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Abstract

Texture analysis has been used extensively in the computer–assisted interpretation of SAR sea

ice imagery. Provision of maps which distinguish relevant ice types is significant for monitoring

global warming and ship navigation. Due to the abundance of SAR imagery available, there

exists a need to develop an automated approach for SAR sea ice interpretation.

Grey level co-occurrence probability (GLCP) texture features are very popular for SAR sea ice

classification. Although these features are used extensively in the literature, they have a tendency

to erode and misclassify texture boundaries. Proposed is an advancement to the GLCP method

which will preserve texture boundaries during image segmentation. This method exploits the re-

lationship a pixel has with its closest neighbors and weights the texture measurement accordingly.

These texture features are referred to as WGLCP (weighted GLCP) texture features.

In this research, the WGLCP and GLCP feature sets are compared in terms of boundary

preservation, unsupervised segmentation ability, robustness to increasing boundary density and

computation time. The WGLCP method outperforms the GLCP method in all aspects except

for computation time, where it suffers. From the comparative analysis, an inconsistency with

the GLCP correlation statistic was observed, which motivated an investigative study into us-

ing this statistic for image segmentation. As the overall goal of the thesis is to improve SAR

sea ice segmentation accuracy, the concepts developed from the study are applied to the im-

age segmentation problem. The results indicate that for images with high contrast boundaries,

the GLCP correlation statistical feature decreases segmentation accuracy. When comparing

WGLCP and GLCP features for segmentation, the WGLCP features provide higher segmenta-

tion accuracy.
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Chapter 1

Introduction

1.1 General

The analysis of remotely sensed data remains an important application in the field of computer

vision. Remotely sensed images contain an extensive amount of information about objects within

a scene (e.g. brightness, shape, size, spatial proximity). The role of computer vision is to use

this information to segment the relevant objects within an image. Although easily segmented by

the human observer, there exists no robust automated machine approach that can consistently

separate relevant classes in synthetic aperture radar (SAR) sea ice imagery.

Texture has been used extensively in the interpretation of SAR imagery [35]. There have been

many different mathematical representations which define texture, however, there exists no uni-

versal definition for texture. Texture measures are used to characterize a particular relationship

between a pixel and its neighbors. Interpretation of these texture measures can be applied to the

image segmentation problem.

In general, the texture image segmentation problem can be divided into two steps. First,

appropriate textural features for each pixel must be calculated. This is called feature extraction.
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CHAPTER 1. INTRODUCTION 2

Next, pixels with similar features are grouped together according to some discriminating (or

similarity) function. This is referred to as classification. Improving the feature extraction to

have distinguishable features will increase class separability in the feature space. As well, a

clustering methodology that consistently and accurately separates relevant classes within an image

is desirable. This thesis will focus on using texture methods to segment relevant ice types in SAR

imagery while concentrating on the preservation of texture boundaries.

1.2 Thesis Summary

In this thesis, many issues involving the use of texture features will be discussed. A method for

preserving texture boundaries will be presented and analyzed. The following outline will be used:

• Chapter 2 - Background

This chapter will discuss the motivation for monitoring sea ice and the relevance of using

the SAR platform for remotely sensing sea ice. A description of the physical properties of

sea ice and the role of texture for segmenting relevant ice types is explained. The chapter

concludes by discussing the challenges in SAR sea ice interpretation.

• Chapter 3 - Statistical Texture Analysis

Chapter 3 will present a description of current techniques used to generate texture features

and compare them. A detailed description of the GLCP method for texture image seg-

mentation is given. The chapter ends by discussing different segmentation algorithms with

focus on k -means clustering.

• Chapter 4 - Proposed Technique: Weighted Co-occurring Texture Features

This chapter will motivate and present an advancement of the GLCP method which will

preserve texture boundaries during image segmentation. The method exploits the relation-
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ship a pixel has with its closest neighbors and weights the texture measurement accordingly.

These texture features will be referred to as WGLCP (weighted GLCP) texture features.

• Chapter 5 - Experiments and Results Analysis

Chapter 5 begins by performing a comparative study between the GLCP and WGLCP tex-

ture features with respect to boundary preservation, image segmentation ability, robustness

to increasing boundary density and computation time. From the comparative study, a

discrepancy in the GLCP correlation statistical feature is observed which leads to an in-

vestigative study of the GLCP statistics. The section concludes by applying the concepts

learnt for improved image segmentation.

• Chapter 6 - Conclusion

The thesis concludes by elaborating the results, stating some of the strengths and limitations

of this work, and providing direction for future work in SAR sea ice segmentation.



Chapter 2

Background

This chapter will first present some reasons for monitoring sea ice and how SAR platforms can aid

in this process. Some background knowledge of the SAR system and its properties is presented

followed by a discussion on the interactions of microwaves with the sea ice surface. Literature

review of texture definitions, from an image processing perspective follows. This chapter concludes

with some of the inherent challenges involved with SAR sea ice segmentation.

2.1 Motivation

Monitoring of the cryosphere remains a challenge in scientific and operational communities. The

cryosphere is defined as the aspect of the earth’s climate system consisting of the ice masses

and snow deposits. This includes sea ice, ice sheets, lake and river ice, ice caps, glaciers and

snow cover [34]. The cryosphere has a fundamental contribution to the global climate system

by moderating transfers of energy, moisture and gas flux with the land, atmosphere and oceans.

Within Canada and the Northern hemisphere, sea ice covers between approximately 7.5 and 15.0

million square kilometres of the Arctic Ocean with an average thickness of about three metres

4



CHAPTER 2. BACKGROUND 5

[34]. This extensive area is efficient at regulating the global climate by preventing the relatively

warm ocean water from heating the atmosphere. As well, sea ice is fairly efficient at reflecting

sunlight back into space.

Monitoring of cryospheric activity such as ice floes is necessary to address key scientific ques-

tions such as the effect of glacier melt on sea level rise, and for improved representation of

climatological models. Also in Canada, there are continuing operational obligations for moni-

toring sea ice in the east coast, the Gulf of St. Lawrence, all of Hudson Bay and the Canadian

Arctic Archipelago [39]. Daily information regarding sea ice patterns is needed for operational

decision making (e.g. transportation, construction, mining, offshore oil exploration, recreation).

The study and monitoring of sea ice in the cryosphere is difficult and challenging for several

reasons. For instance, the Arctic is a sizable and isolated region, making ground monitoring of

ice floes a hazardous and impractical task. Within areas such as the St. Lawrence seaway, ice floe

information should be daily to navigate ship and ice breaker movements [5]. Obviously, this infor-

mation can not be acquired through ground measurements. A high–resolution, real–time remote

sensing system is needed to capture this information in diverse lighting and weather conditions.

Synthetic aperture radar (SAR) meets the requirements of such a system. SAR uses active mi-

crowave sensing which is capable of day-night, all weather atmospheric penetration in virtually

all conditions [15]. As well, SAR aerial and satellite platforms are capable of regularly capturing

information at sufficiently adequate resolutions for the purposes of sea ice discrimination.

Ice investigation continues to this day and is one of the major commercial uses of SAR

technology. As SAR research is progressing, platforms are becoming better calibrated, having

higher resolution, and are becoming an integral part of sea ice research. With more powerful

SAR platforms being deployed, there will be an unprecedented volume of imagery. This large

amount of SAR data present could remain unused unless a method for interpreting these images

is improved. Computer-aided methods for segmenting sea ice images is a necessary research area
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and is the objective of this thesis.

2.2 Introduction to SAR Platforms

Remote sensing is concerned with collecting information about a target without being in physical

contact with the object [21]. Both passive and active remote sensing systems are available for

imaging. Passive sensors, such as thermal IR (infrared) and visible band cameras, detect electro-

magnetic energy at certain wavelengths which are reflected or radiated by the target or external

energy sources. Active sensors, such as a radar (meaning radio detection and ranging), send and

receive its own energy.

Most imaging radars operate in the microwave bands of the electromagnetic spectrum, with

wavelengths varying from a few centimeters to millimeters in wavelength. The radar system

“illuminates” the environment with electromagnetic energy, detects the backscatter energy re-

turning from the target, and interprets it as an image [40]. Figure 2.1 shows the properties of

side-looking radar antennas which are mounted on moving platforms (e.g. aircraft and satellite).

These systems direct their beam to the side of the platform in a direction normal to the flight

path and parallel to the horizontal plane of the Earth. This is known as the look direction of the

radar. These imaging radars are not affected by lighting and weather conditions, thus, provide

day-night, all-weather imaging. Also, as with passive systems, these systems can control their

look direction as to enhance the target’s features when imaging.

A real aperture radar system operates with a long (about 5-6 meters) antenna [21]. This

type produces a beam of noncoherent pulses and uses its antenna length to obtain the desired

resolution. The resolution in the azimuth (flight direction) is a function of the ratio of the

wavelength to the antenna size [15]. To achieve a high resolution, a short wavelength or an

antenna with an unacceptably long physical length must be used. The development of SAR
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Figure 2.1: Geometric characteristics of a radar image acquired by side-looking radar [40].

alleviated this constraint by synthesizing the effect of a very long antenna using the Doppler

history created by the relative velocity between the platform and the ground [5].

As outlined by Sabins in [31], there are two aspects that contribute to the appearance of SAR

images: radar system properties and terrain properties. Factors such as wavelength, polarization

and spatial resolution determine the radar properties. Terrain properties are defined by their

dielectric property, surface roughness and feature orientation.

The wavelength bands used to capture SAR sea ice imagery typically from 1 cm (e.g. K-

band) up to 30 cm (e.g. L-band). Longer wavelengths are attractive because they have higher

penetration through objects on the Earth, but will have a lower resolution. Another important

SAR system parameter is the polarization of the transmitted and received signals. Generally, the

signal is transmitted and received in either horizontal (H) or vertical (V) planes. Considering the

sending and receiving directions together, there are four kinds of radar images: HH, VV, HV,

VH – the first letter represents the signal transmission and the second letter refers to the signal
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reception. Using the image’s polarization to aid in segmentation is a relatively new research

area that is still under investigation by many scientists. This research area will progress as new

SAR satellite platforms (e.g. Envisat, Radarsat-2) are being equipped to operate using multiple

polarizations.

The spatial resolution of a SAR image is determined by the range and azimuth resolutions

of the radar respectively. The range resolution is a function of the radar pulse length and the

depression angle (γ), as illustrated in Figure 2.1. The equation for range resolution is:

SARrange =
cτ

2 cos γ
(2.1)

where c is the speed of light and τ is the pulse length. Equation 2.1 confirms that the range

resolution decreases with the depression angle (γ), that is, the range resolution for a given SAR

image will vary across the swath of the image. This problem is partially corrected for using SAR

image preprocessing techniques. The azimuth resolution of SAR is:

SARazimuth = N(
D

2
) (2.2)

where D is the antenna length and N is the number of looks. The number of looks (N) refers

to the number of times a scene is sampled and averaged. This technique is employed to increase

the signal–to–noise ratio (SNR) of the speckle noise caused by the coherent nature of the SAR

platform.

Terrain properties affect the backscatter return of the SAR signal. Depending on the prop-

erties of the measured surface, the backscatter is a combination of the reflection, scatter and

attenuation of the incident signal. The dielectric constant of a material is a dominant factor

in determining backscatter. The dielectric constant of an object dramatically increases with its

moisture content, resulting in higher scatter. With respect to sea ice, different types will have

varying dielectric constants, which can be used to help identify different ice types.
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The radar backscatter is also highly dependent on the surface roughness of the terrain. The

Rayleigh criterion indicates whether a surface is considered smooth or rough:

h <
λ

8 sin γ
(2.3)

where h is the root mean square (rms) height of the surface, λ is the signal wavelength, and γ

is still the depression angle. If the Rayleigh criterion holds true, then the surface is considered

smooth and will reflect most of the signal, thus appearing dark in the image. Similar to Equation

2.1 for range resolution, Equation 2.3 indicates that the backscatter characteristics will vary

across the image swath. This will cause differences in the tone and texture of a homogenous

object across the image swath.

The feature orientation with respect to the look direction of the radar also influences the

radar signature. Features oriented normal to the look direction are augmented by highlights and

shadows. Features oriented parallel to the look direction produce no shadowing artefacts in the

image and are preferred for segmentation.

The Radarsat–1 platform [21] was used to capture some of the SAR sea ice images used

in this thesis. Radarsat is a highly advanced Canadian Earth observation satellite developed to

monitor environmental change. Having many different operating modes, Radarsat provides useful

information to scientists in the fields of ice studies, agriculture, coastal monitoring, cartography,

forestry and hydrology. The Radarsat–1 images used in this thesis were acquired using ScanSAR

wide beam mode. This mode operates in C–band frequency, HH polarization, 50 × 50 meter

resolution that is 2× 2 block averaged.
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2.3 Properties of Sea Ice

According to the World Meteorological Organization (WMO), ice can be generalized into four

main types: new ice, young ice, first year ice and multi–year ice. This section provides a brief

summary of the different ice types and their interactions with SAR.

New ice is formed at the beginning of winter, and is usually less than 10 cm thick. With

continuing frigid temperatures, new ice begins transforming to young ice, which is 10 cm to 30

cm in thickness. Near the end of the winter season, ice sheets will accumulate a depth greater

than 30 cm and be categorized as first year ice. During the summer season, ice floes undergo

dramatic reductions in size and salinity. First year ice that survives the summer season becomes

old or multi-year ice.

As discussed in Section 2.2, the orientation, dielectric constant and surface roughness of

a material determines its backscattering properties. With respect to sea ice monitoring, the

platform look direction and target orientation are usually fixed, and will not vary among different

ice types. The dielectric constant of the ice sheet is heavily dependent on the moisture and

salinity of the surface and is extremely important to radar return. The surface roughness within

and amongst the different ice types varies significantly, hence, ice floes will appear as different

“textures” when viewing SAR imagery.

The composition of young and first year smooth ice is relatively saline with a loose structure

containing many gas bubbles limiting microwave absorption. As a result, most of the energy is

reflected by the surface away from the antenna [33]. Surface topography of first year rough ice is

sharp and angular with modest relief. This ice will cause unpredictable scattering. Old ice has

a low dielectric constant because it has effectively zero brine content which permits significant

penetration of microwave energy into the ice. As well, multi–year floes are distinct from first

year ridges because they are weathered and rounded, with very little sign of the original block
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Figure 2.2: SAR image with multiple ice types to illustrate the difference in tone and texture
between ice types. Ice types are labelled in the image.

structure present.

Figure 2.2 contains a multi–class SAR sea ice image. The image is extracted from X-band,

HH polarization, STAR-1 platform with a six meter resolution. As labelled, this image contains

three different ice types and land cover. The first year smooth ice has low variance and dark

tone. The first year rough ice has a light grey tone and appears “cloudy”. For multi–year ice, it

has a bright tone and floes are often rounded and have high frequency “texture” appearance.

2.4 What is Texture and Why Use It?

Most early image segmentation techniques used only the pixel’s grey level value as a criteria

for discriminating objects within a scene [26]. During the 1970’s, the importance of texture

features for image segmentation was illustrated [19, 18, 24]. In the original formulation of the

grey level co-occurrence probabilities (GLCP), developed by Haralick et al.[19], texture features
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were developed for image classification. Haralick demonstrated more than 80 % classification

accuracy for his test sets. To this day, his texture analysis techniques have been referenced in a

wide variety of research literature [23].

2.4.1 Texture Interpretations

In the image processing community, there is no universal agreement on the definition for texture.

One such definition is by Haralick where he states “Texture is defined as the spatial (statisti-

cal) distribution of grey tones [19].” Sabins defines texture as “. . . the frequency of change and

arrangement of tones on an image. Fine, medium, and coarse are some terms used to describe

texture [31].” Both of these definitions have similar connotations but differ subtlety in the se-

mantics. According to these definitions, fine textures are those having high frequency grey tone

variations while coarse textures are those having low frequency grey tone variations. If there is

no variation in grey tone (i.e. single grey tone), the object has a very smooth texture.

Figure 2.3 shows two textures from the Brodatz photo album [4] and their corresponding grey

level histograms. The first texture is high resolution digital photomicrograph of raiffa, and the

second texture is leather. By viewing the histograms, it is apparent that these two images have

many common grey levels. When combining these textures to form a bi–partite (i.e. two–class)

image, the two classes (raiffa and leather) become indistinguishable when using only grey level.

This is apparent by viewing the histogram of the bi–partite image. The human observer will

use the perceived textural appearance to distinguish these textures. It is apparent that raiffa

has a distinct and re-occurring pattern in the horizontal and vertical directions. Leather has a

relatively high frequency in the horizontal direction and low frequency in the vertical direction.
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(a) Raiffa (D84)
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(b) Raiffa Histogram(D84)

(c) Leather (D2)
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(d) Leather Histogram (D2)

(e) Raiffa–Leather Bi–partite Image
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(f) Raiffa–Leather Histogram)

Figure 2.3: Brodatz images of leather and raiffa textures and their corresponding histograms. By
viewing the histograms, these textures have many common grey levels, hence, when combining
these textures to form a bi–partite image, it becomes difficult to segment the textures from one
another. This is evident by viewing the histogram of the combined image.



CHAPTER 2. BACKGROUND 14

2.4.2 Texture Methods

When seeking to measure texture, scientists attempt to quantify the nature of the variation of

grey levels within an object in an image. An ideal texture measurement should be independent of

the object’s position, size and shape. There are many different mathematical formulations which

measure texture in the literature, Tuceryan and Jain categorize them into four groups: statistical,

geometrical, model–based, and signal processing–based [37].

Statistical methods define texture measures as spatial distributions of grey tones for a given

area in the image. Statistics are applied to these distributions and used as features for segmen-

tation. Some common statistical methods are autocorrelation features [16, 25], GLCP statistics

[19], and grey level run lengths [18].

Geometrical texture analysis methods propose that a texture can be characterized as being

composed of atomic texture elements or primitives. This method depends on the geometric

properties of these texture elements and their orientation with respect to one another. The

feature extraction problem is the process of locating the primitives and quantifying their spatial

arrangement. An example of geometrical texture analysis is the Voronoi tesselation method

proposed by Tuceryan and Jain [36]. As SAR sea ice has no definite primitive structure, this

method is not applicable for SAR sea ice segmentation.

Model–based texture analysis is founded on the construction of a model that can be used

not only to describe the texture, but also to synthesize the model parameters to capture the

perceived qualities of the texture. Markov random fields [6, 11] (MRF) and fractal models [27,

29] are examples of these model–based texture methods, and have been used for SAR sea ice

segmentation. Although these methods show promise, they are beyond the scope of this thesis.

Signal processing methods exploit properties of the texture’s spectral signature for analy-

sis. The power spectrum, Gabor filter and wavelet transform [5] are common signal processing

techniques for extracting texture. Although these methods have been used for SAR sea ice in-
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terpretation [5], evidence indicates that these features are sensitive to speckle noise, which is

common in SAR imagery. However, recent studies [6] show that signal processing methods are

complementary to statistical methods, but will not be discussed further as it is beyond the scope

of this thesis.

Of all the methods, the statistical–based GLCP technique is the most widely used for SAR sea

ice identification in the research literature. Currently, some research efforts are directed towards

the fusion of texture features to improve segmentation [6, 8]. Although this area shows promise,

this thesis will narrow its focus on modifying the GLCP texture features for improving boundary

preservation. By directing the research towards modifying GLCP features, the enhanced feature

set can eventually be used in the fusion methodology to improve segmentation further. A complete

and thorough review of the GLCP method will be discussed in Chapter 3.

2.5 Challenges of SAR Sea Ice Segmentation

Sea ice is a complicated and ever–changing material. As outlined above, there are many parame-

ters influencing sea ice appearance in SAR platforms. As well, factors such as temperature, wind

patterns and salinity contribute to a very complicated appearance of sea ice in SAR imagery.

Segmenting SAR sea ice accurately is a very tedious task for the human observer. Listed below

is a summary of some of the problems in automated SAR sea ice recognition.

• Different platforms, different resolutions, different polarizations

As SAR technology is progressing, spatial resolution is improving and features such as

polarization are being incorporated. For example, Radarsat-2 will be capable of imaging

up to a 3-meter resolution and have cross–polarization. Hence, the SAR data available

for remote sensing scientists will be generated from many different platforms, with many

different resolutions and polarizations. As a result, the tone and texture of the same ice
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type will vary with the platform, which makes it difficult to develop a robust approach that

can be applied to any SAR image. The texture variability under different resolutions and

platforms has not been well researched.

• Spatial extent of ice floes vary

The spatial extent of each ice type is different. One ice type may extend several meters

where another ice type can stretch several kilometers. As a result, it is difficult to choose

parameters for some segmentation algorithms which perform analysis based on neighbor-

hood analysis. In addition, a large ice floe will have a tendency to form leads which fill

with open water. As a result, an ice floe can contain a mixture of classes which makes

neighborhood analysis difficult.

• Tracing boundaries between ice types

Even to the human observer, tracing boundaries between ice types is a difficult task. Sea

ice types will sometimes appear merged along boundary areas which makes segmentation

difficult.

• Sea ice characteristics vary temporally, based on changing weather conditions

As described in Section 2.3, sea ice is a dynamic material. The melting and accumulation

of an ice sheet is dependant on factors such as time, ocean temperature and climate. Due

to these dynamic properties of ice, it is difficult to validate the results of a particular

segmentation strategy as the objects which are being identified are changing as well.

• Accuracy of SAR imaging

SAR is convenient for monitoring sea ice, however, there are still some inherent problems

with SAR imaging such as speckle noise and geometric distortions. For example, due to the

coherent nature of SAR, speckle noise is a predominant artefact in SAR imagery. Although
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there exist algorithms to remove speckle noise from an image, they have a tendency to

over–smooth textures and erode high contrast boundaries. As well, due to differences in

incidence angle across the look direction, the backscatter properties of the same texture

will vary slightly across the look direction of the image. Even with the given algorithms to

correct for these geometric distortions, this effect will still have an impact on segmentation.

In fact, Barber and LeDrew [2] show evidence of higher texture analysis performance in the

look direction of an image, which indicates that the SAR platform is directionally biased.

Overall, these problems contribute to lower segmentation performance.



Chapter 3

Statistical Texture Analysis

This chapter will begin by reviewing some statistical texture feature extraction techniques and

compare their results. Next, a description of GLCP method is given. This is followed by a

literature review on determining the parameters for a preferred GLCP feature set with respect

to SAR sea ice segmentation. The chapter concludes by giving an explanation of unsupervised

segmentation.

3.1 Statistical Texture Feature Extraction

3.1.1 Methods

There are certain SAR sea ice images where segmentation could be implemented using only the

grey level of each pixel. In these situations, higher order texture features are not necessary as they

require a significant increase in computation time compared to using just grey level as a feature.

Unfortunately, most multi–class SAR sea ice images are more complex in nature, requiring the

use of higher order texture features for segmentation.

First order methods are the simplest form of texture analysis [23]. The statistics are based

18
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on individual pixel values with no relationships between pixels. Texture features such as mean,

variance, gradient, skewness, etc. are extracted from the image [40].

Second order texture features are usually calculated from a transitional relationship matrix

which is based on the statistical relationship of a pixel with its neighboring pixels, whereas the

first order approach does not take into account the inter–relationship of a pixel and its neighbors.

There are three commonly used statistical second order texture methods in the literature [20]:

grey level difference (GLD), grey level run length (GLRL) and grey level co–occurrence probability

(GLCP).

The GLD method is an indicator of edges within an image [20] and has proven to increase

classification accuracy. Let f(m,n) be the image at row location m and column location n, then

for any given displacement value η(∆m,∆n),

fη(m,n) = |f(m,n)− f(m + ∆m,n + ∆n)| (3.1)

where ∆m, ∆n are integers. Then a probability density, pη can be derived from fη(m,n) as

follows:

pη(i|η) = p(fη(m,n) = i) (3.2)

If there are k grey levels in the image, pη will be a k-dimensional vector with its i–th element

having the probability that fη(m,n) = i. For a given separation value, η(∆m,∆n), textures with

high pη close to i = 0 are said to be coarse, whereas finer textures will have a more uniform

probability distribution. With this methodology, the distribution of pη indicates the coarseness

of a given texture. Statistics such as contrast, entropy, angular second moment, etc. can be

calculated from pη.

GLRL statistics indicate neighboring occurrences of identical grey level values in an image

[20]. This method uses a GLRL matrix R(i, j|θ), where each element, r(i, j|θ), stores the number
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of occurrences of a particular grey level i of a specified run length j along orientation θ. With

this methodology, coarser textures will have longer run lengths for a given grey level. For finer

textures, grey levels change with higher frequency, thus shorter run lengths are expected. So, for

textures with different coarseness, the distributions of their run lengths (for a fixed orientation)

will vary. Using r(i, j|θ), several statistical features can be extracted (e.g. short run emphasis,

long run emphasis, grey level distribution, run length distribution, run percentage, etc.).

The GLCP method describes the frequency of one grey level appearing in a specified linear

relationship with another grey level, within the area under investigation [1]. Traditionally, the

co–occurring probabilities, p(i, j|δ, θ), are stored in a two dimensional joint probability matrix

called the grey level co–occurrence matrix (GLCM ). Each element p(i, j|δ, θ) in the GLCM is

the normalized frequency of co–occurrence between grey levels i and j for a given displacement δ

and orientation θ. A different GLCM is needed for each (δ, θ) pair. A detailed discussion of the

GLCP method is given in Section 3.2.

3.1.2 Comparison

This section provides an overview of previous research studies which compared first order and

second order texture methods. It concludes by comparing the second order texture features

generated by the GLD, GLRL and GLCP methods as mentioned above.

In general, if the features acquired through first order statistics are not discriminable, second

order statistics should be used. For the task of SAR sea ice segmentation, studies have indicated

that first order methods are insufficient. Among publications, Shokr [32] provides a comparison of

first and second order (GLCP) texture measures for supervised classification of SAR sea ice. The

objective of his study was to discriminate five categories of sea ice: multi year ice (MYI), first-

year rough ice (FYR), first-year smooth ice (FYS), young ice (YI) and new ice (NI). The results

indicated that the first order parameters, except for the variance statistic, are not significant
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ice classifiers. The second order parameters are significant in two aspects: they are able to

discriminate between ice classes, and they may also serve to construct a set of one–time decision

boundaries to isolate those classes. As well, the energy and entropy statistics, when combined

with the grey level, provided the highest discrimination capability.

In determining which second order approach is preferred, a comparison between GLD, GLRL

and GLCP is needed. Of the many publications, Harlow and Conners [20] provide a very sys-

tematic and theoretical comparison. The study was designed to compare the relative loss of

texture content information encountered by using the intermediate relationship matrices for each

of the algorithms considered, where the matrices are: the GLD vector pη(i|η), the GLRL matrix

R(i, j|θ), and the GLCM P (i, j|δ, θ). A texture algorithm is said to experience a loss of texture

context information if there exists two visually distinct textures which cannot be discriminated.

When comparing statistical second order methods, they determined whether the intermediate re-

lationship matrices contain information that allow the two textures to be discriminated. Hence, if

the corresponding matrices produced from the two visually distinguishable textures are identical,

an information loss is experienced.

In order to keep the experiment controlled, Harlow and Conners used textures with the same

first order distributions (i.e. same mean, variance and skewness). It is worth noting that these

are also the same textures used by perceptual psychologist B. Julesz in his investigations of

human texture perceptions [24]. The results of the Harlow and Conners study indicate that

the GLCP features provide better discrimination ability compared to the the GLD and GLRL

features. In fact, it was theoretically indicated that the GLD and GLRL methods are proper

subsets of the texture pairs that can be discriminated by the GLCP method. These theoretically

derived results agreed very well with another experimental comparison performed by Weska et

al. [38].
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3.2 GLCP Texture Features

Application of GLCP texture features for interpreting SAR sea ice imagery is detailed in this sec-

tion. Traditionally, the co–occurring probabilities are stored in the GLCM, hence, a description of

the GLCM data structure is given. This is followed by an example calculation and an explanation

of some texture statistics that are applied to the GLCM. The section concludes by discussing the

optimal parameter set for the GLCP features with respect to SAR sea ice segmentation.

3.2.1 Explanation

GLCM

The co–occurrence probabilities offer a second order method for generating texture features. Here,

a brief presentation is given on how to populate the GLCM data structure, but a more thorough

explanation is provided by Haralick et al. [19]. Given a spatial window within the image, the co–

occurrence probabilities represent the conditional joint probabilities of all pairwise combinations

of grey levels given two parameters: interpixel distance (δ) and orientation (θ). It should be

noted that since the image window is a discrete set, it is sometimes convenient to represent the

parameters δ and θ as Cartesian co-ordinates δx and δy which are the interpixel spacings in the

x– and y–directions, respectively. The probability measure can be defined as:

Pr(x) = {Cij | (δx, δy)} (3.3)

where Cij (the co-occurrence probability between grey levels i and j) is defined as:

Cij =
Pij

G−1∑
i,j=0

Pij

(3.4)
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where Pij represents the frequency of occurrence between two grey levels, i and j, for a given

displacement vector (δx, δy) (or displacement δ, and orientation θ), for the specified window size.

G is the number of quantized grey levels for the entire image. The sum in the denominator

represents the total possible number of grey level pairs within the image window. It is worth

noting that as a consequence,
∑
∀i,j

Cij = 1.

The GLCM is a data structure used to store the probabilities where index (i, j) in the matrix is

the probability Cij . Commonly used orientations (θ) are 0◦, 45◦, 90◦ and 135◦. The orientations

180◦, 225◦, 270◦ and 315◦ are redundant to the previous four directions, hence, they are typically

paired together (e.g. 0◦ with 180◦, 45◦ with 225◦, etc.) to achieve a symmetric GLCM. Also, to

ensure a reasonable computation time and non-sparse GLCM, the image is usually quantized.

Quantization will be discussed Section 3.2.2.

Example

The procedure for calculating co-occurrence data is given in Figure 3.1. A comparison of two

texture types is presented for this example. Here, a pair of 5×5 pixel windows are extracted from

the image. The GLCM is calculated for (δx, δy) = {(1, 0), (−1, 0)} (i.e. δ = 1 and θ = 0◦, 180◦).

One sub–image represents a smooth texture and the other represents a coarse texture. The

number of grey levels has been quantized to 4 for the entire image. To determine the GLCM,

the algorithm searches the image window for all possible pixel pairs for the given displacement

vector (δx, δy). For example, the smooth texture has two occurrences of pixel pair (0, 0), eight

occurrences of the pixel pair (0, 1), and so on. This procedure is carried forward for all possible

combinations of grey levels until the matrix is populated. Using Equation 3.4, the matrix is

normalized.

The distribution of non-zero elements in the the GLCM is expected to characterize the texture

of the image. For example, Figure 3.1 illustrates how the GLCM probability distributions differ
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Figure 3.1: Grey level co–occurrence generation example ( (δx, δy) = (1,0) and (-1,0), G = 4 ).
These are example calculations of the GLCM for smooth (left) and rough (right) textures.
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for smooth and coarse textures. The smooth texture has a high frequency of non–zero elements

in the upper–left quadrant of the GLCM, indicating that the grey levels did not vary much within

the image window. The coarse texture has a high dispersion of non–zero elements away from the

diagonal, which indicates the texture is coarse relative to the image window. The differences in

these GLCM s indicate the suitability of using this technique for texture analysis.

Statistics Defined

Based on the GLCM, there are numerous texture statistics that can be extracted. In particular,

statistics which are grey level shift invariant are desirable. A statistic is said to be grey level shift

invariant if it remains consistent given a DC shift in the mean grey level of the image.

Table 3.1 lists eight common grey level shift invariant statistics. In these equations, G is the

number of grey levels in the image and is equal to the dimensions of GLCM. The terms (µx, µy)

and (σx, σy) are the mean and standard deviation of the GLCM in the x– and y–directions

respectively and are defined as follows:

µx =
G−1∑

i,j=0

i · Cij (3.5)

σx =
G−1∑

i,j=0

Cij · (i− µi)2 (3.6)

Note that if the GLCM is symmetric, µx = µy and σx = σy. Applying texture statistics to the

GLCM, texture feature maps can be obtained for each pixel of the image. For a given image

window, the resulting texture statistic calculated from the GLCM is said to belong to the center

pixel of that window.
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Maximum probability (MAX) max(Cij) for all (i, j)

Uniformity (ENE)
G−1∑
i,j=0

C2
ij

Entropy (ENT) −
G−1∑
i,j=0

CijlogCij

Dissimilarity (DIS)
G−1∑
i,j=0

Cij |i− j|

Contrast (CON)
G−1∑
i,j=0

Cij(i− j)2

Inverse difference (INV)
G−1∑
i,j=0

Cij

1+|i−j|

Inverse difference moment (IDM)
G−1∑
i,j=0

Cij

1+(i−j)2

Correlation (COR)
G−1∑
i,j=0

(i−µx)(j−µy)Cij

σxσy

Table 3.1: Grey level shift-invariant co-occurrence texture statistics

3.2.2 Parameter Selection for GLCP

Extraction of GLCP texture features from an image requires expert knowledge of the parameters

involved. Poor selection of GLCP parameters produces an indiscriminable feature space, which

results in unpredictable segmentation. The parameters involved in GLCP texture feature ex-

traction are: (1) image quantization (G), (2) displacement vector (δx, δy), (3) statistic selection

(Table 3.1) and (4) window size (nx, ny). A literature study of these four aspects is discussed

below.

Image Quantization (G)

If the full dynamic range of an image is used, each GLCM is a 256× 256 matrix (65536 entries).

Also, if the image window size is 15×15, there are only 2× (15×14) = 420 entries in the matrix.

For this situation, the GLCM will be quite sparse resulting in unnecessary time–consuming com-
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putations of zero elements. To resolve this issue, a quantization method must be used. According

to the literature [7, 35], the most effective quantization method with respect to classification

ability is linear normalization and is defined:

Inew(i, j) = (G− 1) · Iold(i, j)−min(Iold)
max(Iold)−min(Iold)

(3.7)

where Inew(i, j) and Iold(i, j) are the grey levels at location (i, j) after and before quantization

respectively. max(Iold) and min(Iold) are the maximum and minimum grey levels in the original

image and G is the quantization level. This method makes best use of the dynamic range by

mapping the original image to [0, G-1].

With respect to quantization, the most important decision is determining the minimum num-

ber of grey levels, G, needed to represent a set of textures successfully. Also, one has to consider

that the computation time will grow with increasing G.

Soh and Tsatsoulis [35] conducted experiments on the quantization level and displacement

vectors used for the GLCM and examined their effects on discriminating different SAR sea ice

textures. They devised a test using various texture statistics with six different quantization

schemes: 8, 32, 64, 128 and 256. The displacement vectors (δx, δy) used were (1,0), (1,1), (0,1),

(-1,1). They used Euclidean distance measures to provide a visual interpretation of the trend

between each neighboring quantization scheme (e.g. distance between 8 and 32, 32 and 64, etc.).

The results indicated that G = 8 is not suitable due to its poor distinguishing ability and that a

64-bit representation is efficient and sufficient.

Clausi [7] conducted a study which analyzes grey level quantization on the classification

ability and feature space separability of the co-occurrence statistics. He devised tests to analyze

the classification performance of several texture statistics across many quantized grey levels (8,

12, 16, . . . , 256). Further, he investigated the correlation relationship of the statistics as a

function of grey level quantization. The results indicated many of the individual statistics have
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peak classification at a relatively coarse quantization level (G), with a decrease in classification

accuracy with increasing G. Setting G to a value greater than 24 is advocated, however, large

values of G (> 64) are deemed excessive as they do not improve classification accuracy and are

computationally expensive.

Thus far, there have been no extensive studies which analyze G for segmentation opposed to

classification.

Displacement Vector (δx, δy)

Selection of the interpixel displacement vector is heavily dependent on the nature of the textures to

be segmented. To reiterate, most studies view the displacement vector as two separate parameters:

displacement (δ) and orientation (θ)

Several studies [22, 33, 35] average the four orientations (0◦, 45◦, 90◦ and 135◦) as the authors

assume that the texture measures are insensitive to the direction of the sensor and/or realize that

sea ice formations have no inclination to a certain orientation. Conversely, Barber and LeDrew

[2] determined that orientations aligned with the look direction of the SAR produce results that

have greater statistical significance.

With respect to displacement, δ, the choice relies on the perceived frequency of the texture.

For textures with relatively low frequency, larger displacements are needed to capture the pattern.

With respect to SAR sea ice segmentation, there have been several recommendations for selecting

δ in the literature [2, 22, 33, 28, 35]. Barber and LeDrew [2] statistically prove that δ = 1

generates considerably advanced classification when compared to δ = 5 and δ = 9. Holmes

et al. [22] indicate through experimentation that δ = 2 is the preferred displacement, however,

they do not give a detailed account of their experimentation techiques which led them to this

statement. Shokr [33] conducts a study where he experimentally compares δ = {1, 2, 3} and

determines δ = 2 is the most suitable. Nystuen and Garcia [28] conduct a study where they
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use δ = {1, 2, . . . , 10} and conclude that δ > 4 produce the most consistent features. However,

it should be clarified that consistency does not necessarily translate into increased segmentation

accuracy. Soh and Tsatsoulis [35] recommend using multiple displacement values for classifying

SAR sea ice imagery.

Statistic Selection

Many of the statistics suggested by Haralick [19] produce highly correlated texture features [2, 33,

1]. From a pattern recognition perspective, it is highly desirable to minimize the correlation of

the feature space dimensionality to improve classification accuracy [14]. Barber and LeDrew [2]

indicate the best texture discrimination is achieved for a set of three texture statistics considered

simultaneously. However, in this paper, they make no direct conclusions as to which statistics

are preferred.

Baraldi and Parmiggiani [1] present a thorough analysis of the GLCP texture statistics. In

this study, they prove that energy and entropy are highly correlated and only one of them should

be used for segmentation. As well, contrast and variance measure different texture concepts but

present a very similar behavior in the detection of many texture types. Inverse difference moment

was shown to be a combination of the textural effects characterizing both energy and contrast.

Since these two effects are numerically distinguishable, the use of inverse difference moment is

not recommended. Their final conclusions indicate that two parameters, energy (or entropy) and

contrast, are the most significant in classification.

Clausi [7] studied the correlation relationship of the statistics as a function of quantization.

From this, he determined a preferred set of statistics for texture recognition. He concludes that

entropy, contrast and correlation compose a preferred feature set.
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Window Size (nx, ny)

In a study by Yue [40], she investigates how the window size influences the texture features. Her

results indicate that the standard deviation of the texture features increase as the window size

decreases. An increase in standard deviation of the texture features leads to poorer segmentation

ability, thus, it is necessary to choose larger window sizes.

Generally, it is accepted that the window size should be large enough to characterize the region

of interest. If the window size is too small, this will result in a poor neighborhood approximation

of the region of interest. If the window size is too large, it is more likely to overlap multiple

classes in the image, thus eroding the class boundary. This becomes problematic for SAR sea ice

interpretation as there are many texture boundaries.

For the segmentation problem, generally speaking, fine textures require relatively smaller

window sizes whereas smoother textures require larger window sizes. As well, one has to base

the window size on the size and shape of the ice floes to be monitored.

3.3 Unsupervised Segmentation

Once the features have been extracted from the image, it is necessary to group pixels according

to their feature values, this is called classification. Classification can be either supervised or

unsupervised. Supervised classification is used when the characteristics of each distinct object

type in the image is known. This involves some a priori knowledge of the data set and will often

require the role of an analyst to manually locate homogenous regions of known land–cover types

in the remotely sensed image. The spectral characteristics of these known regions are used to

train the segmentation algorithm to segment the remainder of the image. As this method requires

human intervention, it detracts from the goal of having a fully automated segmentation approach.

In unsupervised segmentation, the identity of object types within the image are assumed to be
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unknown. A clustering scheme is used to group together like pixels into different classes according

to some similarity measures. Improving the pixel measurements will ease the burden of the

clustering process. As well, a clustering methodology that consistently and accurately separates

relevant classes within an image is desirable. Unsupervised segmentation requires minimal a priori

knowledge and human interaction. The remainder of this section will give a brief presentation

of the k -means clustering algorithm, which is an unsupervised segmentation technique. A more

thorough explanation of k -means is provided by Dude, Hart and Stork [14].

Given the number of classes, k, within an image, the algorithm will attempt to find the class

mean vectors −→µ1,
−→µ2, . . . ,

−→µk within the feature space. Then, for each data point −→xi in the feature

space, it will assign −→xi to the nearest class using the minimum Euclidean distance (MED). A

procedural description of k -means follows:

1. Assign k prototypes −→µ1,
−→µ2, . . . ,

−→µk at random.

2. For each data point −→xi , assign −→xi to the closest prototype.

−→xi ε Cj if |−→xi −−→µj | < |−→xi −−→µk| ∀ k, j 6= k

3. For each class Cj , let −→µj = sample mean of points in Cj . If Cj contains no data points,

then select −→µj at random.

4. If any class prototypes have changed in step 3, then goto step 2; else done.

Note that the k -means algorithm requires the user to indicate the number of classes. The

performance of the algorithm is affected by the size, shape and density of each class in the feature

space. As well, the scale and resolution of each feature dimension could affect the success of the

algorithm.

To improve cluster separability and segmentation accuracy, the feature space is typically

linearly normalized according to Equation 3.7. In this case, each axis of the feature space is
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normalized to the range [0, 1], hence, G = 2 for this equation and does not represent the number

of quantized grey levels. By normalizing each axis in the feature space, differences in scale and

resolution amongst feature axes are eliminated.



Chapter 4

Proposed Method: WGLCP Texture

Features

When calculating the GLCP distribution for a given image window, the GLCPs are drawn from

a uniform distribution. A method is proposed to improve the texture features for the purposes

of segmentation and boundary preservation. In this approach, pixel pairs closer to the center of

the image window are given higher significance than those further from the center.

This chapter begins by discussing the problems associated with GLCP texture features. Es-

sentially, by demonstrating some SAR sea ice segmentation results using GLCP texture features,

the need for a weighted image window will be motivated. This is followed by a complete formu-

lation of the weighted GLCP texture features. The chapter ends by discussing the parameters

for an optimal weighted feature set.

33
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4.1 Motivation

When extracting GLCP features from an image, larger image windows are needed to ensure the

GLCM is well sampled (Section 3.2.2). A smaller window with poorly sampled data will result in

unreliable and noisy features, thus poorer segmentation. Although large window sizes are needed

to capture meaningful features, they will erode texture boundaries. As well, texture boundaries

are more severely eroded with natural imagery, where the boundaries have non–linear shape.

Typically, in the literature, scientists will use test images with horizontal and/or vertical linear

texture boundaries which are well–suited for square image windows. As a result, these images

are easier to segment but are not indicative of natural boundaries found in SAR imagery. Larger

window sizes also become problematic in images with high “boundary density”, such as SAR sea

ice imagery. Here, boundary density is a term used to describe regions in images with a high

frequency of multiple classes, or texture boundaries.

To demonstrate the influence of window size on GLCP texture segmentation ability, a SAR

sea ice image was segmented using the GLCP texture features with two different window sizes:

9× 9 and 15× 15. The sea ice image shown in Figure 4.1 is obtained from Barber et al. [2]. The

image is extracted from X-band, HH polarization, STAR-1 with a six meter resolution. Land

cover and three ice types are included in the image. The ice types included are first year smooth

(FYS) ice, first year rough (FYR) ice and multi year ice (MY). After GLCP feature extraction,

the feature space was linearly normalized and segmented using k -means clustering (k= 3). It

is worth noting that the land cover is masked (and omitted) during segmentation because the

location of land cover can easily be obtained from GIS (Geographical information systems).

Comparing the segmentation results in Figure 4.2, one can notice that the smaller window

size provides a suitable ice map but still results in inconsistent and noisy segmentation. Ideally,

there should be no noise artefacts in the lower–left quadrant of the image. This agrees with the
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Figure 4.1: STAR–1, X–band, HH polarization image of Mould Bay, NWT (March 1984), six
meter resolution. Contains land cover and three ice types: FYS, FYR and MY.
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(a) 9× 9 window (b) 15× 15 window

Figure 4.2: STAR–1 segmentation results Using different window sizes. FYS labelled black, FYR
labelled dark grey, MY labelled white and land cover labelled light grey. The smaller window size
provides an accurate, but noisier ice map. The larger window size is more consistent, but there
is a considerable amount of misclassification near texture boundaries.
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study conducted by Yue in [40]. Her results indicate that the standard deviation of the texture

features increase as the window size decreases, which leads to poorer segmentation ability. The

segmentation results for the larger window size are more consistent at separating the ice types

from one another, however, there is a considerable increase in misclassification near the class

boundaries and narrow texture regions in this ice map. This is apparent in the loss of detail

in the middle–left region of the image where there are disjoint regions of MY ice that appear

merged in the results. As well, it appears that the label for FYR ice is detecting the class

boundary between FYS and MY ice, rather than separating the relevant ice types. Essentially,

there are two competing objectives in choosing the window size for GLCP feature extraction. The

first objective is to develop a consistent and discriminable feature set, which requires adequate

samples provided by larger window sizes. The second objective is to preserve texture boundaries

within the image, which requires decreasing the window size to minimize the amount of texture

boundary overlap during feature extraction. These objectives become especially problematic for

SAR sea ice segmentation due to the high frequency of boundaries contained in a scene. The

goal of this thesis is to develop a feature extraction method which will provide consistent and

discriminable features while preserving texture boundaries.

A modification to the GLCP feature extraction method is proposed to preserve texture bound-

aries while providing consistent and discriminable feature sets. Using this approach, a pixel pair

closer to the center of the image window is given higher significance than those on the border. As

illustrated in Figure 4.3, the mean spatial location of a pixel pair is calculated and is defined as rij .

Then, the Euclidian distance of rij to the center of the image window will determine the relative

probability of co-occurrence. As shown in Figure 4.3, the problem is as simple as determining the

distance from A′ to A, then weighting the pixel pair according to the distance measured. By em-

ploying this weighting scheme, larger window sizes are permitted which will lower the variability

of the texture features (thus providing better segmentation) as indicated in [40]. As well, since
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Figure 4.3: Measuring the pixel pair distance to the center of the image window

the features measured belong to the center pixel of the image window, weighting the pixel pair

distance to the center of the image window will result in better neighborhood approximations

of the feature values, thus preserving the texture boundaries. In multiple texture regions, the

measurements are weighted towards the texture properties of the neighborhood surrounding the

center pixel. In homogenous texture regions, the proposed method is expected to still provide

consistent, reliable features. A thorough testing of these concepts follow in Chapter 5.

4.2 Formulation

The location of the pixel pair to the center of the image window determines the relative probability

of co-occurrence for the weighted GLCM. The greater the length of A’–A in Figure 4.3, the lower

the probability of occurrence.

Assume the effective image window, W , is rectangular with nx columns and ny rows (where
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W(-2,-2) W(-1,-2) W(0,-2) W(1,-2) W(2,-2)

W(-2,-1) W(-1,-1) W(0,-1) W(1,-1) W(2,-1)

W(-2,0) W(-1,0) W(0,0) W(1,0) W(2,0)

W(-2,1) W(-1,1) W(0,1) W(1,1) W(2,1)

W(-2,2) W(-1,2) W(0,2) W(1,2) W(2,2)

Table 4.1: Example of indexing scheme for 5× 5 image window

nx and ny are odd numbers). Then the image window can be indexed as follows:

Wx ε

{
− bnx

2
c,−(bnx

2
c − 1), . . . , (bnx

2
c − 1), bnx

2
c
}

Wy ε

{
− bny

2
c,−(bny

2
c − 1), . . . , (bny

2
c − 1), bny

2
c
}

(4.1)

where Wx ×Wy is the set of pixels in the image window indexed by their x–y (i.e. column–row)

designations as outlined by the example in Table 4.1. This indexing scheme is selected so that

the origin of the image window will reside at the center pixel location (i.e. coordinate (0, 0) is the

center of image window), which is convenient for calculating the weighted grey level co-occurrence

probabilities (WGLCP). The grey levels in the image window can be represented as a function

of the index as follows:

W (x, y) = i, where i ⊆ {0, 1, . . . G− 1} (4.2)

where G is the number of grey levels in the image.

Given two pixels in the image window that are separated by (δx, δy), one with grey level i,

the other with grey level j, the pixel pair location is simply the mean location of W (x1, y1) and

W (x2, y2), and is defined as follows:



CHAPTER 4. PROPOSED METHOD: WGLCP TEXTURE FEATURES 40

rij = rij(W (x1, y1),W (x2, y2))

=
(

x1 + x2

2
,
y1 + y2

2

)

= (rx, ry)

given,

W (x1, y1) = i, W (x2, y2) = j, (δx, δy) = (x1 − x2, y1 − y2) (4.3)

In the previous chapter, Pij is defined as the co–occurring frequency between two grey levels

(Equation 3.4). However, in this formulation, Pij is the non–normalized weighted co-occurring

probability and is a Gaussian function of rij . Formally, for a fixed interpixel displacement vector

(δx, δy), the non–normalized weighted co-occurring probability is:

Pij =
∑

∀rij

1
2πσxσy

exp
{
− 1

2

[(
rx

σx

)2

+
(

ry

σy

)2]}
(4.4)

where σx and σy represent the standard deviation of the Gaussian probability density function

(pdf) in the x– and y–directions respectively. Essentially, this method uses the Euclidean dis-

tance of the pixel pair to the origin to determine the weighted co-occurring probabilities. The

GLCM data structure is used to store these weighted probabilities, hence, Equation 3.4 from

the previous chapter can be used to normalize Pij . In theory, if the standard deviations are

sufficiently small relative to the window size, Pij will already be normalized. The statistics from

Table 3.1 can be applied to extract texture features.
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4.3 Selecting Standard Deviation

As indicated by Equation 4.4, the calculation of the WGLCPs introduces two new parameters:

σx and σy – standard deviations in the x– and y–directions respectively for the Gaussian pdf.

Typically, square image windows are used, hence, σ = σx = σy. The standard deviation controls

the weighted probability given to a pixel pair within the image window. Smaller standard de-

viations (σ) indicate that pixel pairs further away from the center of the image window should

be given less significance, whereas larger values for standard deviation provide a more uniform

weighting scheme. Selecting a value for σ should depend on two factors: the boundary density in

the image and the GLCP window size.

The boundary density in an image influences the selection of σ. More boundaries in the image

will result in more occurrences where the image window will overlap multiple textures. As the

window overlaps multiple textures, the co-occurring probability distribution is affected, resulting

in indiscriminable features. By using a smaller standard deviation, the outlying pixel pairs in

the image window will be given less significance, resulting in a better local approximation of the

true texture measure in areas where the image window overlaps multiple classes. Figure 4.4 is an

enlarged section of a SAR sea ice image. The smoother dark region is water, the higher frequency

bright region is ice and the red box represents a window used to calculate the WGLCP texture

features. The window contains a mixture of water and ice classes, thus, by using a smaller σ to

calculate the WGLCPs, the effects of ice will be less predominant and will result in an improved

feature measurement. In situations where the window is in a homogenous texture region, there

are no foreseen adverse effects; the texture characteristics of the center neighborhood (of the

window) are still given higher significance, but since the region is homogenous, it should not be

of concern what neighborhood of the window is given higher weighting.

Another factor influencing the selection of standard deviation is the window size used to deter-
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Figure 4.4: SAR sea ice image which illustrates need for using smaller deviations. The image

window contains multiple textures.

mine the WGLCP texture features. The size of the window determines the maximum Euclidean

distance that a pixel pair will be from the center, hence, the standard deviation should be selected

accordingly. To maximize the energy of the Gaussian pdf within the effective image window, the

standard deviations are estimated to be 1
4 of the window size. This captures approximately 95

percent of the pdf’s energy (area) in the effective window. Formally, the standard deviation can

be written as a function of the window size as follows:

σx =
nx

4
, σy =

ny

4
(4.5)

4.4 Summarizing WGLCP Method

The WGLCP method is applied in Chapter 5 and is summarized as follows:

1. Place image window at starting location of image and initialize elements in GLCM to 0.

2. (a) For pixel W (x, y) = i, find the corresponding pixels located at a displacement ±(δx, δy)

if applicable.
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W+(x + δx, y + δy) = j and W−(x− δx, y − δy) = k,

where i, j, k ⊆ {0, 1, . . . G− 1}.

(b) Find mean co–ordinate for W–W+ and W–W− as follows:

W–W+ = rij = (x + δx
2 , y + δy

2 ) and W–W− = rik = (x− δx
2 , y − δy

2 )

(c) Update GLCM data structure as follows:

P
(new)
ij = P

(old)
ij + 1

2πσxσy
exp

{
− 1

2

[(
x+ δx

2
σx

)2

+
(

y+
δy
2

σy

)2]}

P
(new)
ik = P

(old)
ik + 1

2πσxσy
exp

{
− 1

2

[(
x− δx

2
σx

)2

+
(

y− δy
2

σy

)2]}

3. Repeat step 2 for all pixels in image window.

4. Normalize GLCM such that the sum of all elements in the matrix is 1.

5. Calculate desired statistics according to Table 3.1 and store them in an n–dimensional

vector
−→
f .

6. Assign
−→
f to the center pixel in the image window.

7. Shift window over one column in image. If at end column of image, begin a new row.

Repeat step 1 until end of image.



Chapter 5

Experiments and Results Analysis

The GLCP method has been used extensively to classify sea ice types in SAR for decades. From

the literature, there exists strong supportive evidence that this method is the preferred tex-

ture analysis algorithm for SAR sea ice identification [2, 5]. However, this method suffers as it

consistently misclassifies relevant ice types near textured boundaries. To overcome these short-

comings, the WGLCP texture features have been developed. The chapter begins by comparing

the GLCP and WGLCP texture features with respect to boundary preservation, segmentation

ability, robustness and computational demands. From this comparative study, an inconsistency

with the GLCP correlation statistic was observed. This motivated a thorough investigative study

into the suitability of using the correlation statistic for image segmentation. As the overall goal

of this thesis is to improve unsupervised sea ice segmentation accuracy, the concepts developed

from this study were used to develop a preferred feature set used to segment various images.

44



CHAPTER 5. EXPERIMENTS AND RESULTS ANALYSIS 45

5.1 Comparison of GLCP and WGLCP Texture Features

Four criteria were used to compare the performance of the GLCP and WGLCP feature sets: (1)

boundary preservation, (2) segmentation ability, (3) robustness to increasing boundary density

and (4) computational demands. This section is comprised of four tests to address these criteria.

The first test will compare the GLCP and WGLCP feature sets with respect to boundary

preservation. Edge transects of the features are taken across various textured bi–partite images

and compared. The second test is a comparison of the feature sets with respect to SAR sea ice

segmentation ability. The texture feature sets are applied to the unsupervised segmentation prob-

lem and compared. The third test assesses the robustness of the feature sets, where robustness

is the segmentation performance as a function of increasing image boundary density. Essentially,

as the boundary density of an image increases, the segmentation ability of the texture features

deteriorates. This test compares the robustness of GLCP and WGLCP feature sets in terms of

segmentation ability as the image boundary density increases. The final test will compare the

computational time required for feature extraction for both feature sets.

5.1.1 Determining the Texture Boundary Response

Explanation

An edge transect is a profile view of a texture feature as the image window moves across a row

in the image. The purpose of this test is to measure and compare the response of the GLCP and

WGLCP features across a texture boundary.

As illustrated in Figure 5.1, an artificial bi–partite image is formed with a vertical boundary.

The left–hand side of the image is texture “A” and right–hand side is texture “B”. The edge

transects were calculated as follows:

1. Randomly select a row in the image.
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Figure 5.1: Visual interpretation of edge transects. Illustrated are ideal (step–like), over– and
under–damped texture boundary transitions for the edge transects. Each type of response will
have impact on the feature space separability.
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2. For each position in the given row, calculate the relevant (W)GLCP statistics for the

different displacement vectors:

(δx, δy) = {(1, 0), (1, 1), (0, 1), (−1, 1)}.

3. To make the features directionally invariant, average each statistic over the four displace-

ment vectors used.

4. To increase the signal–to–noise ratio, repeat steps 1 to 3 twenty times and average over the

twenty samples.

5. As mentioned in Section 3.3, normalize the feature space between [0, 1] to improve cluster

separability.

6. For each feature, plot the feature value versus image column position. Observe the results.

Ideally, the value of a feature will have a step–like transition as it crosses the texture boundary,

which results in well–defined separable clusters. In practice, this transition will be over– or under–

damped [13], which is not as desirable. These scenarios are outlined in Figure 5.1. An over–

damped response indicates that the measure is a mixture of both texture values as it crosses the

texture boundary. This causes a higher within-class variance and lower between-class separability,

resulting in poor cluster discrimination as indicated in the figure. In cases where the response

is severely under–damped, the edge transect results will have significant overshoot as it crosses

the texture boundary. This will cause a confounding feature space in scenarios where there is a

high boundary density. Essentially, features which are close to the boundary will form a distinct

and separable third class as illustrated in Figure 5.1. This will cause the algorithm to separate

boundary versus non–boundary pixels rather than separate different textures. Note that this

scenario will occur only if there is severe overshoot in the edge transect response (i.e. approaching

an impulse–like response), in cases where there is minimal overshoot, this will not be an issue.
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(a) SAR ice–water (b) Brodatz cork–wool

Figure 5.2: Bi–partite test images with vertical boundary that are used to determine the texture
boundary response of the feature sets.

Test Data

Figure 5.2 illustrates the two bi–partite images that were used in the tests. The first image consists

of SAR ice (left–side) and SAR water (right–side) textures. These textures were extracted from

Radarsat-1 of Beaufort Sea (June 1998) using ScanSAR wide beam mode (Section 2.2). The

reason for selecting these textures is obvious as the goal of this thesis is to improve SAR sea ice

segmentation. The second image is comprised of cork (left–side) and wool (right–side) textures

from the Brodatz photo album [4]. These textures were selected because they have a well–defined

texture pattern and Brodatz imagery is used extensively in the literature. Also, it is worth noting

that the textures for the Brodatz image were adjusted to have the same mean grey level (DC

shift with no information loss). Table 5.1 summarizes the parameters used in feature extraction

for the transects.
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(W)GLCP Parameters Values

Displacement Vector (1,0), (1,1), (0,1), (-1,1)

Quantization 32 levels

Statistics entropy, contrast, correlation

Window Size 19× 19

Number of Samples 20

Standard Deviation n
4 = 4.75 (for WGLCP only)

Table 5.1: GLCP and WGLCP parameters used in feature extraction for bi-partite images.

Methods of Analysis

To objectively compare the performance of the feature sets, the transect results of the GLCP and

WGLCP methods must be quantified. To accomplish this, the average gradient of the feature

as it crosses the texture boundary is computed. The central difference is used to calculate the

gradient for a given function, f(x):

f ′(x) =
f(x + 1)− f(x− 1)

2
(5.1)

For a window size of 19 × 19, approximately 10 samples of f ′(x) are taken across the texture

boundary and averaged; this is defined as the average gradient for the texture boundary. Note

that this is deemed to be a sufficient number of samples to adequately reflect the slope of the

boundary transition based on the effective window size. By taking a ratio of the average gradient

for WGLCP :GLCP, the methods can be compared. If this number is > 1, it indicates that

WGLCP feature has a steeper texture boundary response and is more desirable.
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(a) GLCP : entropy results
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(b) WGLCP : entropy results
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(c) GLCP : contrast results
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(d) WGLCP : contrast results
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(e) GLCP : correlation results
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(f) WGLCP : correlation results

Figure 5.3: Edge transects for SAR ice–water bi–partite image for selected feature statistics.
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(a) GLCP : entropy results
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(b) WGLCP : entropy results
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(c) GLCP : contrast results
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(d) WGLCP : contrast results
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(e) GLCP : correlation results
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(f) WGLCP : correlation results

Figure 5.4: Edge transects for Brodatz cork–wool bi–partite image for selected feature statistics.
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SAR image Brodatz image

entropy 1.30 1.22

contrast 2.12 1.48

correlation N/A N/A

Table 5.2: WGLCP :GLCP average gradient ratio for selected statistical features.

Results

Figures 5.3 and 5.4 show the edge transect plots for the SAR and Brodatz bi-partite images re-

spectively. For these figures, the statistical features used were entropy, contrast and correlation as

recommended in [7]. The dashed vertical line in these figures represents the true texture bound-

ary. For the SAR ice–water results in Figure 5.3, it is visually apparent that the WGLCP features

have a sharper transect response as they cross the texture boundary, indicating better boundary

preservation. However, for the correlation statistic, both (GLCP and WGLCP) transects are

impulse–like at the texture boundary. This is similar to the under–damped scenario explained

in Figure 5.1, and causes one to question the true suitability of using the correlation statistic

for SAR sea ice segmentation. As a result, a thorough investigation into the GLCP correlation

statistic is given Section 5.2. Figure 5.4 for the Brodatz cork–wool image also illustrates that the

WGLCP texture features provide a sharper response across the texture boundary. However, in

this scenario, the correlation statistic does not give an impulse–like response across the texture

boundary, but, appears very noisy and indiscriminable.

Table 5.2 outlines the WGLCP :GLCP average gradient ratio for the SAR and Brodatz edge

transects as they cross the texture boundary. For all statistics, the WGLCP :GLCP is greater

than 1 indicating the WGLCP features provide a steeper response, which suggests they will

provide better boundary preservation during segmentation.



CHAPTER 5. EXPERIMENTS AND RESULTS ANALYSIS 53

(W)GLCP Parameters Values

Displacement Vector (1,0), (1,1), (0,1), (-1,1)

Quantization 32 levels

Statistics entropy, contrast, correlation

Window Size 15× 15

Standard Deviation n
4 = 3.75 (for WGLCP only)

Table 5.3: GLCP and WGLCP parameters used for SAR sea ice segmentation.

5.1.2 SAR Sea Ice Segmentation Ability

Explanation

To compare the segmentation abilities of the GLCP and WGLCP features, SAR sea ice images

are interpreted using unsupervised segmentation. Table 5.3 outlines the (W)GLCP parameters

used for this experiment as recommended by the literature review in Section 3.2.2. After feature

extraction, the feature space was normalized and k -means clustering was applied.

Test Data

Test set 1 (Figure 5.5) is a scene captured in the Beaufort Sea (June 1998) from Radarsat–1

ScanSAR wide beam mode (Section 2.2). A manual segmentation of the image is included with

the test set and is used as ground truth for analysis. This image was selected as it has relatively

equal proportions of ice and water pixels (i.e. 55% ice, 45% water).

Test set 2 (Figure 5.6) is of Baffin Bay (June 24, 1997) and is also from Radarsat–1 with the

same imaging parameters. As above, the manual segmentation of the image is included in the

test set and will be used in analysis. This image was selected due to the numerous amount of

cracks within the ice floes. These cracks increase the number of ice–water boundaries and cause
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(a) Original (b) Manual Segmentation

Figure 5.5: Test set 1 – SAR sea ice image from Beaufort Sea.

(a) Original (b) Manual Segmentation

Figure 5.6: Test set 2 – SAR sea ice image from Baffin Bay.
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True Categories

X Y

X A B

Y C D

Table 5.4: Example of confusion matrix for a two–class problem.

many cases where the class assignment of the window actually occupies a small percentage of the

window coverage. For these reasons, the cracks in this image prove to be very challenging for

segmentation.

Methods of Analysis

Using the ground truth image, the cumulative correct and incorrect classifications for each test

set are determined and stored in a confusion matrix [30]. For the two–class problem outlined

in Table 5.4, A is the number of pixels correctly assigned to Class X, B is the number of pixels

incorrectly assigned as Class X, C is the number of pixels incorrectly classified as Class Y, and

D is the number of pixels correctly assigned to Class Y.

Using the confusion matrix, the producer’s accuracy, user’s accuracy, overall accuracy and

overall error are determined (Equation 5.2). Producer’s accuracy measures how well a particular

class was identified during segmentation. The user’s accuracy explains how correct the algorithm

was at identifying a particular class. Overall accuracy and error represent the total correct and

incorrect classification percentage respectively.

Xproducer = A
A+C Yproducer = D

B+D

Xuser = A
A+B Yuser = D

C+D

Accuracy = A+D
A+B+C+D Error = B+C

A+B+C+D

(5.2)



CHAPTER 5. EXPERIMENTS AND RESULTS ANALYSIS 56

Amongst the analysis tools, the kappa (κ̂) statistic and the confidence interval (σ̂) are com-

monly used to evaluate the confusion matrix. The kappa statistic is a measure of the difference

between the actual agreement between reference data and an automated classifier and the chance

agreement between the reference data and a random classifier [30]. The kappa statistic has a

range of [−1, 1] with high values indicating strong separability. The confidence interval indicates

the variability of the classifier [3]. Low confidence interval indicates a robust classifier. The kappa

statistic and confidence interval are computed as follows:

κ̂ =
N

r∑
i=1

xii −
r∑

i=1
(xi+ · x+i)

N2 −
r∑

i=1
(xi+ · x+i)

(5.3)

σ̂ =

r∑
i=1

xii(N −
r∑

i=1
xii)

N2 −
r∑

i=1
(xi+ · x+i)

(5.4)

where r is the number of classes in the confusion matrix, xii is the elements on the major diagonal,

xi+ is the sum of the elements in row i, x+i is the sum of the elements in column i, and N is the

total number of observations in the matrix.

When two confusion matrices (segmentation algorithms) are compared, the following test

statistic can be used to determine a significance value (using a significance level of 5%) [3].

Z ∼ κ̂1 − κ̂2

σ̂1 − σ̂2
(5.5)

Results

Figures 5.7 and 5.8 show the segmentation results for test set 1 and 2 respectively. For both

results, an edge map of the true boundaries (as determined from the ground truth image) are

overlayed in red to provide a better indication of the segmentation performance.
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(a) Using GLCP features (b) Using WGLCP features

Figure 5.7: Comparing GLCP and WGLCP features for SAR sea ice segmentation of Beaufort
image (test set 1). True boundaries indicated by red.

(a) Using GLCP features (b) Using WGLCP features

Figure 5.8: Comparing GLCP and WGLCP features for SAR sea ice segmentation of Baffin
image (test set 2). True boundaries indicated by red.
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test set 1 test set 2

METRIC GLCP WGLCP GLCP WGLCP

Overall Accuracy (%) 73 79 82 85

Ice: Producer’s Accuracy (%) 99 99 99 99

Ice: User’s Accuracy (%) 68 74 78 82

Water: Producer’s Accuracy (%) 36 51 47 57

Water: User’s Accuracy (%) 99 99 99 99

Kappa Statistic 0.40 0.54 0.54 0.63

Table 5.5: Performance analysis for GLCP and WGLCP segmentation of test set 1 and 2.

By viewing the lower right quadrant of the Beaufort segmentation results (Figure 5.7), it is

apparent that the WGLCP features perform better at segmenting regions close to boundaries. In

general, there are fewer pixels incorrectly classified as water near boundary regions; this is reflected

by a 15% increase producer’s accuracy for water when using the WGLCP texture features. Table

5.5 lists all the accuracies for the Beaufort image (test set 1), and indicates that there was a 6%

increase in the overall accuracy for the WGLCP feature set.

The Baffin Bay segmentation results (Figure 5.8) also display the same behaviors as Beaufort

results. In general, WGLCP texture features perform better at segmenting regions close to

boundaries. Formally, Table 5.5 indicates that there was a 3% increase in the overall accuracy

when using the WGLCP features; however, both algorithms were still unable to detect the cracks

in the lower portion of the image. This is a result of the effective window size being too large.

For both test sets, there is a significant increase in the user’s accuracy for ice classification and

the producer’s accuracy for water classification. Both of these statistics are positively correlated

and indicate that additional ice pixels were identified correctly while fewer water pixels were

incorrectly assigned. As well, for both test sets, there was a significant increase in the kappa
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statistic. Using the test statistic (Equation 5.5), the WGLCP segmentation results are said to

be a statistically significant improvement compared to the GLCP results for both test sets.

5.1.3 Performance with Increasing Image Boundary Density

Explanation

Areas in images with high boundary density are difficult to segment using texture measures. As

the boundary density of an image increases, the segmentation accuracy is expected to decrease

at a relative rate. This section will compare the GLCP and WGLCP features with respect to

robustness. Here, robustness is a measure of the ability for the feature set to discriminate images

with high boundary density. Using the preferred (W)GLCP parameter set outlined above in

Table 5.1, multiple images with increasing boundary density are interpreted and analyzed using

unsupervised segmentation.

Test Data

The test data was synthetically created using textures from the Brodatz photo album [4]. The

image sizes are fixed (252× 252 pixels) and contain only two classes (i.e. textures) with a vary-

ing number of distinct regions. As the number of regions in the image increases, so does the

boundary density. For example, Figure 5.9 illustrates an image with four distinct regions and its

corresponding ground truth image. Because boundaries in SAR sea ice imagery have complex

shape, the texture boundaries for this test set are selected to be sinusoidal with the frequency

and amplitude dependant on the number of regions in the image. The only textures used were

cork (D4) and wool (D92); they were adjusted to have the same mean grey level (DC shift with

no information loss). The complete test set comprises thirteen images with a different number

of regions (2, 4, 9, 16, 25, 36, 64, 81, 144, 196, 324, 441, 576). As the number of regions in the

image increase, the size of each individual region will decrease. Given the number of regions in
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(a) Cork–wool (4 regions) (b) Template (4 regions)

Figure 5.9: Brodatz test image with 4 regions.

an image, the boundary density is calculated by taking an edge map of the ground truth image,

counting the number of pixels classified as an edge, then dividing by the total number of pixels

in the image.

Methods of Analysis

Using the same analysis tools (i.e. user’s/producer’s/overall accuracy, kappa statistic, significance

test) as in Section 5.1.2, the feature sets can be compared for each image in the test set. Aside from

comparing the GLCP and WGLCP features on a per image basis, it is possible to show macro-

scopic trends across the images in the test set. One such trend is plotting the overall accuracy and

kappa statistic as a function of increasing boundary. By doing this, one can compare the relative

loss in segmentation performance for both GLCP and WGLCP feature sets. Generally speaking,

the accuracy and kappa plots will have the same trends, hence, only a thorough discussion of

the kappa statistic will follow in the discussion. Another excellent analysis tool of robustness is

found by plotting the values of the Z–statistic (Section 5.1.2) as a function of increasing boundary

density, which will show the relative increase in confidence of the WGLCP features.
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Results

All graphical segmentation results for each image and a summary of analysis are found in Ap-

pendix A. For demonstrative purposes, Figures 5.10 and 5.11 contain the segmentation results

for the 4– and 196–region images. When the boundary density in the image is low, the unsuper-

vised segmentation results for both (GLCP and WGLCP) feature sets perform well. In fact, the

WGLCP results are slightly more prone in producing regional errors; especially for images with

low boundary density. This is apparent by the segmentation artefacts contained in the lower–right

quadrant of the 2–, 4– and 25–region images in Appendix A and Figure 5.10 (for the 4–region

image). However, since these regional misclassification artefacts are located at identical locations

for the test images and only occur for the cork texture at a particular location, it indicates that

they represent flaws in the image texture. Nonetheless, it proves useful by illustrating the noise

sensitivity of WGLCP features. To overcome the noise sensitivity issue, a larger standard devia-

tion could be selected for WGLCP method at the expense of poorer boundary preservation. Even

with these noise artefacts, the WGLCP features still slightly outperform the GLCP features by

providing more accurate segmentation near boundary regions.

In general, images with narrow texture regions are better segmentated with the WGLCP fea-

ture set. This is visually observed from the graphical segmentation results in Figure 5.11. By

giving more weight to pixel pairs near the center of the image window, the WGLCP method

is able to better discriminate these small–area, multi–class regions, which are abundant in SAR

sea ice imagery. In fact, a significant improvement of the WGLCP method with respect to the

GLCP method is demonstrated by the statistic test in Equation 5.5 for all test images.

Figure 5.12 illustrates plots of kappa statistic and Z–statistic as a function of boundary den-

sity. At relatively low boundary densities, both GLCP and WGLCP segmentation results have

similar kappa values. As the boundary density increases, the GLCP kappa value decays at a

faster rate than the WGLCP method, indicating that the WGLCP features perform better un-
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure 5.10: Graphical segmentation results of the Brodatz cork–wool image. There are 4 re-
gions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure 5.11: Graphical segmentation results of the Brodatz cork–wool image. There are 196
regions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Kappa statistic versus boundary density

(b) Z–statistic versus boundary density

Figure 5.12: Performance measures as a function of increasing boundary density.
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der more adverse conditions. Ultimately, the boundary density increases to a rate which makes

the individual texture regions in the image smaller than the window size used for feature extrac-

tion. In this situation, the GLCP kappa value decreases at a non–linear rate of decay while the

WGLCP kappa value decreases at a relatively stable, linear rate. This trend strongly indicates

that the WGLCP feature set is more robust and stable than the GLCP feature set.

As mentioned, the improvement in results (WGLCP versus GLCP) is statistically significant

for all images in the test set. Generally speaking, the Z–statistic increases with the boundary

density when comparing feature sets. To illustrate, Figure 5.12 contains a plot of the Z–statistic

versus boundary density, with the 95% confidence interval indicated by the dashed horizontal line.

The Z–statistic remains fairly constant for relatively low boundary density. As the boundary

density increases, there is a quick rise in the Z–statistic, indicating the WGLCP method is

outperforming the GLCP method.

5.1.4 Computation Time

As with any automated algorithm, the length of time required to produce a result can be a major

factor in determining usefulness. This section presents a comparison of the computation time

required for each algorithm on the test data.

Historically, the co–occurring probabilities are stored in an inefficient sparse matrix known

as the grey level co-occurrence matrix (GLCM ). Statistics are applied to the GLCM to generate

the texture features. This method is computationally expensive since the matrix is usually sparse

leading to many unnecessary calculations involving zero probabilities when applying statistics.

Recently, there have been advances in the computation time through the use of grey level co-

occurring linked lists (GLCLL) [10] and the grey level co-occurrence hybrid structure (GLCHS )

[12]. In contrast to the GLCM technique, these methods avoid storing zero probabilities for grey

level pairs. In their publication for the GLCHS [12], Clausi and Zhao indicate that the GLCHS
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is consistently faster than the GLCLL and orders faster than the GLCM method. For coarse

quantizations and small window sizes, the GLCHS method runs at 37.7% the speed of the GLCLL

method and 14.3 % the speed of the GLCM method, generating substantial computational sav-

ings.

The WGLCPs are stored in a GLCM data structure as there is no obvious way to calculate

them using one of the hybrid data structures mentioned above. Currently, there has been no

investigation if the weighted texture features can be calculated using a different data structure.

For this thesis, the GLCP texture features were calculated using a modification of the GLCHS

method, which is found in the PCI GeomaticaTM software version 8. Table 5.6 shows the compu-

tation times required for the GLCP features using this method and the WGLCP features using

the GLCM method. Both methods employed the user–defined parameter set outlined in Table

5.3. Computation times are reported in minutes, as measured on a Pentium IV, 1.6GHz computer

running Windows 2000 and Matlab 6.1.0.450 Release 12.1 with 512MB RAM. In a sense, this is

an unfair comparison as no investigation has yet been made to accelerate the WGLCP method.

However, the results still indicate WGLCP features take considerably longer than the GLCP fea-

tures by an order of magnitude.

Origin Image Size GLCP WGLCP

Figure 5.10 252× 252 14 686

Figure 5.6 300× 300 17 741

Figure 5.5 313× 330 19 762

Figure 4.1 429× 223 22 784

Table 5.6: Computational requirements, in minutes, for algorithms based on image size. Compu-
tation times are reported in minutes, as measured on a Pentium IV, 1.6GHz computer running
Windows 2000 and Matlab 6.1.0.450 Release 12.1 with 512MB RAM.
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(a) Original Image (b) Segmentation Results

Figure 5.13: Segmenting image of Beaufort Bay using only GLCP correlation feature.
GLCP user–defined parameters outlined in Table 5.3

5.2 GLCP Correlation Statistic Study

5.2.1 Overview

For supervised segmentation, the GLCP correlation statistic is advocated to improve SAR sea

ice segmentation accuracy [7]. However, the experiment conducted in Section 5.1.1 indicates that

the GLCP correlation statistic will not make a suitable feature for unsupervised segmentation.

These results indicate that using correlation as a feature will separate boundary versus non–

boundary rather than the relevant ice types in an image. This is re–affirmed by the segmentation

results shown in Figure 5.13. For these results, the Beaufort image (introduced in Section 5.1.2)

was segmented using only the GLCP correlation measures and k–means clustering. The true

boundaries are indicated by the red line which is overlayed in the segmented image. It becomes

very apparent that the GLCP correlation statistical features result in texture boundary detection

for the SAR image, rather than separating relevant ice types.
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The remainder of this section provides an in–depth analysis of the GLCP correlation statistical

feature and its suitability for segmenting SAR sea ice. The first test involves analyzing some edge

transects on synthetic bi–partite test imagery. By using synthetic imagery, texture characteristics

remain controlled and the GLCP statistics become easier to analyze. The second test analyzes

the GLCP feature space assuming labelled features. Using labelled features, it is possible to

calculate Fisher distances, analyze probability distributions (i.e. histograms) for each feature,

and investigate two–dimensional plots of the feature space.

5.2.2 Boundary Response for Synthetic Imagery

Explanation

The purpose of this experiment is to analyze the GLCP edge transects for various synthetic tex-

ture boundaries. By using synthetic test data, texture characteristics such as frequency, variance,

mean grey level, etc. are controlled so the transect results can be generalized for different cate-

gories of textures. For example, the current hypothesis is that the GLCP correlation feature has

poor performance across high contrast texture boundaries such as SAR ice–water. By developing

synthetic bi–partite test images with these certain characteristics, generalizations can be made

that are independent from any particular texture boundary.

The general procedure for determining edge transects is outlined in Section 5.1.1. This test

employs the same methodology except only the GLCP statistics were used.

Test Data

The test data consists of two synthetic bi–partite textured images as shown in Figure 5.14.

The textures were synthetically created from sinusoidal functions with a specified frequency,

amplitude and DC gain. By varying these three parameters (frequency, amplitude, DC gain),

different textural effects can be synthesized. As well, white Gaussian noise (σ = 1.5) was added
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(a) Textures with different DC gain, dif-

ferent amplitude and different frequency.

(b) Textures with the same DC gain, dif-

ferent amplitude and different frequency

Figure 5.14: Synthetic bi–partite test images used for edge transects. The first image contains a
high contrast texture boundary. The second image contains a low contrast texture boundary.

to each image in the test set to make the results more realistic. Each test image contains different

texture pairs as follows:

1. Textures with different DC gain, different amplitude and different frequency

The first texture was dark (i.e. low DC gain), had low variance (i.e. amplitude) and was of

low frequency. This was to simulate the appearance of the water texture as it appears in

SAR imagery. The second texture was brighter, had higher variance and higher frequency.

This texture was simulating the appearance of ice in SAR. When combining these textures,

a high contrast bi–partite image is formed.

2. Textures with same DC gain, different amplitude and different frequency

As stated, both textures have the same mean grey level. The first texture has a low

variance and frequency. The second texture had a high variance and frequency. For this

bi–partite test image, there is no sharp contrast difference between the texture boundary.
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This is similar to the appearance of first year rough ice and multi–year ice in SAR imagery.

Typically, these textures will have similar mean grey levels, but different frequencies and

variance.

Results

Figure 5.15 contains the edge transect results for the high and low contrast images. The true

texture boundary is indicated by the dashed blue line. The plots on the left–hand side are

transects for the high contrast image. The plots on the right–hand side are transects for the low

contrast image.

As expected, the entropy and contrast statistical features provide a step–like response across

the texture boundary. This coincides with the previous research studies [35, 7, 1]. It is also

noticeable that some of the feature values have a certain periodicity for the higher frequency

textures. This is a result of having larger window sizes. However, smaller window sizes would

result in even greater variance of the texture features as shown by Yue [40].

The impulse–like response of the GLCP correlation feature across high contrast texture bound-

aries can be explained through analyzing the probability distributions within the GLCM. During

feature extraction, the distribution of non–zero elements in the GLCM was monitored within and

across the texture boundaries. Figure 5.16 provides a general diagram of how the GLCM changes

across the boundary. For the dark texture, there is a high distribution of non–zero elements con-

centrated in the upper–left quadrant of the GLCM. For the higher frequency bright texture, the

bottom–right quadrant of the GLCM is more highly populated. During this transition from

dark–to–light textures, the probability distribution migrates from the top–left quadrant to the

bottom–right quadrant. As a result, the GLCM probability distribution becomes observably

more correlated.
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(a) High contrast image: entropy results
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(b) Low contrast image: entropy results
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(c) High contrast image: contrast results
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(d) Low contrast image: contrast results
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(e) High contrast image: correlation results
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(f) Low contrast image: correlation results

Figure 5.15: Edge transects for synthetic bi–partite imagery. The images on the left are the
feature transects for high contrast image. The images on the right are the feature transects for
low contrast image. The true texture boundary is indicated by the dashed blue line.
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Figure 5.16: Visualization of how the probability distribution in the GLCM changes across high
contrast texture boundaries. Texture “A” is has a low mean grey level and texture “B” has a
high mean grey level. The probability distribution in the GLCM becomes more correlated as it
crosses the texture boundary.
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5.2.3 Labelled Feature Analysis

Explanation

Rather than separating relevant ice types in SAR imagery, correlation measures will tend to

detect boundaries. Therefore, by using labelled features, one can perform analysis on the feature

space to determine reasons for this poor unsupervised segmentation. For the SAR sea ice image in

this test, the labelled feature space will comprise three relevant classes: ice, water and boundary.

By calculating Fisher linear discriminants between the classes, one can determine the which

pair of classes (‘ice and water’, ‘ice and boundary’, or ‘water and boundary’) have the greatest

separability. As well, it is possible to verify the Fisher measurements by observing distributions

and two–dimensional plots of the labelled feature space.

Test Data

The GLCP features are extracted from the Beaufort image (Figure 5.5) according to the param-

eter set in Table 5.3. Using the ground truth segmentation, one of three labels are assigned to

each pixel in the feature space: ice, water or boundary. Due to the smearing effects of the large

window sizes needed for GLCP feature extraction, a pixel is labelled boundary if its distance is

at least d1
4 · ne pixels from a true boundary; where n is the size of the image window, and the

true boundary is determined from the ground truth image. For example, using a window size

of 15 × 15, any pixels that are at least a distance of d1
4 · ne = d1

4 · 15e = 4 pixels from the true

boundary are labelled boundary as well.

Methods of Analysis

To adequately determine the properties of the labelled feature space, three methods of analysis

will be performed. The first method involves calculating cluster separability using the Fisher
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criterion [17]. The second and third tests are qualitative visualizations to support the Fisher

results and better understand the nature of the feature space.

The distance between two clusters is a common measurement in determining cluster separa-

bility. However, if the feature space dimension is larger than three, the distance measurement

becomes difficult to visualize. Using the Fisher criterion, one can project n dimensional feature

data onto a line ω and calculate a weighted distance between the projected clusters [14]. Essen-

tially, determining the Fisher criterion for two labelled classes (C1 and C2) in the feature space,

the ratio of the between–class scatter matrix (SB) and within–class scatter matrix (SW ) is used

as follows [17]:

J = tr(S−1
W SB) (5.6)

where tr denotes trace. Based on the sample data for each class in the feature space, the following

relations for SB and SW hold true:

SB = P1(m1 −m0)(m1 −m0)T + P2(m2 −m0)(m2 −m0)T (5.7)

SW = P1Σ1 + P2Σ2 (5.8)

where, Pi is the a priori probability of class i,

mi is the mean of class i,

Σi is the covariance matrix of class i,

m0 = P1m1 + P2m2.

Using Equation 5.6, larger values of J indicate greater cluster separability. The Fisher criterion

is used to determine cluster separability between the following pairs of classes: ice and water, ice

and boundary, water and boundary. Essentially, the pair with the highest value of J for the given

feature space is deemed the most separable cluster pair.
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The second and third tests are designed to visually support the results of the Fisher analysis.

In these tests, distributions and two–dimensional plots of the feature space will be observed for

the reader to gain a better understanding of the correlation statistic within the feature space. The

second test will analyze the histograms of the various GLCP statistical features. By analyzing

the distribution of a feature for each class in the feature space, one can visually determine which

two class distributions appear most separable. The third test will provide some two–dimensional

plots of the feature space using various GLCP features. The statistical features (entropy, contrast,

correlation) will be plotted against one another (entropy vs. contrast, entropy vs. correlation,

contrast vs. correlation) and observed. In typical situations, the boundary features will be within

the range of the ice and water classes. That is, within the feature space, the boundary features

will be located between the ice and water features. In situations where the boundary features are

outside the range of the ice and water features, they will skew the ice–water decision boundary,

resulting in poor segmentation.

Results

Using the Fisher criterion, the cluster separability between ice, water and boundary classes is

determined. Table 5.7 summarizes the results of Fisher analysis on different feature spaces. For

example, according to the Fisher criterion, when the feature space comprises only the entropy

statistic, the ice–water separability is relatively higher (4.21) than the other class pairs, indicating

that the ice and water pixels are more easily segmented. However, for this situation, the ice–

boundary separability is very low (0.08), indicating that there is a bias which will group ice and

boundary pixels together, even in situations where the boundary pixel should be classified as

water. The results also show that a feature space containing only entropy or only contrast have

similar characteristics in terms of inter–class separability.

The Fisher results also indicate that the hypotheses regarding the correlation statistic were
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Statistics Used In Feature Space

entropy contrast correlation entropy, contrast,

correlation

entropy, contrast

Ice vs. Water 4.21 2.74 0.50 12.55 15.01

Ice vs. Boundary 0.08 0.39 1.82 1.83 0.45

Water vs. Boundary 2.57 1.00 0.71 2.87 2.72

Table 5.7: Fisher measures for various feature spaces of the Beaufort image.

correct; that is, a feature space comprised only of the GLCP correlation statistic will separate

boundary versus non–boundary, rather than relevant ice types. The Fisher criterion indicates ice

and boundary have the highest separability at 1.82 units, whereas ice–water and water–boundary

have Fisher values of 0.50 and 0.71 respectively. This indicates that ice and water classes will

be indistinguishable during segmentation and boundary pixels will form a distinct class. These

results also coincide with the segmentation results illustrated above in Figure 5.13, where the

correlation statistical feature resulted in texture boundary detection.

When all three statistics (entropy, contrast, correlation) are combined, the Fisher criterion

shows greatest separability between ice and water classes. Also, for this scenario, the ice–boundary

classes have a relatively lower separability than water–boundary classes (1.83 versus 2.87), indi-

cating that there is a slight bias to over–classify boundary pixels as ice. Finally, when the cor-

relation statistical feature is removed from the feature space, ice and water pixels have a higher

separability (15.01 versus 12.55). However, this scenario indicates that the bias to misclassify the

boundary pixels as ice still exists.

For the remaining tests in this section, each GLCP statistic (entropy, contrast, correlation)

was averaged over all the displacements to produce directionally invariant features. To support

the results of the Fisher criterion and provide a visualization of the feature space, a histogram
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Figure 5.17: Histograms of GLCP contrast statistic for each class in the Beaufort Sea image.
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Figure 5.18: Histograms of GLCP correlation statistic for each class in the Beaufort Sea image.
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is taken of the GLCP contrast and correlation statistical features. The entropy histogram was

omitted as it exhibits similar behavior to the contrast results. By viewing the feature distributions

for each class (ice, water, boundary) and the entire image, it is easy to visualize the contribution

that each class has to the overall feature separability. Figure 5.17 and 5.18 show the histograms

for contrast and correlation statistical features respectively. Observing the results for contrast,

the histograms for ice and water have distinct distributions, making it easy to distinguish the

two textures from the image histogram. The ice and boundary histograms have very similar

distributions and become indistinguishable in the image histogram. These visual interpretations

agree with the Fisher measures for contrast, which indicate that the ice–water pixels have high

separability and the ice–boundary pixels have very low separability. The correlation histograms

also agree with the Fisher results. According to the histograms, ice and boundary seem to be

the most dominant and separable clusters, while the water histogram appears to be a mixture of

ice and boundary. Employing a thresholding scheme for the correlation image histogram would

result in separating ice and boundary, as indicated above by the Fisher criterion.

Another method to visually determine the nature of the GLCP correlation statistic is to

plot the feature space. Using the directional invariant statistical features (entropy, contrast,

correlation), two–dimensional plots of the feature space were analyzed. Figure 5.19 shows various

two–dimensional plots of the feature space which include and omit the presence of the boundary

pixels. In these images, the blue, red and green colours represent water, ice and boundary features

respectively. Viewing the results, the following statements can be made about each plot:

• entropy versus contrast

The feature space appears to be highly correlated, indicating the necessity for principle

components analysis (PCA) when applying this problem to supervised segmentation. As

well, the feature space indicates that the boundary class is a mixture of the ice and water
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(a) Entropy vs. Contrast

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Entropy

C
on

tr
as

t

(b) Entropy vs. Contrast (boundary features
omitted)
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(c) Entropy vs. Correlation
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(d) Entropy vs. Correlation (boundary fea-
tures omitted)
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(e) Contrast vs. Correlation
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(f) Contrast vs. Correlation (boundary fea-
tures omitted)

Figure 5.19: Two–dimensional plots of the feature space for the Beaufort image. Red represents
ice, blue represents water, green represents boundary.
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classes, implying that the boundary pixels are not likely to form a distinct third class

during segmentation. Also by viewing the figure, it apparent that the boundary pixels are

also biased towards the ice class, indicating that a ice–water decision boundary would most

likely over–assign boundary pixels as ice. Figure 5.19 also illustrates the appearance of the

feature space in an ideal (yet unrealistic) scenario where the boundary pixels are removed

from the image. After removal, the feature space appears much more easy to segment with

very little overlap between the ice and water clusters.

• entropy versus correlation

The pixels labelled as boundary are spread across the ice and water classes. There is a high

percentage of boundary pixels that overlap with the ice region in the feature space. Using

this feature space, ice and water are still the dominant clusters, however, there appears

to be a large bias to over–classify pixels near boundaries as ice. This verifies the results

provided by the Fisher analysis. Again, if the boundary pixels were removed from this

image, the remaining ice and water clusters appear very distinct and easily separated.

• contrast versus correlation

This graph exhibits similar behavior as entropy versus correlation plot. From this plot,

the most likely decision boundary would result in distinct ice and water clusters. Again,

there appears to be a bias for the boundary pixels to be misinterpreted as ice. Also, if the

boundary pixels were removed, the resulting ice and water clusters are very easily separated.

5.3 Towards Improving SAR Sea Ice Segmentation Ability

In this section, the concepts developed in the previous experiments are used to improve image

segmentation with a focus on SAR sea ice imagery. Thus far, two hypotheses were developed
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and tested individually. The first hypothesis demonstrates that WGLCP texture features provide

better texture boundary preservation, segmentation ability and robustness (to increasing bound-

ary density) compared to the standard GLCP features. The second hypothesis demonstrates that

the GLCP correlation statistical feature is not a suitable feature for the segmentation of high

contrast images, such as SAR sea ice imagery. Combining these hypotheses, a preferred feature

set is experimentally determined for image segmentation. This test comprises of the following

four combinations for segmenting a variety of imagery:

1. GLCP texture feature extraction using entropy, contrast, correlation statistics.

2. GLCP texture feature extraction using entropy and contrast (no correlation) statistics.

3. WGLCP texture feature extraction using entropy, contrast, correlation statistics.

4. WGLCP texture feature extraction using entropy and contrast (no correlation) statistics.

After each feature set is extracted, the feature space is normalized and k–means clustering is

applied with k set equal to the number of distinct classes in the image. Aside from the statistical

features, each feature set employed the same user–defined parameters as outlined in Table 5.8.

Based on the experiments conducted in the previous sections, the hypothesis is that feature set #4

(i.e. WGLCP using entropy and contrast statistics) should provide the best segmentation results

for the high contrast (SAR sea ice) images used in this section. It should be noted that adding

grey tone to the feature space for high contrast images would improve segmentation. However,

these tests are focussed on comparing the feature sets with respect to one another, therefore, grey

tone was not added to the feature space.
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(W)GLCP Parameters Values

Displacement Vector (1,0), (1,1), (0,1), (-1,1)

Quantization 32 levels

Window Size 15× 15 or 19× 19

Standard Deviation n
4 = 4.75 (for WGLCP only)

Table 5.8: Textural parameters used for testing in Section 5.3.

5.3.1 Beaufort Sea Image

This image was first introduced in Section 5.1.2 on page 54 and is from the Radarsat–1 platform.

The parameters in Table 5.8 were used with a window size of 15 × 15 for feature extraction.

The image contains sea ice and open water (i.e. k = 2) and is considered to be of relatively

high contrast. As a result, feature set #4 (WGLCP features omitting correlation) is expected to

provide the highest segmentation accuracy.

Figure 5.20 shows the segmentation results using the four feature sets. Again, the red lines

overlayed in the image represent the true boundaries. By viewing the figures for the GLCP fea-

ture set, omitting the correlation statistical feature provides better segmentation. In fact, the

segmentation accuracy increases from 72.9% to 77.0% when removing the correlation feature (as

determined from the ground truth image) from the GLCP feature set. As well, using a 95%

confidence interval, the results are considered statistically significant. This is observed by an

increase boundary classification for the image.

Observing the WGLCP feature set segmentation results (Figure 5.20), there appears to be no

noticeable change in segmentation accuracy. The segmentation accuracy increases subtly from

79.1% to 79.3% when omitting the correlation feature. When comparing these results, they are

deemed to be not statistically significant indicating the results are similar. Overall, when using

the WGLCP features, the correlation statistical feature does not have a positive or negative
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(a) GLCP using entropy, contrast, correlation (b) GLCP using entropy and contrast

(c) WGLCP using entropy, contrast, correlation (d) WGLCP using entropy and contrast

Figure 5.20: Segmentation of Beaufort Sea image in Figure 5.5, page 54. Red lines represent true
boundaries as obtained from the ground truth image.
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Feature

Set 1

Feature

Set 2

Feature

Set 3

Feature

Set 4

Overall Accuracy (%) 72.9 77.0 79.1 79.3

Kappa Statistic 0.39 0.49 0.54 0.54

Table 5.9: Comparing segmentation performance of different feature sets for the Beaufort Image.

impact on segmentation accuracy. This is caused by the WGLCP features being inherently

better at boundary preservation. As a result, fewer misclassifications occur near boundaries and

the correlation feature has very little impact in this scenario.

5.3.2 Mould Bay Image

Used in Section 4.1, this test image is from the STAR–1 platform. Land cover and three ice types

are included in the image. The ice types are first year smooth (FYS) ice, first year rough (FYR)

ice and multi–year ice (MY). A window size of 15×15 is employed for feature extraction and k =3

for the k -means algorithm. The land cover is masked (and omitted) during segmentation because

the location of land cover can be obtained from appropriate land maps in a GIS (Geographical

information systems) environment.

Figure 5.22 and 5.23 show the results of segmentation using GLCP and WGLCP feature sets

including and omitting the correlation statistic respectively. It is apparent in Figure 5.22 for

the GLCP feature set, omitting the correlation statistical feature provides better segmentation.

When correlation is included, FYS ice is confused with FYR ice. In fact, the pixels classified as

FYR ice are actually indicators of the boundary between FYS and MY ice. After removing the

correlation statistic from the feature set, the GLCP segmentation results are more accurate.

For this image, the WGLCP feature set provides better segmentation compared to the

GLCP feature set. Generally, one can observe that the WGLCP method is able to locate different
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Figure 5.21: STAR–1 image of Mould Bay, NWT (March 1984). Image contains land cover and
three ice types: FYS, FYR and MY.
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(a) GLCP using entropy, contrast, correla-
tion

(b) GLCP using entropy and contrast

Figure 5.22: GLCP segmentation of STAR–1 image in Figure 5.21. FYS ice labelled black, FYR
ice labelled dark grey, MY ice labelled white and land cover labelled light grey.
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(a) WGLCP using entropy, contrast, correla-
tion

(b) WGLCP using entropy and contrast

Figure 5.23: WGLCP segmentation of STAR–1 image in Figure 5.21. FYS ice labelled black,
FYR ice labelled dark grey, MY ice labelled white and land cover labelled light grey.
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ice types that are present within the MY ice flow. For example, by observing the middle–left

region of the results, the WGLCP method provides a better indication of disjoint regions of MY

ice whereas the GLCP method incorrectly merges these regions together.

Amongst both WGLCP feature sets in Figure 5.23, there is very little variation in the segmen-

tation results when including and omitting the correlation feature. Since the WGLCP features

provide better boundary preservation, it is expected that the correlation statistical feature influ-

ences fewer pixels near texture boundaries, hence, having less impact on segmentation.

5.3.3 Bi–partite Brodatz Images

Figure 5.24 shows the bi–partite test images and their corresponding ground truth image used in

this section. These images contain two textures from the Brodatz photo album and are separated

by a high amplitude, high frequency sinusoidal boundary. The first image uses the cork (D4) and

wool (D92) textures similar to Section 5.1.3. Both textures were adjusted to have the same mean

grey level (same DC gain with no information loss). The second image uses cork (D4) and straw

matting (D78) textures. In this image, the straw matting texture has a higher mean grey level

(175 for straw matting and 119 for cork) than cork. A window size of 19 × 19 is employed for

feature extraction and k =2 for the k -means algorithm.

Figure 5.25 and 5.26 show the segmentation results for each feature set of the cork–wool and

cork–straw matting images respectively. For all images, the true texture boundary is overlayed

in red. In Figure 5.25 for the cork–wool image, the difference in segmentation accuracy is not

very noticeable when the correlation feature is removed. Although not noticeable, Table 5.10

indicates a slight increase in accuracy when the correlation feature is removed. However, the

improvement in accuracy is deemed to be not statistically significant. The reason the effects

are subtle is because both textures have a similar mean grey level. As the contrast difference

between textures increase, the effects become more apparent. As expected, there is a statistically
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(a) Ground truth image

(b) Cork–wool bi–partite image (c) Cork–straw matting bi–partite image

Figure 5.24: Bi–partite Brodatz Images.
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(a) GLCP using entropy, contrast, correlation (b) GLCP using entropy and contrast

(c) WGLCP using entropy, contrast, correlation (d) WGLCP using entropy and contrast

Figure 5.25: Segmentation results of the bi–partite cork–wool image.
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(a) GLCP using entropy, contrast, correlation (b) GLCP using entropy and contrast

(c) WGLCP using entropy, contrast, correlation (d) WGLCP using entropy and contrast

Figure 5.26: Segmentation results of the bi–partite cork–straw matting image.
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Cork–Wool Image Cork–Straw Matting Image

Overall

Accuracy (%)

Kappa

Statistic

Overall

Accuracy (%)

Kappa

Statistic

Feature Set #1 88.7 0.77 83.2 0.67

Feature Set #2 89.1 0.78 85.4 0.71

Feature Set #3 91.8 0.83 81.3 0.63

Feature Set #4 92.0 0.84 89.9 0.80

Table 5.10: Performance analysis for the Brodatz bi–partite images.

significant improvement when comparing the WGLCP results to the GLCP results. Overall,

feature set #4 provides the highest segmentation accuracy for this image.

Figure 5.26 shows the various segmentation results for the cork–straw matting image. It is

apparent for both GLCP and WGLCP methods that correlation causes a less separable feature

space. The segmentation results contain many misclassification artefacts and results in poor seg-

mentation. When correlation is removed, both methods perform much better at segmentation

and are a statistically significant improvement. Table 5.10 also outlines the increase in segmen-

tation accuracy when comparing the WGLCP and GLCP methods. The weighted feature set is

also a statistically significant improvement over the non–weighted feature set. Overall, feature

set #4 provides the highest segmentation accuracy.

5.3.4 Brodatz Mosaic “Star” Image

Figure 5.27 is a Brodatz mosaic image and its corresponding ground truth image. This image

is adapted from [9] and contains four distinct (and labelled) textured regions from the Brodatz

photo album [4]. The textures used in this image are cork (D4), cotton canvas (D77), wool (D92)

and straw matting (D55). This image is selected for testing as it has many irregularly–shaped
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(a) Original (b) Manual Segmentation

Figure 5.27: Brodatz mosaic “star” image. Contains 4 different textures: cork (D4), cotton
canvas (D77), wool (D92) and straw matting (D55).

texture boundaries, which is indicative of SAR sea ice imagery. As well, Brodatz textures are

extensively used in the literature. A window size of 19 × 19 is employed for feature extraction

and k is set to 4 for k–means clustering.

Figure 5.28 shows the segmentation results using the four aforementioned feature sets. For

both GLCP and WGLCP methods, it is very apparent that the correlation feature performs

poorly. The texture boundaries between the four objects and the background are forming a

separate class, which causes the cork and wool textures to be clustered together. Once the

correlation feature is removed from the feature space, the boundary errors are mostly resolved.

However, one can still observe that the there is some boundary misclassification around the wool

texture (lower–right). The boundary transition from wool to straw matting mimics the pattern

of the cork texture, resulting in boundary misclassification. As indicated in Table 5.11, the

results omitting correlation for the GLCP and WGLCP methods result in and 14.3% and 12.1%
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(a) GLCP using entropy, contrast, correlation (b) GLCP using entropy and contrast

(c) WGLCP using entropy, contrast, correlation (d) WGLCP using entropy and contrast

Figure 5.28: Segmentation results of Brodatz mosaic “star” image.
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Feature

Set 1

Feature

Set 2

Feature

Set 3

Feature

Set 4

Overall Accuracy (%) 70.9 85.2 74.2 86.3

Kappa Statistic 0.59 0.77 0.63 0.78

Table 5.11: Comparing segmentation performance of different feature sets for the Brodatz “star”
image

increase in accuracy respectively. Also, these results are deemed to be a statistically significant

improvement. Table 5.11 also indicates that the WGLCP method outperforms the GLCP method

and that the results are statistically significant. This improvement is caused by better boundary

preservation and results in better segmentation.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The topic of this thesis is to improve image texture segmentation with focus on the preservation

of texture boundaries for SAR sea ice imagery. Proposed is an advancement to the GLCP method

which has been demonstrated to preserve texture boundaries during image segmentation. This

method exploits the relationship a pixel has with its closest neighbors and weights the texture

measurement accordingly. These texture features are referred to as WGLCP (weighted GLCP)

texture features.

A thorough comparative study between the WGLCP and GLCP feature sets is conducted

in terms of boundary preservation, unsupervised segmentation ability, robustness (to increasing

boundary density) and computation time. From the study, an inconsistency with the GLCP cor-

relation statistic is observed, which motivated an investigative study into using this statistic for

image segmentation. As the overall goal of the thesis is to improve SAR sea ice segmentation ac-

curacy, the concepts developed from the study were applied to the image segmentation problem.

From these tests, several conclusions can be formulated and are listed below:

97
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• The WGLCP features are better at preserving texture boundaries. By observing the tran-

sect responses and segmentation results, the WGLCP features provide better boundary

preservation.

• The WGLCP features are more robust than the GLCP features, where robustness is defined

as segmentation performance with increasing image boundary density. As expected, the

segmentation accuracy should decrease with increasing boundary density. However, it was

observed that the segmentation produced from the WGLCP features deteriorate at a slower

rate than the GLCP features, indicating that WGLCP features are more robust than the

GLCP features.

• With respect to unsupervised SAR sea ice segmentation, the WGLCP features outperform

the GLCP features. For all test images (with ground truth composites) used in this thesis,

the segmentation results indicate that the WGLCP features are a statistical improvement

over the GLCP features.

• The WGLCP method is an order of magnitude slower at computation than the GLCP method.

Recently, there have been many advances to reduce the computation for the GLCP method

[10, 12]. These changes resulted in computational savings of approximately one–third over

using traditional methods. However, none of these advances fit naturally for when calcu-

lating the WGLCP features. Currently, no other investigations have been done to decrease

the computational time required to calculate the WGLCP features. Nevertheless, with the

advancements of computer hardware architecture, this computational burden will continue

to be reduced.

• The WGLCP features are more sensitive to regional misclassifications than the GLCP fea-

tures. This was observed from the test in Section 5.1.3 where a flaw in the image texture

caused misclassification for the WGLCP features but not the GLCP features. This problem
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can be alleviated by selecting a larger standard deviation for the WGLCP method; however,

this will also result in a decrease in boundary preservation.

• In images where there is a high contrast difference between classes, the GLCP correlation

statistical feature is not suitable for segmentation. From the tests, the GLCP correlation

feature proves better at discriminating boundary versus non–boundary, rather than relevant

objects within the image. This property makes correlation a poor choice for the segmenta-

tion of SAR sea ice imagery. Typically in SAR images, there is a high contrast difference

between open water and multi–year/first year rough ice, making this statistic unsuitable.

• The GLCP features have a bias towards brighter, higher frequency textures in SAR sea

ice imagery. By observing Fisher measures, segmentation results, feature distributions and

feature space plots, there is a bias to over–classify pixels near the SAR ice–water boundary

as ice.

• The preferred co–occurrence feature set for unsupervised SAR sea ice segmentation consists

of the WGLCP features using the entropy and contrast statistics. However due to the time

constraints required to calculated the WGLCP features, omitting the correlation statistic

(use only entropy and contrast) from the GLCP method will provide similar results and is

also recommended.

• For general image segmentation, this thesis advocates analyzing edge transects across class

boundaries prior to performing segmentation. By analyzing the profile of a single feature

measurement across a class boundary, the feature suitability is determined. If the feature

shows an impulse–like (or under–damped) response across the class boundary, this indicates

it will perform poorly at separating classes in the image. For optimal feature separability,

a step–like response is desirable across the class boundary. In essence, the extra initial
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time required to analyze edge transects will provide a more intelligent method in feature

selection and will save time and aid in the segmentation process overall.

6.2 Future Work

To improve on image texture segmentation with focus on preserving texture boundaries, several

directions could be explored:

• Explore possible methods to accelerate the WGLCP method. Although no optimizations

are obvious at this point, efforts can be made to quicken the GLCP method. Some possible

ideas include implementing the WGLCP algorithm in C code, rather than the current

implementation in Matlab. As well, the algorithm could be implemented using multi–

processors, multi–threading, etc. to accelerate the computation time.

• Combine the WGLCP features in a fusion methodology as explored in the literature [6]. Us-

ing these features in combination with other models can increase SAR sea ice segmentation

accuracy, which is the overall goal of this thesis.

• Use the GLCP correlation statistical feature as an edge detector for high contrast boundaries

SAR sea ice imagery. As there have been no published boundary detectors suitable for SAR

sea ice imagery, an effort can be made to use the GLCP correlation feature to accomplish

this task.

• Develop an automated feature selection scheme which uses edge transects to determine the

preferred feature set. This method would involve taking row– and column–wise line scans

(i.e. transects) across an image to detect edges/boundaries. Using this information and

comparing transects, preferred features can be determined.



Appendix A

Additional Results for Increasing

Boundary Set

This appendix contains images showing segmentation results for the increasing boundary set in

Section 5.1.3.
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Producer’s User’s
Number
Re-
gions

Boundary
Density

Wool Cork Wool Cork Overall
Accu-
racy

Overall
Error

Kappa

2 0.004 0.9695 1.0000 1.0000 0.9704 0.9847 0.0153 0.9695
4 0.008 0.9458 0.9999 0.9999 0.9474 0.9725 0.0275 0.9451
9 0.016 0.9074 0.9958 0.9963 0.8965 0.9469 0.0531 0.8936
16 0.024 0.8614 0.996 0.9957 0.8695 0.9261 0.0739 0.8529
25 0.031 0.8355 0.9918 0.9916 0.8392 0.908 0.092 0.8173
36 0.039 0.8099 0.9904 0.9896 0.8207 0.8943 0.1057 0.7903
64 0.054 0.7778 0.9822 0.9812 0.7872 0.8709 0.1291 0.7449
81 0.062 0.7915 0.9704 0.971 0.7884 0.871 0.129 0.7447
144 0.084 0.7655 0.9433 0.9466 0.7539 0.8424 0.1576 0.6882
196 0.098 0.7776 0.9036 0.9189 0.7431 0.8300 0.1700 0.6606
324 0.130 0.7118 0.7949 0.8344 0.6551 0.7457 0.2543 0.4904
441 0.152 0.6099 0.6768 0.7498 0.5222 0.6358 0.3642 0.2719
576 0.172 0.5264 0.5640 0.6766 0.4073 0.5401 0.4599 0.0836

Table A.1: Segmentation analysis using GLCP feature set with increasing boundary

Producer’s User’s
Number
Re-
gions

Boundary
Density

Wool Cork Wool Cork Overall
Accu-
racy

Overall
Error

Kappa

2 0.004 0.9749 0.9987 0.9987 0.9755 0.9868 0.0132 0.9736
4 0.008 0.9560 0.9984 0.9984 0.9569 0.9770 0.0230 0.9540
9 0.016 0.9277 0.9969 0.9973 0.9174 0.9585 0.0415 0.9168
16 0.024 0.8877 0.9972 0.9970 0.8917 0.9404 0.0596 0.8810
25 0.031 0.8633 0.9925 0.9926 0.8627 0.9233 0.0767 0.8473
36 0.039 0.8395 0.9932 0.9929 0.8447 0.9114 0.0886 0.8239
64 0.054 0.809 0.9875 0.9872 0.8122 0.8903 0.1097 0.7827
81 0.062 0.8008 0.9836 0.9838 0.7981 0.8821 0.1179 0.7666
144 0.084 0.7842 0.9637 0.9659 0.7728 0.8618 0.1382 0.7265
196 0.098 0.7777 0.9444 0.9516 0.7515 0.8470 0.1530 0.6964
324 0.130 0.7487 0.8866 0.9056 0.7083 0.8049 0.1951 0.6113
441 0.152 0.7294 0.8284 0.8709 0.6585 0.7676 0.2324 0.5323
576 0.172 0.6571 0.7648 0.8288 0.5627 0.6965 0.3035 0.3921

Table A.2: Segmentation analysis using WGLCP feature set with increasing boundary
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.1: Graphical segmentation results of the Brodatz cork–wool image. Cork is on the
left–hand side, wool is on the right–hand side. There are 2 regions in this image. Included is
the (a) original image, the (b) ground truth image, (c) unsupervised segmentation results using
GLCP features, and (d) unsupervised segmentation results using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.2: Graphical segmentation results of the Brodatz cork–wool image. There are 4 re-
gions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.3: Graphical segmentation results of the Brodatz cork–wool image. There are 9 re-
gions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.4: Graphical segmentation results of the Brodatz cork–wool image. There are 16 re-
gions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.5: Graphical segmentation results of the Brodatz cork–wool image. There are 25 re-
gions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.6: Graphical segmentation results of the Brodatz cork–wool image. There are 36 re-
gions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.7: Graphical segmentation results of the Brodatz cork–wool image. There are 64 re-
gions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.8: Graphical segmentation results of the Brodatz cork–wool image. There are 81 re-
gions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.9: Graphical segmentation results of the Brodatz cork–wool image. There are 144
regions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.10: Graphical segmentation results of the Brodatz cork–wool image. There are 196
regions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.11: Graphical segmentation results of the Brodatz cork–wool image. There are 324
regions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.12: Graphical segmentation results of the Brodatz cork–wool image. There are 441
regions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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(a) Original Image (b) Ground Truth Image

(c) GLCP Segmentation (d) WGLCP Segmentation

Figure A.13: Graphical segmentation results of the Brodatz cork–wool image. There are 576
regions in this image. Included is the (a) original image, the (b) ground truth image, (c) unsu-
pervised segmentation results using GLCP features, and (d) unsupervised segmentation results
using WGLCP features.
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