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Abstract

Pretest-posttest trials are an important and popular method to assess treatment effects

in many scientific fields. In a pretest-posttest study, subjects are randomized into two

groups: treatment and control. Before the randomization, the pretest responses and other

baseline covariates are recorded. After the randomization and a period of study time, the

posttest responses are recorded. Existing methods for analyzing the treatment effect in

pretest-posttest designs include the two-sample t-test using only the posttest responses,

the paired t-test using the difference of the posttest and the pretest responses, and the

analysis of covariance method which assumes a linear model between the posttest and the

pretest responses. These methods are summarized and compared by Yang and Tsiatis

(2001) under a general semiparametric model which only assumes that the first and second

moments of the baseline and the follow-up response variable exist and are finite. Leon et

al. (2003) considered a semiparametric model based on counterfactuals, and applied the

theory of missing data and causal inference to develop a class of consistent estimator on

the treatment effect and identified the most efficient one in the class. Huang et al. (2008)

proposed a semiparametric estimation procedure based on empirical likelihood (EL) which

incorporates the pretest responses as well as baseline covariates to improve the efficiency.

The EL approach proposed by Huang et al. (2008) (the HQF method), however, dealt

with the mean responses of the control group and the treatment group separately, and

the confidence intervals were constructed through a bootstrap procedure on the conven-

tional normalized Z-statistic. In this thesis, we first explore alternative EL formulations

that directly involve the parameter of interest, i.e., the difference of the mean responses

between the treatment group and the control group, using an approach similar to Wu and

Yan (2012). Pretest responses and other baseline covariates are incorporated to impute

the potential posttest responses. We consider the regression imputation as well as the

non-parametric kernel imputation. We develop asymptotic distributions of the empirical

likelihood ratio statistic that are shown to be scaled chi-squares. The results are used to

construct confidence intervals and to conduct statistical hypothesis tests. We also derive
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the explicit asymptotic variance formula of the HQF estimator, and compare it to the

asymptotic variance of the estimator based on our proposed method under several scenar-

ios. We find that the estimator based on our proposed method is more efficient than the

HQF estimator under a linear model without an intercept that links the posttest responses

and the pretest responses. When there is an intercept, our proposed model is as efficient

as the HQF method. When there is misspecification of the working models, our proposed

method based on kernel imputation is most efficient.

While the treatment effect is of primary interest for the analysis of pretest-posttest

sample data, testing the difference of the two distribution functions for the treatment and

the control groups is also an important problem. For two independent samples, the non-

parametric Mann-Whitney test has been a standard tool for testing the difference of two

distribution functions. Owen (2001) presented an EL formulation of the Mann-Whitney

test but the computational procedures are heavy due to the use of a U-statistic in the

constraints. We develop empirical likelihood based methods for the Mann-Whitney test to

incorporate the two unique features of pretest-posttest studies: (i) the availability of base-

line information for both groups; and (ii) the missing by design structure of the data. Our

proposed methods combine the standard Mann-Whitney test with the empirical likelihood

method of Huang, Qin and Follmann (2008), the imputation-based empirical likelihood

method of Chen, Wu and Thompson (2014a), and the jackknife empirical likelihood (JEL)

method of Jing, Yuan and Zhou (2009). The JEL method provides a major relief on

computational burdens with the constrained maximization problems. We also develop

bootstrap calibration methods for the proposed EL-based Mann-Whitney test when the

corresponding EL ratio statistic does not have a standard asymptotic chi-square distri-

bution. We conduct simulation studies to compare the finite sample performances of the

proposed methods. Our results show that the Mann-Whitney test based on the Huang,

Qin and Follmann estimators and the test based on the two-sample JEL method perform

very well. In addition, incorporating the baseline information for the test makes the test

more powerful.
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Finally, we consider the EL method for the pretest-posttest studies when the design

and data collection involve complex surveys. We consider both stratification and inverse

probability weighting via propensity scores to balance the distributions of the baseline

covariates between two treatment groups. We use a pseudo empirical likelihood approach

to make inference of the treatment effect. The proposed methods are illustrated through

an application using data from the International Tobacco Control (ITC) Policy Evaluation

Project Four Country (4C) Survey.
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Chapter 1

Introduction

1.1 Overview

Pretest-posttest studies are an important and popular method for assessing treatment

effects or the effectiveness of an intervention in many scientific fields, such as medicine,

public health and social sciences. In one type of pretest-posttest studies, a random sample

of subjects is selected from the target population, and certain baseline (pretest) information

is collected for all subjects in the sample. The subjects are then randomly assigned to

either the treatment group or the control group. The responses of interest are recorded

after a prespecified follow-up time period (posttest) for both groups. The treatment effect

is assessed by the difference of the (mean) responses between the two groups. For more

traditional pretest-posttest study designs, the responses are measured to all units in the

sample at two different time points, one before the treatment (pretest) and the other after

the treatment and a prespecified follow-up time (posttest).

There exist several methods in the literature to evaluate the treatment effects in pretest-

posttest studies. These methods include (i) the two-sample t-test which directly compares

the posttest measurements of two groups ignoring information from the pretest measure-
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ments; (ii) the paired t-test comparing the change between the pretest and posttest mea-

sures of responses; (iii) the analysis of covariance procedures which impose a linear model

on the posttest measures with the treatment indicator and the pretest responses only

(ANCOVA I) or the treatment indicator and the pretest measures and their interaction

(ANCOVA II) as covariates. Many researchers, such as Brogan and Kutner (1980), Laird

(1983), Crager (1987), Stanek (1988), and Follmann (1991), among others, have discussed

these approaches under different scenarios but often with specific model assumptions such

as normality or equality of variance of pretest and posttest responses.

Yang and Tsiatis (2001) examined some of the above methods under general conditions.

They assumed only that the first and second moments of pretest and posttest responses

are finite; the conditional joint distribution of the pretest and posttest responses condi-

tioning on treatment can be arbitrary. They compared the large sample properties of the

treatment effect estimators based on these methods. They also proposed a generalized

estimating equation (GEE) method which considers the pretest and posttest measures as

a multivariate response, and assumes arbitrary mean and covariance matrix. They showed

that all these methods yield consistent and asymptotically normal estimators, and the

GEE estimator and the ANCOVA II estimator are asymptotically equivalent and most

efficient. In Leon et al. (2003), the authors took a semiparametric perspective without any

distributional assumptions, and exploited theory of missing data and causal inference to

develop a class of consistent treatment effect estimators and identify the most efficient one

in the class. Davidian et al. (2005) later considered the situation when there is missing

data in the posttest response.

Huang et al. (2008) proposed a semi-parametric procedure based on the empirical like-

lihood (EL) method to estimate the treatment effect in a pretest-posttest study. Their

proposed strategy is to use the baseline information to form constraints when maximizing

the EL function but estimation of the mean of the posttest response is handled separately

for the treatment group and the control group. The treatment effect is then estimated by

taking the difference between the two estimated means. They considered scenarios where
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posttest responses are subject to missingness, and compared the EL based estimators to

the ones in Leon et al. (2003) and to those in Davidian et al. (2005). They found that

the EL based estimators achieve the semi-parametric efficiency lower bound under a cor-

rectly specified working model which links the posttest response to the pretest response and

other baseline covariates; the EL based estimators are more efficient in the semi-parametric

sense when a misspecified working model is used to link the posttest response to the pretest

response and other baseline covariates.

Although the EL approach proposed in Huang, Qin and Follmann (2008, hereafter

referred to as HQF) looks appealing, it seems less natural to estimate the posttest response

means for each group separately while the target parameter is actually the difference (i.e.,

treatment effect). In addition, empirical likelihood ratio confidence intervals or tests for

the treatment effect cannot be constructed under the HQF approach. This motivates our

proposed EL method for estimating the treatment effect in pretest-posttest studies. There

have been considerable research efforts towards the problem of making inference of the

treatment effect; however, testing the difference of distributions is rarely studied under the

setting of pretest-posttest studies. In this thesis, we also propose the empirical likelihood

based methods to test the difference of the distributions of the posttest responses from

the treatment group and the control group. Furthermore, we extend our research to the

complex survey context. We develop methods for estimating the treatment effect of pretest-

posttest studies with observational survey data. Before we present our work, we provide a

brief review of the empirical likelihood method in the remainder of this chapter.

The rest of this chapter is organized as follows. In Section 1.2, we briefly review the

empirical likelihood (EL) method. In Section 1.3, we summarize the two-sample EL method

proposed by Wu and Yan (2012). The outline of the thesis is given in Section 1.4.
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1.2 Empirical Likelihood

The method of empirical likelihood (EL) was introduced by Owen (1988), Owen (1990),

Owen (2001) for constructing confidence intervals (regions) in nonparametric settings for

the mean or other functions of the distribution function. It has become one of the most

popular methods in statistical inference over the last 20 years and has applications to

many research areas. The empirical likelihood method has many advantages such as data-

determined shapes for confidence intervals (regions), ease of incorporation of known con-

straints on parameters, Bartlett correctability, and a natural method of combining data

from multiple sources. The standard empirical likelihood method for the mean can be

demonstrated through the following simple example.

Let {Y1, · · · , Yn} be independent and identically distributed real valued random vari-

ables having a common cumulative distribution function F (y) with mean µ. Let {y1, · · · , yn}
be a realization of {Y1, · · · , Yn}. The empirical cumulative distribution function of Y1, ..., Yn

is defined as

Fn(y) =
1

n

n∑
i=1

I{Yi ≤ y}.

It has been shown that Fn uniquely maximizes the nonparametric likelihood L =
∏n

i=1 pi,

where pi = F (Yi) − F (Yi−), subject to the constraints
∑n

i=1 pi = 1, pi ≥ 0. Moreover,

confidence intervals for µ = E(Y ) can be obtained in the following procedure. For any

fixed µ, suppose p̂(µ) = (p̂1(µ), · · · , p̂n(µ)) maximizes L =
∏n

i=1 pi subject to constraints

n∑
i=1

pi = 1, pi ≥ 0,
n∑
i=1

piyi = µ.

Using the Lagrange multiplier method, p̂i(µ) is given by:

p̂i(µ) =
1

n

1

1 + λ(yi − µ)
,

where the Lagrange multiplier λ is determined by

1

n

n∑
i=1

yi − µ
1 + λ(yi − µ)

= 0.
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The profile empirical log-likelihood of µ is given by

lp(µ) = −
n∑
i=1

log{1 + λ(yi − µ)} − n log n.

The maximum of lp(µ) is attained when µ = µ̂ = n−1
∑n

i=1 yi. The profile empirical

likelihood ratio function for µ is defined as

R(µ) =
max{

∏n
i=1 pi :

∑n
i=1 pi = 1,

∑n
i=1 piyi = µ, pi ≥ 0}

max{
∏n

i=1 pi :
∑n

i=1 pi = 1, pi ≥ 0}

= max{
n∏
i=1

npi :
n∑
i=1

pi = 1, pi ≥ 0,
n∑
i=1

piyi = µ}.

Thus,

logR(µ) = lp(µ)− lp(µ̂) = −
n∑
i=1

log{1 + λ(yi − µ)}.

Owen (2001) proved that −2 logR(µ) has asymptotically a χ2 distribution with one degree

of freedom. This is an important result which is analogous to that for the likelihood ratio

statistic under a parametric model, and can be used to test statistical hypotheses and

construct confidence intervals for µ.

Since Owen’s pioneer work on empirical likelihood, many other researchers have ex-

tended and applied EL to various kinds of statistical problems. Qin and Lawless (1994)

linked empirical likelihood to estimating equations, especially when the number of unbiased

estimating equations may be greater than the number of parameters. They demonstrated

that the EL method can effectively combine unbiased estimating equations and lead to the

most efficient estimator. In the context of survey sampling, the EL method has been applied

to incorporate auxiliary covariate information to improve efficiency, for example, by Chen

and Qin (1993), Wu and Sitter (2001) and Wu and Rao (2006). Recently, the empirical

likelihood method has become popular in addressing general missing data problems. Some

researchers, such as Wang and Rao (2002) and Liang et al. (2007), first imputed the missing

data using a kernel regression function of the observed data and then applied an EL method
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to do the statistical inference. For parameters estimation in estimating equations, Wang

and Chen (2009) proposed an EL method with non-parametric imputation of missing data.

Qin et al. (2009) explored the use of empirical likelihood to effectively combine unbiased

estimating equations by separating the complete data unbiased estimating equations from

the incomplete data unbiased estimating equations, and their proposed estimators achieve

semi-parametric efficiency lower bound when correctly specifying the missing mechanism.

Moreover, attention has also been focused on applying the EL to two-sample problems.

Jing (1995) showed that the two-sample empirical likelihood for the difference of two pop-

ulation means is Bartlett correctable. Qin and Zhang (1997) and Qin (1998) considered a

calibration-type empirical likelihood method in the context of the estimation of a response

mean in case-control studies. Chen et al. (2003) used a two-sample EL method to combine

the complete and incomplete observations under missingness completely at random. Cao

and van Keilegom (2009) used an EL-based test to examine whether two populations follow

the same distribution. Wu and Yan (2012) developed the weighted EL method with great

advantage in computation, a pseudo EL method for comparing two population means when

the two samples are selected by complex surveys, a two-sample EL method with missing

responses, and bootstrap calibration procedures for the proposed EL methods.

1.3 Empirical Likelihood for Two-Sample Problems

In this section, we review some of the main theories in Wu and Yan (2012). Suppose there

are two independent and identically distributed samples {Y11, · · · , Y1n1}, and {Y21, · · · , Y2n2}
from Y1 and Y2 respectively, with E(Y1) = µ1, V ar(Y1) = σ2

1, and E(Y2) = µ2, V ar(Y2) =

σ2
2. Let n = n1 + n2. The parameter of interest is θ = µ1 − µ2. Wu and Yan (2012) de-

rived the asymptotic distribution of the standard two-sample empirical log-likelihood ratio

statistic on θ. They also proposed the weighted two-sample empirical log-likelihood for-

mulation and proved that the weighted two-sample empirical log-likelihood ratio statistic

converges to a scaled χ2
1.
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The standard two-sample empirical likelihood function is given by

`(p1,p2) =

n1∑
j=1

log(p1j) +

n2∑
j=1

log(p2j),

where p1 = (p11, · · · , p1n1) and p2 = (p21, · · · , p2n2) are the two sets of probability measure

imposed respectively over the two samples. For fixed θ, suppose p̂1(θ) = (p̂11(θ), · · · , p̂1n1(θ))

and p̂2(θ) = (p̂21(θ), · · · , p̂2n2(θ)) maximize `(p1,p2) subject to the following constraints:

n1∑
j=1

p1j = 1 ,

n2∑
j=1

p2j = 1 , (1.1)

n1∑
j=1

p1jY1j −
n2∑
j=1

p2jY2j = θ . (1.2)

The standard two-sample empirical log-likelihood ratio statistic on θ is defined as

r(θ) =

n1∑
j=1

log(n1p̂1j(θ)) +

n2∑
j=1

log(n2p̂2j(θ)) .

In Wu and Yan (2012), the authors showed that

−2r(θ)
d−→ χ2

1 as n→∞ , (1.3)

where “
d−→” denotes convergence in distribution. In the proof of this result, they introduced

a nuisance parameter µ0 = µ2 + Op(n
−1/2) to facilitate the arguments and rewrote the

constraint (1.2) as

n1∑
j=1

p1jY1j = µ0 + θ and

n0∑
j=1

p2jY2j = µ0 .

The nuisance parameter µ0 serves as a bridge for computing the EL ratio statistic for

θ and will eventually be profiled. By (1.3), the (1 − α)-level confidence interval on θ

can be constructed as C1 = {θ| − 2r(θ) ≤ χ2
1(α)}, where χ2

1(α) is the upper (100α)%

quantile from the χ2
1 distribution. The major computational difficulty comes from solving
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for the Lagrange multiplier, which needs to be calculated based on two samples with

an added nuisance parameter µ0. Such difficulty can be avoided through the weighted

empirical likelihood formulation, for which the computation procedures are much simpler

and essentially identical to those for one-sample EL problems.

The weighted empirical log-likelihood function is defined as follows:

`w(p1,p2) =
w1

n1

n1∑
j=1

log(p1j) +
w2

n2

n2∑
j=1

log(p2j),

where w1 = w2 = 1/2. The choice of w1 and w2 is to facilitate the reformulation of

constraints (1.1) and (1.2) into the following equivalent forms:

2∑
i=1

wi

ni∑
j=1

pij = 1 , (1.4)

2∑
i=1

wi

ni∑
j=1

pijuij = 0 . (1.5)

where uij = Zij−η, Z1j = (1, Y1j/w1)
T , Z2j = (0,−Y2j/w2)

T , and η = (w1, θ)
T . Suppose

p̂w1j and p̂w2j maximize `w(p1,p2) subject to constraints (1.4) and (1.5). Using the standard

Lagrange multiplier method, it can be shown:

p̂wij = 1/{ni(1 + λTuij)}, i = 1, 2 and j = 1, · · · , ni ,

and the Lagrange multiplier λ is the solution to

g(λ) =
2∑
i=1

wi
ni

ni∑
j=1

uij
1 + λTuij

= 0 . (1.6)

The weighted two-sample empirical log-likelihood ratio statistic for θ is defined as:

rw(θ) = −
2∑
i=1

wi
ni

ni∑
j=1

log(1 + λTuij) .

8



Wu and Yan (2012) proved that

−2rw(θ)/c
d−→ χ2

1 as n→∞ ,

where c is a scaling constant. Based on this result, we can construct confidence intervals

and conduct hypothesis testing for θ. The weighted two-sample EL formulation is compu-

tationally friendly. It does not involve any nuisance parameters, and the equation (1.6) for

the Lagrange multiplier can be solved using the one-sample EL algorithm by Wu (2004).

1.4 Outline of the Thesis

As we discussed in Section 1.1, the method proposed by Huang et al. (2008) for estimating

the treatment effect handles the mean responses for the treatment group and the control

group separately. Empirical likelihood ratio confidence intervals or tests for the treatment

effect cannot be constructed under their approach. In Chapter 2, we propose an alterna-

tive EL formulation which directly involves the parameter of interest, i.e., the treatment

effect, and incorporates baseline information through an imputation approach. Our focus

is to derive the empirical likelihood ratio confidence intervals and tests for the treatment

effect under the proposed imputation-based framework. Theoretical results are developed,

and finite sample performances of the proposed methods with comparison to existing ap-

proaches are investigated through simulation studies. An application to a real data set is

also presented.

While the treatment effect, measured as the difference between the two mean responses,

is of primary interest, testing the difference of the two distribution functions for the treat-

ment and the control groups is also an important problem. The Mann-Whitney test has

been a standard tool for testing the difference of distribution functions with two inde-

pendent samples. In Chapter 3, we develop empirical likelihood based methods for the

Mann-Whitney test to incorporate the two unique features of pretest-posttest studies: (i)

the availability of baseline information for both groups; and (ii) the structure of the data
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with the missing by design property. Our proposed methods combine the standard Mann-

Whitney test with the empirical likelihood method of Huang et al. (2008), the imputation-

based empirical likelihood method we proposed in Chapter 2, and the jackknife empirical

likelihood method of Jing et al. (2009). Theoretical results are presented and finite sample

performances of proposed methods are evaluated through a simulation study.

In Chapter 4, we investigate the EL methods for estimating the treatment effect in

pretest-posttest studies with observational survey data. Methods based on propensity

score modelling are very popular for making causal inference with observation data. We

develop methods based on propensity score stratification and propensity scores weighting

for estimating the treatment effect while accommodating the complex survey design. We

also study the theoretic properties of our proposed estimators. The proposed methods are

illustrated through an application using the data from the International Tobacco Control

Four Country Surveys (ITC 4C).

In Chapter 5, we summarize the thesis and discuss some possible future work for the

topics that we have studied.
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Chapter 2

An Imputation Based Empirical

Likelihood Approach to

Pretest-Posttest Studies

2.1 Introduction

In this chapter, we develop the empirical likelihood based method for making inference of

the treatment effect in pretest-posttest studies. Our method has two distinct features: (i)

The baseline pretest information is used through a direct model-based imputation proce-

dure; and (ii) The EL formulation involves the parameter of interest directly, not the two

separate means of responses for the treatment group and the control group. The impu-

tation procedure effectively exploits the key feature of the pretest-posttest studies where

the responses are missing by design. The EL estimation theory employs the framework of

two-sample EL procedures proposed by Wu and Yan (2012) where the EL ratio statistic is

formulated directly for the parameter of interest.

The rest of the chapter is organized as follows. In Section 2.2, we introduce some

notation and summarize the EL method by Huang et al. (2008). In Section 2.3, we present

11



our proposed imputation-based two-sample EL estimator for the treatment effect, using a

linear model. Our main result is on the asymptotic distribution of the empirical likelihood

ratio statistic for the treatment effect. Section 2.4 extends the result when the linear

imputation model is replaced by kernel regression. In Section 2.5, we make theoretical

comparisons between the efficiencies of the HQF estimator and the imputation-based EL

estimators under suitable conditions. Results from a limited simulation study are presented

in Section 2.6. An application using a data set from the ACTG 175 study is reported in

Section 2.7. Some concluding remarks are given in Section 2.8. Proofs of theoretical results

and regularity conditions are given in Section 2.9.

2.2 Notations and the HQF Estimator

Suppose there are n subjects selected from the target population. Measurements on some

baseline variables, Z, are taken for all n subjects. Each subject is then randomly assigned to

either the treatment group or the control group, with probabilities δ and 1−δ respectively.

Let n1 be the number of subjects in the treatment group, and n0 = n− n1 be the number

of subjects in the control group. Let Ri = 1 if subject i is assigned to the treatment group

and Ri = 0 if subject i is assigned to the control group. Because of the randomization, the

marginal distribution of Z is assumed to be identical for the two groups. Let Y1 and Y0

be the potential posttest responses that a subject would have if assigned to the treatment

group and the control group, respectively. Note that Y1 will not be observed for any subjects

in the control group and Y0 will not be observed for any subjects in the treatment group.

Hence, the observed data for the treatment group are {(Ri = 1, zi, y1i) : i = 1, · · · , n1},
and the observed data for the control group are {(Ri = 0, zi, y0i) : i = n1 + 1, · · · , n}. Let

µ1 = E(Y1) and µ0 = E(Y0). The parameter of interest is the treatment effect θ = µ1−µ0.

Huang et al. (2008) proposed to estimate the treatment effect using the empirical

likelihood method. However, instead of estimating the treatment effect θ directly, the

authors focused on estimating µ1 and µ0 separately. The HQF estimator of µ1 is computed
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as µ̂1HQF =
∑n1

i=1 p̂iy1i, where p̂i are obtained through the following EL method. Let f(z, y1)

be the joint density function of (Z, Y1) related to the treatment group and f(z) be the

marginal density function of Z. Let pi = f(zi, y1i) for i = 1, · · · , n1 and ri = f(zi) for

i = n1 + 1, · · · , n. The log empirical likelihood function is given by

` =

n1∑
i=1

log(pi) +
n∑

i=n1+1

log(ri) . (2.1)

The p̂i and r̂i are obtained by maximizing (2.1) subject to pi > 0, ri > 0 and the following

constraints:
n1∑
i=1

pi = 1,
n∑

i=n1+1

ri = 1, (2.2)

n1∑
i=1

pia1(zi) =
n∑

i=n1+1

ria1(zi) , (2.3)

where a1(z) = E(Y1|Z = z). It is assumed that E[a1(Z)]2 < ∞. The constraint (2.3) is

the most crucial part for the HQF estimator, since it uses the baseline information from

both the treatment group and the control group. The actual form of a1(z) is typically

unknown, but one could use a guessed form, with possible loss of efficiency for the final

estimator. The solutions to this constrained maximization problem are given by

p̂i =
1

n1

1

1 + λ{a1(zi)− b}
, i = 1, · · · , n1 and r̂i =

1

n0

1

1 + τ{a1(zi)− b}
, i = n1 + 1, · · · , n

for a fixed value of b =
∑n1

i=1 pia1(zi) =
∑n

i=n1+1 ria1(zi). The Lagrange multipliers λ and

τ are determined by solving

1

n1

n1∑
i=1

a1(zi)− b
1 + λ{a1(zi)− b}

= 0 and
1

n0

n∑
i=n1+1

a1(zi)− b
1 + τ{a1(zi)− b}

= 0 .

The final value of b used for computing the p̂i can be obtained through profiling over the

log empirical likelihood function.

Huang et al. (2008) showed that µ̂1HQF has the following asymptotic representation:

µ̂1HQF =
1

n

n∑
i=1

Riy1i
δ
− E

{
Y1ψ1(Z)T

}[
E
{
ψ1(Z)ψ1(Z)T

}]−1{ 1

n

n∑
i=1

Ri − δ
δ

ψ1(zi)
}

+op
(
n−1/2

)
,
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where ψ1(z) = (1, a1(z))T . The authors used this asymptotic representation to prove that,

under certain regularity conditions,
√
n(µ̂1HQF − µ1)→ N(0, σ2

1), where

σ2
1 =

{
δ−1E(Y 2

1 )− µ2
1

}
− (1− δ)δ−1E

{
Y1ψ1(Z)T

}[
E
{
ψ1(Z)ψ1(Z)T

}]−1
E
{
Y1ψ1(Z)

}
.

Moreover, the authors showed that µ̂1HQF is as efficient as the estimator proposed in Leon

et al. (2003) when a1(z) = E(Y1|Z = z) is correctly specified for both methods but the

HQF estimator is more efficient when a misspecified a1(z) is used for both cases.

Huang et al. (2008) proposed to use the same method to estimate µ0 by µ̂0HQF, with

{y1i, i = 1, · · · , n1} replaced by {y0i, i = n1 + 1, · · · , n}. The same constraint (2.3) is used

where a1(z) is replaced by a0(z) = E(Y0|Z = z). The treatment effect is then estimated

as θ̂HQF = µ̂1HQF − µ̂0HQF. For confidence intervals or hypothesis tests on θ, the authors

proposed to use a nonparametric bootstrap method to estimate the variance of θ̂HQF. In

Section 2.5, we will provide an explicit form of the asymptotic variance of θ̂HQF. It should

be noted that empirical likelihood ratio tests on the treatment effect θ are not available

under the EL approach used by HQF.

An interesting and practically useful observation for the HQF estimator is that, if Z

is univariate and a1(z) = γ0 + γ1z for some unknown γ0 and γ1, the constraint (2.3) is

equivalent to
∑n1

i=1 pizi =
∑n

i=n1+1 rizi under the normalization constraints
∑n1

i=1 pi = 1

and
∑n

i=n1+1 ri = 1.

2.3 Linear Regression Imputation-Based Empirical

Likelihood Approach

In this section, we propose an alternative empirical likelihood approach to inferences for

pretest-posttest studies. Our method effectively exploits the two distinct features of the

problem: (i) availability of baseline information for all subjects in the studies, and (ii)

response variables missing by design. Our formulation of the EL function involves directly
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the parameter of interest, θ = µ1−µ0, not the two separate means of the post-test responses.

Our primary objective is to develop the empirical likelihood ratio test for the treatment

effect θ.

The two features of pretest-posttest sample data can be better summarized through

the following table:

i 1 2 · · · n1 n1 + 1 n1 + 2 · · · n

Z Z1 Z2 · · · Zn1 Zn1+1 Zn1+2 · · · Zn

Y1 Y11 Y12 · · · Y1n1 ∗ ∗ · · · ∗
Y0 ∗ ∗ · · · ∗ Y0(n1+1) Y0(n1+2) · · · Y0n

The complete observations of Z on all subjects provide an opportunity to impute the

missing values “∗” of the response variables due to the unique design used for the studies.

The imputation-based approach not only uses the baseline information in a more effective

way but also produces two samples with enlarged sample sizes. We first consider the

following linear regression models for the two response variables Y1 and Y0:

Y1i = ZT
i β1 + ε1i, i = 1, · · · , n , (2.4)

Y0i = ZT
i β0 + ε0i, i = 1, · · · , n , (2.5)

where β1 and β0 are respectively the regression parameters for the treatment and the

control, and ε1i’s and ε0i’s are independent errors with zero mean and variance σ2
ε1 and

σ2
ε0, respectively. It is assumed for simplicity that both models (2.4) and (2.5) include an

intercept. The case where there is no intercept, discussed in Sections 2.5 and 2.6, can be

handled similarly. The two assumed models imply that the missing responses in one group

would follow the same model if the subjects were assigned to the other group.
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We consider deterministic regression imputation for the missing responses. Let

β̂1 =
( n∑
i=1

RiZiZ
T
i

)−1 n∑
i=1

RiZiY1i,

β̂0 =
( n∑
i=1

(1−Ri)ZiZ
T
i

)−1 n∑
i=1

(1−Ri)ZiY0i

be the ordinary least squares estimators for β1 and β0. Let

Y ∗1i = ZT
i β̂1 , i = n1 + 1, · · · , n and Y ∗0i = ZT

i β̂0 , i = 1, · · · , n1

be respectively the imputed values of Y1 for the subjects in the control group and the

imputed values of Y0 for the subjects in the treatment group. Note that E(ZT
i β̂1) =

E(Y1i) = µ1, and E(ZT
i β̂0) = E(Y0i) = µ0. After the imputation, we obtain two augmented

samples for the two posttest response variables given by

{Ỹ1i = RiY1i + (1−Ri)Y
∗
1i, i = 1, · · · , n} and {Ỹ0i = (1−Ri)Y0i +RiY

∗
0i, i = 1, · · · , n}.

We develop a two-sample empirical likelihood method for the parameter of interest

θ = µ1−µ0 = E(Y1)−E(Y0), using the formulation described in Wu and Yan (2012). Our

primary objective is to construct an EL test on the treatment effect θ using the empirical

likelihood ratio statistic. The log empirical likelihood function is given by

`(p, q) =
n∑
i=1

log(pi) +
n∑
i=1

log(qi) ,

where p = (p1, · · · , pn)T , q = (q1, · · · , qn)T , pi = f(y1i), i = 1, · · · , n, qi = g(y0i), i =

1, · · · , n, and f(·) and g(·) are the marginal density functions for Y1 and Y0. For a fixed

value of θ, let p(θ) = (p1(θ), · · · , pn(θ))T and q(θ) = (q1(θ), · · · , qn(θ))T be the maximizer

of `(p, q) subject to pi > 0, qi > 0 and the constraints

n∑
i=1

pi = 1 ,
n∑
i=1

qi = 1 , (2.6)

n∑
i=1

piỸ1i −
n∑
i=1

qiỸ0i = θ. (2.7)
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There exists a computational algorithm for finding the solution to this constrained max-

imization problem for a fixed θ without introducing any additional parameters. See Wu

and Yan (2012) for further detail. The maximum EL estimator of θ under the assumed

linear models is given by

θ̂linEL =
1

n

n∑
i=1

Ỹ1i −
1

n

n∑
i=1

Ỹ0i = ¯̃Y1 − ¯̃Y0 . (2.8)

We now present one of our major results on the EL ratio statistic on θ. Let p̂(θ) =

(p̂1(θ), · · · , p̂n(θ))T and q̂(θ) = (q̂1(θ), · · · , q̂n(θ))T be the maximizer of `(p, q) under the

constraints (2.6) and (2.7) for a fixed θ. Let

r(θ) =
n∑
i=1

log (np̂i(θ)) +
n∑
i=1

log (nq̂i(θ))

be the EL ratio statistic on θ. We have the following result regarding the asymptotic

distribution of r(θ).

Theorem 1. Suppose that E(‖Z‖2) < ∞, σ2
ε1 < ∞, σ2

ε0 < ∞ and n1/n → δ ∈ (0, 1)

as n → ∞. Suppose also that models (2.4) and (2.5) hold. Then −2r(θ)/c1 converges

in distribution to a χ2 random variable with one degree of freedom as n → ∞, where

θ = E(Y1) − E(Y0) = µ1 − µ0. The scaling constant c1 is given by c1 = {(Ṽ1 + Ṽ0)/V }−1,
where V = (β1 − β0)

TΣZ(β1 − β0) + δ−1σ2
ε1 + (1 − δ)−1σ2

ε0, Ṽ1 = n−1
∑n

i=1(Ỹ1i − µ1)
2,

Ṽ0 = n−1
∑n

i=1(Ỹ0i − µ0)
2, and ΣZ is the variance-covariance matrix of Z.

From the proof of Theorem 1 presented in Section 2.9.2 we see that V/n is the asymp-

totic variance of θ̂linEL . Under the same conditions of the theorem, we have that
√
n(θ̂linEL −θ)

converges in distribution to N(0, V ). Results of Theorem 1 can be used to construct the

(1 − α)-level EL ratio confidence interval on θ: C1 = {θ | −2r(θ)/ĉ1 ≤ χ2
1(α)}, where

χ2
1(α) is the upper α quantile of the χ2

1 distribution and ĉ1 is a consistent estimator of the

scaling constant c1. It can be shown that if ĉ1 is a consistent estimator of c1 such that

ĉ1 = c1 + op(1), then −2r(θ)/ĉ1 also converges in distribution to a χ2
1 random variable.
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2.4 Kernel Regression Imputation-Based Empirical

Likelihood Approach

The results presented in Section 2.3 require the validity of the assumed linear regression

models (2.4) and (2.5). In this section, we consider nonparametric kernel regression models

as a robust alternative. Imputation for missing responses based on a kernel regression

model was discussed in Cheng (1994). Wang and Rao (2002) considered the one-sample

EL method with kernel regression imputation for missing values. Letm1(z) = E(Y1|Z = z)

and m0(z) = E(Y0|Z = z). We replace the linear regression imputed values Y ∗1i = ZT
i β̂1

and Y ∗0i = ZT
i β̂0 by kernel regression imputed values m̂1(Zi) and m̂0(Zi), respectively.

Cheng (1994) used the following kernel estimators for m1(z) and m0(z):

m̂1(z) =
n∑
i=1

RiY1iK((z −Zi)/hn)/
n∑
i=1

RiK((z −Zi)/hn) , (2.9)

m̂0(z) =
n∑
i=1

(1−Ri)Y0iK((z −Zi)/hn)/
n∑
i=1

(1−Ri)K((z −Zi)/hn) , (2.10)

where K(·) is a kernel function and hn is a bandwidth sequence which decreases to zero as

n goes to infinity. When the sample sizes are not large enough, neighbourhoods of certain

values of z might contain very few observations, which might cause m̂1(z) or m̂1(z) to be

very unstable. Wang and Rao (2002) proposed to use the following modified versions of

the kernel estimators by first defining

ĝ1(z) = (nhn)−1
n∑
i=1

RiK((z −Zi)/hn) and ĝ1bn(z) = max{ĝ1(z), bn} ,

ĝ0(z) = (nhn)−1
n∑
i=1

(1−Ri)K((z −Zi)/hn) and ĝ0bn(z) = max{ĝ0(z), bn}

for a suitably chosen sequence bn, and then replacing m̂1(z) by m̂1bn(z) = m̂1(z)ĝ1(z)/ĝ1bn(z),

m̂0(z) by m̂0bn(z) = m̂0(z)ĝ0(z)/ĝ0bn(z).

The development presented in Section 2.3 under linear regression imputation can now
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be imitated under kernel regression imputation if we simply define

Ỹ kel
1i = RiY1i + (1−Ri)m̂1bn(Zi) , i = 1, 2, · · · , n ,

Ỹ kel
0i = (1−Ri)Y0i +Rim̂0bn(Zi) , i = 1, 2, · · · , n .

The maximum EL estimator of θ under the assumed kernel regression models is given by

θ̂kelEL =
1

n

n∑
i=1

Ỹ kel
1i −

1

n

n∑
i=1

Ỹ kel
0i = ¯̃Y kel

1 − ¯̃Y kel
0 . (2.11)

Let rkel(θ) be defined in the same way as r(θ) is computed in Section 2.3, with Ỹ1i and Ỹ0i

respectively being replaced by Ỹ kel
1i and Ỹ kel

0i .

Theorem 2. Under the conditions C1-C6 specified in Section 2.9.3, −2rkel(θ)/c2 converges

in distribution to a χ2 random variable with one degree of freedom when n → ∞ and

θ = µ1 − µ0. The scaling constant c2 is given by c2 = V kel/(Ṽ kel
1 + Ṽ kel

0 ), where

Ṽ kel
1 = n−1

n∑
i=1

(Ỹ kel
1i − µ1)

2 , Ṽ kel
0 = n−1

n∑
i=1

(Ỹ kel
0i − µ0)

2 ,

V kel = V ar(m1(Z)−m0(Z)) + δ−1E(σ2
1(Z)) + (1− δ)−1E(σ2

0(Z))

with σ2
j (z) = V ar(Yj|Z = z) for j = 1, 0.

From the proof of Theorem 2 presented in Section 2.9.4 we see that V kel/n is the

asymptotic variance of the maximum EL estimator θ̂kelEL and
√
n(θ̂kelEL − θ) converges in dis-

tribution to N(0, V kel). A (1−α)-level EL ratio confidence interval on θ can be constructed

as C2 = {θ | −2rkel(θ)/ĉ2 ≤ χ2
1(α)}, where ĉ2 is a consistent estimator of c2 and χ2

1(α) is

the upper α% quantile of the χ2
1 distribution.

Two of the major issues with kernel regression modelling are the curse of dimensionality

and bandwidth selection. The method presented in this section is most helpful when the

linear regression models are questionable and the baseline variables Z are of low dimen-

sion. In practice, the optimal bandwidth may be difficult to estimate, and the choice of
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bandwidth can be determined by a data-dependent cross-validation method. The cross val-

idated bandwidth minimizes the sum of squared errors between the data and the estimates

from the kernel regression. The procedure of a K-fold cross validation (Hastie et al. (2001))

can be summarized as following: consider a possible set of bandwidths {h1, · · · , hp}. For

each hi, i = 1, · · · , p, we

1. randomly split the data into (roughly) K equal-sized parts for both treatment group

and control group;

2. for the kth part (test), fit kernel regression with bandwidth hi to the other K − 1

parts of data (training), and calculate the sum of the squared errors of the fitted

values and the true data of the kth part for both groups;

3. repeat number 2 for k = 1, · · · , K, and then calculate the total sum of squared errors.

Repeat the process for i = 1, · · · , p, then the cross-validated bandwidth h∗ is the one with

the smallest total sum of squared errors.

2.5 Efficiency Comparisons Among Alternative EL

Approaches

Our proposed imputation-based EL approaches presented in Sections 2.3 and 2.4 focus

on empirical likelihood ratio confidence intervals or tests for the treatment effect, i.e.,

θ = µ1 − µ0. The EL approach used by Huang et al. (2008), on the other hand, puts

major effort on the point estimation of µ1 and µ0 separately. EL ratio confidence intervals

on θ are not available in the latter case. In this section, we provide comparisons among

the point estimators θ̂HQF, θ̂linEL and θ̂kelEL in terms of asymptotic variances. Some detailed

derivations are omitted, since they are similar to those appearing in the proofs of Theorems

1 and 2. We use AV (θ̂) to denote the asymptotic variance of θ̂.
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We first derive the asymptotic variance of the HQF estimator of θ. Recall that ψj(z) =

(1, aj(z))T , where aj(z) = E(Yj|Z = z), j = 1, 0. In Huang et al. (2008), the authors have

shown that the estimators µ̂1HQF and µ̂0HQF have the following asymptotic representations:

µ̂1HQF =
1

n

n∑
i=1

Riy1i
δ
− E{Y1ψ1(Z)T}E{ψ1(Z)ψ1(Z)T}−1

× 1

n

n∑
i=1

{Ri − δ
δ

ψ1(zi)
}

+ op(n
−1/2),

µ̂0HQF =
1

n

n∑
i=1

(1−Ri)y0i
1− δ

− E{Y0ψ0(Z)T}E{ψ0(Z)ψ0(Z)T}−1

× 1

n

n∑
i=1

{(1−Ri)− (1− δ)
1− δ

ψ0(zi)
}

+ op(n
−1/2).

To make the setting comparable to the kernel regression models used in Section 2.4, we

assume that σ2
εj = V ar(Yj|Z = z) is dependent of z for j = 1, 0. It follows that E[a1(Z)] =

µ1, E{Y1ψ1(Z)T} = (µ1, E[{a1(Z)}2]) and

E{Y1ψ1(Z)T}E{ψ1(Z)ψ1(Z)T}−1 = (0, 1) .

The asymptotic representation of µ̂1HQF can be rewritten as

µ̂1HQF =
1

n

n∑
i=1

{Riy1i
δ
− Ri − δ

δ
a1(zi)

}
+ op(n

−1/2) .

With parallel development, we also have

µ̂0HQF =
1

n

n∑
i=1

{(1−Ri)y0i
1− δ

− (1−Ri)− (1− δ)
1− δ

a0(zi)
}

+ op(n
−1/2) ,

Therefore,

θ̂HQF = µ̂1HQF − µ̂0HQF

=
1

n

n∑
i=1

{Riy1i
δ
− Ri − δ

δ
a1(zi)

}
− 1

n

n∑
i=1

{(1−Ri)y0i
1− δ

− (1−Ri)− (1− δ)
1− δ

a0(zi)
}

+op(n
−1/2).
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Let σ2
1 and σ2

0 be the asymptotic variances of µ̂1HQF and µ̂0HQF, then from Huang et al.

(2008), σ2
1 = (1/δ)E(Y 2

1 )− µ2
1− [(1− δ)/δ]E{(a1(Z))2} and σ2

0 = [1/(1− δ)]E(Y 2
0 )− µ2

0−
[δ/(1− δ)]E{(a0(Z))2}. Therefore, the asymptotic variance of θ̂HQF is given by

AV (
√
nθ̂HQF) = AV {

√
n(µ̂1HQF − µ̂0HQF)}

=
{1

δ
E(Y 2

1 )− µ2
1

}
+
{ 1

1− δ
E(Y 2

0 )− µ2
0

}
−

1− δ
δ

E{(a1(Z))2} − δ

1− δ
E{(a0(Z))2} − 2E{a1(Z)a0(Z)}+ 2µ1µ0

= V ar{a1(Z)− a0(Z)}+ δ−1σ2
ε1 + (1− δ)−1σ2

ε0 .

It is now clear that, if the functions aj(z) = E(Yj|Z = z), j = 1, 0 are correctly

specified, the HQF estimator θ̂HQF and the kernel imputation-based EL estimator θ̂kelEL

have the same asymptotic variance, since AV (
√
nθ̂kelEL ) given in Theorem 2 is identical

to AV (
√
nθ̂HQF), where mj(Z) = aj(Z) and σ2

j (Z) = σ2
εj. Huang et al. (2008) showed

that, with correctly specified aj(z), the estimator θ̂HQF achieves the semiparametric effi-

ciency lower bound. It follows that the kernel imputation-based approach presented in

Section 2.4 is efficient without the need to specify the mean function mj(z).

Under the two linear models (2.4) and (2.5), we have aj(Z) = ZTβj, j = 1, 0 and

AV (
√
nθ̂HQF) = (β1 − β0)

TΣZ(β1 − β0) + δ−1σ2
ε1 + (1− δ)−1σ2

ε0 . (2.12)

If the models (2.4) and (2.5) both include an intercept, then AV (
√
nθ̂HQF) given by (2.12)

is identical to AV (
√
nθ̂linEL ) given in Theorem 1. A key result in the proof is that, if an

intercept is included in the two linear models, we have E(ZT ){E(ZZT )}−1E(Z) = 1. In

this case our imputation-based EL approach has the same efficiency as the EL approach

of Huang et al. (2008).

If an intercept is not part of the models (2.4) and (2.5), the asymptotic variance for-

mula AV (
√
nθ̂HQF) given by (2.12) remains the same. For the imputation-based approach

presented in Section 2.3 under the assumed linear regression models, it can be shown that

AV (
√
nθ̂linEL ) = (β1 − β0)

TΣZ(β1 − β0) + δσ2
ε1 + (1− δ)σ2

ε0 +

{[(1− δ)2δ−1 + 2(1− δ)]σ2
ε1 + [δ2(1− δ)−1 + 2δ]σ2

ε0}K(Z) ,
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where K(Z) = E(ZT ){E(ZZT )}−1E(Z). It follows that AV (
√
nθ̂linEL ) ≤ AV (

√
nθ̂HQF) if

K(Z) ≤ 1. Suppose A is a k × k positive definite matrix, and a is a k × 1 vector. It can

be shown that

(A+ aaT )−1 = A−1 − A−1aaTA−1

1 + aTA−1a
.

Let A = V ar(Z) and a = E(Z), then we have

K(Z) = aT (A+ aaT )−1a = aT
(
A−1 − A−1aaTA−1

1 + aTA−1a

)
a

= aTA−1a− aTA−1aaTA−1a

1 + aTA−1a
=

aTA−1a

1 + aTA−1a

= 1− 1

1 + aTA−1a
≤ 1 .

Therefore, when the models (2.4) and (2.5) don’t have an intercept, θ̂linEL is more efficient

than θ̂HQF. A possible explanation for this phenomenon is that the HQF formulation

makes an inexplicit assumption that an intercept is always included in the model. For

example, if we consider a univariate Z in the models, then the constraint (2.3) reduces to∑n1

i=1 pizi =
∑n

i=n1+1 rizi with or without an intercept. Our imputation-based approach,

on the other hand, makes explicit use of the model structure and hence has one less model

parameter to estimate if the intercept is not part of the models.

2.6 Simulation Study

In this section, we present the results from simulation studies to compare the performances

of our proposed methods to existing ones. Point estimators, confidence intervals and

hypothesis tests for the treatment effect θ are all considered. We first consider two linear

regression models.
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Model (I) involves a single pretest baseline variable Z without an intercept:

Y1i = β1 Z1i + ε1i , i = 1, · · · , n1 , (2.13)

Y0j = β0 Z0j + ε0j , j = 1, · · · , n0 . (2.14)

The pretest responses Z1 and Z0 are generated independently from a standard exponential

distribution with E(Z) = 1 and V ar(Z) = 1. The error terms ε1i and ε0j are generated

independently from normal distributions with mean 0, variance σ2
e1 and σ2

e0 respectively.

The variances are chosen based on the correlation coefficient ρ between Y and Z, i.e.,

σ2
e1 = β2

1(1/ρ2 − 1) and σ2
e0 = β2

0(1/ρ2 − 1). The true treatment effect is set as θ0 =

µ1 − µ0 = β1 − β0.

Model (II) has two baseline variables (X,Z) with an intercept:

Y1i = β10 + β11X1i + β12Z1i + ε1i , i = 1, · · · , n1 , (2.15)

Y0j = β00 + β01X0j + β02Z0j + ε0j , j = 1, · · · , n0 . (2.16)

The added covariate X follows a Bernoulli distribution with probability p = 0.5 (rep-

resenting “gender” of the subjects). The Z variable and the error terms are similarly

generated as in Model (I), with the error variances controlled by the correlation coeffi-

cient ρ between Y and the linear predictor Z ′iβ. The true treatment effect is given by

θ0 = µ1 − µ0 = (β10 + β11/2 + β12)− (β00 + β01/2 + β02).

For each model, we consider three values of the correlation coefficient ρ at 0.8, 0.5

and 0.3, representing strong, moderate and weak relations between the posttest variable

Y and the set of pretest measures. We consider different combinations of sample sizes

(n1, n0) = (30, 30), (50, 50), (100, 100) and (50, 100). For each simulated sample, we com-

pute three point estimates of θ0: (i) the naive estimator θ̂ = Ȳ1− Ȳ0 using only the posttest

observations Y1i and Y0j; (ii) the imputation-based method under the linear model, θ̂linEL ;

and (iii) the EL method of HQF, θ̂HQF. For confidence intervals on θ0, alternative methods

are considered for each of the three cases: (i) Confidence interval based on normal approx-

imation to θ̂, denoted as NB; the two-sample EL ratio confidence interval of Wu and Yan
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(2012), denoted as WY. (ii) Three confidence intervals for the imputation-based approach,

denoted as LM1, LM2 and LM3: The first is the EL ratio confidence interval based on

the result of Theorem 1; the second replaces the scaled χ2 approximation used in LM1 by

a bootstrap calibration; the third uses a normal approximation to θ̂linEL . (iii) Two versions

of the confidence intervals based on θ̂HQF, denoted as HQF1 and HQF2: The first uses

bootstrap method to compute the variance of θ̂HQF, as suggested by Huang et al. (2008);

the second uses the asymptotic variance formula provided in Section 2.5. Both HQF1 and

HQF2 use normal approximations.

Performances of point estimators are assessed by the simulated bias and mean squared

error (MSE). Confidence intervals (CI) on θ are evaluated by the simulated coverage prob-

ability (CP), lower and upper tail error rates (L and U) and average length (AL). We only

consider 95% confidence intervals on θ. For bootstrap methods, the number of bootstrap

samples used is 1000. The total number of simulation runs is 1000.

Simulation results under Model (I) are reported in Tables 2.1-2.3. Here are some key

observations: (1) All point estimators have negligible bias, with the imputation-based

estimator θ̂linEL having the smallest MSE; (2) The estimator θ̂linEL outperforms θ̂HQF in all

cases, with the largest gain of efficiency under strong correlation between Y and Z (i.e.,

ρ = 0.8); (3) Both θ̂linEL and θ̂HQF perform significantly better than NB and WY for all

scenarios considered; (4) All confidence intervals have coverage probabilities very close to

the nominal value, including the different versions of LM and HQF and the naive method

NB and the EL method WY; (5) The three versions of LM confidence intervals are much

shorter than other intervals; (6) All confidence intervals have balanced tail error rates under

the simulation settings.

Results under Model (II) are summarized in Tables 2.4-2.6. Note that the model has

two baseline variables and an intercept. The most striking observation is that both the LM

approach and the HQF method perform well but the difference between the two disappears.

This is consistent with the results of the theoretical comparisons discussed in Section 2.5.

The second part of the simulation studies examines the effect of model misspecifications.
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We include the kernel regression-based method presented in Section 2.4 as part of the

comparisons. We consider two kernel functions: the flat kernel function K(u) = 1/2,

|u| ≤ 1, denoted as “Flat”, and the Epanechnikov kernel function K(u) = 3/4(1 − u2),

|u| ≤ 1, denoted as “Epan”, for the case of univariate Z. For the case of two baseline

variables, we use K(u1, u2) = K(u1) ∗ K(u2). The bandwidth hn for each simulation is

chosen by a 10-fold cross validation. In addition to the two linear models (I) and (II), we

also consider two nonlinear models. Model (I*) involves a single Z variable:

Y1i = θ0 + 4 sin(Z1i) + ε1i , i = 1, · · · , n1 ,

Y0j = 4 sin(Z0j) + ε0j , j = 1, · · · , n0 .

Model (II*) involves two baseline variables X and Z:

Y1i = θ0 + 4 sin(X1i + Z1i) + ε1i , i = 1, · · · , n1 ,

Y0j = 4 sin(X0j + Z0j) + ε0j , j = 1, · · · , n0 .

The baseline variables are generated in the same way as in the two linear models. The

error terms ε1i and ε0j are generated from N(0, 22). The parameter θ0 is the true value of

the treatment effect E(Y1)−E(Y0). We consider larger sample sizes n1 = n0 = 200 in this

case, due to the need for kernel smoothing. The truncation sequence bn is chosen as 0.0001

for Model (I*) and 0.05 for Model (II*). The point estimator under kernel regression is

given by θ̂kerEL . Two confidence intervals on θ0 are constructed. The EL ratio confidence

interval based on Theorem 2 is denoted as KM1; the interval using the asymptotic variance

and normal approximation is denoted as KM2.

The simulation results are reported in Table 2.7 for Models (I) and (I*) and in Table 2.8

for Models (II) and (II*). The value of ρ is 0.80 for both Models (I) and (II). The true value

of θ0 is set at 0.3. The last column of the two tables is the power for testing H0 : θ0 = 0.

The kernel regression method KM produces acceptable results under Models (I) and (II)

but is less efficient than the LM method: bigger MSE, wider confidence intervals, and

smaller power of the test. The kernel regression method, however, performs much better
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under the two nonlinear models (I*) and (II*). The LM method fails completely under the

Model (I*).

The last part of the simulation focuses on power functions, π(θ), of testing H0 : θ = 0

against H1 : θ 6= 0. The results are summarized by plots of the power functions presented

in Figures 2.1-2.4. Those plots reinforce what we have observed from the tables. Under

Models (I) and (II), the three tests based on linear regression imputation are more powerful

than all other tests. Under the two nonlinear Models (I*) and (II*), the two tests based

on kernel regression imputation have much larger power. The comparisons are meaningful

since all tests have similar size close to the nominal level 5%.
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Table 2.1: Inferences on θ under Model (I), ρ = 0.8, θ0 = 0.3

(n1, n0) Methods Bias MSE (L, CP, U) AL

(30,30) NB 0.0794 0.1814 (0.019,0.961,0.020) 1.7014

WY 0.0794 0.1814 (0.025,0.958,0.017) 1.7208

LM1 0.0122 0.0490 (0.029,0.941,0.030) 0.8657

LM2 0.0122 0.0490 (0.026,0.956,0.018) 0.9374

LM3 0.0122 0.0490 (0.028,0.943,0.029) 0.8596

HQF1 0.0241 0.0731 (0.033,0.939,0.028) 1.0403

HQF2 0.0241 0.0731 (0.027,0.941,0.032) 1.0422

(50,50) NB 0.0369 0.1208 (0.026,0.943,0.031) 1.3285

WY 0.0369 0.1208 (0.026,0.944,0.030) 1.3461

LM1 0.0164 0.0267 (0.022,0.958,0.020) 0.6561

LM2 0.0164 0.0267 (0.019,0.964,0.017) 0.6861

LM3 0.0164 0.0267 (0.021,0.959,0.020) 0.6526

HQF1 0.0244 0.0421 (0.031,0.944,0.025) 0.7984

HQF2 0.0244 0.0421 (0.027,0.946,0.027) 0.8010

(100,100) NB 0.0002 0.0573 (0.023,0.951,0.026) 0.9421

WY 0.0002 0.0573 (0.027,0.946,0.027) 0.9511

LM1 -0.0334 0.0144 (0.021,0.945,0.034) 0.4599

LM2 -0.0334 0.0144 (0.021,0.947,0.032) 0.4695

LM3 -0.0334 0.0144 (0.020,0.943,0.037) 0.4583

HQF1 -0.0421 0.0231 (0.024,0.936,0.040) 0.5694

HQF2 -0.0421 0.0231 (0.022,0.940,0.038) 0.5699

(50,100) NB -0.0007 0.0969 (0.023,0.937,0.040) 1.1845

WY -0.0007 0.0969 (0.030,0.937,0.033) 1.1992

LM1 0.0130 0.0224 (0.029,0.944,0.027) 0.5767

LM2 0.0130 0.0224 (0.036,0.941,0.023) 0.5984

LM3 0.0130 0.0224 (0.027,0.946,0.027) 0.5735

HQF1 0.0142 0.0355 (0.029,0.943,0.028) 0.7194

HQF2 0.0142 0.0355 (0.025,0.949,0.026) 0.7187
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Table 2.2: Inferences on θ under Model (I), ρ = 0.5, θ0 = 0.3

(n1, n0) Methods Bias MSE (L, CP, U) AL

(30,30) NB 0.1143 0.4777 (0.027,0.951,0.022) 2.7430

WY 0.1143 0.4777 (0.027,0.952,0.021) 2.7390

LM1 0.0264 0.2554 (0.030,0.947,0.023) 2.0110

LM2 0.0264 0.2554 (0.029,0.951,0.020) 2.0903

LM3 0.0264 0.2554 (0.028,0.948,0.024) 1.9605

HQF1 0.0644 0.3828 (0.035,0.938,0.027) 2.3839

HQF2 0.0644 0.3828 (0.030,0.940,0.030) 2.3865

(50,50) NB 0.0733 0.2983 (0.029,0.940,0.031) 2.1233

WY 0.0733 0.2983 (0.029,0.942,0.029) 2.1266

LM1 0.0319 0.1387 (0.023,0.960,0.017) 1.5118

LM2 0.0319 0.1387 (0.024,0.959,0.017) 1.5475

LM3 0.0319 0.1387 (0.021,0.963,0.016) 1.4872

HQF1 0.0559 0.2197 (0.030,0.946,0.024) 1.8297

HQF2 0.0559 0.2197 (0.026,0.951,0.023) 1.8337

(100,100) NB -0.0530 0.1518 (0.023,0.949,0.028) 1.5080

WY -0.0530 0.1518 (0.023,0.949,0.028) 1.5101

LM1 -0.0791 0.0750 (0.021,0.945,0.034) 1.0538

LM2 -0.0791 0.0750 (0.022,0.946,0.032) 1.0629

LM3 -0.0791 0.0750 (0.020,0.944,0.036) 1.0446

HQF1 -0.0979 0.1212 (0.026,0.932,0.042) 1.3031

HQF2 -0.0979 0.1212 (0.027,0.935,0.038) 1.3051

(50,100) NB 0.0172 0.2435 (0.026,0.944,0.030) 1.9022

WY 0.0172 0.2435 (0.028,0.942,0.030) 1.9088

LM1 0.0275 0.1158 (0.029,0.946,0.025) 1.3287

LM2 0.0275 0.1158 (0.036,0.937,0.027) 1.3542

LM3 0.0275 0.1158 (0.028,0.946,0.026) 1.3088

HQF1 0.0331 0.1848 (0.028,0.943,0.029) 1.6505

HQF2 0.0331 0.1848 (0.028,0.948,0.024) 1.6476
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Table 2.3: Inferences on θ under Model (I), ρ = 0.3, θ0 = 0.3

(n1, n0) Methods Bias MSE (L, CP, U) AL

(30,30) NB 0.1656 1.3533 (0.030,0.948,0.022) 4.5855

WY 0.1656 1.3533 (0.032,0.946,0.022) 4.5670

LM1 0.0473 0.8583 (0.027,0.955,0.018) 3.7489

LM2 0.0473 0.8583 (0.031,0.949,0.020) 3.7648

LM3 0.0473 0.8583 (0.028,0.951,0.021) 3.5920

HQF1 0.1239 1.2860 (0.033,0.939,0.028) 4.3695

HQF2 0.1239 1.2860 (0.033,0.939,0.028) 4.3754

(50,50) NB 0.1269 0.8106 (0.030,0.944,0.026) 3.5340

WY 0.1269 0.8106 (0.030,0.946,0.024) 3.5311

LM1 0.0548 0.4652 (0.021,0.962,0.017) 2.8013

LM2 0.0548 0.4652 (0.025,0.957,0.018) 2.8025

LM3 0.0548 0.4652 (0.022,0.961,0.017) 2.7245

HQF1 0.1022 0.7374 (0.033,0.944,0.023) 3.3541

HQF2 0.1022 0.7374 (0.026,0.953,0.021) 3.3617

(100,100) NB -0.1315 0.4321 (0.024,0.939,0.037) 2.5121

WY -0.1315 0.4321 (0.026,0.937,0.037) 2.5120

LM1 -0.1464 0.2519 (0.020,0.948,0.032) 1.9418

LM2 -0.1464 0.2519 (0.022,0.946,0.032) 1.9350

LM3 -0.1464 0.2519 (0.020,0.945,0.035) 1.9138

HQF1 -0.1801 0.4070 (0.027,0.932,0.041) 2.3895

HQF2 -0.1801 0.4070 (0.026,0.936,0.038) 3.3926

(50,100) NB 0.0435 0.6695 (0.027,0.950,0.023) 3.1724

WY 0.0435 0.6695 (0.026,0.952,0.022) 3.1763

LM1 0.0490 0.3876 (0.028,0.949,0.023) 2.4595

LM2 0.0490 0.3876 (0.036,0.938,0.026) 2.4524

LM3 0.0490 0.3876 (0.030,0.944,0.026) 2.3981

HQF1 0.0610 0.6188 (0.028,0.944,0.028) 3.0266

HQF2 0.0610 0.6188 (0.028,0.949,0.023) 3.0209
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Table 2.4: Inferences on θ under Model (II), ρ = 0.8, θ0 = 0.3

(n1, n0) Methods Bias MSE (L, CP, U) AL

(30,30) NB -0.0387 0.1854 (0.026,0.954,0.020) 1.7186

WY -0.0387 0.1854 (0.026,0.952,0.022) 1.7227

LM1 -0.0410 0.0736 (0.023,0.944,0.033) 1.0514

LM2 -0.0410 0.0736 (0.020,0.952,0.028) 1.1183

LM3 -0.0410 0.0736 (0.024,0.945,0.031) 1.0460

HQF1 -0.0275 0.0749 (0.023,0.946,0.031) 1.0749

HQF2 -0.0275 0.0749 (0.026,0.942,0.032) 1.0460

(50,50) NB 0.0399 0.1221 (0.027,0.945,0.028) 1.3295

WY 0.0399 0.1221 (0.028,0.942,0.030) 1.3356

LM1 0.0174 0.0441 (0.026,0.948,0.026) 0.8177

LM2 0.0174 0.0441 (0.018,0.955,0.027) 0.8447

LM3 0.0174 0.0441 (0.028,0.946,0.026) 0.8142

HQF1 0.0243 0.0443 (0.028,0.946,0.026) 0.8286

HQF2 0.0243 0.0443 (0.029,0.945,0.026) 0.8142

(100,100) NB -0.0119 0.0566 (0.029,0.950,0.021) 0.9417

WY -0.0119 0.0566 (0.029,0.950,0.021) 0.9450

LM1 -0.0123 0.0226 (0.023,0.951,0.026) 0.5851

LM2 -0.0123 0.0226 (0.024,0.951,0.025) 0.5923

LM3 -0.0123 0.0226 (0.024,0.950,0.026) 0.5835

HQF1 -0.0100 0.0225 (0.024,0.952,0.024) 0.5868

HQF2 -0.0100 0.0225 (0.025,0.951,0.024) 0.5835

(50,100) NB -0.0005 0.0897 (0.029,0.942,0.029) 1.1677

WY -0.0005 0.0897 (0.031,0.943,0.026) 1.1715

LM1 -0.0176 0.0341 (0.022,0.947,0.031) 0.7163

LM2 -0.0176 0.0341 (0.019,0.952,0.029) 0.7359

LM3 -0.0176 0.0341 (0.022,0.946,0.032) 0.7134

HQF1 -0.0145 0.0339 (0.020,0.948,0.032) 0.7252

HQF2 -0.0145 0.0339 (0.023,0.946,0.031) 0.7134
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Table 2.5: Inferences on θ under Model (II), ρ = 0.5, θ0 = 0.3

(n1, n0) Methods Bias MSE (L, CP, U) AL

(30,30) NB -0.0790 0.4720 (0.026,0.947,0.027) 2.7415

WY -0.0790 0.4720 (0.029,0.943,0.028) 2.7322

LM1 -0.0828 0.3758 (0.024,0.945,0.031) 2.4181

LM2 -0.0828 0.3758 (0.025,0.943,0.032) 2.4721

LM3 -0.0828 0.3758 (0.029,0.935,0.036) 2.3465

HQF1 -0.0737 0.3796 (0.026,0.942,0.032) 2.4004

HQF2 -0.0737 0.3796 (0.030,0.934,0.036) 2.3465

(50,50) NB 0.0654 0.3096 (0.026,0.950,0.024) 2.1229

WY 0.0654 0.3096 (0.029,0.946,0.025) 2.1217

LM1 0.0499 0.2296 (0.028,0.952,0.020) 1.8674

LM2 0.0499 0.2296 (0.028,0.951,0.021) 1.8808

LM3 0.0499 0.2296 (0.031,0.946,0.023) 1.8287

HQF1 0.0539 0.2306 (0.027,0.948,0.025) 1.8576

HQF2 0.0539 0.2306 (0.033,0.945,0.022) 1.8287

(100,100) NB -0.0252 0.1483 (0.029,0.949,0.025) 1.5089

WY -0.0252 0.1483 (0.027,0.948,0.025) 1.5092

LM1 -0.0256 0.1125 (0.020,0.956,0.024) 1.3259

LM2 -0.0256 0.1125 (0.020,0.958,0.022) 1.3243

LM3 -0.0256 0.1125 (0.021,0.953,0.026) 1.3105

HQF1 -0.0238 0.1123 (0.022,0.955,0.023) 1.3157

HQF2 -0.0238 0.1123 (0.020,0.955,0.025) 1.3105

(50,100) NB -0.0339 0.2308 (0.025,0.946,0.029) 1.8662

WY -0.0339 0.2308 (0.024,0.947,0.029) 1.8672

LM1 -0.0475 0.1757 (0.021,0.951,0.028) 1.6350

LM2 -0.0475 0.1757 (0.020,0.951,0.029) 1.6456

LM3 -0.0475 0.1757 (0.023,0.947,0.030) 1.6072

HQF1 -0.0449 0.1751 (0.022,0.944,0.034) 1.6335

HQF2 -0.0449 0.1751 (0.023,0.948,0.029) 1.6072

32



Table 2.6: Inferences on θ under Model (II), ρ = 0.3, θ0 = 0.3

(n1, n0) Methods Bias MSE (L, CP, U) AL

(30,30) NB -0.1383 1.3133 (0.023,0.946,0.031) 4.5598

WY -0.1383 1.3133 (0.026,0.942,0.032) 4.5385

LM1 -0.1445 1.2597 (0.022,0.950,0.028) 4.5135

LM2 -0.1445 1.2597 (0.025,0.942,0.033) 4.4655

LM3 -0.1445 1.2597 (0.029,0.937,0.034) 4.2862

HQF1 -0.1404 1.2651 (0.024,0.941,0.035) 4.3756

HQF2 -0.1404 1.2651 (0.030,0.936,0.034) 4.2862

(50,50) NB 0.1030 0.8520 (0.026,0.949,0.025) 3.5334

WY 0.1030 0.8520 (0.027,0.947,0.026) 3.5280

LM1 0.0978 0.7747 (0.027,0.954,0.019) 3.4713

LM2 0.0978 0.7747 (0.029,0.951,0.020) 3.4135

LM3 0.0978 0.7747 (0.034,0.943,0.023) 3.3417

HQF1 0.0960 0.7771 (0.026,0.948,0.026) 3.3908

HQF2 0.0960 0.7771 (0.034,0.941,0.025) 3.3417

(100,100) NB -0.0449 0.4123 (0.024,0.952,0.024) 2.5162

WY -0.0449 0.4123 (0.023,0.955,0.022) 2.5154

LM1 -0.0453 0.3740 (0.017,0.962,0.021) 2.4472

LM2 -0.0453 0.3740 (0.019,0.960,0.021) 2.4106

LM3 -0.0453 0.3740 (0.019,0.955,0.026) 2.3945

HQF1 -0.0439 0.3739 (0.022,0.954,0.024) 2.4019

HQF2 -0.0439 0.3739 (0.019,0.956,0.025) 2.3945

(50,100) NB -0.0832 0.6392 (0.024,0.942,0.034) 3.1084

WY -0.0832 0.6392 (0.024,0.942,0.034) 3.1085

LM1 -0.0916 0.5902 (0.019,0.953,0.028) 3.0319

LM2 -0.0916 0.5902 (0.020,0.950,0.030) 2.9898

LM3 -0.0916 0.5902 (0.023,0.945,0.032) 2.9383

HQF1 -0.0889 0.5887 (0.021,0.945,0.034) 2.9832

HQF2 -0.0889 0.5887 (0.022,0.946,0.032) 2.9383
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Table 2.7: Comparisons with Model Misspecifications: (I) and (I*)

Model Kernel Methods Bias MSE (L, CP, U) AL Power

(I) Flat NB -0.0010 0.0312 (0.030,0.940,0.030) 0.6648 0.432

WY -0.0010 0.0312 (0.032,0.940,0.028) 0.6684 0.436

LM1 0.0096 0.0064 (0.021,0.958,0.021) 0.3262 0.953

LM2 0.0096 0.0064 (0.018,0.961,0.021) 0.3234 0.956

LM3 0.0096 0.0064 (0.017,0.958,0.025) 0.3228 0.955

HQF1 0.0122 0.0101 (0.022,0.955,0.023) 0.4026 0.828

HQF2 0.0122 0.0101 (0.020,0.958,0.022) 0.4033 0.831

KM1 -0.0126 0.0124 (0.029,0.948,0.023) 0.4239 0.780

KM2 -0.0126 0.0124 (0.028,0.945,0.027) 0.4217 0.776

Epan NB -0.0010 0.0312 (0.030,0.940,0.030) 0.6648 0.432

WY -0.0010 0.0312 (0.032,0.940,0.028) 0.6684 0.436

LM1 0.0096 0.0064 (0.021,0.958,0.021) 0.3262 0.953

LM2 0.0096 0.0064 (0.018,0.961,0.021) 0.3234 0.956

LM3 0.0096 0.0064 (0.017,0.958,0.025) 0.3228 0.955

HQF1 0.0122 0.0101 (0.022,0.955,0.023) 0.4026 0.828

HQF2 0.0122 0.0101 (0.020,0.958,0.022) 0.4033 0.831

KM1 -0.0096 0.0120 (0.029,0.947,0.024) 0.4170 0.794

KM2 -0.0096 0.0120 (0.027,0.948,0.025) 0.4152 0.788

(I*) Flat NB 0.0111 0.0743 (0.026,0.956,0.018) 1.1015 0.182

WY 0.0111 0.0743 (0.026,0.957,0.017) 1.0987 0.184

LM1 -0.5028 0.0278 (0.000,0.458,0.542) 0.2841 0.546

LM2 -0.5028 0.0278 (0.000,0.446,0.554) 0.2812 0.554

LM3 -0.5028 0.0278 (0.000,0.447,0.553) 0.2815 0.553

HQF1 -0.0080 0.0198 (0.024,0.944,0.032) 0.5567 0.549

HQF2 -0.0080 0.0198 (0.025,0.945,0.030) 0.5554 0.566

KM1 -0.0040 0.0102 (0.028,0.949,0.023) 0.3907 0.840

KM2 -0.0040 0.0102 (0.028,0.949,0.023) 0.3912 0.839

Epan NB 0.0111 0.0743 (0.026,0.956,0.018) 1.1015 0.182

WY 0.0111 0.0743 (0.026,0.957,0.017) 1.0987 0.184

LM1 -0.5028 0.0278 (0.000,0.458,0.542) 0.2841 0.546

LM2 -0.5028 0.0278 (0.000,0.446,0.554) 0.2812 0.554

LM3 -0.5028 0.0278 (0.000,0.447,0.553) 0.2815 0.553

HQF1 -0.0080 0.0198 (0.024,0.944,0.032) 0.5567 0.549

HQF2 -0.0080 0.0198 (0.025,0.945,0.030) 0.5554 0.566

KM1 -0.0028 0.0101 (0.027,0.950,0.023) 0.3876 0.841

KM2 -0.0028 0.0101 (0.027,0.950,0.023) 0.3881 0.840
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Table 2.8: Comparisons with Model Misspecifications: (II) and (II*)

Model Kernel Methods Bias MSE (L, CP, U) AL Power

(II) Flat NB 0.0068 0.0296 (0.031,0.954,0.015) 0.6652 0.429

WY 0.0068 0.0296 (0.029,0.956,0.015) 0.6665 0.427

LM1 -0.0068 0.0108 (0.018,0.955,0.027) 0.4150 0.804

LM2 -0.0068 0.0108 (0.017,0.958,0.025) 0.4126 0.809

LM3 -0.0068 0.0108 (0.017,0.959,0.024) 0.4120 0.814

HQF1 -0.0063 0.0107 (0.016,0.958,0.026) 0.4129 0.808

HQF2 -0.0063 0.0107 (0.017,0.957,0.026) 0.4120 0.816

KM1 0.0220 0.0151 (0.032,0.950,0.018) 0.4736 0.711

KM2 0.0220 0.0151 (0.033,0.950,0.017) 0.4724 0.715

Epan NB 0.0068 0.0296 (0.031,0.954,0.015) 0.6652 0.429

WY 0.0068 0.0296 (0.029,0.956,0.015) 0.6665 0.427

LM1 -0.0068 0.0108 (0.018,0.955,0.027) 0.4150 0.804

LM2 -0.0068 0.0108 (0.017,0.958,0.025) 0.4126 0.809

LM3 -0.0068 0.0108 (0.017,0.959,0.024) 0.4120 0.814

HQF1 -0.0063 0.0107 (0.016,0.958,0.026) 0.4129 0.808

HQF2 -0.0063 0.0107 (0.017,0.957,0.026) 0.4120 0.816

KM1 0.0223 0.0156 (0.032,0.947,0.021) 0.4705 0.713

KM2 0.0223 0.0156 (0.032,0.948,0.020) 0.4693 0.719

(II*) Flat NB -0.0484 0.0725 (0.028,0.944,0.028) 1.0587 0.169

WY -0.0484 0.0725 (0.028,0.945,0.027) 1.0568 0.169

LM1 -0.0330 0.0596 (0.029,0.951,0.020) 0.9443 0.221

LM2 -0.0330 0.0596 (0.032,0.945,0.023) 0.9444 0.222

LM3 -0.0330 0.0596 (0.033,0.943,0.024) 0.9414 0.222

HQF1 -0.0336 0.0593 (0.035,0.943,0.022) 0.9428 0.220

HQF2 -0.0336 0.0593 (0.033,0.944,0.023) 0.9414 0.221

KM1 -0.0604 0.0148 (0.024,0.942,0.034) 0.4598 0.656

KM2 -0.0604 0.0148 (0.023,0.944,0.033) 0.4603 0.655

Epan NB -0.0484 0.0725 (0.028,0.944,0.028) 1.0587 0.169

WY -0.0484 0.0725 (0.028,0.945,0.027) 1.0568 0.169

LM1 -0.0330 0.0596 (0.029,0.951,0.020) 0.9443 0.221

LM2 -0.0330 0.0596 (0.032,0.945,0.023) 0.9444 0.222

LM3 -0.0330 0.0596 (0.033,0.943,0.024) 0.9414 0.222

HQF1 -0.0336 0.0593 (0.035,0.943,0.022) 0.9428 0.220

HQF2 -0.0336 0.0593 (0.033,0.944,0.023) 0.9414 0.221

KM1 -0.0974 0.0168 (0.024,0.953,0.034) 0.4934 0.563

KM2 -0.0974 0.0168 (0.023,0.954,0.033) 0.4934 0.563
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Figure 2.1: Power Function of Testing H0 : θ = 0 under Model (I), ρ = 0.8, (n1, n0) =

(50, 50)

2.7 A Real Data Analysis

The AIDS Clinical Trials Group (ACTG) protocol 175 (Hammer et al. (1996)) was a

randomized double-blinded clinical trial comparing monotherapy (with zidovudine or di-

danosine) and combination therapy (with zidovudine plus either didanosine or zalcitabine)

in HIV-I infected subjects whose CD4 cell counts were between 200 to 500 per cubic

millimetre. There are 2139 individuals randomly assigned to one of the four regimens:

zidovudine monotherapy, zidovudine plus didanosine, zidovudine plus zalcitabine, and di-

danosine monotherapy. We are interested in comparing the CD4 counts at 20 ± 5 weeks

after randomization between subjects who received zidovudine monotherapy (control) and

those who received one of the other three therapies (treatment). The pretest response is

the CD4 counts at baseline. Following Leon et al. (2003), the other baseline covariates

used in the data analysis are weight, history of intravenous drug use, Karnofsky score (a
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Figure 2.2: Power Function of Testing H0 : θ = 0 under Model (II), ρ = 0.8, (n1, n0) =

(50, 50)
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Figure 2.3: Power Function of Testing H0 : θ = 0 under Model (I*), (n1, n0) = (200, 200)
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Figure 2.4: Power Function of Testing H0 : θ = 0 under Model (II*), (n1, n0) = (200, 200)

categorical variable on a scale of 0-100), number of days of previously received antiretro-

viral therapy, and the symptomatic indicator. In our analysis, responses of the Karnofsky

score are dichotomized into two groups: “Karnofsky = 100” or “not”; and the responses

of the number of days of previously received antiretroviral therapy are dichotomized into

two groups: “no pre anti therapy” or “some pre anti therapy”. All the baseline covariates

and the pretest response are standardized.

We applied all the methods that we compared in the simulation studies in the real

data analysis. We fit linear models to the observed data in each treatment group by using

ordinary least squares for the LM methods and the HQF methods. For the KM method,

we considered the product kernel function K(u1, u2, u3, u4, u5, u6) =
∏6

k=1K1(uk), where

K1(u) is the flat kernel function: K1(u) = 1/2, |u| ≤ 1. We set the truncation threshold

bn = 0.00001 and selected the bandwidth hn = 1.49 using a cross validation method. The

results are summarized in Table 2.9. The LM, HQF and KM methods provide similar

estimated treatment effect θ̂. Compared to the LM and HQF methods, the KM methods
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Table 2.9: Treatment effect estimates for 20± 5 weeks post randomization CD4 counts for

ACTG 175

Methods θ̂ 95% CI of θ

NB 46.8105 (33.5605, 60.0605)

WY 46.8105 (33.4686, 59.9845)

LM1 49.0076 (38.6798, 59.4406)

LM2 49.0076 (38.9386, 59.1766)

LM3 49.0076 (38.8981, 59.1171)

HQF1 49.0210 (39.2862, 59.8098)

HQF2 49.0210 (38.9115, 59.1305)

KM1 50.6940 (41.1914, 60.3510)

KM2 50.6940 (40.1255, 60.2626)

yield slightly narrower confidence intervals.

2.8 Concluding Remarks

In this chapter, we developed imputation-based empirical likelihood methods for pretest-

posttest studies. Our primary goal was to construct confidence intervals or conduct hy-

pothesis tests on the treatment effect using the empirical likelihood ratio statistic. The

proposed methods are most efficient when linear regression models adequately describe

the relations between the posttest responses and the pretest baseline measures. Kernel

regression methods provide a robust alternative approach against possible model misspec-

ifications, and they are practically useful when there are only a few baseline variables with

good prediction power. We also derived the explicit asymptotic variance formulas for the

imputation-based estimators as well as the estimator proposed by Huang et al. (2008).

Our proposed methods can be extended to cover other parameters of interest, such as the

distribution functions of the posttest responses. When the subjects are selected from a fi-

nite population using a complex survey design, the sampling features need to be taken into
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account for inferences. These latter problems will be discussed in the following chapters.

2.9 Proofs and Regularity Conditions

2.9.1 Lemmas

Lemma 1. Under the assumptions of Theorem 1 and models (2.4) and (2.5), we have

1√
n

n∑
i=1

(Ỹ1i − µ1)
d−→ N(0, V1) and

1√
n

n∑
i=1

(Ỹ0i − µ0)
d−→ N(0, V0) ,

where µ1 = E(Y1), µ0 = E(Y0), and

V1 = δσ2
ε1 + βT1 ΣZβ1 + {(1− δ)2δ−1σ2

ε1 + 2(1− δ)σ2
ε1}E(ZT ){E(ZZT )}−1E(Z) ,

V0 = (1− δ)σ2
ε0 + βT0 ΣZβ0 + {δ2(1− δ)−1σ2

ε0 + 2δσ2
ε0}E(ZT ){E(ZZT )}−1E(Z) .

Proof. We prove the result involving µ1. Write n−1/2
∑n

i=1(Ỹ1i − µ1) = Tn1 + Tn2 + Tn3,

where

Tn1 =
1√
n

n∑
i=1

Ri{Y1i −ZT
i β1)} ,

Tn2 =
1√
n

n∑
i=1

(1−Ri){ZT
i (β̂1 − β1)} ,

Tn3 =
1√
n

n∑
i=1

{ZT
i β1 − µ1}.

By the central limit theorem, we have

Tn1
d−→ N(0, δE[(Y1i −ZT

i β1)
2]),

and

T3n
d−→ N(0, V ar(ZT

i β1)).
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Noting that β̂1 =
(∑n

i=1RiZiZ
T
i

)−1∑n
i=1RiZiY1i, we have

T2n =
( 1

n

n∑
i=1

(1−Ri)Z
T
i

){ 1

n

n∑
i=1

RiZiZ
T
i

}−1 1√
n

n∑
i=1

RiZiε1i

= (1− δ)δ−1E(ZT )
(
E[ZZT ]

)−1 1√
n

n∑
i=1

RiZiε1i + op(1)

d−→ N(0, (1− δ)2δ−1σ2
ε1E(ZT ){E(ZZT )}−1E(Z)) .

since

1√
n

n∑
i=1

RiZiε1i
d−→ N(0, V ar(RiZiε1i))

= N(0, E(RiZiZ
T
i ε

2
1i))

= N(0, δE(ZZT )σ2
ε1) .

Noting that V1 = AV (Tn1 + Tn2 + Tn3), Cov(Tn1, Tn3) = 0, Cov(Tn2, Tn3) = 0 and

Cov(Tn1, Tn2) = (1− δ)σ2
ε1E(ZT ){E(ZZT )}−1E(Z) ,

therefore,

V1 = δE[(Y1i −ZT
i β1)

2] + V ar(ZT
i β1) + (1− δ)2δ−1E(ZT ){E(ZZT )}−1E(Z)σ2

ε1 +

2(1− δ)E(ZT ){E(ZZT )}−1E(Z)σ2
ε1

= δσ2
ε1 + βT1 ΣZβ1 + {(1− δ)2δ−1σ2

ε1 + 2(1− δ)σ2
ε1}E(ZT ){E(ZZT )}−1E(Z) .

Lemma 2. Under the conditions of Theorem 1 and models (2.4) and (2.5), we have

Ṽ1 =
1

n

n∑
i=1

(Ỹ1i − µ1)
2 = δσ2

ε1 + βT1 ΣZβ1 + op(1),

Ṽ0 =
1

n

n∑
i=1

(Ỹ0i − µ0)
2 = (1− δ)σ2

ε0 + βT0 ΣZβ0 + op(1).
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Proof. We prove the result for Ṽ1. Noting that β̂1 − β1 = op(1), we can write

Ỹ1i − µ1 = Ri(Y1i −ZT
i β1) + (1−Ri)Z

T
i (β̂1 − β1) + (ZT

i β1 − µ1) ,

which leads to Ṽ1 = Rn1 +Rn2 +Rn3 + op(1) where

Rn1 =
1

n

n∑
i=1

Ri(Y1i −ZT
i β1)

2 ,

Rn2 =
1

n

n∑
i=1

(ZT
i β1 − µ1)

2 ,

Rn3 =
2

n

n∑
i=1

Ri(Y1i −ZT
i β1)(Z

T
i β1 − µ1) .

By the law of large numbers, we have Rn1
P−→ δE{(Y1i−ZT

i β1)
2}, Rn2

P−→ V ar(ZT
i β1), and

Rn3
P−→ 2E{Ri(Y1i − ZT

i β1)(Z
T
i β1 − µ1)}, where “

P−→” means convergence in probability.

Therefore,

Rn1 = δσ2
ε1 + op(1) ,

Rn2 = βT1 ΣZβ1 + op(1) , and

Rn3 = op(1) .

It follows that Ṽ1 = δσ2
ε1 + βT1 ΣZβ1 + op(1).

Lemma 3. Under the assumptions of Theorem 1 and models (2.4) and (2.5), max1≤i≤n |Ỹji| =
op(
√
n), j = 0, 1.

Proof. We have max1≤i≤n |Yji| = op(
√
n) and max1≤i≤n ‖Zi‖ = op(

√
n) under the

assumed conditions (Lemma 11.2 of Owen, 2001). The results follow from

max
1≤i≤n

|Ỹji| ≤ max
1≤i≤n

|Yji|+ max
1≤i≤n

‖Zi‖T β̂j

and the fact that β̂j = Op(1) for j = 0, 1.
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2.9.2 Proof of Theorem 1

Proof. To facilitate asymptotic derivations, we introduce a nuisance parameter µ =
∑n

i=1 qiỸ0i

and rewrite constraint (2.7) as

n∑
i=1

piỸ1i = µ+ θ and
n∑
i=1

qiỸ0i = µ .

For fixed values of θ and µ, the solutions to the constrained maximization problem are

given by

p̂i =
1

n[1 + λ1(Ỹ1i − µ− θ)]
and q̂i =

1

n[1 + λ0(Ỹ0i − µ)]
,

where the Lagrange multipliers λ1 and λ0 are the solutions to

1

n

n∑
i=1

Ỹ1i − µ− θ
1 + λ1(Ỹ1i − µ− θ)

= 0 and
1

n

n∑
i=1

Ỹ0i − µ
1 + λ0(Ỹ0i − µ)

= 0 .

Let r(θ, µ) be the empirical log-likelihood ratio statistic on (θ, µ). We have

r(θ, µ) =
n∑
i=1

log (np̂i) +
n∑
i=1

log (nq̂i)

= −
n∑
i=1

log [1 + λ1(Ỹ1i − µ− θ)]−
n∑
i=1

log [1 + λ0(Ỹ0i − µ)].

Let µ̂ = µ̂(θ) be the maximizer of r(θ, µ) for a given θ, which can be obtained through

profiling. The solution is obtained by setting

∂r(θ, µ)

∂µ
=

n∑
i=1

λ1

1 + λ1(Ỹ1i − µ− θ)]
+

n∑
i=1

λ0

1 + λ0(Ỹ0i − µ)]
= 0 . (2.17)

Note that λ1 and λ0 both depend on µ but (2.17) holds due to the fact that

n∑
i=1

(∂λ1/∂µ)(Ỹ1i − µ− θ)
1 + λ1(Ỹ1i − µ− θ)]

+
n∑
i=1

(∂λ0/∂µ)(Ỹ0i − µ− θ)
1 + λ0(Ỹ0i − µ)]

= 0 .

It follows from (2.17) that n(λ1 + λ0) = 0, which leads to λ1 = −λ0. Without loss of

generality, we only need to consider those θ and µ such that θ = E(Y1)−E(Y0) +O(n−1/2)
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and µ = E(Y0) + O(n−1/2). By the Taylor series expansion, the empirical loglikelihood

ratio statistic can be written as

r(θ, µ) = −
n∑
i=1

log [1 + λ1(Ỹ1i − µ− θ)]−
n∑
i=1

log [1 + λ0(Ỹ0i − µ)]

= −
n∑
i=1

{
λ1(Ỹ1i − µ− θ)−

1

2
(λ1(Ỹ1i − µ− θ))2

}
+ γ1n

−
n∑
i=1

{
λ0(Ỹ0i − µ)− 1

2
(λ0(Ỹ0i − µ))2

}
+ γ0n,

with

|γ1n| ≤ d1

n∑
i=1

|λ1(Ỹ1i − µ− θ)|3 in probability

|γ0n| ≤ d2

n∑
i=1

|λ0(Ỹ0i − µ)|3 in probability,

where d1 and d2 are positive constants. It follows from Lemmas 3 and standard arguments

from Owen (2001), that |γ1n| ≤ op(1) and |γ0n| ≤ op(1).

Meanwhile, since

0 =
1

n

n∑
i=1

Ỹ1i − µ− θ
1 + λ1(Ỹ1i − µ− θ)

=
1

n

n∑
i=1

(Ỹ1i − µ− θ)

[
1− λ1(Ỹ1i − µ− θ) +

λ21(Ỹ1i − µ− θ)2

1 + λ1(Ỹ1i − µ− θ)

]
,

and

n−1
n∑
i=1

|Ỹ1i − µ− θ|3|λ1|2|1 + (Ỹ1i − µ− θ)λ1|−1 = op(n
1/2)Op(n

−1)Op(1) = op(n
−1/2),

then we have

λ1 = Ṽ −11

1

n

n∑
i=1

(Ỹ1i − µ− θ) + op(n
−1/2) , (2.18)

44



where Ṽ1 = n−1
∑n

i=1(Ỹ1i − µ1)
2.

Similarly,

λ0 = Ṽ −10

1

n

n∑
i=1

(Ỹ0i − µ) + op(n
−1/2) , (2.19)

where Ṽ0 = n−1
∑n

i=1(Ỹ0i − µ0)
2. The profile solution µ̂ = µ̂(θ), which satisfies λ1 = −λ0,

has the following asymptotic representation:

µ̂ = ν( ¯̃Y1 − θ) + (1− ν) ¯̃Y0 + op(n
−1/2) , (2.20)

where ν = Ṽ −11 [Ṽ −10 + Ṽ −11 ]−1, ¯̃Y1 = n−1
∑n

i=1 Ỹ1i and ¯̃Y0 = n−1
∑n

i=1 Ỹ0i.

Moreover, note that since

0 =
1

n

n∑
i=1

λ1(Ỹ1i − µ− θ)
1 + λ1(Ỹ1i − µ− θ)

=
1

n

n∑
i=1

λ1(Ỹ1i − µ− θ)

[
1− λ1(Ỹ1i − µ− θ) +

λ21(Ỹ1i − µ− θ)2

1 + λ1(Ỹ1i − µ− θ)

]
,

and

n−1
n∑
i=1

|Ỹ1i − µ− θ|3|λ1|3|1 + (Ỹ1i − µ− θ)λ1|−1 = op(n
1/2)Op(n

−3/2)Op(1) = op(n
−1),

i.e.,
n∑
i=1

|λ1|3|Ỹ1i − µ− θ|3|1 + (Ỹ1i − µ− θ)λ1|−1 = op(1),

then,
n∑
i=1

λ1(Ỹ1i − µ− θ) =
n∑
i=1

λ21(Ỹ1i − µ− θ)2 + op(1). (2.21)

Likewise,
n∑
i=1

λ0(Ỹ0i − µ) =
n∑
i=1

λ20(Ỹ0i − µ)2 + op(1). (2.22)
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The empirical likelihood ratio statistic on the parameter of interest, θ, is given by

r(θ) = r(θ, µ̂(θ)). Using the asymptotic representations (2.18), (2.19), (2.20), (2.21), and

(2.22), we have

−2r(θ) = 2
n∑
i=1

{
λ1(Ỹ1i − µ̂− θ)−

1

2
(λ1(Ỹ1i − µ̂− θ))2

}
+

2
n∑
i=1

{
λ0(Ỹ0i − µ̂)− 1

2
(λ0(Ỹ0i − µ̂))2

}
+ op(1)

=
n∑
i=1

λ1(Ỹ1i − µ̂− θ) +
n∑
i=1

λ0(Ỹ0i − µ̂) + op(1)

= Ṽ −11 n−1
{ n∑
i=1

(Ỹ1i − µ̂− θ)
}2

+ Ṽ −10 n−1
{ n∑
i=1

(Ỹ0i − µ̂)
}2

+ op(1)

= Ṽ −11 n(1− ν)2( ¯̃Y1 − ¯̃Y0 − θ)2 + Ṽ −10 nν2( ¯̃Y1 − ¯̃Y0 − θ)2 + op(1)

=
n

Ṽ1 + Ṽ0
( ¯̃Y1 − ¯̃Y0 − θ)2 + op(1) .

The asymptotic variance of
√
n( ¯̃Y1 − ¯̃Y0 − θ) is given by:

V = AV (
√
n( ¯̃Y1 − ¯̃Y0))

= δσ2
ε1 + βT1 ΣZβ1 + {(1− δ)2δ−1σ2

ε1 + 2(1− δ)σ2
ε1}E(ZT ){E(ZZT )}−1E(Z) +

(1− δ)σ2
ε0 + βT0 ΣZβ0 + {δ2(1− δ)−1σ2

ε0 + 2δσ2
ε0}E(ZT ){E(ZZT )}−1E(Z)−

2E{(ZT
i β1 − µ1)(Z

T
i β0 − µ0)} ,

= V ar(ZT
i β1 −ZT

i β0) + δσ2
ε1 + (1− δ)σ2

ε0 +

{(1− δ)2δ−1σ2
ε1 + 2(1− δ)σ2

ε1 + δ2(1− δ)−1σ2
ε0 + 2δσ2

ε0}E(ZT ){E(ZZT )}−1E(Z) ,

= (β1 − β0)
TΣZ(β1 − β0) + {δ + (1− δ)2δ−1 + 2(1− δ)}σ2

ε1 +

{(1− δ) + δ2(1− δ)−1 + 2δ}σ2
ε0 ,

= (β1 − β0)
TΣZ(β1 − β0) + δ−1σ2

ε1 + (1− δ)−1σ2
ε0 .

To derive a closed form expression for V , we note that E(ZT ){E(ZZT )}−1E(Z) = 1 if

we assume two linear regression models (2.4) and (2.5) both include an intercept, i.e., the

vector Z has “1” as its first component.
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Let

c1 = {(Ṽ1 + Ṽ0)/V }−1,

It follows from Lemma 1 that−2r(θ)/c1 = n( ¯̃Y1− ¯̃Y0−θ)2/V+op(1) converges in distribution

to a χ2
1 variable when θ = E(Y1)− E(Y0) = µ1 − µ0, n→∞ and n1/n→ δ ∈ (0, 1).

2.9.3 Regularity Conditions for Theorem 2

Let Z be a d-dimensional vector; let f(z) be the probability density of Z; let m(z) =

E(Y |Z = z), let g(z) = δf(z). We assume that the following conditions hold for both

Y = Y1 and Y = Y0:

C1. f(z) has bounded partial derivatives up to order k(> d) almost surely.

C2. m(z) has bounded partial derivatives up to order k(> d) almost surely.

C3. E(Y 2) <∞.

C4.
√
nE{(1−R)|m(Z)|I(g(Z) < bn)} → 0 as n→∞.

C5. The kernel function K is bounded, with bounded support and a finite variance.

Moreover, the order k of the kernel function is greater than d, where the order of a

kernel is defined as the order of the first non-zero moment of the kernel.

C6. nh2dn (b2n ∧ (log log n)−1)→∞, nh2kn /b
2
n → 0, and hkn/b

2
n → 0, as n→∞.
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2.9.4 Proof of Theorem 2

Proof. As in the proof of Theorem 1, we define µ to be a fixed number depending on n

such that µ = µ0 + o(n−1/2). We obtain empirical likelihood estimates for the p’s and q’s

given by:

p̂i =
1

n[1 + λ1(Ỹ kel
1i − µ− θ)]

and q̂i =
1

n[1 + λ0(Ỹ kel
0i − µ)]

,

where λ1 and λ0 are the solutions to the following equations:

1

n

n∑
i=1

Ỹ kel
1i − µ− θ

1 + λ1(Ỹ kel
1i − µ− θ)

= 0 and
1

n

n∑
i=1

Ỹ kel
0i − µ

1 + λ0(Ỹ kel
0i − µ)

= 0.

Let rkel(θ, µ) be the empirical log-likelihood ratio statistic. Then

rkel(θ, µ) = −
n∑
i=1

log [1 + λ1(Ỹ
kel
1i − µ− θ)]−

n∑
i=1

log [1 + λ0(Ỹ
kel
0i − µ)] .

Similar arguments as in the proof of Theorem 1 will lead to

−2rkel(θ, µ̂) =
n

Ṽ kel
1 + Ṽ kel

0

( ¯̃Y kel
1 − ¯̃Y kel

0 − θ)2 + op(1),

where ¯̃Y kel
1 and ¯̃Y kel

0 are given by:

¯̃Y kel
1 =

1

n

n∑
i=1

{RiY1i + (1−Ri)m̂1bn(Zi)}

¯̃Y kel
0 =

1

n

n∑
i=1

{(1−Ri)Y0i +Rim̂0bn(Zi)}.

From LEMMA A.1. of Wang and Rao (2002), we have

1√
n

n∑
i=1

(Ỹ kel
1i − µ1) =

1√
n

n∑
i=1

(m1(Zi)− µ1) +
1√
n

n∑
i=1

Ri(Y1i −m1(Zi)) +

1√
n

n∑
i=1

Ri(Y1i −m1(Zi))
1− δ
δ

+ op(n
−1/2) ,

1√
n

n∑
i=1

(Ỹ kel
0i − µ0) =

1√
n

n∑
i=1

(m0(Zi)− µ0) +
1√
n

n∑
i=1

(1−Ri)(Y0i −m0(Zi)) +

1√
n

n∑
i=1

(1−Ri)(Y0i −m0(Zi))
δ

1− δ
+ op(n

−1/2) .
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Moreover, if we let σ2
j (Z) = V ar(Yj|Z) for j = 0, 1, we have

1√
n

n∑
i=1

(Ỹ kel
1i − µ1)

d−→ N(0, V kel
1 (θ)) ,

1√
n

n∑
i=1

(Ỹ kel
0i − µ0)

d−→ N(0, V kel
0 (θ)) ,

where V kel
1 (θ) = E(σ2

1(Z))/δ+V ar(m1(Z)) and V kel
0 (θ) = E(σ2

0(Z))/(1−δ)+V ar(m0(Z)).

It follows from Wang and Rao (2002) that

√
n( ¯̃Y kel

1 − ¯̃Y kel
0 − θ) =

1√
n

n∑
i=1

{(m1(Zi)− µ1) +
Ri

δ
(Y1i −m1(Zi))} −

1√
n

n∑
i=1

{(m0(Zi)− µ0) +
1−Ri

1− δ
(Y0i −m0(Zi))}+ op(n

−1/2) .

The asymptotic variance of
√
n( ¯̃Y kel

1 − ¯̃Y kel
0 − θ) is therefore given by

V kel = AV (
√
n( ¯̃Y kel

1 − ¯̃Y kel
0 − θ))

=
1

δ
E(σ2

1(Z)) + V ar(m1(Z)) +
1

1− δ
E(σ2

0(Z)) + V ar(m0(Z))−

2E(m1(Z)m0(Z)) + 2µ1µ0

=
1

δ
E(σ2

1(Z)) +
1

1− δ
E(σ2

0(Z)) + V ar(m1(Z)−m0(Z)) .

Defining the scaling constant

c2 = {(Ṽ kel
1 + Ṽ kel

0 )/V kel}−1 , (2.23)

it then follows immediately that −2rkel(θ)/c2 = n( ¯̃Y kel
1 − ¯̃Y kel

0 − θ)2/V kel converges to a χ2
1

random variable as n1, n0 →∞ when θ is the true parameter.
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Chapter 3

Mann-Whitney Test with Empirical

Likelihood Methods for

Pretest-Posttest Studies

3.1 Introduction

The methods in Chapter 2 focus on making inferences of the treatment effect η = µ1−µ0 for

pretest-posttest studies, where µ1 = E(Y1) and µ0 = E(Y0). Another important research

problem for pretest-posttest studies is to test the difference of the distribution functions

between the treatment group and the control group. Let S1(t) = P (Y1 > t) and the

S0(t) = P (Y0 > t) be respectively the survival functions of the (non-negative) response

variables Y1 and Y0. We say Y1 is stochastically larger than Y0 if S1(t) > S0(t) for all t > 0.

The formal statistical inference problem is to test H0 : F1 = F0 against H1 : F1 < F0,

where F1 and F0 are the cumulative distribution functions of Y1 and Y0, respectively. For

two independent samples, the nonparametric Mann-Whitney test (Mann and Whitney

(1947)) has been a popular choice for testing the difference of two distribution functions.

Owen (2001) presented a two-sample EL formulation of the problem but the solution to
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the constrained maximization problem turns out to be extremely difficult to find. The

computational complexity is created by the use of a U-statistic in forming the constraints.

Jing et al. (2009) proposed a jackknife empirical likelihood (JEL) method for handling

U-statistics. It replaces the complicated nonlinear constraint by a simple linear constraint

through the so-called jackknife pseudo values, and hence results in a computationally

friendly formulation of the constrained maximization problem.

In this chapter, our goal is to develop empirical likelihood based methods for the Mann-

Whitney test for pretest-posttest studies, with the major focus on incorporating the two

unique features of the sample data: (i) the availability of baseline information for both

groups; and (ii) the structure of the data with missing by design. Our proposed meth-

ods combine the standard nonparametric Mann-Whitney test with the empirical likelihood

method of Huang et al. (2008) (the HQF method), the imputation-based empirical likeli-

hood method we developed in Chapter 2, and the jackknife empirical likelihood method of

Jing et al. (2009). The rest of the chapter is organized as the following. In Section 3.2, we

review the Mann-Whitney test and the two-sample EL formulation of the test with two

independent samples. A jackknife EL formulation of the test is also presented. We propose

the adjusted Mann-Whitney test with HQF estimators and discuss its asymptotic proper-

ties in Section 3.3. In Section 3.4, we look at the two-sample EL and the JEL methods

for the situation where the pretest responses are included through imputation. In Section

3.5, we introduce a two-sample jackknife EL method. Finite sample performances of the

proposed methods are evaluated through simulation studies and the results are reported

in Section 3.6. Some concluding remarks are given in Section 3.7.
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3.2 Methods for Testing the Difference of Distribu-

tions of Two Independent Samples

In this section, we first review the standard Mann-Whitney test for testing the difference

of distributions of two independent samples. Moreover, we will review the two-sample

EL method for estimating the probability of one random variable being stochastically

larger than another in two independent samples by Owen (2001). Last but not least, we

summarize the JEL method for the two-sample U-statistic by Jing et al. (2009).

3.2.1 Standard Mann-Whitney Test

Suppose we have two independent samples {Y1, · · · , Yn} and {X1, · · · , Xm} having contin-

uous cumulative distribution functions F and G respectively. We say the random variable

Y is “stochastically larger than” the random variable X if P (Y > a) > P (X > a) for every

a, i.e. F (a) < G(a) for every a. The objective is to test the null hypothesis H0 : F = G

against the alternative H1 : F < G. We can see that this alternative hypothesis is mean-

ingful especially when we consider testing the effect of treatment on some measurement.

For instance, we want to assess the effect of a certain treatment on the survival time of

the patients. Longer survival time (larger survival function) means greater effectiveness

of the treatment. Then, rejecting the null hypothesis in favor of the one-sided alternative

indicates there is some effect of the treatment on elongating the survival time of the pa-

tients. In order to test the null hypothesis that the two samples are identically distributed,

i.e. F = G, against the alternative that the distribution of the first sample is stochasti-

cally larger than the distribution of the second sample, i.e. F < G, we may consider the

rank statistics. If the Yi’s are a sample from a stochastically larger distribution, then the

ranks of the Yi’s in the pooled sample {Y1, · · · , Yn, X1, · · · , Xm} should be relatively large.

Therefore, the measure of the size of the ranks can be used as a test statistic. Wilcoxon
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(1945) first proposed a test statistic

W =
n∑
i=1

RNi,

where RN1, · · · , RNn are the ranks of Y1, · · · , Yn in the pooled sample. Larger values of

the Wilcoxon statistic means rejecting the null hypothesis. In Mann and Whitney (1947),

the author constructed a U type statistic which counts the number of times that Yi ≥ Xj.

Mathematically, it is

U =
n∑
i=1

m∑
j=1

I(Yi ≥ Xj).

The Mann-Whitney test statistic is closely related to the Wilcoxon statistic through the

formula

W =
n(n+ 1)

2
+ U.

Wilcoxon (1945) considered the case n = m and tabulated 3 points of the distribution of

W . In Mann and Whitney (1947), the authors showed the formulation of the 2rth moment

of U and proved the limit distribution of the standardized test statistic is normal under

the null hypothesis. It has also been shown that the Mann-Whitney test is consistent. The

Mann-Whitney test statistic can also be written as

MW =
1

mn

n∑
i=1

m∑
j=1

I(Yi ≥ Xj) =

∫
Ĝ(a)dF̂ (a).

In this case, we have √
12mn/(m+ n+ 1)(MW − 1/2)

D−→ N(0, 1)

under the null hypothesis (van der Vaart (1998)). Following by this result, a one-sided

Mann-Whitney test rejects the null hypothesis when

MW − 1/2√
(m+ n+ 1)/12nm

> Z1−α,
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where α is the level of significance of the test and Z1−α is the (1−α)% quantile of a standard

normal distribution. Similarly, a two-sided Mann-Whitney test, which tests H0 : F = G

against H1 : F < G or F > G, rejects the null hypothesis if

|MW − 1/2|√
(m+ n+ 1)/12nm

> Z1−α/2.

3.2.2 Two-Sample Empirical Likelihood and Mann-Whitney Test

Owen (2001) considered a two-sample EL formulation for the Mann-Whitney test. Let

{Y1, · · · , Yn} and {X1, · · · , Xm} be two independent samples with marginal cdf F and

G respectively. Let h(Y,X, θ) = I(Y ≥ X) − θ. It follows that E{h(Y,X, θ)} = 0

defines θ = P (Y ≥ X), and θ = θ0 = 1/2 under H0 : F = G. Here are some as-

sumptions for facilitating the arguments. We assume that min{n,m} → ∞, and that

0 < E(h(Y,X, θ0)
2), which must be true if the expectation is taken with respect to F and

G and Y and X have overlapping supports. Here θ0 is the true value of θ. We also assume

either E(E(h(Y,X, θ0)|Y )2) > 0 or E(E(h(Y,X, θ0)|X)2) > 0.

We maximize the loglikelihood function

` =
n∑
i=1

log pi +
m∑
j=1

log qj,

subject to the constraints:

n∑
i=1

pi =
m∑
j=1

qj = 1,

n∑
i=1

m∑
j=1

piqj[I(Yi ≥ Xj)− θ] = 0,

where p = (p1, · · · , pn) and q = (q1, · · · , qm)’s are the discrete probability measures that

F and G respectively put on over {Y1, · · · , Yn} and {X1, · · · , Xm}. Define Hij(θ) = Hij =
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I(Yi ≥ Xj)− θ. Using the Lagrange multiplier method, we obtain the estimates for pi and

qj:

p̂i =
1

n+ λ
∑m

r=1 q̂rHir

=
1

n

1

1 + λH̃i·/n
,

q̂j =
1

m+ λ
∑n

s=1 p̂sHsj

=
1

m

1

1 + λH̃·j/m
,

where H̃i· =
∑m

r=1 q̂rHir, and H̃·j =
∑n

s=1 p̂sHsj. The Lagrange multiplier λ is determined

through
n∑
i=1

m∑
j=1

p̂iq̂j[I(Yi ≥ Xj)− θ] =
n∑
i=1

m∑
j=1

p̂iq̂jHij = 0. (3.1)

Define the profile empirical loglikelihood ratio as

r(θ0) =
n∑
i=1

log np̂i(θ0) +
m∑
j=1

logmq̂j(θ0)

= −

[
n∑
i=1

log

(
1 +

λ

n
H̃i·

)
+

m∑
j=1

log

(
1 +

λ

m
H̃·j

)]
.

The following arguments by Owen (2001) sketch the proof that

−2r(θ0)→ χ2
1

as n→∞. Since p̂ and q̂ can be written as:

p̂i =
1

n

1

1 + λH̃i·/n
=

1

n

[
1−

(
λ

n
H̃i·

)
+

(
λ

n
H̃i·

)2

−
(
λ

n
H̃i·

)3

+ · · ·

]
,

q̂i =
1

m

1

1 + λH̃·j/m
=

1

m

[
1−

(
λ

m
H̃·j

)
+

(
λ

m
H̃·j

)2

−
(
λ

m
H̃·j

)3

+ · · ·

]
,

when plugging p̂ and q̂ into (3.1), we have:

0 = H̄·· − λ

[
1

n2m

n∑
i=1

m∑
j=1

HijH̃i· +
1

nm2

n∑
i=1

m∑
j=1

HijH̃·j

]

+λ2

[
1

n3m

n∑
i=1

m∑
j=1

HijH̃
2
i· +

1

nm3

n∑
i=1

m∑
j=1

HijH̃
2
·j +

1

n2m2

n∑
i=1

m∑
j=1

HijH̃i·H̃·j

]
+ · · · ,
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where H̄·· = (nm)−1
∑n

i=1

∑m
j=1Hij. It can be argued that ||λ|| = Op(n

−1/2), and by

ignoring its higher order terms, we have:

λ
.
=

[
1

n2m

n∑
i=1

m∑
j=1

HijH̃i· +
1

nm2

n∑
i=1

m∑
j=1

HijH̃·j

]−1
H̄··. (3.2)

Define H̄i· = m−1
∑m

j=1Hij and H̄·j = n−1
∑n

i=1Hij; then

H̃i· = H̄i· −
λ

m2

m∑
r=1

HirH̃·r and H̃·j = H̄·j −
λ

n2

n∑
s=1

HsjH̃s·.

Replacing H̃ in (3.2) with H̄, with the difference absorbed into the coefficient of higher

order terms of λ, we have

λ
.
=

[
1

n2m

n∑
i=1

m∑
j=1

HijH̄i· +
1

nm2

n∑
i=1

m∑
j=1

HijH̄·j

]−1
H̄··

=

[
1

n2m2

n∑
i=1

m∑
j=1

Hij

m∑
r=1

Hir +
1

n2m2

n∑
i=1

m∑
j=1

Hij

n∑
s=1

Hsj

]−1
H̄··

= D−1H̄··,

where

D =
1

n2m2

n∑
i=1

m∑
j=1

Hij

m∑
r=1

Hir +
1

n2m2

n∑
i=1

m∑
j=1

Hij

n∑
s=1

Hsj.

Now, by keeping terms up to order λ2 in the log likelihood ratio, we have

−2 log r(θ0) = 2

[
n∑
i=1

log

(
1 +

λ

n
H̃i·

)
+

m∑
j=1

log

(
1 +

λ

m
H̃·j

)]
.
= 2

n∑
i=1

(
λ

n
H̃i· −

1

2

(
λ

n
H̃i·

)2
)

+ 2
m∑
j=1

(
λ

m
H̃·j −

1

2

(
λ

m
H̃·j

)2
)

.
= 2

n∑
i=1

(
λ

n
H̃i· −

1

2

(
λ

n
H̄i·

)2
)

+ 2
m∑
j=1

(
λ

m
H̃·j −

1

2

(
λ

m
H̄·j

)2
)
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Further replacing H̃’s by their expressions in terms of H̄’s and keeping terms up to order

λ2, after some calculation, we have

−2 log r(θ0)
.
= 4λH̄·· − 3λ2

(
1

n2

n∑
i=1

H̄2
i· +

1

m2

m∑
j=1

H̄2
·j

)
.

Plugging λ
.
= D−1H̄·· into the above expression, we have

− 2 log r(θ0)
.
= H̄2

··(4D
−1 − 3KD−2), (3.3)

where

K =
1

n2

n∑
i=1

H̄2
i· +

1

m2

m∑
j=1

H̄2
·j.

It can be shown that as min{n,m} → ∞,

(4D−1 − 3KD−2)V ar(H̄··)→ 1,

by using an ANOVA decomposition method on h(X, Y, θ0) = I(Y ≥ X) − θ0. Therefore,

it follows that the asymptotic distribution of −2 log r(θ0) is χ2
1. The α-level empirical

likelihood ratio test rejects H0 : F = G if −2r(θ0) > χ2
1,α for θ0 = 1/2, where χ2

1,α

is the upper 100αth quantile of the χ2
1 distribution. We notice that H̄·· is indeed the

standard Mann-Whitney statistic from the previous section. Hence, using this two-sample

EL technique to test F = G is equivalent to using the standard Mann-Whitney test when

the observations are all independent.

3.2.3 Jackknife Empirical Likelihood for Two-Sample U-Statistics

The computation difficulties in solving (3.1) are due to the formulation of the problem

involving a U-statistic. Jing et al. (2009) proposed a so-called jackknife empirical likelihood

method which can be used for such problems. The main idea of JEL is to construct the

asymptotically independent jackknife pseudo values of the statistic of interest, and then
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apply the regular EL method to the mean of the pseudo values. We focus here on the JEL

method for two-sample U-statistics.

Suppose we have two random samples {Y1, · · · , Yn} and {X1, · · · , Xm} from two inde-

pendent distributions. Define a two-sample U-statistic of degree (k1, k2) with a kernel h as

follows:

Un,m =

(
n

k1

)−1(
m

k2

)−1 ∑
1≤i1<···<ik1≤n

∑
1≤j1<···<jk2≤m

h(Yi1, · · · , Yik1 , Xj1, · · · , Xjk2)

=: T (Y1, · · · , Yn, X1, · · · , Xm).

Notice the standard Mann-Whitney test statistic

MW =
1

nm

n∑
i=1

m∑
j=1

I(Yi ≥ Xj)

is a special case of Un,m for k1 = k2 = 1, and h = I(Yi ≥ Xj). Let θ = Eh(Y1, · · · , Yk1 , X1, · · · , Xk2)

be the parameter of interest. The jackknife pseudo values can be constructed in the fol-

lowing way. Define

Zi =

{
Yi i = 1, · · · , n
Xi−n i = n+ 1, · · · , N,

where N = n+m. We can write

Un,m = T (Y1, · · · , Yn, X1, · · · , Xm) = T (Z1, · · · , ZN) = TN .

Denote

T
(−i)
N−1 = T (Z1, · · · , Zi−1, Zi+1, · · · , ZN),

which is the statistic Un,m computed on the original data without the ith observation.

Then the jackknife pseudo values can be defined as:

Vi = N · TN − (N − 1) · T (−i)
N−1, i = 1, · · · , N.
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Here we notice that Un,m = (1/N)
∑N

i=1 Vi, and the Vi’s have been shown to be asymp-

totically independent (Shi (1984)). Now we apply the EL method to the approximately

independent r.v.s Vi, i = 1, · · · , N . Let p = (p1, · · · , pN) be the vector of probabilities

assigned to each Vi. The empirical likelihood evaluated at θ can be given by

L(θ) = max

{ N∏
i=1

pi :
N∑
i=1

pi = 1,
N∑
i=1

pi(Vi − EVi) = 0

}
,

where it can be shown

EVi =

 θ( N
N−(k1+k2))

{
(m− 1)k1

n
− (k2 − 1)

}
i = 1, · · · , n

θ( N
N−(k1+k2))

{
(n− 1)k2

m
− (k1 − 1)

}
i = n+ 1, · · · , N.

Particularly, when n = m and k1 = k2, EVi = θ. Solving this maximization problem by

Lagrange multipliers method gives

p̂i(θ) =
1

N

1

1 + λ(Vi − EVi)
,

where λ is the solution to the equation

1

N

N∑
i=1

(Vi − EVi)
1 + λ(Vi − EVi)

= 0.

Since
∏N

i=1 pi subject to
∑N

i=1 pi = 1 is maximized when pi = 1/N , then, the jackknife

empirical log-likelihood ratio at θ is:

rJEL(θ) =
N∑
i=1

log{Np̂i(θ)} = −
N∑
i=1

log{1 + λ(Vi − EVi)}.

Define g1,0(y) = Eh(y, Y2, · · · , Yk1 , X1, · · · , Xk2) − θ and σ2
1,0 = var(g1,0(y)); g0,1(x) =

Eh(Y1, Y2, · · · , Yk1 , x, · · · , Xk2) − θ and σ2
0,1 = var(g0,1(x)), Jing et al. (2009) have proved

that assuming Eh2(Y1, · · · , Yk1 , X1, · · · , Xk2) <∞, σ2
1,0 > 0, σ2

0,1 > 0 and 0 < lim inf n/m ≤
lim sup n/m <∞, then

−2rJEL(θ)→ χ2
1

in distribution. The JEL test on θ can therefore be constructed based on −2rJEL(θ).
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3.2.4 Notations under the Setting of Pretest-Posttest Studies

In this subsection, we introduce some notations we use throughout the rest of the chapter

under the setting of pretest-posttest studies. Suppose a random sample of n subjects

is selected from the target population, and values of the pretest responses Z (including

relevant covariates) are measured to collect baseline information for all n subjects. Each

subject is then randomly assigned to either a treatment group or a control group with

probability δ and 1 − δ respectively. Let Ri = 1 if subject i is assigned to the treatment

group and Ri = 0 if subject i is assigned to the control group. The marginal distributions

of Z are assumed to be identical in the two groups because of the randomization. Following

the concept of counterfactual outcome in causal inference (Rubin (1978)), we let Y1 and Y0

be the posttest response a subject potentially would have if he/she receives the treatment

and control respectively. For convenience, we label the subjects in the treatment group

from 1 to n1 and the subjects in the control group to be from n1 + 1 to n, and n = n1 +n0.

The observed data are denoted as {(Ri = 1, zi, y1i), i = 1, · · · , n1} for the treatment group,

and {(Ri = 0, zi, y0i), i = n1 +1, · · · , n} for the control group. Note that Y1 and Y0 can not

be observed at the same time for the same subject. The variables Y1 and Y0 are missing by

design. It follows from the randomization of subjects that P (R = 1 | Z, Y1, Y0) = P (R =

1). Let F1 and F0 be the marginal distribution function of Y1 and Y0 respectively. Our

interest is to test hypothesis H0 : F1 = F0 against H1 : F1 < F0 or F1 > F0.

When we only consider the posttest responses from two groups in the analysis, we may

directly apply one of the methods described previously to the data {Y11, · · · , Y1n1} and

{Y0(n1+1), · · · , Y0n}. However, in the following sections, we want to extend these methods

for incorporating the pretest responses and the baseline covariates into the analyses.
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3.3 Adjusted Mann-Whitney Test Based on the HQF

Estimators

In this section, we propose an adjusted Mann-Whitney test when both pretest and posttest

responses are included in the analysis. From previous sections, we know that the standard

Mann-Whitney test assumes that the observations from the two groups are independent

from each other. However, after using the pretest information from one sample to correct

for missingness in the other, the conventional Mann-Whitney test may no longer be valid.

Instead, we propose a method which constructs the adjusted Mann-Whitney test statistic

using the EL estimator proposed by Huang et al. (2008), denoted as HQF. We also derive

the asymptotic distribution of the adjusted statistic.

As we introduced in Chapter 2, Huang et al. (2008) proposed an EL estimator for the

treatment effect η = µ1 − µ0 which incorporates the baseline information. Their proposed

strategy is to estimate µ1 and µ0 separately with appropriate constraints over the pretest

variables for both the treatment and the control groups. The HQF estimator of µ1 is

computed as µ̂1HQF =
∑n1

i=1 p̂iy1i, where p̂i are obtained through the following EL method.

Let f(z, y1) be the joint density function of (Z, Y1) related to the treatment group and

f(z) be the marginal density function of Z. Let pi = f(zi, y1i) for i = 1, · · · , n1 and

ri = f(zi) for i = n1 + 1, · · · , n. The empirical log-likelihood function is given by

` =

n1∑
i=1

log(pi) +
n∑

i=n1+1

log(ri) . (3.4)

The p̂i and r̂i are obtained by maximizing (3.4) subject to pi > 0, ri > 0 and the following

constraints:
n1∑
i=1

pi = 1,
n∑

i=n1+1

ri = 1, (3.5)

n1∑
i=1

pia1(zi) =
n∑

i=n1+1

ria1(zi) = a1 , (3.6)
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where a1(z) = E(Y1 | Z = z), and a1 = E{a(Z)}. The actual form of a1(z) is typically

unknown, but one could use a guessed form in practice. Using the Lagrange multiplier

method, the resulting estimates for pi and ri are:

p̂i =
1

n1

1

1 + λ{a1(zi)− a1}
, i = 1, · · · , n1, (3.7)

r̂i =
1

n0

1

1 + τ{a1(zi)− a1}
, i = n1 + 1, · · · , n, (3.8)

and the Lagrange multipliers λ and τ are determined by solving

1

n1

n1∑
i=1

a1(zi)− a1
1 + λ{a1(zi)− a1}

= 0 , (3.9)

1

n0

n∑
i=n1+1

a1(zi)− a1
1 + τ{a1(zi)− a1}

= 0 . (3.10)

It has been shown by Huang et al. (2008) that µ̂1HQF is more efficient than the naive

estimator µ̂1 = n−11

∑n1

i=1 y1i. The HQF estimator µ̂0HQF =
∑n

j=n1+1 q̂jy0j can similarly be

computed using a0(zi), i = 1, · · · , n and y0j, j = n1 + 1, · · · , n, where a0(z) = E(Y0 | Z =

z).

Our proposed adjusted Mann-Whitney test statistic using the HQF estimators is given

by

MWHQF =
n∑

j=n1+1

n1∑
i=1

p̂iq̂jI(Y1i ≥ Y0j). (3.11)

where the p̂i’s and q̂j’s are those used for the HQF estimators µ̂1HQF and µ̂0HQF. Note that

δ = P (R = 1) and assume that the baseline information (Z1, · · · ,Zn) is an iid sample

from Z. We have the following result concerning the asymptotic distribution of MWHQF.

Theorem 3. Suppose that 0 < δ < 1 and E|ak(Z)|3 < ∞ for k = 1, 0. Then under

the null hypothesis H0: F1 = F0,

√
n
(
MWHQF − 1/2

) d−−→ N
(
0, E(A2

i )
)
,
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where

Ai = −Ri

δ
(1− F0(Y1i)) +

1−Ri

1− δ
(1− F1(Y0i))

+

(
−E{I(Y1 ≥ Y0)ψ1(Z)}/δ

−E{I(Y1 ≥ Y0)ψ0(Z)}/(1− δ)

)T

×

(
{E(ψ1(Z)ψT

1 (Z))}−1 0

0 {E(ψ0(Z)ψT
0 (Z))}−1

)
(Ri − δ)

(
ψ1(Zi)

−ψ0(Zi)

)

with ψk(Zi) = (1, ak(Zi))
T , k = 1, 0 and δ = P (Ri = 1).

Proof. Following the arguments in the Appendix of Huang et al. (2008), p̂i of equation

(3.7) can be reparameterized as

p̂i =
1

n1

1

1 + λ1{a1(zi)− a1}
=

1

n

1

ξT1 ψ1(zi)
, i = 1, · · · , n1, (3.12)

with ξ1 = (n1(1− λ1a1)/n, n1λ1/n)T . Similarly, q̂j can be reparameterized as

q̂j =
1

n0

1

1 + λ0{a0(zi)− a0}
=

1

n

1

ξT0 ψ0(zi)
, j = n1 + 1, · · · , n, (3.13)

with ξ0 = (n0(1− λ0a0)/n, n0λ0/n)T . Let ξ̂1 and ξ̂0 be the estimates of ξ1 and ξ0 respec-

tively; then ξ̂1 and ξ̂0 are the solutions to estimating equations

U1(ξ1) =
1

n

n∑
i=1

[
Ri

ξT1 ψ1(zi)
− 1−Ri

1− ξT1 ψ1(zi)

]
ψ1(zi) = 0,

U0(ξ0) =
1

n

n∑
i=1

[
1−Ri

ξT0 ψ0(zi)
− Ri

1− ξT0 ψ1(zi)

]
ψ0(zi) = 0.

Denote ξ10 = (δ, 0)T and ξ00 = (1− δ, 0)T . We notice

ξT10ψ1(zi) = δ =⇒ E[U1(ξ
T
10)] = 0

ξT00ψ0(zi) = 1− δ =⇒ E[U0(ξ
T
00)] = 0.

64



Assuming that E|a1(Z)|3 <∞ and E|a0(Z)|3 <∞, then by a Taylor expansion, we have

√
n

[(
ξ̂1

ξ̂0

)
−
(
ξ10
ξ00

)]
= D−1 ×

√
n

(
U1(ξ10)

U0(ξ00)

)
+ op(1),

where

D = lim
n→∞

(
−∂U1/∂ξ

T
1 0

0 −∂U0/∂ξ
T
0

)∣∣∣∣∣
(ξ1=ξ10,ξ0=ξ00)

=

(
(1/δ(1− δ))E[ψ1(Z)ψT

1 (Z)] 0

0 (1/(1− δ)δ)E[ψ0(Z)ψT
0 (Z)]

)
,

and (
U1(ξ10)

U1(ξ00)

)
=

(
1/n

∑n
i=1((Ri − δ)/(δ(1− δ)))ψ1(zi)

1/n
∑n

i=1(((1−Ri)− (1− δ))/(δ(1− δ)))ψ0(zi)

)
=

1

n

n∑
i=1

(
Ri − δ
δ(1− δ)

)(
ψ1(zi)

−ψ0(zi)

)

Now, we plug p̂i(ξ̂1) and q̂j(ξ̂0) into the adjusted Mann-Whitney statistic in equation (3.11).
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Under the null hypothesis H0 : F1 = F0 and by the Taylor expansion we have

√
n(MWHQF − 1/2) =

√
n

{ n∑
j=1

n∑
i=1

Ri(1−Rj)I(Y1i ≥ Y0j)p̂i(ξ̂1)q̂j(ξ̂0)− 1/2

}

=
√
n

[ n∑
j=1

n∑
i=1

Ri(1−Rj)I(Y1i ≥ Y0j)p̂i(ξ10)q̂j(ξ00)− 1/2

]
+

(
E(∂MWHQF/∂ξ

T
1 )

E(∂MWHQF/∂ξT0 )

)T
ξ1=ξ10,ξ1=ξ00

·
√
n

(
ξ̂1 − ξ10
ξ̂0 − ξ00

)
+ op(1)

=
√
n

[ n∑
j=1

n∑
i=1

Ri(1−Rj)I(Y1i ≥ Y0j)p̂i(ξ10)q̂j(ξ00)− 1/2

]
(∗)

+

(
−E[I(Y1 ≥ Y0)ψ1(Z)]/δ

−E[I(Y1 ≥ Y0)ψ0(Z)]/(1− δ)

)T
×(

E[ψ1(Z)ψT
1 (Z)] 0

0 E[ψ0(Z)ψT
0 (Z)]

)−1
×

1√
n

n∑
i=1

(Ri − δ)
(
ψ1(zi)

−ψ0(zi)

)
+ op(1).

We can notice that p̂i(ξ10) = 1/(δn) and q̂i(ξ00) = 1/((1− δ)n). Therefore, the term with

the double-summation in the above equation is in fact the standard Mann-Whitney test

statistic. Let

F̃1(y) =
1

n

n∑
i=1

Ri

δ
I(Y1i ≤ y)

F̃0(y) =
1

n

n∑
i=1

1−Ri

1− δ
I(Y0i ≤ y)
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Then we have

(∗) =
√
n

[ n∑
j=1

n∑
i=1

Ri(1−Rj)I(Y1i ≥ Y0j)p̂i(ξ10)q̂j(ξ00)− 1/2

]

=
√
n

[
1

n2

n∑
j=1

n∑
i=1

Ri(1−Rj)

δ(1− δ)
I(Y1i ≥ Y0j)− 1/2

]
=
√
n

(∫
F̃0dF̃1 −

∫
F0dF1

)
,

where F1 and F0 are the marginal cdf of Y1 and Y0. Define φ(h0, h1) =
∫
h0dh1 : (h0, h1) 7→

R. Then by Lemma 20.10 in van der Vaart (1998), φ is Hadamard differentiable and

φ′(h0, h1)
∣∣
(F0,F1)

= h1F0

∣∣∞
−∞ −

∫
h1dF0 +

∫
h0dF1.

Now by the Functional Delta method (Theorem 20.8 in van der Vaart (1998)), we have

(∗) =
√
n

(∫
F̃0dF̃1 −

∫
F0dF1

)
=
√
n(φ(F̃0, F̃1)− φ(F0, F1))

= φ′(
√
n(F̃0 − F0),

√
n(F̃1 − F1)) + op(1)

=
√
n(F̃1 − F1) · F0

∣∣∞
−∞ −

∫ √
n(F̃1 − F1)dF0 +

∫ √
n(F̃0 − F0)dF1 + op(1)

= 0−
√
n

∫
F̃1dF0 +

√
n

∫
F̃0dF1 + op(1)

= − 1√
n

n∑
i=1

∫ ∞
−∞

Ri

δ
I(Y1i ≤ y)dF0(y) +

1√
n

n∑
i=1

∫ ∞
−∞

1−Ri

1− δ
I(Y0i ≤ y)dF1(y) + op(1)

= − 1√
n

n∑
i=1

Ri

δ
(1− F0(Y1i)) +

1√
n

n∑
i=1

1−Ri

1− δ
(1− F1(Y0i)) + op(1) .

It follows that

√
n(MWHQF − 1/2) =

1√
n

n∑
i=1

Ai + op(1) , (3.14)
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where

Ai = −Ri

δ
(1− F0(Y1i)) +

1−Ri

1− δ
(1− F1(Y0i))

+

(
−1/δE{I(Y1 ≥ Y0)ψ1(Z)}

−1/(1− δ)E{I(Y1 ≥ Y0)ψ0(Z)}

)T

×

(
{E(ψ1(Z)ψT

1 (Z))}−1 0

0 {E(ψ0(Z)ψT
0 (Z))}−1

)
· (Ri − δ) ·

(
ψ1(Zi)

−ψ0(Zi)

)

Since R is independent of Y1 and Y0, Ai’s are iid random variables with E(Ai) = 0. Hence,

by the Central Limit Theorem,

√
n(MWHQF − 1/2)

d−→ N(0, E(A2
i )),

under the null hypothesis.

A two-sided α-level adjusted Mann-Whitney test rejects H0 : F1 = F0 when∣∣∣∣{Ê(A2
i )}−1/2

√
n(MWHQF − 1/2)

∣∣∣∣ ≥ Z1−α/2, (3.15)

where Z1−α/2 is the 100(1 − α/2)-th quantile of N(0, 1), Ê(A2
i ) = n−1

∑n
i=1 Â

2
i , and Âi is

the simple plug-in estimator for Ai.

We have shown that
√
n
(
MWHQF − 1/2

)
= n−1/2

∑n
i=1Ai + op(1) where the Ai’s are

iid random variables with E(Ai) = 0. An important observation is that this result holds

even if ak(Z) = E(Yk|Z), k = 1, 0 is not correctly specified. When ak(Z), k = 1, 0 is

misspecified, the test based on (3.15) is still valid with size approximately equal to α.

However, in this case, we expect the test to be less efficient in terms of a decrease in power.
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3.4 Empirical Likelihood Based Mann-Whitney Test

with Imputation

In this section, we present the EL based Mann-Whitney test for pretest-posttest studies

under the imputation approach discussed in Chapter 2, which incorporates the baseline

information and the missing-by-design data structure through an imputation model. We

extend the methods we described in Section 3.2.2 and Section 3.2.3 by imputing Y ∗1 and

Y ∗0 for subjects in the control group and in the treatment group respectively based on their

pretest responses and other baseline covariates, and applying the two-sample EL method

and the JEL method to the “enlarged” samples.

The imputation technique we consider in this section is the so-called stochastic regres-

sion imputation (Little and Rubin (1987)), which replaces each missing value in the data

by a predicted value from fitting a regression model to the complete cases (as in the regres-

sion imputation) plus a random residual term. The reason we use the stochastic regression

imputation here is that we would like to preserve the distributions of the posttest responses

approximately after imputation. The following linear models are assumed to be true.

Y1i = ZT
i β1 + ε1i, i = 1, · · · , n, (3.16)

Y0i = ZT
i β0 + ε0i, i = 1, · · · , n, (3.17)

where β1 and β0 are the regression parameters for treatment and control, and the ε1i’s

and ε0i’s are independent errors with zero mean and variance σ2
ε1 and σ2

ε0 respectively.

The assumed models imply that, for the initial sample of n selected subjects, the posttest

response would follow model (3.16) if the subject is assigned to the treatment group and

would follow model (3.17) if the subject is assigned to the control group. The observed

sample data are {(Ri = 1,Zi, Y1i), i = 1, · · · , n1} for the treatment group and {(Ri =

0,Zi, Y0i), i = n1+1, · · · , n} for the control group. The information of the pretest responses

{Zi, i = n1+1, · · · , n} can be used to impute the potential Y ∗1i for subjects i = n1+1, · · · , n
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through model (3.16), and the information of the pretest responses {Zi, i = 1, · · · , n1} can

be used to impute the potential Y ∗0i for subjects i = 1, · · · , n1 through model (3.17). Let

β̂1 = (
n∑
i=1

RiZiZ
T
i )−1

n∑
i=1

RiZiY1i,

β̂0 = (
n∑
i=1

(1−Ri)ZiZ
T
i )−1

n∑
i=1

(1−Ri)ZiY0i,

be the ordinary least squares estimators for β1 and β0 using observed data. Define

Y ∗1i = ZT
i β̂1 + ε∗1i, for i = n1 + 1, · · · , n

Y ∗0i = ZT
i β̂0 + ε∗0i, for i = 1, · · · , n1

to be the imputed values obtained through the stochastic regression imputation method,

where ε∗1i is a randomly selected element from the residual vector, {r1i = Y1i −ZT
i β̂1, i =

1, · · · , n1}, determined from fitting regression model (3.16) to the observed data from

the treatment group; and ε∗0i is a randomly selected element from the residual vector,

{r0i = Y0i −ZT
i β̂0, i = n1 + 1, · · · , n}, determined from fitting regression model (3.17) to

the observed data from the control group. Let {Ỹ1i = RiY1i + (1 − Ri)Y
∗
1 , i = 1, · · · , n}

and {Ỹ0i = (1−Ri)Y0i +RiY
∗
0 , i = 1, · · · , n}. With the imputation strategy, we now have

two “enlarged” samples: {Ỹ1i, i = 1, · · · , n} for the treatment, {Ỹ0i, i = 1, · · · , n} for the

control, and both samples are of size n. In Chapter 2, we showed that the EL-based test

for the treatment effect using the imputed samples is more powerful than the tests without

using the baseline information. The goal of this section is to develop tests for H0: F1 = F0

against H1: F1 < F0 using the enlarged sample data with imputed values.

We first consider the two-sample EL method discussed in Section 3.2.2. Let θ =

E(I(Ỹ1 > Ỹ0)). Let p = (p1, · · · , pn) and q = (q1, · · · , qn) be the discrete probability

measures over the two samples {Ỹ11, · · · , Ỹ1n} and {Ỹ01, · · · , Ỹ0n}, respectively. The two-

sample empirical likelihood function is given by

`(p, q) =
n∑
i=1

log pi +
n∑
j=1

log qj.
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Let p̃i = p̃i(θ) and q̃j = q̃j(θ) be obtained by maximizing `(p, q) subject to the constraints

n∑
i=1

pi =
n∑
j=1

qj = 1,

n∑
i=1

n∑
j=1

piqj[I(Ỹ1i ≥ Ỹ0j)− θ] = 0,

for a fixed θ. Define H∗ij(θ) = H∗ij = I(Ỹ1i ≥ Ỹ0j)− θ. Then p̃i and q̃i are given by:

p̃i =
1

n+ λ
∑n

r=1 q̃rH
∗
ir

=
1

n

1

1 + λH̃∗i·/n
,

q̃j =
1

n+ λ
∑n

s=1 p̃sH
∗
sj

=
1

n

1

1 + λH̃∗·j/n
,

where H̃∗i· =
∑n

r=1 q̃rH
∗
ir, and H̃∗·j =

∑n
s=1 p̃sH

∗
sj. The Lagrange multiplier λ is determined

through
n∑
i=1

n∑
j=1

p̃iq̃j[I(Ỹ1i ≥ Ỹ0j)− θ] =
n∑
i=1

n∑
j=1

p̃iq̃jH
∗
ij = 0. (3.18)

The empirical log-likelihood ratio statistic on θ with the imputed samples is computed as

r̃(θ) =
n∑
i=1

log{np̃i(θ)}+
n∑
j=1

log{nq̃j(θ)}

= −

[
n∑
i=1

log

(
1 +

λ

n
H̃∗i·

)
+

n∑
j=1

log

(
1 +

λ

n
H̃∗·j

)]
.

Unfortunately, due to the complicated dependence structures among the Ỹ1i’s and the Ỹ0j’s,

the asymptotic distribution of r̃(θ) does not seem to have a tractable form. We propose to

use a bootstrap calibrated α-level test as follows: Reject H0 if−2r̃(θ0) > bα, where θ0 = 1/2

and bα is the approximate upper α-quantile of the sampling distribution of−2r̃(θ0) obtained

through the following bootstrap procedures. Let θ̃ = n−2
∑n

i=1

∑n
j=1 I(Ỹ1i ≥ Ỹ0j).

(1) Select bootstrap samples s#1 of size n1 and s#0 of size n− n1 from the original treat-

ment sample and control sample, respectively, using simple random sampling with
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replacement; denote the two bootstrap sample data sets as {(Z#

i , Y
#

1i ), i ∈ s
#

1 } and

{(Z#

j , Y
#

0j ), j ∈ s
#

0 };

(2) Use the stochastic regression imputation method to obtain imputed values for Y #

1i ,

i ∈ s#0 and for Y #

0j , j ∈ s
#

1 ; compute r̃(θ) at θ = θ̃, denoted as r̃#(θ̃), using the two

imputed bootstrap samples;

(3) Repeat steps (1) and (2) B times, independently, to obtain the sequence {−2r̃#1 (θ̃),

· · · ,−2r̃#B(θ̃)}; let bα be the 100(1− α)th sample quantile of the sequence.

The jackknife EL method described in Section 3.2.3 can also be applied here to reduce

the computational burden of the test procedures. After imputation, our data become

{Ỹ1i = RiY1i + (1−Ri)Y
∗
1i, i = 1, · · · , n} for the treatment group, and {Ỹ0i = (1−Ri)Y0i +

RiY
∗
0i, i = 1, · · · , n} for the control. Let

MWIMP =
1

n2

n∑
i=1

n∑
j=1

I(Ỹ1i ≥ Ỹ0j),

and θ = E(I(Ỹ1i ≥ Ỹ0j)). We construct the jackknife pseudo values as the following. Let

Z̃i =

{
Ỹ1i i = 1, · · · , n
Ỹ0(i−n) i = n+ 1, · · · , 2n.

We can write

MWIMP = T (Ỹ11, · · · , Ỹ1n, Ỹ01, · · · , Ỹ0n) = T (Z̃1, · · · , Z̃2n) = T2n.

Define T
(−i)
2n−1 = T (Z̃1, · · · , Z̃i−1, Z̃i+1, · · · , Z̃2n), as the statistic computed on the data with

ith observation deleted. Specifically, we have:

T
(−i)
2n−1 =

1

n(n− 1)

∑
1≤k≤n
k 6=i

∑
1≤l≤n

I(Ỹ1k ≥ Ỹ0l), when 1 ≤ i ≤ n;

T
(−i)
2n−1 =

1

n(n− 1)

∑
1≤k≤n

∑
1≤l≤n
l 6=i

I(Ỹ1k ≥ Ỹ0l), when n+ 1 ≤ i ≤ 2n.
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Then the jackknife pseudo values can be defined as:

Ṽi = 2nT2n − (2n− 1)T
(−i)
2n−1, i = 1, · · · , 2n.

And it can be shown MWIMP = 1/(2n)
∑2n

i=1 Ṽi and E(Ṽi) = θ. Since Ỹ1i’s and Ỹ0i’s

are not independent r.v.’s, the jackknife pseudo values Ṽi’s are no longer asymptotically

independent. Let p = (p1, · · · , p2n) be the vector of probabilities assigned to each Ṽi. The

empirical likelihood evaluated at θ is given by

L(θ) = max

{ 2n∏
i=1

pi :
2n∑
i=1

pi = 1,
2n∑
i=1

piṼi = θ

}
.

Using the Lagrange multipliers method, we will obtain

p̃i(θ) =
1

2n

1

1 + λ(Ṽi − θ)
,

where λ is the solution to the equation

1

2n

2n∑
i=1

(Ṽi − θ)
1 + λ(Ṽi − θ)

= 0.

Since
∏2n

i=1 pi, subject to
∑2n

i=1 pi = 1 is maximized when pi = 1/2n, then the jackknife

empirical log-likelihood ratio at θ is given by:

r̃JEL(θ) =
2n∑
i=1

log(2np̃i(θ)) = −
2n∑
i=1

log{1 + λ(Ṽi − θ)}.

Since the Ṽi’s are not asymptotically independent, the asymptotic distribution of r̃JEL(θ)

does not have a tractable form. A bootstrap calibrated α-level test can be conducted as

follows. Reject H0 when r̃JEL(θ0) > b′α, where θ0 = 1/2 and b′α can be obtained through

the following procedure: Let θ̃JEL = (2n)−1
∑2n

i=1 Ṽi,

(1) Select bootstrap samples s#1 of size n1 and s#0 of size n− n1 from the original treat-

ment sample and control sample, respectively, using simple random sampling with

replacement; denote the two bootstrap sample data sets as {(Z#

i , Y
#

1i ), i ∈ s
#

1 } and

{(Z#

j , Y
#

0j ), j ∈ s
#

0 };
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(2) Use the stochastic regression imputation method to obtain imputed values for Y #

1i ,

i ∈ s#0 and for Y #

0j , j ∈ s
#

1 ; compute r̃JEL(θ) at θ = θ̃JEL, denoted as r̃#JEL(θ̃JEL), using

the two imputed bootstrap samples;

(3) Repeat steps (1) and (2)B times, independently, to obtain the sequence {−2r̃#JEL1(θ̃JEL),

· · · ,−2r̃#
JELB(θ̃JEL)}; let b′α be the 100(1− α)th sample quantile of the sequence.

One limitation of the stochastic regression imputation technique we considered in this

section is that after the imputation, the distribution of the imputed data is not exactly

the same as the distribution of the observed data. In other words, E(I(Ỹ1i > Ỹ0i)) 6=
E(I(Y1i > Y0i)). This may not be an ideal situation when we want to test the difference of

the distributions or make inference on θ = E(I(Y1i > Y0i)). Another disadvantage of the

imputation based methods is that the computation becomes much slower since the sample

sizes for both treatment and control groups are extended. Although the JEL method is

computationally more efficient than the EL method, it still suffers from slow computation

after imputation. When we pool the expanded sample of the treatment group and the

control group together to construct the jackknife pseudo values, the computation becomes

slower as the sample size n increases. In the next section, we propose a two-sample JEL

method which constructs the jackknife pseudo values separately for the treatment group

and the control group, and incorporates the pretest response through a constraint of the

EL problem.

3.5 Two-sample Jackknife EL Method for

Mann-Whitney Test

The empirical likelihood based Mann-Whitney test presented in Section 3.3 incorporates

baseline information through the constraint (3.6) but it relies on the asymptotic normality

74



of MWHQF. The EL ratio statistic on θ cannot be computed under the setting where

p̂i and q̂j are computed separately using the HQF approach. The imputation approach

described in Section 3.4 is not only computationally heavy but also technically difficult.

The asymptotic distribution of the EL ratio statistic r̃(θ) or r̃JEL(θ) is not readily available

and the proposed bootstrap calibration methods are ad hoc procedures. In this section,

we present a two-sample jackknife empirical likelihood method for the Mann-Whitney

test which allows simple computations, direct incorporations of pretest measures through

additional constraints, and rigorous justification of bootstrap calibrations for the EL ratio

test.

To simplify notation, let n0 = n − n1 and denote the sample data for the treatment

and the control groups as {(Z1i, Y1i), i = 1, · · · , n1} and {(Z0j, Y0j), j = 1, · · · , n0}, re-

spectively. Note that Z1i and Z0j share a common distribution but Y1i and Y0j might not.

Let Y 1 = (Y11, · · · , Y1n1) and Y 0 = (Y01, · · · , Y0n0). Let

Tn1,n0(Y 1,Y 0) =
1

n1

1

n0

n1∑
i=1

n0∑
j=1

I(Y1i ≥ Y0j) .

Let θ = E
(
I(Y1i ≥ Y0j)

)
= P (Y1 ≥ Y0), where Y1 and Y0 are the original response variables

under the treatment and the control, respectively. It follows that E
(
Tn1,n0(Y 1,Y 0)

)
= θ

for any sample sizes n1 and n0. Define the two-sample jackknife pseudo values as

Ui = n1Tn1,n0(Y 1,Y 0)− (n1 − 1)Tn1−1,n0(Y 1[−i],Y 0) , i = 1, · · · , n1 ,

Vj = n0Tn1,n0(Y 1,Y 0)− (n0 − 1)Tn1,n0−1(Y 1,Y 0[−j]) , j = 1, · · · , n0 ,

where

Y 1[−i] = (Y11, · · · , Y1(i−1), Y1(i+1), · · · , Y1n1) ,

Y 0[−j] = (Y01, · · · , Y0(j−1), Y0(j+1), · · · , Y0n0) .
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and

Tn1−1,n0(Y 1[−i],Y 0) =
1

(n1 − 1)n0

∑
1≤k≤n1
k 6=i

∑
1≤j≤n0

I(Y1k ≥ Y0j),

Tn1,n0−1(Y 1,Y 0[−j]) =
1

n1(n0 − 1)

∑
1≤i≤n1

∑
1≤k≤n0
k 6=j

I(Y1i ≥ Y0k).

It is apparent that E(Ui) = E(Vj) = θ for all i and j. It also follows from Shi (1984)

that the Ui’s and the Vj’s are asymptotically independent. Let p = (p1, · · · , pn1) and

q = (q1, · · · , qn0) be such that
∑n1

i=1 pi = 1, pi ≥ 0 and
∑n0

j=1 qj = 1, qj ≥ 0, assigning

probability pi to Ui and assigning probability qj to Vj. The two-sample empirical log-

likelihood is given by

`(p, q) =

n1∑
i=1

log pi +

n0∑
j=1

log qj,

We first consider the following constraints

n1∑
i=1

pi = 1 and

n0∑
j=1

qj = 1, (3.19)

n1∑
i=1

piUi = θ and

n0∑
j=1

qjVj = θ. (3.20)

Constraints (3.19) are the normalization constraints and constraints (3.20) are induced

by the parameter of interest, θ, using the jackknife pseudo values Ui and Vj. Sup-

pose p̂ = (p̂1, · · · , p̂n1) and q̂ = (q̂1, · · · , q̂n0) maximize `(p, q) subject to (3.19) only;

p̃(θ) = (p̃1(θ), · · · , p̃n1(θ)) and q̃(θ) = (q̃1(θ), · · · , q̃n0(θ)) maximize `(p, q) subject to the

constraints (3.19) and (3.20), for fixed θ. Then the two-sample jackknife empirical loglike-

lihood ratio statistic on θ, is defined as

rJEL2(θ) = `(p̃(θ), q̃(θ))− `(p̂, q̂).

The pretest responses and other baseline covariates can be incorporated by adding the
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following additional group of constraints to the maximization process:

n1∑
i=1

pia1(Zi) =

n0∑
j=1

qia1(Zj), (3.21)

n1∑
i=1

pia0(Zi) =

n0∑
j=1

qia0(Zj), (3.22)

where ak(z) = E(Yk | Z = z) for k = 1, 0. If Z is univariate (denoted as Z) and

both a1(Z) and a0(Z) are linear functions of Z, then (3.21) and (3.22) reduce to a sin-

gle constraint
∑n1

i=1 piZi =
∑n0

j=1 qjZj under the normalization constraints (3.19). Sup-

pose p̂′ = (p̂′1, · · · , p̂′n1
) and q̂′ = (q̂′1, · · · , q̂′n0

) maximize `(p, q) subject to the normal-

ization constraints (3.19), and the baseline information constraints (3.21) and (3.22);

p̃′(θ) = (p̃′1(θ), · · · , p̃′n1
(θ)) and q̃′(θ) = (q̃′1(θ), · · · , q̃′n0

(θ)) maximize `(p, q) subject to

the constraints (3.19), (3.21), (3.22), and constraints (3.20), for fixed θ. The jackknife

empirical log-likelihood ratio statistic on θ is

r̃JEL2(θ) = `(p̃′(θ), q̃′(θ))− `(p̂′, q̂′).

The above formulation of the two-sample EL ratio statistic on θ becomes a special case

of the EL inferences on a common mean with multiple samples in the presence of het-

eroscedasticity. That is, the Ui’s and the Vj’s have the common mean θ but different

variances. Tsao and Wu (2006) and Fu et al. (2009) contain extensive discussions on the

EL inferences for a common mean, including a weighted EL approach for multiple samples.

Depending on the actual formulation of the EL function (unweighted or weighted) and the

type of constraints involved, the asymptotic distribution of the EL ratio statistic is typically

a scaled χ2, with the scaling constant involving unknown population parameters. However,

a bootstrap procedure which mimics the original constrained maximization process can be

used to bypass the scaling constant. Such a procedure can also be rigorously justified.

Our proposed bootstrap calibrated α-level two-sample jackknife EL method which rejects

H0: F1 = F0 if −2r̃JEL2(θ0) > b̃α for θ0 = 1/2, where b̃α can be obtained by the following

procedure: Let θ̃JEL2 =
∑n1

i=1 p̂
′
iUi =

∑n0

j=1 q̂
′
jVi.
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(1) Select bootstrap samples s#1 of size n1 and s#0 of size n0 from the original treat-

ment sample and control sample, respectively, using simple random sampling with

replacement; denote the two bootstrap sample data sets as {(Z#

i , Y
#

1i ), i ∈ s
#

1 } and

{(Z#

j , Y
#

0j ), j ∈ s
#

0 };

(2) Construct the jackknife pseudo values U#

i ’s and V #

j ’s based on the bootstrap samples

s#1 and s#0 ; then apply the two-sample JEL method to U#

i ’s and V #

j ’s and calculate the

corresponding empirical log-likelihood ratio statistic r̃JEL2(θ), with θ = θ̃JEL2, denoted

as r̃#JEL2(θ̃JEL2);

(3) Repeat steps (1) and (2)B times, independently, to obtain the sequence {−2r̃#JEL21(θ̃JEL2),

· · · ,−2r̃#
JEL2B(θ̃JEL2)}; let b̃α be the 100(1− α)th sample quantile of the sequence.

3.6 Simulation Studies

In this section, we present the results from simulation studies to evaluate finite sample

performance of the methods we discussed in this chapter. We focus on comparing the em-

pirical sizes and the empirical powers of different methods when testing the null hypothesis

H0 : F1 = F0.

We consider three scenarios (A), (B) and (C). For scenario (A), we only include the

posttest responses into the analyses. The methods we considered in scenario (A) are: (i) the

standard Mann-Whitney test statistic with asymptotic normality from Section 3.2.1 (MW);

(ii) the two-sample EL method with χ2
1 approximation from Section 3.2.2 (EL); (iii) the

jackknife EL method for two-sample U-statistic with χ2
1 approximation from Section 3.2.3

(JEL); and (iv) the two-sample jackknife EL method with only the normalization constraint

(3.19) and constraint (3.20) from Section 3.5 (JEL2). In scenario (B), we incorporate

the pretest responses and other baseline covariates into the analyses, and consider the
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following methods: (i) the adjusted Mann-Whitney test based on the HQF estimators

with asymptotic normal distribution from Section 3.3 (HQFMW); (ii) the adjusted Mann-

Whitney test based on the HQF estimators with bootstrap calibration from Section 3.3

(HQFMWb); (iii) the two-sample EL method with imputation and bootstrap calibration

from Section 3.4 (ELimp); (iv) the JEL method with imputation and bootstrap calibration

from Section 3.4 (JELimp); and (v) the two-sample JEL method with constraints (3.19),

(3.20), and additional constraints (3.21) and (3.22), which involve the baseline information,

from Section 3.5 (JEL2p).

In each simulation study, we generated 1000 simulated data sets and 500 bootstrap

samples when the bootstrap method is used. Two simulation models are used to generate

the posttest responses for the treatment group (Y1i) and the control group (Y0j) for scenarios

(A) and (B). Model (I) is specified as

Y1i = β10 + β11X1i + β12Z1i + e1i , i = 1, · · · , n1 ,

Y0j = β00 + β01X0j + β02Z0j + e0j , j = 1, · · · , n0 ,

where X denotes baseline covariate “gender” and Z represents the pretest response. Model

(II) includes a nonlinear term and an interaction term:

Y1i = γ10 + γ11X1i + γ12Z1i + γ13Z
1/2
1i + γ14X1iZ1i + e′1i , i = 1, · · · , n1 ,

Y0j = γ00 + γ01X0j + γ02Z0j + γ03Z
1/2
0i + γ04X0iZ0i + e′0j . j = 1, · · · , n0 .

The Xi1’s and X0j’s are generated from a Bernoulli distribution with p = 0.5; the Z1i’s and

Z0j’s are generated from a standard exponential distribution; the error terms are generated

independently as e1i ∼ N(0, σ2
e0) and e0j ∼ N(0, σ2

e1) for Model (I), and e′1i ∼ N(0, σ2),

e′0j ∼ N(0, σ2) for Model (II).

For model (I) parameters, we first set β1 = (β10, β11, β12)
T = (1, 1, 1.2)T and β0 =

(β00, β01, β02)
T = (1, 1, 1.2)T . The error term variances σ2

e1 and σ2
e0 are chosen such that

the correlation coefficients between the posttest responses Y1i and Y0j and their linear
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predictors β10+β11X1i+β12Z1i and β00+β01X0j+β02Z0j are 0.80. This setting corresponds

to H0: F1 = F0, denoted as Case 1. We further consider Case 2 to Case 5, where we reset

the values of β12 as 1.7, 2.2, 2.7, 3.2, respectively. Those cases represent different degrees of

departure from the H0. For model (II) parameters, we also consider five cases of different

combinations of γ1 = (γ10, γ11, γ12, γ13, γ14)
T and γ0 = (γ00, γ01, γ02, γ03, γ04)

T . We set

γ1 = γ0 = (1, 0.5, 0.5,−1.5, 2)T for Case 1, and set γ10 = 1.5, 2, 2.5, 3 from Case 2 to Case

5, respectively. The error term variances are simply chosen as σ2 = 4. We consider sample

sizes for the treatment group and the control group to be n1 = n0 = 45 for each simulation.

Scenario (C) considers model misspecifications for the HQF method and the imputation-

based methods. In scenario (C), the true model is Model (II) which includes a nonlinear

term and an interaction term. For the HQFMW method and the two-sample JEL method,

we assume:

ak(xki, zki) = ak0 + ak1xki + ak2zki, where k = 1, 0.

For the imputation based methods, we assume the working regression models to be:

E(yki|xki, zki) = ak0 + ak1xki + ak2zki, where k = 1, 0.

Simulation results of scenario (A), (B) and (C) are summarized in Table 3.1, Table 3.2,

and Table 3.3 respectively. In each table, the empirical size and the power of the tests

with 5% nominal significance are reported. The empirical size of the test for each method

is listed in the column of Case 1 in each table. In the column of Case 2 to Case 5, we

record the empirical power of the tests based on each method. From Table 3.1, we can see

that, under both Model (I) and Model (II), the empirical sizes of the tests are similar and

around 5% for all the methods. We also notice that the empirical power of the tests based

on the standard Mann-Whitney statistic are slightly higher than those of the other three

methods for every case. The empirical power of the tests based on the EL, JEL, and JEL2

method are close under the case of independent data.
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From Table 3.2, under both Model (I) and Model (II), we can see that the empirical

size of the tests of both HQFMW and HQFMWb are very close to 5%. However, the sizes

of the tests based on the EL and JEL method with imputation are slightly lower than 5%.

The empirical size of the test of JEL2p is equal to 5% under Model (I), but a little lower

than 5% under model (II). The HQFMW method outperforms the ELimp, JELimp, and

the JEL2p method in terms of larger empirical powers through Case 2 to Case 5 under both

models. The empirical power of the tests based on JEL2p are lower than the ones of the

HQFMW methods, yet are higher than the ones of the imputation based methods. Such

results suggest we should reconsider the imputation technique and investigate more on the

imputation methods which preserve the distribution of the observed response data in the

future work. An important observation from Table 3.2 and Table 3.1 is that incorporating

the baseline information increases the power of the test for all the methods considered for

all cases.

Table 3.3 reports the empirical size and power of the tests under model misspecification.

We want to look at the performance of each test by comparing the numbers inside Table 3.3,

and additionally, we compare Table 3.3 to the second portion of Table 3.2 where we have

correctly specified working models for each method. In Table 3.3, for the HQF adjusted

Mann-Whitney methods, the empirical sizes of the tests are close to 5%. The empirical

sizes of the tests based on both imputation based EL and JEL methods are further away

from 5% than their counterparts in Table 3.2. This is what we are expecting since the

stochastic regression imputation is not robust against misspecification. The empirical size

of the test based on the two-sample JEL method is fairly close to 5%. The empirical power

of the tests of HQFMW and HQFMWb are the largest compared to those of the ELimp,

JELimp and the JEL2p method for every case in Table 3.3. Furthermore, if we compare

the numbers in Table 3.3 to those in Table 3.2, we notice that the power of the tests for

both the HQF adjusted Mann-Whitney methods does not drop a great deal, and a similar

conclusion is found for the two-sample JEL method.
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Table 3.1: Scenario (A): Empirical Power of Testing H0 : F1 = F0

Model (n1, n0) Method Case1 Case2 Case3 Case4 Case5

Model (I) (45,45) MW 0.047 0.181 0.439 0.637 0.767

EL 0.050 0.183 0.425 0.602 0.722

JEL 0.059 0.176 0.414 0.592 0.729

JEL2 0.049 0.185 0.409 0.568 0.689

Model (II) (45,45) MW 0.055 0.156 0.434 0.773 0.951

EL 0.057 0.157 0.432 0.758 0.942

JEL 0.052 0.138 0.412 0.765 0.947

JEL2 0.046 0.135 0.437 0.761 0.946

3.7 Concluding Remarks

Chen et al. (2013) studied the Mann-Whitney test with covariate adjustments for missing

data and observational study. They considered a kernel estimator of the conditional dis-

tribution function after accommodating the missingness by inverse response probabilities

and constructed the adjusted Mann-Whitney test statistic using the kernel estimators of

the distribution functions. However, their proposed method does not apply directly to the

settings considered in this chapter.

In Chapter 2, we have shown that the imputation based approach is very efficient for the

estimation of the treatment effect for pretest-posttest studies. Our simulation results show

that the approach is not efficient for constructing Mann-Whitney test for the difference of

two distribution functions. This is probably due to the fact that the imputed values retain

the mean responses, i.e., E(Ỹki) = E(Yki), but do not necessarily restore the distribution

functions. In other words, we have E{I(Ỹ1i > Ỹ0i)} 6= E{I(Y1i > Y0i)} even under the

stochastic regression imputation with a true model.

The two-sample jackknife empirical likelihood method for the Mann-Whitney test is

promising, due to its less demanding computational procedures and the flexibility in in-

corporating baseline information. It is related to the common mean problem previously
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Table 3.2: Scenario (B): Empirical Power of Testing H0 : F1 = F0

Model (n1, n0) Method Case1 Case2 Case3 Case4 Case5

Model (I) (45,45) HQFMW 0.049 0.271 0.604 0.771 0.862

HQFMWb 0.052 0.259 0.599 0.762 0.868

ELimp 0.036 0.239 0.544 0.744 0.815

JELimp 0.037 0.247 0.542 0.719 0.805

JEL2p 0.050 0.266 0.568 0.755 0.826

Model (II) (45,45) HQFMW 0.057 0.180 0.564 0.902 0.995

HQFMWb 0.050 0.155 0.528 0.884 0.994

ELimp 0.037 0.137 0.485 0.803 0.967

JELimp 0.035 0.137 0.487 0.814 0.969

JEL2p 0.038 0.167 0.528 0.854 0.977

Table 3.3: Scenario (C): Empirical Power of Testing H0 : F1 = F0

Model (n1, n0) Method Case1 Case2 Case3 Case4 Case5

Model (II) (45,45) HQFMW 0.049 0.169 0.535 0.863 0.986

HQFMWb 0.044 0.157 0.516 0.845 0.987

ELimp 0.026 0.131 0.428 0.741 0.931

JELimp 0.026 0.131 0.412 0.744 0.935

JEL2p 0.048 0.156 0.512 0.837 0.974
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discussed by Tsao and Wu (2006) and Fu et al. (2009). The weighted empirical likelihood

method is shown to be efficient for estimating the common mean with multiple samples.

Using the approach for the Mann-Whitney test with samples from pretest-posttest studies

is currently under investigation.
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Chapter 4

Empirical Likelihood Method for

Pretest-Posttest Studies under

Complex Survey Design

4.1 Introduction

In this chapter, we extend our discussion of the empirical likelihood method for pretest-

posttest study to the context of complex survey data. In the literature of empirical like-

lihood, Chen and Qin (1993) first applied the empirical likelihood method to the field of

sample surveys with available auxiliary information, where they assumed that the sampling

design is simple random sampling without replacement. For a more general sampling de-

sign, Chen and Sitter (1999) proposed a pseudo-empirical likelihood approach to account

for the effect of sampling from a finite population. Their idea was to weight the stan-

dard empirical likelihood as in the Horvitz-Thompson estimator (Horvitz and Thompson

(1952)). However, they only focused on the point estimation. Wu and Rao (2006) pro-

posed a slightly different pseudo-empirical likelihood approach, and further developed the

asymptotic distribution of the pseudo-empirical log likelihood ratio statistics for construct-
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ing confidence intervals and conducting hypothesis tests based on a single survey sample,

under several sampling designs. We notice that in the absence of auxiliary information, the

pseudo MLE of Chen and Sitter (1999) is identical to the Horvitz-Thompson estimator,

while that of Wu and Rao (2006) is reduced to the Hájek estimator (Hájek (1971)). Wu

and Yan (2012) extended Wu and Rao (2006) to the two-sample problem setting where the

two samples are assumed to be sampled from two different finite populations. Moreover,

we refer to Rao and Wu (2009) for an excellent overview of empirical likelihood method in

survey sampling.

The International Tobacco Control (ITC) Policy Evaluation Project Four Country (4C)

Survey is a prospective cohort study designed to evaluate the psychosocial and behavioural

impact of key national-level tobacco control policies enacted over a period of eleven years

(2002-2014), in at least one of four countries: the United States, Canada, the United

Kingdom, and Australia. Over 2, 000 adult smokers were recruited by probability sam-

pling methods in each of the four countries at the initial cohort. At each subsequent wave

(approximately annual intervals for a period of eleven years) the sample was formed by

recontact of earlier respondents and replenishment with new respondents to ensure that

there were approximately 2, 000 in each country who completed the survey. The sampling

design of the ITC 4C survey is random sampling within strata which are defined by geo-

graphic region and community size in each country. The ITC 4C Survey was developed

by an interdisciplinary team of tobacco control experts across the four countries, with

backgrounds in psychology, public health, epidemiology, economics, community medicine,

marketing, sociology, and statistics/biostatistics. The questions of the ITC 4C survey are

from the following domains: demographic variables, smoking behaviour, warning labels, ad-

vertising and promotion, light/mild brand descriptors, taxation and purchase behaviour,

stop-smoking medications and alternative nicotine products, cessation and quitting be-

haviour as well as key psychosocial measures. All aspects of the study protocol and survey

measures are standardized across the four countries. For more details about the sampling

methods, survey protocol and administration, and other related information, we refer to
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the ITC Four Country Wave 1 Technical Report (2004) and the ITC Four Country Wave

2-8 Technical Report (2011).

At Wave 7 of the ITC 4C survey, an embedded pilot study was conducted to evaluate

whether an online version of the survey would be a viable option for further waves in the

ITC 4C survey. More specifically, the study was to determine the amount of cost savings

that could be achieved if some of the cohort participants completed the survey on-line,

and to determine whether some of the people could be reached that might otherwise be

lost. After the pilot study, it was decided that the web survey option would be offered to

all respondents starting from Wave 8. The ITC 4C Wave 8 Recontact Survey employed

a mixed mode approach, combining web and phone data collection. Each recontact re-

spondent of Wave 8 received either an email invitation (given he/she provided an email

address at Wave 7) or a mailed letter invitation to respond online. Among 5135 recontact

respondents of Wave 8, 2006 (39%) answered by web survey. Our objective is to assess

whether the distributions of the responses to certain questions from people using the web

survey are different from those of people using the telephone survey. Analyzing such dif-

ferences is of interest because the answering mode might affect the answer to certain types

of question. For example, phone respondents might tend to give the last response option

because they heard it most recently; however, web respondents can see all response options

at once. Also, for instance, some people may be uncomfortable answering certain types of

questions in front of the interviewer over the telephone, but wouldn’t have such an issue

if answering over the internet. By adopting the setting of the pretest-posttest study, we

consider the data of those 5135 participants at Wave 7 as the baseline information (“pretest

responses”), the data at Wave 8 as the “posttest responses”, and the web survey mode

as the “treatment”. We want to develop the methods for estimating the treatment effect

while accommodating the survey design.

Unlike the randomized design of the pretest-posttest study we introduced in the pre-

vious two chapters, the recontact respondents in Wave 8 were self-selected to one of the
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treatment groups, i.e. answering by web or phone. Without the benefit of randomiza-

tion, treatment groups may differ systematically with respect to relevant characteristics,

and thus, may not be directly comparable (Rosenbaum and Rubin (1984)). In a stan-

dard pretest-posttest design, with randomization, distributions of covariates are balanced

across treatment groups. However, in an observational study, treatment exposure may be

associated with covariates which are also associated with the potential responses. There-

fore, in order to make inference on the treatment effect for observational data, methods

are required to adjust for confounding of exposure to treatment with subject characteris-

tics (Lunceford and Davidian (2004)). Methods based on propensity score modelling are

becoming increasingly popular for making causal inference with observational data. The

propensity score is defined as the probability of treatment exposure conditional on ob-

served baseline covariates (Rosenbaum and Rubin (1983)). Rosenbaum and Rubin (1984)

considered stratification or subclassification based on the estimated propensity score and

estimating the treatment effect as the average of within-stratum effects. Methods based

on propensity score matching are also popular in the medical literature (Austin (2008)).

There is another alternative class of estimators discussed in (Rosenbaum (1998), Lunceford

and Davidian (2004)), which are constructed by inverse weighting the estimated propen-

sity score in the fashion of the Horvitz-Thompson estimator. The authors of Lunceford

and Davidian (2004) also identified the most efficient semiparametric estimator based on

a propensity score weighting method using the theory of Robins et al. (1994).

In this chapter, our objective is to propose an estimator of treatment effect based on

propensity score stratification under survey data and derive its variance estimation. Alter-

natively, we want to develop an estimator based on empirical likelihood (EL) method by

constructing weights for each subject using their estimated propensity score, and applying

the two-sample pseudo empirical likelihood method by Wu and Yan (2012). The rest of

the chapter is organized as follows. In Section 4.2, we derive the estimator based on the

propensity score stratification and its variance estimation. In Section 4.3, we propose the

estimator based on the two-sample pseudo EL method. An application of the proposed
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methods to the ITC 4C survey data will be given in Section 4.4. In Section 4.5, we consider

the two-sample pseudo EL method under a simpler setting where we have a randomized

study with survey data. Some concluding remarks are given in Section 4.6.

4.2 Estimator Based on Propensity Score Stratifica-

tion and Its Variance Estimation

4.2.1 The Propensity Score and Stratification

Adopting the counterfactual framework, we let Y1 and Y0 be the responses an individual

potentially would exhibit if he/she receives treatment and control, respectively. Y1 and

Y0 will never be observed simultaneously. Let R be the indicator of treatment exposure

(R = 1 if in treatment, and R = 0 if in control). The treatment effect can be expressed by

θ = µ1 − µ0 = E(Y1)− E(Y0),

where the expectation of Y1(Y0) is taken with respect to the hypothetical distribution of

the potential response Y1(Y0). In a randomized study, the potential outcomes (Y1, Y0)

are statistically independent of the treatment assignment R, or (Y1, Y0) |= R. Therefore,

the treatment effect θ can be identified from the observed data since E(Y1|R = 1) =

E(Y1) and E(Y0|R = 0) = E(Y0). However, in an observational study, the treatment

exposure R is no longer necessarily independent of (Y1, Y0), and some subject characteristics

may be associated with both treatment exposure and the potential responses. Assume X

contains all possible confounders which are associated with both treatment exposure and

the potential responses. Then, we have

(Y1, Y0) |= R|X,
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the assumption of strongly ignorable treatment assignment (Rosenbaum and Rubin (1983)).

Under this assumption, θ can be identified from the observed data since

E{E(Ym|R = m,X)} = E{E(Ym|X)} = E(Ym), m = 1, 0.

The propensity score is the conditional probability that an individual will be exposed to

treatment given observed covariates X, and mathematically:

e(X) = P (R = 1|X).

Rosenbaum and Rubin (1983) proved that subclassification on the propensity score will

balance X, i.e. the distribution of X is the same for treated and untreated subjects within

subclasses that are homogeneous in propensity score e(X). In practice, the true propensity

score is often unknown; therefore, it is common to estimate it based on the observed data

by assuming a logistic regression model:

e(X,β) = {1 + exp(−XTβ)}−1.

The maximum likelihood estimator (MLE) of β can be obtained by solving:

n∑
i=1

Zi − e(Xi,β)

e(Xi,β)(1− e(Xi,β))
∂/∂β(e(Xi,β)) = 0,

(Lunceford and Davidian (2004)).

Plugging the MLE β̂ into e(X,β) leads to the estimated propensity score êi(Xi, β̂).

Then the sample can be divided into K subsamples (termed “strata”) according to the

sample quantiles of the êi. Specifically, let q̂k, k = 1, · · · , K be the k-th sample quantile

of the estimated propensity score such that the proportion of êi ≤ q̂k is roughly k/K, and

q̂0 = 0, q̂K = 1. Then we define the subsample Qk to be:

Qk = {i : êi ∈ (q̂k−1, q̂k]}, k = 1, · · · , K.

Rosenbaum and Rubin (1983, 1984) suggested the use of quintiles, i.e. K = 5, which

is a popular choice of K in much of the literature of propensity score stratification. If
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the êi’s are good approximations of the true propensity scores, then within each Qk, the

treatment exposure is approximately random, and the distribution of X is approximately

the same for treated and untreated units. Because the approximation may be imperfect, it

is important to assess the balance of the covariates achieved by stratification based on the

estimated propensity score. For balance diagnosis under propensity score stratification,

we treat each of the covariates contained in X as the response which is subject to a

two-way (2 treatments × K strata) analysis of variance. Large values of F ratios for

the main (treatment) effects or for the two-way interaction suggest inadequate fit of the

propensity score model (Rosenbaum and Rubin (1984)). Graphic tools such as a box-plot

of each covariate against treatment within Qk is also a useful way of diagnosing departures

from balance. For more details and illustration on balance diagnosis under propensity

score stratification, we refer to Rosenbaum and Rubin (1983) and Rosenbaum and Rubin

(1984). For balance diagnosis under other propensity score methods, e.g. propensity score

matching, we refer to Austin (2009).

4.2.2 Estimator of θ

Now we introduce some notations in the setting of the ITC 4C survey data. Let h index

the country, and Nh be the finite population size of country h; then we have overall a

finite population {1, · · · , N}, where N =
∑

hNh. Let Y1i be the potential outcome that an

individual i from the finite population will exhibit if he/she is exposed to the treatment,

and Y0i be the potential outcome that an individual i from the finite population will

exhibit if he/she is exposed to the control; then the population-level parameter of interest

is θ = E(Y1)− E(Y0). We denote the set of sampled units as s = {i : i ∈ sample}, which

is a combined set of sampled units from each country h, that is the union over h of sets

sh = {i : i ∈ sample & i ∈ h}. Let n be the sample size, and nh be the number of

subjects sampled from country h, where n =
∑

h nh. Suppose di = 1/πi is the basic design

(or inflation) weight, with πi = P (i ∈ s) being the inclusion probability of subject i. Then
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we define the rescaled weights to be:

wi =
dinh

N̂h

=
dinh∑
i∈sh di

.

After we fit an adequate propensity model to the sample data, and we obtain the estimated

propensity score for each subject i ∈ s, then we subclassify the sample into K subsamples

according to the sample quantile of estimated propensity score, where each subsample

Qk = {i ∈ s : êi ∈ (q̂k−1, q̂k]}. Let Hik = 1 if unit i is in Qk, and Hik = 0 otherwise. Then

the sample-level estimator of θ based on propensity score stratification can be written as a

weighted sum of the difference of the sample mean of observed Y1 and Y0 within subsample

Qk, formally:

θ̂str =
K∑
k=1

(∑
i∈sHikwi∑
i∈swi

){∑
i∈sHikRiwiY1i∑
i∈sHikRiwi

−
∑

i∈sHik(1−Ri)wiY0i∑
i∈sHik(1−Ri)wi

}
(4.1)

Let

µ̂1k =

∑
i∈sHikRiwiY1i∑
i∈sHikRiwi

(4.2)

µ̂0k =

∑
i∈sHik(1−Ri)wiY0i∑
i∈sHik(1−Ri)wi

, (4.3)

then µ̂1k − µ̂0k estimates the difference of the population-level average of observed Y1 and

Y0 within the population domain covered by the k-th sample quantile of the estimated

propensity score. The factor
∑

i∈s(Hikwi)/
∑

i∈swi estimates the proportion of the popu-

lation covered by the k-th sample quantile of the estimated propensity score.

In the next subsection, we look at the variance estimation of θ̂str from both model-based

and design-based perspectives.
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4.2.3 Variance Estimations

Model-based variance estimator

Define

θ̂k = µ̂1k − µ̂0k =

∑
i∈sHikRiwiY1i∑
i∈sHikRiwi

−
∑

i∈sHik(1−Ri)wiY0i∑
i∈sHik(1−Ri)wi

;

then

θ̂str =
K∑
k=1

(∑
i∈sHikwi∑
i∈swi

)
θ̂k.

We assume that within each Qk, Eps(Ri | w., Y1., Y0.) is approximately a constant δk (the

quantile average value), where Eps denotes expectation taken with respect to the mecha-

nism of “choosing” the treatment, i.e. expectation with respect to the treatment determi-

nation. If Ep denotes the expectation with respect to the sampling design, assuming Y1.

and Y0. fixed, and Epsc is Eps(. | w., Y1., Y0.), then we have

EpEpsc
∑
i∈s

HikRiwiY1i ' δk
∑
h

αhT1hk,

where T1hk is the population total of Y1 in the k-th propensity score quantile (a domain)

in country h, and αh = nh/Nh. Similarly,

EpEpsc
∑
i∈s

HikRiwi ' δk
∑
h

αhNhk,

EpEpsc
∑
i∈s

Hik(1−Ri)wiY1i ' (1− δk)
∑
h

αhT0hk,

EpEpsc
∑
i∈s

Hik(1−Ri)wi ' (1− δk)
∑
h

αhNhk,

where T0hk is the population total of y0 in the k-th propensity score quantile in country h,

and Nhk is the size of the domain with propensity score in the k-th quantile in country h.

Moreover,

EpEpsc
∑
i∈s

Hikwi '
∑
h

αhNhk,
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EpEpsc
∑
i∈s

wi '
∑
h

αhNh.

If Eξ denotes the expectation taken with respect to the superpopulation model for Y1

and Y0, we write EξT1hk ' Nhkµ1hk and EξT0hk ' Nhkµ0hk, where µ1hk and µ0hk are the

population mean of Y1 and Y0 respectively in the domain represented by the k-th propensity

score sample quantile in country h. Consider the ultimate estimand to be

θN =
K∑
k=1

(∑
h αhNhk∑
h αhNh

)
{µ1k − µ0k},

where

µ1k =

∑
h αhNhkµ1hk∑
h αhNhk

,

and

µ0k =

∑
h αhNhkµ0hk∑
h αhNhk

,

thus,

θN =
K∑
k=1

∑
h αhNhkµ1hk −

∑
h αhNhkµ0hk∑

h αhNh

.

The mean µ1k is the expectation of Y1, given all covariates, averaged over the distri-

bution of covariates that pertains in Qk, which happens to be about the same in the two

treatment groups by the balancing property of the propensity score. Then we have

µ1k '
∑

i∈sHikRiwiµ1i∑
i∈sHikRiwi

where µ1i is the Eξ expectation of Y1i, given all covariates. Similarly for µ0k. Then, the

error of θ̂k is ∑
i∈sHikRiwiY1i∑
i∈sHikRiwi

−
∑

i∈sHik(1−Ri)wiY0i∑
i∈sHik(1−Ri)wi

− µ1k + µ0k,

which is approximately∑
i∈sHikRiwi(Y1i − µ1i)∑

i∈sHikRiwi
−
∑

i∈sHik(1−Ri)wi(Y0i − µ0i)∑
i∈sHik(1−Ri)wi

.
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This can be shown to have expectation 0 with respect to Eξ conditional on the sample and

the Ri, and so the MSE can be estimated through an estimate of the approximate MSE

with respect to ξ conditional on the sample and the Ri. This conditional MSE is∑
i∈sHikRiw

2
i σ

2
1i

(
∑

i∈sHikRiwi)2
+

∑
i∈sHik(1−Ri)w

2
i σ

2
0i

(
∑

i∈sHik(1−Ri)wi)2
,

where σ2
1i is the variance of Y1i, given the covariates. Thus the estimated MSE of θ̂k is

V̂k =

∑
i∈sHikRiw

2
i σ̂

2
1i

(
∑

i∈sHikRiwi)2
+

∑
i∈sHik(1−Ri)w

2
i σ̂

2
0i

(
∑

i∈sHik(1−Ri)wi)2
,

where σ̂2
1i is the square of the residual for i of the regression of Y1i on the covariates in

quantile k (weighted or unweighted), and σ̂2
0i is defined similarly. The estimated MSE of

θ̂str could be

V̂ =
K∑
k=1

(∑
i∈sHikwi∑
i∈swi

)2

V̂k.

Design-based variance estimator

To facilitate the argument, again let Hik be the indicator whether subject i belongs in

the subsample Qk, which is determined based on the sample quantiles of the estimated

propensity score. Also for simplicity, assume that N̂h = Nh. In the sense of the sampling

design, if

µ̂1k =

∑
i∈sRiHikwiY1i∑
i∈sRiHikwi

,

then µ̂1k is approximately unbiased for

µ1kN =

∑
h αh

∑Nh

i=1RiHikY1i∑
h αh

∑Nh

i=1RiHik

.

Notice that we can write the numerator of µ̂1k in a Hansen-Hurwitz form as∑
i∈Qk

RiwiY1i =
∑
i∈s

RiHikwiY1i =
∑
h

αh
∑
i∈sh

diRiHiky1i =
∑
h

αh
1

nh

∑
i∈sh

RiHiky1i
zi
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where the size measure zi = 1/(dinh), di is the basic design (or inflation) weight, which is

the reciprocal of the inclusion probability πi, sh is the sample of units from country h, and

nh is the size of sh. Similarly, for the control group,

µ̂0k =

∑
i∈s(1−Ri)HikwiY0i∑
i∈s(1−Ri)Hikwi

;

then µ̂0k is approximately unbiased for

µ0kN =

∑
h αh

∑Nh

i=1(1−Ri)HikY0i∑
h αh

∑Nh

i=1(1−Ri)Hik

.

Now θ̂k = µ̂1k − µ̂0k is approximately design-unbiased for

θkN = µ1kN − µ0kN =

∑
h αh

∑Nh

i=1RiHikY1i∑
h αh

∑Nh

i=1RiHik

−
∑

h αh
∑Nh

i=1(1−Ri)HikY0i∑
h αh

∑Nh

i=1(1−Ri)Hik

.

As we did when discussing the model-based variance estimation, if we assume that within

the domain k, the expectation of Ri given other variables is δk (this assumption is not used

later when we derive the design-based variance estimator), then θ̂k = µ̂1k − µ̂0k estimates∑
h αh

∑Nh

i=1HikY1i∑
h αh

∑Nh

i=1Hik

−
∑

h αh
∑Nh

i=1HikY0i∑
h αh

∑Nh

i=1Hik

.

Now ∑
i∈sHikwi∑
i∈swi

estimates ∑
h αh

∑Nh

i=1Hik∑
h αhNh

,

the proportion of the population covered by the k-th sample quantile. So it can be argued

that θ̂str estimates a finite population quantity that approximates∑
h αh

∑Nh

i=1 Y1i −
∑

h αh
∑Nh

i=1 Y0i∑
h αhNh

,

which essentially is the difference of the population mean of Y1 and Y0.
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Next we develop the design-based variance estimation. The estimator for the overall

difference is given by:

θ̂str =
K∑
k=1

(∑
i∈sHikwi∑
i∈swi

)
θ̂k

=
K∑
k=1

{∑
i∈sHikwi∑
i∈swi

·
∑

i∈sRiHikwiY1i∑
i∈sRiHikwi

−
∑

i∈sHikwi∑
i∈swi

·
∑

i∈s(1−Ri)HikwiY0i∑
i∈s(1−Ri)Hikwi

}
We first look at the variance estimation of the first component∑

i∈sHikwi∑
i∈swi

·
∑

i∈sRiHikwiY1i∑
i∈sRiHikwi

,

and we notice this is a product of two ratio estimators. Let â1/â0 and b̂1/b̂2 be two ratio

estimators which estimate a1/a2 and b1/b2 respectively. By linearization we have,

â1
â2

.
=

a1
a2

+
1

a2
(â1 −

a1
a2
â2),

b̂1

b̂2

.
=

b1
b2

+
1

b2
(b̂1 −

b1
b2
b̂2).

In our setting,

â1 =
∑
i∈s

Hikwi, â2 =
∑
i∈s

wi

a1 =
∑
h

αh

Nh∑
i=1

Hik, a2 =
∑
h

αhNh,

b̂1 =
∑
i∈s

RiHikwiY1i, b̂2 =
∑
i∈s

RiHikwi,

b1 =
∑
h

αh

Nh∑
i=1

RiHikY1i, b2 =
∑
h

αh

Nh∑
i=1

RiHik.

Now, the product of the two ratio estimators is:

â1
â2
· b̂1
b̂2

.
=
a1
a2
· b1
b2

+
b1
b2
· 1

a2
(â1 −

a1
a2
â2) +

a1
a2
· 1

b2
(b̂1 −

b1
b2
b̂2) +

1

a2
· 1

b2
(â1 −

a1
a2
â2)(b̂1 −

b1
b2
b̂2).
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In the above formula, the initial (constant) term is O(1), and the next two terms should

each be Op(n
−1/2). It can then be shown that the last term is Op(n

−1), and thus can be

neglected in the above formula. Now the above formula becomes:

â1
â2
· b̂1
b̂2

.
=
a1
a2
· b1
b2

+
b1
b2
· 1

a2
(â1 −

a1
a2
â2) +

a1
a2
· 1

b2
(b̂1 −

b1
b2
b̂2),

which can be written as:

â1
â2
· b̂1
b̂2
− a1
a2
· b1
b2

=

∑
i∈sHikwi∑
i∈swi

·
∑

i∈sRiHikwiY1i∑
i∈sRiHikwi

−
∑

h αh
∑Nh

i=1Hik∑
h αhNh

·
∑

h αh
∑Nh

i=1RiHikY1i∑
h αh

∑Nh

i=1RiHik

.
=

∑
h αh

∑Nh

i=1RiHikY1i∑
h αh

∑Nh

i=1RiHik

· 1∑
h αhNh

(∑
i∈s

wiHik −
a1
a2

∑
i∈s

wi

)
+∑

h αh
∑Nh

i=1Hik∑
h αhNh

· 1∑
h αh

∑Nh

i=1RiHik

(∑
i∈s

RiHikwiY1i −
b1
b2

∑
i∈s

RiHikwi

)
=

b1
b2
· 1

a2

(∑
i∈s

wiHik −
a1
a2

∑
i∈s

wi

)
+
a1
a2
· 1

b2

(∑
i∈s

RiHikwiY1i −
b1
b2

∑
i∈s

RiHikwi

)
=

b1
b2
· 1

a2

∑
i∈s

wiγi +
a1
a2
· 1

b2

∑
i∈s

wiRiHiku1i

=
1

a2b2

∑
i∈s

wi

{
b1γi + a1RiHiku1i

}
=

1

a2b2

∑
h

αh
1

nh

∑
i∈sh

b1γi + a1RiHiku1i
zi

.

where

γi = Hik − a1/a2 = Hik −
∑

h αh
∑Nh

i=1Hik∑
h αhNh

,

and

u1i = y1i −
b1
b2

= Y1i − µ1kN = Y1i −
∑

h αh
∑Nh

i=1RiHikY1i∑
h αh

∑Nh

i=1RiHik

.

Now for the control group, we define

ĉ1 =
∑
i∈s

(1−Ri)HikwiY0i, ĉ2 =
∑
i∈s

(1−Ri)Hikwi,

c1 =
∑
h

αh

Nh∑
i=1

(1−Ri)HikY0i, c2 =
∑
h

αh

Nh∑
i=1

(1−Ri)Hik

98



Then similarly, we have

â1
â2
· ĉ1
ĉ2
−a1
a2
·c1
c2

=

∑
i∈sHikwi∑
i∈swi

·
∑

i∈s(1−Ri)HikwiY0i∑
i∈s(1−Ri)Hikwi

−
∑

h αh
∑Nh

i=1Hik∑
h αhNh

·
∑

h αh
∑Nh

i=1(1−Ri)HikY0i∑
h αh

∑Nh

i=1(1−Ri)Hik

.
=

1

a2c2

∑
i∈s

wi

{
c1γi + a1(1−Ri)Hiku0i

}
=

1

a2c2

∑
h

αh
1

nh

∑
i∈sh

c1γi + a1(1−Ri)Hiku0i
zi

,

where

u0i = Y0i −
c1
c2

= Y0i − µ0kN = Y0i −
∑

h αh
∑Nh

i=1(1−Ri)HikY0i∑
h αh

∑Nh

i=1(1−Ri)Hik

.

The error in θ̂k is:

θ̂k − θkN =
â1
â2
· b̂1
b̂2
− a1
a2
· b1
b2
−
(
â1
â2
· ĉ1
ĉ2
− a1
a2
· c1
c2

)
.

Its “finite population” variance is

V arp

(
â1
â2
· b̂1
b̂2

)
+ V arp

(
â1
â2
· ĉ1
ĉ2

)
− 2Covp

(
â1
â2
· b̂1
b̂2
,
â1
â2
· ĉ1
ĉ2

)
.

Now, an estimator of the variance of (â1/â2) · (b̂1/b̂2) is:

V̂ ar(
â1
â2
· b̂1
b̂2

) =
1

â22
· 1

b̂22

∑
h

α2
h

1

nh(nh − 1)

(∑
i∈sh

(
b̂1γ̂i + â1RiHikû1i

zi
− r̂1

)2)
,

where û1i = Y1i − µ̂1k = Y1i − b̂1/b̂2 and

γ̂i = Hik −
â1
â2

= Hik −
∑

i∈sHikwi∑
i∈swi

,

and

r̂1 =
1

nh

∑
i∈sh

b̂1γ̂i + â1RiHikû1i
zi

;

and an estimator of the variance of (â1/â2) · (ĉ1/ĉ2) is:

V̂ ar(
â1
â2
· ĉ1
ĉ2

) =
1

â22
· 1

ĉ22

∑
h

α2
h

1

nh(nh − 1)

(∑
i∈sh

(
ĉ1γ̂i + â1(1−Ri)Hikû0i

zi
− r̂0

)2)
,
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where û0i = Y0i − µ̂0k = Y0i − ĉ1/ĉ2 and

r̂0 =
1

nh

∑
i∈sh

ĉ1γ̂i + â1(1−Ri)Hikû0i
zi

;

and the covariance term can be estimated by:

1

â22
· 1
b̂2
· 1
ĉ2

∑
h

α2
h

1

nh(nh − 1)

(∑
i∈sh

(
b̂1γ̂i + â1RiHikû1i

zi
−r̂1

)(
ĉ1γ̂i + â1(1−Ri)Hikû0i

zi
−r̂0

))
.

Finally, the variance estimator for θ̂str is:

K∑
k=1

V̂ ar

{(∑
i∈sHikwi∑
i∈swi

)
θ̂k

}
.

4.3 Propensity Score Weighting and Two-Sample

Pseudo EL Method

There is an alternative type of estimator of θ = E(Y1)−E(Y0), which constructs weights for

each individual using his/her propensity score (Rosenbaum (1998), Lunceford and Davidian

(2004)). The rationale of the propensity score weighting estimator is that the expectation

of the potential responses Y1 and Y0 can be identified from the observed data weighted by

the inverse of the propensity score, or specifically:

E

{
RY1
e(X)

}
= E

[
E

{
RY1
e(X)

∣∣∣∣Y1, X}] = E

[
Y1
e(X)

E{R|Y1, X}
]

= E(Y1),

and

E

{
(1−R)Y0
1− e(X)

}
= E

[
E

{
(1−R)Y0
1− e(X)

∣∣∣∣Y0, X}] = E

[
Y0

1− e(X)
E{(1−R)|Y1, X}

]
= E(Y0).

The estimator based on propensity score weighting (Rosenbaum (1998)) is then:

θ̂IPW =
1

n

n∑
i=1

{
RiY1i
êi
− (1−Ri)Y0i

1− êi

}
,
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where êi is the estimated propensity score for subject i.

Now we extend the idea under the context of survey data. If we write the above

estimator as a finite population level quantity:

θN =
1

N

N∑
i=1

{
RiY1i
êi
− (1−Ri)Y0i

1− êi

}
,

then the design-unbiased HT estimator is given by

1

N

∑
i∈s

di

{
RiY1i
êi
− (1−Ri)Y0i

1− êi

}
, (4.4)

where di = 1/πi, and πi is the probability of subject i being selected into the sample.

Define

d∗1i =
Ridi
êi

and d∗0i =
(1−Ri)di

1− êi
;

then (4.4) can be written as:

1

N

∑
i∈s

{d∗1iRiY1i − d∗0i(1−Ri)Y0i}, (4.5)

since R2
i = Ri and (1−Ri)

2 = (1−Ri). Let

d̃∗1i =
d∗1i∑
i∈s d

∗
1i

=
di/êi∑

i∈s1(di/êi)
, if i ∈ s1,

d̃∗0i =
d∗0i∑
i∈s d

∗
0i

=
di/(1− êi)∑

i∈s0(di/(1− êi))
, if i ∈ s0.

where s1 and s0 are the collections of subjects in sample s who are exposed to the treatment

and the control respectively. Moreover, d̃∗1i = 0, if i ∈ s0 and d̃∗0i = 0, if i ∈ s1. Since N is

usually unknown, an alternative to (4.5) is the Hájek estimator:∑
i∈s

{(
d∗1i∑
i∈s d

∗
1i

)
RiY1i −

(
d∗0i∑
i∈s d

∗
0i

)
(1−Ri)Y0i

}
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=
∑
i∈s1

diY1i/êi∑
i∈s1(di/êi)

−
∑
i∈s0

diY0i/(1− êi)∑
i∈s0(di/(1− êi))

=
∑
i∈s1

d̃∗1iY1i −
∑
i∈s0

d̃∗0iY0i. (4.6)

Intuitively, if we look at (di/êi)
−1 = πiêi as the probability that subject i is selected into the

treatment sample s1, then
∑

i∈s1(di/êi) should be approximately equal to the population

size N , and similarly for the control group. We write the above estimator in terms of two

separate quantities of s1 and s0 to facilitate our discussion of two-sample pseudo empirical

likelihood method later on.

Moreover, we assume that the sample is stratified by countries. Let αh = nh/N̂h. Then

the population level quantity can be written as:

θN =
1∑

h αhNh

∑
h

αh

Nh∑
i=1

{
RiY1i
êi
− (1−Ri)Y0i

1− êi

}
Our proposed estimator is given by:

θ̂ =

∑
h αh

∑
i∈(s1

⋂
sh)
diY1i/êi∑

h αh
∑

i∈(s1
⋂
sh)

(di/êi)
−
∑

h αh
∑

i∈(s0
⋂
sh)
diY0i/(1− êi)∑

h αh
∑

i∈(s0
⋂
sh)

(di/(1− êi))

=
∑
i∈s1

w∗1iY1i∑
i∈s1 w

∗
1i

−
∑
i∈s0

w∗0iY0i∑
i∈s0 w

∗
0i

=
∑
i∈s1

w̃∗1iY1i −
∑
i∈s0

w̃∗0iY0i. (4.7)

where w∗1i = αhdi/êi, i ∈ s1, w
∗
0i = αhdi/(1 − êi), i ∈ s0, and w̃∗mi = w∗mi/

∑
i∈sm w

∗
mi,

m = 1, 0. θ̂ is an approximately design-unbiased estimator of θN . Next we want to show

that θ̂ is a maximum pseudo empirical likelihood estimator, and discuss its asymptotic

properties.

The idea of pseudo empirical log-likelihood function was first proposed by Chen and

Sitter (1999) for point estimation, where the authors constructed the log-likelihood function

based on the sample data as

ˆ̀
HT (p) =

∑
i∈s

di log pi,
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the Horvitz-Thompson (HT) estimator of the finite population level log-likelihood `N =∑N
i=1 log pi. Wu and Rao (2006) extended the idea of pseudo EL for constructing hypoth-

esis tests and confidence intervals based on a single complex survey sample. In Wu and

Yan (2012), the authors considered a two-sample pseudo empirical likelihood for two in-

dependent samples selected from two separate finite populations. In this section, we want

to adapt the idea of Wu and Yan (2012) to the setting of our problem, where individuals

in one finite population are exposed to two treatment groups, and we want to estimate

the treatment effect using sample data. Suppose the number of individuals in s1 and s0

are n1 and n0 respectively, then we consider the following pseudo empirical log-likelihood

function:

`pel(p1,p0) =
1

2

n1∑
i=1

w̃∗1i log(p1i) +
1

2

n0∑
j=1

w̃∗0j log(p0j),

where w̃∗1i and w̃∗0j are defined previously. As in Wu and Yan (2012), putting 1/2 in front

each summation is to facilitate the reformulation of the constraints which are to be specified

below. We maximize the `pel(p1,p0) subject to the following constraints:

n1∑
i=1

p1i = 1,

n0∑
j=1

p0j = 1; (4.8)

n1∑
i=1

p1iY1i −
n0∑
j=1

p0jY0j = θN ; (4.9)

The maximum pseudo EL estimator of θ is computed as:

θ̂pel =

n1∑
i=1

p̂1iY1i −
n0∑
j=1

p̂0jY0j,

where p̂1i = w̃∗1i and p̂0j = w̃∗0j maximize `pel(p1,p0) subject to the normalization constraint

(4.8). Then the resulting estimator θ̂pel is given by:

θ̂pel =

n1∑
i=1

w̃∗1iY1i −
n0∑
j=1

w̃∗0jY0j, (4.10)
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which is the same as (4.7), thus approximately design-unbiased for θ̂N . Since constraint

(4.8) is equivalent to
∑n1

i=1 p1i = 1 and
∑n1

i=1(1/2)p1i +
∑n0

j=1(1/2)p0j = 1, and constraint

(4.9) is equivalent to
∑n1

i=1(1/2)p1i(2Y1i) +
∑n0

j=1(1/2)p0j(−2Y0j) = θN , we can rewrite the

constraints (4.8) and (4.9) as the following:

n1∑
i=1

(
1

2

)
p1i +

n0∑
j=1

(
1

2

)
p0j = 1, (4.11)

n1∑
i=1

(
1

2

)
p1iu1j +

n0∑
j=1

(
1

2

)
p0ju0j = 0, (4.12)

where u1i = (1, 2Y1i)
T −η, u0j = (0,−2Y0j)

T −η, and η = (1/2, θN)T . Using the Lagrange

multiplier method to maximize `pel(p1,p0) subject to constraints (4.11) and (4.12) gives

us the p̂1i(θ) and p̂0j(θ) as:

p̂1i(θN) = w̃∗1i/(1 + λTu1i), i = 1, · · · , n1

p̂0j(θN) = w̃∗0j/(1 + λTu0j), j = 1, · · · , n0.

The Lagrange multiplier λ is the solution to:

n1∑
i=1

1

2

w̃∗1iu1i

(1 + λTu1i)
+

n0∑
j=1

1

2

w̃∗0ju0j

(1 + λTu0j)
= 0, (4.13)

which can be solved by the algorithm developed in Wu (2004). Define the pseudo empirical

log-likelihood ratio statistic for θN as:

rpel(θN) = `pel(p̂1(θN), p̂0(θN))− `pel(p̂1(θ̂pel), p̂0(θ̂pel))

= −
{

1

2

n1∑
i=1

w̃∗1i log(1 + λTu1i) +
1

2

n0∑
j=1

w̃∗0j log(1 + λTu0j)

}
.

By using arguments similar to those in the proof of Theorem 2.2 in Wu and Yan (2012), we

derive the asymptotic property of rpel(θN). Substituting 1/(1 + λTu1i) = 1− λTu1i/(1 +

λTu1i) and 1/(1 + λTu0j) = 1− λTu0j/(1 + λTu0j) into (4.13), then we have{ n1∑
i=1

1

2

w̃∗1iu1iu
T
1i

(1 + λTu1i)
+

n0∑
j=1

1

2

w̃∗0ju0ju
T
0j

(1 + λTu0j)

}
λ =

1

2

n1∑
i=1

w̃∗1iu1i +
1

2

n0∑
j=1

w̃∗0ju0j.
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We note that the right-hand side of the above equation is:

U =
1

2

n1∑
i=1

w̃∗1iu1i +
1

2

n0∑
j=1

w̃∗0ju0j = (0,

n1∑
i=1

w̃∗1iY1i −
n0∑
j=1

w̃∗0jY0j − θN)T ,

and it can be shown that λ
.
= D−1U where D is given by

D = (1/2)

n1∑
i=1

w̃∗1iu1iu
T
1i + (1/2)

n0∑
j=1

w̃∗0ju0ju
T
0j. (4.14)

Then

−2rpel(θN) = 2

{
1

2

n1∑
i=1

w̃∗1i log(1 + λTu1i) +
1

2

n0∑
j=1

w̃∗0j log(1 + λTu0j)

}
.
= 2

{
1

2

n1∑
i=1

w̃∗1i

(
λTu1i −

1

2
λTu1iu

T
1iλ

)
+

1

2

n0∑
j=1

w̃∗0j

(
λTu0j −

1

2
λTu0ju

T
0jλ

)}

= UTD−1U = d(22)
( n1∑

i=1

w̃∗1iY1i −
n0∑
j=1

w̃∗0jY0j − θN
)
.

Therefore, −2rpel(θN)/c converges in distribution to a χ2
1 random variable as n → ∞,

where c is given by:

c = d(22)
{
Vp

( n1∑
i=1

w̃∗1iY1i −
n0∑
j=1

w̃∗0jY0j

)}
, (4.15)

d(22) is the second diagonal element of the matrix D−1, and Vp stands for the design-

based variance. Standard regularity conditions of deriving the asymptotic distribution of

the pseudo EL ratio statistic are presented in Wu and Rao (2006). Additional conditions

might also be needed with the estimation of the propensity score and the propensity score

weighting. Since D involves the unknown parameter θN , in practice, we can plug in

θN = θ̂pel =
∑n1

i=1 w̃
∗
1iY1i −

∑n0

j=1 w̃
∗
0jY0j into D to obtain an estimated ĉ = d̂(22)V̂p(θ̂pel). A

designed based variance estimator V̂p(θ̂pel) will be given below. We can then construct a

(1− α)100% pseudo EL confidence interval by

{θ| − 2rpel(θ)/ĉ ≤ χ2
1(α)}.
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Now we derive the designed based variance estimator V̂p(θ̂pel). We write the θ̂pel in the

following way:

θ̂pel =

n1∑
i=1

w̃∗1iY1i −
n0∑
j=1

w̃∗0jY0j =
∑
i∈s1

w∗1iY1i∑
i∈s1 w

∗
1i

−
∑
i∈s0

w∗0iY0i∑
i∈s0 w

∗
0i

=

∑
h αh

∑
i∈(s1

⋂
sh)
diY1i/êi∑

h αh
∑

i∈(s1
⋂
sh)

(di/êi)
−
∑

h αh
∑

i∈(s0
⋂
sh)
diY0i/(1− êi)∑

h αh
∑

i∈(s0
⋂
sh)

(di/(1− êi))

If we write both the numerators and the denominators in a Hansen-Hurwitz form, then

θ̂pel =

∑
h αh(1/nh)

∑
i∈(s1

⋂
sh)

(Y1i/z
∗
1i)∑

h αh(1/nh)
∑

i∈(s1
⋂
sh)

(1/z∗1i)
−
∑

h αh(1/nh)
∑

i∈(s0
⋂
sh)

(Y0i/z
∗
0i)∑

h αh(1/nh)
∑

i∈(s0
⋂
sh)

(1/z∗0i)

=: µ̂1pel − µ̂0pel,

where z∗1i = êi/(dinh), z
∗
0i = (1 − êi)/(dinh), and nh is the number of individuals in the

sample s who come from country h. The θN can be written as:

θN =
1∑

h αhNh

∑
h

αh

Nh∑
i=1

{
RiY1i
êi
− (1−Ri)Y0i

1− êi

}
=

∑
h αh

∑Nh

i=1(RiY1i/êi)∑
h αhNh

−
∑

h αh
∑Nh

i=1((1−Ri)Y1i/(1− êi))∑
h αhNh

=: µ1N − µ0N .

Then

µ̂1pel − µ1N

=
1∑

h αh
1
nh

∑
i∈(s1

⋂
sh)

1
z∗1i

{∑
h

αh
1

nh

∑
i∈(s1

⋂
sh)

(
Y1i
z∗1i

)
− µ1N

∑
h

αh
1

nh

∑
i∈(s1

⋂
sh)

(
1

z∗1i

)}

=
1∑

h αh
1
nh

∑
i∈(s1

⋂
sh)

1
z∗1i

{∑
h

αh
1

nh

∑
i∈(s1

⋂
sh)

(
r1i
z∗1i

)}
,

where r1i = Y1i − µ1N . Similarly,

106



µ̂0pel − µ0N

=
1∑

h αh
1
nh

∑
i∈(s0

⋂
sh)

1
z∗0i

{∑
h

αh
1

nh

∑
i∈(s0

⋂
sh)

(
Y0i
z∗0i

)
− µ0N

∑
h

αh
1

nh

∑
i∈(s0

⋂
sh)

(
1

z∗0i

)}

=
1∑

h αh
1
nh

∑
i∈(s0

⋂
sh)

1
z∗0i

{∑
h

αh
1

nh

∑
i∈(s0

⋂
sh)

(
r0i
z∗0i

)}
,

where r0i = Y0i − µ0N . The error in θ̂pel is

θ̂pel − θN = (µ̂1pel − µ1N)− (µ̂0pel − µ0N),

and its “finite population” variance is

Vp(θ̂pel) = Vp(µ̂1pel) + Vp(µ̂0pel)− 2Covp(µ̂1pel, µ̂0pel).

An estimator of Vp(µ̂1pel) is

V̂p(µ̂1pel) =
1

(
∑

i∈s1 w
∗
1i)

2

∑
h

α2
h

1

nh(nh − 1)

{∑
i∈sh

(
Rir̂1i
z∗1i
− t̂r1

)2}
,

where r̂1i = Y1i − µ̂1pel and t̂r1 = (1/nh)
∑

i∈(s1
⋂
sh)

(r̂1i/z
∗
1i). An estimator of Vp(µ̂0pel) is

V̂p(µ̂0pel) =
1

(
∑

i∈s0 w
∗
0i)

2

∑
h

α2
h

1

nh(nh − 1)

{∑
i∈sh

(
(1−Ri)r̂0i

z∗0i
− t̂r0

)2}
,

where r̂0i = Y0i − µ̂0pel and t̂r0 = (1/nh)
∑

i∈(s0
⋂
sh)

(r̂0i/z
∗
0i). And an estimator for

Covp(µ̂1pel, µ̂0pel) is

Ĉovp(µ̂1pel, µ̂0pel)

=
1

(
∑

i∈s1 w
∗
1i)(
∑

i∈s0 w
∗
0i)

∑
h

α2
h

1

nh(nh − 1)

{∑
i∈sh

(
Rir̂1i
z∗1i
− t̂r1

)(
(1−Ri)r̂0i

z∗0i
− t̂r0

)}
.

Therefore,

V̂p(θ̂pel) = V̂p(µ̂1pel) + V̂p(µ̂0pel)− 2Ĉovp(µ̂1pel, µ̂0pel).
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4.4 Application to the ITC 4 Country Survey Data

The data we use in this application is the Wave 7-8 M7/P7-M8 continuers (subjects who

participate in both Wave 7 and Wave 8) of the ITC 4 Country survey. The Wave 7 survey

was conducted from October 2008 to July 2009, and the Wave 8 survey was conducted from

July 2010 to June 2011, for all 4 countries: Australia, Canada, UK, and USA. The sample

sizes of Wave 7-8 Recontact is 5135, which consists of 1292 individuals from Australia,

1374 individuals from Canada, 1325 individuals from the UK, and 1144 individuals from

the US. We treat the Wave 7 data as the baseline information, the Wave 8 data as the

posttest responses, and “answer by web” as the treatment exposure. We want to estimate

the treatment effect using the methods we developed previously in this chapter.

4.4.1 Variables and Data Management

Most questions in the questionnaire are standardized throughout Wave 1-Wave 9, and the

variable names of different waves differ by the first letter. The variable names of Wave

7 begin with the letter “g”, and the variable names of Wave 8 begin with the letter “h”.

The response variable we use in the analysis is hFR245v, “cigarettes per day (CPD)” at

Wave 8, which is a derived continuous variable. The same variable at Wave 7 is gFR245v,

and we regard it as the “pretest response” of CPD. The following is a list of the baseline

covariates we included in the data analysis:

• age: a continuous variable

• COUNTRY: a categorical variable

• ethnic: “ethnicity”, a categorical variable

• gCH801: “visited doctor since last survey day”, a binary variable

• gDE111: “marital status”, a categorical variable
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• gDE212v: “income categories”, a categorical variable

• gDE312v: “education categories”, a categorical variable

• gDI503: “depression: little interest or pleasure”, a binary variable

• gDI504: “depression: feeling down or hopeless”, a binary variable

• gDI505: “depression: diagnosed with depression”, a binary variable (answered if

gDI503 and gDI504 are yes)

• gDI701: “frequency of alcohol drinks consumed in last 12 months”, a categorical

variable

• gFR309v: “smoking status”, a derived categorical variable

• gPR101: “describe your health”, a categorical variable

• sex: a binary variable

The treatment variable is hMode, a categorical variable which is coded as: 1 -“telephone

English”, 2 -“telephone French”, 3 -“internet English”, and 4 -“internet French”. We de-

rived a binary treatment indicator variable “trt” as: 1 -“telephone” and 2 -“internet” based

on hMode. The question corresponding to gDI505 is only answered by the participants who

answered “yes” to both gDI503 and gDI504; thus we derive a binary variable “gDI505r”

as: 1 -“yes”, and 2 -“no” or not answered. Also, we dichotomized gDI701 to “gDI701r”

as: 1 - “at least once per week” and 2 - “less than once per week”. And we dichotomized

gFR309v to “gsmkstat” as: 1 - “smoker” and 2 - “non-smoker”. Moreover, we derived

a binary variable “email”, to indicate whether the respondent had been email invited or

not, based on the responses to the question gAI512: “what would be best email address to

contact you on”. We coded “email” 1 - “yes”, if the answer to gAI512 is “respondent will-

ing and offers email address”, and 2 - “no”, if answered otherwise to gAI512. The weights

variable we use is hDE963v, the longitudinal weight for M7/P7-M8 continuers rescaled to
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sum to country sample size. The rate of missing data is on average about 5% for each

variable we included in the analysis. We omitted the entire observation of an individual if

his/her answer to one of our included variables is missing.

4.4.2 Propensity Score Model and Balance Diagnosis

The propensity score model we assumed in the analysis is:

log

{
P (trti = 2)

1− P (trti = 2)

}
= XT

i β, i ∈ s,

where the covariate matrix X = (1, age, COUNTRY, ethnic, gCH801, gDE111, gDE212v,

gDE312v, gDI503, gDI504, gDI505r, gDI701r, gsmkstat, gPR101, sex, gFR245v), and β is

the coefficient. The estimated propensity score for each individual i is:

êi = {1 + exp(−XT
i β̂)}−1, i ∈ s,

where β̂ is the maximum likelihood estimator of β. We fit the propensity score model

separately for the group of individuals with email invitation and for the group of individuals

without email invitation. This was also suggested in a previous analysis using this data

by Hajducek et al. (2012), because these two groups were inherently different. Also, the

performance of the balance diagnosis was not good when we fit a propensity score model

for the whole dataset; yet it was much more improved when the propensity score model was

fitted separately for the email invitation group and the no email invitation group. From the

following table, we can see that most of the people who received the email invitation chose

the web survey, whereas the majority of the no email invitation group chose to answer by

phone.

Telephone Internet

Email invited 800 1321

No Email invited 1909 477
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For the propensity score stratification method, we stratify the sample into K = 5 strata

based on the sample quintile of the estimated propensity score. We also perform this

stratification separately for the email invited and no email invited groups. We perform

balance diagnosis for each of the 15 covariates included in the propensity score model. We

treat each covariate as the response and fit a regression model to examine the “treatment

effect”. For example Table 4.1 shows the summary of fitting the logistic regression of

gDI503 (a binary variable) against trt only. It indicates that, prior to stratification, trt has

a significant “effect” on gDI503, i.e. gDI503 is not balanced between treatment groups.

Table 4.2 is the summary of fitting a logistic regression of gDI503 against trt, quint, and

the interaction of trt and quint (trt×quint). It indicates that after stratification, trt is

no longer statistically significant; thus, the distribution of gDI503 is balanced between

treatment groups. Table 4.3 and Table 4.4 summarize the results of fitting the linear

regression model of gFR245v (a continuous variable) with the main treatment effect only

and with the treatment, quint and trt×quint interaction. After stratification the mean

of gFR245v is balanced between treatment groups. We further look at the box-plots of

gFR245v against treatment groups for each stratum (quint) in Figure 4.1. From the box-

plots we can see the quantiles of gFR245v between two treatment groups are close for

most strata. In the stratum 4, we notice a slight difference of the upper quartiles and

the maximums of gFR245v between two treatment groups. We could consider refining

the propensity score model following the way discussed in Rosenbaum and Rubin (1984).

However, in this analysis, we assume our initial propensity score model is adequate.

4.4.3 Data Analysis

Our objective is to estimate the effect of “answering by internet” (treatment) on the re-

sponse variable “hFR245v” (CPD at Wave 8). We let θ̂str represent the the propensity

score stratification estimator and θ̂pel represent the maximum pseudo EL estimator based

on propensity score weighting. We only consider the design-based variance estimators in

the data analysis. For θ̂str, the confidence intervals are constructed using the normal ap-
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proximation. For θ̂pel, we report two types of confidence intervals. One is the normal

based confidence interval, and the other is constructed based on the pseudo empirical

log-likelihood ratio (PELr) statistic:

{θ| − 2rpel(θ)/ĉ ≤ χ2
1(0.05)}.

We first estimate the treatment effect separately for the email invitation group and

the no email invitation group. Table 4.5 summarizes the results. For the email invitation

group, θ̂str is equal to −1.514283 with variance estimate 0.288476 and the 95% confidence

interval (−2.566999,−0.461568). This result suggests a significant difference of hFR245v

between the two different answering modes (treatment groups). In the meanwhile, θ̂pel is

equal to −1.474795 with variance estimate 0.3285852. We see that these results are fairly

close to those of θ̂str for the email invitation group. The 95% CI of θ̂pel based on the normal

approximation and the PELr are very similar and equal to (−2.598313,−0.3512768) and

(−2.592939,−0.3457211) respectively. We obtain the same conclusion that the difference

of hFR245v is significant between the two survey modes based on the results of θ̂pel.

For the no email invitation group, we observe a discrepancy between θ̂str (−0.8966309)

and θ̂pel (−0.3144521). One possible reason is that for the propensity score stratification

method, some residual confounding within strata may remain. Lunceford and Davidian

(2004) discussed a modified propensity score stratification method which can reduce resid-

ual within-stratum confounding. The variance estimates of θ̂str and θ̂pel are close and

respectively equal to 0.4099932 and 0.4631958. Based on the 95% CI’s of both θ̂str and

θ̂pel, we conclude that there is no significant difference of hFR245 between treatment groups

in the no email invitation group.

In addition, we combine the email invitation group and the no email invitation group

together, and apply the two-sample pseudo EL method based on propensity score weighting

for estimating the treatment effect. The results are summarized in Table 4.6. The point

estimate of the treatment effect is equal to −0.8812598 with design-based variance estimate

0.2069272. The 95% confidence interval based on the pseudo empirical loglikelihood ratio
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Table 4.1: Email invited group, gDI503, before propensity score stratification

Coefficients Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.24395 0.08483 -14.663 < 2e-16 ***

factor(trt)2 -0.25597 0.11078 -2.311 0.0209 *

Table 4.2: Email invited group, gDI503, after propensity score stratification

Coefficients Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.35555 0.13824 -2.572 0.0101 *

factor(trtf)2 -0.03391 0.19768 -0.172 0.8638

factor(quint)2 -0.96801 0.23094 -4.192 2.77e-05 ***

factor(quint)3 -1.07600 0.25494 -4.221 2.44e-05 ***

factor(quint)4 -1.79621 0.30581 -5.874 4.26e-09 ***

factor(quint)5 -1.97394 0.34470 -5.727 1.02e-08 ***

factor(trtf)2:factor(quint)2 0.05476 0.31192 0.176 0.8606

factor(trtf)2:factor(quint)3 -0.34282 0.33773 -1.015 0.3101

factor(trtf)2:factor(quint)4 0.30353 0.38031 0.798 0.4248

factor(trtf)2:factor(quint)5 0.04612 0.42362 0.109 0.9133

is (−1.7709, 0.013081), and again it is very close to the normal based 95% CI which is

(−1.7728, 0.010329). This result tells that the difference of hFR245v between treatment

groups in the combined sample is almost but not quite statistically significant at the 5%

level.

Table 4.3: Email invited group, gFR245v, before propensity score stratification

Coefficients Estimate Std. Error t value Pr(> |z|)
(Intercept) 13.4705 0.3913 34.426 < 2e-16 ***

factor(trtf)2 -1.2996 0.4958 -2.621 0.00883 **
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Table 4.4: Email invited group, gFR245v, after propensity score stratification

Coefficients Estimate Std. Error t value Pr(> |z|)
(Intercept) 19.09583 0.71685 26.638 < 2e-16 ***

factor(trtf)2 -0.92324 1.02348 -0.902 0.367

factor(quint)2 -5.11402 1.06983 -4.780 1.87e-06 ***

factor(quint)3 -7.24155 1.14311 -6.335 2.89e-10 ***

factor(quint)4 -9.46250 1.13344 -8.348 < 2e-16 ***

factor(quint)5 -9.86922 1.18702 -8.314 < 2e-16 ***

factor(trtf)2:factor(quint)2 0.96077 1.45799 0.659 0.510

factor(trtf)2:factor(quint)3 0.99571 1.49372 0.667 0.505

factor(trtf)2:factor(quint)4 1.74169 1.48820 1.170 0.242

factor(trtf)2:factor(quint)5 0.02686 1.52033 0.018 0.986

Table 4.5: Data analyses separately for the email invitation group and the no email invi-

tation group

Method θ̂ V̂ ar(θ̂) 95% CI

Email invited θ̂str (Normal based CI) -1.514283 0.288476 (-2.566999, -0.461568)

θ̂pel (Normal based CI) -1.474795 0.3285852 (-2.598313, -0.3512768)

θ̂pel (PELr CI) -1.474795 0.3285852 (-2.592939, -0.3457211)

No email invited θ̂str (Normal based CI) -0.8966309 0.4099932 (-2.149933, 0.356671)

θ̂pel (Normal based CI) -0.3144521 0.4631958 (-1.648398, 1.019494)

θ̂pel (PELr CI) -0.3144521 0.4631958 (-1.647891, 1.024455)

Table 4.6: Pseudo two-sample EL method (the email invitation group and the no email

invitation group combined)

θ̂pel V̂ ar(θ̂pel) 95% CI

Normal based CI -0.8812598 0.2069272 (-1.772849, 0.01032946)

PELr CI -0.8812598 0.2069272 (-1.770908, 0.01308058)
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Figure 4.1: Email invited group: gFR245v
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4.5 Two-Sample Pseudo EL Method with Imputation

for Survey Data

In this section, we consider a randomized study with survey data. Suppose that there

is one finite population, and a study sample is chosen from the finite population with

a probability sampling design. The baseline covariates of each individual in the study

sample are recorded as the pretest responses. Then the study sample is randomized into

two groups: treatment and control. After a period of time, the posttest responses are

measured. Assume the counterfactual responses are missing by design. Our goal is to

develop an imputation based pseudo two-sample EL approach and discuss the asymptotic

properties for the pseudo EL ratio statistic of our proposed estimator.

4.5.1 Notations

Suppose there is a finite population {1, · · · , N}. A study sample s of size n is drawn from

the finite population using a certain sampling design p. Let di = 1/πi, i ∈ s be the basic

design weights and d̃i = di/
∑

j∈s dj be the normalized weights, where πi = Pr(i ∈ s) is

the inclusion probability. Let Zi, i = 1, · · · , N be the vector of baseline covariates, and

(Y1i, Y0i), i = 1, · · · , N be the potential posttest responses attached to each individual in

the finite population. We assume the following model ξ which links the potential posttest

responses and the pretest responses in the following way:

Y1i = ZT
i β1 + ε1i, ε1i ∼ (0, σ2

ε1), i = 1, · · · , N ;

Y0i = ZT
i β0 + ε0i, ε0i ∼ (0, σ2

ε0), i = 1, · · · , N.

The parameter of interest is θ = µ1−µ0 = Eξ(Y1)−Eξ(Y0), where Eξ(·) the the expectation

taken with respect to the model. After randomization, the sample s is divided into s1, the

treatment group, and s0, the control group. Let Ri be the treatment indicator with Ri = 1,

for i ∈ s1 and Ri = 0, for i ∈ s0. We assume P (Ri = 1) = δ, i ∈ s. Suppose there are n1
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subjects in s1 and n0 = n− n1 subjects in s0. Our observed data is {RiY1i, di,Zi, i ∈ s1}
and {(1−Ri)Y0i, di,Zi, i ∈ s0}.

As in Chapter 2, we consider the linear regression imputation approach. Let β̂w1 and

β̂w0 be the weighted least squares estimators for β1 and β0; then,

β̂w1 = {
∑
i∈s

diRiZiZ
T
i }−1

∑
i∈s

diRiZiY1i,

β̂w0 = {
∑
i∈s

di(1−Ri)ZiZ
T
i }−1

∑
i∈s

di(1−Ri)ZiY0i.

Let Y ∗1i = ZT
i β̂w1, i ∈ s0, and Y ∗0i = ZT

i β̂w0, for i ∈ s1, be respectively the imputed values

of Y1 for the subjects in the control group and the imputed values of Y0 for the subjects in

the treatment group. Define

Ỹ1i = RiY1i + (1−Ri)Y
∗
1i, i ∈ s ,

Ỹ0i = (1−Ri)Y0i +RiY
∗
0i, i ∈ s .

The data becomes {di, Ỹ1i, Ỹ0i, i ∈ s}. A consistent estimator of θ = µ1 − µ0 is given by

θ̂ = µ̂1 − µ̂0 =

∑
i∈s diỸ1i∑
i∈s di

−
∑

i∈s diỸ0i∑
i∈s di

=
∑
i∈s

d̃iỸ1i −
∑
i∈s

d̃iỸ0i . (4.16)

4.5.2 Two-Sample Pseudo EL Method

Consider the two-sample pseudo empirical log-likelihood function:

`pel(p, q) =
n∑
i=1

d̃i log pi +
n∑
i=1

d̃i log qi, (4.17)

where p = (p1, · · · , pn) and q = (q1, · · · , qn) are probability masses that the distributions

of Ỹ1i and Ỹ0i respectively put onto the individuals of sample s. We maximize `pel(p, q)

subject to constraints:
n∑
i=1

pi = 1,
n∑
i=1

qi = 1, (4.18)
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and
n∑
i=1

piỸ1i −
n∑
i=1

qiỸ0i = θ. (4.19)

The maximum PEL estimator of θ is computed as θ̂pel =
∑n

i=1 p̂iỸ1i −
∑n

j=1 q̂jỸ0i, where

the p̂i and q̂j maximize `pel(p, q) subject to constraint (4.18). The resulting estimator is

given by

θ̂pel = µ̂1pel − µ̂0pel =
n∑
i=1

d̃iỸ1i −
n∑
j=1

d̃jỸ0j,

which is the same as θ̂ in (4.16). Let p̂(θ) = (p̂1(θ), · · · , p̂n(θ)) and q̂(θ) = (q̂1(θ), · · · , q̂n(θ))

be the maximizer of `pel(p, q) subject to constraints (4.18) and (4.19), for fixed θ. The

pseudo empirical log-likelihood ratio statistic for θ is given by:

rpel(θ) = `pel{p̂(θ), q̂(θ)} − `pel{p̂(θ̂pel), q̂(θ̂pel)},

and note that p̂i(θ̂pel) = q̂i(θ̂pel) = d̃i. Next we derive the asymptotic distribution of rpel(θ)

using similar arguments in the proof of Theorem 1 in Chapter 2. First we define a nuisance

parameter µ to be µ = µ0 + o(n−1/2), and separate the constraint (4.19) into

n∑
i=1

piỸ1i = µ+ θ and
n∑
i=1

qiỸ0i = µ.

For fixed values of µ and θ, the solutions to the constrained maximization problem are

given by

p̂i(θ) =
d̃i

1 + λ1(Ỹ1i − µ− θ)
and q̂i(θ) =

d̃i

1 + λ0(Ỹ0i − µ)
.

The Lagrange multipliers λ1 and λ0 are determined by:

n∑
i=1

d̃i(Ỹ1i − µ− θ)
1 + λ1(Ỹ1i − µ− θ)

= 0 and
n∑
i=1

d̃i(Ỹ0i − µ)

1 + λ0(Ỹ0i − µ)
= 0.

Let rpel(θ, µ) be the pseudo empirical log-likelihood ratio statistic on (θ, µ). We have

rpel(θ, µ) = −
n∑
i=1

d̃i log [1 + λ1(Ỹ1i − µ− θ)]−
n∑
i=1

d̃i log [1 + λ0(Ỹ0i − µ)].
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Let µ̂ = µ̂(θ) be the maximizer of rpel(θ, µ) for a given θ, which can be obtained through

profiling. The solution is obtained by setting

∂rpel(θ, µ)

∂µ
=

n∑
i=1

d̃iλ1

1 + λ1(Ỹ1i − µ− θ)]
+

n∑
i=1

d̃iλ0

1 + λ0(Ỹ0i − µ)]
= 0,

which yields λ1 = −λ0. Moreover, it can be shown that

λ1
.
= Ṽ −11

n∑
i=1

d̃i(Ỹ1i − µ− θ), (4.20)

λ0
.
= Ṽ −10

n∑
i=1

d̃i(Ỹ0i − µ), (4.21)

where Ṽ1 =
∑n

i=1 d̃i(Ỹ1i−µ1)
2, and Ṽ0 =

∑n
i=1 d̃i(Ỹ0i−µ0)

2. The profile solution µ̂ = µ̂(θ),

which satisfies λ1 = −λ0, is then given by:

µ̂
.
= ν( ¯̃Y1 − θ) + (1− ν) ¯̃Y0 , (4.22)

where ν = Ṽ −11 [Ṽ −10 + Ṽ −11 ]−1, ¯̃Y1 =
∑n

i=1 d̃iỸ1i, and ¯̃Y0 =
∑n

i=1 d̃iỸ0i. The pseudo EL

ratio statistic on the parameter of interest, θ, is given by rpel(θ) = rpel(θ, µ̂(θ)). Using the

approximations (4.20), (4.21) and (4.22), and the Taylor series expansion, we can show

that

−2rpel(θ, µ̂) = 2

{ n∑
i=1

d̃i log(1 + λ1(Ỹ1i − µ̂− θ)) +
n∑
i=1

d̃i log(1 + λ0(Ỹ0i − µ̂))

}
.
=

1

(Ṽ1 + Ṽ0)
( ¯̃Y1 − ¯̃Y0 − θ)2.

It follows that −2rpel(θ)/cpel converges in distribution to a χ2
1 random variable when θ =

µ1 − µ0 as n→∞ and n1/n→ δ ∈ (0, 1). The scaling constant cpel is given by

cpel = EξEp(
¯̃Y1 − ¯̃Y0 − θ)2/(Ṽ1 + Ṽ0).

Let θN = Ep(θ̂pel). Then,

EξEp(
¯̃Y1 − ¯̃Y0 − θ)2 = EξEp{( ¯̃Y1 − ¯̃Y0 − θN)2 + (θN − θ)2 + 2( ¯̃Y1 − ¯̃Y0 − θN)(θN − θ)},

= EξVp(
¯̃Y1 − ¯̃Y0) + Varξ(θN) + 0 ,

= EξVp(
¯̃Y1 − ¯̃Y0) + op(1).
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4.6 Concluding Remarks

In this chapter, we studied the empirical likelihood methods for pretest-posttest studies

with complex survey data. We first considered the setting based on the ITC 4C Wave 7-8

data. The potential confounding problem in the observational study was adjusted using

the propensity score method. We developed the estimators based on both propensity score

stratification and the pseudo EL method with propensity score weighting. We also derived

the variance estimators for our proposed estimators. For the pseudo EL estimator, we

developed the asymptotic distribution for the pseudo EL ratio statistic, which can be used

for constructing a confidence interval for the parameter of interest. As an alternative

to the normal based confidence interval, the confidence interval based on the pseudo EL

ratio statistic has nice properties stemming from its use of the EL method. We applied

our proposed methods to the ITC 4C Wave 7-8 data. For the combined sample of the

email invitation group and the no email invitation group, the difference of the answers to

question hFR245v (“cigarettes per day” at Wave 8) is not statistically significant between

different survey modes. In the data analysis separately for the email invitation group and

the no email invitation group, while we found a significant difference of the answers to

hFR245v between the two survey modes for the email invitation group, the difference was

not significant for the no email invitation group. Later in the chapter, we considered a

simpler setting where we have a randomized pretest-posttest study with survey data, and

our proposed method is based on an imputation approach and the two-sample pseudo EL

approach in Wu and Yan (2012).

120



Chapter 5

Summary and Future Research

5.1 Summary and Future Research Topics

We conclude this thesis with a brief summary and discussion of possible future research

topics. In Chapter 2, we proposed an imputation based two-sample EL approach to effi-

ciently estimate the treatment effect of pretest-posttest studies. We derived the asymptotic

properties of our proposed estimators and compared their efficiency with that of one of

the methods proposed by Huang et al. (2008) (HQF). We demonstrated both in theory

and in simulation studies that our imputation based EL estimators are as efficient as the

HQF estimator under a correctly specified working model. Moreover, the kernel regression

imputation approach provides a robust alternative against model misspecification. The

kernel regression imputation based EL estimator is more efficient than the HQF estimator

under a misspecified working model. The materials in this chapter formulate the paper

Chen et al. (2014a).

In Chapter 3, we studied the problem of testing the difference of distributions of the

treatment group and control group for pretest-posttest studies. We proposed an EL based

Mann-Whitney test using the HQF estimators and derived the asymptotic distribution
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for the test statistic. We also considered the imputation based two-sample EL and the

jackknife EL method for the Mann-Whitney test. Due to the technical difficulty of deriving

the asymptotic distribution of the two-sample EL and the jackknife EL ratio statistics, we

applied a bootstrap calibration method. We further proposed a two-sample jackknife EL

method for the Mann-Whitney test with less demanding computational procedures and

with flexibility in incorporating baseline information. In the future work, it is of our great

interest to derive the asymptotic properties of the two-sample jackknife EL ratio statistic for

the Mann-Whitney test, and develop a theoretical justification of the bootstrap procedure

which we used to approximate the asymptotic distribution of the two-sample jackknife EL

ratio statistic. More specifically, we will pursue two research problems. The first is on

the weighted EL method in conduction with the jackknife EL method, with theoretical

development on the asymptotic distributions of the empirical likelihood ratio statistics.

The second is on a potential adjustment to the imputation-based method. Our simulation

studies showed that the current form of the method described in Chapter 3 has test sizes

below the nominal values under the null hypothesis but also has very large powers under

the alternatives. If we could make adjustment for the test to have the right test size, the

imputation-based test would become a potentially very powerful method. The materials

presented in Chapter 3 formulate the paper Chen et al. (2014b).

In Chapter 4, we extended our discussion of the empirical likelihood method for pretest-

posttest studies to the context of complex survey data. Our motivating problem is to

analyze the “effect” of the web survey mode for the ITC 4C survey. The methods we de-

veloped in this chapter address the complex survey design, the confounding problem from

an observational study and the design feature of pretest-posttest studies. We considered

the estimators based on propensity score stratification and propensity score weighting. We

applied the two-sample pseudo EL method to construct the confidence intervals of our pro-

posed propensity score weighting estimator. In the data analysis, the confidence intervals

constructed using the two-sample pseudo EL ratio statistic are very close to the ones based

on the normal approximation. In the future work, we will conduct simulation studies to
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evaluate the finite sample performance of our proposed estimators. For our proposed meth-

ods, the baseline information was not incorporated into the estimation process except for

modelling the propensity score. Therefore, a possible future research topic is to investigate

methods which effectively incorporate the baseline information for pretest-posttest studies

with complex survey data.

5.2 Discussion on Recommendations

In this section, we discuss some recommendations for the real data applications of our

proposed methods in this thesis. When the goal is to make inference of the treatment

effect, we consider the methods discussed in Chapter 2. If the number of baseline co-

variates is small, we recommend the kernel regression imputation based EL method, since

the kernel imputation method effectively incorporates baseline information and is robust

against model misspecification. When the number of baseline covariates is large, the linear

regression imputation based EL method is a good choice since it is most efficient and easy

to implement. However, it is important to conduct model diagnosis of the validity of linear

model assumptions before using the linear regression imputation method.

When the objective is to test the difference of the distributions of the posttest responses,

we consider the methods studied in Chapter 3. The adjusted Mann-Whitney test based

on the HQF estimators has the following advantages: (1) asymptotic normality of the test

statistic, (2) fast computation, (3) effective incorporation of the baseline information, and

(4) higher power in the simulation studies. The imputation based EL and JEL tests have

great potential to be more powerful after further adjustments to the size of the tests. We

will investigate this topic in our future work.

Moreover in our future research, we plan to write the proposed methods in this thesis

into R functions so that our methods are ready for use by statisticians and applied science

researchers.
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