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Abstract 

In recent decades, the millimeter-Wave (mmWave)/THz band has attracted great attention 

in the research community. The Terahertz frequency band runs from approximately 300 GHz 

to 3 THz, an incredible 2700 GHz of bandwidth. The Terahertz frequency range has 

traditionally been considered as the RF "no man's land", between electronic and optical 

technologies. Many efforts have been made to extend existing active and passive devices to 

take advantage of these higher frequencies. The development of a universal technology for 

integrating various functionalities in the THz region is the ultimate goal of many researchers. 

The primary focus of this research is to develop a novel silicon waveguide-based 

technology for implementing various structures and devices in the mmWave and THz range 

of frequencies.  The structures introduced in this study are designed based on High 

Resistivity Silicon (HRS). Two technologies are developed and investigated at the Centre for 

Intelligent Antenna and Radio Systems (CIARS): Silicon-On-Glass (SOG) and Silicon Image 

Guide (SIG) technologies. The proposed technologies provide a low-cost, highly efficient, 

and integratable platform for realization a variety of mmWave/THz systems suitable for 

various applications such as sensing, communication, and imaging. A comprehensive study is 

conducted for functionality and error analysis of the proposed technologies. Also, a vast 

range of passive structures such as bends, dividers, and couplers are designed, fabricated and 

successfully tested with desired performance at the mmWave range of frequencies. 

Additionally, three types of dielectric waveguide antennas are designed and optimized: 

parasitic tapered antenna, groove grating antenna, and strip grating antenna.   

Another focus of this thesis is to investigate the behavior of resonance structures, operating 

based on Whispering Gallery Modes (WGMs). The WG mode is a special type of high order 

mode of a circular shaped resonator, and offers very unique properties, which make it very 

suitable for sensing applications. In this research, an efficient algorithm is developed for 

analyzing the WGM resonators. Then, the proposed HRS platforms are used for 

implementing various WGM resonance configurations. The introduced WGM structures are 

employed for two major applications: DNA sensing and resonance tuning. The results for 
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DNA testing are quite impressive in being able to distinguish between different kinds of 

DNA.  

To demonstrate the usefulness of the developed HRS structures, a number of complex 

systems including, a Butler matrix network, a finger-shaped phase shifter, and tunable WGM 

resonance structures are designed, optimized, and realized in this report. As part of this 

research, a novel Microwave-Photonic idea is proposed for sensing purposes. The core of the 

system is based on the WGM resonance structures implemented on the HRS platforms. The 

proposed system is tested and promising results are achieved. 
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Chapter 1 

Introduction 

1.1 Why Terahertz  

The terahertz (THz) region of electromagnetic spectrum has been subject to extensive 

research activities due to its unique advantages for a vast number of applications in wireless 

communication, radar, physics, chemistry, imaging, biology, radio astronomy, and medicine 

[1], [2], [3], [4], [5]. Although there are various definitions for the THz band, based on the 

IEEE 802.15 standard (Terahertz Interest group) [6], the THz frequency band lies in the 

interval from 300 GHz to 3 THz. The THz is the least explored part of the electromagnetic 

spectrum. Usually, this band is referred to as the “THz Gap”, because of the relatively small 

amount of information gained in this area in the previous decades. The challenges of working 

in the THz band are attributed to the signal generation, transmission, and detection as well as 

the reliability, cost, and complexity of the measurement facilities. However, due to recent 

developments in device technologies, research and commercial interest in the Millimeter-

Wave (mmWave) and THz are rapidly growing.  

In addition to spectroscopy and imaging, the THz range of frequencies is very appropriate 

for biological and pharmaceutical sensing [7]. The primary reason is that many important 

molecules in these applications have significant vibrational resonances in the THz band. 

Also, THz offers a viable and non-destructive solution for contact-free sensing and imaging 

of an opaque non-metallic package interior [8], since THz quanta have much less energy as 

compared to those of x-ray, preventing biological tissue ionization. The first attempt at THz 

imaging was made in 1995 [9]. Afterwards, many research groups were encouraged to work 

on THz imaging for applications ranging from biomedical diagnosis to security purposes 

[10], [11]. 

Located between the mmWave and optics, THz frequencies can be used for interfacing 

between optical and electronic systems. In short, the future belongs to THz. THz 

technologies open new market opportunities for a vast range of applications [12]. 

Furthermore, the THz has the ability to be robust, relatively inexpensive, and commercially 

available for a wide range of applications from security screening to biochemical material 
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detection. Finally, the universe and the cosmic background are inherently surrounded by 

Terahertz radiation and that is why THz has received much attention for investigation of our 

galaxy and the Big Bang [13]. THz has therefore become the most exciting area of research 

and development in RF technologies with exciting promises for many future generation 

systems and emerging applications. 

1.2 Dielectric Waveguide Technology, Bridging the Microwave to Optics 

There has always been a question of “which transmission line or wave guiding technology 

is suitable for THz applications?” To answer this question, it is desirable to have an overview 

of the available wave guiding technologies over the entire range of frequencies from 

microwave to optics, with particular emphasis on the state-of-the-art THz transmission 

structure technologies. 

 

Fig. 1.1: Common wave guiding technologies for mmWave and THz range of frequencies.  
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TEM transmission lines (TLs), such as coaxial lines, are the oldest and the most common 

types of TLs for transporting the signal up to a few meters in the microwave range of 

frequencies. They can operate from very low frequency ranges up to 110 GHz [14]. The main 

operational frequency limits of the coaxial lines are the loss and fabrication challenges.  

Planar multi-layer metallic TLs (both TEM and quasi-TEM types), are the most widely 

used TLs for realization of RF/microwave/mmWave hybrid and Integrated Circuits (ICs). 

Co-Planar Waveguide (CPW), microstrip, inverted microstrip, suspended strip line, etc. [15]. 

are the conventional types of planar TLs, which can be easily used for realization of wide 

ranges of planar devices in the microwave region. Beyond 200 GHz, the application of planar 

metallic TLs is often limited to on-chip configurations, such as Complementary Metal Oxide 

Semiconductor (CMOS), SiGe, and InP. On the other hand, implementation of high 

performance passive transmission structures, devices, and antennas at the sub-mmWave and 

THz range of frequencies can be performed only in off-chip configuration. The off-chip 

planar metallic TLs seriously suffer from ohmic losses and dispersion at the THz range of 

frequencies. In the category of quasi-planar, the non-TEM fin line offers low loss 

characteristics as compared to the planar structures at the mmWave range of frequencies. 

However, due to the geometry of fin line, which includes a metallic waveguide, they are not 

appropriate for integrated system configurations. Also, fin line realization at the THz range 

of frequencies encounters difficulties in fabrication. 

Metallic waveguide technology and its alternatives are still used in the microwave and 

mmWave range of frequencies. Metallic waveguides are convenient structures for high 

power transmission applications. The metallic waveguide dimensions are determined by the 

wavelength of the dominant mode propagating wave. Metallic waveguides have always been 

the most trusted candidates for realization of mmWave systems, due to their low-insertion 

loss and simple design models. However, the accuracy of waveguide dimensions and inner 

surface roughness are important parameters in determining the performance of this class of 

TLs. Although these days, the metallic waveguides are realized up to the THz range of 

frequencies [16], they suffer from conductor loss, dimensional inaccuracies, and complexity 

of high performance interconnects at higher frequencies. In addition, an important bottleneck 

of metallic waveguides is their large and bulky 3-D geometries, which make them 

inappropriate for integration purposes. 
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To overcome the geometrical issues of the metallic waveguides, the idea of laminated 

waveguide structures [17] and, more recently, Substrate Integrated Waveguides (SIWs) [18], 

[19], [20] have been introduced. A SIW structure is formed by a dielectric slab sandwiched 

between two metal plates from top and bottom, with the sidewalls realized by being 

metallized via fence. A SIW can be considered as a reduced height waveguide structure that 

can dominantly support TM modes. The main advantages of SIW structures over the metallic 

waveguides are their relative ease of fabrication and integration capability with planar 

circuits. However, realization of SIWs beyond 150 GHz are quite challenging, mainly due to 

the fabrication limitation in manufacturing via hole arrays. Also, SIWs generally present 

higher losses as compared to the conventional metallic waveguides. The highest reported 

operational frequency for an SIW structure is 140 GHz [21]. 

A considerable amount of research has been conducted to realize compact and miniaturized 

alternatives for metallic waveguides in the sub-mmWave and THz range of frequencies. 

Thanks to the technological advancement in micro-machining and lithography fabrication, a 

new generation of waveguides for carrying mmWave/THz signals has been introduced. As an 

early work, an air-filled waveguide was realized inside a dielectric medium, by means of  

SU-8 fabrication process [22], [23], [24], and it was tested up to 320 GHz with minimum loss 

of 1.1 dB/ [25]. In another test, a micro-machining technique was proposed for forming an 

air channel metallized waveguide inside a silicon substrate, and the design concept was 

employed for realization of multi-level integrated systems, working up to 1.1 THz range of 

frequencies [26], [27]. Difficulty in accurate alignment of different parts of the  

micro-machined waveguide and presenting high insertion loss are the main drawbacks of the 

introduced micro-machined TLs. The next version of miniaturized waveguides can be 

classified as micro-fabricated dielectric filled waveguides. So far, this class of waveguides 

has been fabricated either by means of substrate transfer technique [28], or by Deep Reactive 

Ion Etching (DRIE) [29] technique. In the work reported in [28], a silicon filled waveguide 

with a trapezoidal cross section was measured up to 100 GHz, with insertion loss of  

0.3 dB/mm. In [29], a rectangular shaped silicon filled waveguide was introduced for 

operating up to 110 GHz, with insertion loss around 0.122 dB/mm. The major problem of the 

aforementioned  miniaturized waveguides are the multi-level fabrication challenges, the 

metallic loss of the walls, and realization of complicated passive structures, in the  
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sub-mmWave and THz range of frequencies. Although, the metallic waveguide structures 

and their micro-machined alternatives have shown their capabilities in the THz range of 

frequencies, they are not final solutions.  

Dielectric waveguides are strong competitors for metallic waveguides and their 

alternatives. Dielectric waveguides are simple in geometry and high in electromagnetic 

performance. By choosing a proper dielectric material, the dielectric waveguide structures 

can present extremely low-loss performance. Similar to the metallic waveguides, dielectric 

waveguide dimensions are determined by the wavelength of the propagating signal. 

Therefore, they can have reasonable dimensions in the mmWave and THz range of 

frequencies. Studying dielectric waveguides goes back to 1910, when a cylindrical rod was 

analyzed for the first time [30]. In the 1930s and 1940s, tremendous efforts were conducted 

for experimentally investigating the rod type of dielectric waveguides [31]. Later on, in the 

1950s, the first planar dielectric waveguide, image guide, was proposed and comprehensively 

studied by various researchers [32], [33], [34], [35]. Dielectric waveguides have been 

extensively used in optics, where they are known as optical dielectric waveguides. A variety 

of optical dielectric waveguides, such as strip guides, embedded strip guides, rib waveguides, 

and ridge waveguides, are used for guiding the light over short distances. In the microwave 

and mmWave range of frequencies a much simpler version of the optical waveguide, which 

is a rectangular dielectric waveguide, can be realized. Although the general concept of the 

mmWave dielectric waveguide is similar to the optical dielectric waveguide, there is one 

distinct difference: in optics, the dielectric constant of the core channel is close to the one(s) 

of the surrounding medium(s) [36]. Therefore, in single mode operation, the dimension of the 

core channel can be on the order of a few wavelengths. In contrast, for a mmWave dielectric 

waveguide, the dielectric constant of the main channel is usually chosen to be high as to 

increase the field confinement and reduce the radiation loss. A number of general 

configurations of dielectric waveguides in the microwave and mmWave range of frequencies 

are: image guide, suspended waveguide (rectangular waveguide), and insulated waveguide. 

The investigation of dielectric waveguide structures for the mmWave range of frequencies 

started in 1959 [35] and was rapidly increased in the 1960s and 1970s [37], [38]. 

Theoretically, a very thin dielectric waveguide surrounded by air is the lowest loss medium 

for guiding the signal; however, this structure suffers greatly from the radiation loss due to 
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any discontinuity and curvature. In 1981, a new generation of dielectric waveguides, called 

Non-Radiative Dielectric (NRD), was introduced [39]. NRD structures can suppress the 

radiation by using parallel metallic plates, placed on the top and bottom sides of the dielectric 

waveguide. The main drawback of NRD structures are their non-integratable configuration.   

The invention of IC transistors and advancements in chip technologies made the progress 

of dielectric waveguide technologies slow. However, over the last decades, by increasing the 

demand for a low-loss and low-cost TL in the mmWave range of frequencies, a wide range 

of studies have started to investigate dielectric waveguides. In [40], realization of a 

polyethylene rectangular dielectric waveguide, operating up to 600 GHz, was reported. But 

the measured attenuation at 600 GHz was as high as 19 dB/mm. After that, a new class of 

dielectric waveguides, Substrate Integrated Image Guide (SIIG), was proposed for mmWave 

applications [41], [42]. The first generation of SIIG structures was realized by a dielectric 

channel surrounded by air holes at both sides. The major challenges regarding the proposed 

SIIG structure are fabrication difficulties in making the holes, and realization of high 

performance and complicated passive structures at the sub-mmWave and THz range of 

frequencies. Later on, another version of SIIG structures was proposed, by means of Low 

Temperature Co-fired Ceramic (LTCC) technology [43].  Again, the main drawback of this 

type of SIIG structure is fabrication challenges in frequency scaling up.  

In a recent work [44], a silicon suspended dielectric waveguide was introduced for 

operating within the 140 to 220 GHz range of frequencies. The average insertion loss of the 

structure with a total length of 15 mm was reported as approximately 1.5 dB. However, the 

proposed structure uses holding arms, which makes the structure fragile, relatively large in 

size, and not appropriate for realization of a practical advanced system. In another work [45], 

silicon-On-Insulator (SOI) technology was used for implementing an insulated image guide, 

operating within the 50 to 75 GHz range of frequencies with the average loss of 3.2 dB. 

In the end, it is worth mentioning that a number of research groups are following the 

optical fiber concept for introducing another class of THz TLs, which can be divided into 

three categories: Hollow Core, Solid Core, and Porous Core TLs [46]. It is beyond the scope 

of this review section to explain all these types of cylindrical core-based TLs. The main 



 

 7 

drawback of cylindrical core-based TLs is their poor capability in integration with 

conventional planar mmWave/THz systems. 

1.2.1 Silicon-Based Dielectric Waveguides: an Optimum Solution  

In recent years mmWave technologies have progressed on many fronts, including 

semiconductor devices. A wide variety of packaged and unpackaged active electronic devices 

are available in the mmWave range of frequencies. Obviously, the material selection is 

essential for designing almost any integrated mmWave system. Among the available 

compound semiconductor devices, silicon-based devices are dominantly utilized in a wide 

range of applications from digital to high frequency circuits. Different active elements can be 

realized on the doped silicon substrate. However, due to the substrate losses in most of the 

conventional planar on-chip technologies, such as CMOS, SiGe, etc., the realization of high 

performance passive components and TLs is quite challenging. The on-chip antennas are 

quite inefficient in the mmWave/THz range of frequencies. Therefore, developing a low-cost 

technology for passive off-chip transmission structures and devices is inevitable. As 

mentioned in the previous section, dielectric waveguides are highly promising transmission 

structures for realization of almost any off-chip systems at the mmWave and THz range of 

frequencies. Generally, dielectric waveguides offer the combined advantages of low-loss, 

light weight, and ease of fabrication. Also, dielectric waveguide-based devices provide a 

unique possibility for integration with planar circuits. Among possible candidates, High 

Resistivity Silicon (HRS) is the most promising material, for the following reasons: 

 Endless resource: Silicon is one of the most abundant elements within the Earth’s 

crust. Silicon wafers are commercially available at a low cost. 

 Potentially integratable: Silicon provides a compatible platform for integration 

with the Silicon-based on-chip system technologies, such as CMOS. This 

characteristic can lead us to realize an in-package THz system. 

 Low-loss characteristics: A low-cost HRS wafer has a resistivity better than 10 

k.cm, which provides a very low-loss platform for a wide range of applications.   

 Mature fabrication technology: There are a variety of well-developed and mature 

technologies for the processing and fabrication of silicon. 
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In conclusion, to obtain an integrated system operating in the THz range of frequencies, a 

silicon-based dielectric waveguide is the most optimal candidate. It provides an efficient 

technology to be integrated with either mmWave planar circuits or optical devices. 

1.3 Objectives and Research Overview 

In this research, two novel silicon waveguide technologies, Silicon Image Guide (SIG) and 

Silicon-On-Glass (SOG), are introduced, analyzed, and experimentally verified. The main 

objective of this research is to demonstrate the capability of the proposed silicon waveguide 

technologies in realization of a variety of low-cost, integrated, and high performance passive 

components in the mmWave and THz range of frequencies. A number of new applications, 

including highly sensitive bio-sensors, are analytically and experimentally studied and proof-

of-concept structures are implemented. The bio-sensors under investigation in this research 

are primarily intended for sensing different types of biological samples such as DNA, 

proteins, and RNA. Additionally, a number of novel silicon-based device concepts, such as 

phase shifters and tunable resonators, are designed, fabricated, and successfully tested. To 

demonstrate the potential of the proposed silicon technologies in the implementation of an 

integrated mmWave/THz system, a novel monolithic Butler matrix network is realized based 

on the developed SIG technology.   

The chapters of this thesis are organized as follows: 

In Chapter 2, extensive design and error analysis are conducted to evaluate the 

performance of two developed silicon waveguide technologies, SIG and SOG. SIG and SOG 

structures can be treated as dielectric image guides and suspended waveguides, respectively. 

The single mode operations of both technologies are investigated through the modal analysis. 

The SOG platform is realized by a lithography/DRIE fabrication process, and the SIG 

platform is manufactured by a novel, mask-free, and fast laser machining process. The 

possible fabrication and measurement setup errors/uncertainties of the proposed silicon 

technologies are extensively studied. Also, the loss characteristics of both proposed 

technologies are experimentally assessed. 

In Chapter 3, a number of building-block mmWave/THz passive components based on SIG 

technology are designed, fabricated, and tested. Bend is the first component, which is studied 

in detail. After that, a Y-junction power divider is designed and optimized, and the 
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corresponding measurement results are presented. A directional coupler is the next 

component, which is developed based on the SIG technology. An innovative technique is 

utilized for implementation of a monolithic coupler. Realizing a system without an antenna 

can not be imagined, so, the final part of the chapter focuses on the design and optimization 

of three types of SIG antennas: parasitic tapered antenna, groove grating antenna, and strip 

grating antenna. The proposed parasitic tapered antenna is a travelling wave antenna with 

very high gain and low-side lobe levels. The other two antennas are categorized as  

leaky-wave antennas, with frequency scanning capabilities. 

Chapter 4 focuses on specific types of planar resonance structures, based on the 

Whispering Gallery Modes (WGMs). An efficient analysis approach, which is a combination 

of Effective Dielectric Constant (EDC) technique and Dielectric Waveguide Model (DWM), 

is developed for initial design and optimization of the resonance structures. The accuracy of 

the analysis method is improved by employing the variational method. A number of WGM 

structures based on the newly developed silicon technologies are designed, fabricated, and 

tested. The designed WGM structures are used for bio-sensing applications, specifically for 

DNA sensing. Distinguishing between denatured (single-stranded) DNA and hybridized 

(double-stranded) DNA is of particular interest for a medical diagnosis and scientific 

research and an application focus in this research. This facilitates the determination of 

genome sequence, gene discovery, and gene expression. A number of measurement tests are 

conducted for verifying the functionality of the WGM sensors in distinguishing between 

different DNA samples. 

In Chapter 5, a number of advanced devices for mmWave applications are designed and 

implemented based on the previously developed silicon components. The SOG WGM 

structure is employed for proposing a new idea of tunable resonance structure. The next 

device is a mmWave phase shifter, which is based on SOG technology. To prove the 

performance of the SIG technology, an integrated beam forming butler matrix with grating 

antenna elements, is designed and optimized at the mmWave range of frequencies. The last 

but not least examined device in this research is a Microwave-Photonic WGM sensor. A  

low-cost and innovative idea is employed for controlling the resonance behavior of a silicon 

waveguide resonator by optical illumination.   
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Chapter 2 

Silicon Waveguide-Based Technology 

In this chapter, two silicon waveguide technologies are introduced: Silicon Image Guide 

(SIG) and Silicon-On-Glass (SOG), which are used for implementation of a variety of 

mmWave/THz guiding structures and devices in this research. High Resistivity Silicon 

(HRS) is chosen as a core dielectric material in this research, mainly due to its unique 

properties, which are explained in detail in Chapter 1.  

Straight waveguide is considered as a building-block of any dielectric waveguide-based 

structure. A novel and efficient laser machining process, for fabricating the SIG sample 

structures, is introduced in this chapter. Also, the analysis and characterization of the SIG 

technology is presented. More specifically described: 

 Modal analysis  

 The effect of transitions from metallic waveguide to dielectric waveguide on the 

performance of the system 

 Fabrication and measurement error analysis 

Performing the aforementioned investigations assist with the optimal design and 

fabrication of the SIG and SOG devices which meet more realistic requirements. After 

extensive research on the SIG technology, a straight waveguide segment, operating over  

110-170 GHz, is fabricated using the developed laser machining process and the 

measurement results are reported.  

Then, a more advanced silicon-based technology, the SOG platform, is introduced. The 

SOG technology is potentially a high performance technology for realizing the next 

generation of THz integrated devices. Two variations of the SOG technology are explained 

and analyzed. A straight waveguide sample, based on the SOG technology, is fabricated and 

the measurement results are shown in the range of 140-220 GHz. 

 



 

 11 

2.1 Silicon Image Guide (SIG) Technology 

Different types of dielectric waveguides have been introduced and studied for mmWave 

applications. Dielectric image guide is one of the most common configurations of dielectric 

waveguides. Among different configurations of image guides, the rectangular one is the 

simplest type in terms of fabrication and realization. Fig. 2.1 shows the general configuration 

of an SIG structure along with the tapered sections, which will be discussed shortly. The 

rectangular image guide structure is supported by a metallic ground, which also acts as a 

supporting fixture. The grounding plate can be shared with the DC ground of an active 

circuit, integrated with the image guide structure. In fact, an image guide is a planar dielectric 

waveguide structure, suitable for integration purposes. One of the unique advantages of 

rectangular image guide structures over the rod waveguide is that the image guide structure 

does not suffer from the mode degeneracy issue. Wide varieties of techniques, ranging from 

rigorous to approximate methods, exist for analyzing this type of waveguide.

 

Fig. 2.1: The general configuration of the Silicon Image Guide (SIG) structure.  
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Different low-loss dielectrics can be used for realization of image guide structures. 

Ceramic dielectrics, such as alumina, and polymer materials, such as RT duroides, are the 

two main categories, which are used in image guide devices. However, these materials are 

not suitable for direct integration with active devices, which are mainly implemented in 

semiconductors. HRS is a good candidate to achieve an integrated waveguide-based structure 

with a planar active device. The HRS material used in this research has a resistivity of  

10-20 K.cm. 

2.1.1 Modal Analysis 

Modal analysis determines the behavior of the electromagnetic field inside and surrounding 

the dielectric waveguide regions over a certain frequency band. Modal analysis provides us 

valuable information about the cut-off frequencies, propagation characteristics, loss, and field 

confinement. In metallic waveguides, a cut-off frequency is defined as a frequency below 

which there is absolutely no wave propagation. In contrast to metallic waveguides, dielectric 

waveguides do not have a distinct and sharp cut-off frequency. Therefore, instead of defining 

a cut-off frequency it is more desirable to look at the mode shape and the corresponding 

propagation loss.  

One of the analytical methods for finding the dispersion curves of a dielectric waveguide is 

the Effective Dielectric Constant (EDC) method. The EDC technique provides reasonable 

results for the structures with confined modes. The detail of the EDC method, applicable to 

an image guide structure, is explained in [47]. Two kinds of dominant modes, 𝑇𝑀𝑌
𝑚𝑛(𝐸𝑌

𝑚𝑛) 

and 𝑇𝐸𝑌
𝑚𝑛(𝐸𝑋

𝑚𝑛), potentially can be supported by an image guide structure. Image guide 

dimensions determine the corresponding dominant mode. The image guide thickness, which 

is equal to the HRS wafer thickness, is chosen as 500 m. This standard HRS wafer can 

support SIG structures for operating below the 300 GHz frequency range. For the sake of 

clarity, the D-band range of frequencies (110-170 GHz) is chosen for implementing the SIG 

structures and devices in the rest of this thesis. The width of SIG (W) is chosen to be smaller 

than its height (h) to support 𝑇𝑀𝑌
11, as a dominant mode. Since the height of the waveguide is 

fixed (500 m), the waveguide width is the only design parameter for determining the 

desired mode(s) operational bandwidth. The SIG structures are preferred to have thinner 

widths for coupling applications, which will be discussed in upcoming chapters. However, 
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the higher order modes of a thin waveguide are not finely confined and can be radiated 

easily. Therefore, designing a thin waveguide is a trade-off between single mode operational 

bandwidth and higher radiation loss.  

Fig. 2.2 shows the full-wave simulated dispersion curves of an HRS image guide with the 

cross section of 500x250 m
2
, over 50 to 250 GHz. The plots show that the dominant mode 

of the waveguide is 𝑇𝑀𝑌
11(𝐸𝑌

11) . The next two modes, 𝑇𝑀𝑌
21(𝐸𝑌

21) and 𝑇𝐸𝑌
11(𝐸𝑋

11), have Neff 

close to 1 over the D-band range of frequencies. Therefore, these modes can be considered as 

non-propagating modes. In fact, those modes are too lossy to propagate along the SIG 

structure. The conductivity and permittivity of simulated silicon structures are considered to 

be 20 K-cm and 11.8, respectively. 

In order to test the SIG structure, a metallic waveguide excitation with the TE
10 

mode, 

compatible with the measurement setup, was chosen. Different techniques are reported for 

providing a low-loss transition from the metallic waveguide to a dielectric waveguide 

structure. In one method, the metallic waveguide is flared out to form a horn for impedance 

matching points of view [48]. In other works, the dielectric waveguide is tapered in both the 

E and H planes and inserted into a reduced height metallic waveguide [49]. However, these 

approaches need complex fabrication processes. Therefore, a simple E-plane dielectric 

tapered transition, inserted into the metallic waveguide, is designed for carrying out the 

measurements, effectively, and to keep the total loss low. The tapered length and the position 

of the tapered are optimized for gradual conversion of modes, from the metallic waveguide 

mode (TE
10

) to dielectric waveguide mode (𝐸𝑌
11). Fig. 2.3 shows the simulated S-parameters 

of the SIG structure, tapered inside WR-06 standard metallic waveguide ports. 
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Fig. 2.2: Dispersion curves and modal behavior of the SIG structure over 50 to 250 GHz. 
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Fig. 2.3: The simulated S-parameters of the SIG with the tapered sections, placed on a perfect 

conductor. 

The simulated insertion loss is compared to that of SIG with no tapering sections. The 

taper length inside the metallic waveguide is 7 mm and the total length of each taper section 

and the SIG structure are 9 mm and 24 mm, respectively. The results are obtained for an 

ideal case when the ground is a perfect conductor.  As can be seen, the taper transition has 

negligible effect on the insertion loss. The sharpness of the taper tip has significant effect on 

the reflection response of the SIG structure and it will be investigated in this chapter. One of 

the advantages of exciting the SIG structures with the metallic waveguide, as shown in  

Fig. 2.1, is to suppress the x-polarized modes; although, in the proposed SIG structure the 

higher order modes are potentially non-propagating modes over the desired frequency band.  

2.1.2 Laser Machining Fabrication Process 

All the introduced dielectric image guide structures in this research are fabricated using the 

laser machining technique. Although, the Deep Reactive Ion Etching (DRIE) technique is 

capable of fabricating very precise structures, and this degree of precision is only needed for 

the structures for which micrometer accuracy is needed. On the other hand, laser machining 

fabrication error is in the range, which is often acceptable for the structures operating at the 

sub-mmWave and THz range of frequencies. There are distinct advantages for the laser 

fabrication process over the conventional DRIE fabrication technique; laser machining is a 
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mask-free, chemical-free, fast, and low-cost process. The detail of developed recipe for 

machining the SIG structure is discussed in Appendix G. 

The developed recipe results in a rectangular dielectric waveguide whose side walls form 

right angles with the accuracy of  <1
o
. Unfortunately, even the lowest power level of the laser 

beam forms a thin amorphous layer of silicon at the surface, where the laser ablation occurs. 

Transformation to an amorphous state from a crystalline state, even in the scale of a few 

hundred nanometers, considerably increases the silicon waveguide insertion loss. Forming a 

thin layer of oxide at the laser cutting face is another source of loss in the fabricated SIG 

structure. A number of investigations and tests are conducted to solve this problem. It is 

understood that Tetra Methyl Ammonium Hydroxide (TMAH) etchant is one of the most 

effective solutions for cleaning the fabricated HRS waveguides. In fact, immersing a HRS 

waveguide in TMAH etchant for a few minutes (a 25% TMAH solution) etches the silicon at 

the rate of ~0.8 m/min at 80
o
C. The developed laser machining process recipe enables the 

realization of all required passive SIG structures. One of the most useful capabilities offered 

by the laser fabrication process is the possibility of making pockets inside a SIG structure. In 

other words, multi-level fabrication is now feasible with laser machining. In the next chapter, 

this capability is used for fabricating the grating antennas. 

2.1.3 Fabrication and Measurement Error Analysis 

Measurement at the mmWave/THz range of frequencies is very challenging. Preparing an 

ideal measurement setup with minimum errors is a key step to reach the expected 

experimental results with sufficient accuracy. Precise measurement error analysis leads us to 

assess the performance of the system in a real measurement environment. Fabrication and 

measurement errors/uncertainties are two main categories of the errors. These errors are not 

completely independent of each other. To conduct experiments with more accuracy the 

following factors must be taken into consideration: 

 The conductivity of the ground  

 The sharpness of the tip of the dielectric waveguide tapered section in the transition 

region 

 The mechanical fixture and measurement errors/inaccuracies 
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Although the dominant mode is highly confined inside the image guide, the attenuation 

constant of the image guide is increased by an imperfect conductive ground. Fig. 2.4 shows 

the insertion loss of the SIG structure, placed on an aluminum fixture. The results show that 

the aluminum plate adds around 0.15 dB loss to the total insertion loss of the 24 mm SIG 

structure. 

 

Fig. 2.4: The simulated S-parameters of the 24 mm tapered SIG, on an aluminum ground plane. 

Tapered transition has a significant effect on the return loss of a dielectric waveguide-

based structure. The sharper the tip, the lower the return loss. Achieving a very sharp tip is 

not practically feasible with the laser machine fabrication technique. To examine the effect of 

tip width on the S-parameters, a tapered SIG with three different tip widths, 10 m, 20 m, 

and 50 m, are simulated. The total length of all simulated SIG structures, including the 

tapered sections, is 24 mm. The results in Fig. 2.5 show that the tips with the widths of  

10 m and 20 m have negligible effect on the insertion loss. However, the 20 m tip width 

causes larger ripples on the reflection response of the SIG. By increasing the tip width to  

50 m, the SIG loss and reflection increases and the operational frequency bandwidth of SIG 

structure is decreased.  
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Fig. 2.5: The tapering tip width effect on the simulated S-parameters of the  

SIG structure. 

In order to conduct the experimental measurements, various metallic fixture prototypes are 

designed and fabricated. The metallic fixtures are manufactured either by Computer 

Numerical Control (CNC) machinery or wire cutting technique. Due to the fabrication errors, 

none of the manufactured fixtures are perfect. The fabrication/measurement errors can appear 

in different geometric formats as follows (refer to Fig. 2.6):  

 Existence of the unwanted air gap between the dielectric waveguide and the ground 

plane: 

a. Unwanted air gap between the tapered dielectric section and metallic 

waveguide ground 

b. Unwanted air gap between the dielectric waveguide and the test fixture ground 

c. Both the aforementioned cases 

 Existence of a slit at the interface of metallic waveguide ports and the metallic fixture  

 Lateral misalignment error, due to the centre positioning of the SIG inside the 

metallic waveguide ports 
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Fig. 2.6: The possible measurement errors for a SIG structure. 

Mechanical fabrication tolerance can cause maximum 10 m misalignment between the test 

fixture ground and the metallic waveguide ground in two forms, Fig. 2.6(b) and Fig. 2.6(c). 

Fig. 2.7 shows the simulated unwanted air gap effect on the S-parameter responses of the 

SIG. Based on the simulation results, the added loss due to the configuration in Fig. 2.6(b) is 

higher than the one in Fig. 2.6(c). 
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Fig. 2.7: Measurement setup unwanted air gap effect on the simulated S-parameters of the SIG.  

In the next step, the effect of a slit, at the interface of fixture and metallic waveguide, on  

S-parameters is studied. The simulation results for two different slit widths, 10 m and  

50 m, are shown in Fig. 2.8. It is observed that this fabrication/measurement-setup error has 

the major effect in increasing the insertion loss as compared to the previously discussed 

errors. A slit of 10 m width adds at least 0.5 dB loss to the system. Also, it significantly 

affects the return loss.  

 

Fig. 2.8: The ground slit effect on the simulated S-parameters of the SIG structure.  

Unwanted DWG-GND gap

Unwanted DWG-MWG gap

S21 S11

Unwanted air gap/slit
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Finally, the effect of SIG alignment with respect to the centre of metallic waveguide ports is 

investigated. Two different lateral misalignments, 100 m and 300 m, are simulated and the 

results are shown in Fig. 2.9. Interestingly, this type of error has the least effect on the  

S-parameters of the SIG structure. This is important in the case that the SIG is manually 

positioned between the ports.  

 

Fig. 2.9: The lateral misalignment investigation on the Simulated S-parameters of the SIG.  

2.1.4 Measurement Results of the Fabricated SIG Straight Waveguide 

 Two different lengths of the HRS straight waveguide segments, 24 mm and 34 mm, are 

fabricated using the laser machining technique. The structures are fabricated based on the 

dimensions listed in Table 2.1. Both structures have identical tapered sections with identical 

9 mm length. The fabricated SIG structures are measured using an Agilent network analyzer 

armed with two frequency extender modules, working over 110-170 GHz (refer to Fig. 2.10). 

Each of the frequency extender modules are placed on a customized positioner, with a 5-axis 

degree of freedom. The positioners enable us to adjust the extender modules with respect to 

each other and with respect to the metallic fixture along the five axes; x, y, z, , and . The 

obtained S-parameters for two different lengths of straight SIGs are plotted in Fig. 2.11.  

Lateral misalignment
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 The measurement results show that the insertion loss for the 34 mm waveguide varies in 

the range of 0.7 to 1.9 dB. This loss includes the tapered section loss, radiation loss, and 

metallic loss due to the aluminum ground. The insertion loss for the shorter waveguide,  

24 mm, fluctuates between 0.4 to 1.5 dB.  The achieved results may include all discussed 

measurement setup errors. The measured data indicates that the fabricated HRS image guide 

has the average loss of 0.035 dB/mm, over the range of 110-170 GHz, on an aluminum plate 

with conductivity of ~30x10
6 

S/m.  

Table 2.1: The fabricated SIG dimensions values. 

Parameter Value Parameter Value 

L 24 mm Taper L 9 mm 

L1 mm Taper W 20m 

W 250m h ~500 m 

 

 

Fig. 2.10: (a) The straight SIG structures fabricated by the laser machining process (two 

different lengths: 24 and 34 mm). (b) The measurement setup.  

 

(a) (b)
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Fig. 2.11: The measurement results for two different lengths of the fabricated straight 

waveguide (SW) SIG structures, compared to the simulation result of a 24 mm SW-SIG. 

2.2 Silicon-On-Glass (SOG) Technology 

By increasing the operational frequency of an image guide system, the conductor loss 

becomes the major source of loss. Also, due to the size shrinkage of passive devices at higher 

frequencies, a handle-layer is required for holding the HRS waveguide-based devices. The 

handle-layer must not increase the cost of the system, significantly. The main factors in the 

total cost of the system are attributed to the substrate materials and the fabrication cost 

respectively. Secondly, the handle-layer must tolerate different kinds of processing and 

micro-machining. More importantly, the handle layer should provide a minimum 

contribution to the total loss of the system. 

Glass (Pyrex) is a promising choice. A reasonably priced glass wafer is suitable for low-

cost fabrication methods and components. A thick glass substrate eliminates the effect of the 

ground plate loss. Due to the high contrast between the glass and the silicon, the modes are 

strongly confined inside the silicon waveguide up to a few hundred gigahertz. Additionally, 

the glass can be employed in an efficient manner to suppress unwanted modes inside the 

dielectric waveguide structure. Different methods have been proposed for bonding the glass 

to silicon, including anodic bonding which is a high quality process. To implement the SOG 

Measurement
The 34mm SIG : Loss~ [0.7 1.9] dB
The 24mm SIG : Loss~ [0.4 1.5] dB
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structures, the DRIE fabrication process is developed in the Centre for Intelligent Antenna 

and Radio Systems (CIARS) group. The details of the two-mask DRIE process are explained 

in Appendix F.   

In the following sections, two major developed SOG configurations are discussed: 

Suspended Silicon-On-Glass, and Silicon on Corrugated Glass. Both technologies can be 

designed for two possible x- or y- polarizations. Both technologies are similar in terms of 

modal behaviors. A y-polarized straight waveguide segment based on the Silicon on 

Corrugated Glass technology, is designed, fabricated, and tested over the G-band range of 

frequencies (140-220 GHz).  

2.2.1   Suspended Silicon-On-Glass; Basic Idea and Design Analysis 

The Simplest configuration for a SOG structure is to place the glass (Pyrex) substrate 

directly underneath the HRS rectangular waveguide, which is called insulated image guide 

configuration. However, the main issue is the effect of the lossy glass substrate on the total 

insertion loss of the system, especially at higher frequencies. Fig. 2.12 shows the absorption 

loss plot of the Pyrex, derived according to [50].  

 

Fig. 2.12: The absorption loss of Pyrex. 

The preliminary simulations, conducted at CIARS [51], signify that the Pyrex underneath a 

rectangular silicon waveguide causes a relatively substantial loss beyond the 100 GHz. This 

problem is solved by a simple and novel idea, as depicted in  Fig. 2.13. An empty channel 

with the proper depth is designed under the silicon and inside the Pyrex. The depth and width 

of this cavity channel depend on the propagating mode. With this technique, the penetration 
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of the desired silicon field inside the Pyrex is negligible. Obviously, to suspend the 

waveguide, a kind of support mechanism is needed above the cavity. The support structure 

should not have significant effect on the modal behavior of the HRS waveguide. Therefore, a 

set of narrow arms are used to connect the HRS waveguide to the sides and suspend the 

waveguide. The arms are firmly fixed to the Pyrex by square legs. It is found that the arms do 

not change the electric field distribution inside the waveguide, as long as the width of the 

supporting arms are less than 1/10 of the waveguide width. By using this novel structure, the 

Pyrex loss is almost eliminated. 

  

 Fig. 2.13: The proposed SDWG structure (a) 3-D view, and (b) the cross view. 

The proposed suspended SOG structure potentially can be designed to operate dominantly 

either in y polarization or x polarization, suppressing non-desirable modes. To have a  

y-polarized suspended SOG structure, the width of silicon waveguide should be wider than 

its height, and the reverse for the x-polarized structure. Obviously, the appropriate excitation 

configuration should be chosen based on the desired polarization in the SOG structure. In 
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both types of excitation, the silicon waveguide should be placed symmetrically at the middle 

of the metallic waveguide. One of the main advantages of having x-polarized excitation is to 

reach a better coupling from metallic waveguide mode to dielectric waveguide mode. 

Consequently, a shorter taper can be designed for the suspended SOG structures.  

To design the SOG structures, the thickness of the HRS waveguides is pivotal in 

determining the operation frequency range. A comprehensive study was performed at CIARS 

to find the minimum number of required silicon wafers with corresponding thicknesses to 

cover the required range from 50 GHz to 1.1 THz. After an extensive study and 

characterization effort by CIARS researchers, optimal HRS wafer thicknesses for various 

ranges of frequencies, for both polarization configurations, have been obtained, and a general 

design guideline has been developed for future designs to facilitate new designs and to 

decrease the overall cost of the systems. After tabulating the appropriate thicknesses for the 

corresponding range of frequencies, the optimum thickness can be selected for a certain 

design. For instance, the 100 m standard silicon wafer is found to be the optimum thickness 

for the range of 370-470 GHz for an x-polarized suspended SOG structure. Although for 

proof of concept, a suspended SOG structure is designed at that specific range of frequency, 

the idea can be applied to the entire mmWave/THz range of frequencies.  

The waveguide is designed to operate in single mode over the chosen band. The dominant 

mode of the dielectric waveguide with the cross section of 100x220 m
2
 is 𝑇𝐸𝑌

11(𝐸𝑋
11).  

Table 2.2 lists the design parameters of the structure. The structure is excited with an  

x-polarized WR-2.2 metallic waveguide. In order to verify the single mode propagation 

inside the silicon waveguide a spatial Fast Fourier Transform (FFT) test is performed. To 

determine the correct number of modes, the field is sampled along the line on which the 

maximum possible modes contribute (it is specified with a dot in Fig. 2.14), and then spatial 

FFT with respect to a variable, representing the direction of wave propagation along the 

waveguide, is performed. Fig. 2.14 shows the FFT result of the Ex field, extracted from a 

full-wave simulation at 400 GHz, along the line from [x1= W_SDWG/2, y1= - H_SDWG/4, 

z1= - L/2] to [x2= W_SDWG/2, y2= - H_SDWG/4, z2= L/2]. Accordingly, the effective index 

of the waveguide is derived as 𝑛𝑒𝑓𝑓 = λg/λo ≈ 2.21. The propagation constant, obtained 

from this technique, is almost the same as the one calculated analytically. 
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Table 2.2: The design parameter values of the suspended SOG. 

Parameter Value Parameter Value 

Total length of 

the structure 

10 mm H_SDWG 100m 

W m H_Pyrex 400m 

L 5mm H_Cavity 100 m 

 

Fig. 2.14: The Fourier transform of the Ex field along the dielectric waveguide at 400 GHz. 

Fig. 2.16 denotes the transmission loss of the entire structure with an overall length of  

10 mm, including all the transitions. The effect of supporting beams in the transmission 

response is negligible. According to the simulated results, it is found that the proposed 

waveguide has a maximum insertion loss of 0.5 dB, and a return loss better than -15 dB over 

the 370-470 GHz.  
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Fig. 2.15: The total electric field distribution of the proposed Suspended SOG structure at  

400 GHz. 

 

Fig. 2.16: The simulated S-parameters of the Suspended SOG in the range of 350-500 GHz. 

2.2.2 Silicon on Corrugated Glass; Simulation and Measurement Results  

The introduced suspended SOG technology is not an optimized configuration for advanced 

devices, especially when a coupling structure is required. Also, the fragile support beams 

occupy, relatively, a large area. Therefore, a modified version of the Suspended SOG 

technology is developed in CIARS [52], [53]. In the new SOG configuration, HRS 

waveguide is held on top of an array of narrow glass bridges (refer to Fig. 2.17). The 
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corrugation is designed in such a way that it does not disturb the field, significantly. The 

proposed technology can be reconfigured to support either x- or y- polarized field.  

 

Fig. 2.17: The proposed Silicon on Corrugated Glass configuration.  

Although designing a SOG structure at a higher range of frequencies is more attractive, it 

requires less fabrication tolerances and a greater measurement expertise. Moreover, the 

design ideas can be verified at lower frequencies with a lower risk. The silicon wafer with a 

500 m thickness is chosen to cover the 140-220 GHz standard frequency band for design of 

a y-polarized Silicon on Corrugated Glass waveguide.  The design parameters, optimized for 

the structure to operate in single mode, are listed in Table 2.3. The performance of the SOG 

structure is investigated via the simulated dispersion curves (refer to  

Fig. 2.18). The transmission and reflection losses of the finalized structure, achieved by the 

full-wave simulations, are shown in Fig. 2.19.  

Table 2.3: The design parameter values of the Silicon on Corrugated Glass. 

Parameter Value Parameter Value 

L 16 mm Glass h 500m 

W m Cavity h 100m 

h 500m Bridge W 30 m 

W
h

cavity hglass h
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Fig. 2.18: Dispersion curves and mode behavior of the SOG structure over G-band. 

 

Fig. 2.19: The simulated transmission and return loss of the Silicon On Corrugated Glass over 

G-band. 

Mode #1 Mode #2 Mode #1 Mode #2 Mode #3
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The fabricated straight waveguide sample is tested, and the measured results are shown in 

Fig. 2.20(b). The obtained average insertion loss, over the range of 150-200 GHz, is 

approximately 2.5 dB, with a minimum of 0.2 dB.  The measured loss of the whole structure 

is more than what was predicted by the simulation. The major reason for this discrepancy is 

due to the fabrication and the measurement setup errors, part of which are mechanical fixture 

errors. These errors are generally similar to those which are explained in Section 2.1.3. The 

main error factor is the roughness of the fixture. Also, the fabrication errors in realizing the 

cavity channel and the bridges are another source of errors.  

 

Fig. 2.20: (a) The measurement setup for the fabricated Silicon On corrugated Glass, (b) 

measured S-parameters of the fabricated SOG structure over G-band. 

An innovative experiment is performed for verifying the low-loss behavior of the HRS 

waveguide. In this test, the dielectric waveguide is detached from the glass and inserted 

directly inside the metallic waveguide, as shown in Fig. 2.21(inset). In fact, the silicon 

waveguide is suspended in air, while the tapered sections are held by metallic waveguide 

ports. Although the propagation mode in this case is different from that in SOG 

configuration, the S-parameter measurements provide a good insight about the inherent loss 

of HRS waveguide. The measured S-parameters are plotted in Fig. 2.21. It is observed that in 

a small range of frequencies the insertion loss drops to its minimum value which is less than 

0.25 dB.  
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Fig. 2.21: (a) The experiment for verifying the low-loss behavior of the silicon waveguide, and 

(b) the measured S-parameters of the detached silicon waveguide, which is placed between two 

metallic waveguide ports. 

2.3 Conclusion 

In this chapter, the performance of both technologies was extensively investigated through 

the modal analysis and full-wave simulations. Moreover, the effects of all possible errors, 

due to the measurement setup imperfections and fabrication inaccuracies/uncertainties, on the 

performance of the newly developed devices were studied. Then, the waveguide samples, in 

both technologies, were fabricated and tested. In addition to the lithography/DRIE fabrication 

technique, which was mainly used for SOG structures, an efficient and fast laser machining 

process was developed for realization of the prototype SIG structures and devices. The 

introduced laser machining fabrication technique is a chemical and mask-free process, which 

was utilized for shaping the silicon structures with the capability of making a pocket inside 

the silicon wafer. The technique provides micrometer fabrication accuracy which is required 

for device prototyping at the mmWave and THz range of frequencies. The experimental 

results confirmed that the SIG can potentially be a highly low-loss (less than 0.035 dB/mm) 

transmission structure over the D-band (110-170 GHz) range of frequencies. The measured 

results were obtained for a straight waveguide segment on SIG technology with aluminum 

ground. The fabricated SOG waveguide, operating over the G-band (140-220 GHz) range of 
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frequencies, showed the minimum insertion loss of 0.2 dB for the total length of 16 mm, 

including the tapered sections. 

The introduced SOG technology in this chapter can be extended to high THz frequencies 

due to SOG low-loss characteristic and ease-to-handle geometry. Indeed, SOG technology is 

a promising technology for implementing THz devices. However, the proposed SIG 

technology offers more cost-effective and ease-to-fabricate devices at mmWave range of 

frequencies, where the ohmic loss due to the ground can be tolerated.  

 In the next chapter, several SIG passive structures are designed and implemented. 

 

Table 2.4: Overall Comparison of SIG and SOG technologies. 

Technology Propagation Loss Fabrication Fragility 

Transition to 

Metallic 

Waveguide 

Single 

Mode 

Operation 

Bandwidth 

SIG 
Low 

< 350 GHz 

Laser machining 

or 

DRIE(Minimum 

one mask) 

High Easy 

 

Wider than 

SOG 

SOG 

Low, even at high 

THz frequencies 

(Less than SIG) 

DRIE (Minimum 

two masks) 
Less than SIG 

Moderate 

(More complex 

metallic fixture 

than the one for 

SIG) 

Moderate 
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Chapter 3 

SIG Passive Components: Design, Analysis, and Measurement  

In order to implement an integrated dielectric waveguide-based system, various key 

components are required. This chapter introduces a number of developed passive structures 

based on the SIG technology. The design ideas can be easily extended to the SOG 

technology; however, as a starting point it is easier to work with SIG structures from the 

fabrication and measurement points of view. The designed passive elements are formed and 

developed based on the topologies and ideas originated in the optics and the microwave 

range of frequencies.  The design analysis and the measurement results of the proposed 

components are presented. 

3.1 Bend 

Bends are essential components in implementation of various integrated systems. The 

bends are necessary for realizing in-package systems, where the size is an important 

parameter.  In optics, designing bends and curvatures have always been a challenge due to 

fundamental limitations including very small contrast between the waveguide core and 

surrounding medium [54]. Having a bend with a small radius and a wide angle comes at the 

cost of higher radiation loss, due to the radiation from the curved parts. Extensive works have 

been performed in optics to reduce the bending/radiation loss. Using a metal sheet at the 

curvature section is one method for reducing the bending loss in optical wavelengths. 

Radiation loss can be less problematic in the mmWave/THz range of frequencies by using 

the HRS waveguide-based technology. The highly confined field inside the HRS waveguide 

has much less radiation loss at the bends.  

The waveguide bends can be implemented by both the SIG and SOG technologies. Fig. 3.1 

shows the general configuration of two back-to-back SIG bends. The bends are often 

described by two main parameters: bending radius, and bending angle. The radiation loss 

decreases with an increase in operational frequency and waveguide width, because the 

propagation mode becomes more confined inside the waveguide. The SIG waveguide 

dimensions are the same as the one for the straight waveguide segment (500x250 m
2
), 

explained in Chapter 2. The first set of simulations is based on the configuration in  
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Fig. 3.1(a), which consists of two back-to-back identical bends, placed on a perfect ground 

plane. Fig. 3.2(a) illustrates the effect of bending angle on the insertion loss, for the fixed 

curvature radius (R=1 mm). Also, the influence of different radii of curvature for a fixed 

bending angle () is shown in Fig. 3.2(b). As can be observed, the bends with R<1 mm 

and  are affected more in terms of radiation loss and frequency bandwidth. However, 

for a bend with the radius of R>1 mm, the effect of bending angle is negligible. 

 

Fig. 3.1: The general schematic of two back-to-back bends: (a) without offset, and 

 (b) with offset. 

The simulations show that for two different bending radii, R=1 mm and R=2 mm, the 

bending loss at 150 GHz is around 0.11 dB/90
o
. Also, the curvatures with 


and  

R<1 mm suffer significantly from the radiation loss. 

One way to reduce the radiation loss is to use an offset at the bends interface, as illustrated 

in Fig. 3.1(b) [55]. The propagation field tries to escape outward; however, the bend offset 

pushes the field inwards with respect to the bend. The insertion losses of a bend with 

 R=1 mm and , in three different offset cases, are shown in Fig. 3.3. The simulated 

results show that the optimum bending offset is 50 m. 
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Fig. 3.2: The simulated insertion loss of the back-to-back bend for different (a) bending angles, 

and (b) different bending radii. (c) The electric field distribution of the bends with R= 2 mm, 

at f=150 GHz (top view). 

 

Fig. 3.3: The effect of bending offset on the simulated insertion loss. 

(a) (b)

(C)
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3.1.1 Measurement Results 

For proof of concept, a few SIG bends with different parameters are fabricated using the 

laser machining technique. The fabricated bends are shown in Fig. 3.4, and the corresponding 

measured results are shown in Fig. 3.5. All the fabricated bends consist of four identical bend 

sections, in order to have the input and output waveguides in the same level. Also, as 

discussed before, 9 mm tapered sections are used for providing the smooth transition between 

the metallic waveguide and SIG structures. The total lengths of the structures, shown in  

Fig. 3.4, with radii of R=1 mm and R=2 mm are L=24 mm and L=34 mm, respectively. 

Analyzing the results shows that a bend with the fixed radius of R=1 mm, has the loss of 

approximately 0.55 dB/90
o 

at 150 GHz, while a bend with the fixed radius of R=2 mm, has 

the minimum loss of 0.25 dB/90
o
, which is quite a promising result for a bend. 

 

Fig. 3.4: The fabricated bends, using the developed laser machining technique. 
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Fig. 3.5: The measured S-parameters for the fabricated bends with (a) different radii, and (b) 

different bending angles. (c) The comparison between the simulated and measured S21  

for =90
o
. 
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3.2 Y-Junction Power Divider 

The power divider is another important passive building-block, which is required for 

realization of almost any mmWave integrated circuits.  Although Y-junction power dividers 

are widely studied and implemented in the optical range [56], [57], the dielectric waveguide 

power dividers have not been extensively reported at the mmWave range of frequencies, 

except for lower mmWave range of frequencies [58].  

A symmetric dielectric Y-junction power divider can be realized by various approaches. 

Fig. 3.6 shows the general configuration of a dielectric waveguide 3-dB Y-junction power 

divider. The input and output waveguides are designed for operating in single mode. The 

single mode dielectric waveguide is divided into two separate output dielectric waveguides 

through a transition waveguide section. The output waveguides make an angle of 2 at the 

branching point. The total return loss of the system is mainly determined by this angle, while 

the wider angles result in higher radiation loss. However, due to the high contrast between 

the silicon and air, the achievable Y-junction angles are much larger than those in the 

traditional dividers in the optical range of frequencies, wherein the branching angle is often 

less than 10
o 

[56]. Various techniques have been proposed in optics to decrease the return 

loss caused by a junction discontinuity. Most of them employ a matching section to 

compensate the phase-front mismatch. However, they require a more complex fabrication 

process. In the proposed power divider, the transition section and the bends are optimized to 

reduce the return loss, while the insertion loss is kept low. The inner sections of the bends, as 

shown in Fig. 3.6, have bending angles of  and the radii of R1 and R2. The divider is 

designed and optimized to operate within the D-band (110-170 GHz) range of frequencies. 

The design parameters are listed in Table 3.1.  

Table 3.1: The design parameter values of the Y-junction 3-dB power divider. 

Parameter Value Parameter Value 

L1 10 mm R1 1 mm 

W1 m R2 2mm 

W2 510m  30
o
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Fig. 3.6: The general schematic of 3-dB Y-junction power divider. 

Fig. 3.7 shows the simulated S-parameters of the 3-dB in-phase Y-junction power divider 

obtained from HFSS full-wave simulation. The results are achieved for three different 

branching angles, while the R1 is 2 mm. The total loss observed in each output port is less 

than 0.3 dB for =30
o 
and

 =60
o
 over 120-170 GHz band.  

 

Fig. 3.7: The simulated insertion loss of the 3-dB in-phase Y-junction power divider for 

different branching angles. 

3.2.1 Measurement Results 

Due to measurement setup challenges for testing a 3-port power divider, two identical 

dividers are connected back-to-back, to form a symmetric two port structure.  The back-to-

back power divider sample is fabricated using the developed laser machining technique. The 

fabricated structure has a total length of 34 mm, including the tapered sections. The bends 

have R1= R2=2 mm and =30
o
. Fig. 3.8 shows the fabricated divider from different views 
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along with the measurement setup. To verify the dividing performance of the divider, a Near 

Infra-Red (NIR) Light Emitting Diode (LED), operating at 960 nm, is used. In fact, the 

illumination of HRS structure increases the conductivity of the silicon and causes substantial 

loss in the propagating signal. First, the total insertion loss of the system is measured, and the 

average insertion loss is 1 dB (refer to Fig. 3.9). Then, the main guiding channel labelled as 

the “main line” in Fig. 3.9(b), is illuminated by a very low power NIR signal (<5 W). The 

results show that S21 drops approximately 9 to 11 dB. In the next step, each Y-junction 

branch is illuminated one at a time and the changes in the S21 are recorded. The measured 

data, which are plotted in Fig. 3.9, show that the S21 drops by 3.5 dB, on average.  

 

Fig. 3.8: (a) The measurement setup and fabricated back-to-back divider (R=2 mm, 2=60
o
).  

(b) NIR illumination experiment. 

 

Fig. 3.9: The measured results of S-parameters for the back-to-back divider by means of NIR 

illumination (R=2 mm, 2=60
o
, and the total length=34 mm). 
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3.3 Directional Coupler 

Directional couplers are used in several applications, such as signal combining, power 

splitting, mixing, and switching. In microwave frequency ranges, where we can still use the 

planar circuits, plenty of coupler ideas such as the branch coupler, rat-race coupler, and 

directional coupler have already been introduced [59]. The metallic waveguide-based 

couplers, such as the Beth-hole coupler, are another group of couplers in the microwave 

range [59].  On the other hand, dielectric waveguide couplers have been studied and 

implemented extensively at optical wavelengths [60], where the couplers play important roles 

in formation of almost any optical systems from communication to imaging applications. 

Implementing the dielectric waveguide-based couplers in the mmWave/THz range of 

frequencies, where realization of planar circuits and metallic waveguides are challenging, is a 

significant step towards development of high performance integrated systems [61]. The 

coupled field is triggered and transformed in the secondary waveguide, which is placed in 

close vicinity of the primary waveguide, by the tail (decaying part) of the field in the first 

channel. The coupler structure, which consists of two coupled dielectric waveguides, can be 

studied using the even and odd mode theory. Fig. 3.10 shows the geometry of a directional 

dielectric waveguide coupler, while the G and L are the gap and the length of the coupling 

section, respectively. For a reasonably chosen G, the L determines the coupling power ratio 

as well as the operational frequency. 

 

Fig. 3.10: The general configuration of (a) an SIG directional coupler, and (b) a supported  

SIG coupler. 
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To find the initial value of L, the EDC method is used in order to calculate the even and 

odd propagation constants of the structure. Then the coupling power ratio, direct power ratio, 

and the coupling length (Leff), over which the signal is completely coupled to the adjacent 

waveguide, are calculated using the following formulas [60], [61]: 

𝐿𝑒𝑓𝑓 =
𝜋 

𝛽𝑒 − 𝛽𝑜
 

𝑃2
𝑝1
= (cos (

𝜋 

𝛽𝑒 − 𝛽𝑜
𝐿))

2

 

𝑃3
𝑝1
= (sin (

𝜋 

𝛽𝑒 − 𝛽𝑜
𝐿))

2

       

(3-1) 

(3-2) 

(3-3) 

where 𝛽𝑒 and 𝛽𝑜 are the even and odd propagation constants of the coupler. The input and 

output waveguides are separated by the optimized bends. To facilitate the measurements, the 

bends are added at both sides of the coupled section. Separating the waveguides by smooth 

bends helps to increase the frequency bandwidth. As discussed in Section 3.1, the bends 

should be carefully designed in order to have negligible radiation loss. Additionally, the 

coupler bends contribute to the coupling ratio. Therefore, the actual effective coupling length 

is larger than L due to the bending parts, which are part of the coupling mechanism. The 

coupler waveguides have the same cross sections as those of SIGs in the previous designs. 

The calculated even and odd propagation constants for the G=180 m at 150 GHz are 

𝛽𝑒=8112 rad/m, 𝛽𝑜=7339 rad/m. The coupling length is calculated as Leff=4.06 mm, using  

(3-1). All the bends have radius and angle of R=2 mm, =90
o
, respectively. The coupler can 

be designed for providing any desired coupling ratio. Fig. 3.11 shows the effect of G and L 

on the coupled (P3/P1) and directed (P2/P1) power ratios at different frequencies. In order to 

have a 3-dB coupler, the optimized coupler parameters are obtained as G=180 m and L=1 

mm. The simulated data shows that, an increase in the gap (G) or decrease in the coupling 

length (L) results in the reduction of the frequency, at which the structure acts as a 3-dB 

coupler (refer to Fig. 3.12(a) and Fig. 3.12(b)). The phase differences between the coupling 

port (port #3) and the direct port (port #2) are within the 90-93 degree over 140-155 GHz 

(refer to Fig. 3.12(c)). The 1-dB bandwidth of the 3-dB coupler, over which the maximum 

imbalance between the signals at the output ports reaches 1 dB is approximately 6 GHz. 
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Fig. 3.11: The simulated outputs power ratios at different frequencies: (a) directed power ratio 

for G=180 m and varying L, (b) coupled power ratio for G=180 m and varying L, and (c) 

coupled power ratio for L=1 mm and varying G. 
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Fig. 3.12: (a) The effect of G on the transmission responses for the fixed L, (b) The effect of L on 

the transmission responses for the fixed G, and (c) the output phase differences for different 

values of L and G. (d) The electric field distribution for the SIG coupler at 150 GHz  

(G=180 m, L=1 mm). 
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3.3.1 Supported SIG Coupler  

As it is obvious from the simulation results, the gap (G) plays a significant role in 

determining the coupling ratio. However, the guiding channels of the coupler are detached 

from each other. Therefore, a precise manual positioning of the waveguide channels is 

required, which is practically impossible. To avoid this issue, the idea of supported beams is 

introduced and shown in Fig. 3.10(b). For reaching a monolithic coupler, two narrow beams 

connect the waveguides at the coupling region. The supporting beams are separated from 

each other with 500 m pitch and they have identical 30 m width.  

 

Fig. 3.13: (a) The effects of G and L on the transmission responses of the supported coupler,  

(b) the output phase differences for different sets of L and G for the supported coupler. 
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The supporting beams mainly affect the coupling ratio. The simulated results for different 

gaps and coupling lengths are shown in Fig. 3.13. It is found that for having a 3-dB coupler 

operating over the same frequency range as the one for the original coupler, the coupling gap 

and length should be set to G=180 m and L=0.6 mm, respectively.  

As previously discussed, the idea of offset positioning at the bend interfaces can be used to 

reduce the radiation loss at the bends. The simulated results for the supported coupler with 

offset=50 m are shown in Fig. 3.14. The variations of the output ports phases over the entire 

range are smaller as compared to the previous case with no supports.  

  

Fig. 3.14: (a) The effects of G and L on the transmission responses of the offset supported 

coupler, and (b) the output phase differences for different values of L and G for the offset 

supported coupler. 
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3.3.2 Multi-Mode Interference (MMI) Coupler 

The MMI concept can also be used to realize a coupler. MMI structure is a known 

component at optics for dividing, coupling, and switching purposes [60]. The general 

configuration of the proposed MMI-based coupler is shown in Fig. 3.16(a). The middle 

section acts as a multimode medium, where the entering single mode field is converted to 

several modes. A 3-dB coupler can be achieved by placing the output ports at the position of 

two-fold images, at the distance of [60], [62], [63]: 

𝐿3𝑑𝐵~1.5
𝑛𝑒𝑓𝑓𝑊2 

𝜆𝑜
 (3-4 ) 

The calculated neff, for W2=950 m, is 2.34. Therefore the theoretical obtained L3dB is  

730 m, and its optimized value is 700 m for the operational frequency of 157 GHz. The 

simulated results for the optimized MMI-based 3-dB hybrid coupler, while the separating 

distance between the ports is S=450 m, and the bends have R=2 mm, =90
o
, is plotted in 

Fig. 3.16(b). One challenge in implementation of the MMI-based couplers is the sensitivity 

of the output phases to the design parameters (refer to Fig. 3.16(c)). Also, the smallest 

fabrication tolerance in positioning the ports with respect to each other results in noticeable 

errors in the coupling ratio. 

 

Fig. 3.15: The general configuration of the MMI-based coupler. 
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Fig. 3.16: (a) The effects of W2 and L on the transmission responses (S=0.45 mm) of the MMI 

coupler, and (b) the output phase differences investigation.  

3.3.3 Measurement Results 

For experimental validation of the proposed coupler structures, the supported coupler, 

shown in Fig. 3.10(b) with L=0.8 mm and Gap=180 m, is chosen to be fabricated. The laser 

machined coupler is shown in Fig. 3.17(a). The two additional supported labeled as “optional 

supports”, as shown in the inset picture (refer to Fig. 3.17(b)), can be used for enhancing the 
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stability of the structure at the cost of higher loss and higher phase errors. The output ports 

are separated by a 180 degree angle from each other. A 90
o
 right-angle metallic waveguide is 

used to connect the measurement setup extender modules to the metallic fixture. The 

corresponding insertion loss of the metallic waveguide bend was measured at 0.5 dB. The 

measured results of the coupled and through transmission coefficients, which are separately 

measured, are shown in Fig. 3.17(b). The total loss of the coupler structure with the  

fc=152 GHz is approximately 1.7 dB, including the radiation losses, the tapered section 

losses, and the fixture losses. 

 

Fig. 3.17: (a) The laser machined supported 3-dB coupler and the measurement setup, and (b) 

the measured S-parameters of the fabricated 3-dB coupler. 
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3.4 Parasitic Tapered Antenna  

The antenna is a critical element for realization of any RF-end system. Dielectric 

waveguide-based antennas are of interest to many designers in the mmWave range of 

frequencies. SIG technology provides a low-cost platform for realizing high performance 

beam-steering systems at the mmWave range of frequencies. Low-cost, highly-efficient, and 

integratable antenna systems are key enabling technologies for the mass market emerging 

mmWave/sub-mmWave communication systems. The advantage of using image guide 

antennas is that the ground plate blocks the down-going signals and redirects all the energy to 

the upper space. 

Tapered antennas are the simplest type of dielectric antenna from the design perspective, in 

addition to their natural wide radiation and matching bandwidth. The tapered antennas are 

categorized as travelling-wave radiators, where any discontinuity causes radiation of the 

trapped field inside the waveguide. In fact, the radiation in the tapered section happens due to 

changes in the propagation constant of the field, which decreases to 𝛽𝑧 = 𝑘0 at the tapered 

section. Different configurations of tapered antennas, such as rod antennas [64], [65], NRD 

antennas [66], [67], and image guide antennas [68], [69], were implemented at the 

microwave and mmWave range of frequencies. The length of the tapered section defines the 

gain and side-lobe levels. So, the main drawback of these antennas is their lengthy size. To 

overcome this issue the tapered section should be shortened at the cost of higher side-lobe 

levels. To keep the side-lobe levels low as well as increasing the gain, the parasitic elements 

can be employed. The geometry of the proposed antenna is shown in Fig. 3.18 [70]. The SIG 

antenna consists of a tapered antenna coupled to two parasitic tapered sections. The parasitic 

elements are connected to the main part of the antenna through narrow supportive beams 

with 30 m width. The supportive beams are important from the mechanical stability point of 

view. Also, the supportive beams precisely locate the parasitic elements at the desired 

distance (g).  The antenna is placed on a finite metallic plane. The antenna input port is 

tapered in order to provide a smooth transition from the rectangular metallic waveguide 

(WR-10) to the antenna for operating at 75-110 GHz. The optimal design values, for which 

the gain and the side-lobe levels are maximized, are listed in Table 3.2.   
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Table 3.2: Optimal design values of the parasitic tapered antenna. 

Parameter a b L1 L2 L3 W1 W2 W3 g 

(mm) 16 6 13 3 3 0.33 0.1 0.030 0.13 

 

 

Fig. 3.18: 3-D configuration of the proposed parasitic tapered antenna [70]. 

The width of the dielectric waveguide is calculated in such a way to operate as a single 

mode within the desired operational frequency. The total length of the antenna is 

approximately 3.7 wavelengths (the radiating part has approximately 5 mm length).  

 

Fig. 3.19: The laser machined parasitic tapered antenna: a) 3D views. b) Top view [70]. 
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Fig. 3.20: (a) Simulated 3-D pattern of the parasitic tapered antenna at 90 GHz, (b) the 

simulated gain pattern for the =90
o
 cut, and (c) the simulated gain pattern for the  

=60
o 
cut [70]. 
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The 3-D gain pattern of the antenna at 90 GHz is shown in Fig. 3.20(a). The maximum 

gain is approximately 13.1 dBi and the beam is 60
o
 tilted with respect to the z-axis. Also, the 

total gain of the antenna for different frequencies at the yz-plane is shown in Fig. 3.20(b). 

Within the range of 86 GHz to 94 GHz the antenna gain pattern is almost constant and all the 

side-lobe levels are better than 13 dB. Fig. 3.20(c) shows the total gain of the antenna in 

=60
o
 plane. The parasitic elements increase the gain to approximately 1.7 dB while 

enhancing the side-lobe levels by at least 4 dB as compared to the antenna without the 

parasitic elements.  

3.5 Leaky-wave Antenna  

Leaky-wave antennas are among the most cost-effective techniques for implementing 

beam-steering systems at the mmWave range of frequency.  Leaky-wave antennas are 

suitable for the systems required to radiate at the sector of sideward direction or at the  

broad-side direction. Additionally, leaky-wave antennas provide unique advantages such as 

low profile, ease to fabricate, narrow beam, frequency scanning, and high efficiency for any 

mmWave system [71]. A wide variety of leaky-wave antennas have been investigated and 

developed for microwave/mmWave applications [71]. Planar printed leaky-wave antennas 

are among the popular techniques for the microwave range of frequencies [72], [73]. As 

mentioned earlier, conductor loss and difficulty of fabrication are the major drawbacks of 

such configurations in the mmWave range of frequencies. Dielectric waveguide-based  

leaky-wave antennas are good candidates for mmWave applications [74], [75], [76], [77]. 

Leaky-wave antennas are divided into three groups: linear, quasi-linear, and periodic  

leaky-wave antennas. The linear and quasi-linear antennas are traditionally realized by a slit 

on the surface of a metallic waveguide, in which fast wave mode is propagating [71]. On the 

other hand, periodic leaky-wave antennas are realized using the periodic mechanism for 

perturbing a propagating field inside a dielectric structure, which carries slow-wave mode. 

The periodic perturbation transforms the slow-wave modes to the radiating spatial fast-wave 

modes. In fact, the propagating wave at any discontinuity starts to partially radiate and the 

wave decays exponentially along the structure. The most common type of the periodic  

leaky-wave antennas are the metallic strip and groove grating antennas. In the following 

sections two types of SIG grating antennas, strip grating and grooved grating antennas are 
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discussed and the design steps, for operating over D-band (110-170 GHz) range of 

frequencies, are explained. 

3.5.1 Groove Grating Antenna 

The proposed grating antenna, [78], acts as a fast wave structure excited by a surface-

wave/slow-wave of the SIG straight waveguide segment. The first design step is to determine 

the width of the antenna in Fig. 3.21(a). The SIG width, W, defines the modal behavior of the 

structure. It also affects the beam-width and side-lobe levels. The optimal value of the 

waveguide width and input tapering length, obtained from computational simulations, are 

450 µm and 9 mm, respectively. The wider width of the waveguide in comparison to the 

previously implemented SIG passive structures is due to the highly confined field 

requirements of the antenna. In fact, a narrower width of waveguide results in higher side-

lobe levels and lower gain. Exciting the antenna by a metallic waveguide guaranties the 

single mode operation of the antenna.  

The next step is to find the grating parameters.  The grating period, p, has an important role 

in determination of the radiation beam angle, which can be calculated as sin(𝜃) =
𝛽𝑛

𝑘0
=

(
𝛽𝑦

𝑘0
+
𝑛𝜆0

𝑝
) , obtained from the theory of the Floquet mode [71]. 𝑘0 and 𝜆0 are free space 

wavenumber and wavelength, respectively. Also, n is the space harmonic order which is 

desired to set n=-1. The other important parameter is 𝛽𝑛, Floquet mode phase constant of the 

fast wave structure. 𝛽𝑦 is the phase constant of the equivalent unperturbed waveguide.  

Furthermore, in a grating leaky-wave antenna, groove depth, t, defines the amount of 

radiation leakage, which should ensure that the largest portion of the input power to the 

grating antenna is radiated before reaching the end of the structure. For initial design, the 

EDC method, as schematically illustrated in Fig. 3.21(a), is used to determine the grating 

parameters [74]. 
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Fig. 3.21: (a) The general configuration of the antenna with explanation of the applied EDC 

technique, (b) the electric field distribution at 160 GHz at the cross section of the antenna 

before the grooves, and (c) the design parameters.  

Once the initial design is completed, all SIG and grating parameters are finely adjusted and 

optimized using full-wave simulations in order to provide maximum gain while keeping the 

side-lobe levels low. For the particular design example reported here, the optimized groove 

depth is obtained as t=220 µm and 𝛽𝑦 𝑘0⁄ = 2.92. In the EDC method (refer to Fig. 3.21(a)), 

𝜀𝑎𝑣𝑔is the volume average permittivity of the grooves which is 𝜀𝑎𝑣𝑔 = 9.38, for the aspect 

ratio of b/p=0.23. The optimal value p=0.78 comes from the fact that the radiation angle is 
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desired to be approximately 𝜃𝑟 = 30
𝑜 at centre frequency. Another important effect of p is 

on the number of spatial modes. The chosen P guarantees to have only n=-1 spatial fast-wave 

mode. The total length of antenna is calculated using the 𝐿 = −
1

2𝛼
𝑙𝑛(1 − 𝜂) term, in which  

𝛼  is the attenuation constant of the antenna, and 𝜂 is the efficiency of the antenna which is 

set at >0.95. The total number of grooves is set to 20 for providing acceptable gain and 

beam-width.   

 

Fig. 3.22: (a) Simulated 3-D gain pattern of the designed grating antenna at 155 GHz, (b) the 

simulated S11 of the antenna, and (c) the simulated gain patterns for the =90
o
 cut [78]. 

A simulated 3-D pattern of the designed antenna at f=155 GHz is shown in Fig. 3.22(a). 

The simulated reflection response of the antenna over the G-band range of frequencies is 
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depicted in Fig. 3.22(b). To obtain more insight about the antenna behavior and gain,  

Fig. 3.22(c) shows the simulated gain plots of the designed antenna at ϕ=0
o
 for various scan 

angles. Almost a flat gain, with less than 0.5 dB fluctuation over the entire angular scanning 

range is achieved. The simulated radiation efficiency of the antenna is better than 92%, 

which demonstrates the significant advantage of using silicon as the main substrate. 

The designed antenna is fabricated using a developed laser machining technique. The 

capability of the laser technique for making a pocket inside the dielectric structure is an 

important feature, which discriminates this technique from the DRIE fabrication method. 

Comprehensive experiments are conducted to find the optimized values of the laser process 

for making desired groove depths with the minimum surface roughness. The fabrication tests 

prove that the roughness of a groove with 200 m depth is ±5 m. Moreover, the simulations 

show that ±5 m roughness inside the grooves causes less than 0.5 dB changes in the 

maximum gains of the antenna. The fabricated grating antenna sample is shown in Fig. 3.23. 

 

Fig. 3.23: The laser machined groove grating antenna sample [78]. 

3.5.2 Strip Grating Antenna 

The theory of the strip grating dielectric waveguide antenna is similar to the one for the 

groove grating antenna. Regarding the grating parameters, the width and the periodicity of 

the strips should be determined in such a way to provide the desired antenna radiation 

characteristics. The proposed strip grating SIG antenna, [79], is shown in Fig. 3.24(a), where 

the period of strips determine the radiation angle, and the ratio of b/p introduces the amount 

of power leakage. The optimized design values for the antenna for operating over  

145-160 GHz are listed in the table in Fig. 3.24(c). The simulated 3-D gain pattern of the 

x

y

z
θr



 

 59 

antenna at 155 GHz is plotted in Fig. 3.24(b).  The radiation pattern of the strip grating 

antenna is closer to the broad-side angle in comparison to the groove grating antenna.  

 

Fig. 3.24: (a) The general configuration of the proposed strip grating antenna. (b) The 

simulated 3-D gain pattern at 155 GHz, and (c) the design values. 

The simulated reflection response and gain pattern for the =90
o
 cut, are shown in  

Fig. 3.25(a)-(b), for different angular scanning, over the 145-160 GHz range. The maximum 

simulated gain of 14.9 dBi, with reasonable flatness over the whole range, is achieved for the 

antenna length of L=17 mm. The side-lobe levels are less than 9 dB. The antenna efficiency 

is better than 92%.  

The fabricated strip grating antenna by means of the laser machining process is shown in 
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then the laser machine is optimized to pattern the copper. The laser speed is increased to 

avoid any unwanted damage to the surface of the silicon waveguide.  

 

Fig. 3.25: (a) The simulated S11 of the strip grating antenna, (b) the simulated gain patterns for 

the r=3
o
 cut, and (c) the simulated gain patterns for the =90

o
 cut [79]. 

 

Fig. 3.26: The laser machined strip grating antenna [79].  
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3.6 Conclusion 

In this chapter, the newly developed SIG technology was used for implementing various 

passive structures, operating over the D-band (110-170 GHz) range of frequencies. A number 

of designed bends were extensively studied and designed. The measured results demonstrated 

that a bend with the radius of R=2 mm has the minimum bending loss of 0.25 dB/90
o
. Then, a 

3-dB Y-junction power divider was designed, and fabricated using the laser machining 

process. A back-to-back version of the divider was fabricated and successfully tested, by 

means of an optical method. The next introduced component was a directional coupler, 

which was extensively studied and designed. The idea of supporting beams was used for 

reaching a monolithic coupler. Also, the MMI version of coupler was designed and 

simulated. Finally, a 3-dB supported directional coupler was fabricated and successfully 

tested. The coupler sample was tested at fc=152 GHz with the additional loss of 1.7 dB.  

The last two sections of the chapter introduced three types of SIG antennas: 1) parasitic 

tapered antenna, 2) groove grating antenna, and 3) strip grating antenna. The design 

procedures along with the simulation results were discussed in detail. The main advantage of 

the proposed parasitic tapered antenna, operating from 86 GHz to 94 GHz, was its relatively 

high gain, 13 dBi, in comparison to a conventional tapered antenna. Then, two highly-

efficient and low-cost grating antennas, groove grating and strip grating antennas, designed 

and optimized for the D-band applications with the boresight beam scanning capabilities, 

were discussed. The results indicated almost a flat gain of 14.2 dBi over the 153–165 GHz 

scanning range for a 17 mm long groove grating antenna. Also, the proposed strip grating 

antenna has a flat gain of about 14.9 dBi over the 145-160 GHz range of frequencies. All the 

antennas were realized by a fast and newly developed laser machining process. 
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Chapter 4 

Dielectric Waveguide Whispering Gallery Mode (WGM) Sensors  

Resonance structures are commonly used over the entire electromagnetic spectrum for 

designing a variety of devices, such as filters, sensors, and oscillators. In this chapter, an 

efficient and fast analysis method is developed for finding the resonance frequencies of the 

planar resonators, operating in higher order modes. This method is used for initial design and 

optimization of several Whispering Gallery Mode (WGM) resonators, realized on different 

technologies, mainly on silicon-based platforms. The designed resonance structures are fully 

simulated, fabricated, and tested. The introduced WGM resonance structures are employed 

for bio-sensing applications with the focus on DNA sensing. 

4.1 Introduction  

The WGM was first conceptualized by Lord Rayleigh who found that a high frequency 

sound wave can propagate on a concave surface [80]. Then, the WGM idea was adopted for 

studying wave propagation in atmospheric layers around the earth [81].  Since then, many 

efforts have been made to analyze dielectric resonators operating in the WG mode [82], [83], 

[84]. The main characteristics offered by WGM-based dielectric resonators are described 

below: 

 They present a unique field distribution. WGMs are special modes of resonators 

close to the cylindrical boundary. Therefore, most of the energy is confined 

between the outer boundary and an inner radius, called the caustic radius. 

 They offer oversized dimensions as compared to that of lower order modes. This 

property makes the WGM resonator a perfect candidate for mmWave applications. 

This characteristic reduces the effect of the fabrication error.  

 They present high Q-factor resonances. 

Several WGM-based applications have been reported in optics, mmWave, and even  

sub-mmWave electronic systems. In optics, the WGM spherical resonator is well-known for 

sensing applications [85], which will be discussed in Section 4.3. The planar type of WGM 

resonators are widely used in microwave devices such as filters, antennas, and power 
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dividers [86], [87]. WGM resonators are appealing because of their unique electromagnetic 

behavior. However, due to the various computational and theoretical challenges, not many 

WGM-based devices are implemented in the mmWave range of frequencies. 

A WGM resonator can play an important role in realizing different mmWave integrated 

devices. The coupled WGM resonator can be used for various applications that require a 

confined field inside the resonator. These modes are extremely sensitive to any perturbation. 

Two types of WGMs can be excited inside a resonator: 1) standing wave WGM, and  

2) travelling wave WGM. In the standing wave WGM, in contrast with the travelling wave 

WGM, the peak location of the field distribution does not change over time. A system 

composed of a dielectric waveguide coupled to a WGM resonator can be used as a common 

structure for a number of applications in sensing and mmWave signal processing (filtering, 

phase-shifting, etc.). 

WGMs can be categorized as the high order modes, with rapid circumferential (azimuthal) 

variation, of a cylindrical waveguide. As it is known, a dielectric cylinder waveguide can 

support hybrid modes. WG modes are classified, depending on the polarization and the 

spatial distribution of the electromagnetic fields, as WGEnml and WGHnml. For WGE modes, 

the electric field is essentially transverse, whereas for WGH modes, the electric field is 

essentially axial. Each mode is denoted by three mode numbers: n, m, and l, describing the 

number of field cycles of variations along the azimuthal, radial, and axial directions, 

respectively [88].  

In a Dielectric Disc Resonator (DDR), WG modes, with a small axial propagation constant, 

travels azimuthally close to the resonator boundary [84]. The excitation type and the 

resonator’s physical parameters determine the type of the WGM inside the resonator. Among 

different types of WG modes, the WGEn00 and WGHn00 modes are desirable, because they 

provide a highly confined and sensitive field inside the resonator. In the WGEn00 mode, the 

predominant component is the axial H field, in contrast to the axial E field in the WGHn00 

mode. WG modes with higher order numbers exhibit less radiation loss as compared to lower 

order modes [89]. 
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4.2 An Efficient Analysis Method for Calculating the High Order Resonance 

Frequencies of a DDR 

Rigorous full-wave analysis of a system, consisting of a dielectric waveguide coupled to a 

planar WGM-DDR, takes a long time. Therefore, developing a fast analytic method for doing 

initial design, which usually requires running many cycles, is required. Additionally, the 

developed analytic method is used for optimization the WGM resonator, in terms of 

resonance frequency. Calculating the resonance frequency of a DDR operating in higher 

order modes is not easy, mathematically. Various methods have been developed to find the 

resonance frequency of a dielectric resonator [90], [91], [92]. Obviously, the numerical 

methods offer a better accuracy at the cost of computational complexity. The majority of 

analytic solutions are based on a simple assumption that the modes are either quasi-TE (when 

Ez is zero) or quasi-TM (when Hz is zero). Other approaches, introduced to find the low order 

modes of a dielectric resonator consider a Perfect Magnetic Layer (PML) boundary for a 

resonator in order to simplify the resonance frequency calculations [93]. However, these 

simplifications reduce accuracy of the resonance frequency calculation.  

The general structure under investigation is a DDR, placed on the grounded substrate, 

which is called an insulated image resonator (refer to Fig. 4.1(a)). In the following, an 

efficient and fast analysis method is developed for calculating the WGM resonance 

frequency of a DDR. The developed analysis method helps in initial design, sensitivity 

analysis, and optimization of the resonance structures. To calculate the higher order mode 

resonance frequencies of a DDR, the approach introduced in [92], which is a combination of 

the EDC method and Dielectric Waveguide Model (DWM) [92], [94], [95], [96], [97], [98] is 

adopted and developed. For the sake of simplicity and with the knowledge that the majority 

of the structures in this study are formed by an image resonator, the developed analysis 

method is described for an image resonator (refer to Fig. 4.1(b)). However, the developed 

analysis method is general and can be applied to any configuration of dielectric waveguide, 

for finding the high order resonance frequencies. The method can be described in four steps 

as follows:  
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Fig. 4.1: (a) General configuration of a dielectric insulated image resonator, and (b) general 

configuration of a dielectric image resonator. 

Step-1 (Applying EDC-DWM): To calculate the resonance frequency of an image 

resonator, all the propagation and attenuation constants of the structure in all the sub-regions 

should be found, using EDC-DWM method. In EDC-DWM technique, the critical 

assumption is that the fields in sub-region 4 are much smaller than their neighbors, and can 

be ignored. This assumption is valid if a strongly confined field exists inside the resonator. 

Applying the EDC-DWM to the image resonator, two sets of dispersion equations are 

obtained: 1) the axial dispersion equations, which are derived by field matching at z=0, z=h 

surfaces, and 2) the radial dispersion equations, which are derived by field matching at x=a 

surface. By solving the obtained dispersion equations simultaneously, the resonance 

frequency of the DDR is derived. Fig. 4.2  illustrates how an image resonator can be 

analyzed using the EDC-DWM method. 
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Fig. 4.2: (a) The cross section of an image resonator with (b) the equivalent single-layer slab 

waveguide for calculating the axial dispersion equation, and (c) the equivalent model for 

calculating the radial dispersion equation. 

The dispersion equations of a single-layer slab, for both possible polarizations are obtained 

as (Appendix A): 

{

𝜀𝑟1𝛼𝑧
𝑘𝑧

= 𝑡𝑎𝑛(𝑘𝑧ℎ)   𝑇𝑀 𝑚𝑜𝑑𝑒

−
𝛼𝑧
𝑘𝑧
= 𝑐𝑜𝑡(𝑘𝑧ℎ)  𝑇𝐸 𝑚𝑜𝑑𝑒

 (4-1) 

where 𝑘𝑧 and 𝛼𝑧 are the axial propagation and the axial attenuation constants, respectively, 

and they are related by 

𝛼𝑧
2 = 𝑘0

2(𝜀𝑟1 − 1) − 𝑘𝑧
2 (4-2) 

𝑘𝑥
2 = 𝑘0

2𝜀𝑟1 − 𝑘𝑧
2  (4-3) 

To obtain the radial dispersion equation, Maxwell equations are solved for an infinite 

dielectric cylinder. Appendix B describes how the dispersion equation of an infinite dielectric 

cylinder is derived by matching the tangential components of the E and H fields at the 

boundaries. The obtained dispersion equation for an infinite dielectric cylinder is 
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[
𝐽𝑛
′ (𝑘𝜌𝑎)

(𝑘𝜌𝑎)𝐽𝑛 (𝑘𝜌𝑎)
+

𝐾𝑛
′(𝛼𝜌𝑎)

(𝛼𝑎)𝐾𝑛 (𝛼𝜌𝑎)
] × [

𝐽𝑛
′ (𝑘𝜌𝑎)

(𝑘𝜌𝑎)𝐽𝑛 (𝑘𝜌𝑎)
+
1

𝜀𝑟1

𝐾𝑛
′(𝛼𝜌𝑎)

(𝛼𝜌𝑎)𝐾𝑛 (𝛼𝜌𝑎)
]

= [𝑛(𝜀𝑟1 − 1)
𝑘𝑧′𝑘0
𝑘𝜌2

] 

(4-4) 

where 

𝛼𝜌
2 + 𝑘𝜌

2 = 𝑘0
2(𝜀𝑟1 − 1) (4-5) 

𝑘𝜌
2 = 𝑘0

2𝜀𝑟1 − 𝑘𝑧′
2  (4-6) 

𝑘𝑧′ is the axial propagation constant of an infinite dielectric cylinder. By solving (4-4)-(4-6), 

at different frequencies and for a specific mode number, n, the corresponding dispersion 

curve of a dielectric cylinder is acquired.  

Step-2 (Solving the radial dispersion equation): In the following, an efficient and fast 

algorithm is introduced to solve (4-4)-(4-6), in order to find the radial dispersion curve. The 

main difficulty to solve these highly nonlinear equations, to find the required WGM 

dispersion curve, is the existence of unwanted modes in the vicinity of the objective mode.  

As a starting point, 𝜀𝑟1 is set to one, which corresponds to a weakly guided mode [99]. The 

corresponding propagation constants are derived via the following decoupled equations 

(Appendix B): 

−
𝐽𝑛+1(𝑘𝜌𝑎)

𝑘𝜌𝑎𝐽𝑛(𝑘𝜌𝑎)
=
𝐾𝑛+1(𝛼𝜌𝑎)

𝛼𝜌𝑎𝐾𝑛(𝛼𝜌𝑎)
                          𝐸𝐻𝑛𝑚 (4-7) 

𝐽𝑛−1(𝑘𝜌𝑎)

𝑘𝜌𝑎𝐽𝑛(𝑘𝜌𝑎)
=
𝐾𝑛−1(𝛼𝜌𝑎)

𝛼𝜌𝑎𝐾𝑛(𝛼𝜌𝑎)
                            𝐻𝐸𝑛𝑚 (4-8) 

Then, the new value of 𝜀𝑟1 is updated via (4-4) repeatedly, as 𝛼𝜌 is decreased by a small 

amount, . The procedure of incrementally reducing the 𝛼𝜌 continues until the  

𝛿 ≜ 𝜀𝑟1(𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑡) − 𝜀𝑟1(𝑟𝑒𝑎𝑙) reaches to the acceptable tolerance, which is define by us. 

In order to calculate the radial dispersion equation, it is required to have an estimation of 

the 𝑘𝜌 searching interval to avoid interfering with any unwanted mode. In other words, the 

modes of a dielectric cylinder are separated from each other by small differences in the radial 

propagation constants, 𝑘𝜌. Therefore, the asymptotic values of (4-4) are used for defining the 
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searching intervals. The employed asymptotic expressions to determine the required intervals 

of 𝑘𝜌 for both the HE and EH modes are given below (Appendix C). 

HEnm mode: 

(𝜀𝑟1 + 1)𝐽𝑛−1(𝑘𝜌
𝑚𝑖𝑛𝑎) =

𝑘𝜌
𝑚𝑖𝑛𝑎

𝑛 − 1
𝐽𝑛(𝑘𝜌

𝑚𝑖𝑛𝑎) (4-9) 

𝐽𝑛−1(𝑘𝜌
𝑚𝑎𝑥𝑎) = 0 

(4-10) 

EHnm mode: 

𝐽𝑛(𝑘𝜌
𝑚𝑖𝑛𝑎) = 0,       𝑘𝜌

𝑚𝑖𝑛𝑎 ≠ 0 
(4-11) 

𝐽𝑛+1(𝑘𝜌
𝑚𝑎𝑥𝑎) = 0 

(4-12) 

Step-3 (Bottom ground plane correction): In the next step, the effect of ground plane is 

incorporated in the calculation of the radial dispersion equation, for the purpose of increasing 

the EDC-DWM analysis accuracy. For the sake of generalization, Fig. 4.1(a) configuration is 

considered. Then, (4-4) is solved for the modified dielectric constant 𝜀𝑟1 = 𝜀𝑒𝑓𝑓, in 

which 𝜀𝑒𝑓𝑓 is defined as [100] 

𝜀𝑒𝑓𝑓 = {

1

2
(𝜀𝑟1 − (𝜀𝑟1 − 𝜀𝑒𝑓𝑓0)

 ℎ1
𝑎
) +
𝜀𝑒𝑓𝑓0
2
          ℎ1/𝑎 ≤ 1                       

𝜀𝑒𝑓𝑓0                                                                 ℎ1/𝑎 > 1                      
   (4-13) 

where𝜀𝑒𝑓𝑓0 is the effective dielectric constant of an infinite dielectric cylinder (𝜀𝑒𝑓𝑓0  =
𝑘𝜌
2

𝑘0
2). 

In the case of a suspended resonator, 𝜀𝑒𝑓𝑓 is reduced to 𝜀𝑒𝑓𝑓0. The diagram in Fig. 4.3  

explains the algorithm for obtaining the radial dispersion curve of an image resonator.  

Step-4 (Resonance frequency calculation): In the last step, the resonance frequency is 

calculated. The resonance frequency of the DDR is the frequency at which 𝑘𝑧 = 𝑘𝑧′ = 𝑘𝑧𝑟 . 

Graphically, the intent is to find the intersection point of the calculated axial and radial 

dispersion curves.  
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Fig. 4.3: The developed algorithm for obtaining the radial dispersion curve of an image 

resonator. 
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4.2.1 Variational-Based Method for Improving the Accuracy 

Nature is full of optimal configurations. Consequently, researchers try to find the optimal 

systems that have small and minimal variations. The variational principle is to find a function 

to damp a variation. From a mathematical point of view, the variational method is used for 

improving and optimizing the characteristic values of a system. 

Among different methods, introduced to solve the system of differential equations of an 

electromagnetic structure, the variational and perturbation methods are efficient and accurate 

approximate approaches [101], [102]. In contrast to the perturbation method, which is the 

way to find the effect of small changes, a variational method is an approach to refine an 

obtained value. The important application of the variational method is to amend the 

resonance frequency of a certain electromagnetic configuration. The variational method is an 

optimization technique applied to a stationary problem to improve the initial solution. The 

key in employing the variational method is to define an appropriate formula. It should be 

stationary with respect to the parameter which is going to be calculated. This stationary 

formula is not unique.  

 

Fig. 4.4: The cross section view of a grounded DDR used in the variation method. 

In the case of dielectric resonators, the variational technique is used to improve the 

accuracy of the resonance frequency when a reasonably accurate estimate of the field 

distribution in the resonator is known. The stationary formula should be defined such that 

minor inaccuracies in the field pattern do not significantly affect the resonance frequency. 

Most all of the stationary formulas are expressed as a ratio between different types of the 

stored energies in the sub-regions. Among different equations proposed to find the resonance 

frequency of a resonator, shown in Fig. 4.4, the one, which is based on the self-reaction 

principle [103], [104] is utilized here.  The resultant stationary equation is based only on the 

electric field terms. The stationary formula is: 
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𝜔𝑟
2 =

∰ 𝐸∗. (𝛻 ×
1
𝜇
𝛻 × 𝐸) . 𝑑𝑣 − ∯ (𝑛 × 𝐸). (

𝛻 × 𝐸∗

𝜇
) . 𝑑𝑠

𝑠𝑣

∰ 𝜀𝐸.
𝑣

𝐸∗ . 𝑑𝑣 
 (4-14) 

For an image dielectric resonator, the surface integral in the numerator of (4-14) originates 

from the surface electric currents, JV and JH, shown in Fig. 4.4. The volume integral in (4-14) 

should apply to the sub-regions, denoted as 1 to 3 in Fig. 4.4 (the fields in the sub-region 4 

are assumed to be zero similar to the described structure in the previous section). To derive 

the field distribution inside the resonator and in the neighboring sub-regions, the Marcatili’s 

solution is employed [105]. By understanding the fact that fields satisfy the Helmholtz 

equation, the volume integral in nominator can be simplified as 

∰ 𝐸∗. (𝛻 ×
1

𝜇
𝛻 × 𝐸) . 𝑑𝑣

𝑘2=𝜔2𝜀𝜇 & 𝐻𝑒𝑙𝑚ℎ𝑜𝑙𝑡𝑧 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
⇒                         

𝑣

𝜔2.∰𝜀𝐸.

𝑣

𝐸∗. 𝑑𝑣 (4-15) 

Eventually, (4-14) can be written as follows: 

𝜔𝑟
2 =

  𝜔2.∰ 𝜀𝐸.
𝑣

𝐸∗. 𝑑𝑣 − ∯ (𝑛 × 𝐸). (
𝛻 × 𝐸∗

𝜇
) . 𝑑𝑠

𝑠

∰ 𝜀𝐸.
𝑣

𝐸∗ . 𝑑𝑣 
= 𝜔2(1 −

∑𝑁𝑠
𝜔2

∑𝐷𝑣
) (4-16) 

where Ns and Dv denotes the numerator surface integral and dominator volume integral, 

respectively. The detailed calculation of the volume and surface integrals of the structure in 

Fig. 4.4 are explained in Appendix E.  

4.3 WGM-Based Bio-Sensor Technology 

Various methods, mostly in optics, have been proposed for sensing and analyzing 

biological materials such as antibodies, tissues, nucleic acids, and DNA [3], [106], [107], 

[108]. There are various sensing methods, and the important ones are categorized as:  

electrochemical, photometric, and ion channel switching approaches. Among these 

techniques, the photometric method (an inherent marker-free sensing method) is more 

efficient. It is based on the electromagnetic characteristics of materials. The photometric 

methods are divided into various types. Resonance-based sensing is the most popular 

approach [109]. Resonator-based structures are the basis of many optical bio-sensors [110], 

[111], [112] Micro-ring, micro-sphere, surface plasmon, photonic crystal cavities, and planar 

resonators are some examples from this category [113], [114], [115] The operating principle 

of these devices can be explained by the concept of evanescent field interaction. Resonance-
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based sensing is classified into two major groups of techniques: those based on absorption 

measurement and those based on refractive index measurement.  

In the absorption-based method, the electromagnetic absorption factor of the material in 

proximity of the sensor changes the resonator loaded Q-factor. This technique is commonly 

used to distinguish between the different types of molecules. In the refractive index 

measurement approach, any change in the dielectric constant of a material leads to a shift in 

the resonance frequency. The selectivity and sensitivity of this method depends on the 

electromagnetic properties of the sensor resonator. Numerous investigations have been 

performed on the refractive index method [55]. In addition, the refractive index measurement 

is the basis of operation of another type of sensor, called the evanescent wave sensor.  

Although remarkable results have been accomplished by introducing bio-sensor devices in 

the THz frequency range, continual efforts are required to improve sensor characteristics 

such as sensitivity, reusability, portability, and selectivity, as well as decreasing fabrication 

costs. It is extremely difficult, if not impossible, to build such a sensor that can meet all of 

the aforementioned criteria. 

Among the resonator-based sensors, the ones that use WGM are of great interest. This is 

mainly due to the fact that the WGM resonator can provide a highly sensitive and a low cost 

technology for sensing applications. The WGM-based resonator can be used as a highly 

effective sensing element in many bio-sensing applications such as the detection of proteins, 

toxin molecules, and DNA [85]. Very few WGM-based devices are introduced at the 

mmWave range of frequencies for sensing application such as nano-litre liquid sensing [116]. 

On the other hand, the WGM technique has been well recognized for sensing applications in 

the optical range of frequencies [85]. Blair and Chen’s [117] pioneering work demonstrated 

how the WGM-based resonator can be used as a cavity sensor to enhance the sensitivity, and 

to reduce the sample size. Another group utilized the WGM-based resonator to investigate 

protein materials [118]. Several researchers have focused on the extraction of the complex 

permittivity of different materials, such as alumina, bulk GaAs, and ceramic in the lower 

range of the mmWave band [119], [120], [121]. Additionally, others have reported the 

detection of a small volume of liquid samples at 40 GHz by using a WGM-based resonator as 

an evanescent wave technique [116]. Following the same approach, the detection of the small 
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variation in the material concentration can be performed. In these techniques, a small volume 

of the solution sample, placed on the top of a DDR, can be modelled by equivalent surface 

impedance. This surface impedance depends on the electromagnetic characteristics and the 

thickness of the deposited material. Accordingly, the resonance condition inside the resonator 

is altered and the resonance peak is shifted. The value of the resonance shift is directly 

related to the variation of the sample concentration. 

Many factors can contribute to the portable system errors and therefore must be taken into 

consideration. Important ones are listed below: 

 The measurement system setup errors.  

 High sensitivity of the measurement setup to the environmental conditions.   

In this research, different reasonably accurate WGM sensors have been designed and 

fabricated at the mmWave range of frequencies from 75 to 240 GHz, where vibrations of 

bounded molecules of biological samples are greater in THz region than the ones in optics 

and microwave. Furthermore, thanks to technological advancement in measurement 

instruments, the THz region now is a suitable band for material characterization and  

bio-sensing.  Although the aforementioned errors exist in this range of frequency, the safe 

margin, which is required for cancelling the errors, is large enough.  

In the following sections, first, the design procedure of an alumina-based WGM sensor, 

operating at D-band (11-170 GHz), is explained. The WGM resonance behavior is analyzed 

using the developed algorithm and the results are modified using the introduced variational 

method. Then, the whole resonance structure is simulated and the results are compared to the 

ones obtained from the measurement. The alumina sensor is tested for sensing the sugar and 

water solution. Also, the sensor is utilized to distinguish between different types of DNA. In 

the next step, a Silicon-On-Insulator (SOI)-based WGM structure is employed for DNA 

sensing purpose. As a last set of sensing experiments, the SOG structure is tested for 

distinguishing between different DNA samples. Finally, the SIG technology is used for 

designing two WGM-based resonance configurations. 
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4.4 Alumina-Based Image WGM Sensor 

Alumina is chosen for fabricating the first prototype of WGM resonance sensor structure. 

Alumina is a fairly low-loss, easy-to-fabricate, and low-cost material. Historically, the 

author’s first implemented WGM structure was a low-cost and high-power mmWave 

oscillator based on a direct coupling of a Gunn diode to an alumina WGM resonator, working 

at 40 GHz [122]. Following that, the author designed several alumina WGM sensors, 

operating at the mmWave range of frequencies from 75 to 220 GHz [123], [124]. The 

alumina WGM sensor, designed over the D-band (110-170 GHz) range of frequencies, is 

shown in Fig. 4.5. The structure consists of metallic input/output rectangular waveguides 

(WR-06) and the Dielectric Image Guide (DIG), which is tapered at the ends.  

The DIG is designed in such a way that the structure supports dominant mode operation in 

our desired frequency band. The modal analysis of the DIG is performed by using the EDC 

method. The dispersion plots for different modes are depicted in Fig. 4.5 for the design 

parameters given in Table 4.1. The dominant mode is the 𝐸𝑧
11 mode. Due to exciting the 

structure by means of a metallic waveguide, the 𝐸𝑥
11 mode, which potentially can be excited 

inside DIG, is not triggered. As before, the tapered sections are designed in a manner so that 

the minimum insertion loss is achieved.  

 

Fig. 4.5: The general configuration of the alumina-based WGM resonance structure [124]. 
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Table 4.1: Design parameters of the sensor at D-band. 

Parameter L1 L2 W Gap a b h 

(mm) 20 5 0.47 0.13 1.36 0.65 0.55 

 

 

Fig. 4.6: Modal analysis of the DIG using the EDC technique [124]. 

The most critical part is the design of the DDR. Following the same procedure, explained 

in Section 4.2, the resonator is investigated in terms of WGM resonance behavior. The DDR 

is designed such that, it supports desired WGM resonances in the frequency range of interest. 

Choosing the mode number as a designed parameter, is crucial. The low-order modes (n<5) 

are radiating with low Q-factor, and very-high-order modes (n>10) are not at all suitable for 

sensing applications [125]. The reason is that the relatively higher-order modes need a larger 

size of DDR for operating in the same desired range of frequency. In addition, the higher-

order modes (n>10) are very confined, and are not suitable for sensing, as higher-order 

modes have very small evanescent field tail, which is necessary to sense the external 

perturbation, outside of DDR. Another important design parameter is the radius of the DDR. 

Relatively large radius, related to high-order modes within the desired range of frequencies, 

increases the loss and dictates a small gap between DDR and DIG. The type of WGM is 

determined by the polarization of the excitation and physical parameters of the DDR.  

The gap distance between the DDR and DIG is determined to maximize the sensitivity. 

Although critical coupling increases the sensitivity of the system on one hand, the sensor 
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would become sensitive to environmental variations including temperature and moisture. 

Therefore, practically the DDR should not be placed in the critical coupling. 

To calculate the approximate resonance frequency of the unloaded resonator, two 

dispersion equation sets, axial and radial dispersion equations, are solved simultaneously. 

The corresponding resonance frequency is calculated as 123.40 GHz, as shown in Fig. 4.7(a). 

Different components of the electrical field are plotted in different cross sections, as observed 

in Fig. 4.7(b)-(c). The excited resonance mode inside the resonator is WGH700. The analytical 

calculation is verified by the eigen-mode solution, obtained from two commercial full-wave 

simulators, Ansoft HFSS and Comsol. 

 

Fig. 4.7: (a) The axial and radial dispersion curves of the DDR. (b) Normalized Ez field 

component in the DDR for WGH700 mode in the xy-plane. (c) Normalized electric field 

components in the DDR for WGH700 mode in the xy-plane. 
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Table 4.2: A comparison between the calculated resonance frequency by the developed 

algorithm, and the full-wave simulation for D-band design. 

Mode 

Resonance 
frequency 

from the proposed 

algorithm (GHz) 

Resonance 
frequency 

after applying the 

variation method 

(GHz) 

Resonance 
frequency 

from the full-wave 

simulation (HFSS) 

(GHz) 

Error between 
the full-wave and 

EDC–DWM (%) 

Error between the 
full-wave and the 

variational method 

(%) 

WGH 700 123.4 124.36 124.65 1.00 0.23 

WGH 800 134.9 135.95 136.35 1.06 0.29 

 

The variational method, described in Section 4.2.1, is applied to the problem to reduce the 

resonance frequency calculation error, as a result of ignoring the fields in the corner sub-

regions. The modified resonance frequency after using the variational method is found to be 

124.34 GHz, when compared with the initial value of 123.4 GHz. The accurate resonance 

frequency obtained from the full-wave simulation is 124.65 GHz. Table 4.2 compares two 

sets of resonance frequencies, obtained from the proposed technique and the full-wave 

simulation, for the D-band design. The depth of resonance is directly related to the DDR 

distance from the DIG. Choosing a proper resonance depth (Q-factor), the system sensitivity 

to the environmental conditions can be decreased at the cost of decreasing the selectivity 

margin of the sensor. Hence, a trade-off should be taken into account to choose the 

appropriate gap between the DIG and DDR. Fig. 4.8 demonstrates the effect of the gap on the 

resonance response. 

 

Fig. 4.8: Effect of gap on the resonance response of DIG-DDR (simulation). 
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The prototype structure was made and tested as shown in Fig. 4.9. To fix the position of 

the DIG and the DDR over the metallic base, a low-loss epoxy glue was used. Although 

small drops of epoxy glue were used, the loss increment, due to the presence of the glue, is 

inevitable. Considering the fact that the desired mode inside the DIG is almost confined in 

the centre, fixing the waveguide from the sides with glue drops has no significant effect on 

the field distribution. Since the resonator field is sensitive to any perturbation, fixing the 

DDR with glue should be handled with care. To eliminate this undesired effect, the bottom of 

the DDR is metalized. The overall functionality of the sensor is verified by using the full-

wave simulation. Fig. 4.9 illustrates the experimental setup, consisting of a network analyzer, 

two harmonic mixers at D-band, and the proposed sensor device. 

 

Fig. 4.9: (a) Measurement setup and the fabricated sensor device. (b) Comparison between the 

measured (dashed) and simulated (solid) scattering parameters. 

4.4.1 Glucose Sensing 

Determining the accurate amount of glucose in blood has been the subject of extensive 

research on sensing techniques [126], [127]. Most of the existing approaches for glucose 

detection are based on electro-chemical methods. To test the sensor, described in the 

previous section, two different concentrations of glucose in the water solution were prepared: 

1 g/100 l (60 mol/l) and 1.65 g/100 l (99 mol/l) diluted glucose. The glucose and water 

solution sample is chosen to investigate the functionality of the implemented bio-sensor 

device. Eventually, the obtained data will help us to optimize the system including the sensor 
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and the measurement setup for our main goal, which is DNA sensing. In each trial, a constant 

volume of the solution (5 l) is placed on top of the DDR, and the changes in the resonance 

frequency and Q-factor are recorded after the water evaporates. The repeatability of the 

measurement results is a key factor that should be examined carefully. Thus, for each 

concentration, the measurement is repeated several times. Undoubtedly, an accurate 

measurement is dependent on a precise calibration. An intensive effort was made to ensure 

an accurate calibration in order to reduce the transmission loss measurement error to less than 

0.02 dB over the entire range of frequency. Additionally, the temperature was controlled at 

23±1
o
. This small fluctuation in temperature does not have a significant effect on the 

resonance characteristics (less than ±2 MHz shift in the resonance frequency). It is because 

the temperature expansion of alumina is very low. For verification of the data, all the 

measurements were repeated several times. Also, after removing each sample, the response 

of the sensor was verified to be identical to the initial state. The sensor was tested for two 

different concentrations of the glucose solution, 1.65 g/100 l and 1 g/100 l. 

 

 

Fig. 4.10:  (a) Measurement results of the 5 l glucose solution samples with a concentration of 

1.65 g/100 l. (b) Comparison of resonance responses of the sensor loaded with two different 

glucose solution samples [124]. 

Fig. 4.10 shows the measurement results for the concentration of 1.65 g/100 l. It is 

observed that a 225 MHz shift in the resonance frequency is achieved. For the second set of 

(a) (b)
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the samples, with the concentration of 1g/100 l, the smaller resonance frequency shift is 

obtained. It is interesting to note that in this case, the resonance frequency shows higher  

Q-factor as compared with the no-sample case. The reason is that, the thin layer of sample 

increases the attenuation loss inside the DDR, and consequently the coupling state becomes 

closer to the condition of critical coupling. The results for all the cases are compared in 

Fig. 4.10 

4.4.2 DNA Sensing 

The description of an individual genetic background (DNA and RNA) has become a 

powerful tool in the diagnosis of diseases, genetic disorders and pathogen infection. The 

recent discovery that most cancers have widely varying genetic backgrounds indicates that 

successful intervention may require individualized therapeutic strategies [128]. The present 

technology, used to evaluate one’s individual genetic makeup, is based on the ability of an 

immobilized single-stranded DNA to hybridize to a complementary sequence forming a 

double-stranded structure, which is then detected via an optical method [129]. Until now this 

has required time-consuming modification, fluorescent labeling and enzymatic amplification 

of the sample being analyzed. While these techniques have proven to be sensitive, they run 

the risk of experimental bias as well as the cost and complicated methodology beyond the 

scope of local healthcare providers. The development of an integrated, cost-effective, and 

ultra-high sensitivity bio-sensor holds the promise of quick and effective healthcare practices 

that are tailored to individuals. 

Recent improvements in many label free microwave/optic DNA detectors have been 

achieved based on the fact that, different DNA segments can be distinguished by their 

differences in the dielectric constants. Resonator-based techniques have been introduced as 

efficient and accurate methods for DNA labelling [130]. Most of the achievements in DNA 

sensing are obtained in the optics by using highly sensitive micro-spherical resonator 

structures. However, the micro-spherical resonator is a 3-D structure, decreasing the 

inerrability of the system. Additionally, the fabrication of this kind of resonator is difficult. 

Thus, varieties of planar structures, including corrugated parallel resonators and quarter 

wavelength resonators, have been proposed and used for DNA sensing [131]. A WGM-based 

DDR is essentially a planar structure approach, which is practical and suitable for the 
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integration. In terms of measurement sensitivity, WGM-based techniques have considerable 

advantages in comparison with other sensing methods.  

The alumina WGM-based structure, designed in the previous section, is employed for the 

DNA sensing. The measurement setup is the same as the one in Fig. 4.9(a). The test 

procedure is conducted as follows: first, the resonator is completely washed by distilled water 

and allowed to dry completely. Then, the transmission loss of the uncovered structure is 

measured. In the next step, the DNA sample, either in single-stranded or double-stranded 

form, is deposited simply by pipetting 5 l from an aqueous solution onto the WGM DDR. 

After the water evaporates, the DNA forms a thin film with a thickness of only a few tens of 

nanometers. Again, the response is measured. Next, the surface of the resonator is washed by 

using the distilled water several times. After a specific time, 20 minutes, the resonance 

frequency is again measured. To stabilize the resonance frequency, the data are compared 

with that initially recorded. This process is repeated several times, for each sample, to check 

the repeatability of the measurement. 

In the first round of measurements, two different single-stranded DNA solutions, labelled 

as EB3 and ILK, are selected. These denatured DNA samples are different from each other, 

in sequence, by almost 70%. Each sample consists of a denatured DNA oligo at a 

concentration of 1 g/l in distilled H2O. By using the explained procedure, each DNA oligo is 

loaded on the top of the DDR, and the observed resonance frequency shift is recorded.  

Fig. 4.11 shows the results for two samples, EB3 and ILK. The two DNA samples are 

distinguishable from each other by a 6.5 MHz difference in the resonance frequency shift.   
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Fig. 4.11: The measurement results of the alumina sensor loaded with two different  

single-stranded DNA: (a) EB3 (b) ILK. 

In the second experiment, a denatured DNA (forward-stranded DNA) and a hybridized 

DNA (double-stranded DNA) are chosen. A hybridized DNA has an inherently higher 

dielectric constant and absorption factor than a denatured DNA. The difference in the 

dielectric constants causes a larger shift in the resonance frequency. Following the same 

measurement procedure for differentiating between two single-stranded DNA, a new set of 

results are achieved for both the single and double DNA samples. Fig. 4.12 shows the results 

from the unloaded resonator, and from the resonator, loaded by a new denatured DNA 

(forward-stranded) and double-stranded samples. The experiment tests are repeated to verify 

the reproducibility of the setup. It is known that the resonance frequency shift is larger for the 

material with a higher refractive index. The sensor is evaluated by comparing the results of 

both the denatured and the hybridized DNA experiments. Fig. 4.12 demonstrates that the 

hybridized DNA, clearly generates a larger shift, 305 MHz, in the resonance frequency 

compared to the denatured DNA, which causes only a 170 MHz shift. 

 

24 MHz 17.5 MHz

(a) (b)



 

 83 

 

Fig. 4.12: The measurement results of the alumina sensor loaded with forward-stranded and 

double-stranded DNA. 

4.5 DNA Sensing Using Silicon-on-Insulator (SOI) WGM Sensor  

Difficulty in integration with other available IC technologies was the main drawback of the 

previous introduced structure, the alumina-based sensor. On the other hand, SOI technology 

is very convenient for introducing a potentially integrated mmWave system. HRS technology 

enables us to design a low-loss, and consequently a high Q-factor resonator. Accordingly, a 

fast, low-cost, reliable, and highly sensitive sensor is feasible. In this section, a SOI WGM 

sensor is employed for distinguishing between different DNA oligos, after evaporation of the 

buffer solution [132]. The system is particularly realized in a HRS SOI technology, which 

was originally introduced in [133], as a liquid ring resonator sensor. The SOI technology 

allows us to have accurate control on the gap size between the disc and the waveguide, which 

is a critical parameter in determining the performance of the sensor.  

305 MHZ

170 MHZ
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Fig. 4.13: (a) The SOI sensor configuration. (b) The cross section of a general insulated  

DDR [132]. 

Fig. 4.13 shows the schematic of the proposed sensor. The sensor consists of a dielectric 

waveguide coupled to a DDR. The device supports, WGH mode in which Ez is the dominant 

mode. The top layer of the SOI-based wafer has a thickness of approximately  

500 μm while the handle wafer has a thickness of 130 μm. The buried oxide layers has a 

thickness of 1~2 μm. The fabrication process is a simple single-mask process similar to the 

one explained in [133]. The dielectric waveguide is excited by the standard rectangular 

metallic waveguide (WR-10). The dielectric waveguide is linearly tapered at both ends for 

smooth transition to the rectangular metallic waveguide. The total length of the dielectric 

structure is 20 mm. The dielectric waveguide is designed to support a single mode operation 

(𝐸𝑧
11). The dielectric waveguide channel has a cross section of 0.5×0.6 mm

2
. The DDR has a 

radius of 1.91 mm, which supports four distinct WGH modes within the range of  

75-110 GHz. The disc surface area is suitable for placing the exact 10 μl DNA sample. In 

addition, the designed DDR provides the non-radiative WG modes (n>6) within the desired 

frequency range.  

The analysis method, explained in Section 4.2, is employed for finding the resonance 

frequency and optimization of the SOI structure. In the case of an insulated resonator, the 

radial dispersion equation is the same as (4-4), while the axial dispersion equation for TM 
z
 

mode of a double-layered image slab waveguide is as follow: 
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[1 + (
𝛼1
𝑘𝑧
) (
𝜀𝑟1
𝜀𝑟𝑠
) 𝑡𝑎𝑛 ℎ(𝛼1ℎ1) 𝑡𝑎𝑛(𝑘𝑧ℎ2)] + (

𝑘𝑧
𝛼0𝜀𝑟1

) [− 𝑡𝑎𝑛(𝑘𝑧ℎ2) + (
𝛼1
𝑘𝑧
) (
𝜀𝑟1
𝜀𝑟𝑠
) 𝑡𝑎𝑛 ℎ(𝛼1 ℎ1)] 

= 0 

(4-17) 

where 𝛼0 and 𝛼1 are the axial attenuation constants in air and in the substrate, respectively. 

𝑘𝑍  is the axial wavenumber. The parameters 𝛼0, 𝛼1, and 𝑘𝑍  are related to each other through 

the following equations: 

𝛼0
2 = [𝑘0

2(𝜀𝑟1 − 1) − 𝑘𝑍
2] 

𝛼1
2 = [𝑘0

2(𝜀𝑟1 − 𝜀𝑟𝑆) − 𝑘𝑍
2] 

(4-18) 

 

The achieved results are approximate ones due to the assumption of zero-field at the corner 

regions of the DDR. The accuracy of the calculated values can be improved by using a 

variational expression for the resonance frequency. 

Table 4.3: A comparison between different methods, employed to find the WGM resonance 

frequencies of the SOI structure. 

 

The resonance characteristics of the DDR for different WGM resonances are obtained from 

the full-wave eigen-mode simulation, performed by HFSS, and compared to those calculated 

by the EDC and variational method (Table 4.3). Obviously, a good agreement is achieved 

between the results. However, the developed numeric method is much faster than the HFSS 

simulator.  

Mode 

Resonance 
frequency 

EDC method 

(GHz) 

Resonance 
frequency 

after applying the 

variation method 

(GHz) 

Resonance 
frequency 

from the full-wave 

simulation (HFSS) 

(GHz) 

Error between 
the full-wave and 

EDC–DWM (%) 

Error between the 
full-wave and the 

variational method 

(%) 

WGH 800 86.61 87.12 87.52 1.04 0.45 

WGH 900 94.31 95.35 95.75 1.50 0.42 
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Fig. 4.14: (a) The SOI measurement setup, and (b) the comparison between the S21 obtained 

from measurement with that of simulation [132]. 

To examine the capabilities, sensitivity, and selectivity of the sensor a number of DNA 

samples were prepared. Complementary 38 base pair synthetic oligonucleotides (short and 

single-stranded DNA molecules), were obtained from Sigma Genosys Canada.  

Oligo #1: 5`- GGT GCT ACA GTT GCT CAT GAG CTG GGG CAC AAC TTG GG −3` 

Oligo #2: 5`- CCC AAG TTG TGC CCC AGC TCA TGA GCA ACT GTA GCA CC- 3` 

(a)

Simulation (S21)

Measurement (S21)

Measurement (S11)

d
B WGH 800

WGH 700

WGH 900

WGH 10 00

Frequency (GHz)

(a)

(b)



 

 87 

The individual oligonucleotides used for single-stranded DNA tests were denatured at 

95°C for 3 minutes in annealing buffer (10 mM Tris, pH 7.5, 50 mM NaCl, 1 mM EDTA) 

and then rapidly cooled on ice. A double-stranded DNA was generated by combining 

oligonucleotide 1 and 2 at equimolar concentration. The samples were denatured at 95°C for 

3 minutes in a heat block. The block was then allowed to cool to room temperature over one 

hour. Annealed oligos were stored on ice. Single and double-stranded oligos were tested at 

equal molar concentrations, 20 nmol. The prototype sensor was tested with the similar 

measurement setup as before, a Network Analyzer, equipped with two external mixer 

modules. The fabricated HRS waveguide has a length (L) of 13 mm and two 3 mm tapered 

sections. To provide a high Q-factor resonant for WGH900 mode, the gap between the DDR 

and DWG is 160 μm. The measurement setup including the sensor device is illustrated in  

Fig. 4.14(a). The measured transmission and reflection responses of the device within the 

range of 75-110 GHz are plotted in Fig. 4.14(b), and compared with the simulated ones. A 

strong agreement is achieved between the measurement and the simulation results. The 

higher loss, observed in the measured results, is due to the misalignment and metallic fixture 

issues. The related Free Spectral Range (FSR) for this structure is around 8.15 GHz.  

Q-factor is an important measure of the quality of a resonance mode. One method to 

determine the loaded Q-factor of a reaction-type resonator is to analyze the S21 contour in the 

smith chart [134].  The loaded quality factor of the resonator can be calculated based on the 

coupling coefficient, k, and total attenuation of the resonator, α: 

𝑄𝐿 =
𝑛𝜋

√1 − 𝑘2𝑒−𝛼
√
1 + (1 − 𝑘2)𝑒−2𝛼

2
 (4-19) 

α and k are obtained by the expressions given in [135]. Interestingly, the calculated k for 

the mode WGH900 is approximately 0.94, which is close to critical coupling value. The 

calculated loaded quality factor for this mode is approximately 1100. Therefore, the unloaded 

Q-factor is 𝑄0 = 𝑄𝐿(1 + 𝑘) = 2134. 
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Fig. 4.15: The measured resonance frequency shifts for single-stranded (SS) and double-

stranded (DS) DNA samples on SOI technology. The repeatability is validated for each sample. 

In order to coat the DDR with DNA, approximately 10 μl of the oligonucleotide in 

annealed buffer is pipetted on the top surface of the DDR. The liquid is evaporated, resulting 

in a thin layer (~250 nm) of DNA. The DNA samples can be modeled as a thin dielectric 

layer, with specific permittivity, placed on top of the DDR [100]. In the first set of 

experiments, two DNA oligonucleotides of the same length but with different base pair order 

are used. Fig. 4.15 shows changes in the resonance frequency of the transmission response 

after loading the DDR with oligo #1. A 380 MHz resonance frequency shift is achieved. The 

same measurement procedure is followed for oligo #2, resulting in a 390 MHz shift. These 

results describe a distinct 10 MHz difference in resonance frequency shift for the two DNA 

oligos. To ensure repeatability, multiple trials of each test are conducted. After each 

measurement, the resonator is completely washed using distilled water. The resonance 

frequency and its depth are re-checked with the reference point before evaluating the 

subsequent DNA sample. 

Next, the author evaluated the ability to distinguish between single and double-stranded 

DNA. Equimolar amounts of the double-stranded DNA resulting from the annealing of 

oligo#1 and oligo#2 are placed on top of the DDR and the changes in the transmission 

response are recorded. For comparison, the results obtained from double-stranded DNA is 

55MHz

380MHz
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overlaid on the results of single-stranded DNA (refer to Fig. 4.15). A significantly higher  

55 MHz shift in the resonance frequency is achieved. This was expected as double-stranded 

DNA has higher equivalent permittivity compare to single-stranded DNA. Also, a stronger 

damping, which is related to lower Q-factor, is noticed in the resonance frequency for the 

double-stranded DNA. This is due to the fact that double-stranded DNA has higher 

absorption loss. 

4.6 SOG Bio-Sensor 

In this section a new innovative WGM sensor based on the Silicon on Corrugated Glass 

technology, which was introduced in Section 2.2.2, is developed and implemented [52]. The 

proposed sensor is shown in Fig. 4.16. The structure consists of a dielectric rectangular 

waveguide, tapered at the ends, coupled to a DDR, placed on a small round Glass membrane. 

Due to the field confinement close to the circumference of the DDR, the membrane does not 

perturb the field. The dielectric waveguide is designed for dominant 𝐸𝑦
11 mode. The detail 

design parameters and modal analysis of the straight waveguide segment were discussed in 

Section 2.2.2. Since 𝐸𝑦
11 is vertically polarized, the resonator is designed such that it operates 

in WGH mode, in which the magnetic field is mainly in a transverse direction. 

Applying the EDC-DWM technique, the suspended dielectric resonator can be formulated 

in terms of the radial and the axial dispersion equations. The radial dispersion equation for a 

disc with r=a, is the same as (4-4) . The resonator in vertical direction can be considered as a 

suspended disc. Consequently, the axial dispersion equation for a symmetric slab waveguide 

in TMy mode can be written as: 

tan(𝑘𝑦ℎ) = 𝜀𝑟1
2𝑘𝑦ℎ𝛼𝑦
𝑘𝑦
2 − 𝜀𝑟1

2 𝛼𝑦
2 (4-20) 
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Fig. 4.16: The general configuration of the proposed Silicon on Corrugated Glass sensor. 

The WGM resonance frequencies of the SOG disc resonator are calculated by solving the 

axial and radial dispersion equations, simultaneously, using the efficient algorithm, which 

was explained before. The initial design parameters of the SOG sensor is optimized and  

re-tuned using the full-wave simulation. The design parameter values, for operating over  

G-band frequency range (140-220 GHz), are listed in Table 4.4. The radius of the resonator is 

primarily determined such that the minimum mode number of WGM is larger than 6 over the 

desired range of frequency. The simulated S-parameters of the final structure are plotted in 

Fig. 4.17. Four distinct resonance modes are observed in this figure. 

 

Table 4.4. The design parameter values for the SOG sensor.  

Parameter L h h2 a W Gap 

(mm) 16 0.5 0.5 0.9 0.3 0.16 
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Fig. 4.17: The simulated S-parameters of SOG disc resonator coupled to the dielectric 

waveguide at G-Band [52]. 

Two types of resonator structures are fabricated using the DRIE technique, and tested over 

the G-band; 1) a dielectric waveguide, coupled to a DDR, and 2) a dielectric waveguide, 

coupled to a ring resonator. The radius of the ring resonator is the same as the disc resonator 

and its inner radius is 400 m. The side-wall of the disc resonator is tilted 2 degrees, with the 

respect to the vertical axis, after the fabrication process. The sample structures, placed on a 

customized aluminum fixture, are measured using the test setup, which is shown in Fig. 4.18.  

 

Fig. 4.18: (a) The measurement setup, and (b) two SOG dielectric waveguide structures under 

test: dielectric waveguide coupled to WGM disc resonator, and dielectric waveguide coupled to 

WGM ring resonator. 
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The measured S-parameters of the two resonator structures are plotted in Fig. 4.19. As can 

be seen, the ring resonator modes behave as travelling waves. Furthermore, the main 

advantages of the ring resonator compared to the disc resonator are to suppress the potential 

unwanted modes. The obtained measurement result for the disc resonator shows higher loss 

than the simulation one. This discrepancy was explained in Section 2.2.2. 

 

Fig. 4.19: The measured S-parameters of (a) the disc resonator on SOG technology over  

G-band, and (b) the ring resonator on SOG technology over G-band [52]. 

4.6.1 DNA Sensing 

The implemented SOG disc resonator structure is used for DNA sensing. All the 

measurement steps and sample preparation are the same as the previous DNA experiments, 

conducted on alumina and SOI sensors. The complementary 39 base pair synthetic 

oligonucleotides, single-stranded DNA molecules, were obtained from Sigma Genosys 

Canada.  

Oligo #1:5`- GCA GTG TTT TGT ATG TGC TGC GTG CTT TCA GCA GTT TCC−3` 

Oligo #2:5`-GGA AAA CTG CTG AAA GCA CGC AGC ACA TAC AAA ACA CTG-3` 

As before, the individual oligonucleotides used for single-stranded DNA tests were 

denatured at 95°C for 3 minutes in annealing buffer, and then rapidly cooled on ice. A 

double-stranded DNA was generated by combining oligonucleotide 1 and 2 at equimolar 

concentration. The samples were denatured at 95°C for 3 minutes in a heat block. The block 

(a) (b) (c)

(d)

(a) (b) (c)

(d)

(a) (b)
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was then allowed to cool to room temperature over one hour. Annealed oligos were stored on 

ice. Single- and double- stranded oligos were tested at almost equal molar concentrations,  

22 nmol.  

Approximately 2 μl of the oligonucleotide in annealed buffer is pipetted onto the top 

surface of the DDR for covering the DDR completely. The buffer liquid is evaporated and a 

uniform thin layer of DNA is formed. In the first set of experiments, two DNA 

oligonucleotides, in forward and reverse DNA sequencing, of the same length and molarity 

concentration but with different base pair orders are used.  

Fig. 4.20 shows changes in the resonance frequency for three different DNA samples. A 

233.75 MHz resonance frequency shift is achieved for oligo #1 (FDNA) sample. Repeating 

the same measurement procedure for oligo #2 (RDNA) results in a 250 MHz shift in the 

resonance frequency. The difference between two resonance frequency shifts of DNA oligos 

are >16 MHz. All the experiments are repeated a few times, after washing the resonator with 

distilled water in each test. 

 

Fig. 4.20: The measured resonance frequency shifts for single-stranded oligos, Forward (FDNA) 

and Reverse (RDNA) samples, along with the result for double-stranded (DDNA) samples on 

SOG technology. 
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In the last experiment, an equimolar amount of the double-stranded DNA, which is 

achieved by annealing the forward and reverse oligos, is tested. The measured results are 

plotted in Fig. 4.20. There is a distinct 67.5 MHz difference between the resonance frequency 

shifts of double-stranded sample and forward oligo. The difference between the resonance 

frequencies of double-stranded sample and reverse oligo is 51.25 MHz. All the 

aforementioned experiments are repeated five times for verifying the repeatability of the 

sensor. The statistical results, which demonstrate the variation of resonance frequencies for 

each sample, are shown in Fig. 4.21.  

 

Fig. 4.21: Resonance frequency error analysis of the SOG sensor, used for sensing different 

DNA samples. Each test was repeated five times. 

4.7 SIG WGM Resonance Structures 

The SIG technology is used for implementation of two WGM-based resonance structures 

over the range of 110-170 GHz. The EDC-DWM method, explained in Section 4.2, is 

employed for initial design and analysis of the image disc resonator. Then the complete 

structure, consisting of the DDR coupled to the image guide, is optimized using the full-wave 

simulation. The resonance structures, as shown in Fig. 4.22, are realized either by a straight 

waveguide or curved waveguide segments, coupled to a WGM resonator. In the previously 

introduced alumina image guide-based sensor; the waveguide and the resonator were 

fabricated separately. Then, they were manually placed at the desired coupling distance. 
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However, the response of the system was strongly influenced by inaccurate positioning of the 

DDR. To solve this problem, the monolithic SIG resonance structures are realized by means 

of supporting beams, as it is shown in Fig. 4.22. The main usage of the supporting beam is to 

position the resonator at the desired distance from the waveguide, leading to a stable 

resonance behavior of the structures.  

 

Fig. 4.22: The general configurations of SIG WGM renounce structures, implemented (a) by a 

straight waveguide segment, or (b) by a curved waveguide segment. 

The simplest WGM resonance configuration is the one realized by a straight waveguide 

segment (refer to Fig. 4.22(a)). The straight waveguide segment has the same cross section 

dimension as the one described in Section 2.1. The effects of the gap and the radius, on the 

resonance characteristics, are investigated. Fig. 4.23 (a) shows the S21 of the resonator, which 

has a radius of 930 m and the Gap= 220 m. Additionally, Fig. 4.23(b) and Fig. 4.23(c) 

demonstrate the effects of the radius and the gap on the resonance frequencies of the WGH500 

and WGH600 modes, respectively. In all cases the support beams have a width of 30 m. For 

the sake of simplicity and in order to reduce the simulation time, the tapering sections are 

removed and the ground plane is considered as a perfect conductor.  

A WGM-based resonance structure, with R=920 m and Gap=220 m, is fabricated using 

the developed laser machining process (refer to Fig. 4.24(a)). The sample resonator is tested 

over a customized aluminum fixture, and the measured results are plotted in Fig. 4.24(b). A 
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small shift less than 1 GHz is observed in the resonance frequencies. That is mainly due to 

the fabrication imperfections and uncertainty about the dielectric constant of silicon.   

 

 

Fig. 4.23: (a) The simulated transmission response (S21) of the straight SIG resonance structure 

(R=930 m, Gap=220 m). The effects of the Gap and R on the resonance frequencies of (b) the 

WGH500 mode, and (c) the WGH600 mode. 

(a)

(b) (c)

WGH 500

WGH 600

WGH 700
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Fig. 4.24: (a) The laser machined SIG WGM structure. (b) The measured S-parameters for the 

resonator with R=920 m and Gap=220 m. 

4.7.1 SIG WGM Resonator in a Curved Configuration 

 The simulated and measured results show that the SIG structure potentially supports the 

unwanted modes. One way to suppress the unwanted modes is to increase the length of the 

coupling region. The simplest idea is to use a curved waveguides surrounding the resonator, 

as it is shown in Fig. 4.22(b). Fig. 4.25 shows the S21 plots for the curved structure with the 

Gap=200 m and for two different resonator radii, R=930 m and  

R=940 m. Three distinct WGM resonance frequencies are observed. The measured data 

shows that the curved configuration results in higher resonance frequencies in comparison to 

the straight waveguide configuration with identical resonator.  

Fig. 4.25(b) and Fig. 4.25(c) illustrate the effects of gap and the radius on the resonance 

frequencies for the WGH500 and WGH600 modes, respectively. Three samples with different 

Gaps and radii are fabricated using the laser machining process. All the structures include 

four bends with R1=3 mm and =45
o
. The measured results are plotted in Fig. 4.26(b). It is 

observed that, as compared to the straight waveguide segment, the unwanted modes are 

significantly less excited in the curved structure.  

 

(a) (b)
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Fig. 4.25: (a) The simulated transmission response (S21) of the curved SIG resonance structure 

with Gap=200 m and two radii of R=930 m and R=940 m. The effects of the Gap and R on 

the resonance frequencies of (b) the WGH500 mode, and (c) the WGH600 mode. 

  

Fig. 4.26: (a) The laser machined curved SIG structure. (b) The measured S-parameters for 

three different resonators.   
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4.8 Conclusion 

In this chapter, a fast and efficient analysis method, based on the EDC-DWM technique, 

for finding the resonance frequencies of the WGMs was presented. The alumina WGM 

structure was employed for two important sensing applications: glucose and DNA sensing. 

The measurement results showed the capability of the alumina sensor in distinguishing two 

different single-stranded DNA oligos.  

Then, SOG technology was used for design and realization of two WGM resonance 

structures, at the mmWave/THz range of frequencies (G-Band), where the DNA molecule 

shows a stronger inter-molecular vibration. Two types of SOG WGM structures, disc and 

ring resonators, were fabricated and tested. The sample SOG and SOI WGM resonators were 

tested for DNA sensing. The experiments demonstrated successful differentiation between 

the reverse-stranded, forward-stranded, and double-stranded DNA samples. The last section 

of the chapter introduced two configurations of WGM structures on the SIG technology. The 

introduced resonance structures are monolithic and a high degree of positional accuracy can 

be realized by means of narrow support beams.    
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Chapter 5 

Silicon-Based Waveguide Devices  

Up to this point, two major silicon-based technologies, SIG and SOG, were introduced, and 

studied. Also, a variety of essential silicon waveguide passive components such as bend, 

divider, antenna and coupler were discussed in Chapter 3. In Chapter 4, the WGM resonance 

structures for sensing applications were investigated and a number of prototypes based on 

various technologies were tested.  

The low-loss HRS technologies, SIG and SOG, provide effective solutions for high 

performance and integrated devices in the sub-mmWave/THz ranges. The proposed silicon 

waveguide technologies are especially useful to tackle the packaging issues. This chapter, 

first, introduces two essential mmWave components, tunable resonator and phase shifter. The 

principle concepts, simulation results, and experimental results are presented. Then, the SIG 

technology is employed in more complicated configuration for realization of an integrated 

butler matrix system for beam forming at the mmWave/THz range of frequencies.  

Finally, a novel idea is utilized for controlling the resonance behavior of a WGM-based 

structure, using optical signal.  

5.1 Tunable WGM Resonance Structures 

Tunable devices, such as tunable filters, add an extra functionality to mmWave system for 

applications such as electronic scanning radar and intelligent transceivers. Various 

approaches are utilized for realizing the tunable filters, while each technique has its own 

advantages and disadvantages. Varactor and Micro-Electro-Mechanical Switches (MEMS) 

have been widely used for implementing tunable filters in the microwave range [136], [137], 

[138]. However, these switches often introduce considerable insertion loss in the RF signal 

path. Voltage tunable materials such as Ferroelectric have shown great potential to realize 

tunable resonance structures [136]. But, nonlinearity and loss are the main drawbacks of 

these materials. Also, they can not offer wide tunability. Tunable evanescent mode cavity is 

another approach for adjusting the resonance frequency [139], [138]. These cavities present 

high Q-factor resonances, but they are bulky devices. Wide tuning capability of resonance-

based structures is very important for reducing the complexity and enhancing the 
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performance of almost any system. As it was shown in the previous chapter, WGM 

resonances are highly sensitive to perturbations due to the changes in the physical condition 

of the surrounding media of the resonator. The tunability of the WGM-based structure has 

been studied in optics by adjusting the coupling factor which alters the bandwidth and depth 

of resonance [140], [141]. In this section, a novel approach is introduced for implementing 

tunable WGM-based resonance structures at the mmWave/THz range of frequencies. The 

resonance frequencies of the structures are tuned by perturbing the WGM fields of the 

resonator, using metallic structures. As a proof-of-concept this idea is tested using a micro-

positioner. Two WGM-based structures, previously designed in this research, are utilized for 

implementing the tunable resonators: alumina WGM image guide structure (Section 4.4), and 

SOG WGM structure (Section 4.6).  Alumina WGM structure, which operates at D-band 

(110-170 GHz), is tuned by a narrow metallic bar, moving in a direction perpendicular to the 

axis of the WGM resonator. On the other hand, SOG WGM structure, which operates at the 

G-band (140-220 GHz), is tuned by a metallic cylinder which moves vertically (in a direction 

parallel to the axis of the WGM resonator). For proof of concept, the designed tunable SOG 

resonator is designed and tested at the specific range of frequencies with the specific tuning 

parameters. The same idea can be applied to the entire mmWave/THz range of frequencies.  

5.1.1 Alumina-Based Tunable Image WGM Filter 

The first tunable structure is an image guide WGM structure made of alumina [142]. The 

introduced WGM resonator supports WGH modes. Fig. 5.1(a) illustrates the proposed tuning 

mechanism for the image alumina waveguide configuration. A narrow metallic bar, with  

1 mm width, is employed to perturb the WGM field and to shift the resonance frequency. The 

bar is placed 50 m above the disc resonator and slides horizontally in x-direction over the 

disc resonator. The total movement of the metallic bar is 200 m. Indeed, the metallic bar 

moves between the centre and the edge of the DDR in certain offset steps.  
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Fig. 5.1: (a) The general configuration of the proposed tunable alumina WGM resonance 

structure. (b) The fabricated prototype alumina WGM structure [142]. 

The designed structure is simulated using a full-wave HFSS simulator. The simulated S21 

versus frequency for WGH700 mode and for different offset values are plotted in Fig. 5.2. The 

results show 100 MHz tunability. Wider range of tunability can be obtained by reducing the 

gap between the metallic bar and the resonators, with the price of higher loss.  

 

Fig. 5.2: The simulated effect of the metallic bar on the resonance frequency.  
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Fig. 5.3: (a) The measurement setup for the alumina WGM tunable structure. The measured 

effects of the metallic bar position on (b) the resonance frequency of the system, and (c) the S21 

phase [142]. 
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As a proof-of concept, a measurement setup as shown in Fig. 5.3(a), is used. A manual 

micro-positioner is used for changing the position of the metallic bar relative to the centre of 

the resonator. The experimental data are plotted in Fig. 5.3(b) and Fig. 5.3(c). A 140 MHz 

tunability is accomplished. Also, a maximum phase shift of 150
o
 is achieved at 124.95 GHz. 

The resonance structure can act as a tunable band-stop filter. 

5.1.2 Tunable SOG WGM Resonator 

The next tunable resonance structure, as illustrated in Fig. 5.4. [142], is based on the novel 

SOG WGM structure (Section 4.6). In order to perturb the WGM field more effectively, a 

metallic cylinder (tuner), with the same diameter as the disc resonator (a=0.8 mm), is placed 

on top of the resonator and moves vertically up and down. The tuner perturbs the field inside 

and outside the resonator.  

 

Fig. 5.4: The general configuration of the proposed tunable SOG-based resonance structure 

[142]. 

Changing the gap does not affect the mode numbers of WGM fields. However, the gap 

changes the resonance depth and the resonance frequency. Fig. 5.5(a) shows the simulation 

results of the S21 at WGH600 resonance frequency, when the air gap changes from 5 to 90 m. 

By decreasing the gap, the system approaches critical coupling. Moreover, the resonance 

frequency shifts down by moving the tuner closer to the resonator. The simulation results 

show almost 6 GHz tunability for WGH600 resonance. A tunability of almost 4 GHz is 

obtained for WGH700 mode (refer to Fig. 5.5(b)). 
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Fig. 5.5: The simulated effect of the metallic cylinder movement on the resonance frequencies of 

the SOG WGM structure for (a) WGH600 mode, and (b) WGH700 mode. 
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5.1.2.1 Measurement Results 

A completely in-house developed measurement setup, shown in Fig. 5.6, is used for testing 

the tunable SOG WGM structure. The extender modules are placed on top of two individual 

5-degrees of freedom positioners. The SOG resonance structure is positioned between the 

outputs of the extender modules. A metallic cylinder moves up and down on top of the 

resonator, using an accurate 6-degrees of freedom micro-positioner. 

The system is tested at two different WGM modes; WGH600 and WGH700. The movement 

of the metallic cylinder is realized by a manual micro-positioner. The results of resonance 

frequency shifts, for different Gap values at WGH600 and WGH700 resonances are plotted in 

Fig. 5.7. In both cases, it is difficult to determine the real gap between the metallic cylinder 

and the resonator for the zero-state, in which the cylinder is placed at the minimum practical 

distance to the resonator. Therefore, we consider this starting gap value as ‘g’, when g<5 m. 

Then, the other next gap steps are accurately determined by micro-positioner. 

 

Fig. 5.6: The measurement setup for testing the tunable SOG WGM structure at  

G-band (140-220 GHz). 
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Fig. 5.7: The effect of the metallic cylinder on the measured S21 of the tunable SOG WGM 

structure for (a) WGH600 mode, and (b) WGH700 mode. 
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The results show that the tunability of the structure for WGH600 and WGH700 modes are 

around 4.5 GHz and 3 GHz, respectively. Since we can not reach the gaps smaller than 5 m, 

the measured tunability range is smaller than simulated one. 

5.2 Finger-Shaped SOG Phase Shifter 

Adjustable phase shifters are required for a wide variety of systems such as smart antenna 

systems with beam steering capability, measurement equipment, receivers, high data rate 

optical transceiver front-end, and imaging systems [143], [144]. The key aspects of a 

desirable phase shifter are low-cost, low-loss, wide bandwidth, low-power consumption, and 

integration capability. Phase shifters can be broadly classified as active and passive phase 

shifters. Active phase shifters use active components to compensate for the high insertion 

loss of the phase shifting elements. The majority of active phase shifters are implemented by 

advanced semiconductor technologies such as CMOS, SiGe, and GaAs semiconductor 

devices with/without MEMS structures. Although promising performances have been 

reported for these types of phase shifter at the mmWave range of frequencies [145], [146], 

technological limitations make it extremely difficult to extend these techniques to  

sub-mmWave.  

Different passive phase shifting mechanisms, such as variable lumped structures,  

switched-line architectures, vector modulators, travelling wave structures with tunable 

loading, reflective types, and materials with tunable parameters such as ferroelectric devices, 

have been reported. However, these types of phase shifters are prone to a high insertion loss 

and are relatively large in dimension. Such phase shifters usually exhibit a high loss at 

mmWave frequencies, e.g. 10 dB at 60 GHz [147]. Liquid Crystal (LC) phase shifters are a 

new class of phase shifter, which are controlled with voltage, and provide medium insertion 

loss; however, their responses are slow with high phase-shift dependent insertion loss 

variation [148].  

Decades ago, dielectric waveguides were used in proximity to a mechanically movable 

metallic sheet to implement the adjustable phase shifters [149], [150], [151]. Recently, in 

[152] a High-Impedance Surface (HIS) was used to implement a waveguide-based structure 

for realization of a tunable phase shifter, working up to 110 GHz. However, the HIS still 

needs to be moved with respect to the waveguide in order to provide the required phase shift. 
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The results show high insertion loss and low phase shift: 16
o
/mm at 80 GHz, and the moving 

mechanism of the HIS seemed to be complex.  

Loaded planar transmission line is the basis of another class of tunable phase shifter, in 

which the traditional planar transmission lines, such as CPW, are loaded by a movable 

dielectric material on top [153], [154]. This approach is often suitable for lower RF and 

microwave range of frequencies, where realization of the planar transmission lines is 

feasible. 

 The proposed phase shifter in this research, which is called finger-shaped phase shifter and 

illustrated in Fig 5.8, is essentially a SOG waveguide segment loaded with a moving High 

Conductivity Silicon (HCS (𝜎 > 105 S.m−1)) finger-shaped structure on top. The  

finger-shaped movable part consists of an array of parallel T-shaped bars and perturbs the 

modal field of the waveguide. The movable part can be a dielectric material with high 

dielectric constant. The typical thickness of a movable layer is 300~500 m. The phase 

shifter provides a large bandwidth with a reasonable insertion loss, operating at G-band  

(140-220 GHz).  

Typically, the design of a phase shifter is a compromise between the insertion loss and the 

required phase shift. For maximizing the phase shift for a given insertion loss, extensive 

simulations were performed to reach an optimized set parameter values. The finger-shaped 

arms act as a ladder network of series capacitors and shunt inductors. The optimal design 

parameters are listed in Table 5.1. The gap between the arms and dielectric waveguide is set 

to 5 m. The number of arms determines the achievable phase shift range. An example of the 

structure with 15 arms and the total length of L2=3 mm has been designed, simulated, and 

optimized. The arms slide in the x-direction from a pre-defined initial state, which is 

x(initial)=-200 m.  
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Table 5.1: Design parameter values for the proposed finger-shaped SOG phase shifter at  

G-band. 

Parameter Value Parameter Value Parameter Value 

L 16 mm finger h 500m W1 170m 

W m Pitch 200m W2 50m 

L2 3mm Gap 5 m L1 100 m 

 

Fig. 5.8: The general configuration of the proposed finger-shaped phase shifter based on the 

SOG technology. 
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Fig. 5.9: The simulated transmission loss of the finger-shaped phase shifter, with the total length 

of L=16 mm and L2= 3mm.   

 

 Fig. 5.10: The simulated phase shift of the finger-shaped phase shifter for the total finger 

structure length of L2=3 mm. The reference phase is defined for the case x=-200 m. 

The simulated total insertion loss of the structure for 250 m overall movement is shown 

in Fig. 5.9, for different x steps. The total insertion loss of the structure with L=16 mm and 
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L2=3 mm is less than 6 dB, over the range of 150-190 GHz. It is observed that a maximum 

phase shift of 138 degree (the average of 24.6 degree/) and additional loss of  

0.3-1.6 dB/mm are achieved for the designed finger-shaped phase shifter, with the finger 

structure length of 3 mm, over the range of 150-190 GHz (refer to Fig. 5.10).  

5.2.1 Measurement Results 

The movable part of the finger-shaped phase shifter is fabricated using the developed laser 

machining process. The fabricated prototype is shown in Fig. 5.11(a). For proof of the 

concept, the movable part is attached to a highly accurate micro-positioner, and slides over 

the previously fabricated SOG straight waveguide segment (see Section 2.2.2). The measured 

insertion loss and phase shift of the phase shifter, for the finger structure length of  

3 mm, are plotted in Fig. 5.12 and Fig. 5.13, respectively. 

The measurements show that implemented phase shifter results in maximum of  

34 degree/mm phase shift (the average of 15.6 degree/)  and additional loss of  

0.7-1.7 dB/mm (the average of 1.38 dB/), over the range of 150-190 GHz.  

 

 

Fig. 5.11: (a) The laser machined movable part of the finger-shaped phase shifter, and (b) the 

measurement setup. 
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Fig. 5.12: The measured transmission loss of the finger-shaped phase shifter, with the total 

length of L=16 mm and L2= 3mm.    

 

 

Fig. 5.13: The measured phase shift of the finger-shaped phase shifter for the total finger 

structure length of L2=3 mm. The reference phase is defined for the case x=-200 m. 
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5.3 SIG Butler Matrix for Beam Scanning Application 

Nowadays different Beam Forming Networks (BFNs) are employed for a variety of 

mmWave applications, particularly for communication and wireless purposes. The electronic 

beam forming can be performed in different schemes including frequency scanning, phase 

scanning, and time scanning. The phase scanning can be realized either by continues beam 

scanning or beam switching techniques. Among different beam switching techniques, such as 

Blass and Rotman Lens network [155], the cost-effective butler matrix network is chosen to 

be implemented for this research [156], [157]. The butler matrix circuit was first introduced 

by Jesse Butler [158]. In the mmWave range of frequencies, most of the butler matrices have 

been realized either by the traditional planar circuit technologies [159] or SIW technology 

[160], [161]. However, realization of the butler matrix using those approaches, in higher 

frequencies, encounters issues such as loss, fabrication challenges, and integration 

difficulties. Implementation of butler matrix, using a dielectric waveguide technology, has 

not yet been reported. Although the main drawback of the butler matrix is its relatively large 

size, the butler matrix network is the simplest and the most cost-effective approach for the 

cases where the size can be tolerated. Depending on the number of required beam positions, 

the order of the butler matrix, N, is defined.  

 

Fig. 5.14: Block diagram of a general 4x4 butler matrix network. 

The most common configuration of a 4x4 butler matrix consists of four 3-dB/90° 

directional couplers, two 45° phase shifters, and two cross-overs. The butler matrix network 

provides uniform amplitude distribution and constant phase difference between the 

successive output ports, 𝛿 =
(−1)𝑝+1(1−2𝑝)𝜋

𝑁
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degrees, when the network is excited from port-1 to port-4, in sequence. The radiation beams 

are pointing in a direction, which is determined as follow: 

𝑆𝑖𝑛(𝛼) =
𝜆

2𝜋𝑑
𝛿 

 

(5-1) 

where d is the separation distance between the output ports.  

The proposed 4x4 butler matrix, which is illustrated in Fig. 5.15, is designed to operate 

over the 145-165 GHz, where the air absorption loss is minimum and makes this range 

suitable for communication applications. The SIG configuration is chosen for implementing 

the butler matrix mainly due to its simplicity for the fabrication. The key component in 

realization of butler matrix is a 3-dB directional coupler whose design was explained in 

Section 3.3. In addition to the directional coupler, two cross-over components are needed. 

Two approaches can be employed for implementing the cross-over: 1- connecting two  

3-dB/90° coupler back to back, 2- realizing the cross-over by a single 180° coupler. Although 

the second approach provides smaller cross-over structure, it does not act as a perfect cross, 

specifically in these two cases: 1- when there are unbalanced signals at the inputs or, 2- when 

there is a reflected signal at the output. For these reasons, the author designed and  

re-optimized two 3-dB/90° couplers to be connected back to back for realization of the  

cross-overs. The simulated results along with the electric field distribution of the optimized 

cross-over are shown in Fig. 5.16. The input and output branches have the curvatures with 

radii and the angles of 2 mm and 45 degree, respectively. The rest of design parameters can 

be found in the Table 2.1.  
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Fig. 5.15: The general schematic of the proposed SIG butler matrix network.  

 

Fig. 5.16: (a) The designed cross-over electric field distribution at 150 GHz. (b) The  

S-parameters of the cross-over. 
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The main challenge in design of the butler matrix is to adjust the output phases of the 

network. Therefore, after positioning all the components, the lengths of the transmission lines 

and the bends should be adjusted to provide the required fixed phase shifts at the outputs. 

The optimized design parameter values, which provide the minimum network loss for the 

desired phase differences between the output ports at 150 GHz, are listed in Table 5.2.  

Table 5.2: Design parameter values for the SIG butler matrix.  

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value 

L 
27.8 

mm 
R C11 2.5 mm  1 30

o
 R C23 2.5 mm  X13 20

o
 

D mm  C11 30
o
 R 2 2.5 mm  C23 20

o
 R X21 2.5 mm 

P 1.2 mm R C12 2.5 mm  2 48
o
 R X11 2.5 mm  X21 20

o
 

gX 180 m  C12 28
o
 R C21 2.5 mm  X11 45

o
 R X22 2.5 mm 

LX 1 mm R C13 2.5 mm  C21 48
o
 R X12 2.5 mm  X22 25

o
 

gC 180 m  C13 45
o
 R C22 2.5 mm  X12 25

o
 R X23 2.5 mm 

LC 1 mm R1 2.5 mm  C22 54.5
o
 R X13 2.5 mm  X23 18

o
 

 

Fig. 5.17: (a) The simulated transmission coefficients of the butler matrix network, excited at 

port-1. (b) The difference between the phases of the output ports and port-5, when the network 

is excited at port-1. 

(a) (b)
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Fig. 5.18: (a) The simulated transmission coefficients of the butler matrix network, excited at 

port-2. (b) The difference between the phases of the output ports and port-5, when the network 

is excited at port-2. 

The simulated insertion losses and phase differences at the output ports, when the network 

is excited at port-1, are shown in Fig. 5.17. The simulated network insertion loss exhibits a 

maximum additional 1.5 dB loss, relative to the theoretical 6 dB loss, from 148.5 to  

152.5 GHz. Fig. 5.18 presents the simulated results when the network is excited at port-2. 

Over 148.5-152.5 GHz, the simulated output amplitude imbalance is less than 1.9 dB when 

the network is excited at port-1, and is less than 1 dB when the signal is excited at port-2.  

The electric field distributions of the network, when port-1 and port-2 are excited, are 

shown in Fig. 5.19, respectively. 

(a) (b)
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Fig. 5.19: The electric field distributions over the butler matrix network at 150 GHz, when the 

network is excited at (a) port-1, and (b) port-2. 

The network proposed in Fig. 5.15 is not a monolithic network. Therefore, realization of 

the network needs precise manual positioning, which brings substantial uncertainty to the 

results. As proposed in Section 3.3, the network can become mechanically stable by using the 

supporting beams. Due to the existence of supporting beams, a small degree of degradation in 

frequency bandwidth is inevitable. To compensate for the effect of the supporting beams on 

changing the frequency bandwidth, and for re-adjusting the output phases, the network has 

been re-optimized.  The final proposed monolithic 4x4 butler matrix is shown in Fig. 5.20, 

and is operating at the centre frequency of 156 GHz. The corresponding insertion losses and 

output phases when the network is excited at port-1 and port-2, are shown in Fig. 5.21 and 

Fig. 5.22, respectively.  

(a)

(b)
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Fig. 5.20: The general schematic of the proposed monolithic SIG butler matrix connected to 

groove grating antenna array. 

The simulated additional insertion loss reaches a maximum of 1.7 dB, relative to the 

theoretical 6 dB loss, over 154-158 GHz. The simulated output amplitude imbalance is less 

than 1.7 dB when the network is excited at port-1, and is less than 1.2 dB when the network 

is excited at port-2. Over 154-158 GHz, the maximum simulated output phase error is 13
o
 

when the network is excited at port-1, and is less than 5
o
 when the network is excited at  

port-2. 
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Fig. 5.21: (a) The simulated transmission coefficients of the monolithic butler matrix network, 

excited at port-1. (b) The difference between the phases of the output ports and port-5, when 

the network is excited at port-1. 

 

Fig. 5.22: (a) The simulated transmission coefficients of the monolithic butler matrix network, 

excited at port-2. (b) The difference between the phases of the output ports and port-5, when 

the network is excited at port-2. 

 

(a) (b)

(a) (b)
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The grooved grating antenna is chosen for integration with the butler matrix network. 

There are two reasons for choosing the grating antenna, instead of a tapered antenna, as a 

radiating element: 1-a grating antenna has wide beam in E-plane, and 2- the antenna beam is 

near boresight radiation. Therefore, the groove grating antenna makes the butler matrix 

system appropriate for the communication purposes. The separation distance between the 

antenna elements, which are designed in Section 3.5.1, is about d=0.6. The network beams 

are theoretically radiating at the angles (a) of 11.5
o
, -37

o
, 37

o
, -11.5

o
 angles, when it is 

excited from port-1 to port-4, in sequence. The general configuration of the butler system, 

operating over 154-158 GHz, is shown in Fig. 5.20. The overall dimensions of the ground 

plane are L=50 mm and D=9 mm.  

Fig. 5.23 shows 3-D simulated gain pattern of the groove grating antenna array, excited by 

a 4x4 butler matrix at 156 GHz. The maximum achieved gain is 20 dBi, when the network is 

excited either at port-1 or port-4. There is 1.5 dB gain reduction, when the network is excited 

either at port-2 or port-3. Table 5.3 lists the simulated gain pattern data for the integrated 

butler network system, shown in Fig. 5.20, for three different frequencies:  

154 GHz, 156 GHz, and 158 GHz.  

 

Fig. 5.23: 3-D gain pattern of 1x4 groove grating antenna array, excited by the 4x4 butler 

matrix network, at 156 GHz 
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Table 5.3: The simulated gain pattern data of the butler matrix system over  

154-158 GHz. 

Frequency Excited at 

port-1 

Excited at 

port-2 

Excited at 

port-3 

Excited at 

port-4 

154 GHz 

a=13.2
o
  

=24.2
o
   

gain= 19.9 dBi 

a=-36.1
o
  

=43.5
o
   

gain= 19.4 dBi 

a=36.1
o
  

=43.5
o
   

gain= 19.4 dBi 

a=-13.2
o
  

=24.2
o
   

gain= 19.9 dBi 

156 GHz 

a=11.9
o
  

=26
o
   

gain= 20 dBi 

a=-35  

=45
o
   

gain= 19 dBi 

a=35  

=45
o
   

gain= 19 dBi 

a=-11.9
o
  

=26
o
   

gain= 20 dBi 

158 GHz 

a=11.5  

=28
o
   

gain= 19.7 dBi 

a=-34.6  

=46.5
o
   

gain= 18.5 dBi 

a=34.6  

=46.5
o
   

gain= 18.5 dBi 

a=-11.5  

=28
o
   

gain= 19.7 dBi  

 a and  are defined in Fig. 5.23 

The optimal monolithic butler matrix prototype, integrated with the groove grating antenna 

array, was fabricated using the developed laser machining fabrication process. The fabricated 

structure is shown in Fig. 5.24. The measurement tests are in progress.  

 

Fig. 5.24: The laser machined monolithic butler matrix network, operating at 156 GHz. 
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5.4 Microwave-Photonic WGM Sensor 

Illumination of an intrinsic silicon structure by an optical source increases the imaginary 

part of the complex dielectric constant and thereby loss in the silicon substrate. The induced 

absorption loss can be controlled by the optical light intensity, which forms a thin plasma 

layer at the surface [162], [163]. The presence of the plasma layer changes the effective 

dielectric constant (negligible at the mmWave range of frequencies) and the conductive 

properties of the structure.  

 

 

Fig. 5.25: The proposed Microwave-Photonic sensing mechanism.  

The introduced concept is utilized for changing and controlling the behavior of the silicon 

DDR. Therefore, the silicon DDR is illuminated by an optical source, such as a LED, from 

the top surface, as shown in Fig. 5.25. The intensity and the wavelength of the light 

determine the depth of the plasma layer, which affects the Q-factor of DDR. As seen in 

Chapter 4, due to the uncertainty in the conductivity and the dielectric properties of the 

silicon at the mmWave range of frequencies, as well as fabrication errors, the fabricated 
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WGM resonance structures always show resonances characteristics and Q-factor, which are 

different from the simulated ones. The resonance behavior of those structures can be re-tuned 

by optical illumination. The proposed approach is very effective for sensing applications, 

when high Q-factor resonances are needed.  

5.4.1 Experimental Verification 

The proposed SIG WGM configuration, introduced in Section 4.7, is used for realization of 

a Microwave-Photonic WGM sensor. For the first experiment, the measurement setup, shown 

in Fig. 5.26(a), is utilized. It consists of the WGM resonator coupled to the curved SIG 

structure, illuminated from the top, by a 960 nm NIR-LED. The LED is located at exactly  

10 cm above the DDR.  Fig. 5.27 shows the effect of LED light on the WGH600 resonance of 

the structure. As it can be observed, varying the NIR intensity greatly affects the resonance 

depth. The critical coupling almost occurs when the LED operates at V=200 mV and  

I=1.5 mA. The aforementioned optical technique can be combined with the bio-sensing 

experiments, described in Chapter 4, for increasing the sensitivity.  

 

 

Fig. 5.26: (a) The Microwave-Photonic measurement setup for sensing application using WGM 

curved-SIG structure. (b) The setup for testing the sensor for two different milk samples. 

 

(a) (b)
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Fig. 5.27: The transmission response of the structure at WGH600  resonance, for different NIR 

illumination intensities. 

As a new sensing method, an IR-transparent container is positioned between the DDR and 

the LED, and it was filled with two different milk samples: 2% and 10%. The measurement 

setup is shown in Fig. 5.26(b). The container is filled with equal 1 ml of each type of milk, 

and the experiments are repeated several times for validating the repeatability of the test 

results. The measured results are depicted in Fig. 5.28. The results show that for 2% milk, the 

near critical coupling happens when the LED is driven by I=4.5 mA, while the coupling 

reaches to its maximum, for 10% milk, at I=11 mA. These results prove that two different 

milk concentrations can be distinguished from each other by their differences in the 

resonance responses to the same IR illumination.  
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Fig. 5.28: The NIR illumination effect on the resonance responses of two different milk samples. 

5.5 Conclusion 

This chapter reported several high performance and cost-effective silicon-based advanced 

devices, working at the mmWave/THz range of frequencies. A tunable resonance structure 

was the first device, implemented based on the SOG WGM disc resonator. The measurement 

results indicated that the movable metallic bar on top of the resonator produces 4.5 GHz and 

3 GHz tuning bandwidths at fc=152 GHz and fc=168 GHz, respectively. The designed tunable 

structure can be used for tunable filter and phase shifter applications. The next device was the 

finger-shaped phase shifter, implemented on SOG technology. The structure demonstrated 

relatively wide bandwidth, 150-190 GHz, with a measured maximum phase shift of  

34 degree/mm, while the added insertion loss was within 0.6-1.5 dB/mm.  

As a significant step in realizing large-scale integrated structures, a monolithic butler 

matrix beam forming network, integrated with a groove grating antenna array, and operating 

over the 154-158 GHz range of frequencies, was developed. Finally, a novel, simple, and 

cost-effective Microwave-Photonic device was proposed for refining and tuning the 

resonance response of a silicon WGM structure. Using a low power LED, the loaded  

Q-factor of the proposed SIG WGM structure was controlled over the wide range of values. 

This new Microwave-Photonic WGM device was tested for sensing two different milk 

samples.  
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Chapter 6 

Concluding Remarks 

6.1 Summary and Contributions 

In this research, two high performance HRS-based waveguide technologies: Silicon-On-

Glass (SOG) and Silicon Image Guide (SIG) were proposed and implemented for low-cost 

integrated mmWave/THz systems.  

In summary, the major contributions of the author can be listed as follows: 

 The development of two cost-effective and high performance silicon waveguide 

technologies (SIG and SOG). 

 The development of a fast laser machining process for prototyping the SIG 

structures. 

 The design, implementation, and successful measurement of several essential 

passive components in the SIG technology, including bend, Y-junction power 

divider, and directional coupler. 

 The design and fabrication of a number of waveguide based antennas, including the 

parasitic tapered antenna, groove grating antenna, and strip grating antenna, on SIG 

technology. 

 The development of an efficient analysis method for analyzing the planar DDRs, 

operating in WGMs. 

 The design, implementation, and successful measurement of a number of planar 

silicon-based WGM resonance structures. 

 The employment of the low-cost WGM-resonance-based sensors for bio-medical 

applications, specifically for DNA sensing. 

 The implementation and experimental verification of two SOG based devices: 

tunable WGM resonance structure and finger-shaped phase shifter. 

 The design and fabrication of an integrated beam forming antenna consisting of a 

butler matrix and the antenna elements based on SIG technology. 
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 Investigation and implementation of a new Microwave-Photonic WGM sensor.  

6.2 Future Work 

The following are suggested as possible directions for future research work: 

 

 Scaling up the silicon-based structures to a higher range of frequencies 

The introduced silicon-based technologies, SOG and SIG, were demonstrated up to 

240 GHz. Exploring and studying the THz spectrum is needed to refine the 

proposed structures to perform at higher frequencies. Investigating the general 

performance factors of the structures, such as loss, and implementation of the 

structures at a higher range of frequencies are planned to be performed in the 

future. 

 Design and implementation of more advanced silicon-based passive 

components 

In Chapter 3, a few passive SIG components were designed and realized. Based on 

this experience, more advanced components, such as filters, Mach-zender, MMI 

structures, and attenuators can be developed. This will enable us to realize a 

complete and high performance mmWave/THz system. Additionally, it is now 

possible to proceed towards the design and realization of more advanced types of 

the reduced size silicon-based antennas, which brings unique characteristics to 

mmWave/THz systems. 

 Qualitative studies of the performances of the WGM sensors 

In Chapter 4, different planar dielectric based WGM sensors were designed and 

tested. To assess the performance of the implemented sensors, in the next step the 

sensitivity and selectivity of these structures should be evaluated in a more realistic 

environment. Additionally, it is desirable to investigate the sensing mechanism of 

the WGM disc resonators in the presence of samples: more profoundly, by 

modeling the samples with an impedance layer. This will help to characterize the 

samples in terms of permittivity and absorption factor, with a simple analytical 

model.  
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 Adding the MEMS capability to the movable structures 

In Chapter 5, two categories of movable structures: tunable resonance structure and 

finger-shaped phase shifter, were implemented using movable parts and were tested 

by means of accurate micro-positioners. The next step will be focused on a fully 

integrated device, using MEM technology to realize moving parts.  

 Design and implementation of an in-package mmWave/THz system 

A cost-effective fully integrated high performance system is a dream for the 

mmWave/THz community. Packaging and integration are major challenges in 

realization of a commercial mmWave/THz system. As it was mentioned in  

Chapter 1, the newly developed silicon technologies empower us to tackle the 

aforementioned issues. In this thesis, varieties of silicon components and devices 

were designed and implemented using the aforementioned technologies; however, 

all of them were designed to be tested by metallic-waveguide-based measuring 

instruments. To remove this technological limitation from future developments, as 

an important objective of future research activities, the author plans to extend his 

current research results to introduce a real in-package and integrated mmWave/THz 

system. This is an integral part of the current CIARS research strategy in the area of 

high performance packaging technologies to interconnect planar active circuits with 

the new silicon technologies [164]. As a particular short term milestone, the author 

plans to realize an integrated beam forming transceiver incorporating the developed 

silicon butler matrix system, and planar mmWave active devices, such as those 

implemented in commercial CMOS technologies. 
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Appendices 
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Appendix A  

Analysis of a Single-Layer and Double-Layer Image Slab 

Waveguide  

1) Double-Layer Image Slab 

For a two horizontal layer slab waveguide, placed over a ground plane (refer to Fig. A-1), 

the electric fields for each region at the TM mode are: 

𝐸𝑧(𝑧) = {

𝐴𝑐𝑜𝑠(𝑘𝑧1𝑧),                                                                         0 ≤ 𝑧 ≤ ℎ1
𝐵1𝑐𝑜𝑠(𝑘𝑧(𝑧 − ℎ1)) + 𝐵2𝑠𝑖𝑛(𝑘𝑧(𝑧 − ℎ1)), ℎ1 ≤ 𝑧 ≤ ℎ1 + ℎ2
𝐶𝑒−𝛼𝑧2(𝑧−ℎ2−ℎ1),                                                                  𝑧 ≥ ℎ1 + ℎ2

 (A-1) 

 

Fig. A-1. A double-layer image slab waveguide. 

where 

𝑘𝑧1
2 = 𝑘𝑧

2−𝑘0
2(𝜀𝑟1 − 𝜀𝑟𝑠) 

(A-2) 

𝛼𝑧2
2 = 𝑘0

2(𝜀𝑟1 − 1) − 𝑘𝑧
2 

(A-3) 

𝑘𝑥
2 = 𝑘0

2𝜀𝑟𝑠 − 𝑘𝑧1
2 = 𝑘0

2 + 𝛼𝑧2
2  

(A-4) 

For the TE mode, (A-1) is defined for Hz instead of Ez. The propagation constant in each 

layer can be real or imaginary, depending on whether the solution in each region corresponds 

to an evanescent or a travelling wave. By matching the tangential electric and magnetic fields 

ers

er1h2

h1

kz

kz2=-jaz2

X

Z

kz1
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in the boundaries, the unknown constants are derived. The related dispersion equations for 

both the TM and TE polarization are:  

 

TM mode: 

[1 − (
𝑘𝑧1
𝑘𝑧
) (
𝜀𝑟1
𝜀𝑟𝑠
) 𝑡𝑎𝑛(𝑘𝑧1ℎ1) 𝑡𝑎𝑛(𝑘𝑧ℎ2)]

− (
𝑘𝑧

𝛼𝑧2𝜀𝑟1
) [𝑡𝑎𝑛(𝑘𝑧ℎ2) + (

𝑘𝑧1
𝑘𝑧
)(
𝜀𝑟1
𝜀𝑟𝑠
) 𝑡𝑎𝑛 (𝑘𝑧1 ℎ1)] = 0 

(A-5) 

TE mode: 

[1 + (
𝛼𝑧2
𝑘𝑧
) 𝑡𝑎𝑛(𝑘𝑧ℎ2)] − (

𝑘𝑧
𝑘𝑧1
) 𝑡𝑎𝑛(𝑘𝑧1ℎ1) [

𝛼𝑧2
𝑘𝑧
− 𝑡𝑎𝑛 (𝑘𝑧ℎ2)] = 0 

(A-6) 

and (A-2) converts to the following equation: 

𝛼𝑧1
2 = 𝑘0

2(𝜀𝑟1 − 𝜀𝑟𝑠) − 𝑘𝑧
2 

(A-7) 

In the case where slab#2 has a larger dielectric constant than slab#1 (𝜀𝑟1 > 𝜀𝑟𝑠), the 

dispersion equations are modified by substituting 𝑘𝑧1 = −𝑗𝛼𝑧1  in (A-5) and (A-6) as: 

TM mode: 

[1 + (
𝛼𝑧1
𝑘𝑧
) (
𝜀𝑟1
𝜀𝑟𝑠
) 𝑡𝑎𝑛ℎ(𝛼𝑧1ℎ1) 𝑡𝑎𝑛(𝑘𝑧ℎ2)]

− (
𝑘𝑧

𝛼𝑧2𝜀𝑟1
) [− 𝑡𝑎𝑛(𝑘𝑧ℎ2) + (

𝛼𝑧1
𝑘𝑧
) (
𝜀𝑟1
𝜀𝑟𝑠
) 𝑡𝑎𝑛ℎ (𝛼𝑧1 ℎ1)] = 0 

(A-8) 

TE mode: 

[1 + (
𝛼𝑧2
𝑘𝑧
) 𝑡𝑎𝑛(𝑘𝑧ℎ2)] + (

𝑘𝑧
𝛼𝑧1
) 𝑡𝑎𝑛ℎ(𝛼𝑧1ℎ1) [

𝛼𝑧2
𝑘𝑧
− 𝑡𝑎𝑛 (𝑘𝑧ℎ2)] = 0 

(A-9) 
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2) Single-Layer Image Slab 

 

Fig. A-2. A single-layer slab wave guide. 

For a single-layer image slab, by setting 𝜀𝑟𝑠 = 1, ℎ1 = 0 , ℎ2 = ℎ, and 𝛼𝑧2 = 𝛼𝑧 in (A-8) 

and (A-9), the dispersion equations are obtained as: 

 

{

𝜀𝑟1𝛼𝑧
𝑘𝑧

= 𝑡𝑎𝑛(𝑘𝑧ℎ)   𝑇𝑀 𝑚𝑜𝑑𝑒

−
𝛼𝑧
𝑘𝑧
= 𝑐𝑜𝑡(𝑘2ℎ)  𝑇𝐸 𝑚𝑜𝑑𝑒

 (A-10) 

where 

𝛼𝑧
2 = 𝑘0

2(𝜀𝑟1 − 1) − 𝑘𝑧
2 

(A-11) 

  

er1h
kz

kz2=-jaz

X

Z



 

 135 

Appendix B  

Electromagnetic Fields and Dispersion Equation of a Circular 

Dielectric Waveguide [165]  

The Helmholtz equation in the cylindrical coordinate system is given by 

1

𝜌

𝜕

𝜕𝜌
(𝜌
𝜕𝜓

𝜕𝜌
) +

1

𝜌2
𝜕2𝜓

𝜕𝜙2
+ 
𝜕2𝜓

𝜕𝑧2
+ 𝑘2𝜓 = 0 (B-1) 

 

 

Fig. B-1. An infinite dielectric cylinder. 

The electric and magnetic vector potentials for inside a uniform circular dielectric 

waveguide is defined as 

𝜓𝑒 = 𝐴𝐽𝑛(𝑘𝜌𝜌)𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧 (B-2) 

𝜓ℎ = 𝐵𝐽𝑛(𝑘𝜌𝜌)𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧 (B-3) 

where 𝑘𝜌 and 𝑘𝑧 are radial and axial propagation constants, respectively. For the outside of 

the cylinder, a decaying field is required in the radial direction. Therefore, the electric and 

magnetic vector potentials for this region are obtained as 

𝜓𝑒2 = 𝐶𝐾𝑛(𝛼𝜌𝜌)𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧 (B-4) 

r=a

e1er1e

X
Z

+∞

-∞ eer2e
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𝜓ℎ2 = 𝐷𝐾𝑛(𝛼𝜌𝜌)𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧 (B-5) 

The electric and magnetic fields are defined in terms of 𝜓𝑒 and 𝜓ℎ as 

𝐸𝜌 =
1

𝑘𝜌
2 (
𝜕2𝜓𝑒
𝜕𝜌𝜕𝑧

−
𝑗𝜔𝜇

𝜌

𝜕𝜓ℎ
𝜕𝜙
 ) (B-6) 

𝐸𝑧 = (𝑘
2 +

𝜕2

𝜕𝑧2
)𝜓𝑒 (B-7) 

𝐸𝜙 =
1

𝑘𝜌
2 (
1

𝜌

𝜕2𝜓𝑒
𝜕𝜙𝜕𝑧

+ 𝑗𝜔𝜇 
𝜕𝜓ℎ
𝜕𝜌
) (B-8) 

𝐻𝜌 =
1

𝑘𝜌
2 (
𝜕2𝜓ℎ
𝜕𝜌𝜕𝑧

+
𝑗𝜔𝜀 

𝜌

𝜕𝜓𝑒
𝜕𝜙
 ) (B-9) 

𝐻𝑧 = (𝑘
2 +

𝜕2

𝜕𝑧2
)  𝜓ℎ (B-10) 

𝐻𝜙 =
1

𝑘𝜌
2 (
1

𝜌

𝜕2𝜓ℎ
𝜕𝜙𝜕𝑧

− 𝑗𝜔𝜀 
𝜕𝜓𝑒
𝜕𝜌
) (B-11) 

By substituting the defined potentials, (B-2)-(B-5), in (B-6)-(B-11), and after mathematic 

simplifications, the obtained electric and magnetic fields for the inside and outside of the 

cylinder are as follows 

𝝆 < 𝒂 ∶ 

𝐸𝜌1 = [−𝑗𝑘𝑧𝑘𝜌𝐴𝐽𝑛
′ (𝑘𝜌𝜌) +

𝜔𝜇𝑛

𝜌
𝐵𝐽𝑛(𝑘𝜌𝜌)] 𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-12) 

𝐸𝜙1 = [
𝑘𝑧𝑛

𝜌
𝐴𝐽𝑛(𝑘𝜌𝜌) + 𝑗𝜔𝜇𝑘𝜌𝐵𝐽𝑛

′ (𝑘𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-13) 

𝐸𝑧1 = 𝑘𝜌
2𝐴𝐽𝑛(𝑘𝜌𝜌)𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧
  
 (B-14) 

𝐻𝜌1 = [−
𝜔𝜀1𝑛

𝜌
𝐴𝐽𝑛(𝑘𝜌𝜌) − 𝑗𝑘𝑧𝑘𝜌𝐵𝐽𝑛

′ (𝑘𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-15) 

𝐻𝜙1 = [−𝑗𝜔𝜀1𝑘𝜌𝐴𝐽𝑛
′ (𝑘𝜌𝜌 ) +

𝑘𝑧𝑛

𝜌
𝐵𝐽𝑛(𝑘𝜌𝜌)] 𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-16) 
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𝐻𝑧1 = 𝑘𝜌
2𝐵𝐽𝑛(𝑘𝜌𝜌)𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧
  
 (B-17) 

𝝆 > 𝒂 ∶ 

𝐸𝜌2 = [−𝑗𝑘𝑧𝛼𝜌𝐶𝐾𝑛
′ (𝛼𝜌𝜌) +

𝜔𝜇𝑛

𝜌
𝐷𝐾𝑛(𝛼𝜌𝜌)] 𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-18) 

𝐸𝜙2 = [
𝑘𝑧𝑛

𝜌
𝐶𝐾𝑛(𝛼𝜌𝜌) + 𝑗𝜔𝜇𝛼𝜌𝐷𝐾𝑛

′(𝛼𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-19) 

𝐸𝑧2 = −𝛼𝜌
2𝐶𝐾𝑛(𝛼𝜌𝜌)𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧
  
 (B-20) 

𝐻𝜌2 = [−
𝜔𝜀2𝑛

𝜌
𝐶𝐾𝑛(𝛼𝜌𝜌) − 𝑗𝑘𝑧𝛼𝜌𝐷𝐾𝑛

′(𝛼𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-21) 

𝐻𝜙2 = [−𝑗𝜔𝜀2𝛼𝜌𝐶𝐾𝑛
′ (𝛼𝜌𝜌 ) +

𝑘𝑧𝑛

𝜌
𝐷𝐾𝑛(𝛼𝜌𝜌)] 𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-22) 

𝐻𝑧2 = −𝛼𝜌
2𝐷𝐾𝑛(𝛼𝜌𝜌)𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧
  
 (B-23) 

 

 

where 

𝛼𝜌
2 + 𝑘𝜌

2 = 𝜔2𝜇(𝜀1 − 𝜀2) (B-24) 

𝑘𝜌
2 = 𝑘0

2𝜀𝑟1 − 𝑘𝑧
2 (B-25) 

Defining 𝑢 ≜ 𝑘𝜌𝑎 , 𝑤 ≜ 𝛼𝜌𝑎, and 𝑣 ≜ 𝜔𝑎√𝜇(𝜀1 − 𝜀2) , the following term is obtained 

𝑢2 +𝑤2 = 𝑣2 (B-26) 

In general, the cylindrical dielectric waveguide provides the hybrid mode of HEnm and 

EHnm. The subscripts of n and m denote, respectively, the number of azimuthal variations and 

the number of radial variations. By applying the boundary conditions at the boundaries of the 

tangential E and H fields, the following matrix expression for the dielectric cylindrical 

waveguide is achieved as 
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[
 
 
 
 
 
 
𝐾𝜌
2𝐽𝑛(𝑘𝜌𝑎) 0 𝛼𝜌

2𝐾𝑛(𝛼𝜌𝑎) 0

0 𝐾𝜌
2𝐽𝑛(𝑘𝜌𝑎) 0 𝛼𝜌

2𝐾𝑛(𝛼𝜌𝑎)

𝑘𝑧𝑛

𝑎
𝐽𝑛(𝑘𝜌𝑎) 𝑗𝜔𝜇𝑘𝜌𝐽𝑛

′ (𝑘𝜌𝜌) −
𝑘𝑧𝑛

𝑎
𝐾𝑛(𝛼𝜌𝑎) −𝑗𝜔𝜇𝛼𝜌𝐾𝑛

′ (𝛼𝜌𝜌)

𝑗𝜔𝜀1𝑘𝜌𝐽𝑛
′ (𝑘𝜌𝜌)

𝑘𝑧𝑛

𝑎
𝐽𝑛(𝑘𝜌𝑎) −𝑗𝜔𝜀2𝛼𝜌𝐾𝑛

′ (𝛼𝜌𝜌) −
𝑘𝑧𝑛

𝑎
𝐾𝑛(𝛼𝜌𝑎) ]

 
 
 
 
 
 

[

𝐴
𝐵
𝐶
𝐷

] = 0 (B-27) 

 

The dispersion equation is obtained by setting the matrix determinant equal to zero 

 

[
𝜀1𝐽𝑛

′ (𝑘𝜌𝑎)

(𝑘𝜌𝑎)𝐽𝑛 (𝑘𝜌𝑎)
+

𝜀2𝐾𝑛
′(𝛼𝜌𝑎)

(𝛼𝜌𝑎)𝐾𝑛 (𝛼𝜌𝑎)
] × [

𝜇𝐽𝑛
′ (𝑘𝜌𝑎)

(𝑘𝜌𝑎)𝐽𝑛 (𝑘𝜌𝑎)
+

𝜇𝐾𝑛
′(𝛼𝜌𝑎)

(𝛼𝜌𝑎)𝐾𝑛 (𝛼𝜌𝑎)
]

=
𝑛2𝑘𝑧

2

𝜔2
[

1

(𝑘𝜌𝑎)
2
   
+

1

(𝛼𝜌𝑎)
2
   
] 

(B-28) 

 

Equation (B-28) is represented as below 

[
𝐽𝑛
′ (𝑘𝜌𝑎)

(𝑘𝜌𝑎)𝐽𝑛 (𝑘𝜌𝑎)
+

𝐾𝑛
′(𝛼𝜌𝑎)

(𝛼𝜌𝑎)𝐾𝑛 (𝛼𝜌𝑎)
] × [

𝐽𝑛
′ (𝑘𝜌𝑎)

(𝑘𝜌𝑎)𝐽𝑛 (𝑘𝜌𝑎)
+
1

𝜀𝑟1

𝐾𝑛
′(𝛼𝜌𝑎)

(𝛼𝜌𝑎)𝐾𝑛 (𝛼𝜌𝑎)
]

= [𝑛(𝜀𝑟1 − 1)
𝑘𝑧𝑘0
𝑘𝜌2
] 

(B-29) 

where 𝛼𝜌 , 𝑘𝜌 and 𝑘𝑧 are related through (B-24) and (B-25). For 𝜀𝑟1 = 1, two separate 

modes are defined as the HE and EH hybrid modes  

−
𝐽𝑛+1(𝑘𝜌𝑎)

𝑘𝜌𝑎𝐽𝑛(𝑘𝜌𝑎)
=
𝐾𝑛+1(𝛼𝜌𝑎)

𝛼𝜌𝑎𝐾𝑛(𝛼𝜌𝑎)
                          𝐸𝐻𝑛𝑚 (B-30) 

𝐽𝑛−1(𝑘𝜌𝑎)

𝑘𝜌𝑎𝐽𝑛(𝑘𝜌𝑎)
=
𝐾𝑛−1(𝛼𝜌𝑎)

𝛼𝜌𝑎𝐾𝑛(𝛼𝜌𝑎)
                            𝐻𝐸𝑛𝑚 (B-31) 

 

By solving (B-29), all the unknown coefficients are defined according to only one constant. 

After mathematical simplifications by using recurrence formulas for the Bessel function, 

electric and magnetic field components are rewritten as follows 

 



 

 139 

 

𝝆 < 𝒂 ∶ 

𝐸𝜌1 = 𝑗𝑘𝑧𝑘𝜌𝐴 [
1 + 𝑆𝑛
2

𝐽𝑛+1(𝑘𝜌𝜌) −
1 − 𝑆𝑛
2

𝐽𝑛−1(𝑘𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-32) 

𝐸𝜙1 = 𝑘𝑧𝑘𝜌𝐴 [
1 + 𝑆𝑛
2

𝐽𝑛+1(𝑘𝜌𝜌) +
1 − 𝑆𝑛
2

𝐽𝑛−1(𝑘𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-33) 

𝐸𝑧1 = 𝑘𝜌
2𝐴𝐽𝑛(𝑘𝜌𝜌)𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧
  
 (B-34) 

𝐻𝜌1 = −
𝑘𝑧
2𝑘𝜌𝐴

𝜔𝜇0
[
 
 
 𝑆𝑛 +

𝑘2

𝑘𝑧
2 𝜀𝑟1

2
𝐽𝑛+1(𝑘𝜌𝜌) −

𝑆𝑛 −
𝑘2

𝑘𝑧
2 𝜀𝑟1

2
𝐽𝑛−1(𝑘𝜌𝜌)

]
 
 
 
𝑒𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-35) 

𝐻𝜙1 = 𝑗
𝑘𝑧
2𝑘𝜌𝐴

𝜔𝜇0
[
 
 
 𝑆𝑛 +

𝑘2

𝑘𝑧
2 𝜀𝑟1

2
𝐽𝑛+1(𝑘𝜌𝜌) +

𝑆𝑛 −
𝑘2

𝑘𝑧
2 𝜀𝑟1

2
𝐽𝑛−1(𝑘𝜌𝜌)

]
 
 
 
𝑒𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-36) 

𝐻𝑧1 = 𝑗 
𝑘𝑧𝑘𝜌

2𝑠𝑛

𝜔𝜇0
𝐴𝐽𝑛(𝑘𝜌𝜌)𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧

  

 (B-37) 

𝝆 > 𝒂 ∶ 

𝐸𝜌2 = 𝑗𝑘𝑧𝛼𝜌 𝐶 [
1 + 𝑆𝑛
2

𝐾𝑛+1(𝛼𝜌𝜌) +
1 − 𝑆𝑛
2

𝐾𝑛−1(𝛼𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-38) 

𝐸𝜙2 = 𝑘𝑧𝛼𝜌𝐶 [
1 + 𝑆𝑛
2

𝐾𝑛+1(𝛼𝜌𝜌) −
1 − 𝑆𝑛
2

𝐾𝑛−1(𝛼𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-39) 

𝐸𝑧2 = 𝛼𝜌
2𝐴𝐾𝑛(𝛼𝜌𝜌)𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧
  
 (B-40) 

𝐻𝜌2 = −
𝑘𝑧
2𝛼𝜌𝐶

𝜔𝜇0
[
 
 
 𝑆𝑛 +

𝑘2

𝑘𝑧
2 𝜀𝑟2

2
𝐾𝑛+1(𝛼𝜌𝜌) +

𝑆𝑛 −
𝑘2

𝑘𝑧
2 𝜀𝑟2

2
𝐾𝑛−1(𝛼𝜌𝜌)

]
 
 
 
𝑒𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-41) 

𝐻𝜙2 = 𝑗
𝑘𝑧
2𝛼𝜌𝐶

𝜔𝜇0
[
 
 
 𝑆𝑛 +

𝑘2

𝑘𝑧
2 𝜀𝑟2

2
𝐾𝑛+1(𝛼𝜌𝜌) −

𝑆𝑛 −
𝑘2

𝑘𝑧
2 𝜀𝑟2

2
𝐾𝑛−1(𝛼𝜌𝜌)

]
 
 
 
𝑒𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧   (B-42) 

𝐻𝑧2 = −𝑗 
𝑘𝑧𝛼𝜌

2𝑠𝑛

𝜔𝜇0
𝐶𝐾𝑛(𝛼𝜌𝜌)𝑒

𝑗𝑛𝜙𝑒−𝑗𝑘𝑧𝑧

  

 (B-43) 
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where 

𝐶 = −
𝐴𝑘𝜌

2𝐽𝑛(𝐾𝜌𝜌) 

𝛼𝜌
2𝐾𝑛(𝛼𝜌)

 (B-44) 

𝑆𝑛 =

𝑛 [
1

(𝑘𝜌𝑎)
2
   
+

1

(𝛼𝜌𝑎)
2
   
]

[
𝐽𝑛
′
(𝑘𝜌𝑎)

(𝑘
𝜌
𝑎)𝐽

𝑛
(𝑘𝜌𝑎)

+
𝐾𝑛
′
(𝛼𝜌𝑎)

(𝛼𝜌𝑎)𝐾𝑛 (𝛼𝜌𝑎)
]

 
(B-45) 
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Appendix C  

Asymptotic Values and Cut-Off Conditions of a Dielectric Cylinder 

Understanding the behavior of the dispersion equation of a dielectric cylinder, operating in 

the hybrid mode, is not easy when it is expressed in the form of (B-29). The quadratic form 

of (B-29) can be written as 

[
𝐽𝑛
′
(𝑘𝜌𝑎)

(𝑘
𝜌
𝑎)𝐽

𝑛

′
(𝑘𝜌𝑎)

]

2

+ [
𝜇(𝜀1 + 𝜀2)

𝜇𝜀1

𝐾𝑛
′
(𝛼𝜌𝑎)

(𝛼𝜌𝑎)𝐾𝑛
′
(𝛼𝜌𝑎)

]
𝐽𝑛
′
(𝑘𝜌𝑎)

(𝑘
𝜌
𝑎)𝐽

𝑛

′
(𝑘𝜌𝑎)

+
𝜀2
𝜀1
[
𝐾𝑛
′
(𝛼𝜌𝑎)

(𝛼𝜌𝑎)𝐾𝑛
′
(𝛼𝜌𝑎)

]

2

− 𝑛2 [
1

(𝑘𝜌𝑎)
2
   
+

1

(𝛼𝜌𝑎)
2
   
] [

1

(𝑘𝜌𝑎)
2
   
+

𝜀2

𝜀1(𝛼𝜌𝑎)
2
] = 0 

(C-1) 

The above equation has two roots as follows: 

EH mode: 

𝐽𝑛+1(𝑘𝜌𝑎)

𝐽𝑛(𝑘𝜌𝑎)
= 𝑘𝜌𝑎 [

(𝜀1 + 𝜀2)

2𝜀1
(

𝑛

(𝛼𝜌𝑎)
2
−
𝐾𝑛+1(𝛼𝜌𝑎)

𝛼𝜌𝑎𝐾𝑛(𝛼𝜌𝑎)
) +

𝑛

(𝑘𝜌𝑎)
2
− √𝑌] (C-2) 

HE mode: 

𝐽𝑛−1(𝑘𝜌𝑎)

𝐽𝑛(𝑘𝜌𝑎)
= 𝑘𝜌𝑎 [−

(𝜀1 + 𝜀2)

2𝜀1
(

𝑛

(𝛼𝜌𝑎)
2
−
𝐾𝑛+1(𝛼𝜌𝑎)

𝛼𝜌𝑎𝐾𝑛(𝛼𝜌𝑎)
) +

𝑛

(𝑘𝜌𝑎)
2
− √𝑌] 

 

(C-3) 

where 

𝑌 = [
(𝜀1 − 𝜀2)

2𝜀1
(

𝑛

(𝛼𝜌𝑎)
2
−
𝐾𝑛+1(𝛼𝜌𝑎)

𝛼𝜌𝑎𝐾𝑛(𝛼𝜌𝑎)
)]

2

+ [
𝑛2

(𝑘𝜌𝑎)
2
   
+

𝑛2

(𝛼𝜌𝑎)
2
   
] [

1

(𝑘𝜌𝑎)
2
   
+

𝜀2

𝜀1(𝛼𝜌𝑎)
2
] (C-4) 

The resultant equations for both polarizations are expressed by only one unknown 

parameter, 𝑘𝜌, by using the auxiliary equation, 

𝛼𝜌𝑎 = √𝜔
2𝜇𝑎(𝜀1 − 𝜀2) − (𝑘𝜌𝑎)

2
   (C-5) 

(C-2) and (C-3) represent two sets of curves which can be plotted independently. The 

intersection of the curves for a fixed mode and in the certain frequency results in the 
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corresponding 𝑘𝜌. Asymptotic values of (C-2) and (C-3) provide a better understanding of 

their behavior. At the cut-off frequency, the 𝑘𝜌 has its minimum value and consequently 𝛼𝜌 

is zero. To investigate different situations, three cases are studied, n=0, n=1 and n>1.  

n=0: 

Hybrid modes converted to TE and TM modes and  two separate dispersion equations are 

obtained with the same cut-off value, when 𝛼𝜌𝑎 → 0 . The cut-off frequency is calculated as 

below: 

𝑓𝑐 =
𝑥0𝑚

2𝜋𝑎√𝜇(𝜀1 − 𝜀2)
 ,           𝑚 > 0 

(C-6) 

where 𝑥0𝑚 denotes the m
th 

root of 𝐽0(𝑘𝜌𝑎) = 0 . Interestingly, the cut-off values for the 

TE0m and TM0m modes are the same; however, they are not degenerate modes. 

n=1: 

To find the cut-off frequency of HE1m and EH1m modes, the left hand sides of (C-2) and 

(C-3), respectively, must be zero. The evaluated cut-off frequencies are as follows: 

𝐽1(𝑘𝜌𝑎) = 0  , 𝑘𝜌𝑐 =
𝑥1𝑚′

𝑎
    𝑤ℎ𝑒𝑛 {

𝑚′ = 𝑚             𝐸𝐻1𝑚
𝑚′ = 𝑚 − 1     𝐻𝐸1𝑚

 
(C-7) 

For EH1m , the 𝑘𝜌𝑎 ≠ 0 constraint should be considered.  It is beneficial to know that the 

left-hand sides of (C-2) and (C-3) for m=1 and 𝑘𝜌𝑎 →∞, behave like  ± 𝑐𝑜𝑡 (𝑘𝜌𝑎 −
𝜋

4
) /𝑘𝜌𝑎 

. Also, the right-hand side of (C-2) is a monolithically increasing function of 𝑘𝜌𝑎, while the 

right-hand side of (C-3) is a monolithically decreasing function of 𝑘𝜌𝑎 . 

n>1: 

The cut-off condition for EHnm is similar to the case n=1 with the added constraint 

𝑘𝜌𝑎 ≠ 0  : 

𝐽𝑛(𝑘𝜌𝑎) = 0, 𝑘𝜌𝑐 =
𝑥1𝑚
𝑎

 
(C-8) 
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For the EHnm modes, the left-hand side of (C-2) acts like  𝑡𝑎𝑛 (𝑘𝜌𝑎 −
𝜋

4
) for n even and 

−𝑐𝑜𝑡 (𝑘𝜌𝑎 −
𝜋

4
) for n odd at large values for 𝑘𝜌𝑎. The cut-off condition for HEnm is achieved 

by finding the zeros of (C-3). The following equation describes the cut-off condition, using 

the asymptotic expressions of the modified Bessel functions for small values and recursion 

relation for the Bessel functions: 

𝐽𝑛−2(𝑘𝜌𝑎)

𝐽𝑛(𝑘𝜌𝑎)
=
𝜀2 − 𝜀1
𝜀2 + 𝜀1

   𝑜𝑟  
𝐽𝑛−1(𝑘𝜌𝑎)

𝐽𝑛(𝑘𝜌𝑎)
=

𝜀2𝑘𝜌𝑎

(𝑛 − 1)(𝜀2 + 𝜀1)  
 (C-9) 

Up to this point, the minimum values of 𝑘𝜌 are obtained. These values help to determine 

the cut-off frequencies of both the HE and EH modes. The maximum value of 𝑘𝜌 does not 

depend on the mode number. The roots of the left hand sides of (C-2) and (C-3) provide the 

required maximum values for 𝑘𝜌: 

{
𝐽𝑛+1(𝑘𝜌

𝑚𝑎𝑥𝑎) = 0           𝐸𝐻𝑛𝑚

𝐽𝑛−1(𝑘𝜌
𝑚𝑎𝑥𝑎) = 0          𝐻𝐸𝑛𝑚

 (C-10) 
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Appendix D  

Electromagnetic Field for an Image Dielectric Disc Resonator 

Based on Marcatili’s Method 

The general electric and magnetic fields for different sub-regions of an image dielectric 

disc resonator, shown in Fig. D-1, are obtained by defining the electric and magnetic vector 

potentials in each sub-region (the fields in the sub-region  4 is assumed to be zero) 

 

Fig. D-1. The cross view of an image dielectric disc resonator. 

{
 𝜓𝑒1 = 𝐴1𝐽𝑛(𝑘𝜌𝜌)𝑒

𝑗𝑛𝜙 𝑐𝑜𝑠(𝑘𝑧𝑧) 

𝜓ℎ1 = 𝐵1𝐽𝑛(𝑘𝜌𝜌)𝑒
𝑗𝑛𝜙 𝑠𝑖𝑛(𝑘𝑧𝑧)

 (D-1) 

{
 𝜓𝑒2 = 𝐶1𝐾𝑛(𝛼𝜌𝜌)𝑒

𝑗𝑛𝜙 𝑐𝑜𝑠(𝑘𝑧𝑧) 

𝜓ℎ2 = 𝐷1𝐾𝑛(𝛼𝜌𝜌)𝑒
𝑗𝑛𝜙 𝑠𝑖𝑛(𝑘𝑧𝑧)

 (D-2) 

{
 𝜓𝑒3 = 𝐴2𝐽𝑛(𝑘𝜌𝜌)𝑒

𝑗𝑛𝜙𝑒−𝛼𝑧(𝑧−𝑏) 

𝜓ℎ3 = 𝐵2𝐽𝑛(𝑘𝜌𝜌)𝑒
𝑗𝑛𝜙𝑒−𝛼𝑧(𝑧−𝑏)

 (D-3) 

All the electromagnetic field components are extracted by means of (B-1)-(B-2). Then, the 

constants are determined by satisfying the boundary condition of each surface. After a 

number of mathematical calculations and simplifications, the following relations are 

achieved for the electric fields in each sub-region: 

Region #1: 

𝐸𝑧1 = 𝐴1𝑘𝜌
2𝐽𝑛(𝑘𝜌𝜌)𝑒

𝑗𝑛𝜙𝑐𝑜𝑠 (𝑘𝑧𝑧)   (D-4) 

𝐸𝜌1 = 𝐴1𝑘𝑧𝑘𝜌 [
1 + 𝑆𝑛
2

𝐽𝑛+1(𝑘𝜌𝜌) −
1 − 𝑆𝑛
2

𝐽𝑛−1(𝑘𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑠𝑖𝑛 (𝑘𝑧𝑧)   (D-5) 

DR (er1)

#1 #2

air

#2

#3
#4#4 2a

b
X

Z
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𝐸𝜙1 = −𝑗𝐴1𝑘𝑧𝑘𝜌 [
1 + 𝑆𝑛
2

𝐽𝑛+1(𝑘𝜌𝜌) +
1 − 𝑆𝑛
2

𝐽𝑛−1(𝑘𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑠𝑖𝑛 (𝑘𝑧𝑧)   (D-6) 

Region #2: 

𝐸𝑧2 = 𝐴1𝑘𝜌
2  (
𝐽𝑛(𝑘𝜌𝑎)

𝐾𝑛(𝛼𝜌𝑎)
)𝐾𝑛(𝛼𝜌𝜌)𝑒

𝑗𝑛𝜙𝑐𝑜𝑠 (𝑘𝑧𝑧)   (D-7) 

𝐸𝜌2 = −
𝐴1𝑘𝑧𝑘𝜌

2

𝛼𝜌
(
𝐽𝑛(𝑘𝜌𝑎)

𝐾𝑛(𝛼𝜌𝑎)
) [
1 + 𝑆𝑛
2

𝐾𝑛+1(𝛼𝜌𝜌) +
1 − 𝑆𝑛
2

𝐾𝑛−1(𝛼𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑠𝑖𝑛 (𝑘𝑧𝑧)   (D-8) 

𝐸𝜙2 = 𝑗
𝐴1𝑘𝑧𝑘𝜌

2

𝛼𝜌
(
𝐽𝑛(𝑘𝜌𝑎)

𝐾𝑛(𝛼𝜌𝑎)
) [
1 + 𝑆𝑛
2

𝐾𝑛+1(𝛼𝜌𝜌) −
1 − 𝑆𝑛
2

𝐾𝑛−1(𝛼𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑠𝑖𝑛 (𝑘𝑧𝑧)   (D-9) 

Region #3: 

𝐸𝑧3 = 𝐴2𝑘𝜌
2𝐽𝑛(𝑘𝜌𝜌)𝑒

𝑗𝑛𝜙𝑒−𝛼𝑧(𝑧−𝑏)    (D-10) 

𝐸𝜌3 = 𝐴2𝛼𝑧𝑘𝜌 [
1 + 𝑆𝑛
2

𝐽𝑛+1(𝑘𝜌𝜌) −
1 − 𝑆𝑛
2

𝐽𝑛−1(𝑘𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑒−𝛼𝑧(𝑧−𝑏)    (D-11) 

𝐸𝜙3 = −𝑗𝐴2𝛼𝑧𝑘𝜌 [
1 + 𝑆𝑛
2

𝐽𝑛+1(𝑘𝜌𝜌) +
1 − 𝑆𝑛
2

𝐽𝑛−1(𝑘𝜌𝜌)] 𝑒
𝑗𝑛𝜙𝑒−𝛼𝑧(𝑧−𝑏)    (D-12) 
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Appendix E  

Applying the Variational Method to an Image Disc Resonator Using 

the Marcatili’s Solution 

By applying the variational method to the image dielectric disc resonator in Fig. D-1, the 

following stationary expression is obtained: 

𝜔𝑟
2 =

  𝜔2.∰ 𝜀𝐸.
𝑣

𝐸∗. 𝑑𝑣 − ∯ (𝑛 × 𝐸). (
𝛻 × 𝐸∗

𝜇
) . 𝑑𝑠

𝑠

∰ 𝜀𝐸.
𝑣

𝐸∗ . 𝑑𝑣 
= 𝜔2(1 −

∑𝑁𝑠
𝜔2

∑𝐷𝑣
) (E-1) 

To calculate the surface integral of (E-1) the curl operator is applied to the conjugated 

electric fields in sub-regions 2 and 3: 

𝛻 × 𝐸3 = 𝜌̂ (−𝑗
𝐴1𝑘𝜌

2

2
(
𝐽𝑛(𝑘𝜌𝑎)

𝐾𝑛(𝛼𝜌𝑎)
) [𝐾𝑛−1(𝛼𝜌𝜌)(𝛼𝜌 −

(1 − 𝑆𝑛)𝑘𝑧
2

𝛼𝜌 
)

− 𝐾𝑛+1(𝛼𝜌𝜌)(𝛼𝜌 −
(1 + 𝑆𝑛)𝑘𝑧

2

𝛼𝜌
)] 𝑒𝑗𝑛𝜙 𝑐𝑜𝑠(𝑘𝑧𝑧)  )

+ 𝜙̂ (−
𝐴1𝑘𝜌

2

2
(
𝐽𝑛(𝑘𝜌𝑎)

𝐾𝑛(𝛼𝜌𝑎)
) [𝐾𝑛−1(𝛼𝜌𝜌)(

(1 − 𝑆𝑛)𝑘𝑧
2

𝛼𝜌
−𝛼𝜌)

+ 𝐾𝑛+1(𝛼𝜌𝜌)(
(1 + 𝑆𝑛)𝑘𝑧

2

𝛼𝜌
− 𝛼𝜌)] 𝑒

𝑗𝑛𝜙 𝑐𝑜𝑠(𝑘𝑧𝑧)  ) 

(E-2) 

𝛻 × 𝐸2 = 𝑧̂ (−𝑗
𝐴2𝛼𝑧𝑘𝜌

2
𝑇𝑒𝑗𝑛𝜙𝑒−𝛼𝑧(𝑧−𝑏)  )

+ 𝜙̂ (
𝐴2𝑘𝜌

2

2
[𝐽𝑛−1(𝑘𝜌𝜌)(

(1 − 𝑆𝑛)𝛼𝑧
2

𝑘𝜌
− 𝑘𝜌)

− 𝐽𝑛+1(𝑘𝜌𝜌)(
(1 − 𝑆𝑛)𝛼𝑧

2

𝑘𝜌
− 𝑘𝜌)] 𝑒

𝑗𝑛𝜙𝑒−𝛼𝑧(𝑧−𝑏)  ) 

(E-3) 
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where, 

𝑇 =
𝐽𝑛−2(𝑘𝜌𝜌)(1 − 𝑆𝑛)𝑘𝜌

2
+
𝐽𝑛−1(𝑘𝜌𝜌)(1 − 𝑆𝑛)(1 − 𝑆𝑛)

𝜌
+ 𝐽𝑛(𝑘𝜌𝜌)𝑆𝑛𝑘𝜌

+
𝐽𝑛+1(𝑘𝜌𝜌)(1 + 𝑆𝑛)(1 + 𝑆𝑛)

𝜌
−
𝐽𝑛+2(𝑘𝜌𝜌)(1 + 𝑆𝑛)𝑘𝜌

2
 

(E-4) 

After mathematical calculations, the following expressions are obtained for the surface 

integrals of (E-1): 

∑𝑁𝑠 = 𝑁𝐻 +𝑁𝑉 (E-5) 

𝑁𝐻 = ∫ ∫(𝑛 × 𝐸3). (
𝛻 × 𝐸3

∗

𝜇
) . 𝜌𝑑𝜌𝑑𝜙|𝑧=𝑏

∞

𝑎

2𝜋

0

=
𝜋𝑘𝜌

4𝐴1
2

𝜇
(
𝐽𝑛(𝑘𝜌𝑎)

𝐾𝑛(𝛼𝜌𝑎)
)

2
𝑘𝑧
𝛼𝜌
[(
(1 − 𝑆𝑛)𝑘𝑧

2

𝛼𝜌 
− 𝛼𝜌) (1 − 𝑆𝑛)𝑃𝑘,𝑛−1

+ (
(1 + 𝑆𝑛)𝑘𝑧

2

𝛼𝜌 
− 𝛼𝜌) (1 + 𝑆𝑛)𝑃𝑘,𝑛+1] 𝑠𝑖𝑛(𝑘𝑧𝑧) 𝑐𝑜𝑠(𝑘𝑧𝑧)   

(E-6) 

𝑁𝑉 = ∫ ∫(𝑛 × 𝐸2). (
𝛻 × 𝐸2

∗

𝜇
) . 𝜌𝑑𝑧𝑑𝜙|𝜌=𝑎

∞

𝑏

2𝜋

0

=
−𝜋𝑎𝑘𝜌

4𝐴2
2

2𝛼𝑧𝜇
𝐽𝑛(𝑘𝜌𝜌) [𝐽𝑛−1(𝑘𝜌𝜌)(

(1 − 𝑆𝑛)𝛼𝑧
2

𝑘𝜌
− 𝑘𝜌)

− 𝐽𝑛+1(𝑘𝜌𝜌)(
(1 − 𝑆𝑛)𝛼𝑧

2

𝑘𝜌
− 𝑘𝜌)] 𝑒

−2𝛼𝑧(𝑧−𝑏)

+
𝜋𝑎𝑘𝜌

2𝐴2
2𝛼𝑧

4𝜇
 𝑇 ((1 − 𝑆𝑛)𝐽𝑛−1(𝑘𝜌𝜌) + (1 + 𝑆𝑛)𝐽𝑛+1(𝑘𝜌𝜌)) 𝑒

−2𝛼𝑧(𝑧−𝑏) 

(E-7) 

where, 

𝑃𝑘,𝑛 =
𝑎2

2
(𝐾𝑛−1(𝛼𝜌𝑎)𝐾𝑛+1(𝛼𝜌𝑎) − 𝐾𝑛

2(𝛼𝜌𝑎)) (E-8) 

The volume integral of  (E-1) is calculated as: 

∑𝐷𝑣 = 𝐷1 + 𝐷2 + 𝐷3 (E-9) 
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𝐷1 = ∫ ∫∫𝜀0𝜀𝑟1|𝐸1|
2

𝑎

0

ℎ

0

2𝜋

0

 𝜌𝑑𝜌𝑑𝑧𝑑𝜙 = 2𝜋𝜀0𝜀𝑟1𝐴1
2𝑘𝜌
4 [𝑃𝑐𝑃𝐽,𝑛 + (

𝑘𝑧
𝑘𝜌
)

2

𝑃𝑠𝑃̂𝐽,𝑛] (E-10) 

𝐷2 = ∫ ∫∫ 𝜀0𝜀𝑟1|𝐸2|
2

∞

𝑎

ℎ

0

2𝜋

0

 𝜌𝑑𝜌𝑑𝑧𝑑𝜙

= 2𝜋𝜀0𝜀𝑟1𝐴1
2 (
𝐽𝑛(𝑘𝜌𝑎)

𝐾𝑛(𝛼𝜌𝑎)
)

2

𝑘𝜌
4 [𝑃𝑐𝑃𝐾,𝑛 + (

𝑘𝑧
𝛼𝜌
)

2

𝑃𝑠𝑃̂𝐾,𝑛] 

 

(E-11) 

𝐷3 = ∫ ∫ ∫𝜀0𝜀𝑟1|𝐸3|
2

𝑎

0

∞

ℎ

2𝜋

0

 𝜌𝑑𝜌𝑑𝑧𝑑𝜙 =
𝜋𝜀0𝜀𝑟1𝐴2

2

𝛼𝑧
(
𝐽𝑛(𝑘𝜌𝑎)

𝐾𝑛(𝛼𝜌𝑎)
)

2

𝑘𝜌
4 [𝑃𝐽,𝑛 + (

𝛼𝑧
𝑘𝜌
)

2

𝑃𝑠𝑃̂𝐽,𝑛] (E-12) 

where, 

𝑃𝐽,𝑛 = −
𝑎2

2
(𝐽𝑛−1(𝑘𝜌𝑎)𝐽𝑛+1(𝑘𝜌𝑎) − 𝐽𝑛

2(𝑘𝜌𝑎)) (E-13) 

𝑃̂𝐾,𝑛 =
(𝑃𝑘,𝑛−1(1 − 𝑆𝑛)

2 + 𝑃𝑘,𝑛+1(1 + 𝑆𝑛)
2 )

2
 (E-14) 

𝑃̂𝐽,𝑛 =
(𝑃𝐽,𝑛−1(1 − 𝑆𝑛)

2 + 𝑃𝐽,𝑛+1(1 + 𝑆𝑛)
2 )

2
 (E-15) 

  



 

 149 

 

 

Appendix F  

Deep Reactive Ion Etching (DRIE) Technique for SOG Fabrication 

The SOG structures, introduced in this thesis, are fabricated using the DRIE/lithography 

recipe, developed in CIARS. The fabrication process steps are depicted in Fig. F-1. The 

corresponding fabrication phases can be described as follows: 

1. After RCA-1 cleaning process, thin layers of gold (Au) and chromium (Cr) are 

sputtered on Pyrex to form a hard mask for HF wet etching. Then the Au layer is 

patterned using the mask-1, by lithography process (refer to Fig. F-1(a)). 

2. The Pyrex wafer is etched, using the HF etchant, to form the grating cavity inside 

the Pyrex. Then the remaining Au is removed (refer to Fig. F-1(b)). 

3. The HRS wafer is bonded, using anodic bonding, to the structured Pyrex (refer to 

Fig. F-1(c)). 

4. The top surface of HRS is coated by a thick, ~ 10 m, Photo-Resist (PR) (AZ 

P4620), and then the PR layer is patterned using the mask-2, by lithography process 

(refer to Fig. F-1(d)). 

5. The HRs wafer is etched using the DRIE Bosch process. As a result the waveguide 

structure is shaped, while it is placed on etched Pyrex (refer to Fig. F-1(e)).  

6. Finally, the PR is removed using acetone and O2 plasma. And then, the unwanted 

parts of the structure are taken out by the Dicing process (refer to Fig. F-1(f)). 
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Fig. F-1: The SOG fabrication process: a) Coating the Pyrex with Cr/Au layers, and 

photolithography with mask-1 ,b) wet etching the Pyrex ,c) anodic bonding the HRS wafer to 

the etched Pyrex, d) Coating the HRS with PR, and photolithography with mask-2, e) DRIE 

process to form waveguide structure, and f) Dicing the Pyrex. 
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Appendix G  

The Developed Recipe for Laser Machining the SIG Structures 

A LPKF pulse UV laser machine [166], working at 355 nm wavelength, is used for 

fabricating the SIG structures. In order to reach a clean and smooth edge, all the parameters 

of the laser process should be optimized and tuned precisely. Cutting a 500 m thick HRS 

wafer is achieved by following a “multi-task” laser process, in which a 15 m laser beam 

cuts the HRS wafer in sequencing tasks with ascending focal point. Table G-1 lists the main 

laser parameters, which are used for cutting and shaping a 500 m thick HRS wafer. 

Table G-1: The developed laser machining fabrication recipe for cutting and shaping a 500 m 

thick HRS wafer. 

Laser Parameters Task #1 Task #2 Task #3 Task #4 

Output power (W) 5.4 5.4 5.4 4 

Frequency (KHz)     

Laser beam speed (mm/s) 40 60 60 200 

Number of repeat ion 10 15 8 5 

Laser beam focal point in 

respect to the top surface of 

the wafer(m) 

0 250 500 0 

 

In addition to the cutting process, the laser machine is optimized for making pockets inside 

the silicon with minimal roughness and inaccuracy. To accomplish this, a predefined silicon 

area is machined in an optimized speed in a latticed pattern. The optimized laser parameters 

for making a 200 m pocket inside a 500 m silicon wafer are listed in Table G-2. 

For validating the developed recipe, three pockets with the depth of 200 m, 100 m, and 

50 m and with identical widths of 200 m were fabricated and evaluated by a Dektak 8 

stylus profilometer. The obtained plot is shown in Fig. G-1. The results imply that the height 

of the desired 200 m groove varies within the range of 200±5 m. 
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Table G-2: The developed laser machining recipe for making a 200 m pocket inside the silicon. 

Laser Parameters Task #1 Task #2 

Output power (W) 4 4 

Frequency (KHz)   

Laser beam speed (mm/s) 400 800 

Number of repeat ion 18 9 

Laser beam focal point in 

respect to the top surface of 

the wafer(m) 

0 200 

 

 

 

Fig. G-1: The surface profile of the laser machined groves by means of the Dektak 8 stylus 

profilometer.  

Desired to be: 200 m

Desired to be: 100 m

Desired to be: 50 m
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