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Abstract

The objective of the present study was to develop a fluid flow-coupled distinct element

model capable of capturing the undrained behaviour of granular soils by considering funda-

mental physical mechanisms that involve fluid flow and particle interaction. The method

considers granular media as assemblies of ellipsoidal particles arranged on a plane and in-

teracting by means of contact forces. Saturation effects are incorporated by assuming that

particles are immersed in fluid, the flow of which is simulated as occurring through a net-

work of conduits. The flow through conduits is according to a Hagen-Poiseuille relation; a

transient solution is obtained by solving a system of differential equations. The developed

fluid-flow coupled distinct element was used to conduct various numerical simulations and

the mechanisms of undrained deformations were examined from a micromechanical point

of view.

The dissertation begins with a literature review on the undrained behaviour of granular

materials as observed in laboratory experiments. A review of previous attempts to simulate

undrained tests micromechanically is also presented, and the advantages and disadvantages

of various methods are examined.

The capability of the developed model to simulate two-dimensional fluid-flow and pres-

sure dissipation problems is demonstrated by means of comparisons with analytical so-

lutions. Fluid pressure dissipation problems are qualitatively compared with Terzaghi’s

one-dimension theory of consolidation. It is shown that transient flow problems are accu-

rately modelled by the fluid flow network approach.

Simulated compression tests were carried out to examine the effects of different confining

pressures and initial densities on the macroscopic response. The results compare favorably

with those commonly observed in undrained laboratory experiments. Simulated tests are

analyzed from a micromechanical point of view. It is shown that macroscopic behaviour

can be traced to changes in micromechanical fabric descriptors.

The effects of the interparticle friction angle on the undrained behaviour of the as-

semblies are investigated. The undrained strength is considerably increased by increasing

interparticle friction. The main mechanism found to be responsible for the development of

higher strength is the tendency of the specimens to dilate during shear distortion.

The effects of the principal stress direction on the macroscopic response are examined.

The behaviour of initially anisotropic samples is significantly altered by the direction of

the principal stresses relative to the anisotropy direction.
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It is demonstrated that macroscopic permeability of the media has a considerable ef-

fect on the strength. This behaviour is attributed to the inhomogeneity of pore pressure

distributions which increases with decreased permeability.

The results presented are generally in agreement with observations previously reported

from laboratory experiments. The possible applications of the model for future research

are also discussed.

iv



Acknowledgements

The author is indebted to many persons and institutions in many different ways. Firstly,

the author would like to thank Dr. Leo Rothenburg for his ongoing support and guidance

throughout these years.

Appreciation is extend to Dr. Giovanni Cascante, Dr. Mark Knight and Dr. Maurice

Desseault for their valuable comments, advises and friendship during all this time at the

University of Waterloo. Very special thanks to Dr. Sitharam Thallak, for his valuable

advice and friendship.

Heartfelt thanks to my parents Roberto and Ana Rosa and my siblings Ana Rosa and

Alejandro for supporting me in all possible ways. To my dearest friends in Waterloo:

Adedamola Adadepo, Liu Bingsheng, Shayne Giles, Zahid Khan, Ali Nasseri Mahaddam,

Anwar Majid, Gabrijela Mecki, Luis Miranda, Hamza Ouadfel and Francisco Zaragoza for

their affection and continuous support.

The financial support provided by CONACYT (Consejo Nacional de Ciencia y Tec-

noloǵıa) is gratefully acknowledged.

Finally, the author would like to thank his wife Gabriela, for her endless support and

encouragement. The present work is dedicated to her.

v



Contents

1 Introduction 1

1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives and Scope of Study . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Drained Behaviour of Sand . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Undrained Sand Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Undrained Behaviour under Monotonic Loading . . . . . . . . . . . 10

2.3.2 State Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Conditions for Strain Softening Development . . . . . . . . . . . . . 15

2.4 Factors Affecting Deformation Characteristics . . . . . . . . . . . . . . . . 19

2.4.1 Type and Rate of Loading . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Mode of Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 Principal Stresses Direction and Fabric Anisotropy . . . . . . . . . 21

2.4.4 Degree of Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.5 Grain Crushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Micromechanics of Granular Media . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Microscopic Descriptors of Granular Assemblies . . . . . . . . . . . 24

2.5.2 Contact Normal Distribution . . . . . . . . . . . . . . . . . . . . . 25

2.5.3 Contact Forces Distribution . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



2.6.1 Average Stress Tensor from Fabric Descriptors . . . . . . . . . . . . 32

2.7 Stress-Force-Fabric Relationship . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Liquefaction Simulations using DEM . . . . . . . . . . . . . . . . . . . . . 34

2.8.1 Indirect Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 General Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Development of the Fluid-Flow Coupled Distinct Element Algorithm 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Distinct Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Force-displacement laws . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Non-Linear Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.5 Critical Time Step . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.6 Contact Detection Algorithm . . . . . . . . . . . . . . . . . . . . . 51

3.3 Particle-Fluid-Flow Interaction . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Pore Pressure Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Algorithm for Voids Identification . . . . . . . . . . . . . . . . . . . 54

3.4.2 Pore Pressure Generation . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Coupling of the Flow-DEM Particle System . . . . . . . . . . . . . . . . . 59

3.5.1 Fluid Flow Description . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 Transient Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Pore Pressure Forces on Particles . . . . . . . . . . . . . . . . . . . . . . . 64

3.7 Macroscopic Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Calculation of Stresses and Strains . . . . . . . . . . . . . . . . . . . . . . 68

3.8.1 Total and Effective Stress Tensors . . . . . . . . . . . . . . . . . . . 69

3.8.2 Average Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.9 Boundary Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.10 Modified Program AQUA . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.10.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.10.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.10.3 Post-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

vii



3.11 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Verification and Parametric Study of the Program 79

4.1 Mechanical and Physical Characteristics of the Assembly . . . . . . . . . . 79

4.1.1 Properties of the Particles . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Contact Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.1 Slippage Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Contact Criteria Between Boundary and Internal Particles . . . . . 84

4.3 Testing the Void-Strain Calculations . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Volumetric Relationships . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Fluid-Flow Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Numerical Solution of Fluid-Flow Equations . . . . . . . . . . . . . 95

4.4.2 Pressure Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.3 Pressure Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Global Hydraulic Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Fluid Compressibility Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6.2 Evolution of Void Ratio . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6.3 Contact Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Simulations of Undrained Tests 112

5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.1.1 Program Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Characteristics of the Assembly . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Biaxial Compression Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Summary of the Test Program . . . . . . . . . . . . . . . . . . . . . 115

5.3.2 Effects of Initial Confining Pressure . . . . . . . . . . . . . . . . . . 116

5.3.3 Effects of Initial Density . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3.4 Micromechanical Descriptors . . . . . . . . . . . . . . . . . . . . . . 121

5.3.5 Stress-Force-Fabric Relationships . . . . . . . . . . . . . . . . . . . 133

5.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

viii



5.4.1 Initial and Minimum Coordination Number . . . . . . . . . . . . . 138

5.4.2 Instability Onset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5 Effects of Interparticle Friction . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5.3 Drained Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.6 Volume Controlled and Undrained Simulations . . . . . . . . . . . . . . . . 150

5.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.6.2 Comparison of the Results . . . . . . . . . . . . . . . . . . . . . . . 150

5.6.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6 Initial Fabric Anisotropy and Permeability 154

6.1 Introduction to Initial Fabric Anisotropy . . . . . . . . . . . . . . . . . . . 154

6.2 Assembly Generation and Test Program . . . . . . . . . . . . . . . . . . . 155

6.2.1 Assembly Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.2 Summary of the Test Program . . . . . . . . . . . . . . . . . . . . . 157

6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4 Evolution of Fabric Descriptors . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.1 Coordination Number . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.4.2 Contact Anisotropy Coefficients . . . . . . . . . . . . . . . . . . . . 167

6.4.3 Contact Normal Force Anisotropy . . . . . . . . . . . . . . . . . . . 169

6.4.4 Orientation of Particles . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.6 Introduction to Effects of Conduit Diameter . . . . . . . . . . . . . . . . . 178

6.7 Test Program and Assembly Characteristics . . . . . . . . . . . . . . . . . 179

6.8 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.8.1 Evolution of Micromechanical Parameters . . . . . . . . . . . . . . 181

6.8.2 Evolution of Pore Pressures . . . . . . . . . . . . . . . . . . . . . . 182

6.9 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7 Conclusions and Recommendations 192

7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

ix



7.2.1 Development of the Fluid-Flow coupled DEM . . . . . . . . . . . . 193

7.2.2 Verification and Parametric Study . . . . . . . . . . . . . . . . . . . 193

7.2.3 Results of Undrained Simulations . . . . . . . . . . . . . . . . . . . 195

7.2.4 On Principal Stress Rotation . . . . . . . . . . . . . . . . . . . . . . 198

7.2.5 Permeability Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.3 Applicability and Recommendations . . . . . . . . . . . . . . . . . . . . . . 199

x



List of Tables

2.1 Assumptions involved in previous fluid-flow coupled distinct element methods 36

4.1 Optimum damping coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Initial degree of saturation (S) and corresponding bulk moduli . . . . . . . 104

5.1 Properties of the particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Properties of the fluid network . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Summary of the tests program . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Parameters used for the Computations . . . . . . . . . . . . . . . . . . . . 116

6.1 Initial angle of stress paths with angles measured counterclockwise from the

p′ axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Parameters used in the computations . . . . . . . . . . . . . . . . . . . . . 179

6.3 Measured peak and minimum strengths for varying conduit diameters . . . 180

xi



List of Figures

2.1 Typical stress-strain, stress-void ratio, volumetric strain-shear strain and

void ratio-confining pressure curves . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Typical undrained behaviour. Adapted from [11] . . . . . . . . . . . . . . . 11

2.3 Steady state line concept. Behaviour of initially loose, medium and dense

specimens sheared under undrained conditions . . . . . . . . . . . . . . . . 13

2.4 Definition of the State Parameter according to Been, et al. [7] . . . . . . . 16

2.5 Triggering of unstable behaviour according to Sladen et al. [82] . . . . . . 17

2.6 Idealized collapse surface according to Sladen et al. [82]. Different void

ratios generate different collapse lines with the same slope. . . . . . . . . . 18

2.7 Effect of type and rate of loading on Nevada sand (adapted from Yamamuro

et al. 1998) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Hollow cylinder torsional shear tests on Toyura sand showing the effect of

mode of shear (from Yoshimine et al. 1998) . . . . . . . . . . . . . . . . . 22

2.9 Definition of the particle contact normal, contact vector, branch vector and

contact force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.10 Measured contact normal directions and approximation to the distribution

by a continuous function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 Measured average normal contact force and approximation to the distribu-

tion by a continuous function . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 Measured average shear contact force and approximation to the distribution

by a continuous function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.13 Stress tensor components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Description of particles’ position . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Ellipse nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xii



3.3 Radii of curvature at the contact point . . . . . . . . . . . . . . . . . . . . 46

3.4 Variation of the curvature of and ellipse as a function of the angle α . . . 47

3.5 Principal rheological elements in the DEM . . . . . . . . . . . . . . . . . . 50

3.6 Pore pressure generation scheme . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Calculation of polygons enclosing the assembly’s voids . . . . . . . . . . . . 55

3.8 Variation of normalized fluid modulus with air content . . . . . . . . . . . 57

3.9 Definition of contact vectors for pore volume computation . . . . . . . . . 58

3.10 Computation of area of a region on the ellipse . . . . . . . . . . . . . . . . 59

3.11 Normalized area of a region on the ellipse as a function of the angle θ for

Three Different Eccentricities . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.12 Conduit diameter and macro-permeability . . . . . . . . . . . . . . . . . . 61

3.13 Flow network construction for a set of polygons . . . . . . . . . . . . . . . 63

3.14 Computation of pore pressure forces . . . . . . . . . . . . . . . . . . . . . . 65

3.15 Definition of contact vectors for pore pressure force computation . . . . . . 66

3.16 Variation of normalized moment for different eccentricities . . . . . . . . . 67

3.17 Calculation cycle in flow-coupled DEM . . . . . . . . . . . . . . . . . . . . 69

3.18 Calculation of strain tensor from boundary displacements . . . . . . . . . . 71

3.19 Flow Chart of Program AQUA . . . . . . . . . . . . . . . . . . . . . . . . 76

3.20 Isolated polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Initial loose assembly formed by 1000 internal particles (ec = 0.2) and 76

boundary particles (ec = 1.0) . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Grain size distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Verification of the interparticle slippage criterion . . . . . . . . . . . . . . . 85

4.4 Effect of boundary type of contact on the drained strength of an initially

loose assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Interparticle force distribution for a) frictionless and b) frictional boundary

contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Effects of mass damping coefficient; ω=1,β = 0 . . . . . . . . . . . . . . . 90

4.7 Effects of mass-rotational damping coefficient; α=1000, β = 0 . . . . . . . 90

4.8 Strength of the assembly and evolution of macroscopic pore pressures . . . 93

4.9 Relationship between increments of volumetric strain and macroscopic pore

pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xiii



4.10 Test to monitor the pressure equalization process. The Figure shows the

change with time of micro-pressures in four different pores . . . . . . . . . 97

4.11 Detail of flow network used in a pore pressure dissipation problem . . . . . 98

4.12 Comparison of pore pressure dissipation obtained from proposed scheme

with Terzaghi’s one-dimensional consolidation theory . . . . . . . . . . . . 99

4.13 Flow network used to relate micro and macro permeability . . . . . . . . . 102

4.14 Relationship between conduit diameter and macro-permeability . . . . . . 103

4.15 Stress-strain curves for varying saturation degrees . . . . . . . . . . . . . . 105

4.16 Stress paths for varying saturation degrees . . . . . . . . . . . . . . . . . . 106

4.17 Evolution of void ratio for varying saturation degrees . . . . . . . . . . . . 107

4.18 Ratio of vertical to horizontal strain for varying saturation degrees . . . . . 107

4.19 Average coordination number for varying saturation degrees . . . . . . . . 108

4.20 Contact anisotropy for varying saturation degrees . . . . . . . . . . . . . . 109

5.1 Stress-strain curves for assemblies tested under different initial isotropic con-

fining pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Stress paths for assemblies tested under different initial isotropic confining

pressures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Stress-strain curves for assemblies tested under different densities . . . . . 119

5.4 Stress paths for assemblies tested under different densities . . . . . . . . . 120

5.5 Variation of average coordination number (γ) . . . . . . . . . . . . . . . . 122

5.6 Variation of average coordination number (γ) . . . . . . . . . . . . . . . . 123

5.7 Variation of contact normal anisotropy a for tests sheared under the same

density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.8 Variation of contact normal anisotropy a for tests sheared under the same

initial confining pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.9 Variation of normal force anisotropy parameter (an) . . . . . . . . . . . . . 128

5.10 Variation of normal force anisotropy parameter (an) . . . . . . . . . . . . . 129

5.11 Variation of tangential force anisotropy parameter (at) . . . . . . . . . . . 130

5.12 Variation of tangential force anisotropy parameter (at) . . . . . . . . . . . 131

5.13 Variation of average contact normal force (f̄ c
o) . . . . . . . . . . . . . . . . 132

5.14 Variation of average contact normal force (f̄ c
o) . . . . . . . . . . . . . . . . 133

xiv



5.15 Comparison between computed and predicted stress-strain responses. (The

prediction was made according to (2.21b)) . . . . . . . . . . . . . . . . . . 134

5.16 Comparison between the deviatoric stress and normalized average contact

normal force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.17 Evolution of micromechanical descriptors. . . . . . . . . . . . . . . . . . . 136

5.18 Evolution of packing density and coordination number of loose and dense

assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.19 Relationship between initial and minimum coordination numbers . . . . . . 141

5.20 Stress-strain curves for varying interparticle friction coefficients . . . . . . . 144

5.21 Stress paths for for varying interparticle friction coefficients . . . . . . . . . 144

5.22 Evolution of the coordination number for varying interparticle friction coef-

ficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.23 Stress-strain behaviour for tests with variable interparticle friction coefficient

(µ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.24 Evolution of average coordination number (γ) for tests with variable inter-

particle friction coefficient (µ) . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.25 Volumetric strain (εv) versus deviatoric strain (εt) for tests with variable

interparticle friction coefficient (µ) . . . . . . . . . . . . . . . . . . . . . . 148

5.26 Stress-strain curves using the proposed algorithm and preserving the volume

at the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.27 Stress paths using the proposed algorithm and preserving the volume at the

boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1 Major axis orientation distribution . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Contact normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3 Initial network anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4 Summary of the test program and the initial distribution of the contact

normals. The schematics on top of the distributions show the initial ar-

rangement of the particles in the assemblies. . . . . . . . . . . . . . . . . . 159

6.5 Stress-strain curves for initially anisotropic specimens . . . . . . . . . . . . 161

6.6 Detail of the initial portion of the stress-strain curves for initially anisotropic

specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.7 Stress paths for initially anisotropic specimens . . . . . . . . . . . . . . . . 162

xv



6.8 Evolution of fabric descriptors for assembly A . . . . . . . . . . . . . . . . 164

6.9 Evolution of fabric descriptors for assembly B . . . . . . . . . . . . . . . . 165

6.10 Evolution of fabric descriptors for assembly C . . . . . . . . . . . . . . . . 166

6.11 Force distribution at three levels of strain for test A . . . . . . . . . . . . . 170

6.12 Force distribution at three levels of strain for test B . . . . . . . . . . . . 171

6.13 Force distribution at three levels of strain for test C . . . . . . . . . . . . 172

6.14 Evolution of the contact normal direction (θa) for initially anisotropic fabrics 174

6.15 Evolution of the contact normal force direction (θan) for initially anisotropic

fabrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.16 Comparison between the principal contact normal force direction (θan) and

the major principal stress direction (θσ) . . . . . . . . . . . . . . . . . . . . 176

6.17 Evolution of major axis orientation (as) . . . . . . . . . . . . . . . . . . . . 177

6.18 Average rotation of the particles . . . . . . . . . . . . . . . . . . . . . . . . 178

6.19 Stress-strain curves for varying conduit diameters . . . . . . . . . . . . . . 181

6.20 Evolution of coordination number for varying conduit diameters . . . . . . 182

6.21 Evolution of anisotropy coefficients for varying conduit diameters . . . . . 183

6.22 Evolution of the normalized pore pressures ū/σ,
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Chapter 1

Introduction

1.1 General Background

The increasing awareness of liquefaction hazards during earthquakes has aroused the need

for understanding the mechanism by which loss of ground shear strength occurs. Lique-

faction of sands may arise when saturated soils are shaken and a limiting state of stress is

reached. Soils that are prone to liquefaction are generally Holocene alluvial sediments at

shallow depths [107]. Perturbations in these saturated materials trigger particle movements

that may result in pore water pressure increase. When the rate of pressure generation is

higher than the rate of pressure dissipation, pressures start to build up, causing a reduction

in the effective stresses. Thus, depending on the ability of the material to dissipate the

generated pressures, an eventual loss of effective stresses may occur. The process of gradual

pore pressure generation until the effective stress is totally lost is referred to as liquefaction.

Liquefaction can cause settlement or tipping of buildings, sand boiling, ground cracking,

landslides, dam instability, and highway embankment failures, among other hazards. Such

damages are generally of great concern to public safety and are economically significant

[47].

The term liquefaction was originally coined by Hazen [37]. He explained the failure of

Calaveras dam as follows:

”When a granular material has its pores completely filled with water and it’s

under pressure, two conditions may be recognized. In the first or normal case,

the whole of the pressure is communicated through the material from particle

1



Introduction 2

to particle by bearings of the edges and points of the particles on each other.

The water in the pores is under no pressure that interferes with these bearings.

Under such conditions the frictional resistance of the material against sliding

on itself may be assumed to be the same, or nearly the same, as it would be if the

pore where not filled with water. In the second case, the water in the pores of the

material is under pressure. The pressure of the water on the particles tends to

hold them apart; and part of the pressure is transmitted through the water. To

whatever extent this happens, the pressure transmitted by the edges and points

of the particles is reduced. As water pressure is increased, the pressure on the

edges is reduced and the friction resistance of the material becomes less. If

the pressure of the water is enough to carry all the load, it will have the effect

of holding the particles apart and of producing a condition that is practically

equivalent to that of quick sand...”.

Since that dam failure, the term liquefaction has been used when loss of effective stress

in static or dynamic laboratory tests occurs. Liquefaction phenomena have been extensively

studied over the last several decades, normally using the triaxial apparatus. Results from

laboratory experiments conducted over the past several decades indicate that liquefaction

resistance of granular materials depends primarily on their relative density and the initial

state of stress. [13, 14, 7, 82, 40]. Recently however, the undrained response has been found

to be dependent on other factors, such as stress or strain path directions [100, 106, 93, 80],

and initial fabric anisotropy[106]. The results of these experiments show the importance of

including additional parameters, such as particle arrangement and fabric anisotropy, in the

study of undrained deformations. However, quantifying fabric information is a complex,

time-consuming and expensive procedure.

Computer modelling of soil liquefaction using continuum approaches has also been

used to study the response of soil to a given loading situation [65]. Continuum models

cannot explore the physical microscopic mechanisms that lead to liquefaction; they can

only simulate the macroscopic response provided that the behaviour is adequately emulated

by the adopted constitutive law.

An alternative approach to studying soil behaviour takes into consideration the dis-

crete nature of the particles. Early attempts to observe force distributions and particle

behaviour at microscopic levels were made by Dantu and Wakabayashi [24] using optically

sensitive materials. Later, De Josselin de Jong and Verruijt [26] analyzed force distribution
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in such assemblies, studying individual particles. The results of these experiments pro-

vided a qualitative understanding of the mechanisms of load transfer and the deformation

characteristics of granular materials. New experimental techniques [27] using computer

tomography also provide important information about the evolution of the fabric. The

Distinct Element Method (DEM) initially proposed by Strack and Cundall [23] is an at-

tractive computation technique that treats a granular system as a collection of discrete

granules. The method allows the extraction of all the required information at the particle

level at any stage during the deformation process. Although the technique was originally

developed to consider assemblies of idealized particles sheared in a dry environment, it has

been extended to account for the effects of pore fluid [36, 35, 53, 50].

1.2 Statement of the Problem

The need to fully comprehend the process of liquefaction has arisen from catastrophic

failures that occurred in the past. Physical processes involved in undrained deformations

are complicated and are dependent on the type of soil, which, in turn, can exhibit great

variability. Results from laboratory experiments have shown that void ratio and initial state

of stresses are necessary, but are not sufficient parameters to describe the response of a soil

specimen when sheared in undrained conditions. Undrained soil response has been found

to be dependent on other parameters, such as stress and strain paths and the method of

sample preparation. Such dependency would not be surprising if the soil were analyzed from

a micromechanical frame of reference, where it is recognized that macroscopic observations

are just the result of microscopic processes occurring at the grain scale level [68]. These

processes include the evolution of the orientation of inter-particle contacts and forces.

A study of this nature in the laboratory is complicated if not impossible to conduct, yet

an adequate analysis requires the quantification of this information. Therefore, alternative

procedures, such as computer simulations, have to be employed.

A granular material like sand is composed of distinct particles that interact with their

neighbours through complex contact mechanisms. A system of several particles under

the loading and unloading action of dynamical forces is complicated to model. Moreover,

in undrained deformations, the effects of the fluid on the individual grains should also

be simulated, adding complexity to the model. Thus, assumptions must be made in an

attempt to reproduce the system’s behaviour.
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The continuum approach lacks some of the required characteristics, since it does not

provide information about grains and contact orientations. In contrast, the DEM meets

all these characteristics by providing information at the contact-to-contact level that can

be extracted and analyzed at any time during the deformation process.

There is perhaps no perfect scheme to simulate liquefaction of granular materials, but

an attempt was made by the author to select a simple system capable of capturing the

fundamental features of undrained deformations. The result of this attempt is a fluid-

coupled DEM which is used to explore the microscopic processes of undrained experiments

on idealized systems of elliptical particles.

1.3 Objectives and Scope of Study

The main objective of this study was to develop a fluid-coupled DEM algorithm that

incorporates fundamental physical processes involved in liquefaction. Specifically, these

processes include:

1. The generation of pore pressures at the microscopic level as response to particle

movement.

2. The flow of fluid between pores considering explicitly the microstructure and particle

arrangement at all times during deformation.

3. The transient movement of fluid using pore pressure generation-dissipation scheme.

4. The effects of pore pressure forces on the particles.

A comprehensive analysis was undertaken to study the effects of different parameters

on the global response of an idealized system of elliptical particles. The compressibility

of the fluid, hydraulic conductivity of the system, interparticle friction angle, and initial

particle arrangement are some aspects that were examined.

One of the features of the model is that it allows extraction of information from the

contacts with a level of detail that is impossible to obtain in laboratory experiments. Con-

tact information includes orientation of normal vectors to the contacts and orientation and

magnitude of contact forces, the latter being a direct measurement of the effective state of

stresses present in the assembly. It is shown that this information is essential for conduct-

ing a comprehensive analysis of the deformation mechanisms. One of the objectives of this
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work was to study the evolution of these parameters to gain insight into the mechanics of

undrained deformations.

The new model was used to simulate biaxial tests under different initial confining pres-

sures and different densities. The results have shown that the implemented algorithms

realistically emulate undrained characteristics as reported in the literature.

Another objective of this research was to study the effects particle orientations on

the undrained response of the assemblies. Simulations were conducted on assemblies with

particles preferably oriented horizontally. The assemblies were loaded along different paths

and the direction of the major principal stress with respect to preferred particle orientation

was examined.

The scope of the study was to introduce this novel approach as a research tool to study

liquefaction phenomena. The DEM model provides an insight to guide future numerical

and laboratory experiments. Furthermore, it provides valuable information that may be

used to develop micromechanical-based constitutive models by studying the evolution of

the parameters that control the deformation process.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows:

Chapter 2 presents a literature review of liquefaction of granular materials behaviour

and discusses the factors affecting liquefaction susceptibility of laboratory specimens. A

brief introduction to micromechanical concepts is provided as a preamble for the use of the

concepts in later chapters. Different approaches to modelling soil liquefaction using DEM

are reviewed and their limitations discussed.

Chapter 3 introduces the equations of motion used in the DEM and details the flow-

coupled discrete element model. The flow-coupled algorithms used in the model assume

that fluid flows between neighbouring pores through small passages of circular cross section.

Pore pressure is generated microscopically using pore strains and assuming an elastic fluid.

The individual pores in the system are identified using an algorithm that searches for group

of particles that are continuously in contact enclosing discrete spaces and constructing a

network of polygons, the vertices of which are the centres of particles forming the pores.

The combined effects of pore pressure generation and dissipation at the pore level result

in the emergence of a system of ordinary differential equations that effectively capture the
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transient nature of the problem.

Chapter 4 presents the results of the verification of the algorithms employed in the

computations.

Chapter 5 reports the results of a series of simulations in which the effect of initial

density and confining pressure was examined. Parameters necessary to describe the fabric

evolution were analyzed to gain insight into the mechanisms of undrained deformations

of idealized systems. The results showed that the implemented algorithms are capable of

reproducing undrained tests. The effects of the interparticle friction angle on the response

of the assemblies were also examined. A comparison of results from volume-controlled tests

and simulations conducted using the proposed implementation is presented at the end of

the chapter.

Chapter 6 presents the results of a series of tests conducted on initially anisotropic

assemblies where the direction of the major principal stresses was rotated. The results

show that density and initial state of stresses are not sufficient parameters to describe the

behaviour of two-dimensional systems of elliptical particles. Finally, the effects of intrinsic

permeability on the assembly’s response is studied. Statistical analysis of the pore pressure

distribution in the assembly at different deformation stages is also presented.

Chapter 7 summarizes the major conclusions drawn from the present research, presents

some recommendations for future research and discusses the limitations of the model.



Chapter 2

Literature Review

2.1 Introduction

This chapter presents a review of literature covering two broad topics: First, the fundamen-

tals of drained and undrained behaviour of granular materials observed in the laboratory

are reviewed and discussed. Despite the vast amount of experimental data, it is shown

that discrepancies regarding the possible differences between the ultimate drained and

undrained states of sands are still found in the literature. Second, a brief review of mi-

cromechanical descriptors that are most commonly used when modelling discrete granular

systems is presented here as a prelude to a more detailed discussion in Chapters 5 and 6.

The existing approaches to simulating liquefaction using the DEM are also presented.

2.2 Drained Behaviour of Sand

In his pioneering work on shear strength of soils, Casagrande [12] conducted direct shear

tests on initially loose and dense sand samples. The results showed that specimens tested

at the same confining effective stress ended up having the same residual resistance at large

deformations and that the final void ratio was also the same. Initially loose samples tended

to contract and initially dense samples tended to contract, but suddenly began to dilate

as shear deformation continued.

Figure 2.1 presents a schematic showing the fundamental results obtained by Casagrande

[12]. Both the loose and the dense specimens show a tendency to reach the same void ratio

7
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and same residual strength. Based on his results, Casagrande postulated that a given spec-

imen would always reach the same void ratio at relatively large deformations independent

of the void ratio at the time of consolidation. The limiting value of the void ratio was

termed the critical void ratio or critical density and was found to be a function of the

initial confining effective stress. When the critical void ratio is reached, the volumetric

changes cease and the strength provided by the sheared particles is practically constant.

The condition at which the soil is deforming at constant stress and constant volume has

been termed critical state [78].

Critical void ratio line

The soil strength at the critical state is mainly defined by the the initial confining effec-

tive stress and the initial void ratio. It thus becomes possible to graphically represent a

relationship between void ratio and confining stress at the critical state using the so called

critical void ratio line (CVR). The void ratio versus confining stress space is usually re-

ferred to as the state diagram. The critical void ratio line is shown on the state diagram

in Figure 2.1. If a sand specimen initially at point A is sheared, it will reach the CVR

line at constant confining stress. Consequently, the sample will contract, reducing its void

ratio until it becomes equal to the critical void ratio. Similarly, if the initial state of the

soil is at point B, the specimen will dilate under constant effective confining stress upon

shearing until it eventually reaches the critical void ratio on the critical state line.

In general, three different tendencies of volume change can be identified: tendency to

contract, to dilate, and to preserve volume, that is, no volume change.

If the initial conditions of the specimen are such that they plot on the CVR line, the

specimen will deform under constant volume, that is, at a constant void ratio. Thus, if

the CVR is known for a given soil, it becomes possible to predict what the volumetric

tendencies will be during shear. This observation led Casagrande to hypothesize that sand

samples, when sheared undrained under an equal initial confining pressure, would exhibit

the same volume change tendency. This hypothesis implied that dense samples when

sheared, generate negative pore water pressures as a result of the tendency to increase

their volume, whereas the contractile characteristics of loose samples would enhance the

development of positive pore water pressure. As a result, Casagrande believed that the

CVR line in the state diagram would mark a boundary, separating specimens that are

susceptible to liquefaction from those that are not.
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2.3 Undrained Sand Behaviour

The results from tests conducted in dry sands indicate that dilative or contractive charac-

teristics are governed by the initial void ratio and state of stresses. These initial conditions

can be identified by their location in the state diagram with respect to the critical state

line. According to this concept, initial states above the CVR will exhibit contractive be-

haviour, whereas initial states below it will dilate upon shearing. A similar relationship has

been found to exist for undrained tests when sheared under particular conditions. These

concepts are introduced in the present section, along with some of the common findings

observed in the laboratory.

2.3.1 Undrained Behaviour under Monotonic Loading

Static or monotonic undrained tests are usually conducted in the triaxial apparatus under

stress or strain-controlled conditions. The discussion in the present work will be limited

to the behaviour of soil samples tested statically in the triaxial chamber.

Figure 2.2 shows results of stress-controlled experiments conducted by Castro [13] on

Banding sand. The specimens were at different initial densities but were consolidated

under the same effective confining stress (σ̄c = 4.0 kg/cm2). Specimen A exhibits strain-

softening behaviour, reaching a maximum deviatoric stress at a relatively small deformation

(ε ≈ 1%). As deformation is continued, the specimen starts to lose strength markedly

until it reaches a minimum value and stabilizes. The strength at large strains remains

constant, similar to the behaviour observed in drained tests at the critical state. This

stage of deformation has been termed steady state. The steady state of residual resistance

envisaged for sand is essentially the same as the critical state for clay [78], where the soil

is continuously deforming at constant volume, constant normal effective stress, constant

shear stress, and constant velocity. According to Poulos [64], such steady state is achieved

only after all particles orientations have reached a statistically steady-state condition and

after all particle breakage, if any, is complete, so that the shear stress needed to continue

deformation and velocity of deformation remains constant.

It is also observed that for specimen A, the pore pressure initially increases and con-

tinues to grow at a decreasing rate during the strain-softening stage until it gradually

stabilizes at a value almost equal to the initial confining pressure.

The deformation of specimen B shown in Figure 2.2 is also characterized by a strain-
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Figure 2.2: Typical undrained behaviour. Adapted from [11]
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softening type of response. The imposed stress reaches a maximum value, after which

the specimen begins to lose strength. However, the strength reduction occurs only over a

limited range of deformation, reaching a minimum value, after which the specimen begins

to regain strength when further strained. The pore pressure for specimen B increases at

the beginning of the test until it reaches a maximum value that appears to coincide with

the occurrence of the minimum strength. After the maximum value of pore pressure has

been reached, the specimen begins to dilate, generating reduction in the pore pressure.

One of the important aspects of the minimum strength state is that the mobilized shear

strength is smaller than the strength mobilized at large strains. Therefore, when residual

strength becomes a mayor concern in relation to some practical problem, most researchers

have adopted this minimum mobilized strength as a design parameter [40]. This state of

minimum strength coincides with what is called the point of phase transformation (PT)

[41], to imply a temporary state of transition from contractive to dilative behaviour. A

similar drop in shear stress has been reported by other researchers [8, 14, 51]. The stage

at which the specimen experiences the minimum strength has been named quasi-steady

state (QSS) of deformation by Alarcón-Guzmán et al. [4] as opposed to the steady state,

which is the ultimate strength reached only at large strains.

Specimen C presents a strain-hardening response. As soon as the loading is initiated the

specimen gains a considerable amount of strength when compared to tests A and B. The

development of the pore water pressure shows that initially the sample exhibits contractive

characteristics; however, at an axial strain of ε ≈ 3 % the sample begins to dilate.

The results of the three tests show that a change of relative density from 30% to 47%

was responsible for the different types of behaviour. Sample A reached the steady state

of deformation, that is, a state of deformation under constant volume conditions, whereas

specimens B and C continue gaining strength without showing any tendency to stabilize at

a steady strength. For some sands, very large strains (axial strain ε > 20%) are required to

reach the steady state condition, and in some cases conventional triaxial equipment may

not reach these large strains [66].

The tests conducted by Castro [13], were conducted in an undrained environment where

water is not allowed to leave or enter the sample. Since the compressibilities of both

the fluid and the particles are small, it assumed that the volume (and consequently void

ratio) of the specimen remains constant during the tests. Accordingly, the path in the

state diagram transverses horizontally at a constant void ratio until the change in effective
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specimens sheared under undrained conditions

confining stress and the internal arrangement of the particles bring the specimen to a steady

state of deformation. The idealized response of the three specimens is schematically shown

in Figure 2.3. As in drained tests, the loci of all points in the state diagram at which the

soil specimen deforms under conditions of constant effective stress, constant void ratio, and

constant velocity define what is called the steady state line (SSL) [7]. The steady state

line can be envisaged as a space curve in the e − q − p′ coordinate system, projected unto

the state diagram. The existence of such a boundary surface has been confirmed by the

extensive work of several investigators [41, 48, 79, 82, 95, 7, 51, 4, 3] following the work by

Castro [13].
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Figure 2.3 shows that the specimen initially at point A will display strain-softening

characteristics. The pore pressure will increase until it reaches a steady state value and

the effective confining stress will be reduced accordingly. The initial condition at the state

diagram will transverse horizontally to the left until it reaches the steady state line.

Specimen B exhibits initially strain-softening response until it reaches the quasi-steady

state of deformation. After the state of minimum strength is reached, the pore pressure

begins to decrease, resulting in an increase of the deviatoric strength and confining stress.

This behaviour will cause the initial state to move horizontally to the left, to a value

corresponding to the effective quasi-steady state strength, where it then reverses towards

the right, until reaching the steady state line. If the occurrence of the QSS , as well as the

value of the minimum post-peak strength, are of interest in a certain situation, it is also

possible to plot the effective confining stresses at these stages in the state diagram. The

average line through all these points is called the Quasi-Steady State Line (QSSL) [96, 40].

Specimen C, whose initial condition plots below the steady state line exhibits dilative

characteristics and the initial state will move towards the right, indicating that some

effective confining strength will be gained in addition to the initial strength at the time of

consolidation.

In principle, the CVR line obtained from drained tests should be reached at the steady

state of deformation, since the tendency of a drained specimen to deform at a constant

volume would correspond to a tendency of an undrained sample to deform at a constant

pore pressure, and hence the process of continuous deformation under constant shear stress

is expected to develop at large strains in both the drained and the undrained environment.

However, there exist experimental evidence that suggests that the CVR and the SSL may

not be the same [2, 103] and thus the undrained behaviour of sand can not be predicted

from drained tests as Casagrande initially hypothesized.

2.3.2 State Parameter

As with the CVR concepts in the drained case, observations regarding the steady state

of deformation suggest that, given the initial relative density, the initial confining stress

and the SSL of a given sandy soil, it should be possible to predict the potential to pore

pressure generation. Initial states plotting above the SSL would exhibit a strain-softening

type of response, whereas those states below the SSL should present strain-hardening
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behaviour. This concept further suggests that dense granular structures can be susceptible

to liquefaction when initially confined under sufficiently large stresses. Accordingly, the

state of stress at the steady state would be determined solely by the initial void ratio [16].

When the relationship between void ratio and confining stress at steady state is plotted

in the e− log σ
′

3 diagram, it has been observed that the loci of points define a straight line

[96, 40]. In order to predict the deformation characteristics of a soil sample under loading

conditions, it is necessary to know the location of the initial state prior to loading in the

e − log σ′
3 plane with respect to the steady state line, an observation made by Roscoe and

Pooroshasb [67]. They stated that the behaviour of a cohesionless soil should be more

closely related to the proximity of its initial state to the steady-sate line than to absolute

measures of density. In other words, soils located at the same vertical distance from the

steady-state line should exhibit similar behaviour. This vertical distance was taken up

later by Been and Jeffries [7], defining it as the state parameter ψ . The state parameter

can be defined as the difference between the void ratio in an initial state ei and the void

ratio of the steady state ess line for the same initial effective first stress invariant I1 . The

first stress invariant is defined as I1 = σ
′

1 + σ
′

2 + σ
′

3.

ψ = ei − ess (2.1)

Such a definition is shown in Figure 2.4. According to the information depicted, when

the state parameter is positive, the soil will exhibit contractile behaviour; when negative,

it will dilate under loading, exhibiting stable characteristics at high strains. The state

parameter ψ, as defined by Been and Jeffries [7], implies that similar behaviour should be

expected for similar ψ values, independent of the initial effective confining stress.

2.3.3 Conditions for Strain Softening Development

The onset of strain softening depends on a combination of different factors, including, void

ratio, effective confining stress, initial static shear and the inherent anisotropy. Evaluation

of these parameters is one of the most critical parts in liquefaction hazard evaluation.

A problem of great importance concerning sand liquefaction is the identification of

conditions at which the specimen begins to lose its strength. Such conditions are usually

studied by observing the state of stresses at which strain softening begins on the p′ − q

plane (stress state diagram).
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Figure 2.4: Definition of the State Parameter according to Been, et al. [7]

Vaid et al. [95] conducted both monotonic and cyclic strain-controlled triaxial tests

on Ottawa sand . Specimens were prepared using the water pluviation technique. They

identified a locus of points on the p′ -q plane at which strain softening of the specimens

initiated. They concluded that the contractile response is initiated at a constant value of

the effective stress ratio (q/p′). Such a stress ratio is referred to as a critical stress ratio

(CSR ). Dobry et al. [28] reported similar results.

Figure 2.5 depicts idealized stress paths of three samples initially consolidated under

different pressures along with their respective projections on the p′ − q plane. The sam-

ples all had the same initial void ratio, and the residual strength reached is the same, in

agreement with the steady state concepts. The specimens consolidated under higher con-

fining stress will reach a higher peak strength. Therefore, peak shear strength is a function

of the initial confining stress. The initiation of strain softening which coincides with the

maximum shear strength (dq/dp ′ = 0) has been marked by crosses. The locus of peak

stresses forms a line whose slope has been identified by ML . Sladen et al. (1985) noticed

that the slope of the line described by the peak strengths loci were the same, independent

of the initial void ratio. Then, hypothetically, there exist an infinite number of such lines.

The observation that peak strength falls in a straight line and that this line only changes

position but not slope with void ratio has given rise to the concept of collapse surface in
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Figure 2.5: Triggering of unstable behaviour according to Sladen et al. [82]
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Figure 2.6: Idealized collapse surface according to Sladen et al. [82]. Different void ratios

generate different collapse lines with the same slope.

the three dimensional (e− q − p′) space [82]. For strain softening to initiate, the soil state

has to reach the collapse surface and the shear stress has to exceed the steady state shear

strength. This collapse surface can be represented by a line in the stress path plane that

corresponds to the critical stress ratio observed by Vaid and Chern [94]. An illustration of

the collapse surface is given in Figure 2.6.

According to the concept introduced by Sladen, the so-called critical stress ratio line

originates at the quasi-steady-state line.

The concept of the collapse surface presented is a complementary approach to that of

the steady state concept. The steady state concept omits any consideration of the stress

magnitude required to trigger instability. Further, no comment is made on the in situ

stress state on strain softening potential [82].

From the previous discussion of results, it is concluded that specimens tested undrained

in the triaxial cell at particular initial conditions reach a hypothetical limit at large defor-

mations, at which the strength provided by the individual particles remains constant. The

limiting shear strength permits the definition of a boundary in the state diagram called the

steady state line that separates strain-softening from strain-hardening type of responses.

The existence of the steady state line on the state diagram gives rise to the concept of the

state parameter.

Hypothetically, there exists a surface in the e−q−p
′

diagram above which the behaviour

of volumetrically contractive samples becomes unstable. However, these concepts only
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hold valid for specimens sheared under the same boundary conditions prepared by the

same technique and presenting approximately the same initial degree of saturation. A

number of parameters known to have an important influence in undrained deformations

are discussed in the next section.

2.4 Factors Affecting Deformation Characteristics

The vast amount of research done concerning the behaviour of sands tested in an undrained

environment has lead to the recognition of different parameters that govern the mechanical

response. Density and initial state of stresses were previously introduced as parameters con-

trolling the undrained behaviour of granular materials. However, other factors are known

to influence the stress-deformation mechanisms. Stress or strain paths [100, 106, 93, 80],

initial anisotropy[106], degree of saturation[46, 99], fines content [102, 103], intermediate

principal stress [92, 106], particle shape [95], strain rates [9], and boundary conditions

[32, 105] are among other factors known to have an important effect on the undrained

response of sands. The effects of some of these parameters on the undrained behaviour of

granular materials are reviewed in the present section.

2.4.1 Type and Rate of Loading

Among the factors known to have an effect on the deformation characteristics of an

undrained specimen is the type of loading. Stress or strain-controlled experiments are con-

ducted depending on the field condition that needs to be mimicked. Although the great ma-

jority of experimental results are reported from strain controlled tests, there exists evidence

that indicates that both loading patterns produce different ultimate states [48, 4, 103]. To

examine the effects of type of loading and the effects of strain rate, Yamamuro and Lade

(1998) conducted stress-controlled tests and strain-controlled tests with different strain

rates on Nevada sand with 20 % fines. The results of these experiments are reproduced

in Figure 2.7. It is observed that increasing the strain rate produces a significant effect in

steepening the effective stress paths. This behaviour has also been reported for undrained

tests at high pressures by Yamamuro and Lade [101].

In contrast, from a limited study (three strain-controlled tests), Castro et al. [15] re-

ported “no significant difference between results from load-controlled and strain-controlled
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Figure 2.7: Effect of type and rate of loading on Nevada sand (adapted from Yamamuro

et al. 1998)

tests”. This same behaviour was later observed by Sladen et al. [82]. They reported “no

significant differences are apparent between steady state parameters determined by the two

methods”.

Although the results of these investigations are contradictory, the ability of a specimen

to withstand a deviatoric load should be affected by the imposed loading rate when a

sufficiently high percentage of fines are present. The addition of fine particles may cause

various effects in the structure, mainly, the ability of the medium to allow fluid flow is

reduced, increasing the interaction between the fluid and the particles.

The results presented in Figure 2.7 suggest that the position of the SSL can depend on

the loading rate. Further, stress or strain controlled type of loading can also influence the

response of the specimen.

There are various practical implications of this behaviour. The transient deformation

mechanisms occurring in a soil deposit during an earthquake are neither load nor strain

controlled. If a given deposit contains enough fines so that its behaviour is affected by

the loading rate, the concept of steady state line breaks down because its position may be

influenced by the type and rate of loading, and the prediction of liquefaction susceptibility
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becomes more complex.

2.4.2 Mode of Shear

Another factor that has been identified as influencing the undrained deformation charac-

teristics is the shape of the boundary. When a drained direct shear test is conducted in

a sand specimen a failure plane is induced by the apparatus (i.e., the horizontal plane)

which does not necessarily corresponds to the weakest plane [25]. The stress is also higher

at the boundaries than at the centre. This condition results in progressive failure. Thus,

the mode of shearing highly influences the overall behaviour of a given specimen. Finno et

al. [32] presented results of masonry sand tested undrained under plain-strain and triaxial

conditions. The results of the tests show that different steady state lines are obtained for

the two types of tests. A specimen can exhibit either strain softening or strain hardening

characteristics even though confined under the same stress and having the same void ratio,

just by being sheared under different boundary conditions.

2.4.3 Principal Stresses Direction and Fabric Anisotropy

The direction of the principal stresses with respect to the bedding plane has been found

to have a considerable influence on the response of granular materials when sheared under

consolidated undrained conditions.

Yoshimine et al. [106] conducted hollow cylinder torsional tests on Toyura sand using

the dry deposition method for the construction of the sample. The hollow cylinder device

allows the control of the principal stress direction and the intermediate principal stress.

The angle of the maximum principal stress to the normal of the bedding plane is denoted

as α whereas the intermediate principal stress coefficient is b. The results of some of

these experiments are summarized in Figure 2.8, which indicates that significantly different

stress-strain responses are obtained from tests approaching axial compression (α = 15◦) to

tests where the mayor principal stress is parallel to the bedding plane (α = 90◦).

Similar results were reported by Uthayakumar and Vaid [92]; they conducted tests

using a hollow cylinder torsional shear device. For a given initial stress and density state,

the behaviour of the sand was found to be influenced by both b and α during shear. An

increase in α from 0◦ to 90◦ at constant b enhanced the contractive behaviour. In fact, it

was found that the behaviour may change from dilative when α = 0◦ to strongly contractive
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Figure 2.8: Hollow cylinder torsional shear tests on Toyura sand showing the effect of mode

of shear (from Yoshimine et al. 1998)



Literature Review 23

when α = 90◦. Thus, the residual strength depends not only on void ratio, but also on

loading direction and intermediate principal stress when the arrangement of the particles

is initially anisotropic. Since the principal stress direction in soil elements along potential

failure surface varies substantially, the use of a single residual strength value for a given void

ratio estimated from triaxial compression tests (ασ = 0◦, b = 0) alone can overestimate the

factor of safety against a flow failure, considering that this loading mode is most resistant

to contractive deformation, and in fact may not even be contractive [92].

The results show the importance of mode of shear on the response of undrained samples.

Further, they highlight the existing relationship between liquefaction susceptibility and the

initial arrangement of the grains. The observed anisotropic behaviour previously reported

is a consequence of the method of sample preparation. It has been shown that contacts

between particles can increase in the direction of loading [26]; hence, it is expected that

resistance to loading would be reduced if loading is applied in a direction where fewer

contacts exist.

2.4.4 Degree of Saturation

Lade and Pradel [46] investigated the validity of Drucker’s stability criteria by conducting

undrained experiments in which the degree of saturation was varied. Their conclusion

was that contractile sands become unstable if the degree of saturation is sufficiently high.

The results indicate that unstable behaviour is enhanced by higher saturation degrees.

Reducing the fraction of air present in a given soil causes a considerable reduction of the

compressibility of the air-liquid phase.

2.4.5 Grain Crushing

Depending on the mechanical and morphological characteristics of the particles, crushing

can occur during shear [8, 45]. Grain crushing typically occurs at effective stresses greater

than 1 to 2 MPa. However, grain crushing can occur at lower effective confining stresses

in some silty sands or clean sands composed of relatively weak minerals. For example,

grain crushing has been reported to occur at a mean effective stress of approximately

220 kPa in Mai-Liao silty sand [38]. As a consequence of crushing at higher stresses,

the grain size distribution and the number of contacts carrying load can be affected. For

example, It has been found that at high confining stresses the slope of the steady state line
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significantly increases [8]; thus, samples with the same state parameter (ψ) may exhibit

different behaviour as a consequence of the higher confining forces.

2.5 Micromechanics of Granular Media

2.5.1 Microscopic Descriptors of Granular Assemblies

Micromechanics can be defined as a branch of geo-mechanics that deals with the study of

the behaviour of granular structures considering physical processes at the particle level.

Granular materials can be envisaged as a collection of discrete elements with particu-

lar morphology and mechanical properties interacting with their neighbours by means of

contacts. The macroscopic properties of granular materials are intimately related to the

particle characteristics and their mode of interaction. It was shown in the previous sections

that information about the porosity of a given specimen is insufficient to adequately de-

scribe its behaviour upon the application of a load. The description of a granular assembly

from a micromechanical perspective uses average quantities obtained at the inter-particle

level. The average particle coordination number is the most fundamental of such quanti-

ties, and it is defined as the average number of contacts per particle. Given the number

of particles N in a given assembly, the average coordination number γ of the assembly is

calculated from

γ =
M

N
(2.2)

where M is twice the number of physical contacts in the assembly. The importance of the

coordination number can easily be understood if it is considered that a given assembly with

higher coordination number is more stable that the same assembly with a lower γ. The

average coordination number by itself does not reflect the density of contacts in a given

of volume. A more adequate descriptor that overcomes this hurdle is the average contact

density defined as follows:

mv =
M

V
(2.3)

where V is the volume of the assembly. The previous descriptors are fundamental in

micromechanics; it will be shown that their evolution during the deformation process,

relates to the state of stresses observed at the boundary and to the static stability of the

granular structure. These average descriptors, however, do not provide information about
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the spatial orientation of contacts and the magnitude and direction of forces transmitted

through them. Additional tensorial descriptors that overcome this difficulty are therefore

needed.

2.5.2 Contact Normal Distribution

Pioneering studies in the field of micromechanics were conducted on idealized assemblies

of particles molded from photo-elastic sensitive material [24, 26]. Loading tests were con-

ducted from which the magnitude and direction of the forces between contacting particles

could be studied. It was observed that forces were transmitted through chains of particles

aligned in the direction of loading. In this way, the evolution of forces and their microscopic

distribution were recognized as processes resulting from the imposition of loads.

The stresses imposed at the boundary of a granular assembly are carried by inter-

particle contacts. However, it is only during the last decades that contact orientation

and their evolution during loading have been quantified. Oda [59] conducted interesting

experiments where samples of sands were impregnated with water-resin mixture at different

stages during drained triaxial compression. Meticulous analysis of thin sections showed

that the distribution of contacts readjusted during deviatoric loading to maximize contact

alignment along the direction of the maximum principal stress. From a number of similar

studies [52] it is now recognized that during a biaxial experiment, the contact orientation

is maximized along the direction of the mayor principal stress.

The gradual redistribution of contacts during loading into an anisotropic state is known

as the creation of contact anisotropy. A convenient way of representing the distribution of

contacts in plane assemblies is to plot a polar histogram of the portion of contacts with

normal falling inside an angle ∆θ. The definition of a contact normal i.e., a unit vector

nc normal to a tangential plane to the point of contact, is depicted in Figure 2.9. A

polar histogram showing such a distribution is presented in Figure 2.10. From a number

of experimental and numerical studies it has been recognized that when distributions of

contact normals are plotted using polar histograms, characteristic statistical arrangements

emerge. The distribution depicted in Figure 2.10 was created using an small assembly

consisting of 1000 particles and it has the shape of a peanut.

It is expected that the histogram, when taken over a sufficiently large specimen, will

become smooth so it can be represented by a continuous function E(θ). A convenient way
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Figure 2.9: Definition of the particle contact normal, contact vector, branch vector and

contact force

of describing the distribution of contact normals in plane systems by a continuous function

has been suggested by Rothenburg [68].

A contact formed by two particles will contain two contact normals with the same

orientation, but different direction. Each contact vector will correspond to one particle.

This observation indicates that the proposed function should have the property E(−θ) =

E(θ). Because of this symmetry, the function E(θ) can be represented by an infinite Fourier

series of even order terms as follows:

E(θ) =
1

2π
(1 + a cos 2(θ − θa) + b cos 4(θ − θb) + . . . ) (2.4)

The limit of the expansion can be limited to the second order terms, although for systems

comprising particles other than disc-shaped, truncation up to the fourth term might be

necessary for a more accurate representation. The terms a and b are known as coefficients

of contact normal anisotropy and are related to the intensity of contact normals in principal

directions, coincident with unit vectors 1 and 2. The constant terms θa and θb represent the

principal directions of anisotropy for contact normals. Analysis of (2.4) indicates that the

terms a and b describe deviations from the isotropic state. For the case where a = b = 0,

E(θ) describes the unit circle, i.e., the isotropic condition.
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Figure 2.10: Measured contact normal directions and approximation to the distribution by

a continuous function

The function E(θ) is normalized by the term (1/2π) and it has the following property:
∫

E(θ)dθ = 1 (2.5)

2.5.3 Contact Forces Distribution

The parameters of contact normal anisotropy are adequate descriptors of the evolution of

contacts during a biaxial test. Since forces are transmitted by inter-granular contacts, it

should be expected that similar descriptions could be obtained to represent the distribu-

tion of forces. The force at a contact (f c) has a magnitude and a direction (Figure 2.9)

and can be described in vectorial form. The average contact force acting on contacts with

orientation θ in a given assembly can be further decomposed into two orthogonal compo-

nents, one average normal force component f̄ c
n(θ), and one average tangential component

f̄ c
t (θ). Letting nc = {cos θ, sin θ} and tc = {− sin θ, cos θ}, the following average contact

force distribution f̄ c
i (θ) can be obtained:

f̄ c
i (θ) = f̄ c

n(θ)nc + f̄ c
t (θ)t

c i, j = 1, 2 (2.6)

The form of the average distributions f̄ c
n(θ) and f̄ c

t (θ) were first proposed by Rothen-

burg [68] based solely on physical considerations and have been verified using numerical
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Figure 2.11: Measured average normal contact force and approximation to the distribution

by a continuous function

simulations of two- and three-dimensional assemblies [6, 19, 63].

Average Contact Normal Force Distribution

The distribution of the average normal contact forces f̄ c
n(θ) can be represented by a trun-

cated Fourier series of even orders. This expansion up to the second order is given as:

f̄ c
n(θ) = f̄ c

o {1 + an cos 2(θ − θn)} (2.7)

As in the case of the contact vector distribution, the parameter an represents the deviation

of the distribution from an isotropic state and is known as the coefficient of contact normal

force anisotropy. The parameter θn is the principal direction of anisotropy. The parameter

f̄ c
o represents the normal average contact force over different orientation groups and may

differ from the average normal contact force (
∑

f c
n/V ) if the contact normal orientation

distribution is anisotropic.

Figure 2.11 shows a polar histogram of contact normal force distribution measured from

an assembly of 1000 particles, along with the continuous approximation using relation (2.7).
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Figure 2.12: Measured average shear contact force and approximation to the distribution

by a continuous function

Average Tangential Contact Forces Distribution

The distribution of tangential contact forces f̄ c
t (θ) can also be represented by a truncated

Fourier series, this time of odd numbers.

f̄ c
t (θ) = −f̄ c

o {at sin 2(θ − θt)} (2.8)

The parameter at is known as the coefficient of tangential (shear) force anisotropy, and

the angle θt represents the mayor direction of anisotropy.

Figure 2.12 shows a measured polar histogram of contact tangential force distribution

along with the continuous approximation using relation (2.8).

Tangential contact forces are considered positive if they induce a counter-clockwise

rotation.

2.6 Stress Tensor

Understanding the macroscopic behaviour of granular material requires a comprehensive

examination of mechanisms acting at the inter-particle level. Of special importance is the

relation existing between the state of stresses acting at the boundary of a granular assembly

and the inter-particle forces. Consider the system depicted in Figure 2.13 where a granular
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system is being subjected to a certain state of stresses imposed at the boundary. The

equilibrium condition must be satisfied at each point at the surface of the stressed body.

This condition implies that if Tβ is the surface force applied on the boundary of the solid,

and nβ represents the external normal to its surface, the stress tensor can be envisaged as

a linear transformation between the two, that is:

T
β
i = σβ

ij n
β
j i, j = 1, 2, 3 (2.9)

The above relation applies when tractions are applied to a continuous surface. The stress

tensor in a discrete system will also involve tractions applied to the surface of a body.

Rothenburg [68] showed that the boundary stress tensor σβ
ij can be related to the forces

applied at discrete points on the surface (xβ) by the following expression:

σβ
ij =

1

V

∑

β∈S

fβ
i xβ

j i, j = 1, 2, 3 (2.10)

Another form of this expression which makes no reference to the shape of the surface can

be obtained by relating internal contact forces f c and contact vectors lc with boundary

forces as:

∑

β∈S

fβ
i xβ

j =
∑

c∈V

f c
i lcj (2.11)

The above equation relates internal inter-particle forces with the state of forces ap-

plied at the boundary (Figure 2.13). Using the relation between discrete forces applied at

the boundary and internal contact forces, the stress tensor can be calculated in terms of

interparticle forces as follows:

σβ
ij =

1

V

∑

c∈V

f c
i lcj i, j = 1, 2, 3 (2.12)

The terms fi and lj refer to scalar components of a contact force vector f c and a contact

vector lc at a contact location. The above expression shows that the macroscopic stress

tensor can be obtained from consideration of contact forces and microstructure described

by contact vectors. This relation is equally valid for plane and three-dimensional systems.

For plane systems, V is the area A occupied by the assembly, and the indices are restricted

to i, j = 1, 2.
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Figure 2.13: Stress tensor components

The stress tensor can be viewed as a contribution of the contact-force vector to many

subregions in the assembly volume. Contributions of different subregions are expected to

be different. However, as the number of particles increases, and thus also the number of

sub-regions, the overall differences are expected to become smaller. The average tensor

from a discrete assembly is an accurate analog to the stress tensor in continuum mechanics

when sufficiently large systems are considered.

Expression (2.12) was derived under different forms by several authors [68, 20].

Static equilibrium requires that the resulting moment around each coordinate axis in
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any point of the solid be nil. This condition is satisfied if and only if:

σβ
ij = σβ

ji i, j = 1, 2, 3 (2.13)

this shows that σβ
ij is a symmetric tensor.

2.6.1 Average Stress Tensor from Fabric Descriptors

Although the average stress tensor can be calculated considering the interparticle forces

according to relation (2.12), it has been shown that the product f c
i lcj can be approximated

by the use of averages of contact and force vectors over finite, but large volumes of particle

assemblies [68]. Description of contact vectors are made in a cartesian frame of reference

using spherical coordinates (i.e., 0 ≤ β < π and 0 ≤ θ < 2π).

Average values of the contact term f c
i lcj are calculated for all contacts whose normals

fall within the elementary solid angle ∆Ω = sinβ ∆β ∆θ. Product terms corresponding to

a group orientation Ωg can be expressed by their average as f c
i lcj(Ωg). If group averages are

used, it is necessary to introduce a discontinuous function E(Ω) that describes the fraction

of the total number of contact normals falling in ∆Ω. This function is normalized in the

sense that:
∑

Ωg

E(Ω) ∆Ω = 1 (2.14)

The average stress tensor can be now approximated by

σβ
ij = mv

∑

Ωg

f c
i lcj(Ω) E(Ω) ∆Ω i, j = 1, 2, 3 (2.15)

where mv is the contact density defined in (2.3). If it is further assumed that there is

no statistical bias between f c and lc, then f c
i lcj = f̄ c

i l̄
c
j . For a volume comprising a

large number of particles, the discontinuous functions involved in expression (2.15) can be

considered continuous, and the average stress tensor can be now approximated by:

σβ
ij = mv

∫

Ω

f̄ c
i (Ω) l̄cj(Ω) E(Ω)dΩ i, j = 1, 2, 3 (2.16)

The developments thus far presented are equally applicable to two dimensional systems,

for which case the solid angle Ω becomes θ and the continuous functions will be given by

(2.4), (2.6). For two dimensional systems, relation (2.16) becomes:

σβ
ij = mv

∫ 2π

0

{f̄ c
n(θ)nc

i + f̄ c
t (θ)t

c
i} l̄cj(θ) E(θ)dθ i, j = 1, 2 (2.17)
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Relation (2.17) can be simplified for the case of assemblies of discs, where the direction

of the contact vector is coincident with that of the contact normal. If it is further assumed

that the average contact length of all discs is independent of the contact vector orientation

(i.e., l̄c(θ) = l̄con
c
j) over the range of diameters present in the system, relation (2.17)

simplifies to:

σβ
ij = mv l̄

c
o

∫ 2π

0

{f̄ c
n(θ)nc

in
c
j + f̄ c

t (θ)t
c
in

c
j}E(θ)dθ i, j = 1, 2 (2.18)

Although (2.18) was derived assuming disc-shaped particles, Rothenburg and Bathurst

(1993) have shown that it can be applicable to assemblies of elliptical particles without

introducing a considerable error.

2.7 Stress-Force-Fabric Relationship

It has been shown in the previous sections that discrete information at the inter-particle

level can be adequately represented using continuous distributions for the distributions

of average contact forces and average contact vectors. These are substituted in relation

(2.18) and the result from integration is an approximation to the stress tensor. For the

case of biaxial compression tests, numerical simulations indicate that principal directions

of anisotropy are almost coincident with the direction of loading, that is θa ≈ θn ≈ θt ≈

π/2. The direction of the fourth order contact anisotropy is very close to 45o (θb ≈

π/4). Considering these observations, a number of relations commonly use to describe the

strength of a soil specimen can be derived by integrating the relation (2.18).

The mobilized friction angle is found to be:

sin φmob =
σβ

11 − σβ
22

σβ
11 + σβ

22

=
a + an + at + atb

2
− anb

2

2 + a an

(2.19)

The anisotropy coefficients are always less than 1, thus, neglecting their products will

not induce a considerable error. When anisotropy products are neglected, the previous

relation simplifies to the following:

sin φmob ≈
a + an + at

2
(2.20)

The above relation for the mobilized friction angle was originally derived by Rothenburg

[68], and it is only a function of the parameters of anisotropy, that is, the spatial arrange-

ment of contacts and forces.
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The following invariant quantities associated with Mohr circle may also obtained:

p =
σβ

11 + σβ
22

2
=

mv l̄co f̄ c
o

2
{1 + a an} (2.21a)

q =
σβ

11 − σβ
22

2
=

mv l̄co f̄ c
o

4

{

a + an + at +
atb

2
−

anb

2

}

(2.21b)

2.8 Liquefaction Simulations using DEM

Previous simulations using the Distinct Element Method (DEM) have considered the effects

of pore pressure to simulate liquefaction [36, 35, 53, 50]. These methods have been applied

to assemblies of disc-shaped particles subjected to dynamic and cyclic loadings.

Hakuno [36] was the first to propose a technique to numerically couple fluid flow with

the DEM considering individual pores. The volume change of each pore was used to cal-

culate pore pressure generation by assigning elastic properties to the fluid. The technique

incorporates the effects of the fluid based on four assumptions:

• pore volume changes are the result of particle movements

• pore pressure develops by change of pore volume

• forces act on the particles due to excess pore pressures

• flow occurs between pores due to gradients produced by discrete pore pressures

The second assumption implies that the fluid contained in a pore space behaves as a

perfectly elastic material and therefore any change in volume in the pore will produce a

force in the section of the particle that limits the pore space. The excess pore pressure U

for pore K was obtained from:

UK = Bw
∆VK

VK

(2.22)

where Bw is the volumetric stiffness of the water and VK is the volume of pore K. Possible

buoyancy effects were not considered.

In an attempt to optimize Hakuno’s technique, Nakase et al. (1999) used an alternative

approach where pore pressure generation was not considered at the pore level, but in square-

cell elements. The dimensions of the cells dx and dy are chosen such that there are about
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15 discs whose centres are located inside the cell. The total volume change ∆V (i,j) of the

pores in the cell (i, j) are calculated using weighted average displacements of the particles

in the four neighbouring cells (i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1). To compute

the excess pore pressure, the method employs the same approach as Hakuno’s. Once the

volume change of cell (i, j) is computed, the pore pressure change is obtained from

∆u(i,j)
w = γw∆V (i,j) 1

dx dyκ(i,j)
(2.23)

where γw is the unit weight of the water and κ(i,j) is the storage coefficient.

The volume change in cell (i, j) is computed by considering particle displacements in

the neighbouring cells.

The pressure difference among cells generates a gradient that drives water flow. A finite

difference scheme has been used by Nakase et al. [53] to solve the equations describing

pore pressure dissipation. Once pressure dissipation has occurred after a time increment

∆t, the remaining pressures are converted into forces acting on particles.

To obtain high internal friction angles corresponding to natural granular soils, no rolling

was allowed at the contacts during the simulation.

2.8.1 Indirect Methods

Undrained tests are generally known as constant volume tests as a consequence of the

low compressibility of particles and fluid. In principle, it will seem that drained strain-

controlled constant volume test is equivalent to an undrained test. This idea have lead

some researchers to conduct dry simulations at a constant volume and assume that the

results are representative of undrained tests [56, 29]. The former assumption however,

nullifies the possibility of studying pore pressure generation at the microscopic scale.

2.8.2 Summary

The method proposed by Hakuno [36] and Hakuno et al. [35] considers pressures to be

equal at the end of the time step to solve for the equation of fluid flow. This assumption

is overcome in the method proposed by Nakase et al. by employing a finite difference

scheme of integration and solving for pressures at the end of each calculation cycle. The

solution of flow equations, however, is particular to each cell and does not consider the
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interaction of the assembly as a system. Further, the method proposed by Nakase et al. to

generate pore pressures considering weighted averages of incremental displacements cannot

be directly extended to the case of assemblies comprised of elliptical particles, where the

effect of incremental rotational displacement may be considerable.

Nevertheless, a review of the methods available in the literature provides important

information regarding the different assumptions involved in the methodologies, to delineate

a point of departure for the present research. Table 2.1 summarizes the fundamental

assumptions of each method.

Effect Reference [36] Reference [35] Reference [53]

Elastic fluid X X X

Pore pressure considering volumetric

changes at pore level

X X -

Approximation of volumetric changes by

considering weighted averages of incremen-

tal displacements

- - X

Body forces - X X

Buoyancy forces - - -

Pore pressure equalization X X -

Pressure using finite difference - - X

Elliptical particles - - -

Non-linear contact law - - -

Table 2.1: Assumptions involved in previous fluid-flow coupled distinct element methods

2.9 General Comments

General comments on the three different topics reviewed in this Chapter are presented

below.

Undrained Laboratory Tests

The results of some undrained experiments considered relevant to the present dissertation

have been reviewed. The purpose of the present research is to develop a novel technique

that will contribute to a better understanding of the mechanics of undrained deformations.
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The following points summarize the reviewed works regarding undrained experiments

to study liquefaction phenomena:

1. The steady state line concepts originally proposed by Casagrande (1936) [12] hold

valid for a particular mode of shearing, particular boundary conditions, and a par-

ticular initial structure. The undrained behaviour in this case can be characterized

by the void ratio and initial confining stress at the start of shear.

2. Other parameters different from the void ratio and the initial state of stresses are

known to have an effect on the deformation of undrained granular samples. Among

these parameters are the stress or strain paths, initial anisotropy, degree of saturation,

fines contents, strain rates, grain crushing, and boundary conditions.

3. The initial fabric of a given specimen is the result of the sample preparation method.

The direction of the principal stresses with respect to the bedding plane has a sig-

nificant effect on the response of the sample when sheared.

4. A number of contradictory conclusions exist. These contradictions may be partly

attributed to the lack of an adequate study of the microstructure evolution imposed

by the inherent limitations of the laboratory equipment.

Micromechanics of Granular Materials

The micromechanical parameters introduced are adequate descriptors of the macroscopic

state of stresses and provide valuable information that can be difficult to obtain from real

experiments.

The stress tensor is the result in which the interparticle forces are arranged. Using

statistical averages of the number of contacts, the spatial distribution of contacts and

interparticle forces, a general expression for the stress tensor can be obtained.

Simulations of Undrained Tests Using DEM

The DEM technique has been used in the past to simulate the behaviour of granular

assemblies in an undrained environment. The results of previous research shown that it is

feasible to simulate pore pressure generation. The simulations, however, were conducted
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by applying a dynamic or cyclic load to the assembly, and direct comparisons with biaxial

laboratory tests is not feasible.

The techniques developed to incorporate fluid effects have been used in assemblies

of perfectly circular particles. Disc-shaped particles present little resistance to rotation,

and internal friction angles obtained from such simulations are usually lower than those

measured in natural granular soils. This observation led Nakase et al. [53] to inhibit rolling

at the contacts. Another disappointing aspect of studies with simulated assemblies of discs

is the difficulty of controlling the density in these systems [71]. Plane assemblies of discs

have an average coordination number (γ) very close to 4 [71], and the study of “loose”

systems with coordination numbers close to 3, becomes more difficult.

These difficulties are overcome when elliptical particles are employed. Rothenburg and

Bathurst [70] have shown that peak friction angles obtained using elliptical elements are

closer to those of natural sands. Furthermore, the average coordination number of these

systems can be very close to 3, allowing a higher control on the range of densities that

can be achieved. Therefore, the use of elliptical-shaped particles is more appropriate for

studying the mechanisms of undrained deformations.



Chapter 3

Development of the Fluid-Flow

Coupled Distinct Element Algorithm

3.1 Introduction

Granular materials such as sand and clay are complex materials that exhibit both solid

and fluid properties. There are three reasons for this [60]. The first is that geo-materials

such as soils are three-phase mixtures of solid, liquid, and gas. The second is that granular

materials are not continuous at the microscopic scale, but consist of discrete particles that

interact through complex mechanisms. The third is that natural soil is not homogeneous.

Computer simulations are powerful methods that can be used to analyze the behaviour

of granular materials. There are two fundamental approaches to simulate soil behaviour

under loading. The first approach is based on the principles of mechanics of solids and

continua. The soil is treated as a continuum whose behaviour can be described by a set

of constitutive relationships. The constitutive relations are mathematical formulae that

relate the stress tensor σij to the strain tensor εij . As new testing methods and techniques

become available, the dependency of the mechanical behaviour of soils on other parameters

not previously considered has become clearer. This has led to the development of more

complex constitutive relations that consider a greater number of independent variables and

constants, which sometimes have no clear physical meaning.

The second approach to simulating soil behaviour consists of treating the specimen as

a collection of discrete elements which behave according to a set of physical laws. This

39
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method is usually referred to as particulate mechanics or micromechanics, from which

recent developments in theoretical, experimental and computational research have been

made. The theoretical approach generally assumes that the medium is made up of gran-

ules of idealized shapes or arranged in regular patterns. Regardless of the nature of the

assumptions, the micromechanical approach has proven valuable in understanding the be-

haviour of granular structures in a way that cannot be achieved by continuum approaches.

Experimental studies of particle assemblies have made use of photoelastic sensitive ma-

terial. In their pioneering study of granular media, Dantu and Wakabayashi [24] observed

force distributions and particle behaviour at microscopic levels by using optically sensitive

materials. Later, De Josselin de Jong and Verruijt [26] used the same technique to analyze

the evolution of forces during the application of a load at the boundaries of a sample.

These experimental techniques are of special importance in the field of micromechanics,

but are expensive to conduct, and the size of the assembly that can be used is bounded by

physical restrictions.

Over the past four decades, theoretical micromechanics has been a subject of study. In

this area, the work presented by Rothenburg [68] is of special importance since it provides

a link between microscopic force distributions at the particle level and the macroscopic

state of stresses at the boundary. Moreover, stress-force-fabric relationships that explained

the observed state of stresses were developed. Other research efforts have derived models

that considered isotropic [18, 17] and anisotropic [104] fabrics based on theoretical consid-

erations. Although these models have proven useful to gain insight into the dependency of

the macroscopic response based on fabric characteristics, some specific assumptions were

made: the granules are bounded or that strains are sufficiently small so that contacts are

neither created nor lost.

Recent computational micromechanical approaches started with the development of

the Distinct Element Method (DEM) by Strack and Cundall [84] and Cundall and Strack

[23]. The method was originally developed to simulate interactions of rigid blocks to model

rock mechanics problems, but it was later extended to soil mechanics by assuming disc-

shaped elements [23] and three-dimensional spheres [21]. The intention of extending the

capabilities of the technique to simulate undrained tests was mentioned by Cundall and

Stack [23], but it was not until 1988 that fluid interaction effects were incorporated into

the DEM by Hakuno and Tamiri [36]. Their technique was successful in simulating pore

pressure generation when an assembly of disc-shaped elements was subjected to seismic
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excitation.

An outline to the DEM is presented in this chapter. Physical and mathematical the-

ories behind the method are introduced in Section 3.2, along with non-linear contact law

developments that are based on the theory developed by Hertz.

The approach adopted to couple fluid flow to the DEM is presented in Section 3.3.

In this work, fluid flow has been simulated by constructing a network of small pipes or

conduits, termed the flow network. The theory and method employed in the construction

of the flow network are presented in Section 3.5. The coupling of fluid flow with the system

was achieved by solving a system of ordinary homogeneous differential equations.

The procedures adopted to convert pore pressure into forces acting on the particles are

described in Section 3.6.

3.2 Distinct Element Method

The Distinct Element Method (DEM) employs a finite difference scheme in which the

position of the particles is obtained by integration of Newton’s Second Law of motion over

a small increment of time ∆t. The forces and moments acting on the elements are obtained

from force-displacement laws applied at the contacts. Slippage between contacting particles

occurs if the frictional resistance at the contact is overcome according to Coulomb’s law.

The DEM models a dynamic transient mechanical system which can be envisaged as a

network of lumped-mass-dashpot elements in which springs connect masses that represent

particles. Although the system is dynamic, the transient state approaches equilibrium if

loading at the boundary is sufficiently small that inertial forces are a small fraction of the

contact forces acting in the assembly. Kinetic energy is dissipated by introducing numerical

damping, without which static equilibrium could not be achieved.

The present Section describes the techniques used to calculate the displacement between

elements based on the original work presented by Cundall and Strack [23] extended to the

case of elliptical elements, and assuming a non-linear contact law.

3.2.1 Equations of Motion

Consider the two contacting particles A and B whose position is referenced to a cartesian

set of coordinates depicted in Figure 3.1. Newton’s Second Law applied to the particles
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can be written as:

m(ẍi)N = (F i)N i = 1, 2 (3.1)

I (θ̈)N = (M)N (3.2)

where m and I represent the mass and moment of inertia of the particle, and (F i)N

and (M)N , the net force components and moment acting at the particle centroid at the

beginning of the time-step corresponding to tN . Assuming particle acceleration ẍi and θ̈ to

be constant over the interval tN−1/2 to tN+1/2, using a finite difference technique, particle

velocities can be calculated from:

(ẋi)N+1/2 = (ẋi)N−1/2 +
(F i)N∆t

m
i = 1, 2

(θ̇)N+1/2 = (θ̇)N−1/2 +
(M)N∆t

I
(3.3)

The coordinates of the particle centroid and the corresponding rotation are calculated

at the end of the time step tN+1 according to:

(xi)N+1 = (xi)N + [(ẋi)N+1/2] ∆t i = 1, 2

(θ)N+1 = (θ)N +
[

(θ̇)N+1/2

]

∆t (3.4)

Elliptical Particles

The geometry of circular or disc-shaped particles is readily characterized by its radius R

or corresponding diameter D. In the case of elliptical particles, it becomes necessary to

introduce two additional parameters to describe their geometry [70]: particle eccentricity

and principal axis orientation.

Consider the ellipse shown in Figure 3.2. The geometrical properties of elliptical parti-

cles are described using three variables: the angle θ of the mayor axis with respect to the

horizontal, an average radius R̄ or average diameter D̄ , and the eccentricity, defined as

follows:

ec =
a − b

a + b
(3.5)

where a and b are the mayor and minor axis respectively.
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Figure 3.1: Description of particles’ position
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Figure 3.2: Ellipse nomenclature
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3.2.2 Force-displacement laws

Following Cundall and Strack [23], interaction between particles is assumed to occur by

means of contact forces if the contact area is negligible compared with the dimension of

the particles. After application of Newton’s Second Law, the centre of mass of a particle

A and B moves with velocities ẋA , ẋB and rotates with angular velocities θ̇A and θ̇B.

Contact displacements can be calculated using the following finite-difference equations:

(∆n)N+1/2 = [(ẋB
i − ẋA

i )N+1/2] n
c
i ∆t i = 1, 2

(∆s)N+1/2 = {[(ẋB
i − ẋA

i )N+1/2] t
c
i − (θ̇A|lAc | + θ̇B|lcB|)N+1/2}∆t (3.6)

Having obtained the incremental displacements at the point of contact, contact force

components are updated using:

(Fn)N+1 = (Fn)N + (∆Fn)N = (Fn)N + kn(∆n)N+1/2

(Fs)N+1 = (Fs)N + (∆Fs)N = (Fs)N + ks(∆t)N+1/2 (3.7)

where kn and ks refer to normal and tangential stiffness.

The final step in the calculation cycle is updating particle forces F i and moments M ,

which is done by adding all contact force components and moments in the following manner:

(F i)
k
N+1 =

nk
∑

n=1

[(Fn)N+1 nc
i + (Fs)N+1 tc

i ] i = 1, 2

(M)k
N+1 = |lk|

nk
∑

n=1

[(Fs)N+1] (3.8)

When simulations of cohesionless particles are conducted, the contacting particles are

not allowed to take any tensile force, that is, Fn > 0. For the case Fn ≤ 0, the contact

disintegrates, and particles are not considered to be in contact. Disrupted contacts can

reform again with further deformation of the assembly.

A Coulomb frictional type of law is employed and slippage between particles is initiated

once a threshold tangential force is reached. The criteria for commencement of slippage is

expressed as:
{

Fs < µFn No slippage

Fs ≥ µFn Slippage
(3.9)
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3.2.3 Non-Linear Stiffness

To compute contact forces in (3.7), it is necessary to assign a stiffness to the contact in both

the normal kn and tangential kt directions. Computer simulations of solid particle systems

are usually performed using the method proposed by Cundall and Strack [23], where linear

elastic laws for normal and tangential stiffness are assumed. A more realistic contact law

based on established theories of contact mechanics has been implemented by some authors

[22, 90, 55, 19]. Usually the classical theory developed by Hertz for two elliptical bodies in

contact is implemented. It has been shown that the effect of a non-linear contact law does

not have a significant effect on the macroscopic strength of dense assemblies of spheres

[22, 19]. In the present work however, a non-linear contact law was implemented in order

to avoid high interparticle penetrations that alter the volumetric response of the pores,

which, in turn, is used to calculate pore pressure generation.

Normal Stiffness

In general, for particle shapes other than circular, stiffness contact properties are depen-

dent on the location of the contact point on the particle’s surface. This conclusion follows

from Hertz’s solution of the contact problem between two elliptical elastic bodies. The lat-

ter implies that contact stiffness will be dependent on radii of curvature of the contacting

particles. For elliptical particles, radii of curvature vary depending on the location of the

contact point on the particle exterior. However, it has been proposed [69] that for plane

elliptical particles, the contact-force-displacement relationship is independent of the loca-

tion of a contact point, so long as displacements are understood as relative displacements

between centres of curvature of two particles in contact.

There are at least two definitions of point of contact for the case of plane systems of

elliptical particles [69, 91]. The definition presented by Rothenburg and Bathurst [69] was

adopted in this work. Accordingly, the point of contact is defined as the midpoint of the line

segment ab, where a and b are the intersecting points formed by the overlapping ellipses

as depicted in Figure 3.3. The radii of curvatures and their corresponding centres are

computed at the location indicated by the contact vectors lcA and lcB, respectively (Figure

3.1).

A plot of the curvature (the inverse of the radius of curvature) of an ellipse of eccentricity

ec = 0.2 with respect to the angle α is shown in Figure 3.4. Depending on the position of
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Figure 3.3: Radii of curvature at the contact point

the contacting point with respect to the ellipse’s major axis, the change of curvature may

be considerable.

If the assumption is made that displacement takes place in the normal direction, then

Fn can be estimated from:

Fn =
4

3
E∗

√

R∗u3
n (3.10)

where R∗ is computed from:
1

R∗
=

1

Rc
A

+
1

Rc
B

(3.11)

and:
1

E∗
= 2

1 − ν2

E
(3.12)

where Rc
A and Rc

B are the radii of curvature at the point of contact for particles A and B

respectively, E is Young’s modulus of the particles and ν is Poisson’s ratio and un is the

compliance of the two bodies. The value of un in the normal direction is computed using

the relative distance between both centres of curvature z , and the corresponding radii of

curvature, that is, (Rc
A + Rc

B − z). The normal force Fn is found directly from the normal

displacement according to (3.10).
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Figure 3.4: Variation of the curvature of and ellipse as a function of the angle α

Tangential Stiffness

The tangential stiffness for the case of Hertzian contacts is history-dependent, and its

implementation requires storage of all load reversal points. Since the number of stress

reversal points is not known a priori, memory storage becomes impractical [?]. To simplify

these difficulties, shear forces are estimated using the method proposed by Cundall [22].

Accordingly, the shear stiffness is a function of the normal force, and it is equal to the

initial loading stiffness:

ks =
2G2/3 [3(1 − ν)R∗Fn]1/3

2 − ν
(3.13)

where G is the shear modulus of the particles. The incremental shear force ∆ Fs is calcu-

lated using relation (3.7).

3.2.4 Damping

The DEM method must include a provision for damping so that the assembly can approach

a state of static equilibrium under all conditions [6]. Damping is incorporated in the system

through a series of dashpots assumed to be located at different positions (Figure 3.5). Three

forms of damping have been introduced by Strack and Cundall [84]:

1. Contact damping, which acts on the relative velocities at disc contacts in both normal
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and tangential direction. Contact damping may be envisaged as dashpots which act

in parallel with the linear springs describing contact stiffness.

2. Global damping, which acts on the absolute velocities of the discs and can be envis-

aged as dashpots connected to each particle to a fixed frame of reference.

3. Friction damping, in which tangential contact forces are restricted according to the in-

terparticle friction criteria. Consequently, whenever this value is substituted into the

force-displacement expressions, it represents a damping mechanism on interparticle

tangential displacements. To prevent excessive tangential damping when ‖(Fs)‖max

is achieved, the tangential contact damping is not applied during sliding.

Normal and tangential contact damping forces are calculated from:

(Dn)N = cn

[(

(

ẋB
i − ẋA

i

)

N−1/2

)

nc
i

]

(Ds)N = cs

[

(

(

ẋB
i − ẋA

i

)

N−1/2

)

tc
i −

(

θ̇A|lcA| + θ̇B|lcB|
)

N−1/2

]

i = 1, 2 (3.14)

where cn and cs are contact damping coefficients.

Contributions of contact damping are resolved into components Di and added to the

force term in (3.3) leading to:

(ẋi)N+1/2 = (ẋi)N−1/2 +

[(

F i + Di

m

)

N

]

∆t i = 1, 2

(

θ̇
)

N+1/2
=

(

θ̇
)

N−1/2
+

[(

M

I

)

N

]

∆t (3.15)

Strack and Cundall [84] noted that there is a half-time step error between the force and

moment sums in (3.15) and terms (Dn)N and (Ds)N , however, they considered this error

to be negligible. Global or mass damping coefficients are related to the mass and moment

of inertia of each particle through a coefficient of proportionality α:

cm = αm

cI = ωαI (3.16)

where ω is yet another coefficient that amplifies the effect of α in the rotational component.

The original equations of motion can now be rewritten to include both contact and global
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damping contributions:

m(ẍi)N = (F i + Di)N − cm(ẋi)N i = 1, 2

I(θ̈)N = (Mn)N − cI(θ̇)N (3.17)

Letting:

(ẋi)N =
1

2

(

(ẋi)N+1/2 + (ẋi)N−1/2

)

i = 1, 2
(

θ̇
)

N
=

1

2

(

(θ̇)N+1/2 + (θ̇)N−1/2

)

(3.18)

and:

(ẍi)N =
(ẋi)N+1/2 − (ẋi)N−1/2

∆t
i = 1, 2

(θ̈)N =
(θ̇)N+1/2 − (θ̇)N−1/2

∆t
(3.19)

leads to the revised equations of motions in the form:

(ẋi)N+1/2 =
(ẋi)N−1/2 (1 − α ∆t/2) + (F i + Di)N ∆t/m

1 + α ∆t/2
i = 1, 2

(θ̇)N+1/2 =
(θ̇)N−1/2 (1 − α ∆t/2) + (M)N ∆t/m

1 + α ∆t/2
(3.20)

It is easily seen that setting α = 0 and β = 0 leads to the original equations of motion

(3.3) without the option of damping.

The lumped-mass non-linear spring and dashpot systems are schematically depicted in

Figure 3.5.

3.2.5 Critical Time Step

The discrete nature of the employed technique requires the selection of a time step small

enough to assure equilibrium of particles. Equilibrium can only be achieved if the time step

∆t is taken as a fraction of a certain critical time step. The critical time step is estimated
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ẋA
2

θ̇A

cI

|Fs| 6> |φµFn|

Figure 3.5: Principal rheological elements in the DEM
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on the basis of a single degree-of-freedom system of mass m connected to ground by a

spring of stiffness k [23]. The critical time step equals

∆tc = ∆t = 2 FRAC

√

mmin

kmax

(3.21)

where kmax and mmin represent the largest normal or shear contact stiffness and the mass

of the smallest particle in the assembly respectively. FRAC represents a constant that

accounts for the fact that each particle is acted on by several springs. Strack and Cundall

(1978) suggest that a value equal to 0.1 is small enough to assure numerical stability. The

value of ∆tc is equal to ∆t, which is the global time step appearing in equations (3.3),

(3.4), (3.6), (3.15), (3.7), (3.19), (3.20).

The term ∆t appearing in relation (3.20) controls the influence of inertial (unbalanced)

forces. In the present study, a non-linear contact law was introduced to counteract the

effect of high interparticle penetrations. The maximum stiffness in the normal or tangential

directions required to compute the critical time step are not constant parameters, but

change during deformation. To assure the convenient selection of an adequate time step,

the maximum stiffness employed kmax is computed at the beginning of the simulation.

Additionally, the numerical stability is monitored at all times during the simulation by

computing the ratio of the average inertial forces to the average contact forces generated

in the assembly.

3.2.6 Contact Detection Algorithm

Real particles are almost rigid and they deform only at the contacting points by small

amounts that depend on the contact-force magnitude and the mechanical properties of the

grains, among other factors. The idealized elliptical particles are also deformed at contact

points without changing shape. The particle deformation is simulated by allowing particles

to geometrically inter-penetrate each other by small amounts at the contact location. The

amount of overlapping is a measure of contact deformation, and it is usually a small fraction

of the particle diameter. The major problem of DEM for elliptical particles is to detect

the particle contact with the neighbouring particles, and calculate intersection and contact

points as well as the normal and tangential contact vectors.

The overlapping between elliptical surfaces is calculated by considering the general

second-order nature of the elliptical curves and detecting the points of intersection. The
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problem of detecting the intersection is reduced to a simultaneous solution of two second-

order equations, or alternatively, by determining the roots of a fourth-order equation.

A major difficulty with finding intersections of two ellipses relates to small interparticle

penetration that can result in two numerically close roots of the fourth-order polynomial.

This may lead to degradation of numerical accuracy that depends on the relative orien-

tations of the two ellipses [69]. Rothenburg et al. [69] proposed to rotationally transform

the curves to a coordinate system that gives the largest separation between roots. Their

method is employed in the present work.

To obtain the intersection points, the quadric polynomial is solved iteratively using

Laguerres’s method, as described by Acton [1]. The method uses complex arithmetic, but

will always converge to the solution with the desired accuracy. Even though the roots of a

quadric polynomial can be found analytically, this method may be ill-conditioned for the

case when principal axes of ellipses are aligned to each other [31].

3.3 Particle-Fluid-Flow Interaction

A number of algorithms have been programmed to account for the fluid-particle interactions

during undrained deformations in idealized assemblies of elliptical-shaped particles.

The additional micro-mechanisms incorporated in the DEM, can be better understood

considering the system of particles illustrated in Figure 3.6. The particles are enclosing

a space assumed to be filled by a fluid. The enclosed space will be referred to as pore

or void. At an initial static equilibrium, pore i has an initial volume Vi and the fluid

effect on the particles are only buoyancy forces. It has been assumed that the system of

particles represents a horizontal cross section, so the initial hydrostatic pressure will be

the same throughout the assembly and forces resulting from integrating pressures around

the particles’ surfaces will be nil. As deformation is initiated, the granules re-arrange into

a different configuration altering the morphology of the void. Depending on the velocities

at which the particles are moving and hydraulic conductivity of the medium, pressures

in excess of hydrostatic may start developing at the pore. During deformation, the fluid

escaping the pore and the built-up pressure can induce additional forces on the particles

that may affect the mechanical response of the particles.

The aforementioned mechanisms can be separated into three main processes and applied

to an assembly composed of a higher number of particles and pores in the following manner:
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Figure 3.6: Pore pressure generation scheme

1. Excess pore water pressure develops as a result of particle rearrangement,

2. Differences in pore pressures at each pore create micro-gradients that generate fluid

flow among pores, and,

3. Excess pore pressures act on the particles, resulting in pore pressure forces that may

affect the effective state of stresses.

The identification of the processes listed above was the first step towards adopting a

suitable physical model; they are considered to be major contributors to the mechanics

of undrained deformation. The effect of buoyancy forces has not been considered in the

calculations.
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The method employed to simulate these processes and the employed coupling technique

are described in the following sections.

3.4 Pore Pressure Generation

The procedure adopted to simulate pore pressure generation is similar to the one proposed

by Hakuno et al. [36] and Hakuno [35]. The technique relates pore deformations to

pressures by assigning elastic properties to the fluid. Implementing this procedure requires

the identification of all individual voids and computation of their volume-change rates. A

major part of the present work was devoted to developing a set of subroutines capable of

performing these tasks. The logic employed in developing these subroutines is explained

in the present section.

3.4.1 Algorithm for Voids Identification

The algorithm used to identify voids searches for groups or clusters of particles that are

continuously in contact in such a way that they form a loop. If such a condition is en-

countered, the space enclosed by the group of particles is identified as a pore or void. The

same definition of pore for plane systems has been presented elsewhere [30].

First, contacting particles carrying a normal compressive force (Fn > 0) are identified

(Figure 3.7). The algorithm creates a list of all particles and their contacting neighbours,

named the contact array. It then modifies the order in which the neighbouring particles

are stored in the contact array according to the angle formed by the branch vector (zc )

with respect to the horizontal in the counter-clockwise direction (Figure 2.9). The process

of polygon construction starts by considering an initial particle i and the contact particle

j which was firstly positioned in the contact array. The neighbouring particle j is thus

identified. The contact array of particle j is further analyzed, and the position of i is

located. The particle located in the previous position to that of i in the j array is selected

as a possible particle conforming the loop. This process is repeated until the followed path

comes back to the initial starting particle or until it has exceeded a certain number of loops

defined by the user. The path followed during the search is registered by the program. If

the loop is closed, the path is saved by storing the particles’ number in the order they were

encountered. A polygon that joins the centres of particles enclosing a void is in this way
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Figure 3.7: Calculation of polygons enclosing the assembly’s voids

created. The subroutine returns a list of all polygons created. The polygons define the

groups of particles enclosing the assembly’s pores.

As will be explained in Section 4.1, the assembly used for the simulations is bounded

by a “membrane” composed of the plane elliptical particles with eccentricity ec = 1.0. The

polygon generation algorithm locates particles that are continuously in contact identifying

the pores in the system, and creates a network of polygons whose vertices are the centroid

of particles. When the polygon construction algorithm is directly applied to identified

boundary pores, the shape of the polygons is dependant on the position of the centre of

the boundary particle with respect to the boundary contact point. Thus, it was observed

that the shape of these pores may not always be adequately described. To overcome this

problem, additional particles of zero size are considered to exist at the contact points

between particles and the boundary. Introducing these fake particles allows the use of only

one algorithm to identify internal as well as boundary polygons. In this way, an edge of the

polygon originally going from the centre of an internal particle to the centre of a boundary

particle will now pass through the centre of the fake particle located at the contact point,

resulting in a polygon that adequately describes the shape of the pore. The algorithm

to construct polygons is called in the program whenever a new contact is created or and

existing contact disintegrates.
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The employed subroutine was originally created by Thallak [88] to simulate hydraulic

fracturing. This subroutine has been further modified and optimized to analyze the present

problem.

Maximum Number of Polygons

The problem of constructing polygons is commonly encountered in graph theory. It consists

of identifying the minimum number of faces (polygons), given the edges (branch vectors)

of a given set of vertices (particle centres).

The polygons comprising the voids of the system can be envisaged as a graph whose

properties can be studied at a given instant during the deformation.

Graph theory concepts were initially used to describe assemblies of granular materials

by Satake [77]. Some of these concepts were used in the initial programming stages to

dimension the arrays in order to optimize memory storage. Let F , E, and V be a number

of faces, edges and vertices in a particular graph. Then, the following relation applies:

F − E = 1 − V (3.22)

which is known as Euler’s relation.

Relation (3.22) can be used to find an upper bound for the maximum number of poly-

gons or faces expected in any particular assembly. Consider a system of N elliptical

particles in a dense state, so the average particle coordination number expected is approx-

imately γ = 6. Using relation (2.2), the number of contacts in the assembly Nc is equal

to 3N . Assume E = Nc in (3.22), then the maximum number of polygons expected for a

dense system of elliptical particles is:

F = 2N + 1 (3.23)

or approximately two times the number of particles.

3.4.2 Pore Pressure Generation

To simulate saturation effects, the pore space is treated as filled by a fluid. The fluid is

assumed to be an elastic material that possesses a certain stiffness. The stiffness relates

the amount of deformation that the medium will experience to a given spherical state of

stresses. Volumetric pore changes experienced due to particle rearrangement under external
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Figure 3.8: Variation of normalized fluid modulus with air content

forces are assumed to be the same as those of the fluid. In this manner, the change in

volume ∆Vi of the fluid in a given pore i is considered to provoke a change in the pressure

∆u of the fluid according to:

∆ui = Bf
∆Vi

Vi

(3.24)

where Vi is the original volume of pore i and Bf is the bulk modulus of the fluid. By

varying the value of Bf , the effect of a different fluid compressibility may be evaluated.

A fully saturated medium can be replaced by a partly-saturated one whose fluid com-

pressibility depends on the degree of saturation. It has been shown [76] that the bulk

modulus of a fluid mixture of air and water is:

Bf =
1

S
Bw

+ 1−S
Ba

(3.25)

where Bf , Bw , and Ba are the bulk moduli of the fluid, water and air, respectively and S

is the degree of saturation of the mixture. The values of the bulk moduli of water and air

are approximately equal to 2.9 GPa and 142 kPa at one atmosphere [76].

Figure 3.8 shows the variation of the normalized fluid modulus with air content. It

is observed that a small volume of air results in a large decrease in the modulus of the

fluid. Since compressibility of the fluid becomes small for degrees of saturation near unity,
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Figure 3.9: Definition of contact vectors for pore volume computation

a small volumetric fluid strain results in large pressures; therefore, precise pore volume

computation becomes necessary.

The geometrical intersection between elliptical particles is used to compute the void

volume with the required accuracy. To illustrate pore volume computation, consider the set

of particles depicted in Figure 3.9, where particle interpenetrations have been exaggerated

for illustration purposes.

Additional polygons or sub-polygons are constructed by joining the intersection points

with the particles’ centre. The area defined by the sub-polygon and the shaded areas of

the ellipses are then calculated, and the sum of the later is subtracted from the former.

The result of this operation is the desired pore area.

The shaded regions are computed as follows. Consider the ellipse depicted in Figure

3.10 in which a cartesian frame of reference is located at its centre. The normalized area

of a region of the ellipse (An) delimited by the major axis and a given vector lcp directed

to a point p is given by the next relation:

An =
1 − e2

c

2

{

arctan

[

1 + ec

1 − ec

tan (α)

]}

0 ≤ α < π/2 (3.26)
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Figure 3.10: Computation of area of a region on the ellipse

or alternatively:

An =
1 − e2

c

2

{

arctan
[

β tan
(α

2

)]

+ arctan

[

1

β
tan

(α

2

)

]}

0 ≤ α < π (3.27)

where β is the solution to:
β

2
+

1

2β
=

1 + ec

1 − ec

ec is the eccentricity of the ellipse, α is the angle defining the region of interest measured

from the ellipse’s major axis. The area computed from the previous relations is normalized

by R̄2. Relation (3.27) is plotted in Figure 3.11 for eccentricity values of 0, 0.2 and 0.4.

The former relations assume collinearity between the ellipse’s major axis and the ab-

scissa, so the elliptical curve and the vectors delimiting the region of interest have to be

rotationally transformed.

3.5 Coupling of the Flow-DEM Particle System

Liquefaction is a transient phenomenon occurring as a result of particle re-adjustment and

subsequent loss of effective stresses. A micromechanical approach to the problem should

consider the unsteady-flow nature of the fluid and the consequent pore-pressure forces

exert on the particles’ surfaces. An important part of this work consisted of proposing and

developing a model capable of describing the unsteady-flow among pores satisfactorily and

at the same time computationally efficient. The resulting model has been coupled with the
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mechanism of particle movement. The proposed scheme for flow-coupled DEM is described

in the present section.

3.5.1 Fluid Flow Description

A porous medium is formed by a collection of grains of different mineralogy and mor-

phology. Flow of water in porous media is basically three-dimensional and mechanisms

that participate in energy losses are multiple and variate. The space between grains can

be imagined as a complex structure of channels and reservoirs when the medium is fully

saturated and the shape of pores can be highly irregular. These complexities are usu-

ally overcome using continuous approaches; these are adequate for the phenomenological

description of macroscopic transport processes [34].

The discrete nature of the DEM makes the use of the continuous approach unsuitable,

and alternative methodologies have to be considered.

Network models are difficult to generate as models of porous media because of the lack of

accurate information on the details of pore structure. Furthermore, the passageway through

the pore is not straight but has many bends and the actual length of the flow path cannot

be calculated. Additionally, the pores in the soil mass are interconnected, and for a water

particle starting at a given point, many possible flow paths exist. The complete description

of a porous medium is impossible to accomplish precisely, although one can overcome this

difficulty by considering simplified models through which fundamental mechanisms can be

understood by examining the connectivity of the pores.

Different techniques to simulate single-phase flow considering pore structure are re-
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ported in the literature [73, 88, 39]. Two fundamentally different approaches can be found:

in one, the flow inside assumed conduits is analyzed; in the other, the flow around solid ob-

jects immersed in the fluid is considered. For low and intermediate porosities, the conduit

flow approach is more suitable [30].

To simulate fluid exchange among pores, the medium has been envisaged as composed

of a collection of flow channels. It has been further assumed that the passage between

voids can be described by conduits having a circular cross section and that velocity of

flow through the passages is small enough to be described by the Hagen-Poiseuille theory.

According to the Hagen-Poiseuille relation, the volumetric flow rate q that passes through

a pipe or conduit of diameter d and length L is given by:

q =
πd4

128µ̄

(u1 − u2)

L
(3.28)

in which u1 and u2 are the pressures at the entrance and exit of the pipe, respectively

(Figure 3.12). The properties of the fluid are integrated in the process through the fluid’s

viscosity µ̄ . The above relation considers volumetric flow rates to be proportional to the

gradients generated.

Flow Network

When all the voids in the systems are connected by means of pipes or conduits, a network

of nodes and pipes, termed the flow network, arises. The flow network is used to model

flow through the particulate medium.

The algorithm to generate the network of conduits makes use of information about pore

connectivity as captured by the neighbouring polygons. During the process of polygon

construction, pores adjacent to contacts are identified and stored in array form. The

contacts in the assembly must have at the most two adjacent pores.

The first step consists in the creation of the flow network; it consists of computing the

centre of gravity of all the polygons. A given polygon is surrounded by n neighbouring

polygons. For each polygon, conduits that emerge from the centre of the mass of the

polygon i to the centre of the neighbouring polygons are generated.

The higher the number of neighbouring voids, the higher the conduit confluence. Ac-

cordingly, a given polygon is assumed to be connected with its surrounding neighbours,

and a network is created by locating the ends of the straight cylindrical capillaries at the
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Figure 3.13: Flow network construction for a set of polygons

centres of gravity of the polygons. The lengths L required in (3.28) are computed by con-

sidering the end points of each individual conduit which correspond to the centre of gravity

of corresponding polygons. A detail of a flow network is depicted in Figure 3.13 for a given

set of polygons.

Reformulation of the network is necessary only if an existing contact is lost or when a

new contact is created.

After pressures develop in all pores during a time increment, local gradients are gen-

erated which induce flow among neighbouring pores through the conduits. The resulting

pressures will dissipate and may exert a pore-pressure force on the surface of the particles.

3.5.2 Transient Fluid Flow

Consider a numerical simulation conducted on a saturated assembly. At the beginning of

each time step, the system is conformed by Np number of pores containing fluid under

pressures ui (these pressures being zero for the first time step). The volume change ∆Vi

of the fluid contained in pore i during a time increment will be equal to the change of the

pore volume ∆V β
i plus the volume of fluid injected or extracted from the pore through the
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converging conduits. Considering conservation of mass, the following relation is obtained:

∆Vi = ∆V β
i +

n
∑

j=1

∆qj∆t i = 1 . . . Np (3.29)

where ∆q is the total volume entering or leaving the pore i, ∆t is an increment of time

and n is the number of conduits converging to pore i . Substituting (3.28) into (3.29) and

considering the entire system of pores-conduits in the assembly leads to:

dui

dt
=

{

dV β
i

dt
−

n
∑

j=1

κj (ui − uj)

}

Bf

Vi

i = 1 . . . Np (3.30)

where

κj =
π d4

j

128 µ̄ Lj

Relation (3.30) is a system of ordinary differential equations; it combines the mechanism

of particle movement with effects of fluid flow through the flow network.

Integration is carried out numerically over an increment of time ∆t which corresponds

to the time increment employed for the solution of the particle’s motion.

The volumetric change rate dV β
i /dt is directly obtained from pore volumes at the be-

ginning and end of the global time step and it is assumed constant when solving (3.30).

The resulting pressures after integration are converted to forces acting on the particles.

The following section presents the methodology and equations necessary to convert the

pore fluid pressures into forces.

3.6 Pore Pressure Forces on Particles

The pressure difference between two adjacent pores represents in discrete form a local

pressure gradient in the system. Integration of the local pressures around the particles

result in discrete forces directed along the direction of the local pressure gradient. This

effect defines pore pressure forces that must be included in the force-displacement solution

of the particles. The present section introduces the proposed computational scheme for

decomposing pore pressure into forces.
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Figure 3.14: Computation of pore pressure forces

Horizontal and Vertical Components

Consider the particle depicted in Figure 3.14a, surrounded by four pores presenting dif-

ferent pressures ui acting normal to its surface. For the case of elliptical surfaces, the

individual pressures can be decomposed into a horizontal, vertical and rotational force

components acting on the particle’s centre. In the case of disc-shaped particles, the rota-

tional component becomes zero and only the horizontal and vertical components remain.

The horizontal and vertical force components denoted as F i
1 and F i

2 resulting from the

pressure ui in pore i can readily be computed by considering the projected areas as shown

in Figure 3.14a.

In order to implement this procedure in the program, it becomes necessary to compute

the contact vectors bounding the region of interest. Consider the section of an ellipse

bounded by vectors lca and lcb depicted in Figure 3.15. The horizontal and vertical compo-

nents of the pore pressure in pore n are computed as

F n
1 = −un(a2 − b2)∆ (3.31a)

F n
2 = un(a1 − b1)∆ (3.31b)

where ∆ is the thickness of the particle.
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The set of vectors lca and lcb are properly assigned by considering the direction of the

paths followed by polygon loops. For example, pore n in Figure 3.15a corresponds to

a polygon path directed in the clockwise direction. Similarly, the path followed by the

polygon delimiting pore n in Figure 3.15b is directed counterclockwise. For both cases,

contact vectors are computed and the vector first encountered along the path is identified

as lcb. The second contact vector is lca. This definition was adopted in the program.
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Figure 3.15: Definition of contact vectors for pore pressure force computation

Rotational Component

Computation of the rotational force component of the pore pressure requires a transfor-

mation of the particles such that the ellipse’s major axis coincides with the horizontal.

Consider the region delimited by a vector forming an angle α with respect to the horizon-

tal (Figure 3.14b). The normalized rotational force component of pressure uk is obtained

by integrating the pressure from 0 to α, leading to the following relation:

Mk(α) = uk ∆
[

√

1 + e2
c − 2ec cos 2s + ec − 1

]

(3.32)

where s is a parameter computed from:

s = arctan

{

1 + ec

1 − ec

tan α

}

0 ≤ α < π

The resulting rotational force component computed from relation (3.32) is normalized

by the average radius R̄ of the ellipse and is defined as positive in the clockwise direction.
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Relation (3.32) is shown in Figure 3.16 for three different eccentricity values of ec

equal to 0, 0.2 and 0.4 respectively. Analysis of the plots reveals that the rotational

component of the pore pressure vanishes when eccentricity is zero; i.e., when the particle

is a perfect circle. The rotational component, however, increases with particle eccentricity,

and becomes maximum when α= π/2.

Equation (3.32) is limited in the sense that one can only compute the moment compo-

nent for a region bounded by the abscissa and a given contact vector. More general regions

however, are obtained in the program by over-imposing the rotational effects.

The final step in the calculation cycle is obtaining the particle pore pressure forces F u
i

and moments Mu, which is done by summing all pore water force components and moments

in the following manner:

(F i)
u =

np
∑

n=1

F n
i i = 1, 2

(M)u =

np
∑

n=1

Mn (3.33)
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where np is the number of pores surrounding a given particle. The total force components

are included in the force-displacement solution in Equation (3.20). Incorporating these

additional forces has an important effect on the overall behaviour of the assembly.

3.7 Macroscopic Pressure

Undrained experiments conducted in the laboratory generally involve measurements of

pore pressure. Such measurements are necessary to compute the effective state of stresses,

which are known to govern the deformation process.

The model thus far adopted is able to simulate micro-pressure generation according to

the deformation of voids originating from disturbances provoked at the boundary. It is

desirable to adequately average the discrete pressures in order to define a representative

pore pressure for the assembly.

The increase in macro-pore pressure is computed over a time increment by averaging

all discrete pressures at the pore level and assigning a weight to each of them. To maintain

consistency with the manner in which discrete pressures are computed, the volumes of the

voids are taken as averaging weights. Accordingly, the average macroscopic pore pressure

increment (∆ū) is computed at the end of each time step as:

∆ū =

∑

∆uiVi
∑

Vi

(3.34)

The macro-pore pressure is an important variable as the tendencies to change volume

(contractile or dilatant) of a given assembly are directly capture in its evolution.

The following section presents the general organization of the program and introduces

some of the subroutines incorporated in the DEM algorithm. An explicit calculation cycle

of the flow-coupled DEM is presented if Figure 3.17, where the solution of the flow equations

and the effect pore pressure forces have been integrated in the calculation process.

3.8 Calculation of Stresses and Strains

The average stress in the assembly is obtained considering the internal distribution of

contact forces using expression (2.12). The volume V in (2.12) corresponding to the en-

tire assembly is approximated by the area formed by connecting the centres of adjoining

boundary particles.
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Figure 3.17: Calculation cycle in flow-coupled DEM

3.8.1 Total and Effective Stress Tensors

Knowledge of the total and effective state of stresses at any stage during a simulation is

important when conducting undrained simulations. It has been shown in relation (2.12)

that the stress tensor in a given domain can be obtained by considering spatial averages

of forces and contacts according to:

σβ
ij =

1

V

∑

f c
i l

c
j i, j = 1, 2, 3 (3.35)

(10) where f c is the interparticle force vector and lc is a vector from the particles’ centre

to the point of contact. The above relation is equally valid for two or three dimensional
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systems; it makes use of interparticle forces and is therefore an effective stress tensor. In

further discussions, the effective stress tensor σ
′

ij is assumed equivalent to relation (3.35)

or:

σβ
ij = σ

′

ij (3.36)

Using the macro pore pressure calculated from (3.34) and the effective stress tensor σ
′

ij,

the total stress tensor σij is computed as:

σij = σ
′

ij + ūδij i, j = 1, 2 (3.37)

where δij is Kronecker’s delta.

3.8.2 Average Strain

An adequate measure of the strain tensor is required to obtain a macroscopic description

of the assembly of particles. The strains are computed at selected intervals during the

simulations using the displacements of boundary particles according to the expression

proposed by Cundall et al. [23].

εij =
1

V

nβ
∑

β=1

[

1

2

{

∆x
β
j + ∆x

β+1
j

}

e
β
i Sβ

]

i, j = 1, 2 (3.38)

Quantities involved in (3.38) are defined in Figure 3.18. The term V represents the area

contained by the polygon described by the scalar line segment Sβ connecting boundary

particles. Each line segment is defined by the coordinates of adjacent boundary particles

β and β + 1 having displacements ∆xβ and ∆xβ+1 respectively. The term eβ is a unit

vector normal to the line segment Sβ.

Invariant quantities are computed from the strain tensor using the following expressions:

εn = ε11 + ε22 (3.39a)

εt =
√

(ε11 − ε22)2 + (ε12 + ε21)2 (3.39b)

εω = ε21 − ε12 (3.39c)

here, εn is the volumetric strain, εt is the shear strain, and εω is the rigid body rotation

defined positive in the counter-clockwise direction.
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Principal strain directions are calculated from

sin 2θε =
ε21 + ε12

εt

(3.40a)

cos 2θε =
ε11 − ε22

εt

(3.40b)

The term average strain tensor does not imply that strains reflect the displacement fields

observed in the interior locations. A continuous deformation is applied to the boundary,

but internal deformations are discontinuous and present rotational components that are a

result of the movement and rotation of discrete particles.

3.9 Boundary Control

A number of boundary conditions can be simulated using a servo-control mechanism. Only

three were used in the present investigation and will be summarized in this section.

Constant Boundary Strain Rate Tests

This shearing mode applies constant velocity components ẋ
β
i to the centre of each boundary

particle according to a prescribed strain-rate tensor ε̇b
ij. The velocities of the boundary

particles are calculated from

ẋ
β
i = ε̇b

ij(x
β
j − xc

j) i = j = 1, 2 (3.41)

where x
β
j is the particle location at the beginning of the calculation cycle and xc

j represents

the centre point of the assembly. This boundary control was employed to compute constant

volume (ε̇v = 0) tests by setting ε̇b
11 = −ε̇b

22.

Constant σ11 Test

This mode of deformation models both biaxial compression and extension tests in which

a constant vertical velocity ε̇b
22 is applied to the boundary while maintaining the total

horizontal stress σ11 constant. The boundary particle velocity ẋ
β
2 corresponding to the

prescribed strain rate is calculated from expression (3.41). The total horizontal stress

component is maintained constant by controlling the strain rate in the manner of a servo

mechanism. At the end of each calculation cycle the current state of stresses is compared
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with the prescribed boundary stress component σb
11. For undrained simulations, it becomes

necessary to know the value of the macroscopic pore pressure ū at all moments. The

boundary rate velocity ẋ
β
1 is obtained from

ẋ
β
i =

g(σb
ij − (σ

′

ij + ūδij))(x
β
j − xc

j)

σβ
ij

i = j = 1 (3.42)

where g represents the servo gain that is a user-defined input parameter. Note that if the

value of ū is zero, the conducted simulation becomes a biaxial drained test in which the

total horizontal stress is maintained constant.

Servo Strain-Rate Controlled Test

This mode allows a prescribed strain-rate tensor ε̇b
ij to be applied to the boundary simul-

taneously with a prescribed boundary stress σb
ij. The resultant boundary velocities are

calculated as the sum of the contributions from the strain rate boundary control and the

servo-mechanisms boundary control. The contributions of the prescribed strain rate tensor

are calculated from relation (3.41). The contributions of the prescribed boundary stress

tensor are calculated from equation (3.42) with i, j = 1, 2. The resultant boundary particle

velocities are calculated from

ẋ
β
i = ẋ

β
εi + ẋ

β
bi (3.43)

This boundary control model was used in the present research to isotropically confine the

assemblies to the desired level of stresses.

3.10 Modified Program AQUA

The proposed methodology to simulate undrained tests has been programmed in a series

of subroutines, and the obtained program has been named AQUA. Program AQUA was

developed from an existing code named Ellipse, originally modified by Rothenburg and

Bathurst [69] to accommodate elliptical particles and it is in itself a modified version of

the program DISC [6]. The programming language originally used was FORTRAN 77 and

requires a 32 bit-processor. This same programming language was used in the present

implementation.

The program structure has been divided into three parts, specifically pre-processing,

processing, and post-processing. The pre-processing stage consists of creating an initial



Development of the Fluid-Flow Coupled Algorithm 74

configuration file containing information about the assembly and initiating a number of

parameters and variables needed for the computations to be carried out in the processing

stage.

The processing part consists of solving the equations of motion described in Section 3.2,

coupled with the fluid flow interaction described in the previous sections. The assembly

configuration can be stored in a file at any calculation cycle during the simulation. These

files can be subsequently analyzed in the post-processing stage.

3.10.1 Pre-Processing

The program AQUA reads the particle information and their distribution data from a

configuration file initially created by an independent program named AUTODISC, which

generates an assembly of discs located with respect to a fixed, rectangular co-ordinate

space. The discs are converted into ellipses and the configuration file is generated.

The first subroutine INITP reads the execution commands from an instruction file

called “ellipse.dat.” The input file provides information about the geometric, mechanical

and physical properties of the particles such as dimensions, Young’s modulus, Poisson’s

ratio, interparticle friction angle cohesion and density. For the case of undrained tests, it

provides further information about the fluid viscosity, bulk modulus of the fluid and the

average diameter to be used in the conduits comprising the flow-network. The instruction

file also provides instructions on the type of test to be conducted. Currently, program

AQUA is capable of conducting six different servo modes of shearing mechanism.

The INSTR subroutine reads the binary configuration file containing the information

about individual particles as position in space, forces, velocities and increments of motion

for three degrees of freedom. One partition of the binary file contains information about

contacts, mainly the contacting particles, the normal and tangential forces generated by

the contact. It also calculates the critical time step.

3.10.2 Processing

The processing stage is composed of a large number of subroutines, but only seven are

of major importance because most of the computations are performed by them. The

names of these subroutines are SERVO, MOTION, FORDELLIPSE, MAKEPOLYGONS,

MAKENETWORK, POFO, RUNGE.
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The number of calculation cycles is initiated according to the information gathered

from “ellipse.dat” in subroutine INITP. The first subroutine encountered in the cycle is

SERVO. This subroutine applies velocities to the boundary discs according to conditions

initially prescribed in the instruction file “ellipse.dat”.

Subroutine MOTION solves the equations of motion (3.17) through (3.20) presented in

page 49 to provide the updated particle velocities.

Subroutine FORDELLIPSE applies the force-displacement law according to equations

(3.8) to each contact. The contact array is updated according to newly-formed and broken

contacts, and the polygons containing such contacts are identified and stored.

Subroutine POFO calls MAKEPOLYGONS and MAKENETWORK if the contact ar-

ray was modified in FORDELLIPSE, i.e., if a contact was formed or disintegrated. The

straining of the voids is also calculated in this subroutine and the corresponding pressures

are supplied to RUNGE.

Subroutine MAKEPOLYGONS computes the polygons of the assembly, as explained in

Sections 3.4.1. If the contact array was modified in subroutine check, MAKEPOLYGONS

re-calculates the network of polygons. The void volumes are computed for the newly

updated particle positions.

Subroutine MAKENETWORK calculates the flow network using the information pro-

vided by MAKEPOLYGONS as explained in Section 3.5.1.

Subroutine RUNGE implements the Runge-Kutta technique to numerically solve the

systems of differential equations (3.30). It returns the values of the pressures after an

increment of time ∆ t.

3.10.3 Post-Processing

The post-processing part includes extraction of any required data saved in the binary con-

figuration files during the processing stage. An additional subroutine named AUTOCAD

is used to generate .dxf files, which can later be read in a number of commercial packages

such as AutoCad.
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Figure 3.19: Flow Chart of Program AQUA
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3.11 Comments

A great amount of work was invested in developing the algorithms to relate the strains

of voids from cycle to cycle, especially for the case where new contacts are either formed

or broken. Numerous trial runs were performed by the author to verify the correctness

of the results provided by the algorithms during the debugging stage. The subroutine

AUTOCAD was of great aid in visualizing the geometry of the problem.

Figure 3.20: Isolated polygons

During the preliminary runs, the situation depicted in Figure 3.20 was encountered a

number of times. A number of contacts are lost within separate regions and clusters of

particles form creating isolated polygons or islands in the assembly. This condition creates

a number of possibilities on how to redistribute pressures, and the computation time is

considerably affected.

Under the present approach, the fluid is allowed to take an indefinite amount of tension;

possible effects caused by cavitation of the fluid are not contemplated. Typically, 4.3E5

cycles are required to reach a shear strain of about 20 %. The execution time to achieve

these strain levels fluctuates around fifteen days using an AMD Athlon processor with
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a frequency of 1.4 GHz. A large amount of CPU time is required for calculating the

polygon network and solving the differential equation for fluid flow. Clearly, the current

implementation is only suitable for research purposes.



Chapter 4

Verification and Parametric Study of

the Program

This chapter presents the results of several calculations performed to verify that the code

was working as expected and to study the behaviour of the system after having programmed

all the proposed implementations.

The non-linear contact law, the effect of the geometry and frictional characteristics of

the boundary contacts on the global response of the assembly were studied. The existing

relationship between the macroscopic pore pressure increments and the change in volume

of the assembly was used to independently verify the calculations of the individual pore

strains. Special emphasis was placed on the evaluation and study of the behaviour of

the fluid-flow network under different initial and boundary conditions. It is shown how

a particular conduit diameter was assigned to the conduits of the fluid-flow network so

that the assembly would present a permeability similar to those found in medium to coarse

grained clean sands. Finally, the effects of the compressibility of the fluid on the volumetric

changes and global responses of the assembly were studied.

4.1 Mechanical and Physical Characteristics of the

Assembly

Elliptical particles have an advantage with respect to disc-shape particles because elliptical

ones reproduce better some parameters commonly measured in real sands, such as the

79
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interparticle friction angle. Additionally, the undrained behaviour of granular materials

has been found to greatly depend on the initial density of the sample. For numerical

simulations, it is then desirable to work with a particle shape that allows production of

the widest possible range in densities and that better simulates the behaviour of sands.

Results of numerical experiments have shown that the elongation of the elliptical par-

ticles as measured by their eccentricity (ec) has an important effect on the packing char-

acteristics of the assembly and on the peak friction angle [70]. Rothenburg and Bathurst

[70] found that the maximum packing density was obtained when the particles presented

an eccentricity equal to 0.2. Therefore, elliptical particles with an eccentricity equal to 0.2

were chosen to study the undrained behaviour of the idealized systems.

Numerical simulations are generally conducted on assemblies of particles confined by

rectangular boundaries. The use of rectangular boundaries causes stresses to concentrate

at the corners of the specimen, an observation made both in laboratory tests [75] and in

numerical simulations [61]. In the present work, a circular boundary was used to encourage

uniform deformations and lessen localized effects emerging as a consequence of the uneven

distribution of stresses. The circular boundary was simulated using 76 flat particles termed

the boundary particles. The eccentricity of the boundary particles is equal to 1.0, and their

average diameter (D̄) varies during the tests to maintain a continuous boundary. The

boundary particles act rigidly in the sense that they do not penetrate the interstices. The

effects of membrane penetration commonly observed in laboratory experiments are nullified

by the present approach.

All the assemblies used in the present study are composed of 1000 elliptical particles,

a number that ensures a statistically representative assembly of a greater specimen and,

at the same time, ensures that computational time is not excessive [6]. An initially loose

assembly, and the particles forming the boundary, are depicted in Figure 4.1.

4.1.1 Properties of the Particles

The static elastic parameters assigned to the particles were those of quartzite [33]; namely,

Young’s modulus E=80 GPa, and Poisson’s ratio µ=0.25. The interparticle sliding criterion

is calculated according to the Mohr-Coulomb law:

Ft = Fn tan φµ (4.1)
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Figure 4.1: Initial loose assembly formed by 1000 internal particles (ec = 0.2) and 76

boundary particles (ec = 1.0)
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Figure 4.2: Grain size distribution

where Ft and Fn are the tangential and normal contact force respectively, and φµ is the

interparticle friction angle. A value of 0.55 was assigned as an interparticle friction co-

efficient tan φµ and the density of the particles was assumed equal to 2700 kg/m3. The

assembly shown in Figure 4.1 is assumed to have a thickness ∆ of 1.0 mm.

The elliptical particles display 20 different equivalent diameter sizes that are log-normal

distributed. The grain size distribution shown in Figure 4.2 is considered typical for well-

graded medium to coarse-grained sands.

Time Step

The discrete nature of the DEM requires the selection of a time step small enough to

assure static equilibrium of particles at all times, but as large as possible to optimize

computational time. The critical time step can be calculated according to (3.21) for the

case of a linear contact law. For the case of a non-linear contact law, however, an optimal

selection of the time step must be sought to maintain the inertial forces (ratio of the average

particle force to the average normal contact force) to their minimum possible value. The

percentage of inertial forces are an adequate measurement of the static particle equilibrium
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and it has to be kept to a minimum value as a consequence of the explicit nature of the

discrete element method. Following a number of trial tests, it was found that a time

step ∆t = 4.781 × 10−3 was sufficiently small to maintain the ratio of inertial forces to a

value less than 0.1 according to the recommendation of Strack and Cundall [84]. All the

numerical simulations of the fluid-flow coupled DEM in this dissertation were performed

using this time step, unless otherwise stated.

Damping Coefficients

The DEM employs an artificial damping mechanism using a system of dashpots that dis-

sipate energy and bring the particles to a state of static equilibrium. Program AQUA

incorporates four different mechanisms of energy dissipation. For every particle, it con-

siders the existence of two dashpots affecting the translational and rotational movement,

as well as two additional dashpots acting at every contact in the normal and tangential

directions. The amount of damping in the translational and rotational directions is con-

trolled through coefficients α and ω respectively. The coefficient β controls the amount

of damping at the contacts. These coefficients have been incorporated in the equations of

motion, e.g., relation (3.16).

Property Nomenclature Value

Global damping α 0.0 1/sec

Contact damping β 2500 1/sec

Rotational damping ω 10.0

Table 4.1: Optimum damping coefficients

Values for the damping coefficients α, β and ω that produced the least unbalanced

forces were chosen after a number of trial runs. These values are presented in Table 4.1.

4.2 Contact Law

A non-linear contact law based on the theory developed by Hertz was implemented in the

algorithms. The purpose of this implementation was twofold: to compute interparticle

force-displacement in a more realistic manner; and, to restrict high interparticle penetra-

tions that arises when using a linear-contact law model. Particle inter-penetrations have
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a direct effect on the mechanical response of the assembly since higher pore pressures are

generated, resulting in a greater stiffness degradation.

The effects of the adopted slippage criteria were verified by tracking the force-displacement

evolution of several contacts during a drained simulation.

Different types of contact geometries and interparticle friction coefficients for boundary

contacts were examined. Additionally, free vibration tests were carried out to demonstrate

the behaviour of the elliptical non-linear response and the effects on the final response at

equilibrium. A description of these tests, and the results, are summarized below.

4.2.1 Slippage Criterion

Biaxial drained tests were carried out to verify the interparticle slippage mechanism. The

magnitudes of the normal |fcn| and tangential |fct | contact forces at several contacts were

extracted during a simulation, and the slippage criterion was verified. The coefficient of

interparticle friction µ was set at 0.5.

Figure 4.3 shows the measured variation between normal and tangential forces at one

selected contact during a test. This particular contact point was chosen because it did not

disrupt during the test.

The contact constitutive relation involves non-linear springs both in the normal and

tangential directions. Coulomb friction criterion imposes the condition at the contact

|fct | ≤ µ|fcn|. For cohesionless contacts, the region of admissible forces should be bounded

by the lines |fct | = ±µ|fcn| according to Coulomb’s principle. For the case |fct | = 0.5 |fcn|,

data presented in Figure 4.3 indicate that, as expected, slippage occurs along the boundary

imposed by the friction coefficient.

4.2.2 Contact Criteria Between Boundary and Internal Particles

The assembly employed for the simulations is bounded by a group of elliptical particles

of eccentricity ec= 1, termed the boundary particles. Drained simulations were carried

out to examine the effects of different contact geometries and friction coefficients of con-

tacts between internal and boundary particles. More specifically, the force-displacement

calculation of internal and boundary particles was carried out assuming the following:

1. The internal particles (particles identified as number two) are treated as spheres

whose radii of curvature are defined by the point of contact. The boundary particles
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(particles identified as number one) are assumed to be frictionless plane surfaces,











R1 = R′
1 = ∞

R2 = R′
2 > 0

µ = 0.0

where Ri and R′
i are the radii of curvature of particle i at orthogonal directions.

2. The internal particles are treated as spheres whose radii of curvature are defined at

the point of contact. Boundary particles are assumed to be plane surfaces with a

friction coefficient,










R1 = R′
1 = ∞

R2 = R′
2 > 0

µ = 0.5

3. Both internal and boundary particles are treated as spheres. The radii of the bound-

ary particles are assumed to be equal to the radii of the internal particles. The radii

of the internal particles are given by the radius of curvature at the point of contact.

The contact is assumed frictional as follows:










R1 = R′
1 > 0

R2 = R′
2 > 0

µ = 0.5

The results of the drained simulations for the three different cases considered are pre-

sented in Figure 4.4. The curves show the change of the quantity sin φmob = (σ22 − σ11)/(σ22+

σ11) with the level of deviatoric strains εt.

The first observation that can be made from Figure 4.4 is that the resistance is con-

siderably increased when friction is assigned to the boundary contacts. The data also

suggest that considering a sphere-sphere contact or sphere-plane contact in the frictional

case produces very similar results. A higher frictional resistance is mobilized by considering

frictional boundary contacts.

A detailed analysis of the results shows additional differences between the different sce-

narios, mainly, the displacement fields and the internal force distribution were not uniform

in the frictionless case. The displacement fields showed that internal deformations of par-

ticles near the boundary, due to the lack of friction, did not follow the deformation of the
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Figure 4.4: Effect of boundary type of contact on the drained strength of an initially loose

assembly

boundary particles. As observed in Figure 4.5a, this condition lead to the development of

chains of forces which aligned in the loading direction, and concentrated in the middle third

of the assembly. For the case of frictional contacts however, a more uniform distribution of

forces is obtained. The force distribution for the frictional case is depicted in Figure 4.5b.

From the results of the above study, it was considered appropriate to assign a friction

coefficient to the boundary contacts equal to the friction of the internal contacts. Addi-

tionally, forces at the boundary were calculated by assuming a spherical-planar contact.

Even though this assumption has no practical implications in the final resistance of the

assembly (see Figure 4.4), it conforms to the geometry of the problem.

Free-Vibration Response

The effects of damping coefficients on the free response of a particle were evaluated using a

procedure similar to the one presented by Cundall and Strack [23]. A particle was initially

disturbed from its equilibrium position by applying translational and rotational forces to

its centre. The movement of the neighboring particles was inhibited, and the change of a

contact force with the number of cycles for a given contact was monitored. The application
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Figure 4.5: Interparticle force distribution for a) frictionless and b) frictional boundary

contacts
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of a rotational disturbance permitted the observation of how the contact stiffness changes

with the radii of curvature at the contact point.

Three different values of α were evaluated (5, 500 and 1000 1/sec) while maintaining β

and ω constant (β = 0 and ω = 1). The results of the free vibration test are depicted in

Figure 4.6.

The curve corresponding to α = 5 oscillates around an equilibrium position and, even

after 1000 cycles, equilibrium is not reached. The curve corresponding to α = 500 reaches

equilibrium in about 300 cycles, while the curve corresponding to α = 1000 reaches equi-

librium in fewer cycles. The results demonstrate the effects of the non-linear contact law

for the case of elliptical particles. The ultimate force at equilibrium changes with the

amount of damping. As the particle oscillates around the equilibrium position, the radii of

curvature at the contact change, modifying the contact stiffness. The change of curvature

is a function of the position of the contact vector with respect to the ellipse’s major axis

as shown by the plot in Figure 3.4. This effect is also reflected in the change of frequency

of the curves.

The effect of the mass-rotational damping coefficient ω on the free response of the

particle is presented in Figure 4.7. Three different coefficients were used, ω= 1, 10 and

20, while maintaining α = 1000 constant. The data show that the coefficient ω affects the

frequency of the response curve but does not considerably change the amplitude nor the

final force at equilibrium.

The results of these numerical experiments demonstrate the implication of considering

non-linear effects in elliptical particles, mainly, that the force at static equilibrium depends

on the location of the contact point along the perimeter of the contacting ellipses. For the

particular cases examined, the contacting point, and hence the stiffness, changed during

the free vibration, affecting the final force. This behaviour differs from that reported by

Cundall and Strack [23], where the equilibrium force of two contacting disc-shaped particles

was the same.

4.3 Testing the Void-Strain Calculations

Undrained simulations in the laboratory are assumed to evolve under constant volume,

an assumption arising from the fact that the compressibility of the fluid and grains is

sufficiently small that any possible deformation can be disregarded. In program AQUA,
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small deformations occur both at the contacts and the voids. Deformations of voids are

used to compute pore pressure increments according to a stiffness initially assigned to the

fluid.

Computing the volume of voids is a complex process that involves a vast number of

calculations performed by different subroutines. Even though the behaviour of the ideal-

ized assemblies may be in agreement with the behaviour of granular materials, it is still

desirable to verify that the pore volume computations are correct. This section presents

results of simulations carried on to verify the pore pressure computations using indepen-

dent subroutines. The verification was conducted using the existing relationship between

the macroscopic volumetric strain and the pore pressure generation. Details of the com-

putations and the results are provided below.

4.3.1 Volumetric Relationships

The macroscopic deformation of a granular assembly is the result of the deformation of its

constituents, that is, particles and pore-fluid. The suggested method in program AQUA

uses pore deformations to generate pore pressures through the elastic properties of the

fluid. Hence, there exists a relationship between pore pressure generation (pore strains)

and volumetric strains.

A comparison between incremental strains measured at the boundary using relation

(3.38) and increments of pore pressure generation was conducted as a way of verifying

that the pore strain calculations were correct. It was considered that making this compar-

ison was possible because the different quantities are independently computed by different

subroutines.

Consider an assembly of volume V composed of saturated pores and particles pene-

trating one another by small amounts at the contact points. The compatibility conditions

relating deformations of the constituents and the boundary is given by the following:

∆V =
∑

v∈V

∆V p
i +

∑

c∈V

V c
j i = 1 . . . Np; j = 1 . . . N

where V p and V c are the volumes of the pores, and overlapping particles respectively, and

Np and N are the number of pores and contacts. Alternatively, the previous relation can
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be written as:

∆V

V
=

∑

v∈V

∆V p
i

V
+

∑

c∈V

∆V c
j

V
i = 1 . . . Np; j = 1 . . . N (4.2)

The above relation may be envisaged as analogous to the volumetric strain in continuum

mechanics, where strains are the sum of the elastic and plastic contributions. The first

term on the left is related to the plastic or irrecoverable deformations experienced by the

voids, while the second term describes the amount of elastic deformations or recoverable

deformations at the contacts.

From relation (3.34), the global increment of pressure is computed as:

∆ū = Bf

∑

v∈V

∆V p
i

∑

v∈V

V p
i

i = 1 . . . Np (4.3)

Substituting (4.3) into (4.2) leads to

∆V

V
=

n

Bf

∆ū +

∑

c∈V

∆V c
j

V
j = 1 . . . N (4.4)

where n is the porosity of the assembly. The sum of the overlapping volumes is in general

small, since the elastic modulus of the particles is high, hence the contribution of this term

can be can be disregarded, leading to

∆εv =
n

Bf

∆ū (4.5)

Equation (4.5) provides a link between increments of volumetric strains and pore pres-

sure [49]. Increments in volumetric strains may be computed at selected intervals during

the simulations using the displacements of boundary particles. Relation (4.5) uses a strain

tensor computed in relation to the deformation state at the beginning of the increment

and not in relation to the initial configuration.

4.3.2 Simulation Results

A simulation was carried out using pore pressure data to compare measures of ∆εv with

the values predicted by relation (4.5). The assembly had an initial porosity n=0.173 after
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Figure 4.8: Strength of the assembly and evolution of macroscopic pore pressures

consolidated under σ
′

o = 100 kPa. The bulk modulus assigned to the fluid was Bf = 100

MPa.

The stress-strain curves and the evolution of the pore pressure are presented in Figure

4.8. The strength reaches a peak at small deformations, and the post-peak strength is

characterized by a strain softening behaviour. It is interesting to compare the evolution of

ū with the strength of the assembly q. The assembly generated a positive pore pressure even

during the post-peak stage. Additionally, the stage of maximum pore pressure coincides

with that of the minimum strength. The measured data is in agreement with previously

reported results (Figure 2.2).

During the simulation, 600 strain increments were sampled after 3 × 105 cycles; they

are plotted in Figure 4.9 against the predicted increments using pore pressure data.

The resulting plot shows the correlation between different measurements. The data fall

within a line of unit slope, which validates the void strain calculations.

The measured points present some scatter, especially near the origin. These increments

correspond to the top portion of the volumetric strain curve. The farthest right point in

the graph presents the highest deviation from the straight line; this point corresponds to
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the first increment. The observed sparsity of the data can be attributed to roundoff errors.

The accuracy of the computations is satisfactory because the relation (4.5) is still

satisfied despite the magnitude of the increments considered. The computed volumetric

strains are too small to be measured with conventional laboratory equipment. Nevertheless,

expression (4.5) suggests that any increment in the macroscopic pore pressure should be

accompanied by sample deformations.

4.4 Fluid-Flow Scheme

The evolution of pore pressures in the system was analyzed by conducting two different

types of tests. First, initially random pressures were assigned to the pores of an assem-

bly composed of 1000 elliptical particles. The process of pore pressure equalization was

monitored with time and the final equilibrium pressure was compared with the theoretical

value. Second, boundary and initial conditions were assigned to a given rectangular as-

sembly. The process of pressure dissipation was qualitatively compared with the analytical

solution of Terzaghi’s one dimensional consolidation theory.

The method employed for the solution of the system of differential equations and the

results of the fluid-flow simulations are discussed below.

4.4.1 Numerical Solution of Fluid-Flow Equations

The combined response of the system to generate and dissipate pore pressures is provided

by the solution of relation (3.30). Two different numerical techniques were examined to

solve equation (3.30). In a first stage, integration was conducted using Euler’s scheme

according to the following relation:

f ( t + ∆tf ) = f ( t) + [ χf ′(t) + (1 − χ)f ′( t + ∆tf )] ∆tf (4.6)

where f and f ′ denote the set of unknown functions and their time derivatives, respectively,

χ is the parameter of the scheme (0 ≤ χ < 1), and ∆tf is the time step employed in the

solution. Integration was carried out using χ = 0.5.

After several runs, it was found that the time step required to minimize errors was

too small, and usually considerably lower than the time step used for the solution of the

particle’s motion (i.e., ∆tf ¿ ∆t). The error involved in Euler’s technique is of the order
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of ∆t3f , that is, E = O(∆t3f ) [83]. Thus, choosing an appropriate time step is critical,

because errors can readily be accumulated, leading to incorrect solutions.

Because of limitations in Euler’s method, an alternate method using a suite of sub-

routines named RKSUITE [10] was examined. RKSUITE is a suit of codes based on the

Runge-Kutta formulas that solve the initial value problem for a first-order system of or-

dinary differential equations. One of the advantages of this suite is that it automatically

chooses the time step at the beginning of the computations, and constantly readjusts it

as the slopes of the solution change. This feature, among others, makes the use of these

routines preferable to Euler’s method.

RKSUITE was incorporated in program AQUA and after several runs, it was considered

adequate to use these algorithms to integrate (3.30).

4.4.2 Pressure Equalization

A simulation was conducted in which only the pressure dissipation process was studied.

Consider an assembly initially containing n pores filled with fluid at different pressures

ui at a certain time t. If particles are not allowed to move, the system can be envisaged

as composed of n reservoirs inter-connected through pipes. If fluid is neither allowed to

enter nor allowed to leave the system, depending on the characteristics of the network, the

existing micro-gradients will initialize fluid flow among neighbouring pores. Theoretically,

at time t = ∞, the pressures in the pores should equalize to a value given by the following

relation:

u(∞) =

∑n
i=1 uiVi

∑n
i=1 Vi

(4.7)

where V is the pore volume.

A simulation was conducted in an assembly composed of 1000 elliptical particles. The

movement of the particles was inhibited during the simulation; this procedure nullified the

pressure generation mechanisms leading to the condition dV β
i /dt = 0. The flow network

was assumed to consist of 10µm diameter conduits and random pressures between 0 and

100 kPa were initially assigned to the pores.

The variation of the fluid pressure with time in four different pores is presented schemat-

ically in Figure 4.10. Note that a logarithmic scale was used in the abscissa.

Analysis of the curves reveals that most of the pressure equalization process takes place

during a short time. However, the final equilibrium is not reached until after 1.5 sec.
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Figure 4.10: Test to monitor the pressure equalization process. The Figure shows the

change with time of micro-pressures in four different pores

The results further show that the pressure in the assembly reached an equilibrium value

of u(1.5)= 2.521 kPa, which is the same as the value predicted by relation (4.7), that is,

u(∞)= 2.521 kPa, confirming the accuracy and validity of the results.

4.4.3 Pressure Dissipation

The results of an experiment are presented to demonstrate the applicability of the proposed

approach in solving excess pore pressure dissipation problems. The primary objective of the

test was to quantitatively compare the numerical solution of (3.30) subjected to particular

initial and boundary conditions with the analytical solution of Terzaghi’s one-dimensional

theory of consolidation.

As in the study of pressure equalization, the particle movement was inhibited through-

out the simulations. The test consisted of assigning an initial excess pressure uo to all

the pores of a rectangular assembly (Figure 4.11). The contacts carrying normal forces

were initially identified, and the programmed algorithms were used to generate the polygon

and flow networks. A detail of the networks thus obtained is depicted in Figure 4.11; the
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Figure 4.11: Detail of flow network used in a pore pressure dissipation problem

rectangular boundary is referenced to a Cartesian frame. Pores located at the top and

bottom boundaries (z = 0; z = zo) were identified as boundary pores. Once the simulation

was commenced, the pressure in the boundary pores was set to zero and kept at this value

throughout the test.

The spatial distribution of pore pressures was extracted at two different times during

the test as illustrated schematically in Figure 4.12. The vertical x axis shows the value of

the normalized pore pressure u/uo throughout the assembly. The distributions obtained

were qualitatively compared with those derived from Terzaghi’s theory of consolidation.

Terzaghi’s development of a one-dimensional theory of consolidation [87] led to the de-

scription of pore pressure dissipation posed by the solution of:

∂u

∂t
= Cv

∂2u

∂z2
(4.8)

where Cv is the coefficient of consolidation. Equation (4.8) is a second order linear parabolic

partial differential equation used in physical contexts to model heat conduction and diffu-

sion phenomena. The solution of (4.8) under proper initial and boundary conditions de-
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scribes the distribution of pore pressure with time, and it is usually expressed as u(Tv, z),

where Tv is a non-dimensional coefficient which is a function of time, the coefficient of

consolidation, and the length of the drainage path.

The solution of Eq. (4.8) is also presented in Figure 4.12 for Tv= 0.004 and Tv= 0.04,

respectively. A qualitative comparison of the one-dimensional analytical solution with

the two-dimensional numerical solution shows that both solutions are remarkably similar.

The measured data proves the capability of the conduit network approach in modelling

two-dimensional unsteady fluid-flow problems through granular assemblies. Homogeneity

and isotropy are some of the assumptions made in the derivation of (4.8). Under the

present approach however, the spatial arrangement of the conduits emerges naturally as

a consequence of the fabric arrangement; hence, possible anisotropy effects are accounted

for in the proposed model.

4.5 Global Hydraulic Conductivity

The volumetric flow rate through each individual conduit is modelled according to the

Hagen-Poiseuille’s relationship. Hagen-Poiseuille’s relation indicates that flow is propor-

tional to the fourth power of the conduit’s diameter and inversely proportional to the

conduit’s length; thus, choosing the proper geometrical characteristics for the conduits

prior to conducting any simulation is a critical step.

The length of individual conduits (L ) is computed as the distance between centres

of mass of the connected pores; therefore, the spatial orientation and the lengths are the

result of the arrangement of the particles. Still, an adequate channel diameter remains to

be assigned.

To access this problem, a number of flow tests were conducted using a rectangular

assembly. A microscopic pressure gradient ∇u was applied to the boundary nodes, as shown

in Figure 4.13, until a steady state condition was established, that is, until the pressure in

all boundary nodes remained constant. Once steady state flow was established, the total

volumetric inflow rate qin was calculated by adding the inflow volumes V β
in necessary to

maintain the pressure gradient constant during an increment of time ∆t as:

qin =
1

∆t

t+∆t
∑

t

V β
in (4.9)
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From this relation, the hydraulic conductivity of the assembly K in the direction of the

applied gradient was calculated as:

K =
qin

Across∇u
(4.10)

where Across is the cross sectional area of the assembly.

Having determined the hydraulic conductivity, the aforementioned procedure was re-

peated changing the diameter of the conduits. Figure 4.14 shows the relationship between

macro-permeability and conduit diameter for the fluid network employed.

The information presented in Figure 4.14 shows that a small variation in the diameter

of the channels produces a significant change in the overall permeability of the assembly;

such change was expected, since the quantity of the fluid that passes through a given

conduit varies as the fourth power of its diameter.

The next step in the study was to select an appropriate diameter for the conduits,

considering the geometrical characteristics of the particles. The average diameter of the

particles (D50 =0.8 mm) falls within ranges commonly found for fine to medium sand;

these materials are known to present a hydraulic permeability on the order of 1x10−3 cm/s

[43]. If this permeability value is accepted as representative of the assembly, a diameter

can be assigned to the conduits using the information depicted in Figure 4.14. Analysis

of Figure 4.14 shows that k(80) ≈ 1 × 10−3; hence, it is assumed that a diameter equal to

80µm will adequately model the conductive properties of the particles’ assembly.

It must be stated that the relation shown in Figure 4.14 is exclusive to the network

tested. The macro-permeability tensor in network models is known to be a function of

the spatial arrangement of the conduits [73]. Furthermore, the anisotropy varies as the

positions of the particles change during deformation [88]. Despite these aspects, the relation

obtained provides a valuable reference on the possible range of diameters to be employed.

Although the program allows use of a variety of diameters that perhaps could follow a

predefined distribution, all the simulations reported in this research were conducted by

exclusively assigning the same diameter to all the conduits.

4.6 Fluid Compressibility Effects

Fluid compressibility can be related to a certain extent to the degree of saturation of the

sample. The higher the degree of saturation, the lower the compressibility of the assembly,
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Figure 4.14: Relationship between conduit diameter and macro-permeability

and vice versa.

The effect of saturation degree on the mechanical behaviour of undrained tests in the

laboratory has been recognized since the mid 50’s. This condition was recognized by

Skempton who proposed the application of back pressure to enhance saturation. Different

saturation degrees results in responses that can vary considerably.

The model adopted makes use of volumetric changes to compute pore pressure increase

according to elastic properties initially assigned to the pore’s fluid. Hence, the fluid pressure

changes as a response to pore volumetric strains and is directly proportional to the bulk

modulus assigned to the fluid. It was previously shown in Section 3.4 that a fraction

of undissolved air in the water will dramatically alter the bulk modulus of the air-fluid

mixture, which can be evaluated according to (3.25).

The effects of different moduli Bf (S) on the macroscopic behaviour are evaluated as-

suming that the bulk modulus of the air-water mixture is adequately predicted by relation

(3.25). Accordingly, the stiffness of the fluid-mixture can vary from that of water (0 per

cent air content) to that of air (0 per cent water content). The amount of water in the

mixture has been called the degree of water saturation S and is defined as the ratio of
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Test S Bf (kPa)

A 1.00 2.9 ×106

B 0.98 2.0 ×104

C 0.90 4.1 ×103

D 0.00 4.1 ×102

Table 4.2: Initial degree of saturation (S) and corresponding bulk moduli

water volume with respect to volume of the pores.

The theory used to describe flow through conduits is that for single-phase fluids. The

difficulties involved in adequately modelling a two-phase fluid flow condition are eliminated

by further assuming equalization of pressures at the end of each calculation cycle.

4.6.1 Simulation Results

The discussion is based on data obtained from four simulations in which the compressibility

of the fluid, Bf , was varied in each test. The assumed degrees of saturation and the

corresponding bulk moduli computed according to relation (3.25) are presented in Table

4.2. The letters A, B, C and D will be used as distinctive labels assigned to each test, and

reference to them will be made subsequently.

The assembly used presented an initial contact anisotropy a = 0.16, and was consol-

idated under a confining pressure σ
′

o = 100 kPa. The simulations considered the fully

saturated S = 1 and fully dry situations as well as two cases in between (S = 0.90 and

S = 0.98). The results of assembly D, that is, S = 0 provide a useful comparison be-

tween the behavioral characteristics of a fully saturated test and an equivalent drained test

departing from the exact same initial fabric.

Marked differences in strength can be observed in the stress-strain curves for different

saturation degrees presented in Figure 4.15. Specimen A presented a typical unstable be-

haviour. After reaching a minimum strength at εt ≈ 0.01, it gradually recovered resistance

under further deformation. Specimen B, on the other hand, exhibited higher maximum

shear strength, and the rate of the stress-strain curve during the strain softening stage was

considerably lower than that of specimen A. At higher levels of deformation, its strength

is practically the same as that of specimen A.

Specimen C presented a higher maximum shear strength than those of specimens A
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Figure 4.15: Stress-strain curves for varying saturation degrees

and B, the minimum strength being achieved only after εt = 0.1 had elapsed. Specimen

D presents a behaviour characteristic of loose sands, the strength continually grows and

shows a tendency to stabilize as it approaches the end of the test.

The stress-paths for varying saturation degrees are presented in Figure 4.16. Specimen

A starts to depart from the drained curve from the beginning of the simulation. This not

being the case for any of the other specimens. Specimen D deforms under a constant q/p
′

ratio and the slope of the path is 45◦, as expected for the drained case.

4.6.2 Evolution of Void Ratio

The evolution of the void ratio e is presented in Figure 4.15. Analysis of the void ratio

provides information about the amount of volume decrease caused by compression of air

in the fluid. It is interesting to note that the void ratio was compelled to remain constant

in test A by the lateral response of the boundary. Such was not the case for specimens

B, C and D, where variations of void ratio occurred at an amount closely related to the

fraction of air in the fluid.

The exclusive action of the servo-mechanism is responsible for these differences. The

volumetric strain can be calculated at any stage as the sum of the diagonal terms in the
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Figure 4.16: Stress paths for varying saturation degrees

strain tensor. Since axial strain rate is a constant ε̇22, the deviations from the condition

ε̇v=0 originate in the lateral strain rate component ε̇11. The lateral stress σ11 is automat-

ically maintained using a strain-controlled boundary which functions in the manner of a

servo-mechanism for which ε̇11 has to vary.

These observations can readily be confirmed by tracking the evolution of the strain

ratio (ε11 / ε22), which provides a useful means of evaluating the lateral response of the

boundary. This type of plot is presented in Figure 4.18.

The measured deformations at the boundary show that strain ratio ε11/ε22 was practi-

cally maintained constant for test A. Regardless of the observed similarities between tests

A and B, the evolution of the principal strain ratio shows differences in boundary strain

rates for these two tests. These curves show the reaction of the lateral boundary as a

consequence of the compressibility of the fluid.

4.6.3 Contact Evolution

The evolution of the average coordination number γ is presented in Figure 4.19. The

evolution of contact anisotropy coefficient a is presented in Figure 4.20. The evolution of γ

for specimen A is characterized by the sudden loss of contacts upon initiation of shearing.

The rapid increase of parameter a during the initial stage suggests that most of the contacts
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were lost in the horizontal direction. The shear strains at which minimum γ and minimum

stress difference q occur are coincident. After the specimen reached a minimum γ, the

average number of contacts increases as deformation continued until it reached an average

value of 3.3 at the end of the test.

Regarding the behaviour of test B, the process of lateral contact disintegration appears

to be delayed by the higher air content of the fluid. This situation also retards the strength

loss during the strain softening stage observed in Figure 4.15. Specimen B shows a similar

coordination number during a short period of deformation. It is interesting to note that

both curves for test A and B converge and are of similar shape during the rest of the test.

The evolution of contacts for specimen C is different from that of the other tests. The

coordination number fluctuates between 3.2 and 3.4 throughout the simulation.

The evolution of the average coordination number for specimen D is interesting, since

the number of contacts, at least in average, remains practically the same throughout the

test, while the contact anisotropy parameter grows, suggesting that the rate of contact

disintegration should be similar to the rate of contact creation. A coordination number of

3.4 seems to be required to preserve particle stability regardless of the volume reduction

experienced by the assembly.

The results show that the average coordination number at the end of the tests is different

for the different degrees of saturation. Even though volume is practically preserved for the

100 per cent saturation case, it is observed that particles are still able to rearrange internally
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Figure 4.20: Contact anisotropy for varying saturation degrees

and the coordination number increases slightly at the end of the simulations so as to reach

a more stable configuration. Additionally, the spatial arrangement of the contact normals

for all the tests are quite similar at large strains. Nevertheless, significant differences are

observed at the beginning of the tests; mainly, the initial rate of contact normal anisotropy

is considerably higher for the 100 per cent saturation case. This observation combined with

the acute drop initially experienced by specimen D reflects the higher amount of lateral

contact disintegration as a result of the lateral movement of the boundary.

4.6.4 Conclusions

From the previous results, a number of conclusions can be drawn:

• A change in void ratio was observed in specimens B, C and D. Test A however,

evolved under constant volume conditions. The results have practical implications

since it is most likely that a degree of saturation of 100 per cent cannot be always

attained in laboratory experiments; thus, some significant change in volume might

occur when conducting biaxial tests. It was confirmed that the program AQUA

preserves the volume at the macroscopic scales, and the ratio between axial and

lateral strains and the void ratio further supports this conclusion.

• The maximum peak strengths were affected by varying degrees of saturation. How-

ever, a change from S = 100 percent to S = 98 percent does not appears to consid-
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erably affect the strength at large strains.

• In general, the assembly used could be characterized as loose because the stress-strain

curve did not present a clear peak and a tendency for volume reduction was observed.

For this particular case, an assembly with contractile characteristics in a drained

environment behaved in a strain softening fashion when tested under undrained con-

ditions.

• The evolution of the coordination number shows very different characteristics with

different saturation degrees. For the dry case, the number of contacts on average

remained practically constant. The observed increase in contact normal anisotropy

for this case, however, increased, denoting the gradual disintegration of contact in

the lateral direction. Thus, during deformation, a continuous process of contact

disruption and contact creation is simultaneously occurring: contacts disintegrate,

but are suddenly recovered to maintain a condition of static equilibrium. This is

captured by the coordination number curve, as it presents lots of fluctuations of a

small magnitude during the deformation. The curve corresponding to 100 percent

saturation shows its own particular characteristics, mainly the acute drop in the

number of contacts at the beginning of the test and the gradual regain of contacts

at greater deformations. Although volume was practically preserved in the saturated

case, it was observed that the number of contacts on average changes considerably.

• The simulations showed that the main difference between the responses of test A and

test B was the maximum shear resistance, which was 1.5 times higher in test A, but

the post-peak strength was practically the same. Hence, a change from S = 1 to S =

0.98 appears to affect only the peak strength, but the strength at large deformation

is not considerably affected.

The results demonstrated that program AQUA handles fluid compressibility effects in

a realistic manner. Furthermore, the data shows the capability of the DEM to provide

statistical information about contact and interparticle force evolution at any deformation

stage. The results were obtained by artificially reducing the bulk modulus of the fluid

in the assembly; in reality, at lower degrees of saturation, water menisci form between

particles, providing additional capillary strength. These effects were not considered in the

simulations.
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4.7 Concluding Remarks

The studies presented in this chapter provide useful guidance to the selection of appropriate

parameters to model the behaviour of the idealized assembly. These numerical experiments

are an important step to comprehending how the proposed model functions. The main

conclusions may be summarized as follows:

• Slippage at the contacts follows a Mohr-Coulomb criterion.

• The contact location point along the ellipses may considerably influence the contact

stiffness.

• The friction and geometry of the boundary contacts have an important effect on the

overall strength of the assembly and influence the displacement field representing the

particle movement.

• Pore pressure generation can be related to the assembly’s volumetric strain and the

algorithms closely follow this relation.

• Euler’s method proved to be inefficient in solving the system of ordinary differential

equations representing the pore pressure dissipation-generation in the assembly. The

Runge-Kutta technique, as programmed in the set of subroutines RKSUITE, is a

better method for solving this system of differential equations.

• The development of pore pressures in a system of 1000 elliptical particles was mon-

itored during time by inhibiting the particle movement. The results showed that

pressures eventually equalize to the expected value.

• The scheme proposed to model pore pressure dissipation problems generated values

in close agreement with those predicted by Terzaghi’s one-dimensional consolidation

theory. Additionally, the degree of anisotropy in the fabric can be captured by the

fluid flow network.

• The degree of saturation may be modelled by selecting different values for the fluid’s

compressibility. The results show that the volume of the assembly during the simu-

lations is automatically preserved for the 100 per cent saturation case.



Chapter 5

Simulations of Undrained Tests

5.1 General

This chapter presents the results of undrained simulations conducted on idealized systems

of elliptical particles using the program AQUA. The main objective of the tests was to

investigate the macroscopic and microscopic features of the assemblies when sheared under

different initial densities and different confining stresses. The physical and elastic charac-

teristics of the assembly and the flow network are presented in Section 5.2. The results of

biaxial simulations are presented in Section 5.3

The theoretical stress-force-fabric relationships presented in Section 2.7 are used in

Section 5.3.5 to examine some of the simulation results. The accuracy of these relations

has been confirmed on a number of occasions; it is not the purpose of the author to verify

them again, but rather to use them to study the results because they are an alternate

tool to investigate the contribution of the individual microscopic parameters to the stress

tensor.

The effect of the interparticle friction coefficient on the global mobilized angle of friction

of the assembly is analyzed in Section 5.5.

Section 5.6 presents a comparative analysis of volume-controlled drained tests and

undrained tests using the proposed scheme.

112



Simulations of Undrained Tests 113

5.1.1 Program Stability

Because of the discrete nature of the DEM and the assumptions involved in the solution

of the equations of motion, an adequate time step has to be chosen to ensure that inertial

forces and velocities are kept to low values. Optimal time step and boundary strain rates

were selected after several trial runs so that the maximum particle force would be less than

one percent of the maximum inter-particle force. The individual static equilibrium of the

particles was monitored at all times during the simulations; tests not meeting the previous

requirement for equilibrium were discarded.

Several attempts were made to test assemblies with low coordination numbers. Al-

though different parameters were varied to seek stable results, the stability criterion was

not satisfied in assemblies presenting an initial average coordination number lower than

about 3.2. This condition was invariably encountered for different confining pressures.

5.2 Characteristics of the Assembly

All the numerical simulations reported in this work use assemblies composed of 1000 ellip-

tical particles of eccentricity ec= 0.2.

Numerical simulations of discrete particles have been conducted by a number of re-

searchers using rectangular assemblies. The use of this boundary shape results in stress

concentrations at the specimens’ corners and the subsequent localization of shear strains.

In an attempt to minimize boundary influence on the system and encourage more uniform

deformations, a circular boundary was used.

The boundary of the assembly was formed by 76 particles of eccentricity equal to 1.0.

Boundary particles act rigidly in the sense that they do not penetrate the interstices, but

the program continually readjusts the length of the particles when necessary to maintain

continuity. The effect of membrane penetration commonly encountered in laboratory tests

is nullified under the present approach.

Assembly Generation

In general, the simulations of undrained tests were carried out in two steps:

1. Generation of the initial assembly
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2. The corresponding mechanical test

Different densities and initial conditions were achieved by initially expanding the as-

sembly, applying a constant displacement to particles’ centre according to

xi = xc
i + (xi − xc

i)ξ i = 1, 2 (5.1)

were xc is a vector directed to the centre of the assembly, x is the particle position, and ξ

is a coefficient that governs the amount of expansion. After expansion, the orientations of

the ellipses were randomized. Subsequently, the assembly was compressed hydrostatically

using a high interparticle friction coefficient (µ= 4). Next, the assembly was brought to

the desired state of stress using servo-mode 4 (see page 73). Last, the interparticle friction

coefficient was gradually reduced and the assembly was slowly brought to equilibrium.

Figure 4.1 shows a loose assembly after compaction.

Properties of Particles

The elastic and physical properties of quartzite [33] were assigned to the particles, these

are summarized in Table 5.1.

Particle Property Nomenclature Value

Young’s modulus E 80 GPa

Poisson’s ratio ν 0.25

Interparticle friction coefficient µ 0.55

Density ρ 2700 kg/m3

Thickness ∆ 1 × 10−3 m

Table 5.1: Properties of the particles.

Although the approach adopted can be envisaged as two-dimensional because particle

movement occurs only on the plane (three degrees of freedom), the system is in essence

three-dimensional. The particles are assumed to have a certain constant thickness (∆) in

the direction normal to the plane.

Properties of Flow Network

The properties of the conduits forming the flow network are presented in Table 5.2. The

diameter of the conduits was selected using the information presented in Figure 4.14, and
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was kept constant throughout the simulations. The length of the conduits was internally

calculated using the distance between centres of gravity of the connected polygons.

Property Nomenclature Value

Pipe diameter d 80 µm

Fluid viscosity µ̄ 1×10−3 N·s/m2

Bulk modulus of the fluid Bf 2.0 GPa

Table 5.2: Properties of the fluid network

The value of the fluid viscosity is the same as that of water at 20◦ C.

5.3 Biaxial Compression Tests

5.3.1 Summary of the Test Program

The effects of the initial density and the initial confining pressure on the global response

of the idealized assemblies of elliptical particles were studied by two sets of experiments.

First, assemblies with approximately the same initial density (e = 0.229) were confined

under initial isotropic pressures (σ
′

o ) of 50 kPa, 100 kPa and 200 kPa. These assemblies will

be referred to as 5a, 5b, and 5c, respectively. Second, two additional tests were conducted

on assemblies of density equal to e= 0.245 and e = 0.208, but initially confined under the

same isotropic pressure (σ
′

o = 200 kPa). The two additional tests will be called 5d and 5f,

respectively; they allowed a comparison of the effects of initial density on the response of

the idealized assemblies.

The initial characteristics of the assemblies are presented in Table 5.3. The range of

densities chosen permitted a study of both strain-softening and strain-hardening types of

behaviour.

All the experiments were conducted by maintaining a constant total lateral stress σ11,

while applying a constant axial strain rate ε̇22. The parameters used in the simulations are

summarized in Table 5.4.
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Test Initial γ Void ratio σ
′

o (kPa)

5a 3.67 0.229 50.0

5b 3.73 0.229 100.0

5c 3.78 0.229 200.0

5d 3.35 0.245 200.0

5f 4.13 0.208 200.0

Table 5.3: Summary of the tests program

Property Nomenclature Value

Global damping α 0.0 1/sec

Contact damping β 2500 1/sec

Rotational damping ω 10.0

Time step ∆t 4.78×10−3 sec

Vertical strain rate ε̇22 1.0 ×10−3 1/sec

Table 5.4: Parameters used for the Computations

5.3.2 Effects of Initial Confining Pressure

The stress-strain curves and the corresponding stress paths for tests 5a, 5b, 5c are presented

in Figures 5.1 and 5.2 respectively.

The figures show that the initial confining pressure has an important effect on the

peak strength of the idealized assemblies. The stress-strain curves show a clear peak at an

early stage of deformation; also higher initial confining pressures resulted in higher peak

strengths. The post-peak behaviour is characterized by an acute drop in shear strength

to a minimum value which is practically the same for the three samples. After this point,

the specimens deform steadily up to a shear strain of about εt ≈ 0.05. As deformation

continues, the assemblies gradually regain strength.

The deformation characteristics of the idealized assemblies compare favorably with

typical undrained responses of loose to medium dense sands.

The stress paths plotted in Figure 5.2 show the samples reaching a point of maximum

strength. Upon further shearing, the paths move to the left, denoting a reduction of the

effective stress, and after the specimens reach a state of minimum strength, they gradually

recover strength. The mobilized friction angle (sinφmob) during the strain softening stage
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Figure 5.1: Stress-strain curves for assemblies tested under different initial isotropic con-

fining pressures

remains constant and is slightly different for each test. At the end of the tests, sin φmob

remains constant at about 0.45.

The results of the simulations clearly show that the initial confining pressure has a

considerable effect on the initial peak strength. However, for the case of the assemblies

tested, the post-peak strength does not seem to be significantly affected by the initial

confining pressure. Hence, for the same initial density, the assemblies reached a very

similar ultimate strength. These observations are in agreement with the steady state line

concepts.

5.3.3 Effects of Initial Density

The stress-strain curves and stress paths corresponding to assemblies 5d and 5e are shown

in Figure 5.3 and 5.4 respectively. The results of test 5b, previously presented, have also

been included for comparison.

It is observed in the figures that the deformation of specimen 5d was limited to a

deviatoric strain of about εt > 0.005, the reason being that unbalanced forces after this
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Figure 5.3: Stress-strain curves for assemblies tested under different densities

point increased considerably up to a value where the stability criterion was not satisfied.

Accordingly, the results obtained for higher deformations were deemed unreliable. It was

assumed that the specimen reached an unstable state similar to that of sands during

liquefaction; the reason for this consideration will be explained later.

An analysis of the stress-strain curve corresponding to specimen 5e shows a peak at a

shear strain of about 0.0015; thereafter, the shear strength starts to decrease - but only

for a short deformation range. Upon further shearing, the characteristics of the specimen

changed from contractive to dilative, and the pore pressure began to decrease, resulting

in a gradual regain of strength. The ratio of the peak to minimum strength for test 5e is

about 1.7.

The stress-strain curve corresponding to assembly 5c exhibits a different behaviour.

The resistance reached a peak value at small strains, and after the specimen softened, the

post-peak strength remained practically constant during the range of strains presented.

The difference between the maximum peak and minimum strength for this specimen is

about 5.3, considerably higher than that of specimen 5c.
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Figure 5.4: Stress paths for assemblies tested under different densities

The stress paths in Figure 5.4 show that the initial slope of the curves increases with a

decrease in the density of the assembly, reflecting the higher initial stiffness of the denser

specimen. The mobilized friction angle at large deformations is approximately equal to the

angle measured in tests 5a and 5b (sinφmob = 0.45).

The results of the simulations clearly show that the initial density affects considerably

the initial peak strength and the overall deformation characteristics. For this particular

case, denser assemblies behaved in a stiffer manner with a higher resistance to the imposed

loads. Additionally, the initial loose assembly exhibited an unstable type of behaviour.

Hence, for a given confining pressure, the characteristics changed from strain-softening to

strain-hardening as the initial density increases. These observations are in agreement with

the steady state line concepts.
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5.3.4 Micromechanical Descriptors

Average Coordination Number

An important micromechanical descriptor introduced in chapter 2 is the average coordina-

tion number. Figure 5.5 shows the evolution of the average coordination number for tests

5a, 5b and 5c. The initial average coordination numbers were γo = 3.67, 3.73 and 3.78

respectively, while the void ratios remained the same e = 0.229. The void ratio has been

introduced here as a descriptor of the macroscale behaviour because it is often measured

in the laboratory and the steady state concepts are formulated in terms of this parameter.

The data in Figure 5.5 reveals interesting features that partly explain the macroscopic

stress-strain behaviour of the samples. The average coordination number of the specimens

started to decrease as soon as the simulation was initiated. The initial rate of change was

different for the three assemblies, and it appears to be dependent on the initial confining

stress. Accordingly, higher initial confining stress decreases the rate of contact disruption.

It is interesting to observe that the three assemblies reached approximately the same coor-

dination number at a strain coincident with the occurrence of the minimum strength. At

greater deformations the average coordination number remains practically constant until

a deviatoric strain of about εt = 0.075 and increases slightly from this point until the end

of the tests.

The initial coordination numbers for tests 5d, 5c and 5e were 3.35, 3.78 and 4.13,

respectively. Curves showing the evolution of the coordination number are plotted in

Figure 5.6. It can be observed that the initial rate of contact reduction and the shape

of the curves corresponding to tests 5c and 5e are similar. Additionally, analysis of the

results reveals that the ratio of the initial to the minimum coordination number is the

same at γo/γmin = 1.18 for both tests. These observations suggest that the evolution of

the number of contacts on average is greatly influenced by the initial confining pressure,

while the initial density appears to have little influence.

Of special importance to the present discussion is the decrease in contacts observed in

test 5d. This test was stopped at a strain of about εt= 0.005 because particles became

unstable. The average coordination number at this stage was lower than about 3.1, meaning

that there were particles with no contacts and others with only one or two contacts; hence,

static equilibrium could not be sustained.

Although the computed void ratios were the same and remained practically constant
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Figure 5.5: Variation of average coordination number (γ)

during the experiments, the simulations show that the number of contacts changed con-

siderably. This observation further suggests that the void ratio alone is not a parameter

sensitive enough to capture the internal changes of the fabric.

Development of Contact Normal Anisotropy

Fabric changes can be examined by tracking the evolution of the contact normal anisotropy

parameter a introduced in Chapter 2. According to relation (2.4), the distribution of con-

tact normals can be approximated by a fourth order Fourier series E(θ), where the coef-

ficients a and b are measurements of the deviation from an isotropic state. The evolution

parameter a has been plotted in Figure 5.7 for tests 5a, 5b and 5c. Included in the figure

are the polar histograms of contact normal orientation at deformation stages of εt = 0.002

and εt = 0.05 for the different tests. Additionally, the approximations E(θ) were calculated

and have been superimposed on the computed distributions to demonstrate their accuracy.

It is observed that the distribution functions give a reasonable visual approximation to the

predominant trends in the computed data.
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The information in the plots shows that anisotropy in the contact normal orientations

started developing at the beginning of the test and initially the rate of change varied among

the curves. For this particular case, the rate of change initially decreased with an increasing

confining stress. Contact anisotropy is primarily generated by a reduction in the number

of contact normals with orientations close to the direction of maximum extensional strain.

These observation suggests that the early reduction in coordination number observed in

Figure 5.5 can be attributed principally to a loss of contacts in the lateral direction.

After a level of deformation that coincides with the occurrence of the minimum strength,

the shape and magnitude of the curves are very similar, and anisotropy constantly increases

until the end of the simulations. While the average number of contacts after the stage of

minimum strength increased by an small amount, contact anisotropy continues to increase

until the end of the tests, suggesting that the rate of contact disintegration in the lateral

direction must be very similar to the rate of contact creation in the axial direction.

Curves showing the development of contact normal anisotropy for tests 5d, 5b and 5e are

presented in Figure 5.8. The measurements suggest that the rate of anisotropy development
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is initially controlled by the initial density. Accordingly, the densest specimen exhibited

higher anisotropy at the beginning of the test, while the contact normal anisotropy for the

loosest particle arrangement remained almost constant.

The curve corresponding to test 5d shows that parameter a did not change considerably

with deformation, even though the average number of contacts decreased significantly,

indicating that the amount of contact disintegration in the lateral and axial directions

was very similar. Although the boundary was moving vertically towards the centre of

the assembly, contacts were lost in this direction suggesting the occurrence of internal

instabilities resulting from the initial meta-stable state of the fabric.

The curves corresponding to tests 5b and 5e show that after the minimum strength,

corresponding to a shear strain of about 0.01 (Figure 5.3), the contact anisotropy parameter

was very similar for both tests over the range of strains examined.
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Contact Force Distribution

Figures 5.9 and 5.10 show the development of anisotropy of the normal component of

interparticle force (an) for the two sets of simulations. The variation of the tangential

(shear) component of the contact force (at) with different strain levels is presented in

Figures 5.11 and 5.12. Polar histograms extracted at deviatoric strain levels of εt = 0.002

and εt = 0.05 are also plotted in the figures. Second order Fourier series approximations to

the normal f̄ c
n(θ) and tangential components f̄ c

t (θ), calculated according to relations (2.7)

and (2.8), have been superimposed on the figures.

The first observation derived from the plots is that the computed approximations to

the contact force components appear to represent well the computed data.

The behaviour of the curves corresponding to tests 5a, 5b and 5c in Figure 5.9 shows

the sudden development of contact normal force anisotropy as soon as the deformation

was initiated. After the parameter an reached a value of about 0.003 at small strains, the

behaviour of the individual curves appears to be governed by the initial state of stress

during the strain-softening stage. The rate and magnitude of an for the three tests was

very similar at higher levels of strain.

The curves corresponding to tests 5b and 5e in Figure 5.10 also show a sudden increase

of an at the beginning of the simulation. Contrary to the behaviour depicted in Figure

5.9, the parameter evolves toward a limiting value that depends on the initial density. The

curve corresponding to assembly 5d shows a drastic increase in the contact normal force

component at the stage where instability was initiated.

Figures 5.11 and 5.12 show that the magnitude of anisotropy in the average tangential

contact force at features a relatively rapid rise at the initiation of the tests. At higher

deformations, at reaches a limiting value that appears to be independent of the initial

confining stress and initial density. The average number of contacts remained constant,

the average tangential component of the contact forces kept practically constant.
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Average Normal Contact Force

The average normal contact forces can be described by the average contact force magnitude

f̄ c
o over groups of contact normal orientations. The magnitude of this parameter is a direct

measurement of the effective state of stress in the assembly because it represents the

effective interparticle contact forces.

Figures 5.13 and 5.14 present the average normal contact force recorded for the two

sets of simulations. The influence of the initial confining pressure on the initial values of

f̄ c
o can be easily observed in the figures. For the same initial number of contacts and the

same initial degrees of anisotropy, relation (2.21a) predicts that f̄ c
o should increase with

higher confining stresses. Additionally, for the same initial confining stress but different

initial contact density (mv), f̄ c
o should decrease as the contact density is increased. The

computed data agrees with predictions made using relation (2.21a).

The evolution of f̄ c
o with the deviator strain has been plotted to demonstrate the strong

correlation with the shape of the stress-strain curves presented in Figures 5.1 and 5.2.

The relevance of the parameter f̄ c
o on the macroscopic strength will be highlighted in the
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following subsection.

5.3.5 Stress-Force-Fabric Relationships

Relationships which relate the average stress tensor in plane assemblies to average quan-

tities describing the distribution of contact normals and contact force components were

introduced in Section 2.7. The shear capacity of the assembly has been described by the

following invariant quantity associated with the Mohr circle of stresses:

q =
σ11 − σ22

2

This quantity has been approximated in terms of micromechanical descriptors in equa-

tion (2.21b), and it can further be rearranged by neglecting the products of anisotropy

coefficients as follows:

q =

[

mv (l̄co)
3

4

] [

f̄ c
o

(l̄co)
2

]

{a + an + at} (5.2)

The relation provides an explicit link between micromechanical features of plane as-

semblies to macroscopic shear strength computed at the boundary of the system. Further,
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the decomposition of the deviatoric part of the stress tensor into parts related to contact

forces and fabric allows examination of the relation between the fabric descriptors and the

state of stresses observed at the boundary.

These micromechanical concepts will be used below to examine the results of numerical

simulations conducted on an assembly initially confined under σ
′

o= 100 kPa, with an initial

void ratio and coordination number of 0.213 and 3.964 respectively.

Simulation Results

The coefficients of anisotropy (a, an, and at), contact density (mv) and the average normal

contact force (f̄ c
o), were extracted during the simulation and were substituted in relation

(5.2). Figure 5.15 shows the stress-strain curve computed along with the approximation

obtained, using relation (5.2), were the term l̄co has been assumed constant. The thick line

represents the computed data for the test and the circles represent the values predicted from

relation (5.2). It is observed that predictions of q compare favorably with the computed

data.
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Figure 5.15: Comparison between computed and predicted stress-strain responses. (The

prediction was made according to (2.21b))

It has been demonstrated by Nübel et al. [58] that the observed deviations of the
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predicted and the computed values for the case of elliptical particles result from assuming

a constant l̄co average contact length, and a better agreement could be achieved when the

variation of the average contact length is considered. Nevertheless, the prediction using

relation (5.2) is good and shows that the shear capacity of the granular system is due to

the creation of fabric anisotropy, number of contacts, and the forces carried by them.

An analysis of the individual contributions of the microscopic descriptors to the shear

strength of the system can be made by studying the development of the non-dimensional

coefficient mv(l̄
c
o)

3 / 4, the contribution of the coefficients of anisotropy (a + an + at) and

the interparticle average contact force described by the quantity f̄ c
o / (l̄co)

2. The variation

of the modified average normal contact force with deviatoric strain has been plotted in

Figure 5.16 along with the global shear strength q. The change of the non-dimensional

contact density and the contribution of anisotropy coefficients is presented in Figure 5.17.

The following observation can be made from the figures:

1. The curves corresponding to q and f̄ c
o are similar in shape. The average normal

contact force closely follows the strain-softening and the strain-hardening exhibited

by the assembly.

2. The post-peak strength reduction is associated with the loss of contacts and the

consequent reduction in the average contact normal force. The results show that the

contact density mv remains practically constant at relatively large deformations and

does not change considerably during the post-peak stage. The undrained environment

restricts any attempt of the assembly to contract or dilate.

3. The contribution of the combined microscopic anisotropies constantly increases with

the level of deformation, especially at the beginning of the test. At large strains

however, the quantity stabilizes, since anisotropy cannot develop indefinitely.

In general, it is observed that the average number of contacts and the anisotropy coeffi-

cients reach limiting values at large strains. Since the functions describing the development

of anisotropy are essentially geometrical characteristics of the system, there should be a

limit in the number of contacts that can be disintegrated with out loss of stability and a

limiting amount of anisotropy in the orientations of contact forces. Therefore, there must

be a limiting value for the degree of anisotropy. Additionally, the evolution of the contact
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density should be restricted by the constant volume condition, and the maximum and min-

imum coordination number that can be achieved should be restricted by the initial volume

of the assembly. Therefore, at large strains, the increase in the average effective contact

forces are principally related to the shear strength computed at the boundary.

The previous observations may be related to dilatant characteristics of the system. It is

known that the macroscopic volume change is the result of internal plastic and elastic de-

formations. For the case of undrained deformations the global volume change is restricted,

resulting in the following relation:

∆V = ∆Ve + ∆Vp ≈ 0 (5.3)

where ∆V , ∆Ve and ∆Vp are increments in the total, elastic and plastic volumetric changes,

respectively. Therefore, any tendency of the assembly to dilate or contract reflected as in-

ternal plastic deformations should be counteracted by the development of elastic deforma-

tions. For the present case, elastic deformations result in higher interparticle forces. Thus,

when the assembly tends to dilate, the contact forces increase resulting in the development

of higher shear resistance. The opposite is also applicable for contractive characteristics;

accordingly, when the assembly tends to contract, the contraction tendencies should be

counteracted by a decrease in the elastic deformations, leading to a reduction of interpar-

ticle forces.

Hypothetically, at high deformations, the magnitude of the interparticle forces could

grow to extremely high values, since the adopted non-linear contact law does not consider

plastic deformations of the idealized particles. In real systems however, the increase in

contact forces should be restricted initially by plastic deformations and eventually by grain

crushing. Grain crushing can result in the development of higher coordination numbers

and lower average contact forces, and could lead to a considerable decrease in strength.

5.4 Comments

The results of numerical simulations using the fluid-flow-coupled DEM have shown that

fundamental features observed in undrained tests in sands are effectively captured by the

model. The effects of the initial confining pressure and initial density on the stress-strain

response of the assemblies agree in general with the steady state concepts presented in

Chapter 2. Accordingly, a higher initial confining pressure on assemblies with the same
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density resulted in higher peak strengths and very similar post-peak strengths. Addition-

ally, assemblies with higher initial densities exhibited higher resistance to deformation, and

initially loose assemblies exhibited unstable behaviour.

The importance of the micromechanical fabric descriptors on the study of the undrained

mechanisms was highlighted. The results from the simulations as well as theoretical con-

siderations indicate that the state of stresses observed at the boundary can be related to

the changes in coordination number and anisotropy coefficients.

The post-peak strength reduction has been associated with the decrease in the average

number of contacts, principally in the direction of the minor principal stress. Additionally,

the coordination number at relatively large deformations was found to be related with the

initial packing density. The evolution of anisotropy in the system demonstrates the micro-

scopic readjustment of the particles into more stable configurations, the interparticle forces

continuously readjust to sustain the loads imposed at the boundary. It was hypothesized

that the development of contact density should be restricted by the initial volume, and

that the evolutions of fabric anisotropy should achieve limiting values at relatively large

deformations. A great similarity between q and f̄ c
o was observed in all the simulations, the

later quantity was found to be closely related to the deviatoric component of the stress

tensor.

5.4.1 Initial and Minimum Coordination Number

In an attempt to better understand the results of the undrained tests, reference will be

made to drained numerical experiments; the behaviour of these systems has been exten-

sively studied and some concepts previously introduced to explain their behaviour might

be extended to the case of undrained experiments. Figure 5.18 shows the results of drained

simulations conducted by Rothenburg and Kruyt [72] on assemblies of disc-shaped parti-

cles. The curves show the evolution of the coordination number and the packing fraction at

different levels of shear strain of two assemblies initially confined under the same pressure.

The packing fraction in this case replaces the more traditional volumetric strain εv and is

defined as the total area of the particles divided by the area of the assembly. Their results

show that the dense assembly initially contracts, but suddenly begins to dilate until it

reaches a steady or critical coordination number. The loose assembly, on the other hand,

contracts until stabilizing at a constant volume. The significance of the results is that
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Figure 5.18: Evolution of packing density and coordination number of loose and dense

assemblies

both assemblies reached the same critical coordination number regardless of the initial

density. Similar observations have been reported by Thornton [89]. The critical coordina-

tion number is in connection with the concepts of critical void ratio initially introduced by

Casagrande [12]. Thus the granular structure evolves towards an arrangement necessary to

achieve a certain coordination number. It has been shown by Rothenburg and Kruyt [72]

that the critical coordination number is intimately related with the inter-granular friction

coefficient and the minimum number of contacts required to maintain static equilibrium.

Relevant to the present discussion is the existing association between the change in

volume with the change in coordination number. Upon shearing, the assembly either

expands or contracts depending on the initial density. For the initial dense assembly to

reduce its number of contacts, expansion has to occur. The opposite applies to the loose

assembly. If the initial coordination number is below the critical value, a certain amount

of contraction should occur in order to create additional contacts.

The undrained simulations showed similar characteristics, mainly that the system tends

to evolve towards a more or less steady coordination number. For this particular case the

results of the undrained experiments showed that the coordination number stabilized at

a minimum value (γmin) which was found to be dependent on the initial density of the

assembly.

If the concept of critical coordination number observed in drained simulations is as-

sumed to hold valid for the undrained case, then it will be expected that the initially

dense assembly will try to evolve towards the critical coordination number; however, since



Simulations of Undrained Tests 140

volume is preserved, the minimum number of contacts at which the assembly is able to

evolve should be restricted by the initial density. Additionally, initially loose meta-stable

structures should evolve towards a more stable configuration by increasing the number of

contacts. However, this condition is not feasible, since the assembly is not able to reduce its

volume, hence the structure reaches a state where static equilibrium cannot be maintained.

Although the previous observations are not conclusive, the results of the numerical

experiments showed that during shearing the predominant micromechanical response is

related to the reduction of the average number of contacts. In addition, the results provide

a catalogue of observations which for the first time give qualitative information of the

macroscopic behaviour of these idealized systems sheared in an undrained environment.

5.4.2 Instability Onset

The results show that there exists a limiting coordination number (γlim) below which

instability is initiated. From an intuitive analysis it is expected that a single plane frictional

particle cannot remain at static equilibrium with less than 3 supporting points or contacts.

Consideration of force and moments acting on the particle also indicates that this is the

case. For the special case of plane frictional assemblies the equilibrium condition is satisfied

with 3N force and moment equations. In general, an assembly with M contacts and 2M

force components can be at an equilibrium state only when 2M ≥ 3N , which is equivalent

to the condition γ > 3. This means that a plane granular assembly cannot remain in

static equilibrium with coordination numbers lower than 3. The simulations showed that

instabilities where triggered at γ ≈ 3.1, which is very close to the minimum required to

maintain a stable configuration.

The data collected allows construction of the relation plotted in Figure 5.19, which is

applicable to the assemblies examined. The figure shows the observed relationship between

the initial γo and the minimum γmin. The results show that both quantities can be related

by a line with a slope of 1.18. In agreement with the observations, the assembly with an

initial coordination number of 3.78 exhibited a minimum coordination number of about

3.20. The figure also shows a boundary marked by the limiting coordination number γlim

≈ 3.5 below which unstable behaviour is triggered. Hypothetically, if an assembly has

an initial coordination number equal to the limiting coordination number (γo = γlim),

it would evolve towards a state where particle equilibrium is not possible, experiencing
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unstable behaviour.

From the information collected it appears that a more precise formulation of the steady

state concepts can be made in terms of the coordination number. As opposed to void ratio

(e), is has been demonstrated that the average coordination number is a better descriptor

of the equilibrium state of the structure. Geometrical considerations indicate that both of

these parameters should be related to a certain extent. The simulations however indicated

that e is not sensible enough to capture the internal deformation mechanisms with the

level of detailed offered by the coordination number. Although it is desirable to quantify

the average number of contacts during an experiment, this kind of measurement is difficult

to perform in real soils.

Laboratory experiments [40] have showed that there exists a limiting value of elim above

which instability occurs. Hence elim in real systems could be associated with γlim observed

in idealized systems.

5.5 Effects of Interparticle Friction

5.5.1 Introduction

Interparticle friction coefficient is an intrinsic property of the particles known to influence

the behaviour of granular materials. A number of researchers have studied the effects of the

interparticle friction coefficient both theoretically and experimentally, for example, Taylor

[86], Rowe et al. [74], Skinner [81].

Following the work by Taylor [86], several attempts have been made to explain the

shear strength of a granular sample as consisting of two different components:

1. The strength provided by frictional component between particles, and

2. An additional component provided by particle overriding and interlocking.

The fundament approach has been to use energy considerations and treat both components

as independent of each other.

Skinner [81] conducted shear box experiments with glass ballotini having different in-

terparticle friction coefficients. He reported that the effective angle of shearing resistance

at constant volume φcv and at peak φmax for a given initial porosity do not increase mono-

tonically with increasing the interparticle friction angle φµ. Additionally, the results of
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Skinner’s experiments showed that a change in interparticle friction angle does not signif-

icantly change the effective strength of the specimens.

Numerical simulations with disc-shaped particles [6], elliptical particles [57], and spheres

[19] have indicated similar results to the one reported by Skinner [81], mainly that the peak

and residual strengths increase in a non-monotonic fashion with increasing the magnitude

of the interparticle friction. Bathurst conducted simulations on two dimensional assemblies

of disc-shaped particles, finding an increase in the peak friction angle from 10◦ to 26◦ by

increasing φµ from 0◦ to 26◦.

Numerical simulations are an attractive tool to study different hypothetical conditions

that are not feasible to study in real soils, for example, frictionless contacts. While some

research has been directed towards the study of such effects on the drained characteristics,

possible effects on the undrained response have been set aside. The convenience offered by

the DEM to control φµ was used to further investigate these concepts.

Biaxial undrained simulations were conducted by setting different interparticle friction

coefficients (µ) of 0.55, 0.75, and 0.95, and using the parameters presented in Table 5.4. The

assembly was originally confined under 100 kPa and had initial void ratio and coordination

number of 0.25 and 3.36, respectively. The results of these simulations are presented in

this section.

5.5.2 Simulation Results

The stress-strain and the stress path curves are plotted in Figures 5.20 and 5.21, respec-

tively. The plots show that the macroscopic behaviour of the assembly is significantly

affected by the interparticle coefficient. The assembly with interparticle friction coefficient

equal to 0.55 presented strain-softening behaviour; the qualitative features of this stress-

strain curves are typical to loose sands tested undrained in the laboratory. The response of

the assembly changed quite markedly from strain-softening to strain-hardening behaviour

by increasing the friction from 0.55 to 0.75 and 0.95. The initial slopes of the stress paths

are practically the same in all the experiments; however, the curves start to diverge as

loading continues, capturing an important difference in stiffness at higher deformations.

The evolution of the coordination number for the three tests is presented in Figure

5.22. In general, increasing the friction coefficient results in a lower average coordination

number. Contacts act as supporting points, providing stability to the particles. The higher
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cients

shear resistance at the contacts, allows the individual grains to be at static equilibrium

with lower coordination numbers. From the data presented, the following conclusion may

be drawn:

• The dilatant characteristics of the sample appear to be enhanced with the increase

of particle friction; accordingly, the higher friction contributes to the development of

lower pore pressures, causing a considerable increase in the strength of the sample.

• The number of contacts initially decreases to a minimum that appears to be controlled

by the interparticle friction coefficient. For this particular case greater friction re-

sults in lower coordination numbers. The additional frictional resistance allows the

individual particles to achieve stable configurations with lower average coordination

numbers.

These observations provide important information on the contributions of the interpar-

ticle angle of friction to the macroscopic shear strength of the undrained granular struc-

ture. An explanation of the possible mechanisms responsible for the dramatic change in
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the stress-strain behaviour of the undrained assemblies was sought by conducting three

additional drained biaxial simulations on an assembly with similar characteristics to the

one used for the undrained tests. The parameters used in these simulations are presented

in Table 5.4. The results of these additional simulations are presented below.

5.5.3 Drained Response

The evolution of the mobilized friction angle (sinφ) for different interparticle frictions

coefficients µ = 0.55, 0.75 and 0.95 is shown in the plot of Figure 5.23. The curves show that

the peak and ultimate resistance of the assembly is moderately increased when increasing

the magnitude of the friction coefficient. The evolution of the average number of contacts is

presented in Figure 5.24. The steady state coordination number is considerably affected by

the friction at the contacts. In general, increasing µ results in lower coordination numbers.

The lower coordination numbers can be directly linked to the higher shear resistance offered

by the higher values of µ, since in general the particles can reach stable configurations with

fewer contacts.
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particle friction coefficient (µ)

The features exhibited by the assembly with varying values of µ are in agreement with

results of previous numerical experiments on idealized assemblies of disc-shaped particles

[6], spherical particles [19] and elliptical particles [57]. These previous investigations have

all reported small increases in the effective peak angle of friction φ
′

max and a considerable

reduction in steady state coordination numbers induced by µ. For the hypothetical con-

dition of contacts with very low friction µ ≈ 0 Bathurst [6], and Rothenburg and Kruyt

[72], have showed that assemblies of discs deform with an average coordination number of

4, which is the minimum required for these plane systems to maintain static equilibrium.

Important to the present discussion is the effect that µ has on the dilatant characteristics

of the samples. The volumetric strain (εv) versus deviatoric strain (εt) for tests with variable

interparticle friction coefficients is depicted in Figure 5.25. It is observed that the specimen

with µ = 0.55 initially contracts and only at relatively high deformation (εt = 10%) starts

to dilate, and in general, a higher µ encourages dilatancy. Although the volumetric strains

are low (less than about 6 per cent for the range of strains examined), it is evident that

the tendency of volumetric change is influenced by the interparticle friction coefficient.
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Figure 5.25: Volumetric strain (εv) versus deviatoric strain (εt) for tests with variable

interparticle friction coefficient (µ)

Dilatancy can be linked with the evolution of the coordination number presented in Figure

5.23; for this particular case, the higher dilatancy is associated with a higher reduction in

the number of contacts.

The data thus far examined clearly show that dilatancy in the drained specimen is

increased by increasing values of µ. From information collected from the drained tests, it is

now possible seek a relation between the effects of particle friction in undrained behaviour.

The increase in strength in the undrained tests can be attributed to the enhancement

of dilatancy provoked by the higher interparticle friction coefficients. Strength and di-

latancy however, may appear to be disassociated, since while the drained resistance was

not considerably affected by the different magnitudes of µ, the undrained strength was

drastically altered. In fact, the results showed that the undrained behaviour changed from

strain-softening to a highly strain-hardening type of response. Nevertheless, a link between

the undrained strength and tendencies to dilate can readily be made.

The dilatancy rate of the sample D is defined as the rate of volumetric change as follows:

D =
∆εv

∆εt

(5.4)
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In reference to Section 4.3, a relation between the global rate in pore pressure ∆ū and

rate in the macroscopic volumetric strain, as a function of the bulk modulus of the fluid

Bf and the porosity n of the sample, can be written as:

∆εv =
n

Bf

∆ū (5.5)

Combining (5.5) with (5.4) a relation between dilatancy rate and the rate of macroscopic

pore pressure generation with deviatoric strain can thus be found:

∆ū

∆εt

= D
Bf

n
(5.6)

The above relation gives important insight into the dependency of pore pressure changes

on the dilatant characteristics of the assembly. Since the compressibility of the fluid is

small, small changes in dilatancy would be greatly amplified by the bulk modulus of the

fluid. Hence, it can be concluded that the dilatant characteristics enhanced by higher

interparticle friction coefficients considerably influenced the development of negative pore

pressures, leading to a constant regain of strength with deformation observed in Figure

5.20. The results further show that, assemblies of elliptical particles are highly sensitive to

small volume changes, and tendencies to change volume are the dominant mechanisms for

undrained behaviour.

The previous experimental findings have a practical value, since they suggest that

liquefaction of sands may be inhibited by slightly augmenting the friction between grains,

provided that dilatancy is increased. This suggestion however, remains to be verified by

means of laboratory experimentation.

5.5.4 Summary

The results of numerical simulations where the interparticle friction angle was varied were

presented. It was found that an increase in µ from 0.55 to 0.95 greatly influenced the

undrained stress-strain response of the assembly. The behaviour of the specimen changed

from strain-softening to strain hardening by changing µ from 0.55 to 0.95.

An explanation of the behaviour was sought by conducting drained simulations in an

assembly with similar characteristics. It was found that dilatancy is increased by higher

interparticle friction coefficients. A relation between the rate of pore pressure generation

and dilatancy was then presented, and it was concluded that the observed increase in
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undrained resistance could be attributed to the enhancement of dilatancy by higher values

of µ.

5.6 Volume Controlled and Undrained Simulations

5.6.1 Introduction

Some authors have considered numerical simulations where volume change is inhibited as

representative of undrained tests [44],[56]. The DEM offers the convenience of being able to

restrain changes in volume in a relatively easy manner. This approach, however, excludes

the effects of fluid-flow interacting with the particles, and thus, the validity of using volume-

controlled simulations as representative of undrained tests can be questioned.

The results obtained from program AQUA were compared to those obtained from a

drained simulation in which the volume was preserved throughout the test. The constant-

volume drained test was carried out by setting the condition −ε̇22 = ε̇11 using servo-mode

2 (see page 72).

The assembly employed for the simulations was initially consolidated and brought to

equilibrium under a confining pressure σ
′

o= 200 kPa. The initial coordination number and

void ratio were 3.96 and 0.213, respectively. The parameters used in the computations are

presented in Table 5.4.

5.6.2 Comparison of the Results

The stress-strain curves for the different tests are presented in Figure 5.26; a comparison

of the curves shows that both methods provide similar results. The initial peak obtained

from the undrained test is slightly higher than from the volume-controlled test, but the

strengths at the quasi-steady state are practically the same. At large deformations, the

strength of the assembly tested under volume-controlled conditions increases at a faster

rate than the undrained test; and both curves start to diverge.

The corresponding stress paths presented in Figure 5.27 show that the main difference

between both tests is the initial slope of the curves. The undrained assembly behaves in

a stiffer fashion, developing lower pore pressures at the beginning of the test, a condition

that eventually results in a higher peak strength.
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The slopes of both tests at greater deformations are very similar. This result agrees

with previously reported experimental findings, for example, Negussey et al. [54] have

shown that φss is equal to the constant-volume friction angle φcv for the same sand.

5.6.3 Comments

The reason for the development of lower pore water pressures at the beginning of the

undrained test can be understood by recalling the averaging technique used in the calcu-

lation of the macroscopic pore pressure ū. The program calculates the quantity ū as a

weighted average that takes into account the pore volumes and the individual pressures.

The lateral movement of the boundary is in turn controlled by the rate of pore pressure

generation. Although microscopic pressures start to built at the commencement of the

simulation - most probably at the lower and upper portion of the assembly-, their magni-

tude does not have a significant influence on the macroscopic average. Therefore, the servo

mechanism controlling the lateral movement of the boundary does not react as fast as in

the case of a drained test.

The results so far analyzed indicate that for the particular assemblies examined, pre-

serving the volume during a simulation can provide similar results to those obtained using

program AQUA. Nevertheless, as shown in Section 6.6, differences between both approaches

are expected to emerge when lower conduit diameters are considered. Additional details

about the effect of conduit diameter on the macroscopic response of the assemblies are

presented in Section 6.6.

In the case of laboratory experiments, volume-controlled tests have been suggested as an

alternate method to simulate an undrained environment in the triaxial cell [97]. However,

experimental evidence indicates that both tests can provide different results [75].



Chapter 6

Initial Fabric Anisotropy and

Permeability

6.1 Introduction to Initial Fabric Anisotropy

The majority of granular materials encountered in civil works possess an initial anisotropy

in their fabric and their behaviour is expected to change depending on the direction of the

major principal stress with respect to the grain arrangement. Rotation of the principal

stress direction is a feature of the stress paths associated with many field and laboratory

conditions. It has been shown for example that the cyclic change in shear stress in a soil

element in a seabed deposit due to wave-induced loads is characterized by the continuous

rotation of principal stresses [42]. Cyclic loading tests also subjects a soil specimen to a

state in which the principal stresses are continuously rotating.

The undrained behaviour of sands has been found to be dependent on the orientation

of the principal stresses [85, 106, 80]. Such dependency has been attributed to the initial

anisotropy present in the structure as a consequence of the deposition mode or specimen

preparation method. Soil deposition methods greatly influence the particle arrangement in

the samples. For example, water pluviation creates specimens whose fabrics closely mimics

those of fluvial and hydraulic-fill sands [62], provoking non-spherical particles to lie along

the horizontal plane, also called the bedding plane. The spatial arrangement of particles

with long axes oriented horizontally increases the chances for contacts to concentrate in

the vertical direction. Thus, a detailed study of the effects of principal stress rotation

154
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on the soil response requires an assessment of the anisotropy of the particles and their

contacts. An analysis of this nature however, is difficult if not impossible to conduct in

the laboratory.

This section presents the results of simulations on initially anisotropic assemblies. The

purpose of the tests was to further examine the effects of the direction of principal stresses

on the macroscopic response. The evolution of the fabric during deformation was quantified

using parameters that indicate the spatial orientation of the particles and their contact

normals.

6.2 Assembly Generation and Test Program

6.2.1 Assembly Generation

The assembly used for the simulations was created by initially expanding the particles

according to relation (5.1). After expansion, the particles were randomly oriented so that

their major axes lay within an angle of ±45◦ from the horizontal. The assembly was

compacted under a confining pressure of σ
′

o = 100 kPa, and brought to equilibrium.

The orientation bias in the principal axes of elliptical particles after compaction is

shown in Figure 6.1 by means of a polar histogram. The histogram has the shape of a

peanut sitting on the horizontal plane, indicating the dominant orientation of the particles.

Similar to the contact orientation distribution, the distribution of the particles’ major axis

can be approximated by a Fourier series limited to the second order:

C(θ) = {1 + as cos 2(θ − θas) + . . .} (6.1)

where the parameter as represents the deviation from the isotropic state and θas indicates

the principal anisotropy orientation. The approximation to the measured distribution was

computed using relation (6.1) and has been superimposed in Figure 6.1. Although the

degree of anisotropy can be visually verified from the figure, the parameter as = 0.769

additionally shows that the method employed to generate the assembly produced high

anisotropy in the orientations of particles. The direction of anisotropy θas coincides with

that of the bedding plane. Mulilis et al. [52] have quantified the orientation of sand

particles in specimens formed using the water pluviation method by cutting thin sections

of samples impregnated with resin. Their measurements revealed distributions similar to

the one presented in Figure 6.1.
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Figure 6.1: Major axis orientation distribution

The method of specimen preparation is expected to affect not only orientation of par-

ticles, but also the orientation of contacts and in general, the arrangement and shape of

the voids. The degree of anisotropy imposed by the particle arrangement on the contact

normal orientation and fluid flow network were examined; the results are presented below.

Initial Contact Normal Anisotropy

The measured histogram of the contact normal orientation is depicted in Figure 6.2 along

with the fourth order Fourier series approximation to the distribution. The parameter

a = 0.156 indicates that a certain degree of anisotropy in the contact normals results

from the particle arrangement. Further, the contact normals are preferably oriented in the

vertical direction θa = 1.547, and perpendicular to the bedding plane θas = 0.011. Clearly,

the contact distribution in assemblies is strongly related to the orientation of the elongated

particles.

Initial Flow Network Anisotropy

The particle arrangement also affects the spatial distribution of the pores and, consequently,

the conduits orientation in the flow network. Figure 6.3 shows the flow network initially

constructed for the assembly as well as a polar histogram of the spatial orientations of the

conduits. The conduit orientation distribution was approximated by a truncated Fourier

series of the form

P (θ) =
1

2π
{1 + ap cos 2(θ − θap) + bp cos 4(θ − θbp) + . . .} (6.2)

where ap and bp are the second and fourth order anisotropy coefficients and θap and θbp

are the anisotropy orientations. The approximation to the distribution and the computed
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E(θ) = 1
2π

(1 + a cos 2(θ − θa) + b cos 4(θ − θb))

a = 0.156

b = 0.009

θa = 1.547

θb = 1.377

Figure 6.2: Contact normal distribution

values for the constants in (6.2) are also shown in the figure.

The distribution shows that the conduits are preferentially oriented in the direction

parallel to the bedding plane. The resulting arrangement has practical consequences in the

hydraulic conductivity of the assembly, mainly that ability of the flow network to conduct

fluid is enhanced in the horizontal direction and reduced in the vertical direction.

6.2.2 Summary of the Test Program

The discussion refers to a total of three tests conducted on the initial anisotropic assembly.

After compacting the assembly under an initial pressure of σ
′

o = 100 kPa, the coordination

number and void ratio were γ = 3.41 and e = 0.25, respectively.

To evaluate the effect of principal stress direction, the assembly was rotated at angles

of 90◦, 45◦ and 0◦, degrees with respect to the original configuration. The assemblies were

tested biaxially by applying a constant axial strain rate (ε̇22) and maintaining the total

lateral stress (σ11) constant. The tests for 90◦, 45◦ and 0◦ degrees rotation will be referred

to as A, B and C respectively.

A summary of the test program is depicted in Figure 6.4. Assembly A was tested

with the principal contact normal anisotropy direction perpendicular to the direction of

principal stress. Assembly B was positioned so the direction of contact normal anisotropy
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ap = 0.175

bp = 0.032

θap = 0.015

θbp = 0.718

P (θ) = 1
2π

{1 + ap cos 2(θ − θap) + bp cos 4(θ − θbp) + . . .}

Figure 6.3: Initial network anisotropy
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1
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Test A Test B Test C

ε̇C
22ε̇B

22ε̇A
22

Figure 6.4: Summary of the test program and the initial distribution of the contact normals.

The schematics on top of the distributions show the initial arrangement of the particles in

the assemblies.
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was shifted 45◦ from that of the principal stress. Both principal stress and contact normal

anisotropy directions were coincident in assembly C. Tests B and C were taken to a final

deviatoric strain of εt=0.176, reached after 1.841×106 cycles.

The properties assigned to the particles are presented in Table 5.1, while the properties

of the flow-network were those shown in Table 5.2.

6.3 Simulation Results

The stress-strain curves for the three tests are plotted in Figure 6.5, while a detail of the

initial stage of the deformation is presented in Figure 6.6. The corresponding stress paths

are presented in Figure 6.7.

Figure 6.6 notes that test A was halted at a strain εt ≈0.007, the reason being that

high particle instabilities were detected because the granular structure reached an unstable

configuration. The curve however, never shows a tendency to change direction to the right

indicating a transition into the steady state of deformation. The response of the three

specimens is characterized by the presence of a peak stress difference at a strain εt ≈0.002.

The stress-strain curve corresponding to test B is somehow erratic, constantly changing

slope after the initial peak. This behaviour is also captured by the stress path as it moves

back and forward at a constant q/p
′

ratio. The post-peak portion of the stress-strain curve

shows a general tendency to regain resistance, the tendency increasing considerably as the

curve reaches the end of the simulation.

The stress-strain curve corresponding to test C presents a more steady post-peak be-

haviour than that corresponding to test B. After the minimum stress difference is reached,

the strength is gradually recovered as the assembly is further deformed.

The initial slope of the stress paths shows that specimen A presented the higher stiffness,

developing lower pore pressures and presenting the highest peak strength. A comparison of

specimens B and C reveals that the former reached a higher stress difference, but presented

a lower initial stiffness.

The results of the simulations indicate that the undrained response of initially anisotropic

assemblies is highly dependent on the direction of the principal stresses. In general, a

greater number of contacts perpendicular to the loading direction results in a higher initial

stiffness.

Symes et al. conducted a series of experiments using a hollow cylinder apparatus [85].
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Figure 6.5: Stress-strain curves for initially anisotropic specimens
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Figure 6.6: Detail of the initial portion of the stress-strain curves for initially anisotropic

specimens
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Figure 6.7: Stress paths for initially anisotropic specimens

They reported that samples loaded with the major principal stress perpendicular to the

bedding plane were stiffer than those loaded in the perpendicular direction, generating less

pore pressure during shear and failing at a higher ratio of q/p
′

. The results of the numerical

simulations are in agreement with the results reported by Symes et al. [85].

Initial Slope of the Stress Paths

Consider the slope of the stress path when small incremental stresses are applied to a sand

specimen:

θ = arctan
δq

δp′
(6.3)

were θ is the direction of the stress path measured counterclockwise from the p
′

axis.

Yimsiri and Soga [104] derived a set of relations to predict the initial slope of the stress

paths measured at small strains in the triaxial cell. Their derivations considered a three-

dimensional array of mono-sized spheres that behaved non-linearly at the contacts. The

results suggest that for the case of an undrained sample presenting an initial degree of

contact normal anisotropy oriented in the direction of loading (a > 0 and θa ≈ π/2),
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θ should be lower than 90◦ in the qtri − ptri
′ diagram (θtri < 90◦). The stress deviator

in the triaxial test and the hydrostatic component of the stress tensor are defined as

qtri = σ1 − σ3 and ptri
′ = (σ1 + 2σ3)/3 respectively. Furthermore, an undrained sample

presenting an initial degree of contact normal anisotropy oriented perpendicular to the

direction of loading (a > 0 and θa ≈ 0), θ should be greater than 90◦ in the stress path

diagram (θtri < 90◦).

Specimen θ

A 76◦

B 87.5◦

C 110◦

Table 6.1: Initial angle of stress paths with angles measured counterclockwise from the p′

axis.

Table 6.1 shows the measured initial angles in Figure 6.7. In general, the measured

data agrees well with the predictions of Yimsiri and Soga [104].

6.4 Evolution of Fabric Descriptors

The most direct way to quantify the microscopic evolution of the granular structure is to

trace the development of the coordination number and anisotropy in both contacts and

interparticle forces. Knowledge of parameters γ and a, an, at, provides both qualitative and

quantitative information that reflects the ability of the system to withstand the directional

variation of the contacts and the forces carried by them.

The evolution of these parameters for tests A, B and C, has been collected in Figures

6.8, 6.9 and 6.10 respectively. Graph (a) in these figures shows the evolution of contact

anisotropy parameters a, an, and at, and the second of the plots, (b), shows the evolution

of the average coordination number γ. The third plot, (c), presents the evolution of the

average contact normal force f̄ o
n. The principal stress difference q has also been included

in this plot for comparison.
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Figure 6.8: Evolution of fabric descriptors for assembly A
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Figure 6.9: Evolution of fabric descriptors for assembly B
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Figure 6.10: Evolution of fabric descriptors for assembly C



Initial Fabric Anisotropy and Permeability 167

6.4.1 Coordination Number

An analysis of the evolution of the average coordination number of specimen A is of special

importance for understanding the instabilities detected. The curve presented in Figure 6.8b

shows an acute reduction in the number of contacts triggered during the strain softening

stage; 94 contacts were lost in a short period, resulting in a change in coordination number

from 3.26 to 3.07. Based on the results, it is concluded that the specimen presented

unstable behaviour similar to that of sand during liquefaction.

The curves showing the evolution of the coordination number for simulations B and

C are given in Figures 6.9b and 6.10b. The number of contacts initially decrease until

reaching a minimum value at small strains. The point of minimum coordination number

for specimens B and C coincides with the attainment of the minimum stress difference q.

After the minimum coordination number is reached, the specimens’ response changed from

contractive to dilative, and γ increased with further deformation. The average coordination

number in assembly C is the lowest among the three assemblies and remains so until the

end of the simulation.

6.4.2 Contact Anisotropy Coefficients

The change of the coefficient of contact normal anisotropy with deformation corresponding

to test A is presented in Figure 6.8a. The curve shows that anisotropy in contact normals

decreases considerably until it becomes almost zero, an indication of contacts evolving from

an initially anisotropic state into an isotropic one. The opposite behaviour is observed in

the normal force distribution shown in Figure 6.8b. Parameter an indicates that anisotropy

develops and normal forces concentrate along the loading direction. Additionally, Figure

6.8c shows how parameter f̄ c
o gradually decreases until the end of the test.

The evolution of contact normal anisotropy of assemblies B and C presented in Figures

6.9a and 6.10a shows that a, increased since the beginning of the tests and the rate of

growth is maximum during the strain softening stage, indicating that the observed drop in

coordination number can be attributed to loss of contacts in the lateral direction. During

the strain softening stage the contact force anisotropy coefficients an and at for tests B

and C increase, and parameter f̄ c
o decreases.

With the information thus far analyzed, it becomes possible to study the onset of

instability experienced by assembly A.
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It has been customary in the literature to characterize the loss of strength or instability

onset by tracing the state of stresses in the state diagram [82]. Accordingly, when the

stress path reaches a limiting value or a threshold condition pre-established experimentally,

instability is expected to be initiated. For this particular case, however, the instability

observed in specimen A cannot be attributed to the attainment of a given state of stresses.

Figure 6.7 shows in detail that the state of stresses for assemblies A and C at the phase

transformation point (the point where instability was initiated) is quite similar. In spite

of the similar stress condition, specimen C was able to remain at static equilibrium at all

times during deformation.

The presence of a higher number of contacts in the assembly could be associated to

the capacity of the assembly to withstand higher loads. However, the observed instability

cannot be attributed to the attainment of a minimum coordination number. The data

shows that the average number of contacts present in assembly A prior to instability

was the lowest throughout the test, γ = 3.26. Nevertheless, this minimum value was

higher than the minimums exhibited by specimens B and C, γ = 3.184 and γ = 3.126,

respectively. Hence, the unstable characteristics of specimen A can neither be attributed

to the attainment of a certain state of stresses nor to a low coordination number.

Developments in Section 2.7 have shown that the coefficient terms a, an, and at, reflect

the ability of the system to rearrange in more stable configurations to respond to imposed

loads. Changes in the coefficients of anisotropy are observed to occur in all tests, denot-

ing the gradual destruction of the original configuration. The evolution of the anisotropy

parameters is considerably different for the different tests, capturing the strong effects of

the initial fabric arrangement in the overall response of the fabric. A complete interpre-

tation of the micromechanical behaviour requires the recognition of all the microstructure

descriptors, since the stress tensor is expressed in terms of these coefficients (see relation

(2.21b)). The fundamental parameter required to explain the observed instability is the

contact normal anisotropy a. Common to all tests is the tendency of contacts to align in

the direction of loading while contacts are lost laterally. The particle arrangement of spec-

imen A was such that fewer contacts were available in the direction of loading. As loading

is initiated, the additional number of lateral contacts provided additional support for the

particles to withstand the imposed load; this is reflected in a higher peak strength when

compared with the other two tests. However, as loading continues, contact disruption con-

tinues in the lateral direction and parameter a starts to evolve towards an isotropic state,
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reaching eventually a value of zero. Every increment in the stress deviator is accompanied

by lateral contact disruption; thus, parameter a can be envisaged as a measurement of

damage inflicted to the structure due to the application of the deviatoric load.

Hence, the contacts in assembly A evolved to a state such that the structure as a

whole offered a low resistance to the imposed stresses. Furthermore, the great majority

of the particles had their principal axis aligned in the direction of the principal stress,

the slenderness of the particles make this configuration the least stable when the lateral

support is lost. These particles develop larger moments in their long axis and smaller

moments in the perpendicular direction. The moment imbalance and the evolution of the

system towards more stable states causes the particles to reorient such that their long axis

is perpendicular to the direction of loading. All these mechanisms, combined together,

contributed with the instabilities observed in specimen A.

6.4.3 Contact Normal Force Anisotropy

The spatial arrangement of the inter-particle forces for tests A, B and C were extracted

at strain levels of εt= 0.0015, 0.003 and 0.0045, and have been plotted in Figures 6.11,

6.12, and 6.13, respectively. The lines within the assemblies denote the interparticle forces

and their orientations, and their thickness represents the force magnitude. The stages at

which the distributions were extracted are marked by crosses in Figures 6.8c, 6.9c, and

6.10c. Included in the Figures are the contact normal-force orientation histograms and

their approximations calculated using the following truncated Fourier series:

f̄ c
n(θ) =

f̄ c
o

2 π
{1 + an cos 2(θ − θan) + bn cos 4(θ − θbn)} (6.4)

The approximation is similar to relation (2.7) in page 28 including the fourth order

component which becomes necessary to obtain a better fit. Further, the distribution was

the property
∫ 2π

0

f̄ c
n(θ) dθ = f̄ c

o

so the size of the histogram reflects the magnitude of f̄ c
o . Additionally, a plot showing

the rotation of the principal contact normal force orientation captured by parameter θan

is presented in Figure 6.15.
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Figure 6.11: Force distribution at three levels of strain for test A
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Figure 6.12: Force distribution at three levels of strain for test B
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Figure 6.13: Force distribution at three levels of strain for test C
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The decreasing size of the histograms capture the progressive reduction in contact

forces; this effect can also be visually verified by comparing the thickness (magnitude) of

force vectors at the different deformation stages. The data collected in the figures shows

a tendency of normal contact forces distribution to align themselves in the direction of

loading, which is manifested as a development of chains of contacts carrying higher forces

than average. This process is accentuated in the distribution corresponding to Test A,

where the principal direction of the contact normal forces appears to evolve from θan = 0◦

to θan = 90◦. It is observed in Figure 6.11 that the rotation of parameter θan is accompanied

by an uneven spatial distribution of stresses, as contact normal forces tend to concentrate

towards the right side of the assembly.

The direction of the fabric and contact normal force distributions can be quantified

by means of parameters θa and θan. The evolution of these parameters is presented in

Figures 6.14 and 6.15 respectively. The data presented in Figure 6.14 shows that the

direction of fabric anisotropy is initially determined by the particle orientation, however,

as the system is loaded, the principal contact normal direction shifts towards the vertical.

The plots in Figure 6.15 show the existing relation of the contact normal orientation and

the orientation of contact normal forces, as both parameters in general, follow the same

trend. The parameter θan however, rotates more rapidly than θa, since the latter requires

physical movement between particles to rotate, whereas the former may change if the

contact magnitude and the shear component change, and does not necessarily require

particles to move.

Micromechanical concepts introduced in Section 2 demonstrate that the stress tensor

measured at the boundary of a system is the result of the contributions of all load carrying

contacts. Additionally, stress-force-fabric relationships indicate that the stress tensor and

hence the direction of principal stresses is a function of θan, among other parameters. It is

expected then that the direction of major principal stress should be closely related to the

direction of contact normal force anisotropy. Figure 6.16 shows a plot of the major principal

stress direction θσ against the orientation of the contact normal force distribution. It is

observed that principal stress direction and normal contact forces are generally coincident

in the tests, with a maximum deviation of 20◦. Thus, the rotation of the contact normal

force anisotropy can be related to the rotation experienced by the major principal stress.

The results of the simulations show that the direction of the major principal stress

in Tests A and B is not initially coincident with the loading direction. Although, the
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Figure 6.14: Evolution of the contact normal direction (θa) for initially anisotropic fabrics

evolution of parameter θan shows that coaxiality between the major principal stress and

the loading direction rapidly re-establishes, the initial difference can be attributed to the

initial particle arrangement.

The data collected from the simulations show the complexity of the mechanisms in-

volved in the evolution of forces, and the strong effects imposed by the arrangement of

elliptical particles.

6.4.4 Orientation of Particles

The average orientation of the particles’s long axis during deformation was quantified by

tracing the evolution of parameter ac in equation (6.1). The change of ac with strain is

shown in Figure 6.17, from where the following observations can be made with respect to

the three tests:

1. The small portion of the curve corresponding to test A reveals the initial tendency

of particles to evolve towards an isotropic state.

2. The imposed load in assembly B resulted in the gradual rotation of the particles into

a more isotropic state.

3. The evolution of parameter ac in test C shows that particles rotated into a practically

perfect anisotropic configuration (ac ≈ 1).
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Figure 6.15: Evolution of the contact normal force direction (θan) for initially anisotropic

fabrics

It was previously observed that forces are transmitted along chains and column-like

structures that are formed and aligned in the loading direction. In general, more stable

configurations are expected to be achieved if particles are aligned with their major axis

perpendicular to the major principal stress. The results of the simulations suggest that

there exists a tendency of the particles to evolve towards this more stable arrangement. It

is expected that at high deformations all of the assemblies will tend to the condition ac ≈ 1,

since under this arrangement particles are in general more stable. However, particles in

specimen A and B have to overcome a greater amount of anisotropy when compared with

specimen C, and as a consequence they rotate more. The amount of particle rotation should

be associated to the undrained resistance and consequently to the dilatant characteristics

of the idealized assemblies.

The amount of particle rotation during deformation can be further quantified by means

of parameter Θ̄ defined as follows:

Θ̄ =

√

√

√

√

√

√

N
∑

i=1

∆θ2
i

N
(6.5)

where ∆θi is the difference between the current and the initial angles of particle i. The

evolution of the parameter Θ̄ is plotted in Figure 6.18.
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Figure 6.16: Comparison between the principal contact normal force direction (θan) and

the major principal stress direction (θσ)

The information depicted in Figure 6.18 shows that a greater amount of particle rotation

takes place in specimen A, followed by assembly B and C. The different average rotations

may be associated with the development of macroscopic average pore pressures, mainly,

the greater the particle rotation the lower the amount of pore pressure generated and the

higher the dilatant characteristics of the granular structure. Therefore, dilatancy is biased

by the angle between the bedding plane and the loading direction. Dilatancy effect are

globally reflected in the stress-strain curve in Figure 6.5, as specimen B develops less pore

pressure (lower dilation) when compared to specimen C.

6.5 Concluding Remarks

The effects of direction of principal stresses on initially anisotropic structures were exam-

ined and a great amount of data was collected from the simulations.

The results showed that highly anisotropic fabrics can be constructed using elliptical
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particles. The degree of anisotropy includes particle orientations, contact arrangement and

for this particular case, hydraulic conductivity.

The development of contact normal orientation and conduit arrangement is biased by

the orientation of the elliptical particles. This relation is expected to be more pronounced

with increasing particle eccentricity. Accordingly, more elongated particles should be able

to create higher degrees of anisotropy in the orientation of contacts and conduits.

The adopted approach to simulate fluid flow within the assembly proved to successfully

capture some conditions encountered in real soils. For example, it is known that soils

deposited in marine environments have particles preferably oriented in the horizontal di-

rection and a higher hydraulic conductivity in the direction parallel to the bedding plane.

The flow network of conduits successfully captures this condition, the greater number of

conduits oriented in the bedding plane allows the system to transmit more fluid along this

direction. Additionally, the orientation and arrangements of the conduits in the system

is expected to vary during deformations: as the pores are continuously changing their po-

sition and shape, the flow network constantly restructures, creating an anisotropic flow

condition.

An analysis of the micromechanical descriptors suggests that the resistance to deforma-

tion is greatly enhanced when lateral contacts exists. The reduction in strength during the

strain softening stage can be related to the loss of contacts in the direction of maximum
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strain.

The results show that the direction of the major principal stress was not coincident with

the loading direction for the initial condition where the principal contact normal direction is

not coincident with the loading direction. However, after the assembly is slightly deformed,

both directions become coincident and remain so with higher deformations.

Finally, the rotation of particles was quantified by means of major axis anisotropy

coefficient and the average particle rotation. The higher particle rotation was associated

with the development of lower average pore water pressure (lower dilatancy). Therefore,

for the initially anisotropic fabric, dilatancy is affected by the angle between the loading

direction and the loading plane.

6.6 Introduction to Effects of Conduit Diameter

The hydraulic conductivity (K) is a parameter that characterizes the capacity of a gran-

ular medium to transmit water. Liquefaction in the field can be simplified to a problem

related to the hydraulic conductivity of the soil. Non-cohesive saturated granular materials

may liquefy when pore pressure in localized zones are generated, creating gradients and

initiating fluid flow. When the excess pore pressure reaches a value equal to the initial

effective stress, liquefaction occurs, and in more severe cases, sand boils develop. The

model adopted in the present approach to simulate fluid-flow particle interaction considers
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that the rate of excess pore pressure increase ∆u is the difference between the rate of pore

pressure generation ∆ug and the rate of pore pressure dissipation ∆ud (see equation (3.30)

in page 64). Experimental data, as well as the results presented in Section 5, have shown

that the rate of pore pressure generation is highly dependent on the initial density and the

initial confining pressure. Additionally, the rate of pore pressure generation is exclusively a

function of the hydraulic conductivity of the soil. Therefore, regardless of the mechanisms

that initiate the development of pore pressures, a reduction of the effective stresses can

only occur if pore pressures in excess of hydrostatic are not rapidly dissipated (low pore

pressure dissipation rate).

A great amount of attention has been given to different factors affecting the mecha-

nisms of pore pressure generation, but little attention has been paid to the relation existing

between liquefaction and hydraulic conductivity. Results presented in Section 4.5 demon-

strate that the conduit diameter can be related to a hydraulic conductivity representative

of the numerical assembly. The ease with which program AQUA can handle different ge-

ometries of the flow network motivated the author to examine the effects of the conduit

diameter on the the overall behaviour of the assembly.

The following sections address the results of simulated biaxial tests with varying conduit

diameters and examines the relationship between conduit diameter and the strength of the

idealized systems.

6.7 Test Program and Assembly Characteristics

The results presented in the following sections refer to three biaxial simulations where the

conduit diameters were equal to 15, 30, and 50 µm. The assembly was initially confined and

brought to equilibrium under an initial confining pressure σ
′

o = 50 kPa. The characteristics

of the particles and the flow network are those presented in Tables 5.4 and 5.2, with the

exception of the parameters presented in Table 6.2.

Tests d ε̇22 ω

A 15 µm 0.0005 15

B 30 µm 0.0005 10

C 50 µm 0.0005 10

Table 6.2: Parameters used in the computations
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The initial average coordination number and void ratio were γo = 4.02 and e = 0.209,

the rationale for choosing this density being twofold. First, results of tests presented in the

previous sections have shown that coordination numbers of around 4 have both compressive

and dilatant characteristics when loaded. This characteristic allows study of the effects of

pore pressure forces during the strain softening as well as the strain hardening stages.

Second, greater coordination numbers provide a higher particle stability. A number of

trial runs were conducted in order to chose optimum parameters for the simulations. It

was found that reducing the conduit diameter may considerably increase the magnitude of

the transient pore pressure forces acting on the particles, resulting in greater unbalanced

forces; thus, choosing a relatively high coordination number helped to maintain static

equilibrium at acceptable levels.

6.8 Simulation Results

Figure 6.19 illustrates the variation of strength q with deviatoric strain εt. The curves

show that the strength was noticeably enhanced by the reduction of the conduit diameter.

Accordingly, the assembly with the lowest conduit diameter showed, in general, a higher

resistance to deformation, captured by the higher peak and pots-peak strengths, a ten-

dency also observed in the stress-strain curves and that becomes more evident at higher

deformations. The measured peak strengths and minimum post-peak strengths are pre-

sented in Table 6.3, showing that the peak strength of assembly A, was about 7 per cent

higher than that of assembly C.

Tests Peak strength (kPa) Minimum strength (kPa)

A 16.06 9.61

B 14.95 4.81

C 14.93 4.51

Table 6.3: Measured peak and minimum strengths for varying conduit diameters

It is interesting to note that both specimens B and C showed similar strength char-

acteristics, with both stress-strain curves practically overlapping each other, suggesting

that the mechanical response is not considerably affected when high conduit diameters are

considered.
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Figure 6.19: Stress-strain curves for varying conduit diameters

The results show in general that the strength of the assembly is enhanced when using

lower conduit diameters. An intuitive analysis would suggest that reducing the conduit

diameter decreases the ability of the flow network to transmit fluid, and that greater

variations in microscopic pressures must develop resulting in higher pore pressure forces

acting on the particles. Hence the observed increase in shear resistance would appear to be

associated with the development of higher microscopic pressures in the individual pores.

This observation was further examined by quantifying the distribution of micro-pressures

during deformations, and the spatial arrangement of the pore pressure force-vector at a

given time.

An analysis of the microscopic aspects at the particle level and the characteristics of

microscopic pore pressures during deformation follows.

6.8.1 Evolution of Micromechanical Parameters

The change of the average coordination number with deformation of the three specimens is

shown in Figure 6.20. It is observed that the coordination number decreases considerably

at the beginning of the tests, reaching a value near 3.4. Additional strains result in a

slight increase in γ reaching a value near 3.5 at the end of the tests. The evolution
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Figure 6.20: Evolution of coordination number for varying conduit diameters

of anisotropy coefficients is presented in Figure 6.21, showing a considerable increase in

anisotropy during a short period. The combined reduction in coordination number and

the increase in contact normal anisotropy indicate that the majority of contacts are lost in

the direction of maximum extensional strain, that is, the lateral direction.

The sudden increase in parameter an shows that contact normal forces align in the

direction of the major principal stress, when deformation is initiated. However, as defor-

mation continues, an remains practically constant and fluctuates around a value of about

0.4. The same observation is applicable to parameter at; it initially increases and then

stabilizes at a value of about 0.1. For this particular case, the evolution of coefficients an

and at appears to be little affected by the different conduit diameters.

6.8.2 Evolution of Pore Pressures

The evolution of the macroscopic pore pressure normalized with respect to the initial

effective confining pressure has been plotted in Figure 6.22. It is observed that the shape

of the normalized pore pressure curves is closely related to the stress-strain behaviour.

Pore pressures are generated rapidly during the initial stage of deformation, reaching a

plateau at a stage where the assemblies exhibit the minimum post-peak strength. As

expected, the higher strength exhibited by assembly A is related to the development of
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Figure 6.22: Evolution of the normalized pore pressures ū/σ,
o, for varying conduit diameters

lower average pore pressures. In general, the evolution of parameter ū with respect to the

stress-strain behaviour of the assembly is in agreement with previous observations made

in the laboratory (see Figure 2.2).

The deviation of the microscopic pressures from a mean value can be better understood

by evaluating the standard deviation, which provides information on the magnitude of

the dispersion, permitting an assessment of how distant the individual pore pressures are

from reaching equilibrium. Measurements of pore micro-pressures were taken at different

deformation stages, and the standard deviation (s̄ ) of the pressures was computed. The

variation of s̄ with the deviatoric strain is presented in Figure 6.23.

It is observed that the standard deviation increases with decreasing conduit diameter.

The deviations during the range where the specimens presented their lowest strength are

considerably greater; this is manifested by spikes in the curves during deformation ranges

between εt = 0.01 and 0.03. The presence of spikes can be seen more clearly in assemblies

having diameters of 30 and 50 mµ. The increase in standard deviations during the minimum

strength stage indicates that some pores were constantly straining and coalescing with

their neighbours, generating micro-pressures that were different than the average value ū.

Further, as can be observed in Figure 6.22, the dispersion in micro-pressures is such that the

average is maintained constant. This data suggests that two simultaneous processes take

place during the transition to more stable states - mainly the creation and disintegration
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Initial Fabric Anisotropy and Permeability 186

of contacts.

The process of contact disintegration would be reflected in a reduction of the coordina-

tion number; nevertheless, Figure 6.20 shows that γ does not change considerably during

the range where the standard deviations increased, suggesting that when contacts are lost,

equilibrium is rapidly restored by the creation of new contacts.

As deformation is continued, the characteristics of the assemblies change from contrac-

tive to dilative and negative pore pressures begin to develop. This change is accelerated by

lower conduit diameters. Accordingly, assembly A starts to regain strength at a deviatoric

strain of about εt = 0.015, whereas assemblies B and C do so at deviatoric strains of about

εt = 0.03. It is observed that the reduction of standard deviation in assemblies B and C

is approximately coincident with the point where the specimens begin to regain strength,

an indication that the increasing interparticle forces provided additional stability to the

system.

Spatial Distribution of Micro-Pressures

Although the standard deviation proves to be a useful measurement of the degree of pres-

sure dispersion around a mean value, it does not provide information on the spatial distri-

bution of pressures within particular zones. To visualize such distribution, contour plots

were constructed from information extracted at different levels of deformation.

The contour plots are presented in Figures 6.24, 6.25; they correspond to strain levels of

εt = 0.002 and 0.01. The gray tones in the contours are related to the pressure magnitudes

presented in the scales at the side of the plots. The scales are different for each plot, so

a direct comparison between tones is not straightforward. Included in the plots are the

pressure histograms corresponding to the contours. In most cases the pressures present a

Gaussian type of distribution.

Under the proposed modified DEM scheme, pressures are generated by considering the

straining of the pores. The contour plots show that greater pressures tend to concentrate

at the centre of the assemblies, where it becomes evident that, in general, greater relative

displacements between particles occur. The relative displacements of the particles can

be conceived as being the sum of slip and rotation motion. The principal mechanism

responsible for the development of higher relative deformations is the biaxial shear mode,

which applies compressional axial and extensional lateral loads.

The presence of zones with pressures higher than average results in the development
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Figure 6.24: Contour showing the distribution of pore pressures at a deviatoric strain of ε

= 0.002, for varying conduit diameters
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of gradients that drive fluid flow from the centre of the assembly towards the boundary.

Generally, higher gradients result in higher pore pressure forces on the particles. The

results suggest that the additional pore pressure forces create a stiffening effect on the

system, resulting in a higher resistance to deformation.

Spatial Distribution of Pore Pressure Forces

To clearly visualize the distribution of pore pressure forces in the assembly, a pore-pressure-

force field was constructed, after integrating microscopic pressures around the particles

according to relations (3.31) and (3.32). The resulting force field is presented in Figure

6.26; the magnitude of the force vectors is proportional to the force. The corresponding

pore pressure contour plot is also presented in the figure.

The data show a general tendency of pore pressure vectors to align themselves towards

the boundary. As expected, the direction of the vectors is normal to the contour lines.

Figure 6.26: Pressure contours and pore pressure force vectors
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The information analyzed so far indicates that the higher resistance to deformation

observed in the experiments can be attributed to an internal stiffening of the assembly,

imposed by the pore pressures concentrated in the centre of the sample.

6.9 Comments

One of the intentions of conducting numerical simulations is to improve knowledge on how

real systems behave. In this sense, reducing the diameter of the conduits in the idealized

system may be interpreted as decreasing the hydraulic conductivity of a granular soil. It

is desirable to find a link between the results obtained from numerical simulations and

those obtained from experimental studies. However, a direct comparison between both

approaches is not feasible because decreasing the hydraulic conductivity of a soil without

altering its fabric represents a hypothetical condition not possible to duplicate in real

soils. Nevertheless, information obtained from specialized laboratory tests can be used to

asses indirectly the relationship between strength and hydraulic conductivity. At least two

laboratory methods can be used to evaluate this relationship:

1. The effects of non-plastic fine particles on liquefaction susceptibility have been eval-

uated by Yamamuro and Lade [102]. It is well known that fine particles decrease

the ability of soil to transmit water. The results obtained from this type of test are

not adequate to study the possible effects of the hydraulic conductivity on the global

response because the presence of fine particles not only decreases the capacity of the

soil to dissipate pore pressures, but also affects its mechanical response. Addition-

ally, the presence of fine particles may considerably alter the packing density because

the pore spaces that particles can occupy during deformations become filled by fine

particles, producing a more stable structure and reducing the ability of the system

to generate pore pressures.

2. The effects of the loading rate on the undrained response of granular soils have been

evaluated by Yamamuro and Lade [100]; some of their results are summarized in

Figure 2.7. Increasing the loading rate does not affect the hydraulic conductivity of

the soil, but it reduces the time in which pore pressures can dissipate. The loading

rate however, is known to affect the response of viscous materials such as clays, and

to a lower extend the response of sands. Nevertheless, this type of test may be an
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adequate point of reference to evaluate the possible effects of hydraulic conductivity

on the shear strength.

The results presented by Yamamuro and Lade on tests conducted on Nevada sand

showed that increasing the strain rate significantly increases the undrained resistance of

the samples. This behaviour has also been reported for undrained tests at high pressures

by Yamamuro and Lade [101]. If these type of tests are considered to be representative of

the possible effects of the hydraulic conductivity on the undrained strength, the results of

the numerical simulations then agree with those obtained from experimentation.



Chapter 7

Conclusions and Recommendations

7.1 General

The objective of this study was to formulate and develop a fluid-flow coupled discrete ele-

ment model capable of simulating undrained tests. The employed pore pressure generation

scheme is essentially the same as reported by Hakuno et al. [36] and Hakuno [35]. The

fluid flow within the assembly has been simulated by solving a system of differential equa-

tions that effectively captures the transient nature of the problem. The proposed technique

considers the interactions between fluid and solid particles by converting pore pressure into

discrete forces acting on the particle. Different aspects of the code were independently ver-

ified. Undrained simulations have proven to realistically mimic the behaviour commonly

observed in undrained laboratory experiments.

The results reported in this dissertation should be regarded as the first step in an

effort to better understand the mechanisms involved in the process of liquefaction from a

micromechanical frame of reference. The solution of the programmed algorithms requires

intensive calculations, limiting the number of particles that can be considered. With the

advancement of technology, it will be possible to expand this technique to study a number

of problems with a greater number of particles loaded under different boundary and initial

conditions. It is expected that in the next years, this approach will be widely used to

simulate liquefaction problems.

The next section summarizes the adopted approach to the problem and highlights the

major conclusions drawn from the undrained simulations of two-dimensional assemblies of

192
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idealized granular systems. Section 7.2 presents some recommendations for future research.

7.2 Conclusions

7.2.1 Development of the Fluid-Flow coupled DEM

A fluid-flow coupled DEM programm was developed and used to conduct a number of

numerical simulations. The reported results were obtained from undrained tests conducted

in an assembly composed of 1000 elliptical particles. The assembly is three-dimensional in

principle, although movement of particles is restricted to the plane. The particles interact

with each other at contact points; contact forces were calculated using a non-linear contact

law, invoking the theory developed by Hertz for three-dimensional solids.

The pores of the assembly were filled by a fluid with elastic properties. Using the

individual deformations of the pores and the elastic properties of the fluid, discrete pore

pressures were calculated at the pore level. An adequate description of the macroscopic

pore pressure present in the assembly is computed using a weighted averaging procedure.

Identification of the pores in the assembly was successfully made using the subroutine

MAKEPOLYGONS; it constructs polygons that join the centres of particles enclosing the

assembly’s pores.

Fluid flow between contiguous pores was assumed to take place through conduits of

circular cross section. Under this approach, the assembly can be envisaged as a system

of reservoirs interconnected by pipes or conduits. The resulting network of conduits was

termed the flow network, and transient flow through it has been described by a system

of differential equations that is solved in an alternate manner with the force-displacement

equations.

The effects of pore water forces acting on the particles have been incorporated in the

program. Discrete pore pressures are decomposed into three force components that are

subsequently applied to the centroid of each particle. These forces, resulting from pore fluid

pressures acting on the particles, have been included in the force-displacement solution.

7.2.2 Verification and Parametric Study

The most fundamental subroutines employed in the simulations have been verified in Chap-

ter 4, obtaining satisfactory results. The major conclusions from the numerical experiments
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are:

1. The non-linear contact law was first verified by monitoring the relationship between

normal and tangential forces during the simulation. The results show that slippage

is correctly initiated according to Coulomb’s principle. Inter-particle forces were

then verified by disturbing one particle from its equilibrium state and monitoring the

force-displacement response at one contact. The forces reached a state that was a

function of the amount of rotation experienced by the particles. It was demonstrated

that the non-linear contact law for the case of elliptical particles produces forces at

equilibrium that are a function of the curvature of the ellipses at the point of contact,

an effect that is not observed in disc-shaped particles.

2. The results of the pore pressure computations were corroborated with measurements

of volumetric strains measured using the boundary displacements. The existing re-

lation between macro pore pressure increments and the volumetric strain measured

at the boundary of the assembly,

∆εv =
Bf

n
∆ū, (7.1)

was employed for this purpose. The numerical simulation provided results that com-

pare favorably with the values computed using relation (7.1). The equation further

demonstrates that a given increment of pore pressure is always accompanied by a

macroscopic deformation which is directly proportional to the porosity of the speci-

men and inversely proportional to the bulk modulus of the fluid.

3. The flow-network approach to simulate the combined effects of pore pressure gener-

ation and dissipation has proven to be effective. Qualitative comparisons were made

with Terzaghi’s one dimensional theory of consolidation to validate the pressure dis-

sipation scheme. The results have shown that the model is capable of simulating

two-dimensional pressure dissipation problems under a number of initial and bound-

ary conditions.

After verification of the principal routines, simulations were conducted to study the

effect of different parameters on the macroscopic response of the system of 1000 elliptical

particles. The following conclusions are made from the results:
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1. The results from simulations showed that varying the conduit diameter influences

the macroscopic response of the planar assembly of elliptical particles. In general,

reducing the conduit diameter increases the macroscopic strength of the sample. The

reasons for this behaviour were examined using the distribution of discrete pore pres-

sures within the sample and the resulting pore pressure forces acting on the particles.

Zones of higher pressure concentrated in the centre of the assembly, where higher rel-

ative displacements occur as a result of the characteristics of the deformation field.

The higher relative displacements at the centre of the assembly resulted in flow gra-

dients directed from the centre towards the boundary. The direction of pore pressure

force vectors coincides with that of the pressure gradients, producing stiffening ef-

fect on the sample. The spatial deviation of discrete pressures from the macroscopic

average was measured by computing the standard deviation. The evolution of this

parameter clearly shows the presence of peaks when the specimen is deforming at

its lowest strength. During this deformation stage, the average coordination number

remains practically constant while contact anisotropy develops. This result suggest

that the rates of contact creation and disintegration should be approximately the

same.

2. The conduit diameter required to match the macroscopic permeability of the assem-

bly was such that pressure equalization occurred almost instantaneously during the

simulations, reducing the effect of pore pressure forces acting on the particles.

3. The effect of fluid compressibility was evaluated in the last part of Chapter 4. The

compressibility of the fluid was varied in an attempt to simulate the effect of different

degrees of saturation. It was found that the void ratio remained practically constant

during the experiment when the assembly was assumed to be 100 % saturated.

7.2.3 Results of Undrained Simulations

Simulations of undrained biaxial tests in idealized assemblies of elliptical particles have been

successfully conducted. The boundary was controlled by a servo mechanism to simulate

undrained biaxial compression tests. Accordingly, an axial constant strain rate was used

while maintaining the lateral total stress constant. Conclusions drawn from analysis of the

results are presented below:
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1. The initial confining pressure was found to have an effect on the peak strength of the

specimens. For a fixed initial void ratio, increasing the confining pressure results in

higher peak strengths.

2. Numerical results showed that the initial density greatly influences the macroscopic

stress-strain response. The denser assemblies presented a post-peak strain-hardening

response, whereas the loosest assemblies presented a strain-softening and, finally, an

unstable behaviour. In general, for a fixed initial confining pressure, increasing the

density results in higher peak strengths.

3. A fundamental parameter that quantifies the average number of contacts per particle

is the average coordination number (γ). Common to all numerical experiments is the

initial reduction in average coordination number upon shearing. The evolution of

contact anisotropy shows that most of the contacts are lost in the lateral direction,

as the servo mechanism tries to maintain the total horizontal effective stress constant.

Depending on the initial coordination number, the process of contact disintegration

can be such that the assembly reaches the minimum value of γ required to maintain

equilibrium (γ ≈ 3.1), resulting in an imminent failure or collapse.

4. The results of numerical simulations showed that the evolution of anisotropy coef-

ficients a, an, and at were very similar for assemblies presenting the same initial

coordination number. These results suggest that, for these particular cases, the ini-

tial confining pressure does not have a considerable effect in the evolution of the

anisotropy coefficients. The results can serve as an aid to develop micromechanical-

based constitutive models like the one proposed by Wan and Guo [98].

5. A strong correlation between the strength of the specimen (q) and the normal contact

force average (f̄ o) was observed in all numerical experiments. The latter is a direct

measurement of the effective state of stress present in the sample. The results show

that in general, at a certain deformation stage, the characteristics of the assembly

changes from contractive to dilative. This tendency is globally reflected in the stress-

strain curve, as it changes its behaviour from strain-softening to strain-hardening, as

well as in the development of negative pore pressures. Since the assembly is com-

pelled to remain at a constant volume, the volume reduction tendency leads to the
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development of elastic interparticle deformations and consequently higher interpar-

ticle forces.

6. Developments presented in Chapter 2 showed that the stress tensor could be ap-

proximated by an expression containing averages of contact normal vectors, contact

vectors, and force vectors over groups of similar orientation. Assuming coaxiality

of the functions describing the contact information, the following expression was

derived:

q =
σ22 − σ11

2
≈

mv l̄o f̄ o

4

{

a + an + at

2

}

(7.2)

Results of numerical simulations showed this expression satisfactorily predicts the

observed strength.

7. The macroscopic stress-strain behaviour of numerical assemblies was observed to be

dependent on the magnitude of the values assigned to the coefficient of interparticle

friction µ. The results show that in general the tests with higher µ were stiffer and

exhibit higher shear strength. It was found that the post peak stress-strain behaviour

changed from strain-softening to strain-hardening when µ was varied from 0.55 to

0.95. It was found that dilatancy is increased by higher interparticle friction coef-

ficients. A relation between the increment of pore pressure and dilatancy was then

presented and it was concluded that the observed increase in undrained resistance

could be attributed to the enhancement of dilatancy by higher values of µ.The previ-

ous experimental findings have a practical value, since they suggest that liquefaction

of sands may be inhibited by slightly increasing the friction between grains.

8. A quantitative comparison between volume-controlled simulations and tests using

the proposed fluid-flow scheme was presented. Both approaches provided similar

results. However, results presented in Section 6.6 suggest that different results are

expected to be obtained when lower conduit diameters are considered. Accordingly,

by reducing the diameter of the flow-network conduits, the interaction between the

pore fluid and the mechanical response of the particles is increased, and the overall

response of the system is considerably altered.
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7.2.4 On Principal Stress Rotation

One of the objectives of the study was to utilize the code to highlight the response of an

initial anisotropic assembly under rotation of the principal stresses. Section 6 contains the

results of samples sheared by rotating the principal stresses with respect to the bedding

plane. The following conclusions have been drawn.

1. The results of simulations on initially anisotropic samples of elliptical particles have

shown that the direction of the principal stress with respect to the bedding plane has

an important effect on the stress-strain characteristics of the assembly.

2. An analysis of the interparticle force distribution showed that boundary loads are

internally transmitted through chains of contacts that align with the direction of the

principal stress.

3. In general, the idealized assembly behaved in a stiffer fashion when the direction of

major principal stress was coincident with the bedding plane. The greater number of

contacts available in the direction perpendicular to the major stress initially provide

a higher stability. However, as lateral contacts are lost with subsequent deformation,

internal instabilities are generated, leading to an internal failure of the structure.

4. It has been shown that the state of stresses and coordination number are not sufficient

descriptors of the deformation mechanisms. A complete micromechanical description

requires consideration of parameters of anisotropy a, an, at and average contact forces.

5. The distribution of the long axes of the particles was approximated by a truncated

Fourier series. Particles initially having vertical or sub-vertical long-axis orientation

developed larger moments in their long axis and smaller moments in the perpen-

dicular direction. The moment imbalance and the evolution of the system towards

more stable states causes the particles to rotate to a position were the long axis is

perpendicular to the loading direction. A tendency of particles to rotate mobilized

higher strengths, reflected in the stress-strain behaviour of the assembly.

7.2.5 Permeability Effects

Numerical simulations using the fluid-flow coupled DEM method offer the possibility to ex-

amine the micromechanical behaviour of idealized assemblies of elliptical particles in great
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detail. Of special interest to the mechanisms of undrained deformation is the development

and subsequent evolution of microscopic fluid pressures at the pore level. A number of

simulations have been conducted to study the effect of varying conduit diameters on the

response of the assemblies and the characteristics of the micro-pressures within the system.

Some of the results and observations are summarized as follows:

1. The results show that decreasing the diameters of the conduits results in the develop-

ment of higher resistance to deformation, as captured by the stress-strain curves. An

analysis of the pore pressure distributions revealed that a zone where pore pressures

are higher than the average develops at the centre of the assembly. The localized

pressures resulted in higher gradients that drove fluid flow from the centre of the

assembly towards the boundary, increasing the pore pressure forces on the particles,

and, in general, enhancing the strength of the assembly.

2. The dispersion of micro-pressures with respect to the mean macroscopic value was

examined using the standard deviation. The evolution of the standard deviation

revealed the development of higher dispersions at the stage where the assemblies

presented their lowest post-peak strength. It was further observed that the pressure

dispersion decreases as the assemblies gradually regain strength with deformation.

This behaviour was attributed to the creating of more stable structures resulting

from higher interparticle forces.

3. An analysis of the direction of the pore pressure forces was conducted using a force

vector plot. The plot showed that force vectors are in general perpendicular to the

pressure contours and directed towards the boundary, producing a stiffening effect in

the system. These behaviour is probably related to non-linear effects resulting from

the type of contact law used in the simulations.

7.3 Applicability and Recommendations

The following comments list some recommendations for future research and the applica-

bility of the developments presented in this dissertation.

• Efforts should be directed at improving computational efficiency. The adaptive dy-

namic relaxation technique (ADR) proposed by Bardet and Proubet [5] is an attrac-
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tive method; it may improve particle stability and reduce the computational time by

selecting optimum values for the damping coefficients and producing faster conver-

gence rates. Implementing this method may eliminate the trial and error procedure

required in the selecting suitable damping coefficients.

• The coupling of the fluid with the mechanical system was successfully achieved by

considering the transient nature of the problem. It was shown that the fluid flow

network by itself adequately simulates classical transient problems encountered in

geotechnical engineering (i.e., consolidation phenomena). The method could be fur-

ther expanded to study the mechanisms of consolidation.

• A different kind of constitutive relation for the bulk modulus of the fluid is needed.

The present implementation assumes that the fluid has the same elastic properties

both in compression and tension. This assumption is obviously incorrect, as the fluid

is capable of taking an infinite amount of tension. Thus the effects of cavitation

should be further examined.

• The effect of different degrees of saturation could be simulated considering two-

phase fluid flow. Additionally, the effective forces provided by the menisci could be

incorporated assuming a bounding forces at the contacts.

• In real materials, plastic deformations at the contacts can be generated at low con-

fining stresses. A non linear elasto-plastic contact law can be incorporated in the

program with minor modifications, and the effects of such type of contact law on the

overall stress-strain response may be further examined.

• Experimental results shows that dense sands tested undrained in the triaxial test

exhibit a strain-hardening response and eventually reach a steady state at large de-

formations [40]. Such steady state was never reached in the assemblies tested. The

combined effects of grain crushing, elasto-plastic contact law and fluid cavitation

may be responsible for the steady state of deformation observed in real sands. These

mechanisms should be incorporated in the model to define a steady state line for the

assemblies of elliptical particles. The steady state concepts can further be examined

using micromechanical descriptors. The void ratio in the state diagram should be re-

placed by the coordination number, leading to a more comprehensive understanding
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of residual strength at large deformations. Such approach has already been adopted

in drained simulations leading to satisfactory results [72].
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In Proceedings of the 4th International Conference on Soil Mechanics and Foundation

Engineering, volume 1, page 144, London, 1957.

[25] B. M. Das. Advanced Soil Mechanics. Taylor and Francis, 1983.

[26] G. De Josselin de Jong and A. Verruijit. Etude photo-élastique d’un empilement de
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Nomenclature

(F i)N translational force acting at the particle’s centroid

(Dn)N normal contact damping force component

(Ds)N tangential contact damping force component

(M)N rotational force

α angle between the ellipse’s major axis and a contact vector

α damping coefficient of proportionality

µ̄ viscosity

Θ̄ average particle rotation

D̄ average diameter of an elliptical particle

f̄ c
n(θ) distribution of average normal contact force

f̄ c
t (θ) distribution of tangential contact force anisotropy

f̄ c
o average contact normal force

l̄cj average contact vector

R̄ average radius of an elliptical particle

s̄ standard deviation

ū macroscopic pore pressure

212



Nomenclature 213

ẍi translational acceleration of a particle

Di contact damping force component

eβ unit vector normal to Sβ

f c contact force vector

lc contact vector

zc branch vector

θ̈ angular acceleration of a particle

∆t time step

∆Ve elastic volumetric change

∆Vp plastic volumetric change

δij Kronecker’s delta

εn volumetric strain

εt shear strain

εω rigid body rotation

εij strain tensor

γ coordination number

γo initial coordination number

γw volumetric weight of water

γlim minimum coordination number required for equilibrium

µ interparticle friction coefficient (tanφµ)

∇u gradient

ν Poisson’s ratio
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ω rotational damping coefficient

φµ interparticle friction angle

φcv angle of friction at critical state

φmax peak angle of friction

φmob mobilized friction angle (σ22 − σ11 / σ22 + σ11)

ψ state parameter

ρ density

σ
′

o effective confining pressure

σij total stress tensor

σβ
ij boundary stress tensor

σ
′

ij effective stress tensor

Tβ boundary traction

θ principal axis orientation of an elliptical particle

θa second-order principal direction of contact normal anisotropy

θb fourth-order principal direction of contact normal force anisotropy

θn second-order principal direction of contact normal force anisotropy

θt principal direction of tangential force anisotropy

θσ major principal stress orientation

θap second-order principal direction of conduit anisotropy

θas principal orientation of major axis anisotropy

θbp fourth-order principal direction of conduit anisotropy

A area
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a major axis of an elliptical particle

a second-order coefficient of contact normal anisotropy

An normalized area of a region in an ellipse

ap second-order coefficient of conduit anisotropy

as coefficient of major axis anisotropy

at coefficient of tangential force anisotropy

b fourth-order coefficient of contact normal anisotropy

b minor axis of an elliptical particle

Ba bulk modulus of air

Bf bulk modulus of the fluid

bp fourth-order coefficient of conduit anisotropy

Bw bulk modulus of water

cn normal contact damping coefficient

cs tangential contact damping coefficient

Cv coefficient of consolidation

D dilatancy rate

E Young’s modulus

e void ratio

E(Ω) contact normal distribution

ec eccentricity

F number of faces (polygons) in a graph

G shear modulus
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I polar moment of inertia

I1 first stress invariant

kn normal stiffness

ks tangential stiffness

L conduit length

m particle mass

ML slope of the failure envelope in the stress-state diagram

mv contact density

N number of particles

n porosity

Np number of pores in an assembly

np number of pores surrounding a particle

P (θ) conduit distribution

p′ effective mean confining stress

q stress difference (σ11 − σ22/2)

S degree of saturation

Sβ vector connecting boundary particles

Tv time factor

un Compliance of two elastic bodies in contact

V volume

V c contact overlapping volume

V p volume of a pore
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z relative distance between centres of curvature

CSR critical stress ratio

CVR critical void ratio

DEM distinct element method

QSS quasi-steady state

SSL steady state line


