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Abstract

Transitioning our cars to run on renewable sources of energy is crucial to addressing concerns
over energy security and climate change. Electric vehicles (EVs), vehicles that are fully or
partially powered by batteries charged from the electrical grid, allow for such a transition.
Specifically, if hydro, solar, and wind generation continues to be integrated into the global
power system, we can power an EV-based transportation network cleanly and sustainably.

To this end, major car manufacturers are now producing and marketing EVs. Unfortunately,
at the time of this writing, drivers are slow to adopt EVs due to a number of concerns. The
two greatest concerns are range anxiety—the fear of being stranded without power and
the fear that necessary charging infrastructure does not exist—and the unknown return on
investment of EVs over their lifetime.

This thesis presents computational approaches for measuring and mitigating EV adoption
barriers. Towards measuring the barriers to adoption, we build a sentiment analysis system
for programmatically mining detailed perceptions towards EVs from ownership forums. In
addition, we design the most comprehensive electric bike trial to date, which allows us to
study several aspects of electric vehicles, including range anxiety, at a much lower cost.
Towards mitigation, we develop algorithms for managing a network of gasoline vehicles to
be used by EV owners when a planned trip exceeds the range of their EV. Further, we design
a model for taxi companies to compute whether it is profitable to transition a fraction of
their fleet to EVs.

To summarize our findings, we find that sentiments towards EVs are very positive, especially
regarding performance and maintenance, but there are concerns over range anxiety and the
higher initial price of EVs. There is a delicate balance between these two adoption barriers.
Larger batteries cost more, so alleviating range anxiety with larger batteries leads to pricier
vehicles. Conversely, EVs with low range capabilities can also induce costs, because drivers
and fleets that own EVs may have to often acquire (or own as an additional vehicle) a
gasoline vehicle to fully meet their mobility demands. As a result, EVs are best suited for
drivers and fleets that are able to make long-term return on investment calculations, and
whose mobility patterns do not include many very long trips. Fleets can greatly reduce their
operating costs by adopting EVs because they have the capital to make upfront investments
that are profitable long-term. We show that even under conservative assumptions about
revenue loss due to battery depletion, EVs are already profitable (the company saves more
than enough money to recoup all initial investments) for a large taxi company in San
Francisco. Similarly, EVs can be profitable for two-car families (those who already have a
gasoline car) and for those who can easily acquire a gasoline vehicle when needed, hence
our work on sizing networks of gasoline-vehicle pools for EV owners. Finally, we find that
not only are electric bikes and EVs operationally similar, the sentiments towards the two
technologies are as well. Advancements made in the battery sector, especially those that
reduce costs or weight, are likely to accelerate sales in both markets.

The results presented in this thesis, as well as in prior work, suggest that EVs are suitable
for many drivers and will hence serve a role in our eventual transition away from fossil fuels.
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Chapter 1

Introduction

If oil demand outpaces available supply, the effects could be devastating to the global
economic, transportation, and food systems [HBW05, Llo10, Bun10, Ele09, NPK+11]. As
evidence, ten out of the past eleven major recessions, including the “Great Recession" of
2008-2009, followed or coincided with a sharp increase in oil prices [Ham11, Ele09, U.S14c],
and our modern food supply and agricultural systems—everything from farming equipment
to food transport to fertilizer and pesticide production—is dependent upon oil [NPK+11].

According to OPEC, there are ≈40 years left of reserves remaining at current consumption
levels [OPE12, Int12]. However, light sweet crude is nearing depletion [GHOC11, HBW05].
Remaining crude is harder to find and heavier, i.e., it requires much more refining. Con-
sequently, the energy returned on energy invested1(EREOI) of finding oil has decreased
exponentially from 1200 in 1919 to just 5 currently [GHOC11]. Moreover, many remaining
reserves are located in oil sands and in offshore deposits, both of which are environmentally
dangerous to extract in addition to having low EREOIs. Tar sands, for example, have an
EREOI of only 1.6 [Inm13]. The 2010 Deepwater Horizon offshore drilling disaster is now
cited as the worst human-induced environmental disaster in U.S. history [Tim10, RFI10],
and the 2013 Bakken oil shale spill is one of the largest on-shore oil spills in U.S. history
[Glo13]. practice. Finally, oil supply is not a robust system. More than 80% of all remaining
proven reserves are controlled by OPEC [OPE12] so an embargo would threaten global
supplies, which has historical precedence: the 1973 oil crisis [U.S13b].

To remove our dependence on oil and avert such problems, we should begin by transitioning
light duty vehicles (LDVs), which include passenger cars, to use an alternative fuel source2.
The question then becomes, what should we fuel our cars with? There is strong evidence
that the answer is grid generated electricity. That is, we should transition our internal
combustion engine vehicles (ICEVs) to electric vehicles (EVs) instead of cars powered by
natural gas, hydrogen, or ethanol:

1The EREOI gives the number of energy units returned for every unit invested.
2 LDVs dominate world oil consumption. As a case study, the U.S. LDV fleet alone requires >8 million

barrels of petroleum per day, constituting 60% of U.S. transportation energy use and 42% of all U.S. petroleum
use [U.S13d, U.S13c]. As a comparison, air travel represents only 9% of transportation energy use and 2.6%
of all oil use [U.S13d, U.S13c].
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• It is possible to convert ICEVs to run on natural gas, but natural gas has a much lower
EREOI than other grid generated electricity sources like coal. Even clean renewables
such as hydro and wind have EREOIs of 40+ and 20 respectively, compared to just 7-10
for natural gas [Inm13, Hei09]. Moreover, the EREOI of natural gas is steadily declining
because natural gas is often found alongside oil [GHOC11, Hei09]. Finally, natural gas
is a finite3 fossil fuel. Even if conditions become perfect (increased discoveries, better
searching and production techniques, large increase in EREOI, etc) to transition LDVs
to natural gas, it will only represent an interim transition. Transitioning our cars from
one fossil fuel to another, especially one already used for critical applications such as
home heating, simply delays our problem, and does not reduce CO2 emissions either.

• EVs are currently 6-10 times more efficient than hydrogen powered vehicles [Mac09].
Hydrogen suffers from multiple problems [Mac09, Hei09]. First, it is only a storage
medium like a battery; energy must be converted to and from hydrogen to use it as a
transportation fuel, and this double-conversion process is inefficient. Second, hydrogen
has low energy density even when stored at very high pressures, requiring vehicles to
have impractically large storage tanks. Finally, hydrogen leaks and cannot be stored in
vehicles for long durations of time without dissipating.

• Ethanol, a fuel produced from corn and other crops that many propose as an alternative
to gasoline, is the easiest to dismiss: it currently has a negative EREOI; more energy is
invested than returned [Inm13]. Moreover, ethanol is produced on land that can otherwise
be used for agriculture and livestock.

• EVs are energy efficient. To compare to our current cars, 75% of gasoline in an ICE is
wasted as heat and less than 25% of input fuel is converted to useful energy [Mac09].
This remains true after a century of developments. However, EVs are 60-90% efficient
in converting input energy4 to useful energy[Mac09]. As an example, Tesla claims the
Model S is 88% efficient[Tes14a].

• EVs can be powered using sustainable and renewable sources of energy including solar,
wind, and hydro. See, for example, the E-carsharing Sylt project offering EV rentals
that are charged using 100% renewables [E-W14]. Moreover, it is more efficient to store
renewable sources directly using batteries than to convert them to and from hydrogen.

Our hypothesis is thus: the majority of LDV ICEVs in our transportation system will even-
tually be replaced with EVs. This is also the view of several major auto manufacturers who
are now mass-producing EVs.

Transitioning from century-old ICEVs to EVs represents a large change for drivers. EV sales
3Currently the primary battery technology for EVs is Lithium Ion (LiON) batteries, which are 3% composed

of lithium, a finite metal [Mac09]. The lithium in used batteries is 100% recyclable although the recycling
process is currently unprofitable [Kum13]. Moreover, the concept of storing grid generated electricity in a bat-
tery, i.e., an electric vehicle, is independent of the battery technology—future EVs may use a different battery
technology to store electricity than LiON. Battery chemistries currently under research and development, e.g.,
phosphate and manganese based batteries, have little or no valuable metals [Kum13].

4By input energy we mean “from the charging outlet", but there are also transmission and distribution
losses that sum to about 7% between the power plant and the charging outlet [U.S12].
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are steadily increasing [Ele14] but are still compose a negligible amount (1.6% in August
2014 [Arg14]) of total LDV sales. From the comprehensive literature review discussed in
§3, we conclude the three most prominent adoption barriers are as follows.

1. Pure electric vehicles, or “BEVs”5 must be recharged between trips and have limited
range on a single charge, compared to ICEVs which can be refueled in minutes at widely
deployed stations. Some BEV owners and prospective buyers consequently have range
anxiety, the term given to the fear of depleting their batteries before reaching their
destination. This term also refers to the fear that,for the foreseeable future, BEVs will
be unusable for long trips.

2. EVs have a higher upfront purchase price than ICEVs. However, the cost per km driven
using electricity is significantly lower than the cost per km driven on gasoline, so over the
lifetime of the vehicle drivers can recoup some or all of their initial investment through
fuel savings. Most drivers cannot or do not compute this long term return on investment
(ROI) when purchasing a vehicle, thus are wary to pay the higher initial price of EVs
despite possible long term savings. Moreover, the resale price is not known.

3. The lack of detailed knowledge of how early adopters of EVs perceive their vehicles
is also a barrier to wider adoption. For example, early adopters’ perceptions can help
manufacturers build improved EVs that more drivers are likely to adopt, and can help
marketers target EVs appropriately (i.e., EVs are not well suited for all mobility patterns
or geographical regions). Unfortunately, field trials of sufficient size and length are very
expensive to conduct, so opinions towards EVs have mostly been elicited from non-EV
drivers through mass surveys.

Other barriers have also been cited in the literature, but the above are the three most cited
barriers to adoption, so this thesis focuses on three problems. Specifically, this thesis is
organized as follows:

• We overview EVs and their corresponding technologies in Chapter 2.

• We present a survey of related work in this area in Chapter 3.

• To determine sentiments towards EVs, we present a system that mines perceptions from
online ownership forums in Chapter 4.

• Towards alleviating range anxiety, Chapters 5 and 6 present work on sizing networks of
ICEVs to be used by BEV drivers when a planned trip exceeds their BEV range

• We present an ROI model for taxi fleets, a viable market segment for EV adoption, to
determine when it is profitable to transition to EVs in Chapter 7.

• We design the most comprehensive electric bike trial to date in Chapter 8. This is in
effort to explore the barriers to adopting this form of EV in North America6.

• We summarize our contributions and conclude in Chapter 9.

5Chapter §2 gives an overview of the three types of commercially available EVs.
6Electric bikes, two wheeled EVs as described in §2.2, are widely adopted in countries like China where car

ownership (EVs and ICEVs) are prohibitively expensive, but are seldom adopted in North America.
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Chapter 2

Technology Overview

This chapter presents an overview of the vehicle technologies explored in this thesis. In §2.1,
we describe the three major types of EVs. We overview electric bikes in §2.2, as they are the
subject of Chapter §8. An overview of battery technologies is given in §2.3. We describe the
“refueling” process of EVs, charging, in §2.4. Finally, a glossary of domain specific terms is
given in §2.5. For further information on these technologies, please refer to the IEA [IEA13],
McKinsey [MHN+12], and Young et al. [YWWS12].

2.1 Electric Vehicles

Most of this thesis focuses on measuring and mitigating the adoption barriers to electric
vehicles (EVs). Here we describe t/he three types of EVs available as of 2014. Throughout
this thesis, we use the term “ICEV" when discussing standard gasoline cars powered by
internal combustion engines (ICEs), “EV” when the statement applies to both BEVs (§2.1.1)
and PHEVs (§2.1.2), and “PHEV”/“BEV” when the statement applies only to the specific
type of EV.

2.1.1 Battery Electric Vehicles

Battery Electric Vehicles (BEVs) are fully powered by batteries and do not have an ICE. We
largely focus on the adoption of BEVs because these vehicles use no petroleum. Because
BEVs do not have an ICE, they have a limited range on a single charge. When the battery
is depleted, the vehicle cannot be used until the battery is recharged. Fully recharging takes
on the order of hours and is dependent on the battery size and the specifications of the
BEV and charging equipment (see §2.4).
The two best selling BEVs at the time of writing are the Nissan Leaf and the Tesla Model
S. In 2013, Nissan sold 22,610 Leafs and Tesla sold 22,450 Model Ss [Ohn14, Voe14]. The
Leaf and the Model S have ranges of 160km (24kWh battery) and 480km (84kWh battery),
and MSRPs (after tax incentives) of $21,500 and $63,570 [Nis14a, Tes14c] respectively.
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The Nissan Leaf debuted much earlier than the Tesla so it is used as the “standard” BEV,
primarily with respect to range, throughout this thesis. The Model S began selling after
most of the research in this thesis was published.

2.1.2 Plug In Hybrid Electric Vehicles

Plug-in Hybrid Electric Vehicles (PHEVs) have a grid-chargeable battery and an ICE. PHEVs
are powered from the battery for first portion of a trip without using the ICE. The standard
notation to describe a PHEV is “PHEVxxm", where xx refers to the distance in kilometers
(km) the PHEV is expected to drive using only the battery, known as the “all electric range”
(AER). Once the battery is depleted, the ICE is used for the remainder of the trip and the
battery may continue to power electronics onboard the vehicle1. PHEVs do not have range
limitations due to the ICE.

Currently, the best selling PHEV is the Chevrolet Volt. The Volt has an AER of 64km
(16kWh battery) and has an MSRP of $26,685 after tax incentives [Che14b]. In 2013,
Chevrolet sold 23,094 Volts [Voe14].

2.1.3 Hybrid Electric Vehicles

Hybrid Electric Vehicles (HEVs) are ICEVs fitted with a small onboard battery and electric
motor. The battery is charged by capturing energy from regenerative breaking and pow-
ers the electric motor which assists with onboard electronics and acceleration. HEVs are
completely dependent on petroleum and are not charged from the grid, though they have
higher fuel efficiencies than ICEVs. Therefore, this technology is not studied in this thesis.
To date, the best selling HEV is the Toyota Prius [Toy14a], which currently (2014) has an
efficiency of 51mpg and an MSRP of $24,000.

2.1.4 Price Comparisons

Here we briefly compare the price of the aforementioned EVs to each other and to compa-
rable ICEVs. We make these comparisons because, as discussed in our literature review in
§3, the relatively high initial cost of EVs remains one of their biggest adoption barriers.

First, because a BEV’s battery constitutes a large fraction of the vehicle price, and the
cost of batteries increases linearly with size (see §2.3), the price of BEVs tends to increase
linearly with range. This can be seen, for example, when comparing the Model S with the
Leaf; the Model S has 3x the range and costs 3x as much. Their identical sales thus far

1Some PHEVs operate in "blended operation" mode, where the battery and ICEV are always both used
in contrast to using the ICE only upon depletion. However, most mass market PHEVs like the Volt operate
as described above, so we only consider PHEVs of this type for simplicity.
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suggests there are markets for both higher range EVs for a higher price and lower range
EVs for a lower price.

Second, because PHEVs have both an ICE and a battery, they cost more than BEVs with
comparable battery sizes. The Volt, while only having a 16 kWh battery, costs $5,000 more
than the Leaf, which has a 24 kWh battery. The premium is due to the ICE and the need
for a more complicated drivetrain that integrates both the ICE and battery.

To compare the Leaf and Volt to similar non-luxury ICEVs, a 2014 Toyota Corolla is $16,800
MSRP [Toy14b] and a 2014 Honda Civic is $18,390 MSRP [Hon14]. Thus, the Leaf has
a ≈$3-5k premium over comparable ICEVs and the Volt has an ≈$8-10k premium. While
the Model S costs significantly more than the Leaf due to its larger battery and range, it
is marketed as a luxury sports car and contains many vehicle features found only in luxury
ICEVs. The Model S is comparable to the Audi A7 ($64,500) [Aud14] and the Mercedes-
Benz E Class ($58,000) [Mer14].

Finally, many sources predict that EV prices will fall due to decreasing battery prices (see
§2.3) and future competition. At the time of writing, the EV market is still in its infancy;
currently, the Leaf, Volt, and Model S are the only three PHEVs/BEVs with non-trivial
sales. However, many manufacturers are soon releasing EVs hoping to gain a share of this
upcoming market—three times as many more models are coming to market in late 2014
and 2015 alone than are available to date [Ing14]. The next releases will occur in late 2014
when BMW begins selling three EVs [BMW14].

2.2 Electric Bikes

Chapter §8 focuses on barriers to electric bicycle (“eBike") adoption. EBikes are bicycles
extended with an on board LiON battery. When desired, the rider can turn on various levels
of electric assistance, provided the battery is not depleted, for easier travel. The major
benefit of eBikes v.s. their conventional counterparts is easier traveling over long distances
and in hilly areas. EBikes are in the scope of this thesis for three reasons:

1. They are a form of petroleum-free electric transit, and have no emissions.

2. They are widely adopted in some regions like China where car-ownership, including EV
ownership, is prohibitively expensive, but are much less adopted in other regions like
North America. However, little is known about why there is such a disparity in sales.

3. They are essentially two-wheeled PHEVs2. When the cyclist is using partial or full electric
assistance, it is analogous to a PHEV prior to battery depletion, and when the cyclist
must pedal because the battery is depleted, it is analogous to a PHEV engaging the ICE.
In addition, eBikes use the same battery technology as EVs and are charged identically.
2A minor distinction is that a PHEV engages the ICE usually only once after the battery is depleted,

whereas an eBike user can alternate, if they wish, between pedaling and electric assist.
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EBikes typically provide about 50km of range using a ≈.350kwh battery and take about
five hours to charge. The eBike studied in Chapter §8 is discussed in detail in §8.2.1 and is
shown in Figure 8.2.

2.3 Batteries

Currently, the two major battery technologies used in EVs are nickel metal hydride (NiMH)
and Lithium-ion (LiON). Many HEVs, like the Prius, use NiMH batteries because they
predate BEVs and PHEVs like the Leaf, Tesla, and Volt. All current PHEVs/BEVs use
LiON due to its increased energy density v.s. NiMH batteries. For a detailed discussion of
battery technologies and their operation, see Young et al. [YWWS12].

Two related research areas (beyond the scope of this thesis) regarding batteries are increas-
ing energy density and decreasing cost. Building EVs comparable to ICEVs has been chal-
lenging because gasoline has very high energy density, 3,000 Wh/kg, compared to current
battery technologies such as LiON (whose energy density is only 120 Wh/kg). Lower energy
density means large batteries are needed to build EVs with significant range adding to weight
and cost. Fortunately, the price of LiON batteries has fallen fast from $1000/kWh in 2008
to only $450/kWh in 2013, and prices are projected to continue falling. Tesla recent an-
nounced their “Gigafactory" to produce LiON batteries at a massive scale [Tes14b], hoping
to drive prices below $200/kWh. McKinsey projects this will happen by 2020 [MHN+12], not
only because of demand from the EV industry, but also because LiON is the primary battery
technology used in ubiquitous computing devices such as cell phones, laptops, and tablets
[MHN+12]. To quote, “Many advances in battery technologies are likely to be achieved first
in consumer-electronics applications where manufacturing volumes and fierce competition
facilitate price reductions before making their way into the automotive industry.”.

Future battery technologies may have much higher energy densities than current LiON
batteries. Two technologies under development are Lithium-air (Li-A) and Lithium-sulphur
(Li-S) batteries [VN14]. IBM’s “Battery 500 Project" has the goal of “improving battery
energy density tenfold" using Li-A batteries [IBM12]. To date, IBM researchers have demon-
strated the fundamental chemistry of the charge-and-recharge process for Li-A batteries.
In 2012, the Department of Energy granted the US Center for Energy Storage Research
$120M for Li-S research. The stated goal is to make cells “five times more energy dense,
and five times cheaper, in just five years". When Li-S was first proposed over 40 years ago,
the batteries had very short lifespans, only 100 charging cycles, but modern Li-S cells can
now maintain half of their capacity after 1500 cycles, a performance on par with LiON
cells [VN14]. However, these Li-A and Li-S battery technologies are still in the research and
development stage and are not currently available to consumers.
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2.4 Charging (“Refeuling")

BEVs and PHEVs are "refueled" by plugging them into a charging unit with a connection
to the electrical grid, a process known as battery charging. These units transfer power from
the grid into the battery at a charging rate dependent on the type of charging unit, the
specifications of the EV, and the availability of power in that location. This process takes
under an hour to many hours depending on the charging rate. There are three standardized
levels of charging:

1. Level 1 charging, commonly referred to as “slow charging” or “overnight charging”, is the
slowest form and uses a 110V AC connection found in any standard electrical outlet in
North America. A typical charge time from depleted-to-full for a BEV160 like the Leaf
is 8-12 hours and much longer for BEVs with large batteries like the Model S.

2. Level 2 charging uses a 220V AC connection, which is standard in Europe and also present
in most North American homes for large appliances. Typically, EVs can be charged in
half the time using level 2 charging compared to level 1 charging.

3. Level 3, commonly referred to as “quick charging” or “DC fast charging", uses a ≥480V
DC connection. Level 3 chargers have very high charging rates. For example, the Tesla
Superchargers (shown in Figure 2.1) charge up to a rate of 120 kW, which is capable
of replenishing half of the 84kWh battery in 30 minutes [Tes14c]. This is equivalent to
fully charging a Leaf in 15 minutes.

The other option to refuel EVs is battery switching. Here, a battery switching station
physically changes the batteries in an EV. A user comes to the station with a nearly-depleted
battery and the battery is replaced with a fully charged battery. This process happens in a
matter of minutes. The depleted batteries are then charged at the switching station. This
type of refueling is similar to petroleum vehicles, where the vehicle is refueled in minutes
instead of hours. The first major manufacturer of switching station infrastructure, Better
Place, is recently (2013) defunct [Cha14a]. However, other EV manufacturers, such as
Tesla [Tes14c], have an interest in battery switching.

2.5 Glossary

The following terms associated with EVs are used throughout this thesis:

• Battery charging: refueling an EV by plugging the vehicle into a charging outlet.

• Capacity: the amount of energy (usually stated in kWh) that can be stored in its battery.

• Discharge rate: the rate at which the EV consumes energy in kwh/km.

• Kilowatt (kW) & Kilowatt-Hour (kWh): a kW is a unit of power equal to 1000 watts.
A kWh, the basic unit of energy in which EV batteries are described, is the energy
consumed by a device drawing a kW of power for one hour (3,600 joules).

8



Figure 2.1: A Tesla Model S charging at a Level 3 PEVSE pillar (“Supercharger"). Image source:
Tesla [Tes14c].

• PHEVxx: refers to a PHEV that can be driven for xx km (on average) on battery before
the ICE engages.

• (Public) Electric Vehicle Supply Equipment ((P)EVSE): commonly referred to as “charg-
ing stations" or “charging points", these stations deliver electrical energy from an elec-
tricity source to charge an EV’s batteries. “Public" is used when referring to a charging
station outside of the home. EVSE can be a standard electrical outlet, but most EV
manufacturers sell dedicated PEVSE pillars that include additional functionality, e.g., al-
lowing the charging rate to be controlled by a smart phone. Figure 2.1 shows an example
of a PEVSE pillar (Tesla’s Supercharger).

• Range: the expected distance it can travel given normal driving conditions when fully
fueled (using petroleum for ICEVs, electricity for BEVs, and both for PHEVs). PHEV
manufacturers additionally state the range that can be driven using electric power before
the ICE is used.

• Regenerative Braking: a process that stores some of the energy lost in the braking
process back into the EV battery.

• State Of Charge (SOC): the remaining charge level of an EV battery, analogous to the
remaining fuel level in an ICEV.
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Chapter 3

Related Work

This chapter presents related work in the following four areas:

1. Gauging drivers’ perceptions towards EVs and eBikes (§3.1)
2. Range anxiety (§3.2)
3. Determining the ROI for drivers and fleets transitioning to EVs (§3.3)
4. Using GPS to infer mobility demands (§3.4)

The first three directly correspond to the three areas explored in this thesis as discussed in
Chapter 1. In addition, several of our methodologies depend on measuring drivers’ mobility
patterns from GPS traces, so related work in this area is also presented.

To complement the rest of this section, we refer the reader to the Electrification Coalition
whitepaper [Ele09] and Boulanger et al. [BCMW11] for excellent overviews of the EV
ecosystem. These reports overview EVs and discuss the barriers to adoption, consumer
education, the adoption of charging standards, PEVSE deployment, battery technology,
and the interaction between EVs and the electrical grid.

3.1 Gauging Driver Perceptions

Understanding consumer perceptions is critical for manufacturers that want to build EVs
that drivers want to adopt. Researchers and manufacturers have thus far used two primary
tools to identify drivers’ perceptions towards EVs. First, many have conducted field trials
where participants were given EVs to drive and were periodically interviewed about their
experiences. Others have interviewed drivers as to their perceptions towards EVs. These
papers are described in §3.1.1 and §3.1.2 respectively. Morton et al. [MSA11] who sum-
marizes other techniques used in prior work to gauge drivers’ perceptions including rational
choice theory, social interaction theory, prospect theory, and theory of planned behavior.
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3.1.1 Field Trials

Electric Vehicle Field Trials

In this section we discuss several EV field trials. In these trials, participants were supplied
with EVs and monitored. Monitoring consisted of drivers recording their trip information in
travel diaries, surveys, and interviews throughout the trials. In some cases, vehicles were also
fitted with GPS data loggers that recorded location and charging information. The primary
purpose of conducting field trials is to determine how perceptions towards EVs change as
drivers become more experienced with the technology.

While field trials are useful for drawing conclusions about drivers’ experiences with and
perceptions towards EVs, they are subject to at least three limitations:

1. Field trials are expensive because multiple EVs must be purchased or leased for the trial.
It is therefore expensive, especially for academic researchers, to conduct field trials with
a large number of participants for significant durations.

2. During shorter trials, drivers may not have time to adjust to driving BEVs or have time
to derive well-informed conclusions. As a consequence of (1), conclusions drawn from
field trials are usually drawn from a small number of still-inexperienced drivers, hence
they may not be widely applicable.

3. Some drivers stated they changed their normal driving habits during the trials to fully
explore and “push" the vehicles’ capabilities, thus the results may not indicate whether
EVs are suitable for their “normal" driving behavior. This behavior is similar to the
Hawthorne effect, which states subjects in an experiment often alter their behavior for
the duration of an experiment [Mac07].

To summarize, it is very expensive to conduct large (in terms of number of participants)
and long (duration) field trials, but conclusions from smaller and shorter trials may not
be valid. Here we present the parameters (participants, location, length of duration, data
collection methods, vehicle specifications) of the most significant (in terms of size and
duration) field trials that have taken place. We first review the details of each trial, then
present the common conclusions drawn from these trials.

Bunce et al. [BHB14] present results from the Technology Strategy Board’s UK based Na-
tionwide Ultra Low Carbon Vehicle Demonstrator Programme. 135 participants completed
questionnaires and were interviewed prior to the trial and after driving the EV for three
months. Some drivers continued driving the vehicle for an additional nine months. Most
drivers were charged a few hundred pounds per month to lease the EV, in contrast to other
trials where the vehicles were supplied to participants. The nine types of BEVs evaluated
had different vehicle specifications. The vehicles were fitted with GPS loggers that also
record charging metrics, but the exact data collected from the loggers is not discussed.
Everett et al. [EBH+11] present preliminary results as part of the same program.

Franke et al. report on the “MINI-E trial" in Germany [FK13]. The trial consisted of two
sub-trials where 40 participants drove BEVs for six months and were interviewed prior to
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the trial, three months into the trial, and again when the trial was complete. The BEVs
were MINI E Coopers with a 28kWh battery pack and a range of 160km. Charging habits
were recorded by the drivers through travel diaries, and the cars were fitted with GPS
data loggers to record location, speed, parking habits, and time of use. The authors find
a large disparity between drivers’ range preferences and their range requirements. Pre-trial
and post-trial surveys of the participants about their range preferences indicated that a
priori, drivers expected ranges to be much higher than their average needs, but these range
expectations decreased throughout the trial as EV experience increased.

Turrentine et al. [TGLW11] report results from the US portion of the same “MINI-E trial".
235 drivers participated (using the same BEVs as the prior study) for one year, and 54 of
these drivers were interviewed further for the report. They used travel diaries and interviews
to collect information. Drivers in this study had to lease the (reasonably expensive) vehicles
to participate; most of the drivers had higher than average incomes.

Graham-Rowe et al. [GRGA+12] present results from a one-week UK PHEV & BEV trial.
40 drivers participated, 20 of whom drove a BEV and 20 of whom drove a PHEV. The BEVs
were Mitsubishi iMEVs and Citroen C1s that had ranges of 120km and 144km respectively.
The PHEVs were Toyota Pruis PHEV48s1. Participants were interviewed at the conclusion
of the study. The researchers were primarily interested in participants’ views on EV cost,
their confidence in the technology, whether they felt EVs were still in their infancy, and
whether they were willing to adapt their behavior to purchase an EV.

Cenex [Car10] held a six month BEV field trial. They gave four BEVs with an average range
of 72km to 10 different fleet organizations in the UK. The BEVs were driven for one to
four weeks by each organization, with a total of 195 participating drivers. The vehicles were
equipped with GPS data loggers that recorded extensive charging and location information.
Drivers were questioned prior to and after their test trial. This study was uniquely focused
on whether company fleets present an early adoption market for BEVs. Kurani [Kur09]
interviewed 34 drivers following a four week PHEV trial as part of the same program.

The trials suggest that perceptions towards EVs generally improve with EV experience. Here
we summarize the most important conclusions from these trials:

• Drivers enjoy the advantages EVs have over ICEVs, e.g., increased acceleration, lower
carbon emissions, lower noise levels, and the need to brake less often2 . The performance
and handling of EVs are perceived as advantages during post-trial interviews.

• Drivers find the charging process easy but express concern over plug design and stan-
dardization. Drivers want the ability to charge their EV at all EVSE stations without
concerns of plug compatibility.

• Drivers overestimate the amount they will use public charging infrastructure (PEVSE).
During pre-trial interviews, many drivers stated they would not consider buying an EV
until PEVSE is widely available, but during post trial interviews, many drivers indicated
1The first Toyota Prius was an HEV, as discussed in §2, but a PHEV version was released later.
2EVs with regenerative braking, a mechanism that stores some of the energy usually lost in the braking

process back into the EV battery, do not require much use of brakes at city driving speeds.

12



that they did not need to use PEVSE and concluded the relative lack of PEVSE (com-
pared to ICEV gas stations) is a “perceptual problem".

• Drivers expressed in post-trial interviews that they prefer the recharging process over the
ICEV refueling process. Drivers like the ease of overnight charging.

• The time it takes to charge an EV battery did not impact the mobility of most drivers.

• After the trials, many drivers expressed a willingness to pay a slightly larger upfront
premium (≈$2,000 more than a comparable ICEV) for the EV because the driving ex-
perience exceeded their expectations. This is a large indication that perceptions towards
EVs improves with experience and also indicates that inexperienced drivers may have
misconceptions.

• There is not a clear consensus as to whether range anxiety (RA) increases or decreases
as drivers experience driving BEVs. For some drivers, fears subside after using BEVs
for their normal routines without problems, but for others, seeing the remaining charge
level decrease induces anxiety even when they reach their destinations without problems.
However, it is clear that drivers have less range anxiety after actually experiencing EV
use. In pre-trial interviews, drivers’ vastly overestimate their range needs, but then later
acknowledge this in post-trial interviews. Post-trial, many of the participants state they
would consider buying a BEV160 as a secondary vehicle and a BEV240 as a primary
vehicle. These range expectations are far lower than those reported in surveys of ICEV
drivers with no EV experience (as discussed in §3.1.2).

Electric Bike Field Trials

Gehlert et al. [GKS+12] present preliminary results from the 2012/2013 German Pedelec
Naturalistic Cycling study. There were 90 participants in the four week measurement pe-
riod; 30 cyclists and 60 eBike users3. All bicycles and eBikes were equipped with a sensor
kit that measured participants’ GPS locations (using the SM Modellbau GPS-Logger), traf-
fic/road/weather conditions using a continuous video feed (using the ACME FlyCamOne
eco V2 camera), and their horizontal movements with a wheel sensor, a speed sensor, and
an acceleration sensor (using the SM Modellbau Unilog2). Questionnaires assessing their
experiences were given to participants before and after the observation period. For one of
the four weeks, participants also recorded their activities in a travel diary to correlate with
data collected. At this time, an English-language post-trial report has not been published.

Dozza et al. [DWM13] present preliminary results from a Swedish eBike field trial called
e-BikeSAFE. At the time of the report, 20 participants had driven monitored eBikes for
two weeks each. All participants kept a trip diary, took two questionnaires (one before and
one after data collection), and underwent a post-trial interview. The purpose of the trial

3In Germany, eBikes with a motor larger than 250W are classified as “two wheeled vehicles" and require
a license and insurance to operate. Out of the 60 “eBikes", 50 were “pedelecs", eBikes with a 250W motor
(most similar to the eBikes discussed in the other studies), and 10 were of the larger variety similar to North
American “mopeds".
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was to study when the eBike were in dangerous situations, and was based on a prior study
called BikeSAFE which studied the same for bicyclists. The authors survey of potential par-
ticipants covers 1) demographic data 2) their cycling behavior and usage of their bicycles
3) their opinion towards eBikes, and 4) whether they already have experience with eBikes.
Their sensor kit is detailed in [DF14a] and summarized in §8.7. Interestingly, their sensor
kit includes a push button mounted on the handlebar to record user-triggered alerts. This
button allows researchers to see which user-defined safety alerts can be detected using the
raw sensor data, and when combined with GPS, to geographically plot “danger zones". Dur-
ing the trial, participants were asked to press it during all dangerous situations (e.g, near
accidents, closer than comfortable proximity to cars, etc). At the time of the preliminary
report, the participants had taken 332 trips covering 1549 km over 114 hours. 63 dangerous
situations were reported by the participants including six where the cyclist crashed, corre-
sponding to a critical situation on 18% of trips on average. At this time, a follow up report
has not yet been published.

Paefgen et al. [PM10] show eBike usage metrics, e.g., average and maximum velocity, trip
lengths and distributions, and trip routes, from a small trial. Location and acceleration
data is obtained for four months from 17 eBikes rigged with the Picotrack GPS kit, an
accelerometer, and an internal Li-Ion battery for power. Data is presented for only two of
the 17 eBikes, so the paper is quite limited in scope. It is worth noting, because we use the
same computation, that the authors compute the distance between two successive GPS
coordinates using the Haversine Distance formula4, a trigonometric formula (based on the
Law of Haversines) for calculating the shortest distance between two coordinates on an
ellipsoid.

3.1.2 Surveys

Surveys on EV Perceptions

Researchers and manufacturers have also interviewed drivers about their perceptions towards
EVs. Most of these surveys are of drivers with little or no experience with EVs, which gives
a different perspective than those interviewed during field trials. A benefit of surveys is that
thousands of drivers can be interviewed at little or no cost using online tools. Below we
describe the surveys that have taken place and any unique insights; insights common to the
surveys are summarized afterwards.

Lebeau et al. [LML+13] interviewed 1196 Belgian respondents on perceptions towards BEVs.
The authors claim that BEVs are ideal for Belgian mobility based on various travel statistics
(short trips being common, flat roads, etc). The respondents rated a list (given by the
surveyors) of several potential advantages and disadvantages on a numeric scale, thus the

4http://www.codecodex.com/wiki/Calculate_distance_between_two_points_on_a_globe
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results may not be comparable to other open-ended surveys discussed in this section5.

Tal and Nicholas [TN13] compare data from two data sources in California, which at the
time of writing, represented over 42% of the US EV market. First, data was obtained from
drivers who applied for the California tax rebates given to EV buyers based on the battery
in their vehicle. Second, the authors used the 2012 CALTRANS travel survey, which was
given by various government partners to 9600 households who bought a new 2012 or later
vehicle. The two sources thus contain data from EV and non EV new car buyers. This allows
the authors to compare socio-economic variables such as age, income, location, commute
distance, and education, between PHEV, BEV, hybrid, and ICEV owners.

Krause et al. [KCLG13] surveyed 2302 drivers in 21 large US cities and conclude that drivers
are uneducated about the technology. More than 66% of respondents failed to answer basic
questions about EVs and 75% undervalued or were unaware of EV benefits. For example,
the majority of respondents believed EVs cost between 10 and 50% more to maintain than
ICEVs 6 and more than 70% underestimate fuel cost savings. Very few (5%) knew about
local incentives to purchase EVs in their region. Only 30% of respondents stated they could
identify a PEV if they saw one.

Egbue and Long [EL12] surveyed drivers who are more likely to be early adopters than the
general population about barriers to adoption. Instead of randomly surveying the population,
data was collected from students and faculty (n=481) in a technological university that
specializes in science programs. Roughly half of the respondents indicated they had some
experience with alternative fuel vehicles, which is far greater than the average population.
Thus, while this may not provide an accurate depiction of EVs from the general public, it
gives a different perspective from those more familiar with the technology. Interest in EVs
was found to be much higher than reported in other surveys (likely due to population bias),
with over 80% showing some interest in EVs. The authors provide the full responses of the
survey for further analysis.

Deloitte [Del11] surveyed 13,000 respondents in 17 countries about BEVs (but not PHEVs).
Respondents were surveyed as to their intent to purchase BEVs, as well as perceived BEV
selling points and adoption barriers. The survey took place from 2010-2011. The majority of
respondents were willing to “consider purchase", but many wanted vehicle specifications that
exceeded what was available in 2010/2011. To quote, “when consumers’ actual expectations
for range, charge time, and purchase price (in every country around the world included in
this study) are compared to the actual market offerings available today, no more than 2 to 4
percent of the population in any country would have their expectations met today based on
a data analysis of all 13,000 individual responses to the survey." Consumers in all regions
stated their interest in EVs would increase with higher gas/petrol prices, e.g., at a U.S.

5 Asking respondents to rate a list of disadvantages is not equivalent to asking what the disadvantages
are. In the former case, the respondents may be presented with items they would not have thought of in an
open ended survey. Moreover, they may have perceptions not on the given list that would have been revealed
in an open-ended survey.

6One of the major selling points of EVs is that they have hundreds less moving parts requiring lubricants
and fluids (no engine) leading to less mechanical failures and maintenance.
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fuel price of $5/g (a 37% increase from prices at the time of writing) the percentage of
respondents interested in EVs rose to 78%.

Musti and Kockelman [MK11] used a 2009 web based survey of Austin, Texas residents to
simulate the adoption of EVs in Austin over a 25 year period. The survey asked residents to
choose between 12 vehicles in different scenarios. The scenarios were based on different ve-
hicle specifications, price assumptions, and monetized values for the adverse affects caused
by ICEVs such as global warming and health impacts due to carbon emissions. The authors
used the survey results to estimate likely adoption in the coming years in the given sce-
narios, and to determine the most significant factors to EV adoption. Using the computed
adoption rates and the the 2001 National Household Travel Survey, they also estimate the
percentage of vehicle-km displaced as a result under the different scenarios.

Peters et al. [PD14] interviewed 969 drivers in Germany7. The authors tried to place respon-
dents into four distinct customer groups: current owners, and those with concrete intent
to purchase, some interest in EVs, and no interest in EVs. The authors followed the diffu-
sion of innovations model proposed by Rogers [Rog03] to determine what variables (e.g.,
demographic variables) the groups can be parameterized by.

The City Of New York [Cit10] interviewed 1,400 drivers throughout NYC as to their EV
adoption plans. The goal was to determine what percentage of residents were interested
in adopting EVs and where they were located, both to see whether distribution and trans-
mission infrastructure needed to be updated, and to place well-utilized PEVSE. This study
gives a unique perspective on EV adoption because driving patterns and car ownership in
NYC differs vastly from the rest of the US. The NYC transit system carries more passen-
gers than the five next largest transit systems in the U.S. combined, so only 44% of NYC
households own a car compared to 90% nationally as a result.

The EPRI (Electric Power Research Institute) [EPR10] surveyed 900 Southern California
residents as to their concerns over EV adoption. Interestingly, they survey many HEV owners
in addition to ICEV owners and are able to compare and contrast the responses from these
two classes of drivers. HEV owners seem much more apt to purchase a PHEV/BEV than
ICEV owners, which shows customer experience and education about the technology is
essential to long term adoption.

Deloitte [Del10] interviewed major automotive executives, clean technology startups, auto
dealers, energy companies, and 2,000 vehicle owners. The study focuses on drivers’ knowl-
edge of EV technology, how important brand name is to drivers, RA, charging opportunities
and infrastructure, and drivers’ perception towards the cost of EV purchase and ownership.

Ernst & Young [Ern10] interviewed 4,000 drivers in the US, China, Japan, and Europe about
their knowledge of EVs and their perceived adoption barriers. The study compares drivers’
responses across different regions of the world and focuses on barriers such as EV cost, EV
range, lack of public charging infrastructure, and drivers’ misconceptions about EVs.

Here we summarize the most important conclusions from these surveys:
7The survey data for this publication was collected in 2010, so vehicle models and perceptions are not as

of 2014 (year of publication)
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• The studies overwhelmingly conclude that range anxiety is the largest barrier to EV
adoption. Surveys indicate a large gap between range requirements and expectations,
often referred to as the “range paradox". In Lebeau et al. [LML+13], only 35% of
respondents stated they traveled more than 40km per day, but 90% of respondents said
a range lower than 200km was unacceptable and 68% said a range lower than 300km
unacceptable. In Egbue and Long [EL12], 87% of respondents indicated they travel fewer
than 64km per day on average, but only 32% of respondents were interested in BEVs
with a battery range between 0—160km, while 23% preferred ranges between 160km—
320km and the remaining 45% preferred more than 320km of range. The average range
desired was 345km—four times the average daily distance driven by participants. Deloitte
[Del11] finds that 80% of respondents drive less than 80 kilometers per day but 50% of
respondents demand more than 160km of range and 30% demand more than 400km.

• The second most cited barrier was the initial cost of EVs. Most drivers demand that
EVs be cost comparable with ICEVs before they consider purchase. The majority of
respondents in each survey stated they would not be willing to pay an upfront premium
for EVs relative to an ICEV, regardless of whether the lifetime TCO is lower.

• Early EV adopters are well educated and have higher than average incomes. The common
hypothesis for this phenomenon is that because many drivers cannot afford the high initial
price of EVs (relative to ICEVs), adopters tend to have high paying jobs, which tends to
be correlated with holding high degrees.

• The top three perceived advantages to converting from ICEVs to EVs are: 1) the low fuel
and maintenance cost per km, 2) the ability to charge at home and make few “fueling
stops", and 3) supporting sustainability.

• Drivers tend to assume EVs “should" operate similar to the ICEVs and are discouraged
upon learning the differences, e.g., longer recharging vs. near-instant refueling. This ef-
fect is related to prior work showing people are not good at evaluating new products that
are “psychologically distant" from those they are accustomed [PD14, SG11, GRGA+12].

• Drivers are currently unaware of many attributes of EVs including range levels, recharging
times, noise levels, safety ratings, and performance characteristics and are unaware of
the differences between EVs and ICEVs. This can lead to a feedback loop in which
consumer interest further decreases—misconceptions lead to lower interest in EVs, which
in turn affects their answers in marketing and opinion surveys on intent to purchase
[KCLG13]. If manufacturers and governments believe consumer interest in EVs is low,
they may be less likely to invest capital in the space. The lack of investments can lead to
stunted technology maturity, which further reduces consumer interest etc. Simply put,
few investments are made when consumer interest is low, but consumer interest may be
artificially low due to misperceptions.

Surveys on eBike Perceptions

An et al. [ACX+13] surveyed 470 respondents about their eBike usage in Shanghai. Shanghai
is one of the most eBike-incentivized cities due to the inner city ban of motorcycles and the
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very high cost of car ownership due to government regulation [ACX+13]. The authors find
most eBikes in Shanghai are used for commuting (42.7% of trips) and shopping (36.5%).
A third of all eBike commute trips are longer than 10km, and the average eBike commuter
trip time is 27.3 minutes, suggesting that eBikes are not only used for short trips. Among
the two thirds of respondents with shorter (<10km) commutes, many use their eBikes
as an alternative to bus transit. Similar to [Eng12] but in contrast to [WHS14], 56% of
the respondents transitioned to eBikes from cycling and 33% transitioned from bussing;
only 2% of respondents transitioned to eBikes from owning a private car. The top three
reasons respondents purchased an eBike were 1) punctuality (arriving to destination on time
despite traffic congestion), 2) reduced commute time (v.s. cycling and public transit), and
3) economic reasons (cheaper than car ownership).

Hiselius and Svenssona [WHS14] surveyed 321 eBike users in Sweden whose emails were
obtained from a Swedish eBike retailer. Nearly all respondents owned or had access to
a car, and the majority of users transitioned from using cars to e-bikes. This contrasts
other studies where most eBike users were transitioning a portion of their cycling trips
[ACX+13, Eng12]. The top three most cited reasons for purchasing an eBike were 1)
increased bicycle mobility in the rain or wind (cited by 58% of respondents), 2) eBikes are
more environmentally friendly than cars (again 58%), and 3) to reduce their commute time
v.s. their bicycle (42%).

Popovich et al. [PGS+14] interviewed 27 Sacramento eBike users about their experiences
with and sentiments towards their eBikes. The interviews were held as open-ended conversa-
tions, in contrast to other works where people fill out a survey or questionnaire. Interestingly
the authors find that the eBike ownership households have high incomes, a correlation also
true for EV owners as discussed. Most respondents purchased eBikes 1) because someone in
their social circle recommended buying an eBike (this was also the top reason also reported
by Engelmoer [Eng12]), 2) due to their greater speed and acceleration v.s. bicycles, and
3) because they require less exertion than bicycles. Many users, in contrast to Engelmoer
[Eng12] but in line with Hiselius [WHS14], replaced a portion of their driving, with some
users getting rid of their car altogether. The most common negative sentiments reported
by users were 1) theft concerns, 2) safety concerns, 3) unwieldiness8, and 4) range anxiety.
Regarding range anxiety, though eBikes can be pedaled upon battery depletion, the extra
weight of the eBikes v.s. bicycle makes pedaling more difficult. The authors conclude that
eBikes allow those with some interest in cycling but are unable/unwilling to commute longer
distances or in hilly regions to transition some of their car usage to eBike usage.

Engelmoer [Eng12] surveyed eBike users and regional mobility experts in the Netherlands,
primarily to see whether eBikes can reduce the environmental impact of commuter traffic in
Dutch cities. The author states the notion that “eBikes are for the elderly" is still somewhat
prevalent but changing rapidly in Dutch cities—eBikes now appeal to a wider population
as a cheap, clean and flexible alternative to car ownership. However, the author finds that
most Dutch eBike users are offsetting cycling trips, instead of car trips. This is unsurprising,
however, because 27% of all mobility in the Netherlands is completed by bicycle, the highest

8Due to the increased weight of eBikes, users could not transport their eBikes easily, e.g., on stairs.
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percentage in the world, and nearly 50% of trips under 8km are made by bicycle. The high
rate of cycling presents both an incentive and disincentive for eBike use in the Netherlands:
eBikes may attract those who are no longer able to cycle or those with longer commutes,
but may repel those who are capable and prefer bicycles [Eng12, WHS14]. The author
finds that the top three factors with a statistical relation to eBike ownership are 1) hav-
ing friends or family that also own an eBike (41%), 2) older age (16%), and 3) possessing
longer than average commute distances (16%). Several hypothetical eBike penetration sce-
narios are simulated to determine the impacts on the environment assuming eBikes become
widely adopted. The simulation input parameters include: the percentage of trips taken by
eBike/car/bicycle, energy use per vehicle, emissions per vehicle, emissions of local power
generation, assumed average commute distance, and the number of people that commute
daily. The authors find that there would (in theory) be a reduction in total energy use and
most emissions with higher eBike penetration levels, but certain types of emissions (e.g.,
S02) would increase, as those types of emissions are a byproduct of electricity generation
but not petrol consumption.

Cherry et al. [CWJ11, LCY+13] discuss the operation of an eBike sharing system, the
cycleUshare pilot at the University of Tennessee, but much of the report focuses on surveys
of the eBike share participants. The surveyed participants’ sentiments match the other
surveys discussed here, e.g., most (77%) respondents either agreed or strongly agreed that
e-bikes are more attractive than regular bicycles because they are better for longer trips
and hilly areas (“terrain barriers"). Interestingly, 64% of respondents disagreed that regular
bicycles are more attractive because battery range is not an issue—most saw any electric
assistance from the eBikes as a benefit over bicycles, as long as the eBike can be pedaled
normally after battery depletion.

3.2 Range Anxiety

Range anxiety (RA) is the most cited barrier to EV adoption. The surveys and trials in §3.1,
as well as the GPS studies in §3.4, indicate that although current BEV160s range suffice
for nearly all of drivers’ mobility needs, drivers still prefer higher range. This has been cited
in the literature as the “range paradox" or “range discrepancy". Strong examples include
Ernst & Young’s interviews [Ern10] of 4,000 drivers where only 40% believed a BEV160
would suffice but only 2% said they often drove more than 160km, and the survey by Egbue
et al. [EL12] where respondents preferred a range of four times their average vehicle use.
This suggests that drivers desire a “range buffer", battery capacity beyond what is normally
required. RA can unnecessarily lower BEV utility—Neubauer and Wood [NW14] discuss
that drivers may opt to use another vehicle even if they believe the trip might induce RA,
some of which could be accommodated by the BEV. To complement this section, Nilsson
[Nil11] gives an excellent overview of RA, its implications, and potential solutions.

So far, manufacturers and researchers have tried to reduce RA using one of three methods.

19



The first is the approach taken by Tesla: build BEVs with much larger batteries. See §2.1.1
for the range comparisons.

Second, Many players, including manufacturers, governments, and researchers, propose that
deploying public charging stations (PEVSE) is a solution to alleviating RA. Drivers report
they would feel more comfortable driving EVs knowing they can charge away from home
if needed [BCMW11, Ele09, Del10, EPR10, MSA11, GRGA+12, Nil11, Adv11, WU13,
Bak11, NW14]. However,data from PEVSE networks suggests that drivers infrequently
charge in public:

• The EV Project [U.S13a] (2010-2013) was the largest (to date) deployment of EVSE,
having deployed over 9,000 charging stations in major US cities, including 6,000 in
participants’ residences (for free in exchange for drive cycle and charging data). Through
December 2012, the project logged over 96 million km and 1.6 million charging events
from 7,376 participating Leaf and Volt owners [ECO13]. Their results report only ≈15%
of charging occurs outside the home.

• ChargePoint America [Cha14b] (2011-present) is a program sponsored by Coulomb
Technologies to provide EVSE to nine major-population regions in the United States.
This program has collected charging data from their 4,217 stations. They reported in
March 2013 that only 34% of charging occurs outside the home [Cha13], however, they
have deployed more public stations than residential stations [Cha14b].

• The Cabled UK project [ARU12] (2009-2012) measured 340 vehicles for a year each,
and reported that 15% of charging occurred away from the drivers’ homes [Lov11].
Assuming these studies are a reliable indicator of actual charging demand, we conclude
public charging accounts for only 15-20% of charging demand.

Regardless of whether PEVSE has thus-far been well utilized, we do expect PEVSE to play
a role in alleviating range anxiety in the long-term. First, drivers have stated in numerous
surveys that having the option to charge away from home makes them feel safer, so range
anxiety should decrease as PEVSE becomes more ubiquitous. This is expected to happen,
because many key players have incentives to deploy PEVSE as demand grows. For example,
businesses with centralized parking such as shopping centers and restaurants can use on-site
PEVSE to encourage EV owners to spend extra time on premises. Moreover, as of January
2015, at least one EV manufacturer, Tesla, is deploying worldwide fast charging stations
[Tes15]. These L3 stations allow drivers to travel 170 miles (272km) after just one hour of
charging. If stations with such high charging speeds continue to be deployed, range anxiety
should largely decrease.

In this thesis, we do not explore PEVSE deployment because there is a considerable body
of work on this subject already; see Liselotte [Lis12], Wirgesa et al. [WLK12], Neubauer
and Wood [NW14], Bakker [Bak11], Efthymiou et al. [EATM12], and The Schatz Energy
Research Center [Sch13] for various PEVSE deployment models.

It may be many years before PEVSE is widely deployed. In addition, PEVSE may still not
serve drivers that need to take very long trips, and surveys reveal that drivers do consider
this “worst-case usage" when making purchasing decisions. For these reasons, BEV owners
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may still desire occasional access to an ICEV. If BEV owners can cheaply and easily acquire a
vehicle on days their mobility demands exceed their BEV range, they may have less concerns
about range limitations and range anxiety. To this end, in chapters §5 and §6, we design
algorithms for sizing and managing a carshare for EV owners—a network of ICEVs pools
to be used by BEV owners when they need to make long trips. This is referred to as a
vehicle access model. There is one related work in this space, King et al. [KGWS13], which
was published independently and simultaneously with our first work. Our model is more
comprehensive than their work in several ways, but we defer this discussion to §6.8 after
we introduce necessary queueing terminology and discuss papers focusing on the sizing of
similar systems.

We end this section by summarizing a survey on measuring drivers’ willingness to pay
(WTP) for more range. Drivers’ WTP for additional range in a BEV is a tradeoff between
the two largest adoption barriers, RA and upfront costs. Dimitropoulos et al. [DRvO13]
gives a meta-analysis of 33 prior studies investigating consumer preferences for EVs and
other alternative-fuel vehicles. The authors also summarize a related metric, compensating
variation, which describes the monetary compensation required to restore one’s utility after
experiencing a change (here, the change from “unlimited" ICEV range to limited BEV
range). The compensating variation for a change in driving range from R to R′ is the integral
of WTP over [R,R′]. The authors use several statistical techniques to resolve statistical
biases between the 33 studies. The authors find the utility of driving range is nonlinear; the
WTP for additional range is higher when the base range is lower, and decreases as the base
range increases e.g., drivers will pay more to extend a BEV80’s range than a BEV300’s
range. Of the 33 studies analyzed, the mean WTP with a base of 160km is $41/km9 and
the median is $35, suggesting the existence of high WTP values. The median compensating
variation from 160km to 560km (the latter is used as the “range for an ICEV") was $13100,
suggesting that a BEV160 would need to be $13,000 cheaper than an ICEV because their
“range" changes from 560km to 160km. The author notes the actual value is probably lower
because changing from an ICEV to a BEV leads to fuel and maintenance savings, and this
does not include tax benefits such as the US credit of $7,500 for BEVs. Finally, the WTP
will vary among different individuals based on their income, mobility demands, and whether
they have access to an ICEV.

3.3 Calculating the Return On Investment

The higher initial cost of EVs compared to ICEVs is the second most cited adoption barrier.
While drivers perceive EVs as having lower operating and fueling costs than ICEVs, most do
not or cannot calculate their expected return on investment (ROI) when making purchas-
ing decisions [BHB14, EPR10, GRGA+12, GM12, Pru10, Del10, Nat10, BST09, Aec09,
MSA11, BCMW11]. To quote Morton et al. [MSA11]: “the majority of consumers do not

9these figures are converted from dollars per mile to dollars per kilometer to be unit-consistent with the
rest of this thesis.

21



have even the fundamental building blocks to be able to make detailed payback calculations.
Moreover, many drivers did not even know what electricity costs and had little idea of how
much electricity was required to propel an EV (it is widely concluded however that the price
of gasoline will have significant influence on EV adoption in the coming years). Drivers be-
lieve the overall operating cost of an EV is ‘probably lower’ than an ICEV, but because they
cannot easily calculate to what extent this is the case, they express deep concern about the
high initial cost of EVs".

Given this, drivers need tools to compute their ROI and payback period when purchasing an
EV. However, building such a tool is difficult because the ROI and payback period for EVs
is heavily dependent upon the drivers’ mobility patterns. As stated earlier, EVs will be more
profitable for drivers whose mobility consists of many short trips than drivers who make
longer trips. In the former case, more distance can be traveled under a PHEV’s AER or a
BEV’s range, thus recouping more of the initial cost through fuel savings 10. Furthermore,
for BEVs, if a driver regularly makes trips exceeding the BEV range, they may need to
pay for access to another vehicle, decreasing the ROI of the BEV. External factors such
as climate (air conditioning and heating can heavily affect range) and regional incentives
also heavily affect EV utility. Consequently, the ROI for two different drivers can differ
significantly even if they have the same average vehicle demand (e.g., average kilometers
driven per week/year).

The following papers present ROI models for drivers’ and fleets transitioning to EVs. While
we study the ROI for fleets transitioning to EVs in §7 and do not explore the ROI for
individuals in this thesis, we present work in both spaces both for completeness and to
illustrate many of the complexities in building ROI models. Due to changing vehicle and
battery prices, we present the most recent papers first.

The EPRI [EPR13] gives an extensive analysis of the ROI and payback period for PHEVs
vs. hybrids and conventional ICEVs. The report stresses that profitability models must
incorporate a large number of parameters to tailor the results to drivers with different
mobility patterns, charging availability, and budgets. The two vehicles considered are the
Volt (PHEV64) and the Leaf (BEV160). The model assumes that only at-home charging
is available to all drivers in the baseline scenario, but other charging opportunities such as
workplace charging are discussed in a sensitivity analysis. The analysis uses the Puget Sound
dataset (also used by Neubauer and Wood [NW14], Neubauer et al. [NBW12], and Wu et
al. [WDL14]) to evaluate different drive cycles. This dataset contains GPS measurements
of 759,000 trips from 415 vehicles measured over 3 to 18 months from 2004-2006, and is
available to researchers [Pug08]. However, the authors note this dataset under-represents
high and low mileage drivers, thus using it to compute PHEV payback periods may present an
inaccurate picture. Trips in the dataset that cannot be completed by the Leaf are assumed

10This barrier to adoption will be harder to overcome in the U.S. The average gasoline tax in the US is
47cents/gallon, whereas in the UK, for example, the tax is equivalent to $3.28 per gallon—almost 20 times
larger [Ele09]. The total price of gas is consequently much lower in the U.S. than in much of the world, so
less of the initial cost is recovered through fuel savings; EVs are much more cost competitive in countries
with higher gasoline prices and taxes.
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to be “replacement miles", that is, the driver must pay for access to another vehicle on
those days (though this cost is assumed to be $0 in the following results, it is perturbed
in a sensitivity analysis). A problem with this paper is that although the authors discuss
several input parameters such as maintenance costs, the actual mathematical model is not
presented—only results are given11. The authors’ results are as follows. First, with 2013
incentives and prices, both the Volt and the Leaf are cost competitive for most drivers
over their lifetime, though the payback may happen only near the lifetime of the vehicle.
The Volt is cost competitive: ≈$700 cheaper over the lifetime vs. an equivalent ICEV. The
variation in ROI across drivers is significant but most of the variance is associated with
positive ROIs—the risk of significantly high negative return (relative to an ICEV) is low.
The authors find the Leaf is much more cost competitive than the Volt 12. However, they
also find that while the Leaf is thousands of dollars cheaper over the vehicle lifetime vs. an
ICEV, the ROI has a wide variation for different drivers. This suggests BEVs require more
careful consideration by drivers making purchase decisions. A sensitivity analysis suggests
that changes in gasoline prices will have a significant impact on the ROI and payback period,
as expected, but incentives and rebates have an even larger impact.The authors conclude
by discussing how the results change if the EV is financed instead of purchased upfront and
if model parameters are altered.

Wu et al. [WDL14] measure whether various PHEVs are profitable for drivers by using the
Puget Sound dataset [Pug08]. The paper is similar to our (earlier) work on taxi profitabil-
ity; the authors emulate PHEVs using the ICEVs in the dataset and use similar modeling
equations. The authors estimate the operating costs of various PHEV AERs under differ-
ent PEVSE availability and gasoline price scenarios. The authors do not consider BEVs
or different electricity prices (which is fixed at 12c/kWh). The authors conclude that the
incremental battery cost of larger AER PHEVs is difficult to justify without government
subsidies or gasoline prices higher than $4/gallon (which it is near at the time of this writ-
ing). If gasoline costs less than $4/gallon, even with a battery cost of $200/kWh (well
below the current price), only PHEV16s are profitable. Below $3/gallon, HEVs or ICEVs
are best. As expected, however, the authors find the price of gas significantly affects the
results, e.g., when gas increases from $4/gallon to $5/gallon, the number of PHEV users
who benefit from a larger battery increases significantly under all charging scenarios.

Al-Alawi et al. [AAB13] give a comprehensive ROI and payback model for PHEVs. The
authors examine four PHEV classes: compact and mid sized passenger cars (LDVs), and
mid to large light trucks. The price of all EV parts not found in ICEVs excluding the battery
are derived from EPRI estimates, and the authors assume a battery price of ≈$300/kWh,
lower than most current estimates. The authors assume that the distance driven for LDVs
and LTVs is fixed at 19,300km and 24,000km in the first year and declines at ≈3% per
year afterwards. The fixed first year usage is derived from 2005 U.S. national averages.
The authors further assume that the percentage of kms driven on electricity is a fixed

11In contrast, in Chapter §7 we give our full mathematical profitability model.
12At the time of the authors’ writing, the Leaf was significantly cheaper than the Volt at $29,022 vs.

$35,200 [EPR13]. The same difference exists today, as discussed in §2.1.1, but both are now priced lower.
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function of their total VKT. That is, they do not consider different drive cycles where the
annual VKT is composed of many long trips, some long trips, or many short trips, etc,
which could significantly change their results. The authors further estimate values for fuel
prices, electricity prices, resale values, vehicle life, maintenance costs, insurance costs, and
registration costs from various sources. Their results suggest the payback period of PHEVs
ranges from 14-20 years for compact LDVs, 7 to 10 years for mid-sized LDVs, 6 to 7 years
for medium LTVs, and 3 to 5 years for large LTVs. This intuitively suggests that due to
the relatively poor mileage of larger vehicles, the same sized battery will lead to higher fuel
savings if installed in a SUV vs. a compact car; the savings are greater when “lower efficiency
kms" are displaced with electricity. Thus the payback period is directly proportional to the
mileage of the ICEV counterpart. The authors further note that including maintenance
costs and the salvage value of vehicles in the payback analysis (most prior papers do not)
significantly decreases the PHEV payback period.

Neubauer et al. [NBW12] use the National Renewable Energy Labratory’s Battery Own-
ership Model [OABM+10] to examine the sensitivity of BEV economics to drive patterns,
vehicle specifications, charge strategies, and battery replacement rates using two different
methods for accounting for trips that exceed the BEV range. The model outputs the cost
ratio of an EV to a standard ICEV. The model requires many inputs, including drive cycle
data, the EV and ICEV’s vehicle specifications, financing structure (how the vehicles are
purchased) and tax incentives. The authors assume trips that cannot be completed with the
BEV are handled by another household vehicle (the “low cost scenario") or via a car rental
or carshare (the “high cost scenario"). In the former scenario, the authors sum fuel and
maintenance costs from having to use an ICEV with the EV cost of ownership, and in the
latter, rental costs are also included. The authors apply a battery degradation model so that
more trips are unable to be completed over time. IEA forecasts are used for electricity and
gas prices. The authors simulate several parameters for the inputs such as vehicle range and
charging availability/capabilities. The authors simulate drive cycles using the Puget Sound
dataset [Pug08] (also used by the EPRI study [EPR13] above). Under their drive cycle data,
a BEV160 requires using another vehicle through either of the two usage scenarios (house-
hold ICEV or rental), ≈40 days per year on average. Given this relatively large number, the
authors find a significant difference in the ROI depending on whether the low or high cost
scenario is employed. The authors find that BEVs are cost effective, based on the simulated
inputs, for ≈20% of the drive cycles simulated, suggesting there exists a substantial market
for BEVs. Due to the model’s sensitivity to drive patterns, detailed knowledge of drivers’
individual or household driving patterns is required to make cost-optimal decisions.

Garcia and Miguel present a systems dynamics model to predict the adoption of EVs in Spain
through 2020 [GM12]. The model, which is designed to predict long term trends, models
interesting dynamics of EV adoption, e.g., as EV adoption increases, carbon emissions
decrease, giving the government an empirical reason to increase government subsidies for
EVs, further encouraging EV adoption. The model can be used to identify feedback loops
in which a variable influences itself over time, and thus predict how EV adoption may
evolve as a function of these feedback loops. In the report, the authors focus on how
the evolution of gasoline prices, electricity prices, battery prices, maintenance costs and
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government subsidies will affect the cost of EV ownership—however only a small subset
of the model is presented. The authors conclude that in the most pessimistic case, about
750k EVs may be adopted by 2020, which does not meet the Spanish government goals,
but with the introduction of government subsidies and with reductions in future battery
prices, government goals may be met. The authors also predict government goals will not
be met even with reductions in battery and vehicle prices without government subsidies.

The National Research Council [Nat10] evaluated several pricing scenarios to predict the
year PHEV16s and PHEV64s will be profitable for consumers. Their model is similar to
the others described here—it is not tailored to different drivers, makes assumptions based
on national averages, and considers only a few parameters such as gasoline and electric-
ity prices. The authors conclude that because of expected price of lithium-ion batteries
through 2030, it is unlikely for PHEVs to be cost comparable with ICEVs when gas is under
$1.03/liter ($4.00/gal) (currently, gas prices are at this point but are highly volatile—they
must stay above this point to remain profitable [Gas]).

Aecom [Aec09] forecasts when various types of EVs will be profitable for Australian drivers.
The authors build a choice model which predicts when drivers will purchase EVs given
vehicle prices, range, cost, and the availability of PEVSE. The model estimates the financial
equivalent of each these factors to predict whether customers will purchase EVs, e.g., “an
increase in range from 100km to 200km is worth ≈$3,000 to drivers". The model does
not calculate the TCO of EVs based on mobility patterns or driver data. The model does
consider a wide range of parameters including the cost of installing PEVSE given various EV
penetration levels and the monetary benefit of reducing CO2 emissions, but the derivations
for many of the assumed values are not stated. The authors conclude all types of EVs will
become profitable near 2030 due to falling vehicle prices and savings incurred by reductions
in greenhouse gas emissions and air pollution. At the time the report was written (2009),
the lifetime savings incurred by purchasing EVs compared to ICEVs was not enough to
offset the higher initial cost of EVs, and the authors projected this would hold for many
years. They predict a transition to HEVs in the next 5-10 years, PHEVs in the next 5-
20 years, and BEVs in 20+ years. However, gasoline price predictions used in the report
turned out to be incorrect. The report predicted the price of petroleum per barrel will be
less than $80USD through 2040, but it has passed $100USD several times since the report
[Blo12] was published. The authors give a sensitivity analysis and note deviations from their
predicted gasoline prices largely affect their profitability analysis. As a result, EVs may be
profitable in Australia sooner than predicted. Moreover, the authors state EVs will be more
expensive (by roughly $10k) in Australia compared to other nations due to import costs
and a lack of local vehicle manufacturing, and caution the results may not generalize.

Becker et al. [BST09] study how the adoption of EVs through 2030 can be profitable for the
overall US economy and individual drivers if batteries were leased instead of purchased. To
model customer adoption, the authors amortize PEVSE and battery costs through driver pay
per mile contracts envisioned to be run by operators of networked public charging facilities.
This idea stems from the network externality model [LM94], with the idea being that as
more drivers purchase BEVs, the relative cost per driver of public charging infrastructure and
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battery switching facilities decreases while its utilization increases, and therefore, all costs
relating to batteries and charging infrastructure should be amortized over many drivers.
Batteries would be leased on a per distance basis and exchanged at switching facilities
rather than paid for by individual drivers, reducing the initial cost of BEVs and removing
drivers’ concerns over limited battery life. Under this payment model, the authors predict
that between 2012 and 2017, BEVs are likely to be cost comparable to ICEVs. Averages
from the 2001 NHTS survey are used to predict the likely market segment for BEVs—the
authors estimate BEVs will account for 64% of U.S. light-vehicle sales and 24% of the U.S.
light-vehicle fleet by 2030. Following their predictions for the adoption rate of BEVs, they
estimate trade deficit reductions due to decreased petroleum imports, economic growth via
the creation of battery manufacturing jobs, and reductions in health care costs due to lower
overall emissions from the transportation sector. The results for each of these macroscopic
issues are positive. BEV adoption would lead to massive decreases in the trade deficit,
the number of jobs created as a result of battery manufacturing would outnumber those
lost in the ICEV service industries, and health care cost reductions would be significant.
Unfortunately, while companies such as (the now defunct) Better Place support this battery
leasing model [Bet12], currently most vehicle manufacturers do not. It is possible that this
model presents a long term solution to the higher initial cost of EVs.

3.4 Using GPS to Infer Mobility Demands

Whether EV adoption is profitable for a particular driver is heavily dependent upon their
mobility demands. For example, they should not adopt a BEV (as the only household vehicle)
if most of their trips are longer than the BEV’s range, because they’ll often need to pay for
access to another vehicle. The same holds for PHEV adoption; if they often travel under
the PHEVs AER, they will recoup more of their initial investment through fuel savings, but
if they often need to engage the ICE, a PHEV will be more expensive than comparable
ICEVs. Thus measuring existing ICEV mobility patterns can estimate the degree of range
anxiety, estimate how often BEV owners will need access to an additional vehicle, and help
estimate whether EVs will be profitable for a given driver or fleet operator. Moreover, for
BEVs specifically, the percentage of trips that cannot be completed using a BEV cannot be
observed with a BEV; existing ICEVs must be measured for manufacturers to build BEVs
with specifications suitable for the majority of existing travel. Measuring existing mobility
also helps plan PEVSE deployments.

The seminal work in this space is that of Pearre et al. [PKGE11]. The authors use a 2004
mobility dataset to derive conclusions about required EV range. The dataset used is one
of the most extensive available—484 Atlanta-based vehicles were measured for one year by
GPS data loggers. Their goal was to answer whether BEVs are compatible with drivers’
current travel patterns. More specifically, they serve to find x, y , z in the question: given
a BEVx (x km of range), y% of drivers would find BEVs satisfy their driving patterns on
all but z days of the year. The authors find BEV160s would suffice the needs of 9% of
drivers with zero driving modifications, 17% of drivers on all but 2 days a year with no
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mid-day charging, and 32% of drivers on all but six times a year. They also find greater
than 80% of vehicles are parked at any given time, including weekday rush hours—drivers
have ample time to charge their vehicles given the existence of infrastructure. These results
show currently available BEVs could be adopted by a significant portion of the population
with little modification given properly located PEVSE.

Kahn and Kockelman [KK12] give a similar analysis using a year of GPS data from 255
Seattle households. The data was collected during 2004-2006 and includes 269,357 trips.
The authors conclude that mobility patterns in Seattle are EV friendly, at least relative to
those in Atalanta studied by Pearre [PKGE11]. The results suggest that BEV160s would
suffice for 50% of single vehicle households if the households have access to another vehicle
(e.g., a rental car) four days per year. The same 160km BEV would cover 90% of households
95% of the year (all but 19 days). Alternatively, A PHEV64 would allow Seattle households,
which travel 42km per day on average, to electrify 80% of their travel. If gas is 3.50$/gallon
and electricity is 11.2c/kWh, a PHEV such as the Volt would save the average household
$535 per year, thus at those price levels there is still a significant payback period due to the
initial premium. A BEV160 like the Leaf would save the average household $780 per year if
they could arrange free transit on days their BEV would not suffice. See §3.3 for another
work using the same dataset for inferring EV profitability (Wu et. al [WDL14]).

The Swedish government [Kar13] undertook a large GPS study to analyze whether EVs are
suitable for the Swedish population. Participants were recruited randomly from the Swedish
motor-vehicle register. From 2010-2012, over 700 cars installed GPS equipment that was
sent by mail. The resulting database contains 714 cars with data, 528 cars with >30 days
of data, and 450 with >50 days of data. Questionnaires were also given to the participants.
The results show that current BEV160s would suffice for the majority of Swedish drivers.
Of the 134,425 recorded trips (totaling 1.3M kms), only ≈3% of trips were over 160km
and these 3% of trips accounted for 14% of total kms traveled. Moreover, only 25% of all
stopping occasions were more than 6 hours but these stops accounted for more than 80%
of all parking duration, meaning that at least 80% of the time any car was parked, it could
have charged fully from empty on a L2 (or L3) charger.

Slater et al. [SDT+09] agree that high initial cost and range limitations remain the two most
significant barriers to EV adoption in their UK based study. The authors used data from the
UK Department for Transport to gather data about vehicle use in the UK. The patterns
show UK mobility is dominated by many short trips, far less than the range of currently
available BEVs. For example, two-thirds of all commuting (to work) trips are less than
16km, suggesting BEVs are well suitable for average daily usage. Moreover, a BEV with a
range of even 80km (half of the range of the Leaf) is suitable for 50% of all UK vehicle-km
assuming only at-home charging, with the remaining distance undertaken by a small number
of high mileage individuals. While long trips beyond available BEV range are rare, drivers
place high disutility on limited range while making purchasing decisions. Interestingly, the
authors note most EV owners in the UK own multiple vehicles and are able to use their
ICEVs for long trips to combat this limitation, which also shows early EV adopters are
typically from higher income households. To increase the adoption rate of EVs, the authors
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conclude fast EV charging (the ability to fully charge the vehicle within an hour) may
alleviate many driver concerns. Interestingly, while city-wide PEVSE is attractive to drivers,
from an analysis of mobility patterns, the authors conclude PEVSE may be underutilized
with the proliferation of home and workplace charging. Finding the minimum density of
public recharging infrastructure sufficient for customer perception, as more infrastructure
would be wasteful and underutilized, is a difficult but interesting problem

Gonder et al. [GMST07] analyze a dataset of 227 vehicles monitored for one day each in
2007 by GPS data loggers in St Louis. They simulate whether different EV models can
fulfill the drivers’ patterns, and if so, the estimated fuel reductions if the drivers adopted
those EVs. They find HEVs would reduce fuel consumption by about 29% relative to ICEVs,
PHEV32s about 55%, and PHEV64s about 66%. The GPS traces indicate drivers accel-
erate and decelerate very aggressively (which reduces vehicle efficiency). They also show
that HEVs and PHEVs (in 2007) were roughly 33% and 40% cheaper to fuel than ICEVs
respectively. The fuel savings are likely greater now—since this study the US average cost
of electricity has risen by 9% [U.S14b] but the cost of gasoline has increased 40% [Gas].

Plotz [Plo14] gives the statistical theory to compute the mean number of days per year
that a users driving demand will exceed some range threshold (i.e., the number of days
they will need access to another vehicle) based on their past driving behavior. This work
is theoretical and intended for use by other researchers with data; the author does not
conclude how often BEVs will not suffice for users (e.g., like Pearre [PKGE11]) but instead
provides statistical tools to calculate such probabilities given data as input. The author
also computes the standard error of this mean given the sample data. The methodology
requires that distribution of daily vehicle kilometers traveled for the user is log-normally
distributed. The author numerically validates their estimators using a case study of the
“average" German driver, and shows that the standard error of the estimates decreases (as
expected) with more observations.

We end by noting that many authors rely on statistics from national travel surveys such
as the periodic US National Household Travel Survey [US 13]. In these surveys, households
respond to questionnaires about their average travel habits. While these are useful for
determining average mobility statistics, e.g., the average length of a US car trip, they do not
give any finer-grained statistics of interest to EV researchers such as trip length distributions,
distributions of parking durations, and temporal distributions of parking events. These can
only be obtained using trip-level information, which the above papers attempt to measure.
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Chapter 4

Mining and Classifying Electric Vehicle
Owners’ Opinions

Publication reference: T. Carpenter, L. Golab, S. J. Syed. Is The Grass Greener? Mining
Electric Vehicle Opinions. e-Energy 2014.

4.1 Synopsis

As discussed in §3, while field trials and surveys have been the two primary methods to gauge
the barriers to EV adoption, both methods have limitations. Because EVs are expensive,
field trials are usually limited in duration and in the number of participants, and surveys
usually receive a large number of respondents with little to no experience with EVs. We thus
propose an additional method to elicit perceptions: online sentiment analysis. We build an
open-source system that programmatically mines EV owners’ sentiments from online forums
[Mis14b, Mis14c, Mis14a]. These forums contain detailed product discussions authored by
owners. Analyzing their perceptions is beneficial for at least three sets of users: prospective
buyers (what features do owners like and dislike?), marketers (what well-reviewed features
should be advertised?) and manufacturers (what features should be improved?).

Our contributions in this chapter are twofold:

1. We augment prior methods of gauging the barriers to EV adoption with a system that
programmatically mines perceptions from EV ownership forums. Our system produces
a high-level product overview with the ability to drill down into opinionative sentences
about specific features of interest. The system not only mines perceptions found though
expensive field trials, but also opinions that are only observable after longer periods of
time, e.g., those towards battery degradation, that are not found during field trials.
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2. We augment prior sentiment mining techniques with new methods for parsing sentence
fragments containing opinions about features (§4.6) and handling context dependent
opinions (§4.7.1).

We find our system significantly reduces the amount of text the user must read to determine
owners’ opinions. In our case evaluation, we found that 90% of the sentences in the forums
did not contain any feature synonyms, and moreover, 70% of the sentences that did contain
features were neutral (did not express a sentiment). Thus, given the feature set of interest,
the system reduced the text by 97% to the 3% of relevant text.

We evaluate the system’s performance using a corpus of 830,000 sentences, 8,000 of which
we manually labelled for ground truth. The system extracts and classifies opinions with a
precision and recall of ≈60%, which is on par or better than the previous opinion mining
systems discussed in §4.9.1.
We have open-sourced our system [Car] unlike prior sentiment mining systems that were
commercialized.

4.2 Terminology

In this chapter, we use the following notation:

• All usages of dictionary refer to the data structure mapping keys to values, not indexes
of English word definitions. We we use the domain terminology lexicon for the latter.

• P = {P1, P2, ...} represents the set of products the user wishes to mine reviews for.

• Feature refers to a product feature or attribute.

• Fp = { ~F1

p
, ~F2

p
, ...} represents the feature space of p ∈ P, where ~Fi

p
is a vector of

synonyms for feature i . For example, if feature 1 of p is fuel economy, ~F1

p
may be

< fuel economy, efficiency, gas mileage, fuel efficiency, mpg.. >

• O represents the set of opinion phrases recognized. Until §4.7.2 this definition is suffi-
cient; we formally define O in Eq(4.1) after several other definitions are introduced.

• We refer to a sentence fragment in which opinion o refers to feature F as a (F, o) pair.

• We abbreviate “neutral" with N, positive with +, and negative with −.

4.3 System Architecture

Because customers usually desire certain specifications when shopping for expensive prod-
ucts like vehicles1, we build a feature-based opinion mining (FBOM) system that extracts
and classifies opinionative statements about specific product features the user is interested
in (e.g., “battery capacity" and “safety"). There are five main phases in FBOM:

1E.g., one buyer may seek performance while another may look for top safety ratings.
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Figure 4.1: Sentiment analysis system architecture

1. Building a text corpus to be mined

2. Defining or mining the product and product features of interest

3. Extracting sentence fragments from the corpus containing opinions about those features;
these fragments denoted as (F, o) pairs.

4. Classifying each (F, o) pair as {+, N,−}
5. Aggregating results and computing various statistics

Our system is depicted in Figure 4.1. The red boxes labeled 1—5 correspond to the five
aforementioned phases. First, forums are first crawled, cleaned, and split into individual
sentences. These steps are collectively labeled as step 1 (see §4.4). The feature space is
then defined or mined (§4.5). Sentences are then mined for (F, o) pairs using a process
known as chunking (§4.6). Chunks, fragments containing (F, o) pairs, are then classified as
having a positive, negative, or neutral sentiment (§4.7). Finally, results are output (§4.8).

We note that in the remainder of this chapter, we define and refer to several lists of words
and dictionaries. Rather than reproduce these lengthy data structures here, some of which
contain thousands of words, we refer the reader to the codebase [Car].

Prior work on building feature based opinion mining (FBOM) systems is discussed in §4.9.1.
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Figure 4.2: Scrapy[Scr14] webcrawling process
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4.4 Phase 1: Data Collection and Preprocessing

We use the Python Scrapy package [Scr14] to collect EV reviews from the Web. Scrapy is
a system in which the user writes spiders containing two sets of regular expressions (regex).
URLs matching any expression in the first set are content pages, and are sent to a parsing
pipeline. URLs matching any expression in the second set are linking pages which hold links
to other (content & linking) pages. The crawling process is depicted in Figure 4.2. The
parsing pipeline processes the page text, fragments the text into sentences, and inserts the
sentences into a database we denote as the raw corpus. For processing, we first remove all
HTML tags and links. We then convert all characters to lowercase. Next, we iterate through
a large list of common typos [Wik14a] and fix misspellings. Finally, we iterate through a
list of contractions [Wik14b] and expand them. This is done because words such as not are
valence shifters which change the sentiment of opinion phrases as discussed in §4.7.

4.5 Phase 2: Building The Feature Space

We build the feature space Fp for each product p ∈ P as follows:

1. We first manually create a seed set of features and define a few synonyms for each.

2. We then use word frequencies to generate more candidate features from the raw corpus.
If a noun in the raw corpus has a high frequency, it may be a feature synonym. We
manually filter these results, because not all common nouns are features; e.g., road is
quite common in our EV review database.

3. We next use NLTK’s collocation functionality, which produces bigrams and trigrams
with high-scoring point-wise mutual information—sets of two and three words that often
occur together. Multiple-noun features like battery capacity and non-adjective opinion
phrases like warranty issues are found this way.

4. Finally, we use NLTK’s concordance functionality. Concordance shows the words sur-
rounding each usage of the target word, e.g., concordance(“battery", k) prints each
occurrence of battery with the k/2 surrounding words on both sides. Manually reviewing
concordance helps further identify multi-word features. This process can be repeated
indefinitely as time permits.

4.6 Phase 3: Chunking

In the following two sections, we describe our sentence parsing methodology, chunking,
which works by grouping part of speech (pos) tags with regular expressions (regex) [Fri02].
To the best of our knowledge, we are the first work to apply this natural language processing
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technique, built for finding syntactic constituents in English sentences such as noun phrases
2, to sentiment mining. We also describe its advantages over prior work.

4.6.1 Part of Speech Tagging

Chunking groups sequences of words based on their part of speech (pos), so the first phase
of chunking is to label each word in each sentence with its pos tag. We first filter out a list
of stopwords3 from each sentence. We then tag each word with its pos using the Stanford
Tagger [Sta14] for this task, which has an interface for NLTK [NLT14]. This produces a
list of tuples of the form [(word1, < pos >), (word2, < pos >)..] for each sentence.

We then iterate over each tagged sentence and replace the tags of select words with special
tags. The usage of these five special tags is discussed in the following section.

• Sentences are searched for all synonyms for all features, and all matches’ pos tags are
replaced with <feature>.

• We replace the pos tags of implicit features, words that are both feature synonyms and
opinion phrases, with <implicitfeat>. For example, noisy is both a synonym of sound
(which we later grouped into Miscellaneous) and also a negative opinion.

• We search for words contained in a list of non-adjective opinion phrases4 (NAOPs), and
replace all matches’ tags with <naop>.

• We replace the pos tags of feature changers, words that when used near one feature
indicate the sentence is actually referring to another5 with the <featchange> tag.

• We replace the pos tags of valence shifters [KI06] like not with the <vs> tag.

4.6.2 NLTK Chunking

English is not a regular language [CFL10], thus arbitrary English sentences cannot be parsed
using regular expressions. Fortunately, most of the sentence constructs people use can. We
recognize English text using a context free grammar, following common practice. We use
the Python NLTK (Natural Language Toolkit [NLT13]) package to parse sentences using
chunking [BKL09], which makes use of regex to group word sequences with particular parts
of speech (pos) together.

A context free grammar (CFG) is a set of production rules of the form A→ B, where this
denotes A can be replaced with B in any “string" in the language. In parsing natural language,
CFGs state “replace instances of B with the higher-level notion of A". For instance, the rule

2http://www.nltk.org/api/nltk.chunk.html
3These are the “extra" words in a sentence, which help with sentence structure and flow, but are not

integral to sentence meaning, and are usually not indexed in information retrieval systems [Ras09].
4such as disgrace and problem
5As examples, if costs is used near the feature car, the sentence is likely referring to the price feature of the

vehicle, and if the word handles is used near car, the sentence is probably referring to the car’s performance.
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<verb-phrase> → <subject><verb> replaces the tags <subject><verb> with the higher
level concept <verb-phrase>. Chunking is simply an extended CFG (E-CFG), that is, a
CFG in which the right hand side of production rules can be regex, instead of lower level
concepts or terminal strings. While E-CFGs provide no functional benefit over traditional
CFGs because they describe exactly the same set of languages [AGW00]—an infinite number
of CFG production rules may be needed to express the same rule of an E-CFG [AGW00].
The regex operators {+, ∗} provide compactness—a way to specify an infinite number of
patterns that greatly condense the set of needed rules.

We then define a NLTK chunking grammar, a series of regex rules executed on these tagged
sentences that combines tuples into chunks, corresponding to higher level concepts. The
rules are executed in-order and are non-overlapping; that is, words consumed during one
chunking will not be part of another chunk. The chunking grammar can include as many
rules as desired. The most specific rules should be defined first in the grammar since rules
are executed in order, and rules with the most flexibility should come last. Each expression
attempts to match a sequence of tags. The standard regex tokens {∗, .,+, ?} can be used to
capture arbitrarily long groups of tags, and allow for optional parts of speech. For example,
the rule X:

X: {<det> 6?<noun><verb>+<adverb>*<adjective>+}

chunks both the (noun) is really superb and my (noun) has been reliable.

Recall that five special tags are inserted during the pos tagging phase: <feature>,
<implicitfeat>,<naop>, and <featchange>. These tags are used while chunking as follows:

• The <feature> tag is included in every rule; the goal is to mine (F, o) pairs.

• The <implicitfeat> tag indicates the word should be parsed as a feature synonym and
an opinion. For example, we define noisy as an implicit synonym for the feature sound,
and when tagging a sentence, we tag noisy with <implicitfeat>. During the chunking
phase, the tuple (noisy, <implicitfeat>) is chunked as the (F, o) pair (sound, noisy),
where sound is found using an inverted dictionary7 that maps synonyms to features.

• The <naop> tag is used in the chunking grammar wherever <adjective> is used.

• Each chunk is post-processed to see if it contains a <featchange> tag. If so, the
<featchange> word is checked in a dictionary of feature changers for the <feature>
word. If the <featchange> word is a dictionary key, its value replaces the original feature.
For example, we insert handles into the car feature changer dictionary with the value
performance. The fragment car handles great, tagged:

(car, <FEATURE>),(handles <featchange>),(great <opinion>)

6<det> refers to a determiner such as this or my
7If a dictionary has the property that no two keys have the same value, the dictionary can be inverted, such

that given a value, it can be queried to produce the corresponding key. In this context, the required property
means that no word is a synonym for two different features.
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will be post-processed, prior to querying the chunk, and changed to:

(performance, <FEATURE>),(handles <featchange>),(great<opinion>)

leading to the (F, o) pair (performance, great).

• If the <vs> tag is found in a chunk, the chunk’s sentiment is inverted after querying.

With a well-crafted grammar only a few rules are needed; all results presented in §4.8.1
come from the four rules given in §A.

4.6.3 Advantages Of Chunking

In this section, we provide intuition as to why chunking works better than methods used in
prior work for mining (F, o) pairs.

Prior work uses one of two methods to classify (F, o) pairs. The first is to compute a scoring
function using the sentiment of adjectives in the sentence and their proximity to features or
products. These methods are misleading if used on a sentence-wide basis because sentence
structure plays a vital role in the meaning of sentences. Consider two sentences:

s0 : it does not have good (feature)

s1 : the (feature1) is not good, but its (feature2) is excellent

Sentences like s0 are problematic for sentence-wide scoring methods because the feature
is close to the positive opinion good, but the sentiment is negative. On the other hand,
including rules such as “invert the sentiment if a valence shifter is found in the sentence"
would incorrectly classify s1 as negative for product2 . The solution is to apply the valence
inversion rule to only the first part of s1. We do so using the <vs> tag, for example:

r0 : {<verb><vs><“have/has"><opinion><feature>}

r1 : {<feature><verb><vs>?<opinion>}

Using this inversion rule, s0 triggers r0 which correctly classifies it as negative. Moreover,
s1, chunked as [the (r1), but its (r1)] fails to trigger r0 because the sentence structure does
not match, but triggers r1 for the first chunk which correctly classifies it as negative and
triggers r1 again which correctly classifies the second chunk as positive.

Moreover, scoring functions can be used within chunks because they may contain multiple,
sometimes conflicting opinions, e.g., the interior is stylish but too small. We use the function:∑

o∈chunk

sentiment(F, o) ∗
(

1

d(F, o)

)
Where sentiment(F, o) is determined using the methods discussed in the next section and
d(F, o) is the distance (number of words) the opinion is from the feature in the chunk. This
scoring function would classify the above chunk as positive. Another scoring function may
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assign all opinion phrases in a chunk equal weight, e.g., assign each of stylish and too small
a weight of .5 and classify the chunk as neutral.

The second method used to mine (F, o) pairs in prior work is to parse sentences according
to syntactical templates, which are similar to chunking but do not use the regex operators
{+, ∗, ?} [KIM+04, PE05, ZJZ06]. For example, a syntactical template may be:

{“The” <feature> “i s” <opinion>}

which captures, for example, the (feature) is (adjective), but would fail to capture the
(feature) is really (adjective). With chunking, we can capture both using optional tags:

{<feature><verb><adverb>*<opinion>}

To further demonstrate the expressiveness of optional tags, rules with optional valence
shifters and “filler" words can capture many sentence constructs in a single rule, e.g,

{<valenceshft>?<opinion><“with"><det>?<article>?<feature>}

matches all of “no problems with the <feature>", “problems with my <feature>", and “no
issues with my <feature>".

Thus, chunking has advantages over both scoring based and template based methods.

4.7 Phase 4: Sentiment Querying

Here we describe how we classify (F, o) pairs. We first introduce two methods for handling
context-dependent opinions (§4.7.1) and then discuss our classification algorithm (§4.7.2).

4.7.1 Handling Context-Dependent Opinions

Some opinion phrases are context-dependent, for example cheap quality vs. cheap price,
and pose a challenge for opinion mining systems that use lexicons or WordNet [Pri14] to
determine the sentiment of a word. Before discussing our sentiment querying algorithm, we
introduce two concepts to handle context-dependent opinion phrases (CDOPs).

First, we define a feature specific dictionary (FSD), Sp∈P
f∈Fp [o ∈ O], or each {product, fea-

ture} pair (p, F ). These dictionaries are small and only contain phrases that have a sentiment
when referring to (p, F ) that is different than the sentiment it holds when used in other
contexts. They produce a sentiment when queried with an opinion phrase o if o is defined
to be context-dependent for that feature, or “unknown" otherwise:

S[Car, Quality](cheap)→ −
S[Car, Price](cheap)→ +

S[Car, Performance](cheap)→ Key Error
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Figure 4.3: Pipeline for querying the sentiment of (F, o) pairs

We currently build these dictionaries manually by classifying a set of chunks, classifying
them using the system, and inspecting chunks containing the same opinion phrase that were
classified correctly by the system in some cases and incorrectly in others. The intuition is that
if o is used in two chunks referring to f1 and f2, if the system classifies (f1, o) correctly but
(f2, o) incorrectly, it may indicate that o is a CDOP. Building these dictionaries automatically
is left as future work, for example, using the work of Orimaye et al. [OAEG11].

Second, for some features, “more or less is always better", e.g., performance and price
respectively. We refer to such features as oriented features. We maintain whether each
feature is positively, negatively, or non oriented, because Intensity modifiers like low and
high (a list can be found in Paradis [Par97]) change their context when referring to such
features. For example, note the orientations of the following (F, o) pairs:

(Range, low)→ −, (Range, high)→ +, (Maintenance, low)→ +, (Gear, low/high)→ N

The methodology for querying oriented features is discussed in the next section.

4.7.2 Sentiment Querying Pipeline

We now describe how we classify whether opinion o expresses a positive, negative, or
neutral sentiment about feature F in mined (F, o) pairs. Prior algorithms for opinion phrase
classification are discussed in §4.9.2. To determine the sentiment of a (F, o) pair, we check
the following set of ordered rules, summarized in Figure 4.3. The rules are checked from
first (being the most specific) to last (being the default rule of simply returning N), and
when a rule triggers, a sentiment is returned and the rest of the rules are ignored.

1. If o is an intensity modifier and F is an oriented feature, we use the following sub-rules:

(o : +, F : +)→ return +, (o : +, F : −)→ return −
(o : −, F : +)→ return −, (o : −, F : −)→ return +

2. If the feature is found in the FSD Sp
F, the corresponding label is returned.

3. If querying the default sentiment lexicon returns a sentiment, the sentiment is returned.
Our default sentiment lexicon is built from the MPQA Opinion Corpus [Wil, Wil08] and
contains over 6, 800 opinion phrases.

4. Return neutral (N).
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There is one exception to this pipeline. Phrases such as wondering, curious, as long as, can,
may, and will are common in chunks that contain an opinion phrase but do not express an
opinion, rather, they ask a question or talk about a hypothetical scenario. If any word in a
chunk is found in a list of these phrases, the chunk is classified as neutral.

We now formally define O (§4.2) as:

{NAOPs} ∪ {intensity modifiers} ∪ {MPQA} ∪ {Sp∈P
f∈Fp .keys ∀(p, F )} (4.1)

4.8 Phase 5: Results

Our system gives prospective EV owners a high-level product overview with the ability
to drill down into opinionative sentences about features of interest. The sentences reveal
sentiments found during field trials, but also some that were only realized after the owners
possessed their vehicles for a significant amount of time. Moreover, the system significantly
reduces the amount of text the user must read to determine owners’ opinions because is
filters out sentences that do not contain features of interest or opinions.

We discuss corpora generation and our performance metrics in §4.8.1. In §4.8.2 we support
the above claims. We discuss precision, recall, and classification errors in §4.8.3.

4.8.1 Evaluation Methodology

Here we discuss our evaluation methodology. We discuss our corpora generation in §4.8.1,
define our evaluation metrics in §4.8.1, and define terms used in our results in §4.8.1.

Corpora Generation

For our evaluation, we crawled the owner discussion forums for the three best selling (see
§2.1.1) EVs—the Nissan Leaf [Mis14c], the Chevrolet Volt [Mis14b], and the Tesla Model
S [Mis14a]. After mining the forums, our raw corpus contained 107,293 Volt sentences,
220,906 Leaf sentences, and 500,668 Model S sentences. We then filtered out all sentences
containing no synonyms in FV olt , FLeaf , and FTesla, leaving 10,519 Volt, 19,799 Leaf, and
73,228 Tesla Model S sentences, which we collectively denote as the feature corpus.

We demonstrate our system’s operation in two ways:

• For the Leaf and Volt, we manually labeled—read and annotated with our opinion of the
sentences’ sentiments—a small fraction (≈25%) of the feature corpus. We denote this
set of labeled sentences as the ground truth corpus (GTC). The GTC contains 2,566
Volt and 5,514 Leaf sentences containing at least one feature. In §4.8.1 we show the
precision, recall, and the distribution of sentiments for the GTC. No results are presented
for the Leaf and Volt for the unlabeled portion of the feature corpus.
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• For the Tesla Model S, we demonstrate the sentiment extraction capability on a large
corpus which we cannot manually label: we show just the distribution of sentiments for
the entire feature corpus (73,228 sentences).

Precision and Recall

Let

• s+
F , s

−
F be the number of sentences the system classifies as +,− about feature F .

• t+
F ,t

−
F be the number of sentences we manually classify as +,− about feature F .

• c+
F ,c

+
F , where c stands for “correct", denote the number of sentences the system classifies

correctly as +/− about F that we also classify as +,− about F . Intuitively, c+
F ≤ s

+
F

is the number of sentences that we agree are positive about F . We stress about F
because sometimes the system classifies a sentence’s sentiment correctly but for the
wrong feature (the sentence is actually referring to a different feature).

We compute two metrics, opinion precision and opinion recall, for each feature F :

precision(f ) =
c+
F + c−F
s+
F + s−F

recall(f ) =
c+
F + c−F
t+
F + t−F

Chunks misclassified as (+/−) lead to lowered precision, and (+/−) chunks misclassified
as neutral lead to lowered recall.

Due to our methodology of filtering out all sentences which contain no feature synonyms,
our measure of recall is not “true recall"; we overestimate recall. This is because some
sentences in the raw corpus may refer to a feature implicitly or using a rare synonym.
However, because most sentences do not contain features, simply selecting a percentage of
the (massive) raw corpus to classify for ground truth, without first filtering the sentences by
known feature synonyms, may lead to a ground truth corpus containing very few sentences
containing features. We thus believe only labeling sentences containing known features is a
reasonable approximation.

Definitions

Here we define some features of electric vehicles used in our figures:

• General refers to any opinion referring to the car itself and not a specific feature, such
as this car is amazing.

• Current EV batteries lose capacity over time as they are repeatedly charged and dis-
charged, and if they are subjected to extreme temperatures [BCMW11]. Degradation
refers to the effect of charging and climate on a batteries capacity and life.

• We denote anything related to heating and cooling, including features such as heated
seats and pre-warming (warming the EV while it is still plugged in at home), as HVAC.
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• Carwings and Onstar are products included with the Leaf and Volt respectively that
provide various feedback, charging, and safety services to drivers.

• MiscFeats refers to a mix of other features including power steering and navigation.

4.8.2 Distribution of Sentiments

As discussed in the prior section, we show the distribution of sentiments found in the ground
truth corpus (GTC) for the Leaf and Volt, and for the entire feature corpus for the Tesla
Model S. The distributions of sentiments found in the GTC for the Leaf and Volt are shown
in Figure 4.4. The distribution of sentiments found in the feature corpus for the Tesla Model
S is shown in Figure 4.58. Examining these figures gives a high-level view of opinions about
the various product features. If the user wishes to learn more about each feature, they can
then read the corresponding classified sentences. Some sentiments found in this manner
match sentiments found during expensive field trials:

• As discussed in §3, price and range anxiety are commonly cited as the two largest EV
adoption barriers. This is supported by all three ownership forums, though for the Leaf
and Volt the number of statements about these features in the GTC is small (for price,
this problem is further discussed in §4.8.3). For the Leaf, which has only 100 miles of
range, the sentiments about range and range anxiety are mostly negative, and sentiments
towards range anxiety for the Volt are positive (no range limitations). The Tesla Model S
has three times the range of the Leaf so most sentiments regarding anxiety are positive.
For price, the majority of sentiments for all three products is negative.

• Maintenance is also commonly cited as a major selling point of BEVs—the absence of
an ICE means fewer moving parts that can fail and less fluids to change. From Figures
4.4 and 4.5, we see that sentiments towards maintenance for the Leaf and Tesla (BEVs
with no ICE) are overwhelmingly positive. Interestingly, the Volt also has positive reviews
for maintenance.

• Field trials often conclude that participants prefer the EV charging process over the ICEV
refueling process, because many drivers charge their EVs overnight or while at work. We
also find that sentiments towards charging are positive. Reading the classified sentences
reveals that many drivers receive free charging at work, are not concerned about the
lack of public charging stations, and live in areas with time-of-use electricity pricing so
they are able to charge overnight cheaply.

• As a final example, the mostly positive sentiments for the general category reveals some
early adopter bias. Even when drivers express concern about the set of features they
dislike, many end their discussions with comments like “...but I love my Leaf/Volt/Tesla".

8The numbers above the bars in the Figures 4.4 and 4.5 show the number of sentences classified for that
feature. These numbers do not sum to the exactly the size of the GTC for the Volt and Leaf (2,566 Volt and
5,514 Leaf sentences) or the size of the feature corpus for the Model S (73,228 sentences). This is because
while all of these sentences contain features, they do not all contain opinion phrases or even adjectives—these
(small number of) sentences are discarded during the classification stage and were not labeled.
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Figure 4.4: Sentiments of all Leaf (top) and Volt (bottom) sentences in the ground truth corpus.
There are three bars for each feature. The first shows the polarity distribution of sentences the system
classified as positive, negative or neutral, even if for the incorrect choice of feature (s+, s−, sN).
The second shows the distribution of those the system correctly classified for the correct feature
(c+, c−, cN). Finally, the last shows the distribution of ground truth sentences (t+, t−, tN).

Figure 4.5: Sentiments for all Tesla Model S sentences in the feature corpus. Because there is no
GTC, we only show one bar, the polarity distribution of sentences the system classified (s+, s−, sN).
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In addition, we are also able to derive insights that were only perceived after the owners had
their vehicles for a significant duration of time. Such insights are not possible to elicit from
field trials. The most important example is owners’ experience with battery degradation, the
effect of repeated charging and climate on battery capacity over time. While it is known that
climate and charging cycles affect battery life, it is unknown to what extent this is the case
[BCMW11]. We find that some owners are experiencing non-trivial battery degradation and
about 50% of sentiments towards degradation are negative9. Manufacturers can use these
sentiments in conjunction with the owners’ location (if available on the forum) to derive
conclusions about the effect of climate on battery capacity, e.g., we find that owners in hot
regions such as Arizona and southern California post more often about degradation. Closely
related are sentiments on warranty, which are mostly negative, because some owners have
filed for battery replacements through battery warranties against capacity loss. Reading
classified statements from warranty and maintenance reveals other vehicle problems of
interest to manufacturers, such as the replacement and maintenance rate of various parts.
These problems may not appear in shorter duration field trials.

Figures 4.4 and 4.5 also demonstrate the text reduction capability of our system. As dis-
cussed in §4.8.1, out of the ≈830,000 sentences in the raw corpus, only ≈100,000 contained
a feature synonym of interest, specifically, a feature synonym in FV olt , FTesla, and FLeaf
collectively. Moreover, we see in Figures 4.4 and 4.5 that ≈70% of sentences containing a
feature of interest are neutral. Thus, given the set of defined features in this case study,
the system reduced the space of text by 97% to the 3% of relevant text.

4.8.3 Performance

Figure 4.6 show the precision and recall of our system on the GTC. The performance is on
par with or better than prior FBOM systems discussed in §4.9.1. To interpret these results,
we now present several types of errors we encountered because they give insight into the
complexities of opinion mining. Some of these errors show how the system performance
can be improved by continuously fine tuning the system as time permits, while others show
that perfect performance is impossible due to inherent English ambiguity.

Some features are hard to mine or classify opinions for. For example, our system performs
poorly on classifying opinions related to safety. We find the word issue is heavily overloaded
but used often—in some instances it is used synonymously with hazard, such as that is
a safety issue!, and in other cases it is used synonymously with feature, e.g., grounded
charging is a safety issue. Our system also performs poorly on classifying warranty opinions
for similar reasons. For example, it is difficult to tell programmatically when the phrase not
covered is used as a negative or neutral sentiment. Sometimes posters state facts with this
phrase, e.g., the windshield is not covered in your warranty, and other times to express
frustration, such as the repair was not covered by my warranty. Moreover, notice that

9Positive sentences about negative features usually include valence shifters, e.g., “I have not had any
battery degradation".
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Figure 4.6: Performance of classifying all Leaf (top) and Volt (bottom) sentences in the GTC.

price, even though it is cited as a major adoption barrier, has very few comments. We find
many posts comment on the price of something other than the price of the vehicle, such as
the price of charging and electricity. After experiencing a high rate of classification errors
regarding this feature, we tuned our system to only classify a chunk as referring to price
if the chunk contained both a synonym of price and a synonym of General such as car,
Volt, Leaf, etc. This led to a tradeoff: from Figures 5 and 6 we see our system performs
well with respect to precision and recall for price, but the number of classified sentences
to draw conclusions from is small. Conversely, our system classifies General opinions well
for both products, for which there are many. This is because sentences expressing general
sentiments are often clear and brief, e.g., I love my Leaf! and this is an excellent car.

Table 4.1 shows examples of errors we fixed by updating the feature-specific sentiment
dictionaries, updating the default sentiment lexicon, or other adding other domain knowledge
(DK) as shown. Others errors are “better left unsolved"—tuning the system to correct these
creates larger problems elsewhere. Sometimes a feature synonym is used in two different
contexts, e.g, "ice" can refer to an engine (Internal Combustion Engine) or the weather
condition. We set the system according to which usage is most common, but errors will
occur when the word is used in the less common context. Others represent chunking errors
where changing the chunking grammar to fix the error caused more problems in other
sentences because the offending sentence structure is uncommon. Finally, some words are
context-dependent even within the context of one feature. We accept such errors, shown
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in Table 4.2, as necessary due to the ambiguity and complex structure of English. Finally,
some ambiguous sentences can be classified differently by different human readers. Some
correspond to a parameter which sounds positive to some, such as “100 miles per gallon",
but for which it is hard to impose a strict cutoff for which all human readers agree, e.g.,
“all mileages over X are positive". Others are ambiguous sentences that could be classified
as either positive or negative. Examples of such errors are shown in Table 4.3.

Sentence Class Tr Problem Solution
The standard warranty is N(Warranty) + more than enough not add it to the default sentiment dictionary
more than enough. recognized as an opinion
My Carwings sometimes hangs. N(Carwings) − hangs not recognized add it as − to the Carwings FSD
This car is a blast to drive! −(General) + blast is context dependent add it as + to the General FSD
The dealer showed me how to perform +(Maintenance) N recommended add it as N to the
the recommended maintenance is context dependent Maintenance FSD
I love my Audi, it is a great car. +(General) N Subject error classify chunks w/ other popular car

names as N
I had a low battery warning. −(Battery) N warning is context dependent classify chunks w/ this phrase as N
It has a 5 star safety rating. N(Safety) + 5 star not recognized add it as + to the Safety FSD
The hot weather kills my range. N(Range) − kills, a verb, not recognized add it as a non-adjective

as an opinion opinion to the Range FSD.

Table 4.1: Examples of solvable sentiment analysis errors. “FSD" denotes “feature specific dictionary"

Sentence Class Tr Problem
"It was charge free." +(Charging) N poster is not referring to charging but rather the price of

something. However, sometimes posters talk about free charging.
The Volt is the best car ever and I −(General) + ICE most often refers to the Volt’s ICE, but sometimes to
will never go back to a crude ICE non hybrid vehicles in general.
My new radio has far less +(Degradation) N here the poster is referring to radio signal degradation;
degradation near mountains. static near mountains, power lines, or tunnels.
It felt like the engine was on. +(Engine) N like is a tough word. Even within the context of one feature, it can

be used as a comparator or as a positive sentiment (more common).
I love everything about this car, N(Exterior) − Chunking error. We find most opinions do not “cross over" commas, hence
with the exception of the exterior. commas are not included in chunking rules. Here the valence shifter

“exception" loses the opinion to negate—love, since it is not in the chunk.

Table 4.2: Examples of sentiment analysis errors that are “better left unsolved".

Sentence Class Tr Problem
The Leaf handles 99% of my annual driving." N(General) ? Should this be +? What’s the +/− Cutoff?
I get around 80 mpg." N(Efficiency) ? Should this be + for Efficiency? Cutoff?
The Leaf is very easy to push. +(General) ? This might mean the poster’s car died, or something

related to performance/handling?
Level 2 charging is very efficient. +(Charging) ? Should this be +? The poster may either be

happy with their charging experience or just stating a fact.
I never worry about my mileage. +(Efficiency) ? Is the poster stating a fact or that they have plenty of range?
I am sad my Volt is in for maintenance. −(Maintenance) ? is the poster disappointed the car requires maintenance,

or are they stating they miss driving their car?

Table 4.3: Examples of ambiguous sentiment analysis classifications.

4.9 Prior Feature-Based Opinion Mining Methodologies

This section discussed related work on feature-based opinion mining §4.9.1 and sentiment
classification §4.9.2.

44



4.9.1 Feature-Based Opinion Mining

Hu and Lui define the concept of feature-based opinion mining [HL04a] and introduce the
first FBOM system, Opinion Observer [LHC05]. Their system first builds Fp, then finds and
summarizes positive and negative opinions corresponding to each feature. The authors use
a lexicon to determine the sentiment polarity of adjectives in sentences containing product
features, then classify sentences based on the number of positive and negative words in a
sentence.

Hu and Lui [HL04b] expand on the product feature identification phase. The authors present
an association rule mining process to build Fp. The mining process finds noun phrases (e.g.,
digital camera) that are likely to be product features. Pruning rules are used to trim the
set of mined product features. Lui, Hu, and Cheng [LHC05] further update their system
to use supervised learning for detecting implicit features, e.g., fast refers to the feature
performance. Finally, Ding, Lui, and Yu [DLY09] update their system with a better sentiment
classifier. For each feature F in a sentence, the authors compute a scoring function based
on all adjectives in the sentence and their distance from F . Hence, if there are two features,
the adjectives closest to each will influence their scores the most, but all adjectives have a
non-zero contribution to the score of all features. This improvement better classifies (F, o)

pairs than simply averaging the classification of all adjectives.

Scaffidi et al. [SBC+07] build a system called “Red Opal" which allows users to search for
products based on the ratings of specific product features. Products are ranked feature-
wise based on numerical review ratings, like those found on Amazon, rather than opinion
words in the reviews. While the system achieves good results when numerical reviews are
available (which they are typically on online retailers), This system cannot mine forums,
article comments, or other text.

Popescu and Etzioni [PE05] present OPINE, a system that uses different algorithms for
building Fp and mining/classifying (F, o) pairs. Their feature selector uses pointwise mu-
tual information between potential features and metonymy10 discriminators, such as of
object, object has, object comes with. These phrases can distinguish whether a sentence
is opinionative or factual, leading to a higher precision for detecting (F, o) pairs. To mine
(F, o) pairs, the authors use syntactical templates such as <feature> is <value>—if a sen-
tence matches this pattern, (feature, value) is mined as an (F, o) pair. These syntactical
templates motivated our use of chunking to parse (F, o) pairs. Zhang et al [ZNC10] use a
graph mining approach to rank several products according to various product features. The
authors divide opinionative sentences into two sets, those that express opinions on just one
product (subjective), and those that compare two or more products (comparative). Prod-
ucts are treated as nodes in a “feature graph". Subjective sentences and their classification
are used to weigh nodes, while comparative sentences and their classification are used to
weigh edges between the two products being compared. Then a PageRank algorithm is used
to rank the set of nodes according to the feature. In the future, when many EV models
are sold and EV sales increase, this work may help compare several EV models. on 4.6.

10 noun: substitution of the name of an attribute for that of the thing meant, e.g., “suit" for “business"
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This resolves problems with Hu’s [HL04a] system because not all opinions in a sentence
are associated with every feature in the sentence. They use statistics and classifier-based
methods for classifying word sentiments, as opposed to Hu’s lexicon based approach.

Jin et al. [JHS09] discuss Opinion Miner, which trains a hidden Markov model to find
(F, o) pairs and simultaneously classify them; the only work we know of that merges these
steps. The model is trained using linguistic constructs, syntactical templates, and word
sentiments. The model learns to mine constructs such as “negative opinion about [feature]",
instead of first finding (F, o) pairs and then separately classifying each pair. The authors
manually tag certain constructs, then use synonyms, antonyms, linguistic constructs, and
other bootstrapping techniques to grow the set of training examples.

Others have improved upon these systems. Kobayashi et al. [KIM+04] suggest a domain-
knowledge-driven feature and opinion phrase selection process, instead of the general asso-
ciation mining techniques. Their work is concerned only with mining product features and
opinion phrases, and does not discuss sentiment classification. They introduce an iterative
algorithm that generates candidate features and opinion phrases, and manually select those
that are valid. In each iteration, more candidates are selected based on the prior iteration,
and the process is repeated until an iteration goes by where the human selects no can-
didates. Zhuang et al. [ZJZ06] present a case study of Hu’s system using movie reviews.
The authors first identify features such as special effects, acting, plot, directors, cast. The
authors then identify opinions discussing those features and classify the opinions as {+,−}.
Finally, the authors summarize the results. The authors incorporate domain knowledge using
supervised learning into feature and opinion keyword mining. For example, they have several
movie fans manually tag reviews for features, feature opinions, and cast members. To parse
pairs, the authors use syntactical templates like Etzioni [PE05] and Kobayashi [KIM+04].

Our system builds upon these systems as follows. Like Zhuang et al. [ZJZ06] and Kobayashi
et al. [KIM+04], we incorporate domain knowledge (DK) into our mining process, specifically
in the chunking and querying phases. For feature mining, a part of the chunking phase,
we use Hu’s association mining technique [HL04b] and then manually prune and collapse
the feature set like Kobayashi et al. [KIM+04]. We note this is feasible because there are
fewer than one hundred common features one may talk about within the context of a
car. For parsing sentences, our use of chunking is similar to using syntactical templates
like Kobayashi, Popescu, and Zhuang [KIM+04, PE05, ZJZ06], but more powerful (see
§4.6.3). During our sentiment classification stage, we make use of an open-source sentiment
dictionary, the MPQA Opinion Corpus [Wil, Wil08]. Like Ding et al. [DLY09], we handle
context opinions, but introduce two new methods for this in §4.7.1.

4.9.2 Word and Sentence Polarity Classification

Here we discuss the four prior methods of opinion phrase classification:

1. Lexicon methods [DLY09, ES06a, KH04, HL04b, HL04a, LHC05, ES06b], which we use
in our system, start with a small set of classified seed words. These sets are then grown
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using synonyms from WordNet [Pri14] or other glosses.

2. Semantic methods, e.g., [KI06, HM12, ZJZ06] classify the sentiments of words and
sentences based on lexicons and the semantic rules of the English language. For exam-
ple, two adjectives joined by and are likely to share the same polarity, e.g., sunny and
beautiful—if we know the polarity of one in the conjunction, we can infer the other.

3. Distance methods, e.g., [TAV06, Tur02, GA05] measure the polarity of a given word
based on the distance of that word from a set of positive and negative seed words.
Distance is normally computed via WordNet or by analyzing the co-occurence of words
in a large corpus, with an example function being d(word, good) − d(word, bad) where
d(x, y) gives the distance (computed via WordNet) from word x to word y . Another
common distance measure is pointwise mutual information [TC03].

4. Classification methods , e.g., [WWH04, PE05, JHS09] treat the problem of determining
the polarity of opinion phrases as a machine learning problem. Rather than learning the
sentiment of individual words, a classifier is trained to classify sentences directly. These
authors manually label sentences, train a polarity classifier based on this labeled training
data, and then classify sentences in the unlabeled data using the trained classifier.

Some opinion phrases are context-dependent and pose a challenge for opinion mining sys-
tems. Ding et al. [DLY09] give an algorithm for querying the sentiment of such phrases.
They first attempt to query all opinion phrases in a sentence using a lexicon approach.
They then use an algorithm which considers syntactical constructs and the sentiments in
neighboring sentences to classify unclassified phrases per these lexicons. Two other works
have also studied classifying context-dependent adjectives [TP10, WW11].

4.10 Conclusions & Future Work

Understanding EV owners’ experiences with and perceptions towards EVs is helpful for man-
ufacturers to build later-generation models more aligned with drivers’ mobility preferences
and requirements. We build an opinion mining system that classifies opinions found in EV
ownership forums. Our system helps the user obtain a high-level overview of opinions on
various product features, and greatly reduces the space of text the user is required to read
to extract opinions. These opinions are useful to prospective buyers (what features do own-
ers like and dislike?), marketers (what features should be advertised?) and manufacturers
(what features should be improved?). To build this system, we combine prior opinion min-
ing systems with several new optimizations and our EV domain knowledge. We furthermore
open sourced our system for extension by other researchers, as we find most prior opinion
mining systems are unavailable.

While our results are on par with prior opinion mining systems, we emphasize two of our
contributions. First, prior FBOM systems have focused on products where lots of numerical
reviews are available. For example, Hu and Lui [HL04a] focus on digital camera reviews,
Kobayashi et al. [KIM+04] focus on movie reviews, and Scaffidi et al. [SBC+07] focus on
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any product with numerical reviews. While these papers mine opinions on specific features, a
useful addition for consumers, reviews with easily-parseable schema exist for these products
(e.g., Amazon and IMDB). We present work on mining opinions in free text that does not
follow any schema. Second, our system is open source [Car]. The package includes our
domain knowledge input and all manually built lists and dictionaries. Future researchers or
users that wish to extend the system have a comprehensive starting point. In contrast,
the three closest prior systems are either closed source or unavailable—Opinion Miner is
proprietary [Ope], the Opinion Observer system turned into the proprietary OpinionEQ
[Opi, LH], and the OPINE system [PE05] was never released by the authors.

We end with several avenues for extending and improving our work:

1. An interesting future avenue would be to see how sentiments change over time by analyz-
ing sentiments periodically, e.g., monthly. It is possible to see the change in an individual’s
opinion over time if they post using a user name. For owners that post anonymously, we
can examine how collective sentiments change. Field trials have attempted to determine
how perceptions change over time, for example, by interviewing participants both before
and after the trial. However, because individual participants in trials are often only given
a vehicle for a few weeks or months, their opinions may not change as much as they
would over a period of years. Thus, tracking owners’ opinions over time online can reveal
insights about how perceptions change with vehicle experience.

2. Similarly to (1), we currently weight all data found in the forums equally. An alternative
methodology would be to weight recently mined sentiments more than older sentiments.

3. We do not currently perform pronoun resolution. A poster may explicitly mention a fea-
ture in one sentence and then write several more opinionative sentences about the same
feature using pronouns easily resolved by a human reader. Our system only categorizes
opinionative sentences where an explicit or implicit feature is found. Pronoun resolution,
while difficult, may be used to infer the features being discussed.

4. We aggregate data for each individual product in a separate database. When mining
for product p, we assume all (F, o) pairs found in the database for p refer to p. This
produces erroneous results when a poster discusses another product in their post. Future
work could detect the product being discussed from the context.

5. We do not perform spam or malicious text detection. We treat all sentences equally even
though some may contain sentences injected by malicious sources, such as drivers who
oppose a particular brand, or advertisements posted by spamming bots.

6. Our methods for building the FSDs and lists of oriented adjectives are simple; we use
pre-built lists and manually add others. This part of our system can be improved using
recent work in the field of classifying context-dependent adjectives [TP10, WW11].

7. We do not distinguish between chunks referring to one product and chunks comparing
two products as proposed by Zhang et al [ZNC10]. Modifying the chunking grammar to
include comparative templates may reduce classification errors.
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Chapter 5

A Vehicle Pool Model For Reducing
Range Anxiety

Publication reference: T. Carpenter, S. Keshav, J. Wong. Sizing Finite Population Vehicle
Pools. IEEE Transactions on Intelligent Transportation Systems, Volume PP, Issue 99,
2014.

5.1 Synopsis

One way of alleviating range anxiety is to give BEV owners access to an ICEV when they
need to make a trip longer than their BEV range. In this chapter, we focus on sizing ICEV
pools, which are a number of ICEVs stored at the same location to be used on demand by
BEV owners. This pool can be at existing dealerships (i.e., the pool is formed by some of the
dealers’s unsold ICEVs) as BMW recently proposed1 [Ing13], or operated as a community
or government run program to facilitate BEV adoption. Regardless of the business model,
our goal is to minimize the number of vehicles in the pool while still meeting a desired
percentage of subscriber requests.

In this chapter, we analyze the static sizing of a single vehicle pool. That is, we assume the
pool is sized only once for all future demand (given information about previous and expected
future demand), and we assume that all ICEVs are stored at a single location. In the next
chapter, we generalize both of these assumptions, i.e., we extend the methods presented
here to periodically size a network of pools.

The main contributions of this chapter are:
1While this concept was contemporaneously and independently proposed by EV manufacturers, they did

not address sizing such pools.
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1. We study three techniques to size ICE pools to meet a desired quality of service (QoS)
target (§5.2), defined as the fraction of customer requests that are met. The three
methods assume different types of data (or no data) regarding customer demand patterns
are available.

2. We apply busy period sizing to finite population queueing systems, which, to the best
of our knowledge, has not been done in prior work. Busy period sizing allows us to
apply queueing methods, which require stationary arrivals, to a non-stationary system
by examining the system during the period where the arrival traffic is most stationary.
In prior work, this has only been done with infinite population queueing systems.

3. We propose a weighted-average methodology to model a population of heterogenous
users as a population of “average" users. This allows us to apply queueing methods that
require the population be composed to i .i .d users to a system where users are not i .i .d .

We numerically evaluate the performance of the three sizing methods using eight years of
data from an Ontario-based car share (§5.3 and §5.4). We use three performance metrics:
availability (percentage of requests served), utilization (the percentage of time vehicles in
the pool are used), and the member-to-vehicle ratio (the size of the user population relative
to the size of the pool). We find our sizing methods, when properly configured, size a pool
within 1—3% of desired QoS (availability) targets.

5.2 Sizing A Pool Subject To A QoS Target

The precise statement of our problem is as follows: we wish to determine the least number
of ICEVs that should be made available to a finite set of subscribers so that the probability
of an unmet request is smaller than a target value of ε. The parameters ε and 1 − ε are
interchangeably referred to as the quality of service target, e.g., a target of ε = .05 means
that more than 95% of vehicle requests should be met. We envision subscribers to be BEV
owners that pay for access to the pooling service. This sizing is difficult because demand for
ICEVs is non-stationary. Vehicles are most commonly used during the day, and moreover,
there are holidays during which the demand for vehicles is higher than during the rest of
the year. We use a dataset of carshare use to show in §5.4.1 that demand for a real-world
carshare is non-stationary. Busy period sizing, that is, sizing a system according to the
period of highest demand, is often used to size non-stationary infinite population systems
in telephone networks [Ive09]. However, we are not aware of any prior work which uses
busy period sizing to size finite population systems with non-stationary demand. While the
motivation for our work was to size a pool of ICEVs to be used by BEV owners, this work
can be used to size any finite population, non-stationary queueing system according to a
desired QoS target. For example, this work can be used to size a private parking lot.

We present three sizing techniques based on different levels of information about subscribers’
demand patterns. We discuss a Binomial-based sizing method in §5.2.1. This approach only
requires knowing the average number of times per year the average subscriber will use the
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pool. We present a queueing theoretic algorithm in §5.2.2.This approach requires knowing,
on average, how often subscribers need vehicles and how long they need them for. Finally,
we study a different queueing approach in 5.2.3. This approach requires the pool operator
to track the arrival times of subscribers.

Throughout this chapter we use the term loss probability to denote the probability that a
subscriber arrives to an empty pool (i.e., is ’blocked’), given the pool has size m vehicles,
and denote it by p(b|m). Our goal is to size the pool such that p(b|m) < ε.

We note that some carshares permit advance reservations allowing their subscribers to
pre-reserve a vehicle for a predetermined period of time. Our sizing methods can be used
in this case as well, by sizing the pool such that the probability a reservation cannot be
accommodated is less than ε.

5.2.1 Binomial Based Sizing

Our first technique is based on the Binomial distribution, which can be used to conservatively
size a pool with only a minimal amount of information abut future usage. Consider a pool
on a given day. We want to find the pool size m such that p(b|m) < ε. Let

• p(a) be the probability a subscriber arrives on a given day. In this conservative sizing
method, we assume all subscribers are independent.

• S be the total number of subscribers

• m be the number of vehicles in the pool

• ε be the QoS

Assume subscribers always arrive to the pool at the same hour h and always return their
vehicle before h the following day. These two assumptions imply that the same vehicle
cannot be reused multiple times a day and no vehicle is used for multiple days in a row. The
probability exactly k subscribers arrive to the pool on the same day (during h) is given by:

p(k) =

(
S

k

)
p(a)k(1− p(a))S−k

If exactly k subscribers arrive, p(b|m, k) is given by:

p(b|m, k) =

{
0 if k ≤ m
(k −m)/k otherwise

Thus, given S subscribers, the probability a random subscriber finds an empty pool is given
by marginalizing out k :

p(b|m) =

S∑
k=0

p(b|m, k)p(k) (5.1)
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Eq(5.1) gives p(b|m) for a fixedm; the algorithm presented in §5.2.4 determines the smallest
value of m that meets the QOS target.

5.2.2 Sizing Via The Engset Loss Model

Given additional data regarding subscriber workload, pools can also be sized using the Engset
Loss Model (ELM) [Kle75a, Ive09, Tij03], also known as the GI/GI/m/m/S queue. In this
model, we treat arriving subscribers as jobs arriving to a queueing system. We further treat
vehicles in the pool as parallel servers that serve incoming jobs. Each job (subscriber) that
arrives receives dedicated service from one server (takes a vehicle) until the job is processed
(the subscriber brings back the vehicle). We assume subscribers will not wait for a vehicle
when the pool is empty, thus there is no buffer in the system. Finally, there are only a finite
number of sources from which jobs can be generated—the pool subscribers—leading to a
finite population model. We thus model our system as a G/G/m/m/S system.

When a subscriber is borrowing a vehicle, we say they are in the service state and remain in
this state on average for their mean service time (MST), the average duration they need
a vehicle for. After finishing service, the subscriber enters the thinking state and waits on
average their mean think time (MTT), their average duration between completing service
and their next request.

We first give the formula for the blocking probability of this queue. Then, we describe our
methodology for estimating the input parameters. If:

1. All subscribers’ think times are i .i .d from an arbitrary distribution Gtnk with mean 1/λB

2. All subscribers’ service times are i .i .d from an arbitrary distribution Gser with mean 1/µ

Then the probability all m vehicles are being used is given by [Kle75a, Ive09, Tij03]:

p(b|m) =

(
S
m

)
ρm∑m

i=0

(
S
i

)
ρi
, ρ =

1/µ

1/λB
=
λB
µ

(5.2)

=

(
S
m

)
ψm(1− ψ)S−m∑m

i=0

(
S
i

)
ψi(1− ψ)S−i

, ψ =
ρ

1 + ρ
(5.3)

Eq(5.2) is the Engset distribution. It is equivalent to Eq(5.3), which is a truncated binomial
distribution [Tij03, Ive09]. The variable ψ is known as “offered traffic" and is a measure of
how busy the queueing system is (closer to one is busier). Unfortunately, both Eq(5.2) and
Eq(5.3) become numerically unstable as S and m grow because

(
S
m

)
becomes too large to

compute. Instead, we calculate p(b|m) using an algebraically equivalent but stable recursive
formulation [Ive09]:
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p(b|m) =

{
ρ·(S−m+1)·p(b|m−1)

m+ρ·(S−m+1)·p(b|m−1)
if m > 0

1 if m = 0.
(5.4)

ρ =
1/µ

1/λB
(5.5)

Note that the number of subscribers S is an input parameter. Moreover, these formulae
give the blocking probability as a function of a given pool size m, so m is also an input
parameter (an algorithm is given in §5.2.4 to find m such that p(b|m) < ε). Hence, the
only non-input parameter is ρ, which is a function of the MST 1/µ and the busy period
MTT 1/λB.

There are two problems with directly applying this model:

1. We have heterogeneous subscribers who may have different MTTs and MSTs, so the
assumption that subscribers’ MTTs and MSTs are i.i.d. may not hold.

2. Even if they are i .i .d , we expect the pool to have busy periods such that the aggre-
gate stream of arrivals to the pool is non-stationary, and the ELM is only applicable to
stationary queueing systems.

We describe how we deal with these problems in the following sections.

Modeling the Average Subscriber

To deal with the problem that MTTs and MSTs, may not be i.i.d., we model the heteroge-
neous population of subscribers as a homogeneous population of average subscribers. We
assume the following data can be collected from each subscriber s = 1..S:

• s’s mean think time (MTT) 1/λs corresponding to their mean think rate (MTR) λs .

• s’s mean service time (MST) 1/µs corresponding to their mean service rate (MSR) µs .

• p(s, B), the probability s arrives given the pool is in a busy period.

This data can be collected from subscribers using customer surveys of the form “How many
times per year will you need a vehicle?", “How long are you likely to need it for?", and “Will
you arrive during any of these busy times?"

Assumptions

We make seven assumptions:

1. A weighted average of all subscribers’ MTTs is a good estimate of the mean of the
arrival distribution 1/λB. In the ELM model, only the mean of Gtnk (not the distribution
of think times) is needed to compute p(b|m), so our assumption that subscribers are
identically distributed according to the think-time distribution Gtnk simply means this
weighted average is a good estimate of 1/λB.
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Figure 5.1: Example arrival time distribution over
one day to the carshare pool

Figure 5.2: Figure 5.1 zoomed on [8,9]

2. Because each subscriber has their own mobility patterns and vehicle needs, subscribers’
think times are independent. When combined with the prior assumption, think times are
i .i .d according to Gtnk .

3. Similarly, a weighted average of subscribers’ MSTs is a good estimate of its mean 1/µ.

4. The duration for which subscribers need their vehicles and the times they return their
vehicles are independent. Thus, service times are i .i .d according to Gser .

5. Subscribers arrive at the pool at most once during each busy period. Since the busy
period is a subset of each day, or a day/weekend during a year, we assume a subscriber
will not rent more than once per busy period.

6. The loss probability p(b|m) is the same for all subscribers and is given by steady state re-
sults for the ELM given later in this section. This naturally follows from our methodology
of modeling the average subscriber.

7. The MTT during the busiest period, 1/λB, always holds. This assumption is discussed
further in the following section.

Non-Stationarity & Busy Period Sizing

We now deal with the issue that the aggregate stream of arrivals to a pool may be non-
stationary. Suppose the probability subscriber s arrives to a pool at a particular time on a day
is shown in Figure 5.1. If many subscribers followed the same distribution, clearly [8am,9am]
would be a busy period for the pool compared to the rest of the day. Notice that within this
hour, shown in the boxed region and enlarged in Figure 5.2, the distribution is approximately
uniform—subscribers who arrive during this busy period are equally probable to arrive at any
time. Busy period modeling allows us to exploit this [Rio51, Flo01] by assuming the pool
is always in a busy period so that arrivals appear stationary. We do this by calculating the
MTT 1/λB by examining the system only during busy periods, as explained in the following
section.

There are two busy period sizing methodologies in common use. First, one can size the
system according to the historical single busiest period of a defined length. The electrical
grid, for example, is often sized according to the highest electrical demand during any one
hour ever recorded. A dataset is needed to use this approach, see §5.2.3. Alternatively,
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one can size the system according to the average demand during recurring busy periods.
For example, a teletraffic network may be sized according to the call rate during all 5-6pm
periods. In this section, we estimate the MTT during the average busy period, rather than
the historical single busiest period.

Within this sizing methodology, there are two further options. We can size the pool according
to a daily busiest period of K hours or a yearly busiest period of K contiguous days. For both
options, the probability subscriber s arrives given the pool is in a busy period B, p(s, B), is
derived in the following section.

Deriving the ELM Parameter ρ

We now derive the parameter ρ in Eq(5.5). We use the following notation:

• AB denotes the arrival rate of pool subscribers during B, one of the pools busy periods.

• cs = 1/λs + (1 − p(b|m))1/µs denotes subscriber s’s mean cycle time, the mean time
between s’s requests since on average they think for time 1/λs and then receive service
for time 1/µs , at which point they begin thinking again. With probability p(b|m) s is
blocked and does not receive service and immediately goes back to thinking.

• ωs = 1/cs represent s’s cycle rate, the “rate" at which they arrive, which represents how
active a subscriber s is. It is also the probability that s arrives on any one day of the
cycle.

• nB denotes the number of subscribers that arrive to the pool (including those blocked)
during busy periods.

• K is the length of busy periods, given as input.

Recall from the assumptions discussed in §5.2.2 that we assume a weighted average of all
subscribers’ MTTs is a good estimate of the mean of the arrival distribution 1/λB, and
similarly that a weighted average of subscribers’ MSTs is a good estimate of its mean 1/µ.
Our methodology is to use ωs as the weight for each subscriber s. The intuition is to give
lower weight to data from subscribers who rarely use the service. Note that while ωs includes
1/µs , typically 1/λs >> 1/µs , thus we are not discounting users with long service times.
Future work could include studying other weighting functions (see §5.5).

We start by computing the MST 1/µ as a weighted average of subscribers’ MSTs:

1

µ
=

∑S
i=1 ωi

1
µi∑S

i=1 ωi
(5.6)

We now derive the parameter 1/λB. Consider the probability subscriber s arrives given the
pool is in a busy period, p(s, B). We first examine the case where there is a recurrent daily
busy period2. We assume the pool owner breaks up a day into a set of arbitrary-length

2Which period of the day is busiest can be computed through customer surveys.
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chunks, which we denote K. We define the vector ts to be the probability that a given
arrival by subscriber s occurs during each chunk of the day. We stress that ts does not give
the probability subscriber s arrives during each period of each day. That is:

ts = p(current time ∈ chunk1|s arrives ), ..., (current time ∈ chunk|K||s arrives ) (5.7)

6= p(s arrives |current time ∈ chunk1), ..., (s arrives |current time ∈ chunk|K|) (5.8)

This can be derived from a subscriber survey of the form “on a day you need a vehicle, how
likely is it that you arrive during [chunk 1],...,[chunk |K|]".

For the case where we are sizing the pool for a daily busy period, we assume the probability
s arrives on any given day is uniform and given by ωs . We estimate the busiest period by
finding the weighted average probability a subscriber makes a request during each period,
and then finding the maximum of these probabilities over all periods:

B = arg max
k∈K

(∑S
i=1(ωiti [k ])∑S

j=1 ωj

)
Then p(s, B), the probability that s arrives given the pool is in a busy period, is given by:

p(s, B) = ωs ∗ ts [B] (5.9)

If we instead wish to size the pool according to the busiest contiguous block of days over
the year, we assume the pool owner knows the period they wish to size for, e.g., “Mother’s
Day weekend". We assume the pool owner can determine this by asking its subscribers the
question “out of the X times you expect to need a vehicle per year, how many times Y do
you expect to be during [this busy period]" 3? Then p(s, B) = Y/X.

Next, we derive nB, the number of users expected to arrive to the pool during any given
busy period. We weight an arrival by each subscriber s by p(s, B):

nB =

S∑
i=1

p(s, B)1 (5.10)

We use the following rationale to derive the mean think time, 1/λB: the effective arrival
rate of subscribers to the pool during busy periods is equal to the number of subscribers
that arrive during the busy period divided by the length of the busy period. That is,

AB =
nB
K

(5.11)

Suppose we know the MTT of users during the busy period, 1/λB. AB is also given by

AB = S

(
1

cB

)
= S

(
1

1
λB

+ (1− p(b|m)) 1
µ

)
(5.12)

3This can be generalized to the case where the pool implementor has knowledge that one of a few busy
days or weekends will be the busiest, but needs to survey customers to determine which is actually the busiest.
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That is, if 1/cB represents the average cycle time of each individual subscriber during busy
periods, then we expect S/cB to arrive each time unit.

Finally, by combining Equations (5.11) and (5.12), we get:

S
1
λB

+ (1− p(b|m)) 1
µ

=
nB
K

(5.13)

And consequently:
1

λB
=
SK

nB
− (1− p(b|m))

1

µ
(5.14)

Finally, the parameter ρ in Eq(5.5) is given by:

ρ =
1/µ

1/λB
=

Eq(5.6)

Eq(5.14)
(5.15)

Blocking Probability Iteration Algorithm

Note that Eq(5.15) finds ρ by assuming a value for p(b|m) in Eq(5.14), and Eq(5.4) finds
p(b|m) assuming a value for ρ. Thus, we iterate the two equations to find the values of
these two parameters.

The iteration algorithm we use to compute p(b|m) for a fixed m to a desired accuracy σ
is given in Algorithm 1. We stop when p(b|m) changes between two iterations by less than
σ, our desired accuracy. This iteration gives p(b|m) for a fixed m; an algorithm is given in
§5.2.4 to optimize m.

Algorithm 1 Compute p(b|m)

Let ?(k) represent the value of ? during the kth iteration
Inputs: S,m, σ

1: set k = 0, p(b|m)(k) = 0.5

2: do
3: Compute ρ(k) using p(b|m)(k) and Eq(5.15)
4: Compute p(b|m)(k+1) using ρ(k) and Eq(5.4)
5: k + +

6: while (
∣∣p(b|m)(k+1) − p(b|m)(k)

∣∣ > σ)

The pool operator can always guarantee convergence of this algorithm; proofs are deferred
to §C. In rare cases, the exact criteria of which are given in §C.3, the operator may need
to increase the sizing parameter K. The problem is that Eq(5.14) becomes negative when
K is very small, which is invalid because the blocking probabilities given by Eq(5.2) and
Eq(5.4) are not defined for negative values of 1/λB (“negative arrival rates").
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5.2.3 Dataset-based sizing

In this approach, the input to the sizing algorithm is a trace of past requests to an existing
pool that contains the times at which each request is made, and the duration of each
request. With this dataset, we can directly measure AB and 1/µ and subsequently solve for
1/λB. Suppose the granularity of the dataset is H hours, that is, suppose it is possible to
measure the arrival rate during any period of H from the dataset. Let K = qH, where q is
an integer (i.e., K must be a multiple of H) represent the length of the historical busiest
period the operator wishes to size the pool for. Let Ai represent the arrival rate during each
segment of length K. Suppose the dataset is divided into n segments. We use a sliding
window approach to calculate the arrival rate during the busiest segment in the dataset as:

AB = max

(
A0 =

∑q−1
i=0 Hi
K

, ..., Aj =

∑q+j−1
i=j Hi

K
, ...

)
(5.16)

It is straitforward to compute 1/µ from the dataset; we average the duration of all requests.
Then, we compute 1/λB from Eq(5.12) because AB is known. Eq(5.12) is iterated with
Eq(5.4) to obtain a pairing of p(b|m), 1/λB for a given m.

We note that if the goal is to obtain the most conservative sizing by finding the highest MTR
observed during a period (or conversely, the lowest MTT observed), the dataset should be
examined at the finest granularity possible. That is, finding the MTR using chunks of a
larger size will never be higher than the MTR found using chunks of a smaller size. Proof.
Let T be an arbitrary period of time. Suppose we divide T into c equally sized smaller
periods. Denote the MTR during period i as λi . We have:

λT =

∑c
i=1 λi
c

≤
c(maxi=1..c λi)

c
≤ max

i=1..c
λi �

As with the previous approach, this iteration computes p(b|m) for a fixed m.

5.2.4 Optimizing The Pool Size

Sections §5.2.1, §5.2.2, and §5.2.3 have presented different methods of computing the loss
probability p(b|m) for a fixed number of vehicles m depending on what data is available.
We use Program 1 to size pools given these three sizing methodologies. Objective (5.20)
minimizes the number of vehicles (m) in the pool. Constraint (5.21) ensures the QoS target
is met4, but Constraint (5.22) states m cannot exceed the maximum number of vehicles
that can be stored in the pool. Thus, this program is infeasible if mmax is too small given
the number of subscribers and their usage patterns.

Program 1, despite being an integer program, is O(TS logm?), where T is the time it
takes to compute p(b|m) according to which of the three methods is being used, and m?

4In prediction; we can never guarantee the QoS is met because the training set may not be perfectly
indicative of demand seen in the validation set, even with many bootstrapping iterations.
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Program 1: Pool Sizing Integer Program

Inputs: mmax (maximum pool size) (5.17)

ε (desired QoS) (5.18)

Decision Variables: m ∈ N (pool size) (5.19)

Objective: min m (5.20)

Subject To: p(b|m) < ε (5.21)

m ≤ mmax (5.22)

Algorithm 2 :Solution to Program 1
1: mL, mH ← 1

2: while p(b|mH) > ε // Phase 1: Bracketing
3: mL = mH

4: mH = 2 ∗mH

5: while 1 // Phase 2: Binary Search
6: mM ← mL+mH

2

7: if p(b|mM) ≤ ε then mH ← mM else mL ← mM

8: if mH −mL ≤ 1

9: if mH ≤ k then return mH else return “Infeasible"

is the optimal solution, using Algorithm 2 as follows. First, during the bracketing phase, we
repeatedly double the pool size mH, until p(b|mH) ≤ ε. We also maintain the previous m
value before this threshold is reached, denoted mL. Thus, we find an interval (mL, mH] that
is smaller than [1, S] in which m? lies. This process is logarithmic in m? because we grow
mH at an exponential rate, so during the bracketing phase, in the worst case we compute
p(b|m) logm∗ times. When this procedure terminates, mL < m? ≤ mH. We then use binary
search on the interval (mL, mH] to find m?5. Binary search is logarithmic in the width of the
interval, which is at most m? − 1. The worst case is when mH = m? − 1 and is doubled,
giving us mH − mL = (2m? − 2) − (m? − 1) = m? − 1. Therefore, we compute p(b|m)

another logm∗ times during the search phase, and algorithm 2 is in O(TS logm?).

5.3 Evaluation Methodology

In this section, we describe our evaluation methodology. Henceforth, we abbreviate each
of our sizing methodologies as follows: we refer to the binomial based method (§5.2.1) as
BIN, the Engset Loss Model based on subscriber surveys (§5.2.2) as ELMS, and the Engset

5p(b|m) is monotonically decreasing with increasing m, so we can create an array [p(b|mL),..., p(b|mH)]
which is naturally sorted in decreasing order. We can then use binary search to find the minimum index such
that p(b|m) < ε. We do not need to compute all the values of this array however: we only need to work with
the boundaries and midpoint at each step.
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Loss Model which uses the dataset (§5.2.3) as ELMD.

We use a dataset of carshare use as a proxy for demand for this BEV pooling service.
Specifically, we evaluate our methodologies using two sets of experiments. In the first set,
we assume demand for the pool exactly matches the demand for a single location carshare.
In the second set, we consider only the demand for trips longer than 80km, assuming shorter
trips were accommodated by the subscribers’ personal BEVs.

This methodology has both disadvantages and advantages. For the former, carshares are
generally priced to discourage against long trips in terms of time and distance. For example,
if the pricing of an ICEV pool for BEV owners was the same as the carshare used for our
evaluation, it may be cheaper for subscribers to use rental cars for long trips. Second, 80km
is less than the range of today’s BEVs, so these trips may not be a perfect proxy for demand
by BEV owners. Unfortunately, there are not enough trips in our dataset over 160km to
obtain statistically significant results. However, while this carshare reservation dataset is not
ideal for studying demand primarily composed of long trips, it does allow us to evaluate our
methods on real world non-stationary demand. The alternative methodology would be to
use prior measurements of how often BEV owners are likely to need an ICEV, for example,
based on the works of Pearre et al. [PKGE11] or other works discussed in §3.4. While
this would correctly capture the demand of individual BEV owners, it would not capture
the difficulty that much of our work attempts to overcome—non-stationary demand as
observed by the pool. We show in this section that demand for the carshare used in our
evaluation is very non-stationary—it has periods with demand five times higher than the
average demand.

5.3.1 Dataset

We use data from a local car share, Community Carshare [Com14], to evaluate our siz-
ing methodologies. The dataset is composed of all trips made between January 2005 and
October 2013. There are 51,223 records in the dataset, each detailing the start time and
end time of the trip, as well as the distance driven in km. Figure 5.3 shows the number of
“active" subscribers over time; where we say a subscriber is active at time t if they made
at least one reservation in the year prior to t. The number of subscribers steadily rose over
the eight years from 50 in 2005 to over 700 in October 2013.

5.3.2 Performance Metrics

To evaluate our methodology, we use the same three metrics that car shares use to evaluate
their operation:

• Availability: the percentage of served requests. This is our QoS metric. Data for avail-
ability is limited, but Shaheen suggests that carshares in the past aimed for an availability
of 95% [SS98].
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Figure 5.3: Subscribers active in the carshare over time

• Member-to-vehicle ratio (M2V): the number of subscribers for each vehicle in the pool.
The M2V metric for carshares has steadily, but not monotonically increased from 15-20
in 1998 to nearly 50 in 2012 [SS98, SSW04, SCC09, You13, Bro04].

• Utilization: the percentage of time vehicles are used. Carshares generally have utilizations
in the range of 20-40% [SM07, LB06, Bro09, BHT11]. Rental operations aim for nearly
double this because they have a much larger number of potential renters (they are
“infinite population" systems) [Rol11, Inv, Ten10, Bro12, Rul13, Bro09].

The last two metrics are inversely proportional to the first—they decrease with larger pool
sizes but availability increases with larger pool sizes. Both existing car shares and rental
companies have traditionally aimed to maximize utilization at the expense of availability,
because profit is directly proportional to utilization. For the BEV pool application however,
availability may be essential—the service may only alleviate range anxiety if subscribers
almost always receive a vehicle when they need one.

5.3.3 Bootstrapping

We use random bootstrapping with replacement [Efr79] and cross validation to evaluate
our sizing methodologies as follows. We perform I bootstrap iterations. In each iteration,
half of the dataset is selected at random. This half, known as the training set, is used to
compute parameters needed for the sizing methodologies. The other half, known as the
test set, is used to evaluate the performance metrics (M2V, utilization, availability) for
each sizing methodology. After each iteration, the entire dataset is sampled again in the
same fashion (hence with replacement). Thus, we obtain a total of I samples of the three
performance metrics. Bootstrapping treats each performance metric as a sampling statistic.
We therefore obtain a total of I values for each of these sampling statistics and thus are
able to compute confidence intervals.
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Algorithm 3 : Replay Arrival Departure Stream

1: // out array tracks the # of vehicles out of the pool
2: blocked_count, out[0] = 0

3: for i in range [0, len(ADS))
4: if ADS[i ] == “Arr" and out[i − 1] < m // not blocked
5: out[i ] = out[i − 1] + 1

6: else if ADS[i ] == “Arr" // blocked
7: out[i ] = m, blocked_count + +

8: else out[i ] = max(0,out[i − 1]-1) // departure

5.3.4 Parameter Values

The parameters ε,K, |K| (the QoS target, the number of daily chunks for ELMS, and the
length of each chunk) are given as input to our methods. The rest of the parameters are
computed from the training set as follows. During each sampling iteration, for all methods,
we compute S, the number of subscribers, and we compute m such that p(b|m) < ε. For
BIN we need to compute p(a), the mean probability a subscriber needs a vehicle on a given
day. Using the terminology defined in §5.2.2, the probability subscriber s needs a vehicle
on a given day is ωs , which represents “s arrives once every cs days", or alternatively,
“the probability s arrives on a given day is ωs", hence, we compute p(a) =

∑S
s=1 ωs/S.

For ELMS, each subscriber’s MST and MTT are computed from the database. Then nB,
1/µ, and 1/λB are computed using the methodology in §5.2.2. That is, we pretend that
customers respond to surveys perfectly accurately, giving answers that we compute from
the dataset. For ELMD, we first compute AB using a sliding window of size K, then, 1/µ

and 1/λB.

5.3.5 Performance Metric Computation

We now describe how we compute the performance metrics. During each iteration, the
test set is used to compute a stream of arrivals and departures, referred to as an arrival
departure stream (ADS). We first form two lists containing the sorted times of all arrivals
(start of vehicle use) and departures (end of vehicle use) seen in the test set. These two
lists are then merged into one stream. When there is a tie—one subscriber arrives while
another is returning a vehicle—we conservatively assume the arrival comes first and cannot
be served by the incoming vehicle.

For BIN, ELMS, and ELMD, the pool size m is computed during the training phase. During
each iteration, we replay the ADS for these three methodologies using Algorithm 3. Avail-
ability is computed as 1 − blocked/len(ADS). Let out[i ] denote the number of vehicles
in use at time i , and let ∆i denote the amount of time between arrivals i − 1 and i . We
compute utilization as: ∑

i out[i ] ∗ ∆[i ]

m ∗ (out[end of dataset]− out[0])
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The numerator is the Riemann sum giving the total number of “utilized vehicle-hours" and
the denominator is the maximum number of vehicle-hours possible assuming every vehicle
was always in use, so the fraction gives the percentage of time each vehicle is used on
average. Finally, we annotate each trip record in the dataset with the number of active
subscribers at that time. This allows us to compute the average number of pool subscribers
S. We then compute M2V as S/m.

5.4 Evaluation Results

We now discuss our evaluation results. We first use statistical tests to show the carshare
used for our evaluation has non-Markovian, non-stationary arrivals in §5.4.1. We then show
the performance metrics achieved by several sizing configurations in §5.4.2.

5.4.1 Arrivals are Non-Markovian and Non-Stationary

We demonstrate that the demand patterns of our carshare are non-Markovian and non-
stationary. Figure 5.7 shows the number of arrivals as a function of the time of day, and
the number of arrivals over the last 300 days in our dataset. They clearly show demand
both within the average day and over days of the year are non-stationary. Figure 5.4 shows
probability distribution over the number of vehicles in use, which demonstrates that the pool
experiences rare but large peaks in demand (another demonstration of non-stationarity).
We see that the average number of vehicles in use at any time is approximately three, but
at times the number out is much larger, e.g., the peak of nearly 30 is 10 times larger.

Figure 5.4: The black distribution shows the probability of a specific number of vehicles in use. The
grey distribution shows the CDF.

We further tested a null hypothesis that the carshare subscribers’ interarrival times are ex-
ponentially distributed. The parameter of this distribution is obtained by using maximum
likelihood estimation [Was04]. We tested the same hypothesis for the service time distribu-
tion. Figure 5.5 shows the distribution of interarrival times split in half hour bins (0-30min,
30-60min, etc.), and service times using one hour bins. The null hypotheses that the inter-
arrival time and service time distributions are exponentially distributed were both rejected
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at the 99% confidence level using χ2 tests. This represents strong evidence against the
null hypotheses. We also tested the same results by only including trips greater than 80km
assuming that all trips under 80km. The null hypotheses were again rejected at 99% confi-
dence level. The distributions for this case are shown in Figure 5.6. Hence, there is strong
statistical evidence that a Markovian model is inappropriate.

Figure 5.5: Interarrival time (top) and service time distribution (bottom) for all trips, observed vs.
exponential using MLE. The grey region shows where the observed and predicted curves overlap.
The black region shows observed arrivals, and the white region shows arrivals as predicted by the
exponential distribution.

Figure 5.6: Interarrival time (top) and service time distribution (bottom) for trips >80km, observed
vs. exponential using MLE
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Figure 5.7: Top: Arrival hour vs. frequency for all trips in our dataset. Bottom: daily number of
arrivals for the last 300 days ( 10 months) in our dataset. The x-axis shows the day number starting
from the first day in our dataset in March 2005; the region shown is approximately all 2013 data.

5.4.2 Performance

Here we present the performance achieved by our sizing methods. We first discuss the reason
for variability in the performance metrics (leading to the inclusion of error bars). As discussed
in §5.3.3, we sample the M2V, utilization, and availability distributions I times to compute
confidence intervals; for these results all confidence intervals are normal 99% intervals over
I = 100 iterations. In each iteration, the subscribers seen in the test set differs, which causes
the m as determined by the sizing methods to vary. Moreover, S varies with each test set.
These two factors contribute to the variance in M2V, shown as horizontal error bars. During
each iteration, the ADS also differs, which leads to different computations of availability
and utilization because the Riemann sums change. The computations of utilization and
availability also vary as the pool size varies, reflected in the vertical error bars.

We graph each metric’s performance as a point in the 3D metric space formed by M2V,
availability, and utilization. Figure 5.8 shows performance metrics for BIN and several con-
figurations of ELMS and ELMD. The notation D(·) indicates · is the length of the his-
torical single busiest period the pool is sized for using ELMD. For ELMS, S(·) indicates
that · is the set of daily chunks used; each number gives the start time of a new chunk.
For example, S(0, 8, 18) indicates three daily chunks: [12am-7:59am], [8am-5:59pm],[6pm-
11:59pm]. The QoS ε = .05, corresponding to a busy period availability target of 95%. We
make several observations about the results:

1. With respect to a 95% availability target, ELMD(4368), which sizes for the busiest
6 months observed in the training dataset over the eight years, and ELMS(0,9,17),
which sizes for the busy period of 9am—5pm, work best. ELMD(4368) slightly oversizes,
obtaining A ≈ 95%, and ELMS(0,9,17) slightly undersizes, obtaining A ≈ 94%. These
are within one percent of the QoS target, and have a utilization at the high end of those
reported in the literature.

2. BIN is too conservative. Giving out customer surveys (to size using ELMS) or record-
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ing pool demand over time (for using ELMD) leads to large multiplexing benefits. BIN
achieves a M2V of only five (one car per every five subscribers). Even ELMD(8), which
conservatively sizes for the busiest eight hours seen in the dataset, outperforms BIN.

3. ELMS(0) sizes the pool assuming that there is only one daily chunk starting at mid-
night that lasts 24 hours, thus the pool is sized according to the average day6. We see
that sizing this carshare for the typical day does not work well. This is a result of the
pool demand being non-stationary. Sizing for the average day leads to very low avail-
ability during busy periods, and consequently lower than desired overall availability. We
hypothesize ELMS(0) would work well for more stationary pools where demand does not
fluctuate as much. ELMS(0,12) exhibits the same problem, but to a lesser extent.

4. As proven in §5.2.3, sizing using ELMD(X) v.s. ELMD(Y ) where X < Y ensures that
m|X ≥ m|Y . That is, availability is non-increasing as the busy period size increases.
Figure 5.8 shows that availability monotonically decreases as the size of the historical
busy period increases, but we later show a result where increasing the busy period size
leads to the same sizing.

5. Utilization is linearly inversely proportional to m; as m decreases and M2V increases,
utilization increases linearly. However, a standard queueing result is that availability is
not a linear function of the number of servers (cars in this case). As m decreases and
M2V increases, availability decreases at an increasing rate. This can be seen with the
points BIN, ELMD(2160), and ELMS(0); when the M2V increases from 5 to 35, there
is a 1.5% decrease in availability, but when M2V increases from 35 to 65, there is a 10%
decrease in availability. The inverse of this result is intuitive; as more cars are added to
the system, there are diminishing returns with respect to increasing availability.

As a sensitivity analysis to the parameter ε, we show the same results for a QoS target
of 90% availability in Figure 5.9. The trends from Figure 5.8 and the ordering of meth-
ods by their achieved metrics are preserved, except that ELMD(4368) achieves the same
performance as ELMD(2160).

6the probability each subscriber arrives during any daily busy period is the same as their probability of arriving
on any day. Specifically, ts [B] in Eq(5.9) is 1 (the whole day is the busy period), hence each subscriber s’s
busy hour weight p(s, B) = ωs , their probability of arrival on any day.
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Figure 5.8: Comparison of achieved performance metrics for the full dataset, ε = .05. ELMS is
abbreviated “S" and ELMD is abbreviated “D".

Figure 5.9: Comparison of achieved performance metrics for the full dataset, ε = .1. ELMD(2160)
is drawn under ELMD(4368) because they achieve the same performance. ELMS is abbreviated “S"
and ELMD is abbreviated “D".
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Figure 5.10 shows results after removing all trips under 80km from the database. Only
a small portion of the dataset (hence, demand) (14.5%) remains after shorter trips are
removed. Some parameter configurations are removed as they are too conservative for this
case and comparable to BIN, e.g., ELMD(8). Some of the trends are different than Figure
5.8 but these changes are intuitive. For a given pool size of m there is a much higher
overall availability, compared to the previous case, because overall demand is lower, the
gaps between demand are necessarily larger, and the number of vehicles out at any time is
lower. When multiple “long trip" users arrive on the same day, the probability their arrivals
and departures will be staggered such that they are able to share the same vehicle is lower
(longer trips require more usage time). Because there is less multiplexing, ELMS and ELMD

pool sizes are larger for the same parameter configurations. Because this leads to higher
availability as discussed, M2V and utilization are lower in all ELM configurations shown.

As discussed, the methodology of removing all trips under 80km from this carshare, which
is priced against longer trips, may not accurately simulate demand for a pool of ICEVs
for BEV owners because actual demand may include many more longer trips. With more
demand, we hypothesize the results to be similar to Figure 5.8. Obtaining another dataset
would allow us to better study this usage case.

Figure 5.10: Comparison of achieved performance metrics for trips over 80km only, ε = .05. ELMS

is abbreviated “S" and ELMD is abbreviated “D".
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5.5 Conclusions & Future Work

We study sizing finite population vehicle pools with non-stationary demand. Vehicle demand
varies with time of day and time of year, and moreover many pool applications have a
finite population, hence there is a need for such sizing methodologies. We propose three
such methods to size to meet a QoS ε. We further show that each of our methods has
advantages and disadvantages with respect to various performance metrics.

Regarding our main application of interest, we note there are several advantages for potential
BEV buyers and BEV dealerships of offering this pooling service. First, integrating this
service into dealerships significantly reduces subscribers’ transactional cost. Dealerships
could collect all subscribers’ information at the time of purchase so subscribers need not fill
out paperwork each time they obtain an ICV. Moreover, because the subscription is offered
by the dealership, subscribers would not have to compare the price of several rental vehicle
agencies to determine the cheapest option. Second, dealerships can internally compute the
cost of this service and amortize this cost into the price of their BEVs. The service can then
be sold as “free" to potential customers, which would appeal from a marketing perspective.
Finally, dealerships already maintain a pool of vehicles for customers awaiting repairs for
their vehicles, thus our approach does not impose any radical changes to current practices.

We suggest three avenues to extend our work:

• Let Γs : R→ R be a function that denotes subscriber s’s disutility derived from a specific
value of p(b|m), the QoS of the pool. Subscribers’ disutility of driving to an empty pool
may increase nonlinearly, perhaps exponentially, as p(b|m) increases. Consider modifying
Program 1 by removing Constraint (5.21) and modifying Objective (5.20) as

arg min
m

(
S∑
s=1

Γs (p(b|m))

)

This formulation minimizes subscriber risk instead of forcing an explicit QoS ε.

• We have not taken pricing into account, however, several authors have studied the
economics of similar finite population systems, including parking lots [AdP04, Jan10,
VNR12, LS10] and car share subscriptions [HG10, SCR06, MbMS+05, SM07].

• In §5.2.2, we weight each subscriber s by their cycle rate ωs when calculating 1/λB and
1/µ. Future work could evaluate other weighting functions.
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Chapter 6

A Multi-period Multi-pool Carsharing
Model For Reducing Range Anxiety

6.1 Synopsis

This chapter is a generalization of the previous chapter. In the previous chapter, we statically
sized a single vehicle pool for use by a finite population of users (“subscribers"). We now
focus on dynamic fleet management—the repeated addition, removal, and movement of
vehicles—of a multi-pool network. This fleet management is repeated on a periodic basis,
e.g., every two weeks. We study the generalization to the multi period (dynamic), multi
pool case for two reasons:

1. Instead of using averages of subscribers’ information as done in static sizing, our methods
now respond to changes in demand.

2. The model presented in the prior chapter is only applicable to single pool scenarios,
e.g., in the case that an EV dealership allows their customers to use their ICEVs with
the purchase of an EV. However, a multi pool network is more convenient for customers
(more options to choose from), so it may be desirable to operate a multi location system
independent of dealerships (e.g., as a carshare).

Although motivated by range anxiety, our work is general, in that it deals with all multi-pool
vehicle systems. A network of ICEV pools for BEV owners is isomorphic to a carshare, so we
use the term carshare henceforth. Prior methods for managing vehicle sharing systems make
simplifying assumptions about demand patterns, including infinite population1, Markovian

1In infinite population models, demand requests can be generated from a potentially “infinite" or very large
population of users. In finite population models, requests can only be generated from a known set of sources,
in our case the pools’ subscribers.
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interarrival and service times, and a stationary arrival process. The application of their
results is thus restricted to carshares with these demand patterns.

In the proposed system, we expect BEV owners to infrequently need access to a vehicle for
a long trip, a different demand distribution than traditional carshares which are sized for
more frequent trips of shorter duration. We therefore study the management of a carshare
for arbitrary demand profiles, so that it is widely applicable.

Our main contribution in this chapter is as follows. We propose two sizing methods that, in
conjunction with a repeated optimization program, dynamically manage a carshare fleet to
meet any desired vehicle availability target. In contrast to prior work, our methods place no
restrictions on vehicle demand patterns and are designed to serve non-stationary demand.
Although motivated by range anxiety, our work is applicable to all multi-pool carshares.

We simulate our sizing methods using eight years of data from a local carshare. We show our
methods perform well for any given vehicle availability target on many different workloads
generated from the data.

We formulate our problem in §6.2. Two sizing methods are discussed in §6.3. An optimization
program is formulated in §6.4 to compute the addition/movement of vehicles to/within the
system. We describe our evaluation methodology and results in §6.5 and §6.6 respectively.
We extend our model to allow for the systematic removal of vehicles, and attempt to
simulate the usage case of an ICEV pool for BEV owners in §6.7. We conclude and discuss
extensions to our model in §6.9.

6.2 Problem Formulation

Here we define our system architecture, state our assumptions, and overview our method-
ology.

6.2.1 System Architecture

The carshare under consideration operates as follows. The carshare has a set of pools of
vehicles at locations J . Subscribers of the carshare arrive to their preferred pool when they
need a vehicle, and if one is available, they use it and return the vehicle to the same location
afterwards2. The fraction of requests that are blocked—unserved because no vehicles are
available—is referred to as the blocking probability. Let γj be the blocking probability at
pool j ∈ J . The objective of the carshare is to ensure γj < ε ∀j , where 1 − ε is our
quality of service (QoS) target. Ensuring γj < ε ∀j requires vehicles to be periodically added
to or moved between locations in the carshare. If demand grows at some locations but
decreases at others, cars may be moved between locations. Additionally, if demand grows
network wide, cars can be added to the carshare. The addition and movement of vehicles

2We discuss extending our model to allow subscribers to return their vehicle to different locations in §6.9.1
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is henceforth referred to as fleet management. We assume fleet management takes place
at periodic intervals. We denote the number of cars to move from pool j to k at the start
of period p as v pj,k , and denote the number of cars to buy for j at p as apj . Our goal is, for
every period p, to correctly set v pj,k ∀(j, k) ∈ (J × J ) and apj ∀j ∈ J to ensure γpj < ε ∀j .

Sizing and managing a carshare such that a systemwide QoS is met is challenging because
demand patterns, such as the average time between requests, the average length of requests,
etc, can be arbitrary and are constantly changing as subscribers join and leave. Moreover,
for our application of interest, a carshare for EV owners, we expect that subscribers must
be guaranteed a vehicle when they need it with high probability for the program to be
successful. We are unaware of any prior work that is able to size a carshare for arbitrary
demand patterns to meet a systemwide QoS target. Prior models on sizing and managing
fleets/carshares are discussed in §6.8.

6.2.2 Assumptions

Our work makes the following assumptions:

• The pools are located in a relatively small, city-sized region. We are not considering a
nation-wide system where it may be impractical to move vehicles between pools.

• Each carshare subscriber prefers one pool (pool selection is discussed in §6.5.1) and all
of their trips begin and end at that pool. Our model can be extended to remove these
assumptions as shown in §6.9.1 and §6.9.2.
• The size of each pool is set at the beginning of each period p and does not change until
p+1. The length of each period can be made arbitrarily small, thus the fleet management
can be repeated as frequently as desired.

• We initially assume that removals and replacements of cars are handled exogenously by
the carshare operator because the decision of when to sell vehicles is complex. We remove
this assumption in §6.7, i.e., we present fleet management that allows the addition,
movement, and removal of vehicles, but also show it may not be preferable to do so.

• Subscribers who are blocked leave the pool immediately—there is no queueing.

• In our case study, we assume that it is cheaper to move cars between pools than to
purchase new vehicles. However, the cost to move and purchase vehicles are given as
input to our optimization program, so this assumption can be removed if desired.

6.2.3 Methodology Overview

Here we present our formulation of this problem. We consider a single period myopic opti-
mization framework, that is, sizing decisions are made by considering only one future time
period—this decision is further discussed in §6.9.5. Under this framework, at the start of
each period p, we execute four phases:
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1. The minimum size necessary to meet the desired QoS for period p at each pool is
predicted (§6.3).

2. The fleet management is computed (§6.4).
3. The carshare then operates for the current period p. Afterwards, various performance

metrics are computed.

4. Finally, data needed for step (1) for the following period are measured.

6.3 Pool Sizing Methods

In this section we propose two sizing methods for sizing each pool at the start of period p.
The first method (§6.3.1) is an extension of ELMD, the dataset-based variant of the Engset
Loss Model we proposed in the prior chapter (see §5.2.3). The second method (§6.3.2) is
inspired by the TCP transmission control protocol used in the Internet.

Note that, because sizing is computed at the start of period p based on past demand and
expected future demand, we can never ensure the QoS will be met for p because future
demand can be arbitrary. Nevertheless, we find our solution is quite robust, in that, despite
not knowing the future demand exactly, the QoS target is nearly always met.

We do not consider the survey variant of the ELM, ELMS, which we used in Chapter
§5 for static sizing. While surveys can be distributed to customers infrequently at little
inconvenience (the prior chapter’s static sizing requires just one survey), we hypothesize
subscribers would not want to take a survey at the beginning of every period p if periods
are relatively short. Shorter periods are preferable for best results; long periods result in “lag
times" between observed changes in demand and pool resizing because resizing is only done
at the beginning of each period. For example, we use a period duration of two weeks.

6.3.1 Engset Loss Model

Here we extend the ELMD method proposed in §5.2.3 to the multi pool case. We assume
the reader is familiar with the derivations in §5.2.2 and §5.2.3 as they are not reproduced
here. To extend ELM to size a multiple location carshare, we make the following changes:

• The population of pools may change over time, so S, the set of subscribers, is indexed
by the pool number j and the period p as Spj .

• We size each pool for its’ busiest period. We calculate the mean think time (MTT) of j
during p, denoted 1/λpj , by considering only the busiest K consecutive hours of j during
p. K itself is given as input and is assumed to be the same for all pools. The set of
parameters 1/λpj ∀j ∈ J replaces our old notation for the busy period MTT of a single
pool, 1/λB. We assume the busy period MTTs 1/λpj ∀j ∈ J , hold throughout p.
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Figure 6.1: New carshare architecture snapshot during period p

• We compute the mean service time (MST) of each pool separately. We compute the
MST of j during p as the average of all request durations from j during p. The set of
parameters 1/µpj ∀j ∈ J replaces our old notation for the MST of a single pool, 1/µ.
We assume the MSTs 1/µpj ∀j ∈ J , hold throughout p.

• The parameters needed for j during p, Spj , 1/λpj , and 1/µpj , are unknown at the start of
p. Subscribers may join and leave during p and can have arbitrary demand patterns during
p. However, we predict these parameters for p based on their past observed values. We
describe various predictors in §6.5.4. We use the notation ·̃ to denote a prediction of ·.
• The blocking probability is computed for each pool. Let the predicted values for j during
p be S̃pj , 1/λ̃pj , and 1/µ̃pj . With a pool size mp

j , the predicted blocking probability of j
during p is given by (extended from Eq 5.3 and Eq 5.4):

γ̃pj (mp
j ) =


ψpj

mpj +ψpj
if mp

j > 0

1 if mp
j = 0.

(6.1)

ψpj =

(
1/µ̃pj

1/λ̃pj

)
·
(
S̃pj −m

p
j + 1

)
·
(
γ̃
(
mp
j − 1

))
(6.2)

The set of predicted blocking probabilities for p at the start of p, γ̃pj (mp
j ) ∀j ∈ J , and

the set of observed blocking probabilities for p observed after p, γpj (mp
j ) ∀j ∈ J , replace

our old notation of the observed blocking probabilities of a single pool p(b|m).

• Algorithm 2 is again used to compute the predicted minimum size of j during p, denoted
m̃p
optj

, such that γ̃pj < ε ∀j . The set of pool sizes for p which are predicted to satisfy the
QoS at each pool, m̃p

optj
∀j ∈ J , replaces our old notation of m?.

We denote this method henceforth as ELM(K), where K is the busy period length in hours.
TheD subscript is dropped because there is no longer ambiguity between two ELMmethods.

With this terminology defined, Figure 6.1 shows the model we consider in the prior chapter
on the left and the queueing model we consider in this chapter on the right.
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6.3.2 Additive Decrease Multiplicative Increase (ADMI)

Here we present a sizing method that does not rely on historical data and does not make
assumptions about subscriber behavior. This method differs from ELM in that it does not
attempt to guarantee a QoS. The method is motivated by the algorithm used for TCP
congestion control [KR09, CJ89, YL00] in the Internet. In TCP congestion control, a
sender begins with a small window size, defined as the number of packets it can send
without receiving an acknowledgement. The sender increases its window size by α ∈ N
repeatedly (“additive increase") until it is too large and a packet loss is observed due to
network congestion. At this point, their window size is multiplied by a fraction β ∈ (0, 1)

(“multiplicative decrease") and the process repeats3. This results in a sawtooth curve that
converges to the optimal size if α and β obey4[YL00, CJ89]:

0 < α < pool size, α ∈ N (6.3)

0 < β < 1 (6.4)

This algorithm is an additive increase multiplicative decrease algorithm. For pool sizing,
we take the opposite approach and propose an additive decrease multiplicative increase
algorithm, which we abbreviate by ADMI. This algorithm works as follows. We maintain a
“virtual pool size" variable, denoted by VPSj. VPSj is originally set to some initial guess,
denoted ADMIin, and changes as follows. Whenever there are y unblocked arrivals in a
row, the virtual pool size is decreased by an additive constant α ∈ [1,VPSj), that is,
VPSj = VPSj− ff. Whenever an arrival is blocked, the counter for y is set to zero, and the
pool size is increased by a factor β, that is, VPSj =

VPSj

fi
. This algorithm decreases the pool

size slowly over time when it is too large, and reacts aggressively to blocked arrivals. The
parameters y and α controls how aggressive the algorithm is in keeping a low pool size,
and β controls how aggressively the pool size increases upon a blocked arrival. As long as
α is bounded to be in [1,VPSj) and β ∈ (0, 1), the size of the pool will oscillate around the
optimal pool size even if this changes over time due to non-stationary arrivals [YL00, CJ89].

We now describe the relationship between the tracking variable VPSj and the predicted
optimal pool size m̃p

optj
. Recall that we only set the size of each pool at the start of each

period. We use the heuristic:

m̃p
optj

= avg(VPS
[p−1,p)
j )

The average value of VPSj over some window is likely to be close to the optimal pool size
in that window. This heuristic thus “lags" by assuming what was likely optimal for period
p − 1 will be optimal for period p, which works well when pool demand does not change
too rapidly. Several other heuristics could be implemented, for example we could set m̃p

optj

to the 70th percentile of VPS
[p−1,p)
j to be more conservative. Note that y controls the

tradeoff between the pool size and the pool availability. If y is small, the virtual pool size is
3In TCP Reno congestion control, α = 1, β = .5.
4This is true if all senders use the same values for α and β [YL00, CJ89].
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reduced quickly, which will lead to a lower average of VPSj and consequently a lower mp
j . If

y is large, the virtual pool is left in an “oversized" state for longer, which will increase the
average of VPSj and consequently mp

j .

Although ADMI does not provide probabilistic bounds on QoS, we show in §6.6 that our
heuristic works well in practice.

6.3.3 Offline Optimal Baseline

We also compute the optimal offline sizing to compare our metrics with. After each period
p, for all pools j , we compute the optimal number of vehicles that should have been stored
in j during p, mp

j , as:
min mp

j subject to γj ≤ ε ∀j

The M2V and utilization metrics improve with a smaller pool size, so the minimum size of
each pool such that the QoS is met is optimal with respect to all performance metrics. In
practice, it is impossible to achieve these values because this requires perfect knowledge of
demand and that all excess cars be removed at the beginning of every period. These values
hence serve as a benchmark to compare other methods. We note this baseline method does
not guarantee that the achieved availability exactly matches the QoS target, i.e., we cannot
ensure γj = ε. Specifically, for some periods p, there is no number of vehicles such that the
QoS is exactly met; mp

optj
over satisfies the QoS but mp

optj
− 1 under satisfies the QoS.

6.4 Fleet Management

Demand for carshare pools may change over time. If demand increases at some pools and
decreases at others, it may be possible to move vehicles between pools to satisfy the QoS
rather than purchasing new vehicles. We formulate a single period optimization program
that computes the movements and addition of vehicles to a set of pools such that the
expected QoS is met. Let:

• V pj,k be the cost to move a car between pools j and k (recall v pj,k denotes the number of
cars to move from j to k during p)

• Apj be the cost to buy a car for pool j at p (recall apj denotes the number of cars to buy
for j during p)

Figure 6.2 shows our formulation of this problem. The optimization computes the optimal
fleet management for each period p, that is, it outputs the number of cars to move between
each pair of pools, and the number to purchase for each pool. We first explain the pre-
computation of m̃p

optj
. Recall from §6.3.1 and §6.3.2 that m̃p

optj
is the predicted minimum

size of j during p such that γ̃pj < ε. All cars in excess of m̃p
optj

can be moved to other
pools, and if mp−1

j < m̃p
optj

, this deficit must be resolved by moving one or more vehicles
from other pools or adding purchased cars to j . Thus from m̃p

optj
we compute the deficit or
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Single Period Fleet Optimization Program

Inputs ∀j, k : V pj,k , ∀j : Apj (6.5)

Pre-computation ∀j : m̃poptj =

{
ELM : min m s.t. γ̃pj < ε

ADMI : avg(VPS
[p−1,p)
j )

(6.6)

Decision Variables ∀j, k : vpj,k ∈ N
0 (6.7)

∀j : apj ∈ N
0 (6.8)

Objective min

|J |∑
j=1

|J |∑
k=1

vpj,kV
p
j,k +

|J |∑
j=1

apj A
p
j (6.9)

Subject To ∀j : mpj = mp−1
j + apj +

|J |∑
k=1

vpk,j −
|J |∑
k=1

vpj,k ≥ m̃
p
optj
† (6.10)

∀j : mpj ≤ m
p
max j

(6.11)

†:The new pool size mpj is equal to the previous size (mp−1
j ) plus all cars added to j and moved

to j , minus all cars moved from j . Moreover this should be at least m̃poptj , the predicted minimum
size of j during p such that the QoS is met.

Figure 6.2: Joint Optimization of fleet size and vehicle movement, for a single period.

excess at j , if any. However, γpj is a nonlinear function of the input parameters so adding
the constraint γ̃pj < ε to the optimization formulation would make it an integer non-linear
program which require computationally expensive heuristics [Das13, Ree93]. Fortunately,
m̃p
optj

is not dependent upon m̃p
optk

for j 6= k ; it is dependent only upon the behavior and
demand of the subscribers of pool j . That is, the sizing requirements of each pool are
independent and can be precomputed.

Objective (6.9) ensures cars are moved to satisfy the QoS when possible. Cars are added to
pool k if moving a car from any other pool j to k would result in the expected QoS not being
met at j . Constraint (6.10) states that mp

j be at least m̃p
optj

, that is, the predicted QoS
be met (statistically for ELM, heuristically for ADMI). Constraint (6.19) states mp

j cannot
exceed the maximum size of pool j during p, mp

max j
. Combined with Constraint (6.10), this

program is infeasible if the bound mp
max j

is too small given the number of subscribers and
their usage patterns. Specifically, the predicted minimum number of vehicles required to
meet the QoS target m̃p

optj
may be greater than mp

max j
. In this case, the pool operator must

decide whether to lower the QoS target or increase the maximum pool size.

This is an integer program that is computationally difficult [GJ79], but because the objec-
tives and constraints are linear, it can be solved for moderate problem sizes using linear
relaxation and branch and bound [Das13, Ree93] by optimization packages such as Gurobi
[Gur14] and CPLEX [IBM14].
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For the special case where V pj,k is the same for all pairs {j, k}, fleet management is simpler.
In this case, we would:

1. Compute the excess or deficit at each pool, mp−1
j − m̃p

optj

2. Move from the pools with excess to the pools with deficits

3. Add cars to pools with deficits, if applicable

6.5 Evaluation Methodology

In this section, we describe our evaluation methodology. We use the same dataset for our
evaluation as described in §5.3.1.

6.5.1 Bootstrapping and Confidence Intervals

To evaluate our sizing and optimization methods on a multi-pool carshare, we split the
dataset from Chapter 5 “virtually" among multiple pools using bootstrapping with replace-
ment [Efr79]. We perform I bootstrapping iterations. Recall that we assume subscribers
have a preference for a single pool, e.g., the one closest to their home or work, and make
all requests from that pool. Within each bootstrap iteration i , we assign each5 unique
subscriber ID to a random pool. When running the sizing algorithm during iteration i , we
assume subscribers make all vehicle requests to the pool assigned to them during i . Thus,
one bootstrap iteration represents a possible permutation of subscriber preferences. The
more iterations that are performed, the more confidence we have that our results are not
dependent on a particular assignment. Thus, bootstrapping gives us a sensitivity analysis to
subscriber assignment to pools.

With this process, we obtain I observations of each performance metric—availability, uti-
lization, and M2V—during each period p for both sizing methods. By the central limit
theorem, observations of the performance metrics are expected to be normally distributed
when I is large [Kes12]. In our evaluation, we perform I = 100 iterations and compute the
95% confidence intervals (CI) for every (method, metric, period) triple.

6.5.2 Performance Metrics

We use the same three metrics used in the prior chapter (see §5.3.2). To summarize:

• Member-to-vehicle ratio (M2V ): the number subscribers per vehicle, typically 30-50.

• Utilization (U): the percentage of time each car is used, typically 20-40%.

• Availability (A): the percentage of served requests at each pool, typically 90-95%.

5All users are re-assigned every round, hence Bootstrapping with replacement.
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Figure 6.3: ADMI equivalence illustration

6.5.3 Performance Metric Computation

During each period, at time t, we track the number of users assigned to cars, utj , and
the number of vehicles available, c tj . If an arrival finds c tj = 0, i.e., the pool is empty, that
arrival is blocked, and utj is not incremented, with the exception of ADMI as explained below.
When simulating ADMI, we allow the number of subscribers of pool j assigned a car at time
instant t in period p, denoted ut∈pj , to exceed the pool size mp

j , but not the virtual pool
size VPSj. We do this to correctly simulate ADMI—recall that VPSj increases to VPSj/ β

when ut∈pj exceeds VPSj, and this condition would never be met if ut∈pj ≤ mp
j . Counting

arrivals as blocked whenever ut∈pj > mp
j leads to the same metrics as if we restricted ut∈pj

to be below mp
j . For intuition, see Figure 6.3. It is evident that for each event “arrival to

the pool when ut∈pj ≥ mp
j there is a corresponding event “arrival of a request to the pool

when ut∈pj = mp
j ". Since all such arrivals are blocked in both cases, and the event space is

the same, availability can be computed using either case.

Denote the length of each period as L. We compute metrics for period p as follows:

• A for both ELM and ADMI as 1− γpj , which is the percentage of arrivals within p that
are not blocked.

• M2V for both ELM and ADMI as Spj /m
p
j .

• U for ELM as the Riemann sum of ut∈pj , divided by the total area possible, mp
j L. We

also compute and show availability and utilization within the ELM busy periods.

• U for ADMI as the Riemann sum formed by min(ut∈pj , mp
j ) ∀t ∈ p, divided by mp

j L.

6.5.4 Parameter Prediction

Recall that at the start of period p, three parameters, 1/λpj , 1/µpj , S
p
j (the MTT, MST, and

the number of subscribers) are predicted for the ELM method. This prediction can use any
values measured during periods [0, p− 1]. We evaluate two different prediction approaches:

1. Several moving average predictors using a moving average of the previous H values:

1/λ̃pj =

∑p−1
i=p−H 1/λij
H

, ...
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2. Several Matlab [Mat14] neural network predictors. Some networks were configured to
use all previous values, and others used only some (e.g., 20 previous values).

We define the percent prediction error (PPE) for a metric x during p and its prediction as:∣∣ xp−x̃p
xp

∣∣ × 100 Surprisingly, we found that the PPE did not differ significantly between the
two prediction methods. Method (1) gives an average (over all periods and all time series)
PPE of ≈ 20% and method (2) gives an average error of ≈ 15%. We use method (1)
using an empirically derived H = 3 hereafter, because while method (2) gives slightly better
predictions, it requires much more computational time than method (1).

We are aware that many more advanced prediction methods exist; we intend to evaluate
more predictors as future work.

6.6 Results

In this section we present the results of our simulations. Our goal is to show that our sizing
methods often meet the desired QoS target despite non-Markovian, non-stationary demand.
We generalize from the single pool static sizing case presented in the prior chapter to the
single pool dynamic sizing case in §6.6.1. In §6.6.2, we further generalize to the multi-pool
dynamic sizing case.

Results shown are for 15-day periods. We use the following notation:

• For ADMI, we use “ADMI(α, β, y , ADMIin),j" to represent the four ADMI parame-
ters discussed in §6.3.2 (the linear decrease, the multiplicative increase, the number of
unblocked arrivals before a decrease is executed, and the initial pool size), and the pool
number.

• For ELM, we use “ELM(K),j" where K is the busy period length in hours and j is the
pool number.

• We show performance metrics for ELM both overall and during busy periods. In figure
legends, the subscript B indicates “within the busy period".

• The legend notation M represents the pool size mp
j .

• Dashed lines labeled op represent the offline optimal baseline. Recall from §6.3.3 that
the baseline may exceed requirements due to quantization.

• When subscribers are re-assigned to pools during the bootstrapping process, the demand
patterns for each pool change. We refer to the demand for any pool, given its current
assignment of subscribers, as a subscriber demand profile.

Note that the M2V metric is not a percentage and thus not on the same scale as the other
metrics. Further recall that op always gives the maximum utilization, maximum M2V, and
minimum availability possible such that the target QoS is still met. Whenever the utilization
U or M2V increases beyond op, the availability A is below the QoS target due to an error in
demand prediction. When A is above op, excess cars reduce the other performance metrics.
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6.6.1 Single Pool Dynamic Sizing

Here we show results for the dynamic sizing of a single pool. These results are for comparison
with those in §5.4.2 and specifically Figure 5.8. Note that the confidence intervals are of
size zero for this case because there is no bootstrapping (i.e., subscribers are not randomly
assigned to pools because there is only one); no randomness is involved in this simulation.

Table 6.1 shows the average metrics achieved over all periods for two ELM and two ADMI
sizing configurations. The ELM QoS target is 95%. ADMI does not size to meet a QoS
target, but the configurations shown are plotted together with the offline optimal baseline
for a 95% QoS target for comparison. The performance metrics for each period are shown
in Figure 6.4a. Table 6.2 shows the average metrics achieved over all periods for the same
two ELM configurations for QoS targets of 99% and 90% as a sensitivity analysis to the
QoS parameter ε. The performance metrics for each period are shown in Figure 6.4a.

We first discuss the large improvement in the performance metrics compared to the static
sizing of the same pool. Under static sizing, the utilization was between 25—30% for
methods that achieved a QoS within 1% of the target (refer to Figure 5.8), but when
dynamically sizing the same pool, we achieve utilizations of 35—45%. The reason is as
follows. During static sizing, bootstrapping is used to repeatedly split the dataset for training
and testing—half of the rows are selected at random for each purpose. Each record includes
the number of active subscribers at the time the trip record began—one point on the curve
shown in Figure 5.3. During each iteration, half of the points on this curve are sampled
yielding an approximation of the number of pool subscribers S, denoted S̃, of S̃ ≈ 330. This
is not a good approximation except when S ≈ 330 = S̃ during mid 2011. S̃ overestimates
S prior to this period and underestimates S afterwards, but when performing static sizing
this S̃ is assumed constant.Thus, static sizing ignores an important feature of this carshare,
which is that it is growing over time. The same problem applies to subscriber demand
patterns; for the static sizing case, all demand patterns visible in the training dataset are
averaged (using weights) to represent the “typical subscriber" (of which S̃ are assumed
to be present). However, because subscribers with different demands join and leave, this
average, though computed using weights representing each subscriber’s “activeness", may
not be indicative of demand patterns observed in the test dataset. When performing dynamic
sizing, during p, the predictions S̃pj (and λ̃pj , µ̃

p
j ) are computed by observing only the prior

few periods under the moving average prediction methodology, so they better resemble Spj
(and λ̃pj , µ̃

p
j ).

We make several other observations:

• All four configurations perform well with respect to the 95% QoS target (with the
exception of the last few periods, which we discuss next). Recall that for ELM, the
sizing for period p is performed based on prior observed data. It cannot, of course,
guarantee the QoS is met because future demand can be arbitrary. Nonetheless, with
few exceptions, the ELM methods achieve the QoS target, showing that both of our
proposed approaches are robust. We also see that ADMI achieves availability between
90—95%, despite not sizing for a specific QoS; ADMI performs very well considering it
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solely operates based on when and how often arrivals are blocked. ADMI is slightly less
robust than ELM, but requires significantly fewer system parameters for its operation.

• We clearly see that utilization (U) and M2V are inversely proportional to availability (A)
and the QoS target from Tables 6.1 and 6.2. For example, a QoS of 90% (bottom)
leads to much higher vehicle utilization, about 15% on average, compared to a QoS of
99% (top curve), and a higher M2V. A QoS of 95% has intermediate performance, as
expected. This emphasizes that there is no way to simultaneously maximize the three
performance metrics; a smaller number of vehicles is better for the carshare operator in
terms of costs and infrastructure utilization, but worse for customers as they will have
a lower QoS guarantee.

• Near period 175, availability falls noticeably below the QoS target, as seen in Figures
6.4a and 6.4b. This is due to the onset of highest demand ever in the system (shown
in Figure 5.7) near the end of our dataset in October 2013. This is a consequence of
changing pool sizes only at periodic intervals: a lag time is introduced between observed
increases in demand and increased pool sizes to meet that demand. ADMI rebounds
faster because the ELM sizing method uses moving average predictors, and it takes
several periods for increases in demand to significantly affect the moving average.

• The two ADMI configurations in Figure Table 6.1 (corresponding to Figure 6.4a) are
very different. ADMI(2, .5, 5, 1) is aggressive: it doubles the virtual pool size VPSj upon
a blocked arrival, decreases the pool size after just five unblocked arrivals, and decreases
it by two each time. ADMI(1, .75, 10, 1) is much less reactive: it increases VPSj by 25%,
waits for 10 unblocked arrivals before decreasing the pool size, and decreases by only
one. However, they have almost identical performance—the only noticeable difference
is that the more aggressive ADMI maintains a slightly lower availability because it sheds
(virtual) vehicles more frequently leading to lower periodic averages of VPSj. We find
ADMI is, for the most part, insensitive to its configuration parameters.

• The M2V metric steadily but not monotonically increases over time in all of our simula-
tions. This parallels what has happened in practice (as discussed in §5.3.2). The observed
utilization is also at the upper end of the ranges reported by existing carshares.

QoS P Ā M̄ ¯M2V Ū

OPT-95 95 0 96.94 7.61 27.13 42.68

ELM(96) 95 0 97.53 8.48 24.47 38.37

ELM(144) 95 0 96.52 8.05 25.96 39.87

ADMI(1,0.75,10,1) n/a 0 98.21 8.60 23.81 38.14

ADMI(2,0.5,5,1) n/a 0 97.55 8.41 24.33 37.41

Table 6.1: Comparison of two ELM and two ADMI sizing configurations (corresponds to Figure
6.4a). P denotes the pool number. ADMI does not size for a QoS target.
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QoS P Ā M̄ ¯M2V Ū

OPT-99 99 0 99.61 9.11 22.64 36.85

ELM(96) 99 0 99.25 10.5 19.84 31.17

ELM(144) 99 0 98.63 9.47 22.16 34.58

OPT-90 90 0 92.81 6.63 31.14 47.06

ELM(96) 90 0 96.47 8.04 26.02 39.88

ELM(144) 90 0 94.27 7.12 28.88 44.10

Table 6.2: Sensitivity of ELM to the QoS parameter (see Figure 6.4b). P denotes the pool number.

6.6.2 Mutli-Pool Dynamic Sizing

We have five dimensions of data: 100 bootstrap iterations, ≈190 periods (eight years of
data), three performance metrics, two sizing methods, and J pools. For ease of exposition,
we show representative results for only two pools and note that the trends discussed did
not change with more pools. Unlike the prior section, the figures showing the performance
metrics over time are deferred to Appendix B, as most conclusions are drawn directly from
the summarizing tables.

Table 6.3 shows the average metrics achieved over all periods for four different sizing
configurations. The ELM QoS target is 95%. ADMI does not size to meet a QoS target,
but the configurations shown are plotted together with the offline optimal baseline for a
95% QoS target for comparison. The performance metrics for each period are shown in
Appendix B in Figure B.2a. Table 6.4 shows the average metrics achieved over all periods
for the same two ELM configurations (also for pool 0) for QoS targets of 99% and 90% as
a sensitivity analysis to the QoS parameter ε. The performance metrics for each period are
shown in Appendix B in Figure B.2b. Finally, Table 6.5 shows the average metrics achieved
over all periods for both carshare pools (pool 0 and pool 1) to examine the effect of varying
subscriber demand profiles. The performance metrics for each period are shown in Appendix
B in Figure B.3a.

We find that the overall results from the single pool dynamic sizing case presented in §6.6.1
continue to hold here. The ELM methods work well with respect to their given QoS target,
with few exceptions due to prediction errors and unexpected demand, as shown in Figures
B.2a, B.2b, and B.3a. ADMI also achieves an average QoS between 90—95% despite not
sizing for a QoS target. We find the same insensitivity of ADMI to its sizing parameters as
we did previously; the two configurations shown in Figure B.2a are very different yet achieve
near identical performance. We also see a decrease in performance near period 175 due to
the onset of very high demand.

We make two additional observations. First, the performance metrics for each pool in a
multi pool system are worse, on average, than metrics achieved with a single pool. This is
a standard result in queueing theory: a shared resource is more efficient than the same re-
source strictly partitioned amongst sets of users [HK88]. Second, the differences in achieved
metrics for the same sizing method between both carshare pools, as shown in Table 6.5
(corresponding to Figure B.3a) are negligible. Each pool has 100 bootstrap iterations of
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randomly assigned subscribers each with their own demand profiles, yet the methods achieve
nearly the same metrics on each iteration for each pool. Moreover, the 95% confidence in-
tervals in each graph for each period, computed using 100 bootstrap iterations, are very
small—less than ±3% of the mean. This is supporting evidence that our methods work are
insensitive to subscriber demand distributions.

QoS P Ā M̄ ¯M2V Ū

OPT 95 0 97.07 5.02 20.46 33.34

ELM(96) 95 0 97.69 5.58 18.98 30.04

ELM(168) 95 0 96.70 5.17 20.49 32.03

ADMI(1,0.9,20,1) n/a 0 97.26 5.21 19.81 31.85

ADMI(2,0.5,5,1) n/a 0 95.09 4.67 22.35 33.35

Table 6.3: Comparison of four sizing configurations (corresponding to Figure B.2a). P denotes the
pool number. ADMI does not size for a QoS target.

QoS P Ā M̄ ¯M2V Ū

OPT-99 99 0 99.49 6.35 16.16 27.33

ELM(96) 99 0 99.30 7.11 15.07 24.71

ELM(168) 99 0 99.05 6.56 16.09 26.54

OPT-90 90 0 94.14 4.37 23.48 36.90

ELM(96) 90 0 96.04 5.01 21.11 32.93

ELM(168) 90 0 94.29 4.59 22.95 35.41

Table 6.4: Sensitivity analysis to QoS target (corresponding to Figure B.2b). P denotes pool number.

QoS P Ā M̄ ¯M2V Ū

OPT 95 0 97.07 5.02 20.46 33.34

ELM(216) 95 0 96.42 5.08 20.82 32.58

ADMI(1,0.75,10,1) n/a 0 97.05 5.21 19.89 31.73

OPT 95 1 97.04 5.0 20.57 33.15

ELM(216) 95 1 96.40 5.07 20.88 32.29

ADMI(1,0.75,10,1) n/a 1 97.02 5.20 19.97 32.17

Table 6.5: Comparison of metrics across the two pools (corresponding to Figure B.3a). P denotes
the pool number. ADMI does not size for a QoS target.
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6.7 Modeling Removals

Thus far, we have assumed that fleet management consists of adding vehicles to the network
and moving vehicles between pools in the network. However, vehicles added during periods
with high demand may not be needed forever. If the carshare experiences an extended period
with lower demand, the operator may wish to decrease the size of the system. We have
so far assumed that removals, the selling of vehicles, would be handled exogenously by the
carshare operator. In this section, we:

1. extend our optimization model to allow vehicles to be removed each time period

2. show a demand scenario where implementing removals has performance benefits

3. discuss why implementing automatic removals is problematic in practice and why we
propose that removals should be handled on a case-by-case basis by the carshare operator

Implementing Removals

We first describe how we extend our model to allow car removals. The new optimization
program, modified from Figure 6.2, is shown in Figure 6.5. We introduce variables r pj and R

p
j ,

indicating the number of cars to remove from pool j during time period p, and the salvage
value from doing so. The objective is modified to include an additional term, −

∑
j r
p
j R

p
j

(the total profit incurred from selling), and the constraint is modified to include a - r pj term
(the new pool size is reduced by the number of vehicles removed).

This myopic optimization program removes cars when optimal with respect to performance
metrics in a single time period—cars are removed from j at the beginning of p if the QoS
for p given mp−1

j is predicted to be over-met. This implementation allows us to compute
an upper bound on the performance metrics gains we can achieve by implementing re-
movals, assuming there was no overhead involved in buying and selling cars. At the end of
this section, we discuss another approach that optimizes for long term costs rather than
performance, but show it is infeasible to use in practice.

Performance With Pool Removals

In §5.4.2 we showed results for the static sizing of a single pool assuming all trips under
80km are handed by the subscribers’ personal vehicles. Once trips under 80km are removed,
very little demand (≈ 10%) remains, so the gaps between demand are larger. After periods
with increased demand, the sizing methods react by increasing the pool size, but without
removals the pool size remains unnecessarily high through periods of low demand.

Table 6.7 (corresponding to Figure B.3b in Appendix B) shows results for the dynamic sizing
of a single pool (pool 0), considering only trips over 80km, for two ELM configurations both
with or without removals. Table 6.6 (corresponding to Figure B.1 in Appendix B) shows
the same for two ADMI configurations. We make several observations:
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Fleet Optimization Program With Removals

Inputs ∀j, k : V pj,k (6.12)

∀j : Apj , R
p
j (6.13)

Pre-computation ∀j : m̃poptj =

{
ELM : min m s.t. γ̃pj < ε

ADMI : avg(VPS
[p−1,p)
j )

(6.14)

Decision Variables ∀j, k : vpj,k ∈ N
0 (6.15)

∀j : apj , r
p
j ∈ N

0 (6.16)

Objective min

J∑
j=1

J∑
k=1

vpj,kV
p
j,k +

J∑
j=1

apj A
p
j −

J∑
j=1

rpj R
p
j (6.17)

Subject To ∀j : mpj = mp−1
j + apj − r

p
j +

J∑
k=1

vpk,j −
J∑
k=1

vpj,k ≥ m̃
p
optj

(6.18)

∀j : mpj ≤ m
p
max j

(6.19)

Figure 6.5: Joint optimization program with systematic removals

• We see from Figure B.1 that Mop fluctuates much more than when dynamically sizing
a pool. This suggests that not allowing M to increase and decrease in response to
fluctuations in demand decreases M2V and A. As evidence, without removals, the four
conservative methods give a pool size M that is always greater than Mop.

• For ELM(8), a very conservative sizing method, nearly 100% availability is maintained
with and without removals. However, with removals implemented, the M curve is a
tighter upper envelope so the other performance metrics are improved. This is an example
where removals can improve the other performance metrics without affecting availability.

• For ELM(72), with removals implemented, the average performance metrics nearly
match the optimal baseline.

• Due to the reactive nature of the sizing methods, the pool size is increased and decreased
after increases and decreases in demand. This lag can be observed two ELM and two
ADMI configurations with removals implemented. Consequently, when the optimal pool
size oscillates rapidly, the lag causes the pool size to be suboptimal during some periods.

• Though removals can lead to decreased availability during some periods, it also leads to
large performance gains. For example, in Table 6.7 the two ADMI configurations with
removals implemented see much higher utilization and M2V metrics in exchange for a
few periods with low availability.

• Even with removals implemented, the performance metrics are lower for the truncated
demand case where all trips under 80km are assumed to be handled by the subscribers’
personal vehicles. When periods with high demand are far apart, the moving average
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predictors may “reset” to low demand during the interim periods. Moreover, with less
demand, ADMI has fewer arrivals to react to; ADMI works best when it can determine
the pool size based on a large number of arrivals.

QoS P R Ā M̄ ¯M2V Ū

OPT 95 0 0 98.06 4.92 45.34 31.20

ADMI(1,0.5,15,1) n/a 0 0 99.81 12.08 17.08 13.46

ADMI(1,0.5,30,1) n/a 0 0 99.81 11.26 18.32 14.28

OPT 95 0 1 98.06 4.92 45.34 31.20

ADMI(1,0.5,15,1) n/a 0 1 98.33 7.5 31.04 22.79

ADMI(1,0.5,30,1) n/a 0 1 99.52 9.04 25.34 18.09
Table 6.6: The averages of each metric achieved over all periods across pools and for two different
ADMI configurations (also see Figure B.1). P denotes the pool number. ADMI does not size for a
QoS target. R is a boolean indicating whether removals are implemented.

QoS P R Ā M̄ ¯M2V Ū

OPT 95 0 both 98.06 4.92 45.34 31.20

ELM(8) 95 0 0 99.81 18.12 11.66 8.86

ELM(8) 95 0 1 99.81 11.847 18.64 13.62

ELM(72) 95 0 0 99.36 7.86 26.62 20.34

ELM(72) 95 0 1 96.43 5.33 40.83 28.41
Table 6.7: The averages of each metric achieved over all periods for pool 0 and four different ELM
configurations with and without removals (also see Figure B.3b). P denotes the pool number. R
is a boolean indicating whether removals are implemented. Note the offline optimal baseline always
removes cars when beneficial with respect to performance metrics.

Implementing Systematic Removals In Practice

The myopic optimization program shown in Figure 6.5 removes vehicles from the system
whenever it is optimal with respect to performance metrics. With myopic optimization,
when demand fluctuates, some vehicles may be sold during low demand and repurchased
later during high demand. However, assuming vehicles depreciate in value, this may be
suboptimal over time with respect to cost. Let Apj −R

p
j denote the rebuying penalty, which

intuitively represents the cost to buy a vehicle after selling one too hastily (due to myopic
optimzation). To implement removals while optimizing for cost instead of performance, we
could model the the holding cost ch, the cost to store each vehicle for one period, and
sell vehicles only when the rebuying penalty is cheaper than the holding cost over several
periods. The problem is that to make an optimal decision w.r.t. cost at the start of any
period p, the operator needs to know when cars that are removed will be needed in the
future. The operator cannot optimize for cost in practice unless demand is perfectly known
far ahead of time:
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To see this, consider a single pool with holding cost ch, and let the profit from selling a car
be Rj . Let X be the largest integer such that Aj − Rj ≥ chX; X represents the maximum
number of periods for which it is cheaper to hold an unused car than to sell it re-buy it later.
Suppose mp−1

j = 2 and m̃p
optj

= 1. Should the carshare sell the 2nd vehicle at the start of
period p? It is optimal to keep the car if and only if the next period at which m̃optj ≥ 2 is no
more than X periods away, and beneficial to sell it otherwise. That is, to make a decision
optimal with respect to cost at the start of period p, demand must be known for all periods
[p, ..., p +X].

In conclusion, it is difficult to implement the optimization in Figure 6.5 in practice. Thus, we
propose that the complex problem of when to sell vehicles should be handled by the carshare
operator on a case-by-case basis, rather than on the basis of an optimization program. Our
formulation in Figure 6.2 advises when cars should be added to or moved within the system,
and whether any cars are “excess" at any time, but it does not automatically remove the
excess vehicles. We propose that this optimization be used to inform the operator when
there are excess vehicles in the system so they can judge whether to sell the vehicle.

6.8 Prior Fleet Sizing and Management Models

Prior work in fleet management makes one or more of the following modeling assumptions:

1. the number of users who can create demand in the system (i.e., request a vehicle from
some location) is “infinite” and not restricted to a finite group of subscribers

2. the distribution of interarrival times and service times at locations are Poisson, i.e., the
system is Markovian

3. the arrival processes to locations is stationary, i.e., does not vary with time of day or day
of year.

These three assumptions, made for modeling simplicity, are often inaccurate. To demon-
strate this, we show that a local Waterloo carshare has non-Markovian arrivals and depar-
tures, has non-stationary demand, and has a finite population of subscribers in §5. Other
authors also made similar observations. In a study of a company car pool, Dondeti at al.
[DM09] find that not only are the arrival and service distributions non-Markovian, but are
not drawn from “any standard distribution". The arrival process for another business pool
was found to be close to Markovian, but not the service process [WF79]. With respect to
stationary demand, many carshares have higher pricing rates during peak periods [SM07],
i.e., they have pricing that reflects (and attempts to balance) their non-stationary demand.
Finally, infinite population systems are suitable for large carshares with thousands of sub-
scribers, but not smaller carshares with a small subscriber base (like the one we study) 6.
Carshares often store their fleet across multiple locations to provide better access for their
geographically dispersed subscribers. Because subscribers often borrow vehicles from the

6We note that this is the least unrealistic assumption made by prior work, because infinite population
models approximate finite population models as the size of the population grows [Kle75a].
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same pools consistently, e.g., the one closest to their home or work, often each location
can be modeled as a smaller finite population system.

To the best of our knowledge, §6 presents the first work to manage a multi-pool vehi-
cle sharing system without making any of the three aforementioned assumptions (infinite
population, Markovian arrival and departure processes, and stationary demand). There are
several prior models that make some or all of these assumptions.

The three closest related models are by George et al. [GX11], Hampshire et al. [HG10], and
King et al. [KGWS13]. George et al. [GX11] study sizing a network of car rental pools. The
arrival process is assumed to be Markovian, and service times at rental stations are assumed
to be Markovian under a virtual service model, thus rental pools are modeled as Markovian
queues. Non-stationary demand is not considered. The authors minimize costs by assuming
there is a financial penalty for meeting any given QoS level under 100% and a cost to buy
vehicles. Hence it may be cheaper to maintain a low QoS if the price of vehicles is high.
Hampshire and Gaites [HG10] focus on the sizing and profitability of a peer-to-peer vehicle
sharing service. However, their sizing algorithm makes two assumptions that do not apply
to our problem. First, the authors assume that the arrival of subscribers to car shares is
stationary. It is not, especially near major holidays—some car shares even have higher rates
during peak periods [SM07]. Thus, much of our work deals with sizing according to busy
periods. Second, the authors assume the population of subscribers is infinite. We instead
focus on smaller pools that cannot be approximated with an infinite population model. King
et al. [KGWS13] present a vehicle access model to reduce range anxiety and present sizing
methods to manage the size of the ICEV fleet. However, all service times are assumed to be
deterministic—one day each. The sizing of the system is based on stationary demand (the
average arrival rate). Finally, the authors assume that all load is shiftable and that requests
queue, i.e., if a user demands a vehicle for day k and one is not available until day k + 3,
the user will use the vehicle then. However, not all vehicle demand is shiftable by one or
more days, especially demand for long trips because they tend to occur on weekends and
holidays. See [PT08, Par77, LT09, KKN03, Koc97, SHvH13] for similar queueing models
that make the same assumptions.

Two other papers have used different (non-queueing) tools to study the fleet management
problem. Barth [BT99] use an agent-based modeling approach for the sizing and manage-
ment of a vehicle sharing system. An origin-destination (OD) matrix of carshare trips is
created using online travel surveys to build a Markov process that generates arrivals. That
is, the arrival process is assumed to be Markovian and stationary. Service times are assumed
to be known and deterministic between each OD pair. For the simulation, OD trip origins
are generated randomly according to this Markov process, and the duration of each trip is
chosen based on the origin and destination. The authors propose pool sizing and vehicle
relocation algorithms based on trips simulated using the Markov process and the OD ma-
trix. Dondeti et al. [DM09] use a similar approach to Barth, but trips are generated using
six years of pool data. The authors find that the arrival and service distributions do not
follow any standard distribution. Instead of employing generic queueing models, the authors
simulate trips from the empirical distributions directly by discretizing trip length into half
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hour buckets and determining the probability a random trip is in each. They assume all trip
requests that cannot be fulfilled from the pool are served from a rental organization for a
price dependent upon the length of the trip request.Their goal is to determine the optimal
size of the pool given the tradeoff between the purchase and holding cost of pool vehicle
and the cost to acquire rentals for unserved demand.

These fleet management models are related to, but differ from, models for the joint sizing
and routing (SR) of a vehicle fleet [Lap92, PJO95]. These two sets of models have different
objectives. SR models optimize the size and routes of transport fleets serving customer
shipping demands over a multi-period horizon to minimize cost. For each period, vehicles
must be assigned to demands and routes, and vehicles must be moved to each node based on
anticipated demand. However, SR models allow demand to be backlogged, that is, unserved
demand (due to a lack of vehicles at a particular time) can be served later for a penalty. In
the seminal SR model developed by Beaujon [BT91], all demand is backlogged.

This is not always possible in managing fleets such as carshares. For example, if no carshare
vehicles are available, and a subscriber needs to make a trip, they may not be able to
postpone the trip to another time. For example, a subscriber may want a vehicle for a
holiday weekend trip. Due to backlogging, in some SR models all demand may eventually be
met, i.e., there is an “eventual QoS" of 100%. In other models, unmet demand is dropped
if it is cheaper to do so. Thus SR models minimize cost and do not ensure a given QoS is
met within any specific time period. Queueing models are not used for sizing. Instead, SR
models use multi-period optimization models to minimize cost.

6.9 Conclusions And Future Work

We propose that a carshare for EV owners may help reduce range anxiety by giving owners
occasional access to an ICEV. Subscribership to such a program can be incentivized or
even subsidized by EV dealerships. We hypothesize that a high quality of service (vehicle
availability) is essential to the success of the program. Contrary to existing fleet manage-
ment models, our model can be used to size vehicle sharing systems for arbitrary demand
patterns to ensure a high QoS. We solve the dynamic sizing problem using repeated myopic
optimization. At periodic intervals, we compute the minimum size of each carshare pool
necessary to ensure a systemwide QoS target is met. We adapt two sizing methods we
proposed in the previous chapter for this purpose. Cars are then moved between or added
to pools to satisfy the QoS. We show that our fleet management methodology performs
well with respect to optimal baselines for a variety of subscriber demand profiles.

We now discuss several ways our model can be extended.

6.9.1 Supporting One Way Trips

We do not currently model one way trips (i.e., cars that are rented from one pool and
returned to a different pool) for two reasons. First, there already exist several methods
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to rebalance sharing systems—methodologies to optimally move a fixed number of vehicles
between locations after a series of one way trips to resolve pool imbalances [CMR12, MW05,
MHN10, FSS13, UMW07]7. We can include these methods to allow for one way trips as
follows. Sizing is still done at the start of each period using our methodology, and our fleet
management is performed immediately after sizing to compute whether cars need to be
added to the system and whether cars should be moved due to demand fluctuations. These
procedures ensure each pool is sufficiently sized for the coming period, that is,mp

j ≥ m̃
p
optj
∀j .

To implement one way trips, any of the cited re-balancing algorithms can be employed daily
(or weekly, etc.) to ensure mp

j ≥ m̃
p
optj
∀j . Since vehicles do not leave the system between

periods, it is always possible to rebalance.

Second, at the time of writing, the carshare used in our evaluation does not allow for one
way trips [Com14]. The carshare has many pools spread over a wide geographical region to
serve a wide population, and many of these pools are limited to just a few spaces because
of parking costs and availability. Allowing one way carsharing creates logistical problems,
e.g., what should happen when a subscriber brings a vehicle back to a pool which is already
full? Subscribers may have to visit several locations to return vehicles due to limited parking
availability.

6.9.2 Subscribers Borrowing From Multiple Locations

Our model assumes that subscribers always borrow cars from a particular pool, e.g., the one
closest to their home or work, and do not borrow vehicles from different pools at different
points in time. Recent work has shown that there is value in exploiting communications
technologies to allow users to choose vehicles from more than one pool [CJA14].

However, our model can be easily adapted to handle this. For the ELM method, the pop-
ulation of each pool would now be the total number of subscribers, |S|, as subscribers can
rent from any pool. Furthermore, the mean think time and mean service time (1/λj , 1/µj)
of pool j should be calculated as a weighted mean of all subscribers’ think and service time
distributions, with the weight being how often they use pool j . ADMI needs no modifica-
tions. If the dataset logs the start and end location of each trip, the simulation methodology
can be modified to use this information. We did not perform these extensions because our
dataset does not provide this information.

6.9.3 Reservations

A carshare operator may wish to implement a reservation system where subscribers call
ahead to reserve a vehicle. We do not model this type of system because we are using
a historical dataset and cannot “reschedule" past requests, and because many existing
carshares size purely based on predicted demand [Mat04]. We plan to consider this in
future work.

7This list is not exhaustive: a large body of work exists on this topic
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6.9.4 Budget Limitations

Our current fleet management formulation (Program 6.2) minimizes cost subject to a
hard constraint on QoS. However, this formulation may ignores cost constraints—meeting
the desired QoS systemwide may not be feasible given budgetary constraints. Future work
could consider an alternative formulation that instead maximizes the QoS subject to fixed
cost constraint. A possible objective may be to maximize the average availability across
pools, e.g., max

∑|J |
j=1 γ̃

p
j , where the expected blocking probability γ̃pj is a function of the

pool size mp
j , and cost is also a function of mp

j . However, we caution that this requires
computing γ̃pj within the optimization program over the space of pool sizes mp

j , as m
p
j

would then be a decision variable, and the computation of γ̃pj (Eq(6.1)) is recursive and its
analytical equivalence (Eq(5.2)) is nonlinear. In contrast, in our formulation, mp

j |γ̃
p
j < ε is

pre-computed and given as input to the optimization program.

Alternatively, the carshare operator can compute the cost of maintaining a few acceptable
QoS targets (e.g., 80%, 85%,..) using Program 6.2 and then make a decision based on
cost constraints.

6.9.5 Multi Period Future Optimization

We show in §6.7 that without reliable prediction of future demand, the operator cannot
optimize over a multi period horizon. Moreover, we observe that prediction errors of 20%
per period can compound, i.e., at the start of period p, the prediction error for demand
during p is ≈ 20%, but the PPE for period p + 1 can be 40%. This is an inherent problem
caused by unrestricted demand—subscribers can join and leave at any time and may change
their demand patterns significantly without notice. Thus, unless demand is regulated by the
carshare provider, perhaps by placing a restriction on the usage by subscribers, this problem
will be difficult to overcome in practice. Nonetheless, as future work we plan on evaluating
methods for optimizing multiple periods using a receding horizon optimization framework
into the future.

6.9.6 Redirecting Blocked Arrivals

Another avenue for extending our work is to model the multi pool network as a queueing
network, where if a subscriber is blocked (does not receive a vehicle) at one pool, they try to
receive a vehicle from a different pool instead of returning to their think state. This requires
alternating the MTT 1/λ·j and the MST 1/µ·j at each pool j according to the additional
demand from those who came from other pools after being blocked.
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Chapter 7

The Return On Investment for Taxi
Companies Transitioning to Electric
Vehicles

Publication reference: T. Carpenter, A. R. Curtis, S. Keshav. The Return On Investment
for Taxi Companies Transitioning to Electric Vehicles: A Case Study in San Francisco.
Transportation Vol 40, No. 4, July 2013.

7.1 Synopsis

Fleets are a fruitful adoption market for EVs for a number of reasons. Fleet operators:

• are able to assign vehicles based on demand, e.g., a fleet can dispatch an EV or ICEV
depending on the range requirements of planned trips

• are rational, in that they are comfortable making purchase decisions based on long term
ROI calculations

• avail substantial discounts due to volume purchases

• often have access to centralized parking that is suited to EV charging

We focus on taxi fleets, a popular type of vehicle fleet in cities. Taxi operators can displace
significant amounts of petroleum use by transitioning to EVs1. However, they will only
transition if it is profitable to do so. In this chapter, we study whether taxi companies can
simultaneously save petroleum and money by transitioning to electric vehicles.

1Based on our data, for triple-shift taxis (those driven 24 hours a day) we estimate savings of approximately
15,000 liters each year per taxi, and 10,000 liters for double-shift (16 hours a day) taxis

94



As discussed in §3.3, several authors have studied the ROI for individuals transitioning to
EVs. We cannot use the mobility patterns of individuals to derive conclusions about the ROI
implications of fleets switching to EVs, because fleet mobility patterns are very different.
For example, we find that the taxis in our dataset are parked only 12% of the time, whereas
private vehicles are parked 80—90% of the time (see §3.4).

In this chapter, our main contributions are:

1. We present the first work on computing the return on investment (ROI) for a taxi
fleet transitioning to EVs. Our data-oriented approach evaluates different infrastructure
scenarios, including battery switching and roadside charging, and all EV types: BEVs,
PHEVs, and HEVs. For each scenario, we quantify the ROI and the investment payback
period, and extrapolate the analysis to a wide array of electricity and petroleum prices.

2. As part of (1), we present a graphical model for using data collected from the company’s
ICEV taxis to estimate the SOC of a fleet of electric taxis over time.

3. We formulate the problem of locating battery switching stations that serve the taxi fleet
as a revenue-maximizing optimization problem.

We do not make any assumptions about the vehicles’ mobility patterns; instead, we use a
data set of GPS coordinates of the company’s existing ICEVs to derive conclusions. Our
process requires an input dataset containing GPS and passenger fare information for a taxi
company’s existing ICEV taxis.

As a case study, we analyze the adoption of PHEVs, BEVs, and HEVs by a taxi company
with over 530 vehicles, Yellow Cab San Francisco. Our study shows that both PHEVs and
HEVs have a positive ROI as of late 2014 in San Francisco, and if battery switching stations
are available2, BEVs are profitable as well. Using our algorithm, we find only three battery
switching stations are needed for Yellow Cab San Francisco for BEVs to be profitable.
Furthermore, gasoline prices in San Francisco are 5.4% higher than the rest of the United
States, but electricity prices are 75% higher, so taxi companies with similar practices and
mobility patterns in other cities are likely to profit more than YCSF by transitioning to EVs.

This chapter is organized as follows. An overview of taxi operations is given in §7.2. We
present our ROI analysis methodology in §7.3. In §7.4 we give an algorithm to locate
necessary BEV infrastructure. The results from our case study are given in §7.5. Conclusions
and future work are discussed in §7.6.

7.2 Taxi Operation Overview

We briefly describe the operation of a taxi company as it relates to our work and how its
operating practices may change if it transitions its fleet to EVs.

2As discussed in §2, the first manufacturer of switching station infrastructure, Better Place, is recently
(2013) defunct. However, other EV manufacturers, such as Tesla [Tes14c], have an interest in battery switch-
ing. We continue to use Better Place’s estimates for switching infrastructure pricing for lack of an alternative.
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Our model applies to taxi companies in fare-regulated taxi markets where the local gov-
ernment or local Taxi Commission controls the pricing structure of taxis within the region.
Moreover, we assume that employee-drivers operate company-owned vehicles in shifts that
typically last eight hours. At the end of the shift, drivers return the vehicle to the company
premises where the vehicles are re-fueled and handed over to another driver for another
shift. Drivers only refuel the vehicles while they are not carrying passengers.

We use the term fare to refer to a contract between a driver and a passenger to transport
the passenger to a desired destination for some price. Fares may be pre-arranged by calling
the company to schedule a pickup, or they can be arranged on-the-fly by signaling taxis
as they drive past. Each taxi company has its own pricing model, that is, how it charges
for fares. It is usually a function of time, distance, and other charges. A driver’s goal is to
complete as many fares as possible during their shift, as this is the sole source of revenue
for the company.

To maximize the likelihood of fares, taxi drivers may continuously drive around looking for
passengers or may wait at busy locations such as airports and city centers. This behavior
is not fuel efficient, but the revenue from additional fares usually compensates for the cost
of wasted fuel.

We now note how this existing operation may change if the taxi company were to convert
their fleet to BEVs or PHEVs, where BEVs are allowed to switch their batteries at a switch-
ing station. Such a change can impact the frequency of refueling, the potential introduction
of refueling delays between shifts, and driver behavior between fares.

• BEVs. The range of a typical BEV is about a third of an ICEV. Thus, BEVs must be
“refueled" about three times more often than ICEVs. Consequently, either drivers must
refuel more often between fares or turn down more fares. Note that installing battery
switching stations allows BEVs to be refueled as quickly as ICEVs. Therefore, there is
no additional delay at the company premises between shifts.

Many equations in the following sections are dependent on a variable τ , which represents
the battery charge threshold below which taxi drivers switch their battery if they are at
a location with a switching station. We use the notation ·(τ) to represent a variable’s
value assuming the switching threshold is τ . We assume that a BEV driver switches their
battery whenever the SOC is less than τ and the driver is at a location with a switching
station. That is, we assume drivers never modify their trajectories to switch batteries.
We discuss computing the optimal value of τ in §7.3.5.
• PHEVs. PHEVs do not have to be refueled more often than ICEVs. However, the primary
gain from switching to PHEVs is to reduce fuel costs by driving the taxis primarily using
the battery. This reduction is possible only if taxis rarely switch to their ICE mode, which
requires their batteries to be fully charged after the end of a shift. PHEV batteries cannot
be switched in today’s models. This introduces a delay between shifts while the vehicles
are being charged. To avoid this delay, the taxi company could purchase additional
PHEVs to ensure vehicle availability for the next shift. This issue is discussed in detail
in §7.3.5.
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• In both cases, a driver’s practice of opportunistically attracting fares by driving around
would be affected. Drivers need to trade off the benefit from additional fares for the
cost of battery depletion.

7.3 Data-Oriented Process to Estimating ROI

Our goal is to calculate the company’s ROI in transitioning a certain fraction of their
taxi fleet to EVs. To do this, we describe an analytical technique that allows us to use
measurements of the company’s existing ICEVs to study whether they should adopt EVs.
This section is outlined as follows. In §7.3.1 we discuss the assumptions we make in our
model. In §7.3.2, we describe the required inputs necessary to use our model. In §7.3.3 we
describe the model outputs. We describe how we use data collected from the company’s
ICEVs to model EVs in §7.3.4. In §7.3.5 we discuss how the model is used to infer the
company’s ROI as a result of transitioning a portion of their fleet to EVs.

7.3.1 Model Assumptions

In our model, we assume that:

• if a taxi depletes its battery during a shift, all revenue the taxi would have generated
during the remainder of that shift is lost. This is a conservative assumption given that in
practice a taxi could potentially drive to a switching station, but this would change the
trajectory of the vehicle. Since we are using records of past trips, we would not know
whether the fares after this trip to a switching station would be valid.

• the company replaces every ICEV, BEV, and PHEV, after L years of use, regardless of
the level of usage. The lifetime L is given as input. For simplicity, we also assume that
extra batteries in the system (for BEVs) are replaced after L years of use. Future work
could examine different replacement rates for different infrastructure.

• the taxi system analyzed as input operates in a fare-regulated taxi market. We cannot
estimate the revenue derived from taxis or the relative costs of owning an ICEV compared
to an EV in an unregulated market, as taxi drivers could make arbitrary changes to
their fare structure in response to changes in gasoline and electricity prices, making our
projections inaccurate. From surveying a representative sample of cities in North America
however, we conclude most taxi markets are regulated by the local Taxi Commission or
local government.

• the company does not make a large change to their fleet size so these values over the
next L years will resemble the values from the dataset. Our model is data oriented—it
relies on measured data rather than a survey of taxi operations. Any dataset will have
values “built in" because the values are measured from an already existing system, such as
the average number of fares completed per taxi, the average utilization of the company’s
taxis, and the average revenue brought in per taxi.
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• the price of gasoline and electricity do not go below some lower bounds during L. That is,
our model computes a worst-case ROI—it assumes the price of gasoline and electricity
are at least as high as the input parameters. Removing this assumption would require
us to introduce stochastic processes for the price of gasoline and electricity, greatly
complicating the model.

• EVs are introduced into the fleet at the start of the analysis period. Our model computes
the ROI for the taxi company over L years assuming a fraction of their fleet is replaced
with EVs at the start of L. It is straightforward to extend this analysis to the case where
EVs are introduced in batches, as each ROI analysis is independent, and the total ROI
would be the sum of each batch.

• batteries charge at a constant rate and the battery capacity does not change over its
lifetime.

• taxis do not deviate from the routes in the data set, that is, we do not modify the
dataset in any way. Taxis are only allowed to switch batteries if they are at a location
with a switching station and do not have a fare. In practice, taxis would monitor their
battery levels and may drive to a switching facility in between fares.

• maintenance costs for a fleet of EVs is the same as a fleet of ICEVs. This is a conservative
assumption because EVs, with fewer moving parts, require less maintenance than ICEVs.
We further assume that driver salaries and dispatch expenses remain fixed whether the
company uses EVs or ICEVs. We do not model these three parameters.

• taxis do not charge their batteries with the air conditioning (AC) on. We model the
effect of AC usage on the battery capacity, but make this assumption so that at any
time the taxi is either consuming or gaining energy, but not both.

These assumptions essentially state the taxi market remains relatively constant over L years.
Further limitations are discussed in are discussed in §7.6.

7.3.2 Inputs

Our process for determining the changes in revenue for the company as a result of switching
to EVs requires the following inputs:

1. Mobility Data. A critical input to our taxi model is mobility data from the existing ICEV
fleet. We require the periodic collection, from each taxi, of its geographical location and
fare status, for a period of several weeks. This could be obtained by collecting a log file
for each ICEV, where each record of the log file has a time stamp, the GPS location of
the ICEV, and whether there is a paying passenger currently in the vehicle. Commercial
systems that record this type of GPS data are readily available today [Geo14].

We organize the input dataset into a set of shift files, where a shift file represents data
for one drivers working shift as defined in §7.2. We require a set of shift files for each
driver and each taxi.
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2. Reduced Coordinate Space. A second input to our model is a reduced geographic coordi-
nate space that minimizes model dimensionality without overly affecting its correctness.
We overlay the taxi company’s geographical operating region with a set of points in
the reduced space and we map GPS data to its closest grid coordinate using Euclidean
distances.

3. Fare Pricing Model. Every taxi company has their own pricing function they use to charge
for fares, and this needs to be given as input. We use rFARE(f ) be the cost of fare f .

4. Operating Costs.We require gasoline, electricity, and vehicle prices in the taxi company’s
region of operation.

5. Vehicle Specifications. We require specification of EV parameters such as battery size,
range, and charging rates.

6. Vehicle Replacement Rate. We require the lifetime L of the company’s vehicles. Some
taxi commissions require vehicles be replaced based on their age in years, while others
require taxis be replaced after having driven a certain distance. Because this is a data-
oriented model, for the latter case L can be estimated from the mean distance driven
by the taxis each year.

7.3.3 Model Outputs

The process produces the following outputs:

1. The company’s ROI over L years, based on the fraction of the fleet transitioned BEVs
or PHEVs, and the average lifetime L of the company’s vehicles.

2. Assuming a PHEV transition, the number of additional vehicles that must be purchased
so that each driver can begin their shift with a fully-charged vehicle.

3. Assuming a BEV transition, the number of extra batteries the company must purchase
and the number and location of needed battery switching stations3.

7.3.4 Estimating Charge Levels

We simulate the taxi company’s ICEV taxis as though they were EVs by estimating their
SOC over time. Specifically, we develop a Bayesian network to estimate the charge level of
a taxi at any time given the time-series of GPS coordinates from the corresponding ICEV.
For the remainder of this chapter, we assume the reader is familiar with basic Bayesian
networks; for an introduction, see Koller and Friedman [KF09]. We first present some
necessary definitions:

• The set of parents P(X) of a node X in a directed acyclic graph G(V, E) is defined as
{Y |(Y,X) ∈ E, Y 6= X}.
3In the absence of switching stations, our PHEV analysis holds for BEVs that are charged.
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• Nodes can be observed (we can directly observe or compute their values) or hidden (we
estimate their value because we cannot observe their values). As shown later in this
section, the only hidden node in our Bayesian network is the SOC node.

• Nodes can be either discrete or continuous; discrete variables can only take values from
a countable set of values, such as the integers, whereas continuous variables can be any
real number.

• A Bayesian network is a directed acyclic graph that defines the relationship p(X|P(X))

between every node and its parents. The probability of any variable X is dependent only
upon its parents and is independent of all other nodes in the network.

We use a dynamic conditional linear Gaussian network (DCLGN) [KF09] to infer taxis’ SOC.
Dynamic refers to the ability to track hidden variables that change over time by inferring
their value at discrete4 timeslices. A timeslice is an instantaneous point in time and the kth
timeslice is denoted tk . These timeslices are spaced by a timestep which can be constant
or variable. We use a variable timestep by using one timestep for every GPS measurement
(which are not equally spaced). Conditional linear Gaussian refers to the assumption that
the probability distribution of variable X is a Gaussian whose mean is a linear function of
its parents’ means:

p(X|P(X)) = N (κ0 + κ1E[p1] + ...+ κPE[pP ];σ2)

where P(X) = {p1, ..., pP}. We note that the variance σ2 is often assumed to be inde-
pendent of P(X), and in many cases, it is assumed to be zero [KF09]. In this case only
the expectations of each variable in the network are considered. In this chapter, we assume
σ2 = 0 for all nodes in the network. This assumption can be removed as part of future
work; see §7.6.
For further simplification, let P(X, tk) to denote X’s parents at time tk . For computational
simplicity, we assume variables follow the Markov assumption:

p(X, tk)| [P(X, t0), ...,P(X, tk))] = p(X, tk)| [P(X, tk−1),P(X, tk)]

With respect to SOC, this means the SOC level of the taxi SOC at time tk depends on the
other variables in the network only at times tk−1 and tk . This is a reasonable assumption
because the SOC of a taxi at time tk can be computed based on the SOC at time tk−1 and
the change in SOC between tk−1 and tk .

Figure 7.1 shows the model that is used to estimate the battery charge levels over time. We
introduce helper variables that reduce the number of parents of variables we query. Table 7.1
shows the variables in our network, and whether they are observed, helper variables, hidden,
discrete or continuous. The dotted arrows in Figure 7.1 represent variables that have an
effect on the next timeslice called persistence edges. The solid lines represent inter-time
edges that do not affect variables at the next timeslice.

4It is important not to confuse the relationship between continuous variables and discrete timeslices.
Continuous variables in dynamic networks are real-valued but are observed at discrete timeslices. For example
time is a continuous variable in our network even though we observe this variable at discrete timeslices.
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Figure 7.1: Bayesian network to simulate ICEV taxis as EVs by estimating their battery SOC

We explain the three most important variables:

• Energy Used. This variable represents the energy the taxi i consumes between two
timesteps. Let D be the discharge rate of the EV (kWh/km), and e represent the most
significant energy usage of an EV other than propelling the vehicle: air conditioning
(AC). Then,

u(i , tk−1, tk) = d(i , tk−1, tk)D + e (7.1)

The US National Renewable Energy Laboratory states “Air conditioning loads can reduce
EV range and HEV fuel economy by nearly 40% depending on the size of air conditioner
and driving cycle”. We discuss our AC assumptions in §7.5, and note that AC usage by
taxi companies is different depending on climate in their regions.

• Energy Gained. This variable is only used when studying the effect of roadside charging
on battery charge level. If a taxi is parked between two timesteps, we assume the taxi
could have been charged during this time. Let gx(i , tk−1, tk) be the energy gained by taxi
i between two timesteps assuming level x charging (kWh), and Bgx is the amount of
energy gained per second (kWh/second) assuming level x charging (this depends on the
BEV or PHEV model). We assume drivers never charge with passengers in the vehicle:

g1(i , tk−1, tk) = f are(i , tk)p(i , tk−1, tk) · Bg1 (7.2)

g2(i , tk−1, tk) = f are(i , tk)p(i , tk−1, tk) · Bg2 (7.3)

• Charge Level. Charge level is the hidden node our network is designed to query. This
variable has 4 parents: the charge level from the previous state, the current location, the
energy used, and the energy gained. The edge between the two variables charge level
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Variables

Name Symbol in Eq. Meaning Type

Location Loc(i , tk) Taxi i ’s location at tk O, D

Fare f are(i , tk) (0/1) Whether i has a passenger at tk O, D

Time Value of time O, C

Distance d(i , tk−1, tk) Km traveled by i between H, C

Traveled last two timesteps tk−1, tk

Time Time elapsed between H, C

Difference last two timesteps tk−1, tk

Time Parked p(i , tk−1, t) Seconds i parked between H, C

last two timesteps tk−1, tk

Energy u(i , tk−1, tk) Energy i used between H, C

Used last two timesteps tk−1, tk

Energy gx(i , tk−1, tk) Energy i gained between H, C

Gained last two timesteps tk−1, tk

Charge Level SOC(i , tk) i ’s charge level at tk Hd, C

Table 7.1: Table of variables in the Bayesian network. O = Observeable, H = Helper, Hd = Hidden,
D = Discrete, C = Continuous

and location is because the charge level is dependent upon location because of battery
switching (in the case of BEVs). We model E[SOC(i , tk)], the expected charge level at
timestep tk , for all non-battery switching scenarios as:

E[SOC(i , tk)] = E[SOC(i , tk−1)]− u(i , tk−1, tk) + gx(i , tk−1, k) (7.4)

When studying BEVs with switching stations, we model E[SOC(i , tk)] as:

E[SOC(i , tk)] =

{
full if (Υ(Loc(i , tk)) = 1) ∧ (E[SOC(i , tk)] < τ) ∧ (f are(i , tk) = 0)

E[SOC(tk−1)]− u(i , tk−1, tk) + gx(i , tk−1, k) otherwise
(7.5)

where Υ(Loc) indicates that the location has a switching station; the optimization
problem discussed in §7.4 decides this variable.

Note that one of u(i , tk−1, tk), gx(i , tk−1, tk) will always be zero—either the taxi is parked
and does not use energy or the taxi travels and uses energy.

7.3.5 Using The Model To Infer Costs

We now describe the process to use this Bayesian model to determine company’s ROI in
transitioning their fleet to EVs.
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Notation

In the following equations, we use i to index a specific taxi, w to index a specific shift, f
to index a specific fare, b to index a specific battery switching station, and T to represent
the total number of taxis the company has (in the dataset).

Methodology

For BEVs and PHEVs respectively, our process is to compute:

rB(τ) = rE − rL(τ) + sB(τ)− Cbev − cexbt(τ) (7.6)

rP = rE + sP − Cphev − cexpv (7.7)

∆B(τ) = rB(τ) · x − cBSS(τ) (7.8)

∆P = rP · x (7.9)

where the terms are defined in Table 1. We now explain how we compute these costs.

Determining Existing Taxi Revenue

We compute the company’s existing revenue rE using the fare data and the company’s
pricing model. Let Ti be the set of all fares completed by taxi i . Using the input rFARE from
§7.3.2, the pricing function the company uses for a fare,

rE =

∑T
i=1

(∑
f ∈Ti rFARE(f )

)
T

(7.10)

Revenue Loss from Lost Fares

We now show how to compute the revenue loss due to transitioning to BEVs, rL(τ) (PHEVs
do not have revenue losses as they use the ICE after battery depletion). We assume that if
a taxi depletes its battery during a shift, all revenue the taxi would have generated during
the remainder of that shift is lost. This upper bounds revenue losses because we assume
drivers can only switch batteries if they are in a location with a switching station and they
do not modify their paths to drive to a switching station. As a result of this worst-case
restriction, the drivers may deplete their battery on their shift under our model. Let Wi be
the set of all shifts completed by taxi i . We determine the revenue loss by:

rL(τ) =

∑T
i=1

(∑
w∈Wi

r iT(w, τ)− r iB(w, τ)
)

T
(7.11)
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Fuel Cost Reduction

Fuel savings are computed as follows:

sB(τ) =

∑T
i=1

(
Cg

(
d iS
VE

)
− Ce

(
d iB
BE

))
T

(7.12)

sP =

∑T
i=1

(
Cg

(
d iS
VE

)
−
(
Ce

(
d iE
PE

)
+ Cg

(
d iG
PG

)))
T

(7.13)

where the variables are defined in Table 1. Variables d iB(τ), d iE, and d
i
G come from the

Bayesian network. We start the analysis with the first datapoint of the first shift for each
taxi and assume the charge level of the vehicle is full. At each datapoint (GPS reading),
we update the total distance driven by the taxi so far, and query the Bayesian network for
the charge level of the vehicle. Assuming we are analyzing PHEVs, if the charge level ever
reaches zero, then d iE is the distance driven to that point and d iG is the distance driven
throughout the remainder of the shift. If we are analyzing BEVs, if the charge level reaches
zero, d iB(τ) is the distance driven to that point (then Equation (7.11) must be used to
compute the revenue losses).

Switching Station Infrastructure

Battery switching allows drivers to have a fully charged battery within minutes. This miti-
gates the range limitations of BEVs, assuming there are enough switching stations to service
the taxi fleet. Switching stations have a large upfront cost, estimated to be $500,000 by
Better Place5, a manufacturer of EV switching infrastructure [Yar09, Gal09]. This does
not take into account the cost of real estate. To provide an adequate coverage area, the
fleet may need to be served by several switching stations spread across a city. Given the
expense of switching stations, we want to find the minimal number and optimal location
of stations to supply the fleet without wasting money on buying unnecessary stations. This
problem can be stated as an optimization problem: given a set of taxis and the mobility
data, find the optimal location(s) for switching stations such that the taxi company’s profits
are maximized. We discuss this problem in §7.4.

Battery and Extra Vehicle Costs

This section presents the computation of the cost of batteries (cexbt(τ)) and additional
PHEVs (cexpv). Taxis start each shift with a fully charged battery. This requires purchasing
extra batteries to be kept at each switching station (BEVs) or storing extra PHEVs at the
headquarters (PHEVs).

5We note that since the completion of this work, Better Place has dissolved. Other companies may design
and manufacture switching infrastructure in the future.
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Using Little’s law [Kle75b], cexbt(τ) and cexpv can be computed on a per taxi basis:

cexbt(τ) =

nBSS∑
b=1

qb(τ) · Cbat (7.14)

qb(τ) = λb(τ) · BFx

(
ζ − lb(τ)

ζ

)
(7.15)

cexpv = λH · Rpx · Cphev (7.16)

where the terms are defined in Table 1. Equation (7.14) multiplies the number of batteries
needed at switching station i (per taxi) by the cost of each battery, and sums over all
needed switching stations.

Note that lb(τ) and λb(τ) are proportional to τ . If τ increases, batteries are switched
with higher remaining capacity and take less time to charge. As τ decreases, batteries are
switched with lower remaining capacity and take more time to charge.

We assume additional PHEVs are kept only at the headquarters and drivers only switch
PHEVs at the end of their shifts. We are not considering storing and charging PHEVs at
the BEV battery switching stations. This is because it is less expensive to store batteries
than vehicles—batteries can be stacked and stored in the same building but vehicles require
expensive real estate for parking.

Optimal Switching Threshold

The optimal value of τ is unknown. We numerically evaluate ∆B(τ) for each value of τ in
the set {10%, 20%, ... ,100%} and choose the value of τ that maximizes ∆B(τ).

7.4 Switching Station Optimization Algorithm

In this section, we describe the optimization program we use to find optimal locations
for BEV switching stations. Prior work [CCK13] shows that the problem is NP-hard, which
implies that it is unlikely to be able to be solved by an algorithm that runs in polynomial-time,
but the problem can be solved when the number of stations to place is small. Prior algorithms
for locating fueling stations are divided into two classes: those assuming fueling stations are
discretionary facilities (drivers only stop at them if they are en route to other destinations)
[BLF90, BLF92] and those assuming drivers would deviate from their paths to a refueling
station. Because we do not modify the trajectories of the taxis seen in the dataset, we treat
refueling facilities as discretionary. Prior algorithms for locating discretionary alternative
fueling stations are flow interception models—they place facilities along roads with high
vehicle flows [SPV11, BLF90, BLF92, KL05]. This heuristic works well for siting public
facilities because they intercept the most amount of traffic, again assuming drivers will
not deviate from their paths. However, we propose a different algorithm for siting private
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facilities because we are interested in maximizing profit. Placing facilities to maximize the
number of intercepted flows does not necessarily maximize profit. Because we assume taxi
drivers do not stop while serving a fare to switch their batteries, stations located where
taxis park and wait without fares will be more utilized than stations alongside popular fare
routes. We assume the taxi company’s objective is to maximize their overall revenue and
introduce an optimization framework based on the discretized locations of the taxis and
their charge levels.

We now formally describe the switching station location problem. Let ϕ(i , w) be the oppor-
tunity cost of i during w . If BEV i can complete all fares during w , ϕ(i , w) = 0, otherwise,
ϕ(i , w) is the sum of revenue lost from fares after i ′s charge level is too low to complete
a fare (further fares during w are assumed lost). Our optimization problem, Program 7.2,
is: given the set of taxis’ historical mobility patterns, and a desired number of stations to
place, find the optimal location(s) for switching stations such that the taxi company’s prof-
its would have been maximized. Note that this formulation takes the number of stations
nBSS as input. To optimize nBSS, we search over nBSS = 0, 1, 2, .., each time computing
the ROI after considering the infrastructure pay back costs. When nBSS is too small, adding
additional stations increases the ROI, but at some point the diminishing returns of adding
more stations does not outweigh the additional station costs. The inflection point is the
optimal value of nBSS.

When Y contains only a few locations or nBSS is small (as we found in our case study), we
can optimally compute the switching station locations using brute force. This brute force
approach may not be feasible over larger areas with more locations. In this case, it is possible
to use heuristic algorithms to find a solution, though these heuristics cannot guarantee the
optimality of their solution. Algorithms such as simulated annealing, tabu search, and hill
climbing are general optimization methods, and could be used to find approximate solutions
to the switching station location problem [RN03, GL97, KGV83].

7.5 San Francisco Case Study

We applied our process to a data set collected by Yellow Cab San Francisco (YCSF) as part
of the Cabspotting project [The08, Cra09]. San Francisco is a regulated taxi market. The
San Francisco Municipal Transportation Agency sets the fare price for all taxi companies
in the region. In addition to controlling fares, San Francisco is a medallion-based market—
the agency also controls when and how many new taxis can be integrated into the region.
When this agency votes to allow new taxis, medallions are sold to companies allowing them
to operate one new taxi; these medallions were (as of October 2012) sold for $300,000
[Bay12]. Incidentally, in 2011 two medallions were issued specifically to operate battery
switched electric taxis [CBS11].

This section is laid out as follows. In §7.5.1 we discuss our dataset and our preprocessing
of the data. In §7.5.2 we discuss clustering GPS coordinates into a finite set of locations.
We discuss assumptions specific to our case study in §7.5.3. In §7.5.4 we detail what EV
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Switching Station Placement Optimization

Inputs nBSS : number of stations to place (7.17)

Y : set of potential locations where a station can be placed (7.18)

∀l ∈ Y, cost(l) : price of placing a station at l ∈ Y (7.19)

∀i ,Wi : set of all shifts completed by taxi i (7.20)

∀i , ∀w ∈ Wi , w = {tstart , ..tk , .., tend} : start and end times of each shift (7.21)

∀i , ∀w ∈ Wi ,∀tk ∈ w,Loc(i , tk), u(i , tk−1, tk), f are(i , tk), gx(i , tk−1, k) : (Table 7.1)
(7.22)

Decision ∀l ∈ Y,Υ(l) : whether to place station at l (7.23)

Objective min
Υ(l)

∑
i

∑
w∈Wi

ϕ(i , w) (7.24)

Sub. To ϕ(i , w) =
∑

f ∈w [Ω(i ,w),tend]

rFARE(f ) (7.25)

Ω(i , w) = arg min
tk∈w

E[SOC(i , tk)] = 0 † (7.26)

E[SOC(i , tk)] =

{
full if (Υ(Loc(i , tk)) = 1) ∧ (E[SOC(i , tk)] < τ) ∧ (f are(i , tk) = 0)

E[SOC(i , tk−1)]− u(i , tk−1, tk) + gx(i , tk−1, tk) otherwise
(7.27)

∀l ∈ Y,Υ(l) ∈ {0, 1} (7.28)∑
l∈Y

Υ(l) ≤ nBSS (7.29)

† If the battery is depleted during shift w , Ω returns the time this first occurs, tk . We then set ϕ(i , w)

as the sum all fares that would have been completed starting with tk until for the remainder of shift w .

Figure 7.2: Switching station placement optimization

adoption scenarios we examine. §7.5.5 gives the fare price structure (rFARE) for YCSF. The
BEV and PHEV revenue analyses are discussed in §7.5.6 and §7.5.7 respectively. These
two revenue analyses are compared in §7.5.8. Finally, we discuss how relevant results from
YCSF would be to other taxi companies in §7.5.10.

7.5.1 Dataset and Preprocessing

The dataset includes the following information for 536 YCSF taxis during May 17, 2008 –
June 10, 2008. Each measurement includes:

• Latitude and longitude to 5 decimal places

• Whether a paying passenger is inside the vehicle

• The current time of the data point
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The average timestep between each data point is 60-90 seconds. As discussed in §7.3.2,
we split the data from each taxi into shifts.

GPS devices sometimes report erroneous data, so we preprocessed the dataset to remove
inconsistencies. For example, in some cases a taxi’s position would be incorrectly reported
between two correct readings. We noticed data from a taxi was either >99.5% correct or
very erroneous due to a faulty GPS device in that taxi. For the taxis that only had few
erroneous points we simply removed those points, whereas the taxis with many problems
were simply discarded and excluded from all results. We discarded all data from seven out
of 536 taxis.

7.5.2 Clustering Locations

We clustered the GPS coordinates in our data using the reduced coordinate space displayed
in Figure 2. The clustering locations are spaced 4km apart with the exception of downtown
San Francisco. For the downtown area, we used a denser grid (1km x 1km) because of
the higher density of data within this region. After collapsing each GPS datapoint into its
closest grid point, the GPS data was discarded.

Figure 7.3: Points represent taxi mobility data. The grid shows the reduced coordinate space. We
used a denser grid in downtown San Francisco due to the large number of data points in this region.

7.5.3 Assumptions For BEV/PHEV Revenue Analysis

Here we state the assumptions we made while performing the revenue analysis.
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• EVs may use up to 40% of their battery for AC while it is on [FR00]. We assume that
ACs doubled in efficiency since 2000 and taxi drivers in San Francisco use AC 50% of
the time—hence we assume 10% of the battery is used for AC.

• We assume Leaf batteries (purchased and stored at switching stations) cost $450/kWh
as discussed in §2.3. Therefore, with a 24kWh battery, Cbat = $11, 000 in Eq(7.14).

• We assume the companies ICEV taxis have an efficiency of 25mpg, which is the national
average efficiency of all new cars sold in the U.S. as of August 2014 [Rea14].

• Our data set indicates that each taxi is driven 112,000–177,000kms per year. Based on
this figure, we assume the company replaces each ICEV, BEV, PHEV, and battery after
four years of use (L = 4). (This does not include replacing parts over the four years).
Companies do not disclose their vehicle replacement rates, which makes estimating this
figure difficult. However, the The Taxi and Limousine Commission of New York City
states “Cars brought into service as taxicabs must be brand new vehicles and generally
must be replaced five years after being placed into service. [Sch06].

• We assume the company spends $17,000 for a new ICEV when replacing an old ICEV,
using the average price of the non-luxury ICEVs discussed in §2.1.4. While taxi fleets
probably receive discounts for buying vehicles in bulk, we do not apply discounts to EVs
either—we simply assume the MSRP rate for both.

• At the time of writing, gas in San Francisco costs ≈$1.08/liter and electricity costs
$.22/kWh [U.S14a]. These values are used as a basis for our ROI analysis but we show
our results for a wide range of electricity and gas prices.

• We assume that switching infrastructure lasts 15 years.

7.5.4 Case Study EV Scenarios

We studied ten different scenarios, as follows:

• (1-2) BEVs with Level 1 and 2 roadside charging only

• (3-4) BEVs with Level 1 and 2 roadside charging and battery switching

• (5-6) PHEVs with Level 1 and 2 roadside charging only

• (7-8) PHEVs with Level 1 and 2 roadside charging and PHEV switching at YCSF head-
quarters

• (9) BEVs with only battery switching

• (10) PHEVs with PHEV switching at YCSF headquarters only

• (11) ICEVs with increased efficiency (e.g., HEVs)

However, we found that scenarios with roadside charging (1—8) did not allow for much
charging at all because the taxis were rarely parked. Taxis in our case study were parked only
12% of the time and were constantly driving the other 88% (we note this may be atypical,
but this is indicated by our dataset). Consequently, even when we assume level 2 roadside
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charging is available everywhere in San Francisco (an extremely unrealistic assumption), the
results changed by less than 15% for both PHEVs and BEVs. Thus, for BEVs we only show
results for scenario 9, and for PHEVs we show results for only scenario 10. In §7.5.9, we
show the return on investment in purchasing ICEVs with higher fuel efficiencies.

7.5.5 Existing Taxi Revenue

As discussed in §7.3.2, each company has their own fare pricing model. For YCSF, rFARE(f )

is given on their website [Yel11]:

rFARE(f ) = 3.10 + .45 · (p + (d − .2)) + 2A (7.30)

where d is the distance of the trip in miles, p is the time the taxi was parked (at traffic
lights) during the fare, and A is one if the passengers’ destination was the airport and zero
otherwise (the company charges an airport surcharge fee).

7.5.6 Revenue Analysis for BEVs

We now compute the change in revenue by using BEVs and a switching threshold of τ ,
∆B(τ) given current prices and vehicle specifications using Equations 7.8 and 7.9. First, we
show how we compute the revenue losses, rE, in §7.5.5. The cost of the BEV we study,
Cbev , is derived in §7.5.6. In §7.5.6 we derive the cost of the battery switching stations,
cBSS(τ), and show its relationship to rL(τ). In §7.5.6 we measure the relationship between
the threshold τ , rL(τ) and the cost of extra batteries needed, cexbt(τ). Roadside charging
is briefly discussed in §7.5.4. We incorporate the revenue loss rL(τ), the fuel savings sB(τ),
and cexbt(τ) in §7.5.6 which also computes the overall return on investment ∆B(τ).

Nissan Leaf Specifications

For our BEV experiments, we study the Nissan Leaf. The Leaf does not have a switchable
battery, but vehicles with similar attributes with switchable batteries may be sold eventually.
As discussed in §2.1.1, the price of the Leaf at the time of writing (2014) is $21,500. so
under our assumption that the company replaces ICEVs for $17,000, Cbev = $4,500.

Even though manufacturers list the full capacity of a battery, the full capacity is not actu-
ally used—the battery is not fully charged or discharged to preserve the life of the battery
[BCMW11]. However, manufactures list the expected range based on the usable portion
of the battery—the figure we are interested in. Table 7.2 gives the values of the con-
stants needed for our revenue analysis for the Leaf. These figures were derived from the
specifications given on their website [Nis14b].
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Constant Value for Nissan Leaf

D in Eq. 7.1 (kWh/km) 0.15

Bg1 in Equation 7.2 (kWh/s) .00033

Bg2 in Equation 7.2 (kWh/s) .001

Bf 1 in Eq. 7.15 (days/battery) .83

Bf 2 in Eq. 7.15 (days/battery) .29

ζ in Eq. 7.15 (kWh) 24

Cbev in Table 1 $4,500

Table 7.2: Nissan Leaf Specifications [Nis14b]

Switching Station Location and Distribution Over Locations

We now calculate the cost of battery switching stations, cBSS(τ), and show its relationship
to the revenue losses incurred, rL(τ). We find the locations of switching stations by applying
the algorithm presented in §7.4. We find that three switching stations are optimal, so
cBSS = $1, 500, 000.

The relationship between the revenue loss rL(τ) and the cost of battery switching stations
cBSS(τ) is shown in Table 7.3. Without battery switching, even if we assume charging
infrastructure is available everywhere (i.e., whenever a taxi is stopped, its battery charges
while it is parked), a third of all fares are lost. However, with additional switching stations at
the San Francisco airport and Yellow Cab headquarters, only 3% of fares are lost. Adding
additional stations to these three has negligible impact on rL(τ) but greatly drives up
cBSS(τ); three stations represents the optimal value for YCSF.

We find the distribution over all locations where fares began and ended to gain intuition as to
why three stations are adequate. Figure 7.4 shows this distribution. We find approximately
90% of all pick-ups and drop-offs occur in only 20% of the locations. This explains why a
small number of switching station locations suffice; switching stations near these locations
will be heavily used.

No Charging or Switching 41.5%

L2 Roadside charging only 37 %

Union Square BSS (no charging) 15%

YC, Union Square, Airport BSS 3%
Table 7.3: Percentage of fares lost in different BEV scenarios. BSS: battery switching stations.

Switching Threshold Analysis

We now analyze the ROI ∆B(τ) as a function of τ as discussed in §7.3.5. Figures 7.5 and
7.6 show rB(τ) vs. τ for a fixed electricity price ($.22/kWh) and a fixed gas price ($1.08/l).
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Figure 7.4: Distribution over pick-up and drop-off locations as distribution. Black shows the proba-
bility (percentage) of a pickup, red shows the probability of a dropoff, but the two distributions are
nearly identical. The airport and Union square locations are annotated with “A" and “U" respectively.
For YCSF, annotated with “Y", we used an identifier of 1.

For our case study, we find that the revenue per BEV monotonically increases as a function
of τ . In the absence of charging (switching only), then, BEVs should switch whenever they
are at a switching station regardless of their SOC if a battery is available. This is because
their SOC monotonically decreases throughout their shift so future switching opportunities
necessarily occur at lower τ values leading to lower revenue gain or further revenue loss.

Figure 7.5: Threshold τ vs. rB(τ) as a percentage
of rE (left Y-axis), rB(τ) (right Y-axis) for varying
gasoline prices, electricity fixed at$.22/kWh.

Figure 7.6: Threshold τ vs. rB(τ) as a percentage
of rE (left Y-axis), rB(τ) (right Y-axis) for varying
gasoline prices, gas fixed at $1.08/liter.

Increasing the threshold increases the taxis’ average charge levels, because their switched
batteries have a higher remaining SOC. This increases the fuel savings sB(τ) and decreases
the revenue loss rL(τ). Moreover, the cost of extra batteries cexbt needed to meet this ad-
ditional switching load grows slowly due to a combination of Littles Law, given in Eq(7.15),
and multiplexing. Specifically, Little’s law states that the number of batteries in the system
is given by the rate at which batteries “enter the system" (are swapped and need to be
charged) multiplied by the time batteries “remain in the system" (are required to charge).
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τ Swaps remaining battery SOC rate taxi swaps time required to charge extra batteries

after swap at b: lb(τ) at b: λb(τ) battery: BFx

(
ζ−lb(τ)

ζ

)
needed: qb(τ)

10 6 1638.95 0.25722 0.15528 0.03994

20 15 3663.16 0.64305 0.14122 0.09081

30 21 6077.7 0.90027 0.12446 0.11204

40 27 8181.24 1.15749 0.10985 0.12715

50 32 10610.1 1.37184 0.09298 0.12756

60 41 12607.5 1.75767 0.07911 0.13905

70 50 14864.5 2.14350 0.06344 0.13598

80 76 17316.1 3.25813 0.04641 0.15122

90 131 19952.3 5.61599 0.02810 0.15785

Table 7.4: Example showing how τ affects the number of battery swaps performed and the remaining
SOC of swapped batteries at the airport switching station for one taxi. qb(τ) (Eq(7.15) is computed
assuming the 24kWh can charge in four hours from depleted using level 2 charging, i.e., BFx = 4/24.
With respect to the last column, the operator cannot buy a fraction of a battery, but the fractional
batteries needed in the system per taxi per station are summed to compute cexbt .

As τ increases, the rate at which batteries are swapped, λb(τ) in Eq(7.15), increases.
However, when batteries are swapped more often, the remaining SOC of swapped batteries
increases, so the time required to charge them, BFx

(
ζ−lb(τ)

ζ

)
in Eq(7.15), decreases. The

number of extra batteries needed qb(τ), the product of these inversely-changing rates, in-
creases slowly. For intuition, Table 7.4 shows how these parameters change with τ , for a
randomly selected taxi at the airport station as τ increases. In summary, the cost of the
extra batteries is recouped with lower operating costs and fewer lost fares.

Overall BEV Transition Cost

Figure 7.7 shows the cost to transition each individual ICEV to a BEV (rB) for a wide array
of gas and electricity prices, without taking into account the cost of switching stations.
For any gasoline-electricity pair (X and Y axes) for which the value of rB is positive (Z-
axis), the company can begin paying back the switching station costs. We now compute
∆B(τ) as in Eq(7.8). We are interested in the “break even" point where x BEVs can be
operated for the exact cost that x ICEVs can, including all switching station costs. Under
our assumption that switching infrastructure lasts 15 years, we amortize the $1.5M cost of
the three stations accordingly, yielding a cost of $100k/year and $400,000 over the 4 year
replacement period (that rB(τ) is computed over). Thus, we compute:

∆B(τ) = rB(τ) · x − 400000 = 0

Figure 7.9 shows the when ∆B(τ) = 0 for a fixed electricity price of $.22/kWh. For a given
point on the line, if gas prices rise, the company accrues profits. At current prices, the
company needs to operate at least 30 BEVs to be profitable.
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Figure 7.7: Gas and electricity prices vs. rB(τ) us-
ing three switching stations. Figure does not take
into account cost of switching stations, but takes
into account the cost of extra batteries cexbt .

Figure 7.8: Gas and electricity prices vs.rP as a
function of rE, rP. No roadside charging. All costs
taken into account, including the cost of additional
PHEVs cexpv .

Profitable

Non-profitable

Figure 7.9: Region where BEVs are profitable after amortizing three switching stations. Electricity
fixed at $.22/kWh. The red line shows the current gas price in San Francisco ($1.08/liter).

7.5.7 Revenue Analysis for PHEVs

We now compute the costs of switching to PHEVs instead of BEVs. We study the Chevrolet
Volt. As discussed in §2.1.2, the price of the Volt at the time of writing is $26,685, so
we use this as the cost of extra PHEVs needed at the headquarters, PC in Eq(7.16).
Under our assumption that the company replaces ICEVs for $17,000, the incremental cost
Cphev = $9, 685. Table 7.5 gives the values of the constants needed for our revenue analysis
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for the Volt. These are derived from the specifications given on their website [Che14a].

Figure 7.8 shows the ROI per PHEV, rP, without any roadside charging. This figure includes
the cost of additional PHEVs needed, cexpv in Eq(7.16). At current prices, PHEVs are less
expensive to operate than ICEVs. Moreover, there are no infrastructural investments, so
the cost of transitioning x ICEVs to PHEVs, ∆P, is simply given by rPx . The company can
therefore switch to PHEVs on a per vehicle basis.

7.5.8 PHEV vs. BEV Comparison

PHEVs and BEVs are both profitable in our analysis under a range of gasoline and electricity
prices. However, it is difficult to project which EV will be more profitable for taxi companies
in coming years because many possible trends can affect their relative profitability:

• BEVs have larger batteries than PHEVs. Battery prices are projected to continue falling,
as discussed in §2.3, and if this happens, the price of BEVs will fall faster than PHEVs
(which still have ICEs). However, if this projection turns out incorrect, and battery prices
increase, for example due to a Lithium shortage, this trend may reverse.

• Figure 7.10 shows gasoline prices per gallon (one gallon = 3.78 liters) since 1971 ad-
justed for inflation [Zfa10] and the average price of electricity in California (adjusted for
inflation) since 1980 [Tom07]6. These historical trends suggest that BEVs will be more
profitable as fuel prices rise, which is displayed by their higher potential-ROI shown in
Figures 7.7 and 7.8. However, a sharp (unprecedented) decline in gasoline prices would
significantly reduce or eliminate the profitability of BEVs.

• In our analysis we assume that switching stations cost $500,000, which was the price
estimated by Better Place at the time the journal publication of this chapter [CCK13]
was written. Unfortunately, in 2013 Better Place declared bankruptcy [Cha14a]. While
other EV manufactures have stated intention to produce swappable BEVs, e.g., Tesla
[Tes14c], if this does not occur, BEVs may be unprofitable for taxi companies.

7.5.9 ICEVs With Increased Efficiency, HEVs

Finally, we show the return on investment in simply purchasing ICEVs with higher fuel
efficiency. Recall that for all results thus far, we assumed the company’s ICEV taxis have an
efficiency of 25mpg, which is the national average efficiency of all new cars sold in the U.S.
as of August 2014 [Rea14]. Figure 7.11 shows the change in revenue per taxi assuming the
company purchases ICEVs with higher fuel efficiencies under different cost assumptions.
Recall from §2.1.3 that HEVs are ICEVs with a small, nonchargeable battery that increases

6Note that Figure 7.10 does not show a price of $.22/kWh electricity (the figure used throughout this
chapter) because electricity prices in San Francisco are nearly double than in the rest of California—see the
U.S. Bureau [U.S14a] for a comparison—and we could not find a long history of electricity prices in San
Francisco alone.
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Constant Value for Chevrolet Volt

D in Eq. 7.1 (kWh/km) 0.25

Bg1 in Equation 7.2 (kWh/s) .0004

Bg2 in Equation 7.2 (kWh/s) .0011

Rp1 in Eq. 7.15 (days/PHEV) .45

Rp2 in Eq. 7.15 (days/PHEV) .16

ζ in Eq. 7.15 (kWh) 16

Cphev in Table 1 $9,685

Table 7.5: Chevrolet Volt Specifications [Che14a]
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Figure 7.10: Left: Average U.S. price per gallon of gas since 1971 (2011 dollars) [Zfa10]. Right:
Average electricity price given by three major utilities in California since 1980 [Tom07]

the fuel efficiency of the vehicle, thus HEVs are analogous to high-efficiency ICEVs. At the
time of writing, the best selling HEV, the Toyota Prius, has an efficiency of 51mpg and
an MSRP of $24,000. This corresponds to an efficiency of 21.58km/l and an incremental
cost of $7,000. The return on investment for a vehicle with these specifications is shown
at the red arrow, which corresponds to an ROI of $28000. Thus, at current prices, it is
more profitable to invest in HEVs than BEVs or PHEVs. Note, however, that HEVs are
still completely petroleum dependent, thus they represent a profitable but non-sustainable
(though to a lesser extent) alternative to standard ICEVs. Individual taxi companies should
decide whether to invest in BEVs, PHEVs, or HEVs, which are all profitable at today’s
prices, based on their relative merits (profitability v.s. sustainability).

7.5.10 Sensitivity Analysis

We now analyze whether our case study results would generalize to taxi companies in
different cities. Although we cannot draw definite conclusions without re-running our study
for a taxi company in a different city, we attempt to answer this question here.

1. Average Trip Length and City Density. Switching infrastructure is expensive, so it will
initially be sparsely deployed, in contrast with current petroleum infrastructure. Con-
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Figure 7.11: Return on investment, per ICEV, in purchasing higher efficiency ICEVs. Gasoline fixed
at $1.08/l. The X-axis shows the assumed cost of acquiring higher efficiency ICEVs. The Y-axis
shows the fuel efficiency, where 10.58km/l corresponds to 25mpg and 25.4km/l corresponds to
60mpg. The central point shows the case assumed in all prior results—an efficiency of 10.58—so
the relative return is 0. The red arrow shows the return (≈$28000) of the 2014 Toyota Prius.

sequently, the geography of a city affects the feasibility of BEVs. Large cities with
widespread points of interest are less suitable than dense cities with concentrated points
of interest. One way we can measure this for a given city is to determine the distribution
over fare trip lengths. We can use the distribution of how far people commonly travel as
a heuristic to estimate how many switching stations will be needed. Figure 7.12 shows
the distribution of trip lengths for all fares the YCSF taxis completed during the study
period. From the cumulative density function of this distribution, we find 85% of all
fares are less than 10 km, which is why few stations are needed in San Francisco. This
figure shows a two-peaked distribution. From the probability mass function, we find 8%
of the fares are between 20 and 30 km (roughly 7% of all trips are to the San Francisco
International Airport, which is 24 km by highway from Union Square in downtown San
Francisco). The average trip length can also help us determine whether PHEVs or BEVs
are better suited for a region. For a PHEVxxm, it does not matter how many trips are
completed before battery depletion, because the financial benefit comes from the fuel
savings on the first xx km. BEVs are range limited, however, and completing a large
number of short trips (before battery depletion) is more profitable than a short number
of long trips, due to the initial charge to each passenger that requests a fare. Therefore,
PHEVs are likely better suited for cities with many long trips, whereas BEVs will be more
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profitable in cities with a large number of short trips, like San Francisco.

2. Distribution over locations. Closely related to the distribution over trip lengths is the
distribution over locations discussed in §7.5.6. We found roughly 90% of YCSF fares start
or end at fewer than 20% of the grid locations. If this distribution was less concentrated,
the average trip length shown in Figure 7.12 may have increased. In our case study, trips
in the downtown area within 3 km of Union Square accounted for more than half of all
trips. This is highly conducive to centralized switching station placement. Taxis in larger
cities may find they have to travel a greater distance out of their way to refuel.

3. Gas and electricity prices. Although gas prices in San Francisco ($1.08/liter) are higher
than the rest of the United States, they are lower compared to the rest of the world,
e.g., gas prices across Europe are significantly higher. If the mobility patterns of taxis
in these regions are similar to those in San Francisco, transitioning to EVs would be
even more profitable. We also note that electricity prices in San Francisco are twice the
United States national average, while gas prices are not [Uni10].

4. Temperature and weather. Reference [SB08] shows that at cold temperatures (< 0◦C),
over 10% of the energy in a battery is lost compared to at 21◦C. It rarely snows or drops
below freezing in San Francisco, even during the winter months, but taxi companies in
cities with colder climates should expect worse performance. Furthermore, passengers
in cities with extreme weather temperatures require more heating and cooling, which
further drains the battery.

Trip length (km)

Number of fares vs. trip length (km)
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Figure 7.12: Distribution of fare trip lengths (the bar for 50 represents all trips over 50km)

7.6 Conclusions and Future Work

In this chapter, we proposed a process to determine the ROI for a taxi corporation transi-
tioning to electric vehicles. We first model taxi mobility and then used the model to compute
the economic costs of the transition. The model can be configured with a wide array of
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input parameters, including the type of vehicle to be tested, electricity and gasoline prices,
and roadside charging/battery switching infrastructure assumptions. We then used our ap-
proach to analyze a fleet of over 500 taxis in San Francisco. We found that PHEVs, BEVs
and HEVs are all currently profitable.

To obtain realistic results for our case study, we used only commercially available vehicles
and their manufacturer specifications. However, predicting the outcome of a major transition
prior to it occurring is an error-prone process. We now discuss some avenues for future work.

1. In §7.3.4, we assume that the variance of all nodes in our Gaussian network is zero.
Future work can include extending this to a stochastic model where σ2 is calculated
based on the co-variances between variables in the network.

2. We have not accounted for vehicle maintenance costs. Maintenance costs for a fleet
of EVs is thought to be lower than ICEVs [BCMW11], but we are not aware of any
quantitative analysis comparing the two. A maintenance cost analysis for a large fleet of
PHEVs/BEVs would greatly improve our cost model.

3. Our switching station optimization assumes that the locations can charge any number of
batteries and can be placed anywhere in the city. In reality, distribution network limitations
may place some restrictions on switching station placement and battery charging; areas
with a fully utilized distribution network may not be able to accommodate the new load.

4. We have not considered real estate prices for switching stations, other than the cost of
the stations themselves. We should account for the cost of acquiring space to build the
switching station. We also have not modeled swapping station maintenance costs.

5. Obtaining a second data set from a different city would provide a better foundation for
the sensitivity analysis section.

6. Batteries do not charge at a constant rate as we have assumed. A better assumption
would be to use a two phase linear approximation; have a higher charge rate while the
state of charge (SOC) is less than 80%, and a lower rate when the SOC is above 80%

[Nis14b].

7. Queueing delays at switching stations due to multiple taxis attempting to switch their
batteries in parallel should be modeled.
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Chapter 8

Designing A Trial To Explore the
Barriers to Electric Bike Adoption

The field trial described in this chapter was co-engineered by Costin Ograda-Bratu,
Rayman Preet, Milad Khaki, Tobias Schroeder, and S. Keshav. The trial components
that were mainly engineered by these co-authors, and not by the thesis author, have
been removed from this thesis.

Synopsis

There has recently been a large uptake of electric bicycles (eBikes) in many densely popu-
lated cities where vehicle travel is inconvenient (due to traffic) or costly due to government
regulations (usually in effort to reduce vehicle emissions [Par06]). For example, Chinese
manufacturers estimate there are now 200 million eBikes in use in China [Tim13], repre-
senting a 40% increase from 2010 estimates of 120 million [Goo10]. Likewise, in the EU,
eBike sales have increased tenfold in the last decade [Bak13]. However, their adoption cur-
rently varies greatly by region—in contrast, of the ≈100 million bikes sold in the US in the
last decade [Nat13], only 1% (1 million) were electric [Bak13]. The large disparity in sales
between regions shows that, at least in North America, there are barriers to eBike adoption.
This chapter focuses on the discovery and study of such barriers.

In §3.1, we discussed that EV field trials have thus far been problematic because EVs
are expensive. When trial conductors (e.g., University researchers) must lease expensive
vehicles, the vehicles are typically shared among participants for a short duration each. This
limits both the number of participants and the duration for which participants can evaluate
their vehicles. This in turn leads to less reliable conclusions; because perceptions may change
with experience, it is difficult to predict whether the participants would have had the same
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sentiments if given the EVs for longer, and moreover, it is clearly better to obtain opinions
from larger populations.

However, these problems are mitigated when the vehicles being leased or purchased are
relatively inexpensive. We therefore are conducting a field trial with 31 eBikes. The eBikes
used in our field trial cost approximately $1200 (after bulk discounts) and each telemetry
kit costs $800, allowing us to conduct a trial with 31 bikes for $65,000. For comparison,
for $65,000, only three EVs could be purchased or five EVs could be leased at $350/mo
for the three years1.

Given the lack of eBike sales in North America, and that problems with field trails are
mitigated by using less expensive vehicles, we use a field trial methodology to study eBike
usage in a North American context. In this chapter, we present our design of the most
comprehensive eBike field trial to date—a three year trial of eBikes in the Waterloo region—
named “WeBike". Specifically, we discuss:

1. the motivating research questions for designing and operating an eBike field trial (§8.1)
2. the design of WeBike, including the design of custom eBike sensor kits (§8.2)
3. how we estimate the eBikes’ state of charge (SOC) levels, a necessary first step in

answering many research questions (§8.3)
4. our algorithm for detecting cycling trips from GPS traces (§8.4)
5. preliminary insights obtained from the participant selection survey (§8.5) and the data

collected from the eBikes (§8.6)

WeBike uses a fully automated data collection and transmission process; it does not rely on
travel diaries or any other user action other than keeping the eBikes charged, in contrast
to many prior EV and eBike field trials (see §3.1.1) requiring the user to collect or upload
data. As discussed throughout this chapter, fully automating the secure collection and
transmission of data requires custom hardware, software, and solutions to many technical
problems.

Currently, our trial consists of 31 bikes. However, these 31 bikes are being tested as a proof
of concept for a much larger 500-eBike trial.

8.1 Motivating Research Questions

In this section, we discuss the primary motivations for conducting the WeBike trial. The
three-year trial has only been under operation for a few months at the time of writing, and
the questions presented below will not be answered until a significant amount of data has
been collected. However, we pose these questions to demonstrate why and how we designed
WeBike to understand the adoptability of eBikes. The remainder of this chapter is about

1We give the eBikes to our participants to keep after three years as an incentive, but because we have
purchased the eBikes, we could have conducted the trial “indefinitely" (until hardware failure).
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how we designed WeBike to be able to study the questions posed here, which primarily
lie in three spaces: coordinating usage data with preconceived barriers (§8.1.1), measuring
parameters of interest to EV researchers and manufacturers (§8.1.2), and human-computer
interaction (§8.1.3).

8.1.1 Coordinating Usage Data With Preconceived Barriers

One of the main goals of WeBike is to study whether the participants’ eBike usage differs
from their preconceived notions. We measured participants’ preconceived notions using a
survey (see §8.2.4) that was given prior to participant selection. By combining our pre-trial
survey with the sensor data, we hope to answer the following:

• Do people use eBikes more or less than they thought they would? Did users use their
eBikes during conditions where they thought they would not, and visa versa? These
questions are important for separating the perceptual barriers to eBike adoption, i.e.,
barriers similar to range anxiety that prevent adoption in some cases where adoption is
possible, and the actual barriers to eBike adoption, i.e., the scenarios where eBikes do
not fit a given individual’s mobility needs.

• One can envision three potential target populations for eBikes: 1) those transitioning
car trips to eBike trips, 2) those transitioning public transit trips to eBike trips, and 3)
those transitioning from bicycles hoping to travel further or in more hilly areas. Are there
noticeable differences in the usage of eBikes across these populations? E.g., do users
that transitioned their trips from car trips tend to be shorter than those who transitioned
from cycling?

• On a similar note, can we cluster eBike users into different usage categories? Do some
use their eBikes primarily for commuting or shorter trips while others use the eBikes for
longer trips (possible for health/exercise), or do users have similar usage patterns?

• Finally, can we use the survey data collected from participants to predict their actual
usage? This question is posed by a co-author of our participant selection survey (§8.2.4)
and the co-creator of a neural-network model of transportation choice [WSNdH14]. The
model, depicted in Figure 8.4, poses transportation choice as a constraint-satisfaction
problem, where different means of transportation facilitate multiple, sometimes com-
peting objectives. Decision-making under the model is partly deliberative, consisting of
beliefs about the degree to which certain models of transportation are compatible with
the different goals, and and partly emotional, implemented using an emotional coherence
algorithm [Tha06]. We can use parameters from our participant selection survey (specif-
ically item (2) in §8.2.4) to parameterize the model to predict the potential adoption
of eBikes.If these parameters correlate with the actual usage of these bikes, this would
help validate the model to predict actual transportation behavior.
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Figure 8.1: Neural Network for predicting EV usage & adoption based on survey input parameters.

8.1.2 Questions Relevant to EV Researchers/Manufacturers

The second main objective of WeBike is to use eBikes as a “Wind tunnel"—an inexpensive
way to draw some conclusions about EVs. As discussed in §2.2, eBikes are isomorphic to
PHEVs and use the same battery technology. Given that eBikes are ≈1/10th the price, we
can therefore study some aspects of EVs at low cost. Some examples are given below:

Range anxiety:

• At what SOC do people normally start charging?

• Do participants deplete or nearly deplete their eBike batteries? I.e., are they pushing
their range limits?

• Do we observe the “range paradox" reported in many EV field trials and surveys (§3.1)?
I.e., is there a mismatch between the users’ range needs and their perceptions or charging
behavior?

Parking habits/charging:

• What is the temporal distribution of parking/charging events?

• Where are the “hotspots" for eBikes in a University city? Can this help us site PEVSE?

• What are the observed charging losses? That is, for each kWh of energy that is drawn
from a charging outlet, what percentage is stored into the eBike battery?

LiON battery properties:

• What are the effects of different drive cycles and different levels of electric assistance
on battery life/range?

• How does battery life/range depend on temperature?

• How much does the battery capacity degrade over its lifetime?

The WeBike data that can be used to study these questions (among others) is given in the
Mind Map in Appendix §E. The data necessary to study all of these questions is collected
during WeBike.
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8.1.3 HCI Questions

There are many questions regarding what information to display (if any) to eBike users
while they are biking:

• Should the information be displayed audibly or visually? For example, we could mount a
small screen on the handlebars and stream information to it, or we can use a speaker to
display information audibly.

• What information would be most appealing to users? Should they be health focused
(e.g., calories burned), environment focused (e.g., CO2 offset v.s. a car), or logistically
focused (e.g., traffic conditions or route planning).

• Regarding audible information, how often should we refresh? I.e., should the information
be given at fixed time or fixed distance intervals? (Visually, the screen can be refreshed
frequently.)

• Should we have any user input similar to e-bikeSAFE2?

• What is the effect, if any, of displaying this information to users on their behavior? As
examples, if we start displaying health information to users after a period of time without
doing so, will they use the electric assistance less afterwards? If we alert the user that
they are entering a region with heavy car traffic, do users reroute?

8.2 Field Trial Design

Here we discuss several components of WeBike, specifically, the eBikes (§8.2.1), our sensor
kits (§8.2.2), the data pipeline (§8.2.3), our participant selection process (§8.2.4), and
participant incentivization (§8.2.5). Prior work on conducting eBike trials is described in
§3.1.1.

8.2.1 The eBikes

The eBikes selected for WeBike are 2014 eProdigy Whistlers [ePr14], shown in Figure
8.2. The 2014 Whistler model can provide electric assistance of up to 32kmph. The rider
can select from five different levels of electric assistance, allowing the user can pedal as
much or as little as they desire (provided the battery is not depleted). The LiON battery
provides up to 40km of electric range, depending on terrain. WIth respect to degradation,
the manufacturer claims the batteries retain “80% capacity after 1000+ cycles", but we
plan to evaluate this claim with future data.

The sensor kit is attached to the battery, and the battery is removable, as shown in Figure
8.3. This allows participants to park their eBike and bring their battery assembly with them

2See Dozza [DWM13] in §8.7.
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to charge at any standard outlet (e.g., inside their home or office). Using a standard 110V
AC outlet, the battery takes about five hours to charge3.

8.2.2 The Sensor Kit

Here we describe the sensor kit we engineered that is mounted on each eBike. To the best of
our knowledge, we are the first to build a telematics system specifically for eBikes, though
several researchers have designed telematics systems for standard bicycles (see §8.7).

At the minimum, to collect the data we need in order to answer our motivating research
questions, our WeBike sensor kit has to be able to:

1. store and upload all data collected from each of our sensors (see see §8.2.3)
2. record GPS, as it is used to compute speed, distance traveled, and location

3. measure charging times and charging rates, which are necessary for all charging-based
research questions in §8.1.2 and Appendix §E.

4. measure battery voltage and battery temperature, so that SOC can be inferred (see
§8.3), which is necessary for all research questions relating to battery life and range

Upon studying these requirements, we realized that modern smartphones represent an el-
egant solution to (1) and (2). Modern smartphone can store many gigabytes of data, can
transmit data either over a cellular network and/or wifi, and come with a plethora of in-
ternal sensors—15 for the phone we use—including GPS. Moreover, modern smartphones
can act as a host device—we can use it to read data coming from other sensing devices,
which we need because the smartphone cannot handle (3) and (4). For these tasks, we use
a collection of Phidget sensors4 and Digikey temperature sensors5. Collectively, this led to
the sensor kit shown in Table 8.1. The Phidget sensors are connected to an interface kit,
which acts as a bus. This interface is then connected to the Android smartphone as a slave
device. The Android smartphone hosts the Phidget bus and reads and stores data from
all Phidget sensors through the interface kit. The Android smartphone, Phidget sensors,
and all required cables are packaged into a weatherproof box as shown in Figure 8.3. Full
assembly guides are available online [ISS14a].

8.2.3 Data Transmission and Analysis

Figure 8.4 shows our data pipeline, specifically, how hardware and software enable the
collection, transmission, and processing of data. The green box represents the client (eBike)
side and the red box represents the server side. Blue nodes represent raw data, orange

3A 110V AC outlet, which is capable of charging much larger batteries in the same amount of time (see
“level 1 charging" in §2.4). This rate is reduced by the eBike battery controller to prevent battery problems.

4http://www.phidgets.com/
5http://www.digikey.ca/product-search/en?x=0&y=0&lang=en&site=ca&KeyWords=lm335zns%

2Fnopb
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Figure 8.2: The eProdigy Whistler with our sensor kit attached.

nodes represent processing of the data, grey nodes represent hardware, and the yellow node
represents the transmission of data from client to server via wifi. Black arrows represent
flow. Currently, data only flows from the client side to the server side, but the single dashed
arrow labeled “f" for “future" represents the flow of data back to the eBikes (recall §8.1.3).

On the client side, data is collected from the sensing kit (currently 10 times per minute)
and stored in a file. Every hour, the file is named according to the current date and time,
and stored in the kit for transmission. When the eBike user brings the bike to campus, the
kit connects to the Eduroam campus-wide wireless network and performs an rsync that
uploads all data files that have not previously been uploaded to our servers. For security,
the data is sent through an SSH tunnel. The client side software is open source and publicly
available [ISS14b]. After transmission, on the server side, the data is unzipped and inserted
into a database. Analytics are then run on the server.

Description Data

Galaxy S III (Android)† Time, GPS, Speed

Acceleration (including gravity) along X,Y,Z axes

Linear acceleration (excluding gravity) along X,Y,Z axes

Gyroscope for rotation along X,Y,Z axes

Phidget Voltage Sensor battery voltage for inferring battery SOC

Phidget Current Transducer charging rate

Digikey temperature sensor temperature inside sensor box

battery temperature

Table 8.1: Sensor hardware and functionality. †: this is not the exhaustive list of sensors in the Galaxy
S III, which, for example, also includes a barometer for sensing atmospheric pressure and a sensor
for measuring whether there is a magnetic field being applied to the X,Y,Z axes.
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Figure 8.3: eBike sensor kit assembly. Left: connected sensors, middle: sensors enclosed in weather
proof case, right: battery + sensors + case assembly shown on bike.

8.2.4 Participant Selection

To select participants for our field trial, we sent a survey to students, staff, and faculty in
several UW departments. The survey6, included in Appendix §D, had four sections:

1. Prior knowledge & attitudes about eBikes (questions 2–5), e.g., “please provide up to
20 thoughts on eBikes". These questions are used to determine the respondents’ per-
ceptions towards eBikes. The responses are analyzed in §8.5.

2. Transport-related motives/emotions (questions 8—27), e.g., “how important is safety
when choosing your mode of transport?". These questions retrieve the necessary inputs
to the neural-network discussed in §8.1.1.

3. Usage information (questions 6,7,28—30), e.g., “how many kilometers will you ride daily
in summer?". These responses were used to select respondents for the trial who were
likely to produce the most data as described below.

4. Background information (Questions 35—38), e.g., “what is your gender/profession?".
These responses were used to balance for gender and profession as described below.

We received 165 responses to this survey. About half (84) of the respondents were inter-
ested in the survey but not in participating in the field trial. From the remaining 81 that
were interested in the field trial, 25 participants were selected by our collaborator, Tobias
Schroeder, to prevent selection bias, and six eBikes were given to our research staff, totaling
31 eBikes.

6This survey is very similar to the one given by Dozza et al. [DWM13].
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Figure 8.4: eBike data pipeline

8.2.5 Incentivizing Participation & Care Of Bikes

Two problems are common to operating most field trials. First, the trial operator must in-
centivize participants to join the study. Often, there is some work required of users beyond
using the technology, and the work required is sometimes a deterrent to potential partici-
pants. In many EV field trials, for example, participants were required to keep a travel diary
of their vehicle usage. In our trial, participants are required to 1) keep the eBike batteries
charged at all times, because if the eBike battery depletes, our data collection and theft
detection mechanisms fail, and 2) bring the bike to campus at least once per week so that
the eBike can upload its data to our servers. Second, the operator must incentivize the
participants to take care of the technology. With WeBike, this means keeping the eBikes
and batteries out of the rain when possible and ensuing the eBikes are properly locked at
all times to deter theft attempts.

We attempt to solve these two problems at the same time—by giving the eBikes to the
participants after three years of data collection. The 2014 retail price of the bikes is $2,000,
so participants are incentivized to participate and keep the bike protected (from rain and
theft) because failing to do so would degrade the value of the eBike they are inheriting.

8.3 Mapping Battery Voltage to SOC

In this section, we discuss how we estimate the eBikes’ battery SOC at all times from voltage
measurements. The battery SOC is a necessary input for answering many of the questions
posed in §8.1.2. Unfortunately, the batteries equipped on the eBikes do not have SOC
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sensors that we can read programmatically7. Therefore, we develop a process to estimate
the SOC of the eBike batteries.

8.3.1 Estimating SOC Based On Voltage

The SOC of a LiON battery can be estimated precisely if the battery current and voltage
is available [TMLK11, SPV13]. Unfortunately, we cannot measure the discharge current of
the battery, because the wire connecting the battery to the motor is inaccessible. Given
this, we estimate the eBikes’ battery SOCs given their voltage V and their temperature
T , parameters we do measure, but we note that this method can be more inaccurate than
estimating the SOC based on voltage and current [Bat14].

First, we start with the battery operation model we received from the battery manufacturer.
The model, shown in the downward sloping lines in Figure 8.5, shows the discharged capacity
(battery capacity - SOC) v.s., voltage for six different battery temperatures. The figure
corresponds to a single LiON cell; there are 10 cells in each eBike battery. Next, we manually
transcribed the voltage level at every 40th mAh level, leading to 50 measurements of
(mAh, voltage) for each8 curve. We then multiplied each of these measurements by 10
to obtain a model for the 10-cell battery. Finally, we scale each voltage by 22/32; this is
because although the maximum voltage of the 10-cell battery is ≈ 40V (Y-axis of Figure
8.5 multiplied by 10), our battery voltage sensor can only read up to 28V9. Our final
transcription of the battery model (Figure 8.5) is shown at the upper part of Figure 8.6.

Our goal is to estimate the SOC of a battery given its voltage and temperature (V, T ).
From Figure 8.5, we see that each battery has three “modes of operation":

1. Mode 1, where the battery voltage increases or decreases quickly

2. Mode 2, where the battery is operating stably and the SOC decreases nearly linearly
with the battery voltage

3. Mode 3, where the battery voltage decreases rapidly as the battery nears its depth of
discharge, the point at which the usable portion of the battery has been depleted

Given this observation, our approach is to fit a linear model to each operation mode for
each temperature curve, that is, to use a three line model. However, notice from Figure 8.5
and the top of Figure 8.6, that for the -20C and -10C temperature curves, the SOC is not
a function of voltage—the same voltage reading corresponds to multiple SOCs. For these
curves, the SOC is ambiguous for many (V, T ) pairs. In light of this, we use a single linear
model for these two curves. Specifically, we model each SOC curve as:

7On each battery, there is a button that displays the SOC to the nearest 20% using a LED display when
manually pushed, but this value cannot be polled programatically.

8We did not transcribe the 60C curve as it is unlikely for our eBike batteries to reach this temperature.
9Thus, we want a voltage of 40V, corresponding to a full battery, to correspond to the highest voltage

our sensor can read (28V), and 40(22/32) = 27.5
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SOC(V,−20) = V m−20 + b−20 (8.1)

SOC(V,−10) = V m−10 + b−10 (8.2)

SOC(V, 0) =


V m1

0 + b1
0 V ≥ 24.86

V m2
0 + b2

0 24.86 > V ≥ 21.58

V m3
0 + b3

0 V < 21.58

(8.3)

SOC(V, 23) =


V m1

23 + b1
23 V ≥ 27.12

V m2
23 + b2

23 27.12 > V ≥ 22.13

V m3
23 + b3

23 V < 22.13

(8.4)

SOC(V, 45) =


V m1

45 + b1
45 V ≥ 27.77

V m2
45 + b2

45 27.77 > V ≥ 22.41

V m3
45 + b3

45 V < 22.41

(8.5)

where the m and b linear-fit parameters are chosen to minimize the least squared error
on the transcribed data (top of Figure 8.6) for that temperature curve. When training the
linear models for the -20C and -10C curves, we ignore the data corresponding to Modes 1
and 3 because 1) these extreme values heavily skew the model slope and 2) most of the
time the battery is in Mode 2 where the SOC is a linear function of voltage. The top of
The model resulting from Eqs(8.1)—(8.5) is shown at the bottom of Figure 8.6.

8.3.2 Voltage Filtering

The voltage sensor is noisy. When using voltage to estimate SOC, the noisy voltage mea-
surements can lead to incorrect SOC fluctuations. To resolve this, we perform a low pass
filter on voltage readings prior to estimating the battery SOC. Let V1, ..., Vn represent a
time series of successive battery voltage readings. An example series is shown in blue in the
top of Figure 8.7. We remove noise from these readings by creating a new series V̂1, ...V̂n:

V̂i = αV̂i−1 + (1− α)Vi

V̂1 = V1, α ∈ [0, 1]

The smoothed data is shown in red in the top of Figure 8.7 for a value of α = .95. This
time series is then used for SOC estimation using the aforementioned model. The estimation
using our linear model is shown at the bottom of Figure 8.7—in the next section, we discuss
why the SOC appears linear in our estimation during periods of biking.
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Figure 8.5: Battery model received from battery manufacturer. The “mode" annotations are added by
us and are not part of the original figure. The downward-sloping curves show the already discharged
mAh (X-axis) vs. the battery voltage for six different battery temperatures. The capacity of each
cell is ≈200mAh, and there are eight cells in each eBike battery.

Figure 8.6: Top: our transcription of the original battery model obtained by the battery manufacturer
(Figure 8.5, scaled by 10 cells because there are 10 LiON cells in each battery. The curves are inverted
to show the SOC on the Y-axis, because the SOC is the unknown variable we are modeling, and
voltage (known) is shown on the X-axis. Bottom: our SOC estimation models from Eq(8.1).
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Figure 8.7: Top: voltage readings over a subset of one day for one user. The blue curve shows the
raw data, and the red curve shows the readings after a low-pass filter is run. Bottom: our SOC
estimation using linear interpolation during periods of biking. The slightly decreasing SOC observed
during non-biking periods represents the power consumed by the phone and sensor kit.

8.3.3 Biking Interpolation

Finally, we discuss one last complication when estimating the SOC based on voltage. Voltage
based SOC estimation cannot be performed while there is a load on the battery [Bat14]. In
our case, the voltage-based SOC estimation is inaccurate during periods of biking. When the
eBike battery is in use to provide electric assistance of power P = IV , the battery current
and voltage may fluctuate as long as their product remains constant. The fluctuations are
based on the drive cycle, e.g., when a user is cycling up a hill, more current is applied,
leading to a sharp drop in voltage. This can be observed between 7:19—8:12AM in Figure
8.7, which corresponds to a period the user was cycling. The voltage drops sharply (due to
hills) during their commute. To resolve this, we compute the SOC of each battery using
the aforementioned linear model while the bike is at rest, and linearly interpolate the SOC
during periods of biking. Specifically, if a user is biking from t1 to t2, we compute the SOC
at t1 and t2 and linearly interpolate the SOC during the interval. This is exampled at the
bottom of Figure 8.7.
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8.4 Trip Detection

Here we overview our trip detection algorithm. Given a time series G1, ...Gn of successive
GPS coordinates, the algorithm returns a set of trips T , where each trip is characterized by
its start time, end time, and distance. GPS data is always ordered before processing, but it
may be lossy—there may be intermittent periods of arbitrary length missing from the data.
Our algorithm is shown in Algorithm 4 and makes the following assumptions:

1. Only records five or more seconds apart are considered; if Gk is processed by the algo-
rithm, the next record processed is the first non-missing record starting with Gk+5sec .

2. Distance is computed using Haversine distance10. This is a standard algorithm for com-
puting the distance between two coordinates on a 3-dimensional ellipsoid surface.

3. If a user bikes from ta → tb, and from tc → td , where d > c > b > a, these are counted
as two separate trips if tb and tc are more than five minutes apart. Alternatively stated,
a biking trip containing a period without biking of longer than 5 minutes is treated as
two separate trips.

4. If a user bikes from ta → td , and this time interval contains five or more minutes of
missing data from time b → c , ta → tb and tc → td are treated as two separate trips.
Alternatively stated, a biking trip that is missing five or more contiguous minutes is
treated as two trips, one ending right before the missing data, and one starting right
after the missing data.

5. If a user bikes less than 15 meters in 5 or more seconds, it is considered to be GPS error
and the accumulated distance is not included as part of any trip.

6. If a user bikes at a speed less than 1kmph or greater than 80kmph, averaged over a
duration of 5 or more seconds, it is considered to be GPS error and the accumulated
distance is not included as part of any trip.

7. Trips less than 1km are discarded as GPS error. Despite the above error checks, we find
that a series of GPS errors can still register as a trip of several hundred meters.

In the algorithm,

• Lines 1—6 initialize variables

• Lines 7—8 compute the time and distance delta (per (2) above) between the current
data row being processed and the last row that was processed

• Lines 9—11 enforce (4) above.

• Line 12 enforces (1) above

• Line 13 enforces (5) and (6) above

• Lines 14—17 start or update a trip after biking is detected

• Lines 18—25 enforce (3) above

• Lines 29—36 enforce (7) above

10The exact implementation we use is given here: http://stackoverflow.com/questions/4913349/
haversine-formula-in-python-bearing-and-distance-between-two-gps-points

133

http://stackoverflow.com/questions/4913349/haversine-formula-in-python-bearing-and-distance-between-two-gps-points
http://stackoverflow.com/questions/4913349/haversine-formula-in-python-bearing-and-distance-between-two-gps-points


Algorithm 4 Trip Detection algorithm

1: tripStartTimes = [], tripEndTimes = [], tripDists = [] . T
2: ResetTripCounters()
3: for l in data: do . l is each data row.
4: if lastRow == "": then . first row?
5: lastRow = l, lastRowTime = l[0] . l[0] is time
6: end if
7: TIMELAPSE = (l[0]-lastRowTime).seconds()
8: d = haversine(l[3],lastRow[3], l[4], lastRow[4]) . l[3],l[4] are GPS lat,long
9: if TIMELAPSE >= 300 and tripHasStarted == 1: then
10: endTrip() . end prior trip if >10 minute gap in data
11: lastRow = l, lastRowTime = l[0]
12: else if TIMELAPSE ≥ 5: then . only consider rows 5 seconds apart

. Assume < 15m, <1kmph, or >80kmph are GPS errors
13: if d > 15 and 1000 < d/(TIMELAPSE/3600) < 80000: then
14: if tripHasStarted == 0 then . start trip, or add to existing trip.
15: tripHasStarted = 1, tripStart = l[0]
16: end if
17: tripDist += d, tripEnd = l[0] . Update trip distance, trip end
18: else . did not move
19: if tripHasStarted == 1: then
20: secondsSinceLastSignifigantMovement + = TIMELAPSE
21: if secondsSinceLastSignifigantMovement ≥ 300: then
22: endTrip(): . end trip if did not move in last 5 mins
23: end if
24: end if
25: end if
26: lastRow = l, lastRowTime = l[0] . Don’t do this if TIMELAPSE < 5
27: end if
28: end for

29: procedure endTrip():
30: if 1 < tripDist < 1000: then . Filter out trips <1km
31: tripStartTimes.append(tripStart)
32: tripEndTimes.append(tripEnd)
33: tripEndTimes.append(tripDist)
34: end if
35: ResetTripCounters()
36: end procedure

37: procedure ResetTripCounters():
38: tripHasStarted = 0, tripStartTime = 0, tripEndTime = 0, tripDist = 0
39: secondsSinceLastSignifigantMovement = 0
40: end procedure
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8.5 Survey Analysis

In this section, we analyze the responses received from the participant selection survey. This
is in effort to gauge perceptions towards eBikes prior to our field trial.

Out of the 38 questions in the survey (Appendix §D), 6 included text responses. Three
questions (5, 31, and 34) were open ended. Three other questions (3,4, and 6) included
a comment field where respondents further explained their answers. Collectively, we refer
to all text written by the respondents for these six questions as the survey corpus. The
majority of the corpus is composed of the responses to Q5, which asked the respondents
to list up to random 20 thoughts on eBikes.

In this section, we visualize the comments in the survey using two methods: classifying
the sentiments of the most common phrases used by the survey respondents, and mining
opinions about eBike product features using the system described in Chapter 4.

8.5.1 Common Phrases In Survey

Figure 8.8, 8.9, 8.10, and 8.11 show the sentiments of commonly used phrases in the survey
corpus. Figure 8.8 and 8.10 show frequencies of unigrams (single word terms), and Figures
8.9 and 8.11 show the frequencies of bigrams (double word phrases). To produce these
figures:

• The sentiments were classified using the the MPQA Opinion Corpus [Wil, Wil08], the
same sentiment dictionary used in Chapter 4.

• A list of NLTK stopwords11 (mostly inclusive of conjunctions) were removed prior to
analysis for all four figures. Consequently bigrams such as “better for the environment”
appear as “better environment”.

• To produce Figures 8.8 and 8.10 which show frequencies of unigrams, additional nouns
that were frequent but do not give insight on their own, such as “road” and “bike”, were
added to the list of stopwords. These words are not excluded from the bigram analysis
so that phrases such as “faster than bikes” are mined.

• Different forms and synonyms of the same word are merged, e.g., the frequencies of
“dangerous”,“danger”, and “unsafe” are summed and shown for “dangerous”.

11http://www.nltk.org/book/ch02.html
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Figure 8.8: Frequencies of all single-word terms used at least 10 times. Red terms were classified as
negative, green as positive, and blue as neutral.

Figure 8.9: Frequencies of all bigrams (double-word terms) used at least 4 times. Red terms were
classified as negative, green as positive, and blue as neutral.
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Figure 8.10: Frequencies of all single-word terms not classified as neutral used at least 5 times. Red
terms were classified as negative, green as positive.

Figure 8.11: Frequencies of all bigrams not classified as neutral used at least 3 times. Red terms
were classified as negative, green as positive.

8.5.2 Sentiments In Survey

We also set up the sentiment system presented in Chapter 4 to mine the survey corpus for
opinions about eBike features. The sentiments are shown in Figure 8.12. Note that only
opinions containing both a feature and an opinion are mined; the number of opinions below
will be less than the number of positive and negative phrases used in the corpus, which were
shown in the prior section. Here we state our conclusions:

• (N) Most respondents were unfamiliar with or had no opinions regarding the battery,
charging properties, design, or maintenance of the eBikes.

• (+) Interestingly, respondents compared eBikes to public transit when talking about
“convenience", but not to cars. This could be a bias of the sample (University students
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Figure 8.12: Sentiments found in all sentences in the eBike survey corpus. “Usage Conditions" refers
to sentiments found in the context of weather or seasons, e.g., “cannot be ridden in Winter".

and faculty), as many do not own cars. Respondents find that eBikes are convenient when
compared to public transit because they can be ridden without waiting. This is also shown
in Figure 8.11 with 22 occurrences of “convenient" but only five of “inconvenient"12.

• (+) eBikes are seen as environmentally friendly and high performance (fast relative to
cycling). Moreover, the majority of general13 sentiments towards eBikes are positive.

• (−) The majority of sentiments regarding range and price are negative. This exactly
matches the sentiments towards EVs found in many surveys and field trials (see §3.1).
• (−) Some respondents feel eBikes are for those who are “lazy", “cheaters", or “un-
healthy". Many of these respondents were cyclists.

• (−) As a form of range anxiety, even though eBikes can be pedaled after battery de-
pletion, respondents have the perception that the extra weight (v.s. standard bicycles)
make it infeasible to do so.

12These five were not used in conjunction with “eBikes". The phrases “(in)convenien(t/ce)" were set up
as feature changers for “General" (see §4.6.1), so opinions were only mined for the “convenience" feature if
the chunk also contained “eBike".

13The large number of comments for the “General" feature are due to the many questions “eBikes are...".
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8.6 WeBike Data

The questions posed in §8.1 will be fully answered only after the completion of this thesis.
However, we present some preliminary results that are available. At the time of writing, the
WeBike participants have had functioning eBikes for two to three months. When participants
first received their eBikes in August 2014, we encountered numerous hardware and software
problems that led to a lack of data early in the trial. Most of the WeBike participants received
eBikes with functioning hardware and software in October and November. Thus, the results
presented here are limited to a few months, but we note that much of our work was in
developing the algorithms used to present these results (which can be updated as biking
continues).

Our main focus is on the questions posed in §8.1.2, as they are the most relevant questions
to the rest of this thesis. We study six of the questions presented in §8.1. All Figures
presented that show trip lengths or distance traveled use Algorithm 4 to detect trips.

1) Do some use their eBikes primarily for commuting or shorter trips while others
use the eBikes for longer trips (possible for health/exercise), or do users have similar
usage patterns?

Figure 8.13 shows the trip length distribution of all eBike trips made in the same date range
for the same set of eBikes. Figure 8.14 shows the distance traveled by 24 participants from
9/7/2014—12/20/2014. We see from these figures that, thus far, the users have mostly
used the eBikes for shorter trips, e.g., commuting. The average trip length is 3—4km, the
commute distance to campus for most participants. There are about 20 continuous trips
(recall that a trip is considered two trips if it contains a period of no biking that is longer
than five minutes) of more than 11km in this time interval. As expected, we also see that
some users bike more than others. Out of the 24 participants shown, five surpassed 50km,
four surpassed 100km, and one user has biked more than 450 km.

Figure 8.13: Trip length distribution for 24 participants from 9/7/2014—12/20/2014.
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Figure 8.14: Cumulative distance traveled by 24 participants from 9/7/2014—12/20/2014.

2) At what SOC do people normally start charging?
Figure 8.15 shows the number of charging events started at each of 10 SOC ranges. We
observe that users charge very conservatively. More than half of all charging events began
when the battery had a SOC of 50% or more. About 25% of all charging events started
when the SOC was already >90%, i.e., users “top off" their batteries frequently. Only 10%
of charging events occurred when the eBike had less than 30% of battery left. The mean
SOC range at which users start charging is 60—70%.

3) Do participants deplete or nearly deplete their eBike batteries? I.e., are they push-
ing their range limits?
Figure 8.17 shows the “empirical range" of the eBikes; this figure is explained in greater
detail in its caption. From this figure, we see that nearly all user trips deplete less than
25% of the battery. In addition, from Figure 8.13, we see that most trips are well under
the advertised range of 40km. Thus, we conclude that users are not yet pushing their range
limits. We note that if a user fully depletes their battery, and does not charge it for long
enough that the smartphone battery also depletes, the charging event will be observed when
the eBike battery is around 10% and the phone reboots. Thus, this happened at most eight
times (Figure 8.15).
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4) Do we observe the “range paradox" reported in many EV field trials and surveys?
I.e., is there a mismatch between the users’ range needs and their perceptions or
behavior?
As discussed, nearly all user trips deplete less than 25% of the battery (Figure 8.17) and
most trips are under 4km (Figure 8.13). This contradicts the charging characteristics ob-
served in Figure 8.15, i.e., people are charging their batteries frequently despite the fact
that they are not yet close to range limitations. In addition, this contradicts the sentiments
towards range and weight observed in Figure 8.12, because the users do not need more
range for their current mobility patterns and are not at risk of having to pedal the heavier
eBike (vs. conventional bicycles) after depletion, yet the majority of sentiments for both
of these features are negative. Thus, we conclude that there is a disparity between range
needs and behavior/perceptions.

5) LiON battery properties: What are the effects of different drive cycles and different
levels of electric assistance on battery life/range?
From Figure 8.17, we see that the eBike range is variable, and that the range estimates
given by the eBike manufacturer (“up to" 40km, see §8.2.1) are fairly accurate. The average
range achieved by WeBike users, thus far, is ≈30km. Range varies based on three major
factors: the amount of electric assistance used, the number of hills on the route, and the
temperature. We observe a few instances with higher than estimated range (40—70km),
which corresponds to the user applying minimal electric assistance, and a few instances
where the battery was depleted almost immediately (0—10km), corresponding to full elec-
tric assistance, possibly on trips with steep hills. With respect to temperature, we note that
the results shown here correspond to fall (September through December) temperatures, so
results may change later when winter and summer biking is also observed.

6) Parking habits/charging: What is the temporal distribution of charging events?

Figure 8.16 shows the temporal distribution of all charging events for the 24 participants
from 9/7/2014—12/20/2014. Thus far, there does not appear to be a significant bias
towards charging at any particular time. Some users are charging their eBikes during work-
ing/schooling hours, as indicated by the mid-day charging—recall that the battery is de-
tachable and can be charged indoors. There is also a minor peak in charging at 5pm,
representing after-work charging. Still, the temporal distribution of charging events is quite
evenly distributed. These preliminary charging patterns do not correlate with EV charging
patterns, where many owners charge their vehicles overnight.
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Figure 8.15: The number of observed charging events v.s., the SOC of the eBike battery at the
start of charging. The black curve shows how many charging events began when the SOC was in
that range, and the grey curve shows the cumulation.

Figure 8.16: Distribution of charging events for 24 participants from 9/7/2014—12/20/2014.

User Portal To conclude this section, we note that we have created a website for users to
log in14 and view their biking data. At the time of writing, users can generate six analyses:

1. View their trips (start time, end time, distance) on a given day

2. View their cumulative distance traveled per day (Figure 8.13 for just their eBike) over
any given time period

3. Plot their battery life over time on a given day (identical to Figure 8.7).

4. Plot their trip length distribution over a given time period (Figure 8.13 for their eBike)

5. Plot their speed over time on a given day

6. Plot their data on Google Maps on a given day

A screenshot of the user interface, at the time of writing, is shown in Figure 8.18. The
code for all analyses in this section, as well the website, is open source [Car14].

14http://blizzard.cs.uwaterloo.ca/webike
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Figure 8.17: This figure shows the percentage of the eBike battery that was depleted during all trips
taken by the 24 participants from 9/7/2014—12/20/2014. Each circle represents a trip. The X-axis
shows the length of the trip. The annotations show the percentage of the battery was depleted on
the trip. The Y-axis shows the range of the eBike assuming all of the user’s trips required the same
amount of battery per kilometer as the trip shown. For example, if a 5km trip requires 25% of the
battery, the Y-axis will show an empirical range of 20km.
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8.7 Prior Bicycle Telematic Systems

To the best of our knowledge, there are no prior works on building sensor kits specifically
to measure eBikes. The sensing kit for the German pedelec study [GKS+12] (see related
work in §3.1.1) did not include any eBike specific sensors, and the same is true for Paefgen
et al. [PM10]. The kits used for e-bikeSAFE [DWM13, DF14b], as summarized below, was
nearly the same kit used for their bikeSAFE project; it included only one additional eBike
specific sensor to measure the level of electric assistance used at all times. The two prior
bicycle measuring frameworks that served as a starting point for our sensor kit are described
below.

Dozza and Fernandez design a safety-focused sensor kit for their bikeSAFE project [DF14b],
which was also used in their e-bikeSAFE pilot [DWM13]. The only eBike-specific sensor
added for the e-bikeSAFE project is a current sensor which measures the level of electric
assistance used at all times. Their bikeSAFE kit collects the data shown in Figure 8.19
(this table does not include the electric assistance sensor). The logger, the Phidgets SBC2
microcomputer, acquires, processes, and saves all sensor data and is housed in a waterproof
case (Pelicase 1150). The logger is turned on/off automatically when the user starts/stops
pedaling. The sensors and logging unit are powered by a separate onboard battery (not the
eBike battery). A push button is also mounted on the handlebars that allows the user to
trigger an alert so the time of the event can later be correlated with data obtained at that
time. On the server side, MATLAB is used to linearly interpolate missing data and assess
the data quality of each log file. Files with much missing data and files containing a low
number of trustable samples are discarded.

Eisenman et al. [EML+09] present BikeNet, an advanced sensor framework for bicycles—
there are no eBike specific sensors. The sensor hardware includes:

• the Moteiv Tmote Invent platform—contains a two axis accelerometer (for acceleration,
angle of incline, lateral tilt), a thermistor, a photodiode, a microphone, and capabilities
to interface with all other sensors (similar to the Phidget platform)

• Invent push button—records the timestamp whenever the user presses15

• the Nokia N80 phone—contains a camera, microphone, and GSM (for data upload)

• a magnet-triggered reed relay—records the angular velocity of the wheel and pedal,
forward speed, distance traveled

• Honeywell HMC1052L dual axis magneto-inductive sensor—measures direction and de-
viation with respect to the Earth’s magnetic field, metal detection (for car detection)

• Garmin Etrex GPS unit—records location and time

• Telaire 7001 CO2/Temperature Monitor—measures carbon dioxide levels

• ArcherKit Biofeedback Monitor—measures stress level of cyclist
15used similarly to how the bikeSAFE push button allowed the user to record dangerous situations to see

whether the event was also detected in the sensor data
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Figure 8.18: WeBike user portal interface

• OtterBox 1600 Case—protects the above hardware from inclement weather

To validate events detected in the sensor readings, cameras were also mounted on the
cyclists helmet so that sensor readings could be correlated with video footage.

8.8 Conclusions

In this chapter, we have presented our design of WeBike, a field trial for studying electric
bike (eBike) usage in North America. WeBike is designed to study why eBikes are very well
adopted in some regions (e.g., 200 million in China) and seldom in others (e.g., less than 1
million in the U.S.). Moreover, we hope to use eBikes as a “wind tunnel"—a way to study
parameters of interest to EV researchers and manufacturers at low cost. Our participant
selection survey reveals that many view eBikes similarly to EVs, and that both share a set of
common adoption barriers, including range anxiety. Our preliminary analysis of the WeBike
data supports this comparison.

In the beginning of this chapter, we introduced many research questions that we hope to
answer throughout WeBike. Future work will entail answering these questions. However, we
conclude with a final suggestion for future work. An interesting future avenue would be to
adapt our carshare sizing methodologies presented in Chapters 5 and 6 to size eBike sharing
systems. This may not be a straight forward adaptation as Cherry et al. [CWJ11, LCY+13]
discuss. Their discussion of operating16 of an eBike sharing system show there are many
differences between operating a carshare and an eBike sharing system. First, while eBike
users can pedal when the battery is depleted, fatigue may prevent users from returning their

16not sizing; the fleet size was fixed at 20 eBikes based on budget constraints and was not based on demand
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Figure 8.19: reproduced from Dozza and Fernandez [DF14b]. “IMU": inertial measurement unit.

eBikes or even reaching their destination. Moreover, when an eBike is returned, it has to
be charged before it can be used by the next subscriber, and this charging time depends on
both the previous subscriber (e.g., weight) and their mobility patterns (e.g., distance driven,
percentage of electric assist). Therefore, range and charging time constraints must be taken
into account during both the sizing and rebalancing phases. Additionally, share locations
can be equipped with battery swapping stations because eBike batteries are lightweight
and removable. To reduce the recharging time, additional batteries could be kept at each
location to instantly bring a returned eBike back into service. The rebalancing problem then
entails the balance of both eBikes and spare batteries.
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Chapter 9

Conclusions

This chapter concludes the thesis. In §9.1, we summarize the contributions presented in this
thesis. We summarize some avenues for future work in §9.2. Finally, we present concluding
remarks in §9.3.

9.1 Summary Of Contributions

As discussed throughout this thesis, and validated by the literature survey in Chapter 3,
range anxiety and the higher initial price of EVs compared to ICEVs are the two primary
barriers preventing widespread EV adoption. We have presented computational methods
towards alleviating these concerns. Here, we summarize our contributions.

In Chapter 4, we present an online sentiment analysis system that mines EV owners’ percep-
tions from online forums. Such perceptions have historically been obtained through expensive
field trials or targeted surveys. The system mines opinions about specific vehicle features
such as “range" and “safety". It outputs a high-level product overview—a breakdown of sen-
timents for each feature—with the ability to drill down into desired opinionative sentences.
These feature-wise opinions can help multiple types of users: they help prospective buyers
determine whether a given EV matches their needs, they help marketers better advertise
EVs (by promoting the best-reviewed features), and they help manufacturers improve their
vehicles so that later-generation models are more aligned with drivers’ preferences. Note
that some perceptions, for example those relating to battery degradation after years of
charging, are not captured during field trials, but our system is able to do so.

To build our system, we extended previous review mining systems with several new opti-
mizations and EV domain knowledge. In addition, the system is general and customizable
so new vehicles and product types can be quickly added; we tuned the same system to
classify sentiments towards eBikes. We have open-sourced our system [Car] to allow for
future extensions.

In Chapter 5, we propose that giving BEV owners access to an ICEV, which can be used
on days their BEV does not have sufficient range, can help alleviate range anxiety. For a
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BEV owner to feel as though all of their mobility demands are met though a combination
of their BEV and the pooling service, the ICEV access should have a very low transactional
cost. This “ICEV pool" can be implemented in one of many ways: it can be composed of a
BEV dealership’s unsold ICEVs [Ing13]1, run as a for profit-service similar to a carshare, or
as a community or government run non-profit to catalyze EV adoption. In this chapter, we
propose three algorithms to statically size such a pool of ICEVs given the demand patterns
of its collective BEV “subscribers". Our goal is to find the minimum number of vehicles
that can be stored in the pool such that a desired percentage of subscriber requests, the
QoS target, are met. Sizing vehicle pools to ensure a desired QoS target is difficult because
demand is highly non-stationary—there are periods with very high demand both within a
single day and over the course of a year—but a high QoS guarantee is vital to effectively
reduce range anxiety. Using eight years of data collected from an Ontario carshare, we show
that our algorithms, when correctly parameterized, can achieve within 1—3% of the QoS
target.

In addition to having a low transactional cost and a high QoS, another aspect that should
be considered is the convenience of pickup—minimizing the transit time and distance for
subscribers to retrieve their ICEVs. In Chapter 6, we extend the methods in Chapter 5,
which statically size a single ICEV pool, to periodically size a network of pool locations. A
multi pool network, if sited appropriately, is more convenient for subscribers because the
average time required to retrieve a vehicle is reduced with more access locations. In this
chapter, we propose two algorithms to compute the addition, removal, and movement of
vehicles within such a network, which we refer to as fleet management. The methods adapt
the size of each location in response to changing membership or demand at fixed time
intervals known as periods, the length of which are given as input (we use two weeks). Our
methodology ensures that vehicles are “rebalanced" instead of purchased when possible—if
demand increases at location L1 but decreases at L2, we attempt to relocate a vehicle from
L2 to L1. Prior methods for fleet management make simplifying but incorrect assumptions
about demand patterns, e.g., the arrival process is often assumed to be Markovian and
stationary. In contrast, our methods work with arbitrary demand patterns. We show using
the same eight-year dataset that our methods perform, on average, within 1–3% of the QoS
target across all network locations, despite non-Markovian and non-stationary demand.

Fleets are a likely adoption market for EVs. Fleet operators have the initial capital to fund
long-term investments, can dispatch multiple types of vehicles (EV/ICEV) to serve different
demands, and often have centralized parking where charging infrastructure can be sited. In
light of this, in Chapter 7, we present a data-based ROI model for taxi fleets, which are
large consumers of petroleum in cities worldwide, to compute whether it is profitable to
invest in EVs. We do not make assumptions about the taxis’ mobility. Instead, we use the
GPS coordinates of the company’s existing taxis to model their mobility patterns. The GPS
time series are input into a Bayesian network that estimates each taxi’s battery SOC over

1This approach has several benefits; it reduces transactional costs because the dealership has the sub-
scriber’s information from their EV purchase, and moreover dealerships can compute the cost of operating
this service and amortize the cost into the EV purchase price so the EV and ICEV access are sold as a single,
convenient package
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each shift. Several ROI metrics are computed based on when taxis deplete their batteries
(according to the SOC estimation) and must either begin using gasoline (for a PHEV) or
return to the headquarters (for a BEV). We calculate the revenue losses or gains, as well
as the payback period (if applicable), considering many different infrastructure and pricing
scenarios. We use a dataset containing over 20 million GPS readings from 530 taxis in San
Francisco for our evaluation. We find that, as of 2014, HEVs, PHEVs, and BEVs are all
profitable for the company, to different extents, and each have merits. To our knowledge,
this work is the first of its kind; work prior to ours focused on ROI analyses for individual
drivers (see §3.3) who have different mobility patterns and requirements than taxis.

Finally, in Chapter 8, we discuss a different type of electric vehicle—electric bikes (eBikes).
EBikes have been heavily adopted in some regions, e.g., China which has over 200 million in
use [Tim13], but seldom adopted in others, e.g., the US where there are less than 1 million
are in use [Bak13]. The large disparity in sales could be due to differing attitudes towards
bikes/eBikes, differences in transportation networks, differences in weather patterns, or
something else altogether—this issue has not been well studied. Towards this end, we
designed WeBike, a Waterloo based eBike trial. After surveying 160 respondents about
their perceptions towards eBikes in this North American context (where eBikes are not well
adopted), we chose 31 respondents to participate in a three year trial. Much of our work thus
far went into designing the telematics strategy for WeBike. Each eBike is equipped with over
15 different sensors, most importantly GPS and battery sensors. Our telematics solution
only requires that participants bring their eBikes to campus periodically and to keep their
eBike batteries from fully depleting (requiring a charge every four to five days)—everything
else, including the transmission of data, is fully automated, in contrast to prior EV field trials
(see §3.1.1) requiring the user to collect or upload data. Additionally, we have developed
algorithms to process the raw data, such as GPS and battery voltage readings, into higher
level concepts like biking trips and battery SOC. We show that eBikes and EVs have almost
identical perceptions by using the sentiment analysis system from Chapter 4 to analyze the
survey responses. We further show how eBikes can be used to study several parameters
pertinent to EV researchers, including range anxiety, parking and charging habits, and LiON
battery properties.
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9.2 Directions for Future Work

Here we summarize some interesting extensions to our work.

The sentiment analysis system presented in Chapter 4 could be extended in two ways. First,
our system currently only examines the sentiments towards a vehicle at a given snapshot
in time. Future work can include expanding the system to study how sentiments change
over time. For example, how do opinions about specific features change when the vehicle
is updated in each model year? Do opinions about range anxiety change as owners posses
their vehicles for longer? We are currently not capturing these temporal trends. Second, the
enhancements discussed in §4.10 would help increase the performance of the system. These
improvements include pronoun resolution, which will help capture many more opinions2,
detecting the product being discussed from the context rather than forum/page titles,
detecting comparisons of two products, and better context-dependent opinion handling.

Because Chapter 6 extends the mathematical foundations presented in Chapter 5, we discuss
ways to extend these two chapters simultaneously. First, we have only analyzed one QoS
metric—availability. In both chapters3, we consider the system requirements met if more
than 1 − ε percentage of requests are served. However, other QoS targets or objective
functions could be explored. For example, subscribers may be willing to receive a vehicle
less often if the service is significantly cheaper. Depending on the demand patterns, the
pool size may have to increase greatly to meet slightly higher QoS targets. For example,
Table 6.4 shows that the pool size needs to increase by 50% to meet a meet QoS of 99%
vs. 90%. Consequently, always maintaining a high QoS target may lead to larger pool sizes
and high subscription fees. An alternative may be to consider both the service availability
and the service operating costs in the objective function. Second, we have not studied
the problem of locating the pool(s). If the pooling service is offered by an EV dealership,
naturally the pool is formed by their unsold ICEVs. However, if one or more pools are to
be operated by another entity separate from the dealership, the location of the pool(s) is
important. This becomes a facility location problem with many considerations—the cost
of real estate, the distance of the pools to subscribers, the distance between pools which
affects fleet management costs, whether potential pool locations are easily resizable (e.g.,
can new spaces be added if the pool needs to grow), etc. These considerations can lead to
computationally difficult problem formulations, as many facility location problems are NP-
Hard or NP-Complete. Finally, several ways to improve our fleet management algorithms
are given in §6.9. While we show how to extend our mathematical model to allow for
one way trips, we have not evaluated this model extension and it would be interesting
to see how often vehicle rebalancing must occur for the QoS targets to be maintained
if one way trips are allowed. Similarly, we show how our model can be extended to allow
members to obtain their vehicles from different locations instead of always going to the
same pool, but it would be interesting to see how the pool sizes change under this scenario.

2For example, sometimes an entire paragraph is written about a feature, but only the first sentence of the
paragraph explicitly mentions the feature. Currently, the other related opinions are lost.

3In Chapter 6, we have the secondary objective of minimizing fleet management costs.
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We note that for sufficient evaluation of these scenarios, a different dataset which shows
the demand at several pool locations is desirable. Lastly, our fleet management currently
employs repeated myopic optimization; each time period, we optimize only for the next
coming period. There are several challenges that we have yet to overcome in implementing
multi-period optimization as discussed in §6.9.

While we attempted to make the ROI model presented in Chapter 7 comprehensive, there
are several avenues for extending it. First, obtaining a dataset of EV taxi usage (to be used
in combination with our dataset of ICEV taxi usage) would greatly improve our evaluation.
By predicting the SOC using our model, then comparing the results to data obtained from
actual electric taxis, we can calculate the variance at each node in the network, which we
currently ignore. This would allow us to have confidence intervals in our results. Second, our
assumption that all fares are lost for the remainder of the shift upon BEV battery depletion
may be too conservative. If the taxi company has additional ICEVs at the headquarters,
it may only take on the order of minutes to bring the BEV back (just prior to depletion)
and begin using an ICEV. While this process may limit the driver’s ability to complete fares
during this switching period, if depletion occurs early enough in the shift, they may still be
able to complete fares afterwards. We note, however, that modeling this switching behavior
1) requires altering the taxi trajectories seen in the dataset and 2) removes the certainty of
conservative results. Similarly, our approach can currently only be used by taxi companies
whose vehicles are brought back to a common location after each driver’s shift. Future work
could generalize the process to taxi companies with multiple vehicle repositories. Finally,
additional extensions, including modeling of vehicle maintenance costs, real estate prices,
and queueing delays at switching stations, are discussed in §7.6.

The WeBike trial discussed in Chapter 8 has many promising avenues of future work. First,
we are planning to release additional participant surveys every 6—12 months, including
one early next year. These surveys will help study how perceptions towards eBikes change
with continued eBike use. Next, many of the questions posed in §8.1 will be addressed as
more data becomes available. There are two major research avenues we wish to explore in
this context. Primarily, we hope to coordinate the WeBike usage data with the perceptions
obtained through the initial and subsequent participant surveys; many specific questions
are given in §8.1. Examining how the actual eBike usage correlates to those individuals’
perceptions will allow us to study the differences between perception and reality, which
should help us understand why eBikes are not well adopted in some regions. Finally, one
can extend our fleet management algorithms to eBike sharing systems. With respect to
rebalancing, this is an easier problem, because many eBikes can be moved at once between
locations using a truck; the operator does not have to pay a driver to move each individual
vehicle between locations. However, there are challenges that do not exist in the ICEV
pool context, for example, the eBikes and their batteries need to be charged prior to use,
so sizing must take into account the time needed to charge the batteries, which in turn
depends on a variety of factors including the users’ mobility patterns.

151



9.3 Concluding Remarks

We believe that transitioning our transportation network from petroleum based fuels to
cleaner, more sustainable fuels is necessary. As sweet crude becames more difficult to find,
we have turn to unconventional sources of oil, including tar sands and offshore drilling.
Recovering petroleum from these sources is not only inefficient, but has led to several
large-scale environmental disasters. Simultaneously, petroleum-based transportation is a
large contributor of CO2 emissions, and many believe that if CO2 emissions are not reduced
greatly and rapidly, climate change will soon pass an irreversible “tipping point".

Over the next several decades, our transportation network may be composed of a number
of alternative fuels, including electricity, hydrogen, and natural gas. Currently, the best
alternative seems to be electricity. In November 2014, global EV sales surpassed 600,000
vehicles, which still pales in comparison to ICEV sales, but far exceeds all of the other
alternatives. Thus, we have worked towards facilitating the adoption of this technology.

The transition to EVs presents a large change for drivers. Re-fueling is no longer instant;
batteries take on the order of hours to charge, though some “fast charging" technologies
seem promising. Consequently, range is no longer infinite; drivers must plan routes and
charging stops to reach some destinations. Moreover, while gasoline is a far more expensive
fuel than electricity, it is paid for over time, whereas EV batteries must be paid for upfront
when purchasing an EV. Many drivers find it difficult to compute when the fuel savings will
outweigh this higher initial cost.

We have worked towards solving these problems. We have built a system that helps drivers
determine whether a particular EV is right for them and for manufacturers to build ve-
hicles better aligned with drivers’ preferences, proposed algorithms to size and manage a
network of ICEVs to be used by range-limited EV owners, built an ROI analysis for taxi
companies—large consumers of petroleum in cities across the world—to compute their
ROI in transitioning to EVs, and designed a comprehensive field trial of electric bikes that
can be used to study EVs at low cost. Hopefully these contributions, when combined with
others’ research, will help us move towards a cleaner, more sustainable future.
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Appendix A

Sentiment Analysis Chunking Grammar

Here we give our chunking grammar referenced in §4.6.

impt = "<IgnoreThisChunk|PRESENCE|VS|VB.*|DT|RB.*|PRP.*|CD|PDT|POS>*"
op = "<LINTM|HINTM|NONADJOP|IMPLICITFEAT|JJ.*>+"
feat = "<POSFEAT|NEGFEAT|REGFEAT|IMPLICITFEAT>"
grammar = """vs-feat: {{<VS><NEGFEAT>}} #e.g, no range anxiety

op-feat-op {{{op}{feat}{op}}}
op-feat: {{{impt}{op}{impt}{feat}}}
feat-op: {{{impt}{feat}{impt}{op}}}

"""

The nonstandard tags:

• “HINTM" and “LINTM" represent higher and lower intensity modifiers (see §4.7.1).
• “POSFEAT" and “NEGFEAT" refer to oriented features (see §4.7.1).
• “IgnoreThisChunk" represents the querying exception phrases (see §4.7.2).
• “Presence" represents words indicating the presence of something, e.g., “have" and “has".

For information about the other (standard NLP) tags, see the Stanford Tagger [Sta14] and
the Penn Treebank tag set [Buc02]. We note that the removal of stopwords, as discussed
in §4.6.1 helps write more concise grammars. For example, before filtering stopwords, we
had six rules and the “impt" list included more tag types.
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Appendix B

Metric Over Time Figures For Chapter 6
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Appendix C

Proof Of Convergence For Algorithm 1

Credit: this proof was co-authored with Parsiad Azimzadeh after Chapter 5 was published.
The results given in §C.3 are not intended as contributions of the author’s thesis, but are
presented here for completeness in discussing Algorithm 1 terminates.

In this section, we prove the convergence conditions of Algorithm 1 discussed in §5.2.2.
Recall that algorithm 1 computes p(b|m) using the recurrence given by Eq(5.4) for numer-
ical stability. However, Equations 5.4 and 5.2 are algebraically equivalent [Ive09], so we use
Eq(5.2), without loss of correctness, directly for simplicity.
Assumption 1. m and S are integers satisfying 1 ≤ m ≤ S.

C.1 Blocking Probability As A Fixed Point

We substitute Eq(5.14) into Eq(5.15) to yield:

ρ =
1/µ

SK
nB
− (1− p(b|m)) 1

µ

= [υ + p(b|m)]−1 (C.1)

where υ =
µSK

nB
− 1 (C.2)

Substituting the above into Eq(5.2) yields

p(b|m) =

(
S
m

)
(υ + p(b|m))−m∑m

i=0

(
S
i

)
(υ + p(b|m))−i

=

[
m∑
i=0

(
S
i

)(
S
m

) (υ + p(b|m))m−i

]−1

We then write p(b|m) as a fixed-point of a function:

f (x) =

[
m∑
i=0

(
S
i

)(
S
m

) (υ + x)m−i

]−1
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C.2 Existence and Uniqueness of a Fixed Point

Here we verify that a fixed point of f is a probability.
Lemma 1. If υ ≥ 0, f admits a unique fixed point on [0,∞). Furthermore, this fixed point
lies in (0, 1].

Proof. This follows immediately from f being nonincreasing on [0,∞). The second part of
the claim is verified by noting that 0 < f (x) ≤ 1 for any x in [0,∞).

C.3 Fixed Point Iteration

To prove that the fixed point iteration converges, we find sufficient conditions for f to be
a contraction. In particular, since f is continuously differentiable on [0, 1], we consider |f ′|.
Definition 1. For a nonnegative integer n, the rising Pochhammer symbol is

x (n) =

{
x (x + 1) . . . (x + n − 1) n > 0

1 n = 0

Similarly, the falling Pochhammer symbol is

x[n] =

{
x (x − 1) . . . (x − n + 1) n > 0

1 n = 0

Assumption 2. υ > 0 and S ≥ 2m − 1.
Lemma 2. Under Assumption 2, |f ′| < 1 on [0,∞).

Proof. Let n = S −m + 1 and y = υ + x . For succinctness, rewrite f as

f (x) =

[
m∑
i=0

y i
m[i ]

n(i)

]−1

Differentiating yields |f ′| = A/B where

A =

m−1∑
i=0

y i
m[i+1]

n(i+1)
(i + 1)

and, expanding using the Cauchy product,

B =

[
m∑
i=0

y i
m[i ]

n(i)

]2

=

2m∑
i=0

y i
i∑

k=0

m[k]

n(k)

m[i−k]

n(i−k)
.

To arrive at the desired result, we need only show B − A > 0. Since y > 0, it is sufficient
to show that the (finite) power series (in y):

B − A =

m−1∑
i=0

y i

[
i∑

k=0

m[k]

n(k)

m[i−k]

n(i−k)
−
m[i+1]

n(i+1)
(i + 1)

]
+

2m∑
i=m

y i
i∑

k=0

m[k]

n(k)

m[i−k]

n(i−k)

179



has nonnegative coefficients ci (with at least one being positive). In this form, we see that
the y terms of order m to 2m have positive coefficients. We direct our attention to the
terms of lower order. In particular, for fixed i satisfying 0 ≤ i < m:

ci =

i∑
k=0

[m[k]

n(k)

m[i−k]

n(i−k)

]
−
m[i+1]

n(i+1)
(i + 1) =

i∑
k=0

[m[k]

n(k)

m[i−k]

n(i−k)
−
m[i+1]

n(i+1)

]
=

i∑
k=0

m[k]

n(k)

[
m[i−k]

n(i−k)
−

(m − k)[i−k+1]

(n + k)(i−k+1)

]
.

It can be shown that:
m[i−k]

n(i−k)
−

(m − k)[i−k+1]

(n + k)(i−k+1)
≥ 0

under S ≥ 2m − 1 (this inequality implies n ≥ m) to conclude that ci ≥ 0.

An iteration of f , conditioned on an initial guess x0, is defined by iterates xk = f (xk−1)

for k > 0. The iteration is said to converge if xk → x for some x . The following is an
application of the above lemma and the Banach fixed point theorem:

Theorem 1. Under Assumption 2, an iteration of f conditioned on an initial guess x0 ≥ 0

converges to the unique fixed point of f in (0, 1].

Remark 1. The stronger inequality S/m ≥ 2 implies the weaker one appearing in Assumption
2. We recognize as S/m as the member to vehicle ratio in the context of carshares. This
result means the algorithm converges for all practical cases—as discussed in §5.3.2 and
shown in §5.4.2, the member to vehicle ratio S/m is 30-50 in practice. A ratio of less than
two means that more than one car is needed for every two members, defeating the purpose
of a carshare.

The results in this section (in particular, Lemma 1) do not hold when υ is negative. We
end our analysis with the following practical result:

Corollary 1. The operator can increase K, an input sizing parameter, until the conditions
of Lemma 1 are satisfied, guaranteeing a fixed point.

Proof. υ is increasing with K1 as shown in Eq(C.2).

1Note that nB is an increasing function of K as show in Eq(5.10). As the size of the busy period K
increases, the number of subscribers expected to arrive during the busy period (nB) also increases. Thus,
increasing K may not immediately increase υ as needed. However, nB is limited by S and K is unbounded, so
K can always be increased such that υ increases sufficiently.
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Appendix D

WeBike Field Trial Participation Survey

Credit: this survey was co-authored with Tobias Schroeder and S. Keshav.
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2. How would you characterize your knowledge of electric bicycles? 

3. Which of the following experiences have you had personally with e-­bikes? 

4. Please let us know to what extent the following statements apply to you:

Know  nothing  about  it Have  heard  about  it
Have  read  some  articles  

about  it  
I  am  quite  knowledgeable I  have  expert  knowledge

    

Does  not  apply  to  me
Does  mostly  not  apply  

to  me
Somewhat  applies  to  

me
Mostly  applies  to  me Fully  applies  to  me

I  am  interested  in  e-­bikes.     

I  plan  to  buy  an  e-­bike  
within  the  next  couple  of  
years.

    

I  can  imagine  substituting  
my  current  bicycle  with  an  
e-­bike.

    

I  can  imagine  substituting  
my  car  with  an  e-­bike.

    

  
Thoughts About E-­Bikes

None.
  



I  used  one  once.
  



I  have  occasionally  used  one.
  



I  regularly  use  one.
  



I  own  one  and  use  it  occasionally.
  



I  own  one  and  use  it  regularly.
  



Other  (please  specify)  

Optional  comment  
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5. In the blanks below, please write up to twenty different statements that come to mind 
when you think of electric bicycles. There are no right or wrong answers. Just write down 
your spontaneous thoughts about e-­bikes, in the order that they occur to you.

We  would  like  to  learn  more  about  your  transportation-­related  attitudes  and  behaviours.  Please  answer  the  following  questions.  

6. How often do you use the following means of transportation?

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

e-­bikes  are

  
Transportation Behaviour

(almost)  daily 1-­3  days  per  week 1-­3  days  per  month
less  than  once  per  

month
(almost)  never

Car     

Bicycle     

Electric  bicycle     

Public  transport     

Walking     

optional  comment  
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7. On average, how many kilometers do you spend per day on trips related to the following 
activities? Please enter the appropriate number of kilometers in each line.

8. When people choose a means of transportation, they want to satisfy different needs. For 
example, some people might choose the car to enjoy independence (ability to travel 
spontaneously), comfort, and safety, while others might prefer the bicycle to save costs, 
be healthy, and preserve the environment. How important are the following criteria for you 
when you choose a means of transportation? 

Next,  we  would  like  to  know  to  what  extent  different  means  of  transportation  are  compatible  with  your  needs.  Please  tell  us  how  much  you  agree  
with  the  following  statements.    

Work

School/education

Shopping

Private  Business  (e.g.  visits  
to  doctors/other  offices)

Get  or  take  other  persons  to  
places

Leisure  activities

Other

  
Transportation Decisions 1

very  unimportant quite  unimportant
somewhat  
unimportant

somewhat  
important

quite  important very  important

Independence      

Stress-­free  travel      

Costs      

My  social  status      

Fun      

Environmental  friendliness      

Reliability      

Comfort      

Safety      

Healthiness      

  
Transportation Decisions 2
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9. Independence: In my opinion, the following modes of transport allow spontaneous 
travel whenever needed.

10. Stress-­free travel: In my opinion, the following modes of transport allow stress-­free 
travel.

11. Costs: In my opinion, the following modes of transport are expensive.

12. Social status: The following modes of transport fit with my social status.

13. Fun: In my opinion, the following modes of transport are fun to use.

Strongly  disagree Disagree Neutral Agree Strongly  Agree

Cars     

Bicycles       

Electric  Bicycles     

Public  transit     

Walking     

Strongly  disagree Disagree Neutral Agree Strongly  Agree

Cars     

Bicycles     

Electric  Bicycles     

Public  transit     

Walking     

Strongly  disagree Disagree Neutral Agree Strongly  Agree

Cars     

Bicycles     

Electric  Bicycles     

Public  transit     

Walking     

Strongly  disagree Disagree Neutral Agree Strongly  Agree

Cars     

Bicycles     

Electric  Bicycles     

Public  transit     

Walking     

Strongly  disagree Disagree Neutral Agree Strongly  Agree

Cars     

Bicycles     

Electric  bicycles     

Public  Transit     

Walking     
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We  would  like  to  know  to  what  extent  different  means  of  transportation  are  compatible  with  your  needs.  Please  tell  us  how  much  you  agree  with  the  
following  statements.    

14. Environmental friendliness: In my opinion, the following modes of transport are eco-­
friendly.

15. Reliability: In my opinion, the following modes of transport are reliable.

16. Comfort: In my opinion, the following modes of transport are comfortable.

17. Safety: In my opinion, the following modes of transportation are safe.

Transportation Decisions 3

Strongly  disagree Disagree Neutral Agree Strongly  Agree

Cars     

Bicycles     

Electric  Bicycles     

Public  Transport     

Walking     

Strongly  disagree Disagree Neutral Agree Strongly  Agree

Cars     

Bicycles     

Electric  Bicycles     

Public  Transport     

Walking     

Strongly  disagree Disagree Neutral Agree Strongly  Agree

Cars     

Bicycles     

Electric  Bicycles     

Public  Transit     

Walking     

Strongly  disagree Disagree Neutral Agree Strongly  Agree

Cars     

Bicycles     

Electric  Bicycles     

Public  Transit     

Walking     

186



E-Bike Survey University of WaterlooE-Bike Survey University of WaterlooE-Bike Survey University of WaterlooE-Bike Survey University of Waterloo
18. Health: In my opinion, using the following modes of transport is good for my health.

Now,  we  would  like  to  learn  more  about  your  emotional  reactions  to  certain  transportation  options.  This  part  of  the  study  will  help  us  understand  
people's  transport  decisions  better.  
  
Research  has  shown  that  emotions  have  three  different  components:    
(1)  How  good  or  nice  versus  bad  or  awful  are  things?  
(2)  How  weak  and  powerless  versus  strong  and  powerful  are  things?  
(3)  How  calm  and  quiet  versus  arousing  and  active  are  things?  
  
We  ask  you  to  rate  the  following  concepts  related  to  transport  decisions.  Please  answer  as  quickly  as  possible.  There  are  no  right  or  wrong  answers.  
We  are  simply  interested  in  your  intuitions.  

19. Please rate the badness versus goodness of the following modes of transport:

20. Please rate the weakness versus strength of the following modes of transport:

Strongly  disagree Disagree Neutral Agree Strongly  Agree

Cars     

Bicycles     

Electric  Bicycles     

Public  Transit     

Walking     

  
Emotions

extremely  
bad/awful  -­4

-­3 -­2 -­1 neutral   +1 +2 +3
extremely  
good/nice  

+4

Cars         

Bicycles         

Electric  Bicycles         

Public  Transit         

Walking         

extremely  
powerless  -­4

-­3 -­2 -­1 neutral   +1 +2 +3
extremely  
powerful  +4

Cars         

Bicycles         

Electric  Bicycles         

Public  Transit         

Walking         
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21. Please rate the passivity versus activity of the following modes of transport:

Please  rate  the  following  concepts  related  to  transport  decisions.  Please  answer  as  quickly  as  possible.  There  are  no  
right  or  wrong  answers.  We  are  simply  interested  in  your  intuitions.  

22. Please rate the badness versus goodness of the following transport-­related needs:

23. Please rate the weakness versus strength of the following transport-­related needs:

extremely  
calm  -­4

-­3 -­2 -­1 neutral   +1 +2 +3
extremely  
arousing  +4

Cars         

Bicycles         

Electric  Bicycles         

Public  Transit         

Walking         

  
Emotions -­ Needs related to transport

extremely  
bad/awful  -­4

-­3 -­2 -­1 neutral   +1 +2 +3
extremely  
good/nice  

+4

Independence         

Stress-­free  travel         

Costs         

My  social  status         

Fun         

Eco-­friendliness         

Reliability         

Comfort         

Safety         

Health         

extremely  
powerless  -­4

-­3 -­2 -­1 neutral   +1 +2 +3
extremely  
powerful  +4

Independence         

Stress-­free  travel         

Costs         

My  social  status         

Fun         

Eco-­friendliness         

Reliability         

Comfort         

Safety         

Health         
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24. Please rate the passivity versus activity of the following transport-­related needs:

You  have  almost  made  it  through  the  survey.  On  the  next  page,  we  will  explain  the  details  about  the  e-­bike  field  study.    
  
Prior  to  that,  we  ask  you  to  use  the  three  emotion  scales  you  have  encountered  previously  to  rate  your  feelings  about  
yourself.  Your  answer  will  help  us  understand  the  role  of  intuitions  in  people's  transport  decisions.  Again,  answer  as  
quickly  as  possible.  There  is  no  right  or  wrong  answer.  
  
(you  may  choose  not  to  answer  these  questions  if  too  personal)  

25. Please rate your own badness versus goodness:

26. Please rate your own weakness versus strength:

27. Please rate your own passivity versus activity:

extremely  
calm  -­4

-­3 -­2 -­1 neutral   +1 +2 +3
extremely  
arousing  +4

Independence         

Stress-­free  travel         

Costs         

My  social  status         

Fun         

Eco-­friendliness         

Reliability         

Comfort         

Safety         

Health         

  
Emotions -­ Self

extremely  
bad/awful  -­

4
-­3 -­2 -­1 neutral   +1 +2 +3

extremely  
good/nice  

+4

prefer  not  
to  answer

Myself  as  I  really  am          

extremely  
powerless  -­

4
-­3 -­2 -­1 neutral   +1 +2 +3

extremely  
powerful  +4

prefer  not  
to  answer

Myself  as  I  really  am          

extremely  
calm  -­4

-­3 -­2 -­1 neutral   +1 +2 +3
extremely  
arousing  +4

prefer  not  
to  answer

Myself  as  I  really  am          

  
E-­Bike Questions
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28. Now let's imagine you had an electric bicycle. For example, you might have agreed to 
take part in our three-­year study and we provided you with a free e-­bike. How often would 
you use it?

29. Please estimate the number of kilometers you would likely ride the e-­bike per day, on 
average. Write the number of kilometers in the following lines.

30. If you had an electric bicycle, how often would you use it to replace your current 
favoured means of transportation for trips related to the following activities? For example, 
if you now use the car to get to work, how often would you use the e-­bike instead?

31. What questions, if any, do you have about electric bicycles?

  

(almost)  daily 1-­3  days  per  week 1-­3  days  per  month
less  than  once  per  

month
(almost)  never

question  does  not  
apply  -­  I  own  an  e-­

bike  already

during  the  summer  months  
(May  -­  October)

     

during  the  winter  months  
(November  -­  April)

     

during  the  summer  months  
(May  -­  October)

during  the  winter  months  
(November  -­  April)

would  (almost)  
never  use  e-­bike

would  rarely  use  e-­
bike

would  sometimes  
use  e-­bike

would  often  use  e-­
bike

would  (almost)  
always  use  e-­bike

I  already  use  an  e-­
bike  most  of  the  

time

Work      

School/education      

Shopping      

Private  Business  (e.g.,  visits  
to  doctors  or  other  offices)

     

Get  or  take  other  persons  to  
places

     

Leisure  activities      

Other      





  
Participation in the Study
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As  mentioned  before,  we  plan  to  invite  selected  participants  of  this  survey  to  take  part  in  a  three-­year  study  of  electric  bicycle  use.  We  will  select  
participants  to  represent  four  distinct  populations  of  e-­bike  users:  (i)  Car  users  who  would  consider  using  e-­bikes  instead  of  cars  for  some  trips.(ii)  Bike  
users  who  would  consider  using  e-­bikes  instead  of  cars  for  some  trips  (iii)  Public-­transit  users  who  would  consider  using  e-­bikes  instead  of  cars  for  
some  trips.  (iv)  Walkers  who  would  consider  using  e-­bikes  instead  of  cars  for  some  trips.  We  are  not  targeting  any  specific  gender,  age-­range,  or  
special  characteristics:  our  selection  of  participants  aims  to  be  a  representative  sample  of  the  UW  population.  However,  all  participants  must:  a)  be  
at  least  18  years  old  b)  wear  a  helmet  when  operating  the  e-­bike  c)  anticipate  residing  in  the  KW  region  and  retain  a  connection  with  the  University  
of  Waterloo  for  the  next  three  years  and  d)  undergo  a  training  session  on  safe  e-­bike  use.    
  
If  you  are  chosen,  you  will  be  offered  a  new,  free  e-­bike,  which  would  be  yours  to  keep  after  the  study  is  over.  In  return,  you  would  agree  to  provide  
us  with  certain  data  during  the  time  of  the  study.  Most  of  it  would  be  collected  automatically  with  sensors  (e.g.,  information  such  as  speed,  location,  
and  battery  performance)  and  transmitted  to  us  automatically  whenever  your  e-­bike  is  in  the  range  of  a  wireless  internet  connection.  In  addition,  we  
would  ask  you  every  3-­6  months  to  fill  out  an  online  survey  like  the  present  one.  The  goal  of  this  project  is  both  to  optimize  e-­bike  technology  and  
to  understand  more  about  the  decision  processes  of  humans  who  adopt  new  technologies.  

32. Are you interested in participating in our three-­year e-­bike study?

33. If you are interested or possibly interested in the e-­bike study or future surveys on this 
topic, please provide your email address, so we can get in touch with you about the 
details. (Please note: you can still decide later not to take part if you change your mind or 
are unhappy about the terms and conditions that we will offer you)

  

34. If you are interested in our study, please provide up to five reasons for why you would 
(might) like to take part in it. If you are not interested, please provide up to five reasons for 
why not:

35. What is your gender?

1

2

3

4

5

  
Personal Information

Yes,  let  me  know  the  details  about  the  study.
  



I  am  not  interested  in  operating  an  e-­bike,  but  I  would  be  willing  to  take  part  in  future  surveys.
  



No,  thank  you.
  



male
  



female
  



other
  



prefer  not  to  say
  


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36. What is your age? (please write your age in years in the line below)

  

37. What is the nature of your affiliation with the University of Waterloo?

38. Do you anticipate living in the K-­W area until June 30, 2017?

*

*

*

  

Faculty
  



Staff
  



Undergraduate  Student
  



Graduate  Student
  



Postdoc
  



Other
  



I  am  not  affiliated  with  the  University  of  Waterloo
  



Yes
  



No
  


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Appendix E

WeBike To EV Mapping

The following diagram or “mind map" shows some of the questions relevant to EV re-
searchers that we hope to answer using the WeBike data, and what data/sensors we use
to compute them.
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