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Abstract

This thesis presents a set of magnetotransport experiments which explore the
advantages of InAsP /InP quantum well material and quantum dot structures
for spin/photon devices, with a view towards quantum communication. The
primary motivation is the development of a solid state quantum repeater,
which will enable a secure worldwide quantum internet.

Sections 1-6 review theoretical background relevant to an understanding
of the experiments and the hybrid spin-photon devices which may enable the
realization of scalable quantum communication over global distances. They
provide simple introductory reviews of quantum dot and spin qubit physics,
as well as specialized techniques such as Bell measurement and g-factor en-
gineering, highlighting what is relevant to motivating and understanding the
experiments described in later sections. The necessary properties of a hybrid
spin/photon device are discussed.

Section 7 predicts the effectiveness of several techniques for the engineer-
ing of g-factors for the spin-qubit part of these devices. Section 8 presents
the novel device structure which was developed and evaluated as a platform
for supporting scalable and optically active spin qubit arrays. The required
properties of a hybrid device can be met, in theory.

Sections 9-13 present the experiments which were performed to evaluate
the InAsP material system for quantum dot applications, the nanowire ridge
devices described in section 8, and the side-effects of magnetic fields typically
applied to a 2DEG as part of any spin qubit experiment. Magnetic fields are
found to noticeably influence scattering effects in a high mobility 2DEG, even
at modest fields. The formation of quantum dots in both InGaAs and InAsP
nanowires is observed.
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Chapter 1

Introduction

Quantum information science is a modern field of research, combining ele-
ments of computer science and quantum physics to solve problems relevant in
today’s world. While the notions of simulating molecular interactions, search-
ing huge databases, or breaking popular classical encryption schemes are at-
tractive applications, there is comparatively impactful low-hanging fruit to
be picked.

Quantum Key Distribution (QKD) is a technology that has been demon-
strated over short distances, but has yet to achieve mainstream adoption due
to restricted effective distances. The technology provides provable physical
security, rather than relying on the unproven but practically reliable hardness
of certain numerical calculations, such as discrete logarithms or the factor-
ization of large numbers. Since these calculations can be performed econom-
ically with a quantum computer, QKD and symmetric key algorithms (such
as the provably secure one-time pad algorithm) are especially attractive to
those who seek long-term security for their data.

In order to extend the range of QKD networks and quantum communi-
cation in general, low-loss long-distance quantum communication channels
must be created. Such channels can be created by making use of a device
called a quantum repeater, which concatenates multiple somewhat reliable
short range links to create a single arbitrarily reliable long-range link. The
basics of the quantum repeater will be reviewed here in the first section, and
it will be broken up into component challenges which are physically interest-
ing.

Matter-based qubits, and in particular spin qubits in quantum dots, offer
significant advantages over the all-optical quantum communication schemes.



With the help of a simple performance model, we shall see that a hybrid spin
and photon-based system, with heralded memory and memory-integrated
Bell measurement, offers a dramatic improvement to the scaling of the trans-
mission rate as a function of distance. The pursuit of either spin-based
memory and Bell measurement hardware or else a system with equivalent
properties will be shown to be very important for the establishment of a
useful global-scale quantum internet.

A scheme has been proven in principle to convert quantum information
from photonic qubits into spin qubits[34], and another has been proposed to
perform full Bell measurement[61] on them once converted, both of which
are essential aspects of the hybrid spin and photon quantum repeater. In
order to realize each of these schemes, spin qubits must be engineered with
particular g-factor values. Specifically, finely tuned electron g-factors near
zero must be attainable. Why and how these conditions can be engineered
will be discussed, and theoretical predictions for a potential solution will be
presented.

Arbitrarily scalable quantum dot arrays can in principle be constructed
from nanowires with a relatively small number of gate electrodes, with com-
parison to lateral quantum dots. Evaluation of the fabrication of templated
nanowires fabricated at NRC via Chemical Beam Epitaxy (CBE) have in-
formed refinements to increase device yield. These devices may one day find
use as arrays of receivers for photonic qubits in a quantum repeater, or as
registers in a quantum processor.

In addition to these refinements, quantum dots were formed in such a
nano-templated nanowire (made of InGaAs) and in a laterally gated 2DEG
sample (InAsP quantum well). In both cases, it appeared that unexpected
random potential fluctuations in space support tightly confined quantum
dots, responsible for transport features that are visible well above 1 Kelvin.

Lastly, Microwave Induced Resistivity Oscillations were employed as a
probe of scattering effects in a high-mobility GaAs 2DEG, revealing that a
dominant increase in the single particle scattering time, 7,, can result from
the application of in-plane magnetic fields well within the range typically
employed for the operation of spin qubits.



Chapter 2

Quantum Key Distribution
(QKD) with Heralded Memory

and Integrated Bell
Measurement

2.1 Bell Entanglement: Quantum Correlations

The Bell states are a set of four mutually-orthogonal states which are defined
for two-qubits. In terms of a qubit basis of orthonormal states |[0> and |1>,
the states are written as below:

@ > = (/00> + [11>) [@7> = (/00> — [11>)
[UF> = S5(]01> + [10>) 07> = Z5(]01> — [10>)

The Bell states have a number of interesting properties. They differ from
one another by single Pauli operators applied to either qubit. This makes the
preparation of a particular Bell state a simple matter given any other Bell
state and the ability to perform local manipulations on qubits. For example:



State | Xy vs Xo | Z1 vs Zy | X1 vs Zy
|U*t> | Opposite Same | Unrelated
|W~> | Opposite | Opposite | Unrelated
|t > Same Same | Unrelated
U= > Same Opposite | Unrelated

Table 2.1: Correlations between measurements on different qubits of various
Bell states.

(01> —10>) = (I®1)(|01> —[10>)
(01> —[10>) = (I ® X) (/00> — [11>)
(01> —[10>) = —(I ® Z) (/01> +[10>)
(01> — [10>) = (I ® ZX)75(|00> +[11>) = i(I ® Y) 55(]00> + [11>)

The rest of the relationships can be easily derived by the product rules
for pauli operators (1 X =Y Z 1Y = ZX,iZ = XY).

The outcome of any projective single-qubit measurement U on either
qubit of the |~ > state must leave the other qubit in the opposite state. In
particular, this will be true of single-qubit Pauli measurements in the X and
Z directions. The proof of this can be found in appendix B.

Combining the above relationship with this basic property of the |¥~>
state, correlations can be found in the outcomes of all pairs of Pauli mea-
surements performed on each qubit. Important cases are shown in table 2.1.
For example, measurement of both qubits in the X or Z basis will always
yield the two opposite outcomes (though which qubit yields which state is
uncertain). On the other hand, measuring one qubit in X and the other in
Z will yield two completely random results.

On the other hand, orthogonal Pauli measurements performed on different
qubits will always give fully uncorrelated outcomes.

These properties are framed in terms of measurements, but of course
ideal measurements produce pure states as outputs. Each individual qubit
of the system is maximally uncertain (mixed) on its own, but its state is fully
correlated with the other state after a fully projective measurement of either
qubit. Precisely, the reduced density operator of each qubit is the maximally

4



mixed state %I before measurement, but a single qubit measurement on just
half of the state always produces a (random) separable pure state of two
qubits.

A Bell state can therefore be intuitively understood as a state of maxi-
mum information about the difference between two qubits after a single-qubit
measurement, contrasted with a separable state which encodes maximum in-
formation about the outcomes of two particular single-qubit measurements
(one on each qubit).

2.2 Quantum Key Distribution: Using Cor-
relations to Produce Cryptographic Keys

A classically correlated system such as a pair of coins can be used to trans-
mit information securely between two parties, for example Alice and Bob.
Suppose Alice flips two coins and compares them. They are either the same
(heads/heads, tails/tails) or different (heads/tails, tails/heads). If Alice can
securely transfer one of these coins to Bob, then Alice can publicly tell Bob
whether his coin is the same or different compared with hers. Since Bob
knows the face of his coin, he can deduce the face of Alice’s coin. Informa-
tion is transmitted. Lacking Bob’s coin, however, any eavesdropper would
be lost. There is no way to deduce the value of either coin knowing only that
they are the same or different.

Of course, in this classical algorithm, the information transfered is only
as secure as the coins. The coins play the role of a “cryptographic key”, and
must be kept secure.

In principle, the quantum correlations which we call entanglement are
stronger than any classical correlations. John Bell quantified these clas-
sically forbidden correlations in a landmark paper[2]. The possibility of
stronger-than-classical correlations unlocks a number of interesting features
of quantum communication. The process known as Quantum Key Distribu-
tion (QKD) establishes mutual secret keys like the classical coins. Funda-
mentally, QKD is simply the conversion of quantum correlations into classical
ones and finally into secret keys. Quantum correlations are preferable to the
classical variety, because quantum states are protected from being copied by
the no-cloning theorem|59].

In this frame of thought, the Ekert protocol for QKD is simpler to



understand|[18]. Ekert’s original protocol involved three basis states and used
Bell’s theorem to confirm the security of the channel. A simplified two-basis
algorithm is shown below:

1.

Alice prepares an entangled state of two qubits which is in one of the
Bell states.

. Alice sends one of these qubits over a quantum channel to Bob. Bob

knows which Bell state he is receiving (Alice tells him publicly).

. Alice chooses randomly between the X and Z basis, and performs a

measurement of her qubit in that basis.

Bob similarly chooses a random basis and performs a measurement.

. Alice and Bob discuss their chosen bases over a (public) classical chan-

nel. The bases are randomly chosen before measurement, and neces-
sarily reveal nothing about the outcomes of the measurements.

If Alice and Bob randomly chose the same basis (50% of the time),
their measurement results were correlated.

. Alice uses her measurement as a bit of key. Bob predicts Alice’s mea-

surement based on his own, and uses that as a bit of key. If no errors
occur, they produce identical bits of key by this process.

. Alice and Bob repeat until they have a sufficiently long key for their

purposes, which may be to encrypt a message for transmission.

The key can then be used for classical encryption, including the prov-
ably secure one time pad algorithm.

As the classical channel is only used to discuss random basis choices, it
contains no information. The quantum channel always transmits the same
Bell state, and so holds no information. If the quantum channel is intercepted
by an eavesdropper (Eve), she cannot make use of the entanglement without
(detectably) degrading the quality of the state Bob receives. Specifically,
attempts to copy or weakly measure the state of the channel will detectably
corrupt the generated key. Alice and Bob can use a technique called classical
privacy amplification to remove corruptions due to errors and eavesdropping
and simultaneously dilute any partial information Eve may have obtained



Alice’s Basis | Alice’s Measurement | Bob’s Basis | Bob’s Measurement | Key
Z 1 X 1
Z 1 Z 0
X 0 X 1
X 0 Z 1
Z 0 Z 1
X 1 Z 1
X 1 X 0

Table 2.2: Alice and Bob share many copies of |W~>. Ouver many rounds of
the Ekert protocol, they establish a shared random key.

about the key[4]. For the interested, appendix C gives details and an example
of a privacy amplification algorithm. Part of the privacy amplification process
involves detecting whether two keys are the same without directly comparing
them, and so Alice and Bob can build confidence that their keys are not
corrupt if privacy amplification succeeds[4]. Two non-identical keys cannot
correctly encrypt and decrypt messages. Therefore, in the case that the keys
are corrupted, Alice and Bob will be able to detect the corruption by their
failure to communicate.

2.3 QKD Over Imperfect Quantum Channels

Communication takes place through channels. In the previous section, we
assumed Alice and Bob had access to a perfect quantum channel and that
they could reliably distribute pure entangled states. In reality there is always
a certain amount of error and imperfection, even in classical communication.

Generally, the state transmitted through an imperfect channel will be a
mixed state of lesser purity than the input state. The effect of attempting
the QKD protocol with imperfect states is that errors will be introduced into
the secret key. If Alice and Bob have different encryption keys, a message
encoded by Alice will be indecipherable to Bob. Alice and Bob can, however,
use privacy amplification techniques to create shorter identical keys from
longer keys with errors[10].

The effects of errors in the quantum channel are therefore to reduce the
rate at which keys are generated. Unfortunately, there is a limit up to which
this technique will work. Above this threshold, the certainty that an eves-



dropper has insufficient information to reconstruct the key is lost. The QKD
schemes with the highest theoretical thresholds are in the 20% bit error range,
with the highest error tolerance threshold known at the time of writing being
27.6%[10].

Errors in communication channels come in two forms. The first are in the
form of corruptions, where bits and qubits are modified from their intended
values. In transit, 0 becomes 1 or |0> + |1> becomes |0> — |1> for example.
The detection and correction of these types of errors is the domain of quantum
error correction research. As discussed earlier, corruption errors can be safely
dealt with up to to large threshold in the context of quantum key distribution.

The second type of error is an insertion error. This affects sequences of
bits and qubits. In principle a detector can trigger when no signal is present,
resulting in a phantom bit of information arriving when none was sent. These
errors are relatively simple to defend against using timing information. If no
qubit was expected, the qubit can be discarded. If the qubit replaces the
intended qubit, it can be interpreted as a corruption and dealt with as such.

Deletion errors are also easy to detect. Bits and qubits which were sent
simply do not arrive, and are not processed.

Unfortunately, the ability to detect and correct errors is only so useful. In
particular, when sending quantum information over long distances encoded in
photon states, photon loss can result in deletion errors. These errors are easy
to detect, but if they dominate, the rate at which qubits are transmitted will
shrink rapidly. Furthermore, since quantum information cannot be copied,
qubits are precious. A qubit can be said to “cost” exactly as much as the
computation it took to create it. Losing qubits that are part of a distributed
quantum computation, for example, is not desirable.

The problem of losing precious qubits can be mitigated if necessary by
quantum teleportation. The algorithm makes use of classical communication
and pre-established shared entanglement between two nodes to transfer a
quantum state without risking qubit loss. While the payload qubit is consid-
ered “precious”, the entangled qubits are assumed to be simple to prepare
(i.e. not the result of lengthy calculations). Their loss is therefore tolerable.
By sacrificing many entangled qubits, the payload qubit can be transmit-
ted with confidence. This allows two parties to effectively establish a lossless
quantum channel from a lossy one with the help of a classical communication
channel[3].

The problem of creating a lossless long-range quantum channel therefore
reduces to the problem of quickly transmitting many qubits over long dis-
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tances and with high fidelity, which is the purpose of the quantum repeater.

2.4 The Quantum Repeater

In quantum communication experiments, entanglement has been established
over a distance of 143 km at rates of about 100 qubits per hour[41]. In order
to establish a global secure quantum internet with reasonable throughput,
quantum keys must be distributable over a distance of 20000 kilometers: the
half-circumference of the Earth. However, there exists a conceptual device|8,
66], proved in experiment[62], which combines many short links into one long
link.

The goal of a quantum repeater is to establish long-distance entanglement
using short-distance entanglement that is more easily established.

The probability that a particular photon will be transmitted through an
optical fiber is exponential in the length of the fiber:

P(transmission) = exp(—L/Ly) (2.1)

where Lo is the absorption length of the fiber, typically 10 km or so for
telecom optical fibers at 1550 nm wavelength. For links of order L length,
the probability that transmission will succeed is high.

a b 5L c d
(B 7 }—HE] (a) (00> + [11>)(00> + [11>)
a b mealL C d
[E|——>{BSM] E] (b) [0000> + [0011> + [1100> + [1111>

(¢) Outcome |ry> £ |7y> for the b and
¢ qubits yields |xy> + |Zy> for the a
and d qubits. a and d are now entangled.

I
:
F

Figure 2.1: The entanglement swapping algorithm. The bolding and colour
of the qubits matches between the diagram and the captions, like so: |abed>.
Two pairs of entangled qubits are generated and separated at the emitter (E).
Two qubits, one from each pair, are compared in a Bell analyzer (BSM, center
node), revealing the entanglement between the two remaining qubits. T is the
complement of v (0=1 and 1 =0).



The operation of the quantum repeater is shown in figure 2.1. Four pho-
tonic qubits are prepared in the form of two entangled pairs, with each pair
initially some distance apart. Bell state Emitters (E) generate the entangled
photon pairs. One photon from each pair is physically transported to the
Bell State Measurement (BSM) node, where a projective Bell measurement
of the two qubits reveals their respective entanglement. After the measure-
ment of the two qubits localized at the BSM node, the peripheral qubits (a
and d in figure 2.1) are entangled. There are many ways of understanding
this outcome, such as by interpreting an entangled state as a state of maxi-
mum information about the differences between qubits (seesection 2.1) and
the Bell measurement as a projective measurement of the non-local state into
one of four possible differences.

Role of Quantum Memory

As we have seen in figure 2.1, short entanglement links can be concatenated
into a single long link. Unfortunately, the probability that N short links of
length L can be established simultaneously is equal to the probability that
one long link of length NL can be established. This is due to the fact that
the probabilities of individual successes are exponential in L. (equation 2.1),
as well as the fact that the total probability is the product of N individual
probabilities (exponential, therefore, in NL). Therefore, naively attempting
to concatenate N links together will not increase the probability of transmit-
ting a single qubit.

Fortunately, any given short link is increasingly likely to transmit success-
fully over many attempts. If qubits can be stored for some time in a quantum
memory, several rounds of transmission attempts can be made until every
link has been established. This translates into better than exponential decay
in transmission rate with distance and therefore a more scaleable quantum
network.

10



Time | E}s [BSM |—]E}—{BSM | «— E |
Alice | E—$BSM¢—4E$—4BSM +—| E |—— Bob
LE] ofEMb—fES—pEMbfEP o

Figure 2.2: Establishing entanglement. (E)mitter nodes generate entan-
gled pairs and send one photon to each neighboring Bell State Measurement
(BSM) node. When a photon fails to arrive or fails to enter the quantum
memory (red, circle) its partner photon (orange, dashed) is discarded. Suc-
cessfully transmitted qubits (green, arrow) are saved for the next round in
quantum memory at the BSM nodes (blue, diamond). Eventually, all emit-
ter modes have spread entanglement to their neighbours and entanglement
swapping can begin.

2.5 Optical Repeaters

Optical quantum repeater experiments have been successfully demonstrated,
proving the concept of the quantum repeater[63]. Unfortunately, entangling
photonic qubits is difficult. In the linear optical regime, full Bell basis mea-
surement is provably impossible[33, 40]. This is true not only because pho-
tons are difficult to entangle, but also because projective detections of pho-
tons are generally destructive with current technology.

A scheme making use of interference of two photons in beam splitters
allows partial Bell measurement that can distinguish up to two of the four
Bell states, destroying both photons in the process and leaving the measure-
ment ambiguous between the remaining two Bell states. When measuring
arbitrary or fully mixed qubits with passive linear optical components, the
measurement must succeed at most 50% of the time[65].

An alternative scheme exists whereby arbitrarily high Bell measurement
success rates can be achieved, approaching unity as infinite resources be-
come available, in the form of beam splitters and single photon detectors|24].
Additional detectors and precisely timed sources of entangled photons are
needed. However, to achieve a success rate of 1 — 1/2¥, 2V — 1 pairs of en-
tangled photons must be made to interact in an increasingly complex system
of beam splitters and polarizing beam splitters with many detectors. The
complicated setup increases both the cost and the frequency of errors in the
measurement, as well as space requirements.
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A second obstacle for all-optical quantum repeaters is the challenge of
non-destructively detecting the arrival of qubits at the BSM nodes. A critical
aspect of the entanglement distribution step of the entanglement swapping
protocol (figure 2.1) is that photons must be detected to have arrived and
been loaded into the quantum memories before the swapping can begin. Some
quantum memories, such as atomic ensemble quantum memories, do not offer
this “heralding”. They silently attempt to store photons whether they arrive
or not, occasionally failing to absorb or re-emit the photons. While high-
efficiency memories might be feasible, lower efficiencies (j90%) are tolerable
if heralding is present (see section 2.7).

Consider the general quantum repeater scheme:

1. Emitters generate entangled photons in pairs.

2. Photons travel long distances from their points of origin to neighboring
Bell measurement nodes.

3. Quantum memories at the measurement nodes store the information
contained in the arriving photons and report their arrival.

4. If a photon failed to arrive on either side, the measurement node reports
failure and waits for another photon.

5. At this point, which corresponds to final conditions of figure 2.2, a full
complement of input photons has been received by each node (one from
each neighbor). Each BSM node now performs a Bell measurement and
makes the result known to the end-points of the channel (Alice and
Bob).

6. Alice and Bob’s qubits are entangled in a known fashion depending
on the results of local measurements at each of the Bell measurement
nodes.

All-optical quantum repeaters suffer in step 3, because it is challeng-
ing to build quantum memories that can efficiently store, emit, and herald
the arrival of photons without collapsing the qubit state. Atomic ensem-
ble memories, for example, are optimized for storage and retrieval efficiency.
Heralding, on the other hand, is all but impossible[52] in these systems.

In the next section we model a general optical quantum repeater and pre-
dict its performance, showing that the optical quantum repeater’s throughput
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Figure 2.3: Quantum repeater scheme (top) with pseudo-heralded distribution
of photons (bottom). The scheme makes use of two types of Bell State Mea-
surement node (BSM): one with and one without quantum memories (M).
FEach emitter distributes one photon along a short link (which is unlikely to
absorb the photon) to a quantum memory, and the other to the memory-less
BSM along a long link of length L. Upon a successful Bell measurement of two
photons at each memory-less BSM, the other photons are assumed to have
reached the quantum memories and been stored. This is equivalent to the top
scheme, which is a quantum repeater with heralded entanglement sources, ex-
cept that each emitter also contributes a length 2L to the total communication
length.

scales too poorly with distance to be useful for the formation of a quantum
internet, even with nearly optimal storage and retrieval efficiency in quantum
memories and the pseudo-heralding scheme of figure 2.3.

2.6 Optical Repeater Performance Model

The performance of an all-optical quantum repeater depends on the rate at
which entangled pairs can be generated, but also various measures of imper-
fection in the device (memory efficiency, Bell measurement node efficiency,
link efficiency, etc.). We have used a simple model, which assumes that all
of the Bell emitters generate entangled pairs at the same rate, to predict the
ultimate performance of a quantum repeater chain of a given total length,
with an optimal number of nodes. The transmission probability over each
link and the efficiency of both memory operations and Bell measurement is
taken into account.
Let’s identify the following quantities:
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R.: Rate of Bell pair generation

Ey: Efficiency of Bell basis measurement

E;:  Efficiency of memory (input)

E,:  Efficiency of memory (output)

Lo:  Quantum channel’s characteristic absorption length

R;:  Rate of transmission

N:  The number of direct entanglement distribution links (each of length L)
I: Number of round-trip communication cycles per memory coherence time

The transmission rate over the total distance N L is:
R, =R, -E*N-E* . Ey* - F(N,L/Ly,I) (2.2)

So long as the rate of Bell pair generation is less than the rates at which
they can be stored, retrieved, and processed, the rate of transmission is
proportional to the rate of pair generation (R.). If a photon is lost from
any of the 2N memories, the outcome is failure. The photon inputs to each
Bell measurement node are lost, and the process must begin again. For this
reason, the rate decays exponentially with the number of memories (2V)
with a base equal to the memory output efficiency (M,). Since the all-
optical setup lacks heralded memory, a similar term exists with base equal to
the memory input efficiency (M;). Memory efficiency is therefore a critical
limitation when heralded memories are unavailable or when memories must
emit photons, such as in the all-optical quantum repeater.

Additionally, the distribution of entanglement will fail if even a single
Bell module fails to identify the Bell state of its inputs. This is the origin
of the factor Fy2". The number 2N originates from the fact that twice as
many measurement nodes are needed to provide the pseudo-heralding from
figure 2.3.

Finally, there is a factor, F'(N, L/Lg, I'), which is a function of the number
of links, the length of each link, and the number of attempts the system
is permitted to make to establish each link. One method of numerically
evaluating this function is presented in appendix A. The transmission rate’s
dependence on the link length, L, is encapsulated entirely within the function
F, which is sub-exponential in L/Lg, compared to the exponential decay
behaviour of equation 2.1. This is why the quantum repeater can be an
improvement on a direct link between Alice and Bob, in terms of ultimate
transmission rate.
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The weakness of the all-optical quantum repeater is that if E)y;, E; and
E, are not all unity, the exponential decay in transmission rate as a function
of N prevents scaling of the technology to arbitrary distances. Based on a
numerical computation, the performance of a family of all-optical quantum
repeaters is presented in figure 2.4. Notably, the overall trend in transmission
rate as a function of total distance is still exponential falloff, though it may
perform better than a direct link. The distance at which it becomes more
profitable to use a quantum repeater chain depends on the particular values of
the various efficiencies (E;, E,, E,,) and the absorption length (Lg), but it is
clear from figure 2.4 that a high-performance global direct link is implausible
without shattering the wildest expectations of optical fiber technology.

This model assumes a single channel, and multi-channel optical quantum
repeaters do fare better. For a model which assumes up to 10000 transmission
modes, multi-mode memories, and the ability to combine any two modes in
a BSM node, compare with [53]. However, even in this scheme the need to
minimize the number of measurement nodes, NV, is present due to the limiting
failure rate of 50% for every Bell measurement. This leads to an inescapable
exponential falloff in transmission rate as a function of N, as well as L.
Eliminating this limiting failure rate, we will see, drastically improves the
possible transmission rates.
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Figure 2.4: Transmission efficiency for all-optical quantum repeater, for var-
ious assumed efficiencies of the optical memories (E;;,) and 50% efficient
Bell measurement (E,,). The model dynamically optimizes the number of
links (N) for each value of the total distance, which is the origin of the cusps
in the line shape. It is assumed that optical fibers with -0.2dB/km of attenu-
ation are being used to establish the links, and that 50 communication cycles
are permitted before the memory’s coherence becomes suspect. No heralding
1S assumed.

2.7 Augmented Repeater with Heralded Mem-
ories and Integrated Bell Measurement

The all-optical quantum repeater scheme presented previously dealt with
the lack of true heralding in ensemble quantum memories by compensating
with highly efficient input and output efficiencies and some clever design
which yields some heralding information for the photons which travel the
longest distances. However, using quantum dot spin qubits both as mem-
ories and as a Bell measurement platform, one can drastically improve the
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scheme. Coupled quantum dot spin qubits, which will be discussed in sec-
tions 3 and 4, can be read out in the Bell basis (section 5), and in principle
this can be done without ambiguity between multiple Bell states (as in the
optical case). Furthermore, performing Bell basis measurements with the
memories directly eliminates the need for the lossy process of converting the
memory state back into photons. Spin qubit based quantum memories can
even provide heralding by exposing the charge of the qubit (indicating the
presence of information) while protecting the information itself (encoded in
spin). One can probe the charge of the memory using, for example, standard
QPC charge detection techniques to detect the presence of spin information
without disturbing it or reading it out.

Alice < E M BSM M, Bob

Figure 2.5: A hybrid entanglement swapping scheme, where a particular
quantum dot nanostructure serves both as quantum memory and Bell mea-
surement. Memory-integrated measurement eliminates the need for memories
to release photons. The inset is a two-dimensional gate layout for a double
quantum dot and associated charge detectors, serving in this case as a stand-
in for a nano-structure with all of the required capabilities.

Figure 2.5 illustrates how the suggested scheme works. The heralded
memories dispense with the need for pseudo-heralded transmission as in the
all-optical repeater scheme. Instead, a pair of quantum dots are used as a
combination quantum memory and Bell measurement node.

The transmission rate model is similar, but not identical to the all optical
scheme:

Ri=R.-Ey~ -G(E;,N,L/Ly,I) (2.3)

Since the spin qubit memories need never re-emit photons, their emission
efficiency (F,) is meaningless in this scheme. Furthermore, since the spin
qubit memories themselves are heralded, the input efficiency F; is a parame-
ter to the function “G”, which is sub-exponential in all of its arguments (see
appendix A).
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The only source of exponential decay is from the total Bell measurement
efficiency: Ey/". Figure 2.6 shows a family of hybrid optical/electronic re-
peaters, and their performance as a function of distance. The improved scal-
ing translates into the , in principle, access longer distances more comparable
with the size of the Earth.

We have seen that the BSM success probability is the principle deter-
mining factor of throughput efficiency, especially outside of the all-optical
scheme presented here. Unity BSM success probability can be achieved with
spin qubits by performing either a single Bell measurement or a series of
partial Bell measurements, with the latter becoming possible because spin
qubits can be measured without totally destroying the qubits. This is in stark
contrast with single-photon detection techniques which destroy the photons.
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Figure 2.6: Solid state performance model with integrated Bell measurement
and heralded memory, for various values of the memory input (E;) efficiency.
With the exception of the orange line at the top, Bell measurement efficiency
(E,, was assumed to be 50% to match the assumed efficiencies of figure 2.6
for comparison. The nearly horizontal orange line, corresponding to the addi-
tional assumption of ideal Bell measurement (E,, = 1.0) is not possible in the
all-optical case. An arbitrary limit of N < 30 links was eventually reached,
which is the origin of the noticable decrease exhibited by the red line once
the choice of N is no longer theoretically optimal. The real-world limit to
the number of links will depend on the number of logical errors introduced by
operations at each node, and is uncertain at this time. -0.2dB/km fiber atten-
uation, a mazimum of 50 communication cycles, and true heralded memories
are assumed. N is dynamically optimized for each distance value. It is neces-
sary to allow sufficiently many communication cycles that the establishment
of every link occurs with high probability, and this depends on the memory

efficiency.
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2.8 Summary

Unlike the all-optical scheme, where Bell measurement must necessarily
be done with optical components, a spin-qubit approach permits Bell
measurement with a theoretically perfect limiting efficiency.

As evidenced by figures 2.4 and 2.6, this efficiency is the limiting factor
in the development of a quantum network on a global scale.

Calculations show that whereas the all-optical repeater schemes must
rely on very efficient memories, a repeater with heralded memories can
tolerate inefficient memories.

This tolerance can be further enhanced by using memories with longer
and longer coherence times, permitting any given repeater node to wait
longer for a successful photon transmission from a given neighbor.

The development of a high-efficiency Bell measurement scheme with in-
tegrated quantum memory will unlock longer-distance quantum communica-
tion, and will enable commercially viable long-distance QKD. The following
sections discuss the theory of quantum dots and spin qubits, and will moti-
vate the use of spin qubit devices to supply that functionality.
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Chapter 3

Introduction to Quantum Dots

A quantum dot is a confined charge with well-defined orbital quantization. A
wide variety of such devices exist in different materials and geometries[11, 29,
57] which can confine both electrons[21] and holes[39]. This section will focus
on some of the theory behind quantum dots, with a view towards measuring
the size of the quantum dots in question, as well as the effective g-factor of
trapped electrons which might be used as part of spin qubits.

d 7HEN N\
(a) Gated quantum dot in a (b) Pyramidal quantum dot with
GaAs 2 Dimensional FElectron four side gates.

Gas (2DEG).

%
"

Figure 3.1: Scanning electron microscope images of two real-world quantum
dot devices.

By introducing leads on either side of a quantum dot, and by engineering

tunnelling barriers to those leads from the dot, one can study the charge
transport characteristics of the dot (see figure 3.3).
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Figure 3.2: Sketch of a lateral gated quantum dot device similar to that of
figure 3.1a, showing the gate layer and the depleted regions of 2DEG under
the gates. The un-depleted regions are shown in grey, and make up the dot
and leads.

Quantum dots can be fabricated in many different material systems and in
many different ways. Self-assembled quantum dots form spontaneously dur-
ing growth and tend to be of high optical quality, but no two self-assembled
quantum dots are alike [58]. Gate-defined quantum dots are formed by the
action of variable gate voltages, which offers a degree of dynamic control over
the confining potential during experiments. Dots can be formed as a cluster
of atoms, a single impurity, a semiconductor nanowire, or as two-dimensional
etched or gate-defined regions of a quantum well or heterojunction. In the
latter case, the quantum dots are called “lateral” quantum dots. Common
materials include InAs, GaAs, and InP, as well as ternary alloys such as
InGaAs and InAsP.
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Figure 3.3: Conceptual energy/space diagram of a quantum dot. A confine-
ment potential defines energy levels that can be occupied by electrons. This
quantum dot is tunnel-coupled to two leads, one on either side. At sufficienly
low temperature, enerqgy levels which are below the Fermi levels of both leads
are filled with electrons from both leads, while those which are above both
Fermi levels are empty.

3.1 Quantum Dot Constant Interaction Model

Two major forces are especially relevant in quantum dot physics. First,
electric repulsion between charges creates an energy spacing between the dif-
ferent charge states of a quantum dot. In small quantum dots, the charging
energy (energy associated with adding or removing a single electron) can be
significant for single elementary charges. Second, the spatial confinement of
charges leads to orbital energy quantization not unlike the energy quantiza-
tion of atomic orbitals, though the confining potential is defined by geometric
and material parameters of the system. It is for this reason that quantum
dot structures are often called “artificial atoms”.

Models of the system must take into account these aspects. The sim-
plest model of a quantum dot is the so-called constant interaction model[37],
whereby the Hamiltonian of the system is given by

(—lel(N = No) + CsVs + CpVp + CaVi)?

H= e (3.1)

Here, N is the charge counting operator of the quantum dot, and N, is the
charge induced by dopants and other background charges. Cg and Vg are
the capacitance and voltage of the source contact respectively, and similarly
with the drain (D) and gate (G) contacts. Finally, C is the total capacitance
Cs + Cp + Cg + ... of the system.
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The constant interaction model is so named because the electrons are
described by single particle eigenstates and a single fixed charging energy for
each additional electron in the system. The quantum dot is described by a
single constant capacitance C which does not change with gate voltage or
charge state. The quantum dot is modelled as a metal disk, the energy of
which follows the typical equation for a capacitor: E = Q/C. The utility
of this model is that, among other things, the size of the quantum dot can
be estimated from the capacitance (measured using the techniques ofsection
3.4).

3.2 Coulomb Blockade and Charge Counting

Looking at equation 3.1, notice that it is parabolic in N — CgVs. Since N
is an integer and Vi is a continuous variable, however, an interesting effect
emerges. We can see that: H(N,Vy) = H(N + 1, V) periodically in Vg,
for different integer values of N. This condition, where the ground state is
degenerate and composed of two different charge states, permits electrons to
enter and exit the dot without absorbing or giving up extra energy. This is
the condition for the quantum dot to permit the flow of current (see figure
3.4).

This effect, specifically the suppression of current through the dot except
at specific periodic values of gate voltage, is called Coulomb blockade. It
allows the experimentalist to map out the values of gate voltage at which
a new charge state replaces the current ground state, and thus controllably
add or remove electrons. Because the gaps between the peaks are caused by
Coulomb interactions, and a more tightly confined charge is more strongly
interactive, a smaller quantum dot features a larger charging energy.
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(a) Under bias, one lead has elec- (b) When a quantum dot energy
trons of higher energy than the level lies within the bias win-
other. Transport is prevented be- dow, electrons can tunnel into
cause the quantum dot cannot ac- and then out of the dot, passing
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(c) Coulomb blockade data from a GaAs lateral quantum dot, mea-
sured at 250mK. Current may flow when the gate voltage is tuned
so as to position an enerqy level within the bias window. The
ground state charge number has been indicated between the cur-
rent peaks, which correspond to the degeneracy conditions. See
section 9 for experimental methods.

Figure 3.4: Quantum dot in Coulomb blockade regime.

25



3.3 Indirect Single Electron Charge Detec-
tion

Sometimes, passing a direct current through a quantum dot is either impos-
sible or not desirable. It is not desirable to continuously replace electrons in
the quantum dot because maintaining their spin state over long periods is
required for many experiments. Additionally, sometimes a non-equilibrium
situation must be maintained as part of the experiment and a quantum state
with a long life-time is important.

To achieve meaningful results in these regimes, an indirect sensor of
charge must be employed. Several nanoscale devices exist which are suffi-
ciently sensitive to nearby charges. An auxiliary capacitively coupled quan-
tum dot can be employed to non-invasively probe the state of a nearby
dot[46]. A current is passed through the auxiliary dot in the Coulomb block-
ade regime, with the dot positioned slightly off-resonance. A small change
in the electric field generated by nearby charges can move the auxiliary dot
further on or off resonance, resulting in a detectable change of current.

Left Gate (V)

-0.76-0.74-0.72-0.70-0.638-0.66

Right Gate (V)

Figure 3.5: A scanning electron microscope image of a gate-defined double
quantum dot structure with adjacent QPC and QD, and charge stability di-
agram. Quantum dots are formed near the circles, including the two dots
of interest in the center structure. On the right, the vertically differentiated
signal from the QPC highlights abrupt current changes as a function of gate
voltage. This kind of measurement is discussed insection 3.6.

A second, simpler, and generally less sensitive device is the Quantum
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Point Contact (QPC). The QPC is a restricted channel through which elec-
trons may tunnel. By varying the width of the channel, defined as the size
of the undepleted region forming the channel, its conductivity increases or
decreases by quanta of 2¢?/h due to discontinuous changes in the number
of conductive states in the contact which admit electrons through. In the
case of an electrostatically defined QPC in a 2DEG, the width of the channel
depends on the gate voltage V. A QPC tuned between two steps in its I-Vg
curve will pass a current that depends sharply on the electrostatic potential
at the contact point. A correctly tuned QPC is therefore a very effective
charge sensor, since nearby charges will affect the voltage at the QPC.

8 | L] I T I T I i

7 o] -
S O ]
Q S e ]
T -
% - High Sensitivity Region g
8 S -
> - -
T 2 -
] - s
L T -

0 [ 1 | 1 | 1 | 1 | 1 ]

S
~
1

o
»

-0.5 -0.4 -0.3 -0.2
QPC Gate Voltage (V)

Figure 3.6: QPC conductivity measured at 1.5 Kelvin. Since the conductivity
15 most sensitive to voltage where the slope is large, the steps between the
conductance plateaus are the regions of highest sensitivity when operated as
a charge sensor.

The QPC in the step regime and the quantum dot in the Coulomb block-
ade regime have different advantages and disadvantages. The QPC may be
less sensitive in similar conditions, but is is far simpler to set up due to the
limited number of gates. It also remains sensitive over a wider range of gate
voltages applied to control the quantum dot. It is also less susceptible to
charge noise than a quantum dot based sensor. A quantum dot sensor is
more sensitive, but more difficult to keep tuned into the correct regime. It
may require active feedback to maintain sensitivity. Both devices will lose
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sensitivity due to intentional or naturally occurring changes in the configu-
ration of charge nearby, or the voltage of nearby gates. For the same reason
that the quantum dot is more sensitive, sensitivity is lost more easily during
an experiment when the configuration changes. This is a factor to consider
in the decision to use a quantum dot or QPC as a charge detector.

3.4 Estimating the Charging Energy of a Quan-
tum Dot

Coulomb blockade experiments permit the measurement of the charging en-
ergy of the quantum dot. The electrochemical potential of the quantum dot
is:

(V) = U(N)=U(N=1) = E(N=No=}) = 5 (CLV CVy - Cal) (32

where E, = ¢?/C' is the charging energy of the quantum dot.
This is an important quantity because the difference in electrochemical
potentials from one charge state to another is:

E.=p(N +1) = p(N) (3.3)

Measuring the charging energy amounts to measuring the total capaci-
tance C, and vise versa.

Measuring the voltages at which current can pass through the dot is
straightforward. A small bias voltage is applied between source and drain,
\ps — pa| << E.. Vj is varied, and the voltages at which Coulomb blockade
peaks occur are recorded (see figure 3.4c). The period of the peaks is propor-
tional to the energy required to add a charge to the quantum dot. However,
the actual voltage applied to the quantum dot depends on the circuit capac-
itances C, and C. The energy applied to the quantum dot, (CQCVQ), is not
directly measurable. Vj is the directly measured quantity.

A more complex measurement, known as Coulomb diamonds, reveals
the required information. By applying a larger bias voltage, one effectively
widens the window of voltages which will allow the passage of current. A
larger bias voltage therefore leads to proportionally wider Coulomb blockade
peaks. When plotting the current through the dot as a function of both the
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bias voltage and the gate voltage, the result is called the Coulomb diamond
pattern.

In contrast to the gate voltage, the source-drain bias voltage is an absolute
energy scale. If 10mV of bias is applied, the chemical potential on one side
of the dot is 10meV higher than on the other side. This absolute scale can
be used to calibrate a lever arm translating between the applied gate voltage
(in mV) and the electron energy (in meV).

The slopes of the Coulomb diamonds provide that calibration. If 10mV of
bias expands each Coulomb blockade peak by 60mV, then the real charging
energy is % of the voltage measured in the Coulomb blockade experiment.
Simple tricks can be employed to simplify the calculation. If the experi-
mentalist can observe an entire Coulomb diamond, then the width of each
diamond (in mV of gate voltage) is twice the charging energy (in meV).

In reality, charge is not the only quantum number that appears in the
Hamiltonian, even in the constant interaction model. The energies of the
single-particle energy levels should be added to the electrochemical potential:

E.

N=E(N—Ny—1)— ¢
2 ( 0 ) 2’€|

2

(CsVs + CyVy + CqVy) + Eq

((N +1) — p(N) = Epgq = E. + AE,

This means that the Coulomb diamond method measures the charging
energy only when AF), is zero inside the diamond defined by the intersection
of two states of different n. However, this is the case any time electrons
are added to the same single-particle energy level. For example, in the ab-
sence of magnetic field, a second electron is added which matches an existing
electron’s orbital quantum numbers, except for opposite spin.

In order to obtain length and area scales for the features which form
quantum dots, once can assume that the quantum dot is a disk-shaped ca-
pacitor with some unknown radius. The radius of this (fictional) capacitor
can then be calculated from the charging energy, being the energy of one
electron stored in the capacitor.

The self-capacitance of a conductive disk in a dielectric material with
dielectric constant € is: C' = 8er. The dot capacitance is equal to: C' = e?E,,
and E. can be obtained from a Coulomb diamond measurement (see figure
3.7).
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Figure 3.7: A Coulomb diamond measurement of a single quantum dot.
Coulomb blockade is wvisible as current peaks (bright white) along the DC
bias = OmV cut of the figure. Introducing DC' bias widens each peak as it is
increased in either polarity. The difference in gate voltage between the first
and second electron charging events is directly proportional to the charging
enerqy E., because these electrons are added to the same spin-degenerate level

and thus E, = 0.

3.5 The Double Quantum Dot

The Double Quantum Dot (DQD) is formed by simply combining two single
quantum dots in series, such that each is paired with a lead and they share
a tunneling barrier between them.

Two “plunger” gates are typically employed which each help raise and
lower the potential in one of the two dots. The result is that electrons can be
controllably added to each dot somewhat independently, though the plungers
will affect both dots to some degree. In the example of figure 3.5, the plunger
gates are second left and right-most gates on the bottom.

The ground state of the DQD is not characterized by a single charge
number N, but rather a pair of charge numbers (N, M), but it is still possible
to map the ground charge state as a function of two gate voltages.
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(a) Conceptual diagram of the double (b) Conceptual diagram of the DQD

quantum dot with two leads. The dots in the detuned regime. The Tight dot

are tunnel coupled through a barrier. has a lower potential. The chemical
potential difference € between the two
quantum dots, n this case promot-
ing the addition of an electron to the
right dot from the right lead.

Figure 3.8: The double quantum dot (DQD)

3.6 The Stability Diagram

Coulomb blockade will also occur in the DQD. In fact, current can only pass
through the DQD if there is a three-fold degeneracy in the ground state
between the charge states (N, M), (N +1, M), and (N, M + 1). This allows
electrons to move into the DQD from the source to the left dot, move across
the tunnelling barrier to the right dot, and ultimately into the drain, without
ever receiving or giving up any energy.

The triple degeneracy points, or “triple points”, can be observed in the
low bias regime in the same way that Coulomb blockade peaks can be ob-
served for the single quantum dot. However, two gate voltages (V; and Vi)
must be varied in order to observe all of the possible triple points. At each
triple point (Vj1, Vj2), the current is measured. The result is generally nearly
uniform zero current, except at the triple points, where current may pass (see
figure 3.10).

The triple points reveal interesting behaviour. In the low bias regime,
they are simply points. In the high bias regime, triangular regions of current
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extend from the points. In some of these triangles, for example extending
from the (0, 1), (1, 1), (0, 2) triple degeneracy point, evidence of Pauli
blockade can sometimes be observed[26].

However, studying only the triple points neglects a wealth of hidden infor-
mation. Double degeneracies are invisible in the transport measurement, and
it is difficult to know for certain the charge state of a DQD at any given set
of gate voltages simply by measuring the positions of the triple points. For-
tunately, this information is revealed in a charge stability diagram, which is
a measurement of the current through a nearby charge detector as a function
of two DQD gate voltages.

By measuring transport through a charge detector as a function of the
gate voltages of the quantum dot, changes in the charge distribution of the
D@D can be probed directly. The resulting intensity plot as a function of
two gate voltages is called a charge stability diagram (often simply “stability
diagram”). The name refers to the fact that the diagram reveals which charge
states are stable (ground states) for each pair of gate voltages. See figure 3.9
for an example.

Consider a particular scenario. On a given DQD, two gates which are each
localized to a particular dot are varied independently. The charge detector
is expected to pick up both the change in charge of the gates, as well as the
discontinuous change in charge distribution of the DQD. The result is that
several regions of gradual slope are separated by discontinuous jumps where
the ground state changes from one charge state to another. By differentiating
this data along any axis, but typically along the sweep direction, the gradual
slopes disappear and the discontinuities become contrasted lines (black, in
this colour scheme). These mark the borders between charge states.

The faint bright line at the center of figure 3.9b corresponds to a move-
ment of charge from one dot to another, conserving the total electron number.
These are tipping points in the balance of two forces. On the one hand, the
most energetic electron is more stable if it occupies the quantum dot with the
lowest available single-particle quantum state. However, the extra electrons
in this quantum dot will repel the very same electron. On either side of the
charge transfer line, the balance of these two forces comes out in favor of the
valence electron occupying one or the other quantum dot[36].

Examine 3.9. Notice that two sets of parallel dark lines exist, character-
ized by a distinct slope. In this colour scheme, dark lines correspond to a
change in the total number of electrons (of one elementary charge). They
are also called “addition lines”, because when crossing such a line the total
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Figure 3.9: Differentiated current through a nearby QPC produces the charge
stability diagram of a DQD. This data is discussed in detail in section 10.

charge number increases (or decreases) by one, depending on the direction
of motion in voltage space. The slope of the lines indicates which quantum
dot the new charges occupy. While both gates may have some effect on both
quantum dots, each dot is more sensitive to one gate than the other. This is
the cause of the different slopes[36].

Several features are noteworthy in the stability diagram. First, notice in
3.9 that the addition lines come in two parallel sets, but that each line appears
to deflect away from the other as it nears an intersection. This is due to two
simultaneous effects. First, there is capacitive coupling between the quantum
dots. When an electron is added to one dot, the energy cost of adding a
second electron to the other dot becomes greater. This causes addition lines
to appear to “jump”[36] (see figure 3.9b). Near the triple points, the states
(N+1, M) and (N, M+1) become nearly degenerate. Tunnel coupling between
the quantum dots causes these two states to hybridize, resulting in a curved
shape that is most pronounced when the tunnel coupling is large[26]. These
effects can therefore be used to estimate the Coulomb and tunnel coupling
of the DQD[26].

Spin effects can express themselves in the vicinity of the charge transfer
line, especially between fully odd and fully even charge states (ex: (3, 3) and
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(4, 2)). In the nextsection, we will examine one such effect.

3.7 Pauli Spin Blockade

Another transport experiment involves the Pauli exclusion principle. Two
quantum dots are each coupled to a lead, and to each other, by tunnel bar-
riers. One dot is detuned so that an electron is trapped in the dot, while
the other is tuned so that any electron may enter it. There is a potential
difference between the two leads such that an electron in the upper dot lead
may enter the second dot and attempt escape into the lower lead through
the lower dot (see figure 3.10).

(a) Schematic of a double quantum
dot under bias. The right dot already
contains an electron of a particular
spin. If an electron of the opposite
spin enters from the left lead, it will
tunnel through each dot to the oppo-

(b) An electron of the same spin, en-
tering from the left lead, is unable to
tunnel from the left dot to the right
because of the Pauli exclusion prin-

ciple.  The electron is trapped and

current s blocked until either elec-

site lead. tron spin is somehow inverted. This

1s called Pauli blockade.

Figure 3.10: Left: Transport through a multiple quantum dot under bias. In
the absence of magnetic field, hyperfine interaction randomizes the spin states
and Pauli blockade is lifted, permitting free flow of current at the base of the
yellow-green triangular region. Note the triple points and the bias triangles
extending from them. Right: With the addition of a static magnetic field (in
this case 0.2 T), current is suppressed in the interior of the bias triangle due

to Pauli blockade[9].

According to the Pauli exclusion principle, no two electrons of like spin
may occupy the same total quantum state, so that the moment an electron of
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Figure 3.11: Left: Transport through a quantum dot under bias. In the
absence of a magnetic field, hyperfine interactions randomize the spin states
and Pauli blockade is lifted, permitting free flow of current at the base of the
yellow-green triangular region. Note the triple points and the bias triangles
extending from them. Right: With the addition of a static magnetic field (in
this case 0.2 T), current is suppressed in the interior of the bias triangle due
to Pauli blockade[9].

like spin enters the upper dot, it is trapped. Current will therefore not pass
through the dot. This effect is called Pauli blockade after the Pauli exclusion
principle, and it can be used to measure the g-factor of each dot in a DQD
with the assistance of spin resonance, as described in the nextsection.

3.8 Measuring g-factor in Single and Double
Quantum Dots

Because the wavefunction and energy spectrum of the charges are different
in quantum dots as compared to bulk material, their effective g-factor may
be different. Contributions to this difference originate from the width of the
quantum well, the composition of the material, strain, and the action of an
external electric field. It is possible to measure the value of the effective
g-factor in several different ways, by employing a magnetic field.

In a single quantum dot, measurement of electron g factor can be ac-
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complished as follows. By applying a sufficiently large magnetic field, once
spin-degenerate energy levels will begin to split via the Zeeman effect. The
Zeeman energy imparted must exceed the thermal broadening of the energy
levels, or roughly kgT. Thanks to their differing energies, the two levels
will each lift Coulomb blockade at different gate voltages. Assuming one has
used the Coulomb diamond method (section 3.4) to calibrate the gate energy
scales, one can use the difference in energy of these two Coulomb blockade
peaks at a particular value of magnetic field to calculate the g-factor by
assuming that the Zeeman term is equal to the splitting[27, 56]. The Zee-
man energy must be greater than the thermal broadening of the fermi level
(guB > EkT) or the peaks will overlap. For an achievable electron tempera-
ture of 150mK and typical g-factor of GaAs (0.4), fields in excess of several
T are required to achieve visibility. Higher electron temperatures or smaller
g-factors may require proportionally higher magnetic fields for good visibil-
ity, up to 5 T in practice[27]. However, this method is not compatible with
the very small electron g-factors required for quantum repeater applications,
since the magnetic fields required are prohibitive.

In a DQD system, one can measure g-factor in a different manner. A
DQD configured so that the (0, 1), (1, 1) and (0, 2) charge states are nearly
degenerate and in the presence of a magnetic field, is said to be in the Pauli
blockade regime, and current in one direction is suppressed in a region adja-
cent to the triple point. In this regime, the (1, 1) spin triplet states (| 11 >,
| 44 >, \%(\ 1L >+ | {1 >)) cannot relax into the corresponding (0, 2) spin
states because the total wavefunction would be symmetric. If the system
enters any of these states, the quantum dot is Pauli blockaded and will not
pass current through the usual (0, 1) — (1, 1) — (0, 2) — (0, 1) cycle.
This condition can be lifted if the triplet state decoheres into the spin singlet
through hyperfine interaction with the abundant nuclear magnetic moments
of a material such as GaAs, since this state is permitted to tunnel. How-
ever, the next electrons to enter the quantum dot has a high probability of
forming one of the three triplet states, again blocking current. Without the
applied magnetic field, however, the increased efficiency of random hyperfine
interactions with the spin state lifts the Pauli blockade condition and allows
a small current to pass (on the order of fA for a T5 spin coherence time in
GaAs of about 20ns.

An electron spin resonance experiment with high frequency magnetic (or
electric fields, if one makes use of spin-orbit effects) can be used to artifi-
cially lift the Pauli blockade[48]. Through an applied field of the appropriate
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frequency, electrons in the dots can be resonantly driven to Rabi type os-
cillations. Changing the spin of either electron will lift the Pauli blockade
condition, allowing current to flow. By measuring the frequency that max-
imally excites these resonant spin transitions at a particular magnetic field,
the g-factor in each dot can be measured by using the well-known relation-
ship f = gupB/h, where pp is the Bohr magneton and B is the external
magnetic field. In general the g-factors in each dot may not necessarily be
the same, and two different resonances will be detectable.

3.9 Summary

e Within the constant interaction model for a quantum dot, it is pos-
sible to estimate the size of a quantum dot using Coulomb diamond
measurements.

e The phenomenon of Pauli blockade suppresses current through a double
quantum dot in the presence of magnetic field, unless forces disturb the
spin state of the electrons in the dot.

e Using Coulomb and Pauli blockade, it is possible to measure the effec-
tive g-factor of a single quantum dot or both dots in a double quantum
dot (respectively).

In the next section, we shall see that the Pauli exclusion principle in a
double quantum dot can be used to read out the spin state without requiring
transport through the double quantum dot, as the Pauli blockade experiment
requires.

37



Chapter 4

Introduction to Spin Qubits

4.1 Motivation for spin qubits

Research interest into spin qubits is motivated by the fact that electron spins
are true two-level systems, and that solid-state spin qubits in semiconduc-
tor nanostructures have the support of decades of heavy development in the
semiconductor industry. As a result, spin qubit systems are in principle scal-
able to arbitrarily many qubits. Furthermore, being magnetic rather than
electrical phenomena, spin qubits are more weakly coupled to their environ-
ment. Still, it has been shown that spin qubits can be effectively controlled
with electric fields while remaining insensitive to background noise[46].

4.2 The computational basis

A spin qubit is defined by identifying two orthonormal states of a spin system.
Usually one chooses these such that one of them is a state which can be
easily prepared, or the eigenstate of a projective measurement that can be
performed on the system. This state is labelled |0>, and its orthogonal
compliment is |1>. These states form the so called computational basis of
the system.
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4.3 Spin qubits and the DiVincenzo criteria

A general implementation of a quantum computer must satisfy certain crite-
ria. While many different equivalent sets of criteria exist, the most popular
is known as the DiVincenzo criteria, named for David P. DiVincenzo[15].

The DiVincenzo criteria for a qubit platform to be useful as a general
quantum computing platform are:

1. A scalable physical system with well characterized qubits. Spin qubits
are expected to be quite scalable, though systems of millions of inter-
connected qubits have yet to be demonstrated.

2. The ability to initialize the state of the qubits to a simple fiducial state,
such as |000...>. Spin qubit initialization can be achieved, for example,
by allowing the spin system to decohere into the ground state. Alter-
natively, any ideal projective measurement of the qubit leaves it in a
known state, which can be corrected to the desired initialization state
or, perhaps, used immediately.

3. Memory qubits with long decoherence times. Memory qubits used for
entanglement swapping must survive longer than the communication
time between adjacent nodes in a repeater chain. For links of length 50
km, this corresponds to about 150 ps. A quantum memory with much
greater than 1 ms coherence time should therefore be sufficient, assum-
ing the memory can be read out in that time. Coherence times have
been demonstrated for spin qubits as long as 39 minutes in isotopically
purified Silicon[51].

4. A universal set of quantum gates. That is, a set of gates which, in com-
bination, can generate all possible computable functions. A “universal”
gate set is one which can easily generate all other possible logical gates.
An example is the Z gate, which corresponds to Larmor precession of
single spins in a static magnetic field, and the X gate, which corre-
sponds to Rabi oscillation of a single spin in an oscillating magnetic
field. These two rotation operators can be used to approximate any
single-qubit unitary operation using the Solovay-Kitaev algorithm[14].
Entangling operations can also be performed between single spins, and
these have been demonstrated[yacobirootswap].
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d.

A qubit-specific measurement capability. Read out of spins can be
achieved by attempting to overlap the wavefunction of the unknown
spin of interest with some known reference spin[20]. The exchange in-
teraction will result in a different distribution of charge in the case of
like spins compared to the case of unlike spins. ' Measurement of this
charge, as in section 3.3, reveals the spin state of the qubit to be ei-
ther parallel to the known spin or anti-parallel. This is called “spin to
charge conversion”, and can be conducted in double quantum dots in
the un-biased regime using a charge detector[19].

The ability to interconvert stationary and photonic qubits. Photon to
spin conversion is discussed in section 6.

The ability to faithfully transmit photonic qubits between specified lo-
cations. Transmission of photons over long distances has already been
achieved|[41].

4.4 Basis states of DQD spin system

The spin state of a Double Quantum Dot (DQD) with two electrons can be
characterized by four spin states: | 11 >, | {J >, | 1T >, and | 1} >. However,
these are not the eigen-states of a DQD when tunnel coupling between the
two dots is significant and each dot is occupied by one electron. Instead,
we can use the orthonormal basis of total spin component eigenstates for a
system of two spin % particles:

|J=1,m=+1>=[T">=|11>
J=1,m=-1>=T">=]|||>
[J=1m=0>=|T">=J5(l 11>+ 1 >)

T =0m=0>=|>=2( 1> |1>)

The |S> and |T> identification stands for “singlet” and “triplet” respec-
tively, in reference to the grouping of states by their total spin.

!Exchange, for our purposes, is that phenomena which ties different orbital eigen-
functions (and eigenenergies) to different spin states on the basis of fermions of like spin
repelling one another.
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This basis turns out to be the correct eigenbasis for DQD’s. The reason
is best understood by symmetry. The |S> state is antisymmetric in spin,
and thus symmetric in wavefunction (because fermions are antisymmetric
overall). Its symmetric wavefunction allows the singlet state to overcome
the Pauli exclusion principle that restrains the antisymmetric triplet states,
allowing the electrons to settle into a lower energy ground state wavefunction.

As demonstrated in figure 3.8b, this effect is most pronounced when the
D@D is detuned such that one quantum dot is at a significantly lower po-
tential than the other. Both electrons of the singlet state can occupy this
lower quantum dot together, while the triplet state is constrained to leave
one electron in the higher potential quantum dot. The energy term of the
Hamiltonian that expresses this reorganization of orbital wavefunctions due
to Pauli’s principle is sometimes called “exchange” in reference to its origins
in the classic Heisenberg model[25], and lifts the degeneracy between the
singlet and the triplet states.

Independent of exchange, the presence of a uniform magnetic field will lift
the degeneracy within the spin triplet. The Zeeman energy, proportional to
the quantum number m, adds and subtracts equal energy from the |T*> and
|T~> states respectively (if we assume positive effective g-factor). The |T°>
and |S> states are not affected, and as such it is quite possible that either
|T~> or |[T"> will be lower than |S> as a result, depending on the detuning
of the double quantum dot, the sign of the field, and the gyromagnetic ratio
of electrons in the dots.

4.5 Hamiltonian of DQD spin system

Taking all of this information and encoding it in a Hamiltonian, we arrive at
the spin Hamiltonian of a double quantum dot:

gupB gusB
2h 2h
where J is the exchange energy, up is the Bohr magneton, and g is the
effective g-factor of the quantum dot (which may be negative, and is depen-
dent on the material system). The energy of the |T°> eigenstate is taken
as the reference energy in this representation, and therefore is assigned the
eigenvalue zero. See figure 4.1.

H=—-J|S><S|+ |TH><T"| — T~ ><T"| (4.1)
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The resulting time-evolution operator for evolution to a time ’t’ in the
future is:

igup Bt

U(t) = exp(%)\5><5|+exp(_iL§Bt)]T+><T+|—i-exp( T T~ ><T7|
(4.2)
E
A
T
r T
J(e)
S >E

Figure 4.1: Sketch of the energies (relative to the Ty state) of the lowest en-
erqy spin eigenstates of the double quantum dot. The lack of Pauli exclusion
restrictions on the spin singlet allows it to split off from the Ty state by the
exchange term (J(€)) as detuning increases, while the spin triplet states are
split apart by the Zeeman energy (E,) in the presence of a static magnetic

field.

4.6 Projective singlet/triplet measurement

It is through the exchange parameter J that Bell measurement is possible,
and this will be described in detail in section 5.
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In the double quantum dot, two forms of measurement are possible. Pre-
viously, we discussed comparing a single spin qubit to a reference spin qubit.
If we say that the reference spin is certainly spin up, the possible initial
states are |TT> = | 11 > and | {7 >. Upon detuning the DQD into the (0,2)
or (2,0) regimes, the charge distributions for the two states will differ. Be-
cause | 11 > is Pauli blocked, it will remain in the (1,1) charge distribution.
The | |7 > state has non-trivial |S> component, and will display a different
charge configration. A nearby charge detector will report the difference.

Yo

(a) If the spin of interest is opposite (b) If the spin of interest is the same

from the reference spin, the spin may as the reference spin, it is forbidden

tunnel from one dot to another. from tunnelling from one dot to the
other.

Figure 4.2: The two orthonormal basis states of the single spin qubit, | T >
and | | >, can be differentiated by preparing the (1, 1) charge state. One
electron is the spin of interest, while the other is a known reference spin. The
D@D is then detuned such that (0, 2) becomes the ground state. If the two
spins are the same, the ground state is accessible and the charge state will
change. If not, the charge state remains the same. This is the conversion of
spin information into more easily detectable charge information.

Detuning the DQD into the (0,2) or (2,0) regime functions as a projec-
tive measurement into the singlet (|S>) subspace, or into the triplet (|7>)
subspace. It is the fact that the singlet is an entangled state (actually a Bell
state) that enables efficient Bell analysis of spin qubits with this device.

4.7 Summary

e Spin qubits are attractive for scalable general quantum computation,
either having been demonstrated theoretically or practically to satisfy
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all of the DiVincenzo criteria.

e For the particular application of entanglement swapping, spin qubits
offer competitive decoherence times.

e The particulars of spin qubits in DQD’s with strong tunnel coupling en-
ables direct Bell measurement without the need for coherent entangling
gate operations.
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Chapter 5

Bell Basis Measurement with

g-Factor Engineered Spin
Qubits

We wish to perform full Bell measurement of two photonic qubits so as to
realize a quantum repeater. Directly performing Bell analysis of photonic
qubits is undesireable due to the destructive nature of photon detectors and
the difficulty in fully entangling and disentangling photon polarizations in a
coherent manner using linear optics (see section 2). However, first converting
the photonic qubits into stationary qubits such as electron spins enables full
Bell measurement and all the benefits thereof. Conversion of photonic qubits
into spin qubits will be reviewed in section 6.

5.1 Implementation

As described in section 4, two spin qubits in a double quantum dot can
hybridize in such a way that the singlet and triplet states are split off by an
exchange energy term, while the triplet itself is split by the Zeeman energy.
The relevant equation is 4.1.

Notably, the singlet state |[S> and the triplet state |T°> are both Bell
states, while the remaining eigenstates (|7t> and |T~>) are separable. Be-
cause the singlet is one of the possible unambiguous results of a projective
measurement by spin to charge conversion[19], it functions as a partial Bell
measurement. If the measurement result is a singlet, Bell measurement has
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succeeded and given a valid result. Otherwise, the state is projected into the
subspace spanned by the remaining eigenstates.

Unlike partial Bell measurement of photons, Bell measurement of spins
can be repeated since it is non-destructive. A control sequence which swaps
the |T°> and |S> states, followed by another projective measurement into
the singlet, provides discrimination of another Bell state. Qubit manipula-
tions which exchange each Bell state with the singlet in turn will eventually
provide full Bell measurement (see figure 5.1).

The process of control and measurement both take time, however, dur-
ing which the qubit will evolve. The |S> and |T"> are eigenstates of both
the Hamiltonian and of the spin to charge readout operation. The phases
accumulated by the |S> and |T°> states are therefore incapable of influenc-
ing the outcome of the Bell measurement, and these states can be read out
easily. On the other hand, the evolution of the two remaining Bell states,
DT> = \%(|T+>+]T_>) and |[®~> = \%(]T*>—|T—>), must be accounted
for.

Recalling equation 4.2, the relative phase accumulated between the [T+ >
and |T~> eigen-states is wt, where w = ‘7’%";3 and g is the average g-factor of
the DQD. The oscillation could be cancelled by waiting until 27 N rotations
had occured for any positive integer N, assuming the oscillations are slow.
The oscillation rate can be minimized by setting the average g-factor between
the two quantum dots to zero.

Control pulses can make use of non-zero g-factors on each individual
quantum dot to actively manipulate the spins, even if the average g-factor
is near zero to prevent passive oscillation between |®*> and |®~>. This
experiment has been proposed[61], but has not yet been performed because
no material systems have yet been developed which support the the near-zero
g-factor condition in quantum dots.

Figure 5.1 attempts to summarize the proposed experiment visually. Note
that while the figure simplifies the process by assuming pauli operations can
be applied to just one qubit, this is in fact not necessary. Instead, one might
use a m/2 rotation about the Z axis of each qubit to achieve the equivalent of
a m 7 rotation of one qubit, since the Z axes of each qubit are anti-parallel.
Separable two-qubit operations of this type can be used to replace all of the
pauli operators for this purpose[61].

The complete algorithm is as follows:

1. Immediately perform spin to charge conversion to confirm or rule out
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Figure 5.1: Using spin to charge conversion in a double quantum dot (black
arrow) to project into the singlet and triplet subspaces, one achieves partial
Bell measurement. Single qubit operations of different types (X, Y, and Z
Pauli operators) performed on just one qubit swap each Bell state with the
singlet, allowing spin to charge conversion to test for these too (in sequence).
Passive oscillations (blue, curved arrow) between the two states of even parity
can be suppressed in a DQD with near zero average g factor.

the |S> state. If the result is not |S>, the system remains in a super-
position of the other three states.

2. Swap the |S> and |T°> states with either a single 7 rotation of one
qubit about Z or a 7/2 rotation of each qubit about its respective Z
axis (they are oppositely oriented due to the asymmetric g-factor).

3. Repeat spin to charge conversion. A result of |S> now implies the
initial state was |T°>.

4. Swap the |S> and |®~> with a single 7 rotation or two m/2 rotations
about X.

5. Repeat spin to charge conversion. A result of |S> now implies the
initial state was |®~>.

6. Either similarly swap and read out the |®*> state, or infer it as an
outcome as it is the only remaining state.
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We shall see in the next section that the zero electron g-factor condition
also offers the possibility of transferring quantum information between a
photonic qubit and a stationary (spin) qubit.

5.2 Summary

In this section, we reviewed why zero average g-factor in a double quan-
tum dot is an enabling condition for Bell measurement.

In double quantum dots with zero average g factor, the Bell states are
steady states.

If the individual g-factors are also non-zero (and therefore asymmetric),
the Bell states can still be swapped for one another using electric or
magnetic fields for control.

Repeated projection into the singlet state, combined with qubit ma-
nipulations, can yield an ideal Bell measurement in the DQD system.
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Chapter 6

Photon to Spin Interfaces in
g-factor Engineered
Nanostructures

6.1 Advantages and Limitations of Photonic
Qubits

We have seen in the previous section that spin qubit devices in principle may
natively support Bell measurement, the key primitive for quantum telepor-
tation and entanglement swapping algorithms in quantum communication
and QKD. However, as useful as this might be, spin qubits are not particu-
larly mobile and are ill-suited for long-distance communication of quantum
information.

Though matter-based qubits have been investigated for the purposes of
transporting spin information, including by way of superfluid Helium|7], sur-
face accoustic waves[30], or superconducting cavities[49], nothing suggests
that long-distance telecommunication links on the scale of kilometers are
possible with these technologies.

The photon, on the other hand, is a nearly ideal qubit for long-distance
communication of quantum information. Various photonic qubits have been
studied, including time-bin encoded qubits[45], and polarization qubits[31,
38]. Interconversion between these different qubits is possible[32], so that
any technology which is compatible with one type of qubit is potentially
compatible with any of them.
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Whatever the qubit, photons are remarkable because incoherent interac-
tions with matter are weak. The telecommunication industry has developed
robust optical fiber technology which is compatible with the transmission of
quantum information using photons as the transmission qubits[22]. Experi-
ments in free space and optical fibers have successfully transmitted quantum
information over hundreds of kilometers over optical fiber and free space
links[22, 42].

Unfortunately, while photons are ideal for transmission, they suffer greatly
when it comes time to do arbitrary quantum computation with them. We
have seen in section 2 that Bell measurement of photons is generally not
sufficient to achieve long-distance high-throughput quantum communication
channels.

Furthermore, the measurement of a photonic qubit is typically done by
using the energy of the photon to initiate a cascade reaction in a detec-
tor, thereby destroying the photon[13, 47]. The destructive nature of these
detectors limits what can be done with photonic qubits.

6.2 Spin Qubit Quantum Memories

We have seen in section 5 that Bell states can be disambiguated perfectly
within the quantum dot spin qubit platform. When the g = 0, gy = —¢»
condition is met, Bell states are steady states of a double quantum dot.
With ESR and spin to charge conversion, discussed in sections 4 and 5, one
can implement Bell measurement on two arbitrary spins. In principle, there
is no known limit to the fidelity and success probability of Bell measurement
in a spin qubit system, which is what is needed to enable arbitrarily long
distance quantum links with the aid of a quantum repeater.

Solid state spin qubits composed of charged electrons in quantum dots
also have the advantage of having an exposed charge which is decoupled
from their spin. Whereas quantum memories for photonic qubits generally
cannot report how many photons they have stored, and direct detection of
photons necessarily destroys them, the detection of a charged spinor in a
quantum dot is not destructive of the qubit. Therefore, it is possible to
build “heralded” quantum memories from spin qubits. The fact that one can
detect whether the memory is filled significantly relaxes requirements that
quantum memories be highly efficient in terms of capturing photons.
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6.3 Transfer of Quantum Information from
Photon to Spin
To convert a photonic qubit into a spin qubit, one can take advantage of

angular momentum selection rules for photons absorbed by electrons in a
solid.
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(a) In one scenario, two different valence and (b) In another case, two dif-
conduction band states are coupled, each by ferent conduction band states
a different polarization of electric field. The are coupled to the same valence
quantum information resides in the resulting state, each by a different polar-
(entangled) electron/hole system. ge = gp in ization. The quantum informa-
this scenario so that the same electric field tion resides solely in the elec-
frequency need not be correlated with the po- tron. The electronic g-factor g
larization. must be zero for this to work.

Figure 6.1: Two scenarios in which quantum information from a photon can
be transferred to a spin system in a quantum well, either an electron/hole
pair (a) or simply an electron (b). In both cases, a static magnetic field has
been applied in the plane of the well.

Suppose we have an optically active quantum well, and a source of single
photons. Electron-hole pairs can be created by coupling valence and conduc-
tion band states in a variety of ways, for example the two scenarios of figure
6.1. An ideal situation is that of figure 6.1b, where the hole that is created
ultimately contains no useful information and can be discarded safely, either
by allowing it to tunnel out of the quantum dot or by pulsing a nearby gate
to actively remove it. With the hole gone, the electron spin contains the in-
formation of the original photon state and the charge of the electron heralds
the successful transfer of information[34].

To achieve the coupling of two conduction band states to a single valence
band states, one must make use of the quantization conditions and optical
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selection rules for light holes and electrons in a quantum well under the
influence of a static magnetic field. Assume a magnetic field is applied in
the plane of the quantum well. The zeeman splitting of the electrons will
be zero if the g-factor is zero, so there will be no preferred quantization axis
for the electrons. However, the light holes are quantized along the magnetic
field. Light incident perpendicular to the surface of the quantum well induces
transitions between spin states quantized along the perpendicular axis of the
quantum well, and the target state (for example, say) | = > = \/L§<| >+
>) is an even superposition of each of those two states. Therefore, photons
incoming perpendicular to the surface of the sample will (at best) have a
50% probability of absorption according to the following rules:

lot> = | t= >
lo7> = | l=>
HalH>+BlV>) = S(alt >+ 8] >) =

The principle of quantum state transfer has been demonstrated in bulk
GaAs quantum well structures[34, 35|, but has not yet been conducted in
quantum dots. The importance of quantum media conversion from photon
to spin has motivated our investigation of InAsP/InP nanostructures. The
InAsP material shows promise as a material platform for small electron g-
factor quantum dots, as we will soon see. The next two sections present
(respectively) theoretical and experimental investigations into techniques for
engineering small g-factor quantum well structures suitable for quantum dots,
and Indium alloy few-electron quantum dot nanowire structures.

6.4 Summary

1. In principle, it is possible to convert photon polarization information
into electron spin information.

2. Photons create electron-hole pairs when absorbed in semiconductor,
and both particles may contain information from the photon.

3. In the zero electron g-factor regime, the information contained in the
hole can be minimized. The hole can therefore be discarded.

52



Chapter 7

Approaches to g-Factor
Engineering

The electron g-factor, which is the constant of proportionality between the
electron spin to its magnetic moment, is an important consideration in the
design of spin qubits. Qubits with large g-factors are strongly influenced
by magnetic fields, resulting in fast operations times and sensitivity to mag-
netic environmental noise. We have seen that quantum dot devices with
specific g-factors are important for realizing a particular implementation of
the quantum repeater.

The quasi-particles commonly referred to as “electrons” in solid state
physics are abstractions, having some of the properties of their free particle
counterparts. Generally, they do not have scalar masses, except in the effec-
tive mass approximation. Their spins and angular momenta can couple to
one another far more strongly than atomic or free electrons. It is no surprise,
therefore, that their magnetic moments are not necessarily the same as for
free electrons.

In general, the overall g-factor of a solid state electron can be greater,
lesser, or opposite in sign from the gy ~ —2 of free electrons. In fact, solid
state electrons can even exhibit zero magnetic moment altogether [64]. Dif-
ferent materials produce quasi-particles with different parameters, and both
heterostructures and alloys allow the engineering of particular characteristics
such as spin-orbit coupling, effective mass, and electron magnetic moment.
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7.1 g-factor Engineering with Single Quan-
tum Wells: Composition and Thickness

Because different bulk materials possess different effective g-factors for elec-
trons in the conduction band, changing the material or material composition
is a method for changing the g-factor. Alloys of two or more elements can be
further tuned by varying the composition ratios of one element to another.
Figure 7.1 illustrates the dependence of the g-factor on the composition of
quantum well structures composed of ternary alloys of Indium, Gallium, Ar-
senic, and Phosphorus.

Instead of changing the composition of a single piece of material, the g-
factor of a heterostructure can be determined by changing the amount or
shape of the material. When electrons are confined to a quantum well of
finite depth, as in figure 7.2, their wavefunctions penetrate into the barrier
material. Since the barrier material generally has a different effective electron
g-factor than the quantum well itself, the overlap of the electron with the
two regions results in an effective g-factor which lies somewhere between the
two. In particular, a layer of semiconductor (ex: InAsP) embedded in an
insulating barrier (ex: InP) will have variable g-factor with respect to the
thickness of the semiconductor layer. As the thickness changes, the degree
of wavefunction overlap with the barrier also changes. This dependence on
quantum well width is also illustrated in figure 7.1.

The engineering of g-factor in single quantum wells is therefore possible
at design time, but it would be ideal if the system could be fine tuned in-situ
to maintain particular values (such as zero). This is possible through the use
of electric fields.
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Figure 7.1: Simulated variation of effective electron g-factor with quantum
well thickness for two ternary alloys, based on simulation codes developed at
the National Research Council by Geoff Aers.
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Figure 7.2: Ground-state electron wavefunction of a quantum well (here,
for example purposes, InAsP in InP). The effective g-factor of the electron
receies contributions from the well and the barrier, depending on the extent
of the wavefunction’s overlap with each.
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7.2 g-factor Engineering with Double Quan-
tum Wells: Electric Field Effects

Samples grown by epitaxial processes offer great flexibility. Material com-
position can be varied continuously through the structure, resulting in a
slanted quantum well, Double Quantum Well (DQW), or DQW with a differ-
ent composition in each well. All of these cases are interesting for promoting
wavefunction penetration into the barrier material.

However, it is under the influence of an electric field that these tech-
niques achieve their full potential. We have run simulations to solve for the
ground state wave-function of a DQW with arbitrary composition, according
to models of material parameters developed previously at NRC. In a DQW
structure where each well has a different composition, the effect of an elec-
tric field is to tune the balance of occupation of one well or the other by
raising the electric potential drop across the DQW structure. This has the
effect of forcing the electron to take on more of the character of one well at
a particular field, and of the other at the opposite field. This enables not
only control of the g-factor, but dynamic control of the g-factor at will. If
quantum dots can be engineered which are compatible with this technique,
gate-controlled fine-tuning of their g-factors may be possible in an experi-
mental setting. This may become the basis for full Bell measurement and
photon to spin conversion, discussed in sections 5 and 6.

Figures 7.3a and 7.3b present plots of the ground and excited state wave-
functions of a DQW as a function of perpendicular electric field, as com-
puted in simulation. Figure 7.3, meanwhile, is a plot of the g-factor of the
two wavefunctions as a function of that same electric field. For this design,
which makes use of two quantum wells of different composition and width, the
g-factor can be dynamically tuned over a range of values including positive
and negative values using realistic electric fields from a global gate.

In addition to allowing fine-tuning to the zero g-factor regime, which is
particularly relevant to section 5, this technique could allow quantum dots
in an ensemble to be made dynamically addressable. This means that any
set of quantum dot spin qubits could be brought in or out of resonance with
a waveguide, cavity, or oscillating electrical /magnetic field as needed. This
is an attractive property from the point of view of dynamically coupling and
decoupling distant spin qubits in a quantum processor.

Obviously, for this application, noise would be introduced into the g-
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factor by the electrical noise in the controlling field. Electrical noise already
exists in spin qubits which are defined by electrostatic gates, so one must
compare the first derivatives of the relevant hamiltonian components to see
if this noise is important.

The magnitude of the electrically-induced noise in the Zeeman term should
be, in a linear approximation, pBBC‘ll—g x* AF, where AFE is the noise in the
applied voltage E. Given the situation of figure 7.3, one expects the noise in
the Zeeman term to peak at about 100neV mV~! across the quantum well
for a 1T applied voltage when the g-factor changes most quickly. If the noise
in the applied voltage is less than 10011V, the noise in the Zeeman term is
less than 10 neV.
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Figure 7.3: Simulation of ground state eigenfunctions and effective g-factors
in a double InAs, Py_, quantum well with the following parameters: two quan-
tum wells of width 10(7)nm and composition x = 0.35(0.38) for the left
(right) well respectively, separated by a 1nm InP barrier. A wvariable elec-
tric field detunes the quantum well energies with respect to one another. For
the purpose of the simulation, the electric field is not screened by the barrier
material, leaving the precise origins of the electric field out of the model.
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7.3 Summary

The effective g-factor in a quantum well is dependent on several controllable
factors, including the width and composition of the quantum well. In par-
ticular, the g-factor of electrons in a double quantum well, where the two
quantum wells have different compositions, can in principle be fine tuned
with an applied electric field by pushing electrons from one well to the other.
The fact that InP and InAs have bulk g-factors that differ in sign enables to
preparation of a zero g-factor quantum dot sample. Electron spins in such a
material would be subject to only very small Zeeman perturbations.

e Experiments could be conducted in a regime where the electron mag-
netic moment is smaller or comparable in magnitude, relative to nuclear
magnetic moments.

e Spin qubits in the small g-factor regime would be less strongly influ-
enced by the nuclear spin bath, which often limits experiments with
spin qubits in quantum dots[12].

e Coherent transfer of quantum information from a single photon into a
single electron is possible in this regime (section 6).

e Non-destructive Bell measurement can be performed in the small g-
factor regime by making use of the degeneracy of the spin triplet and
the entangled ground state, in the g=0 regime (section 5).

The last two consequences are certainly important from the perspective
of quantum repeater technology, as we have seen in previous sections, which
is why this work focused on the InAsP material system and evaluation of
quantum dot fabrication techniques with g-factor engineering in mind. The
next section will discuss a class of nanowire devices which were intended
for service as scalable optically active spin qubit registers, in which we have
formed quantum dots.
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Chapter 8

CBE Nanotemplated Nanowire
Technology

At the National Research Council, an initiative was commenced to form
quantum dots in InGaAs and InAsP nanowires[50]. These two materials
were chosen for their large (InGaAs) and small (InAsP) electron g-factors,
respectively. The goal of the project was to develop a scalable means to fab-
ricate arrays of optically active quantum dots for use in quantum information
Processors.

For reasons which will be discussed, the composition and width of the
quantum well embedded in a CBE templated nanowire ridge varies with the
shape of the template given a fixed growth sequence. This offers a means
to create an array of devices with differing g-factors by manipulating the
geometric parameters of the devices at design time.

One advantage of nanowire structures, and the principal motivation for
their study, is that they require electrostatic confinement only in one dimen-
sion. Numerous successes in spin qubit experiments have so far emerged from
studying lateral devices fabricated from GaAs/AlGaAs 2DEG structures, but
the number of electrostatic gates required is a source of practical difficulty.
It is particularly difficult to scale such two-dimensional structures.

8.1 Fabrication Process

The fabrication of nanowire ridges on an InP substrate is performed in the
following steps:
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1. A SiOj layer is deposited on an InP substrate and patterned with rect-
angular openings by electron beam lithography, combined with a wet
etch. Typically, many long, thin rectangular windows with different
widths are etched to maximize the probability that a device is pro-
duced which possesses suitable characteristics.

2. A trapezoidal ridge of InP is grown in the template by Chemical Beam
Epitaxy (CBE). The ridge side-walls follow the 011 crystal plane of the
InP.

3. CBE continues, and a Si doped InP layer is deposited.

4. A buffer layer of InP and the conductive In,As;_,P or In,Ga;_,As layer
are deposited. Carriers from the silicon donors populate the quantum
well created by the ternary alloy.

5. An InP cap layer is deposited, and the CBE portion of the process is
now complete.

6. Ohmic contacts are formed by annealing an alloy of Au and Ge at
either end of the ridge. These are used to supply current for transport
experiments.

7. Electrostatic gates, composed of nickel and gold, are deposited on the
surface of the InP ridge.

Ridges grow from the InP base and taper along the 011 facet of the crystal.
The ridge therefore generally resembles a trapezoidal prism as shown in figure
8.1a. The diffusion length for the deposited material is long on the side facets,
and short on the top face. Therefore, material tends to settle on the top face
when available, causing the ridge to grow upwards rather than swell in all
directions equally.

As growth continues, the top face continues to shrink until it vanishes
completely (figure 8.1b). Beyond this point, material begins to accumulate
on the side-walls to form an encapsulating layer.
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Figure 8.1: Stages of nanowire ridge growth by chemical beam epitaxy.

8.2 Cap Layer Measurement

In order to measure the size of the cap layer, an experiment was conducted
on an array of ridges grown with varying base widths. The apparent width

of the resulting devices was measured from SEM images.

The difference between the apparent width and the design width is due
to the presence of the overgrown cap layer. Figure 8.2 shows the geometric
relationship between the cap layer and the original base width, while 8.3

presents the apparent widths from the SEM images.
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NRC-IMS 5.0kV 13.4mm x90.0k

Figure 8.2: The difference between the measured base width (W,,) and the
designed base width (W) is AW = W, —Wy. The thickness of the cap layer

(teap) is mot simply the difference between the two, but rather the distance

between the sidewall planes. It can be estimated by teap = W’;\_@Wd
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Figure 8.3: Real base widths for ridges fabricated with different design base
widths, imaged by SEM microscopy. The relationship between the measured
base width and designed base width changes abruptly at a design base width of
750 nm. For smaller ridges, the rate of change of measured width with respect
to designed width is halved. This indicates that these ridges have grown width-
wise beyond their design width. This is expected for narrow (and therefore
short) ridges, whose cross-sections are triangular rather than trapezoidal.
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8.3 Gate Fabrication Outcomes

In order to form quantum dots in ridge nanowires, electrostatic gates are
required to modulate the potential. These are fabricated by depositing metal,
usually gold, onto the ridge surface as in figure 8.4a.

0.954um

NRC-IMS 50KV 13.1mm x50.0k 1.0 NRCIMS 5.0V 16.0mm x70.0k

(a) Apparently successful (b) Gate broken at the (c¢) Two gates fused to-
gate fabrication peak

NRC-MS 5.0kV 10.6mm x40.0k \ \_1.00um

NRCMS 5.0k 13.4mm x30.0k nm INRCAMS 5.0kV 16.1mm x90.0k

(d) Gap between ridge (e) Gate broken at the
sidewall and substrate. base of ridge due to gap.

Figure 8.4: SEM images of the most commonly observed damage to gates.

Problems were detected with the fabrication of gates. In particular, since
the gates must be made very thin for the required precision, gates are very
sensitive to breakage during deposition and photoresist removal. While this
can be counteracted somewhat by self-adhesion of the gold, if the gates are
deposited on the sharp peak of a completed ridge a succeptability to breakage
has been observed as in figure 8.4b.

Gates can also suffer from breakage at the base of the structure, where
the InP cap layer can extend over the photoresist layer. A gap is therefore
created where there is a step between the ridge edge and the InP substrate
after removing the oxide mask. See figures 8.4d and 8.4e, where the gate
discontinuity is evident at the ridge edge.

Testing of fabricated gate characteristics was first performed at room
temperature, using a probe station. The gates are expected to form Schot-
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tky barriers between themeselves and the nanowire semiconducting material
embedded in the ridges. At room temperature, the corresponding I-V char-
acteristics of a Schottky barrier are therefore expected from functional gates.
If current does not flow in at least one direction, or if current flows ohmically,
it means the gate does not work as expected and is probably broken (in the
former case) or fused to the nanowire (in the latter case). Furthermore, at-
tempts to pass small currents between gates can reveal gates which are fused
together (figure 8.4c).

The often repeated experimental procedure to assess the gates of each
ridge was to ground one ohmic contact and apply varying voltages up to
hundreds of mili-volts of forward and reverse bias. Current, which was lim-
ited to nano-amps, was measured. The typical Schottky I-V characteristic
was often observed, and the characteristic resistance (Ry = W) was
calculated.

In some cases, the gate to ground I-V relationship was completely ohmic
over the observed range. In those cases, the resistance indicated the cause.
Resistances of many giga-ohms, comparable to the substrate resistivity over
such distances, indicate that the gate is probably broken either at the base
of the ridge or before reaching the ridge at all. Resistance values in the kilo-
ohm range, comparable to the resistance of the nanowire, indicate a short
between the gate and the nanowire. Shorts between gate and nanowire were
relatively uncommon, occuring in less than 5% of samples.

Shorts between gates were identified by attempting to pass current (<
1nA) between gates. At least one batch was plagued with many fused gates,
but this was not common in other batches.

Breakage in a gate at the peak is more difficult to detect at room temper-
ature, since the Schottky barrier should still exist. All things being equal, the
characteristic resistance of the Schottky barrier should be higher in that case,
since the contact between the gate and the ridge is less by a factor of two.
However, the characteristic resistance fluctuated somewhat wildly between
gates (depending on the quality of Schottky barriers) that were apparently
quite similar under SEM imaging. It is therefore difficult to be confident
about the cause of such a fluctuation.

In principle, many of these problems could be detected by direct SEM
imaging of the samples before cooling. Unfortunately, SEM imaging influ-
ences the concentration and mobility of the sample through exposure to high-
energy electrons. This degrades the quality of the 2DEG. Because of this,
samples intended for cooling were screened primarily through the probe sta-
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tion.

Incidences of breakage were commonly identified at room temperature. It
was found that breakage consistently occurs in narrow ridges within a batch,
but not in wide ridges. Based on the IV characteristic, hundreds of pairs of
gates on hundreds of devices were evaluated. In a particular set of 21 devices,
the 11 devices with base widths evenly spanning 150 nm to 550 nm had no
functioning gates. The three devices with base widths 590 nm, 630 nm, and
670 nm had functioning gates one one side. The functioning gate was on the
same side in all three cases. Finally, the 6 devices 710 nm wide and wider had
two functioning gates. This example was typical, and indicated both that the
total yield of narrow devices is low, and that the outcome of manufacturing
any device is very deterministic.

As the ridge becomes narrow, the proportion of material that goes to
growing the cap layer rather than completing the ridge increases. It seems
that the larger cap layer is to blame, because narrow ridges have more pro-
nounced caps and peaks, while sufficiently wide ridges have no peak and no
cap. The gap between the ridge sidewall and the substrate, which results
from an over-grown cap layer, can cause gate breakage through the “mush-
room” effect (see figure 8.4e). The peak of a ridge, as shown in figure 8.4b,
can also cause gate breakage.

8.4 Electrical Characteristics

Arrays of gated ridges produced by this process were iteratively tested at
room temperature to probe their electrical characteristics. Although there
are limits to what can be learned at room temperature about a quantum
device designed to be operated at sub-Kelvin termperatures, information
can be gleaned, and used to generate useful feedback.

For instance, the nanowires should be conductive at room temperature.
The ohmic conductivity of each ridge was measured to ascertain whether
the ohmic contacts and nanowire had formed properly. Up to 10 micro-volts
were applied accross the two ohmic contacts. Current was limited to a few
nano-amps, and measured to yield a resistance value.

It was found as expected that the conductivity of each ridge varied with
the base width and therefore the width of the nanowire. For sufficiently
narrow ridges, the nanowire was expected to form not on the top face of the
trapezoidal ridge during growth, but on the sidewalls as in figure 8.6¢c. In
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this case, the electrical characteristics of this material were expected to be
dramatically different, and this was in fact the case. Conductivity dropped
dramatically for narrow ridge structures as shown in figure 8.5.

Ultimately, the ridges must be conductive in order that we be able to
perform transport measurements such as Coulomb blockade and Coulomb
diamonds. Additionally, the width of the nanowire should be minimal so as
to be compatible with few-electron confinement for spin qubit applications.
This means that optimal ridges which are near the narrow end but which
remain conductive are the most interesting for fabrication of QD structures
for quantum information processing experiments.
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Figure 8.5: Low temperature ridge conductivity measurements for different
base widths, at 4K. The base width was inferred from the design width and
interpolation of the data in figure 8.3. One naively expects a linear relation-
ship between the conductivity and the width of a resistor. The variable height
of the wire with respect to base width will confound this trend, and this is
caused by material deposited on the sidewalls concentrating at the smaller
top face of the trapezoidal ridge during growth.
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(a) A two-dimensional
wire results when a layer
of nanowire material is
deposited in a ridge that
s far from complete.

(b) If nanowire depo-
sition begins when the
ridge is nearly complete,
the material will concen-
trate at the peak and re-
sult in a more 8 dimen-
stonal wire.

(c) A particularly nar-
row, and therefore short
ridge becomes triangular

before  the nanowire
material is deposited.
The result is a disor-
dered, nonconductive
nanowire.

Figure 8.6: Cross-sectional SEM images of ridges of different widths grown
wn parallel, showing several outcomes achievable by controlling the ridge base
width. Devices are cleaved along the [100] plane and the nanowire is selec-
tively etched away, creating a visible cavity.
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8.5 Summary

The fabrication of electrically conductive nanowires in ridge structures for
quantum dots is possible. Difficulties lie mostly in the fabrication of gates,
which tend to break in various places, including the peak and the base of
the ridge, when the ridge is not a trapezoid and has a pronounced cap layer.
However, thanks to close collaboration with technologists, the growth process
has been continuously modified to increase yields of ridge devices without
these properties.

At present, the yield of narrow devices with two or more functioning gates
has been low, about 10%. However, the proposed optimization to the fabrica-
tion process has the potential to increase yields. A few-electron quantum dot
was formed in this type of device, however, and the experiment is described
in section 12. The next section will describe experimental methods used in
all of the remaining sections of this thesis, which consist of low-temperature
electronic measurements on semiconductor samples. Specifically, the forma-
tion of quantum dots in InGaAs and InAsP structures, and the probing of
scattering processes in a high-mobility 2DEG.
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Chapter 9

Experimental Apparatus and
Techniques

9.1 Room Temperature Characterization

To perform room temperature electrical characterization of ridge samples
and gates, a Micromanipulator model 7000-LTE probe station with Agilent
4155C semiconductor parameter analyzer was used for two-point measure-
ment. Unless stated otherwise voltage was applied and current was measured
and limited by the analyzer.

9.2 Cryogenics

All other experiments were performed at low temperatures using an Oxford
Instruments 3He variable temperature cryostat with split coil 5T magnet.
The holding time, at the base temperature of about 250mK, was more than
24 hours. Cryostat wiring consisted of fine copper loom and room tempera-
ture RC filters to ensure low noise measurements. The sample socket allowed
for > 90 degrees of rotation to enable free circular control of the static mag-
netic field. The sample mounting allowed for measurements in parallel or
perpendicular magnetic field, tilted in-situ.

When microwave excitations were required, a I1mm antenna was mounted
on the sample holder and connected to one of the cryostat’s high frequency
transmission lines.
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transmission lines (x2)

LED for illumination

Mounting platform

Figure 9.1: Cryostat sample socket

9.3 Electronics

An AVS-47 low noise temperature analogue resistance bridge was used to
measure four-point resistance with AC voltage excitations always below the
thermal energy kg7, and typically about 10uV. Refer to figure 9.2a.

An SRS-830 digital signal processing lock-in amplifier was used for two-
point measurements to reduce noise when the current through the sample
was less than could be detected by the AVS bridge (> 1M€). In this case,
an Ithaco 1211 current preamplifier was used before the lock in amplifier.
These measurements followed the circuit in figure 9.2b.

Gate voltages were applied by several I0tech DAC488HR /4 digital to
analogue converters.

All measurement devices listed above output voltages representing mea-
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sured values. These voltages were finally digitized by Agilent 3458A digital
multi-meters.

Microwaves, when required, were produced by an Anritsu 69377B syn-
thesized signal generator.

AC Resistant
Bridge

SAMPLE

Multimeter

Microwave
Generator

Computer

(a) For low resistance (< 1MS) measurements, a 4-point resistance bridge was
used. For measuring Microwave Induced Resistivity Oscillations, a source of mi-
crowaves was also used.

Voltage Curent
SAMPLE Dividers Amplifier Lock.in
Amplifier
Source Voltage
Multimeter
Computer

(b) For high resistance measurements, such as quantum dot transport, a current
preamplifier and lock-in techniques were employed.

Figure 9.2: Measurement configurations employed for low-temperature exper-
ments.
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9.4 Software

For the purposes of efficient and automated control of instruments, original
software was written and modified by the author in both the Labview and
Python programming languages, including a modular automated instrument
controller suite which can explore an experimental parameter space and is
expandable by plugins to support additional equipment.

The modular instrument control program controls generic instrument ob-
jects, which each expose multiple channel objects to the controller.

Channel objects represent inputs and outputs of devices. They can be
inputs, outputs, or both. Channel values can be changed automatically, as
opposed to plugin and device settings (which are only manually configurable).
Examples of output channels might be: amplitude, frequency, and phase
of a sine wave output, the set point and sweep rate of a superconducting
magnet power supply, or one or more shape parameters of a waveform from an
arbitrary waveform generator. Examples of input channels might be current
and voltage values, temperature, or the amplitude and phase of the input
signal to a lock-in amplifier.

The instrument controller can deal with each channel in an abstract way,
since the code which actually triggers measurement and adjustment of device
state is hidden from the controller in the form of a plugin. This allows the
experimenter to explore the space of possible experimental conditions by
repeatedly sweeping a set of channels, for example gate voltage, and step
some other channel in between sweeps, for example magnetic field, without
writing a new script to control the automation.
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Chapter 10

Forming a (GaAs Double
Quantum Dot

Experiments with electrostatically defined lateral quantum dots in GaAs/Al-
GaAs are common, and techniques are established for dealing with this mate-
rial system. As an exercise, measurements were performed on such a double
quantum dot. The steps were documented here, and the process and data
will be useful to compare with section 11 to help explain the observations
contained therein.

To begin, a GaAs/AlGaAs 2DEG is patterned with electrostatic gates in
the device geometry of figure 10.1.
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Figure 10.1: Lateral double quantum dot template and intended current flow
through the energized device. Current may flow through the quantum dot by
quantum tunnelling, and a separate current may flow through the QPC for
indirect charge detection.

10.1 Single Gate Tests

The initial measurement confirms that each gate has a depleting effect on
the 2DEG. The main gates will here be called the left, top, and right gates in
accordance with figure 10.1. As each gate is energized, the section of 2DEG
under that gate is expected to smoothly become an insulator, raising the
resistance of the sample.
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Figure 10.2: Single gate depletion curves at 1.5 K. At the depletion thresh-
old, in this case approximately —0.2V, the area under the gate becomes an
insulator. The sample resistance therefore increases as current is redirected.

10.2 Entrance and Exit QPCs

Once each gate is independently tested, gates are energized in pairs to create
QPCs. The intent is to measure QPC characteristics and the maximum
negative voltage at which pairs of gates will admit current between them.
Figure 10.3 is an example such a measurement, showing both QPCs pinching
off at about -0.7V. Since the pinch-off voltage (-0.7 V) is lower than the
depletion voltage for each gate (-0.2 V), we can be confident that a QPC
is actually being formed. If the pinch-off and depletion voltages are the
same, this is called pinch-off at depletion. The likely cause is too little space
between the two gates of the QPC, so that a barrier forms at depletion rather
than a channel which can be constricted to form a contact.
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Figure 10.3: QPC conductance curves for the entrance and exit QPCs at
1.5K. The “pinch-off” point, where the conductance drops to zero, is roughly
—0.7V for both QPCs. Depletion of each individual gate occurs at —0.2'V.

10.3 Barrier Balance and Coulomb Blockade

The next step is to form the quantum dot by energizing all of the gates. The
initial voltages are chosen to be greater than the depletion thresholds for
each gate, and such that the entrance and exit barriers are closed. The left
and right gate voltages can then be varied to open the QPCs slightly and
hopefully observe Coulomb blockade oscillations in the conductivity of the
sample as in figure 10.4. This way, the point where both QPCs just pinch
off can be measured and the symmetry of the entrance and exit tunnelling
barriers can be evaluated.
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Figure 10.4: Current through the quantum dot for varied left and right gate
voltages at some fized negative gate voltage on the other gates. The appear-
ance of Coulomb blockade peaks indicates the formation of a dot, while the
diagonal orientation indicates the position relative to the left and right gates.
In this case, the dot appears equidistant from both based on the slope of the
addition lines. The threshold at which current is completely suppressed are
not equal between the two gates, indicating asymmetry in the tunnelling bar-
riers which couple the dot to each lead.

10.4 Double quantum dot transport and charge
detection

With further adjustment of the other gates, the quantum dot in this partic-
ular device can be split to form a double quantum dot. In particular, a more
positive (yet absolutely negative) voltage on each of the two small plunger
gates and a more negative voltage on the middle gate (see figure 10.1) can
force electrons to occupy two separate smaller dots rather than one large dot.
In this regime, transport experiments become more difficult and charge de-
tection becomes useful because quantum dots which are not directly coupled
to both leads will pass current only at the so-called triple points, as discussed
in section 3.

GaAs devices have been and are a popular choice for spin qubit experi-
ments due to the well-tested nature of the platform, and it is a useful test-bed
for quantum information technologies. For example, we participated in an
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Figure 10.5: Horizontally differentiated current through a charge detection
QPC, comprising the charge stability diagram of a fully formed double quan-
tum dot (recall section 3.6, where the stability diagram was introduced).

experiment with a triple quantum dot device in which enhanced spin to
charge conversion was observed through the use of an excited state as an
intermediate which featured more pronounced charge deformation, translat-
ing into more visibility due to increased action by the electron charge on
the QPC[55]. Many concepts, including that technique and the techniques
we have illustrated here, can in principle be translated into other platforms.
For example, in the next section, experimental characterization of the InAsP
material fabricated at NRC will be presented, following this technique for
creating quantum dots.
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Chapter 11

InAsP Material
Characterization

In principle, the InAsP material has several advantages over GaAs for hybrid
photon/spin qubit applications, some of which were discussed in previous
theoretical review section. In this section, techniques commonly used to
form and study GaAs quantum dots for spin qubit applications were applied
to InAsP-based devices. The goal was to form an electrically controllable
few-electron quantum dot in this material.

11.1 Characterization of Planar Material

Fabrication of InAsP devices is not yet routine in the NRC nano fabrication
lab, and characterization of the products was called for. Of particular interest
was an electrical probe of the low-temperature carrier concentration and mo-
bility, as well as responsiveness to light and an inspection for any undesirable
conduction pathways between fabricated test gates and the 2DEG.

Carrier concentration and mobility were measured using standard tech-
niques based on the observation of the Hall effect in a static magnetic field
applied perpendicular to the plane of the 2DEG, and again after a brief il-
lumination with red light from an LED. The sample more than doubled its
carrier concentration after illumination to 1.7 x 10" /cm? and increased its
mobility to a maximum of 2.86 x 105%cm?/V - s, which indicates reasonable
quality.

No conduction was observed between the test gates and the 2DEG, though
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Figure 11.1: 1 Kelvin characterization of a particular InAsP 2DEG sample
before (and after) a brief 1 second illumination with a red LED. From the
theory of the Hall effect we know that the average slope of this curve equals #,
from which we can calculate that n = 6.76(17.2) x 10 /cm? is the carrier
concentration. By definition, electron mobility is p = e%n = 1.14(2.86) x
10°c¢cm?/V - s. This indicates a material of reasonable quality.

they were observed to have a gating effect on the device.
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11.2 Quantum Dots in an InAsP Ridge Struc-
tre

Nanowire ridge structures were fabricated using InAsP as the nanowire mate-
rial. In order to evaluate the system for quantum dot formation and eliminate
the difficulties discussed in section 8 with gate breakage, ridges with bases 4
um wide were initially used. The gate structure was intended to form lateral
quantum dots much as they would be formed in a 2DEG, since the wide but
thin nanowire resembled a typical 2DEG. This would make the initial quan-
tum dot devices more comparable to split-gate structures in GaAs, which are
successful and well understood.

1.3 T I T I T I L) I L)

1.2

11

Resistance (kQ)

10 |

09 1 | 1 | 1 | 1 | 1
-05 -04 -03 -02 -01 0.0

Gate Voltage (V)

Figure 11.2: Resistance measurements as a function of gate voltage for sev-
eral gates. Carrier depletion under the gates causes a change in resistance,
as expected.

Gates were tested, and depletion was found to occur at about -0.15 V
for all gates (see figure 11.2). Attempts to form QPCs and quantum dots in
the chosen sample revealed the existence of unexpected conductance fluctua-
tions. Figure 11.4 shows transport measurements where current fluctuations
are clearly visible with respect to the voltages on each gate. Two sets of
oscillations are visible, and depend only on the voltage of one gate (the left
or the right). A third set is clearly visible, but they oscillate (slowly) with
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NRG-IMS 5.0V 134 mm x18.0k S5

Figure 11.8: Scanning electrom microscope image of the wide InAsP ridge
device with lateral gate pattern and QPC.

the sum of the left and right gate voltages and (quickly) with the middle gate
voltage. See figure 11.4.

These measurements alone were insufficient to determine the origin of
these fluctuations, but a hypothesis was suggested that incidental quantum
dots were forming under the gates and that the fluctuations were the result of
tunnelling through these dots (see figure 11.4). If this is correct, a treatment
would be to increase the width of the gates to ensure that tunnelling cannot
occur through these dots.
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Figure 11.4: Current fluctuations were observed in this device, consisting of
gates patterned on an InAsP ridge. Three distinct groups of fluctuations are
evident. One set of fluctuations depends strongly on the left gate voltage,
another on the right gate voltage, and a third depends equally on both gates
(green dashed line, top right). This is consistent with quantum dots forming
under the left, right, and top gates respectively.

11.3 Planar Tests

To confirm this hypothesis, planar InAsP heterostructures were grown and a
series of different QPCs were fabricated on the sample surface for convenient
testing. Each QPC featured a different spacing between the two metallic
gates. With ohmic contacts on either side of the sample length-wise, a voltage
bias accross the sample permitted current to flow through all of the QPCs in
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series. By energizing only one QPC at a time, the electrical characteristics
of each could be examined separately.

It was expected that gate depletion would cause a sharp increase in the
measured four-wire resistance of the sample as the gates were energized. Fol-
lowing this, as voltage became more negative, the resistance was expected
to either form QPC conductance plateaus or, due to finite temperature, sim-
ply increase sharply at some critical gate voltage. The different spacings in
each QPC were expected to translate into a different critical voltage. The
intention with this experiment was to calibrate the widths of QPCs in later
quantum dot devices. Two important effects were observed over the course
of these measurements.

First, the QPCs followed the same depletion pattern in defiance of the
expectation that each would have a different threshold voltage and that the
differences in the gap between the gates varied substantially: 150 nm to 250
nm. This can be seen in figure 11.5.

100 —

10
— 150 nm
— 175 nm
—— 200 nm
L—— 225 nm
—25(|) nm

Resistance (kQ)

1 1 |
-1.2 -0.8 -0.4 0.0

Gate Voltage (V)

Figure 11.5: 4-wire resistance measurements of QPC depletion at 1 Kelvin.
Pinch off occurs after depletion for all QPCs, but there is no difference in
the pinch-off voltage depending on QPC width.

Second, Coulomb blockade-like peaks were observed in the transport cur-
rent as a function of gate voltages. Conductance peaks are not expected in
ideal QPC structures, yet they are clearly visible in figure 11.6.

87



1.0 T v T ' T ]V

s — 175K
g | ——025K _
506 i
% = -
= 04 | -
5 | ]
302t 4

00- | N j\. 1 N ]

.07 -06 -05 -04 -03
Gate Voltage (V)

Figure 11.6: Direct current measurements reveal Coulomb blockade peaks in
the QPC conductance curve, shown here at 1.75 Kelvin and 250 mK. Their
observation lends credence to the hypothesis that the conductance fluctuations
in the ridge samples were in fact caused by quantum dots formed under the
gates.

Transport measurements as a function of both gates revealed the quantum
dots were capacitively coupled to both gates (figure 11.7).

To estimate the charging energy of these incidental dots, a variation of the
Coulomb diamond experiment was performed. A small AC voltage was added
to the constant DC bias voltage accross the QPC, and the AC component of
the current through the device was measured. Instead of measuring Coulomb
blockade peaks, the result was a measurement of the absolute differential
conductivity as a function of the bias voltage. Instead of widening into
conductivity plateaus, Coulomb blockade peaks split into two distinct peaks
separated by factor proportional to the DC bias. This occurs because in this
scheme the AC component is proportional to the differential of the current
with respect to the DC bias voltage, rather than the DC bias itself.

Several different transport diagrams were made with various DC bias
values. When the DC bias in volts matched the capacitive displacement of
a single addition line or the displacement between two addition lines, the
bias voltage was equal to the single-dot charging energy or the inter-dot
charging energy due to the capacitive coupling. The charging energy was
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Figure 11.7: Direct current measurements as a function of QPC gate volt-
ages. Coulomb blockade appears dependent on both gates equally, suggesting
a dot physically centered between the gates. “Jumps” in the addition lines
are consistent with capactive coupling to a second dot through which transport

does not occur, possibly due to asymmetric tunnelling barriers, but which is
also coupled to both gates.

estimated with this method to be 1.5meV, and the capacitance of the dot
is 1.07 x 1071¢ F. Assuming disk-shaped dots, this corresponds to a typical
dot radius of 125nm, according to the self-capacitance formula for a disk:
C' = 8€rnaspr (Where €, a5p & 12¢p).

Potential fluctuations of similar size have been observed in InGaAs 2DEGs
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Figure 11.8: Increasing the DC' bias voltage across the QPC splits the charge
addition lines. At 0.5mV, the DC bias splits the lines by exactly as much as
the capacitive coupling between the two dots, providing an estimated capacitive
energy between them of 0.5meV. The charging energy of the primary dot
can be estimated by comparing the inter-dot capacitive jump of 0.5 eV with
the perpendicular distance between the two addition lines, for an estimated
charging energy of about 1.5 meV.

using a technique called Scanning Gate Microscopy (SGM) [1], and were at-
tributed to disorder in the quantum well material. Scanning Gate Microscopy
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is the technique of positioning a charged scanning tunnelling microscope tip
above a QPC to detect the influence of the charge on the total current through
the QPC. The results in the next section challenge that conclusion and sug-
gest an alternative explanation.

11.4 Effects of Surface Oxide

In an effort to determine the nature of the potential fluctuations which pro-
duce the observed incidental quantum dots, a second set of QPCs were fab-
ricated with an additional 21.5 nm Al,O3 layer between the gates and the
2DEG, to function as a dielectric. Significant changes in device behaviour
were observed.

Without oxide, QPCs of various widths achieved pinch-off at the same
voltage. This is in stark contrast with theoretical predictions, which suggest
that wider QPCs should pinch off at larger voltages. In the samples with
oxide, the expected trend was observed (figure 11.9).

QPCs in the sample with oxide pinched off at much more negative volt-
ages: at -0.8 V or more rather than a constant -0.2 V. To some extent this
was expected, since the additional di-electric layer reduced the capacitance
between the gates and 2DEG. However, theoretical calculations insection
11.5 will show that the magnitude of the change well exceeds predictions.

QPCs with oxide did not exhibit evidence of incidental quantum dots,
except occasionally for very wide gpcs.

The 2DEG electron mobility of the oxidated sample was measured to
be p = 1.63 x 10°cm?/V - s, compared with the un-oxidated but otherwise
identical sample with g = 1.08 x 10°cm?/V - s. The concentrations of the
two samples (n = 2.52 and 2.56 x 10'!' /cm?) compared well. Figure 11.10
shows some of the Shubnikov-de Haas oscillations from which these values
were derived.
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Figure 11.9: QPC conductance curves for QPCs of various widths in a sample
with an oxide layer. Note the much higher depletion voltage, compared to
figure 11.5, and the dependence of the depletion curve on the width of the
QPC. The originally expected behaviour is restored: wider QPCs pinch off at
more negative voltages.
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Figure 11.10: Resistance and of the Hall bar sample with the QD (all gates set
to 0V) as a function of the magnetic field. Good quality Shubnikov-de Haas
oscillations are revealed and used as a standard tool to gain information about
the electron mobility and concentration.
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11.5 Theory: Surface charge screening

Several clues presented themselves over the course of these measurements.
The addition of an oxide layer yielded:

1. A higher electron mobility for the same carrier concentration
2. More negative gate depletion voltage (-0.8V vs -0.15V)

3. Expected trend in the magnitude of the QPC pinch-off voltage from
narrow to wide QPCs, as is more typically observed in high quality
GaAs/AlGaAs QPC structures, for example.

4. Few or no incidental quantum dots in each QPC tested.

A model was suggested that the cause of the potential fluctuations which
are responsible for the formation of the incidental quantum dots and which
limit the mobility of these samples are in fact caused by disorder not in the
2DEG itself, but in the interface layer between the InP and oxide or InP
and atmosphere, as the case may be. In particular, the presence of a large
number of trapped charges at the surface interface provides an explanation
of all four of these observations, as we shall see.

Figure 11.11 shows the design of the samples, including the gate electrodes
and (optional) oxide layer. With the 2DEG grounded and the gate attached
to a constant voltage source V', the gate depletion experiment can be treated
like a parallel plate capacitor with an offset charge at V=0. To remove
the intrinsic charge (i.e. to deplete the electron charges under the gates), a
particular voltage Vg, must be applied. Based on an approximate dielectric
constant of € = 12¢, for InP and a design width of 70 nm for the InP layer
between the gates and 2DEG, as well as the measured value of -0.15 V for
the depletion voltage on the oxide-free sample, the carrier concentration of
the 2DEG is predicted to be:

= 11.1

n= (11.1)
12¢0 - 0.15V

= 11.2

" T0nm - 1.602 x 10-9C (112)

n = 1.42 x 10" /em? (11.3)
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Figure 11.11: Sample composition as a function of depth. The 21.5 nm ozide
layer was present only in the second sample.

This is the correct order of magnitude, and it was expected to be some-
what smaller than the measured value because depletion corresponds to the
point where electron mobility, as a function of charge density, is nearly zero.
This will occur before all charges have been removed[54].

With the addition of an oxide layer, the gate depletion voltage is expected
to increase due to the now thicker capacitor. The 21.5 nm of Al,O3, with
approximate dielectric constant ¢ = 9¢; modifies the capacitance per unit
area of the total system, as well as the depletion voltage:

—1
S (21.an N 7()11;111) (11.4)
c=12x10""F/cm? (11.5)
V = -n(1.602 x 107C) /1.2 x 107 F/cm? (11.6)
V =-0.19V (11.7)

There is a substantial difference between the predicted value of -0.19
V, for the second sample, and the measured value of -0.8 V. However, the
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presence of trapped electrons in the surface layer has not been accounted for
in the above estimation. Some charge density 74,4, located at the boundary
between oxide and InP must be neutralized. At depletion, V =-0.8 V, but the
voltage across the InP must be approximately 0.15 V as measured previously
in the oxide-free sample. The remaining 0.65 V is the voltage drop across the
oxide, and depletes the extra charge n,,. The charge density of the traps
can therefore be estimated as:

<

Murap = —— (11.8)
9, - 0.66V

ey = 11.9

e = S s - 1.602 x 10-19 (11.9)

Nirap = 1.52 x 102 /em? (11.10)

This trap density corresponds to an average of one trap per 65 nm?. This
is an interesting technological finding to be taken into account during the
fabrication process. However, since it is still possible to form QPCs with no
unwanted incidental quantum dots under the gates, it should also be possible
to form electrostatically defined quantum dots.

In the next section, we will examine a quantum dot of this type formed
and probed electrically in a nanowire sample, in the few-electron regime.

11.6 Summary

InAsP nanowire samples were fabricated with electrostatic gates, with the
intention of forming quantum dots. Instead, it was found that few-electron
quantum dots could be formed using only one gate, instead of the expected
minimum of two gates. This can be explained by the presence of potential
fluctuations under the gates, which are able to support bound states. A
double fluctuation quantum dot was formed, where two quantum dots were
at least capacitively coupled, suggesting that some of these dots are able
to form in close proximity to one another. The origin of these potential
fluctuations was modelled as trapped charges at the interface between the
InAsP and the atmosphere or oxide (depending on whether the sample has an
oxide layer). The addition of a layer of aluminum oxide reduces the number
of quantum dots of this type observed in QPCs.
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Chapter 12

Quantum Dot Formed in
InGaAs Nanowire Ridge

In addition to InAsP nanowires embedded in InP ridges, InGaAs nanowires
were grown by the same method. Interest in the InGaAs material predated
interest in InAsP within the group at NRC, mostly because this material
is optically active in the Telecom optical fiber range (about 1.55um), and
the larger electron g-factor is preferable for some spin-qubit applications.
As part of pursuing scalable linear quantum dot arrays, many devices were
manufactured.

Due to gate fabrication difficulties outlined in section 8, only a few de-
vices were tested which functioned well at low temperatures. However, exper-
iments have revealed that even the partially functional devices are compatible
with few-electron confinement due to the presence, as in the InAsP samples
from the previous section, of a non-uniform background potential.

A device was selected as a candidate for low-temperature experimenta-
tion. As part of single-gate tests performed at 250 mK, current was found
to pass through the device, with gates energized past depletion, in a manner
consistent with Coulomb blockade.

The ridge which was studied was fabricated with a base width of 460nm.
A triangular nanowire approximately 40nm tall, and 80nm wide was formed,
which extended along the entire length of the ridge (10 microns). Two gates
were placed 100 nm apart along the ridge, with the intention of using them
to electrostatically define a quantum dot (see figure 12.1).
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12.1 Single Gate Tests

Before single gate tests were performed, the voltages on both gates were
swept simultaneously, so as to eliminate the possibility of current passing
between the two gates and damaging them. In this case the device showed
signs of pinch-off when both gates were swept, with zero current occurring
at approximately -1 V.

Single gate tests were performed, with careful monitoring of leakage cur-
rent from the gates to the 2DEG and to each other. No leakage current was
detected, and it was certainly less than 100 pA. However, only one gate,
arbitrarily identified here as the “left gate”, achieved pinch off before -2 V.
The right gate did affect the resistance of the sample, indicating a possible
break at the apex of the ridge, resulting in a half functional gate (see figure
8.4b for an example).

NRC-IMS 5.0kV 13.1mm x50.0k

Figure 12.1: SEM image of semiconductor ridge with an embedded nanowire
(not visible).
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12.2 Charge Stability and Coulomb Diamond
Measurements

Coulomb blockade peaks were observed once the gates were energized. A
charge stability diagram (figure 12.2a) confirmed that these Coulomb block-
ade peaks were most sensitive to the gate which showed the pinch-off effects
and suggests the formation of quantum dots under or near a single gate.
Few to many quantum seem to form, particularly when the gate voltage is
more positive. As the voltage on the left gate becomes more negative, the
density of peaks decreases. A final peak is eventually observed, which may
correspond to the last electron in the last dot.
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(a) Charge stability diagram. Both (b) Coulomb diamond measurement
gates are past depletion, but only one of the addition energy, approximately
is near pinch off (the left gate). The 1.9 meV.

frequency and intensity of the peaks

depends only on the wvoltage on the

left gate, though the peaks do shift

somewhat as the right gate voltage is

swept.

Figure 12.2: Coulomb blockade in quantum dot formed in a ridge nanowire.
The observation of Coulomb blockade peaks was unexpected, given that
one of the two gates was not able to fully deplete the 2DEG underneath it.

This indicates that there is likely only one functional gate able to raise and
control a barrier above the fermi level. Typically, such as in GaAs/InGaAs,
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this is not be enough to define a quantum dot. However, in light of the
similar observations in many-gated InAsP samples in the previous section,
this may be explained by the presence of potential fluctuations under the
gates.

Supposing that a potential fluctuation were to exist in the depletion re-
gion under the gate, that fluctuation might support electronic bound states.
While the barrier might be wide enough to prevent direct tunnelling from
one side to the other, the charge states in the fluctuation could, in princi-
ple, support resonant tunnelling as an electrostatically defined quantum dot
does. Resonant tunnelling would be maximal for fluctuations which are di-
rectly underneath the gate, since that ensures the two tunnelling barriers are
symmetric and that the limiting tunnelling rate, which could be either one,
is maximized. This scenario is sketched out in figure 12.3, which illustrates
the case of an incidental quantum dot with asymmetric barriers.

Fluctuation quantum dots have been identified previously in InGaAs [23],
though the measurements presented in this section are original and confirm
the fluctuation model.

Potential

— — Expected
Actual

Position

Figure 12.3: Sketch of an example potential along the nanowire which might
be produced by a single gate (dashed line) and the same plus an inciden-
tal fluctuation (solid line) as a function of position along the length of the
nanowire ridge. Two bound states of well-defined energy exist (represented by
horizontal lines in the potential well) in this scenario. Despite only one gate
and only one expected tunnelling barrier, a quantum dot with two barriers to
two leads can form, and Coulomb blockade peaks can be observed.
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In order to help prove that fluctuation quantum dots are the origin of
these observations, Coulomb diamond measurements were performed and
the addition energy for the last visible electron charging event was mea-
sured. Figure 12.2b shows the data. The charging energy was measured to
be 1.9meV. This corresponds to an approximate dot radius of 150 nm, as-
suming that the addition energy is equal to the charging energy and that the
quantum dot is a disk capacitor (in accordance with the model discussed in
section 3).

12.3 Summary

The estimated size of the quantum dot, 100 nm, is comparable to the ex-
pected size of the depletion region under the 50 nm wide gates of the device.
The measured charging energy is comparable to the value for the planar
InAsP quantum dot examined in section 11, suggesting that these dots arise
from a similar mechanism that is not strongly dependent on the composition
of the nanowire. The origin of these non-uniform potential flucutations more
than 2 meV deep and capable of supporting multiple bound states is not
precisely clear, though it appears that they are present in two different ma-
terial systems: planar InAsP/InP and nanotemplated InGaAs/InP nanowire
ridges. If these incidental dots are not desired, wider electrostatic gates may
in principle suppress tunnelling underneath them by widening the tunnelling
barriers for each incidental quantum dot. This adjustment has not been
tested at time of writing, however new samples with wider gates are under
fabrication at time of writing.
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Chapter 13

Role of in-plane Magnetic
Fields in Scattering Processes
of Planar Structures

Lateral quantum dots in quantum well structures are typically subjected
to large in-plane magnetic fields to provide sufficient spin splitting for spin
qubits (gup > kpT, where up is the Bohr magneton). In particular, for
single spin qubits, large fields are employed to increase the rate and quality
of initialization. In zero g-factor dots for photon to spin conversion, large
fields will be employed to split the light hole states for the spin to photon
conversion method in section 6. In asymmetric g-factor quantum dots, the
small g-factor difference in a double dot must be somewhat amplified by
a large field for Bell measurement as per the protocol discussed in section
5. These facts point to the importance of large in-plane magnetic fields
applied to 2DEGs in order to operate spin qubits for quantum infomation
applications.

The orbital component of the dynamics of a 2DEG with zero thickness
are expected to be insensitive to the in-plane magnetic field due to the strong
confinement in the z direction. In reality, however, no 2DEG is truly infinites-
imally thin. Therefore, magnetic fields may modify the 2DEG properties and
influence the dynamics of quantum dots made from it.

To study such effects, we chose a Hall bar sample made from high-mobility
GaAs/AlGaAs 2DEG. In this sample, we have measured a significant increase
in the single particle scattering rate (7,) for electrons in the 2DEG when a
magnetic field is applied in the plane of the 2DEG. These measurements were
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conducted by making use of the sensitivity of Microwave Induced Resistivity
Oscillations (MIRO) to the quantum lifetime (7,) of Landau levels. This
increase has not yet been explained theoretically, but it may be due to the
non-ideal nature of the 2DEG, since no such change has been predicted to
occur in an infinitesimally thin 2DEG.

13.1 MIRO Phenomenology

MIRO are oscillations in the resistivity of a high mobility 2DEG which can
occur when microwave radiation is incident on the sample[17]. The presence
of a large perpendicular magnetic field and an electric field capable of pro-
ducing a current are also required. The microwave energy is converted into
an electromotive force. The force is proportional to the voltage applied to
the sample, manifesting as a change in the apparent resistivity. The effect
occurs only in the presence of a magnetic field perpendicular to the plane of
the sample, and the magnitude and sign of the resistivity change depends on
the magnitude of this field in an oscillatory manner. The mechanisms that
lead to this effect will be discussed in the following sections.

1 I 1
0 25 50 75 100 125 150
B (mT)

1

p, (©¥sq.)
o = N W b OO0 O N

Figure 13.1: Microwave Induced Resistivity Oscillations, at T = 260 mK,
with micrwave radiation applied at 48.4 GHz. The applied magnetic field,
B, is normal to the plane of the 2DEG. Note the zero-resistance plateau
centered about 90 mT.
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MIRO amplitude can exceed the base resistance at zero magnetic field
(Rp) and the magnetoresistance of the 2DEG, leading to dips in resistivity
where it approaches zero total resistance. The existence of these Zero Resis-
tance States (ZRS) has motivated much of the work in the field[44]. Mea-
surements of MIRO, including observations of ZRS, are presented in figure
13.1.

13.2 Displacement Mechanism

One of the mechanisms which is thought to cause MIRO is known as the
displacement mechanism. In can be understood to be the indirect excitation
of electrons in a partially filled Landau level to a higher Landau level. These
indirect transitions, illustrated in figure 13.2d, require spatial displacement
to match the energy of the initial electron-photon system to the final excited
electron state. Spatial displacement of electrons may be accomplished by
scattering through disorder. Displacement of many electrons in a sufficiently
intense MW field results in a component of current forward or against the
electric field applied to the sample[17].

These microwave-induced currents oscillate as a function of the applied
MW frequency with a period equal to the cyclotron frequency w. = qu L, and
can act with or against the external current induced by the applied electric
field. The resistivity changes as a function of the field because the spacing
of the Landau levels changes with field magnitude. If instead microwave
frequency is held constant and the perpendicular magnetic field is swept, the
oscillations appear periodic with respect to 1/w. (or 1/B L).
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Figure 13.2: llustration of the displacement mechanism.

105



13.3 Non-equilibrium Density of States Mech-
anism

MW radiation can also induce a non-equilibrium distribution of electrons
among and within the Landau levels. This oscillatory electron distribution
manifests itself as a change in conductivity[16]. The overall effect is simi-
lar, has the same relationship to the cyclotron frequency, and is identically
dependent on the shape parameters of the Landau levels, the principle one
being 7,, the single particle scattering time.

In the regime where MIRO amplitude is not saturated and is linearly
dependent on the amplitude of MW radiation, and also where the Landau
levels are overlapping, the MIRO photoresistance takes the form:

§p oc e\ sin(2me) (13.1)

where € = w/w,., and w = 27f is the angular frequency of the MW
radiation. In this equation the damping factor A = exp(—ﬁ) depends
only on the single particle scattering time. Whereas the base resistivity is
dependent on the transport lifetime, MIRO depend only on the width of
the landau levels. This is because the shorter the lifetime, the more overlap
between levels and the more uniform the density of states. This is also why
only the perpendicular component of the magnetic field are relevant to the
theory of their operation for a thin 2DEG: Landau quantization is unaffected
by the in-plane component of the field.

13.4 Conflicting Observations of Field Depen-
dent Scattering

By equation 13.1, only the single particle scattering time and the plane-
perpendicular component of magnetic field are relevant to the shape of MIRO.
Although many details determine the constant of proportionality that has
been omitted, these two parameters are the only variables which determine
the relative change of resistivity with respect to B .

In practice, some experiments[60] have shown damping due to the action
of an in-plane magnetic field in addition to the perpendicular field, with in-
plane fields of about 1 T. Others have demonstrated a lack of damping for yet
larger values of in-plane field[43], up to 1.2 T. This controversy respresents a
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lack of understanding either of MIRO or of the behaviour of the 2DEG itself
in the presence of in plane magnetic fields.

Other studies have since revealed that MIRO are not the only effect which
are sensitive to this parallel field damping. Hall field Induced Resisitivity
Oscillations, or HIRO, have been found to be similarly damped|[28].

In order to attempt to model the phenomenon, we have sought to use
MIRO as a probe of the quantum lifetime 7,. We have found that indeed
the damping effect is consistent with a change in the overall lifetime due to
the parallel field. This observation is consistent with the observations made
using HIRO in [28] except that MIRO are sensitive only to the lifetime,
which suggests that a change in the shape of the Landau levels or scattering
processes is the root cause.

13.5 Experimental Methodology

Figure 13.3: High mobility 2DEG sample mounted in the cryostat sample
socket. Note the MW antenna whose orientation is fized with respect to the
sample even as the mount rotates as a whole in the cryostat.

A rectangular section of ultra high mobility 2DEG was mounted in a He3
cryostat with a base temperature of approximately 260mK. A linear 2.5mm
MW antenna was positioned just above the sample, running parallel to the
plane of the sample. Figure 13.3 shows the exact setup. The section of
2DEG was 3 times longer than it was wide, and at all times current was
passed along its length. The cryostat was equipped with a 5 T split coil
superconducting electromagnet, and the entire mounting assembly, antenna,
and vacuum can can be made to rotate in the bore of the electromagnet
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such that the apparent direction of the magnetic field changes, while the
electromagnetic configuration of the assembly remains constant.

At a temperature of 2 K, mobility and concentration were measured
through the quantum Hall effect using standard techniques. After a brief
illumination, a mobility of 13.8x10°% cm?/(V - s) was obtained along with a
carrier concentration of 3.4x10'/em?.

MW were generated by transmitting electrical signals to the antenna at
tunable frequency and power, using an Anritsu 69377B microwave generator
with a few mW of output power. Any microwave power quantities quoted
here are measured in decibels and reflect power at the generator output,
before further attenuation in coaxial cables and before antenna efficiency,
which vary with frequency.

With the sample oriented perpendicular to the bore of the electromagnet,
the magnetic field was swept over a variety of ranges in both polarities to
confirm that, indeed, the effect was symmetric in magnetic field. In order to
introduce an in-plane field component, the sample was tilted by an angle
from the perpendicular orientation. The Hall resistance, R,,, in this tilted
orientation was compared to its maximal value at zero tilt. This comparison
served as a precise measurement of the perpendicular field component and
as a precise measure of the tilt angle since § = cos™ (Ry,/Rar(0 = 0)).

13.6 Field Dependent Scattering Observations

The observation of MIRO was made at the cryostat base temperature of
260mK while increasing the MW power. Figure 13.4a shows that MIRO
amplitude increases linearly in the MW power (measured in dB), consistent
with the linear power regime.

A temperature dependence was also completed, showing that at tem-
peratures higher than 750 ptK MIRO begin to fade, but that near the base
temperature of 260 nK the amplitude is roughly independent of tempera-
ture. Figure 13.4b demonstrates that the MIRO should be insensitive to
minor heating effects and that the amplitude of MIRO is in fact that the
mobility of this sample at the base temperature in our cryostat is not limited
by temperature, but by the scattering processes in the sample.

Finally, the parallel field component was introduced by running a series
of sweeps of magnetic field at different values of tilt. Immediately, the effect
became apparent. For small fields, of order 0.5 T, the amplitude of the lowest
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order MIRO oscillations visible decreased (figure 13.4c).

109



4 T I T I T I T 4 T I T I T I T
- ——O0dB .
L —10a8 _
20dB
& L N | 1 &
S 1 _\ngﬂd \"\u o
ol 1oy BN
0 25 50 75 100
B, (mT) B, (mT)
(a) MIRO traces vs. perpendicu- (b) MIRO dependence on temper-

lar component of magnetic field for

different microwave powers.
measured in arbitrary units.

ature. At high temperatures (red,
Power 4 Kelvin), the effect is not visible.
Towards lower temperatures (blue,
750mK), the effect saturates and be-
comes insensitive to temperature.

4 1 I 1 I 1 I 1
= coso =1 -
3 L cosO =1/2 _
cos0 = 1/4

— B cose = 1/8 1
T 2L cos6 = 1/16 _
g A \ ]
& 1 ?«“\«_\ﬁ_—.v\j\v v ‘ .

O 1 I 1 1

50
B, (mT)

(¢) MIRO dependence on tilt angle. Note that low order oscillations (at larger
field) are damped at smaller tilt angles than higher order oscillations.
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13.7 Discussion

It was hypothesized that the observed amplitude reduction as a function of
tilt was caused by a change in 7,. The simplest model is that an additional
component to the scattering rate is introduced:

1 1 1
— = — 45— (13.2)

Tqg  Tq0 Tq

With that assumption in mind, equation 13.1 yields:

5p(0) oceA? sin(2me) * exp(—§5(lq)) (13.3)
AJAg = % _exp(—§5<%)) (13.4)

So, the attenuation factor due to the parallel field component should be
exponential in the increase in the scattering rate.

Measurements of oscillation amplitude were taken for various tilt angles,
for several oscillation orders. The amplitude damping factor A/Ay was ex-
tracted for the minima and maxima of the MIRO oscillations and plotted
against 1/e (which is proportional to oc Bj|) for various tilt angles. Assuming
that 0(=) is quadratic in By, A/A can be expressed in several different ways:

1
Tq

o tan?(6) EVBﬁ

B(0) ) = exp(_T) (13.5)

AJAy = exp(—T) = exp(— ;

The fitting parameter 5 is simple to extract for a set of amplitudes at a
given tilt angle. From a series of § values at different tilt angles, a can then
be extracted from a fit to the relationship 3 = atan?#. Figure 13.5 illus-
trates this analysis. The experimental data is consistent with the quadratic
assumption over many orders of magnitude of tan? 6.

111



105— -
Va
2F oy -
lE 5
Q F .
oF / -
O.IE— o E
) | | ]
00 02 04 06 1 10 100

1/e tan29

(a) Fit of the normalized oscillation (b) Fitting the function 3(6) optained
amplitude A/Aqy to determine [ for from the previous fits to determine
each tilt angle. a = 0.028 in equation 13.5.
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13.8 Summary

It was found that Microwave Induced Resistivity Oscillations (MIRO) are
indeed damped by the application of large parallel magnetic fields. Damping
is consistent with an increase in the single particle scattering rate 7,, which is
the quantum lifetime of the Landau levels and may indicate a change in the
scattering processes at work in the 2DEG. In this case, an in-plane magnetic
field of order 0.7 T was enough to halve the scattering time.

The explanation in terms of a change in 7, is consistent with a study
of Hall Induced Resistivity Oscillations (HIRO)[28]. This suggests that the
observations really are caused by a change in 7,, and not a MIRO or HIRO-
specific mechanism that has yet to be identified.

The extra scattering rate introduced by the parallel field is proportional to
the square of that field component. In this sample, the extra scattering rate
became dominant at just 0.7 T and continued to grow in good agreement with
the quadratic law up to nearly 5 T, the critical field of the superconducting
magnet that was used in this experiment.

The apparent disagreement between studies [60] and [43] may be ex-
plained by a degree of variability in this critical field value between different
samples. This result shows the importance of large parallel field effect on
quantum scattering times, which should be kept in mind when designing
quantum dot-based spin qubit devices.
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Chapter 14

Conclusions

In order to construct low-loss quantum communication channels with rea-
sonably high throughput over long distances, a technology such as the quan-
tum repeater is needed. The utility of such a device is clear, as it would
enable physically secure communication free from the eavesdropping. We
have demonstrated via performance modelling that for the purposes of con-
structing quantum communication links on a global scale, hybrid photon and
matter qubit devices such as spin/photon devices offer superior throughput
as a function of total link distance. In principle, spin qubit devices can
store quantum information from incoming photons, act as a heralded quan-
tum memory, and additionally perform full Bell measurement, something
not possible with linear optical devices. We have seen also that the success
probability of Bell measurement is the dominant factor in the throughput of
a long-distance quantum repeater chain, and so maximizing this probability
is key.

g-factor engineering of spin qubits is necessary for the photon to spin qubit
conversion schemes or the Bell measurement schemes illustrated in sections 6
and 5. Conceptual techniques for the manipulation of quantum well g-factor,
as well as theoretical calculations of effective electron g-factor in a double
quantum well as a function of electric field applied by a global gate, were
presented in section 7. For the double InAsP quantum well, a sign change can
be, in principle, induced in-situ by dynamically tuning this electric field for
particular quantum well compositions, thicknesses, and spacings, including
the one presented in section 7. Since the near-zero g-factor regime is necessary
for both the Bell measurement and photon to spin conversion techniques
presented here, this is an encouraging prediction for further work in this
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vein.

Samples prepared by CBE nanotemplated nanowire fabrication technol-
ogy were investigated, first by determining the limiting factors to device yield
and then by attempting to form a few-electron quantum dot. It was found
that the electrostatic gates frequently suffer from breakage at the apex and
base of the ridge devices for different reasons, but that both causes stem
from the over-growth of the cap layer. To correct the problem, measures
were suggested which may improve the yield by reducing the size of the cap.

Attempts to form few-electron quantum dots in an InGaAs ridge nanowire
were successful despite some device damage, presumably for the same reason
that planar and ridge-based InAsP quantum dots formed under and between
gates. Evidence was presented to support the conclusion that a non-uniform
random potential is created in the 2DEG by charge traps near the inter-
face between the epitaxial surface of the sample and the insulating oxide (if
present). A similar random potential was imaged previously via Scanning
Gate Microscopy (SGM)[1], and these fluctuations evidently can result in
the formation of quantum dots.

Finally, large (few Tesla) magnetic fields applied in the plane of a high-
mobility GaAs/AlGaAs heterostructure was found to dramatically increase
single-particle scattering. The scattering rate, as probed by Microwave In-
duced Resistivity Oscillations (MIRO), doubled at 0.7 T and continued to
increase according to a quadratic power law in the in-plane component of the
field. Since fields in excess of 1 T and frequently as high as 5 T are routinely
applied in spin qubit experiments, and since yet larger magnetic fields may
be required if g-factor engineering is employed to reduce the electron g-factor
to near zero, this is worth considering and making the effort to understand
in the future.

This work was completed with a view towards realizing a scalable quan-
tum repeater. Full Bell measurement of spin qubits and coherent conversion
of photon information to spin information have both yet to be demonstrated,
and engineering the g-factor conditions necessary to prove these concepts is
the next logical step of this research.

116



Appendices

117



Appendix A

Quantum Repeater Models:
Optical and Solid State
Schemes

In section 2, two performance models for two hypothetical quantum repeaters
were presented: an all-optical model with no heralded memory, and a hybrid
spin-photon model with heralded memory. The optical repeater’s transmis-
sion rate was given by equation 2.2, which included the unspecified function
F(N,L/Ly,I). Similarly, the hybrid model’s transmission rate (equation
2.3) was given in terms of G(FE;, N, L/Ly, I). The calculation of each of these
functions is the subject of this appendix.
Recall the meanings of the symbols in question:

E; :Efficiency of memory (input)

L :Length of an individual repeater link

Lo :Quantum channel’s characteristic absorption length

N :The number of direct entanglement distribution links (each of length L)

I :Number of round-trip communications allowed per memory coherence time

Note also that only G depends on E;. This is because the E; dependence
in the optical case is a simple exponential decay with increasing N, and thus
has been factored out of the function F.

The quantum repeater chain is assumed to consist of N links of length
L, and as many BSM and Bell emitter nodes as necessary for the particular
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repeater model in question. The entire repeater chain is modeled as a Markov
state machine consisting of those N links, each of which (at a given time)
is either ready or waiting. The number of links (N) defines the machine,
and the number of ready links (Nr) defines the state of the machine. The
complimentary number of waiting links (N—Nr) is also useful.

A Python program was written which calculates, plots, and outputs the
transmission rate (a fraction of the emitter generation rate, which is an un-
known variable not related to the choice of quantum memory or Bell mea-
surement platform). The program calculates a Markov state propagation
matrix, and repeatedly propagates that state I times (I is assumed to be
intelligently chosen small enough that errors are sufficiently unlikely and yet
the ultimate likelyhood of successfully establishing all N links is sufficiently
high. T have assumed an I value (for both repeater models, in the interest of
fairness) of 50. The code is included below. Python 2.7 is required, as well
as matplotlib (for plotting, optionally) and numerical python (numpy). The
python(x,y) distribution includes all of these tools, and can be found here at
time of writing: https://code.google.com/p/pythonxy/.

import numpy as np
# [Remove to skip plotting]
import matplotlib.pyplot as plt

from scipy.misc import comb
def attn(dB, L): return 10%xx(—dB/10.0xL)

## From a number of waiting links (N),
## what are the odds of reaching the new
## number of waiting links (n) given an
## individual link success probability (P)?
def nofN (P, n, N):

if n > N: return 0.0

return comb(N, n) * (1-P)**n % Pxx(N-n)

## Build the Markov matrix that propagates a

## machine of N links and individual probability
## P forward one iteration .

def markov (P, N):
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# A minor time—saving technique that
# remembers the last result if there
# was one, and just returns that when
# appropriate.
if markov.last [0] = P \
and markov.last [1] = N:
return markov. last [2]

# Computer the elements of the matrix

M = np.zeros( (N+1, N+1) )

for i in range(N+1):

for j in range(N+1):
M[i, j] = nofN(P, i, j)

return M
# Initialize the static wvariable ’“last’
# in the functor ’markov() .
markov.last = (0.0, 0, np.zeros( (1, 1) ))

## Computes the transmission rate for
## a set of parameters and a supplied
## helper function rate_h , which depends
## on the model.
def rate(dB, X, BSM, eff, I, ¢, rate_h):
# The function dynamically optimizes
# N to ensure the transmission rate
# 45 as high as possible.
Y = np.zeros(len (X))
N=1
for i, x in enumerate(X):
low = rate_h(dB, x, BSM, eff, N, )
high = rate_h (dB, x, BSM, eff, N+1, I)
# Make sure there are never more than 30 links.
while low < high and N < 30:
N+4=1
low = rate_h(dB, x, BSM, eff, N, I)
high = rate_h (dB, x, BSM, eff , N+1, I)
print "D={},_trying N={}” .format (x, N)
Y[i] = low

120



plt.plot (X, Y, c¢) # [Remove to skip plotting]

return (X, Y)

# 1: All—Optical model parameters
conditions = |
# (link attenuation [dB], BSM prob,
# memory inputxoutput efficiency)

(0.2, 0.5, 0.5%0.5, 'k’),
(0.2, 0.5, 0.9%0.9, 'g’),
(02, 05, 107 7b7)’

]

## The all—optical helper function , F.
def rate_F (dB, D, BSM, eff, N, I):
L = D/N
P = attn (dB, L)
M = markov (P, N)
i =0
# Initialize the state wvector. Set the
# initial probability for the starting
# state to 1.
state = np.zeros (N+1)
state[—1] = 1.0
# Repeatedly propagate the state wvector
# by the Markov matrix the allowed number
# of times (I).
for i in range(I):
state = M.dot(state)
return eff*xN x BSMx«xN *x state [0]

# Calculate and plot the results as a function

# of total distance, using matplotlib (optional).

X = np.linspace (0.0, 2000.0, 200)

Y = [0]xlen(conditions)

for i, ¢ in enumerate(conditions):
X, Y[i] =\

rate(c[0], X, c[1], c[2], 50, c[3], rate F)

’

plt.yscale(’log’) # [Remove to skip plotting]
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plt .show () # [Remove to skip plotting]

# File output, one data point per line.
file = open(’optical’, 'w’)
for p in zip (X, xY):
tmp = [7{}” .format(i) for i in p]
tmp = 7,7 . join (tmp) + 7\n”
file . write (tmp)
file.close ()

# 2: Hybrid Scheme parameters
conditions = |

# (link attenuation [dB], BSM prob,
# memory inputxoutput efficiency)

(0.2, 0.5, 0.5, 'k’),
(0.2, 1.0, 0.5, 'r’),
(0.2, 0.5, 0.9, ’g’),
(0.2, 0.5, 1.0, 'b’),

## The hybrid helper function, G.
def rate G (dB, D, BSM, eff, N, I):
L = D/(2xN)
P = attn(dB, L) x eff
M = markov (P, 2xN)
1 =0
state = np.zeros (2xN+1)
state[—1] = 1.0
for i in range(I):
state = M.dot(state)
return BSMx*xN * state [0]

# Calculate and plot the results as a function
# of total distance, wusing matplotlib (optional).

X = np.linspace (0.0, 2000.0, 200)
Y = [0]*len(conditions)
for i, ¢ in enumerate(conditions):
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X, Y[i] =\
rate(c[0], X, c¢[1], c[2], 50, c¢[3], rate.G)
plt.yscale(’log’) # [Remove to skip plotting]
plt .show () # [Remove to skip plotting]

# File output, one data point per line.
file = open( hybrid’, 'w’)
for p in zip (X, xY):
tmp = ["{}” .format(i) for i in p]
tmp = 7 ,” . join (tmp) + 7\n”
file . write (tmp)
file.close ()
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Appendix B

Singlet Rotational Invariance

Suppose U is a unitary transformation of a single qubit. In terms of the
computational basis states |[0> and |1>, its operation generally has the form:

Ul0> = al0> + B|1>
Ull> = =p"|0> + o™[1>

where o and 8 are complex numbers. This is true because any unitary U
is equivalent to a basis change, and thus two states which were orthogonal
before must be orthogonal after the action of U.

Consider the operation of U on the spin singlet:

(U U)(|01> —]10>) = (a]0> + |1>)(—=F%|0> + a*|1>) — (—=F"|0> + a*|1>)(«|0> + 5]1>)
= —af*|00> + Ba*|11> — |B°|10> + |«[?|01>
+ Ba*00> — af*[11> — |a)?|10> + |5]7|01>
= (01> — |10>

Therefore, any unitary operator U applied to both qubits (U @ U) does
not change the state.

Furthermore, since a change to a new orthonormal basis can be expressed
as a unitary change of basis operator U such that |0'> = U|0> and |1'> =
Ull> and |0'>, |I’> are the new basis vectors, the spin singlet appears
identically in any orthonormal basis (i.e. [01> — [10> = [0'1"> — [1'0'>).
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Finally, if either qubit is projected into any state by a projective mea-
surement (suppose the projected state is |0'>), the other qubit must be left
in the orthogonal state |1">.
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Appendix C

Distilling Secrets and
Amplifying Privacy

Two algorithms will be presented below, each correcting the problem of either
an eavesdropper having gleaned partial information about a shared key or
errors having crept into the keys during the process of sharing them.
Central to both algorithms is the notion of a pairwise shuffle. That is
an operation which randomly exchanges the ith bit of two strings with the
same random bit in both strings. Therefore, identical strings will become
shuffled, but still identical. 010001, 010001 could become 101000, 101000,

for example.

C.1 Simple Error Correction

Suppose Alice and Bob have a pair of keys that they believe to be nearly
identical, but which may contain errors. In order to correct errors, one
inefficient but easy to understand method is to divide the keys into equal
substrings, perform parity checks on the substrings, then discard substrings
which do not have equal parity in both keys. This certainly deals with
cases where there is at most one error per substring. The procedure can
then be repeated to further increase confidence, shuffling the keys before
each repetition to ensure than two errors are unlikely to appear in the same
substring more than once, thus escaping detection. In this way, Alice and Bob
can use two long error-prone keys to generate a shorter shared key in which
they have much higher confidence. Measuring the parity of each substring
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and discussing it publicly gives Eve information, however, which must be
corrected if privacy is to be preserved.
Alice Bob
010001 | 010000 | There is one error.
010|001 | 010|000 | Erroneous substring identified.
010 010 The substring is discarded.

Example:

C.2 Simple Privacy Distillation

Eve, a third malicious party, may be assumed to have some information
about the keys at the beginning, perhaps in the form of knowing the values
of some of the bits, or she may learn from public discussion during error
correction. To correct this, Alice and Bob can subdivide each key into two
equal-length strings (discarding the extra bit if applicable). They can then
XOR one substring with the other. To predict the outcome of the XOR,
Eve must know the values of both bits. She therefore loses information very
quickly if she did not already know the values of most of the bits (as Alice
and Bob do). Alice and Bob can shuffle their keys and repeat this (very
inefficient, but illustrative) procedure, each time halving the length of their
key but drastically increasing their confidence in its secrecy.

Alice Bob

010001 010001 | Eve knows the values of two bits.

010 @ 001 | 010 ¢ 001 | XOR operation performed.

011 011 Two shorter, random keys result.

These two algorithms are terribly inefficient, but serve to illustrate the
concept. For a more efficient algorithm which can deal with an adept eaves-
dropper who has access to unlimited computing power and has the ability to
manipulate the private communication channel, consult [4].

Example:
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