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Abstract 

Large-scale (~103–106 km
2
) physically-based distributed hydrological models have been used 

increasingly, due to advances in computational capabilities and data availability, in a variety of water and 

environmental resources management, such as assessing human impacts on regional water budget. These 

models inevitably contain a large number of parameters used in simulation of various physical processes. 

Many of these parameters are not measurable or nearly impossible to measure. These parameters are 

typically estimated using model calibration, defined as adjusting the parameters so that model simulations 

can reproduce the observed data as close as possible. Due to the large number of model parameters, it is 

essential to use a formal automated calibration approach in distributed hydrological modelling. 

The St. Lawrence River Basin in North America contains the largest body of surface fresh water, the 

Great Lakes, and is of paramount importance for United States and Canada. The Lakes’ water levels have 

huge impact on the society, ecosystem, and economy of North America. A proper hydrological modelling 

and basin-wide water budget for the Great Lakes Basin is essential for addressing some of the challenges 

associated with this valuable water resource, such as a persistent extreme low water levels in the lakes.  

Environment Canada applied its Modélisation Environnementale-Surface et Hydrologie (MESH) 

modelling system to the Great Lakes watershed in 2007. MESH is a coupled semi-distributed land 

surface-hydrological model intended for various water management purposes including improved 

operational streamflow forecasts. In that application, model parameters were only slightly adjusted during 

a brief manual calibration process. Therefore, MESH streamflow simulations were not satisfactory and 

there was a considerable need to improve its performance for proper evaluation of the MESH modelling 

system. Collaborative studies between the United States and Canada also highlighted the need for 

inclusion of the prediction uncertainty in modelling results, for more effective management of the Great 

Lakes system. 

One of the primary goals of this study is to build an enhanced well-calibrated MESH model over the 

Great Lakes Basin, particularly in the context of streamflow predictions in ungauged basins. This major 

contribution is achieved in two steps. First, the MESH performance in predicting streamflows is 

benchmarked through a rather extensive formal calibration, for the first time, in the Great Lakes Basin. It 

is observed that a global calibration strategy using multiple sub-basins substantially improved MESH 

streamflow predictions, confirming the essential role of a formal model calibration. At the next step, 

benchmark results are enhanced by further refining the calibration approach and adding uncertainty 

assessment to the MESH streamflow predictions. This enhancement was mainly achieved by modifying 
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the calibration parameters and increasing the number of sub-basins used in calibration. A rigorous multi-

criteria comparison between the two experiments confirmed that the MESH model performance is indeed 

improved using the revised calibration approach. The prediction uncertainty bands for the MESH 

streamflow predictions were also estimated in the new experiment. The most influential parameters in 

MESH were also identified to be soil and channel roughness parameters based on a local sensitivity test. 

One of the main challenges in hydrological distributed modelling is how to represent the existing 

spatial heterogeneity in nature. This task is normally performed via watershed discretization, defined as 

the process of subdividing the basin into manageable “hydrologically similar” computational units. The 

model performance, and how well it can be calibrated using a limited budget, largely depends on how a 

basin is discretized. Discretization decisions in hydrologic modelling studies are, however, often 

insufficiently assessed prior to model simulation and parameter. 

Few studies explicitly present an organized and objective methodology for assessing discretization 

schemes, particularly with respect to the streamflow predictions in ungauged basins. Another major goal 

of this research is to quantitatively assess watershed discretization schemes for distributed hydrological 

models, with various level of spatial data aggregation, in terms of their skill to predict flows in ungauged 

basins. The methodology was demonstrated using the MESH model as applied to the Nottawasaga river 

basin in Ontario, Canada. The schemes differed from a simple lumped scheme to more complex ones by 

adding spatial land cover and then spatial soil information. Results reveal that calibration budget is an 

important factor in model performance. In other words, when constrained by calibration budget, using a 

more complex scheme did not necessarily lead to improved performance in validation. The proposed 

methodology was also implemented using a shorter sub-period for calibration, aiming at substantial 

computational saving. This strategy is shown to be promising in producing consistent results and has the 

potential to increase computational efficiency of this comparison framework.  

The outcome of this very computationally intensive research, i.e., the well-calibrated MESH model for 

the Great Lakes and all the final parameter sets found, are now available to be used by other research 

groups trying to study various aspects of the Great Lakes System. In fact, the benchmark results are 

already used in the Great Lakes Runoff Intercomparison Project (GRIP). The proposed comparison 

framework can also be applied to any distributed hydrological model to evaluate alternative discretization 

schemes, and identify one that is preferred for a certain case.  
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Chapter 1 

Introduction 

1.1 Problem Statement 

Advances in process understanding, computational capabilities, and data measurements, have inspired the 

increased usage of large scale physically-based distributed hydrological models for many applications, 

such as evaluating human impacts on global water budget (e.g., McCabe and Wolock, 2011), or 

determining interbasin water transfers (e.g., Islam et al., 2007). As such, these models are one of the key 

tools in making decisions regarding the management of water and environmental resources. These 

hydrological models inevitably contain a large number of parameters used in simulation of various 

physical processes. Many of these parameters are not measurable or nearly impossible to measure. These 

parameters are typically estimated using model calibration, defined as adjusting the parameters so that 

model simulations can reproduce the historical (observed) response data (e.g., daily streamflow) as close 

as possible. Without a careful model calibration and validation, model simulations can be unrealistic or 

misleading (e.g., Moriasi et al., 2012). Calibration strategies range from simple manual calibration to 

sophisticated automated calibrations. Manual calibration is very time-consuming and limited in 

distributed hydrological modelling studies, due to the large number of model parameters. Therefore, it is 

essential to adopt a formal automated calibration approach in these cases. 

The St. Lawrence River Basin in North America contains the largest body of surface fresh water in the 

world, the Great Lakes, and is of paramount importance globally and in particular, for United States and 

Canada. The Lakes’ water levels have huge impact on the ecosystem and economy of North America 

(e.g., Millerd 2005). A proper hydrological modelling and basin-wide water budget for the Great Lakes 

Basin is essential for addressing some of the challenges associated with this valuable water resource, such 

as a persistent extreme low water levels in the lakes over the past decade (e.g., Gronewold and Stow, 

2014).  

In 2007, Environment Canada applied its Modélisation Environnementale-Surface et Hydrologie 

(MESH) modelling system to the Great Lakes watershed (Pietroniro et al. 2007). MESH is a coupled 

semi-distributed land surface-Hydrological model developed for various water management purposes. 

The goal in that application was mainly to set up the coupling framework and demonstrate its potential for 

operational forecasts in the Great Lakes Basin, and also to identify specific requirements for different 

components of the MESH modelling system (Pietroniro et al. 2007). Accordingly, model parameters were 

only slightly adjusted during a brief manual calibration process. Therefore, MESH streamflow 
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simulations were not satisfactory and there was a considerable need to improve its performance for proper 

evaluation of the MESH modelling system. Consequently, one of the primary goals of this study is to 

apply proper calibration techniques to enhance the performance of MESH over the Great Lakes Basin, 

particularly concerning streamflow predictions in ungauged basins (PUB).  

Collaborative studies between the United States and Canada have also highlighted the need for 

inclusion of the prediction uncertainty in modelling results, for a more effective management of the Great 

Lakes system (e.g., Gronewold et al., 2011). As approximations of the real world, models have 

uncertainty corresponding to their parameters, structure, or input data. Therefore, outcomes of modelling 

studies can be more effectively used by decision makers, when reported along with some assessment of 

uncertainty. In 2003, the International Association of Hydrological Science (IAHS) placed estimation of 

predictive uncertainty at the core of the decade (2003–2012) on the PUB (Sivapalan et al., 2003). 

Accordingly, as another contribution of this thesis, the uncertainty due to parameter estimation is 

evaluated for MESH streamflow predictions in the Great Lakes Basin.  

The primary advantage of distributed models is in providing spatially distributed information about 

model outcomes. However, the main challenge remains as how to represent the existing spatial 

heterogeneity in nature (e.g., for land cover or soil type) in these models. For simulations at large scales, 

this task is normally performed via watershed discretization, here defined as the process of subdividing 

the basin into manageable “hydrologically similar” computational units. The model performance and how 

well it can be calibrated using a limited budget, largely depend on how a basin is discretized (e.g, Flügel, 

1995). The more spatial details incorporated when discretizing a watershed, the more complex and 

computationally costly becomes the model, especially for calibration.   

Discretization decisions in hydrologic modelling studies are often insufficiently scrutinized. Often, 

hydrologic modelling studies tend to adopt a prescribed approach or assumption guiding the discretization 

decision (usually developed under different circumstances), assuming it is adequate, and then proceed to 

model simulation and parameter calibration (e.g., Donald et al., 1995, Pietroniro et al., 1996). Few studies 

explicitly present an organized and objective methodology for assessing discretization schemes, 

particularly in the PUB context. Accordingly, another major goal of this research is to quantitatively 

assess watershed discretization schemes, with various level of spatial data aggregation, in terms of their 

skill to predict flows in ungauged basins. This analysis will also investigate if there is a tradeoff between 

the model performance and the computational cost for calibrating different discretization schemes in 

MESH. 
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1.2 Research Objectives 

The primary research objectives of this thesis are described below: 

1.2.1 Benchmark the performance of the MESH model for the Great Lakes Basin using a 

formal calibration strategy. 

This objective intends to identify a satisfactory baseline performance of the MESH model for predicting 

ungauged streamflows over the Great Lakes Basin. This goal is achieved by a formal calibration (and 

validation) of MESH, for the first time, over the entire Great Lakes Basin. The outcomes of this objective 

can then serve as a reference for evaluation of relevant future studies to improve MESH performance in 

this region of Canada. This objective is discussed in Chapter 3 of the thesis. 

1.2.2 Build an enhanced MESH modelling system for the Great Lakes for streamflow 

predictions in ungauged basins. 

Building upon the first objective, substantial enhancement of the baseline results is targeted by further 

refining the calibration approach and performing an uncertainty analysis related. The outcome would be a 

well-calibrated MESH model in the Great Lakes Basin that can be used for predicting streamflows, 

predicting lake inflows for each of the Great Lakes, or ultimately, for lake level prediction. This product 

would then be the model recommended for future modelling studies with MESH in this region.   This 

objective is detailed in Chapter 4. 

1.2.3 Introduce a quantitative comparison framework for assessing the performance of 

semi-distributed hydrological models under various watershed discretization schemes. 

This objective endeavors to quantitatively assess watershed discretization schemes, with various levels of 

spatial data aggregation, in terms of their skill to predict flows in ungauged basins. Special attention is 

spent to determine the added benefit of including information about land cover and soil type. In addition, 

the sensitivity of the results to the budget spent for model calibration is examined. Lastly, it is tested 

whether the same results can be obtained when the main calibration period is replaced with a sub-period. 

This is important because the use of a condensed calibration period can potentially save substantial 

amounts of time during the numerous calibration experiments required by this method. The methodology 

was demonstrated using the MESH model as applied to the Nottawasaga river basin, a sub-basin of the 

Great Lakes Basin, in South-Western Ontario, Canada. The scope of this study is not to examine the 

effect of grid cell size on watershed discretization and model performance. 
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1.3 Thesis Structure 

Chapters in this thesis are organized based on the objectives discussed above; meaning that a single 

chapter is dedicated to each objective. When applicable, a published or submitted paper is used as a 

chapter, with few modifications to maintain the consistency of the thesis as a whole.  

  Chapter 2 provides an updated review of literature relevant to this research with a focus on the 

calibration of distributed hydrological models and different approaches for watershed discretization.  

Chapter 3 is a mirror of a published paper (Haghnegahdar et al., 2014) that highlights the methods and 

results for the benchmarking calibration of the MESH model over the Great Lakes Basin. Chapter 4 then 

discusses how the benchmark results of Chapter 3 were further enhanced by refining the calibration 

strategy and by introducing the parameter uncertainty in streamflow predictions. Chapter 5, based on a 

paper recently submitted for publication, describes a quantitative methodology for assessing various 

watershed discretization schemes. Finally, Chapter 6 outlines the conclusions from the studies in this 

thesis and provides some suggestions for related research in future. 
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Chapter 2 

Literature Review 

2.1 Hydrological and Land Surface Modelling 

A hydrological model is a mathematical model used to simulate the movement and storage of the water 

within a certain boundary, typically a watershed. Hydrological models range from a simple single bucket 

conceptual model to detailed physically-based models simulating multiple processes of water flow in 

nature. Depending on this complexity, the required input data can also vary. Some simple models require 

only the rainfall as input data, whereas more sophisticated models also require, for example, temperature, 

pressure, wind speed and radiation data. Hydrological models have many applications such as flood 

forecasting, land use change impact, streamflow forecasting and water quality modelling.   

Hydrologic models can also be classified as being “lumped” or “distributed”. The exact definition of 

“lumped” versus “distributed” models varies in the literature and by the application. According to Clarke 

(1973), a lumped model does not consider the spatial distribution of input data or model parameters, 

whereas a distrusted model accounts for the spatial variability of input data. In practice, a distributed 

hydrologic model often refers to a model that somehow represents the spatial variability and water paths 

in a catchment (Kampf and Burges, 2007). A detailed classification of distributed hydrologic models is 

provided by Kampf and Burges (2007). 

Accordingly, there is the group of physically-based distributed hydrological models. These models can 

be sub-divided into fully-distributed and semi-distributed models. In fully-distributed models like SMDR 

(Soil Moisture Distribution and Routing, Srinivasan et al., 2005), SHE (Systeme Hydrologique Europeen, 

Abbott et al., 1986), the exact location for each computational element is specified and the lateral transfer 

of water and energy fluxes are allowed between these elements throughout the model spatial domain. In 

contrast, although the spatial variation of parameters are somewhat represented in semi-distributed 

models via discretized spatial units, the exact location of each computational element within these spatial 

units are neglected such as in SWAT (Arnold et al., 1998), WATFLOOD (Kouwen, 1988) and 

TOPMODEL (Beven and Kirkby, 1979). Therefore, in semi-distributed models, routing of water fluxes 

between the computational elements is rather conceptualized before reaching the main channel.  

A Land surface model (LSM) or Land surface Scheme (LSS) aims at mathematically simulating the 

transfer of water and energy between the Earth’s surface, vegetation, and atmosphere. LSMs are primarily 

used in climate models to simulate energy exchanges between land cover and atmosphere (Pitman 2003). 

They are mostly one-dimensional column models that describe the water and energy pathways through 
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the root zone and vegetation with various levels of complexity. Sellers et al. (1997) classified LSMs into 

three categories: first, second and third-generation. Generally, in the first-generation models, a simple 

bucket model is used with soil-atmosphere interactions only. The second-generation models improve to 

include both soil and vegetation interactions with details, and the more sophisticated third-generation 

models account also for carbon flux pathways (Sellers et al., 1997).  

Many studies have particularly focused on using and advancing the second-generation LSMs that 

contain an explicit treatment of mass and energy interactions between land, canopy and atmosphere 

(Pitman 2003). Examples of such models include the Simple Biosphere Model (SiB, Sellers et al., 1986), 

and the Canadian Land Surface Scheme (CLASS, Verseghy, 1991; Verseghy et al, 1993). CLASS was 

developed in response of the need to include a second-generation land surface scheme for the Canadian 

global circulation model (Verseghy, 1991).  

Over the past two decades, there has been an extensive global effort to couple atmospheric and 

hydrological models using LSMs (Pietroniro et al., 2007). This connection can improve hydrological flow 

simulations and atmospheric predictions in both climate (Soulis et al., 2000) and weather prediction 

models (Benoit et al., 2000). Similar systematic efforts were made in Canada starting mid-90s (Pietroniro 

et al., 2007). These efforts eventually led to the creation of the Modélisation Environmentale–Surface et 

Hydrologie (MESH) model in 2007, by coupling the CLASS land surface scheme (Verseghy, 1991; 

Verseghy et al, 1993) and the WATFLOOD hydrological model (Kouwen, 1988) by Environment Canada 

(Pietroniro et al., 2007). Development of MESH was at the center of Hydrologic Ensemble Prediction 

Experiment (HEPEX) Great Lakes test bed project, aimed at improving streamflow forecast at large 

scales within the Great Lakes tributaries (Pietroniro at el., 2007).  

2.2 Discretization approaches in distributed hydrological models 

Due to data and computational constraints, application of fully-distributed models to large scale 

(~10
3
–10

6
 km

2
) hydrologic modelling is typically infeasible for operational purposes and thus, semi-

distributed models are primarily relied upon in thb ese situations. However, specifying all the required 

model parameters with the appropriate scale, poses a challenge for semi-distributed models. These 

parameters are normally associated with the model approach to accommodate spatial heterogeneity (i.e. 

discretization) and are typically determined via model calibration. Calibration is the procedure of 

adjusting the parameters so that model simulations can reproduce the historical (observed) response data 

(e.g., daily streamflow) as close as possible. 
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Two fundamental decisions are to be made when discretizing a watershed for simulation with a semi-

distributed model. The first one, which depends largely on the spatial resolution of the forcing data (e.g. 

precipitation, temperature, etc.) and/or the density of the streamflow gauges, is how to specify the size 

(resolution) and shape (e.g., grid cell or sub-basin) of the spatial units used in the model for channel 

routing. In other words, determine the spatial scale (resolution) which yields estimates of runoff rates at 

the specific locations of interest. Some semi-distributed models such as SWAT and LIQUID (Branger et 

al., 2010) divide the watershed into sub-basins (smaller sub-watersheds) while other models such as 

WATFLOOD and MESH divide the watershed into gridded spatial units. Some models such as Raven 

(Craig and Snowdon, 2011) can subdivide either way depending on the application.  

The second decision in watershed discretization is concerned with subdividing the aforementioned 

spatial units (i.e., sub-basins or grid cells) further into elements with distinct hydrologic responses. These 

entities will be used by the model as the computational unit for simulation. Being rather more complex 

and important, this latter decision mainly determines the representation of heterogeneity in the model and 

thus, largely specifies the model complexity and number of (unknown) model parameters.  

Many distributed watershed modelling studies have tried to find a suitable approach for spatial 

discretization of a basin that reasonably balances between model complexity and its applicability in 

practice. Wood et al. (1988) proposed the concept of Representative Elementary Area (REA) to identify 

characteristic spatial scales for catchment responses in terms of the runoff generation. Reggiani et al. 

(1998) extended this idea to the concept of Representative Elementary Watersheds (REWs) that are sub-

watersheds across which same physical laws govern and are further sub-divided into several flux zones.  

As an alternative to the raster-based approaches, Vivoni et al. (2004) used the triangulated irregular 

networks (TINs) delineated primarily based on a topographic (wetness) index (Beven and Kirkby, 1979) 

to be used within the TIN-based Real-Time Integrated Basin Simulator (tRIBS, Ivanov et al., 2004). 

Dehotin and Braud (2008) proposed the use of “hydro-landscape“ units (Winter, 2001) to address sub-

catchment variability in a nested discretization approach to be implemented within the LIQUID modelling 

platform (Branger et al., 2010). Capable of taking into account various influential factors on hydrologic 

response such as slope, land use, geology, pedology and etc., the hydro-landscape units are very similar to 

the Hydrological Response Units (HRU, e.g., Leavesley et al., 1983; Flügel, 1995). 

HRUs are perhaps the most commonly used approach to incorporate landscape heterogeneity in 

watershed modelling. The exact definition of HRUs depends on the model and the application 

(Haverkamp et al., 2002). Flügel (1995) defines HRUs as “distributed, heterogeneously structured entities 

having a common climate, land use and underlying pedo-topo-geological associations controlling their 
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hydrological dynamics”. In the case of SWAT, HRUs are sub-basin divisions characterized by a unique 

combination of land cover, soil and land management (e.g., Neitsch et al., 2005). Although HRUs are 

mostly defined as subunits of a sub-basin, they may also be delineated based on a grid too. 

Kouwen et al. (1993) introduced the Grouped Response Unit (GRU) approach in WATFLOOD model 

and described it as the aggregation of multiple land classes (or possibly other attributes) into a single unit 

in order to increase computational efficiency. Pietroniro and Soulis (2003) found the GRU concept a 

suitable approach for semi-distributed hydrological modelling in large basins because it accounts for the 

physics while it is operationally simple. In most WATFLOOD or MESH model applications, the GRUs 

are defined as subdivisions (not necessarily contiguous) of a Cartesian grid cell rather than a 

topographically-defined sub-basin (e.g., Pietroniro et al., 2007).  

When dealing with hydrological models, it is very well recognized that a number of parameters are 

unknown and have to be determined through calibration. However, modelers typically overlook the fact 

that the most appropriate discretization scheme is also unknown and that it could also be determined as 

part of the model calibration process. Instead, modelers tend to use a single discretization decision 

(perhaps for simplicity or operational considerations) that is already developed from a combination of 

subjective user input, modeler experience, available data format, and built-in model constraints. 

Consequently, it is desirable to develop guidelines for identifying the appropriate watershed discretization 

that is assessed and less subjective when calibrating a model. 

Few studies, however, explicitly present an organized and objective methodology for defining and 

assessing discretization schemes. Ideally, a scheme should find the balance between spatial aggregation 

level and model complexity. Some of the important studies include the work of Flügel (1995), 

Haverkamp et al. (2002), Dehotin and Braud (2008).  

Flügel (1995) presented a fairly detailed procedure to delineate HRUs for regional scale hydrological 

modelling in a manner that seeks to preserve the three-dimensional heterogeneity of the basin. The 

procedure involves a step-by-step GIS-based map overlay analysis to specify HRUs according to 

physiographic properties such as topography, soil type, geology and land use. As a result, 23 HRUs were 

delineated by his method in the River Brol basin (216 km
2
) in Germany.  

Haverkamp et al. (2002) introduced a rather objective and statistical methodology for determining the 

appropriate level of spatial aggregation (discretization) based on the entropy function (e.g., Krasovskaia, 

1997). Conducting experiments with SWAT, they found a threshold value for the number of sub-

watersheds (and HRUs) beyond which model performance is not improved any further. On this basis, 
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they developed the SUbwatershed Spatial Analysis Tool (SUSAT) within the SWAT framework for 

finding an appropriate level of discretization. Haverkamp et al. (2002) assessed the quality of the 

discretization decisions in terms of how well the model can be calibrated to available monitoring data. 

Unfortunately, this approach to quality assessment does not necessarily reflect the quality of the 

discretization decision in terms of predictions in ungauged basins.  

Dehotin and Braud (2008) proposed a flexible three-level discretization strategy for implementation in 

a modular modelling platform called LIQUID (Branger et al., 2010). In their method, the spatial 

discretization can become finer adaptively according to modelling objectives or numerical requirements. 

They use a very similar concept to HRU, called “hydro-landscape“ units (Winter, 2001) to address sub-

catchment variability. Hydro-landscape units in their approach are determined in a very similar manner to 

that of Flügel (2005) for HRU delineation, except that they basically employ a supervised classification 

technique to preserve possible small areas that are hydrologically influential based on the chosen 

processes and could have been neglected otherwise.  

Consequently, presumably after following one of these suggested procedures, one obtains a set of non-

overlapping HRUs (or similarly GRUs) characterized by a unique combination of attributes considered 

important for characterizing the hydrological response. 

Even in these approaches there exist some inevitable subjective decisions that have to be made such 

as: 

1. Determination of the most influential hydrological factors which is a common fundamental decision 

across all approaches (e.g., delineation of GRUs/HRUs on the basis of land cover, land use, soil type, 

terrain attributes, etc.). 

2. Dividing each factor into different categories, again a common fundamental decision (e.g., dividing 

slope into low, moderate, high). 

3. Deciding on how to merge some HRUs in order to keep the number of HRUs manageable for 

modelling purposes in the method introduced by Flügel (1995) (e.g., merging small agricultural areas 

(less than 0.2%) into rangeland and slopes <10% into the gradient class of 0-10%). 

4. The user-specified accepted level of information loss (e.g., 5%) in the approach developed by 

Haverkamp et al. (2002). 

5. Defining the size and shape of the neighbourhood window (e.g. ellipsis neighbourhood window) or 

the reference zones used in classification in the procedure proposed by Dehotin and Braud (2008).  
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It is worth emphasizing that the goal here is not to eliminate all these subjective decisions, which is of 

course impossible, but rather to make them less subjective to the extent possible and quantify their impact 

on model performance and efficiency particularly in the ungauged areas.  

Moreover, many studies, including the aforementioned ones, report the model success in terms of the 

calibration quality without measuring its performance in spatial validation which could be a big concern. 

The reason for measuring model performance in ungauged areas is because this criteria better reflects the 

ability of the discretization scheme in capturing the natural heterogeneity. In other words, the more 

HRUs/GRUs represents the real physics of the watershed the model hydrologic response would be more 

consistent over the entire basin including ungauged areas. In contrast, if HRUs/GRUs are poorly 

delineated, the resultant parameter set is effectively compensating for the errors induced from improper 

delineation during the calibration process. Therefore, even with apparently reasonable simulation results 

in the gauged basin, it is unlikely that these compensatory parameter values will port very well to an 

ungauged basin. 

Similar discretization issues are commonly confronted when using the MESH model. In particular, for 

the case study of the MESH model calibration in the Great Lakes Basin, Neff and Nicholas (2005) note 

that a total of 32% of the land areas draining into the Great Lakes were ungauged as of 1992. Kouwen et 

al. (1993) advocate building GRUs primarily based on land cover type, since this property dominantly 

controls the hydrologic response. Subsequently, other studies also adopted same strategy to delineate 

GRUs in WATFLOOD (e.g., Donald et al., 1995, Pietroniro et al., 1996) and MESH (e.g., Pietroniro et 

al., 2007; MacLean, 2009). However, using MESH, other researchers (e.g., Davison et al., 2006, Dornes 

et al., 2008) have found that topography can also impact the hydrologic response in northern climates and 

have thus explicitly incorporated slope and aspect into the GRU definition in addition to land cover. 

Haghnegahdar et al. (2010) also showed that the current GRU discretization used in WATFLOOD is not 

optimal based on the results obtained for WATFLOOD calibration in the Great Lakes Basin. They 

observed inconsistent results between model performances in some stations when WATFLOOD was 

calibrated in one station individually versus the case when it was calibrated globally for all stations. 

Unfortunately, currently there is no general framework for determining GRUs and there is very little 

flexibility to evaluate alternative discretization approaches for WATFLOOD and MESH modelers. 

Accordingly, it is desirable to know and quantify the value of adding more spatial attributes into GRU 

definition in MESH. 

 Flügel (1995) suggested detailed field investigations to assess the appropriateness of HRU delineation 

(particularly that the variation of hydrological process dynamics within a single HRU must be small 
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compared to the dynamics between different HRUs), this work is not typically possible in most situations, 

especially at regional scales. Some researchers only consider the first level of watershed discretization in 

a semi-distributed modelling approach, which is, applying a conceptual (lumped) model in a distributed 

way to individual grid cells or sub-basins and neglecting the heterogeneity within a grid or sub-basin. For 

example, Boyle et al. (2001) found improvement in model performance when a semi-distributed version 

of the U.S. National Weather Service (NWS) Sacramento Soil Moisture Accounting (SAC-SMA) model 

(Burnash et al., 1973) was compared with the original lumped version in the Blue River watershed (1227 

km
2
) located in southern Oklahoma. They reported that improvements are clearly associated with the 

spatially distributed model input (rainfall) and routing approach, but “surprisingly, there is no 

improvement associated with the distribution of the surface characteristics” (i.e. soil parameters). 

Applying same model and strategy to the Illinois River basin at Watts, Oklahoma (1645 km
2
) Ajami et al. 

(2004) also concluded that although the semi-distributed models are better for providing spatially 

distributed information (e.g., at interior points), “the resulting improvement in simulation capability at the 

outlet, compared to the lumped model is not yet significant to justify adoption of semi-distributed model.” 

Pokhrel and Gupta (2010) followed the same discretization approach and applied a lumped parameter 

model in the same basins and the Baron Fork River basin in the Oklahoma-Arkansas border. Although 

Pokhrel and Gupta (2010) reported that their distributed calibration methodology achieves considerable 

performance improvements at the basin outlet, they also noted that the strategy resulted in degraded 

predictions for the interior gauges that were not explicitly calibrated to. Specifically, Pokhrel and Gupta 

(2010) reported that prior parameter estimates are found to give much better performance at the interior 

points (treated as ungauged) and thus, they concluded that the spatial information has not been properly 

exploited. Pokhrel and Gupta (2010) did not suggest a framework for testing how to exploit that spatial 

information. It is not clear if conclusions from these studies would be the same if the heterogeneity within 

a grid or sub-basin is further accounted for using HRUs or GRUs approaches. Alternatively, a novel 

framework is proposed here by which, the assessment of watershed discretization schemes, with various 

levels of complexity, can be conducted in a quantitative and systematic way, primarily by considering the 

model performance for the parameter transferability to ungauged areas. This method is described in 

Chapter 5. 

2.3 Calibration of distributed hydrological models 

Regional (large scale) distributed land surface-hydrological models are being increasingly used for the 

purpose of hydrologic and climatic simulations or forecasts (e.g., Flügel, 1995; Benoit et al., 2000; 

Arnold & Fohrer, 2005; Samaniego et al., 2010). These models contain parameters that are impossible or 
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very difficult to measure. These parameters are typically estimated using model calibration, defined as 

adjusting the parameters so that model simulations can reproduce the historical (observed) response data 

(e.g., daily streamflow) as close as possible. Due to the model and thus calibration complexity, 

particularly for distributed environmental models, automated calibration approaches are normally adopted 

for parameter estimation as opposed to manual calibration. Some researchers suggest a combination of 

both approaches to enhance the calibration results (e.g., Boyle et al., 2001). 

Automatic calibration techniques can be divided into two main categories: optimization-based and 

uncertainty-based. More traditionally used, optimization-based calibration is facilitated via an 

optimization algorithm that searches for the global “optimal” parameter set that can best simulate the 

historical observations. A large number of such optimization algorithms have been applied in 

environmental modelling practice like the Genetic Algorithm (Wang, 1991), the Shuffled Complex 

Evolution (SCE) algorithm (Duan et al., 1992, 1993) and Dynamically Dimensioned Search (DDS) 

algorithm (Tolson and Shoemaker, 2007). A newer generation of calibration algorithms aims at providing 

a range or probability distribution (instead of a single value) for parameters to account for uncertainty in 

estimation that can be further translated into model predictions too. Examples of such algorithms include 

Generalized Likelihood Uncertainty Estimation, GLUE (Beven and Binley, 1992), Sequential Uncertainty 

FItting (SUFI-2) (Abbaspour et al., 2004) and various methods using Markov Chain Monte Carlo 

(MCMC) algorithms (e.g., Kuczera and Parent, 1998; Vrugt et al., 2003).  

The SCE algorithm (Duan et al. 1992, 1993) developed at the University of Arizona (SCE-UA) is one 

of the most commonly used  global optimization algorithm for watershed calibration (e.g., Sorooshian et 

al., 1993; Gan and Biftu, 1996; Kuczera, 1997). SCE is a probabilistic population-based evolutionary type 

of algorithm designed to find the globally optimal set of model parameters. In particular, many hydrologic 

modelling studies with the SWAT (e.g., Rouhani et al., 2009; Abbaspour et al., 2007) and SAC-SMA 

models (e.g., Duan et al., 1994; Gupta et al., 1998; Hogue et al., 2000) tend to use the SCE-UA for 

parameter calibration.  Tolson and Shoemaker (2007) introduced DDS as an efficient and simple single-

solution stochastic heuristic global search algorithm. DDS was designed to find “good” global solutions 

(as opposed to globally optimal solutions) within the modeler’s specified time frame. Using a number of 

calibration case studies with the SWAT2000 model (Neitsch et al., 2001), Tolson and Shoemaker (2007) 

report that DDS outperforms SCE in the context of distributed watershed model automatic calibration and 

is more efficient when 10 or more parameters should be calibrated. 

DDS has been applied to a number of hydrological modelling studies in Canada. Dornes et al. (2008) 

used DDS in a step-wise calibration procedure in north-eastern Canada to evaluate parameter 
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transferability of the MESH model to ungauged basins. MacLean (2009) applied DDS to calibrate MESH 

simultaneously to snow water equivalent and streamflow in two study areas in the United States and 

Canada. DDS was also used by Seglenieks (2009) to calibrate WATFLOOD over all of Canada. 

Haghnegahdar et al. (2010) also calibrated WATFLOOD model using DDS for more than 100 stations 

across the Great Lakes Basins. In this research, DDS will be adopted as the calibration algorithm. 

It is widely recognized that often a single objective measure is not adequate to obtain a proper 

parameter set for simulation and a multi-objective calibration is strongly recommended to reduce the error 

in the results (e.g., Yapo et al., 1998; Madsen, 2003). Two major approaches are often adopted to 

implement a multi-objective calibration. One simple strategy is to use a weighted average to aggregate 

multiple objectives into a single objective (e.g., Madsen, 2003 and Tolson and Shoemaker, 2008). This 

strategy is adopted in this research as well by using a weighted average Nash-Sutcliffe coefficient (Nash 

and Sutcliffe, 1970) of streamflows in several stations as the objective function. Another more 

sophisticated strategy is to use a multi-objective optimization algorithm such as Evolutionary Multi-

objective Optimizers or EMOs (e.g., Tang et al., 2006). These algorithms approximate the entire non-

dominated set that allows the modeler to evaluate the resultant tradeoffs and select a solution they deem 

to best balance all objectives.  The Multiple Objective Shuffled Complex Evolution Metropolis global 

search algorithm (MOSCEM) is commonly applied for multi-objective hydrologic model calibration (e.g., 

Vrugt et al., 2003; Pokhrel and Gupta, 2010).    

The calibration of regional scale physically-based distributed hydrological models is normally very 

computationally costly due to long model runs and large number of parameters involved. Accordingly, a 

substantial body of research has been devoted to find methods for reducing the calibration computational 

demand and increasing its efficiency. One approach commonly used to reduce the number of parameters 

in distributed model calibration is “regularization”. It is a mathematical strategy that normally helps to 

reduce the search space dimensionality by including additional information often in the form of 

`constraints on parameters (e.g., Pokhrel et al., 2008 and Tonkin and Doherty, 2005). The so-called 

“multiplier” method is a very common and simple practice in spatially distributed watershed modelling 

for regularization. It implies applying a scalar multiplier to each prior parameter field (e.g., vegetation 

parameters across all GRUs) and calibrating this multiplier (e.g., Bandaragoda et al., 2004; Yatheendradas 

et al., 2008). Pokhrel and Gupta (2010) compare the multiplier method to alternative spatial regularization 

approaches. In contrast, MacLean (2009) calibrated the MESH model without spatial regularization and 

as a result ended up calibrating close to 80 model parameters. 
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Alternatively, Metamodels (surrogate models) have been widely used in various disciplines including 

parameter estimation in environmental modelling (e.g., Khu and Werner, 2003; Mugunthan and 

Shoemaker, 2006; Zhang et al., 2009). Metamodelling approaches focus on approximating the original 

complex model through examining the relationship between model responses and a selected number of 

parameter sets. The computationally expensive distributed hydrologic model is replaced with a drastically 

more efficient surrogate model that is fitted to approximate the hydrologic model. Razavi et al. (2012) 

provided a thorough review of surrogate modelling in water resources field. 

Many researchers have proposed efficient optimization algorithms attempting to reduce computational 

cost of calibration. In general, these algorithms are designed to find “good” or “near-optimal” solutions 

within a limited time frame as opposed to algorithms who claim to find “optimal” solution given 

unlimited (huge) time budget. Examples of such optimization-based algorithms are Dynamically 

Dimensioned Search (DDS, Tolson and Shoemaker, 2007) and Stepwise Linear Search (SLS, Kuzmin et 

al., 2008). Moreover, DDS Approximation of Uncertainty (DDS-AU, Tolson and Shoemaker, 2008) and 

limited-memory Markov Chain Monte Carlo (MCMC, Kuczera et al., 2010) can be classified as efficient 

uncertainty-based calibration methods. 

The growth in computing capabilities, in general, and the parallel computing networks, in particular, 

has led to reduced calibration times. For instance, this fact allows for more efficient implementations of 

uncertainty-based calibration techniques like GLUE that are normally very computationally demanding 

(e.g., Brazier et al., 2000). Moreover, some optimization-based algorithms such as parallel SCE-UA (e.g., 

Vrugt et al., 2006), parallel GA (e.g., Cheng et al., 2005), and parallel PSO (e.g., Schutte et al., 2004) are 

proposed in which a parallel search strategy is adopted versus the regular serial approach resulting in 

considerably higher calibration efficiencies.  In a population-based parallel optimization algorithm, the 

solutions in the each generation to be evaluated are distributed over multiple processors so that they can 

be evaluated simultaneously.  

A limited number of studies have tried to increase savings by selectively avoiding unbeneficial model 

simulations (i.e. model runs that predictably result in a poorer performance with respect to a certain 

threshold). Gray and Kolda (2006) consulted stored simulation history (caching) to avoid repeated runs in 

optimizations. Ostfeld and Salomons (2005) specified a threshold (“hurdle race”) to terminate model runs 

at a certain point in simulation in a calibration experiment. Razavi et al. (2010) formulized a 

“deterministic model preemption” approach that objectively dismisses model runs that will definitely 

result in a poorer model performance compared to the previous best solution in calibration. The core idea 

in this approach is to terminate a model run as soon as it is recognized as being implausible in order to 
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save computation time. Deterministic preemption, as demonstrated by Razavi et al. (2010), involves 

terminating a model run only when it is known with certainty that the candidate parameter set is so poor 

that it will have no influence on the optimization algorithm search trajectory. Accordingly, a deterministic 

preemption threshold is objectively defined based on the optimization algorithm being used. In the DDS 

algorithm, this threshold is the value of the objective function for the current best solution. During 

subsequent model runs evaluating candidate parameter sets, the model performance is constantly 

monitored during each model evaluation. Once the objective function value exceeds the preemption 

threshold in a given evaluation, then that run is identified as implausible and thus, terminated 

immediately. Consequently, the remainder of the simulation time will be saved in the computation 

budget. Razavi et al. (2010) report deterministic preemption savings ranging from 14% to 96% across 

multiple calibration studies depending on the choice of optimization algorithm. Razavi et al. (2010) note 

that the deterministic model preemption approach is only applicable to objective functions with 

monotonically degrading quality, such as Sum of Squared Errors (SSE), as the simulation progresses. 

This preemption technique was used in  Chapter 4 and Chapter 5 of this thesis during the calibration 

experiments performed.  
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Chapter 3 

Calibrating Environment Canada’s MESH Modelling System over the 

Great Lakes Basin: Setting a Benchmark 

This chapter is a mirror of the following published article in the Atmosphere-Ocean journal. References 

are unified at the end of the thesis. 

Haghnegahdar, A., Tolson, B.A., Davison, B., Seglenieks, F.R., Klyszejko, E., Soulis, E.D., Fortin, V., 

Matott, L.S. (2014), Calibrating Environment Canada's MESH Modelling System over the Great Lakes 

Basin, Atmosphere-Ocean,Vol. 52, Iss. 4, 2014. 

Abstract 

This paper reports on recent progress towards improved predictions of the land surface-hydrological 

modelling system MESH (Modélisation Environmentale–Surface et Hydrologie) via its calibration over 

the Laurentian Great Lakes Basin. Accordingly, a “global” calibration strategy is utilized in which 

parameters for all land class types are calibrated simultaneously to a number of sub-basins and then 

validated in time and in space. Model performance was evaluated based on four performance metrics, 

including the Nash-Sutcliffe (NS) coefficient and simulated versus observed hydrographs. Results from 

two calibration approaches indicate that in the model validation mode, the global strategy generates 

preferred results over an alternative calibration strategy, referred to as the “individual” strategy, in which 

parameters are calibrated to a single sub-basin with a dominant land type individually and then validated 

in another sub-basin with the same dominant land type. The global calibration strategy was relatively 

successful despite the high problem dimensionality (51 model parameters calibrated) and relatively small 

number of model evaluations (1000 parameter sets evaluated per trial) used in the automatic calibration 

procedure. NS values for spatial validation range from 0.10 to 0.72 with a median of 0.41 for the 15 sub-

basins considered. Results also confirm that a careful model calibration and validation is unavoidable 

before any application of the model. 

3.1 Introduction 

Since the start of the predictions in ungauged basins (PUB) decade (2003-2012) by the International 

Association of Hydrological Science (IAHS) in 2003 (Sivapalan et al., 2003) a very large number of 

studies have focused on various approaches for PUB such as statistical methods, conceptual modelling 

and distributed modelling (e.g., Razavi & Coulibaly, 2013; Spence et al., 2013). Statistical methods and 

conceptual modelling for PUB normally consist of testing and comparing various regionalization 
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techniques such as spatial proximity, regression-based, and physical similarity approaches (e.g., Samuel 

et al., 2011; Zhang et al., 2008). However, when distributed physically-based models are used where 

parameters are tied to spatial units with land cover, soil or other characteristics, the regionalization 

strategies can be replaced with more global calibration experiments, especially for regional scales as is 

explained later in this paper.  

Regional (large scale) distributed land surface-hydrological models are being increasingly utilized for 

the purpose of hydrologic and climatic simulations or forecasts (e.g., Flügel, 1995; Benoit et al., 2000; 

Arnold & Fohrer, 2005; Samaniego et al., 2010). Although some of the parameters in distributed models 

are readily available from field observations, many of the parameters are not measurable or are extremely 

hard to obtain. These parameters are typically estimated using model calibration (sometimes called 

inverse modelling). Model calibration is the process of tuning model parameters so that model 

simulations can closely replicate the historical observations. Without a careful model calibration and 

validation, model simulations can be very unrealistic and/or misleading. Calibration strategies range from 

simple manual calibration to sophisticated automated calibration. Although manual calibration provides 

insights about the modelling process and model structure, it is very time-consuming and limited in 

distributed environmental modelling due to a large number of parameters. Therefore, automated 

calibration approaches are often preferred over manual calibration in these cases. 

In order to address different water resources management issues, Environment Canada (EC) is 

working on developing a modelling system called MESH (Modélisation Environmentale–Surface et 

Hydrologie) in which a land surface scheme is coupled with a hydrological model. MESH was applied to 

the Great Lakes Basin for the first time in 2007 (Pietroniro et al., 2007). Their study was mainly intended 

to set up the coupling framework and demonstrate its potential for operational forecasts in the Great 

Lakes Basin, and to identify specific requirements for different components of the MESH modelling 

system. Accordingly, model parameters were adopted from similar modelling applications at much 

smaller scales in the region and were only slightly adjusted during a brief manual calibration focused on 

the routing parameters with minimal changes to the parameters corresponding to vegetation or soil 

characteristics. Therefore, a more thorough calibration effort using automated optimization techniques 

was needed over the Great Lakes Basin to properly evaluate the ongoing improvement of the MESH 

modelling system.  

In this paper, we provide the calibration and validation results from a series of model calibration 

experiments to improve MESH streamflow simulation in the Great Lakes region. Accordingly, a “global” 

calibration strategy is adopted in which model parameters are adjusted simultaneously in a number of 
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Great Lakes sub-basins. The results are further compared with an alternative calibration strategy 

(“individual”) at some selected sub-basins since both approaches have been previously suggested or used 

in MESH-related studies. Case study and model details along with the calibration approach are described 

in the methodology section. Then the results and related discussion are presented followed by a 

conclusion. 

This study is the first of its kind to report on extensive calibration and validation results (at many 

locations) for MESH over a large basin. Only few studies have used MESH in the past. Dornes et al. 

(2008) employed a step-wise calibration strategy with MESH to promote the transferability of vegetation 

parameters based on landscape similarity as opposed to basin attributes. Dupont et al. (2012) linked 

MESH with a 3-D global ocean model, NEMO (Nucleus for European Modelling of the Ocean), to 

simulate a number of hydrodynamic properties of the Great Lakes including lake levels variation, ice 

concentrations, and lake surface temperatures. Deacu et al. (2012) conducted a series of experiments with 

MESH to improve Net Basin Supply (NBS) predictions for the Great Lakes by modifying estimations of 

precipitation, evaporation, and runoff. Using the MESH predecessor, WATCLASS (Soulis et al., 2000), 

Davison et al. (2006) showed that much better snow cover and snow melt results can be obtained when 

the modelling process is modified according to the characteristics governing the snowmelt process such as 

windswept tundra and drifts. Only in Davison et al. (2006) and Dornes et al. (2008) was the MESH model 

calibration (and not necessarily validation) process reported on and these studies all used a much smaller 

basin (63 km
2
) than the Great Lakes as well as fewer sub-basins (one or two sub-basins at most).  

The Great Lakes system has paramount importance locally, regionally and globally. Thus, many 

agencies endeavor to provide operational forecasting tools at various temporal and spatial scales within 

the Great Lakes region. The Great Lakes Environmental Research Laboratory (GLERL) of the National 

Oceanic and Atmospheric Administration (NOAA) in the United States provides hourly forecasts of water 

level displacements for the Great Lakes for the next 48-hr through the Great Lakes Coastal Forecasting 

System (GLCFS). It also predicts monthly lake inflows, outflows and lake levels one to nine months in 

advance through its Advanced Hydrologic Prediction System (AHPS). Environment Canada is working 

towards similar type of forecasting systems and this research will contribute towards building such a 

system by providing an improved estimation of the lake inflows. 
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3.2 Methodology 

3.2.1 Study Area: The Great Lakes Basin 

Located in North America between Canada and the United States, the Great Lakes are composed of five 

interconnecting large lakes namely, Superior, Michigan, Huron, Erie, and Ontario (Figure 1). The entire 

watershed system has a drainage area of nearly 1 million square kilometers and includes one small lake 

called St. Clair (between Lake Huron and Lake Erie), four connecting channels (St. Marys, St. Clair, 

Detroit, and the Niagara Rivers) and the St. Lawrence River. The entire drainage basin along with the 

drainage areas associated with each lake and the St. Lawrence River are shown in Figure 1 below. 

 

 

Figure 1. The Great Lakes Drainage Basin. 
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3.2.2 MESH modelling system applied to the Great Lakes Basin 

MESH is a semi-distributed physically-based land surface-hydrological modelling system developed by 

Environment Canada for water resources management applications (Pietroniro et al., 2007; Deacu et al., 

2012). MESH has evolved from WATCLASS (Soulis et al., 2000), which was a combination of the 

routing module of WATFLOOD model (Kouwen et al., 1993) and the CLASS (Canadian Land Surface 

Scheme) model (Verseghy, 1991; Verseghy et al., 1993). The interface coupling these two models 

retained the vertical moisture budget in CLASS, and added horizontal flow (baseflow, interflow, and 

overland flow) calculations to it in order to generate the total streamflow that can then be routed by 

WATFLOOD (Soulis et al., 2000). 

WATFLOOD is a semi-distributed hydrological model. The watershed is discretized using grid cells 

and thus, can efficiently use remotely sensed and radar data (Kouwen et al., 1993). It is considered a 

semi-distributed model (as opposed to a fully distributed model) since it does not explicitly allow for the 

lateral exchange of water between grid cells, and there must be a river within every single grid cell to 

transfer the water (streamflow) from one cell to another. In order to represent the sub-grid heterogeneity, 

grid-cells can be further subdivided into GRUs (Grouped Response Units) (Kouwen et al., 1993) that are 

the computational units in the model with each one having a distinct hydrological response. GRUs are 

often loosely defined to aggregate multiple attributes (e.g., soil and vegetation characteristics) into a 

single unit. This approach increases computational efficiency in distributed models by reducing the 

number of model parameters and allowing for parameter transferability between the same GRUs at 

different locations. Pietroniro & Soulis (2003) found the GRU approach a suitable compromise for semi-

distributed hydrological modelling in large basins because it is simple to implement while respecting the 

physics to allow for different hydrological responses. In many previous WATFLOOD, WATCLASS, and 

MESH applications (e.g., Kouwen et al., 1993; Soulis et al., 2000; Pietroniro & Soulis, 2003; Kouwen et 

al., 2005; Bingeman et al., 2006; Pietroniro et al., 2007), GRUs are delineated only based on the land 

cover type that is assumed to have the dominant contribution to the hydrological response.  

CLASS is a physically-based land surface scheme that simulates the vertical energy and water fluxes 

for vegetation, soil, and snow for each GRU. The soil moisture content and its vertical movement in the 

soil layers (three in this study), is represented by Richard’s Equation in CLASS. The horizontal flow for 

each GRU consists of three components in MESH: overland flow, interflow, and baseflow. The overland 

flow is calculated using the Manning’s approximation of the kinematic wave velocity. The interflow, 

which accounts for the downward hill slope flow, is estimated from the bulk saturation of each soil layer 

calculated at each time step. Baseflow is simply treated as any water that percolates out of the bottom of 
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the soil column in a GRU and is immediately added to streamflow. The total amount of surface runoff (as 

well as other fluxes) is then calculated for each grid cell by the areal average of GRUs within that grid 

cell. Then water is routed by the WATFLOOD routing scheme between the grid cells and across the river 

network for the entire basin using the Manning’s formula combined with a simple application of the 

continuity equation.  

Due to its advanced land surface scheme, the meteorological forcing data requirements of MESH are 

higher than hydrological models that rely on less physically-based algorithms such as temperature-index 

snowmelt models. The MESH model requires forcing data that include precipitation, air temperature, 

wind speed, incoming short wave radiation, incoming long wave radiation, specific humidity, and 

barometric pressure. The archived gridded forecasts for the forcing data (excluding precipitation) are 

produced by the Regional Deterministic Prediction System (RDPS) of EC, which is based on the regional 

configuration of the Global Environmental Multiscale-Numerical Weather Prediction (GEM-NWP) 

model (Mailhot et al., 2006). The spatial resolution of the RDPS for the time period in question is 0.1375 

degree (about 15 km) and the model time step is 7.5 minutes. This was reinterpolated to a spatial scale of 

0.1667 degree (about 18 km) and a temporal resolution of 1 hour. Although changes to the spatial and 

temporal resolution of the RDPS did not occur for the time period of the study, other changes may have 

an impact on the quality of the forcing data. These changes include improvements to the surface 

temperature forecasts in January, 2005; improvements to the quantity of precipitation forecast in summer 

situations in July, 2005; assimilation of new satellite data in December, 2005; various changes to the 

regional forecast system in July, 2007; improvements to the assimilation system in May, 2008; 

improvements to the data assimilation and forecast system in March, 2009; extension into the Middle 

Atmosphere of the forecast system in June, 2009; and updates to the data assimilation system in 

December, 2009. The gridded precipitation data are obtained from the Canadian Precipitation Analysis 

(CaPA, Mahfouf et al., 2007), which uses a statistical interpolation method to combine ground-based 

point observations with the gridded GEM precipitation forecasts as a background field. The observational 

database used by CaPA consisted of surface synoptic reports of 6-hour precipitation accumulation from 

the Meteorological Service of Canada's historical weather and climate archives. These archives include 

data from four networks across North America (SYNOP, METAR, SHEF, and RMCQ). The SYNOP 

network contains ~300 manned and ~750 automated weather stations maintained by Environment Canada 

and partner organizations. The METAR network contains over 1300 stations that are typically located at 

airports. The SHEF network is an American cooperative network of more than 11,000 volunteers who 

collect observations in the United States. The RMCQ network is a cooperative network of private 

companies and provincial agencies in Quebec, Canada containing about 200 stations. CaPA is used 
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instead of GEM precipitation because, as an assimilation of observations with GEM precipitation, it is 

considered to be the most accurate precipitation product available at the spatial scale of this study. 

The MESH configurations remained largely unchanged relative to the original application of MESH to 

the Great Lakes Basin as described in Pietroniro et al. (2007). The drainage area of approximately 

920,000 km
2
 was modeled with 4026 grid cells of 1/6 degree size. Each cell was further sub-divided into 

up to seven land class based GRUs namely: crop, grass, deciduous forest, coniferous forest, mixed forest, 

water and impervious. For routing purposes, MESH can use up to five river classes, which were newly 

identified in this study for the entire basin on the basis of the nature of the streamflow and natural 

boundaries.  

This research is based on MESH version 1.3.003, which utilizes CLASS version 3.5. Numerical 

experiments were performed using an Intel Core i7-920 2.67 GHz workstation running a 64-bit version of 

the Windows 7 operating system with 12 gigabytes of installed memory and a quad-core processor. 

Model simulations were performed using hourly numerical time steps and one simulation took 

approximately 27 minutes to simulate daily flows at 10 sub-basins for 16 months (used in model 

calibration). This relatively long runtime was one of the main factors in deciding on the maximum 

number of model runs during calibration as explained later. Moreover, MESH is not coded to take 

advantage of parallel computing. Parallel optimization techniques were also not considered in the current 

study. 

3.2.3 Calibration Strategy 

Hydrologic models should be calibrated and validated before they can be used for any research or 

practical purposes. However, no universal guidelines exist for such procedures particularly in the field of 

environmental modelling (Moriasi et al., 2012). Consequently, the choice of calibration and validation 

strategy is subjective and numerous methods exist ranging from simple manual calibration to 

sophisticated automated calibration techniques or a combination of both.  

Similarly, various calibration strategies have been used in the past for WATFLOOD or MESH-related 

studies among which two strategies were identified as the top two alternatives based on model 

developers’ opinion and previous studies. The first strategy (e.g., Bingeman et al., 2006), hereafter called 

the “global” strategy, was used as the primary approach in this paper for the purpose of model calibration 

and validation. In the global strategy, all parameters for all GRUs (land class types) are calibrated 

simultaneously considering all calibration sub-basins and then validated in space and time for other flow 

gauges. Ricard et al. (2013) suggested a similar strategy for calibrating a semi-distributed model at a large 
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scale over the St. Lawrence River basin in Quebec, Canada. In the second strategy, called “individual” 

strategy hereafter, parameters associated with a certain GRU type (land class), are calibrated to a single 

sub-basin dominated by that GRU and then validated for another sub-basin with the same dominant GRU. 

This latter strategy was tested against the global strategy only for two GRUs at selected gauges. Details 

explained below refer to the global strategy in general, unless otherwise expressed. 

The calibrated models were tested in validation over both time and space. Temporal model validation 

is essentially the classic split-sample test defined by Klemeš (1986) which splits the observations at a 

single site between those used for calibration and those used for validation. Spatial model validation is 

based on two approaches. The first approach is to check validation performance at locations upstream of 

calibration gauges. The second approach, which included 12 of 15 spatial validation sub-basins, was 

essentially the proxy-basin test as defined by Klemeš (1986) where validation sub-basins were limited to 

basins that were spatially independent from calibration sub-basin drainage areas. It should be noted that 

the only difference between our application of the split sample test and proxy-basin test from Klemeš 

(1986) is that our tests were one-way tests while Klemeš (1986) advocates these should be two-way tests 

(switching time periods or locations between calibration and validation). Two-way tests would generate 

two calibration solutions. 

Out of the hundreds of hydrologic sub-basins available through the Water Survey Canada and the U.S. 

Geological Survey (USGS) for the Great Lakes basin, 10 sub-basins were selected for calibration and 

temporal validation (total area of 50,243 km
2
), and another 15 for model validation in both space and time 

(total area of 49,559 km
2
). Drainage areas of the selected sub-basins ranged approximately from 470 km

2 

to 16400 km
2
. A multi-step procedure was followed for selecting calibration and validation sub-basins. 

First, only sub-basins with drainage areas larger than two grid cells (nearly 450 km
2
) were considered. 

These sub-basins were further filtered based on the criteria that flow data should also be available for the 

period of study. Finally, sub-basins with completely regulated flows were eliminated from consideration. 

The sub-basins selected by the aforementioned procedure are shown in Figure 2. Note that there are four 

pairs of these sub-basins that have overlapping drainage areas as seen in Figure 2: a) 04191500 and 

04193500, b) 04237500 and 04232000, c) 04116000 and 04114000 and d) 02GA018 and 02GB018. In 

each of these pairs (except case d), the upstream gauge is used as a validation location.  
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Figure 2. Sub-basins used in calibration and validation. Sub-basins 04213500 and 04263000 are 

only used in the individual strategy. All other sub-basins are used in the global strategy. 

 

The choice of calibration and validation time periods is limited by the availability of the preferred 

precipitation forcing data (CaPA as described above). Accordingly, after excluding a four month 

simulation initialization (i.e. warm-up) period, October 2004 to September 2005 was selected for model 

calibration, and October 2005 to May 2009 was selected for temporal model validation. For the selected 

calibration sub-basins, the low, high, and average daily flow rates during the calibration period were 

considered reasonably representative of the entire study period. In other words, extreme events and outlier 

data points were not found in the selected calibration data. The starting and ending months for these 

periods were selected at the end of the spring snow-melt period. It is acknowledged that the calibration 

result can always be sensitive to the choice of calibration period and its length (Gharari et al., 2013). A 

relatively small calibration period was selected due to computational limitations and the quality of this 

choice is implicitly evaluated based on validation performance. 
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The calibration parameters and their corresponding ranges were specified using a combination of 

expert opinion from MESH developers and previous modelling studies (e.g., Dornes et al., 2008; Davison 

et al., 2006; Bingeman et al., 2006). Table 1 below lists the selected parameters based on the land class-

based GRU definition in MESH. The majority of these parameters (one to nine in Table 1) are related to 

physiography, vegetation, and soil characteristics and are calibrated for five GRU types being crop, grass, 

deciduous forest, coniferous forest and mixed forest. Parameters associated with water and impervious 

GRUs were not calibrated. 

One of the calibration parameters is the GRU overland slope. This parameter is used in the calculation 

of overland flow and interflow in MESH. Although this slope could be assigned based on DEMs for each 

pixel, given the large pixel size (approximately 15 km by 15 km) and thus correspondingly large GRUs 

within the grid, we decided to treat these GRU type specific slopes as an effective parameter to be 

calibrated. Davison et al. (2006) and Dornes et al. (2008) also followed this approach and linked slopes to 

the land class type. As for the soil constituent percentages (percent sand, silt, and clay), only sand and 

clay content were calibrated and the silt content was calculated by difference to ensure the sum of soil 

constituent component percentages added to 100%.  

The soil permeable depth or depth to bedrock (SDEP) was calibrated as one parameter that is constant 

across all GRU types in the global calibration strategy. This parameter varied with sub-basin for the 

individual calibration strategy, which gave this strategy more flexibility than the global strategy. The 

channel roughness coefficient (WFR2) is an effective parameter encompassing the combined effects of 

Manning’s coefficient and channel width to depth ratio. In the global strategy, five channel roughness 

coefficients (WFR2) were calibrated corresponding to the five river classes identified across the Great 

Lakes Basin as explained earlier. Consequently, a total of 51 parameters were calibrated for the global 

strategy. In the case of individual strategy, depending on the size and location of the sub-basins, one or 

two channel roughness coefficient(s) were calibrated resulting in a total of 12 and 11 calibration 

parameters for GRU1 (crop) and GRU3 (deciduous forest), respectively. Other required parameters in the 

model were set according to previous studies or values suggested by MESH model developers for this 

case study.  

Given the case study scale, this study requires calibration to multiple sites and thus the calibration 

problem is inherently multi-objective. The goal of the study was to calibrate MESH deterministically and 

hence identify a single best calibration solution. There are multiple calibration approaches demonstrated 

in the literature to achieve this goal. Some authors address the problem in two steps by 1) posing and 

solving a multiple-criteria optimization problem to generate a ‘Pareto set’ of non-dominated solutions and 
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then 2) applying some decision-making procedure to select their preferred single solution. See for 

example Gupta et al. (1998) or Efstratiadis & Koutsoyiannis (2010) for a description of this approach. As 

described in Gupta et al. (2009), other authors prefer to address the problem in a single step by defining 

an aggregated objective (based on multiple calibration metrics or based on multiple calibration sites) and 

then applying a single-objective optimization algorithm to yield a single calibration result (Lindström, 

1997; Bergström et al., 2002; Madsen, 2003; Parajka et al., 2005; Young, 2006; Rode et al., 2007; Marcé 

et al., 2008; Wang et al., 2009; Safari et al., 2012). 

 

Table 1- Calibration parameters, their ranges and the calibrated values using the global 

strategy for the MESH modelling system applied to the Great Lakes Basin. 

Parameter Description Range 

Calibrated Values for 

Crop, Grass, Deciduous, 

Coniferous, Mixed Forest 

ROOT 
Annual maximum rooting depth of 

vegetation category  [m] 
1.0 - 3.5 

1.096, 2.142, 2.353, 2.382, 

1.299 

QA50 
Reference value of incoming 

shortwave radiation  [W m
-2

] 
30.0 - 50.0 

49.209, 48.878, 35.206, 

49.906, 46.534 

RSMN 
Minimum stomatal resistance of 

vegetation category [s m
-1

] 
50 - 300 

290.940, 240.893, 269.698, 

299.457, 288.279 

DRN Soil drainage index 0.0 - 1.0 
0.403, 0.490, 0.409, 0.217, 

0.723 

DDEN Drainage density [km/km
2
] 2.0 - 100 

24.018, 8.773, 11.053, 

48.288, 3.521 

XSLP 
The average overland slope of 

a given GRU [%] 

0.0001 - 0.1* 

(0.04 for crop) 

0.039, 0.046, 0.016, 0.010, 

0.084 

WFCI 
Saturated surface soil conductivity 

[m/s] 
0.0 - 1.02 

0.040, 0.533, 0.135, 0.866, 

0.529 

SAND Percentage sand content [%] 0.0 - 50.0 
47.654, 6.991, 4.807, 19.283, 

38.306 

CLAY Percentage clay content [%] 0.00 - 50.0 
33.001, 23.334, 15.235, 

8.233, 28.773 

SDEP Soil permeable depth [m] 0.35 - 4.1 4.095 

WFR2 
WATFLOOD channel roughness 

coefficient 
0.02 - 2.0 

0.698, 0.187, 0.415, 0.024, 

0.823 (for the 5 river classes) 

 

In our study, we chose the second approach and calibrated to the multiple sites by optimizing an 

aggregated objective function. The main benefit to this approach is that it is more computationally 

efficient than attempting to generate multiple Pareto set solutions. Hourly MESH simulated flows were 

aggregated to average daily simulated flows and were calibrated and validated against observed daily 

average streamflows using a weighted sum of Nash-Sutcliffe coefficients of efficiency (Nash & Sutcliffe, 

1970). The weights were assigned proportional to the mean measured flow values of sub-basins over the 
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calibration period. This choice of weights clearly favors larger basins and was adopted because one end 

goal of this model is to forecast total lake inflows and hence we deemed fitting larger basins (contributing 

more flow into lake) more important than fitting smaller basins. It was observed that the model 

performance across the validation sub-basins shows no relation to these weights (i.e. drainage areas). It is 

acknowledged that there exist alternative choices for the objective function and other criteria can be 

added for a possible gain in model assessment (e.g., Legates & McCabe, 1999; Moriasi et al., 2007). 

However, the Nash-Sutcliffe coefficient of efficiency still stands as one of the most widely used criterion 

and was considered a reasonable choice. All validation results, and the calibration results when the global 

strategy is compared to the individual strategy, are further assessed with three other performance metrics, 

in addition to the Nash-Sutcliffe coefficient of efficiency. Each metric is defined in Table 2. 

 

Table 2- Definition of various model performance metrics. 

Metric Equations Notes 

Nash-Sutcliffe Coefficient of Efficiency: 

 

𝑁𝑆 = 1 −
∑(𝑄𝑜𝑏𝑠 − 𝑄𝑠𝑖𝑚)2

∑(𝑄𝑜𝑏𝑠 − 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )2

 

 

Volumetric Efficiency:  

 

𝑉𝐸 = 1 −
∑|𝑄𝑜𝑏𝑠 − 𝑄𝑠𝑖𝑚|

∑ 𝑄𝑜𝑏𝑠

 

 

Root Mean Squared Error: 

 

𝑅𝑀𝑆𝐸 = √N−1 ∑(𝑄𝑜𝑏𝑠 − 𝑄𝑠𝑖𝑚)2 

 

Percent Bias: 

𝑃𝐵𝐼𝐴𝑆 =
∑(𝑄𝑜𝑏𝑠 − 𝑄𝑠𝑖𝑚)

∑ 𝑄𝑜𝑏𝑠

∗ 100 

 

Nash and Sutcliffe (1970) 

Range: -∞ to 1, where 1 is best,  

unitless 

 

 

Criss & Winston (2008) 

Range: 0 to 1, where 1 is best,  

unitless 

 

 

Range: 0 to +∞, where 0 is best,  

units of Q 

 

 

Gupta et al. (1999) 

Range: -∞ to 100%, where 0 is best,  

units of % 

 

𝑄𝑜𝑏𝑠: Observed flow, 𝑄𝑠𝑖𝑚: Simulated flow, 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ : Mean of observed flows, N: Number 

of flow observations 

 

The Dynamically Dimensioned Search (DDS) algorithm (Tolson & Shoemaker, 2007) was selected as 

the automatic calibration tool for this study. DDS is well suited for optimization problems with a large 

number of calibration parameters, such as distributed hydrologic model calibration and example 

applications of DDS for calibrating distributed models include Wallner et al.(2012), White et al. (2011), 

Matott et al. (2011), and Clark et al. (2008). DDS was designed specifically for automatic calibration of 
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hydrologic models and the algorithm is able to rapidly converge to a good calibration solution and easily 

avoids poor local optima (Tolson and Shoemaker, 2007). 

DDS is a direct (derivative-free) optimization method that stochastically searches around the best 

solution (decision variable values) identified so far. Candidate solutions are compared to the current best 

solution to determine if an update to the best solution is required. DDS starts by searching globally and 

transitions to a more local search as the number of objective function evaluations approaches the user-

specified maximum. The adjustment from global to local search is achieved by dynamically and 

probabilistically reducing the number of dimensions in the search neighborhood (i.e. the set of decision 

variables modified from their best value). Since DDS, like most global optimizers, is stochastic due to the 

use of random numbers, optimization results can vary between optimization trials.  

DDS is very simple to use as it requires only one parameter (perturbation parameter) that was set to 

0.2 by default as suggested by Tolson and Shoemaker (2007). The maximum number of model 

simulations (objective function evaluations) also has to be specified in DDS as the stopping criteria and 

was set to 1000 in this study based on the computational burden imposed by the model as discussed 

earlier. This number also seems to work well according to some previous studies with MESH (e.g., 

Dornes et al., 2008; Razavi et al., 2010). The model calibration was conducted using DDS as 

implemented in OSTRICH, which is a model-independent calibration and optimization tool (Matott, 

2005) consisting of a number of popular optimization algorithms including DDS.  

Our final best global parameter set is the outcome of a series of calibration experiments that evolved 

over time. Initially, the global strategy was run for one optimization trial with an initial set of parameters 

and ranges according to some past studies (e.g., Dornes et al., 2008; Davison et al., 2006; Bingeman et al., 

2006). Then, calibration parameters and their ranges were modified through further consultation with 

model developers. The final refined global and individual calibration experiments in the series utilized the 

parameters and corresponding ranges listed in Table 1 and was repeated twice for the global experiment 

and for each individual calibration case (two independent optimization trials from different initial 

solutions). The calibrated parameter set was taken to be the best solution of the multiple trials for the 

calibration period and these parameters are reported in Table 1 and were applied to generate the validation 

results. 

3.3 Results and Discussion 

In this section, first we compare the two calibration strategies for select sub-basins dominated by the crop 

and deciduous forest GRU types. Then, detailed results for the global calibration strategy are presented 
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for the set of ten calibration and 15 validation sub-basins. In each case, results are presented using the 

performance metrics of Table 2 and various select hydrographs. 

Comparison results are presented for sub-basins dominated by one GRU type in Table 3 (crop) and 

Table 4 (deciduous forest). In Table 3, performance metrics for the calibration sub-basin and validation 

sub-basins are given for crop dominated sub-basins. For the crop dominated sub-basins, when parameters 

are calibrated based on the individual strategy (IS), the calibration NS values are higher than the global 

strategy (GS) values. However, validation results at the four sub-basins show NS values that are either 

very similar for both IS and GS (two sub-basins) or better for GS (sub-basins 02GA010 and 02GB001). 

PBIAS results for validation sub-basins are all reasonably close to 0 with both strategies (ranging from -

6% to 15%). A similar pattern is observed for sub-basins dominated by deciduous land type as indicated 

in Table 4. Calibration metrics for IS are better than or similar to those of GS. However, unlike 

calibration period, performance results for NS, VE and RMSE are better for GS in validation especially 

for NS. Although similar, IS shows a slightly better PBIAS result (21%) in comparison to GS (28%).  

 

Table 3. Comparison of Individual Strategy (IS) vs. Global Strategy (GS) for Crop land class 

in calibration and validation sub-basins based on various metrics. 

Sub-basin ID (% crop) 
NS VE 

RMSE 

(m
3
/s) 

PBIAS 

(%) 

IS GS IS GS IS GS IS GS 

Calibration 04193500 (96) 0.79 0.67 0.55 0.36 150 188 4 -1 

Validation 02GG003 (98) 0.62 0.58 0.44 0.39 14 15 -6 4 

Validation 04191500 (98) 0.54 0.58 0.30 0.31 113 109 11 8 

Validation 02GA010 (97) 0.13 0.38 0.23 0.46 17 14 1 15 

Validation 02GB001 (89) -0.23 0.33 0.25 0.52 76 57 2 14 

 

Table 4. Comparison of Individual Strategy (IS) vs. Global Strategy (GS) for Deciduous 

Forest land class in calibration and validation sub-basins based on various metrics. 

Sub-basin ID (% Deciduous 

Forest) 

NS VE 
RMSE 

(m
3
/s) 

PBIAS 

(%) 

IS GS IS GS IS GS IS GS 

Calibration 04213500 (96) 0.63 0.43 0.62 0.50 16 20 10 12 

Validation 04263000 (96) 0.20 0.41 0.51 0.59 39 34 21 28 

 

In summary, the numerical results in Table 3 and Table 4 show the individual strategy is somewhat 

worse than the global strategy at three of the five validation basins (02GA010, 02GB001 and 04263000). 
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For the other validation basins, results are fairly similar for the suite of metrics considered. Even if these 

comparative results were to be interpreted that the global and individual strategies were of similar overall 

quality, the global strategy has the advantage that the entire basin is calibrated – parameter values in 

ungauged basins are a direct result. With the individual approach this is not the case since there are other 

GRUs that require parameter values and, in addition, subjective decisions are required in order to select 

which basins are defined as the individual calibration sub-basins for each GRU type. Therefore, the global 

calibration strategy is used for the purpose of predictions in ungauged basins for the remainder of results. 

Although utilizing multiple calibration sub-basins for the individual strategy might improve results, 

the identification of sub-basins clearly dominated by a single GRU type for all GRU types becomes more 

challenging as many sub-basins are not clearly dominated by a single GRU type (i.e. 50% to 80% is one 

GRU type). Another major factor contributing to the failure of the individual strategy could be the 

definition of GRUs solely based on land cover types in this study. This deficiency can clearly result in 

degradation of the model predictions when parameters are transferred to a sub-basin where the same land 

cover type sits on a different soil texture. It is possible that GRUs defined on the basis of other factors 

(e.g., soil type) may yield more transferable model parameters in the individual strategy. 

The complete results for the global calibration strategy are presented below in two parts: calibration 

sub-basins and validation sub-basins. Ten sub-basins covering all land classes were used for model 

calibration (October 2004 to September 2005) as well as temporal validation (October 2005 to May 2009) 

and 15 other sub-basins were used for the spatial model validation on the entire period (October 2004 to 

May 2009).  

Figure 3 depicts the NS values corresponding to the calibration and validation periods for the ten 

calibration sub-basins. Since the objective function used in calibrating the model was the weighted NS of 

the calibration sub-basins, this value is also provided for calibration and validation periods. The weighted 

NS is 0.67 and 0.41 over the calibration and validation periods, respectively. The initial weighted NS over 

the calibration period prior to this calibration was improved from -0.3 to 0.67. After calibration, all NS 

values in the calibration period, and all but one NS value in the validation period are positive and the 

worst is a NS of -0.01. For the calibration period, the average NS value is 0.57 and ranges from 0.31 to 

0.79. For the validation period, the average NS value is 0.37 ranging from -0.01 to 0.59. Figure 4 shows 

the hydrographs corresponding to the worst (lowest) and the best (highest) NS values of the 10 calibration 

sub-basins over the validation period. Figure 4a for sub-basin 04116000 shows that the model greatly 

overpredicts peak flows (especially in Oct 2008). Close inspection of the drainage area for sub-basin 

04116000 revealed that the flow is impacted by upstream reservoirs and should be removed from the 
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calibration sub-basin list in further calibration. Calibration period results for this sub-basin do not exhibit 

the same degree of model overpredictions as the validation period. 

 

 

Figure 3. Nash-Sutcliffe values over the calibration (October 2004–September 2005) and 

validation (October 2005–May 2009) periods for the 10 calibration sub-basins using the 

global calibration strategy. 

 

MESH performance, according to the four metrics defined in Table 2, is summarized in Table 5 for the 

15 (spatial) validation sub-basins distributed across the basin. These metrics are calculated for the 

October 2004 to May 2009 period and indicate reasonably good overall performance of the model. All the 

NS values are positive and range from 0.10 to 0.72 with a median of 0.41. VE ranges from 0.31 to 0.62 

with a median of 0.52. RMSE changes from 7 m
3
/s to 128 m

3
/s, and has a median of 18 m

3
/s. PBIAS 

results indicate a tendency of the model to slightly overpredict flows (ranges from 8 % to 54% with a 

median of 21%). 
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Figure 4. Hydrographs corresponding to (a) the worst (lowest) and (b) the best (highest) NS values, over the 

validation period (October 2005–May 2009), for the 10 calibration sub-basins. 

 

Table 5. Median, Minimum and Maximum values for the four metrics defined in 

Table 2 over the Oct. 2004 to May 2009 period for the 15 (spatial) validation 

sub-basins using the global calibration strategy. 

 
NS VE RMSE (m

3
/s) PBIAS (%) 

MEDIAN 0.41 0.52 18 21 

MIN 0.10 0.31 7 8 

MAX 0.72 0.62 128 54 

 

Hydrographs corresponding to the worst and the best NS values for the spatial validation sub-basins 

are plotted in Figure 5. The worst NS value (0.10) is for sub-basin 04024430 and Figure 5a shows that 

peak flows are both severely overpredicted and underpredicted. In contrast, Figure 5b for the best sub-
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basin (02EC002, NS=0.72) shows temporal trends and peak flows in the observations are all simulated 

closely. Low flows are either underestimated (in the worst sub-basin) or overestimated (in the best sub-

basin).  

 

 

Figure 5. Hydrographs corresponding to (a) the worst (lowest) and (b) the best (highest) Nash-Sutcliffe 

values for the 15 (spatial) validation sub-basins over the October 2004 to May 2009 period. 

 

In order to evaluate the improvement of the model due to calibration, we compared the pre-calibration 

and post calibration hydrographs and performance statistics. Pre-calibration hydrographs are defined as 

the solution where all the parameters are assigned the midpoint of their ranges used in calibration (see 

Table 1 for ranges). Figure 6 is one example calibration period hydrograph showing this comparison for 

the sub-basin showing the median quality NS pre-calibration value. Results show that the pre-calibration 

hydrograph is not at all as flashy as the observed data and the calibrated hydrograph does a much better, 

although far from perfect, job simulating timing and magnitude of flow events. Figure 7 compares 
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calibration period NS values for pre-calibration and calibrated hydrographs for all calibration sub-basins 

and shows that for all but one of the ten sub-basins, the calibrated NS values are significantly improved 

over pre-calibration results, where six sub-basins have a negative NS value. 

 

 

Figure 6. Comparison of pre-calibration and post-calibration (global strategy) hydrographs for 

the sub-basin with the median pre-calibration Nash-Sutcliffe value (04193500). 

 

 

Figure 7. Comparison of pre-calibration and post-calibration (global strategy) Nash-

Sutcliffe values for the calibration period (October 2004–September 2005) for the 10 

calibration sub-basins. 

 

3.4 Conclusions 

The MESH modelling system over the Great Lakes Basin, was calibrated and validated (both in time and 

space) against measured streamflows using the Nash-Sutcliffe coefficient, three other performance 
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metrics, and simulated versus observed hydrographs as the model assessment criteria. The global 

calibration strategy, in which a number of sub-basins containing all land classes are calibrated 

simultaneously, generate preferred results over the strategy in which one single sub-basin with a certain 

land type is calibrated individually. This result is consistent with findings of Ricard et al. (2013) who 

calibrated a semi-distributed model in the St. Lawrence River basin, Quebec, Canada. Insufficient 

definition of GRUs solely based on land cover types also can negatively impact the predictions results 

when parameters are transferred to other sub-basins. It was also observed that, as expected, model 

performance substantially improved after calibration compared to precalibration hydrographs, indicating 

the vital role of a reasonably thorough model calibration and validation before any application. Future 

work to improve the MESH modelling system for the Great Lakes involves further modifying calibration 

strategy as well as modifying the GRU definition to account for other factors such as soil type and 

topography that contribute to hydrologic response of the watershed. 



36 

Chapter 4 

Enhancing the MESH Model by Improved Calibration Strategy and 

Adding Parameter Uncertainty to Model Predictions 

This Chapter is not submitted for publication yet. It is, however, intended for submission to the Canadian 

Water Resources journal. To avoid redundant material with respect to Chapter 3, repetitive materials such 

as the case study and model description are removed and only the new methodology and results are 

presented. 

4.1 Introduction 

Large scale hydrological models have been used in a variety of water and environmental resources 

management applications such as for assessing human impacts on the global water budget (e.g., McCabe 

and Wolock, 2011), and calculating interbasin water transfers (e.g., Islam et al., 2007). The St. Lawrence 

River Basin in North America contains the largest body of surface fresh water, The Great Lakes, and is of 

paramount importance globally and in particular for United States and Canada. A proper hydrological 

modelling and basin-wide water budget for the Great Lakes Basin allows for better addressing some of 

the challenges associated with this valuable water resource. Persistent extreme low lake levels are one of 

the critical challenges facing the Great Lakes (e.g., Gronewold and Stow, 2014), which has huge impact 

on the ecosystem and economy of North America (e.g., Millerd 2005).  

The United States National Oceanic and Atmospheric Administration (NOAA) and Environment 

Canada (EC) are experimenting with various modelling systems for better understanding and forecasting 

the dynamics of the Great Lakes system. For example, the Great Lakes Environmental Research 

Laboratory (GLERL) of NOAA in the United States provides hourly forecasts of water level 

displacements for the Great Lakes for the next 48 hours through the Great Lakes Coastal Forecasting 

System (GLCFS). It also predicts monthly lake inflows, outflows and lake levels one to nine months in 

advance through its Advanced Hydrologic Prediction System (AHPS).  

Environment Canada applied its Modélisation Environnementale—Surface et Hydrologie (MESH) 

model to the Great Lakes watershed (Pietroniro et al. 2007) for various water management purposes. For 

example, Dupont et al. (2012) linked MESH with a 3-D global ocean model, NEMO (Nucleus for 

European Modelling of the Ocean), to simulate a number of hydrodynamic properties of the Great Lakes 

including lake level variation, ice concentrations, and lake surface temperatures. Deacu et al. (2012) 

conducted a series of experiments with MESH to improve Net Basin Supply (NBS) predictions for the 
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Great Lakes by modifying estimates of precipitation, evaporation, and runoff. Gronewold and Fortin 

(2012) emphasized the importance of improving Great Lakes basin-wide runoff estimates through a bi-

national collaboration. The improved runoff simulations result in improved lake inflow estimation that is 

one of the main components needed in calculating the Great Lakes’ water levels.  

Gronewold et al. (2011) highlighted the importance of including prediction uncertainty for the lakes’ 

water levels forecasts based on the assessment of uncertainty in the hydrological results of the 

hydrological models. Despite all advances made over the past decades in understanding and simulating 

various natural processes in models, they are still far from reality and subject to different levels of 

uncertainty. Therefore, results from modelling studies are more effective when accompanied by some sort 

of uncertainty estimation. The International Association of Hydrological Science (IAHS) placed 

“estimation of predictive uncertainty, and its subsequent reduction” at the core of the decade (2003–2012) 

on Predictions in Ungauged Basins (PUB) in 2003 (Sivapalan et al., 2003).  

In Chapter 3, as the first extensive effort to calibrate MESH for the Great Lakes Basin, benchmark 

results were obtained for the MESH model performance to predict streamflows in ungauged basins. The 

baseline results were quite promising and were immediately used in some other studies such as the Great 

Lakes Runoff Intercomparison Project (GRIP, Fry et al., 2014). As MESH continued to progress over 

time, so did the strategy in this research. Further investigations identified certain areas where there was 

still room for further enhancing the MESH streamflow predictions with respect to the baseline results 

presented in the previous chapter. Accordingly, as another contribution of this research, a new calibration 

experiment is conducted using an improved calibration approach. These improvements are highlighted in 

this chapter, and are primarily focused on refining the number of sub-basins and the parameters used in 

calibration. In order to show the new calibration experiment is improved over the old experiment in 

Chapter 3, the results between the two experiments are compared in this chapter. As another contribution 

of this research, prediction uncertainty associated with estimation of the model parameters is also 

presented in this chapter. The extent of the case study in this work requires substantial computational 

effort. Therefore, some strategies to reduce the calibration time are also discussed here. Finally, a local 

sensitivity test is conducted after calibration to identify the most influential parameters of MESH in the 

Great Lakes Basin. 

It is expected that the final calibrated MESH model along with the uncertainty assessment reported in 

this work can provide an enhanced and effective tool for other researchers studying various aspects of the 

Great Lakes System. 
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4.2 Methodology 

4.2.1 Revised calibration and validation sub-basins 

One of the major revisions in the new calibration experiment was the selection of the calibration and 

validation sub-basins. This new procedure led to an increased number of sub-basins that have near-natural 

flow conditions, and were distributed around each lake and across the entire basin.  

In Chapter 3, only sub-basins with “completely” regulated flows were excluded from calibration and 

validation. This criterion was changed by including only basins with near-natural flow conditions. It was 

believed that this change would better represent the modelling problem at hand, which did not include 

accounting for flow regulation or other non-natural basin features. Accordingly, in Canada, only gauging 

stations were considered that are classified as “natural” in the HYDAT database of the Water Survey 

Canada. In US, only sub-basins identified as “reference” gauges based on the Geospatial Attributes of 

Gages for Evaluating Streamflow (GAGES-II, Falcone, 2011) data set of the U.S. Geological Survey 

(USGS) were considered. The GAGES-II data set defines “reference” watersheds as those in which 

“hydrologic conditions are least disturbed by human influences”.  

Then, since one ultimate usage of the resultant model would be in forecasting lake inflows, multiple 

sub-basins were selected around each of the lakes as well as in the St. Lawrence sub-watershed. 

Consequently, 25 calibration and 14 validation sub-basins were selected for the new experiment 

(compared with 10 calibration and 15 validation sub-basins in the baseline calibration). The total drainage 

area used in calibration and validation was approximately 30,650 km
2
 and 11,520 km

2
, respectively. The 

size of the new sub-basins ranged from nearly 230 km
2
 to 4220 km

2
 for calibration, and from 230 km

2
 to 

1800 km
2
 for validation. These sub-basins are shown in Figure 8. 

 It is noteworthy that initially, a total of 27 sub-basins were selected for calibration. However, two of 

them (04124000 and 04136000) located adjacent to each other in Michigan (between Lake Michigan and 

Lake Huron) showed very poor performance after MESH was calibrated for 1000 model evaluations, 

degrading the overall performance across the model as well. A number of measures were taken to resolve 

this issue including conducting longer calibration experiments with 2000 and 5000 model evaluations. 

None of these measures worked. The poor performance in these sub-basins is perhaps caused by small 

lakes upstream of the flow gauges that control the flow to some degree. Other possible causes could be 

errors in the model structure or forcing data used in MESH. These two sub-basins were eliminated from 

the calibration process in this study.  
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Figure 8. The revised set of calibration and validation sub-basins for the enhanced calibration of MESH 

over the Great Lakes Basin. 

 

 

4.2.2 Revised calibration parameters 

Another major change compared with the benchmark study in the last chapter was in the use of revised 

calibration parameters and their ranges. These changes were mainly informed based on local manual 

sensitivity analysis using a sub-basin scale the case study of Chapter 5, updated information on the MESH 

wiki page (https://wiki.usask.ca/display/MESH/Welcome+to+the+Standalone+MESH+Wiki!), and 

further literature search (details are explained below). The local manual sensitivity test involved varying 

the parameters between their minimum and maximum feasible values at a couple of points, and inspecting 

the change in simulated hydrographs. Subsequently, the most influential parameters are identified and 

used in calibration as shown in Table 6. In addition, a post-calibration local sensitivity test was also 

performed for the Great Lakes Basin case study as explained in section  4.2.6.  

https://wiki.usask.ca/display/MESH/Welcome+to+the+Standalone+MESH+Wiki!
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Note that due to the nature of the approach adopted by Environment Canada in developing MESH as a 

community-based model, a wiki page is dedicated to MESH and used by model users as the primary 

source of information for MESH and is updated from time to time. However, it is recognized that many of 

the instructions found on the MESH wiki page originates from the CLASS technical documentation 

(Verseghy, 2011). The refined calibration parameters and their ranges are shown in Table 6 and the 

modifications are outlined in the five paragraphs below. 

As suggested by instructions on the MESH wiki page, not all vegetation parameters are independent of 

one-another. Therefore, they should not be calibrated altogether to save on computation effort. 

Accordingly, from the two previous calibration parameters, RSMN (minimum stomatal resistance of 

vegetation category) and QA50 (coefficient governing the response of stomata to light), QA50 was 

removed from the calibration, since it was found to have a lesser impact on streamflow simulations. Also, 

ranges for RSMN were further narrowed down based on the suggested values for each vegetation type on 

the MESH wiki page. Along the same line, from the two coefficients governing the stomatal resistance to 

vapour pressure deficit, VPDA and VPDB, VPDA was found to have a larger impact on flow simulations 

and was added for calibration in the new study. VPDA ranges were assigned according to the work by 

Dornes et al. (2008). Ranges for the annual maximum rooting depth of vegetation category (ROOT) were 

also adjusted according to the information available on the Ontario Ministry of Agriculture Food and 

Rural Affairs (http://www.omafra.gov.on.ca/CropOp/en/general_agronomics/irrigation.html). 

The soil drainage index (DRN), previously calibrated in Chapter 3, was excluded from the calibration 

and fixed at 1. This DRN value enables MESH to simulate the drainage process using soil physical 

properties, whereas a 0 value would shut off the vertical drainage completely. A value between 0 and 1.0 

simulates impeded drainage where the calculated drainage is multiplied by this value. DRN=1 was 

deemed a better choice to simulate the drainage process based on soil physics. Another parameter that 

was also eliminated in the new calibration experiment was the average overland slope of a given GRU 

(XSLP). Instead, the internal slope value for each gird cell was calculated using Digital Elevation Model 

(DEM) data and used for all GRUs within a given cell. This approach, which is inspired by available 

measurements, was deemed to be more consistent with observed DEM data compared to the previous 

strategy in which slope was calibrated for each GRU as an effective parameter.  

Multiple changes were also applied to the parameters related to soil properties. The upper range for 

sand and clay percentages, increased from 50% to 100% to allow more flexibility for calibrating sand and 

clay percentages. Organic matter was kept constant at 5% and the silt percentage was calculated as the 

remainder by the model, so they all add to 100%. Accordingly, the MESH input flag corresponding to 

http://www.omafra.gov.on.ca/CropOp/en/general_agronomics/irrigation.html
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these percentages (SOILFLAG) was set equal to 4, which adjusts percentages proportionally, when soil 

constituent percentages add up to more than 100%. Furthermore, the horizontal surface saturated 

hydraulic conductivity (WFCI), was not calibrated independently anymore in the new experiment. It was 

calibrated indirectly through a newly introduced calibration parameter, RATIO, defined as the ratio of 

horizontal to vertical saturated hydraulic conductivity. The RATIO parameter is not a MESH parameter. 

Rather, it is a calibration parameter introduced in this study to tie horizontal and vertical saturated 

hydraulic conductivity together for a given soil type. Vertical saturated hydraulic conductivity is 

calculated using percent sand in MESH. Then, instead of calibrating the horizontal saturated hydraulic 

conductivity independently, this RATIO parameter is used to obtain the horizontal saturated hydraulic 

conductivity from the vertical one. The ranges for this parameter were assigned to the values in Todd 

(1980). This revised strategy where soil hydraulic conductivities are tied to the soil type results in a more 

physically meaningful representation of the soil characteristics in the model, compared with the previous 

strategy where horizontal hydraulic conductivity was calibrated independently. 

Another distinct change to the set of calibration parameters is the addition of three parameters 

corresponding to the infiltration process with snow effect. These parameters include the limiting snow 

depth below which coverage is less than 100% (ZSNL), the maximum water ponding depth for snow-free 

areas (ZPLG), and the maximum water ponding depth for snow-covered areas (ZPLS). The ranges for 

these parameters were assigned based on studies from MacLean (2009) and Dornes et al. (2008). 

Drainage density (DDEN), soil permeable depth (SDEP), and channel roughness coefficient (WFR2) did 

not change compared with the baseline study of the previous chapter. 

Parameters 1 to 11 in Table 6 are tied to land cover type and, similar to Chapter 3, were calibrated for 

the five land covers of crop, grass, deciduous forest, coniferous forest and mixed forest. The last 

parameter in Table 6, channel roughness coefficient (WFR2), was calibrated for all five river classes in 

MESH. Subsequently, the total number of calibration parameters was increased from 51 in Chapter 3 to 

60 in this chapter. Non-calibrated parameters related to soil or land cover types were assigned according 

to the suggested values in the CLASS manual version 3.5 (Verseghy, 2011). 
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Table 6- Calibration parameters, their ranges and the calibrated values for the new calibration of the 

MESH model applied to the Great Lakes Basin. 

NO. Parameter Description Range 

Calibrated Values for 

Crop, Grass, Deciduous, 

Coniferous, Mixed Forest 

1 ROOT 
Annual maximum rooting depth 

of vegetation category [m] 

(0.2, 1.0) crop and grass 

(1, 3.5) all forest types 

0.374, 0.669, 

 2.316, 2.730, 2.955 

2 RSMN 
Minimum stomatal resistance of 

vegetation category [s m
-1

] 

(60,110) crop 

(75,125) grass 

(100,150) all forest types 

99.017,  

109.498,  

106.689, 185.967,148.055 

3 VPDA 
Vapour pressure deficit 

coefficient 
(0.5,1) 

0.754, 0.630, 0.662,  

0.944, 0.783 

4 SDEP 
Soil permeable (Bedrock) depth 

[m] 
(0.35,4.10) 

1.504, 1.470, 0.586,  

4.095, 0.440 

5 DDEN Drainage density [km/km
2
] (2,100) 

79.41, 72.88, 68.15,  

78.77, 27.76 

6 SAND Percent sand content [%] (0,100) 83.6, 6.5, 48.097, 57.8, 20.0 

7 CLAY Percent clay content [%] (0,100) 12.0, 2.6, 48.201, 0.2, 75.8 

8 RATIO 
The ratio of horizontal to vertical 

saturated hydraulic conductivity 
(2,100) 

34.836, 79.518, 49.896, 

97.051,98.735 

9 ZSNL 

Limiting snow depth below 

which coverage is less than 

100% [m] 

(0.05,1) 
0.703, 0.701, 0.967,  

0.731, 0.520 

10 ZPLS 
maximum water ponding depth 

for snow-covered areas [m] 
(0.02,0.15) 

0.079, 0.142, 0.136,  

0.073, 0.024 

11 ZPLG 
maximum water ponding depth 

for snow-free areas [m] 
(0.02,0.15) 

0.122, 0.129, 0.126,  

0.040, 0.101 

12 WFR2 Channel roughness factor (0.02,2) 
1.862, 1.696, 0.127,  

0.629, 0.360 

 

4.2.3 Implementation of time-saving techniques 

In order to reduce the computational demand of the calibration process, two methods were used in the 

new calibration experiments: model preemption (Razavi et al., 2010) and GRU polishing. GRU polishing 

involves removing GRU types from each grid cell with area coverage fractions below a certain threshold.  

The removed GRU type areas are redistributed proportionally on the remaining GRU types in the grid 

cell. The idea is that GRUs with areas below a certain threshold will have very small impact on 

streamflow simulations. This strategy was applied with 5% and 10% thresholds. After assessing the 

differences in hydrographs induced by these thresholds, the 5% threshold was deemed appropriate. It 

resulted in a reduction of about 10% in a single simulation time, while the associated changes in 

hydrographs remained very small (the average deviation from the highest peak in calibration sub-basins 

was less than 1 m
3
/s). This saving was equivalent to 2 minutes per each single model simulation, or more 

than 33 hours for a calibration with 1000 model runs, using an Intel Core i7-920 2.67 GHz workstation 
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running a 64-bit version of the Windows 7 operating system with 12 gigabytes of installed memory and a 

quad-core processor. Consequently, a polished version of the 7 land class-based GRU types were used for 

all new calibration experiments in this chapter.  

As in Chapter 3, a weighted sum of the Nash-Sutcliffe (NS) coefficient of efficiency (Nash and 

Sutcliffe, 1970) for daily flows was used, according to Equation (3), as the calibration objective and the 

main criterion to evaluate and compare model performance. The weights were assigned proportional to 

the long-term average of daily flows at each sub-basin, in a way that they add to one. 

 

𝑁𝑆𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ∑ 𝑊𝑖 ⋅ 𝑁𝑆𝑖 = ∑ 𝑊𝑖  ⋅ (1 −  
𝑆𝑆𝐸𝑖

𝑛𝑖  ⋅ 𝑉𝑎𝑟𝑖
) = 1 − ∑

𝑊𝑖  ⋅  𝑆𝑆𝐸𝑖

𝑛𝑖  ⋅ 𝑉𝑎𝑟𝑖
 1 

 

Here, i denotes the sub-basin index, Wi is the weight for sub-basin i, SSEi is the sum of squared errors 

between simulated and observed flows over the calibration period for sub-basin i, Vari is the variance of 

observations sub-basin i, and ni is the number of observations over the calibration period for sub-basin i. 

As another strategy to save on calibration time, it was desired to use the deterministic model 

preemption (Razavi et al., 2010). According to Razavi et al. (2010), deterministic model preemption 

involves dismissing model runs that will definitely result in a worse model performance (an objective 

function value) compared to the current best calibration solution. They reported a saving of nearly 50%, 

when model preemption was applied for calibration of MESH to a watershed of approximately 55 km
2
 

using a sum of square error calibration objective. The pre-emption concept requires using a monotonically 

increasing objective function, such as Sum of Squared Errors (SSE), during calibration (Razavi et al., 

2010). Accordingly, a transformed objective function (Z) that is monotonic with increasing simulation 

timestep and rank equivalent to Equation (1) was defined for model the calibration process as shown in 

Equation 4 below.  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑
𝑊𝑖 .  𝑆𝑆𝐸𝑖

𝑛𝑖 𝑉𝑎𝑟𝑖
 2 

 

Model preemption requires that Z is computed after each day of the calibration period is simulated in 

MESH with the Vari values computed over the whole calibration period (i.e., constants) and the SSEi 

values computed only over the simulated days so far.  In other words, model preemption requires that 

SSEi values are computed as a function of simulation time step. The model is then preempted only if Z is 
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computed to be larger than the current best objective function value found by DDS.  Due to the nature of 

the DDS optimization algorithm used in this study, this transformation would not change the calibration 

results at all (compared to maximizing Equation 1). DDS is a rank-based optimization algorithm in that 

only the relative rank of the candidate solutions influences the search result (as opposed to the absolute 

magnitude of objective function differences between candidate solutions), and the exact same answer 

would be obtained with or without this transformation. 

The model preemption implementation in MESH was not coded to track time steps simulated before 

preemption and hence, the preemption savings could not be estimated using the deterministic preemption 

introduced by Razavi et al. (2010). Furthermore, actual runtime differences of calibration experiments 

with and without preemption were not available because only experiments with preemption were 

conducted.   

4.2.4 Other changes 

The two other changes made in the new calibration of MESH over the Great Lakes Basin included 

extending the warm-up (model initialization) period and adjusting the simulated drainage areas of the 

flow gauges were. In order to attenuate, more than before, the impact of the presumed initial conditions, 

the model initialization period was increased from 12 months to 16 months. Moreover, due to the 

resolution of the grid cells used to discretize the watershed (about 15 km), the modeled drainage areas in 

MESH will be sometimes different than the reported areas by EC. In order to circumvent this deficiency, 

the gauge coordinates in MESH were adjusted as suggested by Pietroniro at al. (2007). This strategy still 

would not necessarily result in a match between real and modeled areas, so, MESH simulated flows at 

each gauge were additionally multiplied by a scale factor when calculating the objective function. This 

scale factor is simply the ratio of the EC drainage area to the modeled drainage area and ranged from 0.85 

to 1.33 for the 25 calibration sub-basins, and 0.76 to 1.46 for the 14 validation sub-basins used in the new 

calibration experiment. 

Finally, a couple of changes were also made to the model version and the input forcing data. Firstly, a 

new set of input forcing data was used as they became available through Environment Canada in late 

2013. This new forcing data corrected an error in the forcing data used in Chapter 3. Secondly, in 

accordance with the ongoing development of the MESH modelling system, MESH version 1.3.006 

replaced the older version 1.3.003 in the new study. The major difference between the two versions was 

the capability of reading in the gridded slope values in the new version. As explained in section  0, MESH 

version 1.3.006 also was modified in this work to facilitate the implementation of model preemption 

during the calibration process.  
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4.2.5 Uncertainty Assessment for Model Predictions 

Uncertainties in model predictions stem either from model parameters, model structure, or data (Tolson 

and Shoemaker, 2008). In this work, only the uncertainty associated with estimating model parameters is 

considered and it is assessed using an efficient uncertainty-based calibration approach called Dynamically 

Dimensioned Search-Approximation of Uncertainty (DDS-AU, Tolson and Shoemaker, 2008). DDS-AU 

was shown to require orders of magnitude less computational time for quantifying prediction uncertainty, 

compared with the widely-used Generalized Likelihood Uncertainty Estimation (GLUE, Beven and 

Binley, 1992) technique (Tolson and Shoemaker, 2008). Essentially, DDS-AU involves performing 

several independent DDS optimization trials of relatively small number of model evaluations. Each trial 

starts from a different random solution and thus, ends at a different final parameter set. Consequently, 

DDS-AU can find a number of “behavioral” solutions (parameter sets) used in estimation of the 

uncertainty bounds in predictions. Behavioral solutions are identified based on a subjective performance 

threshold. In the simplest application of DDS-AU, only each final best parameter set is assessed as being 

a possible behavioral solution. In this study, twenty calibration trials were used each with 200 model 

evaluations. The parameter sets for which all NS values across all 25 calibration sub-basins (excluding the 

worst performing sub-basin) were positive were considered as the behavioral parameter sets.  

4.2.6  Sensitivity Analysis for the Great Lakes Basin 

In order to find the sensitivity of the MESH streamflow simulations to parameters after calibration, a 

manual local sensitivity test is performed from the best parameter values found in the new calibration 

experiment. In this test, the sensitivity of simulated maximum peak flow and total volume to MESH 

parameters is examined over the calibration period in the 25 calibration sub-basins. All the parameters 

corresponding to the most common GRU (land) type in the region, crop, are considered in the analysis 

plus the five channel roughness parameters. Parameters are perturbed, one at a time, below and above 

their value by 20% of their range. If the upper or lower perturbed value for a given parameter was outside 

its feasible range (e.g., 0% or 100% for percent sand), then the maximum or minimum feasible range 

value is used instead. The percent change for the maximum peak flow and the total volume associated 

with each parameter perturbation is then calculated for each calibration sub-basin. The average, 

minimum, and maximum percent changes across all sub-basins are also calculated for each parameter 

perturbation. The lower and upper values for the saturated surface soil conductivity (WFCI) are indirectly 

calculated by perturbing the RATIO parameter. The results from this analysis can provide useful 

information for MESH modelers about the relative importance of each parameter, and the selection of 

calibration parameters.   
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4.3 Results and Discussion 

Firstly, the results of the new (enhanced) calibration strategy are presented and compared with the 

benchmark calibration results of Chapter 3. Then, results of the uncertainty analysis are presented 

followed by the sensitivity analysis results.  

4.3.1 Enhanced Calibration Results 

In the new calibration experiment, similar to the calibration effort in the baseline calibration, three 

calibration experiments were performed with 1000 model evaluations each. Each experiment was started 

from a different initial point (parameter set). The parameter set associated with the best calibration 

performance was then selected as the “best” parameter set and used to generate model predictions for the 

temporal and spatial model validation. As in Chapter 3, the model was calibrated from October 2004 to 

September 2005 and validated until September 2009. Likewise, the final calibrated parameter set from 

Chapter 3 (referred to as “benchmark” parameter set hereafter) was also applied to the new calibration 

and validation sub-basins (under the revised MESH model setup described in this chapter) to generate 

comparative temporal and spatial model validation results. This experiment and its associated results will 

be referred to as “benchmark” results or experiment hereafter. The validation model performance under 

each parameter set was evaluated and contrasted for these two experiments using the four metrics defined 

in Table 2 of Chapter 3 namely, the Nash-Sutcliffe Coefficient of Efficiency (NS), Volumetric Efficiency 

(VE), Root Mean Squared Error (RMSE), and Percent Bias (PBIAS). In this section, the results of the 

new model calibration are first presented for the calibration sub-basins over the calibration period. Then, 

the validation results are shown for both the new and the benchmark experiments.  

Figure 9 indicates the individual NS values over the calibration period (October 04 to September 05) 

for the 25 sub-basins used in calibration. Sub-basins are shown in the order of their locations from the 

west around Lake Superior to the east around Lake Ontario and in St. Lawrence River basin. The 

weighted sum of NS values is also shown as the overall calibration performance. The overall NS value is 

above 0.4 and the individual NS values range from -0.61 to 0.85 with a median of 0.53. Overall, model 

calibration performance is reasonably high for all sub-basins, except sub-basin 04122500. A discussion 

on this poor performance is provided at the end of this section.   
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Figure 9. The NS values over the calibration period (October 04 to September 05) for the 25 calibration 

sub-basins and the corresponding weighted NS. 

 

In order to conduct a robust comparison between the new and the benchmark experiment, multiple 

interpretations of the validation results are presented here. This includes comparing the validation model 

performance overall and for each sub-basin individually. Table 7 summarizes the model performance 

based on the four metrics, defined in Table 2 of Chapter 3, during the temporal validation period (October 

2005 to September 2009) for the 25 calibration sub-basins. As seen in this table, overall, the new 

experiment indicates an improved performance for temporal validation compared with the benchmark 

results. The median, minimum and maximum NS and PBIAS values are all better for the new results, 

except for the minimum PBIAS. VE and RSME values are very close for the two experiments.  

Similar results are presented in Table 8 for the spatial validation of the model in the 14 validation sub-

basins. Again, the results confirm that overall, model performance is improved compared with the 

benchmark results. The median performance is higher for all metrics in the new experiment. The 

minimum and maximum values of the metrics also show a better or comparable performance for the new 

experiment, except for the minimum NS and maximum PBIAS. Again, VE and RSME values are very 

close for both experiments. 
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Table 7. The median, minimum and maximum of the four metrics (defined in Table 2), for the new 

and benchmark experiments, over the temporal validation period (October 2005 to September 2009), 

for the 25 calibration sub-basins. 

 Benchmark Experiment New Experiment 

 NS VE 
RMSE 

(m
3
/s) 

PBIAS 

(%) 
NS VE 

RMSE 

(m
3
/s) 

PBIAS 

(%) 

Median 0.19 0.40 14 35 0.30 0.45 15 26 

Min. -0.90 0.19 4 5 -0.65 0.17 5 -14 

Max. 0.69 0.64 50 50 0.79 0.66 54 39 

 

Table 8. The median, minimum and maximum of the four metrics (defined in Table 2), for the new 

and benchmark experiments, over the spatial validation period (October 2004 to September 2009), for 

the 14 validation sub-basins. 

 Benchmark Experiment New Experiment 

 NS VE 
RMSE 

(m
3
/s) 

PBIAS 

(%) 
NS VE 

RMSE 

(m
3
/s) 

PBIAS 

(%) 

Median 0.12 0.37 14 34 0.29 0.47 9 21 

Min. -0.75 0.06 3 13 -1.09 0.05 3 6 

Max. 0.51 0.57 19 44 0.66 0.56 19 49 

 

Next, the two experiments were compared for each sub-basin individually, based on a scoring 

framework introduced here. RMSE was removed from this analysis to avoid double counting information, 

because RSME is rank equivalent to NS. In each sub-basin, the three metrics were contrasted one by one 

between the two experiments. For a given metric, if the new experiment was dominant, a score of +1 was 

assigned, and if the benchmark experiment was dominant, a score of -1 was assigned to the model 

performance. If the poorer value was within the 10% of the better value for a certain metric, then the 

model performance was considered equal for both experiments and a value of 0 was assigned to it. 

Subsequently, the sum of scores across all three metrics determined the degree by which the model 

performance was upgraded or degraded in each sub-basin. The model performance for the new 

experiment was classified between “much better” to “much worst” with respect to the benchmark results 

as seen in Table 9. A “much better” score (+3) shows that the new experiment performed better based on 

all the three metrics in a given sub-basin, whereas a “much worse” score (-3) indicates that the benchmark 

results were dominant for all the three metrics. 
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Histograms corresponding to the application of this classification scheme are presented in Figure 10a 

and 10b. Figure 10a shows the result of the temporal model validation for the 25 calibration sub-basins. 

As seen in this figure, model performance is better for the new experiment in more than 50% of the sub-

basins. In three sub-basins, model performs much better compared to the benchmark results. The new 

results are worse only in about 30% of the sub-basins. If we further consider the “slightly better”, “equal”, 

and “slightly worse” classes as equal performance, then in only 2 (8%) calibration sub-basins the 

benchmark results are better. Figure 10b, depicts similar results for the 14 spatial validation sub-basins. 

The performance improvement of the new results is even stronger during the spatial validation of the 

model where more than 70% of the sub-basins have a better performance in the new experiment. Further 

grouping of the three “slightly better”, “equal”, and “slightly worse” classes into the “equal” class, leaves 

no validation sub-basin for which the benchmark results are better. 

 

  

Figure 10. Histograms corresponding to the classification of the model performance in the new 

experiment with respect to the benchmark performance in a) the calibration sub-basins (temporal 

validation), and b) the validation sub-basins (spatial validation). 

Table 9. Classification of the model performance for 

the new results with respect to the benchmark results. 

Score Class 

3 Much Better 

2 Better 

1 Slightly Better 

0 Equal 

-1 Slightly Worse 

-2 Worse 

-3 Much Worse 
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In summary, various interpretations of the results confirm that the MESH model performance indeed 

improved with the revised calibration strategy compared to the benchmark results. Individual validation 

NS values from both calibration experiments are shown in Figure 11 for both calibration and validation 

sub-basins. As seen in Figure 11a, the calibration sub-basin 04045500 has the highest validation NS value 

in both experiments. In spatial validation, sub-basin 02ED027 has the best NS value in both the new and 

benchmark experiments. 

 

 

Figure 11. The NS values from the new and the benchmark calibration experiments for a) the 25 

calibration sub-basins plus the corresponding weighted NS, over the temporal validation period (October 

05 to September 09), and b) for the 14 validation sub-basins, over the spatial validation period (October 

04 to September 09). 
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Figure 12 displays simulated hydrographs at the best (highest NS) validation sub-basin for both 

experiments. As seen in this figure, the simulated hydrograph in the new experiment clearly better 

matches the observed peak flows compared with the benchmark hydrograph.  

 

 

Figure 12. Simulated hydrographs at the best (highest NS) calibration sub-basin (04045500) for the new 

and the benchmark experiments. 
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Figure 13 displays simulated hydrographs at the best (highest NS) validation sub-basin for both 

experiments. As seen in this figure, the simulated hydrograph in the new experiment is much better in 

matching the higher observed peak flows compared with the benchmark hydrograph. However, the 

benchmark hydrograph is more successful in simulating the base flows. 

 

 

Figure 13. Simulated hydrographs at the best (highest NS) validation sub-basin (02ED027) for the new 

and the benchmark experiments.  

 



53 

4.3.2 Various attributes of the MESH performance in the new calibration experiment 

Further investigations were conducted to explore the relationship between validation MESH 

performance in the new calibration experiment and various sub-basin characteristics such as land cover 

type, size, and location. The validation period model performance was considered as the NS values over 

the temporal validation period (October 05 to September 09) for calibration sub-basins, and as the NS 

values over the spatial validation period (October 04 to September 09) for the validation sub-basins. The 

corresponding results are discussed below. 

The correlation between the validation period model performance and the GRU (land) type was 

examined in the new calibration experiment. No correlation was found between the NS values and a 

particular GRU (land) type. It is worth noting that either crop, or coniferous forest, or deciduous forest 

had the dominant coverage areas across all calibration and validation sub-basins. Figure 14 shows the 

range of the NS values in the 14 validation sub-basins with the crop, deciduous forest, or coniferous forest 

land cover fraction above 0.3.  

 

 

Figure 14. Range of the NS values in the 14 validation sub-basins with the crop, deciduous forest, 

or coniferous forest land cover fraction above 0.3. 

 

Furthermore, the relationship between the model performance (based on NS values) and the size of the 

sub-basins in the new experiment was investigated. As seen from the results (Figure 15), there is no 
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correlation between the size of the sub-basins and the validation model performance. Same result (not 

shown) was observed for the calibration model performance (i.e. NS value over the calibration period). 

 

 

Figure 15. Scatter plot of the validation NS values for a) 25 calibration sub-basins, and b) 14 validation 

sub-basins.  

 

In order to examine the relationship between the location of sub-basins and model performance, all the 

sub-basins along with their grouped validation NS values are plotted on a map shown in Figure 16. NS 

values are classified into four groups. Green colour displays the poor performing sub-basins with negative 

NS values, and the red colour depicts the best performing sub-basins with NS greater than 0.5. As seen, 

sub-basins around Lake Superior and to the north of Lake Ontario indicate a higher performance in 

general. The regions to the north of Lake Erie and in particular, in between Lake Michigan and Lake 

Huron have poor performance. As an example, the simulated hydrograph associated with sub-basin 

04122500 (the poorest performing sub-basin during model calibration) is shown in Figure 17. As seen in 

this figure, the timing of the flow values are simulated relatively well by MESH. However, the main 

problem is that the baseflow (mainly coming from the interflow in MESH) is substantially underestimated 

by MESH. Even calibrating MESH individually to only this sub-basin did not resolve this issue. Similar 

behavior was also observed at this sub-basin when the benchmark parameter set was used for simulation. 

Therefore, it was concluded that the issue was not caused by the calibration strategy. Another adjacent 

validation sub-basin (04122200) in that area to the east of Lake Michigan also showed similar 

performance and behavior. This is interesting because the two sub-basins (04124000 and 0413600 shown 

in black in Figure 17) that were previously eliminated from the calibration due to their poor performance 

(as explained in section 4.2.1) are also from the same region and show similar behavior. Further 

investigation using the surficial geology map of the Great Lakes Basin (map not shown) did not indicate 

any correlation between model performance and soil types, particularly in this region.  
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Figure 16. The Great Lakes Basin map showing the validation NS value of all the calibration and 

validation sub-basins using a colour spectrum. Red colours indicate high performance whereas green 

colours indicate low performance. Sub-basins 04124000 and 04136000 (shown in black) are the two sub-

basins removed from calibration due to very poor performance.  
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Figure 17. Observed and simulated hydrographs at sub-basin 04122500 with the worst NS values in 

calibration and temporal validation.  

 

 

To further investigate this issue, a bedrock geology map of the Great Lakes Basin was examined as 

shown in Figure 18. The approximate location of the Niagara Escarpment is also shown on this figure. 

Interestingly, comparing Figure 16 and Figure 18, reveals that almost all the sub-basins with a higher 

performance (NS>0.3, shown in orange and red in Figure 16) fall to the north the Niagara Escarpment. 

On the other hand, the region between Lake Michigan and Lake Huron with poor performing sub-basins 

has a unique geology consisting of poorly permeable rocks, shale and sandstone aquifers. This indicates 

that the land-cover based GRU types used in this study are perhaps not sufficient to model the baseflow 

and interflow for this region.  

 



57 

 

Figure 18. Bedrock aquifer of the Great Lakes Basin the Great Lakes Basin and the approximate position 

of the Niagara Escarpment (Modified from Sheets et al., 2005). 

 

4.3.3 MESH performance for non-natural flow conditions 

Since a considerable portion of the Great Lakes Basin consists of sub-basins that have flow conditions 

that are not near-natural, the MESH model performance is also evaluated for a sample of ten such sub-

basins. These sub-basins are classified as “non-reference” by the USGS GAGES-II data set, or as 

“regulated” by the Water Survey Canada. A variety of factors cause the flow condition at these sub-basins 

to be non-natural such as being downstream of cities or the presence of upstream powerplants, dams, or 

lakes. Table 10 lists the selected sub-basins along with the corresponding remarks on flow conditions. 

Table 11 shows the median, minimum and maximum of the four metrics for these ten sub-basins over the 

entire simulation period (October 2005 to September 2009). As expected, the model performance is poor 

in these sub-basins. The maximum NS value is 0.14 and the rest are negative. Figure 19 depicts the 

individual NS values for these ten sub-basins. It is acknowledged that MESH performance could be 
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assessed similarly in many other non-natural sub-basins, but it is assumed that the results would not be 

that different.  

 

 

Table 11. The median, minimum and maximum of the four metrics (defined in 

Table 2), for ten sub-basins with non-near-natural flow conditions over the 

spatial validation period (October 2004 to September 2009). 

 NS VE RMSE (m
3
/s) PBIAS (%) 

Median -0.55 0.34 127 38 

Min. -1.75 0.21 9 -5 

Max. 0.14 0.45 294 48 

 

Table 10. List of the sub-basins with non-natural flow conditions assessed for MESH performance. 

Sub-basin 

ID 

Name (Area, km
2
) Remarks  

(from USGS or Water Survey Canada) 

04193500 
Maumee River at Waterville OH 

(16409.4) 
Many upstream cities 

04157000 

SAGINAW RIVER AT 

SAGINAW, MI (14327.2) 

Minimum flows affected by wind direction and seiche 

on Saginaw Bay, 20.3 mi downstream. Considerable 

diversion through metropolitan area of Saginaw.  

04067500 

MENOMINEE RIVER NEAR MC 

ALLISTER, WI (10155.0) 

Flow regulated by powerplants and by Michigamme 

Reservoir, and Peavy Pond on Michigamme River, and 

by many smaller reservoirs above station. 

04249000 

OSWEGO RIVER AT LOCK 7, 

OSWEGO NY (13209.4) 

Prior to 1933 and subsequent to 1972, flow in Oswego 

(Barge) Canal not included. A large amount of natural 

storage and some artificial regulation is afforded by the 

many large lakes and the Erie (Barge) and Oswego 

(Barge) Canal systems in the river basin. 

04260500 

BLACK RIVER AT 

WATERTOWN NY (4842.9) 

Flow regulated by Stillwater Reservoir (see station 

04256500), Fulton Chain of Lakes, and other reservoirs. 

Extensive diurnal fluctuation at low and medium flow 

caused by mills and powerplants in and above 

Watertown. During canal season, water is diverted 

04237500 

SENECA RIVER AT 

BALDWINSVILLE NY (8110.1) 

Since November 1949, a large amount of natural storage 

and some artificial regulation is afforded by many large 

lakes and the Erie (Barge) Canal system in the river 

basin.  Large diurnal fluctuations at low and medium 

flows caused by powerplants upstream 

04119000 
GRAND RIVER AT GRAND 

RAPIDS, MI (12741.2) 

Moderate diurnal fluctuation at low and medium flow 

caused by powerplants 

04121970 
MUSKEGON RIVER NEAR 

CROTON, MI (6050.8) 

Flow completely regulated by Croton Dam 1,000 ft 

upstream. 

02GB001 
GRAND RIVER AT 

BRANTFORD (5200.5) 
Regulated 

02HB025 
CREDIT RIVER AT NORVAL 

(644.84) 
Regulated 
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Figure 19. The NS values over the spatial validation period (October 04 to September 09) from the 

new calibration experiment for the 10 sub-basins with non- natural flow conditions. 

 

4.3.4 Uncertainty Analysis Results 

In order to find the prediction uncertainty band for the MESH predations in the Great Lakes Basin, 20 

DDS calibration trials with 200 model evaluations were performed with different initial solutions (i.e., 

random seeds). Next, the parameter sets where all NS values were positive across all calibration sub-

basins were considered “behavioral” and used in generating the uncertainty bands for flow predictions. In 

doing so, the 04122500 sub-basin was not considered because it constantly had a very poor performance 

as was discussed earlier under the calibration results in this chapter. Consequently, eight parameter sets 

were identified as the behavioral sets. The median, minimum, and maximum NS values of the 25 

calibration sub-basins are calculated for each of these parameter sets and the associated ranges across all 

eight behavioral sets are shown in Table 12. 

 

Table 12. Range of the median, minimum, and 

maximum for the 25 sub-basin NS values across the 8 

behavioral parameter sets. 

 Min Max 

Median 0.41 0.51 

Min 0.00 0.11 

Max 0.86 0.91 
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Flows were then simulated by MESH using these eight sets for all calibration and validation sub-

basins over the entire period (October 04 to September 09). The prediction uncertainty band in a given 

day was calculated as the difference between the maximum and the minimum of the simulated flow 

values of all the 8 sets on that day. Figure 20 shows the uncertainty bands for the best (i.e. maximum NS 

value) calibration (Figure 20a) and validation (Figure 20b) sub-basins. The uncertainty band is fairly 

narrow for the calibration sub-basin but wider in the validation sub-basin. The observed hydrograph 

frequently falls out of the bands in those cases.  

 

 

Figure 20. Prediction uncertainty bands for the calibration and validation sub-basins with the best 

performance (largest NS value) during model validation. The hydrograph corresponding to the best 

parameter set found by the new calibration strategy is also displayed for comparison.  
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The prediction uncertainty bands were quantitatively evaluated using the “reliability” metric defined 

by Yadav et al. (2007). The reliability metric measures the percentage of the observed flows that are 

within the uncertainty band over the prediction period. For the 25 calibration sub-basins, the reliability 

metric was calculated over the temporal validation period (October 05 to September 09) and ranged from 

12 % to 65 % with a median of 25%. For the 14 validation sub-basins during the spatial validation period 

(October 04 to September 09) reliability values ranged from 11% to 38% with a median of 19%.  

These reliability values are low. This indicates that the uncertainty analysis was not sufficient. The 

number of short DDS runs was not large enough for sufficiently exploring the entire parameter space and 

thus, finding more behavioral sets. The reliability can increase when more behavioral sets are used. 

Ideally, one would like to obtain a narrow band with high reliability values covering most of the measured 

flows.  

4.3.5 Sensitivity Analysis Results 

Table 13 shows the local sensitivity results for the MESH streamflow simulations to the parameters of the 

most common GRU type (Crop) in the Great Lakes Basin, as explained in section  4.2.6. Parameters are 

ranked based on the magnitude of the percent change in the peak or volume of the 25 calibration sub-

basins. Soil permeable depth or depth to bedrock (SDEP) is by far the most influential parameter, 

followed by the saturated surface soil conductivity (WFCI) and percent sand. All of these parameters are 

associated with a change larger than 60% in the maximum peak flow. Four river channel roughness 

values and percent clay are at the next level causing a change more than 30% in the peak or volume. The 

annual maximum rooting depth (ROOT), the channel roughness factor of the third river class (WFR3), 

and the limiting snow depth below which coverage is less than 100% (ZSNL) produce changes between 

6% and 24%. The changes associated with the rest of the parameters are all relatively small and below 

5%.   

Moreover, it is observed that the results of this post-calibration sensitivity test at the Great Lakes 

Basin scale matches fairly well with the results of the local sensitivity test at the sub-basin scale that was 

presented in Table 6 as the final calibration parameters in the new experiment. All the influential 

parameters identified here (number 1 to 11 in Table 13) were also included in the calibration parameters 

as shown in Table 6. Some of the parameters included in the calibration were found to have very small 

impact on the MESH simulations in the post-calibration sensitivity analysis. These parameters include 

DDEN, VPDA, RSMN, ZPLS, and ZPLG. This observation could be a result of the sensitivity test being 
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local, and it is still believed that these parameters are influential in MESH simulations overall. A global 

sensitivity test in future can be performed to confirm this hypothesis.  

Overall, both sensitivity tests revealed that the soil characteristics including soil permeable depth 

(depth to bedrock), soil hydraulic conductivity, and soil constituent percentages, as well as the channel 

roughness coefficients are among the most influential parameters in MESH model. Ideally, these 

parameters should be obtained directly from measured data; however, when data is not available, they 

should be included in the calibration. The annual maximum rooting depth of the vegetation category is 

also another important parameter that should be calibrated if cannot be estimated from the available or 

measured data. 

4.4 Conclusions 

This chapter reported on the contributions of this research in enhancing the MESH streamflow predictions 

with respect to the benchmark results reported in chapter 3. Accordingly, the calibration strategy was 

largely refined particularly, with respect to the sub-basins and model parameters used in calibration. Also, 

due to the significant computational demand of this work, two strategies were employed for increased 

calibration efficiency. In addition, a simple uncertainty assessment was conducted to further enhance the 

outcomes of the research in this chapter. A local sensitivity test was also performed after MESH was 

calibrated for the Great Lakes Basin. 

A rigorous comparison between the new and the benchmark experiments confirmed that the MESH 

model performance indeed improved by the revised calibration strategy compared with the benchmark 

results. This improvement was a combined result of all the changes made in the calibration strategy. 

Therefore, it was impractical to isolate the individual impact of each change. However, two factors are 

believed to have contributed the most to this improvement. The first one is the increased number of the 

calibration sub-basins that had near-natural flow conditions and were better distributed across the entire 

Great Lakes Basin. The second one is a more careful selection of the calibration parameters that also takes 

into account parameter dependencies. Although successful results were attained, it was observed that the 

Great Lakes Basin geology can be correlated to model performance. Accordingly, alternate GRU 

definition considering geology of the basin should be considered in future studies. At the minimum, for 

example, GRU types can be delineated by also considering their location as being to the north or south of 

the Niagara Escarpment. This would reflect the impact of the Canadian Shield in the modelling study. 
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Table 13. Local sensitivity results for the MESH streamflow simulations to the parameters of the most 

common GRU type (Crop) in the Great Lakes Basin. The changes above 5% are highlighted. 

Rank Parameter Description 

 

Lower Value Upper Value 

% Change % Change 

Peak Volume Peak Volume 

1 SDEP* Soil permeable (Bedrock) depth [m] 
Average 39 3 10 1 

Max 177 13 38 4 

2 WFCI* Saturated surface soil conductivity [m/s] 
Average 3 0 9 0 

Max 16 0 65 1 

3 SAND* Percent sand content for all layers [%] 
Average 5 4 8 1 

Max 35 15 63 3 

4 WFR2* River channel roughness factor for river class 2 
Average 6 0 2 0 

Max 46 2 16 1 

5 WFR4* River channel roughness factor for river class 4 
Average 0 0 3 0 

Max 6 0 41 1 

6 WFR1* River channel roughness factor for river class 1 
Average 7 0 2 0 

Max 35 1 9 0 

7 WFR5* River channel roughness factor for river class 5 
Average 3 0 6 0 

Max 18 1 31 1 

8 CLAY* Percent clay content for all layers [%] 
Average 3 3 4 9 

Max 24 10 23 30 

9 ROOT* Annual maximum rooting depth of vegetation category [m] 
Average 1 5 2 6 

Max 12 21 24 18 

10 WFR3* River channel roughness factor for river class 3 
Average 0 0 1 0 

Max 2 0 19 0 

11 ZSNL* 
Limiting snow depth below which coverage is less than 100% 

[m] 

Average 3 0 2 1 

Max 13 2 6 2 

12 DRN Soil drainage index 
Average 1 1 0 0 

Max 5 2 2 1 

13 DDEN* Drainage density [km/km2] 
Average 1 0 1 0 

Max 3 0 3 0 

14 Organic Percent organic content for all layers [%] 
Average 0 0 0 0 

Max 2 0 3 1 

15 VPDA* Vapour pressure deficit coefficient 
Average 0 1 0 0 

Max 2 2 1 2 

16 LAMX Annual maximum plant area index of vegetation category 
Average 0 1 0 0 

Max 1 2 1 2 

17 RSMN* Minimum stomatal resistance of vegetation category [s m-1] 
Average 0 0 0 0 

Max 2 2 1 2 

18 PSGA Soil moisture suction coefficient 
Average 0 0 0 0 

Max 1 0 2 0 

19 PSGB Soil moisture suction coefficient 
Average 0 0 0 0 

Max 1 0 1 0 

20 CMAS 
Annual maximum canopy mass for vegetation category [kg m-

2] 

Average 0 0 0 0 

Max 1 0 1 0 

21 LNZ0 Natural logarithm of maximum vegetation roughness length 
Average 0 0 0 0 

Max 1 0 1 0 

22 ALVC 
Average visible albedo of vegetation category when fully-

leafed 

Average 0 0 0 0 

Max 1 0 0 0 

23 VPDB Vapour pressure deficit coefficient 
Average 0 0 0 0 

Max 1 0 0 0 

24 QA50 Reference value of incoming shortwave [W m-2] 
Average 0 0 0 0 

Max 1 1 1 1 

25 GRKF 
Fraction of the saturated soil horizontal conductivity at depth 
of 1 m to the saturated horizontal conductivity at the surface 

Average 0 0 0 0 
Max 1 0 1 0 

26 ALIC Avg. near-IR albedo of vegetation fully-leafed 
Average 0 0 0 0 

Max 1 0 0 0 

27 MANN The Manning's coefficient used for overland flow 
Average 0 0 0 0 

Max 0 0 0 0 

28 ZPLS* Max. water ponding depth for snow-covered areas 
Average 0 0 0 0 

Max 0 0 0 0 

29 ZPLG* Max. water ponding depth for snow-free areas 
Average 0 0 0 0 

Max 0 0 0 0 

* indicates the calibrated parameters in the new experiment 
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The GRU polishing strategy allowed for a relatively large (~10%) saving in calibration time. The 

model preemption implementation in MESH was not coded to track time steps simulated before 

preemption and hence, the preemption savings could not be estimated.   

The uncertainty analysis in this study also identified eight behavioral parameter sets that were used to 

estimate the uncertainty bands for the MESH flow predictions. However, the low reliability values 

revealed that this analysis is not sufficient and more short DDS runs are required for improved results. As 

a secondary observation, it was seen that it is perhaps better to split a certain calibration budget, between 

the DDS-AU (uncertainty-based DDS optimization) methodology and the deterministic DDS approach. 

This way, one can also estimate parameter uncertainty on top of obtaining a “best” set. The outcomes of 

this computationally intensive work, i.e., the behavioral and the best parameter sets found, can be used 

separately or together in future relevant studies that, for example, try to estimate the best prediction and/or 

the uncertainty ranges for the lake inflows or the lake levels using the MESH model. 

Lastly, the local sensitivity test revealed that the soil characteristics including soil permeable depth 

(depth to bedrock), soil hydraulic conductivity, and soil constituent percentages, as well as the channel 

roughness coefficients are the most influential parameters in MESH model. These parameters should be 

included in MESH calibration if they cannot be obtained from real measurements. 
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Chapter 5 

Assessing the Performance of a Semi-distributed Hydrological Model 

under various Watershed Discretization Schemes 

This chapter is a mirror of the following article submitted recently to the journal of Hydrological 

Processes, with minor changes to increase its consistency with the body of the thesis. These changes 

include updating table and figure numbers, and adding a small section  5.4.1 for extra supporting results. 

References are unified at the end of the thesis.  

Haghnegahdar, A., Tolson, B. A., Craig, J. R., Paya, K. T. (2014), Assessing the Performance of a 

Semi-distributed Hydrological Model under various Watershed Discretization Schemes (submitted to 

Hydrological Processes)  

Abstract 

Physically-based distributed and semi-distributed hydrological models have become one of the primary 

tools for water resources studies and management over the past decades owing to increased computational 

capabilities and advances in data measurements. Representation of the existing heterogeneity in nature 

still remains one of the main challenges in these models, and is accomplished primarily via watershed 

discretization, subdividing watersheds into hydrologically similar land parcels. Discretization decisions in 

distributed modelling studies are often ad hoc and determined with little or no quantitative analysis to 

support these decisions. In this work, we present a quantitative methodology for assessing alternative 

watershed discretization schemes in terms of their corresponding model performance in ungauged basins. 

The effect of the time spent for calibrating each scheme is considered as part of the assessment. Here, 

these schemes differ in how they represent landscape attributes, and range from a simple lumped scheme 

to more complex ones by adding spatial land cover and then soil information. The methodology was 

demonstrated using the Modélisation Environmentale–Surface et Hydrologie (MESH) model as applied to 

the Nottawasaga river basin in Ontario, Canada. Results reveal that model performance in ungauged 

basins depends upon the location of the validation sub-basin (i.e. upstream or downstream) with respect to 

the calibration sub-basins. Also, using a more complex scheme did not necessarily lead to improved 

performance in validation, when constrained by calibration budget. Therefore, the calibration budget also 

should be considered as a factor in the assessment process. This methodology was also implemented 

using a shorter sub-period for calibration, which leads to substantial computational saving. Results of the 

sub-period test were promising and consistent particularly when sufficient budget is spent to calibrate the 
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model. Other strategies utilized for reducing the computational burden of the proposed analyses are also 

discussed in this study. 

5.1 Introduction 

Physically-based distributed and semi-distributed hydrological models have become one of the primary 

tools for water resources studies and management over the past decades, owing to increased 

computational capabilities and advances in data measurements. In general, these models can be divided 

into fully-distributed and semi-distributed models. In fully-distributed models like Soil Moisture 

Distribution and Routing (SMDR, Srinivasan et al., 2005), or Systeme Hydrologique Europeen (SHE, 

Abbott et al., 1986), the exact location for each computational element is specified and the lateral transfer 

of water and energy fluxes are allowed between these elements throughout the model spatial domain. In 

contrast, for semi-distributed models such as Soil and Water Assessment Tool (SWAT, Arnold et al., 

1998), WATFLOOD (Kouwen, 1988) and Modélisation Environmentale–Surface et Hydrologie (MESH, 

Pietroniro et al., 2007), although the spatial variation of parameters is represented via computational 

elements within discretized spatial units, the exact location of each element within these spatial units are 

neglected.  

Due to data and computational constraints, application of fully-distributed models to large (regional) 

scale (~10
3
–10

6
 km

2
) watersheds can be infeasible for operational purposes. Therefore, semi-distributed 

models are primarily relied upon in these situations. However, specifying all the required model 

parameters at the appropriate scale, poses a challenge for semi-distributed models. These parameters are 

normally associated with the model approach to accommodate spatial heterogeneity and are typically 

determined via calibration.  

Dealing with landscape heterogeneity in semi-distributed models is normally performed through 

“watershed discretization” that consists of two fundamental steps. The first step, which depends largely 

on the spatial resolution of the forcing data (e.g., precipitation, temperature, etc.) or the density of the 

flow gauges, is how to specify the size (resolution) and shape (e.g., grid cell or sub-basin) of the spatial 

units used in the model. The second step in watershed discretization is concerned with subdividing the 

aforementioned spatial units (i.e. sub-basins or grid cells) further into elements with distinct hydrologic 

responses. These entities will be used by the model as the computational unit for simulation. This latter 

decision mainly determines the representation of heterogeneity in the model and thus, largely specifies the 

model complexity and number of (unknown) model parameters. Hereafter, when the term “watershed 

discretization” or “discretization” is used it refers to this second step. 
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The main challenge is to identify the best method for discretization of the watershed while maximizing 

the model reliability and utility. Model performance and how well it can be calibrated, often with a 

limited budget, largely depend on how a basin is discretized in the first place. If done adequately, 

calibrated model parameters also generate useful predictions in ungauged basins (PUB). 

Multiple studies have tried to find a suitable approach for basin discretization which reasonably 

balances model complexity and model practicality. Wood et al. (1988) proposed the concept of 

Representative Elementary Area (REA) to identify characteristic spatial scales for catchment responses in 

terms of the runoff generation. Reggiani et al. (1998) extended this idea to the concept of Representative 

Elementary Watersheds (REWs), which are sub-watersheds across which the same physical laws govern. 

Vivoni et al. (2004) proposed the use of Triangulated Irregular Networks (TINs), delineated primarily 

based on the topographic (wetness) index (Beven and Kirkby, 1979), for use in the TIN-based Real-Time 

Integrated Basin Simulator (tRIBS, Ivanov et al., 2004) model. Dehotin and Braud (2008) employed the 

concept of “hydro-landscape” units (Winter, 2001) to address sub-catchment variability, using a nested 

discretization approach implemented within the LIQUID modelling platform (Branger et al., 2010). 

Capable of taking into account various influential factors on hydrologic response such as slope, land use, 

geology and pedology, the hydro-landscape units are very similar to the concept of Hydrological 

Response Units (HRU, e.g., Leavesley et al., 1983; Flügel, 1995). 

HRUs are perhaps the most commonly used approach to incorporate landscape heterogeneity in 

distributed watershed modelling. The exact definition of HRUs depends on the model and the application 

(Haverkamp et al., 2002). Flügel (1995) defines HRUs as “distributed, heterogeneously structured entities 

having a common climate, land use and underlying pedo-topo-geological associations controlling their 

hydrological dynamics”. In the case of SWAT, HRUs are sub-basin divisions characterized by a unique 

combination of land cover, soil and land management (e.g., Neitsch et al., 2005). 

Similarly, Kouwen et al. (1993) introduced the Grouped Response Unit (GRU) approach in 

WATFLOOD model and described it as the aggregation of multiple land classes, or possibly other 

landscape attributes, into a single computational element which is aggregated in order to increase 

computational efficiency. In most WATFLOOD or MESH model applications, the GRUs are defined as 

subdivisions (not necessarily contiguous) of a Cartesian grid cell rather than a topographically-defined 

sub-basin (e.g., Mekonnen et al., 2014; Dornes et al. 2008; 2014; Pietroniro et al., 2007).  

It is well recognized that a number of parameters of semi-distributed models are unknown and have to 

be determined through calibration. However, modelers typically overlook the fact that the most 

appropriate discretization scheme is also unknown, and that it too could be determined as part of the 
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model calibration process. The more details incorporated into a model, the more complex and 

computationally costly it becomes, especially for calibration. In some cases excessive complexity may 

degrade model performance in validation. Consequently, there will be a trade-off between model 

performance and computational cost for different discretization schemes, and it remains the modeler’s 

choice to appropriately adopt the discretization that best meets the requirements of the system under 

study. This crucial decision should be given extra care as it has significant impact on the model 

calibration and predictions. 

Among numerous studies that consider watershed discretization strategies, few explicitly present an 

organized and objective methodology for determining an appropriate discretization scheme, one which 

presumably finds the balance between spatial aggregation level and model complexity. Flügel (1995) 

presented a fairly detailed procedure to delineate HRUs for regional scale hydrological modelling, in a 

manner that seeks to preserve the three-dimensional heterogeneity of the basin. This procedure involves a 

step-by-step GIS-based map overlay analysis to specify HRUs according to physiographic properties such 

as topography, soil type, geology and land use. Haverkamp et al. (2002) introduced a statistical 

methodology for determining the appropriate level of spatial aggregation (discretization) based on the 

entropy function (e.g., Krasovskaia, 1997). Conducting experiments with SWAT, they found a threshold 

value for the number of sub-watersheds (and HRUs) beyond which model performance is not improved 

any further. Dehotin and Braud (2008) proposed a flexible three-level discretization strategy for 

implementation in a modular modelling platform called LIQUID (Branger et al., 2010). In their approach, 

the spatial discretization can become finer adaptively, according to modelling objectives or numerical 

requirements. Determination of the hydro-landscape units in their approach is similar to the HRU 

delineation procedure of Flügel (1995); except that they employ a supervised classification technique to 

preserve possible small areas that are hydrologically influential based on the chosen processes, and could 

have been neglected otherwise. In a recent relevant study, Petrucci and Bonhomme (2014) compared 

various discretization schemes (and model structures) for water quality and quantity models in a semi-

distributed urban model for a 2.3 km
2
 catchment in the suburbs of Paris. All of these studies report the 

model success in terms of the calibration or temporal validation quality, without validating its 

performance spatially at other gauges. This is a cause for concern because ungauged model predictions 

better reflect the capability of a discretization scheme to correctly capture the relevant spatial 

heterogeneity found in nature. Moreover, they do not consider the potential impacts of the calibration 

strategy, such as calibration duration, on their results.  
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The primary goal of this proposed research is to quantitatively assess watershed discretization 

schemes, with various level of spatial data aggregation, in terms of their skill to predict flows in ungauged 

basins. Special attention is spent to determine the added benefit of including more finely resolved 

information about land cover and soil type. In addition, the sensitivity of the results to the budget spent 

for model calibration is examined. Lastly, it is tested whether the same results can be obtained when the 

main calibration period (e.g., 3 years) is replaced with a sub-period (e.g., 1 year). This is important 

because the use of a condensed calibration period can potentially save substantial amounts of time during 

the numerous calibration experiments required by this method. The methodology is demonstrated using 

the MESH model as applied to the Nottawasaga river basin in South-Western Ontario, Canada. 

5.2 Methodology  

Here we propose a comparison framework by which different watershed discretization schemes with 

various complexity (spatial information) levels are compared in terms of their performance, mainly in 

ungauged validation basins, as well as their computational budget. First, multiple candidate watershed 

discretization schemes are selected. Then, each one is calibrated to the same record, for a finite budget. 

Finally, each scheme is validated at hypothetical ungauged basin(s), using appropriate metrics. 

Any candidate discretization scheme can be assessed using this methodology, ranging from a simple 

lumped scheme to one that is built using all available spatial information. In between these extremes, one 

may choose to test the effectiveness of a scheme which is commonly used in practice, as has been done 

here. In practice, it is suggested to start with the simplest scheme, and add more complexity sequentially 

until additional discretization ceases to improve model quality. Modellers can then stop assessing more 

complex schemes based on their subjective evaluation of the model performance.  

A fixed calibration budget (clock time) was considered as the maximum budget available to calibrate 

each scheme. Sensitivity of the results to the choice of calibration budget is also explored in this study by 

considering three different calibration budgets of one, two and four days. To account for the stochastic 

nature of the search algorithm with parameter estimation during calibration, multiple replicates should be 

used to evaluate each scheme. In this study, three replicates were used to calibrate and validate each 

scheme per each calibration budget. As a result, a total of 36 calibration runs (3 replicates per 4 

discretization schemes per 3 calibration budgets) were performed for application of the comparison 

framework in this study.  

In order to test whether calibrating to a sub-period leads to similar results as calibrating to the original 

period, the comparison methodology was applied to a calibration sub-period (e.g., one year) with the 
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highest correlation to the main calibration period. In this study, the second year was identified as the 

suitable sub-period and subsequently, another 36 calibration runs were conducted when testing the sub-

period experiment. 

5.3 Case Study: MESH model applied to the Nottawasaga River Basin 

5.3.1 MESH Model 

MESH is a land surface-hydrological model, developed by Environment Canada (Pietroniro et al., 2007) 

for various water resources management applications mostly at large scales (e.g., Deacu et al., 2012; 

Dupont et al., 2012; Haghnegahdar et al., 2014). MESH evolved from WATCLASS (Soulis et al., 2000), 

which was a combination of the routing module of WATFLOOD (Kouwen et al., 1993) and the land 

surface scheme CLASS (Verseghy, 1991; Verseghy et al., 1993). 

WATFLOOD is a semi-distributed hydrological model initially developed for flood forecasting. It has 

been widely used for various water resources applications (e.g., Stadnyk et al., 2014; Roberts et al., 2012; 

Dorner et al., 2006). It emphasizes the use of remotely sensed and radar data and thus, operates on a 

domain divided into rectangular grid cells (Kouwen et al., 1993). Grid cells are further subdivided into the 

Grouped Response Units (GRUs, Kouwen et al., 1993), to accommodate the spatial heterogeneity within 

each grid cell. The land surface scheme, CLASS, simulates the energy and water balances of the soil, 

snow, and vegetation canopy for each GRU type in each grid cell. The amount of surface runoff (as well 

as other fluxes) is then calculated for each grid cell by the weighted area average of the existing GRUs 

within each cell. Then water is routed by WATFLOOD between the grid cells and across the river 

network for the entire basin. The overland flow in each GRU is calculated using the Manning’s 

approximation of the kinematic wave velocity. The interflow, which accounts for the downward hillslope 

flow, is estimated from the bulk saturation of each soil layer calculated at each time step. Baseflow is 

simply treated in MESH as any water that percolates out of the bottom of the soil column in a GRU, and 

is sent to the stream network immediately. 

Pietroniro & Soulis (2003) found the GRU concept suitable for semi-distributed hydrological 

modelling in large basins, because it is simple to implement while respecting the physics. Employing the 

GRU concept in WATFLOOD and subsequently MESH, facilitates the calibration of the model on the 

whole domain at once, resulting in significant time savings (Pietroniro et al., 2007). 

The MESH model requires input forcing data of precipitation, air temperature, wind speed, incoming 

short wave radiation, incoming long wave radiation, specific humidity and barometric pressure. Except 

for precipitation, the archived gridded forecasts for the forcing data were produced by the Regional 
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Deterministic Prediction System (RDPS) of EC. This is reliant upon the regional configuration of the 

Global Environmental Multiscale-Numerical Weather Prediction (GEM-NWP) model (Mailhot et al., 

2006). The data was available at a spatial resolution of 0.1667 degree and a temporal resolution of 1 hour. 

For the precipitation, the gridded data from the Canadian Precipitation Analysis (CaPA, Mahfouf et al., 

2007) is used. This data is produced by combining different types of precipitation observations with the 

archived GEM gridded precipitation forecasts. In the absence of reliable snowfall observations over such 

large areas, using the GEM background field is considered to be the best option available for estimating 

solid precipitation. 

Version 1.3.006 of MESH was used in this work with a minor modification. The only change to the 

model was the implementation of model preemption (Razavi et al., 2010) based upon the sum of squared 

errors (SSE) metric, as described later in the “Calibration Strategy” section. 

5.3.2 Study Area 

The study is conducted on the Nottawasaga River basin in South-Western Ontario, Canada. It is located 

between Georgian Bay and Lake Simcoe, and drains into the Georgian Bay. This watershed was selected 

because it consists of several sub-basins with near-natural flow condition and complete record for the 

time period under study. These attributes allow for multi-site calibration and validation of the model, 

which enables a better assessment of the model performance. Furthermore, this basin was deemed to have 

sufficient variability in land cover and soil type for the analyses within the context of this study. This 

watershed and the corresponding sub-basins used in this analysis are shown in Figure 21. Table 14 

indicates the characteristics of these sub-basins. 

The entire drainage area of nearly 2700 km
2
 was discretized into 20 grid cells of about 15 by 15 km. 

This resolution was mainly dictated by the highest available resolution of the input forcing data. 

Consequently, as seen in Table 14, the modeled drainage areas in MESH will be sometimes different than 

the reported areas by EC. In order to circumvent this deficiency, the gauge coordinates in MESH were 

adjusted as suggested by Pietroniro at al. (2007). This strategy still would not necessarily result in a match 

between real and modeled areas, so, MESH simulated flows at each gauge were additionally multiplied 

by a scale factor when calculating the objective function. This scale factor is simply the ratio of the EC 

drainage area to the modeled drainage area, and is reported in Table 14 for each sub-basin. 

 



72 

 

Figure 21. The Nottawasaga River Basin near Edenvale and its sub-basins. Calibration sub-basins are 

labelled with “C” and validation sub-basins are labelled with “V”.  

 

 

Table 14- Characteristics of the sub-basins. 

 Label EC ID 
EC Area 

(km
2
) 

Adjusted 

Coordinates in 

MESH? 

Modeled Area 

in MESH (km
2
) 

Scale  

Factor 
Weight 

C
a

li
b

ra
ti

o
n

 

C1 02ED015 239 Yes 246.2 0.971 0.590 

C2 02ED029 461 No 419.6 1.099 0.199 

C3 02ED003 1180 No 1271.1 0.928 0.211 

V
a

li
d

a
ti

o
n

 

V1 02ED027 2680 No 2672.3 1.003 0.891 

V2 02ED101 334 Yes 358.0 0.933 0.109 

 

5.3.3 Watershed Discretization Schemes 

Four different discretization schemes were considered here as shown in Figure 22: lumped, 1-GRU, 7-

GRU and 16-GRU. These schemes all use an identical grid number and resolution, but have various levels 

of complexity in terms of the number or type of GRUs they use to subdivide grid cells. The lumped 

scheme is the simplest scheme, where only one single GRU type is used for all grid cells across the entire 

watershed. It therefore, has the lowest simulation runtime. Other schemes are understood better if the 7-

GRU scheme is defined first. Using the land cover map from Ontario Ministry of Natural Resources, land 

cover data was subdivided into seven classes of Cropland, Grassland, Deciduous forest, Coniferous forest, 
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Mixed forest, Exposed land (or impervious) and Water. These seven land cover-based GRU types were 

used to define MESH GRUs for the 7-GRU scheme. In this scheme, each grid cell contains up to seven 

GRU types per grid cell that are solely defined based on land type, with no recognition of the impact of 

varying soil types. These GRU types are shown in Table 15. It is noteworthy that this land-cover-only 

scheme is commonly adopted by WATFLOOD and MESH modelers for regional scale studies (e.g., 

Kouwen et al., 1993; Soulis et al., 2000; Pietroniro et al., 2007, Haghnegahdar et al., 2014).  

 

Table 15- The seven GRU types produced by spatial land cover data for 

the Nottawasaga river basin, ranked by coverage area.  

GRU NO. GRU Type Area Covered (%) 

1 Cropland 57.1 

2 Deciduous Forest 14.6 

3 Grassland 12.5 

4 Mixed Forest 6.7 

5 Coniferous Forest 5.9 

6 Water 2.6 

7 Impervious 0.5 

 

In the 1-GRU scheme, each grid cell gets assigned 100% to only the dominant GRU type, out of the 

seven possible types in the 7-GRU scheme. This 1-GRU scheme may be preferred option because it has 

same efficiency as the lumped scheme, but still allows for some land cover variability. It also runs much 

faster than the 7-GRU scheme making it more practical to be coupled with large scale atmospheric 

models. Note that the 1-GRU scheme has the same number of GRU types, and thus calibration 

parameters, as the 7-GRU scheme. Their only difference lies in the number of possible GRU types per 

grid cell. The 7-GRU scheme can have up to seven GRU types in each cell; whereas, out of these seven 

types, the 1-GRU scheme has only one GRU type per grid cell.  

Finally, the 16-GRU scheme has the highest level of complexity since it contains up to sixteen GRU 

types per grid cell. These GRUs are formed by adding the soil spatial data to the land cover classes of the 

7-GRU scheme. At the first step, soil data from the Land Information Ontario, was subdivided into eight 

classes of Clay Loam, Clay, Gravelly, Impermeable, Organic, Rock, Sandy and Silty. Then, for both land 

cover and soil type classes, the ones with less than 10% of area coverage in the study area were 

reclassified as the dominant class type,  which was Cropland (~56%) for land cover and Sandy Soil 

(~47%) for soil type. Finally, the remaining land cover and soil classes were merged to construct sixteen 

new GRU types shown in Table 16. 
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Figure 22. Schematic of the GRU concept in representing the sub-grid variability in land classes using the 

land class-based 7-GRU scheme in two given grid cells, and the relationship between various 

discretization schemes used in this study. The letters and numbers represent different types of GRUs. 

Note that the exact position of the GRU types within the grids does not matter and only their fractions are 

used in calculations. 

 

Table 16- The sixteen GRU types produced by combining land cover and soil spatial data for 

the Nottawasaga river basin, ranked by coverage area. 

GRU 

NO. 
GRU Type 

Area Covered 

(%) 

GRU 

NO. 
GRU Type 

Area Covered 

(%) 

1 Cropland, Sandy 36.3 9 Grassland, Silty 3.7 

2 Cropland, Silty 18.3 10 
Deciduous Forest, 

Organic 
2 

3 
Deciduous Forest, 

Sandy 
8.7 11 

Mixed Forest, 

Organic 
1.3 

4 Grassland, Sandy 7.4 12 Mixed Forest, Silty 1.2 

5 Cropland, Clay Loam 7.3 13 Grassland, Clay Loam 0.7 

6 Mixed Forest, Sandy 4.2 14 
Deciduous Forest, 

Clay Loam 
0.5 

7 Cropland, Organic 4.1 15 Grassland, Organic 0.3 

8 
Deciduous Forest, 

Silty 
3.9 16 

Mixed Forest, Clay 

Loam 
0.1 

 

5.3.4 Calibration Strategy 

As shown in Figure 21 and Table 14, three sub-basins (C1, C2, C3) are used for calibration and two (V1, 

V2), presumably “ungauged”, for spatial validation. The calibration period runs for three years from 1 
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October 2004 to 30 September 2007, and is preceded by a one year warmup period that begins on 1 

October 2003.  

Generally, any objective function can be used in this methodology. Here, a weighted sum of the Nash-

Sutcliffe (NS) coefficient of efficiency (Nash and Sutcliffe, 1970) for daily flows is used, according to 

Equation (3), as the main criterion to evaluate and compare model performance. The weights were 

assigned based on the long-term average of daily flows at each sub-basin, in a way that they add to one. 

 

𝑁𝑆𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ∑ 𝑊𝑖 ⋅ 𝑁𝑆𝑖 = ∑ 𝑊𝑖  ⋅ (1 −  
𝑆𝑆𝐸𝑖

𝑛𝑖  ⋅  𝑉𝑎𝑟𝑖
)) = 1 − ∑

𝑊𝑖  ⋅  𝑆𝑆𝐸𝑖

𝑛𝑖  ⋅ 𝑉𝑎𝑟𝑖
 3 

 

Here, i denotes the sub-basin index, Wi is the weight for sub-basin i, SSEi is the sum of squared errors 

between simulated and observed flows over the calibration period for sub-basin i, Vari is the variance of 

observations sub-basin i, and ni is the number of observations over the calibration period for sub-basin i. 

Due to the computation burden of the methodology, it was desired to use the model preemption 

strategy (Razavi et al., 2010) to save calibration time. According to Razavi et al. (2010), model 

preemption involves dismissing model runs that will definitely result in a poorer model performance 

compared to the current best solution in calibration. They reported a saving of nearly 50%, when model 

preemption was applied for calibration of MESH to a watershed of approximately 55 km
2
. It, however, 

requires using a monotonically increasing objective function, such as Sum of Squared Errors (SSE), 

during calibration (Razavi et al., 2010). Accordingly, a transformed equivalent SSE objective function (Z) 

was used during the calibration process as shown in Equation 4 below.  

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑
𝑊𝑖 .  𝑆𝑆𝐸𝑖

𝑛𝑖 𝑉𝑎𝑟𝑖
 4 

 

As seen from the above equations, minimizing a weighted sum of SSE values is equivalent to 

maximizing a weighted sum of NS values. Due to the nature of the optimization algorithm used in this 

study, the Dynamically Dimensioned Search (DDS, Tolson and Shoemaker, 2007), this transformation 

would not change the calibration results at all. DDS is a rank-based optimization algorithm in that only 

the relative rank of the candidate solutions influences the search result (as opposed to the absolute 
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magnitude of objective function differences between candidate solutions), and the exact same answer 

would be obtained with or without this transformation. 

DDS is a stochastic global search algorithm that is designed for optimization problems with many 

decision variables. DDS has been successfully applied to a number case studies before, and has shown to 

be efficient for finding good solutions in complex models with limited calibrated budget (Tolson and 

Shomaker, 2007; Dornes et al., 2008; Haghnegahdar et al., 2014). Razavi et al. (2010) classified DDS as 

an “ideal” algorithm for model preemption strategy. These attributes make DDS appropriate for this 

comparison framework since the calibration time is substantial; however, any other optimization 

algorithm may be used. The model calibrations were conducted using DDS as implemented in OSTRICH, 

which is a model-independent calibration and optimization tool (Matott, 2005) consisting of a number of 

popular optimization algorithms including DDS. The maximum number of model simulations (objective 

function evaluations) also has to be specified in DDS as the stopping criteria. This number is different for 

each discretization scheme, and was calculated based on the total calibration time divided by a nominal 

runtime for one MESH simulation under each scheme.  

MESH simulations are performed for each GRU present in a given grid cell. Therefore, the 1-GRU 

scheme runs much faster than the 7 and 16-GRU schemes. Accordingly, another simple and yet efficient 

strategy implemented in this work to reduce simulation runtimes was GRU polishing. This strategy 

involves removing GRUs from each grid cell with area coverage fractions below a certain threshold. The 

idea is that GRUs with areas below a certain threshold will have very small impact on streamflow 

simulations. This strategy was applied to the 7 and 16-GRU cases, with 5% and 10% thresholds. After 

assessing the differences in hydrographs induced by these thresholds, 5% was deemed appropriate. For 

both 7 and 16-GRU cases, this   resulted in a substantial reduction of nearly 23% and 46% in simulation 

time, respectively, while the associated changes in simulated hydrographs remained very small (average 

deviation from the highest peak in calibration sub-basins was less than 5 m
3
/s). Consequently, a polished 

version of the 7 and 16-GRU schemes were used for performing calibration experiments. 

Simulation runtime and the maximum number of model evaluations in DDS are reported in Table 17, 

for the three calibration budgets of one, two and four days. Model simulations were performed at hourly 

numerical time steps for a four year period (one warmup year plus three calibration years). The simulation 

runtime in each case was measured using an Intel Core i7-920 2.67 GHz workstation, running a 64-bit 

version of the Windows 7 operating system, with 12 gigabytes of installed memory, and a quad-core 

processor. In order to account for the stochastic nature of the optimization algorithm, each calibration run 

was repeated three times, with three different initial solutions, for each case. To maintain consistency 
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between all cases, these three initial solutions were intentionally kept identical for each scheme when 

calibrated for different budgets. The initial solutions were also kept unchanged between the schemes with 

identical calibrated parameters (i.e. 1-GRU and 7-GRU).  

 

Table 17- The number of parameters, simulation runtime, and the maximum number of model 

evaluations used in DDS for each calibration budget for each discretization scheme. 

 Lumped 1GRU 
7GRU 

(5% polished) 

16GRU 

(5% polished) 

Number of calibrated 

parameters 
12 34 34 40 

Runtime for Oct.03 to Sep.07 

simulation (sec) 
49 51 137 169 

Maximum no. of 

model evaluations 

for calibration 

budget of 

4 days 7053 6776 2523 2045 

2 days 3527 3388 1261 1022 

1 day 1763 1694 631 511 

 

The calibration parameters and their corresponding ranges were specified using a combination of 

expert opinion, a local sensitivity analysis, and suggested values from previous relevant studies (e.g., 

Dornes et   al., 2008; Davison et al., 2006; MacLean, 2009; Haghnegahdar et al., 2014). Table 18 lists 

these parameters and their corresponding ranges. The first eleven parameters in this table are GRU 

dependent, and are calibrated for each GRU type that is chosen for calibration. The last parameter 

(channel roughness) is linked to river class types. Pietroniro et al. (2007) delineated five river classes 

based on the geomorphology of the rivers in the Great Lakes Basin. According to that same classification, 

Nottawasaga river basin contains only one river class type, and only a single channel roughness is used. 

Out of the seven land classes considered in this basin, crop (~57%), deciduous forest (~15%) and grass 

(~13%) classes, each cover more than 10% of the total area (see Table 15), and were considered as three 

GRU types for calibration in 1 and 7-GRU schemes. Consequently, nearly 85% of the watershed was 

calibrated in these cases. For the 16-GRU scheme with added soil properties, only the five GRU types 

with the coverage areas above 5% of the entire watershed were considered for calibration. As seen in 

Table 16, these GRU types are cropland-sandy, cropland- silty, deciduous forest-sandy, grassland-sandy, 

and cropland-clay loam. As a result, nearly 80% of the watershed was calibrated. In the case of the 

lumped scheme, only a single GRU type, which was assumed to be cropland, is calibrated. Consequently, 

as shown in Table 17, the total number of calibrated parameters was 12, for the lumped scheme, 34 for the 

1 and 7-GRU schemes, and 40 for the 16-GRU scheme.  
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Table 18- Parameters and their corresponding ranges used in calibration of MESH. 

NO. Parameter Description (Lower Bound, Upper Bound) 

1 ROOT 
Annual maximum rooting depth of 

vegetation category (m) 

(0.2, 1.0) 

(1, 3.5) for Deciduous forest 

2 RSMN 
Minimum stomatal resistance of 

vegetation category (s m-1) 

(60,110) crop 

(75,125) grass 

(100,150) deciduous forest 

3 VPDA 
Vapour pressure deficit coefficient 

(used in stomatal resistance formula) 
(0.5,1) 

4 SDEP Soil permeable (Bedrock) depth (m) (0.35,4.10) 

5 DDEN Drainage density (2,100) 

6 SAND Percent sand of all soil layers (%) 

(0,100) 

In 16-GRU scheme: (30,65) for 

Clay Loam, (85,100) for Sandy 

soil, and (0,20) for Silty soil 

7 CLAY Percent clay of all soil layers (%) 

(0,100) 

In 16-GRU scheme: (30,40) for 

Clay Loam, (0,10) for Sandy soil, 

and (0,15) for Silty soil 

8 RATIO 
The ratio of horizontal to vertical 

saturated hydraulic conductivity 
(2,100) 

9 ZSNL 
Limiting snow depth below which 

coverage is less than 100% (m) 
(0.05,1) 

10 ZPLS 
Maximum water ponding depth for 

snow-covered areas (m) 
(0.02,0.15) 

11 ZPLG 
Maximum water ponding depth for 

snow-free areas (m) 
(0.02,0.15) 

12 WFR2 Channel roughness factor (0.02,2) 

 

The sand and clay percentages, as seen in Table 18, range from 0 to 100% for all schemes except for 

the 16-GRU scheme where ranges are further narrowed down for each soil type, based on the standard 

USDA soil texture triangle. Organic matter was kept constant at 5%, and the silt percentage was 

calculated as the remainder by the model, such that all the soil constituents added to 100%. Accordingly, 

the soil flag in MESH was used, which adjusts percentages proportionally when soil constituent 

percentages add up to more than 100%. The RATIO parameter is not a MESH parameter. Rather, it is a 

calibration parameter introduced in this study to tie horizontal and vertical saturated hydraulic 

conductivity together for a given soil type. Vertical saturated hydraulic conductivity is calculated using 

percent sand in MESH. Then, instead of calibrating the horizontal saturated hydraulic conductivity 

independently, this RATIO parameter is used to obtain the horizontal saturated hydraulic conductivity 

from the vertical one. In other words, the horizontal saturated hydraulic conductivity, which is used by the 

interflow module in MESH, is calibrated indirectly in this study.  
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Non-calibrated parameters related to soil or land cover types were assigned according to the 

instructions on the CLASS manual version 3.5, and the values found from a recent calibration of the 

entire Great Lakes Basin (Haghnegahdar et al., 2014). 

5.4 Results and Discussion 

Results are presented for two cases: the main (3-year) calibration period (October 2004 to September 

2007) and the sub-period calibration (October 2005 to September 2006). In both of these scenarios, 

validation performance is evaluated at ungauged basins for the main 2004-2007 period. Both calibration 

and validation performance is assessed in terms of NS. For each case, the overall model performance for 

calibration and validation modes are shown. In validation, which is the primary assessment criteria in this 

study, model performance is also shown for each validation sub-basin individually (individual NS 

values). Since each calibration experiment was repeated three times, each graph shows the median, 

minimum and maximum performance of these three runs for each case. Furthermore, NS values 

associated with each initial solution, indicating non-calibrated model performance, are also plotted in 

each figure. For display purposes, points are shifted by 3 hours relative to each other on the time axis.  

Figure 23 shows the overall calibration and validation performance of various discretization schemes, 

after calibration over the main period (October 2004 to September 2007), for three calibration budgets (1, 

2 and 4 days) and for the initial solutions without any calibration. Performance is indicated in terms of the 

weighted sum of NS values for the calibration and validation sub-basins. In the calibration, as seen in 

Figure 23a, especially prior to any calibration, and also for each calibration budget, performance increases 

when a more complex scheme is used. There is one exception to this trend when going from 7-GRU to 

16-GRU scheme, where model performances are comparable (for 1 and 2 day) or a bit higher (for 4 day) 

for the 7-GRU scheme. This could be because the number of model evaluations was higher for the 7-GRU 

scheme than the 16-GRU scheme (as shown in Table 17), thus, providing the search algorithm with a 

higher chance to find a better solution. Unsurprisingly, model performance levels are very poor without 

any calibration, especially for the lumped scheme. They significantly improve even using a one day 

calibration budget. Beyond a one day budget, there is only slight increase in model performance with 

more calibration effort.  

In validation (Figure 23b), performance increases with added complexity to the schemes, prior to 

calibration and for all calibration budgets, except for one case. It increases from nearly 0.4 for the lumped 

schemes to 0.6 for the 16-GRU scheme in all calibration budgets. The exception to this improvement is 

where the 7-GRU scheme performs slightly poorer than the 1-GRU scheme when calibrated for one day 

only. However, the 1-GRU scheme shows a higher variation in performance compared with the 7-GRU 
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scheme. Variance of validation results is greatest for the lumped scheme, confirming it is a poor scheme 

for prediction in ungauged basins. Similar to what was seen with the calibration results, model 

performance improves significantly even after a one day calibration time and beyond this budget there is 

only a slight gain in performance with further increase of the calibration effort.  

 

 

Figure 23. Overall a) calibration, and b) validation performance of various discretization schemes, 

before calibration and after calibration over the main period (October 2004 to September 2007), for 

three calibration budgets of 24, 48 and 96 hours. Symbols indicate the median performance for the 

three calibration replicates. Minimum and maximum values are displayed with bars. For better display 

purposes, lateral positions are shifted by 3 hours and minimum y-axis was fixed at -0.2. 
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Figure 24 shows the individual validation performance of each sub-basin (V1 and V2) for various 

discretization schemes, after calibration over the main period (October 2004 to September 2007), for three 

calibration budgets (1, 2 and 4 days) and prior to any calibration. As expected, for sub-basin V1 (Figure 

24a), which is the main and largest sub-basin with a weight of 0.892 (see Table 14), validation results are 

very similar to the overall validation performance (Figure 23b). Performance after calibration ranged from 

nearly 0.4 to 0.6, and the 16-GRU scheme always has the highest performance. This pattern is not 

surprising because almost 90% of the overall weighted NS score is contributed by this sub-basin.  

Figure 24b shows a very different pattern for sub-basin V2. In general, NS values are lower compared 

to the V1 sub-basin, going from around -0.2 to for the lumped scheme to as high as almost 0.6 for the 16-

GRU scheme in the four day calibration case. This behavior could be explained by the fact that the V2 

sub-basin is an interior sub-basin of the calibration sub-basins, whereas the V1 sub-basin is located 

downstream of all the calibration sub-basins. Therefore, unlike the V2 sub-basin, most of the flow at sub-

basin V1 is already calibrated, leading to higher NS values. Furthermore, in contrasting the results in 

Figure 23a and Figure 24b it can be confirmed that the overall calibration performance is not indicative of 

the interior ungauged basin performance. Similar behavior was reported by Pokhrel and Gupta (2010) 

where they see degraded predictions for the interior gauges that were not explicitly calibrated to. Moving 

to a more complex discretization scheme always increases model performance in sub-basin V2 except for 

two cases. In these two cases, the 7-GRU scheme shows comparable (for one day calibration) or a little 

higher performance (for two day calibration) in relation to the 16-GRU scheme. This trend could indicate 

that adding spatial soil information while only adding a few more parameters, can increase performance 

as long as the model is calibrated long enough. The lumped scheme constantly performs very poorly in 

this sub-basin having a NS value of less than or equal to zero for all calibration budgets. It again has the 

greatest variance followed by the 7-GRU scheme.  

To investigate the feasibility of using truncated calibration time period for assessing discretization 

choices, these tests were repeated for when the model is calibrated to a sub-period of one year only 

(second year here). The results of these tests are intended to determine whether a reduced period for 

calibration, which saves considerable computational cost, can yield similar results to the main 3-year 

calibration period. Since the sub-period calibration results were effectively same as those for the main 

period, they are not presented. Moreover, focus is placed only on comparing the overall model 

performance in ungauged basins and not on the individual sub-basins. 
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Figure 24. Individual validation performance of sub-basin a) V1, and b) V2 for various discretization 

schemes, before calibration and after calibration over the main period (October 2004 to September 

2007), for three calibration budgets of 24, 48 and 96 hours. Symbols indicate the median performance 

for the three calibration replicates. Minimum and maximum values are displayed with bars. For better 

display purposes, lateral positions are shifted by 3 hours and minimum y-axis was fixed at -0.3. 

 

Figure 25 compares the overall validation results between the main period (October 2004 to 

September 2007) and the sub-period calibration experiments, for three calibration budgets of 24, 48 and 

96 hours. Overall, results are consistent between the two experiments and thus, similar information can be 

obtained from both of them. In both scenarios, the model performance improves with a more complex 

discretization scheme for all calibration budgets. The only exception to this trend in the main period 

calibration case is between the 1-GRU and the 7-GRU schemes for the one day calibration time. Again, 
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the 16-GRU had the best performance regardless of the budget spent for calibration. Also, the greatest 

variance is seen for the lumped scheme followed by the 1-GRU scheme in both experiments. The NS 

values are lower for the sub-period experiment, compared to the main period scenario, especially for the 

lumped and the 1-GRU schemes. This fact is because in the sub-period experiment, the model was 

calibrated to one year only, but was validated against all three years (i.e., it is a validation both in space 

and time). Similar comparison results (not shown) were observed for the individual validation sub-basins 

between the two experiments. 

 

 

Figure 25. Comparison of the overall validation results between a) the main period (October 2004 to 

September 2007), and b) the sub-period (October 2005 to September 2006) calibration experiments, for 

three calibration budgets of 24, 48 and 96 hours. Symbols indicate the median performance for the 

three calibration replicates. Minimum and maximum values are displayed with bars. For better display 

purposes, lateral positions are shifted by 3 hours and minimum y-axis was fixed at -0.2. 
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5.4.1 Detailed assessment of Discretization Schemes 

As seen in Figure 24, in both validation sub-basins, model performance (i.e., NS value) increases with 

using a more complex scheme when model is calibrated for four days. In order to further examine this 

finding, these schemes are also compared using hydrographs and the additional metrics defined in Table 

2. Accordingly, Figure 26 and Figure 27 display the simulated hydrographs and the values of these 

metrics for validation sub-basin V1 and V2, respectively. These results are associated with the best 

overall validation performance for each scheme after four days of calibration. 

As seen in Figure 26, these results confirm that overall the model performance in sub-basin V1 

increases with the scheme complexity when model is calibrated sufficiently for four days. All the metrics 

improve with increased complexity of the schemes except for PBIAS. The 1-GRU scheme has the lowest 

PBIAS and the 7-GRU scheme has the largest PBIAS. The simulated hydrographs also improve 

according to the scheme complexity, particularly in simulating low flows and lower peak flows. The 

highest peak flow gets more overestimated in more complex schemes.  

 

 

Figure 26. Simulated hydrographs and various metrics for validation sub-basin V1 for various 

discretization schemes a) Lumped, b) 1-GRU, c) 7-GRU, and d) 16-GRU. 
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As seen in Figure 27, these results also confirm that overall, similar to the sub-basin V1, the model 

performance in sub-basin V2 also increases with the scheme complexity when model is calibrated 

sufficiently for four days. All the metrics improve with increased complexity of the schemes except for 

PBIAS. Again, the 1-GRU scheme has the lowest PBIAS and the 7-GRU scheme has the largest PBIAS. 

The simulated hydrographs also improve according to the scheme complexity, particularly in simulating 

low flows and lower peak flows. The highest peak flow gets more overestimated in more complex 

schemes. Consequently, it is observed that consistent conclusions can be drawn when the validation 

model performance is assessed using multiple criteria compared with when NS is only used. The 

proposed comparison methodology was also applied using synthetic experiments. The corresponding 

results are presented in Appendix A. 

 

 

Figure 27. Simulated hydrographs and various metrics for validation sub-basin V2 for various 

discretization schemes a) Lumped, b) 1-GRU, c) 7-GRU, and d) 16-GRU. 

 

5.5 Conclusions 

In this study, we introduced a quantitative methodology to assess and compare watershed discretization 

schemes in terms of their accuracy in predicting flows in ungauged basins. The effect of adding more land 

cover and soil information to watershed discretization was evaluated by applying a semi-distributed land 
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surface-hydrological model, MESH, to the Nottawasaga River basin in South-Western Ontario, Canada. 

Moreover, impact of the calibration budget on the results was investigated. Finally, it was tested whether 

the same results can be observed when model is calibrated to a sub-period as opposed to the full 

calibration period. In each case, model was calibrated in three sub-basins and validated in two other sub-

basins, one downstream and one upstream of the calibration sub-basins. 

The proposed methodology systematically provides quantitative assessment of the model performance 

under various watershed discretization schemes in the context of prediction in ungauged basins. Results 

confirm that calibration period model performance is not indicative of its performance for validation in 

ungauged basins and therefore, is not sufficient for assessing alternative discretization schemes. It is also 

concluded that the model predictions in ungauged basins does not necessarily improve with using a more 

complex scheme when the time spent on calibration is insufficient. So, the calibration budget also plays 

an important role in determining the better scheme. The methodology also allows for identification of a 

poor watershed discretization. It was also observed that with no calibration, model performance improved 

when a more complex scheme with added land cover and then soil information was used. 

Results revealed that model performance depends upon the location of the validation sub-basin (i.e., 

upstream or downstream) with respect to the calibration sub-basins. For both the basin as a whole and the 

downstream sub-basin, using both land cover and soil data to define GRU types increases model 

performance. The most complex scheme (16GRU), containing both land cover and soil spatial data, 

consistently had the highest performance regardless of the calibration time. However, when only land 

cover data are used, using only the dominant GRU type per cell has similar performance compared with 

the scheme that has up to seven GRU types per cell. Moreover, it is concluded that the lumped scheme 

should be avoided for the purpose of PUB, because it constantly performs poorly with the greatest 

performance variability. For the upstream interior validation sub-basin, adding land cover data and using 

more GRU types per grid cell largely increases model performance. In contrast, adding soil information to 

GRU definition improves the model performance only when it is calibrated long enough to account for 

the increased number of parameters. Model performance is also shown to be lower, in general, at the 

interior upstream sub-basin compared to the downstream sub-basin.  

The idea of applying the methodology by calibrating to a sub-period for increased efficiency is very 

promising. It can produce consistent discretization assessments if one spends sufficient budget to calibrate 

the problem in hand. Alternatively, in order to reduce the computation burden of this methodology, one 

can use other techniques such as in Razavi and Tolson (2014), proposed for efficiently calibrating to a 

sub-period and yet obtaining same performance as the main period. 
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Certainly, there are limitations associated with the methodology proposed here. The first and most 

important is the massive time investment required to complete the experiments due to the computational 

burden of numerous calibration iterations. This limitation may become prohibitive for large scale studies. 

Therefore, any strategy that would make the calibration strategy more efficient can greatly benefit this 

comparison framework. Examples of such strategies that were used in this study include: adopting an 

efficient optimization algorithm, polishing the watershed discretization, using model preemption during 

calibration, and calibrating to a sub-period.  

The findings of this work are limited to the case study and specific modelling and calibration details used. 

However, the proposed comparison methodology is general and applied in future studies, using any 

distributed model, discretization scheme or calibration strategy. These types of quantitative assessments 

can provide valuable information for modellers in assessing their model discretization choices and 

improving their predictive performance. 
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Chapter 6 

Conclusions and Suggestions for Future Work 

This final chapter provides a summary and conclusions of the research contributions discussed in in 

Chapters 3 to 5. For each chapter, primary conclusions related to the main research objectives are 

highlighted first, followed by other secondary findings. Suggestions for related future work are provided 

at the end.  

6.1 Summary and conclusions 

One of the primary goals of this research was to build an enhanced MESH modelling system for 

streamflow predictions over the Great Lakes Basin. This major contribution was achieved in two steps 

associated with the first two objectives of this thesis. In Chapter 3, MESH performance in predicting 

streamflows was benchmarked through a formal calibration, for the first time in the Great Lakes Basin. 

Then in Chapter 4, benchmark results were enhanced by further refining the calibration strategy and 

adding uncertainty assessment to the MESH streamflow predictions.  

Chapter 3 highlights the calibration efforts to benchmark the performance of MESH in the Great 

Lakes Basin. Two calibration strategies were compared as part of this work. It is observed that a global 

calibration strategy using multiple sub-basins generates preferred results over an alternate strategy in 

which one single sub-basin with a single land type is calibrated individually. Also, as expected, the model 

performance substantially improves after calibration, confirming the essential role of a formal model 

calibration and validation. The MESH results found from the global calibration strategy in this study can 

be considered as the benchmark results for MESH performance in the Great Lakes Basin. These results 

are currently being used in other related studies in this region such as the Great Lakes Runoff 

Intercomparison Project (GRIP, Fry et al., 2014). 

Chapter 4 describes the efforts made to improve upon the benchmark results in Chapter 3, by further 

refining the calibration strategy. This was mainly achieved by modifying the calibration parameters and 

selecting an increased number of calibration sub-basins with near-natural flow conditions. A rigorous 

multi-criteria comparison between the new and the benchmark experiments confirmed that the MESH 

model performance is indeed better in the revised calibration strategy. The prediction uncertainty bands 

associated with the parameter estimation were also calculated as another important enhancement in this 

chapter. Consequently, eight more behavioral parameter sets are identified for MESH, in addition to the 

best parameter set. A local sensitivity test was also conducted after MESH was calibrated for the Great 
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Lakes Basin. This sensitivity test showed that the parameters associated with soil properties and channel 

roughness are the most influential parameters in MESH. As the outcome of this very computationally 

intensive work, all these parameter sets can be used in other studies aiming, for example, at simulating 

lake inflows and lake levels for the Great Lakes region. The MESH input files for the best parameter set 

found in the revised calibration experiment of Chapter 4 can be found in Appendix 2. 

Chapter 5 presents another major contribution of this research by introducing a quantitative 

comparison framework for assessing the validation performance of semi-distributed hydrological models 

under various watershed discretization schemes. The methodology was demonstrated using the MESH 

model as applied to the Nottawasaga river basin in Ontario, Canada. In this study, the schemes differed 

from a simple lumped scheme to more complex ones by adding spatial land cover and then spatial soil 

information. Results reveal that when constrained by calibration budget, using a more complex scheme 

did not necessarily lead to improved performance in validation. It is also observed that model 

performance in ungauged basins depends upon whether the validation sub-basin is located upstream or 

downstream of the calibration sub-basins. The proposed methodology was also implemented using a 

shorter sub-period for calibration, aiming at substantial computational saving. This strategy is shown to 

be promising in producing consistent results and has the potential to increase computational efficiency of 

this comparison framework. A secondary observation in this study was that the model performance 

variation due to the stochastic nature of the DDS optimization algorithm can be significant. Therefore, 

findings from this type of study are more reliable when calibration experiments are performed using 

multiple replicates. 

6.2 General Recommendations for Modelers 

As a result of the modelling and calibration efforts conducted in this thesis, which involved overcoming 

many pitfalls and repeating many experiments, below is a list of general recommendations for modelers: 

a) Model settings and data are so important. Model structure, the way it is set up for a case study, 

and data used in modelling are so important. They can control model simulation and 

calibration, and potentially resulting in misleading findings. Each of these components can 

contain error. Prior to performing any calibration, modelers should make every effort to find 

errors in the code, data, and model structure, and fix them. 

b) Calibration is essential. Once a modeler is confident in the model structure, model setup, and 

data used, he/she should proceed to the calibration process. Performing a formal auto-

calibration, particularly for complex models with a large number of parameters, is essential for 
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obtaining good results. A through calibration should include uncertainty analysis for more 

effective usage for decision makers. Also, watershed discretization scheme should be part of 

the calibration process and carefully selected and assessed. A poor watershed discretization 

can negatively impact the results no matter how advance a model is. In the case of the MESH 

model, GRUs should be defined carefully and independently using the suitable attributes (e.g., 

land cover, soil properties) for a given case study.  

c) Use a “guided calibration” to improve model performance. Calibration is tricky; you can get 

the right answer for the wrong reason. Therefore, while calibration is essential, it has to be 

guided by the modeler to the extent possible. This will lead to more robust and rightful results 

at the end. Accordingly, a modeler should provide as much information to lead the calibration. 

For example, a modeler should avoid calibrating independently highly correlated parameters; 

or should narrow the calibration parameter ranges as much as possible based on available data 

from literature or measured data; or when possible, should use real measurements for a given 

parameter (e.g., sand and clay percentages) in place of calibrating it. 

6.3 Suggestions for Future Work 

The recommendations for future work are presented in two categories: one related to the calibration of 

MESH over the Great Lakes Basin, and the other related to the methodology used in assessing watershed 

discretization schemes. With regards to the first category these recommendations are as follows:  

d) Calibrate MESH for each of the Great Lakes sub-watersheds individually. Although a well-

calibrated MESH model is now built for the entire Great Lakes Basin, it is expected that the 

individual calibration of the model for each lake can enhance streamflow predictions and can 

take advantage of measured levels as a secondary calibration target.  

e) Revise the GRU definition for MESH in the Great Lakes Basin. Currently, the GRU types 

used to discretize MESH in the Great Lakes Basin are solely defined based on land cover data. 

Adding more available spatial data, similar to what was done in Chapter 5 of this thesis, can 

improve MESH predictions. Given that the soil maps may not be available for the entire basin, 

and since bedrock geology seemed to have an impact on the results, this revision could be as 

simple as subdividing the current GRU types based on the presence of the Canadian Shield in 

the region.   

f) Perform a global sensitivity analysis (e.g., the Fourier Amplitude Sensitivity Test (FAST, 

McRae et al., 1982) of MESH to quantitatively rank the importance of all MESH parameters 
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with respect to streamflow prediction impacts. This would formalize the suite of individual 

sensitivity analysis experiments conducted to learn more about how the MESH model works. 

g) Ideally, the MESH source code would be rewritten to run in parallel and thus utilize parallel 

computing resources. Then, substantial time savings would be gained during calibration, 

particularly for large scale studies such as the Great Lakes Basin. 

With regards to the comparison framework for evaluating various discretization schemes, the following 

recommendations are provided for future studies: 

a) Evaluate higher resolution discretization schemes. The current study did not investigate the 

effect of the grid cell resolution on model performance. Therefore, the comparison framework 

proposed here for assessing various discretization schemes can be extended to also evaluate 

the same discretization schemes at a higher resolution.   

b) Improved GRU definition: the assessment methodology proposed in this study can be 

extended to include evaluation of discretization schemes that use additional spatial 

information such as topography, aspect and depth to bedrock to delineate GRU types in a 

given basin.  

c) Apply the comparison framework proposed in this study to more case studies.  

d) Apply the comparison framework to synthetic calibration problems.  The application of the 

framework using synthetic experiments was not as successful as expected in this study. 

Therefore, further modifications can be made in designing the synthetic framework to improve 

findings. This would include adding random errors to corrupt the synthetically generated 

“true” flows. 
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Appendix 

A – MESH input files for the best parameter set from the calibration experiment of 

Chapter 4  

MESH_parameters_CLASS 
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MESH_parameters_hydrology 

 

 

MESH_input_soil_levels 

 

 

MESH_input_run_options 
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B – Supplemental Results for Chapter 5 

In order to further investigate the findings of the comparison framework presented in Chapter 5, for 

assessing watershed discretization schemes, the same framework was applied using synthetic calibration 

experiments and the results are briefly discussed here. The motivation behind this synthetic analysis was 

to perform a cleaner comparison between various schemes where the model and the data uncertainties are 

eliminated. This fact allows for a better evaluation of the effect of various discretization schemes and 

calibration budgets on model performance.  

Details of the synthetic experiments are all identical to the real case study, except that a synthetic 

“true” flow was generated based on the most complex scheme (16-GRU) and replaced the measured flow 

for calibrations. In other words, all discretization schemes, including the 16-GRU scheme itself, were 

calibrated against the “true’ flow.  

Results for these synthetic experiments are shown in Figure A1 for the overall calibration and 

validation model performance (Figure A1a and A1b), and the individual validation model performance at 

each individual sub-basin (Figure A1c and A1d). Overall, consistent results can be seen between this 

synthetic experiment and the real experiment presented in Chapter 5. As seen in sub-basin V2 (Figure 

A1d), validation model performance does not necessarily improve with increased discretization 

complexity and the calibration budget is an important factor. This behavior is even more pronounced 

here, for the 16-GRU scheme, compared with the real experiment. Surprisingly, the median model 

performance of the 7-GRU scheme constantly decreases with a longer calibration budget. This behavior 

could be due to the stochastic nature of DDS algorithm used in calibration. More experiments are needed 

to further investigate these observations. 
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Figure 28. Synthetic experiment results for the overall a) calibration and b) validation model 

performance, and the individual validation model performance at sub-basin a) V1, and b) V2, after 

calibration over the main period (October 2004 to September 2007), for three calibration budgets of 24, 

48 and 96 hours. Symbols indicate the median performance for the three calibration replicates. 

Minimum and maximum values are displayed with bars. For better display purposes, lateral positions 

are shifted by 3 hours and minimum y-axis was fixed at 0.5. 
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