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Abstract

Ehrhart theory studies the behaviour of lattice points contained in dilates of lattice poly-
topes. We provide an introduction to Ehrhart theory. In particular, we prove Ehrhart’s The-
orem, Stanley Non-negativity, and Ehrhart-Macdonald Reciprocity via lattice triangulations.
We also introduce the algebra P(Rd) spanned by indicator functions of polyhedra, and val-
uations (linear functions) on P(Rd). Through this, we derive Brion’s Theorem, which gives
an alternate proof of Ehrhart’s Theorem. The proof of Brion’s Theorem makes use of decom-
posing the lattice polytope in P(Rd) into support cones and other polyhedra. More generally,
Betke and Kneser proved that every lattice polytope in P(Rd) (or the sub-algebra P(Zd),
spanned by lattice polytopes) admits a unimodular decomposition; it can be expressed as a
formal sum of unimodular simplices. We give a new streamlined proof of this result, as well as
some applications and consequences.
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Chapter 1

Introduction

Consider a convex polygon P ∈ R2 where the vertices of P are in Z2. We would like to explore
the relationships between P and the integer points contained in P . Pick’s Theorem states that

A = i+
b

2
− 1,

where A is the area of P , i is the number of integer points in the interior of P , and b is the
number of integer points in the boundary of P . We may also like to explore the behaviour of
the number of integer points in P as we scale the size of P by some integer and generalize to
higher dimensions.

More formally, given a lattice polytope P ⊆ Rd, we would like to explore the behaviour of

LP (t) = |tP ∩ Zd|.

Ehrhart’s Theorem states that for each lattice polytope P , LP (t) is a polynomial where the
degree is bounded by the dimension of P . In addition, the Ehrhart-Macdonald reciprocity
states a relationship between the number of lattice points of a lattice polytope and the number
of lattices points in the interior of the polytope.

The proofs of the above results made use of a technique that is going to become a recurring
theme in this paper: we triangulate polytopes out of simplices. In particular, we would like to
use only simplices of volume 1; such simplices are called unimodular simplices. The reason we
are so eager to triangulate polytopes using unimodular simplices is that studying properties of
simplices is in many cases simpler than for a lattice polytope.

Thankfully, some properties of lattice polytopes can be proven as a result of being built
up from simplices. However, a slight problem arises: some polytopes can not be built with
unimodular simplices alone. It is true that every polytope can be built with simplices, but there
are polytopes that require simplices of volume greater than 1. For example, the tetrahedron
with vertices (0, 0, 0), (1, 0, 0), (0, 0, 1), and (1, 2, 1) has volume 2, but cannot be built from
smaller lattice tetrahedra.

In light of this complication, we turn to another way of viewing polytopes. Instead of
additively combining simplices, we allow for the subtraction, or deleting of simplices as well.
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One result that is discussed in this paper is that any polytope can be built by combining
unimodular simplices, and then “trimming off” unwanted pieces to get the desired polytope.
More importantly, there is a way to build the polytope so the trimmed off pieces are also
unimodular simplices.

More formally, a polytope has an associated indicator function. Many ideas in this paper
on this topic was originally due to McMullen. These functions span the polytope algebra.
The combining of simplices and the trimming off excess pieces correspond to the addition
and subtraction of elements in the polytope algebra. We can study linear functions in the
lattice polytope algebra, which we call valuations. For valuations that are invariant under
translation and unimodular maps, we can actually determine whether two valuations are equal
by determining their values on a finite number of unimodular simplices. These results in
valuations see applications in alternate proofs of Ehrhart’s Theorem and Ehrhart Reciprocity.

Betke and Kneser proved the existence of unimodular decompositions of lattice polytopes,
as well as the equivalence of integer unimodular invariant valuations. This paper provides more
streamlined proofs of such results.

For the rest of Chapter 1, we introduce the foundational properties of polytopes and their
unbounded relatives, polyhedra.

In Chapter 2, we will introduce polyhedral complexes. We are particularly interested in
polyhedral subdivisions and lattice triangulations. The chapter will conclude with a way to
subdivide a polyhedron, and a way to triangulate a polytope. We see that any polytope
can be triangulated, where each simplex uses only vertices of the polytope. We also see an
example where some maximal lattice triangulations do not necessarily have the same number
of k-dimensional simplices.

Chapter 3 introduces the Ehrhart series of a polytope. We prove a few fundamental results
in Ehrhart theory including Ehrhart’s Theorem and Ehrhart-Macdonald Reciprocity. Tying
in with the previous chapter, we see that there is a relationship between the number of k-
dimensional faces of a unimodular lattice triangulation and the coefficients of the Ehrhart
series. If we try to impose and extend this result to polytopes that do not admit a unimodular
lattice triangulation, things go awry; we give a brief 3-dimensional case study on this matter.

We view polytopes and Ehrhart theory in a different light in Chapter 4 by introducing
indicator functions of polyhedra. These indicator functions span the algebra of polyhedra.
Brion’s Theorem provides a way to decompose a polyhedron using indicator functions of cones
and other polyhedra. By considering valuations (linear functions) on elements of the algebra of
rational polyhedra (namely, cones), it is possible to prove Ehrhart’s theorem via valuations and
Brion’s Theorem. We also see a valuation called the Euler valuation, which is closely related to
the Euler characteristic. We derive a few Euler-type relations that will be used in Chapter 5.

In Chapter 5, we provide a new streamlined proof of the results by Betke and Kneser. We see
that there is a way to decompose the indicator function of any polytope into indicator functions
of unimodular simplices. This may seem contradictory to the fact that there are polytopes that
do not admit unimodular lattice triangulations. However, indicator functions allow us the
freedom to include simplices that would have “protruded” out of the original polytope. We
give an algorithm for such a decomposition, and analyze its runtime: the algorithm is not
efficient, but does its job in proving that every polytope has a unimodular decomposition.
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As a consequence of this result, we formulate conditions under which two integer unimodular
invariant valuations are equivalent. We see an application of this result by proving Ehrhart-
Macdonald Reciprocity and revisiting the case study in Section 3 in a more general light.

1.1 Background Check

For the remainder of the chapter, we will be laying the foundational properties and terminology
of the paper. More details on these topics can be found in [1], [8], [9], and [13].

1.1.1 Convex Sets

Let us consider two sets in R2, displayed below. For any two points a, b in A, the line segment
{λa+ (1− λ)b : 0 ≤ λ ≤ 1} with endpoints a and b is contained in A, while we cannot say that
the statement holds for B.

A B

Figure 1.1. A is a convex set while B is not.

We denote [a, b] as the closed line segment between a and b and sometimes (a, b) as the open
line segment. The family of sets that satisfies this distinguishing property is called the family
of convex sets. More formally, a set S ⊆ Rd is convex if

a, b ∈ S =⇒ (1− λ)a+ λb ∈ S, 0 ≤ λ ≤ 1. (1.1)

The expression (1 − λ)a + λb is an example of a convex combination of two points. More
generally, a convex combination of points a1, . . . , am in S is of the form

m∑
i=1

λiai where
m∑
i=1

λi = 1 and 0 ≤ λ1, . . . , λm ≤ 1. (1.2)

For convenience of indices, we will denote [m] := {1, . . . ,m}. An equivalent definition of a
convex set is a set that is closed under convex combinations. If a point p in a convex set S
cannot be expressed as a convex combination of other points in S, then p is a extreme point.

The convex hull conv(S) of a set of points S is the smallest convex set that contains S. In
other words, any convex set that contains S must also contain conv(S). In two dimensions, one
can imagine the convex hull of a set of points to be the shape if an elastic band were stretched
and wrapped around the “outside” of the points. In any dimension, the convex hull of S is the
set of all convex combinations of every subset of points in S.
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Figure 1.2. A set of points and its convex hull.

For convenience, we denote conv(S1, . . . , Sm) to be conv(S1 ∪ · · · ∪ Sm) for sets S1, . . . , Sm,
and whenever a point appears as an argument for conv( ), we really mean the singleton {v}.
For example, conv(v, S) denotes conv({v} ∪ S). A property of convex hulls is that

conv(v, S1) ∩ conv(v, S2) = conv(v, S1 ∩ S2).

for convex sets S1 and S2 such that if s1 ∈ S1, s2 ∈ S2 and v are co-linear, then s1, s2 ∈ S1∩S2.
More generally, the intersection of convex sets is convex.

Another operation that we can perform on a number of sets A1, . . . , Ak is the Minkowski
sum

k∑
i=1

Ai = A1 + · · ·+Ak := {a1 + · · ·+ ak : ai ∈ Ai, i = 1, . . . , k}.

A specific case of Minkowski sum is a translation A + S, where A is a singleton {a}; for
convenience we drop the set notation and simply write a + S to mean the Minkowski sum
of {a} and S. As demonstrated in the following theorem, convex sets and Minkowski sums
cooperate rather nicely with each other.

Theorem 1.1.1. For sets S1, . . . , Sn,

conv

(
n∑
i=1

Si

)
=

n∑
i=1

conv(Si). (1.3)

For a convex set S ⊆ Rd, the interior int(S) of S is the set of points s ∈ S such that there
is an open ball B(s, ε) = {x+ s : 〈x, x〉 < ε} centred at s with ε > 0 such that B(s, ε) ⊆ S. The
closure cl(S) of S is the set of points s such that for any ε > 0, B(s, ε) ∩ S 6= ∅. The boundary
∂(S) of S is the set ∂(S) := cl(S)\ int(S). There do exist non-empty convex sets S ⊆ Rd that
have an empty interior. In order classify such sets, we need the notion of the dimension of a
set.

An affine combination of a set of points a1, . . . , am is of the form

m∑
i=1

λiai where

m∑
i=1

λi = 1;

it is similar to convex combination, but without the non-negativity constraint on the coefficients.
The terminology of affine sets are similar to the terminology used for convex sets. A set is affine
if it is closed under affine combinations. The affine hull aff(S) of a set of points S is the smallest
affine set containing S. Equivalently, the affine hull of S is the set of all affine combinations of
points of S.
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Theorem 1.1.2. An affine set S in Rd is a translation of a linear subspace.

Consider an affine set S = a + V where V is a linear subspace. Since 0 ∈ V , we see that
a ∈ S. The dimension of V = S − a is the the number of linearly independent points in S − a.
We can define a set of points a0, . . . , ak to be affinely independent if the set {a1−a0, . . . , ak−a0}
is linearly independent. Then the dimension dim(S) of the affine set S is the dimension of V
or equivalently, the maximum k such that there exists k + 1 affinely independent points in S.

We can now define the dimension of any convex set S to be the dimension of aff(S), or
equivalently, one less than the maximum number of affinely independent points in S. A set in
Rd is full-dimensional if it has dimension d. In a collection of sets, a set is top-dimensional if
its dimension is largest among all the sets in that collection. Recalling the motivation of this
definition, if a set S ⊆ Rd is not full-dimensional, then S◦ = ∅. However, suppose dim(S) =
k < d; we can identify aff(S) with Rk and define the relative interior S◦ of S to be the interior
of S in aff(S), represented as points in Rd.

S ∂(S) cl(S)

Figure 1.3. The interior of a 2-dimensional open set S ⊂ R2 is S. A line
segment in R2 has an empty interior.

1.1.2 Polyhedra

We define an inner product 〈·, ·〉 on Rd; for two points a = (a1, . . . , ad) and b = (b1, . . . , bd) in
Rd,

〈a, b〉 = a1b1 + · · ·+ adbd.

We define a hyperplane of Rd to be a set of the form

H = {x : 〈c, x〉 = b}.

If c and b are integral, then H is a rational hyperplane and contains integer points. We can see
that H “splits” Rd into two sides. Let positive and negative closed half-spaces be

H+ := {x : 〈c, x〉 ≥ b}
H− := {x : 〈c, x〉 ≤ b}

and open half-spaces to be similar to closed half-spaces, but with a strict inequality constraint.
A polyhedron P is the intersection of half-spaces; it is rational if all associated hyperplanes of
the half-spaces are rational. Since half-spaces are convex, polyhedra are convex. Note that the
intersection of half-spaces can correspond to the solution set of a system of linear inequalities
P = {x : Ax ≤ b}. By setting A = 0 and b = 0, Rd is a polyhedron. The empty set is also a
polyhedron, by setting A = 0 and b = −1.

Example 1.1.3. Consider the triangle below. It can be represented as a convex hull of points
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(1,0), (1,1) and (2,0). Alternatively, it is the intersection of half-spaces

{x : 〈(1, 0), x〉 ≥ 1}
{x : 〈(0, 1), x〉 ≥ 0}
{x : 〈(1, 1), x〉 ≤ 2}.

It could also be expressed as the solution set of the system of inequalities {x : Ax ≤ b}, where

A =

−1 0
0 −1
1 1

 and b =

−1
0
1



(1, 1)

(1, 0)

(2, 0)

Figure 1.4. A simplex expressed as an intersection of half-spaces can also be
expressed as a convex hull of its vertices.

If P is bounded, then P is a polytope. We say that a d-polyhedron or d-polytope is a d-
dimensional polyhedron or polytope. A polyhedron is unbounded if and only if it contains a
ray (or a line, but a line is just a union of two rays). We have the following two results to help
us see if a polyhedron is indeed a polytope.

Lemma 1.1.4. Let P = {x ∈ Rd : Ax ≤ b} be a non-empty polyhedron. P contains a ray if
and only if there exists an x 6= 0 such that Ax ≤ 0.

Corollary 1.1.5. Let P = {x ∈ Rd : Ax ≤ b} be a non-empty polyhedron. P contains a line if
and only if Nullity(A) > 0.

The Minkowski sum of polyhedra is a polyhedron. If we have two polyhedra P1 ∈ Rd1 and
P2 ∈ Rd2 , then their direct product

P1 × P2 = {(p1, p2) ∈ Rd1+d2 : p1 ∈ P1, p2 ∈ P2}

is also a polyhedron.

1.1.3 Faces of Polyhedra

A hyperplane H or half-space H+ (similarly with H−) is said to cut a d-polyhedron P ⊆ Rd is
on both sides of H. More formally, if H = {x : 〈u, x〉 = b}, then P is on both sides of H if

{x : 〈u, x〉 < b} ∩ P and {x : 〈u, x〉 > b} ∩ P

6



are both non-empty. If H does not cut P , then H+ ∩ P is called a face of P ; H− ∩ P is also
called a face of P . Note that faces are also polyhedra, since they are just an intersections of
half-spaces. Also, note that P itself and the empty set are always faces of P . These two faces
are called trivial faces. If H does not cut P but intersects P , and P ⊆ H+, then H− ∩ P is a
proper face of P . We denote F ≤ P to mean that F is a face of P . If H+ ∩ P is a proper face
F ≤ P , then H+ is an inward half-space and H− is an outward half-space. Note that proper
faces can also be defined as P ∩H, where H is a supporting hyperplane.

A supporting hyperplane of a face F is a hyperplane H such that F = H− ∩ P . A 0-
dimensional face (equivalently, an extreme point of P ) is called a vertex. A polytope can
actually be defined as the convex hull of its vertices. If all its vertices are lattice points (ie. if
its vertices have integer coordinates), then the polytope is a lattice polytope.

A (d− 1)-dimensional face is called a facet. If F = H− ∩ P is a facet, then H is called the
facet hyperplane of F . Note that facet hyperplanes are unique for each facet, while supporting
hyperplanes for lower dimensional faces are not. Therefore, it is suitable to define the inward
normal of a facet to be the vector u such that u is the normal of the facet hyperplane pointing
into P , and the outward normal to be the normal pointing away from P . We will work primarily
with rational polyhedra. In this case, the facet normals could all be scaled to be integral, and so
we can assume that these normals are integral and primitive (ie. the greatest common divisor
of its entries is 1).

Theorem 1.1.6. Let P be a non-empty polyhedron. Then

• The intersection of two faces of a polyhedron is a face

• The faces of a face F are exactly the faces of P that are contained in F

• Every proper face of P is an intersection of a subset of its facets.

• P can be expressed as the intersection its of inward facet half-spaces.

• P contains a vertex if and only if P does not contain a line

• A face of P is the solution set of the facet constraints of P , where a subset of these
constraints are tight.

1.1.4 Simplices

A simplex of dimension d (or a d-simplex ) is the convex hull of d+1 affinely independent points.
Note that d + 1 points is the fewest number of points we need such that their convex hull is
d-dimensional. If a simplex contains no lattice points aside from its vertices, the simplex is
empty.

Figure 1.5. 0, 1, 2 and 3-dimensional simplices.
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The set of faces of a simplex S is exactly the collection of convex hulls of every subset of
vertices of S. Since vertices of S are affinely independent, the faces of a simplex are themselves
simplices. If the vertices of S are integral, the S lattice simplex. Let lattice simplex S have
vertices v1, . . . , vd+1. Then the volume Vol(S) of S is

Vol(S) = | det(V )|

where V is a d× d matrix whose columns correspond to v1− vd+1, . . . , vd− vd+1. Note that we
have scaled our definition of volume by d! for convenience. Equivalently, if we append 1 onto
all the vertex vectors, we have

Vol(S) =

∣∣∣∣det

(
v1 . . . vd+1

1 . . . 1

)∣∣∣∣ .
If Vol(S) = 1, then S is said to be unimodular. Unimodular simplices are empty. A family of
important unimodular simplices are the standard simplices. Let ei be the the standard basis
vector, where the ith entry of ei is 1, and zero elsewhere. The standard d-simplex is the convex
hull conv(e1, . . . , ed, 0).

For a lattice d-simplex S ⊂ Rd with vertices v1, . . . , vd+1, let S′ ⊂ Rd+1 be the d-simplex
with vertices v′1, . . . , v

′
d+1, where v′i = (vi, 1). The parallelepiped generated by vertices of S′ is

the polytope

ΠS′ =

{
d+1∑
i=1

λivi : 0 ≤ λi ≤ 1, i = 1, . . . , d+ 1

}
.

The top-open parallelepiped ΠS′ and bottom-open parallelepiped ΠS′ generated by vertices of
S′ have the additional constraint that λi < 1 and 0 < λi respectively. If S is unimodular, then
the only lattice points in ΠS′ are its vertices.

1.1.5 Cones

A ray emanating from v in the direction u is a set of points

R = {v + τu : τ ≥ 0},

where u, v ∈ Rd and u 6= 0. A cone is a polyhedron that can be represented as a union of
rays emanating from a point. If this point is unique, then it is the only vertex of the cone, and
we call the cone a pointed cone. Note that ∅ and Rd are also cones. We often “cone over a
polyhedron” P , by which we mean constructing the cone that is the collection of rays from the
origin passing through points in P :

cone(P ) := {τp : p ∈ P, τ ≥ 0}.

If P is a polytope with vertices v1, . . . , vn then cone(P ) can actually be expressed as the non-
negative span of its vertices:

cone(P ) = span≥0(v1, . . . , vn).
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P is a base of cone K if K can be expressed as cone(P ); note that bases of K are not unique.
A cone has a base if and only if it has a vertex. For any pointed rational cone, there will always
be a base that is a lattice polytope.

P

K

Figure 1.6. Polytope P is the base of cone K.

The recession cone of a polyhedron P is a cone K such that for a p ∈ P , the set of rays in
P emanating from p is equal to some translate of K. There exists a recession cone for every
polyhedron. Since a polytope contains no rays, the recession cone of any polytope is the origin.

Theorem 1.1.7. Let P ⊂ Rd be a polyhedron without straight lines. Then P can be expressed
as the Minkowski sum of its recession cone and the convex hull of its vertices.

Figure 1.7. A polyhedron and its recession cone. Figure inspired by [1].
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Chapter 2

Polyhedral Subdivisions

A polyhedral complex C is a collection of polytopes (called cells of C ) such that

(CP) If C ∈ C and F ≤ C, then F ∈ C . (Closure Property)

(IP) If C 6= C ′ are two cells in C , then C ∩C ′ is a (potentially empty) face of both C and C ′.
(Intersection Property)

Given a polytope (or polyhedron) P , the a polytope (or polyhedral) subdivision S is a polyhedral
complex that satisfies the additional condition

(UP) The union of all cells in S is P . (Union Property)

Additionally, if P has a vertex and if the vertices of each cell in S is a vertex of P , then S is
said to be a subdivision with no new vertices. From properties of polyhedra, it is easy to verify
that for a lattice polytope P , the collection of all the faces of P is a subdivision of P with no
new vertices.

If every cell in S is a simplex, then S is called a triangulation of P . If every cell of a
triangulation is a lattice simplex, then S is a lattice triangulation. Note that only polyhedra
with integral vertices have lattice triangulations. Since we are mainly interested in lattice tri-
angulations, let us take “triangulation” to really mean “lattice triangulation”. A triangulation
is maximal if all of its cells are empty simplices. It is possible for some polytopes to have more
than one maximal triangulation; these maximal triangulations need not have the same number
of cells, as illustrated in Example 2.3.7.

(a) (b)

Figure 2.1. (a) does not describe a subdivision of a square, while (b) does.
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Lemma 2.0.8. The only triangulation of an empty simplex S is the collection of all the faces
of S.

Proof. We assume S is full-dimensional; otherwise, we can just work in the affine subspace that
contains S. Let S be the collection of faces of S. S is a subdivision of S. Since all faces of a
simplex are simplices, this subdivision is indeed a triangulation. If the vertices of S are its only
lattice points, then any vertex of a simplex in a triangulation of S must also be a vertex of S,
implying that the simplex is a face of S. By (UP), the face S ≤ S must be in the triangulation.
By (IP), all faces of S must also be in the triangulation. Therefore, S is the only triangulation
of S.

A triangulation is unimodular if all of its simplices are unimodular. Since unimodular
simplices are empty, every unimodular triangulation is maximal. However, the converse is not
true as demonstrated in the following example. It is also possible for a polytope to have a
unimodular triangulation, but also to have another maximal non-unimodular triangulation, as
illustrated in Example 2.3.7.

Example 2.0.9. Consider a simplex S with vertices (0, 0, 0), (1, 0, 0), (0, 0, 1), and (a, b, 1)
where 0 < a < b and a and b are coprime. This simplex is empty. Therefore, the only
triangulation of S is the collection of its faces. Since there is only one triangulation, this
triangulation is maximal. However, S has volume b, and b ≥ 2, so S is not unimodular, and
the triangulation is not unimodular.

It is often useful to subdivide or triangulate P , but we need to know that triangulations do
exist for every P . A method of triangulating a polytope P is called a pushing triangulation.
This method starts with a simplex in P and iteratively introduces a new vertex to build a bigger
polytope. In order to outline the method, we need to introduce the concept of visibility.

2.1 Point Visibility

Let P ⊂ Rd be a d-polytope, and let v be a point that is not contained in the relative interior
of P . A point p ∈ P is visible to v if the line segment

{λv + (1− λ)p : 0 ≤ λ ≤ 1}

intersects P at exactly p. A face F ≤ P is visible to v if every point p ∈ F is visible to v. Note
that if v is in P , then no other point in P is visible to v.

Lemma 2.1.1. Facet F is visible to v if and only if the facet hyperplane separates v and P .

In other words, if u is the outward normal of F and H = {x : 〈u, x〉 = b} is the facet
hyperplane of F , then F is visible to v if and only if 〈u, v〉 > b.

Proof. Let u be the outward normal of F and H = {x : 〈u, x〉 = b} be the supporting hyperplane
of F . Suppose 〈u, v〉 ≤ b. Let p 6= v be a point in the relative interior of F . There exists a ball
B centred at p such that H− ∩B is a closed half-ball in P , and the other open half-ball is not
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in P . Any line segment [v, p] must intersect B. Since p is on the hyperplane H, any point on
[v, p) is on the same side of H that v is on (if v ∈ H, then [v, p] ∈ H). Therefore, if 〈u, v〉 ≤ b,
then the line segment [v, p] intersects P at p and other points, and so F is not visible to v.

Now consider 〈u, v〉 > b. Note that for any point p in F , 〈u, p〉 = b. Then for 0 ≤ λ ≤ 1 and
any p ∈ F ,

〈u, λv + (1− λ)p〉 = λ〈u, v〉+ (1− λ)〈u, p〉
= λ〈u, v〉+ (1− λ)b

≥ λb+ (1− λ)b

= b

with equality if and only if λ = 0. Therefore, F is visible to v.

Let H be a hyperplane that does not cut through P , and let pr be the orthogonal projection
of points in P onto H. Then a face F ≤ P is visible to the hyperplane H if for every p ∈ F , p
is visible to pr(p).

Lemma 2.1.2. Let P ⊂ Rd be a d-polytope and suppose H = {x : 〈c, x〉 = b} is a hyperplane
such that P ⊂ H−. Then facet F ≤ P with outward normal u is visible to H if and only if
〈c, u〉 > 0.

Proof. Consider a point p in facet F , with outward normal u. Then the projected point v :=
pr(p) can be expressed as p + τc for some τ ≥ 0. If τ = 0, then v = p, and p is visible to v.
Now, if τ > 0, then

〈u, v〉 = 〈u, p+ τc〉
= 〈u, p〉+ τ〈u, c〉
= b+ τ〈u, c〉.

We see that 〈u, c〉 > 0 if and only if 〈u, v〉 > b, and since u is the outward normal of F , it is
equivalent to F being visible to v; in particular, p is visible to v.

Where it is clear, we shall take “visible facet” to mean “facet visible to a point v”.

2.2 Pushing Triangulations

Now, we are ready to outline the construction of a pushing triangulation. We will prove our
claims after outlining the whole method. Let P have n vertices. Order the vertices of P such
that the first d + 1 vertices are affinely independent; by relabelling, and for ease of notation,
we can assume that the vertices are ordered and labelled as v−d, . . . , vn−d−1. Starting at the
zeroeth iteration, let T be the collection containing conv(v−d, . . . , v0) and all of its faces. At
the beginning of each iteration k ≥ 1, T is a triangulation of Pk−1 := conv(v−d, . . . , vk−1).
Then for any (d − 1)-dimensional cell C of T that is visible to vk, add conv(C, vk) and all its
faces to T . We continue until Pk = P .

12



5

1

2

4

3

P

(a) (b)

Figure 2.2. (a) is a unimodular triangulation of P ; (b) is the pushing trian-
gulation of P , taking its vertices in the order listed. Note that (b) uses no
new vertices.

Lemma 2.2.1. By our construction, T is a triangulation with no new vertices.

Again, we need to verify the three triangulation conditions. Let us break the proof down
into several parts. We proceed by induction on n. Since P is full-dimensional, our base case is
n = d + 1. Our algorithm terminates after the zeroeth iteration; T is a subdivision. Since P
is a simplex, T is a triangulation.

Taking the inductive step, T ′ is the triangulation of Pk−1 := conv(v−d, . . . , vk−1) that we
get at the beginning of the kth iteration.

Let F be the set of facets of Pk−1 visible to vk. We can define

T ′|F := {S : S ∈ T ′, S ⊆ F}

to be the triangulation restricted to the facet F ∈ F .

Note that since T ′ does not use new vertices, neither do any of the T ′|F . Let Tvis be the
collection of convex hulls of vk with each (d − 1)-simplex of T ′|F for all visible faces F ∈ F .
We claim that

T = Tvis ∪T ′

is a triangulation for Pk := conv(v−d, . . . , vk).

Lemma 2.2.2. T satisfies (CP).

Proof. Since T ′ already satisfies the closure property by the induction hypothesis, we just have
to consider simplices in Tvis. Suppose that S ∈ Tvis is a simplex of the form conv(C, vk), where
C ∈ T ′ is contained in a face visible to vk. Without loss of generality, let C be the convex hull
of v1, . . . , v`. A face of S is of the form CI := conv(vi : i ∈ I) where I ⊆ {1, . . . , `, k}. If k 6∈ I,
then CI ≤ C ∈ T ′ and (CP) holds. If k ∈ I, then note that CI\{k} is a face of C, and therefore,
is a cell of T ′, contained in a face visible to vk. By construction, CI is then a cell in Tvis and
therefore in T .

Lemma 2.2.3. T satisfies (IP).

Proof. Given S1, S2 ∈ T , there are three cases:

1. S1, S2 ∈ T ′

13



2. S1, S2 ∈ Tvis\T ′

3. S1 ∈ Tvis\T ′ and S2 ∈ T ′

1. The result is immediate from the induction hypothesis.

2. Let S1 = conv(C1, vk) and S2 = conv(C2, vk), where C1 and C2 are cells of T ′ that are
contained in faces visible to vk. Then by convexity,

S1 ∩ S2 = conv(C1, vk) ∩ conv(C2, vk)

= conv((C1 ∩ C2), vk).

Since C1 and C2 are in T ′, induction hypothesis implies that C1 ∩ C2 is a face of both
C1 and C2. Since both are simplices, C1 ∩ C2 is the convex hull of the common vertices
of C1 and C2. Therefore, S1 ∩ S2 is the convex hull of their common vertices, and hence
is a face of both S1 and S2.

3. Let S1 = conv(C1, vk), where C1 ∈ T ′ is in a visible facet. Note that

S1 ∩ S2 = S1 ∩ (S2 ∩ Pk−1)

= (S1 ∩ Pk−1) ∩ S2

= C1 ∩ S2.

Since C1 and S2 are both in cells T ′, induction hypothesis implies that S1 ∩ S2 is a face
of both C1 and S2. Now, since C1 is a face S1, S1 ∩ S2 is a face of S1.

Lemma 2.2.4. T satisfies (UP).

Proof. Any point in
⋃
C∈T C is in a simplex whose vertices are also the vertices of Pk. Therefore,⋃

C∈T C ⊆ Pk. Now consider some p ∈ Pk. If p ∈ Pk−1, induction hypothesis states that
p ∈

⋃
C′∈T ′ C

′ ⊆
⋃
C∈T C, so suppose p 6∈ Pk−1. Since vk is a cell in T , suppose also that

p 6= vk. Consider the line through vk and p. Because Pk is convex, this line meets Pk−1. Let
x ∈ Pk−1 be the first point we meet in Pk−1 when traveling on the line from vk towards Pk−1.
The point x is on a facet of Pk−1 that is visible to vk, and so p ∈ S for some S ∈ Tvis. Therefore,⋃
C∈T C ⊇ Pk.

Lastly, note that we have used no new vertices, since each simplex is by construction a
convex hull of vertices of P .

2.3 Regular Subdivisions

Another useful type of polytope subdivision requires viewing the vertices of the polytope in a
higher dimension. Let P ⊂ Rd be a d-polytope with vertex set V = {v1, . . . , vn}. We assign a
height function ω : Rd → Z+, and for each v ∈ V , we denote the point v′ := (v, ω(v)) ∈ Rd+1.
If we project the polytope Pω := conv(v′1, . . . , v

′
n) back to the first d coordinates, we get P . In
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other words, we identify Rd with some hyperplane Hm = {x ∈ Rd+1 : xd+1 = m} and apply the
orthogonal projection prm : (x1, . . . , xd+1) 7→ (x1, . . . , xd,m) on Pω to get P .

If we set m := max{ω(v) : v ∈ V }, then Pω is contained in the closed region bounded by
H0 = {x : xd+1 = 0} and Hm. A facet of Pω is a lower facet if it is visible to H0 and an upper
facet if it is visible to Hm. Note that there may exist facets that are neither lower nor upper
facets.

Example 2.3.1. Consider the polytope P ⊂ R3 with vertices

v0 =

0
0
0

 , v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

1
1
0

 , v4 =

0
0
4

 .

We can see that conv(v0, . . . , v3) is a facet of P with outward normal (0, 0,−1). Assign a height
function and let Pω ⊂ R4 be the polytope with vertices

v′0 =


0
0
0
0

 , v′1 =


1
0
0
1

 , v′2 =


0
1
0
1

 , v′3 =


1
1
0
1

 , v′4 =


0
0
4
0

 .

Again, we can see that F ′ = conv(v′0, . . . , v
′
3) is a facet of Pω with outward normal (0, 0,−1, 0).

A normal of H0 is (0, 0, 0,−1). By Lemma 2.1.2, since 〈(0, 0, 0,−1), (0, 0,−1, 0)〉 = 0, F ′ is
neither a lower or upper facet.

Lemma 2.3.2. Lower faces of P form a polyhedral complex.

Proof. The faces of P form a polyhedral complex, so the intersection property is preserved
when taking a subset of faces of P . To prove the closure property, we need to show that faces of
lower faces are lower faces. Let F ≤ P be a lower face. For every point p ∈ F , let pr(p) be the
orthogonal projection of p onto H0. By definition, the closed line segment [p,pr(p)] intersects
P at exactly p. Since any face of F ′ ≤ F is a subset of F , this property is preserved in F ′ and
therefore, by definition of lower faces and visibility, F ′ must be a lower face.

We would like to project the lower faces of P onto H0. Suppose there are two points p1 and
p2 that are contained in lower faces such that pr(p1) = pr(p2). Then p1 and p2 are on the line
{pr(p1) + ted+1 : t ∈ R. Equivalently, p1, p2 and pr(p1) are co-linear. Without loss of generality,
let [pr(p1), p1] be a closed line segment containing p2. Since p1 is visible to H0, p1 is the only
point in [pr(p1), p1] that is also in P . Since p2 is also in P , we must have p1 = p2. Therefore,
points in the lower faces are in 1− 1 correspondence with the projection (onto H0) of points in
the lower faces.

Lemma 2.3.3. Let F be a lower face. A set of points M = {p1, . . . , pk} ⊆ F is affinely
independent if and only if pr(M) is affinely independent.

Proof. M is affinely dependent if and only if there exists a set of αi, such that

k∑
i=1

αipi = 0
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with
∑k

i=1 αi = 0 and not all αi are zero. Then

k∑
i=1

αi pr(pi) = pr

(
k∑
i=1

αipi

)
= pr(0)

= 0.

Therefore pr(M) is affinely dependent. Since there is a 1− 1 correspondence with H0 and the
lower faces of P , the inverse of pr is well-defined. Tracing the above argument backwards would
prove the other direction of the statement.

In other words, the number of affinely independent points in lower faces are preserved in
the projection pr. Since the dimension of a polytope is equivalent to the number of affinely
independent points, we have the following corollary.

Corollary 2.3.4. A lower face F with dimension k projects (onto H0) to a k-polytope.

Lemma 2.3.5. Let F be the collection of lower faces of Pω. Then the collection

{pr(F ) : F ∈ F}

is a polytope subdivision of P .

Proof. Since F is a polyhedral complex, Corollary 2.3.4 implies that (CP) and (IP) are preserved
from F .

For a point p ∈ P , the intersection of line p×R with Pω is a closed line segment L := {(p, τ) :
s ≤ τ ≤ t}; L could possibly contain just a point. To prove the union property, suppose for a
contradiction that no point in L is in a lower face of Pω. This will lead to the conclusion that
L is not a closed line segment.

Let us look at P as an intersection of facet half-spaces; P = {x : 〈ui, x〉 ≤ bi}. Let Hlow
be the set of facet half-spaces associated with lower facets. In other words, the half-space
{x : 〈c, x〉 ≤ b} is in Hlow if and only if cd+1 < 0. Since no point in L are on lower facets,
any point in L satisfies the half-space constraints of Pω, with strict inequality on constraints in
Hlow. Consider (p, s′) with s′ < s; note that (p, s′) 6∈ Pω. For any facet half-space not in Hlow,
we have

〈c, (p, s′)〉 = c1p1 + · · ·+ cdpd + cd+1s
′

≤ c1p1 + · · ·+ cdpd + cd+1s

= 〈c, (p, s)〉
≤ b

since cd+1 ≥ 0. For any facet half-space in Hlow, we have

〈c, (p, s′)〉 = c1p1 + · · ·+ cdpd + cd+1s
′

> c1p1 + · · ·+ cdpd + cd+1s

= 〈c, (p, s)〉.
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Since the inner product is continuous, we can choose our s′ to be close enough to s such that

〈c, (p, s)〉 < 〈c, (p, s′)〉 < b.

However this means that (p, s′) in is Pω and therefore in L, which leads to a contradiction.

Note that as long as Pω is on the same side of H0, any translations of Pω and H0 preserve
whether a facet is upper, lower or neither. Let P ′ω be a polytope we obtain by reflecting Pω
across H0 and translating it to be on the same side of H0 as Pω. Then the lower and upper
faces of Pω correspond to the upper and lower faces (respectively) of P ′ω. Therefore, upper faces
of Pω also form a polytope subdivision. By a change of basis, we can extend this result for any
hyperplane.

Theorem 2.3.6. Let P ⊂ Rd be a polytope, H be a hyperplane that does not cut P , and F be
the set of faces of P visible to H. Then the orthogonal projection of faces in F onto H form a
polytope subdivision of the orthogonal projection of P onto H.

Example 2.3.7. Let P be the 3-dimensional polytope with vertices

v1 =

0
0
0

 , v2 =

1
0
0

 , v3 =

0
0
1

 , v4 =

1
2
1

 , v5 =

0
1
1

 .

Consider the height function that results in the following lifted vertices:

v′1 =


0
0
0
0

 , v′2 =


1
0
0
0

 , v′3 =


0
0
1
0

 , v′4 =


1
2
1
0

 , v′5 =


0
1
1
1

 .

The upper and lower faces induce two different triangulations for P , as shown in Figure 2.3.
Note that these vertices are affinely independent, so the convex hull of any four of these vertices
is a simplex. Let ∆i be the simplex with vertices v′j such that 1 ≤ j ≤ 5, j 6= i. Each projection

pr(∆i) onto the hyperplane {x ∈ R4 : x4 = 0}, when viewed in R3, would be a cell in exactly
one of the two triangulations described above.

The simplex pr(∆5) has volume 2, while each of the other pr(∆i) has volume 1. From
Example 2.0.9, we see that pr(∆5) cannot be subdivided into any more simplices. Since the
sum of the volumes of the cells in each triangulation of P must be equal, P has a maximal
triangulation containing cells pr(∆5) and pr(∆2), and another maximal triangulation containing
pr(∆1), pr(∆3) and pr(∆4). Note that P admits a unimodular triangulation, yet also has
another maximal triangulation that is not unimodular.
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v3 v5

v4

Figure 2.3. Two maximal triangulations of P .
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Chapter 3

Ehrhart Theory

Ehrhart theory is in some way the “skeleton” of this paper. The different ideas that we will
cover in the paper are connected together by Ehrhart theory, whether by finding applications in
Ehrhart theory, or using concepts for the proofs of this chapter, or inspired by Ehrhart theory.
In this chapter, we will see the development of Ehrhart’s Theorem, Stanley Non-negativity,
Ehrhart-Macdonald Reciprocity, and relationships between a polytope’s Ehrhart series and
triangulations.

3.1 Ehrhart’s Theorem

Given a lattice d-polytope P ⊂ Rd, we define the lattice point enumerator LP : Z+ → Z+ of P
to be

LP (t) = |tP ∩ Zd|.

In words, LP (t) is the number of lattice points in the t-dilate of P . The Ehrhart series is the
generating function

EhrP (z) :=
∑
t≥0

LP (t)zt.

Note that LP (0) is equal to 0 if P = ∅ and 1 otherwise. We will prove later in this section that
for lattice polytopes, the lattice point enumerator can actually be represented as polynomial in
t. Hence, LP (t) is referred to as an Ehrhart polynomial.

Theorem 3.1.1 (Ehrhart’s Theorem). Let P be a lattice polytope in Rd. Then LP (t) is a
polynomial in t of degree d.

We take lifting P up one dimension to P ′ to mean the following:

• Let v1, . . . , vn ∈ Rd be the vertices of P

• For i ∈ [n], let v′i := (vi, 1) ∈ Rd+1

• Let P ′ := conv{v′1, . . . , v′n}.
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In words, we embed P in the hyperplane {x ∈ Rd+1 : xd+1 = 1} and call it P ′. Recall the since
P ′ is a polytope, cone(P ′) is the cone generated by the vertices of P ′. We say that the point
(x1, . . . , xd+1) ∈ cone(P ′) is at level or height xd+1 and denote it as level(x).

Lemma 3.1.2. Let P ⊂ Rd be a lattice polytope. For t ∈ Z+, the intersection of cone(P ′) with
the hyperplane H = {x ∈ Rd+1 : xd+1 = t} is (after identifying Rd with H) tP , the t-dilate of
P .

Proof. The result is immediate for t = 0. Let v1, . . . , vn be the vertices of P , and define v′i as
above. Fix a t > 0 and let H = {x ∈ Rd+1 : xd+1 = t}. Firstly, note that cone(P ′) ∩ H is
the set of points of cone(P ′) at height t. Secondly, note that cone(P ′) is a convex cone. Let
x ∈ Rd+1 be a point in cone(P ′) at height t, and let y := 1

tx. The point y is in cone(P ′) and is
at height 1; therefore, y ∈ P ′, which implies that x ∈ tP ′. Identifying Rd with H, we see that
x ∈ tP .

Figure 3.1. Height cross sections of a cone over a lifted 2-simplex.

We want to encode the information of lattice points in a set into a generating function. The
Hilbert series σS(x) of a set S ⊆ Rn to be

σS(z) :=
∑

p∈(S∩Zn)

zp

where, given z = (z1, . . . , zn) and p = (p1, . . . , pn),

zp := zp1
1 z

p2
2 . . . zpnn .

Let us set S = cone(P ′) ⊆ Rd+1 and evaluate σS(z) at (1, . . . , 1, z). Applying Lemma 3.1.2, we
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have

σcone(P ′)(z) =
∑

p′∈(cone(P ′)∩Zd+1)

zp

=
∑
t≥0

∑
p∈(tP∩Zd)

(z1, . . . , zd)
pztd+1

σcone(P ′)(1, . . . , 1, z) =
∑
t≥0

∑
p∈(tP∩Zd)

(1, . . . , 1)pzt

=
∑
t≥0

∑
p∈(tP∩Zd)

zt

=
∑
t≥0

LP (t)zt.

Therefore, we have the following result.

Lemma 3.1.3. Let P ⊂ Rd be a lattice polytope, and let P ′ ⊂ Rd+1 be the associated lifted
polytope. Then

EhrP (z) = σcone(P ′)(1, . . . , 1, z).

We now represent cone(P ′) using a technique we refer to as tiling.

Lemma 3.1.4. Let K ⊂ Rn be a closed pointed cone with vertex at the origin, generated by
linearly independent vectors v1, . . . , vn ∈ Zn, and ΠK be the top-open parallelepiped generated
by v1, . . . , vn. Then for any u ∈ Rn, every lattice point p in u+K can be uniquely represented
as

p = x+
∑
i∈[n]

τivi

where τi ∈ Z+ and x is a lattice point in u+ ΠK .

Proof. Since the generators are linearly independent, each point p ∈ u + K is uniquely repre-
sented as a non-negative linear combination of the generators, translated by u:

p = u+
∑
i∈[n]

αivi.

Let bαic be the largest integer such that bαic ≤ αi, and {αi} := αi−bαic. We say that bαic and
{αi} are the integer part and fractional part of αi, respectively. By definition, 0 ≤ {αi} < 1.
We then have

p = u+
∑
i∈[n]

{αi}vi +
∑
i∈[n]

bαicvi.

Note that since bαic ∈ Z+ and p, vi ∈ Zn,

x := u+
∑
i∈[n]

{αi}vi = p−
∑
i∈[n]

bαicvi
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is integral. Since 0 ≤ {αi} < 1, x is a lattice point in u + ΠK . To show uniqueness, suppose
that ∑

i∈[n]

{βi}vi +
∑
i∈[n]

bβicvi =p− u =
∑
i∈[n]

{αi}vi +
∑
i∈[n]

bαicvi∑
i∈[n]

{βi}vi −
∑
i∈[n]

{αi}vi =
∑
i∈[n]

bαic − vi
∑
i∈[n]

bβicvi∑
i∈[n]

({βi} − {αi})vi =
∑
i∈[n]

(bαic − bβic)vi.

Note that bαc−bβc ∈ Z, and that linear combinations of the generators are unique. Therefore,
{βi}−{αi} = bαic−bβic for all i ∈ [n]. In particular, this implies that {βi}−{αi} is an integer.
Since 0 ≤ {βi}, {αi} < 1, we must have

{βi} − {αi} = bαic − bβic = 0

βi = bβic+ {βi} = bαic+ {αi} = αi.

Figure 3.2. Tiling of a 2-dimensional cone using a top-open parallelepiped.
The bottom-open parallelepiped would tile the interior of the cone. Figure
inspired by [5].

Using the same ideas as the above proof, the use of the bottom-open parallelepiped yields
a similar result.

Corollary 3.1.5. Let K ⊂ Rn be a closed pointed cone with vertex at the origin, generated by
linearly independent vectors v1, . . . , vn ∈ Zn, and ΠK be the bottom-open parallelepiped generated
by v1, . . . , vn. Then for any u ∈ Rn, every interior lattice point p in u + K can be uniquely
represented as

p = x+
∑
i∈[n]

τivi

where τi ∈ Z+ and x is a lattice point in u+ ΠK .
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Lemma 3.1.6. For a pointed cone K ⊂ Rn generated by linearly independent vectors v1, . . . , vn ∈
Zn,

σK(z) =
σΠK

(z)

(1− zv1) . . . (1− zvn)

Proof. This proof simply follows from the definition of σK(z) and Lemma 3.1.4:

σK(z) =
∑

p∈(K∩Zn)

zp

=
∑

x∈(ΠK∩Zn)

∑
λi∈Z+

i∈[n]

zx+λ1v1+···+λnvn

=

∑
λ1≥0

(zv1)λ1

 . . .

∑
λn≥0

(zvn)λn

 ∑
x∈ΠK

zx


=

(
1

1− zv1

)
. . .

(
1

1− zvn

) ∑
x∈(ΠK∩Zn)

zx

 .

We are now ready prove Ehrhart’s Theorem.

Proof of Ehrhart’s Theorem. First, note that L∅(t) = 0, and is a polynomial, so suppose P is
non-empty. Let T be a triangulation of P . Note that P can be expressed (via the inclusion-
exclusion principle) as the union and differences of simplices in T . Then

LP (t) =
∑
Si∈T

γiLSi(t)

where γi ∈ {−1, 1}. Since the sum of polynomials is still a polynomial and the degree of the sum
is the maximum degree among the summands, it suffices to prove the theorem for simplices. Let
∆ ⊂ Rd be a lattice simplex. Without loss of generality, we may assume ∆ is full dimensional;
otherwise we can work in the affine hull of ∆. Let v1, . . . , vd+1 be the vertices of ∆, and let ∆′

be the associated lifted simplex.

Ehr∆(z) = σcone(∆′)(1, . . . , 1, z)

=

∑
x∈(Πcone(∆′)∩Zd+1) z

x

(1− zv
′
1) . . . (1− zv

′
d+1)

∣∣∣∣∣
z=(1,...,1,z)

=

∑
x∈(Πcone(∆′)∩Zd+1) z

level(x)

(1− (1, . . . , 1)v1z1) . . . (1− (1, . . . , 1)vd+1z1)

=
h∗(z)

(1− z)d+1

where h∗(z) :=
∑

x∈(Πcone(∆′)∩Zd+1) z
level(x). Recall that for all d + 1 generators v′i = (vi, 1) of

cone(∆′), we have level(v′i) = 1. Therefore, for any lattice point x in the top-open parallelepiped
Πcone(∆′), level(x) < d + 1, which implies that the degree of f(z) is at most d. Let h∗(z) =
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h0 + h1z + · · ·+ hdz
d. Note that the origin is the only lattice point in Πcone(∆′) that is at level

zero, which implies that h0 = 1.

h∗(z)

(1− z)d+1
=

d∑
i=0

hi
zi

(1− z)d+1

=
d∑
i=0

hi
∑
j≥0

(
d+ j

d

)
zj+i

=
∑
t≥0

(
d∑
i=0

hi

(
d+ t− i

d

))
zt.

In other words,

L∆(t) = h0

(
t+ d

d

)
+ h1

(
t+ d− 1

d

)
+ · · ·+ hd−1

(
t+ 1

d

)
+ hd

(
t

d

)
, (3.1)

and therefore, LP (t) is a polynomial. It remains to show that LP (t) has degree d.

Each
(
t+i
d

)
for i = 0, . . . , d is a polynomial of degree d with positive leading coefficient. Note

that the coefficients of h∗(z) are non-negative; they count the number of lattice points at a
certain level of Πcone(∆′). In particular, note that h0 > 0. Since there is at least one positive

coefficient in h∗(z), [td]L∆(t) 6= 0; the degree of L∆(t) is dim(∆) = d. The coefficient [td]LP (t)
is then the sum of all the leading coefficients of L∆(t), indexing over all top dimensional cells
∆ ∈ T . All such leading terms are positive, and therefore, the degree of LP (t) is dim(P ) =
d.

Example 3.1.7. Let ∆ be the standard d-simplex with vertices e0, e1 . . . , ed, where e0 = 0 and
let e′i := (ei, 1) and ∆′ := conv(e′0, . . . , e

′
d). There is only one lattice point in the associated

top-open parallelepiped Π∆′ , and that point is the origin. Therefore

Ehr∆(z) =
z0

(1− z)d+1
=

1

(1− z)d+1

and

L∆(t) =

(
t+ d

d

)
.

3.2 Stanley’s Non-negativity Theorem

For a simplex, the coefficients of h∗(z) are non-negative, since they are counting something.
Does this property hold when the polytope is not a simplex? Even though we may not be
counting something for the general polytope, the answer is still yes. The following result was
proved by Beck, Haase, and Sottile.

Theorem 3.2.1 (Stanley’s Non-negativity Theorem). Suppose P ⊂ Rd is an lattice d-polytope
with Ehrhart series

EhrP (z) =
h∗(z)

(1− z)d+1

where h∗(z) is a polynomial in z. Then the coefficients of h∗(z) are non-negative.
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We defer the proof to the end of the section. If P is a lattice polytope, then P ′ would also
have integer vertices, which implies that each facet-hyperplane H of cone(P ′) is rational; they
can be expressed as

H = {x ∈ Rd : 〈c, x〉 = 0}

for some c ∈ Zd+1. The boundary of cone(P ′) would then contain lattice points. Triangulate
cone(P ′) into simplicial cones K1, . . . ,K`. We aim to “perturb” cone(P ′) by a small amount,
say vector v ∈ Rd so that

1. Any lattice point is in at most one Ki + v

2. The set of lattice points contained in v + cone(P ′) is set of lattice points contained in
cone(P ′).

For any c ∈ Zn\{0}, the hyperplane H = {x : 〈c, x〉 = 0} is a linear subspace of dimension
n − 1, and therefore Rn/H is a 1-dimensional subspace. We can use the line Lc through the
origin and c to represent Rn/H.

Lemma 3.2.2. For any primitive integer vector c ∈ Zn\{0} the orthogonal projection of Zn
onto Lc is equal to the lattice generated by c

||c||2 .

Proof. Let x = (x1, . . . , xn) be a lattice point. The projection of x onto Lc is

prLc(x) =
〈c, x〉
||c||2

c =
c

||c||2
c1x1 + · · ·+ cnxd.

Since x, c ∈ Zn, the expression c1x1 + · · · + cnxn is an integer. Now we must prove that
c1x1 + · · ·+ cnxn attains every integer value. Without loss of generality, suppose c1 and c2 are
coprime. Then there is an integer solution (x̄1, x̄2) to the Diophantine equation

c1x̄1 + c2x̄2 = 1.

Therefore, the projection of (kx̄1, kx̄2, 0, . . . , 0) onto Lc is k
||c||2 c for any integer k, which com-

pletes our proof.

By identifying Lc with R, we can represent Rn/H as R. We observe that

• v +H is represented by 〈c, v〉

• v +H+ is represented by ray {x ∈ R : x ≥ 〈c, v〉}

• v +H contains a lattice point if and only if 〈c, v〉 is an integer

For a pointed cone K ⊂ Rn with vertex at the origin, facet hyperplanes H1, . . . ,Hk and
primitive inward normals c1, . . . , ck ∈ Zn, point v satisfies the perturbing vector condition for
K if −1 < 〈ci, v〉 < 0 for all i = 1, . . . , k.

Lemma 3.2.3. For any v that satisfies the perturbing vector condition for K, the set of lattice
points in v +K is equal to the set of lattice points in K.
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Proof. Since K is the intersection of its facet half-spaces, it suffices to show that for each
i = 1, . . . , k, the set of lattice points in v +H+

i is equal to the set of lattice points in H+
i . Let

us look at Rn/H, treated as R.

We view H+ and v +H+ as the rays R1 := {x ∈ R : x ≥ 0} and R2 := {x ∈ R : x ≥ 〈c, v〉}
respectively. We see that R1 ∩ Z = Z+ and R2 ∩ Z = {x ∈ Z : x ≥ d〈c, v〉e}. By our choice of
v, we see that d〈c, v〉e = 0. Therefore, R1 ∩ Z = R2 ∩ Z.

K

v

v +K

Figure 3.3. Perturbing cone K. Any point in the interior of the red region
satisfies the perturbing vector condition.

Proof of Stanley’s Non-negativity Theorem. Triangulate cone(P ′) into simplicial conesK1, . . . ,K`.
Let N be the set of normals of the facet hyperplanes of K1, . . . ,K`. Pick a v ∈ Rd such that

• 〈c, v〉 is not an integer for c ∈ N

• v satisfies the perturbing vector condition with respect to cone(P ′)

There is such a perturbing vector v because there are only finitely many facet hyperplanes.
Since 〈ci, v〉 is not an integer, each v + Hi does not contain any lattice points. There are no
lattice points in the facet hyperplanes of simplicial cones v + K1, . . . , v + K`. Therefore, any
lattice point is in at most one Ki. Applying Lemma 3.2.3 , we see that

cone(P ′) ∩ Zd = (v + cone(P ′)) ∩ Zd =
⊔̀
i=1

((v +Ki) ∩ Zd).

We then have

h∗(z)

(1− z)d+1
= σcone(P ′)(1, . . . , 1, z)

= σv+cone(P ′)(1, . . . , 1, z)

=

m∑
i=1

σv+Ki(1, . . . , 1, z).

Since the denominator of each σv+Ki(1, . . . , 1, z) is (1− z)d+1, and their numerators count the
number of integer points in a parallelepiped, the coefficients of h∗(z) are non-negative.
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3.3 Unimodular Triangulations and Ehrhart Polynomials

We now apply some of the tools we used in the previous section to see a relationship between a
triangulation of a polytope and its Ehrhart polynomial. We define the f -vector of a triangulation
T of a lattice d-polytope to be

f(T ) = (f−1(T ), f0(T ), . . . , fd(T ))

where f−1(T ) = 1 and each other fk(T ) is the number of k-dimensional faces in the triangu-
lation. Where there is no ambiguity, we will use fk to denote fk(T ).

Lemma 3.3.1. If a lattice d-polytope P ⊂ Rd has a unimodular triangulation T with f -vector
(f−1, . . . , fd), then

LP (t) =

d∑
k=0

(
t− 1

k

)
fk

Proof. This proof uses similar steps to the proof of Ehrhart’s theorem. First we let T be a
unimodular triangulation of P . By noting that P is the disjoint union of all the relative interiors
of the cells of T , we have

LP (t) =
∑
C∈T

LC◦(t).

In light of this realization, let us take a k-dimensional unimodular simplex S ∈ T and view it
in Rk. Let S have vertices v1, . . . , vk+1 ∈ Zk. Consider the (k + 1)-dimensional cone of S′

KS′ := cone(S′) = cone{v′1, . . . , v′k+1}

where v′i = (vi, 1). Now, we consider the bottom-open parallelepiped ΠS′ generated by the
vertices of S′. Recall that any lattice point p in the interior of KS can be written as a unique
combination

p =
k+1∑
i=1

τiv
′
i + x (3.2)

where τi ∈ Z+ and x is a lattice point in ΠS′ . Since level(v′i) = 1 for all i = 1, . . . , k+ 1, we see
that

level(p) = τ1 + · · ·+ τk+1 + level(x)

level(p)− level(x) = τ1 + · · ·+ τk+1 (3.3)

Fix a lattice point x ∈ ΠS′ and t ≥ level(x). We are interested in the number of points p of
the form in (3.2) such that level(p) = t. From (3.3), we see that this number is equal to the
number of un-ordered partitions of t− level(x) of size at most k + 1, which is(

t− level(x) + k

k

)
.

Therefore, we can express LS◦(t) as

LS◦(t) =
∑
x∈ΠS

(
t− level(x) + k

k

)
=

k+1∑
i=1

δi

(
t− i+ k

k

)
(3.4)
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where δi is the number of lattice points x ∈ ΠS′ such that level(x) = i. Since S is unimodular,
δk+1 = 1 and for all other i, δi = 0. Thus, we have

LS◦(t) =

(
t− 1

k

)
.

Going back to P , we have

LP (t) =
∑
C∈T

LC◦(t) =
d∑

k=0

(
t− 1

k

)
fk.

Instead of determining LP (t), let us try to to determine the Ehrhart series EhrP (z) di-
rectly. We know that the (k + 1)-dimensional bottom-open parallelepiped associated with a
k-dimensional unimodular simplex contains only one lattice point, and that this lattice point
is at level k + 1. Therefore, the Ehrhart series of the interior of a k-dimensional unimodular
simplex is

Ehr∆◦ =
zk+1

(1− z)k+1
.

Note that tiling with the bottom-open parallelepiped would omit the origin, or the zero dilation
of P . Taking into account the zero dilation of P , we have

EhrP (z) = 1 + f0
z

1− z
+ · · ·+ fd

zd+1

(1− z)d+1

=
h∗(z)

(1− z)d+1

where h∗(z) is a polynomial in z. From the above expression, it may seem like the degree of
h∗(z) may be d+ 1, but the proof of Ehrhart’s Theorem implies that the degree of h∗(z) is in
fact at most d.. We encode the coefficients of h∗(z) into the h∗-vector of P :

(h0, . . . , hd+1)

where h` = [z`]h∗(z). Let us determine the h∗-vector of P in terms of the entries of the f -vector
of a triangulation of P .

Theorem 3.3.2. Let P ⊂ Rd be a lattice d-polytope. If P has h∗-vector (h0, . . . , hd+1) and a
unimodular triangulation with f -vector (f−1, . . . , fd), then

h` =
∑̀
k=0

fk−1

(
d+ 1− k
`− k

)
(−1)`−k

and

f`−1 =
∑̀
k=0

hk

(
d+ 1− k
`− k

)
.
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Proof. The first result follows from looking at the coefficients of h∗(z).

h∗(z) = (1− z)d+1 Ehr(z)

= (1− z)d+1
d+1∑
k=0

fk−1(1− z)−kzk

=

d+1∑
k=0

fk−1(1− z)d+1−kzk

=

d+1∑
k=0

fk−1

d+1−k∑
i=0

(
d+ 1− k

i

)
(−1)izk+i

[z`]h∗(z) =
∑̀
k=0

fk−1

(
d+ 1− k
`− k

)
(−1)`−k.

For the second result, let us define two polynomial functions

f(z) := f−1z
d+1 + f0z

d + · · ·+ fd−1z + fd (3.5)

h(z) := h0z
d+1 + h1z

d + · · ·+ hdz + hd+1. (3.6)

First, we show that h(z) = f(z − 1) by comparing coefficients. For 0 ≤ ` ≤ d+ 1,

[zd+1−`]f(z − 1) = [zd+1−`]
d+1∑
k=0

fk−1(z − 1)d+1−k

= [zd+1−`]
d+1∑
k=0

fk−1

d+1−k∑
i=0

(
d+ 1− k

i

)
(−1)izd+1−k−i

=
∑̀
k=0

fk−1

(
d+ 1− k
`− k

)
(−1)`−k

= h`

= [zd+1−`]h(z).

Now, we compute the coefficients of f(z) = h(z + 1):

f`−1 = [zd+1−`]f(z)

= [zd+1−`]h(z + 1)

= [zd+1−`]

d+1∑
k=0

hk(z + 1)d+1−k

= [zd+1−`]
d+1∑
k=0

hk

d+1−k∑
i=0

(
d+ 1− k

i

)
zd+1−k−i

=
∑̀
k=0

hk

(
d+ 1− k
`− k

)
.
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Theorem 3.3.2 tells us that the f -vector of a unimodular triangulation (if one exists) of a
lattice polytope P is uniquely expressed in terms of the polytope’s h∗-vector. Since h∗(z) is
unique, all unimodular triangulations of P have the same f -vector. However, if P does not
admit a unimodular triangulation then this theorem might not be able to give us any f -vector
of any triangulation of P at all. Example 3.4.3 demonstrates what happens when we misuse
this theorem. We will see in section later that the f -vector gives appropriate information on
decompositions rather than triangulations.

3.4 Examples of Ehrhart Polynomials

Example 3.4.1. Let us revisit the Ehrhart series of a standard d-simplex ∆. Since ∆ is already
a unimodular simplex, it has a unimodular triangulation: the collection of all faces of ∆. Let
the f -vector of ∆ be (f−1, f0, . . . , fd). In this particular case, we know that

fi =

(
d+ 1

i+ 1

)
.

The Ehrhart series of ∆ is then

1 +

d∑
k=0

fk
zk+1

(1− z)k+1
= 1 +

d∑
k=0

(
d+ 1

k + 1

)
zk+1

(1− z)k+1

=
h∗(z)

(1− z)d+1
.

By defining f(z) and h(z) as defined in (3.5) and (3.6), we have

f(z) =

(
d+ 1

0

)
zd+1 +

(
d+ 1

1

)
zd + · · ·+

(
d+ 1

d

)
z +

(
d+ 1

d+ 1

)
= (1 + z)d+1

h(z) = f(z − 1)

= zd+1.

By the definition of h(z), we see that h0 = 1 and h` = 0 for ` = 1, . . . , d+ 1, which agrees with
Example 3.1.7. For a more specific example, if ∆ is 3-dimensional, then the Ehrhart series is

1 +
4z

(1− z)
+

6z2

(1− z)2
+

4z3

(1− z)3
+

z4

(1− z)4
.

Notice that since the associated bottom-open parallelepiped of a unimodular simplex has
only one lattice point, if lattice polytope admits a unimodular triangulation, then it is very easy
to determine its Ehrhart series. However, using the f -vector method can quickly get tedious for
a polytope without a unimodular triangulation, since we would need to look at each specific face
of the triangulation to determine relative interior lattice points of its associated bottom-open
parallelepiped.
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Example 3.4.2. Let us look at a polytope that does not have a unimodular triangulation. Let
S be the simplex with vertices

v1 =

0
0
0

 , v2 =

1
0
0

 , v3 =

0
0
1

 , v4 =

ab
1


with 0 < a < b, coprime. This simplex has volume b and is an empty simplex. Additionally,
any lattice 3-simplex with volume b could be mapped to S via a unimodular transformation.
Thus, the only triangulation of S is the collection of its faces. Since S has volume b, S does
not have a unimodular triangulation. Let us look at the faces of the triangulation in order of
dimension. Note that since S is an empty simplex, the vertices, edges and 2-dimensional faces
of S have no relative interior lattice points. In these dimensions, this implies that these faces
are unimodular. Therefore, their Ehrhart series are going to take on the form of the Ehrhart
series in Example 3.4.1. The resulting Ehrhart series would be

Ehr∆(z) = 1 +
4z

(1− z)
+

6z2

(1− z)2
+

4z3

(1− z)3
+
p(z) + z4

(1− z)4

for some polynomial p(z) of degree at most 3. We determine p(z) by looking at the interior
lattice points of the associated parallelepiped. In other words, we need to count the number of
integer points x = (x1, x2, x3, x4) of the form

x =


0 1 0 a
0 0 0 b
0 0 1 1
1 1 1 1



λ1

λ2

λ3

λ4


where 0 < λ1, λ2, λ3, λ4 < 1. We see that x2 = bλ4 must be integer, so let

λ4 =
k

b

for some integer 0 < k < b. Also, x3 = λ3 + λ4 must be integer, but we see that 0 < λ3, λ4 < 1,
which implies that

0 <λ3 + λ4 < 2

=⇒ λ3 + λ4 = 1.

Since

level(x) = x4

= λ1 + λ2 + λ3 + λ4

= λ1 + λ2 + 1

must be an integer, we see that λ1 + λ2 must also be integer. Using the same argument that
0 < λ1, λ2 < 2, we see that

λ1 + λ2 = 1.
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Therefore, the only interior lattice points of the parallelepiped are at level 2. Let us count how
many such lattice points there are. Again,

x1 = λ2 + aλ4

= λ2 +
ak

b

must be integer, and 0 < λ2 < 1, so

λ2 = 1−
{
ak

b

}
where {n} denotes the fractional part of n. However, since λ2 < 1, we need

{
ak
b

}
6= 0, which

happens if and only if b - ak. Since a and b are coprime, for any 0 < k < b, we have b - ak.
Therefore, there are b− 1 such lattice points;

p(z) = (b− 1)z2.

Note that p(z) does not depend of a at all! Now suppose we force our idea and claim that
we can use Theorem 3.3.2 to determine the f -vector of some triangulation of P , even though
P does not admit a unimodular triangulation.

Example 3.4.3. Let us take the simplex ∆ with vertices (0, 0, 0), (1, 0, 0), (0, 0, 1) and (a, b, 1)
where 0 < a < b are coprime integers. We know that the Ehrhart series is

Ehr∆(z) = 1 +
4z

(1− z)
+

6z2

(1− z)2
+

4z3

(1− z)3
+

(b− 1)2 + z4

(1− z)4
.

Using partial fraction decomposition, the Ehrhart series can be written as

Ehr∆(z) = 1 +
4z

(1− z)
+

(b+ 5)z2

(1− z)2
+

(2b+ 2)z3

(1− z)3
+

bz4

(1− z)4
.

Now, we suppose (by way of contradiction) that (1, 4, b + 5, 2b + 2, b) is the f -vector for a
triangulation for b ≥ 2. This is obviously false, since there are 4 vertices in the triangulation,
which means that there should be at most

(
4
2

)
= 6 edges in the triangulation. With b ≥ 2 our

supposed f -vector has at least 7 edges in its triangulation, which leads to a contradiction.

3.5 Ehrhart-Macdonald Reciprocity

We now explore the relationship between the number of lattice points in P and the number of
lattice points in the interior of P . More specifically, we see the development of the following
reciprocity theorem. We defer the proof of this theorem to the end of the section.

Theorem 3.5.1 (Ehrhart-Macdonald Reciprocity). Suppose P is a lattice d-poytope. Then the
evaluation of LP at negative integers yields

LP (−t) = (−1)dLP ◦(t).
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Example 3.5.2. Recall that for a unimodular d-simplex ∆, we have L∆(t) =
(
d+t
d

)
and

L∆◦(t) =
(
t−1
d

)
. Since

L∆(−t) =

(
d− t
d

)
=

(d− t)(d− t− 1) . . . (−t+ 1)

t!

= (−1)d
(t− d)(t− d+ 1) . . . (t− 1)

t!

= (−1)d
(
t− 1

d

)
= (−1)dL∆◦(t),

we see that the reciprocity theorem holds for unimodular simplices.

Like the proof of Stanley’s non-negativity theorem, we would like to triangulate cone(P ′)
into top-dimensional simpicial cones K1, . . . ,K` and translate cone(P ′) by v ∈ Rd such that

1. Any lattice point is in at most one Ki

2. The set of lattice points contained in v+ cone(P ′) is the set of lattice points contained in
cone(P ′).

We’ve already seen that any v satisfying the perturbing vector condition would suffice. We now
prove a counterpart of Lemma 3.2.3.

Lemma 3.5.3. Let K ⊂ Rn be a pointed cone with vertex at the origin. Then for any vector
v satisfying the perturbing vector condition, the set of lattice points in −v + K is the set of
interior lattice points in K.

Proof. Mimicking the proof of Lemma 3.2.3, we aim to show that the set of interior lattice
points in each inward facet half-space H+ is equal to the set of lattice points in −v + H+.
Again, we consider Rn/H and view H+ and −v + H+ as rays R1 := {x ∈ R : x ≥ 0}
and R2 := {x ∈ R : x ≥ 〈c,−v〉} respectively, where c ∈ Zn is the inward normal of H+.
The set of interior lattice points of R1 is Z>0. The set of lattice points in −v + H+ is and
R2 ∩ Z = {x ∈ Z : x ≥ d〈c,−v〉e}. Recalling that v satisfies the perturbing vector condition,
implying that 0 < 〈c,−v〉 < 1 completes our proof.

In summary, for such a v and cone K, we have the following:

1. K◦ ∩ Zd = (−v +K) ∩ Zd

2. ∂(−v +Ki) ∩ Zd = ∅ for all i = 1, . . . , `

3. ∂(v +Ki) ∩ Zd = ∅ for all i = 1, . . . , `

4. K ∩ Zd = (v +K) ∩ Zd .
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Now, we will need to prove a chain of results that will lead us to the proof of the Ehrhart-
Macdonald Reciprocity theorem.

Theorem 3.5.4. Suppose K is a (simplicial) cone generated by linearly independent integer
vectors w1, . . . , wn, and that Π◦ is the open parallelepiped

Π◦ := {λ1w1 + · · ·+ λnwn : 0 < λ1, . . . , λn < 1}.

Then for any v that satisfies the perturbing vector conditions with respect to K,

(a) −v + Π◦ = −(v + Π◦) + w1 + · · ·+ wn

(b) σ−v+K

(
1

z1
, . . . ,

1

zn

)
= (−1)nσv+K(z1, . . . , zn)

(c) σK

(
1

z

)
= (−1)dσK◦(z) (Stanley Reciprocity)

Proof. Using the fact that 0 < λi < 1 =⇒ 0 < 1− λi < 1, we have

−(v + Π◦) + w1 · · ·+ wn = −v − {λ1w1 + · · ·+ λnwn : 0 < λi < 1}+ w1 + · · ·+ wn

= −v + {(1− λ1)w1 + · · ·+ (1− λn)wn : 0 < λi < 1}
= −v + {λ1w1 + · · ·+ λnwn : 0 < λi < 1}
= −v + Π◦,

thus completing the proof of (a). And so,

σ−v+Π◦(z) = σ−(v+Π◦)(z)zw1 . . . zwd

= zw1 . . . zwd
∑

x∈−(v+Π◦)∩Zd
zx

= zw1 . . . zwd
∑

x∈(v+Π◦)∩Zd
z−x

= zw1 . . . zwd
∑

x∈(v+Π◦)∩Zd

(
1

z

)x

= σv+Π◦

(
1

z

)
zw1 · · · zwd

σ−v+Π◦

(
1

z

)
= σv+Π◦(z)z−w1 · · · z−wd

where we denote 1
z :=

(
1
z1
, . . . , 1

zd

)
. Since there are no lattice points on the boundary of −v+K,

σ−v+K(z) =
σ−v+Π◦(z)

(1− zw1) . . . (1− zwn)
.

34



Reciprocating z, we then have

σ−v+K

(
1

z

)
=

σ−v+Π◦(1/z)

(1− z−w1) · · · (1− z−wd)

=
σv+Π◦(z)z−w1 · · · z−wd

(1− z−w1) · · · (1− z−wd)

=
σv+Π◦(z)

(z−w1 − 1) · · · (z−wd − 1)

= (−1)d
σv+Π◦(z)

(1− zw1) · · · (1− zwd)

= (−1)dσv+K(z)

thus completing the proof of (b). Since none of the Ki’s share lattice points, we have

σK

(
1

z

)
= σv+K

(
1

z

)
=
∑̀
i=1

σv+Ki

(
1

z

)

=
∑̀
i=1

(−1)dσ−v+Ki(z)

= (−1)dσ−v+K(z)

= (−1)dσK◦(z)

thus completing the proof of (c).

Now, we define the Ehrhart series for the relative interior of a rational polytope P to be

EhrP ◦(z) :=
∑
t≥1

LP ◦(t)z
t.

We have the analogue of Lemma 3.1.3:

EhrP ◦(z) = σ(cone(P ′))◦(1, . . . , 1, z).

Lemma 3.5.5. Suppose P is a lattice d-polytope. Then the evaluation of the rational function
EhrP at 1

z yields

EhrP

(
1

z

)
= (−1)d+1 EhrP ◦(z).

Proof. Let K := cone(P ′). We have

EhrP

(
1

z

)
= σK

(
1,

1

z

)
= (−1)d+1σK◦(1, z)

= (−1)d+1 EhrP ◦(z)
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Corollary 3.5.6. Let ∆k be a unimodular k-simplex. Then∑
t≤0

L∆k
(−t)zt = −

∑
t≥1

L∆k
(−t)zt

Proof. We make use of the result of Example 3.5.2 and see that

∑
t≤0

L∆k
(−t)zt =

∑
t≥0

L∆k
(t)

(
1

z

)t
= Ehr∆k

(
1

z

)
∑
t≥1

L∆k
(−t)zt =

∑
t≥1

(−1)kL∆◦k
(t)zt = (−1)k Ehr∆◦k

(z)

Applying Lemma 3.5.5 completes this proof.

Proof of Ehrhart-Macdonald Reciprocity. We note that L∆k
(t) for k ≥ 0 forms a basis for poly-

nomials in t, so we can express LP (t) as

LP (t) =
d∑

k=0

αkL∆k
(t)

for some αk ∈ R. Then we have∑
t≥1

LP ◦(t)z
t = EhrP ◦(z)

= (−1)d+1 EhrP

(
1

z

)
= (−1)d+1

∑
t≤0

LP (−t)zt

= (−1)d+1
∑
t≤0

d∑
k=1

αkL∆k
(−t)zt

= (−1)d+1
d∑

k=1

αk
∑
t≤0

L∆k
(−t)zt

= (−1)d+1(−1)

d∑
k=1

αk
∑
t≥1

L∆k
(−t)zt

= (−1)d
∑
t≥1

d∑
k=1

αkL∆k
(−t)zt

= (−1)d
∑
t≥1

LP (−t)zt.

Comparing coefficients completes the proof.
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Chapter 4

Polytope Algebra

The polytope algebra becomes our main interest, as it is the key to unlocking the way to
“express any polytope in terms of” unimodular simplices; we will see this in Chapter 5. In this
chapter, we introduce the lattice polytope algebra and show a specific way of decomposing of
a lattice polytope. A consequence of this algorithm is Brion’s Theorem, which we will use to
provide any alternate proof of Ehrhart’s Theorem.

4.1 Valuations

A valuation is a map that maps sets in a vector space to elements in an abelian group. Through-
out this section, let S denote some collection of sets in Rd. For example, S could be the set of
lines passing through the origin; or it could be the set of all balls centred at some fixed point,
including the ball with zero radius.

We say that S is intersectional if it is closed under intersection. In other words, S is
intersectional if, for any finite non-empty index set I,

Ai ∈ S ∀ i ∈ I =⇒
⋂
i∈I

Ai ∈ S . (4.1)

In the above two examples, we see that the latter is intersectional, since for any two distinct
balls centred at the same point, one must contain the other. However, the former is not
intersectional, since the intersection of two elements in this family is the singleton {0}, not a
line.

A valuation is a function ϕ : S → G (where G is an abelian group) satisfying what we will
refer to as the “inclusion-exclusion relation”:

ϕ(A ∪B) + ϕ(A ∩B) = ϕ(A) + ϕ(B) (4.2)

whenever A,B,A∪B, and A∩B are in S . We take ϕ(∅) to be 0. If S is intersectional, then we
let U(S ) denote the set of finite unions of elements in S , and U(S ) := {A\B : A,B ∈ U(S )}.
Later on, we will see an example of a valuation on S extending to U(S ) and U(S ); but first,
we need to develop more tools.
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For a set A ∈ S , let [A] : Rd → {0, 1} be the indicator function of A, defined by

[A](x) =

{
1 if x ∈ A
0 if x 6∈ A (4.3)

Note that [Rd] = 1 and [∅] = 0. Here are a few more properties of indicator functions:

Lemma 4.1.1. For A,B ∈ S

(a) [A][B] = [A ∩B]

(b)
[
A
]

= 1− [A]

(c) [A ∪B] + [A ∩B] = [A] + [B]

Proof.

(a) [A][B] evaluated at x is [A](x) · [B](x).

[A](x) · [B](x) = 1 ⇐⇒ [A](x) = 1 = [B](x)

⇐⇒ x ∈ A and x ∈ B
⇐⇒ x ∈ (A ∩B)

⇐⇒ [A ∩B](x) = 1

(b) We perform a simple case analysis. If x ∈ A, then x 6∈ A; 1− [A](x) = 1− 1 = 0, which is
what we wanted

[
A
]

(x) to be, in this case. If x 6∈ S, then x ∈ A; 1− [A](x) = 1− 0 = 1,
which is also what we wanted

[
A
]

(x) to be, in this case.

(c) We use the fact that A ∪B = A ∩B.

[A ∪B] = 1−
[
A ∪B

]
= 1−

[
A ∩B

]
= 1−

[
A
] [
B
]

= 1− (1− [A])(1− [B])

= [A] + [B]− [A][B]

[A ∪B] + [A ∩B] = [A] + [B]

Note that part c) is an example of the inclusion-exclusion principle. We can generalize this
result to more than two sets.

Theorem 4.1.2 (Inclusion-Exclusion). Let A1, . . . , Am ⊂ Rd be sets. Then

[A1 ∪ · · · ∪Am] = 1− (1− [A1]) . . . (1− [Am])

=
∑
K⊆[m]
K 6=∅

(−1)|K|−1

[ ⋂
k∈K

Ak

]
.
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Proof. The second equality in the statement of the theorem is a result of expanding the product
before it. Now, to prove the first equality.

[A1 ∪ · · · ∪Am] = 1−
[
A1 ∪ · · · ∪Am

]
= 1−

[
A1 ∩ · · · ∩Am

]
= 1−

[
A1

]
. . .
[
Am

]
= 1− (1− [A1]) . . . (1− [Am])

Now, let us define V (S ) to be the free abelian group generated by the indicator functions
of elements of S . An element f ∈ V (S ) would be of the form

f =
∑
i

αi[Ai],

where Ai ∈ S and αi ∈ R, for which finitely many αi are non-zero. We can equip V (S ) with
addition (for two elements

∑
i αi[Ai] and

∑
j βj [Aj ] ∈ V (S ))∑

i

αi[Ai] +
∑
j

βj [Aj ] =
∑
i

(αi + βi)[Ai], (4.4)

multiplication(∑
i

αi[Ai]

)∑
j

βj [Aj ]

 =
∑
i,j

αiβj [Ai][Aj ] =
∑
i,j

αiβj [Ai ∩Aj ] (4.5)

and scalar multiplication (for any c ∈ R)

c

(∑
i

αi[Ai]

)
=
∑
i

cαi[Ai]

Lemma 4.1.3. Let S be a non-empty collection of subsets of Rd. Then V (S ) is a commutative
algebra over R.

Proof. Note that V (S ) is a subset of F (Rd,R), the set of functions from Rd to R. Conve-
niently, F (Rd,R) is a commutative algebra. Thus, showing that V (S ) contains the additive
identity and is closed under addition and multiplication would suffice to prove that V (S ) is a
commutative algebra.

We set the additive identity to be
∑

i 0[Ai]. Consider (4.4); since finitely many αi and βi
are non-zero, finitely many αi + βi are non-zero. Therefore, we have closure under addition.
Next, consider (4.5); again, finitely many non-zero αi and βi implies finitely many non-zero
αiβi. Therefore, we have closure under multiplication.

Now, we will see an extension on a valuation on S . Let ϕ : S → V (S ) be the function
that takes A ∈ S to [A].

Lemma 4.1.4. ϕ is a valuation on S .
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Proof. To show that ϕ is a valuation, we need to prove that

1. V (S ) is an abelian group

2. Whenever A,B,A ∪B, and A ∩B are in S , we get

ϕ(A ∪B) + ϕ(A ∩B) = ϕ(A) + ϕ(B)

To prove part 1, observe by Lemma 4.1.3 that S is a commutative algebra, and therefore,
an abelian group.

To prove part 2, observe by Lemma 4.1.1c that for any A,B ⊆ Rd,

[A ∪B] + [A ∩B] = [A] + [B]

Therefore, if A,B,A ∪B, and A ∩B are in S , then part 2 must hold.

Suppose that S is intersectional. For Ai ∈ S , i = 1, . . . ,m, we can use inclusion-exclusion
to express [

⋃m
i=1Ai] ∈ V (S ) as a finite linear combination of

[⋂
k∈K Ak

]
’s. Since S is inter-

sectional, these intersections are also in S . Therefore, we can try to extend ϕ to U(S ) by
defining

ϕ

(
m⋃
i=1

Ai

)
:=

∑
K`[m]

(−1)|K|−1 ϕ

(⋂
k∈K

Ak

)

=
∑
K`[m]

(−1)|K|−1

[ ⋂
k∈K

Ak

]

=

[
m⋃
i=1

Ai

]

Lemma 4.1.5. The extension ϕ : U(S )→ V (S ) is a valuation.

Proof. We have already shown that V (S ) is an abelian group. Suppose A and B are sets in
U(S ). We must show that

ϕ(A) + ϕ(B) = ϕ(A ∪B) + ϕ(A ∩B).

However, this follows immediately from our definition ϕ(A) = [A] and Lemma 4.1.1c.

Finally, let us try to extend ϕ to U(S ). For, A,B ∈ U(S ), note that

[A\B] = [A ∩B]

= [A][B]

= [A](1− [B])

= [A]− [A ∩B]
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Let A :=
⋃
i∈I Ai and B :=

⋃
j∈J Bj where Ai, Bi ∈ S , for all i and j in finite index sets

I and J , respectively. Note that

A ∩B =

(⋃
i∈I

Ai

)
∩B

=
⋃
i∈I

(Ai ∩B)

=
⋃
i∈I

Ai ∩
⋃
j∈J

Bj


=

⋃
i∈I,j∈J

(Ai ∩Bj)

Since S is intersectional, A∩B is also in U(S ). We try to extend ϕ to U(S ) by defining (for
any A,B ∈ U(S ))

ϕ(A\B) :=ϕ(A)− ϕ(A ∩B)

=[A]− [A ∩B]

=[A\B]

Lemma 4.1.6. The extension ϕ : U(S )→ V (S ) is a valuation.

Proof. The proof is almost identical to the proof of the previous lemma. We just need to change
A and B to be in U(S ) instead of U(S ).

A pattern emerges from the similarities of the previous proofs. Given any set A ⊆ Rd, let
us set ϕ(A) := [A]. Then for any A,B ∈ Rd, we can use Lemma 4.1.1c to show

ϕ(A) + ϕ(B) = [A] + [B]

= [A ∪B] + [A ∩B]

= ϕ(A ∪B) + ϕ(A ∩B)

Now suppose we have a linear map ϕ̄ from V (S ) into an abelian group. In other words,
for any A,B ∈ S and α, β ∈ R,

ϕ̄(α[A] + β[B]) = αϕ̄([A]) + βϕ̄([B]). (4.6)

By defining ϕ(A) := ϕ̄([A]) we see that

ϕ(A) + ϕ(B) = ϕ̄([A]) + ϕ̄([B])

= ϕ̄([A] + [B])

= ϕ̄([A ∪B] + [A ∩B])

= ϕ̄([A ∪B]) + ϕ̄([A ∩B])

= ϕ(A ∪B) + ϕ(A ∩B)

Therefore, for every linear map ϕ̄ : V (S )→ G (where G is an abelian group), ϕ(A) := ϕ̄([A)]
is a valuation on S . In light of this discovery, let us say that a valuation on V (S ) is a linear
map from V (S ) to an abelian group. For convenience of notation, given a valuation ϕ̄ on
V (S ), let us denote ϕ̄(P ) to mean ϕ̄([P ]).
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4.2 Algebra of Polyhedra

We have seen that for a collection S of sets in Rd, V (S ) is an algebra (if we choose to equip it
with addition, multiplication and scalar multiplication). If we take S to be the set of polyhedra,
then we define the algebra of polyhedra, denoted P(Rd), to be V (S ), equipped with addition
and scalar multiplication. In other words, the algebra of polyhedra is the real vector space
generated by indicator functions [P ], where P ⊂ Rd is a polyhedron. If instead, we take S
to be the set of rational polyhedra, we would have the algebra of rational polyhedra, denoted
P(Qd). Similarly, let us denote K(Rd) to be the algebra of compact convex sets in Rd.

Lemma 4.2.1. P(Qd) is spanned by indicator functions [P ] where P is a rational polyhedron
without straight lines.

Proof. We prove the lemma by showing that for any non-empty rational polyhedron Q =
{x ∈ Rd : Ax ≤ b}, [Q] can be expressed as a linear combination of [P ]’s, where each P is a
rational polyhedron without straight lines. To do so, we use induction on the nullity of A. If
Nullity(A) = 0, then by Corollary 1.1.5, Q does not have straight lines, and we’re done. Taking
the inductive step, assume that Nullity(A) > 0. Let z 6= 0 be in the null-space of A. Since A
is an integer matrix, we can assume without loss of generality that z is an integer vector. Let
P1 and P2 be

P1 = Q ∩ {x : 〈x, z〉 ≤ 0}
P2 = Q ∩ {x : 〈x, z〉 ≥ 0}.

P1 and P2 are rational polyhedra, since z is integer. Since Q = P1 ∪P2, by inclusion-exclusion,
we have

[Q] = [P1] + [P2]− [P1 ∩ P2].

It remains to show that [P1], [P2] and [P1 ∩P2] can be expressed as linear combinations of indi-
cator functions of polytopes without straight lines. Note that the constraint matrices associated
to P1, P2 and P1 ∩ P2 are (

A

zT

)
,

(
A

−zT

)
,

 A
zT

−zT


respectively. Since z is in the null-space of A, the nullities of the above three matrices are less
than Nullity(A). Applying the induction hypothesis completes the proof.

4.2.1 Euler Valuation

We would like to define a unique valuation χ : P(Rd)→ R such that χ(P ) = 1 for every non-
empty polyhedron in Rd. We call this valuation the Euler valuation. The following approach
to constructing the Euler valuation can be found in Barvinok [1].

Consider an element f =
∑

i αi[Pi] in P(Rd). If χ(f) exists, it must take on the value∑
i:Pi 6=∅ αi. Since finitely many αi are non-zero, this sum has a finite value and so χ(f) would

be well-defined. Therefore, if χ(f) exists, then it is unique.

Before defining χ for P(Rd), let us define the Euler valuation χK on elements f ∈ K(Rd).
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Lemma 4.2.2. The Euler valuation χK : K(Rd)→ R exists.

Proof. We use induction on d. For the base case, we consider d = 0. Elements in K(R0) will
be of the form α[0] for some α ∈ R, so χK(α[0]) = α. Now suppose d > 0.

For a τ ∈ R define
Hτ = {x ∈ Rd : xd = τ}

to be the hyperplane at height τ . Let K(Hτ ) be the algebra of compact convex sets in Hτ .
By identifying Hτ with Rd−1, induction hypothesis tells us that there exists Euler valuation
χτ : K(Hτ )→ R. For a function f =

∑
i αi[Ai] in K(Rd), let

fτ :=
∑
i

αi[Ai ∩Hτ ]

We claim that Ai∩Hτ is compact and convex. Indeed, since Ai is compact (closed and bounded)
and convex, and Hτ is closed, Ai ∩Hτ is closed and bounded (compact) as well. Since Ai and
Hτ are both convex, Ai ∩ Hτ is convex as well. Therefore, fτ ∈ K(Hτ ), and χτ (fτ ) is well
defined:

χτ (fτ ) =
∑

i:Ai∩Hτ 6=∅

αi.

Now let us compare the limit
lim
ε→0+

χτ−ε(fτ−ε).

to χτ (fτ ). Let A be a compact convex set. By convexity, for some sufficiently small ε′ > 0,

the value of χt(ft) will be constant for τ − ε′ ≤ t < τ .

Therefore, the value of limε→0+ χτ−ε(fτ−ε) equals the value of χt(ft) on the half-open interval
[τ − ε′, τ). Let us refer to the above result as the constant neighbourhood property. We perform
some case analysis. Let f = [A].

a) Suppose χτ (fτ ) = 1 (i.e. Hτ ∩A 6= ∅) and limε→0+ χτ−ε(fτ−ε) = 1. Then by the constant
neighbourhood property, χτ−ε′(fτ−ε′) = 1, which implies that A ∩Hτ−ε′ 6= ∅.

b) Suppose χτ (fτ ) = 1 and limε→0+ χτ−ε(fτ−ε) = 0. Then, by the constant neighbourhood
property, χt(ft) = 0 (i.e. Ht∩A = ∅) on [τ−ε′, τ). By convexity, we have that Ht∩A = ∅
for t < τ .

c) Suppose χτ (fτ ) = 0 (i.e. Hτ ∩ A = ∅). Since A in is closed, there is an open interval
(τ − ε, τ) such that for t ∈ (τ − ε, τ), we have A ∩Ht = ∅. Therefore,

lim
ε→0+

χτ−ε(fτ−ε) = 0

From these cases, we conclude that

χτ ([A]τ )− lim
ε→0+

χτ−ε([A]τ−ε) =

{
1 if minx∈A xd = τ
0 otherwise

(4.7)
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a

a− ε

b

b− ε

A

Figure 4.1. We see that limε→0+ χa−ε = χa(fa) = 1, but 0 =
limε→0+ χb−ε(fb−ε) 6= χb(fb) = 1. Figure inspired by [1]

Now we define (for f =
∑

i αi[Ai])

χK(f) :=
∑
τ∈R

(
χτ (fτ )− lim

ε→0+
χτ−ε(fτ−ε)

)

By (4.7), A is compact (closed and bounded) and so for any non-empty A, minx∈A xd exists
and is unique. Therefore, A 6= ∅, χK([A]) = 1. Since minx∈∅ xd does not exist, by (4.7),
χK([∅]) = 0. Also, since finitely many αi are non-zero, χK is well defined.

It remains to show linearity. Let f and g be two functions in K(Rd) and note

χK(f + g) =
∑
τ∈R

(
χτ (fτ + gτ )− lim

ε→0+
χτ−ε(fτ−ε + gτ−ε)

)
=
∑
τ∈R

(
χτ (fτ ) + χτ (gτ )− lim

ε→0+
χτ−ε(fτ−ε)− lim

ε→0+
χτ−ε(gτ−ε)

)
=
∑
τ∈R

(
χτ (fτ )− lim

ε→0+
χτ−ε(fτ−ε) + χτ (gτ )− lim

ε→0+
χτ−ε(gτ−ε)

)
= χK(f) + χK(g)

and (for c ∈ R)

χK(cf) =
∑
τ∈R

χτ (cfτ )− lim
ε→0+

χτ−ε(cfτ−ε)

=
∑
τ∈R

cχτ (fτ )− c lim
ε→0+

χτ−ε(fτ−ε)

= c

(∑
τ∈R

χτ (fτ )− lim
ε→0+

χτ−ε(fτ−ε)

)
= cχK(f)
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Therefore, χK is the Euler valuation of K(Rd).

Finally, we move on to the unbounded case of P(Rd). Let B(r) be the ball of radius r,
centred at the origin. we define (for f ∈P(Rd))

χ(f) := lim
r→∞

χK(f · [B(r)]). (4.8)

First, note that
χ([∅]) = lim

r→∞
χK([∅ ∩B(r)]) = lim

r→∞
χK([∅]) = 0.

If A 6= ∅, then limr→∞(A ∩B(r)) 6= ∅, so χ([A]) = 1.

To check for linearity, we have (for f, g ∈P(Rd) and a, b ∈ R)

χ(af + bg) = lim
r→∞

χK((af + bg) · [B(r)])

= lim
r→∞

χK(af · [B(r)] + bg · [B(r)])

= lim
r→∞

aχK(f · [B(r)]) + bχK(g · [B(r)])

= a lim
r→∞

χK(f · [B(r)]) + b lim
r→∞

χK(g · [B(r)])

= aχ(f) + bχ(g)

Therefore, our definition of χ is the Euler valuation of P(Rd).

4.2.2 Linear Transformations of Polyhedra

We can use the Euler valuation to prove the following nice result of linear transformations on
polyhedra, which we will prove at the end of the section.

Theorem 4.2.3. Let T : Rn → Rm be a linear transformation. Then there exists a linear
transformation T : P(Rn)→P(Rm) such that T ([P ]) = [T (P )] for any polyhedron A ⊂ Rn.

Lemma 4.2.4. Let pr : Rd → Rd−1 be the projection pr(x1, . . . , xd) = (x1, . . . , xd−1). If P ⊂ Rd
is a polyhedron then pr(P ) is a polyhedron in Rd−1.

Proof. Let P = {x : Ax ≤ b} for some matrix A ∈ Rn×d and vector b ∈ Rn. Let us look at the
last column of A and define

I0 := {i : Aid = 0}
I+ := {i : Aid > 0}
I− := {i : Aid < 0}

Denote ai to be the ith row of A. A point x = (x1, . . . , xd−1) is in pr(P ) if and only if there
exists a number q such that

〈ai, (x, q)〉 = aidq +

d−1∑
j=1

aijxj ≤ bi (4.9)
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for all i = 1, . . . , n. If i ∈ I0, the term aidq would disappear. If i was an index in I+ or I−, then
we could isolate q to see its restrictions:

q ≤ 1

aid

bi − d−1∑
j=1

aijxj

 for i ∈ I+ (4.10)

q ≥ 1

aid

bi − d−1∑
j=1

aijxj

 for i ∈ I− (4.11)

In order for q to exist, we see that if we take one index each from I+ and I−,the right side of
(4.10) must be equal or greater than the right side of (4.11). Therefore, the projection pr(P )
is a polyhedron in Rd−1 with the following linear inequalities:

d−1∑
j=1

aijxj ≤ bi for all i ∈ I0

1

akd

bk − d−1∑
j=1

akjxj

 ≤ 1

aid

bi − d−1∑
j=1

aijxj

 for all pairs i ∈ I+, k ∈ I−

If I0 is empty, then there will be no inequalities of the first kind; a similar statement can be
said for I+ ∪ I− as well.

We have just seen that the projection of a polyhedron is a polyhedron. Now, let us generalize
this statement to invertible linear transformations.

Lemma 4.2.5. Let T : Rn → Rn be an invertible linear transformation. Then for any polyhe-
dron P in Rn, T (P ) is also a polyhedron.

Proof. Let P = {x : Ax ≤ b} for some matrix A ∈ Rm×n and vector b ∈ Rm. By veiwing T as
a matrix in Rn×n, we see that T (P ) would be of the form

T (P ) = {T (x) : Ax ≤ b}
= {y : AT−1y ≤ b}
= {y : By ≤ b}

for some matrix B := AT−1 ∈ Rm×n. The second line is possible since we said T is invertible.
Therefore, T (P ) is a polyhedron.

Note that if T is injective, and not necessarily invertible, we could “force” T to be invertible
by restricting the co-domain to T : Rn → Im(T ), and the above proof would still hold. Now,
we generalize once again to see that any linear transformation of a polyhedron is a polyhedron.

Theorem 4.2.6. Let P ∈ Rn be a polyhedron and let T : Rn → Rm be a linear transformation.
Then T (P ) is a polyhedron in Rm.
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Proof. We have seen this property when T is invertible and one-to-one functions. Now suppose
T is not necessarily one-to-one. We define T̂ : Rn → Rm+n to be the linear transformation

T̂ (x) = (T (x), x)

Note that ker(T̂ ) = {0}, which implies that T̂ is one-to-one, and therefore, T̂ (P ) is a polyhedron.
Now, we apply Lemma 4.2.4 m times to the last m coordinates to complete the proof.

Tracing through the proof with integer matrix A, rational matrix T and integer vector b,
we have the following.

Corollary 4.2.7. Given rational polyhedron P ∈ Rn and linear transformation T : Rn → Rd
with a rational matrix, the image T (P ) is a rational polyhedron in Rd.

With these results ready for use, we proceed to proving Theorem 4.2.3.

Proof of Theorem 4.2.3. We have seen that T (P ) is a polyhedron. Let us define a function
G : Rn × Rm → R, where

G(x, y) =

{
1 if T (x) = y
0 if T (x) 6= y

For a function f =
∑

i αi[Pi] ∈P(Rn), let f ′y be the function where

f ′y(x) : = G(x, y)f(x)

=
∑
i

αiG(x, y)[Pi](x)

=
∑
i

αi[Pi ∩ T−1(y)](x)

where T−1(y) is the preimage of y. For any number of elements z1, . . . , zk in T−1(y), let
z =

∑k
i=1 λizi be an affine combination of such points (so λ1 + · · ·+ λk = 1). We have

T (z) =
k∑
i=1

λiT (zi)

=
k∑
i=1

λiy

= y

T−1(y) is the affine hull of points in T−1(y), and therefore is an affine space. Since affine
spaces can be represented by a set of points satisfying a system of linear inequalities, T−1(y)
is in fact a polyhedron. Therefore, f ′y(x) is a function in P(Rn). This implies that the Euler
valuation χ for P(Rn) acting on f ′y is well-defined. Keeping in mind that the T maps functions
to functions, let us write Tf to be the same as T (f). We now define T to be

Tf (y) : = χ(f ′y)

=
∑
i∈I

αi
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where I = {i : Pi ∩ T−1(y) 6= ∅}. However,

Pi ∩ T−1(y) 6= ∅ ⇐⇒ T (Pi) ∩ T (T−1(y)) 6= ∅
⇐⇒ T (Pi) ∩ {y} 6= ∅
⇐⇒ y ∈ T (Pi),

so
T (f) =

∑
i

αi[T (Pi)].

Since T (Pi) is a polyhedron in Rm, T is well-defined. Let us show linearity of T . Let a, b ∈ R
and f =

∑
i αiPi and g =

∑
i βiPi be functions in P(Rn);

T (af + bg) = T

(∑
i

(aαi + bβi)[Pi]

)
=
∑
i∈I

(aαi + bβi)[T (Pi)]

= a
∑
i∈I

αi[T (Pi)] + b
∑
i∈I

βi[T (Pi)]

= aT (f) + bT (g).

For some fixed i, set a = 1, b = 0 and αi = 1 and αj = 0, ∀ j 6= i. Then, the second line of the
above chain of equailities would yield T [P ] = [T (P )] for any polyhedron in Rn.

4.3 Euler Type Relations

The Euler valuation paves the way to a number of relations between polytopes and cells of its
subdivision. We have already made use of the following theorem in our proof of Lemma 3.3.1.

Theorem 4.3.1. If S is a subdivision of polytope P , then

[P ] =
∑
C≤S

[C◦].

Proof. Suppose x is in the relative interior of two cells C1 and C2 of S . Since x is the relative
interior of C1, it cannot be in a proper face of C1; similarly, x cannot be in a proper face of
C2. However C1 and C2 intersect, and so by definition of a subdivision, they must share a
face in common and that face contains x. The only face of C1 that contains x is C1 itself, and
likewise with C2. Therefore, C1 = C2; the relative interiors of cells of S are disjoint. Since
P =

⋃
C∈S C, for any point x ∈ Rd,

[P ](x) ≥
∑
C∈S

[C◦](x).

To complete the proof, it suffices to show that every x in P is in the relative interior of a cell
of S . Let x ∈ P . Since P =

⋃
C∈S C, there is at least one C ∈ S that contains x. Let C ′ be

C ′ :=
⋂
C∈S
x∈C

C.
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By definition of a subdivision, C ′ must be itself a cell of S . Moreover, we claim that x ∈ C◦;
otherwise, x would be in a proper face G of C ′, which leads to a contradiction, since C ′ would
then be defined as the intersection of G with some other faces of S , implying that C ′ is a face
of G.

Consider the subdivision S of polytope P . Let us restrict S to the boundary and interior
of P :

S |∂(P ) : = {C ∈ S : C ∈ ∂(P )}
S |P ◦ : = {C ∈ S : C◦ ∈ P ◦}

= S \(S |∂(P )).

Using the same idea as the above proof, we see that

[∂(P )] =
∑

C∈S |∂(P )

[C◦].

Corollary 4.3.2. Let S be a polytope subdivision of P . Then

[P ◦] = [P ]− [∂(P )] =
∑
C∈S

[C◦]−
∑

D∈S |∂(P )

[D◦] =
∑

C∈S |P◦

[C◦].

A closely related idea to the Euler valuation is the Euler characteristic, which we will define
as

χ̄(P ) :=
∑
F≤P

(−1)dim(F ).

Lemma 4.3.3. For any non-empty polytope P ,

χ(P ◦) = (−1)dim(P ).

Proof. By induction on dim(P ), for the base case of dim(P ) = 0, a point, we have

[P ◦] = [P ]

χ(P ◦) = χ(P )

(−1)0 = 1.

Taking the inductive step, fix a facet F . Then we have

χ(P ◦) = χ(P )− χ(∂P )

= χ(P )− χ(F )− χ(∂P\F )

= 1− 1− χ(∂P\F )

= −χ(∂P\F )

= −χ

 ∑
C≤∂P\F

[C◦]

 .
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Consider the Schlegel diagram D(P, F ). By [13] , we can view D(P, F ) as a subdivision of F or
as S |∂(P )\{F}. Let us take S to be the subdivision of F induced by D(P, F ). Note that the
subdivision of faces of ∂P\F is isomorphic to S |F ◦ . Therefore,

χ(P ◦) = −χ

 ∑
C∈S |F◦

[C◦]


= −χ(F ◦)

= −(−1)dim(F )

= (−1)dim(P ).

Then the Euler characteristic of a non-empty closed polytope P can be expressed as

χ̄(P ) =
∑
F≤P

(−1)dim(F )

=
∑
F≤P

χ(F ◦)

= χ

∑
F≤P

F ◦


= χ(P )

= 1.

Therefore, we have the following two results.

Corollary 4.3.4. For any closed polytope, χ̄(P ) = 1.

Corollary 4.3.5. For any polytope P , χ(∂P ) = 1− (−1)dim(P ).

4.3.1 Vertex Figure

Now, we consider that a polyhedral subdivision can form a partial ordered set (a poset), ordered
by inclusion. Let R to a polytope. Let V be the vertex set of R and let v ∈ V . There is a
hyperplane H that separates v from all other vertices of R; for example, we can start with a
supporting hyperplane of v and move the hyperplane into R by a small distance. The vertex
figure of R at v, denoted R\v is

R\v := H ∩R.

Clearly, R\v is a polytope.

Lemma 4.3.6. The poset (ordered by inclusion) of faces of vertex figure R\v = H ∩ R is
isomorphic to the poset (ordered by inclusion) of faces of R that contain v. k-dimensional faces
of R\v correspond to (k + 1)-dimensional faces of R that contain v.

Proof. Recall that a face of R is a convex hull of a particular subset of V . Since H separates v
from all other vertices, the faces of R that intersect H are the faces that contain v and at least
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one other vertex. Alternatively, R\v can be expressed as

R\v = H ∩ (H+
1 ∩ · · · ∩H

+
n )

= (H ∩H+
1 ) ∩ · · · ∩ (H ∩H+

n )

where H+
1 , . . . ,H

+
n are the facet half-spaces of facets containing v. Let F ≤ R be a face that

intersects H and let HF = {x : 〈c, x〉 ≤ b} be a supporting hyperplane of F . By definition, the
inequality 〈c, x〉 ≤ b is tight on F and strict on R\F . In particular, the inequality is tight on
F ∩ H and strict on H ∩ (R\F ). Therefore, HF ∩ H is a supporting hyperplane of R\v and
F ∩H is a face of R\v.

We now know that faces of R that contain v correspond to the faces of R\v. By looking at
a face as the intersection of facet half-spaces, we see that inclusion is preserved. Noting that
edges of R that contain v pass through H at one point, and therefore correspond to vertices of
R\v, we can conclude that the k-dimensional faces of R\v correspond to (k + 1)-dimensional
faces of R containing v. Note that v would correspond to the empty face.

4.3.2 Möbius function on Polytope Faces and Subdivisions

Given a poset S, the Möbius function µ(Q,R) of S satisfies

1. If Q = R, µ(Q,R) = 1

2. If Q < R,
∑

Q≤T≤R µ(Q,T ) = 0

3. Otherwise, µ(Q,R) = 0

An equivalent statement for condition (2) is∑
Q≤T≤R

µ(T,R) = 0.

Let P be a polytope. Consider the poset of faces of P ordered by inclusion. Let ∅ be the empty
face; we define dim(∅) = −1. For the rest of this section, we aim to prove the following theorem.

Theorem 4.3.7. For Q ≤ R, µ(Q,R) = (−1)dim(R)−dim(Q).

Proof. Let us proceed by induction on dim(Q). For the base case, we show that µ(∅, R) =
(−1)dim(R)+1. We have two cases: R = ∅ must satisfy condition (1) and R > ∅ must satisfy
condition (2). If R = ∅, then

µ(∅, R) = µ(∅, ∅) = (−1)−1+1 = 1.

Now suppose R > ∅. We want to show that∑
∅≤T≤R

(−1)dim(T )+1 = 0.
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Re-writing the left hand side, we have∑
∅≤T≤R

(−1)dim(T )+1 = µ(∅, ∅) +
∑
∅<T≤R

(−1)dim(T )+1

= 1−
∑
∅<T≤R

(−1)dim(T )

= 1− χ̄(R)

= 1− 1

= 0.

Now, take the inductive step and consider ∅ < Q ≤ R and try to verify that µ(Q,R) =
(−1)dim(R)−dim(Q). For Q = R, we see that

µ(Q,R) = µ(R,R) = (−1)0 = 1,

which satisfies condition (1). Now suppose ∅ < Q < R. Consider the vertex figure R\v, where
v is a vertex of Q. We have seen that the poset of faces of the polytope R\v is isomorphic to
the poset of faces of R that contain v and that the dimension of each corresponding face differ
by one. Let Q′ and R′ be the corresponding faces in R\v. Then dim(Q′) = dim(Q) − 1 and
dim(R′) = dim(R)− 1. By induction hypothesis,

µ(Q,R) = µ(Q′, R′) = (−1)(dim(R)−1)−(dim(Q)−1) = (−1)dim(R)−dim(Q).

Let us now consider a polytope subdivision S of P , and the poset of cells of S , ordered by
inclusion. Once again, we claim that for Q,R ∈ S , µ(Q,R) = (−1)dim(R)−dim(Q). For Q = R,
the result is immediate. For Q < R a rearranging of terms of the second Möbius function
condition would give

µ(Q,R) = −
∑

Q<T≤R
µ(T,R).

However, the only cells T ∈ S that contribute to µ(Q,R) are the faces of R. Therefore, we
can omit all the other cells of S and compute µ(Q,R) as if it were in the context of the face
poset of R (ordered by inclusion). Therefore, µ(Q,R) = (−1)dim(R)−dim(Q).

4.3.3 More Euler-type Relations

Using Möbius functions, we are able to derive the following two results.

Theorem 4.3.8. For any polytope P ,

[P ◦] =
∑
F≤P

(−1)dim(P )−dim(F )[F ]
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Proof. If we take our poset to be the faces of P ordered by inclusion, we would have∑
F≤P

(−1)dim(P )−dim(F )[F ] =
∑
F≤P

µ(F, P )[F ]

=
∑
F≤P

µ(F, P )

∑
T≤F

[T ◦]


=
∑
T≤P

[T ◦]

 ∑
T≤F≤P

µ(F, P )


= [P ◦]µ(P, P ) +

∑
T<P

[T ◦]

 ∑
T≤F≤P

µ(F, P )


= [P ◦](1) +

∑
T<P

[T ◦](0)

= [P ◦].

Theorem 4.3.9. For any polyhedral subdivision of polytope P ,

[P ] =
∑

C∈S |P◦

(−1)dim(P )−dim(C)[C].

Proof. We proceed by induction on dim(P ) = d. If d = 0, then P is a point p, and S = {p, ∅}.
The result is then immediate. Taking the inductive step, we let d ≥ 1 and pick a facet F of P
and consider the Schlegel diagram D(P, F ). By [13], we can view D(P, F ) as a subdivision of
F or as S |∂(P )\{F}. By the former interpretation, we can apply Theorem 4.3.1 to get∑

C∈D(P,F )

(−1)dim(F )−dim(C)[C] = [F ◦]

Translating this result to the language of the latter interpretation, we have∑
C∈S |∂(P )\{F}

(−1)dim(F )−dim(C)[C] = [∂(P )\F ].

Let us now look at S ′ := S |F , the subdivision S restricted to the cells contained in F . Note
that the intersection (

S |∂(P )\{F}
)
∩S ′

is the set of cells in the boundary of F , and so

S |∂(P ) = S |∂(P )\{F} tS ′|F ◦ .

By induction, ∑
C∈S |F◦

(−1)dim(F )−dim(C)[C] = [F ].
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Recalling the interpretations of the Schlegel diagram, we have∑
C∈S |∂(P )

(−1)dim(P )−dim(C)[C] =
∑

C∈S |∂(P )\{F}

(−1)dim(P )−dim(C)[C]

+
∑

C∈S |F◦

(−1)dim(P )−dim(C)[C].

Noting that dim(P ) = dim(F ) + 1 yields∑
C∈S |∂(P )

(−1)dim(P )−dim(C)[C] = −[∂(P )\F ]− [F ] = −[∂(P )].

Lastly, we conclude that∑
C∈S |P◦

(−1)dim(P )−dim(C)[C] =
∑
C∈S

(−1)dim(P )−dim(C)[C]−
∑

C∈S |∂(P )

(−1)dim(P )−dim(C)[C]

= [P ◦]− (−[∂(P )])

= [P ].

4.4 Generating Functions and Convergence

As we will be dealing with generating functions and infinite sums, let us a look at some of the
generating functions and the issue of convergence. We denote Zd+ and Rd+ the non-negative
orthant of Zd and Rd respectively. We start with the basic geometric series

f(n, z) =
∑
p∈Z+
p≤n

zp =
1− zn+1

1− z
(4.12)

and recall the convergence

lim
n→∞

f(n, z) =
∑
p∈Z+

xp =
1

1− z
(4.13)

for z such that |z| < 1.

Now, let us take a look at

g(n, z) :=
∑
p∈Zd+
pi≤n

zp. (4.14)

Note that g(n, z) can be written as

∑
pd∈Z+

xpdd

 ∑
p′∈Zd−1

+
pi≤n

xp′

 . (4.15)
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By factoring each index out recursively, we would get

∑
pd∈Z+
pd≤n

xpdd

 ∑
pd−1∈Z+

pd−1≤n

z
pd−1

d−1

. . .
 ∑
p2∈Z+
p2≤n

zp2
2

 ∑
p1∈Z+
p1≤n

zp1
1


 . . .


 . (4.16)

Therefore, starting from the inner most summation, we factor summations out to get ∑
pd∈Z+
pd≤n

zpdd


 ∑
pd−1∈Z+

pd−1≤n

z
pd−1

d−1

 . . .

 ∑
p2∈Z+
p2≤n

zp2
2


 ∑
p1∈Z+
p1≤n

zp1
1

 . (4.17)

For z ∈ Rd such that |zi| < 1, and taking n to infinity, we have

lim
n→∞

g(n, z) =
∑
p∈Zd+

zp =
d∏
i=1

1

1− zi
. (4.18)

Now suppose we fix v ∈ Zd and let U = {z ∈ Rd : |zv| < 1}. Let

h(n, z) :=
∑
p∈Z+
p≤n

zpv. (4.19)

Then by (4.13), we see that

lim
n→∞

h(n, z) =
∑
p∈Z+

zpv =
1

1− zv
(4.20)

for every z ∈ U . Additionally, we have the following lemma.

Lemma 4.4.1. The above convergence is absolute and uniform on compact subsets of U .

Proof. Since 0 ≤ |zv| < 1, the absolute convergence follows from (4.13). Now, by (4.12), we see
that for any z ∈ U ∣∣∣∣ 1

1− zv
− h(n, z)

∣∣∣∣ =

∣∣∣∣ 1

1− zv
− 1− (zv)n+1

1− zv

∣∣∣∣
=

(zv)n+1

1− zv

Taking n to infinity, we see that the difference goes to zero. Therefore, the convergence is
uniform on compact subsets of U .

Now, let us consider convergence on the tiling of a cone using half-open parallelepipeds.
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Lemma 4.4.2. Let K be the cone generated by linearly independent vectors v1, . . . ,vd ∈ Zd
and Π be the top-open parallelepiped generated by these vectors. If

U = {z ∈ Rd : |zvi | < 1, i = 1, . . . , d}, (4.21)

then for all z ∈ U , the series ∑
p∈K∩Zd

zp (4.22)

converges absolutely and uniformly on compact subsets of U to the rational function

f(K, z) =

 ∑
x∈Π∩Zd

zx

 d∏
i=1

1

1− zvi
(4.23)

Proof. We have seen that every lattice point in Rd can be uniquely represented as

x+

d∑
i=1

τivi

where x ∈ Π and τi ∈ Z+. By Lemma 4.4.1, for any z ∈ U , we have absolute and uniform
convergence

∑
p∈K∩Zd

zp =

 ∑
x∈Π∩Zd

zx


 ∑

v1,...,vd∈Zd+

zτ1v1+···+τkvk


=

 ∑
x∈Π∩Zd

zx

 d∏
i=1

1

1− zvi
.

Let us introduce the polar set S4 of S ⊆ Rn to be

S4 := {a : 〈a, s〉 ≤ 1 ∀ s ∈ S}.

It is common to denote the polar to be S◦, but we reserve S◦ to denote the relative interior of S
instead. Now suppose S is a non-empty convex cone, and that the polar cone S4 is non-empty.
For any a ∈ S4, we have 〈a, s〉 ≤ 1. Since S is a convex cone, τs is also in S for any τ ≥ 0, so

〈a, τs〉 = τ〈a, s〉 ≤ 1.

Therefore, for any convex cone S, we can tighten the constraint “〈a, s〉 ≤ 1” in the definition
of S4 to “〈a, s〉 ≤ 0”.

Lemma 4.4.3. Let K ⊂ Rd be a rational cone without straight lines and U ⊂ Cd be the set

W =
{
ea+ib : a ∈ (K4)◦ and b ∈ Rd

}
where ea+ib = (ea1+ib1 , . . . , ead+ibd). Then W is a non-empty open set where for every z ∈ W
the series ∑

p∈K∩Zd
zp
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converges absolutely and uniformly on compact subsets of U to a rational function

f(K, z) =

n∑
i=1

pi(z)

(1− zui1) . . . (1− zuid)

where pi(z) are Laurent polynomials and uij ∈ Zd are integer vectors for i = 1, . . . , n and
j = 1, . . . , d.

Proof. Without loss of generality, assume that K 6= {0}. Since K is a rational cone, there exists
an integer polytope Q that is a base of K. Thus, we can triangulate K into rational simplicial
cones Ki, i ∈ I (where I is some index set). Using indicator functions and inclusion-exclusion,
we see that

[K] =
∑
i∈I

γi[Ki]

where γi ∈ {−1, 1}. Translating to the language of generating functions, we get

∑
p∈K∩Zd

xp =
∑
i∈I

γi

 ∑
p∈Ki∩Zd

xp

 .

Note that for any a ∈ K4 and p ∈ K,

|(ea+ib)p| = |e〈a,p〉| ≤ e0 = 1

with equality if and only if a is on the boundary of K4. Therefore, for any z ∈ W , |zm| < 1.
By Lemma (4.4.2), the right hand side is a sum of rational functions with denominators (1−zu)
where u is a generator ray for some cone Ki. By multiplying numerator and denominator by
some binomials (1 − zu), we can ensure that each denominator is the product of exactly d
binomials, which is the desired form.

To show that W is open, we need (K4)◦ to be open and full-dimensional. It is easy to
see that (K4)◦ = {a : 〈a, p〉 < 0 ∀ p ∈ K} is open. To show that dim(K4) = d, suppose
dim(K4) < d. Then K4 is contained in hyperplane, implying that (K4)4 contains a straight
line. However, recalling that (K4)4 = K, we have a contradiction.

Now we generalize the result from rational cones to rational polyhedra.

Lemma 4.4.4. Let P ⊂ Rd be a rational polyhedron without straight lines. Then there exists a
non-empty open set U ⊂ Cd such that for all x ∈ U the series∑

m∈P∩Zd
xm

converges absolutely and uniformly on compact subsets of U to a rational function f(P,x) of x.

Proof. Again, we lift P into P ′ ⊂ Rd+1 and let K = cone(P ′). We apply Lemma (4.4.3) to see
that there exists a non-empty open set U ′ such that for all y = (z, zd+1) ∈ U ′,∑

p′∈K∩Zd+1

yp′ =
∑

(p,µ)∈K∩Zd+1

zpzµd+1
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converges absolutely and uniformly on compact subsets of U ′ to f(K, (z, zd+1)), a rational
function. Note that for any (z, zd+1) ∈ U ′ = (U ′)◦,

∂f

∂zd+1
=

∂

∂zd+1

∑
(p,µ)∈K∩Zd+1

zpzµd+1

=
∑

(p,1)∈K∩Zd+1

zp +
∑
i>1

(i+ 1)zid+1

∑
(p,i)∈K∩Zd+1

zp

converges absolutely and uniformly on compact sets in U ′ to a rational function. Since this
series keeps track of the number of lattice points in a certain set, and we know it converges to a
rational function, setting zd+1 to 0 will only decrease the number of points that we are keeping
track of. Therefore, setting zd+1 to 0 will not cause any convergence issues:

∂f

∂zd+1

∣∣∣∣
zd+1=0

=
∑

(p,1)∈K∩Zd+1

zp =
∑

p∈P∩Zd
zp.

Let U be the projection of U ′; (z, zd+1) 7→ z. Then for any z ∈ U , the series∑
p∈P∩Zd

zp

converges absolutely and uniformly on compact subsets of U to the rational function

f(P, z) =
∂

∂zd+1
f(K, (z, zd+1))

∣∣∣∣
zd+1=0

.

Now, we get to a nice theorem tying together some notions of the Ehrhart series and the
algebra of polyhedra.

4.4.1 A special valuation

We would like to develop a valuation

F : P(Qd)→ C(x1, . . . , xd)

such that the following hold:

(F1) If P ⊂ Rd is a rational polyhedron without straight lines, then F [P ] = f(P,x) is the
rational function

f(P, z) =
∑

p∈P∩Zd
zp,

provided it converges absolutely.

(F2) For a function g ∈P(Qd) and an integer vector u ∈ Zd, let h∗(z) = g(z − u) be the shift
of g. Then F(h) = zuF(g).

(F3) If P ⊂ Rd is a rational polyhedron containing a straight line, then F [P ] ≡ 0; the rational
function is identically zero.
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Note that the series mentioned in (F1) is the Hilbert series of a polytope. For this reason,
we shall refer to the valuation F as the “Hilbert Valuation”. We already know how to define
F [P ] for rational polyhedra P without straight lines. By Lemma 4.4.4, we see that there is a
non-empty open set U ⊂ Cd such that

∑
p∈P∩Zd z

p converges absolutely and uniformly to a
rational function f(P, z) on compact subsets of U . Let us define

F [P ] := f(P, z) (4.24)

for rational polytopes P without straight lines. Recall that the algebra of rational polyhedra is
spanned by the indicator functions [P ] where each P is a rational polyhedron without straight
lines (Lemma 4.2.1). Then, every function f ∈P(Qd) can be written as

f =
∑
i

αi[Pi]

where each Pi does not contain straight lines. Let us define F(f) as

F(f) :=
∑
i

αiF [Pi].

Consider another function g =
∑

i βi[Pi] in P(Qd) and a, b ∈ R. Let us verify that our definition
of F is a valuation; in other words, we need to verify linearity.

F(af + bg) =
∑
i

(aαi + bβi)F [Pi]

= a
∑
i

αiF [Pi] + b
∑
i

βiF [Pi]

= aF(f) + bF(g).

We also need to prove that F is well-defined. For f, g ∈P(Qd), we want

f = g =⇒ F(f) = F(g).

Equivalently, by moving all terms to one side, we would like to prove

n∑
i=1

αi[Pi] = 0 =⇒
n∑
i=1

αif(Pi, x) = 0

for rational polyhedra Pi without straight lines and real numbers αi. Suppose
∑n

i=1 αi[Pi] = 0.
We denote for some subset I ⊆ [n]

PI :=
⋂
i∈I

Pi.
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We fix some i and use inclusion-exclusion to get n⋃
j=1

Pj

 =
∑
I⊂[n]
I 6=∅

(−1)|I|−1[PI ]

[Pi]

 n⋃
j=1

Pj

 = [Pi]
∑
I⊂[n]
I 6=∅

(−1)|I|−1[PI ]

[Pi] =
∑
I⊂[n]
I 6=∅

(−1)|I|−1[PI∪{i}].

Taking lattice points, we have the following identity of power series:∑
p∈Pi∩Zd

zp =
∑
I⊂[n]
I 6=∅

(−1)|I|−1
∑

p∈PI∪{i}∩Zd
zp.

We would like to use Lemma 4.4.4 to help us in this proof. We already know that for any non-
empty I, PI is a rational polyhedron without straight lines. However, we also need to make sure
that our one choice of open set U is good enough that all

∑
p∈PI∪{i}∩Zd z

p and
∑

p∈Pi∩Zd z
p

would converge to rational functions. In the proof of Lemma 4.4.4, our choice of U comes from
the projection of (K4)◦ onto Rd, where K is the cone over the lifted polytope P ′ of P . Note
that

PI∪{i} ⊆ Pi,

and that this containment implies

pr((cone(P ′I∪{i})
4)◦) ⊇ pr((cone(P ′i )

4)◦).

In light of the above result, we can use Lemma 4.4.4 on Pi and the choice of U for Pi (as
described in the lemma’s proof) is good enough that each

∑
p∈P∩Zd z

p converges to a rational
function. Therefore,

f(Pi, z) =
∑
I⊂[n]
I 6=∅

(−1)|I|−1f(PI∪{i}, z). (4.25)

Let I ⊂ {1, . . . , n} be a non-empty index set. We have

n∑
i=1

αi[Pi] = 0

[PI ]
n∑
i=1

αi[Pi] = [PI ]0

n∑
i=1

αi[PI∪{i}] = 0

n∑
i=1

αi
∑

p∈PI∪{i}

zp = 0,

60



where the left side of the last line is a formal power series. Again, since PI is a rational
polyhedron without straight lines and PI∪{i} ⊆ PI , there is a non-empty open set U such that
all
∑

p∈P∩Zd z
p converge to a rational function. Therefore, for non-empty I ⊂ [n],

n∑
i=1

αif(PI∪{i}, z) ≡ 0. (4.26)

Combining (4.25) and (4.26) proves property (F1):

n∑
i=1

αif(Pi, z) =

n∑
i=1

αi
∑
I⊂[n]
I 6=∅

(−1)|I|−1f(PI∪{i}, z)

=
∑
I⊂[n]
I 6=∅

(−1)|I|−1

(
n∑
i=1

αif(PI∪{i}, z)

)

≡
∑
I⊂[n]
I 6=∅

(−1)|I|−1(0)

= 0.

It remains to prove properties (F2) and (F3).

Lemma 4.4.5. For a function g ∈ P(Qd) and an integer vector u ∈ Zd, let h(z) = g(z − u)
be the shift of g. Then F(h) = zuF(g).

Proof. Suppose g = [P ] for some rational polyhedron P without straight lines. Then

g(z − u) = 1 ⇐⇒ z − u ∈ P ⇐⇒ z ∈ u+ P.

Therefore, if g =
∑

i αi[Pi] where each Pi is a rational polyhedron without straight lines, then
h =

∑
i α[u+ Pi]. Since u is and integer point, we have

F(h) =
∑
i

αiF [u+ Pi]

=
∑
i

αif(u+ Pi, z)

=
∑
i

αi
∑

p∈(u+Pi)∩Zd
zp

=
∑
i

αi
∑

p∈Pi∩Zd
zpzu

= zu
∑
i

αif(Pi,x)

= zu
∑
i

αiF [Pi]

= zuF(g)
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Lemma 4.4.6. If P ⊂ Rd is a rational polyhedron containing a straight line, then F [P ] ≡ 0;
the rational function is identically zero.

Proof. Suppose rational polyhedron P = {x : Ax ≤ b} contains a straight line. By Corollary
1.1.5, Nullity(A) > 0; let u be in the null-space of A. Since

A(u+ x) = Au+Ax = 0 +Ax = Ax,

x ∈ P if and only if u+ x ∈ P . An immediate result from the forward and reverse implications
is that P ⊆ u+ P and P ⊇ u+ P , so u+ P = P . Applying Lemma 4.4.5,

F [P ] = F [u+ P ] = zuF [P ].

Since F [P ] is a rational function and u 6= 0, F [P ] must be identically zero.

4.5 Brion’s Theorem

By exploring the structure of the algebra of polyhedra, we will develop a formula for the
valuation F and a polyhedron’s support cones.

4.5.1 Support Cones

Given a polyhedron P ⊆ Rd and point v ∈ P , the support cone of P at v is defined as

cone(P, v) =
{
x ∈ Rd : λx+ (1− λ)v ∈ P for some 0 < λ < 1

}
.

a

b

c
P

cone(P, a)

cone(P, b)
cone(P, c)

Figure 4.2. A polyhedron P and its support cones at points a, b and c. Figure
inspired by [1].

Note that the vertex of the cone (if a vertex exists) is at v and not necessarily at the origin.
Another way of viewing cone(P, v) is as follows:

Lemma 4.5.1. The support cone of P at v is the cone generated by all the rays emanating
from v that intersect P .
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Proof. The condition “λx+ (1− λ)v ∈ P for some 0 < λ < 1” can be viewed as “the open line
segment L = [x, v] joining x and v intersects P .” We can then state that

x is in cone(P, v) if and only if L intersects P ,

which is equivalent to saying L contains a line segment or a point that intersects P . Let p be a
point in L ∩ P . By convexity the open line segment L′ joining v and p is contained in P . For
any τ > 0, the open line segment joining v and τx must contain part of L′, which implies that
τx ∈ cone(P, v).

If v is a vertex, then cone(P, v) is the cone generated by the rays emanating from v along
the edges of P that contain v. Alternatively, recall that a pointed cone generated by a set R
of rays can be expressed as the intersection of facet half-spaces, where each facet hyperplane is
the affine subspace containing linearly independent subsets of R.

Corollary 4.5.2. Suppose P ⊆ Rd is a d-polyhedron. If P contains a vertex v, then cone(P, v)
is the intersection of facet half-spaces H+ of P such that v ∈ H.

Under linear transformations, we have the following lemma.

Lemma 4.5.3. Let P ⊂ Rn be a polyhedron and let T : Rn → Rd be a linear transformation.
For any v ∈ P ,

T (cone(P, v)) = cone(T (P ), T (v))

Proof. Suppose z ∈ cone(P, v). For some fixed 0 < λ < 1, the point x := λz + (1 − λ)v is in
P . Note that by definition of T (P ) and T (cone(P, v)), T (x) ∈ T (P ) and T (z) ∈ T (cone(P, v)).
Since T is linear, we have

T (x) = T (λz + (1− λ)v)

= λT (z) + (1− λ)T (v)

Therefore T (z) ∈ cone(T (P ), T (v)), which implies that T (cone(P, v)) ⊆ cone(T (P ), T (v)).

Now suppose y ∈ cone(T (P ), T (v)), which implies for some fixed 0 < λ < 1, the point
w = λy + (1 − λ)T (v) is in T (P ). Let x ∈ P be a point such that T (x) = w. By noting that
λ 6= 0 and that T is linear, we have

w = λy + (1− λ)T (v)

y =
1

λ
(w − (1− λ)T (v))

y =
1

λ
(T (x)− (1− λ)T (v))

y = T (
1

λ
(x− (1− λ)v))

Let z = 1
λ(x − (1 − λ)v) be the point such that T (z) = y. After rearranging, we see that

x = λz + (1 − λ)v. Since x ∈ P , we have that z ∈ cone(P, v), which means that y = T (z) =
T (cone(P, v)). Therefore, T (cone(P, v)) ⊇ cone(T (P ), T (v)).
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Lemma 4.5.4. Let P1, P2 ⊂ Rd be polyhedra. For any v1 ∈ P1 and v2 ∈ P2,

cone(P1 × P2, (v1, v2)) = cone(P1, v1)× cone(P2, v2).

Proof. Let the P1 and P2 be defined by a set of linear inequalities (facet half-spaces) 〈ci, x〉 ≤ αi
and 〈dj , y〉 ≤ βj for i ∈ [m], j ∈ [n]. Therefore, if (x, y) ∈ P1 × P2, then (x, y) would need to
satisfy

〈(ci, dj), (x, y)〉 ≤ (αi, βj) ∀ i ∈ [m], j ∈ [n] (4.27)

Therefore, P1 × P2 is contained in the polyhedron P , where P is defined by the set of linear
inequalities described in (4.27). However, for any (x, y) ∈ P , x and y satisfies all inequalities
defining P1 and P2 respectively. Therefore, P is contained in P1 × P2. Therefore, we see that
P1 × P2 = P is a polyhedron.

To prove the identity for the support cones, consider a point (u1, u2) ∈ R2d.

(u1, u2) ∈ cone(P, (v1, v2))

⇐⇒ ∃ 0 < λ < 1 : λ(u1, u2) + (1− λ)(v1, v2) ∈ P
⇐⇒ (λu1 + (1− λ)v1, λu2 + (1− λ)v2) ∈ P
⇐⇒ λu1 + (1− λ)v1 ∈ P1 and λu2 + (1− λ)v2 ∈ P2

⇐⇒ u1 ∈ cone(P1, v1) and u2 ∈ cone(P2, v2)

⇐⇒ (u1, u2) ∈ cone(P1, v1)× cone(P2, v2).

4.5.2 Brion’s Theorem

Let P0(Qn) denote the subspace generated by indicator functions of rational polyhedra in Rn
that contain straight lines. Consider the lattice d-simplex

∆ := conv(ei : i = 1, . . . , d+ 1) ⊂ Rd+1.

Let us define a few hyperplanes and half-spaces:

• H := {x : 〈1, x〉 = 1} = aff(ei : i = 1, . . . , d+ 1)

• H+
i := {x : 〈ei, x〉 ≥ 0}

• H+
i := H+

i ∩H

By identifying Rd with H, H+
i can be thought of as a half-space in Rd. Let Hi and Hi be

hyperplanes associated with H+
i and H+

i respectively. Note that

∆ = H ∩H+
1 ∩ · · · ∩H

+
d+1

= (H ∩H+
1 ) ∩ · · · ∩ (H ∩H+

d+1)

=

d+1⋂
i=1

H+
i
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By noting that Hj is the only facet hyperplane that does not contain vertex ej , we can
apply Corollary 4.5.2 to see that

cone(∆, ej) =
⋂
i 6=j

H+
i .

Lemma 4.5.5. There exist rational polyhedra Q1, . . . , QN ⊆ Rd such that

(a) each polyhedron Qk contains a straight line parallel to ei − ej for some pair 1 ≤ i < j ≤
d+ 1;

(b) we have

[∆] =
d+1∑
i=1

[cone(∆, ei)] +
N∑
k=1

γk[Qk] for some γk ∈ {−1, 1}.

In particular, modulo P0(Qd), the indicator function of the standard simplex is the sum of
the indicator functions of the support cones at its vertices.

Proof. Let PI :=
⋂
i∈I H

+
i . Using inclusion-exclusion, we have

[Rd] =

[
d+1⋃
i=1

H+
i

]
=

∑
I⊆[d+1]
I 6=∅

(−1)|I|−1[PI ]. (4.28)

Note that

• I = {1, . . . , d+ 1} implies PI = ∆

• I = {1, . . . , d+ 1}\{i} implies PI = cone(∆, i)

• If there are two distinct i, j that are not in I, then PI contains a straight a line in the
direction of ei − ej .

To show the third point, suppose 1 and 2 are not in I. Then a point x in PI has the restrictions∑d+1
i=1 xi = 1 and xj ≥ 0, j ∈ I. Then we see that (a, 1 − a, 0, . . . , 0) is in PI for any a ∈ R.

Rearranging (4.28) completes the proof.

= R2 − − −

+ + +

Figure 4.3. Viewing the above pictures as indicator functions, we can express
the standard 2-simplex in terms of the intersection of its facet half-spaces.
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Now we can generalize from simplices to polytopes by mapping each vertex of a simplex to
a distinct vertex of the polytope.

Lemma 4.5.6. Let P ⊂ Rd be a polytope (resp. rational polytope) with vertices v1, . . . , vn.
Then we can write

[P ] = g +
n∑
i=1

[cone(P, vi)]

for some function g ∈P0(Rd) (resp P0(Qd)).

Proof. Let ∆ ⊂ Rn be the standard (n − 1)-dimensional simplex, and let T : Rn → Rd be a
linear transformation such that T (ei) = vi. Then T (∆) = P . By Theorem 4.2.3, there exists
a linear transformation T such that T ([∆]) = [T (∆)]. Applying in combination with Lemma
4.5.5, we have

[P ] = [T (∆)]

= T ([∆])

= T

(
n∑
i=1

[cone(∆, ei)] +
N∑
k=1

γk[Qk]

)

=

n∑
i=1

T [cone(∆, ei)] +

N∑
k=1

γkT ([Qk])

=
n∑
i=1

[T (cone(∆, ei))] +
N∑
k=1

γk[T (Qk)]

=

n∑
i=1

[cone(P, vi)] +

N∑
k=1

γk[T (Qk)]

where each Qk is a (rational) polyhedron that contains a straight line. Since T is linear, T (Qk)
is also a (rational) polyhedron. Linear functions map straight lines to straight lines, so each
T (Qk) has a straight line.

Finally, we can generalize from polytopes to polyhedra.

Theorem 4.5.7. Let P ⊂ Rd be a polyhedron (resp. rational polyhedron). Then

[P ] = g +
∑

v vertex of P

[cone(P, v)]

for some function g ∈P0(Rd) (resp. P0(Qd)) .

In other words, if we mod out indicator functions of polyhedra that contain straight lines,
then the indicator function of polyhedron P is sum of the indicator functions of the support
cones of P at its vertices.
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Proof. Let us prove the rational version. Suppose

P := {x : 〈ci, x〉 ≤ βi, i = 1, . . . , n}

for ci ∈ Zd and βi ∈ Z. If P does not contain any vertices, then by Theorem 1.1.6, P is either
empty or contains a straight line. In either case, the result is immediate. Therefore, suppose
that P has a vertex set V . Since P does not contain straight lines, we can write P as

P = Q+K

where K is the recession cone of P and Q is the convex hull of the vertices of P . Since P
is rational, the vertices of P are rational, and therefore Q is a rational polytope and K is a
rational cone. Consider the rational polyhedron Q×K. By Lemma 4.5.6, there exist polyhedra
Qi, i ∈ I containing straight lines and γ ∈ {−1, 1} such that

[Q] =
∑
v∈V

[cone(Q, v)] +
∑
i∈I

γ[Qi]

[Q×K] =
∑
v∈V

[cone(Q, v)×K] +
∑
i∈I

γ[Qi ×K]

=
∑
v∈V

[cone(Q×K, v̄)] +
∑
i∈I

γ[Qi ×K]

where v̄ = (v, 0). Let T : R2d → Rd be the linear transformation T (x, y) = x + y. By Lemma
4.5.3, we get

[T (Q×K)] =
∑
v∈V

[T (cone(Q×K, v̄))] +
∑
i∈I

γi[T (Qi ×K)]

[Q+K] =
∑
v∈V

[cone(T (Q×K), T (v̄))] +
∑
i∈I

γi[Qi +K]

[P ] =
∑
v∈V

[cone(Q+K, v)] +
∑
i∈I

γi[Qi +K].

To complete the proof, note that Qi +K is a rational polyhedron containing straight lines.

Combining the above theorem with the Hilbert valuation, we get Brion’s Theorem.

Corollary 4.5.8 (Brion’s Theorem). For every rational polyhedron P ⊂ Rd,

F [P ] =
∑

v vertex of P

F [cone(P, v)],

where F : P(Qd)→ C(x1, . . . , xd) is Hilbert valuation.

4.5.3 Proving Ehrhart’s Theorem via Brion’s Theorem

We now see another way to prove Ehrhart’s Theorem. Let P ⊂ Rd be a lattice d-polytope with
vertices v1, . . . , vn. Also, let

Ki = cone(P, vi)− vi
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be the support cone of P at vi, translated so that the vertex is the origin. Dilating coordinates
by a positive factor t is a linear function; denoting this dilation as a linear transformation (as a
matrix) T , we can explicitly state that T = tI, where I is the identity matrix. Since the vertex
of Ki is the origin, Ki is invariant under T ; T (Ki) = Ki. Recalling Lemma 4.5.3,

T (Ki) = T (cone(P, vi)− vi)
Ki = T (cone(P, vi))− T (vi)

= cone(T (P ), T (vi))− T (vi)

= cone(tP, tvi)− tvi
cone(tP, tvi) = Ki + tvi.

Applying Brion’s Theorem yields∑
p∈tP∩Zd

zp = F [tP ] (4.29)

= F

∑
i∈[n]

[cone(tP, tvi)]

 (4.30)

=
∑
i∈[n]

F [cone(tP, tvi)] (4.31)

=
∑
i∈[n]

F [Ki + tvi] (4.32)

=
∑
i∈[n]

ztviF [Ki] (4.33)

=
∑
i∈[N ]

ztvipi(z)

(1− zui1) . . . (1− zuid)
(4.34)

where ui1, . . . , uid are integer vectors and pi(z) is a Laurent polynomial on z = (z1, . . . , zd).
Note that the indices for the summations in (4.33) and (4.34) may not be equal, since the
support cones Ki may not be simplicial cones, and hence we would have to subdivide the Ki

into simplicial cones. We would like z to approach (1, . . . , 1). Choose a c ∈ Rd such that
〈c, uij〉 6= 0 for all i and j. Now we set z = eτc for τ ∈ Rd, and let τ → 0. By doing this, we
have ∑

p∈tP∩Zd
zp =

∑
p∈tP∩Zd

exp(τ〈c, p〉).

Expanding this analytic function around τ = 0, we see that the constant term is the number
of lattice points in tP . By performing the same substitution on each fraction of (4.34), we get

eτ〈c,tvi〉 pi(e
τc)

(1− eτ〈c,ui1〉) . . . (1− eτ〈c,uid〉)
= τ−deτ〈c,tvi〉 pi(e

τc)
d∏
j=1

τ

1− eτ〈c,uij〉
. (4.35)

Note that each

τ

1− eτ〈c,uij〉
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does not depend on t and converges to the function

τ

1− (1 + τ〈c, uij〉+
τ2〈c,uij〉2

2! + . . . )
=

1

−〈c, uij〉 − τ〈c,uij〉2
2! − . . .

.

By recalling that pi(e
τc) is a Laurent polynomial, we have the following power series represen-

tation:

pi(e
τc)

d∏
j=1

τ

1− eτ〈c,uij〉
=
∑
`≥0

αi`τ
`

for some αi` ∈ R. Also,

τ−deτ〈c,tvi〉 = τ−d
∑
`≥0

t`
〈c, vi〉`

`!
τ `.

Thus, the constant term of (4.35) is

d∑
`=0

t`
〈c, vi〉`

`!
αi,d−`.

Comparing constant terms, we conclude that

|tP ∩ Zd| =
N∑
i=1

d∑
`=0

t`
〈c, vi〉`

`!
αi,d−1

is a polynomial in t with degree at most d. Note that this proof approach provides an algorithm
for finding h∗P (z). Barvinok proved that there is an algorithm that can compute the Ehrhart
polynomial of a lattice polytope P in time polynomial in the size of P , formulated as a system
of linearly inequalities. We shall refer to this algorithm as Barvinok’s Algorithm.
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Chapter 5

Unimodular Decomposition of
Lattice Polytopes

As we have seen in Chapter 2, some polytopes do not admit unimodular triangulations. How-
ever, if we view polytopes as their indicator functions, we are allowed the freedom to “subtract
off” polytopes. A consequence is that polytopes can be decomposed with unimodular simplices.
In proving this consequence, we will detail an algorithm to unimodularly decompose polytopes.
We detail a number of applications that stem from this decomposition. Among them, we will
show a few nice results for valuations that are constant over integer translations and unimodular
maps of polytope. Among these results is a theorem of Betke and Kneser. The proof of the
Betke-Kneser theorem can be found in Gruber [8]. We will give a new streamlined proof of this
theorem and the theorem on the existence of unimodular decompositions.

5.1 Unimodular Decompositions

Let P(Zd) be the algebra of lattice polytopes in Rd. Let U be the sub-algebra of P(Zd)
generated by

[P ]− [UP + u]

where u ∈ Zd, U ∈ GLd(Z), and P is a lattice polytope in Rd. A lattice polytope P has
a unimodular decomposition if [P ] can be written as a linear combination of [∆0], . . . , [∆d] in
P(Zd)/U . In other words, we can write [P ] as a finite linear combination

[P ] =
m∑
i=1

αi[UiSi + ui]

where αi ∈ R, Ui ∈ GLd(Z), ui ∈ Zd, and each Si is some standard simplex. We will prove that
any lattice polytope has a unimodular decomposition.

Lemma 5.1.1. Let 0, v1, . . . , vd ∈ Zd form a non-unimodular lattice d-simplex. There exists a
lattice point p contained in the parallelepiped generated by v1, . . . , vd such that p is not a vertex
of the parallelepiped.
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Proof. Let V be the d × d matrix with vi as its ith column. The parallelepiped generated by
v1, . . . , vd is

ΠV :=

{
d∑
i=1

λivi : 0 ≤ λi ≤ 1

}
.

Since the vertices of ΠV are 0, v1, . . . , vd, and
∑d

i=1 vi, it suffices to prove that there is a
lattice point p contained in ΠV \{0}. Consider V −1. Since |det(V )| = Vol(S) > 1, we see that
|det(V −1)| = 1

|det(V )| is not an integer. Since integer matrices have integer determinants, V −1

is not an integer matrix. Let w = (w1, . . . , wd) be some kth column of V −1 such that w has a
non-integer entry.

V −1ek = w

ek = V w

= w1v1 + · · ·+ wdvd

=
d∑
i=1

(bwic+ {wi})vi

ek − bw1cv1 − · · · − bwdcvd =
d∑
i=1

{wi}vi

Let p := ek−bw1cv1− · · ·− bwdcvd. Since all vi are integer vectors, it is clear that p is a lattice
point. Also, since 0 ≤ {wi} < 1, it is easy to see from the right side of the above equation that
p ∈ ΠV . By our choice, w has a non-integer entry, so at least one {wi} is non-zero. Recalling
that v1, . . . , vd are vertices of a simplex, and therefore linearly independent, we see that p 6= 0
and so p is a lattice point in ΠV \{0}.

Let S ⊂ Rd be a non-unimodular lattice d-simplex. We would like to find a lattice point p
such that

Vol(conv(F, p)) < Vol(S) (5.1)

for all facets F ≤ S. We will refer to this condition as the decreasing volume condition for S.

We can translate S by u ∈ Zd such that the origin is a vertex of the translated simplex. If
we can find a p that satisfies the decreasing volume condition for S + u, then we know that
p − u would satisfy the decreasing volume condition for S. In other words, we are translating
S so that a vertex is at the origin, finding p and then translating p and S back.

Therefore we can assume without loss of generality that S has vertices v1, . . . , vd and v0 = 0.
Let V be the d × d matrix with vi as its ith column. We denote facet Fi as conv(vj : j 6= i).
The volume of conv(Fi, x) can be written as

Vol(conv(Fi, x)) = hi Vol(Fi)

where hi is the “height” of x from Fi, or the lattice distance x is away from Fi. In other words,
hi is the lattice length of x viewed in Zd/(aff(Fi) ∩ Zd−1).
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We want

Vol(conv(Fi, p)) < Vol(S) = Vol(conv(Fi, vi))

hp Vol(Fi) < hvi Vol(Fi)

hp < hvi

for all i. We see that p cannot be past a certain distance (hvi) away from either side of
hyperplane Fi. Note that if p ∈ (aff(Fi) + (z − vi)) for any arbitrary z ∈ aff(Fi), then hi = hvi .

F

hF

hF

S

Figure 5.1. For any point p in between the dashed lines, we have Vol(S) ≥
Vol(conv(F, p)), with equality if and only if p is on one of the dashed lines.

For i ∈ [d], since 0 ∈ aff(Fi), we take z = 0 to get

p ∈ Ωi := {x : x ∈ aff(Fi) + λivi : −1 < λi < 1}. (5.2)

Since 0 ∈ aff(Fi) for i ∈ [d], we can actually see that

aff(Fi) = span{vj : j 6= i}

=


d∑
j=1

λjvj : λi = 0


Ωi =


d∑
j=1

λjvj : −1 < λi < 1

 .

Therefore, intersecting for all i ∈ [d], we have

d⋂
i=1

Ωi =

{
d∑
i=1

λivi : −1 < λi < 1

}
.

Also, note that vi ∈ aff(F0) for any i ∈ [d], so we can take z =
∑d

i=1 αivi where
∑d

i=1 αi = 1
(and recalling that v0 = 0) to get

p ∈ Ω0 := {aff(F0) + λ0z : −1 < λ0 < 1}. (5.3)

Any point in Ω0 can be written as

λ0z +

d∑
i=1

βivi = λ0

(
d∑
i=1

αivi

)
+

d∑
i=1

βivi

=
d∑
i=1

(λ0αi + βi)vi
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such that
∑d

i=1 βi =
∑d

i=1 αi = 1 and −1 < λ0 < 1. By noting that

d∑
i=1

(λ0αi + βi) = λ0

d∑
i=1

αi +
d∑
i=1

βi

= λ0 + 1,

we can write any point in Ω0 as
∑d

i=1 γivi, where 0 <
∑d

i=1 γi < 2, and so

Ω0 =

{
d∑
i=1

γivi : 0 <

d∑
i=1

γi < 2

}
.

Intersecting all the Ωi’s, we have

d⋂
i=0

Ωi =

{
d∑
i=1

λivi : −1 < λi < 1, 0 <

d∑
i=1

λi < 2

}
=: ΩV .

By Lemma 5.1.1, there is a non-zero lattice point p =
∑d

i=1 λivi where 0 ≤ λi < 1 in the

top-open parallelepiped ΠV . Since p 6= 0, we have 0 <
∑d

i=1 λi. Without loss of generality, let
λ1, . . . , λk be non-zero and λk+1 = · · · = λd = 0 (if any). Let

m := b
d∑
i=1

λic = b
k∑
i=1

λic

and note that k =
∑k

i=1 1 >
∑k

i=1 λi ≥ m. If m < 2, then p ∈ ΩV , and therefore satisfies the
decreasing volume condition. If m ≥ 2, then we redefine

λ1 → λ1 − 1

...

λm−1 → λm−1 − 1.

Notice that these redefined values interpret to a translation of p:

p→ p− v1 − · · · − vm−1,

which is obviously still a lattice point. Finally, with these redefined values of λi, we have

b
d∑
i=1

λic = m− (m− 1) = 1.

Theorem 5.1.2. If lattice simplex S is not unimodular, then there exists a lattice point p such
that

Vol(conv(F, p)) < Vol(S)

for all facets F ≤ S.

Theorem 5.1.3. Any lattice polytope has a unimodular decomposition.
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Proof. Since every polytope admits a triangulation, we can write [P ] as a finite linear combi-
nation of simplices [S]. Therefore, it suffices to prove the theorem for simplices. We proceed
by induction on d and on the volume of the simplex. Let S be a lattice simplex with vertices
v1, . . . , vd+1 and facets Fi = conv(vj : j 6= i). If Vol(S) = 1, then S is unimodular already,
and so there is a unimodular map U that maps S to ∆d, which implies that [S] = [U−1∆d]. If
d = 1, then S is a closed line segment [a, b] where a < b are integers. Noting that ∆1 is the line
segment [0, 1], we have [S] =

∑b−1
i=a [∆1 + i].

Taking the inductive step, consider d > 1 and Vol(S) > 1. We choose a lattice point
p be such that Vol(conv(Fi, p)) < Vol(S) for all i. We then assign a height function ω :
{v1, . . . , vd+1, p} → Z such that

ω(x) =

{
1 if x = p
0 o.w.

Let R be the convex hull of the vi’s and p, and let R′ be the convex hull of the (vi, 0)’s and (p, 1).
By defining pr : Rd+1 → Rd to be the projection (x1, . . . , xd+1) 7→ (x1, . . . , xd) back to the first
d coordinates, we see that pr(R′) = R. Note that F0 := conv{(v1, 0), . . . , (vd+1, 0)} is a lower
facet of R′ and that pr(F0) = S. For every other facet F of R′, we have pr(F ) = conv(Fi, p) for
some i. The upper and lower faces of R′ induce two triangulations of R. By inclusion-exclusion,
we can write [pr(R′)] as

[pr(F0)] +
∑

F lower facet of R′
F 6=F0

[pr(F )] +A =
∑

F upper facet of R′

[pr(F )] +B (5.4)

where A and B are finite linear combinations of [pr(f)]’s and each f is a lower dimensional (less
than d) face of R′. By induction hypothesis, A and B can be written as finite linear combinations
of [U∆ + u]’s, where U ∈ GLd(Z), u ∈ Zd and ∆ is a standard simplex. Our choice of p is such
that Vol(pr(F )) < Vol(S) for all facets F 6= F0 of R′. By induction hypothesis, each pr(F ) can
be written as a finite linear combination of [U∆ + u]’s, where U ∈ GLd(Z), u ∈ Zd and ∆ is a
standard simplex. Isolating [pr(F0)] = [S] in (5.4) completes our proof.

5.2 3-Dimensional Example of Unimodular Decomposition

Let us illustrate the above theorem on the simplex ∆ ⊂ R3, with vertices v0 = (0, 0, 0), v1 =
(1, 0, 0), v2 = (0, 0, 1) and v3 = (1, 2, 1). Since ∆ has a volume of 2, this decomposition is not
trivial. We define the matrix V with columns comprised of the non-zero vectors of ∆:

V :=

1 0 1
0 0 2
0 1 1

 .

To find a non-zero lattice point in the top-open parallelepiped ΠV , we invert V to get

V −1 =

1 −1
2 0

0 −1
2 1

0 1
2 0

 .
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Focusing on the second column of V −1, we have1 −1
2 0

0 −1
2 1

0 1
2 0

0
1
0

 =

−1
2
−1

2
1
2


0

1
0

 =

1 0 1
0 0 2
0 1 1

−1
2
−1

2
1
2


=

1 0 1
0 0 2
0 1 1

−1 + 1
2

−1 + 1
2
1
2


=

1 0 1
0 0 2
0 1 1

1
2
1
2
1
2

+

1 0 1
0 0 2
0 1 1

−1
−1

0


=

1 0 1
0 0 2
0 1 1

1
2
1
2
1
2

+

−1
0
−1


1

1
1

 =

1 0 1
0 0 2
0 1 1

1
2
1
2
1
2


and so (1, 1, 1) =: p is a non-zero lattice point in ΠV . For each facet Fi of ∆, we want Vol(∆) >
Vol(conv(Fi, p)). This happens if p =

∑3
i=1 λivi such that −1 < λi < 1 and 0 <

∑3
i=1 λi < 2.

Note that (1, 1, 1) = 1
2v1 + 1

2v2 + 1
2v3, so p satisfies the decreasing volume condition. Indeed,

one can check that the volumes of Vol(conv(Fi, p)) are all 1.

Let R := conv(∆, p). Assigning heights ϕ(v) = 0 for all vertices of ∆ and ϕ(p) = 1, the lower
facets of this lifted configuration correspond to ∆ and conv(v1, v2, v3, p), and the upper facets
correspond to conv(0, v2, v3, p), conv(v1, 0, v3, p) and conv(v1, v2, 0, p). By inclusion-exclusion,
the triangulation of R using lower faces is

[R] = [∆] + [conv(v1, v2, v3, p)]− [conv(v1, v2, v3)] (5.5)

and the triangulation of R using upper faces is

[R] = [conv(0, v2, v3, p)] + [conv(v1, 0, v3, p)] + [conv(v1, v2, 0, p)]

− [conv(v3, p, 0)]− [conv(v2, p, 0)]− [conv(v1, p, 0)]

+ [conv(p, 0)]. (5.6)
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v0 v1

v2

p

v3

v0 v1

v2

p

v3

Figure 5.2. Two triangulations of conv(v0, v1, v2, v3, p).

We have already claimed that some of the above simplices are unimodular. Instead of
explicitly checking the volumes of each simplex, we will verify their unimodularity by rep-
resenting them as a unimodular transformation of a unimodular simplex, up to translation.
We define three different dimensional simplices ∆1 = conv(0, e1), ∆2 = conv(0, e1, e2) and
∆3 = conv(0, e1, e2, e3). Note that they are all unimodular. Finally, we will represent each of
the above simplices as a translation of a unimodular map of one of the ∆1,∆2,∆3. We use
the fact that for any linear map U , vertices of a polytope P get mapped to vertices of UP .
Therefore, it suffices to check that the vertices of ∆1,∆2 and ∆3 get mapped (up to translation)
to the simplices that they are to represent.

conv(v1, v2, v3, p) =

−1 0 0
0 2 1
1 1 1

∆3 +

1
0
0

 =: S1

conv(v1, v2, v3) =

−1 0 0
0 2 1
1 1 1

∆2 +

1
0
0

 =: S2

conv(0, v2, v3, p) =

0 1 1
0 2 1
1 1 1

∆3 =: S3

conv(v1, 0, v3, p) =

1 1 1
0 2 1
0 1 1

∆3 =: S4
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conv(v1, v2, 0, p) =

1 0 1
0 0 1
0 1 1

∆3 =: S5

conv(v1, p, 0) =

1 1 0
0 1 0
0 1 1

∆2 =: S6

conv(v2, p, 0) =

0 1 1
0 1 0
1 1 0

∆2 =: S7

conv(v3, p, 0) =

1 1 1
2 1 0
1 1 0

∆2 =: S8

conv(p, 0) =

1 1 0
1 0 1
1 0 0

∆1 =: S9

Therefore, by equating (5.5) with (5.6) and isolating [∆], we have

[∆] = −[S1] + [S2] + [S3] + [S4] + [S5]− [S6]− [S7]− [S8] + [S9].

5.2.1 Runtime of Unimodular Decomposition

Note that the above method of unimodular decomposition recurses on the volume of each
simplex conv(F, p). The algorithm above for finding a point suitable p is in fact not very
efficient. Let us illustrate the run-time on the simplex ∆ ⊂ R3, with vertices v0 = (0, 0, 0), v1 =
(1, 0, 0), v2 = (0, 0, 1) and v3 = (a, b, 1), where 0 < a < b and a and b are co-prime. As before,
we define

V :=

1 0 a
0 0 b
0 1 1


Again, we invert V to get

V −1 =

1 −a/b 0
0 −1/b 1
0 1/b 0

 .

Focusing on the second column, we would always end up with1
1
1

 =

1 0 a
0 0 b
0 1 1

(b− a)/b
(b− 1)/b

1/b


and so (1, 1, 1) =: p is always the point that we would compute. The simplices conv(F, p) for
each facet F ≤ S would then have volumes b− 1, and two simplices of volume b− a. We now
recurse on the three non-unimodular simplices.

Pick one of the three simplices and call it ∆W . By translating the simplex, let us assume
that ∆W has vertices 0, w1, w2 and w3. Let W be the matrix with columns w1, w2 and w3,
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and note that ∆W has volume | det(W )|. Now, we can use a change of basis map (by way of
multiplying by a unimodular matrix) so that the inputs w1, w2 and w3 are in a suitable form.
Let U be the unimodular map; we want

UW =

1 0 r
0 0 s
0 1 1

 =: X

U = XW−1,

where we choose co-prime r and s such that 0 < r < s. We can then run our algorithm on
the columns of X. Note that all we did was apply a unimodular map, so volume is preserved:
| det(W )| = | det(X)| = s. The algorithm would then produce 4 more simplices with volumes
1, s − 1, s − r and s − r. For all iterations, let us set r = s − 1. In doing so, each iteration
would yield three unimodular simplices plus a simplex with volume one less than that of the
non-unimodular simplex of the previous iteration. Running the algorithm on ∆W would then
take | det(W )| − 1 steps.

Focusing back on ∆, running our algorithm takes

1 + ((a− 1)− 1) + ((b− a)− 1) + ((b− a)− 1) = 3a− 2b− 3

iterations on the top-dimensional simplices alone. From this example, we see that it is beneficial
to choose a point p to minimize the maximum volume among conv(F, p). This optimization
problem takes the form

min t
Vol(conv(F, p)) ≤ t facets F ≤ S
t ∈ R
p ∈ Zd

The volume of a simplex is the the absolute value of the determinant of the matrix with column
set {(v, 1) : v a vertex of S}. Therefore, for a simplex S with v0, . . . , vd, we define

V :=

(
v0 . . . vd
1 . . . 1

)
Letting ci be the ith column of the co-factor matrix co(V ), we can re-formulate the facet
constraints by linear inequalities:

〈ci, (p, 1)〉 ≤ t
〈ci, (p, 1)〉 ≥ −t

for i = 0, . . . , d and see that this formulation is a mixed integer linear program.

5.3 Applications of Unimodular Decomposition

5.3.1 Equivalence of Valuations

A linear map F is translation-invariant if for any u ∈ Zd, F (u + P ) = F (P ). F is GLd(Z)-
invariant if for any unimodular map U ∈ GLd(Z), F (UP ) = F (P ). A valuation that demon-
strates both of these invariances is called integer unimodular invariant.
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Lemma 5.3.1. Ft : [P ] 7→ LP (t) is a valuation.

Proof. For t = 0, we have tP = {0} and so Ft(Pi) = 1 for any non-empty Pi; in other words,
Ft is the Euler valuation, and we’ve already shown that it is a valuation. Again, it suffices to
prove that this map is independent of how it is expressed; in other words, we need to prove

n∑
i=1

αi[Pi] = 0 =⇒
n∑
i=1

αiFt(Pi) = 0,

so let us assume that
∑n

i=1 αi[Pi] = 0. Now, consider t 6= 0. Noting x ∈ tP ⇐⇒ x
t ∈ P ,

0 =
n∑
i=1

αi[Pi]
(x
t

)
=

n∑
i=1

αi[tPi](x)

0 =
∑
x∈Zd

n∑
i=1

αi[Pi]
(x
t

)
=
∑
x∈Zd

n∑
i=1

αi[tPi](x)

=
n∑
i=1

αi
∑
x∈Zd

[tPi](x)

=

n∑
i=1

αiLPi(t)

0 =

n∑
i=1

αiFt(Pi).

Remark 5.3.2. This proof does not use any property of closed polytopes. Ft could be extended
to indicator functions of any set in Rd.

Lemma 5.3.3. Ft is integer unimodular invariant.

Proof. Let us prove the two properties separately.

(a) Indeed, for any u ∈ Zd and t ∈ Z, we have a bijection Tu,t : Zd → Zd where x 7→ tu + x,
and so the number of lattices points in tP is the same as the number of lattice points in
t(u+ P ) = tu+ tP .

(b) Note that for any U ∈ GLd(Z), U−1 exists, and both U and U−1 are integer matrices. The
columns u1, . . . , ud of U−1 are linearly independent; define B := {u1, . . . , ud}. Let LB, be
the lattice generated by the vectors in B. Let LI be the standard lattice, generated by
e1, . . . , ed.

We will show that U is a bijection between LI and LB. For any x ∈ Zd, note that
x = U−1(Ax), and so we can interpret Ux as x represented in the B basis. Since U is
integer and x is integer, x can be represented as a lattice point in LB. Conversely, for
any x ∈ LB, we can represent x in the standard basis by U−1x. Since U−1 is integer and
x is integer, x can be represented as a lattice point in LI .
Therefore, the number of lattices points in t(UP ) is equal to the number of lattice points
of tP .
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Since Ft(P ) is a polynomial, and polynomials are equal if their coefficients are equal, Lemmas
5.3.1, and 5.3.3 imply the following.

Corollary 5.3.4. Ln : [P ] 7→ [tn]LP (t) is an integer unimodular invariant valuation.

Suppose we have a valuation F : P(Zd) → K that is integer unimodular invariant. Recall
that U is defined to be the the sub-algebra generated by [P ]− [uP ]. For any element in U , we
have

F ([P ]− [UP + u]) = F (P )− F (UP + u) = F (P )− F (P ) = 0.

For any lattice polytope P , we can consider P+U ; we see that the valuation of any P+h ∈ P+U
is

F (P + h) = F (P ) + F (h) = F (P ).

Since F is constant over all elements in a coset, we could view F as a valuation from P(Zd)/U
to K.

Theorem 5.3.5. Let F,G : P(Zd)→ K be two valuations that are integer unimodular invari-
ant. If F (∆i) = G(∆i) for all standard simplices ∆i, then F (P ) = G(P ) for all lattice polytopes
in Rd.

Proof. By an application of Theorem 5.1.3, [P ] can be written as

[P ] =

m∑
i=1

αi[Ui∆i + ui]

for some finite m, where αi ∈ R, Ui ∈ GLd(Z), uiZd, and each Si is some standard simplex.
Then

F (P ) =
m∑
i=1

αiF (Ui∆i + ui)

=
m∑
i=1

αiF (∆i)

G(P ) =
m∑
i=1

αiG(Ui∆i + ui)

=
m∑
i=1

αiG(∆i).

Since F (∆i) = G(∆i), we have F (P ) = G(P ).

Let us write the unimodular decomposition of a lattice d-polytope P ⊂ Rd to keep track of
the dimension of the simplices used. Let nk be the number of k-dimensional simplices used in
a unimodular decomposition of P . Then our decomposition has the form

[P ] =

m∑
i=1

γi[UiSi + ui]

=

d∑
k=0

nk∑
i=1

αki[Uki∆k + uki]
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where γi, αki ∈ {−1, 1}, all Ui and Uki are unimodular maps, all ui and uki are integral vectors,
and ∆k is a unimodular k-simplex. In P(Zd)/U , we then have the formulation

[P ] =
d∑

k=0

αk[∆k]

where αk =
∑nk

i=1 αki. Note that for any integer unimodular invariant valuation F ,

F (P ) = α0F (∆0) + α1F (∆1) + · · ·+ αdF (∆d).

Lemma 5.3.6. For any lattice d-polytope, the vector (α0, . . . , αd) is unique.

Proof. Recall that

Ft(∆k) = L∆k
(t) =

(
t+ k

k

)
.

Therefore, L∆0(t), . . . , L∆d
(t) form a basis for polynomials of degree at most d. Given a lattice

d-polytope P ⊂ Rd, suppose we have two unimodular decompositions. In P(Zd)/U , suppose

d∑
k=0

αk[∆k] = [P ] =
d∑

k=0

βk[∆k].

By applying the integer unimodular invariant Ft, we have

d∑
k=0

αkFt(∆k) =

d∑
k+0

βkFt(∆k)

d∑
k=0

αk

(
t+ k

k

)
=

d∑
k=0

βk

(
t+ k

k

)
.

Since the set of
(
t+k
k

)
for k = 0, . . . , d is linearly independent, we must have that αk = βk.

Since [P ] can be represented in P(Zd)/U as a linear combination of [∆0], . . . , [∆d], we can
view the set of integer unimodular invariant valuations as a (d + 1)-dimensional vector space.
The integer unimodular invariant valuation F corresponds to the point (F (∆0), . . . , F (∆d)).
Theorem 5.3.5 then tells us that two integer unimodular invariant valuations are equivalent if
and only if they are the same point in this vector space.

Theorem 5.3.7 (Betke-Kneser). The valuations L0(P ), . . . , Ld(P ) form a basis for the space
of integer unimodular invariant valuations of P(Zd).

Proof. Recall that Ln corresponds to the vector

bn := (Ln(∆0), . . . , Ln(∆d)).

Since the space of integer unimodular invariant valuations of P(Zd) has dimension d + 1, it
suffices to show that the vectors bn are linearly independent for n = 0, . . . , d. Consider the
matrix B where the nth column is bn. Note that since L∆k

(t) is a polynomial in t with degree
k, Ln(∆n) 6= 0 and Ln(∆k) = 0 for k > n. Since B is upper triangular and has non-zero
diagonal, it has full rank, and therefore its columns are linearly independent.
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5.3.2 Proof of Ehrhart Reciprocity via Valuation

We would like to prove that Ft(P ) = LP (t) and Gt(P ) = (−1)dim(P )LP ◦(−t) are integer uni-
modular invariant valuations. By recalling from Example 3.5.2 that

Ft(∆) = Gt(∆)

for all standard simplices, we see that Ehrhart Reciprocity is an immediate consequence of
Theorem 5.3.5:

LP (t) = Ft(P ) = Gt(P ) = (−1)dim(P )LP ◦(−t).

Now let Gt : P(Rd)→ R be the function [P ] 7→ (−1)dim(P )LP (−t). After establishing that
Gt is a valuation, proving that Gt is integer unimodular invariant uses the same ideas as proving
that Ft is integer unimodular invariant. For this reason, we will not explicitly provide the proof
that Gt is integer unimodular invariant. We would like to prove that Gt also a valuation, but
it is a bit more involved than the proof of Ft.

Before proving Gt is a valuation, we first need the following results.

Theorem 5.3.8. Let C1, . . . , Cn be cells of a polyhedral complex. Then

n∑
i=1

αi[Ci] = 0 =⇒
n∑
i=1

αi(−1)dim(Ci)[C◦i ] = 0.

Proof. Suppose
∑n

i=1 αi[Ci] = 0. Noting that the collection of all non-empty faces of Ci is a
subdivision of Ci, we have

[C◦i ] =
∑
F≤Ci

(−1)dim(Ci)−dim(F )[F ],

so

n∑
i=1

αi(−1)dim(Ci)[C◦i ] =
n∑
i=1

αi(−1)dim(Ci)
∑
F≤Ci

(−1)dim(Ci)−dim(F )[F ]

=
∑

F :F≤Ci
for some i

(−1)dim(F )

 ∑
i:F≤Ci

αi

 [F ].

If x is not in any F , then [F ](x) = 0. Now suppose x ∈ F . Since all Ci’s are faces of a polyhedral
complex, if F is a face of some Ci and is also contained in some other Cj , then F must also be
a face of Cj . In other words, x ∈ Ci if and only if F ≤ C. Then, the sum

∑
i:F≤Ci αi would be

equal to

n∑
i=1

αi[Ci](x) = 0.

In either case, (
∑

i:F≤Ci αi)[F ] = 0.
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Theorem 5.3.9. Let P1, . . . , Pn be lattice polytopes. Then

n∑
i=1

αi[Pi] = 0 =⇒
n∑
i=1

αi(−1)dim(Pi)[P ◦i ] = 0.

Proof. Let H be the set of facet hyperplanes of all of P1, . . . , Pn. Each of these hyperplanes
H ∈ H partitions Rd into three parts: (H−)◦, H, and (H+)◦. The collection H then partitions
Rd into cells, where each cell is of the form ⋂

H∈H
JH

where JH ∈ {H−, H,H+}. Note that these cells are polyhedra; let S be the collection of these
cells. We claim that S is a polyhedral complex. The faces of a cell C =

⋂
H∈H JH can be

represented as the intersection of C with a subset of its facet hyperplanes. By definition, any
facet hyperplane of C is a hyperplane in H. Therefore, faces of C are in S . Consider another
cell C ′ =

⋂
H∈H J

′
H . For any fixed H ∈ H, JH ∩ J ′H is either H or a half-space of H; this

half-space would be JH = J ′H . Therefore,

C ∩ C ′ =
⋂
H∈H

(JH ∩ J ′H)

is a cell in S . Again, since JH ∩J ′H is either H or half-space JH = J ′H , C ∩C ′ is a face of both
C and C ′. For any Pi, let Si ⊂ S be the set of cells

⋃
H∈H JH where for each facet hyperplane

H of Pi, JH is an inward facet half-space of Pi. Then

Pi =
⋃
C∈Si

C,

and so Si is a subdivision of Pi. Corollary 4.3.2 and Theorem 4.3.9 and then give us two
identities:

[P ◦i ] =
∑

C∈Si|P◦
i

[C◦] (5.7)

[Pi] =
∑

C∈Si|P◦
i

(−1)dim(Pi)−dim(C)[C]. (5.8)

Suppose
n∑
i=1

αi[Pi] =

n∑
i=1

αi
∑

C∈Si|P◦
i

(−1)dim(Pi)−dim(C)[C] = 0.

We treat αi(−1)dim(Pi)−dim(C) =: βC as the coefficient of [C] and note that S1 ∪ · · · ∪ Sn is
a polyhedral complex. Theorem 5.3.8 implies that

∑n
i=1

∑
C∈Si|Pi

βC [C] = 0. Equation (5.7)
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then implies

0 =
n∑
i=1

∑
C∈Si|Pi

βC(−1)dim(Cij)[C◦]

=

n∑
i=1

αi
∑

C∈Si|Pi

(−1)dim(Pi)−dim(C)(−1)dim(C)[C◦]

=
n∑
i=1

αi(−1)dim(Pi)
∑

C∈Si|Pi

[C◦]

=

n∑
i=1

αi(−1)dim(Pi)[P ◦i ].

Lemma 5.3.10. Gt is a valuation.

Proof. It suffices to prove that

n∑
i=1

αi[Pi] = 0 =⇒
n∑
i=1

αiGt(Pi) = 0,

so suppose
∑n

i=1 αi[Pi] = 0. Note that Gt(P ) = (−1)dim(P )F−t(P ). By Theorem 5.3.9 , we
have

∑n
i=1 αi(−1)dim(Pi)[P ◦i ] = 0. By Remark 5.3.2 , we can apply the valuation F−t to get

0 =

n∑
i=1

αi(−1)dim(Pi)F−t(P
◦
i ) =

n∑
i=1

αiGt(Pi).

5.3.3 Obtaining f-vector via Barvinok’s Algorithm

As we have seen, the run-time of our approach is not very efficient in finding a unimodular
decomposition. However, if we were just interested in computing the number of simplices of
each dimension in a unimodular triangulation, we can use Barvinok’s algorithm.

Let us define ϕEhr to be the the map that takes [P ] to EhrP (z). For any lattice polytope,

ϕEhr(P ) =
∑
t≥0

LP (t)zt.

Note that since LP (t) is an integer unimodular invariant valuation (by Lemmas 5.3.1, and 5.3.3),
the map that takes [P ] to LP (t)zt is an integer unimodular invariant valuation, and therefore
ϕEhr is an integer unimodular invariant valuation. Now consider a unimodular decomposition
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of P in P(Zd)/U .

[P ] =
d∑

k=0

ak∆d

ϕEhr(P ) =

d∑
k=0

akϕEhr(∆k)

EhrP (z) =

d∑
k=0

ak Ehr∆k
(z)

h∗P (z)

(1− z)d+1
=

d∑
k=0

ak
h∗∆k

(z)

(1− z)k+1
.

Multiplying both sides by (1− z)d+1, we get

h∗P (z) = ad + (1− z)ad−1 + · · ·+ (1− z)da0.

Then the coefficients of h∗P (1− z),

h∗P (1− z) = ad + ad−1z + ad−2z
2 + · · ·+ a0z

d

will give us the number of k-dimensional unimodular simplices in a unimodular decomposition
of P . In addition, if any of these coefficients is negative, then we know that P does not admit a
unimodular triangulation, since some part of the unimodular decomposition requires us to “take
away” a simplex. Therefore we can use Barvinok’s algorithm to obtain h∗P (z) and efficiently
gain some information about a unimodular decomposition of P .
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