e. one that is able to track a
desired trajectory, represents a subtle difference between optimal feedback control theory

59

and the model presented in this thesis. In optimal feedback control, trajectory tracking
can be accomplished by identifying a cost function that penalizes the system for not being
in the desired state at different points in time. Because the full trajectory and control
signal is recalculated at every time step in optimal feedback control theory this allows for
robust handling of perturbations. However, with the incorporation of a system feedback
signal into the DMP framework the same situations may be similarly handled. Thus one of
the main differences between iterative optimal feedback control methods and the methods
used herein is simply the computational cost incurred by recalculating the control signal
at every time step.

The use of forward models for updating the control signal, also known as model-
predictive control, to predict and compensate for future disturbances or plan trajectories
still represents an obvious advantage for feedback control systems, however. Such an abil-
ity has been used to solve a number of interesting problems, such as cooperation between
agents [138], contact dynamics optimization [137], and control of humanoids in basic step-
ping and standing actions [51]. The human brain similarly possesses the ability to use
internal models of the environment to develop and optimize trajectories prior to execution,
but this functionality lies outside the scope of the model presented in this thesis. The
possibility of extending the REACH model to incorporate such functionality is discussed
at the end of Chapter 7.

5.2 The Neural Optimal Control Hierarchy (NOCH)

framework

In this section the Neural Optimal Control Hierarchy (NOCH) framework, which was
the product of my master’s thesis, is reviewed along with a novel result comparing pre-
movement and movement activity to experimental data. The NOCH framework was an
initial attempt at bridging the gap between control theoretic methods and experimental
neuroscience. While the specific control theoretic methods used as a basis for the neural
circuits in the NOCH are entirely different to the model presented in this thesis, the overall
architecture and functional assignment is largely the same. For this reason the focus of the
review will be on the neuroanatomical mapping of function and support for these views
rather than the mathematics of any specific implementation.

60

5.2.1 NOCH: A brief summary

A block diagram of the NOCH framework is displayed in Figure 5.4. The numbering on
this figure is used to aid description, and does not indicate sequential information flow.
For additional details see [40].

1 - Premotor cortex (PM) and the Supplementary Motor Area (SMA)

The premotor cortex (PM) and the supplementary motor area (SMA) integrate sensory
information and specify target(s) in a low-dimensional task-space, which is an abstraction
of the system state convenient for efficient planning of trajectories [112].

An example of PM/SMA function in arm reaching begins with the planning of a path
from current hand position to a target, which incorporates information from the environ-
ment, such as obstacle position, as described in Chapter 3. These areas act as the highest
levels in a motor control hierarchy that proceeds through M1 and eventually to muscle
activations.

2 - Basal Ganglia

The basal ganglia has been characterized as a winner-take-all (WTA) circuit [76], as
responsible for scaling movements or providing an ‘energy vigor’ term [201], and as per-
forming dimension reduction [10]. Spiking neuron implementations have been used to
construct a WTA circuit model that has strong matches to neural timing data [178], and
can incorporate both movement scaling and dimension reduction [198]. In the NOCH, the
basal ganglia is taken to weight movement synergies for the generation of novel actions,
perform dimension reduction to extract the salient features of a space for training cortical
hierarchies and developing new synergies, and scale movement during directed action.

3 - Cerebellum

The cerebellum is widely regarded as an adaptation device, performing online error
correction, and is thus often taken as the site for the storage of internal models [44, 11,
211, 107]. In the NOCH the cerebellum plays a similar role. While in the cortex the move-
ment synergies that are stored are for well-learned environments and situations operating
under normal system dynamics, the cerebellum stores synergies that allow the system to
adapt to new environments and dynamics, and learn or recall situations to adapt current
movements appropriately based on sensory feedback. Additionally, the cerebellum plays
a central role in correcting for noise and other perturbations, and correcting movement
errors to bring the system to target states as specified by higher-level controllers, as de-
scribed in Chapter 4. The cerebellum is also responsible for control of automatic balance
and rhythmic movements, such as locomotion.

61

Figure 5.4: The NOCH framework. This diagram embodies a high-level description of
the central hypotheses that comprise the Neural Optimal Control Hierarchy (NOCH).
The numbering on this figure is used to aid description, and does not indicate sequential
information flow. See text for details.

62

4 - Primary Motor Cortex

In the NOCH, the primary motor cortex (M1) is understood as containing the lower-
levels of a hierarchical control system. The primary motor cortex thus acts as a hierarchy
that accepts high-level commands, such as end-effector force in 3D space, from the PM
and SMA, and translates them through hierarchical levels to muscle activation signals, as
described in Chapter 2. The main functional role of this hierarchy is to map high-level
control signals to low-level muscle activations in an efficient manner, allowing the PM and
SMA to develop control signals in a reduced, lower-dimensional space. The synergies at
each level are assumed to change over time, as skills are developed or lost.

5 - Brain Stem & Spinal Cord

For our purposes, the brain stem acts as a gateway for efferent motor command and
afferent sensory input pathways. Here, descending commands from different neural systems
in the NOCH can be combined and passed on to the spinal neural circuits and motor
neurons for execution.

6 - Sensory Cortices (S1/S2)

The primary sensory cortex (S1) is used for sensory feedback amalgamation and pro-
cessing in the NOCH, serving to produce multi-modal feedback which is then relayed to
the motor areas such as M1 and the cerebellum. Both of these systems are taken to work
in lower-level, higher-dimensional spaces, and are thus in a position to incorporate appro-
priate feedback signals into the working motor plan, as demonstrated in Chapter 3. The
secondary sensory cortex (S2) is responsible for transforming the information from the pri-
mary sensory cortex into high-level sensory feedback information which is then relayed to
the high-levels of the M1 hierarchy, as well as PM and SMA. Additionally, S1 and S2 per-
form a noise filtering on sensory feedback, combining different types of feedback to arrive
at the most reliable prediction of body and environment state, analogous to the function
of a Kalman filter.

The remaining subsections provide further discussion and justification for the charac-
terizations presented in the preceding brief outline.

5.2.2 The motor cortices: M1, PM, and SMA

Numerous studies have linked the neural activity of the motor cortices to a vast array
of different movement parameters, ranging from arm position to visual target location to
joint configuration [190]. In the NOCH framework, the descending output signals generated

63

through the cortical hierarchy are in terms of muscle activation, operating either directly
on motor neurons, or by driving or modulating the inter-neurons and neural circuits of
the spinal cord. Muscle activation as cortical output gives rise to all of the correlations
observed in the above mentioned studies, and can be justified from an evolutionary vantage
as well [190].

The assumed hierarchical structure of the motor cortices allows for abstraction away
from this intrinsically high-dimensional space to a lower-dimensional representation such
that the ability to perform effective, efficient control is not lost, and a mapping down to
muscle activations is still available. The hierarchical structure of the motor cortices is di-
vided into two main elements in the NOCH, the premotor cortex (PM) and supplementary
motor areas (SMA), which generate an end-effector agnostic, high-level control signal (such
as the s, and the primary motor cortex (M1), which receives the output from the PM/SMA,
and transforms the signal into a limb-specific set of muscle activation commands to carry
out the specified high-level control signal.

The functional division of the motor cortices in this manner allows for the generation
of a high-level control signal that can be executed by any available or desired end-effector
without reformulating the high-level trajectory. This type of high-level control matches
experimental observations noting that high level path planning such as handwriting style,
are preserved regardless of the end-effector chosen for implementation [207].

5.2.3 The cerebellum

In the NOCH, the cerebellum is modeled as three anatomical areas, each responsible for
a function: the intermediate spino-cerebellum for error correction, the lateral cerebro-
cerebellum for maintenance of internal models, and the vermis for control of automatic
and rhythmic action. This functional assignment arises from examining neuroscientific
pathway tracing studies of the input and output cerebellar connections, the neuroanatom-
ical structure of the cerebellum, and the required control theoretic functionality. The
cerebellum constitutes only 10% of the total volume of the brain, but contains more than
half of its neurons [68]. Additionally, the neural architecture of the cerebellum is remark-
ably uniform, with a very regular structuring repeated throughout the area [71]. These
features suggest the cerebellum is ideal for massively parallel computations, and hence the
NOCH employs it to meet the demands of robustness, generalizability, and feedforward
predictive modeling.

When the execution of a motor command results in unexpected movement, or otherwise
does not effect the desired outcome, the cerebellum is responsible for providing corrective

64

signals to the system, using methods described in Chapter 4. These errors break down into
two main categories, caused by either unexpected external forces, or by inaccurate models
of the system dynamics. In both cases, a short term solution can be enacted through
error integration. Indeed, biological modeling simulations support this system as a site
for a neural implementation of error correction [71, 115]. The intermediate zones of the
cerebellum are part of the spino-cerebellum, named for the area’s strong connectivity with
the spinal cord sensory feedback pathways. Neural activity is relayed from the intermediate
cerebellum through the interposed nuclei out to the motor cortices, specifically to areas
which influence the neural activity of the lateral spinal tracts, which house motor neurons
responsible for distal muscle control, suggesting it as a likely candidate for motor error
correction based on system feedback.

This functionality is supplemented by the second main responsibility of the cerebellum,
the storage and maintenance of internal models. These include predictive models that can
be used for feedforward control, which are important for explicit high-level control, and
can be implemented using the methods described in Chapter 2. In addition, such models
can be employed to adapt motor actions under a given set of environmental conditions, as
described in Chapter 4. To perform these functions, the cerebellum requires an efferent copy
of the motor plans that are sent to descending pathway for execution. In combination with
the massive sensory feedback projections the cerebellum receives, corrective signals can be
generated, and tested on the working system. These can then be used to correct cortical
motor synergies or develop internal models for context-dependent adaptation, in the case
where system error is consistent and predictable. These functional requirements match the
input/output structure of the cerebro-cerebellum, located in the lateral cerebellum, which
has massive reciprocal connections with the cerebral cortex, making it an ideal site for
the integration of internal model signals into generated motor commands, as well as the
training of motor synergies for persistent errors.

The third major functional responsibility assigned to the cerebellum is the control of
balance and rhythmic movements. Damage to the cerebellum has been associated with
impaired locomotor performance and balance, and it is proposed to play a role in the
generation of rhythmic movements, dynamic regulation of equilibrium, and adaptation
of posture and locomotion through practice [140]. The assigned biological correlate of
this functionality is the vermis in the cerebellum, which maintains strong spinal feedback
connections and projects through the fastigial nuclei to systems influencing the activity
of the medial tracts of the spinal cord. Additionally, experimental studies have confirmed
vermis activity to be strongly associated with automatic and rhythmic movements, such
as balance and locomotion.

65

5.2.4 The relation between cerebellar and cortical control

The motor cortices became renowned for being deeply involved in the control of motor ac-
tions from early stimulation experiments presented in [148] in 1950. While it is indisputable
that the motor cortices play an integral part in motor control, it is also important to con-
sider that they appeared relatively late in the evolutionary development of the brain. There
are many species that have little to no cortex, but are very skilled at carrying out motor
actions arising from seemingly simple interactions of spinal neural circuits [103, 98, 87].

For example, animals such as the salamander or lamprey are capable of performing very
efficient and effective locomotive movements, which can be characterized solely through
the activity of spinal motor nuclei and circuits [34]. As the ability of animals to produce
more complex, dexterous movements increases across species, the respective size of their
cortices, and cortical areas dedicated to motor control, as well as the number of cortico-
spinal projections, increases [122, 20]. These observations provide some clues about the
respective roles of the long-standing cerebellum versus the relatively recent motor cortices.
The characterization of cerebellar and cortical motor function in the NOCH framework is
based on the above observations, the connectivity of each to spinal neurons and circuitry,
biological modeling results, and localized damage/lesion studies.

For instance, pathways from the cerebellum relay to the spinal cord through the fasti-
gial nucleus and project to medial spinal tracts, where motor neurons and interneuron
circuits with broad projections to proximal muscle groups are housed [19]. The result-
ing co-activation of motor neurons offers a type of intrinsic muscle synergy structure to
the cerebellum, coordinating the activation of sets of proximal muscles [69], and acts to
provide a base set of features in muscle space that are useful for simplifying the creation
of complex actions. Dense connectivity with the brain stem [55], strong sensory feedback
from ascending spinal pathways [19], a recognized error correction functionality [68], and
results from damage studies [140] suggest the cerebellum is a centre for control of larger
proximal actions, specifically balance and rhythmic movements such as locomotion. These
features integrate well with the characterization of cortical-cerebellar interactions as being
one of more controlled and volitional action from cortex being corrected and supported by
cerebellum.

The motor cortex holds strong connections to spinal neurons controlling proximal mus-
cles, but is also responsible for the vast majority of projections to the lateral spinal
tracts [154], where motor neurons controlling distal muscles are housed. Notably, the con-
trol effected by these neurons is far more localized than that of the medial motor neurons
controlling proximal muscle activation [69]. The information processing ability of cortical
hierarchies discussed in the last section, along with the projections to more individually

66

actuated distal muscles, makes the motor cortices a natural compliment to the cerebellar
processes, allowing controllers to operate in abstracted muscle spaces, enabling efficient,
dexterous control of high-level system parameters.

In the NOCH framework, the control provided by the motor cortices focuses on opera-
tional space control and transforming operational space control signals to low-level signals
that can be sent out to the body. This is also reflected in the motor cortices being re-
sponsible for learning the kinematic parameters of the system, as discussed in Chapter 4,
necessary for performing transformation from operational space to low-level signals. The
negotiation of external forces and load or system parameter changes is provided by ad-
ditional processing centers in the cerebellum. The cerebellum has long been assumed to
provide storage of internal models used for feedforward/predictive control [211, 107, 44],
ideal for the adaptation of motor commands trained for general control problems. When the
system dynamics or environment are altered and performance declines, the control signals
from the motor cortices are dynamically adapted through the incorporation of cerebellar
output, and the resulting amalgamation is sent to the descending pathways.

5.2.5 The basal ganglia

The basal ganglia have long been implicated in the processes of action selection [63, 1, 18],
with clear application to motor control. A recent spiking neuron implementation [178] of a
biologically plausible model of the basal ganglia [76] provides a neural implementation of a
winner-take-all circuit, able to quickly determine a winner among large numbers of input,
while scaling input values and matching a wide variety of neural data. Results from this
implementation have shown that with slightly altered dynamics this circuit can perform
thresholding and similarity evaluation. In the NOCH, the action selection functionality of
such a circuit is employed for composing novel actions from movement synergies. Specif-
ically, the basal ganglia is assumed to compute the similarity between a desired action
and the available synergies, and generate a set of normalized weights that determines the
composition of the synergies and scales the movement.

Interestingly, these same models can be understood as performing dimensionality reduc-
tion [198]. Optimal control is more efficient to implement in low dimensional spaces [112].
However, to move from the high-dimensional muscle space to a lower-dimensional syn-
ergy space for efficient control, a hierarchy must be established during development. Sets
of muscles commonly activated together in specific patterns can be selected as a likely
‘building block’, or synergy, for more complex movements; by then often selecting sets
of synergies more abstract and complicated synergies can be developed. The availability

67

of these synergies reduces the amount of specification required to perform more complex
actions, effectively letting control signals be planned in lower dimensional spaces. Under-
standing the basal ganglia as performing dimensionality reduction lends it a natural role
to play in identifying prominent features of a space. Its broad cortical connectivity, central
location, and known role in training cortical connections [201] places it in an ideal position
to train muscle synergies on the various cortical hierarchical levels, by identifying salient
features of a space, and feeding them back to cortex.

Considerations consistent with this functionality are found in infant studies of ‘motor
babbling’, which is thought to perform a similar function to the verbal babbling; it supports
building up a set of movement components that can be combined to create more complex
actions [174, 149]. Initial motor actions would be in a very high-dimensional muscle space,
though controlling a much lower-dimensional action state space. Dimension reduction in
the basal ganglia is highly useful for developing a hierarchy, training a lower-dimensional
analog of the higher-dimensional space for efficient control.

This dimension reduction through development is taken to be employed until a hierarchy
has been created where movements can be efficiently planned without leaving any critical
degrees-of-freedom (DOFs) unspecified on lower levels. The definition of a ‘critical DOF’
is task-dependent, as some movements may be concerned only with hand position, while
others may also constrain joint angles or muscle activation. This variety suggests that
control may influence various levels of the hierarchy, depending on the type of action being
carried out.

Notably, the proposed functions the basal ganglia are consistent across levels of the
motor cortex hierarchy. As well, this functionality is important for development, but not
critical to the system’s real-time operation. That is, basal ganglia under this characteriza-
tion is not explicitly involved in action selection much of the time. This view is supported
by lesion/damage studies in which subjects have had a bilateral pallidectomy (i.e., there
are no output pathways from basal ganglia), but show no marked motor deficiencies, ex-
cept those relating to the proper scaling of movement and performance of novel movement
sequences [201].

In sum, the basal ganglia is proposed to be responsible for composing novel actions
from motor synergies, scaling movements, and training synergies for the cortical hierarchy.
While speculative, this characterization is supported by both experimental studies and
model simulation results that suggest the basal ganglia is largely responsible for these
processes.

68

5.2.6 Novel results from the NOCH

The mathematical implementation of the NOCH framework is detailed in [40] and [41].
Here, several of the novel results created in the first year of my PhD are presented. While
the NOCH implementation as presented in [40] was strictly non-neural, the results first
presented in [41] involved comparisons with neural data by implementing the primary
motor cortex of the model in neurons.

5.2.6.1 Spiking neuron model of M1

The arm model employed here is a standard two-link arm model1. To implement the
primary motor cortex in neurons the NEF (described in Chapter 6) was employed. Specif-
ically, using the neural modeling software Nengo a population of 400 spiking neurons was
generated that represents a two-dimensional control space that sent the control signal to
the two-link arm model.

A single simulation experiment consists of generating the control network and reaching
to 7 targets placed in a circle around the initial starting point of the hand. The neural
spiking activity and arm trajectories were recorded, and the data was then exported to
Matlab. The neural spikes were filtered by an 80ms Gaussian filter to match the filtering
applied to the spike trains gathered from monkeys performing the same task [31]. The
activity of single neurons for the 7 different reaches were then amalgamated, and preferred
reaching movements identified by selecting the 4 trials with the highest overall activity.
Additionally, a Gaussian filter of 70ms was applied to the arm trajectories to account for
the unmodeled movement smoothing implicit in muscle-based movements.

5.2.6.2 Single cell tuning in motor cortex during reach

The results from the spiking cell model of motor cortex are displayed in Figure 5.5. Notably,
the salient features of the data we discuss are identified in the original data paper [31]. As
a result, while the classification of cells is qualitative, it is not model driven, but rather
independently determined by the original data analysis. Consequently, to the extent the
model is able to generate cells that have the features noted by this analysis (e.g. being bi-
phasic, or switching preferred directions), it can be considered to be a potential explanation
of those features.

1The model can be found online at http://compneuro.uwaterloo.ca/research/motor-control/

2-link-arm-models.html

69

http://compneuro.uwaterloo.ca/research/motor-control/2-link-arm-models.html
http://compneuro.uwaterloo.ca/research/motor-control/2-link-arm-models.html

0 200 400 600 800 1000 1200
0

45

0 800 1000 1200
0

70

200 400 600

a

0 200 400 600 800 1000 1200
0

60

0 200 400 600 800 1000 1200
0

80b

c

d

Figure 5.5: A comparison of spiking neuron activity from single cell recordings in mon-
keys (uppercase letters) and the model (lowercase letters). The activity in monkeys was
recorded from dorsal pre-motor and primary motor cortex. It includes both pre-movement
activity and activity during the execution of an arm reach. Both sets of data stabilize dur-
ing the pre-movement period, and then display highly nonlinear activity during movement.
The model contained cells that displayed many of the salient properties of recorded cells.
Black movements are in the preferred direction of the cell and grey are in the non-preferred
direction. Each pair shows the model capturing a salient feature of classes of cells identified
by the experimentalists. For instance, A/a show cells that generally respond well for move-
ment initiation regardless of direction. B/b show cells whose preferred direction reverses
during movement (i.e., black and grey lines cross). C/c show cells with a reversal and a
biphasic response (i.e., black cells are ’on’, ’off’, ’on’). D/d show cells with a preservation
of preferred direction but a strong phase-shifted response related to the preferred direction
(i.e. black cells fire first and grey cells second). Data from [31], with permission.

70

Figure 5.6: An example of the handwriting of SPAUN [50], created by an implementation
of the NOCH framework (detailed in [40]).

Overall, the results of this model show that there is a pre-movement convergence to
a reasonably constant firing rate, followed by highly nonlinear neural activity during the
execution of the movement, as is seen in the recorded neural activity. There are clearly
some features of the premovement data not captured by the model (e.g., the pre-delay
burst in A).

Nevertheless, the major movement-related features of the data neurons are found in the
model neurons. For example, in A/a pre-movement relations and magnitude are preserved
during the movement (i.e., black is higher than grey before and during movement), while in
B/b and C/c there is a reversal of pre-movement relations during the movement (i.e., black
starts higher than grey, but grey becomes higher during movement). In addition, the bi-
phasic relationships of the cells in B/b and C/c are clear in both the data and the model.
Finally, in D/d the neurons with different preferred directions are clearly phase-shifted
with respect to one another. These properties are those identified by the experimentalists
in their examination of the complete data set, so it is important that they are captured by
the model.

Overall, perhaps the most important feature of the neural responses that is captured by
the model is that single cell responses are highly nonlinear during the movement, despite
linear arm movements towards the target. It has been suggested that these kinds of
nonlinear responses can only be captured in terms of non-plant related parameters [31].
However, this model maps the control signals generated in the plant parameter space
directly to neural responses, and finds many of the major nonlinear responses observed in
the experimental setting.

5.2.6.3 Number writing

At the same time as the NOCH implementation is able to match neuro-physiological data
it is also able to generate meaningful behavioural data. As part of the SPAUN model
presented in 2012 [50] the NOCH was used to draw out responses to questions, which are

71

shown in Figure 5.6. To do this a series of target points were presented in the appropriate
order for each number, and the control system moved the arm through each of the points.

5.3 Discussion

In this chapter related computational models of the motor control system have been re-
viewed. While each of these models are able to match some behavioural or neurophysi-
ological phenomena seen in biological systems, none are able to provide a comprehensive
account of the possible neural mechanisms involved in a variety of motor control situations,
as well as reproduce a wide variety of high-level behaviour.

The REACH model, presented in Chapter 7 is proposed in order to fill this gap in the
field of computational models of the motor control system. While evolved as a subset of the
NOCH framework, there are a number of noteworthy differences between the NOCH and
the REACH, most of which came from the alternate control methods used as a foundation
of the dynamical model and issues that arose from implementation the system entirely in
spiking neurons. These are discussed in depth at the end of Chapter 7, after the REACH
model has been presented. Next, the main method used to build a neural model from the
previous, purely control-base characterization, is described.

72

Chapter 6

Neural implementation

This chapter focuses on describing the process involved in implementing the control al-
gorithms discussed in Chapters 2, 3, and 4 in a biologically plausible network of spiking
neurons, modeling the function, architecture, and behaviour of the motor control system
in the brain. First a review of the Neural Engineering Framework is given, followed by a
description of the reformulations of DMPs and the nonlinear adaptive control methods for
implementation in neurons.

6.1 The Neural Engineering Framework

This section is based on a description of the Neural Engineering Framework from [176].

The Neural Engineering Framework (NEF) is a method for implementing algorithms in
high-dimensional distributed systems, such as neural networks. It acts as a kind of ‘neural
compiler’, taking a high-level description of the desired dynamics of a system and imposing
them upon the neural system. The NEF can be used for any set of nonlinearities or
neuron models, allowing biological plausibility and computational requirements to dictate
the dynamics of the individual components of the distributed system.

A core premise of the NEF is that the activity of neurons can be decoded into a vector
space representation. The high-level description of the desired dynamics must be in terms
of vectors and functions on those vectors, i.e. ordinary differential equations (ODEs).
The NEF then sets up a neural network such that the neurons approximate these vectors,
and the connections between neurons approximate some function over the vectors. The
error of these representations can be made arbitrarily small by increasing the number of

73

neurons in the population. This ability to implement ODEs makes the NEF ideal for
implementing algorithms from control theory. Biological constraints can be included by
specifying the details of neurons, such as their maximum firing rate or the time constants
of the neurotransmitters used in the area of the brain being modeled. This allows the
plausibility of different algorithms and their implementations to be tested by comparing
to data across several levels from behavior down to single cell spiking activity.

The NEF is composed of three main principles; representation, transformation, and
dynamics.

6.1.1 Principle 1: Representation

The idea of neurons representing vectors and population decoding in general comes from
experimental observations such as those made by Georgopoulos is his canonical papers
on decoding the direction of movement of a monkey’s arm from the neural activity in
the primary motor cortex [66]. In this paradigm, each neuron has a ‘preferred direction’,
which specifies the kinds of input signals it is most responsive to. By taking a weighted
summation across all of the neurons of a population it is possible to retrieve the original
input vector. In the NEF this idea is captured by ‘encoders’ and ‘decoders’.

Formally, the input current to neuron, I, in response to a given signal, x, is equal to
the dot product between that signal and the neurons ‘encoding vector’, e, which specifies
its preferred direction, multiplied by a randomly chosen gain term α plus a background
bias current, Ibias. The response of a neuron i to an input signal is then defined as

δi = Gi

[
αieix + Ibiasi

]
, (6.1)

where δi is the spiking output of the neuron, and Gi is the neuron model. In the simulations
performed here, the standard leaky-integrate-and-fire neuron model was used [99].

The vector e that denotes the preferred direction is referred to as the encoder because it
captures the transformation of the input signal x from a vector space into a neuron space,
i.e. input current. Figure 6.1 shows an example of a population of 4 neurons representing
a 2D input signal, where each of their preferred directions points in a different direction in
2D space.

Where the input signal moves from vector space to neuron space using the encoder e,
a decoder, d, can also be defined to transform the output from neurons back into a vector
space. To generate a continuous estimate of the signal being represented by a population
of neurons given their output the NEF makes use of the profile of post-synaptic activity

74

1

x 2

Fi
rin

g
ra

te
 (H

z)

1

2
3

4

1
2

3 4

Preferred direction (degrees)

a) b)

Time (s) Time (s)

1

2

3

4

x

N
eu

ro
n

nu
m

be
r

c) d)

x

Figure 6.1: An example of using the NEF to encode a 2D signal in a population of four
neurons. (a) The input signal, x = [sin(6t), cos(6t)]T . (b) The spikes generated from each
of the four neurons with input signal a, generated using Eq. 6.1. (c) The input signal,
which is a unit circle, shown in vector space where the signal closer to the current time is
darker. The encoders for each of the neurons is also shown in vector space. (d) The firing
rate responses of the four neurons as a function of the degree of the input signal along the
unit circle. The different shapes of the responses are a result of the randomly chosen gains,
αi, and bias input current, Ibiasi , for each neuron i. Figure reproduced from [50].

generated by the reception of a spike across a synapse as a filter. Specifically, this activity
is taken to be a linear filter applied to the spiking activity, calculated by convolving the
synaptic response function with the spike train:

ai(x) =
∑
j

hi(t) ∗ δj(t− tj(x)), (6.2)

where ai is the activity of neuron i, hi is the spiking response function (usually a decaying
exponential weighted by a time constant), ∗ is the convolution operator, and δi is the
spike train generated in response to input signal x, with spike times indexed by j. This
continuous characterization of the neural activity defined as a function of the discontinuous
spiking events allows a decoding operation for estimating the input signal x to be specified
across the population of neurons.

This decoding operation will be defined as a linear summation of the neuron activities
of the population

x̂ =
N∑
i

ai(x)di, (6.3)

where x̂ is the estimate of the original input signal x, N is the number of neurons in the
population, and di is the decoders for neuron i.

To find the decoders that give this estimate of the original signal any optimization

75

dimensions

sa
m
p
le
s

neurons dimensions

n
e
u
ro
n
s

X A D

sa
m
p
le
s

Figure 6.2: X is a matrix with samples of the desired output signal in the rows and columns
representing the different dimensions of the input signal, A is the matrix of neural responses
where the rows indicate the different samples in X and columns are the different neurons,
and D is a matrix of decoders where the rows represent the different neurons and the
columns are the decoders for each of the different dimensions of the output signal for that
neuron.

method can be used, the simplest is least-squares optimization

arg min
di

[
x−

N∑
i

aidi

]2
, (6.4)

where the error is minimized and the integral is over all values of x. Rewriting Eq. 6.3 in
matrix form

X = AD, (6.5)

where the form of each of these matrices is shown in Figure 6.2, the decoders can be
computed by solving for D:

D = (ATA)−1ATX. (6.6)

Figure 6.3 shows a network with 20 neurons decoding the neural activity to generate
an approximation of the original input signal.

The use of linear decoders allows the NEF to directly generate the connection weights
between neurons in the network, which is the main strength of the NEF relative to more

76

a)

Time (s)

x

1

x 2

x

Time (s)

N
eu

ro
ns

c)b)

Figure 6.3: An example of decoding neural activity using the NEF for a 2D signal and
a population of 20 neurons, simulations performed with hi = .005. (a) The input signal
x = [sin(6t), cos(6t)]T in black and grey, respectively, and its decoded estimate as a function
of time. (b) The input signal and its decoded estimate in vector space. The signal fades
from black to white as a function of time. (c) The spikes of the neural population over
time, used to generate the decoded signal shown in the first two plots. Figure reproduced
from [50].

traditional methods of training neural networks. Rather than using a learning rule to search
the entire space of all possible connection weights, the NEF solves the simpler problem of
optimizing over the significantly reduced space of possible linear decoders, and uses that
result to then generate the connection weights. Because of the characterization of neural
activity as a function of the preferred directions there is no difference between optimizing
over this reduced space and the full connection weight matrix space.

To understand how a weight matrix can be computed from this characterization of
encoding and decoding, suppose a connection between two neural populations is used to
compute the identity function, i.e.

y = x, (6.7)

where y denotes the vector represented by the post-synaptic population, B, and x denotes
the vector represented by the pre-synaptic population, A. The connection weights, ω,
between the individual neurons of A and B are calculated by combining the decoder of the
pre-synaptic neuron and the gain term and encoder of the post-synaptic neuron, giving the
equation

ωij = αjdiej, (6.8)

where i indexes the neurons in population A and j indexes the neurons in population B.
Figure 6.4 a) shows an example of an implementation of this network.

77

a)

b)

Time (s)

x

Time (s)Time (s)

x

Figure 6.4: Connecting two populations of 20 neurons each using the NEF. (a) The con-
nection weights are specified between A and B such that population B represents the same
signal as A. (b) The connection weights between A and B are specified such that B repre-
sents the element-wise square of the signal in A. Simulations are 1.2 seconds long, and all
neurons have randomly chosen encoder, gain, and bias terms. Figure reproduced from [50].

78

It should also be noted that while the least-squares method of optimizing the connection
weights is not biologically plausible, learning rules that are biologically plausible have
been developed for the NEF that can account for the development of these connection
weights [121].

The learning rule for these neurons can be phrased both in terms of decoders and in
the more common form of connection weight updates. The decoder form of the learning
rule is:

ḋi = L ai err, (6.9)

where L is the learning rate, and err is the error signal. The equivalent learning rule for
adjusting the connection weights is defined:

ω̇ij = L αj ej · ai err. (6.10)

This is known as the prescribed error sensitivity (PES) learning rule [121]. This is only
one example of a learning rule that effectively learns the same circuit. Extensions to the
PES rule (such as the hPES rule [13]) or alternatives (such as Oja’s rule [143]) may also be
used. However, only the learning formulation can be plausibly used for on-line adaptation.

There is a similar level of precision in both the learning and least-squares optimization
methods, but the learning is several orders of magnitude slower and more computationally
expensive.

6.1.2 Principle 2: Transformation

Just as the decoders can be specified to minimize the error between the original signal and
the decoded signal, they can also be specified to minimize the error between some function
of the original signal and the decoded signal. By changing the minimization such that f(x)
is used instead of x, the problem becomes

arg min
di

[
f(x)−

N∑
i

aid
f
i

]2
, (6.11)

where df denotes decoders for the function f(x). With these decoders y = f(x) is now
implemented across the connection weights between population A and B rather than y = x.

When f(x) is a linear function, i.e. y = Tx, the linear transform T can simply be
incorporated into the connection weights specified for the identity function

ωij = αjdiTej. (6.12)

79

h(s)u(t) x(t)

f(x(t))

B A

Figure 6.5: A diagram of a generic neural system for implementing ordinary differential
equations using a recurrent connection on population A. System input from neural pop-
ulation B, u(t), system state and output, x(t), and the equation for the dynamics on
the recurrent connection, f(x(t)), with the transfer function, h(s), equal to the Laplace
transform of the synaptic dynamics.

These two approaches can be combined such that y = Tf(x) can be implemented with
the connection weights

ωij = αjd
f
i Tej. (6.13)

An example of element-wise squaring of the signal between populations A and B is shown
in Figure 6.4 b).

6.1.3 Principle 3: Dynamics

The third principle of the NEF is dynamics, and it arises from the ability to compute
functions of the form

dx

dt
= f(x,u), (6.14)

where u is a signal projected in from some other population. This is done by exploiting the
same spiking response function, h, used in Eq. 6.1, which represents the current flowing into
the post-synaptic neuron when a input spike is received. As mentioned, this post-synaptic
current is well-approximated by a decaying exponential

h(t) = β(t)e−t/τ , (6.15)

where β is the step function and τ is the time constant of the neurotransmitter at this
synapse. This spiking response function acts as a low pass filter on the incoming signal, so
that a connection between populations of neurons doesn’t actually compute y(t) = f(x(t))
but rather y(t) = f(x(t)) ∗ h(t).

80

Implementing ordinary differential equations can be done using the NEF by setting
up a neural population A with a recurrent connection, and a connection from an outside
population B to A, as shown in Figure 6.5. The techniques described above can be used to
set up the functions on these connections such that the desired dynamics ẋ(t) = f(x(t)) +
u(t) is implemented. Determining which specific functions need to be computed can be
done by analyzing the equation describing the dynamics in Figure 6.5:

x(t) = (f(x(t)) + u(t)) ∗ h(t). (6.16)

Transforming this equation into Laplace space gives

X(s) = (F (s) + U(s))H(s). (6.17)

Eq. 6.15 gives the equation for h(t), and ignoring the time shift of the step function the
Laplace transform of h(t) gives

H(s) =
1

1 + sτ
. (6.18)

Substituting Eq. 6.18 into Eq. 6.17 gives

X(s) =
F (s) + U(s)

1 + sτ
, (6.19)

(1 + sτ)X(s) = F (s) + U(s), (6.20)

sX(s) =
F (s)−X

τ
+

U(s)

τ
, (6.21)

which, translated back into the time domain, becomes

ẋ(t) =
f(x(t))− x(t)

τ
+

u(t)

τ
. (6.22)

Now to get the dynamics of this system to be equal to the desired dynamics

ẋ(t) = f(x(t)) + u(t), (6.23)

the recurrent connection needs to be set up to compute τ(f(x(t))+x(t)) and the connection
from B to A needs to be set up to compute τu(t). This can be accomplished using the
first two principles of the NEF.

These three principles allow for the implementation of a wide variety of systems, and are
the basis of the neural models presented in the next chapter implementing the previously
discussed control algorithms. Before these algorithms can be fully implemented, however,
there are several modifications that need to be made to permit efficient implementation in
neurons. These modifications, along with several tips for developing more effective models
in the NEF, will be the focus of the remainder of the chapter.

81

Input
y

y2

-sin(y+y)2

3y

cos(y)

x=f(cos(y)+3y - sin(y+y))2

Figure 6.6: Network 1: A first attempt at implementing the equation x = cos(y) + 3y −
sin(y + y2) in the NEF, by using separate neural populations to approximate each of the
nonlinearities in the equation.

6.2 Modeling complex functions in the NEF

6.2.1 Collapsing functions

There are usually a number of ways to implement any dynamical system in the NEF. The
most common approach for someone new to modeling with the NEF is to break all of the
calculations up in to separate populations, one for each nonlinearity. For example, given
the equation:

x = f(cos(y) + 3y − sin(y + y2)), (6.24)

where y is a scalar value, and f is some nonlinear function, the natural first attempt would
be to break this up into four populations, one for each of cos(y), 3y, y2, sin(y + y2), and
finally f(cos(y) + 3y − sin(y + y2)), as shown in Figure 6.6.

Assuming that no special measures are taken during the implementation of these popu-
lations, this is a less than ideal implementation for several reasons. First, noise gets added
through each connection and function approximation, and it compounds as the equation
is split up into many different populations. Each of these populations introduces their
own representation error of the variable y. Second, time delays such as the extra time
step in passing y2 to the population to compute sin(y + y2) can be introduced and throw
off the precision of the answer, as what’s actually being computed here is approximately

82

Input
y x

x=f(cos(y)+3y - sin(y+y))2

Figure 6.7: Network 2: A more efficient implementation of the equation x = cos(y) +
3y + sin(y + y2) in the NEF, by reducing all of the calculations into a single connection /
function approximation.

sin(y(t) + y(t − 1)2). Third, more neurons are required here to achieve the same preci-
sion possible with other implementations because each population needs to have enough
neurons to guarantee their output isn’t reducing the accuracy of the system output.

Because this whole system is a function of a single variable, a better way to go about
this is instead to decode it all from one population, as shown in Figure 6.7. This works
because the decoders are calculated to represent a function of the vector represented by the
neural activity, and instead of representing all of the intermediate steps along the way it’s
possible to skip right to the end and only approximate the overall function. A comparison
of the two networks running is shown in Figure 6.8, where each population in Network 1
is implemented with 100 neurons, and the single population in Network 2 is implemented
with 100, 200, and 400 neurons. As can be seen, the precision in Network 2 for the same
number of neurons is significantly improved over the Network 1 implementation.

As mentioned above, these advantages are conditioned on all neural populations being
implemented using the default methods for randomly choosing parameters. For example,
if the function to compute instead x = f(h(y) + 3y + sin(y + y2) where h is a piecewise
function that returns 0 when y is negative and y otherwise, it is much more efficient to
implement h(y) in its own neural population where the neuron parameters are chosen
such that they don’t respond to negative input, rather than trying to approximate such a
nonlinear function with decoders alone. The results of two neural populations implementing
h are shown in Figure 6.9, where the second network has been generated with neurons
that don’t respond to negative signals. Another example situation where sending the
computation off to a specialized population would be when the function being approximated
is highly nonlinear for a small range of values of y then it is more efficient to specify the
neurons such that they respond most nonlinearly in this range. These specific examples help
to illustrate that each dynamical system holds its own nuances which must be considered
when implementing in neurons.

83

0 2 4 6 8 10
6
4
2
0
2
4
6

Network 1

0 2 4 6 8 10
Time (s)

6
4
2
0
2
4
6

Network 2

0 2 4 6 8 10
Time (s)

0

500

1000

1500

2000

2500

3000

3500
Cumulative error

Network 1 - 400
Network 2 - 100
Network 2 - 200
Network 2 - 400

Figure 6.8: A comparison of the network implementations shown in Figure 6.6 and Fig-
ure 6.7. On the left shows the results of each network (blue) compared to the answer
(red), with each population in each network implemented with a total of 400 neurons. On
the right the cumulative error of the signal from each network is plotted, also looking at
implementations of Network 2 with different neuron numbers.

6.2.2 Independent variables in separate ensembles

Another common naive approach in neural modeling is representing unrelated variables in
the same population. For example, imagine a system to compute the element-wise squaring
of the vector y, i.e. x = y2. It’s very natural to go about implementing this in a single
population which represents all of the dimensions of y, as shown in Figure 6.10. But looking
at the desired function, element-wise squaring, it can be seen that the calculation for any
element is independent of all the other elements. In these situations greater precision can
be achieved by separating the independent variables into separate neural populations for
representation.

The only time that multiple variables need to be represented in the same population is
when they interact nonlinearly. When this is not the case, it is usually preferred to separate
the variables into different populations of neurons because representing multiple dimensions
introduces a number of subtle issues. Most of these issues boil down to the fact that the
number of evaluation points (samples of the signal when generating the decoders) required
for a given precision increases exponentially with the number of dimensions represented.
Having more dimensions in a population than absolutely necessary results in a less accurate

84

0 1 2 3 4 5 6
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Network 1

0 1 2 3 4 5 6
Time (s)

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Network 2

1.0 0.5 0.0 0.5 1.0
Input s ignal range

0
50

100
150
200
250
300
350
400

Network 1 tuning curves

1.0 0.5 0.0 0.5 1.0
Input s ignal range

0
50

100
150
200
250
300
350
400

Network 2 tuning curves

0 1 2 3 4 5 6
Time (s)

0

50

100

150

200

250
Cumulative e rror

Network 1
Network 2

Figure 6.9: An example of how specific properties of a neural population can be exploited
for efficient computation of certain functions. In this case, a piecewise function h(y) is
being computed in both network, where h = y when y > 0 and h = 0 otherwise. The
first network is implemented with randomly chosen parameters. The second network is
specified such that the neurons do not respond to any negative signals, making it better
able to accurately compute h(y). The cumulative error of the two networks is shown on
the bottom.

Input
y xy 2

Figure 6.10: Network 1: An intuitive implementation of element-wise squaring of a vector,
using a single neural ensemble to represent all of the elements of the vector.

85

x
Input

y[0]

y[1]

y[n]

y[0]

y[1]

y[n]

2

2

2

Figure 6.11: Network 2: A more efficient implementation of element-wise squaring of a
vector, by representing all of the variables in separate populations.

set of representation and transformation decoders because the state space is harder to
sample thoroughly.

A more effective way to implement the element-wise squaring network is shown in
Figure 6.11. Figure 6.12 shows a comparison of the two networks. As can be seen, the
implementation of Network 2 using a fourth of the number of neurons as the Network
1 implementation generates comparable results, and quickly becomes far more precise as
neurons are added, ending up with roughly one fourth of the cumulative error when the
same total number of neurons are used in both networks.

Once again, this is a rule-of-thumb when engineering systems with the NEF using the
default methods for randomly generating neural parameters, and does not reflect some
inherent limitation of the NEF. It is possible to specify a single population of neurons
capable of representing multi-dimensional input signals as well as an array of populations.
Essentially, the encoders of the single large population can be chosen such that a given
neuron is sensitive to only one of the dimensions of the input signal, and the samples for
calculating the decoder can be similarly specified such that the same performance is given
as in the case with a single population for each dimension. This approach is complicated,
however, and requires a detailed specification of the neural parameters, and is avoided
when possible.

86

0 1 2 3 4 5 6
1.0
0.5
0.0
0.5
1.0
1.5
2.0

Network 1

0 1 2 3 4 5 6
Time (s)

1.0
0.5
0.0
0.5
1.0
1.5
2.0

Network 2

0 1 2 3 4 5 6
Time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Cumulative error

Network 1 - 400
Network 2 - 100
Network 2 - 200
Network 2 - 400

Figure 6.12: A comparison of the implementations in Figure 6.10 and Figure 6.11 for
implementing a 4-dimensional element-wise squaring. On the left shows the results of each
network compared to the answer (red); Network 1 has 400 neurons and Network 2 has
100 neurons in each population. On the right the cumulative error from each network is
plotted, also looking at implementations of Network 2 with different total neuron numbers.

6.3 Representing large values in the NEF

When required to use multiple dimensions in a single population another issue can arise
that involves the range of state space to sample from when generating the decoders. Often
the ranges of the different variables represented are different, and sometimes significantly
larger than the default sampling range of -1 to 1.

A naive approach in these situations is to change the sampling range to include the
maximum of any of the represented variables, but this can cause sampling across ranges
that are not of relevance for other variables, reducing the effectiveness of the decoders for
these variables. In these situations a better solution is to identify the ranges for each of
the variables and scale the input to each dimension by their respective maximum values,
and then account for this scaling on any connection output from that neural population.

For example, in a system calculating x = y[0]× y[1] where the range of y[0] is between
-100 and 100 and the range of y[1] is between -1 and 1, it is effective to scale the input
to y[0] by .01 so the function on the connection out becomes x = 100 × y[0] × y[1]. The
results of these two implementations are shown in Figure 6.13, as can be seen, the latter

87

0 1 2 3 4 5 6
1500
1000

500
0

500
1000
1500

Network 1

0 1 2 3 4 5 6
Time (s)

80
60
40
20
0

20
40
60
80

Network 2

0 1 2 3 4 5 6
Time (s)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000
Cumulative error

No scaling
Scaling

Figure 6.13: A comparison of the implementations with increasing the range of sampling
to be equal to the maximum value of the signals represented in the ensemble versus scaling
each signal to be between -1 and 1. On the left shows the results of each network (blue)
compared to the answer (red); each network was implemented with 200 neurons. On the
right the cumulative error from each network is plotted.

implementation is far more precise. This scaling becomes especially important in situations
where there is a great disparity between the dynamic range of the signals represented.

Another important consideration when working with large input signals is to consider
the mean value. While the minimum and the maximum values may be -100 and 100, the
mean value could be around 80, with an average range of 70-90. Without accounting for
the mean value before scaling, the full range of firing rates of the neural population won’t
be taken advantage of. In the case where the mean is 80 and the input signal is scaled by
100, the input signal will hover between .7 and .9. This means that the majority of the
time the decoders have much less variety in neural firing rates to use for approximating
the desired function of the input. It is important to take into account the importance of
representing the full range of the input signal. If it’s the case that -100 only rarely appears
and does not affect system performance, it is much more effective to first subtract 80 from
the input signal, then scale by 10. This will ensure that the full range of the population’s
firing rates will be used.

88

Figure 6.14: The original canonical system dynamics compared with a linearly decaying
system that will be used for the neural implementation, here α = −.2.

6.4 Simplifying discrete DMPs

The original formulation of DMPs is difficult to implement in neurons for two reasons.
First, the dynamics of the canonical system are exponential, resulting in a wide dynamic
range being necessary to equally well represent many states of the system. Second, an
exponential decay imposes more complex constraints on centering the basis functions. To
simplify things, a linear canonical system can be used with dynamics that evolve from 0
to 1:

ẋ =

{
α x < 1
0 x ≥ 1

(6.25)

Figure 6.14 shows the difference between the two canonical systems.

With this change, the placement of the basis function centers is simply linearly spaced
in x space.

6.5 Reworking nonlinear adaptive control for neural

implementation

Using the NEF, it’s possible to implement the nonlinear adaptive control methods dis-
cussed in Chapter 4 directly, by having a population of neurons decode specific functions

89

of the system state into a matrix Y, and then learn an appropriate weighting across these
functions. But this approach requires specific knowledge of the functions that form the
basis of the unknown forces that are being approximated. Instead, it is more desirable to
not require this knowledge and use some multitude of simple basis functions that cover a
state space sufficiently that any desired function can be approximated.

In [158] the authors use sets of Gaussian functions with multi-dimensional output to tile
the state space, and learn a weighting over these functions that approximates the unknown
dynamics of a system, such that a mapping from joint-torques to kinematics is identified.
Reworking this approach with NEF methods such that neurons can be used as the basis
functions requires reformulating the problem such that the set of basis functions output are
all scalar rather than multi-dimensional and that the set of decoders are multi-dimensional
rather than scalar.

This reformulation provides several benefits. First, using the methods of the NEF it
is possible to seed the neural network with an approximation of the answer, when prior
knowledge is available, greatly speeding time to convergence during learning. Addition-
ally, when tiling a multi-dimensional space the curse of dimensionality is encountered; the
number of basis functions required to adequately cover state space increases exponentially
with the number of degrees of freedom of the system. In the NEF implementation the
different dimensions are all approximated independently, avoiding this coupling and the
curse of dimensionality, which also means that the same set of basis functions can be used
with different decoders to approximate all of the different dimensions of the output signal.
Note that being able to efficiently tile the state-space does not simultaneously address the
problem of learning in higher-dimensional state-spaces.

This reformulation is presented formally below, along with proofs of global asymptotic
stability of the system using Lyapunov’s direct method.

6.5.1 Bias adaptation for unknown dynamics

First the equations for a neural network to directly implement the nonlinear bias adaptation
to account for unknown dynamics using the NEF are shown. Following this a reworking
of the equations for scalar basis function output and decoders as a tensor is shown and
analyzed.

In the system, shown in Figure 6.15, there is a basic control signal, u, and a set of basis
functions that takes the system state, q as input. As in Section 4.3, there are assumed to
be some forces acting on the system that are unaccounted for by the control signal, denoted

90

q

u

Plant

Figure 6.15: A diagram of the basic setup of a control system using a bias adaptation
component. The bias adaptation component (inside the dashed circle) takes the system
state q as input and the control signal u as a learning signal, and outputs an approximation
of the Jacobian, Ĵ. This signal is then summed with u and sent out to the system under
control. The hollow triangle denotes a modulatory connection.

Funknown. The output of the basis functions is weighted by a set of learned parameters θ̂θθd
to give an approximation of the known forces, F̂unknown

The goal of the bias adaptation term is to learn a set of parameters θ̂θθd that can ac-
curately approximate these unknown forces such that they can be compensated for in the
control signal and removed from the system dynamics. The learning rule for updating the

learned parameters,
˙̂
θθθd, is responsible for minimizing the approximation error of F̂unknown.

6.5.1.1 Control with adaptive bias in the vector space

To directly implement the algorithms for nonlinear adaptive control, as presented in [170],
in a neural network, the methods presented in Section 6.1 can be employed. Given desired
functions of the input to the neural population for each of the elements of the basis functions
matrix, Yd, a set of decoders can be generated using the methods described in Section 6.1
to approximate each of these functions from the neural activity. Projecting these into a
second neural population, the decoders on the output from this second population can then
serve as the learned parameters θ̂θθd and be modified based on the learning rules described
in Chapter 4. The structure of this network is shown in Figure 6.16.

As mentioned above, this can be a useful approach when the form of the disturbances
is known. For example, if perturbations are known to occur at frequencies determined as

91

q

Y(q)d

Y(q)d

d
Yd

u

Figure 6.16: The structure of a neural network set up to implement the original formulation
of the nonlinear adaptive bias component. The matrix of basis functions Yd is decoded from
the neural activity of the first population, where each of the elements of Yd is approximated
through a set of decoders determined with the methods described in Section 6.1. This
matrix is passed to a second population of neurons which applies the set of learned system
parameters θ̂θθd stored in its decoders. These decoders are updated through a learning signal
that is a function of the control signal u.

a function of some parameter of the system input q then the set basis functions Yd(q) can
be created to approximate these functions based on the output of the neural population.
The system output with this adaptive compensation term is then written:

u + Yd(q)θ̂θθd, (6.26)

with the learning rule
˙̂
θθθd = LdY

T
d (q)u, (6.27)

where Ld is a scalar gain term. Equivalently, this can be rewritten in terms of the decoders
of the neural population as:

˙̂
θθθd = Ld(a dYd)Tu, (6.28)

where a is the activity of the neurons, and dYd is the set of decoders calculated to generate
the Yd matrix from this activity. The learning can be implemented in neurons using
Eq. 6.9. The same proof presented in Chapter 4 for bias adaptation holds here.

6.5.1.2 Control with adaptive bias in neuron space

As mentioned above, it is possible to implement the algorithms using known functions of
the system state in neurons using the NEF, but it requires knowledge of the form of the

92

q

X(q)
d

X(q)
d

u

Figure 6.17: The structure of a neural network set up to implement the reworked formula-
tion of the nonlinear adaptive bias component. The basis functions vector Xd is the neural
activity of the population in the dashed line, and the decoders of this population are the
learned parameters θ̂θθd. These parameters are updated as a function of the control signal
u. The hollow triangle denotes a modulatory connection.

unknown dynamics affecting the system. Instead, it would be more desirable to use the
neurons themselves as the basis functions and learn a set of decoders over their activity
profiles that approximates the unknown dynamics, such that forces of unknown form could
be compensated for. Again, the critical difference between the past work of Sanner and
Slotine [158] and that presented here is that in their work each of the nonlinear components
making up their basis function set output a multi-dimensional signal which was then given
a weight to approximate the multi-dimensional force affecting the system, whereas in the
system here each basis function component outputs a scalar term, and the set of learned
parameters are multi-dimensional.

Going back to the original formulation presented in [170], the unknown forces affecting
the system are approximated

F̂unknown = Yd(q)θ̂θθd (6.29)

where Yd ∈ Rn×d is the set of basis functions and θθθd ∈ Rd×1 are the learned parameters,
where n is the number of basis functions and d is the dimensionality of the control signal,
u.

Here this is reformulated such that the set of basis functions is now a vector and
the learned parameters a matrix. The basis functions in vector form will be denoted
Xd ∈ R1×n, and the corresponding set of decoders is of the form θ̂θθd ∈ Rn×d. The unknown
forces approximation looks the same,

F̂unknown = Xd(q)θ̂θθd, (6.30)

but now the learning rule is done with an outer product rather than an inner product:

˙̂
θθθd = LdXd ⊗ s, (6.31)

93

where ⊗ denotes the outer product operation, and s is the matrix version of the system
state representation defined in Chapter 4,

s = (q̇− q̇des) + Λ(q− qdes), (6.32)

where Λ is some symmetric positive definite matrix. The structure of the bias adaptation
component is shown in Figure 6.20.

6.5.1.3 Einstein summation notation

At this point Einstein summation notation will be used, where subscripts now represent
dimensions of variables, and identical indices between variables indicates a summation
along that dimensions [89]. For example, given a vector

a =

 a0
a1
a2

 (6.33)

and matrices

B =

 b00 b01
b10 b11
b20 b21

 , C =

 c00 c01
c10 c11
c20 c21

 (6.34)

then define aiai to be the dot product operation, equal to a scalar value∑
i

aiai = a0a0 + a1a1 + a2a2, (6.35)

aiaj to be the outer product operation, equal to the matrix A, with element values

Aij = aiaj, (6.36)

aiBij to be the dot product operation between a vector and a matrix, such that a vector
h results, with element values

hi =
∑
i

aiBij (6.37)

giving the vector

aiBij = h =
[
a0b00 + a1b10 + a2b20 a0b01 + a1b11 + a2b21

]
, (6.38)

CijBij to be a double dot product operation, such that a scalar value results

CijBij =
∑
j

∑
i

CijBij (6.39)

= c00b00 + c10b10 + c20b20 + c01b01 + c11b11 + c21b21. (6.40)

94

6.5.1.4 Stability proof of reformulation of bias adaptation

Because subscripts are no longer available for denoting specific variables in Einstein sum-
mation notation, the notational subscripts will be suppressed for the duration of the proof.
Additionally, the gain on the learning term, L, will be a scalar value.

Stability of this system can be shown by choosing Lyapunov-candidate function

V (s) =
1

2
siMij(q)sj +

1

2
θ̃θθijL

−1θ̃θθij, (6.41)

where the second term reduces to a scalar value, as shown in Eq. 6.39, and the derivative
is

V̇ (s) = si(ui −Xj(q, q̇, q̈r)θθθij) +
˙̂
θθθijL

−1θ̃θθij. (6.42)

Choose the control signal

ui = −Kijsj + Xj(q, q̇, q̈r)θ̂θθij, (6.43)

and learning rule
˙̂
θθθ = −LXjsi, (6.44)

which is the same as Eq. 6.31, written in Einstein summation notation. Substituting these
into the derivative of the Lyapunov-candidate function gives

V̇ (s) = si(−Kijsj + Xj(q, q̇, q̈r)θ̂θθij −Xj(q, q̇, q̈r)θθθij)− siXj(q, q̇, q̈r)LL
−1θ̃θθij,(6.45)

V̇ (s) = −siKijsj + siXj(q, q̇, q̈r)θ̃θθij − siXj(q, q̇, q̈r)θ̃θθij, (6.46)

V̇ (s) = −siKijsj ≤ 0, (6.47)

and so the system is globally asymptotically stable.

6.5.2 Transformation adaptation for unknown kinematics

In this section we revert back to normal matrix notation.

When attempting to implement transform adaptation to learn unknown kinematics in
a neural network, several obstacles appear. The first obstacle comes from attempting to
implement this adaptation in a distributed system. In the original formulation of transform
adaptation, reviewed in Chapter 4, the learned parameters approximate the end-effector
velocity

ẋ = J(q)q̇ = Yk(q, q̇)θ̂θθk, (6.48)

95

q

u

Plant

x u

q

Figure 6.18: A diagram of the basic setup of a control system using a bias adaptation
component. The bias adaptation component (inside the dashed circle) takes the system
state q as input and the control signal u as a learning signal, and outputs an approximation
of the unknown forces, F̂unknown. This signal is then sent to be summed with u and sent
out to the system under control. The hollow triangle denotes a modulatory connection.

and then the q̇ parameters are removed artificially from Yk(q, q̇)θ̂θθk to get the approxima-

tion of the Jacobian Ĵ(q, θ̂θθk). This artificial removing of parameters from the signal, in
addition to being biologically implausible, can’t be done in a distributed system, because
the approximation of each of the elements aren’t cleanly separated into distinct system
parameters. Rather, a weighted summation across all of the nonlinear components of the
distributed system must be taken to get a meaningful signal. The result of this weighted
summation then is the signal Ĵ(q, θ̂θθk)q̇, and the Jacobian approximation can’t be cleanly
extracted.

To get around this the adaptive system instead approximates the Jacobian directly,
which then gives rise to the second implementation obstacle: the learning rule used in
the original formulation is no longer appropriate. In this section the reformulation of the
problem to approximate the Jacobian will be presented, including a stability proof, followed
by a second reformulation into an equation that can be implemented in a distributed system
with scalar output, as in the previous section.

In both cases the general system setup is as shown in Figure 6.18. There is a task-space
control signal, ux that takes the system state q as input to the neurons, and the task-
space control signal and system velocity q̇ (whose inclusion will be analytically justified
in the next section) as input to the learning signal. The adaptive system is attempting to
approximate the Jacobian of the system, to transform the task-space control signal into a

96

signal that can interact with the system, i.e. the low-level control signal u. To this end,
the output of the adaptive system is the Jacobian approximation, Ĵ(q, θ̂θθk), which is then
multiplied by the task-space control signal. The full control signal will be of the form

u = Ĵ
T

(q, θ̂θθk)Kpx̃−Kvq̇ + g(q), (6.49)

where x̃ = (x − xdes) is the task-space position error signal, Kp and Kv are symmetric
positive definite gain matrices, and g(q) is the gravity compensation term.

The goal of the transform adaptation term is to learn a set of parameters θ̂θθk that
accurately approximates the Jacobian of the system. This setup allows the system to learn
how to transform a control signal from one space, such as end-effector space, to another,

such as joint space. The learning rule for updating the learned parameters
˙̂
θθθk is responsible

for minimizing the approximation error of Ĵ(q, θ̂θθk).

6.5.2.1 Control with adaptive transformation in the vector space

As mentioned above, in the typical formulation [29] the Jacobian is not directly solved for.

Instead, the learned parameters, θ̂θθk, are solved for in the equation:

Yk(q, q̇) θ̂θθk = Ĵ(q, θ̂θθk)q̇, (6.50)

and then the Jacobian approximation, Ĵ, is artificially extracted afterwards from Yk(q, q̇)θ̂θθk
by removing the q̇ terms. A novel reformulation of the problem such that θ̂θθk is solved for
can be found in this expression:

Zk(q)θ̂θθk = Ĵ(q, θ̂θθk), (6.51)

where Zk(q) is a third-rank tensor. For example, when J ∈ R2×3 and θ̂θθk ∈ Rn×1, then
Zk(q) ∈ R3×2×n.

The system state drives the activation of the neurons in the multiplicative basis set,
Zk(q). The output is again weighted by the learned parameters θ̂θθk, which sum and decode
it into the vector space. The result of this weighted summation, Ĵ, is sent to be multiplied
by the control signal ux to transform it from a high-level signal to a lower level signal.
The system velocities, q̇, are separately multiplied by the output of Zk(q) to generate the

learning signal,
˙̂
θθθk.

97

q

Z(q)k

d
Zk

u

Z(q)k

qx

Figure 6.19: The structure of a neural network set up to implement the modified formu-
lation of the nonlinear adaptive transform component. The matrix of basis functions Zk

is decoded from the neural activity of the first population, where each of the elements of
Zk is approximated through a set of decoders determined with the methods presented in
Section 6.1. This matrix is passed to a second population of neurons which applies the
set of learned system parameters θ̂θθk stored in its decoders. These decoders are updated
through a learning signal that is a function of the task-space control signal ux and system
velocity q̇.

The learning update for the parameters θ̂θθk is calculated through the following novel
variant of Slotine’s original update rule:

˙̂
θθθk = −Lkq̇

TZk(q)TKpx̃, (6.52)

where Lk is the learning rate for the adaptive transform.

The system structure of the implementation of this transformation adaptation compo-
nent in a neural network is shown in Figure 6.19.

A proof of the stability of the system under this formulation with this learning rule is
now presented.

6.5.2.2 Stability proof of vector space adaptive transform reformulation

Redefine the function that is approximated by the transform adaptation component as

J(q) = Zk(q)θθθk (6.53)

where J(q) ∈ Rl×m, Zk(q) ∈ Rl×m×n, and θθθk ∈ Rn×1.

98

6.5.2.2.1 Attempt 1

In the original formulation the learning rule was defined with basis matrix Yk that incor-
porated q̇:

Yk(q, q̇)θθθk = J(q)q̇ = Zk(q)θθθkq̇, (6.54)

so an approach might be to attempt to build a similar Yz matrix

Yz(q, q̇, θ̂θθk) = Zk(q)θθθkq̇, (6.55)

and continue using the learning rule of the same form:

˙̂
θθθk = LkY

T
z (q, q̇, θ̂θθk)Kpx̃. (6.56)

Using the same Lyapunov-like function candidate as in the original proof (detailed in
Section 4.4)

V (q) =
1

2
q̇TM(q)q̇ +

1

2
˜̂
θθθkL

−1
k

˜̂
θθθk +

1

2
x̃TKpx̃, (6.57)

to be negative semi-definite the derivative V̇ (q) requires that

q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ =
˙̂
θθθTkL−1

k θ̃θθk. (6.58)

Substituting in Eq. 6.56 to the right hand side of Eq. 6.58 gives

q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ = x̃TKpYz(q, q̇, θ̂θθk)LzL
−1
z θ̃θθk, (6.59)

q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ = θ̃θθk
T
YT
z (q, q̇, θ̂θθk)Kpx̃. (6.60)

Where previously this worked out because Yk(q, q̇)θθθk = J(q)q̇, this is no longer the case,
as Yz and θθθk have no such relationship. As a result this learning rule won’t work to cancel
out the left hand side of Eq. 6.58, and V̇ cannot be proven to be negative semi-definite.

6.5.2.2.2 Attempt 2

Another approach is to define the learning rule directly with Z, i.e.

˙̂
θθθk = LzZ

T
k (q)Kpx̃. (6.61)

Immediately problems are encountered in that the dimensionality of the left hand side is
not the same as the right.

99

Ignoring this for the moment, some intuition about how to change this equation to be
appropriate can be found by following the same Lyapunuv-candidate function proof as in
the first attempt. Substituting Eq. 6.61 into Eq. 6.58 gives

q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ = x̃TKpZk(q)LzL
−1
z θ̃θθk, (6.62)

q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ = θ̃θθk
T
ZT
k (q)Kpx̃ (6.63)

q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ = (J(q)− Ĵ(q, θ̂θθk))
TKpx̃, (6.64)

and it can be seen that a q̇ term is missing from the beginning of the right hand side in
Eq. 6.64.

6.5.2.2.3 Attempt 3

Rewriting the learning rule to incorporate the q̇ term appropriately suggests the learning
rule

˙̂
θθθk = Lzq̇

TZT
k (q)Kpx̃, (6.65)

where the left and right hand sides are both now the same dimensionality. Using the same
Lyapunov-like function candidate as in the first two attempts and substituting in Eq. 6.65
to Eq. 6.58 gives

q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ = x̃TKpZk(q)qLkL
−1
k

˜̂
θθθk, (6.66)

q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ =
˜̂
θθθTk q̇TZT

k (q)Kpx̃. (6.67)

Because Zk(q) is a third rank tensor, the math at this point is a bit unintuitive, but it can
be shown that

(Zk(q)θ̂θθkq̇)T = (J(q)q̇)T = θ̂θθ
T

k q̇TZT
k (q) = q̇TJT (q). (6.68)

Using this equality Eq. 6.67 can be rewritten

q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃ = q̇T (JT (q)− Ĵ
T

(q, θ̂θθk))Kpx̃, (6.69)

and so the derivative of V (q) works out to

V̇ (q) = −q̇TKvq̇ ≤ 0, (6.70)

and so the system is globally asymptotically stable.

100

q

X (q)k

X (q)k

u qx

Figure 6.20: The structure of a neural network set up to implement the reworked formula-
tion of the nonlinear adaptive transform component. The basis functions vector Xk is the
neural activity of the population in the dashed line, and the decoders of this population
are the learned parameters θ̂θθk. These parameters are updated as a function of the control
signal u and the system velocity q̇. The hollow triangle denotes a modulatory connection.

6.5.2.3 Control with adaptive transformation in neuron space

In the formulation of nonlinear adaptation in the previous section a large set of basis
functions, Zk(q), are used, and a single set of learned parameters, θ̂θθk, weights multiple basis
functions for the different decoded dimensions. As in the bias adaptation the algorithm
above with multi-dimensional output from the basis functions cannot be implemented using
the neurons directly as the basis functions. This calls for an alternate implementation with
scalar basis functions and multi-dimensional learned parameters that lends itself to neural
implementation.

To implement this, define a set of basis functions Xk to be the activity of a population
of neurons with the system state, q, as input. Instead of having the basis functions be
a tensor as in the first reformulation of transform adaptation, the learned parameters,
θ̂θθk ∈ Ri×j×k, will be a tensor, and define Xk(q) ∈ R1×i such that

Xk(q)θ̂θθk = J(q), (6.71)

where the Jacobian J(q) ∈ Rj×k.

6.5.2.3.1 Stability proof of neuron space adaptive transform reformulation

Once again Einstein summation notation will be used, and so for the duration of this proof
all notational subscripts will be suppressed. This notation switch is especially useful here
with three-tensors because it greatly simplifies denoting the operation to square and sum

101

all the elements. Given a vector a ∈ Ri and tensor C ∈ Ri×j×k, the tensor equivalent of
aTa, which squares and sums all of the elements (dot product with itself), can be written
as CijkCijk. Additionally, the learning gain term, L, will once again be chosen as a scalar
value.

Choose the Lyapunov candidate function

V (q) =
1

2
q̇iMij(q)q̇j +

1

2
θ̃θθijkL

−1θ̃θθijk +
1

2
x̃iKijx̃j, (6.72)

whose time derivative is

V̇ (q) = −q̇iKijq̇j + q̇k(Jjk(q)− Ĵjk(q, θ̂θθ))Kjix̃i −
˙̂
θθθijkL

−1θ̃θθijk. (6.73)

Choosing a learning rule candidate:

˙̂
θθθijk = LXi(q)q̇kKjlx̃l, (6.74)

gives
˙̂
θθθijkL

−1θ̃θθijk = x̃lKljq̇kXi(q)θ̃θθijk = x̃lKljq̇k(Jjk(q)− Ĵjk(q, θ̂θθk)). (6.75)

Because this term reduces to a scalar, it’s equal to its own transpose and can be rewritten

(Jjk(q)− Ĵjk(q, θ̂θθ))q̇kKjlx̃l. (6.76)

Substituting this into Eq. 6.73 gives

V̇ (q) = −q̇iKikq̇k + q̇k(Jjk(q)− Ĵjk(q, θ̂θθ))Kjix̃i − (Jjk(q)− Ĵjk(q, θ̂θθ))q̇kKjix̃i. (6.77)

For V̇ (q) to be negative semi-definite it needs to be shown that

qk(Jjk(q)− Ĵjk(q, θ̂θθ))Kjix̃i = (Jjk(q)− Ĵjk(q, θ̂θθ))qkKjix̃i, (6.78)

which reduces to showing that

q̇k(Jjk(q)− Ĵjk(q, θ̂θθ)) = (Jjk(q)− Ĵjk(q, θ̂θθ))q̇k, (6.79)

q̇kJ̃jk = J̃jkq̇k, (6.80)

where J̃jk = Jjk(q)− Ĵjk(q, θ̂θθ). Both of these sides say the same thing, where the vector q̇
is multiplied by the columns of J̃, so they are equal. This equality then reduces Eq. 6.77
to

V̇ (q) = −q̇iKikq̇k ≤ 0, (6.81)

and global stability is proven.

102

6.6 Discussion

The reformulations of the nonlinear adaptive algorithms are the result of work with Terry
Stewart, Chris Eliasmith, Jean-Jacques Slotine, and myself, and a patent has been filed [42].
Notably, this reformulation allows the application of nonlinear adaptive control methods to
neuromorphic hardware, where the basis function output is necessarily scalar. Neuromor-
phic hardware represents an opportunity for extremely low-energy efficient implementations
of neural networks and will be a focus of future work.

At this point it is now possible to implement the control theoretic methods described
in the first half of this thesis in a neural network as part of a model of the motor control
system, which is the focus of the next chapter.

103

Chapter 7

The REACH model

In this chapter the Recurrent Error-driven Adaptive Control Hierarchy (REACH) model, a
large-scale spiking neuron model of the motor cortices and cerebellum of the motor control
system, is presented. The REACH model is an implementation and update of a subset
of the NOCH framework, described in Chapter 5. The model consists of anatomically
organized spiking neurons that control a nonlinear three-link arm to perform reaching
and handwriting, while being able to adapt to unknown changes in arm dynamics and
structure (i.e. kinematics). I demonstrate the model’s ability to control a 3 link, nonlinear
arm through complex paths including handwritten words and numbers. I also demonstrate
its ability to adapt to environmental changes (e.g. an unknown force field) and changes
to the physical properties of the arm (e.g. from growth). I employ the same methods as
used in Spaun, so this model also serves to update the previous non-neural motor control
system presented with Spaun originally in [50].

The dynamical system that forms the basis of the spiking neuron implementation of
the REACH model is a combination of the operational space control, nonlinear adaptive
control, and dynamic movement primitive methods discussed in previous chapters. This
combination in itself is novel. Previous DMP models use inverse kinematics for translating
desired end-effector trajectories into robotic movement while operational space control and
nonlinear adaptive control models have their trajectories explicitly programmed in. While
such a behavioural-level model can be used to compare to high-level movement phenomena,
of particular interest is a spiking neuron model that can be compared to both high and low-
level data from the motor system, such as single-cell activity profiles, neural correlations
with high-level movement parameters, and neural analysis from experimental data. As
shown below, the REACH model accounts for data across 19 clinical and experimental
studies of the motor control system. These data includes a mix of behavioural and neural

104

spiking activity, across normal and damaged subjects performing adaptive and static tasks.
I provide a variety of comparisons to behavioural performance during static and adaptive
tasks, as well as detailed neural response analyses compared to classic and recent results
in experimental neuroscience.

In short, the REACH model represents a novel integration of control theoretic methods
and neuroscientific constraints to specify a general, adaptive, biologically plausible motor
control algorithm. Such algorithms can provide critical clinical insights for developing
motor system interventions, and are of particular interest given recent developments in
neuromorphic hardware [131, 146, 14], that requires advanced algorithms employing spiking
neural networks.

In the remainder of the chapter the REACH model is presented, with a brief review
of the control theory that forms the basis of the relevant dynamical system. Following
this, results from the non-neural implementation of the REACH model are presented.
A detailed description of the neural network implementations of the pre-motor cortex,
primary motor cortex, and cerebellum models is then given. Finally, results from the
neural implementation of the REACH model are presented along with a discussion of the
limitations of the model, directions for future work, and a comparison to previous NOCH
models.

7.1 REACH overview

The left hand side of Figure 7.1 identifies the major neural and physical components of
the model. The arm itself, shown on the right hand side of Figure 7.1, is a three-link arm
operating in the horizontal plane, physically modeled after the human arm using length and
inertia parameters as described in [181]. The arm simulation was built using MapleSim,
based on the arm model presented in [182], and is available online.1.

The neural components of the model capture major systems in the motor hierarchy
and are shown at the top of Figure 7.1. As described in Chapter 5, the premotor cortex
(PM) is known to play an important role in the preparation and planning of movements,
as well as the control of timing during execution [73, 3, 209]. The neural activity recorded
from PM during tasks where a path is traced out using different limbs suggests that it
is largely responsible for abstract trajectory generation [155, 33]. The premotor cortex’s
trajectory generation functionality is modeled using dynamical movement primitives [159,
97] (DMPs), as presented in Chapter 3. The resulting trajectories are typically specified

1https://github.com/studywolf/blog/tree/master/Control/Arms/three_link

105

https://github.com/studywolf/blog/tree/master/Control/Arms/three_link

M1

PM

SCx

CB

Body

1

5

2

4

3

4 2 0 2 4

4

2

0

2

4
t = 2.8
u = [-9.017, 24.681, 8.783,]

Task: Reaching

Figure 7.1: Left: An overview of the model. Numbers identify major communication
pathways. Dashed lines indicate closed-loop feedback signals generated from the senses.
The premotor cortex (PM) generates a trajectory for the system to follow with a sequence
of (x, y) coordinates. The primary motor cortex (M1) receives these target positions (1)
from the sensory cortices (SCx) and compares them to the current system state, received
through (2). M1 combines this signal with locally stored Jacobians to transform the desired
hand movement commands into a low-level signal that is sent to the arm and cerebellum
(CB) along (3). The cerebellum (CB) projects an adaptive signal to the body along (4)
that compensates for velocity and movement errors. The senses generate a closed-loop
feedback signal along (5) that is provided to the CB and SCx. Right: A picture of the
three-link arm controlled by the REACH model during a centre-out reaching task.

106

in an abstract space, such as the Cartesian coordinates of the end-effector in the case of
arm control. Because of this abstraction, the trajectories are easily generalized through
spatial transformations (e.g. scaling, rotation, etc.), temporal transformations (e.g. rapid
approximate, or slow accurate movements), and in terms of which limb carries out the
command. The use of DMPs thus naturally accounts for the observation that handwriting
style is typically transfered between hands and even to feet and other body parts [208].

The kinds of generalization supported by DMPs are much easier in the abstract space,
provided there is a method for transforming the abstract trajectory commands to low-level
commands that can drive the complex dynamics of the system, in this case the arm. In our
model, PM generates trajectories in 2D (x, y) space and sends those to the primary motor
cortex (M1) for execution. It is M1 that effects the transformation from the abstract space
to the lower-level to drive the physical arm, using the operational space control methods
discussed in Chapter 2.

Graziano [73] presents results that show that M1 is not a simple fixed mapping to
muscles, but rather a complex function of the state of the system. This mapping can
be described in control theoretic terms as determining the low-level system state q from
the high-level abstract representation of the system x using a Jacobian matrix that is a
function of the system position.

Recall that the Jacobian also defines a relationship between the forces in these two
spaces:

u = JTux (7.1)

where u is the joint torque motor command sent to the arm, and ux is the high-level
motor command generated in PM. Functional dependencies are suppressed in this chapter
for clarity.

To accurately control the system, the controller must compensate for the inertia gen-
erated by the arm in task space. Accounting for this, the motor command sent out by M1
becomes

u = JTMxux, (7.2)

where Mx is the task-space inertia matrix decoded from system state information, and
is a function of the system position and velocity, whose derivation is worked through is
Section 7.9.1.2.

Additionally, M1 needs to be capable of adapting to changes in the physical properties
of the arm (e.g. those caused by growth). The nonlinear adaptive control [29, 42] discussed
in Chapter 4 allow the Jacobian to be learned on-the-fly . This adaptability is indicated
by replacing the standard Jacobian J with an adaptive Jacobian, Ĵ.

107

Furthermore, animals are able to optimize movements with respect to several goals
simultaneously [16]. For instance, monkeys can reach to a target while staying as close to a
default resting position as possible, to minimize energy usage. Recent work on operational
space control [112] provides a natural framework for including these kinds of additional
constraints. To account for the contributions of this kind of secondary controller, an
additional force term, unull, is added. The signal unull represents a filtered control signal
from the secondary controller, modified to guarantee that movement in the operational
space is not affected using the methods discussed in Section 2.1.

As a result of these two extensions, the motor command becomes (see Figure 7.9 for
the neural circuit diagram):

u = Ĵ
T
Mxux + unull. (7.3)

The cerebellum is thought to maintain internal models of the system dynamics as well
as provide error correction signals [212, 108, 110]. Motor control researchers generally
identify two kinds of internal models: forward models, which map potential actions to
their outcomes; and inverse models, which map desired outcomes to actions. The REACH
model includes both forward and inverse models by focusing on the error correction ability
of the cerebellum. Specifically, the cerebellum receives the M1 generated control signal and
information regarding the current state of the body, which it uses to learn the result of an
action given the resulting error. This allows it to build up a forward and inverse model that
it then uses to generate a corrective command that is added to the M1 generated command
to reduce movement error. Support for the cerebellum providing error correction based
on predicted error is found in numerous studies [172, 199, 57]. As discussed in Chapter 5,
the corrective signals are divided into two terms, one that accounts for the internal dy-
namics of the system, and one that accounts for external and temporary changes in the
system dynamics, representing contributions from the lateral and intermediate cerebellum,
respectively. With the addition of the cerebellar signals, the full command sent to the
body becomes:

u = Ĵ
T
Mxux + unull −Mq̇ + uadapt, (7.4)

where the −Mq̇ term accounts for and cancels out the internal forces of the system,
and uadapt is an adaptive function of q and q̇ that learns to correct for control errors
(see Figure 7.10 for the neural circuit diagram).

While not included in this model, the basal ganglia are generally considered part of
the motor system. The basal ganglia is not included here for two reasons. First, the
basal ganglia is considered critical for reinforcement learning [45, 102] and the volitional
control of movement [134, 77]. Neither of these elements are important for the variety of

108

tasks and data that are explored here. For instance, the kind of learning relevant to our
model is believed to occur in the cerebellum [47, 45]. Studies have shown that patients
with basal ganglia lesions, but not those with cerebellar lesions, are capable of adapting
to reach errors [172, 12]. As well, the basal ganglia are important for determining which
actions are most appropriate for a given situation, but the tasks performed by the REACH
model include explicit direction at the beginning of each simulation as to which action
to perform, making flexible action selection outside the scope of the model. Second, the
Spaun model includes a basal ganglia that is able to account for flexible action selection and
simple reinforcement learning [50]. Consequently, its inclusion here would be somewhat
redundant.

7.2 Non-neural implementation results

Prior to a neural implementation, the REACH model was built without neurons to make
sure that behavioural level phenomena were successfully captured by the chosen control
methods. Many of these results have already been seen, in the figures of Chapter 2 and
Chapter 3. This included tracing paths, performing handwriting, and implementing null-
space controllers to keep the arm near a default resting position during movement. Here
several further results involving the reformulation of nonlinear adaptation, presented in
Chapter 6, are shown. Note that while the adaptive components of the system are imple-
mented in neurons, the rest of the system has been implemented in standard Python. This
control system can be found online on github.2

7.2.1 Bias adaptation example

The bias adaptation component receives joint positions and angular velocities as an input
signal, and the low-level control signal u as a learning signal, as described in Chapter 6.

Here results for adapting to internal and external forces that were not sufficiently mod-
eled and accounted for by the initial controller are shown. First, in Figure 7.2 the system
is attempting to move to a set of targets from a center starting point while a perturbing
force field is being applied to the hand. This force field is taken from a similar experiment
performed on human subjects [168]. The size of the applied force is based on the velocity
of the hand. On the left is the system, with no adaptive bias component. On the right the
same system is presented, but with the adaptive bias component added in, consisting of

2https://github.com/studywolf/blog/tree/master/Control

109

A B

Figure 7.2: A diagram of reaching from a center point outward to eight equidistant targets
with an end-effector velocity based force field applied. The desired path is the thin line,
simulation reach is the thick line. A) Movement in a force field before adaptation. B)
Simulation results immediately after adaptation with 1,000 neurons on the first trial.

1,000 rate based neurons. These results are from the first trial with the additive adaptation
component applied, showing immediate error correction.

In Figure 7.3 the same task is shown while a perturbing force field is being applied based
on the angular velocity of the joints. On the left is performance without any adaptive bias
component. On the right is the same system, but with the adaptive bias component added
in, consisting of 1,000 rate based neurons. These results are from the first trial with the
additive adaptation applied, showing immediate error correction.

In Figure 7.4 the same task is performed with an inaccurate internal model of the inertia
matrices of each of the arm segments. On the left is performance without any adaptive
bias component. On the right we present the same system, but with the adaptive bias
component added in, consisting of 20,000 rate based neurons. These results are from the
first trial with the additive adaptation applied, showing immediate error compensation.

In all cases, when the adaptive bias component is employed, the system is able to
immediately compensate for the errors in movement, introduced by either external forces
or inaccurate internal models, and move to the targets in a straight or nearly straight lines.

110

A B

Figure 7.3: A diagram of reaching from a center point outward to eight equidistant targets
with a joint velocity based force field applied. The desired path is the thin line, simulation
reach is the thick line. A) Movement in a force field before adaptation. B) Simulation
results immediately after adaptation with 1,000 neurons on the first trial.

A B

Figure 7.4: A diagram of reaching from a center point outward to eight equidistant targets
with inaccurate inertia matrices for limb segments. The desired path is the thin line,
simulation reach is the thick line. A) Movement in a force field before adaptation. B)
Simulation results immediately after adaptation with 20,000 neurons on the first trial.

111

7.2.2 Transformation adaptation example

Figure 7.5 shows results from the application of transformation adaptation. Specifically,
the arm segment lengths are all set to 3.0 for calculating the Jacobian, instead of their
actual values of 2.0, 1.2, and .7. While the model repeatedly attempts to trace an ellipse,
it correctly adapts to this change and eventually accurately reproduces the trajectory. The
path of the hand as the system learned to move correctly is shown in the top portion
of Figure 7.5. The root-squared error of the arm, measuring the difference from perfect
tracing for each lap around the ellipse is shown on the bottom of Figure 7.5. As can be seen,
the adaptive transform implemented in a population of neurons is able to quickly learn an
approximation of the transformation between the spaces with the mass matrix included,
bringing the system to an operational state, and then continually refine its approximation
to further reduce error as practice continues.

7.3 Neural implementation

In this section the neural networks used to model the pre-motor cortex, primary motor
cortex, and cerebellum are presented. These networks together form the whole of the
REACH model implementation in spiking neurons.

7.3.1 The pre-motor cortex

The pre-motor cortex is modeled using the dynamical movement primitives (DMPs) system
structure [159, 97] as a means of specifying desired trajectories in task space. A basic
implementation of DMPs have been implemented in spiking neurons, capable of generating
complex trajectories after a single demonstration of the desired path. This path is sent to
the primary motor cortex where it is used to guide the arm using operational space control.

Figure 7.6 shows a diagram of the pre-motor cortex model. The PM is provided a
‘start pulse’ signal, which is a step function that transitions an oscillator from a default
resting state into its limit cycle activity pattern. Figure 7.7 shows the step function, goal
signals, and the activity of the oscillator and forcing function’s ramp signal. While the
start pulse function is active the goal states are the starting positions for the arm, driving
the x and y populations to the initial end-effector position. The start pulse also inhibits
output from the forcing function, allowing the x and y point attractor systems to converge
quickly to their targets. These initial trajectory positions are projected from x and y into

112

0 10 20 30 40 50
time (s)

1.5
1.0
0.5
0.0
0.5
1.0
1.5

x
 (

m
)

0 10 20 30 40 50
time (s)

1.0
1.5
2.0
2.5
3.0

y
 (

m
)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x (m)

1.0

1.5

2.0

2.5

3.0

y
 (

m
)

0 10 20 30 40 50 60 70 80
Ellipse trace number

2000

4000

6000

8000

10000

12000

14000

16000

R
M

S

Root mean squared error per trace

Figure 7.5: Top: The path traced out by the arm during correction of incorrect Jacobian
kinematic parameters. On the left is the path as drawn out in Cartesian coordinates, where
points farther back in time are lighter. The red ellipse is the target path. On the right
the x and y dimensions of the trajectory are plotted against time in black, with the target
values plotted in red. Bottom: A diagram of the root-squared error while learning to trace
an ellipse using the adaptive transform component. The error is calculated as the summed
root-squared distance from the target values during over each full trace of the ellipse.

113

Oscillator

Force Func

Start Pulse

M1

Figure 7.6: A model of the pre-motor cortex based on implementing dynamic movement prim-
itives. In this diagram the two DMPs are for the x and y paths followed by a single trajectory.
To generate different trajectories the system needs to specify a different output from the forcing
function into ẋ and ẏ. The solid arrow is a normal connection, the solid circle is inhibitory.

M1, which then moves the arm to the starting location for the trajectory. When the start
pulse finishes the goal input to x and y will change and move the system towards the
end-points of the trajectories.

At the same time, the oscillator is providing a high-frequency signal with a non-zero
mean to the forcing function (as shown in Figure 7.7), which takes the value represented
in the forcing function from 0 to 1. The reason for using an oscillator as opposed to just
a constant signal is that the small fluctuations of the oscillating signal help to prevent the
forcing function population from getting stuck in small pockets of representation (which
have an effect similar to local minima) when integrating. While little difference is noticeable
when the ramp integrates quickly to 1, the use of the oscillator becomes important when
slowing down the speed of the trajectory, i.e. reducing the size of the input signal to the

114

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0

Step function

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.5

1.0

1.5

2.0
Goal s ignals

X
Y

0.485 0.490 0.495 0.500 0.505 0.510 0.515
osc x

0.485

0.490

0.495

0.500

0.505

0.510

0.515

0.520

o
sc

 y

Oscillator

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.5

0.0

0.5

1.0

1.5
Forcing function ramp

Ramp s ignal
Forcing function x
Forcing function y

Figure 7.7: The step function (start pulse) and dependent signals. Goal signals: The input
to the x and y point attractors, driving them to the initial points of the trajectory while
the step function is active and to the goal points of the trajectory when the step function
goes to zero. Oscillator: The step function pushes the oscillator from its resting state
at (.5, .5) to the top right of the plot. Once the step function goes to zero the oscillator
enters its limit cycle activity pattern. Forcing function ramp: The step function inhibits
this output; when the step function goes to zero the forcing function integrates one of the
oscillator output dimensions. From this ramp signal both the x (green) and y (red) forcing
function are decoded.

115

4 2 0 2 4
Represented value

0

100

200

300

400

500

600

N
e
u
ro

n
 f

ir
in

g
 r

a
te

s

Neural saturation

Figure 7.8: The firing rates of the neurons as the represented signal changes. Saturation
of the neurons refers to a point (approximated by the dashed blue lines) where differences
in the represented value do not cause sufficient change in the neural activity to accurately
decode the signal. The decoded value increases to the point of saturation and then grows
no further, even with a constantly growing input.

forcing function population. As the value in the forcing function population moves from
0 to 1, a function is decoded from the neural activity that is projected into the ẋ and ẏ
populations, altering their dynamics of x and y. As a result, the forcing function moves
the system state to the target along the expected trajectory.

Saturation of the neurons is used to ensure that the ramping signal stops at 1 and
doesn’t continue growing forever. Intuitively, at some point all of the neurons will either
be firing at their maximum rate or not at all, as shown in Figure 7.8. By setting up the
decoders such that this point represents 1, it can be guaranteed that 1 is the maximum
value possible to be represented by this population. This is referred to as neural saturation.

There has been much work extending the DMP architecture [97], allowing the sys-
tem to generalize both spatially and temporally, incorporate system feedback, and execute
independently or couple multiple DMPs to each other or other signals from the environ-
ment. I have implemented a basic model of the full DMP architecture in spiking neurons
here, which lays the groundwork for the development of neural models that include such
extensions.

116

7.3.2 The primary motor cortex

The primary motor cortex (M1) is used to map high-level control signals defined in an
abstract space to a low-level control signal that can be sent to the body; in this implemen-
tation end-effector forces are mapped to joint torques. It accounts for some of the effects
of inertia on the system and helps to cancel them out, and generates a secondary control
signal in the null space of the primary control signal which serves to keep the system near a
comfortable ‘resting state’, or default position. In addition to these functions it also learns
to correct for inaccuracies in the Jacobian, minimizing performance errors using only the
high-level control signal ux and system velocity q̇ as training signals.

Arm

CB

Figure 7.9: A model of the primary motor cortex (M1). From a population representing the
system state, the adaptive Jacobian is projected into a population that performs a dot product
with the high-level control signal, ux. At the same time, ux, along with q̇, is used to adapt

the Jacobian, Ĵ
T

, which is projected into the dot product population. The result of this dot
product is the low level control signal u, which is projected both to the cerebellum (CB) as a
teaching signal, and the arm as a control signal. The secondary control signal, unull which keeps
the system close to it’s resting position during movement, is also projected to the arm as well.
The solid arrow is a normal connection, the hollow diamond is a modulatory connection used for
learning.

117

The neural network implementation of these computations can be broken down into
two parts. The first is a population representing the system state, from which the adaptive

Jacobian, Ĵ
T

is decoded. Note that the adaptive Jacobian also includes the inertia matrix
Mx. The connection along which the Jacobian is generated is subject to adaptation, using
the high-level control signal ux and system velocity q̇ as training signals, implementing
the learning algorithm described in Chapter 4. This Jacobian is projected into an array of
ensembles along with the high-level control signal ux, allowing the ensembles to perform
the dot-product operation, as described in Eq. 7.3. As shown in Figure 7.9, the resulting
low-level control signal, u, is sent to the cerebellum as a training signal and to the arm
along with the secondary control signal unull to implement Eq. 7.3.

7.3.3 The cerebellum

The cerebellum provides a corrective signal to the arm that cancels out the effects of inertia
and learns to account for and minimize errors due to unmodeled dynamics that arise during
movement.

Arm

Figure 7.10: A model of the cerebellum. System state information arrives from the sensory
cortices and spinal cord, and is then used to generate corrective control signals sent to the arm.
Mq̇ accounts for and cancels out the effects of inertia on the system, and uadapt is an adaptive
signal that corrects for unmodeled dynamics. The teaching signal, u, comes from M1. The solid
arrow is a normal connection, the hollow diamond is a modulatory connection used for learning.

118

To do this, the cerebellum calculates the forces due to the current motions of the system,
Mq̇ and projects a compensatory signal to the arm. At the same time, an adaptive signal
is also projected to the arm, uadapt, which learns to correct for unmodeled forces using the
low-level control signal as a training signal, through the algorithms described in Section 4.3.

Although the model presented here is in spiking neurons and functionally detailed,
there is a wealth of neuroanatomical details of the cerebellar structure that are not in-
cluded in the REACH model [164]. Important future work will be to determine how the
known anatomical structure of the cerebellum can be exploited to perform the proposed
computations.

7.4 Neural implementation results

The combination of the pre-motor cortex, primary motor cortex, and cerebellar neural
models provides a spiking neuron implementation of the REACH model. By selecting a
given trajectory to follow or providing a target location the model can generate appropriate
control signals to move a three-link non-linear arm. In this sections results are presented
from simulations carried out to replicate experimental studies, and demonstrate the overall
performance of the model.

7.4.1 Reaching and handwriting

As a standard behavioral test of the model, it is perform to control 8 center-out reaches.
Figure 7.11 shows the resulting arm trajectories and velocity profiles from the model com-
pared to human data collected by [168]. To account for the force response profiles of muscles
(which are not included in the arm model), a simple model (i.e., a skewed Gaussian re-
sponse) has been used to mimic the effects of the force response profiles of muscles [127].
The velocity profiles match with a correlation of .96 in the mean and .703 in the variance.

To generate more complex trajectories, DMPs that have been trained to output specific
(x, y) Cartesian coordinates for the system to follow are activated. Figure 7.12 demon-
strates the ability of the model to move the arm through a specific set of complex trajec-
tories. In this case, the digits from 0-9 and the words “hello world” were learned from
a single presentation of the author’s handwriting. This kind of learning is very rapid be-
cause we directly optimize neural connection weights in PM to generate the desired paths.
However, the model also exhibits slow adaptation based on observation of its own errors
during performance.

119

Figure 7.11: Top: Normal reaching from a center point outward to eight equidistant targets,
repeated five times. Human data, taken from [168], is on the left and model simulation
results are presented on the right. Bottom: The mean (thin center line) and variance
(thick grey line) of the velocity profiles for each of the eight reaches in the above figure.
Human data, adapted from [173], is displayed on the left, and model simulation results are
presented on the right. A simple model of muscle responses has been applied to account
for the effects of muscle activation profiles, by convolving the velocity signal with a skew-
symmetric Gaussian.

120

B

A

Figure 7.12: A sample of one of the author’s handwriting (which was used to train the model)
compared with the model’ handwriting. These trajectories were learned from single example
presentations. A) Writing out the numbers 0-9, the author’s handwriting is above, the model’s
below. B) Writing out the phrase ‘hello world’; the author’s handwriting above, the model’s
below. 121

The same adaptation as implemented in Section 7.2 also works for the fully neural
system, as shown in Figure 7.13 and Figure 7.14.

In Figure 7.13 the experimental paradigm used in [168] was simulated. A reaching task
was set up where the model performed 8 centre-out reaches to targets approximately 10
centimetres away. While reaching, a force was applied to the hand that was proportional to
the velocity of the hand, as in Section 7.2. On the left side of Figure 7.13 the experimental
results can be seen, collected from human patients learning to reach with a force-field
applied. While the deviations from the normal trajectory are qualitatively similar (i.e. the
human and simulated arm are both pushed in the same directions) they are notably larger
in the human trajectories. This is likely due to the minimal feedback delay in the REACH
model, whereas humans require at least 80-100ms before visual or proprioceptive correction
is possible [101]. Extensions to incorporate such feedback delays and compensatory control
methods is discussed at the end of chapter.

In the experimental results presented by [168], the subjects were shown the target, the
target disappeared, and then the subjects were asked to reach to where the target had
been. To simulate the error introduced from reaching without visual feedback, noise was
added to the targets presented to the model, providing a similar distribution of movement
end-points as seen in human trials.

Figure 7.14 shows the REACH model instantiated with an incorrect Jacobian matrix,
calculated as though the arm segment lengths were all 3 feet, rather than 2, 1.2, and .7
feet, just as in Section 7.2. Once again, the system is able to quickly correct the control
error such that an ellipse can be traced appropriately. The root squared tracking error
averaged over 2 ellipse traces reduces from 272.7m over the first two traces to 64.6m after
30 simulated seconds of learning.

An example showing both the adaptive transform and bias being applied at the same
time is shown in Figure 7.15 for both the basic reaching and the force field reaching tasks.
Learning both kinematic and dynamic parameters at the same time is only possible for
point-to-point movements, such as the target reaching shown in Figure 7.15. Implementing
both types of learning for tracking control, such as for the ellipse tracing, requires further
development of the nonlinear control methods used, and is discussed at the end of this
chapter.

7.4.2 Neural comparisons

The comparisons made to this point, while reflecting underlying neural performance, are
purely behavioral. A major benefit of generating a model at the level of individual neurons

122

Figure 7.13: Reaching from a center point outward to eight equidistant targets with an
end-effector velocity based force field applied. Human subjects required approximately 750
trials to reach an average of 0.9 correlation with the original reach trajectories. The model’s
adaptation was significantly faster, requiring less than two full trials to reach 0.9 correlation
with the original reach trajectories. Top: Movement with the force field applied, before
adaptation. Human data, taken from [168], are shown on the left, model simulation results
are shown on the right. Bottom: Movement with the force field applied, after adaptation.
Human data, taken from [168], are shown on the left, and model simulation results are
shown on the right.

123

0 5 10 15 20 25 30
time (s)

1.5
1.0
0.5
0.0
0.5
1.0
1.5

x
 (

m
)

0 5 10 15 20 25 30
time (s)

1.0
1.5
2.0
2.5
3.0

y
 (

m
)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x (m)

1.0

1.5

2.0

2.5

3.0

y
 (

m
)

Figure 7.14: The arm tracing a circle starting with an incorrect internal model of the
system dynamics. Over time the system learns to correct this model by adapting the
Jacobian. Initial average tracking error across two cycles: 272.7 m, final average tracking
error across two cycles: 64.6 m.

is that it allows detailed comparison with a large body of experimental evidence from neu-
roscientific studies. Numerous experimental studies have examined the neural activity of
cells in the motor cortices and correlated their activity with various movement parameters
(see Table 7.1). Such studies provide insight into the information represented in different
brain areas and can help identify likely transformations used by robust natural controllers.

7.4.3 Neural activity correlation with movement parameters

As one classic example of the correlations observed between neurons in M1 and movement
parameters, [66] reports that neurons exhibit what is widely known as a “preferred di-
rection” of arm movement in the plane. Figure 7.16 shows a comparison of the spiking
activity of a single cell as the arm moves in 8 directions from experimental data and from
a neuron with a similar preferred direction in the REACH model. In both cells, a strong
preferred direction is visible, shown in the cells’ increased activity in reaches to the left.
The exhibition of preferred direction is also present predominantly during movement in
both cells, where activity either increases or decreases during the movement period and
maintains a baseline firing rate both before and after.

124

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

2.20

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

2.20

A

B

Figure 7.15: The arm performing 8 centre-out reaches with both bias and transformation
adaptation applied. A) Normal reaching. B) Reaching under a force-field post adaptation.

125

0
o

90
o

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

0 500 1000 1500 2000

Figure 7.16: Examining a neuron’s activity profile in response to the arm reaching out to
8 surround-center targets over 5 trials. Top: original results from [66]. Bottom: model
results. In both cases a clear preferred direction for the neuron can be observed.

126

Given the structure of the REACH model, and its realization in spiking neurons, it
can be demonstrated that the REACH model accounts for the same correlations with
movement parameters identified in experimental research, listed in Table 7.1. Figures 7.17
and 7.18 show the correlations from the primary motor cortex and cerebellum as examples.
To generate those figures, the actual and target hand positions are provided to the primary
motor cortex as shown in Figure 7.1, as they are required for the computation of the task-
space control signal and Jacobian matrix. Figure 7.17 shows that neurons in the M1 area
of the model correlate with acceleration, arm position, distance to target, hand position,
movement direction, movement magnitude, and movement velocity. The premotor cortex
is given a signal indicating which action to carry out as well as system position information
which it requires to generate an error signal and modulate the speed of movement execution.
Consequently, neurons in this area of the model correlate with distance to target, hand
position, and movement direction. Finally, the cerebellum is provided with position and
velocity information, as well as an efferent copy of the motor signal, which is necessary
for dynamics compensation and adaptive error correction. The representation of these
signals means that neurons in this area in the model will correlate with arm position and
movement direction, magnitude, and velocity. These correlations, as well as others are as
shown in Figure 7.18.

While these neural correlations with movement parameters and preferred direction simi-
larities are expected as a result of the network structure and implementation with the NEF,
they provide support for the functions being performed in each of the modeled brain ar-
eas. That is to say that each of the variables giving rise to the correlations observed in
the REACH model are a requirement of the algorithms, and finding the same correlations
in experimental work provides evidence for this information being available to the mod-
eled brain areas, suggesting that the functions implemented by the REACH model are
biologically plausible.

7.4.4 Analysis of neural activity with jPCA

More recent work on the motor system has suggested that a simplistic view of neural
activity as correlated with basic movement parameters, like movement direction or velocity,
does not adequately capture neural response properties, especially dynamic ones [30]. To
demonstrate this claim, a novel variation on principal components analysis called ‘jPCA’
was presented in [30] and applied to single-cell neural recordings from monkeys made during
a similar reach task.

This method was devised as a population measure that characterized the changes of
neural activity during a reach movement. Briefly, in jPCA the neural data is projected into

127

Movement
parameter

Model
represen-
tation

References

Acceleration system state M1 [56, 7]
Arm position system state CB [156]

M1 [111, 166]
Distance to
target

control sig-
nal

{M1,
PM} [60]

Hand position system state M1 [7],
PM [106]

Movement di-
rection

control sig-
nal

CB [58, 156],
M1 [66, 7],
PM [26]

Movement
force

control sig-
nal

M1 [106, 167]

Movement
magnitude

control sig-
nal

CB [58],
M1 [135]

Movement ve-
locity

system state CB [156]
M1 [4]

Table 7.1: A table summarizing the correlations with movement parameters found in neural
recordings from different areas of the motor system. The model representation identifies
the signal in the model that carries information about the given movement parameter. CB:
cerebellum; M1: primary motor cortex; PM: pre-motor cortex.

128

0 20 40 60 80 100 120 140
Joint torque (Nm)

5

10

15

20

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with joint torque

0.05 0.10 0.15 0.20 0.25 0.30
Dis tance to targe t (ft)

0
2
4
6
8

10
12
14
16

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with dis tance to targe t

2.30 2.35 2.40 2.45 2.50 2.55
End-e ffector pos ition (ft)

5

10

15

20

25

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with end-e ffector pos ition

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
End-e ffector ve locity (ft/s)

10

15

20

25

30

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with end-e ffector ve locity

0 1 2 3 4
Joint acce le ration (degrees/s)

5

10

15

20

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with joint acce le ration

2

Figure 7.17: Plots of the neurons from the primary motor cortex correlating with various
high-level movement parameters, reflecting the same correlations found in experimental
research as detailed in Table 7.1.

129

100 50 0 50 100
Joint torque (Nm)

10

20

30

40

50

60

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with joint torque

1.45 1.50 1.55 1.60 1.65 1.70
End-e ffector pos ition (ft)

20

25

30

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with end-e ffector pos ition

0.2 0.0 0.2 0.4
End-e ffector ve locity (ft/s)

5
10
15
20
25
30
35
40

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with end-e ffector ve locity

1.35 1.40 1.45 1.50 1.55 1.60 1.65
Joint angle (degrees)

0

5

10

15

20

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with joint angle

0.2 0.1 0.0 0.1 0.2 0.3 0.4
Dis tance to targe t (ft)

40
60
80

100
120
140
160
180

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with dis tance to targe t

3.5 3.0 2.5 2.0 1.5 1.0 0.5
Joint ve locity (degrees/s)

20

40

60

80

100

120

140

160

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with joint ve locity

3 2 1 0 1 2 3 4
Joint acce le ration (degrees/s)

40

60

80

100

120

140

160

Fi
ri

n
g

 r
a

te
 (

H
z)

Neural corre lation with joint acce le ration

Figure 7.18: Plots of the neurons from the cerebellum correlating with various high-level
movement parameters, reflecting the same correlations found in experimental research as
detailed in Table 7.1.

130

−0.5 0 0.5
projection onto jPC1 (a.u.)

−0.5

0

0.5

pr
oj

ec
tio

n
on

to
 jP

C
2

(a
.u

.)

jPCA plane 1 (eigval ranked)
28% of var captured

−0.5 0 0.5
projection onto jPC1 (a.u.)

−0.5

0

0.5

pr
oj

ec
tio

n
on

to
 jP

C
2

(a
.u

.)

jPCA plane 1 (eigval ranked)
29% of var captured

Figure 7.19: jPCA analysis applied to reach data generated from monkeys and the model.
Results from the original analysis is on the left, and from model analysis performed on
randomly chosen neurons from the primary motor cortex on the right. The color is de-
termined by the starting position of the neural activity. Both analyses exhibit a similar
rotating path through the low-dimensional state space over time.

131

the space of the top two principle components of the population activity. This provides
a low-dimensional representation of the neural activity during each trial. A matrix that
best captures the dynamics of the low-dimensional trajectory over time is calculated, with
the constraint that the matrix must be skew-symmetric. The skew-symmetry forces the
dynamics to be captured in terms of a set of oscillators. The principle components of this
skew-symmetric matrix are found, and the low-dimensional representation is projected into
this rotation-centric space.

The original authors note that even during non-rhythmic, discrete actions, such as the
monkey reaches, rotational trajectories were evident. Figure 7.19 shows a comparison of a
jPCA analysis performed on the spiking data from our model and the data from [30]. This
figure demonstrates that the same kinds of dynamics captured by this analysis are found
in the model neural activity as in the empirical data.

7.5 Discussion

In this chapter I have presented the Recurrent Error-driven Adaptive Control Hierarchy
(REACH) model; a large-scale spiking neuron model of the motor cortices and cerebellum
in the motor control system. The REACH model is capable of accounting for behavioural
and single-cell data. The REACH model is the first to provide this broad of a range of
empirical match; there are no other models of the motor control system at this scale able
to match both behavioural and experimental neuroscience data that we are aware of.

7.5.1 Predictions

As a result of its scope, the REACH model is able to help make a number of testable
predictions. One such prediction regards the presence of and location of a secondary
controller that keeps the system near a default resting state. In the REACH model this
signal comes from the primary motor cortex, but another likely location is the cerebellum.
The prediction is that given patients with cerebellar damage who are still able to perform
directed reaching movements, their ability to correct for dimensions of the movement not
related to completing the task should not be compromised. For example, a patient should
be able to start a reach with their elbow in a position away from the normal resting state
and move the elbow back towards resting space during the reach without compromising
task-space performance.

132

Another prediction can be generated by examining the division of signals coming from
the cerebellum in the REACH model. The nonlinear adaptive bias signal, uadapt, maps
to the error correction functionality coming from the intermediate cerebellum (part of the
spino-cerebellar system), and the inertia matrix weighted velocity compensation signal,
Mq̇, maps to the context sensitive corrective signal received from the lateral cerebellum
(part of the cerebro-cerebellar system), where internal models of the body are stored.
With these functional assignments made, damage to these signals can be introduced and
compared to clinical patients with cerebellar damage during reaching tasks. In the case
of lateral cerebellar damage it would be assumed that visual feedback and slow movement
will be of central importance for precise reaches, because the internal model of inertia and
velocity compensation will have been lost; this would be especially apparent in patients
attempting ballistic movements. In the case of intermediate cerebellar damage it would
be expected that while errors in movement (such as those introduced by a forcefield) can
be observed, the ability to learn to correct them automatically given a context where they
consistently appear will be severely impaired. It would be expected that some correction
would still be possible, as the trajectory itself could be altered, but it is hypothesized that
this change in the trajectory (i.e. the DMP generated signal) would be a much slower
change, and result in much longer after-effects when the force-field is removed.

Figure 7.18 presents the correlations of the REACH cerebellum with several high-level
movement parameters. Several parameter correlations not found in the literature review
but present in the REACH model are the correlations with end-effector position, velocity.
As such, another prediction is that these correlations will be found in the cerebellum during
reaching tasks.

In the primary motor cortex the approximation of the Jacobian is modified using the
high-level control and system velocity signals. This is the only place in the primary motor
cortex model that the system velocity signal is used. A prediction that can be made as
a result of this structure is that the system velocity signal should only be detectable in
the primary motor cortex while the system is learning kinematic parameters. The form of
the kinematic adaptation is such that there will be learning whenever x̃ = x − xdes 6= 0,
i.e. whenever the hand is not at the desired position. When the hand is at the desired
position, even when moving, such as in the case of tracing a path, the learning signal will
be zero and the REACH model predicts that a system velocity signal will not be present
in the primary motor cortex. Being able to successfully detect the presence of a system
velocity signal explicitly, and not conflate with neural activity from a high-level control
signal, though, will require a very careful experimental setup.

More easily tested, the REACH model also predicts that in the primary motor cortex
there will be neurons that respond to high-level control signal, system velocity, and system

133

position. These neurons are necessary for the transformation between high- and low-level
control signals. Following upon this prediction, if an experiment were able to successfully
identify all of the neurons sensitive to these signals for a given limb (e.g. all neurons
sensitive to the high-level control signal and right arm velocity and position) and lesion
them, it is predicted that any operational space control of the limb would be destroyed.

In the pre-motor cortex, it is predicted that there will be neurons that fire at a constant
rate throughout a practiced movement, reflecting the oscillator signal that is integrated by
the forcing function ramp population, as detailed in Section 7.3.1. These neurons should
also be insensitive to any parameters of movement aside from possibly the temporal scaling
of the movement. This is because these neurons are not a function of any system variable,
they serve to hold a constant value that can be steadily integrated to move the learned
trajectory forward through time.

7.5.2 Future work

The REACH model is a far from complete model of the motor control system. There are
several possible improvements, ranging from including methods described earlier, but not
in the neural model, to exploring control methods not yet considered in detail.

In the DMP neural network implementation the generalizability of trajectories is not
currently implemented in the neural model, despite being a strength of DMPs. This was
left unimplemented due to time constraints. Additionally, learning and adaptation of DMP
trajectories was not explored in the neural model. This adaptation is is different than that
considered for the controller itself. Instead it is a kind of reinforcement learning, commonly
associated with the basal ganglia, and currently outside of the scope of the REACH model.
Recent work in hierarchical learning has met success with NEF implementations using a
basal model [153], and could possibly serve as a basis for integrating reinforcement learning
with the model presented here. Other proposed trajectory learning methods, e.g. the PI2

algorithm [185] are based on batch learning and a biologically plausible analog has not yet
been presented. It is possible that stochastic gradient descent might be an effective and
simple method for learning trajectories, but this requires exploration. A further desirable
extension to the neural DMP model is an obstacle avoidance system, where an outside
signal would provide the obstacle boundaries and the system would adjust any path being
taken to avoid the identified objects.

As noted, there are also methods of nonlinear adaptive control, such as the tracking
control [29] methods for adapting the Jacobian which have not been thoroughly explored
here. Although not shown, the stability proof for non-autonomous systems with bias

134

adaptation to account for unknown system dynamics is essentially the same as that shown
in Chapter 4, employing Barbalat’s lemma instead of the invariant set theorem. However, a
different proof is required for guaranteeing the stability of non-autonomous systems while
using both transformation and bias adaptation. This form of adaptive tracking control
was omitted due to time constraints, as well as the complexity and hence potentially
biologically implausible calculations used in the original formulation. In order to implement
the methods neurally, it will likely have to be reworked extensively.

A further significant extension to the model would be the development of the sensory
cortices. Currently the feedback signals required in each of the brain areas modeled are
directly provided. A more complete model would have the sensory cortices receiving the
noisy low-level system feedback and transforming it as required. Additionally this signal
should include visual input, as well as a predictive signal developed using the same nonlinear
adaptation techniques presented in Chapter 6. In other work, we have shown that the
same methods can be used for the development of a nonlinear predictive filter because the
prediction problem is a dual of the control problem. The development of such a system will
be especially useful in situations such as the control of a real-world system, where feedback
and control delays require a predictive model for generating ballistic movements.

An important practical extension to the REACH model is to use it to control a physical
robotic arm. Working with Stanford’s Brains in Silicon lab, where the NeuroArm [130]
discussed in Chapter 5 was developed, I have constructed a prototype of the NeuroArm
for our lab. Due to time constraints I was not able to interface the REACH model with
the NeuroArm, but it is important future work to be able to apply the neural imple-
mentation of nonlinear adaptive control to physical systems with more complex dynamics
than simulations, and apply methods for effectively handling real-world constraints such
as time-delay and noise and other unmodelled effects. In the pursuit of this extension the
delay of feedback signals will also have to be addressed, examining how well the REACH
model operates under such conditions. The use of the internal models in the cerebellum, as
a means of feed-forward control to compensate for predictable errors, will play a large role
in effective control of movements that are too fast to be corrected by feedback signals [164].

Additionally, the brain is capable of learning to control effectively in extreme situations
where the effects of activation of different motor neurons or spinal circuits are unknown.
An avenue for future work is to look at how well the methods described here can work to
control in such situations. Humans have a very large developmental period in early life,
and it will be very interesting to see the scale of time required for the REACH model to
learn to control from a ground knowledge of zero.

135

7.5.3 Comparison with the NOCH

As mentioned previously, the REACH model is an extension and update to the NOCH
framework. Where there is an agreement of overall function assignment and flow of infor-
mation between the two, there are also a number of important differences. In both models,
the pre-motor cortices are responsible for planning of high-level trajectories and generating
desired end-effector forces. The primary motor cortex is used to translate these high-level
commands into low-level signals that can be sent out to the body. The cerebellum is used
for storing internal models and providing error correction. However, the means by which
each of these is implemented in the REACH and NOCH models is different.

DMPs are used in the REACH model, where sets of learned actions from which the basal
ganglia generates a weighting over to accomplish novel movements are used in the NOCH
model. This compositionality of movement is not in the scope of the REACH model, which
is missing a basal ganglia, but including this as an extension is discussed below. In the
NOCH the learned actions were developed by analytically solving the Bellman equation in
a highly non-biologically plausible way (see [40] for details). While how trajectories could
be learned is outside the scope of the REACH model, there are potentially biologically
plausible methods, as discussed above.

In the NOCH model the low-level output is decided by an iterative optimization method
to best match a low-level control signal with a desired high-level movement. In the REACH
model an adaptive Jacobian matrix is used to perform this transformation, implemented
fully in spiking neurons, The methods used in the REACH model also allow the primary
motor cortex to generate a secondary control signal that keeps the body near its default
resting state, and incorporate nonlinear adaptive methods to learn to compensate for er-
rors in the model of the system under control. While the iterative optimization used
by the NOCH model might be biologically plausible through a model-predictive system,
the explicit use of such a system to transform control signals at every point in time is
unrealistically expensive for use in a biological system.

In the REACH model error correction is performed by the nonlinear adaptive bias
methods presented in Chapter 6, while in the NOCH model the error correction is simply
an additional PD signal generated from system feedback. The use of internal models is
also explicit in the REACH model, where the inertia matrix for the arm is stored in the
cerebellum and used to cancel out unwanted velocity and interacting forces between the
different arm segments to help linearize their control, while there is no explicit use of
internal models in the NOCH model. Internal models allow the system to learn to predict
upcoming errors in the system signal and compensate in a feed-forward way, rather than
only being able to correct the outgoing control signal once an error is present, as in PD or

136

PID control.

In the NOCH model implemented in [50] the model was able to control a muscle based
arm, because quadratic minimization was used to transform the control signal between
levels using iterative approximation. In the REACH model the control of a muscle based
system is not as straightforward, because the transformation is based on having a Jacobian
matrix rather than an iterative optimization process. There are several possible solutions to
this. The first is to apply the adaptive transformation learning algorithm from nonlinear
adaptive control reformulated for neural networks in Chapter 6. Given sufficient time
this process should be able to learn the necessary transformation. The difficulties of this
approach are common to all learning systems, the most prevalent being the concern over
how many neurons would be required to be able to approximate such a transformation
well. There is a significant increase in the complexity of the transformation to muscles;
where even the response of a control signal is highly dependent on the state (i.e. length and
current activation of the muscle). Another complexity is added in having muscles that span
several joints, where the analytic development of Jacobian matrices is unclear. However,
there has been success recently in control of complex muscle based systems through a
method called muscle based feature control [62]. Further examination of this method will
be required to see if a biologically plausible implementation may be possible.

7.5.3.1 Incorporating the basal ganglia

As mentioned, where the NOCH framework has compositionality of movement as a central
feature and the basal ganglia as a prominent part of the system. However, it is outside
of the scope of the REACH model. Nevertheless, further work on the compositionality
of movement and the role of the basal ganglia, was presented in [43]. In that paper I
presented a model of the development of expertise in humans, based on using previously
learned actions as a starting point to learning a novel action. Initially, the system is
unsure how to perform an action as it has not seen that action before. The basal ganglia
in this model explores combinations of previously learned actions as an approximation of
the desired action. As it converges to a solution, the basal ganglia trains the motor cortex
to generate the same action automatically (i.e. without basal ganglia intervention). This
transfer of knowledge from the subcortical basal ganglia loop to the faster cortical loop
represents the development of expertise, as fewer system resources are required and the
system executes the novel action faster and more consistently.

The integration of this automaticity model presented [43] with the REACH model is
not straightforward. This is because, unlike the NOCH model, which was based on hav-
ing a set of learned movements stored in the primary motor cortex that are weighted to

137

generate an action, in the REACH model, the primary motor cortex is providing a trans-
formation between a high-level control signal and a low-level control signal. Consequently,
the relationship of the REACH model to a compositionality based model is much less
clear. Considering just the pre-motor cortex, however, the basal ganglia and the REACH
models have a more natural relationship. In the DMP literature, work has been done on
classification of movement based on the set of weights applied to the basis function. Hence
the DMPs are weighted compositions of simpler movements. In this work, the weights of
similar trajectories have a larger dot-product than weights for dissimilar trajectories. This
similarity can serve as a means of generating a set of weights for a desired trajectory given
its similarity to previously learned trajectories.

Finally, the basal ganglia was also assigned the role of scaling movements in the NOCH
framework, which fits well with the REACH application of DMPs, which can be scaled and
rotated through the addition of a gain term into their dynamics and goal signals. Having the
basal ganglia responsible for this scaling will allow some direct and potentially interesting
comparisons with patients with basal ganglia damage (e.g. Parkinson’s patients) at a
behavioural level, looking at their ability to generalize straight reaches and more complex
trajectories. In general, however, it remains for future work to consider in more detail
precisely how the basal ganglia and related compositional approaches can be integrated
with the REACH model presented here.

7.6 Conclusions

Validating claims about explicit algorithms used by the brain is very difficult. However,
the REACH model presented in this thesis provides a detailed mechanistic explanation of
a large number of phenomena seen in the motor system. Because this implementation is in
a spiking neural network, biological constraints have been applied allowing the generation
of specific, testable predictions. Continued improvement and testing of these kinds of
detailed, yet functional, models is a promising avenue to improving our understanding of
the biological basis of behaviour.

138

APPENDICES

7.7 Forward transformation matrices

Given a serial robot with two rotating joints, as shown in Figure 7.20, let the joint angles be
denoted q1 and q2, and the control signal be a set of torques acting on these joint angles. To
be able to transform forces between the Cartesian coordinate space of the end-effector and
joint space it is necessary to know the relationship between the position of the end-effector
and each of the joint angles.

The ‘point of view’ from any given point on the robot is referred to as that point is
‘frame of reference’. The ‘origin frame of reference’ is a static frame from which all of the
points of the system can be described and related to each other. By characterizing the
position of the end-effector in terms of the joints of the robot it is possible to understand
how movement of the joints affects the movement of the end-effector.

In this section the relationship of each of the frames of reference of the robot’s links to
the origin, or base, frame of reference is described. The characterization of these relation-
ships is done using forward transformation matrices.

7.7.1 Forward transformation matrices in 2D

Looking from the reference frame of q2, in Figure 7.20, the end-effector point p is length
d2 away along its x-axis. Similarly, the reference frame of q2 is length d1 away from the
reference frame of q1 along q1’s x-axis, and q1 is length d0 away from the origin along the
y-axis of the origin. The problem is how to calculate the position of p in terms of the
origin’s frame of reference.

In this configuration pictured on the left hand side of Figure 7.20 it is straightforward
to figure out: (x = d2, y = d0 + d1). Things become more complicated, however, when the

139

origin

p

origin

p

Figure 7.20: A two-link revolute-revolute(RR) robot. Left: A configuration where the posi-
tion of the end-effector is easily approximated by visual inspection. Right: A configuration
of the robot where the exact position of the end-effector is unclear from visual inspection.

robot changes configuration into something like that shown in on the right hand side of
Figure 7.20.

A method of being able to explicitly calculate the position of the end-effector in the
origin frame of reference that accounts for the rotations and translations of points between
different coordinate frames is desired, such that when the current angles of the robot joints
and the relative positions of their coordinate frames are known it is possible to quickly
calculate the position of the point of interest in terms of the origin coordinate frame.

This task can be broken up into two parts: 1) Accounting for the rotation between
different reference frames, and 2) accounting for the translation between different reference
frames.

7.7.1.1 Accounting for rotation

Figure 7.21 displays two frames of reference with the same origin rotated from each other
by q degrees. Imagine a point p = (px1 , py1) specified in reference frame 1, to find its
coordinates in terms of of the origin reference frame, or (x0, y0) coordinates, it is necessary
to find out the contributions of the x1 and y1 axes to the x0 and y0 axes. The contributions
to the x0 axis from px1 are calculated

px0 = cos(q)px1 , (7.5)

140

90

90-

y
1

y
0

x1

x0

Figure 7.21: Two reference frames at the same origin, rotated q degrees.

which takes the x1 position of px1 and maps it to x0. To calculate how py1 affects the
position in x0 we calculate

py0 = cos(90 + q)py1 , (7.6)

which is equivalent to −cos(90− q), as shown in Figure 7.21. This term can be rewritten
as −sin(q) because sin and cos are phase shifted 90 degrees from one another. This leads
to the total contributions of a point defined in the (x1, y1) axes to the x0 axis being

p0x = cos(q)px1 − sin(q)py1 . (7.7)

Similarly for the y0 axis contributions we have

p0y = sin(q)px1 + sin(90− q)py1 , (7.8)

p0y = sin(q)px1 + cos(q)py1 . (7.9)

Rewriting Eq. 7.7 and Eq. 7.9 in matrix form gives:

R1
0 p1 =

[
cos(q0) −sin(q0)
sin(q0) cos(q0)

] [
px1
py1

]
, (7.10)

where R1
0 is called a rotation matrix. The notation used here for these matrices is that the

reference frame number being rotated from is denoted in the superscript, and the reference
frame being rotated into is in the subscript. R1

0 denotes a rotation from reference frame 1
into reference frame 0.

To transform any point in reference frame 1 into reference frame 0 is a multiplication
by the rotation matrix R1

0.

141

y
0

y
1

x1

x0

p

90-

(3,2)

Figure 7.22: Two reference frames with rotated q degrees and translated (3, 2) from each
other, and a point p = (2, 2) in reference frame 1.

7.7.1.2 Accounting for translation

The second part of transformation is translation, and so it is also necessary to account for
distances between reference frame origins. Given the reference frames 1 and 0 shown in
Figure 7.22, where point p = (2, 2) in reference frame 1. Reference frame 1 is rotated 45
degrees from and located at (3, 2) in reference frame 0. To account for this translation and
rotation a new matrix will be created that includes both rotation and translation. It is
generated by appending distances, denoted D, to the rotation matrix R1

0 along with a row
of zeros ending in a 1 to get a transformation matrix:

T1
0 =

[
R1

0 D1
0

0 1

]
(7.11)

T1
0 =

 cos(q0) −sin(q0) dx0
sin(q0) cos(q0) dy0

0 0 1

 . (7.12)

To make the matrix-vector multiplications work out, a homogeneous representation must
be used, which adds an extra row with a 1 to the end of the vector p to give

p =

 px
py
1

 . (7.13)

142

Figure 7.23: A three link, planar revolute-revolute-revolute arm. The point end-effector p
is defined in the reference frame of the third link, and must be transformed to the origin
reference frame.

When position vector p is multiplied by the transformation matrix T1
0 the answer should

be somewhere around (3, 5) from visual inspection, and indeed:

T1
0 p =

 cos(45) −sin(45) 3
sin(45) cos(45) 2

0 0 1

 2
2
1

 =

 3
4.8285

1

 . (7.14)

To get the coordinates of p in reference frame 0 now simply take the first two elements of
the resulting vector p = (3, 4.8285).

7.7.1.3 Applying multiple transformations

Multiple transformation matrices can also be strung together. Given the robot arm shown
in Figure 7.23, the end-effector is at point (1, 2) in reference frame 2, which is at an 80
degree angle from reference frame 1 and located at (x1 = 2.5, y1 = 4). The transformation

143

matrix for moving from reference frame 2 to reference frame 1 is:

T2
1 =

 cos(80) −sin(80) 2.5
sin(80) cos(80) 4

0 0 1

 . (7.15)

To get the position of the end-effector in terms of reference frame 0 it is necessary to
transform from reference frame 2 into reference frame 1 with T1 and then from reference
frame 1 into reference frame 0 with the previously defined transformation matrix T1

0:

T1
0 =

 cos(45) −sin(45) 3
sin(45) cos(45) 2

0 0 1

 . (7.16)

By applying the transformation matrices one after the other it is possible to move from
reference frame 2 down to reference frame 0:

T1
0 T2

1

 px2
py2
1

 =

 px0
py0
1

 , (7.17)

 cos(45) −sin(45) 3
sin(45) cos(45) 2

0 0 1

 cos(80) −sin(80) 2.5
sin(80) cos(80) 4

0 0 1

 1
2
1

 =

 −0.273
6.268

1

 , (7.18)

which gives the result the point p is at (−0.273, 6.268) in reference frame 0.

It is also often worthwhile to define a single matrix to perform the entire translation in
one step:

T2
0 = T1

0 T2
1, (7.19)

such that multiplication of the point in reference frame 2 by this new transformation matrix
T2

0 transforms it into the coordinates of reference frame 0.

7.7.2 Forward transform matrices in 3D

The previous examples of transformation matrices were all for 2D systems, but it is straight-
forward to generalize to 3 dimensions. The example here is based on Samir Menon’s RPP
control tutorial 3.

3http://web.stanford.edu/~smenon/code/rppbot/MathTutorial_01_RPPBot.htm

144

http://web.stanford.edu/~smenon/code/rppbot/MathTutorial_01_RPPBot.htm

Figure 7.24: A three-link revolute-prismatic-prismatic (RPP) robot.

Given a standard revolute-prismatic-prismatic robot, a sketch of which is shown in
Figure 7.24, where the base rotates around the z axis, and the distance from reference
frame 0 to reference frame 1 is 1 unit, also along the z axis. The rotation matrix from
reference frame 1 to reference frame 0 is:

R1
0 =

 cos(q0) −sin(q0) 0
sin(q0) cos(q0) 0

0 0 1

 (7.20)

and the translation vector is
D1

0 = [0, 0, 1]T . (7.21)

The transformation matrix from reference frame 1 to reference frame 0 is then:

T1
0 =

cos(q0) −sin(q0) 0 0
sin(q0) cos(q0) 0 0

0 0 1 1
0 0 0 1

 , (7.22)

where the third column indicates that there was no rotation around the z axis in moving
between reference frames, and the forth (translation) column shows that we move 1 unit
along the z axis. The fourth row is again then only present to make the multiplications
work out and provides no information.

145

For transformation from the reference frame 2 to reference frame 1, there is no rotation
(because it is a prismatic joint), and there is translation along the y axis of reference frame
1 equal to .5 + q1. This gives a transformation matrix:

T2
1 =

1 0 0 0
0 1 0 0.5 + q1
0 0 1 0
0 0 0 1

 . (7.23)

The final transformation, from the origin of reference frame 2 to the end-effector position
is similarly another transformation with no rotation (because this joint is also prismatic),
that translates along the z axis:

Tee
2 =

1 0 0 0
0 1 0 0
0 0 1 −0.2− q2
0 0 0 1

 . (7.24)

The full transformation from reference frame 0 to the end-effector is found by combining
all of the above transformation matrices:

Tee
0 = T1

0 T2
1 Tee

2 =

cos(q0) −sin(q0) 0 −sin(q0)(0.5 + q1)
sin(q0) cos(q0) 0 cos(q0)(0.5 + q1)

0 0 1 0.8− q2
0 0 0 1

 . (7.25)

To transform a point from the end-effector reference frame into terms of the origin
reference frame, simply multiply the transformation matrix by the point of interest relative
to the end-effector. If it is the end-effector position that is of interest to us, p = [0, 0, 0, 1]T .
For example, let q0 = π

3
, q1 = .3, and q2 = .4, then the end-effector location is:

Tee
0 p =

cos(q0) −sin(q0) 0 −sin(q0)(0.5 + q1)
sin(q0) cos(q0) 0 cos(q0)(0.5 + q1)

0 0 1 .8 + q2
0 0 0 1

0
0
0
1

 =

−0.693

0.4
0.8
1

 . (7.26)

7.7.2.1 Inverting the transformation matrices

If a point is defined in terms of reference frame 0 and needs to be translated into a reference
frame relative to the end-effector, an inverse transform matrix can be used. Because of the

146

way the transformation matrices are constructed, calculating the inverse transform ends
up being straight-forward. Continuing the same robot example and configuration as above,
and denoting the rotation part of the transform matrix R and the translation part D, the
inverse transform is defined:

(Tee
0)−1 =

[
(Ree

0)T −(Ree
0)T Dee

0

0 1

]
. (7.27)

Given a point p = [1, 1, .5, 1]T in reference frame 0, then relative to the end-effector it is
at:

pxee
pyee
pzee
1

 = (Tee
0)−1

px0
py0
pz0
1

 =

1.37
−1.17
−0.3

1

 . (7.28)

7.8 Jacobians, velocity, and force

A Jacobian defines the dynamic relationship between two different representations of a
system. Given a robot arm with joint angles and velocity, q and q̇, respectively, and end-
effector position and velocity, x and ẋ, respectively, the Jacobian relates how movement
of the description of q causes movement in the description of x. The Jacobian is a linear
approximation of the system kinematics at a given point in time, and so must be constantly
updated to ensure that any calculations using it are accurate.

Formally, a Jacobian is defined through as a set of partial differential equations:

J(q) =
∂x

∂q
. (7.29)

Rearranging this equation gives

J(q) =
∂x

∂t

∂t

∂q
→ ∂x

∂t
= J(q)

∂q

∂t
, (7.30)

or
ẋ = J(q) q̇. (7.31)

This says that the end-effector velocity is equal to the Jacobian, J, multiplied by the joint
angle velocity, q̇.

147

Figure 7.25: A serial 2-link robot arm, with joint angles θ0 and θ1. The reference frame
from the first joint is along the axes (x0, y0), and the reference frame of the second joint is
along the axes (x1, y1).

The importance of the Jacobian comes from the desire to control in operational (or task)
space, i.e. to plan a trajectory in a different space than can be controlled directly. Jacobians
provide a way to calculate what the control signal is in the space that we control (torques)
given a control signal in one we do not (end-effector forces). The above equation, however,
relates the velocities between two different spaces, but what is needed is a relationship
between forces in these spaces.

7.8.1 Energy equivalence and Jacobians

Conservation of energy is a property of all physical systems where the amount of energy
expended is the same no matter how the system in question is being represented. The
planar two-link robot arm shown in Figure 7.25 will be used for illustration. Let the joint
angle positions be denoted q = [q0, q1]

T , and end-effector position be denoted x = [x, y, 0]T .

148

Work is the application of force over a distance

W =

∫
FTvdt (7.32)

, where W is work, F is force, and v is velocity.

Power is the rate at which work is performed

P =
d

dt
W, (7.33)

where P is power. Substituting in Eq. 7.32 into Eq. 7.33 gives:

P =
d

dt
FTv. (7.34)

Because of energy equivalence, work is performed at the same rate regardless of the
characterization of the system. Rewriting Eq. 7.34 in terms of end-effector space gives:

P = FT
x ẋ, (7.35)

where Fx is the force applied to the hand, and ẋ is the velocity of the hand. Rewriting
Eq. 7.34 in terms of joint-space gives:

P = FT
q q̇, (7.36)

where Fq is the torque applied to the joints, and q̇ is the angular velocity of the joints.
Setting Eq. 7.35 and Eq. 7.36 equal to each other and substituting with Eq. 7.31 gives

FT
qhand

q̇ = FT
x ẋ, (7.37)

FT
qhand

q̇ = FT
xJee(q) q̇, (7.38)

FT
qhand

FT
xJee(q), (7.39)

Fqhand
= JTee(q)Fx, (7.40)

where Jee(q) is the Jacobian for the end-effector of the robot, and Fqhand
represents the

forces in joint-space that affect movement of the hand. This says that not only does the
Jacobian relate velocity from one state-space representation to another, it can also be used
to calculate what the forces in joint space should be to effect a desired set of forces in
end-effector space.

149

7.8.2 Building the Jacobian

In deriving the Jacobian, the relationship between the end-effector position and the robot
is joint angles needs to be defined. To do this, forward transformation matrices, described
in Section 7.7, can be employed.

7.8.2.1 The forward transformation matrix

Recall that transformation matrices allow a given point to be transformed between different
reference frames. In this case, the position of the end-effector relative to the second joint
of the robot arm is known, but where it is relative to the base reference frame (the first
joint reference frame in this case) is of interest. This means that only one transformation
matrix is needed, transforming from the reference frame attached to the second joint back
to the base.

The rotation part of this matrix is straight-forward to define, as in the previous section:

R1
0 =

 cos(q0) −sin(q0) 0
sin(q0) cos(q0) 0

0 0 1

 . (7.41)

The translation part of the transformation matrices is a little different than before because
reference frame 1 changes as a function of the angle of the previous joint’s angles. From
trigonometry, given a vector of length r and an angle q the x position of the end point is
defined r cos(q), and the y position is r sin(q). The arm is operating in the (x, y) plane,
so the z position will always be 0.

Using this knowledge, the translation part of the transformation matrix is defined:

D1
0 =

 L0cos(q0)
L0sin(q0)

0

 . (7.42)

Giving the forward transformation matrix:

T1
0 =

[
R1

0 D1
0

0 1

]
=

cos(q0) −sin(q0) 0 L0cos(q0)
sin(q0) cos(q0) 0 L0sin(q0)

0 0 1 0
0 0 0 1

 , (7.43)

150

which transforms a point from reference frame 1 (elbow joint) to reference frame 0 (shoulder
joint / base).

The point of interest is the end-effector which is defined in reference frame 1 as a
function of joint angle, q1 and the length of second arm segment, L1:

x =

L1cos(q1)
L1sin(q1)

0
1

 . (7.44)

To find the position of our end-effector in terms of the origin reference frame multiply the
point x by the transformation T1

0:

T1
0 x =

cos(q0) −sin(q0) 0 L0cos(q0)
sin(q0) cos(q0) 0 L0sin(q0)

0 0 1 0
0 0 0 1

L1cos(q1)
L1sin(q1)

0
1

 , (7.45)

T1
0x =

L1cos(q0)cos(q1)− L1sin(q0)sin(q1) + L0cos(q0)
L1sin(q0)cos(q1) + L1cos(q0)sin(q1) + L0sin(q0)

0
1

 (7.46)

where, by pulling out the L1 term and using the trig identities

cos(α)cos(β)− sin(α)sin(β) = cos(α + β) (7.47)

and
sin(α)cos(β) + cos(α)sin(β) = sin(α + β) (7.48)

the position of our end-effector can be rewritten: L0cos(q0) + L1cos(q0 + q1)
L0sin(q0) + L1sin(q0 + q1)

0

 , (7.49)

which is the position of the end-effector in terms of joint angles. As mentioned above,
however, both the position of the end-effector and its orientation are needed; the rotation
of the end-effector relative to the base frame must also be defined.

151

7.8.2.2 Accounting for orientation

Fortunately, defining orientation is simple, especially for systems with only revolute and
prismatic joints (spherical joints will not be considered here). With prismatic joints, which
are linear and move in a single plane, the rotation introduced is 0. With revolute joints,
the rotation of the end-effector in each axis is simply a sum of rotations of each joint in
their respective axes of rotation.

In the example case, the joints are rotating around the z axis, so the rotation part of
our end-effector state is ωx

ωy
ωz

 =

 0
0

q0 + q1

 , (7.50)

where ω denotes angular velocity. If the first joint had been rotating in a different plane,
e.g. in the (x, z) plane around the y axis instead, then the orientation would be ωx

ωy
ωz

 =

 0
q0
q1

 . (7.51)

7.8.2.3 Partial differentiation

Once the position and orientation of the end-effector have been calculated, the partial
derivative of these equations need to be calculated with respect to the elements of q. For
simplicity, the Jacobian will be broken up into two parts, Jv and Jω, representing the linear
and angular velocity, respectively, of the end-effector.

The linear velocity part of our Jacobian is:

Jv(q) =

∂x
∂q0

∂x
∂q1

∂y
∂q0

∂y
∂q1

∂z
∂q0

∂z
∂q1

 =

 −L0sin(q0)− L1sin(q0 + q1) −L1sin(q0 + q1)
L0cos(q0) + L1cos(q0 + q1) L1cos(q0 + q1)

0 0

 . (7.52)

The angular velocity part of our Jacobian is:

Jω(q) =

∂ωx

∂q0
∂ωx

∂q1
∂ωy

∂q0

∂ωy

∂q1
∂ωz

∂q0
∂ωz

∂q1

 =

 0 0
0 0
1 1

 . (7.53)

152

The full Jacobian for the end-effector is then:

Jee(q) =

[
Jv(q)
Jω(q)

]
=

−L0sin(q0)− L1sin(q0 + q1) −L1sin(q0 + q1)
L0cos(q0) + L1cos(q0 + q1) L1cos(q0 + q1)

0 0
0 0
0 0
1 1

 . (7.54)

7.8.3 Analyzing the Jacobian

Once the Jacobian is built, it can be analyzed for insight about the relationship between
ẋ and q̇.

For example, there is a large block of zeros in the middle of the Jacobian defined above,
along the row corresponding to linear velocity along the z axis, and the rows corresponding
to the angular velocity around the x and y axes. This means that the z position, and
rotations ωx and ωy are not controllable. This can be seen by going back to the first
Jacobian equation:

ẋ = Jee(q) q̇.

No matter what the values of q̇, it is impossible to affect ωx, ωy, or z, because the cor-
responding rows during the above multiplication with the Jacobian are 0. These rows of
zeros in the Jacobian are referred to as its ‘null space’. Because these variables can’t be
controlled, they will be dropped from both Fx and J(q).

Looking at the variables that can be affected it can be seen that given any two of
x, y, ωz the third can be calculated because the robot only has 2 degrees of freedom (the
shoulder and elbow). This means that only two of the end-effector variables can actually
be controlled. In the situation of controlling a robot arm, it is most useful to control the
(x, y) coordinates, so ωz will be dropped from the force vector and Jacobian.

After removing the redundant term, the force vector representing the controllable end-
effector forces is

Fx =

[
fx
fy

]
, (7.55)

where fx is force along the x axis, fy is force along the y axis, and the Jacobian is written

Jee(q) =

[
−L0sin(q0)− L1sin(q0 + q1) −L1sin(q0 + q1)
L0cos(q0) + L1cos(q0 + q1) L1cos(q0 + q1)

]
. (7.56)

153

If instead fωz , i.e. torque around the z axis, were chosen as a controlled force then the
force vector and Jacobian would be (assuming force along the x axis was also chosen):

Fx =

[
fx
fωz

]
, (7.57)

Jee(q) =

[
−L0sin(q0)− L1sin(q0 + q1) −L1sin(q0 + q1)

1 1

]
. (7.58)

7.8.4 Using the Jacobian

With the Jacobian defined the changes in linear and angular end-effector velocities caused
by different joint angle velocities can be calculated, and desired end-effector space forces,
Fx, can be transformed into joint-space torques, Fq. Two example cases will now be
provided, using the full Jacobian in the first example and the simplified Jacobian in the
second example.

7.8.4.1 Example 1

Given known joint angle velocities with arm configuration

q =

[
π
4
3π
8

]
q̇ =

[
π
10
π
10

]
,

and arm segment lengths Li = 1, the (x, y) velocities of the end-effector can be calculated
by substituting in the system state at the current time into Eq. 7.31

ẋ = Jee(q) q̇,

ẋ =

−sin(π

4
)− sin(π

4
+ 3π

8
) −sin(π

4
+ 3π

8
)

cos(π
4
) + cos(π

4
+ 3π

8
) cos(π

4
+ 3π

8
)

0 0
0 0
0 0
1 1

[

π
10
π
10

]
,

ẋ =
[
−0.8026,−0.01830, 0, 0, 0,

π

5

]T
.

And so the end-effector is linear velocity is (−0.8026,−0.01830, 0)T , with angular velocity
is (0, 0, π

5
)T .

154

7.8.4.2 Example 2

Given the same system and configuration as in the previous example as well as a trajectory
planned in (x, y) space, the goal is to calculate the torques required to get the end-effector
to move as desired. The controlled variables will be forces along the x and y axes, and so
the reduced Jacobian from the previous section will be used. Let the desired (x, y) forces
be

Fx =

[
1
1

]
,

to calculate the corresponding joint torques the desired end-effector forces and current
system state parameters are substituted into Eq. 7.40

Fq = JTee(q)Fx,

Fq =

[
−sin(π

4
)− sin(π

4
+ 3π

8
) cos(π

4
) + cos(π

4
+ 3π

8
)

−sin(π
4

+ 3π
8

) cos(π
4

+ 3π
8

)

] [
1
1

]
,

Fq =

[
−1.3066
−1.3066

]
.

So given the current configuration to get the end-effector to move as desired, without
accounting for the effects of inertia and gravity, the torques to apply to the system are
Fq = [−1.3066,−1.3066]T .

7.9 Accounting for mass and gravity

In very simple systems where highly precise control isn’t required, the effects of gravity
and inertia can be ignored, but in general they must be accounted for and cancelled out.
The full dynamics of a robot arm are

M(q)q̈ = (u−C(q, q̇)− g(q)), (7.59)

where q̈ is joint angle acceleration, u is the control signal (specifying torque), C(q, q̇) is a
function describing the Coriolis and centrifugal effects, g(q) is the effect of gravity in joint
space, and M is the mass matrix of the system in joint space.

There are a lot of terms involved in the system acceleration, so while the Jacobian
can be used to transform forces between coordinate systems it is clear that just setting
the control signal u = JTee(q)Fx is not sufficient, because a lot of the dynamics affecting

155

z
0

0

z
1

x
1

x

Figure 7.26: A two link arm extending along the (x, z) dimensions with y extending into
the diagram. The yellow circles represent the centres-of-mass (COM) of each link.

acceleration aren’t accounted for. In this section an effective PD controller operating in
joint space will be developed that will allow for more precise control by cancelling out
unwanted acceleration terms. To do this the effects of inertia and gravity need to be
calculated.

7.9.1 Accounting for inertia

The fact that systems have mass introduces inertia into the system dynamics, making
control of how the system will move at any given point in time more difficult. Mass can be
thought of as an object’s unwillingness to respond to applied forces. The heavier something
is, the more resistant it is to acceleration, and the force required to move a system along
a desired trajectory depends on both the object’s mass and its current acceleration. To
effectively control a system, the system inertia needs to be calculated so that it can be
included in the control signal and cancelled out.

Assume a robot arm operating in the (x, z) plane, shown in Figure 7.26 with the y
axis extending into the picture where the yellow circles represent each links centre-of-mass
(COM). The position of each link is COM is defined relative to that link’s reference frame,
and the goal is to figure out how much each link’s mass will affect the system dynamics.

The first step is to transform the representation of each of the COM from Cartesian

156

coordinates in the reference frame of their respective arm segments into terms of joint
angles, such that the Jacobian for each COM can be calculated.

Let the COM positions relative to each segment’s coordinate frame be

com0 =

 1
2
cos(q0)

0
1
2
sin(q0)

 , com1 =

 1
4
cos(q1)

0
1
4
sin(q1)

 .
The first segment’s COM is already in base coordinates (since the first link and the base
share the same coordinate frame), so all that is required is the position of the second link’s
COM in the base reference frame, which can be done with the transformation matrix

T1
0 =

cos(q1) 0 −sin(q1) L0cos(q0)

0 1 0 0
sin(q1) 0 cos(q1) L0sin(q0)

0 0 0 1

 . (7.60)

Using T1
0 to transform the com1 gives

T1
0 com1 =

cos(q1) 0 −sin(q1) L0cos(q0)

0 1 0 0
sin(q1) 0 cos(q1) L0sin(q0)

0 0 0 1

1
4
cos(q1)

0
1
4
sin(q1)

1

 (7.61)

T1
0 com1 =

L0cos(q0) + 1

4
cos(q0 + q1)

0
L0sin(q0) + 1

4
cos(q0 + q1)

1

 . (7.62)

With the COM positions in the origin reference frame and in terms of joint angles, the

157

Jacobians for each point can be found using Eq. 7.31, which gives

J0(q) =

−1

2
sin(q0) 0

0 0
1
2
cos(q0) 0

0 0
1 0
0 0

 ,

J1(q) =

−L0sin(q0)− 1

4
sin(q0 + q1) −1

4
sin(q0 + q1)

0 0
−L0cos(q0)− 1

4
cos(q0 + q1) −1

4
cos(q0 + q1)

0 0
1 1
0 0

 .

7.9.1.1 Kinetic energy

The total energy of a system can be calculated as a sum of the energy introduced from
each source. The Jacobians just derived will be used to calculate the kinetic energy each
link generates during motion. Each link’s kinetic energy will be calculated and summed
to get the total energy introduced into the system by the mass and configuration of each
link.

Kinetic energy (KE) is one half of mass times velocity squared:

KE =
1

2
ẋTMx(q) ẋ, (7.63)

where Mx is the mass matrix of the system, with the subscript x denoting that it is defined
in Cartesian space, and ẋ is a velocity vector, where ẋ is of the form

ẋ =

ẋ
ẏ
ż
ω̇x
ω̇y
ω̇z

 , (7.64)

158

and the mass matrix is structured

Mxi
(q) =

mi 0 0 0 0 0
0 mi 0 0 0 0
0 0 mi 0 0 0
0 0 0 Ixx Ixy Ixz
0 0 0 Iyx Iyy Iyz
0 0 0 Izx Izy Izz

 , (7.65)

where mi is the mass of COM i, and the Iij terms are the moments of inertia, which define
the object’s resistance to change in angular velocity about the axes, the same way that the
mass element defines the object’s resistance to changes in linear velocity.

As mentioned above, the mass matrix for the COM of each link is defined in Cartesian
coordinates in its respective arm segment’s reference frame. The effects of mass need to be
found in joint angle space, however, because that is where the controller operates. Looking
at the summation of the KE introduced by each COM:

KE =
1

2
Σn
i=0(ẋ

T
i Mxi

(q) ẋi), (7.66)

and substituting in ẋ = J q̇,

KEi =
1

2
Σn
i=0(q̇

T JTi Mxi
(q)Ji q̇), (7.67)

and moving the q̇ terms outside the summation,

KEi =
1

2
q̇T Σn

i=0(J
T
i Mxi

(q)Ji) q̇. (7.68)

Defining
M(q) = Σn

i=0 JTi (q)Mxi
(q) Ji(q), (7.69)

gives

KE =
1

2
q̇ M(q) q̇, (7.70)

which is the equation for calculating kinetic energy in joint space. Thus, M(q) denotes
the inertia matrix in joint space.

159

7.9.1.2 Inertia in operational space

Being able to calculate M(q) allows inertia to be cancelled out in joint-space by incorpo-
rating it into the control signal, but to cancel out the inertia of the system in operational
space more work is still required. The first step will be calculating the acceleration in
operational space. This can be found by taking the time derivative of Eq. 7.31:

d

dt
ẋ =

d

dt
(Jee(q) q̇), (7.71)

ẍ = J̇ee(q) q̇ + Jee(q) q̈. (7.72)

Substituting in the dynamics of the system, Eq. 7.59, but ignoring the effects of gravity
for now, gives:

ẍ = J̇ee(q) q̇ + Jee(q) M−1(q)[u−C(q, q̇)]. (7.73)

Define the control signal
u = JTee(q)Fx, (7.74)

where substituting in for Fx, the desired end-effector force, gives

u = JTee(q) Mxee(q) ẍdes, (7.75)

where ẍdes denotes the desired end-effector acceleration. Substituting the above equation
into Eq. 7.73 gives

ẍ = J̇ee(q) q̇ + Jee(q) M−1(q)[JTee(q) Mxee(q) ẍdes −C(q, q̇)]. (7.76)

Rearranging terms leads to

ẍ = Jee(q) M−1(q) JTee(q) Mxee(q) ẍdes + [J̇ee(q) q̇− Jee(q)M−1(q) C(q, q̇)], (7.77)

the last term is ignored due to the complexity of modeling it (this will be corrected in
Chapter 4), resulting in

ẍ = Jee(q) M−1(q)JTee(q) Mxee(q) ẍdes. (7.78)

At this point, to get the dynamics ẍ to be equal to the desired acceleration ẍdes, the
end-effector inertia matrix Mxee needs to be chosen carefully. By setting

Mxee(q) = [Jee(q) M−1(q) JTee(q)]−1, (7.79)

Eq. 7.78 becomes

ẍ = Jee(q) M−1(q)JTee(q) [Jee(q) M−1(q) JTee(q)]−1 ẍdes, (7.80)

ẍ = ẍdes. (7.81)

160

7.9.2 Accounting for gravity

With the forces of inertia accounted for, gravity will now be addressed. To compensate for
gravity the concept of conservation of energy (i.e. the work done by gravity is the same
in all coordinate systems) will once again be used. The controller operates by applying
torque on joints, so it is necessary to be able to calculate the effect of gravity in joint space
to cancel it out.

While the effect of gravity in joint space isn’t obvious, it is quite easily defined in
Cartesian coordinates in the base frame of reference. Here, the work done by gravity is
simply the summation of the distance each link’s center of mass has moved multiplied
by the force of gravity. Where the force of gravity in Cartesian space is the mass of the
object multiplied by -9.8m/s2 along the z axis, the equation for the work done by gravity
is written

Wg = Σn
i=0(F

T
gi

ẋi), (7.82)

where Fgi is the force of gravity on the ith arm segment. Because of the conservation of
energy, the equation for work is equivalent when calculated in joint space, substituting into
the above equation with Eq. 7.32:

FT
q q̇ = Σn

i=0(F
T
gi

ẋi), (7.83)

and then substitute in using ẋi = Ji(q) q̇,

FT
q q̇ = Σn

i=0(F
T
gi

Ji(q) q̇), (7.84)

and cancelling out the q̇ terms on both sides,

FT
q = Σn

i=0(F
T
gi

Ji(q)), (7.85)

Fq = Σn
i=0(J

T
i (q)Fgi) = g(q), (7.86)

which says that to find the effect of gravity in joint space simply multiply the mass of each
link by its Jacobian, multiplied by the force of gravity in (x, y, z) space, and sum over each
link. This summation gives the total effect of the gravity on the system.

161

References

[1] A Lorinez. Common control principles of basal ganglia - thalamocortical loops and
the hippocampus. Neural Network World, pages 1–30, 1997.

[2] Mohamed Nabeel Abdelghani. The Role of Sensitivity Derivatives in Sensorimotor
Learning. PhD thesis, University of Toronto, 2011.

[3] Afsheen Afshar, Gopal Santhanam, Byron M Yu, Stephen I Ryu, Maneesh Sahani,
and Krishna V Shenoy. Single-trial neural correlates of arm movement preparation.
Neuron, 71(3):555–564, 2011.

[4] Garrett E Alexander and Michael D Crutcher. Neural representations of the target
(goal) of visually guided arm movements in three motor areas of the monkey. J
Neurophysiol, 64(1):164–178, 1990.

[5] Mehran Emadi Andani, Fariba Bahrami, Parviz Jabehdar Maralani, and Auke Jan
Ijspeert. MODEM: a multi-agent hierarchical structure to model the human motor
control system. Biological cybernetics, 101(5-6):361–77, December 2009.

[6] Mehran Emadi Andani, Fariba Bahrami, Parviz Jabehdar Maralani, and Auke Jan
Ijspeert. Modem: a multi-agent hierarchical structure to model the human motor
control system. Biological cybernetics, 101(5-6):361–377, 2009.

[7] James Ashe and Apostolos P Georgopoulos. Movement parameters and neural ac-
tivity in motor cortex and area 5. Cerebral Cortex, 4(6):590–600, 1994.

[8] M Athans. The role and use of the stochastic Linear-Quadratic-Gaussian problem in
control system design. Transaction on automatic control, 16(6):529–552, 1971.

[9] Frederico A.C. Azevedo, Ludmila R.B. Carvalho, Lea T. Grinberg, Jos Marcelo Far-
fel, Renata E.L. Ferretti, Renata E.P. Leite, Wilson Jacob Filho, Roberto Lent, and

162

Suzana Herculano-Houzel. Equal numbers of neuronal and nonneuronal cells make
the human brain an isometrically scaled-up primate brain. The Journal of Compar-
ative Neurology, 513(5):532–541, 2009.

[10] Izhar Bar-Gad, Genela Morris, and Hagai Bergman. Information processing, di-
mensionality reduction and reinforcement learning in the basal ganglia. Progress in
neurobiology, 71(6):439–73, December 2003.

[11] Amy Bastian. Learning to predict the future: the cerebellum adapts feedforward
movement control. Current Opinions in Neurobiology, 16(6):645–649, 2006.

[12] Amy Bastian. Understanding sensorimotor adaptation and learning for rehabilita-
tion. Current opinion in neurology, 21(6):628, 2008.

[13] Trevor Bekolay. Learning in large-scale spiking neural networks. Master’s thesis,
University of Waterloo, Waterloo, ON, 09/2011 2011.

[14] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary,
Anand R Chandrasekaran, J Bussat, Rodrigo Alvarez-Icaza, John V Arthur,
PA Merolla, and Kwabena Boahen. Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations. Proceedings of the IEEE, 102(5):699–716,
2014.

[15] Max Berniker, Anthony Jarc, Emilio Bizzi, and Matthew C Tresch. Simplified and
effective motor control based on muscle synergies to exploit musculoskeletal dynam-
ics. Proceedings of the National Academy of Sciences of the United States of America,
106(18):7601–6, May 2009.

[16] Bennett Bertenthal and Claes Von Hofsten. Eye, head and trunk control: the founda-
tion for manual development. Neuroscience & Biobehavioral Reviews, 22(4):515–520,
1998.

[17] Aude Billard, Yann Epars, Sylvain Calinon, Stefan Schaal, and Gordon Cheng. Dis-
covering optimal imitation strategies. Robotics and Autonomous Systems, 47(2-3):69–
77, June 2004.

[18] C. A. Bloxham, T. A. Mindel, and C. D. Frith. Initiation and execution of predictable
and unpredictable movements in parkinson’s disease. Brain, 107(2):371–384, 1984.

[19] Hal Blumenfield. Neuroanatomy (Blumenfeld,Neuroanatomy through Clinical Cases).
Sinauer Associates, Inc, 2002.

163

[20] G Bortoff and PL Strick. Corticospinal terminations in two new-world primates:
further evidence that corticomotoneuronal connections provide part of the neural
substrate for manual dexterity. The Journal of neuroscience : the official journal of
the Society for Neuroscience, 13(12):5105–5118, December 1993.

[21] Andreea C Bostan, Richard P Dum, and Peter L Strick. The basal ganglia commu-
nicate with the cerebellum. In Proceedings of the National Academy of Sciences of
the United States of America, volume 107, pages 8452–8456, 2010.

[22] Jonas Buchli, Freek Stulp, Evangelos Theodorou, and Stefan Schaal. Learning vari-
able impedance control. The International Journal of Robotics Research, 30(7):820–
833, 2011.

[23] Daniel Bullock and Stephen Grossberg. Vite and flete: Neural modules for trajectory
formation and postural control. Advances in Psychology, 62:253–297, 1989.

[24] Daniele Caligiore, Tomassino Ferrauto, Domenico Parisi, Neri Accornero, Marco
Capozza, and Gianluca Baldassarre. Using motor babbling and hebb rules for mod-
eling the development of reaching with obstacles and grasping. International Con-
ference on Cognitive Systems, page E18, 2008.

[25] Daniele Caligiore, Giovanni Pezzulo, R Chris Miall, and Gianluca Baldassarre. The
contribution of brain sub-cortical loops in the expression and acquisition of action
understanding abilities. Neuroscience & Biobehavioral Reviews, 37(10):2504–2515,
2013.

[26] R Caminiti, PB Johnson, C Galli, S Ferraina, Y Burnod, and A Urbano. Making
arm movements within different parts of space: the premotor and motor cortical
representation of a coordinate system for reaching to visual targets. J Neurosci,
11(5):1182–1197, 1991.

[27] Adam F Carpenter, Apostolos P Georgopoulos, and Giuseppe Pellizzer. Motor cor-
tical encoding of serial order in a context-recall task. Science, 283(5408):1752–1757,
1999.

[28] Sherwin S Chan and Daniel W Moran. Computational model of a primate arm:
from hand position to joint angles, joint torques and muscle forces. Journal of neural
engineering, 3(4):327–37, December 2006.

164

[29] Chien-Chern Cheah, Chao Liu, and Jean-Jacques E Slotine. Adaptive tracking con-
trol for robots with unknown kinematic and dynamic properties. The International
Journal of Robotics Research, 25(3):283–296, 2006.

[30] Mark M Churchland, John P Cunningham, Matthew T Kaufman, Justin D Fos-
ter, Paul Nuyujukian, Stephen I Ryu, and Krishna V Shenoy. Neural population
dynamics during reaching. Nature, 2012.

[31] Mark M. Churchland, John P. Cunningham, Matthew T. Kaufman, Stephen I. Ryu,
and Krishna V. Shenoy. Cortical preparatory activity: Representation of movement
or first cog in a dynamical machine? Neuron, 68(3):387 – 400, 2010.

[32] Mark M Churchland, John P Cunningham, Matthew T Kaufman, Stephen I Ryu,
and Krishna V Shenoy. Cortical preparatory activity: representation of movement
or first cog in a dynamical machine? Neuron, 68(3):387–400, 2010.

[33] Paul Cisek, Donald J Crammond, and John F Kalaska. Neural activity in primary
motor and dorsal premotor cortex in reaching tasks with the contralateral versus
ipsilateral arm. Journal of neurophysiology, 89(2):922–942, 2003.

[34] Alessandro Crespi and Auke Jan Ijspeert. Salamandra robotica : a biologically
inspired amphibious robot that swims and walks. Robotics, pages 3–36, 2009.

[35] M. da Silva, F. Durand, and J. Popovic. Linear bellman combination for control of
character animation. In ACM Trans on Graphics (Proc. SIGGRAPH), volume 28,
pages 82:1–82:10, 2009.

[36] Christian Darlot, L Zupan, O Etard, P Denise, and A Maruani. Computation of
inverse dynamics for the control of movements. Biological cybernetics, 75(2):173–
186, 1996.

[37] Andrea d’Avella, Philippe Saltiel, and Emilio Bizzi. Combinations of muscle synergies
in the construction of a natural motor behavior. Nature neuroscience, 6(3):300–308,
2003.

[38] Yiannis Demiris and Andrew Meltzoff. The robot in the crib : A developmental
analysis of imitation skills in infants and robots. Infant and Child Development,
53:43–53, 2008.

[39] Sophie Deneve, Alexandre Pouget, and New York. Basis Functions for Object-
Centered Representations. Neuron, 37:347–359, 2003.

165

[40] T. DeWolf. NOCH : A framework for biologically plausible models of neural motor
control. Master’s thesis, University of Waterloo, 2010.

[41] T. DeWolf and C. Eliasmith. The neural optimal control hierarchy for motor control.
Journal of neural engineering, 8(6):065009, 2011.

[42] T. DeWolf, T. Stewart, J.J. Slotine, and C. Eliasmith. Methods and systems for
nonlinear adaptive control and filtering. Patent pending, (US 23208-P46821 US00),
11 2014.

[43] Travis DeWolf and Chris Eliasmith. A neural model of the development of expertise.
In The 12th International Conference on Cognitive Modelling, Ottawa, Ontario, 2013.

[44] K Doya. What are the computations of the cerebellum, the basal ganglia and the
cerebral cortex. Neural Networks, 12:961–974, 1999.

[45] Kenji Doya. Complementary roles of basal ganglia and cerebellum in learning and
motor control. Current opinion in neurobiology, 10(6):732–739, 2000.

[46] Kenji Doya. How can we learn efficiently to act optimally and flexibly? Proceedings of
the National Academy of Sciences of the United States of America, 106(28):11429–30,
July 2009.

[47] Julien Doyon, Pierre Bellec, Rhonda Amsel, Virginia Penhune, Oury Monchi, Julie
Carrier, Stéphane Lehéricy, and Habib Benali. Contributions of the basal ganglia and
functionally related brain structures to motor learning. Behavioural brain research,
199(1):61–75, 2009.

[48] Aaron D’Souza, Sethu Vijayakumar, and Stefan Schaal. Learning inverse kinematics.
In Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International
Conference on, volume 1, pages 298–303. IEEE, 2001.

[49] Chris Eliasmith and Charles H Anderson. Neural engineering: Computation, repre-
sentation, and dynamics in neurobiological systems. MIT Press, 2004.

[50] Chris Eliasmith, Terrence C Stewart, Xuan Choo, Trevor Bekolay, Travis DeWolf,
Yichuan Tang, and Daniel Rasmussen. A large-scale model of the functioning brain.
science, 338(6111):1202–1205, 2012.

[51] Tom Erez, Kendall Lowrey, Yuval Tassa, Vikash Kumar, Svetoslav Kolev, and
Emanuel Todorov. An integrated system for real-time model predictive control of
humanoid robots. In International Conference on Humanoid Robots, 2013.

166

[52] Edward V Evarts. Relation of pyramidal tract activity to force exerted during vol-
untary movement. J Neurophysiol, 31(1):14–27, 1968.

[53] D J Felleman and D C Van Essen. Distributed hierarchical processing in the primate
cerebral cortex. Cerebral cortex (New York, N.Y. : 1991), 1(1):1–47, 1991.

[54] Alon Fishbach, Stephane a Roy, Christina Bastianen, Lee E Miller, and James C
Houk. Deciding when and how to correct a movement: discrete submovements as a
decision making process. Experimental brain research. Experimentelle Hirnforschung.
Expérimentation cérébrale, 177(1):45–63, February 2007.

[55] James Fix. Atlas of the human brain and spinal cord. Jones & Bartlett Learning,
2007.

[56] D Flament and J Hore. Relations of motor cortex neural discharge to kinematics
of passive and active elbow movements in the monkey. Journal of neurophysiology,
60(4):1268–1284, 1988.

[57] J Randall Flanagan, Philipp Vetter, Roland S Johansson, and Daniel M Wolpert.
Prediction precedes control in motor learning. Current Biology, 13(2):146–150, 2003.

[58] PIERRE A Fortier, JOHN F Kalaska, and ALLAN M Smith. Cerebellar neuronal
activity related to whole-arm reaching movements in the monkey. J Neurophysiol,
62(1):198–211, 1989.

[59] I Fried, A Katz, G McCarthy, K J Sass, P Williamson, S S Spencer, and D D Spencer.
Functional organization of human supplementary motor cortex studied by electrical
stimulation. Journal of Neuroscience, 11(11):3656–3666, 1991.

[60] QG Fu, D Flament, JD COLT&, and TJ Ebner. Temporal encoding of movement
kinematics in the discharge. J Neurophysiol, 1995.

[61] Alexander Gail and Richard a Andersen. Neural dynamics in monkey parietal reach
region reflect context-specific sensorimotor transformations. The Journal of neuro-
science : the official journal of the Society for Neuroscience, 26(37):9376–84, Septem-
ber 2006.

[62] Thomas Geijtenbeek, Michiel van de Panne, and A Frank van der Stappen. Flexi-
ble muscle-based locomotion for bipedal creatures. ACM Transactions on Graphics
(TOG), 32(6):206, 2013.

167

[63] Maurizio Gentilucci and Anna Negrotti. The control of an action in Parkinson s
disease. Experimental Brain Research, pages 269–277, 1999.

[64] A P Georgopoulos, J T Lurito, M Petrides, A B Schwartz, and J T Massey. Mental
rotation of the neuronal population vector. Science, 243(4888):234–6, 1989.

[65] A P Georgopoulos, A B Schwartz, and R E Kettner. Neuronal population coding of
movement direction. Science, 233(4771):1416–1419, 1986.

[66] Apostolos P Georgopoulos, John F Kalaska, Roberto Caminiti, and Joe T Massey.
On the relations between the direction of two-dimensional arm movements and cell
discharge in primate motor cortex. The Journal of Neuroscience, 2(11):1527–1537,
1982.

[67] S. B. Gershwin. A Hierarchical Framework for Discrete Event Scheduling in Manufac-
turing Systems. In P. Varaiya and H. Kurzhanski, editors, Discrete Event Systems:
Models and Application, volume 103 of LNCIS, pages 197–216, Berlin, Germany,
August 1987. Springer-Verlag.

[68] Claude Ghez and Thomas Thach. The Cerebellum, chapter 42. McGraw-Hill Profes-
sional Publishing, 4th edition, 2000.

[69] Claude Ghez and Thomas Thach. The Organization of Movement, chapter 33.
McGraw-Hill Professional Publishing, 4th edition, 2000.

[70] Simon F Giszter, Ferdinando A Mussa-Ivaldi, and Emilio Bizzi. Convergent force
fields organized in the frog’s spinal cord. The journal of neuroscience, 13(2):467–491,
1993.

[71] M A Gluck, M T Allen, C E Myers, and R F Thompson. Cerebellar substrates
for error correction in motor conditioning. Neurobiology of learning and memory,
76(3):314–41, November 2001.

[72] A. Gopnik, A.N. Meltzoff, and P.K. Kuhl. The scientist in the crib: What early
learning tells us about the mind. Perennial, 2000.

[73] Michael Graziano. The organization of behavioral repertoire in motor cortex. Annu.
Rev. Neurosci., 29:105–134, 2006.

[74] Stephen Grossberg and Michael Kuperstein. Neural dynamics of adaptive sensory-
motor control: Ballistic eye movements, volume 30. Elsevier, 2011.

168

[75] Leonidas Guibas, Micha Sharir, and Shmuel Sifrony. On the general motion planning
problem with two degrees of freedom. Proceedings of the 4th Annual Symposium on
Computational Geometry, pages 289–298, 1988.

[76] K Gurney, T J Prescott, and P Redgrave. a. A computational model of action
selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern., 84:401–
410, 2001.

[77] Kevin Gurney, Tony J Prescott, and Peter Redgrave. A computational model of ac-
tion selection in the basal ganglia. i. a new functional anatomy. Biological cybernetics,
84(6):401–410, 2001.

[78] S Hanneton, Alain Berthoz, Jacques Droulez, and Jean-Jacques E Slotine. Does
the brain use sliding variables for the control of movements? Biological cybernetics,
77(6):381–393, 1997.

[79] Peter S Harper. Review article The epidemiology of Huntington ’ s disease. Human
Genetics, pages 365–376, 1992.

[80] M Haruno, D M Wolpert, and M Kawato. Mosaic model for sensorimotor learning
and control. Neural computation, 13(10):2201–20, October 2001.

[81] Masahiko Haruno, D Wolpert, and Mitsuo Kawato. Mosaic model for sensorimotor
learning and control. Neural computation, 13(10):2201–2220, 2001.

[82] Masahiko Haruno, Daniel M Wolpert, and Mitsuo Kawato. Hierarchical mosaic for
movement generation. In International congress series, volume 1250, pages 575–590.
Elsevier, 2003.

[83] G E Hinton and R R Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science (New York, N.Y.), 313(5786):504–7, July 2006.

[84] S Hocherman and SP Wise. Effects of hand movement path on motor cortical activity
in awake, behaving rhesus monkeys. Experimental brain research, 83(2):285–302,
1991.

[85] D S Hoffman and P L Strick. Effects of a primary motor cortex lesion on step-tracking
movements of the wrist. Journal of Neurophysiology, 73(2):891–895, 1995.

[86] R.N. Holdefer and L.E. Miller. Primary motor cortical neurons encode functional
muscle synergies. Experimental Brain Research, 146(2):233–243, 2002.

169

[87] Scott L Hooper and Ralph a DiCaprio. Crustacean motor pattern generator networks.
Neuro-Signals, 13(1-2):50–69, 2004.

[88] Scott L Hooper and Ralph a DiCaprio. Crustacean motor pattern generator networks.
Neuro-Signals, 13(1-2):50–69, 2004.

[89] Theo Hopman. Introduction to indicial notation. Dep. of Physics, University of
Guelph, 2002.

[90] Eiji Hoshi, Léon Tremblay, Jean Féger, Peter L Carras, and Peter L Strick. The
cerebellum communicates with the basal ganglia. Nature neuroscience, 8(11):1491–
3, November 2005.

[91] J C Houk, C Bastianen, D Fansler, a Fishbach, D Fraser, P J Reber, S a Roy, and
L S Simo. Action selection and refinement in subcortical loops through basal ganglia
and cerebellum. Philosophical transactions of the Royal Society of London. Series B,
Biological sciences, 362(1485):1573–83, September 2007.

[92] Eun Jung Hwang and Reza Shadmehr. Internal models of limb dynamics and the
encoding of limb state. Journal of neural engineering, 2(3):S266–78, September 2005.

[93] Eun Jung Hwang and Reza Shadmehr. Internal models of limb dynamics and the
encoding of limb state. Journal of neural engineering, 2(3):S266–78, September 2005.

[94] Aapo Hyvrinen and Patrik Hoyer. Emergence of topography and complex cell proper-
ties from natural images using extensions of ica. In In Advances in Neural Information
Processing Systems, pages 827–833. MIT Press, 1999.

[95] A. Ijspeert, J. Nakanishi, P Pastor, H. Hoffmann, and S. Schaal. Dynamical move-
ment primitives: Learning attractor models formotor behaviors. Neural Computation,
25:328–373, 2013.

[96] Auke Jan Ijspeert, Alessandro Crespi, Dimitri Ryczko, and Jean-Marie Cabelguen.
From swimming to walking with a salamander robot driven by a spinal cord model.
Science (New York, N.Y.), 315(5817):1416–20, March 2007.

[97] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan Schaal.
Dynamical movement primitives: learning attractor models for motor behaviors.
Neural computation, 25(2):328–373, 2013.

170

[98] D.G. Ivashko, B.I. Prilutsky, S.N. Markin, J.K. Chapin, and I.a. Rybak. Modeling the
spinal cord neural circuitry controlling cat hindlimb movement during locomotion.
Neurocomputing, 52-54:621–629, June 2003.

[99] Eugene M Izhikevich et al. Simple model of spiking neurons. IEEE Transactions on
neural networks, 14(6):1569–1572, 2003.

[100] Lena Ting J. Lucas Mckay. Muscle synergies produce expensive behavioral biases
during postural control. In Neural Control of Movement 2010, pages 14–15, 2010.

[101] Marc Jeannerod. The neural and behavioural organization of goal-directed move-
ments. Clarendon Press/Oxford University Press, 1988.

[102] Daphna Joel, Yael Niv, and Eytan Ruppin. Actor–critic models of the basal ganglia:
New anatomical and computational perspectives. Neural networks, 15(4):535–547,
2002.

[103] R Jung, T Kiemel, and A H Cohen. Dynamic behavior of a neural network model
of locomotor control in the lamprey. Journal of Neurophysiology, 75(3):1074–1086,
1996.

[104] M. Kalakrishnan, L. Righetti, P. Pastor, and S. Schaal. Learning force control poli-
cies for compliant robotic manipulation. In International Conference on Machine
Learning (ICML), 2012.

[105] J F Kalaska, D A Cohen, M L Hyde, and M Prudhomme. A comparison of movement
direction-related versus load direction-related activity in primate motor cortex, using
a two-dimensional reaching task. Journal of Neuroscience, 9(6):2080–2102, 1989.

[106] JF Kalaska, DAD Cohen, M Prud’Homme, and ML Hyde. Parietal area 5 neuronal
activity encodes movement kinematics, not movement dynamics. Experimental Brain
Research, 80(2):351–364, 1990.

[107] Mitsuo Kawato. Internal models for motor control and trajectory planning. Current
Opinion in Neurobiology, 9(6):718–727, December 1999.

[108] Mitsuo Kawato. Internal models for motor control and trajectory planning. Current
opinion in neurobiology, 9(6):718–727, 1999.

[109] Mitsuo Kawato and Hiroaki Gomi. A computational model of four regions of the
cerebellum based on feedback-error learning. Biological cybernetics, 68(2):95–103,
1992.

171

[110] Mitsuo Kawato, Tomoe Kuroda, Hiroshi Imamizu, Eri Nakano, Satoru Miyauchi,
and Toshinori Yoshioka. Internal forward models in the cerebellum: fmri study on
grip force and load force coupling. Progress in brain research, 142:171–188, 2003.

[111] Ronald E Kettner, Andrew B Schwartz, and Apostolos P Georgopoulos. Primate
motor cortex and free arm movements to visual targets in three-dimensional space.
iii. positional gradients and population coding of movement direction from various
movement origins. The journal of Neuroscience, 8(8):2938–2947, 1988.

[112] Oussama Khatib. A unified approach for motion and force control of robot manipu-
lators: The operational space formulation. Robotics and Automation, IEEE Journal
of, 3(1):43–53, 1987.

[113] Pradeep K Khosla and Takeo Kanade. Parameter identification of robot dynamics. In
Decision and Control, 1985 24th IEEE Conference on, volume 24, pages 1754–1760.
IEEE, 1985.

[114] DL Kleinman. An optimal control model of human response part i: Theory and
validation. Automatica, 3:357–369, 1970.

[115] Shinya Kuroda, Kenji Yamamoto, Hiroyuki Miyamoto, Kenji Doya, and Mitsuo
Kawato. Statistical characteristics of climbing ber spikes necessary for e cient
cerebellar learning. Science And Technology, 192:183–192, 2001.

[116] Rodrigo Laje and Dean V Buonomano. Robust timing and motor patterns by taming
chaos in recurrent neural networks. Nature neuroscience, 16(7):925–933, 2013.

[117] Honglak Lee, C Ekanadham, and A Ng. Sparse deep belief net model for visual area
v2. Energy, 19:1–8, 2007.

[118] Martin Lemay, Sylvain Chouinard, François Richer, and Paul Lesperance. Hunting-
ton’s disease affects movement termination. Behavioural brain research, 187(1):153–8,
February 2008.

[119] Weiwei Li, Emanuel Todorov, and Xiuchuan Pan. Hierarchical feedback and learning
for multi-joint arm movement control. Conference Proceedings of the International
Conference of IEEE Engineering in Medicine and Biology Society, 4:4400–4403, 2005.

[120] D Liu and E Todorov. Hierarchical optimal control of a 7-dof arm model. 2009
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning,
pages(2):50–57, 2009.

172

[121] David MacNeil and Chris Eliasmith. Fine-tuning and the stability of recurrent neural
networks. PLoS ONE, 6, 2011.

[122] M A Maier, E Olivier, S N Baker, P A Kirkwood, T Morris, and R N Lemon.
Direct and indirect corticospinal control of arm and hand motoneurons in the squirrel
monkey (saimiri sciureus). Journal of Neurophysiology, 78(2):721–733, 1997.

[123] NK Mani, EJ Haug, and KE Atkinson. Application of singular value decomposi-
tion for analysis of mechanical system dynamics. Journal of Mechanical Design,
107(1):82–87, 1985.

[124] Yoshiya Matsuzaka, HIROSHI Aizawa, and Jun Tanji. A motor area rostral to the
supplementary motor area (presupplementary motor area) in the monkey: neuronal
activity during a learned motor task. Journal of Neurophysiology, 68:653–653, 1992.

[125] Maurizio Mattia, Pierpaolo Pani, Giovanni Mirabella, Stefania Costa, Paolo Del Giu-
dice, and Stefano Ferraina. Heterogeneous attractor cell assemblies for motor plan-
ning in premotor cortex. The Journal of Neuroscience, 33(27):11155–11168, 2013.

[126] Neil McKay. Minimum cost-control of robotic manipulators with geometric path con-
straints. PhD thesis, University of Michigan, 1985.

[127] Thomas A. McMahon. Muscles, Reflexes and Locomotion. Princeton University
Press, 1984.

[128] F. Meier, P. Hennig, and S. Schaal. Efficient bayesian local model learning for control.
In Proceedings of the IEEE International Conference on Intelligent Robotics Systems,
2014.

[129] Andrew Meltzoff and M. Keith Moore. Explaining facial imitation: A theoretical
model. Exarly Development and Parenting, 6:179–192, 1997.

[130] Samir Menon, Sam Fok, Alex Neckar, Oussama Khatib, and Kwabena Boahen. Con-
trolling articulated robots in task-space with spiking silicon neurons. In IEEE In-
ternational Conference on Biomedical Robitics and Biomechatronics. IEEE Press,
2014.

[131] Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun
Sawada, Filipp Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Naka-
mura, et al. A million spiking-neuron integrated circuit with a scalable communica-
tion network and interface. Science, 345(6197):668–673, 2014.

173

[132] RC Miall and Daniel M Wolpert. Forward models for physiological motor control.
Neural networks, 9(8):1265–1279, 1996.

[133] John G. Milton, Steven S. Small, and Ana Solodkin. On the road to automatic: Dy-
namic aspects in the development of expertise. Journal of Clinical Neurophysiology,
21:134–143, 2004.

[134] Jonathan W Mink. The basal ganglia: focused selection and inhibition of competing
motor programs. Progress in neurobiology, 50(4):381–425, 1996.

[135] Daniel W Moran and Andrew B Schwartz. Motor cortical representation of speed
and direction during reaching. Journal of Neurophysiology, 82(5):2676–2692, 1999.

[136] M. Morari, C.E. Garcia, and D. M. Prett. Model predictive control: Theory and
practice–A survey. Automatica, 25(3):335–348, 1989.

[137] Igor Mordatch, Zoran Popović, and Emanuel Todorov. Contact-invariant optimiza-
tion for hand manipulation. In Proceedings of the ACM SIGGRAPH/Eurographics
symposium on computer animation, pages 137–144. Eurographics Association, 2012.

[138] Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery of complex behav-
iors through contact-invariant optimization. ACM Transactions on Graphics (TOG),
31(4):43, 2012.

[139] Susanne M Morton and Amy J Bastian. Cerebellar control of balance and locomotion.
The Neuroscientist, 10(3):247–259, 2004.

[140] Susanne M Morton and Amy J Bastian. Cerebellar control of balance and locomo-
tion. The Neuroscientist : a review journal bringing neurobiology, neurology and
psychiatry, 10(3):247–59, June 2004.

[141] Grant H. Mulliken, Sam Musallam, and Richard A. Andersen. Decoding trajectories
from posterior parietal cortex ensembles. The Journal of neuroscience : the official
journal of the Society for Neuroscience, 28(48):12913–12926, November 2008.

[142] Z Nenadic, Charles H Anderson, and B Ghosh. Control of arm movement using
population of neurons. Proceedings of the 39th IEEE Conference on Decision and
Control Cat No00CH37187, 35(11-12):1776–1781, 2000.

[143] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of
mathematical biology, 15(3):267–273, 1982.

174

[144] B A Olshausen and D J Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381:607–609, 1996.

[145] B.A. Olshausen. Sparse codes and spikes, pages 257–272. MIT Press, 2002.

[146] Eustace Painkras, Luis A Plana, Jim Garside, Steve Temple, Francesco Galluppi,
Cameron Patterson, David R Lester, Andrew D Brown, and Steve B Furber. Spin-
naker: A 1-w 18-core system-on-chip for massively-parallel neural network simula-
tion. Solid-State Circuits, IEEE Journal of, 48(8):1943–1953, 2013.

[147] Christopher Parisien, Charles H. Anderson, and Chris Eliasmith. Solving the problem
of negative synaptic weights in cortical models. Neural Computation, 20:1473–1494,
2008.

[148] Wilder Penfield and T Rasmussen. The Cerebral Cortex of Man, volume 40. Macmil-
lan, 1950.

[149] Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression
for operational space control. Proceedings of the 24th International Conference on
Machine Learning (2007), pages 745–750, 2007.

[150] J. Piaget. The origins of intelligence in children. New York: International University
Press, 1952.

[151] Alexandre Pouget and Terrence J. Sejnowski. Spatial transformations in the parietal
cortex using basis functons. Journal of Cognitive Neuroscience, 9(2):222–237, 1997.

[152] Daniel Rasmussen and Chris Eliasmith. A neural reinforcement learning model for
tasks with unknown time delays. In 35th Annual Conference of the Cognitive Science
Society, pages 3257–3262, 2013.

[153] Daniel Rasmussen and Chris Eliasmith. A neural model of hierarchical reinforcement
learning. In Paul Bello, Marcello Guarini, Marjorie McShane, and Brian Scassellati,
editors, Proceedings of the 36th Annual Conference of the Cognitive Science Society,
pages 1252–1257, Austin, 2014. Cognitive Science Society.

[154] Alexa Riehle and Eilon Vaadia, editors. Motor Cortex in Voluntary Movements: A
distributed system for distributed functions. CRC Press, 2005.

[155] Michel Rijntjes, Christian Dettmers, Christian Büchel, Stefan Kiebel, Richard SJ
Frackowiak, and Cornelius Weiller. A blueprint for movement: functional and

175

anatomical representations in the human motor system. The Journal of neuroscience,
19(18):8043–8048, 1999.

[156] Alexander V Roitman, Siavash Pasalar, Michael TV Johnson, and Timothy J Ebner.
Position, direction of movement, and speed tuning of cerebellar purkinje cells during
circular manual tracking in monkey. The Journal of neuroscience, 25(40):9244–9257,
2005.

[157] Jerome N Sanes and John P Donoghue. Plasticity and primary motor cortex. Annual
review of neuroscience, 23:393–415, 2000.

[158] Robert M Sanner and J-JE Slotine. Gaussian networks for direct adaptive control.
Neural Networks, IEEE Transactions on, 3(6):837–863, 1992.

[159] Stefan Schaal. Dynamic movement primitives-a framework for motor control in hu-
mans and humanoid robotics. In Adaptive Motion of Animals and Machines, pages
261–280. Springer, 2006.

[160] Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational approaches to motor
learning by imitation. Philosophical Transactions of the Royal Society of London.
Series B: Biological Sciences, 358(1431):537–547, 2003.

[161] AB Schwartz. Direct cortical representation of drawing. Science, 265:540–542, 1994.

[162] Andrew B Schwartz. Direct cortical representation of drawing. Science,
265(5171):540–542, 1994.

[163] Andrew B. Schwartz, X. Tracy Cui, DouglasJ. Weber, and Daniel W. Moran.
Brain-controlled interfaces: Movement restoration with neural prosthetics. Neuron,
52(1):205 – 220, 2006.

[164] Nicolas Schweighofer, Jacob Spoelstra, Michael A Arbib, and Mitsuo Kawato. Role
of the cerebellum in reaching movements in humans. ii. a neural model of the inter-
mediate cerebellum. European Journal of Neuroscience, 10(1):95–105, 1998.

[165] Stephen H Scott. Optimal feedback control and the neural basis of volitional motor
control. Nature Reviews Neuroscience, 5(7):532–546, 2004.

[166] Stephen H Scott and John F Kalaska. Changes in motor cortex activity during
reaching movements with similar hand paths but different arm postures. Changes,
73(6), 1995.

176

[167] Lauren E Sergio, Catherine Hamel-Pâquet, and John F Kalaska. Motor cortex neural
correlates of output kinematics and kinetics during isometric-force and arm-reaching
tasks. Journal of neurophysiology, 94(4):2353–2378, 2005.

[168] Reza Shadmehr and Ferdinando A Mussa-Ivaldi. Adaptive representation of dynam-
ics during learning of a motor task. The Journal of Neuroscience, 14(5):3208–3224,
1994.

[169] KV Shenoy, D Meeker, and S Cao. Neural prosthetic control signal from plan activity.
Neuroreport, 14:591–596, 2003.

[170] Jean-Jacques E Slotine and Weiping Li. On the adaptive control of robot manipula-
tors. The International Journal of Robotics Research, 6(3):49–59, 1987.

[171] M a Smith, J Brandt, and R Shadmehr. Motor disorder in Huntington’s disease
begins as a dysfunction in error feedback control. Nature, 403(6769):544–9, February
2000.

[172] Maurice A Smith and Reza Shadmehr. Intact ability to learn internal models of
arm dynamics in huntington’s disease but not cerebellar degeneration. Journal of
Neurophysiology, 93(5):2809–2821, 2005.

[173] JF Soechting. Effect of target size on spatial and temporal characteristics of a point-
ing movement in man. Experimental Brain Research, 54(1):121–132, 1984.

[174] Aaron D Souza, Sethu Vijayakumar, and Stefan Schaal. Learning inverse kinematics.
In Proceedings of IROS, pages 298–303, 2001.

[175] Cesare Stefanini, Stefano Orofino, Luigi Manfredi, Stefano Mintchev, Stefano Mar-
razza, Tareq Assaf, L Capantini, Edoardo Sinibaldi, Sten Grillner, Peter Wallen,
et al. A compliant bioinspired swimming robot with neuro-inspired control and au-
tonomous behavior. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 5094–5098. IEEE, 2012.

[176] T.C. Stewart and C. Eliasmith. Large-scale synthesis of functional spiking neural
circuits. Proceedings of the IEEE, 102(5):881–898, May 2014.

[177] Terrence Stewart and Robert West. Testing for equivalence: a methodology for com-
putational cognitive modelling. Journal of Artificial General Intelligence, 2(2):69–87,
2010.

177

[178] Terrence C Stewart, Xuan Choo, and Chris Eliasmith. Dynamic Behaviour of a
Spiking Model of Action Selection in the Basal Ganglia. In International Conference
on Cognitive Modeling, pages 235–240, 2010.

[179] Norikazu Sugimoto, Masahiko Haruno, Kenji Doya, and Mitsuo Kawato. Mosaic for
multiple-reward environments. Neural computation, 24(3):577–606, 2012.

[180] R S Sutton and A G Barto. Reinforcement Learning - an Introduction. MIT Press,
Cambridge, MA., 1998.

[181] Kenji Tahara, Suguru Arimoto, Masahiro Sekimoto, and Zhi-Wei Luo. On control
of reaching movements for musculo-skeletal redundant arm model. Applied Bionics
and Biomechanics, 6(1):11–26, 2009.

[182] Kenji Tahara and Hitoshi Kino. Reaching movements of a redundant musculoskeletal
arm: Acquisition of an adequate internal force by iterative learning and its evaluation
through a dynamic damping ellipsoid. Advanced Robotics, 24(5-6):783–818, 2010.

[183] M Taira, J Boline, N Smyrnis, A Georgopoulos, and J Ashe. On the relations between
single cell activity in the motor cortex and the direction and magnitude of three-
dimensional static isometric force. Exp Brain Res, 109:367–376, 1996.

[184] WT Thach. Correlation of neural discharge with pattern and force of muscular
activity, joint position, and direction of intended next movement in motor cortex
and cerebellum. J Neurophysiol, 41(3):654–676, 1978.

[185] E. A. Theodorou, J. Buchli, and S. Schaal. Learning policy improvements with
path integrals. In International Conference on Artificial Intelligence and Statistics
(AISTATS 2010), 2010.

[186] E Todorov. Parallels between sensory and motor information processing. In The
Cognitive Neurosciences. MIT Press, 4 edition, 2008.

[187] E Todorov. Compositionality of optimal control laws. Advances in Neural Informa-
tion Processing Systems, 22:1856–1864, 2009.

[188] E Todorov, W Li, and X Pan. From task parameters to motor synergies: A hierar-
chical framework for approximately-optimal feedback control of redundant manipu-
lators. Journal of Robotic Systems, vol:22pp691–710, 2005.

[189] Emanuel Todorov. Direct cortical control of muscle activation in voluntary arm
movements: a model. Nature neuroscience, 3(4):391–398, 2000.

178

[190] Emanuel Todorov. On the role of primary motor cortex in arm movement control.
Cognitive Science, 3:125–166, 2003.

[191] Emanuel Todorov. Efficient computation of optimal actions. Proceedings of the
national academy of sciences, 106(28):11478–11483, 2009.

[192] Emanuel Todorov. Efficient computation of optimal actions. Proceedings of the
National Academy of Sciences of the United States of America, 106(28):11478–83,
July 2009.

[193] Emanuel Todorov and Michael I Jordan. Optimal feedback control as a theory of
motor coordination. Nature neuroscience, 5(11):1226–1235, 2002.

[194] Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for locally-
optimal feedback control of constrained nonlinear stochastic systems. In American
Control Conference, 2005. Proceedings of the 2005, pages 300–306. IEEE, 2005.

[195] Emmanuel Todorov. Optimal Control Theory, chapter 12. MIT Press, 2006.

[196] Mette Helene Toft, Ole Gredal, and Bente Pakkenberg. The size distribution of
neurons in the motor cortex in amyotrophic lateral sclerosis. Journal of anatomy,
207(4):399–407, 2005.

[197] J C Trinkle, J M Abel, and R P Paul. An investigation of frictionless enveloping
grasping in the plane. International Journal Of Robotics Research, 7(3):33–51, 1988.

[198] Bryan Tripp. A search for principles of basal ganglia function. PhD thesis, University
of Waterloo, 2009.

[199] Ya-weng Tseng, Jörn Diedrichsen, John W Krakauer, Reza Shadmehr, and Amy J
Bastian. Sensory prediction errors drive cerebellum-dependent adaptation of reach-
ing. Journal of Neurophysiology, 98(1):54–62, 2007.

[200] Luca Turella, Andrea C Pierno, Federico Tubaldi, and Umberto Castiello. Mir-
ror neurons in humans: consisting or confounding evidence? Brain and language,
108(1):10–21, January 2009.

[201] Robert S Turner, Michel Desmurget, Corresponding Turner, and Robert S. Basal
ganglia contributions to motor control : a vigorous tutor. Current Opinion in Neu-
robiology, 20(6):704–716, 2010.

179

[202] Francisco J Valero-Cuevas, Madhusudhan Venkadesan, and Emanuel Todorov. Struc-
tured variability of muscle activations supports the minimal intervention principle of
motor control. Journal of neurophysiology, 102(1):59–68, July 2009.

[203] M Velliste, S Perel, M C Spalding, A S Whitford, and A B Schwartz. Cortical control
of a prosthetic arm for self-feeding. Nature, 453(7198):1098–1101, 2008.

[204] Sethu Vijayakumar, Aaron D’souza, and Stefan Schaal. Incremental online learning
in high dimensions. Neural computation, 17(12):2602–2634, 2005.

[205] Tim Waegeman, Michiel Hermans, and Benjamin Schrauwen. Macop modular archi-
tecture with control primitives. Frontiers in computational neuroscience, 7, 2013.

[206] Z. Wang, C Lampert, K Muelling, B. Schoelkopf, and J. Peters. Learning anticipation
policies for robot table tennis. In IEEE/RSJ International Conference on Intelligent
Robot Systems (IROS), 2011.

[207] a M Wing. Motor control: Mechanisms of motor equivalence in handwriting. Current
biology : CB, 10(6):R245–8, March 2000.

[208] Alan M Wing. Motor control: Mechanisms of motor equivalence in handwriting.
Current Biology, 10(6):R245–R248, 2000.

[209] Steven P Wise. The primate premotor cortex: past, present, and preparatory. Annual
review of neuroscience, 8(1):1–19, 1985.

[210] Daniel M Wolpert and Mitsuo Kawato. Multiple paired forward and inverse models
for motor control. Neural Networks, 11(7):1317–1329, 1998.

[211] Daniel M Wolpert, R C Miall, and M Kawato. Internal models in the cerebellum.
Trends in Cognitive Sciences, 2:338–347, 1998.

[212] Daniel M Wolpert, R Chris Miall, and Mitsuo Kawato. Internal models in the cere-
bellum. Trends in cognitive sciences, 2(9):338–347, 1998.

[213] Tadashi Yamazaki and Soichi Nagao. A computational mechanism for unified gain
and timing control in the cerebellum. PloS one, 7(3):e33319, 2012.

180

	List of Tables
	List of Figures
	Introduction
	Motivation
	State of the field
	Thesis structure

	Operational space control
	Controlling in generalized coordinates
	Controlling in operational space

	Controlling in the null space
	Example: Operational space control with secondary controller

	Handling singularities
	What is a singularity?
	Fixing the problem

	Dynamic movement primitives
	Discrete DMPs
	Spreading basis function centers
	Spatial scaling
	Temporal scaling

	Imitating a desired path
	Interpolating trajectories for imitation
	Controlling end-effector trajectories
	Incorporating system feedback
	Direct trajectory control vs DMP based control
	Rhythmic DMPs
	Obtaining consistent and repeatable basis function activation

	Other differences between discrete and rhythmic
	Example

	Applications of DMPs

	Nonlinear adaptive control
	Lyapunov's direct method
	Stability analysis of a robot arm
	Basic system stability
	Stability moving to a target
	Zeroing steady-state position error

	Bias adaptation for unknown dynamics
	Choosing an adaptation law for stability

	Transform adaptation for unknown kinematics
	Discussion

	Computational neuroscience background
	Previous models
	MOSAIC and extensions
	Optimal feedback control theory as a framework for motor control

	The Neural Optimal Control Hierarchy (NOCH) framework
	NOCH: A brief summary
	The motor cortices: M1, PM, and SMA
	The cerebellum
	The relation between cerebellar and cortical control
	The basal ganglia
	Novel results from the NOCH

	Discussion

	Neural implementation
	The Neural Engineering Framework
	Principle 1: Representation
	Principle 2: Transformation
	Principle 3: Dynamics

	Modeling complex functions in the NEF
	Collapsing functions
	Independent variables in separate ensembles

	Representing large values in the NEF
	Simplifying discrete DMPs
	Reworking nonlinear adaptive control for neural implementation
	Bias adaptation for unknown dynamics
	Transformation adaptation for unknown kinematics

	Discussion

	The REACH model
	REACH overview
	Non-neural implementation results
	Bias adaptation example
	Transformation adaptation example

	Neural implementation
	The pre-motor cortex
	The primary motor cortex
	The cerebellum

	Neural implementation results
	Reaching and handwriting
	Neural comparisons
	Neural activity correlation with movement parameters
	Analysis of neural activity with jPCA

	Discussion
	Predictions
	Future work
	Comparison with the NOCH

	Conclusions

	APPENDICES
	Forward transformation matrices
	Forward transformation matrices in 2D
	Forward transform matrices in 3D

	Jacobians, velocity, and force
	Energy equivalence and Jacobians
	Building the Jacobian
	Analyzing the Jacobian
	Using the Jacobian

	Accounting for mass and gravity
	Accounting for inertia
	Accounting for gravity

	References

