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Abstract

Equipping automobiles with wireless communications and networking capabilities is
becoming the frontier in the evolution to the next generation intelligent transportation
systems (ITS). By means of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications, information generated by the vehicle-borne computer, vehicle control
system, on-board sensors, or roadside infrastructure, can be effectively disseminated a-
mong vehicles/infrastructure in proximity or to vehicles/infrastructure multiple hops away,
known as vehicular networks (VANETs), to enhance the situational awareness of vehicles
and provide motorist/passengers with an information-rich travel environment.

Scaling law for throughput capacity and delay in wireless networks has been considered
as one of the most fundamental issues, which characterizes the trend of throughput/delay
behavior when the network size increases. The study of scaling laws can lead to a better un-
derstanding of intrinsic properties of wireless networks and theoretical guidance on network
design and deployment. Moreover, the results could also be applied to predict network
performance, especially for the large-scale vehicular networks. However, map-restricted
mobility and spatio-temporal dynamics of vehicle density dramatically complicate scaling
laws studies for VANETs. As an effort to lay a scientific foundation of vehicular network-
ing, this thesis investigates capacity scaling laws for vehicular networks with and without
infrastructure, respectively.

Firstly, the thesis studies scaling law of throughput capacity and end-to-end delay
for a social-proximity vehicular network, where each vehicle has a restricted mobility re-
gion around a specific social spot and services are delivered in a store-carry-and-forward
paradigm. It has been shown that although the throughput and delay may degrade in
a high vehicle density area, it is still possible to achieve almost constant scaling for per-
vehicle throughput and end-to-end delay. Secondly, in addition to pure ad hoc vehicular
networks, the thesis derives the capacity scaling laws for networks with wireless infras-
tructure, where services are delivered uniformly from infrastructure to all vehicles in the
network. The V2V communication is also required to relay the downlink traffic to the
vehicles outside the coverage of infrastructure. Three kinds of infrastructures have been
considered, i.e., cellular base stations, wireless mesh backbones (a network of mesh nodes,
including one mesh gateway), and roadside access points. The downlink capacity scaling is
derived for each kind of infrastructure. Considering that the deployment/operation costs of
different infrastructure are highly variable, the capacity-cost tradeoffs of different deploy-
ments are examined. The results from the thesis demonstrate the feasibility of deploying
non-cellular infrastructure for supporting high-bandwidth vehicular applications. Thirdly,
the fundamental impact of traffic signals at road intersection on drive-thru Internet access
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is particularly studied. The thesis analyzes the time-average throughput capacity of a typ-
ical vehicle driving through randomly deployed roadside Wi-Fi networks. Interestingly, we
show a significant throughput gain for vehicles stopping at intersections due to red signals.
The results provide a quick and efficient way of determining the Wi-Fi deployment scale
according to required quality of services.

In summary, the analysis developed and the scaling laws derived in the thesis should
be very useful for understanding the fundamental performance of vehicular networks.
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Chapter 1

Introduction

Vehicular networks play an important role in both promoting the development of next
generation intelligent transportation systems and offering mobile data services to vehicle
users. The capacity scaling laws of vehicular networks characterize the trend of network
capacity when vehicle population grows in the network, which represent the fundamental
property of vehicular networks and could be applied to predict the network performance and
thereby provide valuable guidance on network design and deployment. Despite extensive
research in the field of vehicular networking, the network capacity is not well understood.
In this chapter, we first overview the vehicular network, and then briefly introduce the
research of capacity scaling laws for general wireless networks. Finally, we present the
existing works in the capacity study of vehicular networks.

1.1 Overview of Vehicular Networks

As a key ingredient of transportation system, motor vehicles have continued to evolve since
people expect more than just vehicle quality and reliability. With the rapid development of
information and communication technologies (ICT), equipping automobiles with wireless
communication capabilities is expected to be the next frontier for automotive revolution.
Connected vehicles on the go are proactive, cooperative, well-informed, and coordinated,
and will pave the way for supporting various applications for road safety (e.g., collision
detection, lane change warning, and cooperative merging), smart and green transportation
(e.g., traffic signal control, intelligent traffic scheduling, and fleet management), location
dependent services (e.g., point of interest and route optimization), and in-vehicle Internet
access. The market of connected vehicles is booming, and according to a recent business
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report, the global market is expected to reach USD 131.9 billion by 2019 [5]. Academia
and the automotive industry are responding promptly by exploring reliable and efficient
connectivity solutions.

There are two immediate driving forces of bringing wireless connectivity to vehicles.
The first one is the urgent need to improve efficiency and safety of road transportation
systems. Growing urbanization yields an increasing population of vehicles in large cities,
which is responsible for traffic congestion and the consequences in terms of huge economic
cost and environmental problems. It is reported that the cost of extra travel time and
fuel due to congestion in 498 U.S. urban areas was already USD 121 billions in 2011, and
CO2 produced during congestion was 56 billions of pounds, compared to USD 24 billions
and 10 billions of pounds in 1982, respectively [6]. Connected vehicle solutions are very
promising to alleviate traffic congestions via intelligent traffic control and management [7],
as well as to improve the road safety via on-board advanced warning and driving assistance
systems [8]. The second one is the ever-increasing mobile data demand of users on road. In
recent years, the demand for high-speed mobile Internet services has increased dramatically.
People in their own cars expect to have the same connectivity as they have at home and at
work. Connecting vehicles to the Internet can be envisioned not only to meet the mobile
data demand [9], but also enrich safety-related applications, such as online diagnosis [10],
and intelligent anti-theft and tracking [11], in which the servers can be on the Internet cloud.
Internet-integrated vehicles have hit the road, and it is predicted that the percentage of
Internet-integrated vehicle services will jump from 10% today to 90% by 2020 [12]. In
addition, government mandate has put the connected vehicle revolution on the fast track.
The European Commission proposed to implement a mandatory “eCall” system in cars
from 2015, by which cars can automatically establish a telephone link for emergency services
in case of a collision [13]. Not surprisingly, the U.S. Department of Transportation’s (DOT)
National Highway Traffic Safety Administration (NHTSA) recently announced that it will
start taking steps to enable communications between light vehicles [14].

VehiculAr NETwork (VANET)1 refers to the wireless connectivity enabled vehicles that
can communicate with their external environments, i.e., supporting the interactions of V2V
(vehicle-to-vehicle), V2R (vehicle-to-road infrastructure), and V2I (vehicle-to-Internet), as
shown in Fig. 1.1. These interactions, establishing a multiple levels of data pipeline to
in-vehicle information systems, enhance the situational awareness of vehicles and provide
motorist/passengers with an information-rich travel environment.

Fascinated by the concepts and visions of VANETs, the academia, industry, and gov-

1To deemphasize the ad hoc nature of vehicular networks, we redefine the term VANETs, which is
traditionally the acronym of vehicular ad hoc networks.
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Figure 1.1: An overview of vehicular networks
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ernment institutions have initiated numerous activities. An overview of the current and
past major programs of the ITS and projects in the USA, Japan, and Europe can be seen
in [15]. The standards and standardization process of VANETs are given in [16,17]. There
have been tons of research works produced in the past decade to speed up the development
of VANETs, including comprehensive surveys (e.g., [15] and [18]).

1.1.1 V2V Connectivity

It is widely believed that the advances of V2V or inter-vehicle communications will re-
shape the future of road transportation systems, where inter-connected vehicles are no
longer information-isolated islands. By means of V2V communications, information gen-
erated by the vehicle-borne computer, control system, on-board sensors or passengers can
be effectively disseminated among vehicles in proximity, or to vehicles multiple hops away.
Without the assistance of any built infrastructure, a variety of active road safety applica-
tions (e.g., collision detection, lane changing warning, and cooperative merging) [19] and
infotainment applications (e.g., interactive gaming, and file and other valuable information
sharing) [20] are enabled by V2V wireless links.

VANETs have attracted extensive research attentions for many years, and how to es-
tablish efficient and reliable wireless links between vehicles is a major research focus. The
most cumbersome challenge is to combat the harsh communication environment. In ur-
ban scenarios, the line-of-sight (LOS) path of V2V communication is often blocked by
buildings at intersections. While on a highway, the trucks on a communication path may
introduce significant signal attenuation and packet loss [21]. Field tests in [22] demonstrate
that multi-path fading, shadowing, and Doppler effects due to high vehicle mobility and
the complex urban environment will lead to severe wireless loss, and with a large scale of
vehicles transmitting simultaneously, the mutual interference plays an important role as
well. Accurate modeling of the propagation environment is premier to design reliable V2V
communication systems. [23] presents an overview of the state of the art of the vehicular
channel measurements. It is noteworthy that there is a lack of unified channel model that
can be applied for all scenarios (e.g., urban, rural, and highway), and the existing chan-
nel models, only for a specific scenario, have their own merits and deficiencies. [23] also
provides suggestions for V2V communication systems based on the channel characteriza-
tion. For example, the adoption of multiple antennas would enhance the communication
reliability.

From a network perspective, compared to typical low-velocity nomadic mobile com-
munication systems, VANETs also present unique characteristics that have a significant
impact on V2V connectivity.
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• The network topology changes frequently and very fast due to high vehicle mobility
and different movement trajectory of each vehicle;

• Due to the high dynamics of network topology and limited range of V2V communica-
tion, frequent network partitioning can occur, resulting in data flow disconnections;
and

• Surrounding obstacles (e.g., buildings and trucks) can lead to an intermittent link to
a mobile vehicle.

In addition to the technical challenges, the following features can benefit V2V commu-
nications: (i) the vehicle mobility is map-restricted and can be predicted in a certain time
interval to a certain degree; (ii) there is no power constraint on communications and each
vehicle can have relatively powerful processing capability; and (iii) with the aid of Global
Positioning System (GPS), vehicles can locate themselves with an error up to a few meters.

DSRC/WAVE

Dedicated Short-Range Communications (DSRC) is a key enabling wireless technology for
both V2V and V2R communications. The U.S. Federal Communication Commission (FC-
C) has allocated 75 MHz bandwidth at 5.9 GHz spectrum band for DSRC. The dedicated
bandwidth is further divided into seven channels to support safety and non-safety services
simultaneously. The specifications of DSRC are in the IEEE Standard for Wireless Access
in Vehicular Environments (WAVE), including the IEEE 802.11p for PHY and MAC lay-
ers and the IEEE 1609 family for upper layers. Many automotive and ICT manufacturers,
academia, and governments have responded positively and are actively working in collab-
oration to bring this promising technology to fruition. There have been extensive research
efforts from academia to characterize communication properties of DSRC [22, 24–28], and
to enhance DSRC performance both in the PHY layer and MAC layer [29–32].

PHY Layer

DSRC PHY layer adopts almost the same Orthogonal Frequency Division Multiplexing
(OFDM) modulation as the IEEE 802.11a/g standard and is able to support a data rate
of 3–27 Mbps on a 10 MHz channel [16]. Though simulation [24], empirical study [25],
and measurement campaigns [22, 26], the performance of DSRC PHY layer has been well
understood. Although several research works have demonstrated that DSRC PHY layer is
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Figure 1.2: Example of safety applications based on V2V communications.

adequate to support safety message delivery, many challenges remain, such as (i) reliable
communication is not guaranteed especially when the LOS path is obstructed or the delay
spread of wireless channel is too large [27]; (ii) cross-channel interference introduces per-
formance penalty when two adjacent channels are operated simultaneously [16]; and (iii)
a gray-zone phenomenon is particularly observed in [26], i.e., the behavior of intermittent
loss rate during the transmission. To well fit the vehicular environment, DSRC PHY layer
is required to keep evolving. More challenges in this evolution are discussed in [27], such as
the difficulty in estimating the channel condition accurately. Some guidelines for OFDM
system design in the DSRC PHY layer are also given in [23], such as a suggestion of a
modified pilot pattern to reduce receiver complexity.

MAC Layer

Dissemination of safety messages, either time-driven (periodic) or event-driven (as shown
in Fig. 1.2), is mostly based on one-hop broadcast, i.e., distributing the same safety mes-
sage to all the nodes within the communication range, and requires low latency and high
reliability, e.g., the dissemination of emergency braking message. However, based on the
legacy IEEE 802.11 distributed coordination function (DCF), the current version of DSRC
MAC is contention-based and thereby does not support efficient and reliable broadcast
services. Specifically, the poor performance of the DSRC MAC in supporting safety ap-
plications is mainly due to the high collision probability of the broadcasted packets. For
unicast communications using DSRC MAC, the collision probability of two or more trans-
missions is reduced by the adoption of a two-way handshaking mechanism, i.e., request-
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to-send/clear-to-send (RTS/CTS), before the actual data is transmitted. However, the
RTS/CTS mechanism and the acknowledgement from data recipients (ACK) are not im-
plemented for broadcast services. As time division multiple access (TDMA) is capable of
controlling channel access more precisely, by which the vehicle only needs to listen and
broadcast during the acquired time slot, many alternatives have been proposed to guaran-
tee the quality of service (QoS) of safety and other real-time applications in highly densed
vehicular scenarios based on TDMA, such as the MAC protocols proposed in [29–32].

1.1.2 V2I Connectivity

Internet connectivity is becoming a must-have feature of modern vehicles. The industry
has responded promptly by using off-the-shelf technologies, aiming to build a huge mass
market of Internet-connected cars, whereas the academia focuses on the development of
optimal solutions to enable connections between vehicles and the Internet. Wireless access
technologies play a vital role in delivering the Internet services to vehicle users. Cellular and
Wi-Fi are two promising candidates. The cellular networks, such as 3G and 4G-LTE, can
provide reliable and ubiquitous access services. The feasibility of using low-cost roadside
Wi-Fi access point (AP) for outdoor Internet access at vehicular mobility has also been
demonstrated in [33]. We first review the up-to-date status of industrial progress, and then
provide an overview of drive-thru Internet.

Industrial Solutions

Earliest concepts of Internet-enabled vehicles were proposed in 1990s in the literature,
such as “the Internet multimedia on wheels” [34], “web on wheels” [35], and “the network
vehicle” [36]. Nowadays, Internet-integrated vehicle is no longer conceptual due to numer-
ous initiatives in the automotive, telecommunications, and consumer electronics industry.
Existing solutions connect vehicles to the Internet through widely deployed cellular net-
work infrastructure, and can be divided into two categories, i.e., brought-in and built-in,
advocated by different automobile manufacturers.

The brought-in option caters to 3G/4G mobile users who prefer tethering their own
smart phone to the car. The most popular tethering technology, namely MirrorLink,
is powered by Car Connectivity Consortium (CCC) [37], an organization calling leading
automobile (e.g., Volkswagen and Toyota) and ICT manufacturers (e.g., Sony and Nokia)
together to create a phone-centric car connectivity solution. By using MirrorLink, a device
interoperability standard in essence, the motorist/passengers in a vehicle can connect the
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phone to the vehicle infotainment system via wires (e.g., USB) or wirelessly (e.g., Wi-Fi or
Bluetooth), so that the vehicle gains immediate access to the Internet and some duplicate
functions of smart phones.

Built-in option integrates cellular service in the on-board infotainment system. The
Internet connection relies on the built-in cellular module, rather than smart phones of
motorist/passengers. For example, through built-in cellular communications, BMW Con-
nectedDrive [38] combines various elements from online applications, driver assistance, call
center services, and solutions to providing Internet connection for in-vehicle mobile devices.
The best way to enable Internet connectivity in vehicles is still in debate. Built-in options
could provide motorist/passengers with stronger connections and customized services com-
pared to brought-in options. The limitation is that the cellular connectivity cannot evolve
once it is embedded.

Drive-Thru Internet

As a popular wireless broadband access technology, Wi-Fi, operating on the unlicensed
spectrum, offers the “last-hundred-meter” backhaul connectivity to private or public In-
ternet users. Recent research has demonstrated the feasibility of Wi-Fi for outdoor Internet
access at vehicular mobility [33]. The built-in Wi-Fi radio or Wi-Fi-enabled mobile devices
in the vehicle can access the Internet when the vehicle is moving in the coverage of Wi-Fi
hotspots, which is often referred to as the drive-thru Internet [39].

Unlike an indoor Wi-Fi network which only serves stationary or slow-moving users, u-
nique characteristics of drive-thru Internet impose many challenges on reliable and robust
Internet access. First of all, high vehicle mobility yields a very short connection time to
the Wi-Fi AP, e.g., only several tens of seconds, which greatly limits the amount of data
transferred in one connection. For example, the overall connectivity range to a roadside
AP is around 500–600 meters, corresponding to a connection time of 18–21 seconds for
a vehicle moving at 120 km/h [39]. Moreover, time spent in Wi-Fi association, authenti-
cation, and IP configuration before actual data transfer is not negligible. Secondly, V2I
communications also suffer from high wireless loss due to the channel fading and shad-
owing [23]. Thirdly, the Wi-Fi protocol stack is not a specific design for a high mobility
environment.

There have been a number of real-world measurements in the literature based on di-
verse testbed experiments to characterize and evaluate the performance of the drive-thru
Internet. In [39] and [40], the drive-thru Internet based on the IEEE 802.11b and 802.11g is
evaluated respectively in a planned highway scenario where two APs are closely deployed.
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Different vehicle speeds (80, 120, and 180 km/h) and different transport layer protocols
(UDP and TCP) are considered. A very important observation is that the drive-thru In-
ternet has a three-phase (entry, production, and exit) characteristic. In the entry and exit
phases, vehicles gain less throughput than when in production phase due to such as the
weak signal, connection establishment delay, and rate overestimation. To investigate the
impact of backhaul capability on drive-thru Internet, a measurement is conducted in [41]
on a traffic free road where the interference from other vehicles does not exist. It is evi-
denced that the performance of the drive-thru Internet suffers a lot from the limitation of
the backhaul network. For example, with a 1 Mbps bandwidth backhaul capability, the
data volume transferred within a drive-thru reduces from 92 MB to 25 MB. Moreover, a
backhaul connection with 100 ms one-way delay significantly degrades the performance
of web services due to the time penalty of HTTP requests and responses. The problem-
s that may cause the performance degradation of the drive-thru Internet are thoroughly
discussed in [42]. Experiments in [33] and [43] are conducted for large-scale urban sce-
narios with multiple vehicles. The data sets used in the experiments are collected from
the city of Boston with in situ open Wi-Fi APs. It is shown that in [33] with a fixed 1
Mbps data rate, vehicles can gain a median upload throughput of 240 Kbps and a median
one-drive-thru uploaded data volume of 216 KB. In addition, the average connection and
inter-connection time are shown to be 13 seconds and 75 seconds, respectively. The exper-
iment in [43] shows a long-term throughput of 86 kbps averaged over both connection and
inter-connection periods.

Due to high vehicle speeds, intermittent links, and potential severe channel contentions,
the throughput of per drive-thru is limited as observed in real-world tests. It fundamen-
tally restricts the quality of service (QoS) of data applications. To improve the perfor-
mance of drive-thru Internet, solutions in the literature include: (i) reducing connection
establishment time [43]; (ii) improving transport protocols to deal with the intermittent
connectivity and wireless transmission losses [43]; (iii) enhancing MAC protocols for high
mobility [42–44]; (iv) designing efficient handoff schemes to deal with the frequent disrup-
tions [9]; (v) using the multi-hop V2V communication capability for relaying data traf-
fic [45]; (vi) exploiting cooperation among vehicles [46, 47]; and (vii) optimal deployment
of Wi-Fi APs [48].

1.1.3 V2R Connectivity

V2R connectivity is critical to avoid or mitigate the effects of road accidents, and to enable
the efficient management of ITS. DSRC/WAVE is considered a key technology to enable
connections between vehicles and ITS infrastructure, such as traffic lights, street signs,
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and roadside sensors. Moreover, roadside infrastructures can also be commercial content
providers, such as the roadside unit (RSU) broadcasting flyers of superstores [49]. RSU
does not necessarily serve as Internet gateway as wireless infrastructures in V2I commu-
nications. Visible light communication (VLC), transmitting data by using light-emitting
diodes (LEDs), has also been proposed for road-to-vehicle ITS applications, such as traffic
light control at intersections [50–52]. As a key technology specified in the IEEE 802.15.7
standard, VLC can support a data rate up to 96 Mbps through fast modulation of LED
light sources [53]. VLC is becoming an intriguing complement to DSRC for light-of-sight
communication scenarios. To combat outdoor optical noises, however, advanced receiver is
required, such as high-speed camera [50,51], which may incur a high implementation cost.
Compared to the mature IEEE 802.11-based technology, VLC is still in the introductory
phase and substantial efforts are needed before it can be widely deployed for short-range
ITS applications.

1.2 Capacity Scaling Laws

Wireless networks have received a myriad of research attentions over the past decades,
including medium access control, routing, security, cooperation, and energy-efficiency, a-
mong others. Despite significant advances in the field of wireless networking, a fundamental
question remains open: how much information can a wireless network transfer? To an-
swer this question, we should resort to the study of network capacity which is a central
concept in the field of network information theory [54]. Intuitively, if the capacity of a
wireless network is known, the network limit of information transfer would be obtained.
Moreover, having such knowledge would shed light on what the appropriate architectures
and protocols were for operating wireless networks. Although significant efforts have been
put on the investigation of network capacity, developing a general theory of such funda-
mental limit for wireless networks is a long standing open problem [55]. In [56], Claude
Shannon successfully determined the maximum achievable rate, called the capacity, for a
point-to-point communication channel, below which the reliable communication can be im-
plemented while above which the reliable communication is impossible. However, general
wireless networks with sources and destinations sharing channel resources are much more
complex, making the quest for fundamental limits of wireless networks a formidable task.
For example, even for a simple-looking three-node relay channel [57], the exact capacity
still has yet to be determined.

As a retreat when exact fundamental limits are out of reach, capacity scaling laws, first
studied by Gupta and Kumar in [58], characterize the trend of node throughput behavior
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when the network size increases. The most salient feature of capacity scaling studies
is to depict the capacity as a function of the number of nodes in the network, without
distractions from minor details of network protocol. This approach is quite different from
that of studying network information theory, which is to determine exact capacity region
of wireless networks. The seminal work [58] not only provides an alternative and tractable
way to study the network capacity, but also obtains insightful capacity results. Great
efforts have been made thereafter to derive capacity scaling laws for different paradigms of
wireless networks. Scaling laws for network delay and its trade-off with capacity have also
been investigated. The study of scaling laws can lead to a better understanding of intrinsic
properties of wireless networks and theoretical guidance on network design and deployment
[59]. Moreover, the results could also be applied to predict network performance, especially
for the large-scale networks [60]. We provide the following illustration. We consider to
deploy a large-scale sensor networks for a certain geographic area. Capacity scaling laws
show that the network scales poorly when the number of sensors grows, i.e., the throughput
of each sensor would decrease. In order to enhance the throughput capacity, we may need
to adopt some advanced technologies, such as directional antennas and network coding.
However, scaling laws show that exploiting network coding cannot change the trend of
throughput capacity; whereas exploiting directional antennas can introduce capacity gains
(refer to Chapter 2.2.1). Furthermore, suppose we have deployed a sensor network of 100
sensors with directional antennas. Typically we can obtain the throughput performance
(denoted by λA) of the network through real measurement. If we need to extend the
network to a larger one of 1000 sensors, with the same network settings, by capacity scaling
results (denoted by f(N)), we are able to have a rough idea that how much throughput
(denoted by λB) can be supported by the network that we are going to deploy, i.e., λB =
λA · f(1000)/f(100). We survey the literature in this area in Chapter 2.

1.3 Capacity of Vehicular Networks

The capacity scaling of VANETs is desirable since unlike generic mobile ad hoc networks,
VANETs present unique characteristics, which impose distinguished challenges on net-
working. i) Large scale: the VANET is an extremely large-scale mobile network, which is
deployed in a large geographic area with a great amount of vehicles and roadside units; ii)
Cars on the road: the movement of vehicles should follow certain street pattern, different
from generic mobile ad hoc networks in which nodes typically move in a free space; iii)
Cars on the wheels: the vehicle mobility is related to the road traffic environment and the
social life of the driver; iv) Spatio-temporal variations: there are spatio-temporal variations
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of vehicle density and link quality due to vehicle mobility and unstable wireless channels,
respectively; and v) Diversified applications: applications of VANETs are of a large variety
and with different QoS requirements. All these features dramatically complicate studies of
scaling laws.

There have been a few efforts to investigate the capacity scaling laws of VANETs.
Pishro-Ni et al. [61] initiated the study of capacity scaling for vehicular networks with
an emphasis on the impact of road geometry on the network capacity. Nekoui et al.
[62] specially developed a novel notion of capacity for safety applications, which is called
Distance-Limited Capacity. That is the capacity of VANETs when a pair of vehicles can
only communicate if the two vehicles reside in a certain distance of each other. Both [61]
and [62] showed that the road geometry has an important role in the capacity of vehicular
networks. As the demand of public information dissemination is high in VANETs, multicast
flows, in which one source is associated with a set of destinations, may be viable to be
deployed for practical applications. In [63], Zhang et al. analyzed multicast capacity of
hybrid VANETs, in which base stations are deployed to support communications between
vehicles. It was assumed that each vehicle is equipped with a directional antenna. By
respectively applying the one-dimensional and two-dimensional i.i.d mobility model (refer
to Chapter 2.3.1) to vehicles, they derived bounds of the multicast throughput capacity
under certain end-to-end delay constraint. In [64], Wang et al. studied the uplink capacity
of hybrid VANETs, where each vehicle, following random way-point mobility, is required
to send packets to regularly placed sink roadside units (RSUs). The basic routing strategy
adopted in [64] is to distribute source packets to as many RSUs as possible to increase
concurrent uploading opportunities.

One of the limitations of [63] and [64] is that the specific mobility features of vehicles are
not fully considered. The i.i.d mobility is not practical for vehicular scenarios. Moreover,
the assumption that vehicles are uniformly distributed in the network is also unrealistic.
In urban areas, vehicle densities in different regions may be highly diverse. Inhomogeneous
vehicle densities were considered in [65], which investigates the throughput capacity of
social-proximity VANETs. We will elaborate this work in Chapter 3. Infrastructure,
such as Wi-Fi access points and cellular base stations, plays a vital role in providing
pervasive Internet access to vehicles. Reference [66] analyzes the downlink capacity of
vehicles, i.e., the maximum average downlink rate achieved uniformly by vehicles, for
each type of access infrastructure considered, and investigates the capacity-cost tradeoffs
for access infrastructures since the deployment costs of different access infrastructure are
highly variable. We will elaborate the capacity analysis considering access infrastructure
in Chapter 4 and Chapter 5.
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1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents a comprehensive overview
of scaling laws for throughput capacity and delay in wireless networks. Chapter 3 in-
vestigates the capacity scaling laws of delay-tolerant vehicular networks in which ser-
vices/applications are delay-tolerant and can be delivered in a store-carry-and-forward
fashion. Chapter 4 analyzes the downlink capacity of vehicles and investigates the capacity-
cost tradeoffs for the network in which access infrastructure is deployed to provide a down-
link data pipe to all vehicles. Chapter 5 particularly investigates the average throughput
capacity of drive-thru Internet access considering interrupted vehicle traffic flow and with
a focus on cost-effectiveness of Wi-Fi solution for vehicular Internet access. Finally, Chap-
ter 6 concludes the thesis, and points out our future research directions.
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Chapter 2

Background

The capacity scaling law of wireless networks has been considered as one of the most fun-
damental issues. In this chapter, we aim at providing a comprehensive overview of scaling
laws for throughput capacity and delay in wireless networks. We begin with background
on the notion of throughput capacity of random networks. Based on the benchmark ran-
dom network model, we then elaborate the advanced strategies adopted to improve the
throughput capacity, and additional factors that affect the scaling laws. We also present
the fundamental tradeoffs between throughput capacity, delay, and mobility. Finally, the
capacity for hybrid wireless networks are surveyed, in which there are at least two types
of nodes functioning differently, e.g., normal nodes and infrastructure nodes.

2.1 Preliminaries: Milestone of Throughput Capacity

Scaling

Capacity scaling laws offer fundamental understanding on how per-node capacity scales in
an asymptotically large network. The line of investigation began with [58], where Gup-
ta and Kumar introduced two new notions of network capacity: transport capacity and
throughput capacity. In this dissertation, we focus on the throughput capacity. We first
introduce the notion of throughput capacity and the capacity result for random networks,
as preliminaries for reading the remaining sections in this chapter.
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2.1.1 Notion of Throughput Capacity

Let N denote the number of nodes in a network. The per-node throughput of the network,
denoted by λ(N), is the average transmission rate, measured in bits or packets per unit
time, that can be supported uniformly for each node to its destination in the network. A
per-node throughput of λ(N) bits per second is said to be feasible if there exists a spatial
and temporal scheme for scheduling transmissions, such that each node can send λ(N) bits
per second on average to its destination node. The throughput capacity of the network
is said of order Θ(f(N))1 bits per second if there are deterministic constants c1 > 0 and
c2 <∞ such that

lim
N→∞

Pr
(
λ(N) = c1f(N) is feasible

)
= 1

lim inf
N→∞

Pr
(
λ(N) = c2f(N) is feasible

)
< 1.

Therefore, vanishingly small probabilities are allowed for in this definition of “through-
put capacity” when considering the randomness involved in the network, such as the lo-
cation and the destination of each node. Note that the notion of throughput capacity is
different from the information-theoretic capacity notion that describes the exact region of
simultaneous rates of communications from many senders to many receivers in the presence
of interference and noise [67].

2.1.2 Random Networks

A wireless random network consisting of N identical immobile nodes randomly located
in a disk of unit area in the plane and operating under a multi-hop fashion of informa-
tion transfer, is shown in Fig. 2.1 [58]. Each node having a randomly chosen destination
is capable of transmitting at W bits per second over a common wireless channel. The
requirements for successful transmission are described as per two interference models: i)
the Protocol Model, which is a binary model, i.e., the transmission is successful if there is
enough spatial separation from simultaneous transmissions of other nodes otherwise fails;

1Since studies of throughput capacity focus on the scaling behavior instead of a specific value, the order
notation is involved to describe how capacity scales with the number of nodes N . Specifically, the following
Knuth’s notation is used throughout all the papers on scaling laws: given nonnegative functions f1(n) and
f2(n), f1(n) = O(f2(n)) means f1(n) is asymptotically upper bounded by f2(n); f1(n) = Ω(f2(n)) means
f1(n) is asymptotically lower bounded by f2(n); and f1(n) = Θ(f2(n)) means f1(n) is asymptotically
tight bounded by f2(n); f1(n) = ω(f2(n)) means f1(n) is asymptotically dominant with respect to f2(n);
f1(n) = o(f2(n)) means f1(n) is asymptotically negligible with respect to f2(n).
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Figure 2.1: A static ad hoc network in a unit disk.

and ii) the Physical Model, based on signal-to-interference ratio requirements. In such
a static random ad hoc network, all the nodes are assumed to be homogeneous, i.e., all
transmissions employ the same range or power, and wish to transmit at a common rate.

2.1.3 Throughput Capacity of Random Networks

For random networks, the order of the throughput capacity is λ(N) = Θ( W√
N logN

) under

Protocol Model (see main result 3 in [58]); while under Physical Model, the throughput
capacity is given by Θ( W√

N logN
) ≤ λ(N) < Θ( W√

N
) (see main result 4 in [58]). An expla-

nation of the results is as follows. For Protocol Model, the lower bound and upper bound
are of the same order such that there exists a sharp order estimation of the throughput
capacity; for Physical Model, a throughput of order Θ( W√

N logN
) is feasible, while Θ( W√

N
) is

not. Fig. 2.2 gives three examples to show the trend of throughput capacity in the order
sense.

The throughput capacity is studied asymptotically, i.e., capacity scaling law results
hold with high probability when the population of nodes is larger than some threshold; on
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Figure 2.2: Examples of showing throughput capacity trend in the order sense

the other hand, results may not hold, or hold with small probability if the population of
nodes is small. The scaling result for random networks is pessimistic because the per-node
throughput tends to zero similar to 1√

N logN
as the population of nodes goes to infinity,

which indicates that static ad hoc networks are not feasible to scale to a large size. What
causes such discouraging results? The fundamental reason is that every node in the net-
work needs to share the channel resources or certain geographic area with other nodes in
proximity, which constricts the capacity. Specifically, concurrent wireless transmissions in
a wireless network limit its throughput capacity, because they create mutual interference
so that nodes cannot communicate as that in the wireline network where much less mutual
interference exists. This interpretation also demonstrates how desirable it is to mitigate
the mutual interference in wireless communications, although it is very challenging.

2.2 Throughput Capacity of Ad Hoc Networks

2.2.1 Strategies to Improve Throughput Capacity

One natural question is if it is possible to improve throughput capacity of random net-
works by employing any advanced techniques or sophisticated strategies. After significant
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progress that has been made to further the investigation on throughput capacity scaling,
the answer is positive.

First of all, by allowing both long-distance and short-distance transmissions, the through-
put capacity can be improved slightly to Θ( 1√

N
) [68]. The scheme constructed to achieve

this throughput relies on multi-hop transmission, pairwise coding and decoding at each
hop, and a time-division multiple access. The gain of throughput capacity can also be
achieved by employing directional antennas. Yi et al. in [69] considered different beam-
form patterns, and showed that the throughput capacity can be achieved with a gain of
4π2

αβ
using directional transmission and reception, where α and β are antenna parameters.

A capacity gain of Θ(logN) is proved in [70]. Peraki et al. in [71] further revealed that
the maximum capacity gain is Θ((logN)2) by using directional antennas at the transmit-
ters and receivers, corresponding to a throughput of Θ((logN)3/2/

√
N). If nodes have

multi-packet reception (MPR) capabilities, i.e., a receiver is capable of correctly decoding
multiple packets transmitted concurrently from different transmitters, the capacity gain
can also be achieved. Sadjadpour et al. in [72] showed that with MPR, the throughput
capacity of random ad hoc networks can be improved at least by an order of Θ(logN) and

Θ((logN)
α−2
2α ) under Protocol Model and Physical Model, respectively, where α is the path

loss exponent in the Physical Model. Similar research efforts applying MPR can be found
in [73–75].

By means of long-range multiple-input multiple-output (MIMO) communications with
local cooperations as proposed in [76], significant improvement of throughput capacity
scaling in random networks is attainable [77], i.e., almost constant per-node throughput
of Θ(n−ε) on average is achievable, where ε > 0 can be arbitrarily small. This yields
an aggregate throughput (Nλ(N)) of Θ(N1−ε) for the whole network, indicating almost
linear capacity scaling in N . ε = Θ( 1√

logN
) was explicitly obtained later in [78] and

[79]. However, the capacity gain is at the cost of increased system complexity due to
the intelligent hierarchical cooperation among nodes. Regardless the complexity of the
constructed strategy, the result in [77] is inspiring but still controversial. Franceschetti et
al. in [80] claimed that a throughput higher than O((logN)2/

√
N) cannot be achieved

because of degrees of freedom limitation which is a result of laws of physics. Artificial
assumptions and models lead to the impossible linear capacity scaling in [77]. While
using Maxwell’s equations without any artificial assumptions, Lee et al. in [81] established
the capacity scaling laws for the line-of-sight (LOS) environments, which show that a
linear scaling of the aggregate throughput is indeed possible for static random networks.
Thus, the conflict between [77] and [80] is resolved. It is worth noting that even if such
physical limits in [80] do exist and sophisticated strategies like the hierarchical cooperation
cannot further improve the per-node throughput (Θ(1/

√
N)) in the scaling limit sense,
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Table 2.1: Summary: Strategies to Improve Throughput Capacity

Strategies Throughput Capacity Gain [Compared to Θ( 1√
N logN

)]

Power Control Θ((logN)1/2) [68]
Directional Antenna Θ((logN)2) [71]
Multi-Packet Reception Θ(logN) for Protocal Model;

Θ((logN)
α−2
2α ) for Physical Model [72], α ≥ 2

Hierarchical Cooperation Almost Θ((N logN)1/2) [77]
Network Coding Constant gain [82–86]

Ultra-wideband Θ(Nα/2(logN)1/2) [87], α ≥ 2

Mobility Θ((N logN)1/2) [88]

* α is the path-loss component.

these strategies generally could be considerably beneficial in networks of any finite size.
An example is the physical-layer network coding. In [82], it was shown that although
the physical-layer network coding scheme does not change the scaling law, it improves
throughput performance of the network in the sense by enlarging the constant component
of the scaling result. The similar studies applying the network coding schemes can be
found in [83–86].

Since the above research works are based on the assumption that the network is
bandwidth-constrained, i.e., each node is only capable of transmitting at W bits per sec-
ond, it is interesting to consider a scenario where each node has power constraint but
can utilize unlimited bandwidth. Hence, there have been a few research efforts which
focus on the ultra-wideband (UWB) techniques. In [89], Negi and Rajeswaran showed
that under the limiting case W → ∞, the throughput capacity is lower bounded by
Ω
(
P0

√
Nα−1/(logN)α+1

)
and upper bounded by O(P0(

√
N logN)α−1), where α is the

path loss exponent and P0 is the maximum transmission power. The gap between the
upper bound and the lower bound was closed by Tang and Hua in [90]. They showed
that the throughput capacity of a UWB power-constrained ad hoc network is given by
Θ(P0(

√
N/ logN)α−1). A better result was obtained in [87] that the throughput capacity

scales as Θ(P0N
(α−1)/2).

Without leveraging aforementioned advanced techniques in the static random network,
what if nodes move? The effect of node mobility on throughput capacity scaling was
first investigated by Grossglauser and Tse in [88]. By applying an i.i.d mobility model
(see Section 2.3) to each node, they have shown that the per-node throughput of the
mobile ad hoc network could remain constant, i.e., Θ(1), by using a two-hop relaying
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Figure 2.3: An illustration of packet transmission strategies

scheme (see Fig. 2.3(c)) and allowing finite but arbitrary delay. This result provides an
interesting implication that dramatic gains in network capacity are possible when mobility
is considered so that the nodes can exploit mobile relays to carry packets to distant nodes.
Compared with such store-carry-and-forward communication paradigm, in the absence
of mobility, direct transmission (see Fig. 2.3(a)) between distant nodes causes too much
interference, or equivalently requires a large spatial area, so that the number of concurrent
transmissions are reduced; on the other hand, if the network only allows the communication
between nearest neighbors (see Fig. 2.3(b)), most of the packets will be delivered through
multiple hops, resulting in the decrease in throughput capacity as well. Inspired by the
promising result in [88], extensive works have been done to investigate capacity scaling in
mobile ad hoc networks. In [91], Diggavi et al. have shown that even one-dimensional
mobility benefits capacity scaling. Restricted to move on a great circle, each node can
attain a constant throughput. In [92], Syed Ali Jafa explored the capacity of high mobile
ad hoc networks in the presence of channel uncertainty, and has shown that high mobility
introduces rapid channel fluctuations and hence limits the capacity of wireless networks.
A summary of capacity gains by using each strategy is given in Table 2.1.
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2.2.2 Additional Factors Affecting Scaling Laws

The random network considered in [58] is a benchmark network model, in which nodes have
basic communication capabilities (i.e., simple coding and decoding strategies implemented
on the single radio), and the traffic model (symmetric unicast) and interference model
(Protocol Model or Physical Model) are simplified. Besides the strategies mentioned in
Section 2.2-A to improve throughput capacity, significant research efforts have been made
to study the impact of different modeling factors on capacity scaling laws.

Multi-channel multi-interface: In [58], it has been shown that with a single radio
mounted on each vehicle, splitting the total bandwidth W into multiple sub-channels does
not change the order of throughput capacity of random networks. However, in practice,
a communication device may have multiple radio interface operating on one or different
channels. What if each node is equipped with multiple radio interfaces? In [93] and
[94], Kyasanur and Vaidya derived the capacity scaling laws for a general multi-channel
networks with l ≤ c, where c is the number of channels, and l is the number of interfaces
per node. It was shown that different ratios between c and l yield different capacity
bounds, and in general, the network capacity is reduced except when c is upper bounded by
O(logN). Kodialam and Nandagopal [95] also provided capacity trends for multi-channel
multi-interface wireless mesh networks by considering channel assignment and scheduling.

Channel model: Most research efforts follow either Protocol Model (governed by
geometry) or Physical Model (governed by path loss), which only characterize the deter-
ministic behavior of wireless channel connection. To consider the randomness which is
more realistic, several works have been done assuming different channel models. The im-
pact of channel fading on capacity scaling was studied by Toumpis and Goldsmith [96].
They showed that a throughput of Θ( 1√

N(logN)3
) is feasible under a general model of fading

for static random networks. The Rayleigh fading was considered by Ebrahimi et al. [97]
for a single-hop scenario and the lower and upper bounds of throughput capacity were
derived. The random connection model was considered in [98] and [99], i.e., the signal
strengths of the connections between nodes are independent from each other and follow a
common distribution. In [98], a throughput capacity of Ω((logN)−d) is proved for some
d > 0. In [99], Cui et al. showed that a constant throughput is achievable by relaxing
some constraints of the connection model. In [100], Gowaikar and Hassibi considered a
hybrid channel connection model: for a short distance between transmitter and receiver,
the channel strengths are governed by the random connection model; while for a long
range, the channel strengths are governed by a Rayleigh distribution. They showed that a
throughput of Θ

(
1

(logN)4

)
is achievable. The lower bound on the capacity of wireless erasure

networks was reported by Jaber and Andrews [101], in which an erasure channel model
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Table 2.2: Summary: Additional Factors Affecting Scaling Laws

Factors Main Results on Throughput Capacity (λ)

Multi-channel & No capacity gain when c/l = O(logN);
Multi-interface∗ Capacity loss when c/l = Ω(logN) [94]
Channel Model λ = Θ( 1

logN · 1√
N logN

) under general fading model [96]

λ = Θ(logN/N) under Rayleigh fading (single-hop scenario) [97]
λ = Ω((logN)−d) under random connection model for some d > 0 [98]
λ = Θ(1) under random connection model for some cases [99]
λ = Θ(1/(logN)4) under hybrid random connection model [100]

λ = Ω(
√

logN/N) under independent erasure channel model [101]
λ = Ω( 1√

N logN
) under correlated erasure channel model [101]

Network Topology Symmetric topology yields a high throughput capacity [102]
λ = Θ

(
1

N
1
3 (logN)

2
3

)
under Protocol Model for 3-D networks [103]

λ = Θ(1/N
1
3 ) under Physical Model for 3-D networks [103]

Traffic Pattern∗∗ A unified framework for (N,m, k)-casting [105]

* c denotes the number of channels and l denotes the number of interfaces per node.
** m denotes the number of intended recipients of a source packet and k denotes the number

of successful recipients.

is considered, i.e., each channel is associated with an erasure probability. Such a channel
model incorporates erasure events which may correspond to packet drops or temporary
outages when transmission is undergoing. It is proved that the capacity lower bound s-
cales as Θ(

√
logN/N) and Θ( 1√

N logN
) with independent and correlated erasure channels,

respectively.

Network topology: The shape of geographic area where the network is deployed has
a significant impact on capacity scaling laws. Hu et al. [102] investigated the effect of
various geometries, including the strip, triangle, and three-dimensional cube. The main
implication from [102] is that the symmetry of the network shape plays an important role.
In other words, a high throughput capacity can be achieved if the network is symmetric. In
addition to two-dimensional (2-D) networks, several efforts have been put on investigation
of three-dimensional (3-D) networks. In [103], a throughput capacity of Θ

(
1

N
1
3 (logN)

2
3

)
and

Θ(1/N
1
3 ) is reported for 3-D random networks under Protocol Model and Physical Model,

respectively. In [104], Li et al. respectively derived the capacity bound for the 3-D network
with regularly and heterogeneously deployed nodes.

Traffic pattern: Besides symmetric unicast, i.e., each node is only the source of one
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unicast flow and the destination of another, dissemination of information in other fash-
ions has been extensively studied in the literature. The broadcast capacity is reported
in [106–108], which is the maximum per-node throughput of successfully delivered broad-
cast packets. For each broadcast packet, it is successfully delivered if all nodes in the
network other than the source receive the packet correctly in a finite time. The multicast
capacity has been widely investigated [109–115] considering different network settings. By
employing multicast, each packet is disseminated to a subset of N − 1 nodes which are
interested in the common information from the source. Nie [116] reported a short sur-
vey on multicast capacity scaling. A unifying study was provided by Wang et al. [105],
in which how information is disseminated is generally modeled by the (N,m, k)-casting.
In this particular context, m and k denote the number of intended recipients of a source
packet and the number of successful recipients, respectively. For unicast, m = k = 1; for
multicast, k ≤ m < N ; and for broadcast, k ≤ m = N − 1. The capacity bounds were
established in [105] for each type of traffic pattern. A summary for this subsection is given
in Table 2.2.

2.3 Fundamental Tradeoffs: Capacity, Delay, and Mo-

bility

Capacity is not the only metric to evaluate network performance. From applications point
of view, network delay (its average, maximum, or distribution) is also an important design
aspect [59]. In [88], it has been shown that striking performance gains in throughput
capacity are achievable in mobile ad hoc networks, however at the expense of enlarged delay.
With the same time scale of node mobility, the delay is incurred by the movements of
the relay (transmitter) and the destination (receiver) since they have to be geographically
close enough for transmission, as shown in Fig. 2.3(c). Basically, there are two ways to
transfer an information packet from the source to the destination: wireless transmission
and node movement. Since wireless transmission is typically at a much smaller time scale,
the time spent on the relay movements towards the destination contributes to the major
component of the delay. There is a tradeoff between capacity and delay: if an increase in
throughput is desired, we should reduce the distance of wireless transmission to allow more
concurrent transmissions in the network; while if a decrease in delay is desired, we should
reduce the distance of relay movement towards the destination. However, it is impossible
to reduce both distances simultaneously given a fixed distance between the source and the
destination. Furthermore, intuitively, different mobility models may incur different delays,
because the node movement pattern determines the time spent on the relay movements.
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For example, if a node always wanders around (see Relay A in Fig. 2.3(d)), it is very
difficult for the node to move a long distance in one direction. To understand the tradeoffs
between capacity and delay of wireless networks, a large body of research studies have been
done under a variety of mobility models.

2.3.1 Mobility Models

The type of node mobility studied includes the i.i.d mobility, random walk model, random
way-point model, Brownian motion, and Lévy mobility. Besides, there are two more general
mobility models defined in [117] to study the relationship between delay and throughput
capacity from a global perspective. We introduce these mobility models in the following
and give a brief summary in Table 2.3 as well.

• i.i.d Mobility Model: In time-slotted system, at each time slot, each node selects
a new position independently and identically distributed over all positions in the
network. The position distributions of the nodes are independent between time slots.
The i.i.d mobility is also referred to as the reshuffling model [118]. Depicting an
extreme mobility, the i.i.d mobility model is unrealistic but analytically tractable.

• Random Walk Model: Random walk can be described by Markovian dynamics from
i.i.d mobility and is often considered symmetric, i.e., nodes select new positions for
next time slot equally likely from the set of current neighboring positions.

• Random Way-Point Model: In random way-point model, at each time slot, the mo-
bile node chooses a random destination in the network and moves toward it at a
random speed. The node pauses for some random time after reaching the destina-
tion, and then repeats this process.

• Brownian Motion: Brownian motion is like the motion conducted by a small particle
totally immersed in a liquid or gas. Brownian mobility has a strong connection with
random walk model and is a limiting case when taking smaller and smaller steps in
smaller and smaller time intervals in symmetric random walk [119].

• Lévy Walk and Lévy Flight: Lévy mobility is a special type of random walk in which
the distribution of flights, i.e., step-lengths, is heavy tailed. In other words, the
trajectory of Lévy mobility contains many short flights and an exponentially small
number of long flights. The difference between Lévy walk and Lévy flight is that the
former has constant flight speed and the latter has constant flight time [120]. It is
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(a) Hybrid random walk (b) Random direction model

Figure 2.4: An example of trajectories of hybrid random walk (a) and random direction
model (b), respectively.

reported that Lévy mobility has certain statistical similarity to human mobility and
some animals’ hunting patterns [121].

• Hybrid Random Walk Models: A family of hybrid random walk models is considered

in [117] and characterized by a single parameter β ∈ [0, 1
2
]. The unit area of the

network is divided into N2β equal-sized squares, each of which is further divided
into N1−2β equal-sized sub-squares. At the beginning of each time slot, each node
jumps from its current sub-square to a random sub-square of one uniformly selected
neighboring square, as shown in Fig. 2.4(a). It can be seen that the model turns
to the i.i.d mobility model and the random walk model when β = 0 and β = 1/2,
respectively.

• Discrete Random Direction Models: A family of discrete random direction models is
also considered in [117] and characterized by a single parameter α ∈ [0, 1

2
]. The unit

area of the network is divided into N2α squares with equal area. The movement of
each node is of the following pattern: at the beginning of each time slot, the node
jumps from its current square to a uniformly selected neighboring square; and during
the time slot, the node moves from a start position to an end position at a certain
velocity, as shown in Fig. 2.4(b). The two positions are uniformly selected from all
the positions in the square. It can be seen that the above mobility model turns to
the random way-point model and the discrete Brownian motion when α = 0 and
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Table 2.3: Summary of mobility models

Mobility models Key features

i.i.d Mobility No motion constraints
Random walk Next position is chosen from current neighboring positions
Randomly way-point Randomly selected destination, speed, and pause duration
Brownian motion The limit form of random walk
Lévy walk Heavy-tailed distribution of flights; constant flight speed
Lévy flight Heavy-tailed distribution of flights; constant flight time
Hybrid random walk Hybrid of i.i.d mobility and random walk
Discrete random direction Hybrid of randomly way-point and discrete Brownian motion

α = 1/2, respectively.

2.3.2 Tradeoffs Between Throughput Capacity and Delay

The throughput capacity and delay under the i.i.d. mobility model were reported by
Neely and Modiano [122] for a cell-partitioned ad hoc network. They found that a general
delay-throughput tradeoff can be established: the ratio of delay and throughput is at
least O(N) under different scheduling policies (i.e., two-hop or multi-hop relaying) with
or without packet redundancy2. The optimality of delay-capacity tradeoffs under i.i.d.
mobility model was studied in [123]. Different time scales of node mobility are taken
into consideration: fast mobility, only allowing one-hop transmissions during a time slot
after which the topology changes; and slow mobility, allowing packets to be delivered
through multiple hops during a time slot since the mobility of nodes is much slower than
packet delivery time. It was shown that under i.i.d. fast mobility, a per-node capacity is
O(
√
D/N) given a delay constraint D; while a per-node capacity is O( 3

√
D/N) under i.i.d.

slow mobility, which is a tighter bound than O( 3
√
D/N logN) obtained in [124].

In [125], El Gamal et al. studied the throughput and delay under random walk model.
It was shown that the ratio of delay and throughput is Θ(N) for throughput of O( 1√

N logN
),

while the delay remains Θ(N logN) for almost any throughput of a higher order, indicating
an unsmooth tradeoff under random walk model. Similar insights can be obtained for
Brownian motion. In [127], Lin et al. first derived a lower bound of Ω(logN/σ2) for average
delay associated with capacity of Θ(1) by using the two-hop relaying scheme proposed

2Redundancy of the packet means extra copies of the original packet, which are issued by the source
node.
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Table 2.4: Summary of capacity-delay tradeoffs for random ad hoc networks

Two-hop delay Critical delay Any tradeoff?

i.i.d Mobility Θ(N logN) [125] Θ(1) [124] Yes
Random walk Θ(N logN) [125] Θ(N logN) [125] No

Random way-point Θ(N)* [126] ≈ Θ(
√
N) [117] Yes

Brownian motion ≈ Θ(N) [117] Θ(N) [120] No
Discrete random direction (α) Θ(N) [117] ≈ Θ(Nα+0.5) [117] Yes
Hybrid random walk (β) Θ(N) [117] Θ(N2β log logN) [117] Yes

Lévy walk (γ) ≈ Θ(N) [120] Θ(N
1
2 ) for 0 < γ < 1;

Θ(N
γ
2 ) for 1 ≤ γ < 2 [120] Yes

Lévy flight (γ) ≈ Θ(N) [120] Θ(N
γ
2 ) [120] Yes

* The result is for the case in which the velocity does not scale with the network size.
** α ∈ (0, 0.5), β ∈ (0, 0.5) and γ ∈ (0, 2].

in [88], where σ2 is related to the Brownian mobility model. More importantly, they
demonstrated that it is impossible to reduce a large amount of delay without dropping
the throughput to O( 1√

N
). From [125] and [127], significant increase in delay cannot be

circumvented if a larger throughput than Θ( 1√
N

)3 is desired by using random walk mobility

or Brownian motion. Without showing any tradeoff, Sharma and Mazumda [126] analyzed
the average delay of the two-hop relaying scheme in a network of N nodes following random
way-point mobility.

To further investigate the impact of node mobility on throughput capacity and delay,
Sharma et al. [117] proposed two general classes of mobility models, i.e., hybrid random
walk models and discrete random direction models, incorporating mobility models afore-
mentioned in [122, 125, 127]. The objective of this systematical study is to inquiry how
much delay the network has to bear to achieve a per-node capacity better than Θ( 1√

N
)

under different mobility models, resulting in the notion of critical delay. Considering that
the worst performance in network delay is incurred by the two-hop relaying scheme (two-
hop delay), however, with an optimal throughput, the room left for tradeoff is actually
determined by these two important delays. In [117], it was shown that tradeoffs are neg-
ligible under random walk model and Brownian motion, as also shown in [125] and [127],
respectively; However, the tradeoff between delay and capacity is quite smooth under i.i.d.
mobility and random way-point model. In [120], Lee et al. studied the delay-capacity
tradeoffs under Lévy mobility. By using the limiting features of the joint spatio-temporal

3This throughput scaling is achievable in static random ad hoc networks.
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Figure 2.5: Tradeoff regions for a particular mobility parameter under different mobility
models

probability density functions of Lévy models, they derived the critical delay under Lévy
walk and Lévy fight, respectively. It was shown that smooth tradeoffs can be obtained
and are determined by the distribution parameter related to Lévy mobility. A summary
of delay-capacity tradeoffs for random ad hoc networks is given in Table 2.4. Fig. 2.5 also
shows delay-capacity tradeoff regions under different mobility models.

2.3.3 Impact of Restricted and Correlated Mobility

The mobility models considered in aforementioned delay-capacity studies rely on the fol-
lowing assumptions: i) the mobility pattern of each node is identical; ii) following certain
ergodic mobility process, each node can visit the entire network area equally likely; and iii)
the movements of different nodes are independent. There have been several efforts made by
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follow-up investigations to relax these assumptions and then find the impact of restricted
and correlated mobility on delay and throughput performance in ad hoc networks.

Restricted Mobility: By noticing that nodes often spend most of the time in proximity of
a few preferred places within a localized area, some researchers have studied the through-
put and delay under the restricted node mobility, which is more realistic to characterize
mobility traces of humans, animals, and vehicles. Li et al. [128] investigated the impact of
a restricted mobility model on throughput and delay of a cell-partitioned network. They
found that smooth throughput-delay tradeoffs in mobile ad hoc networks can be obtained
by controlling the mobility pattern of nodes. Unlike the network in [129] showing ho-
mogeneous node density, Garetto et al. have done a series of research [130–134] on the
network with heterogeneous node density under restricted mobility model. The capacity
scaling of a class of mobile ad hoc networks which show spatial inhomogeneities by con-
sidering a cluster mobility model was analyzed in [132] and [133]. In [134], Garetto and
Leonardi demonstrated that the delay-throughput tradeoffs can be improved by restricting
the node mobility. They considered a restricted mobility that the node moves around a
fixed home-point according to a Markov process, and the stationary distribution of the
node location decays as a power law of exponent δ with the distance from the home-point.
They showed that it is possible to exploit node heterogeneity under a restricted mobility
model to achieve Θ(1/ log2 (N)) throughput capacity and O(log4 (N)) delay by using a
sophisticated bisection routing scheme.

Correlated Mobility: Instead of exploring the full range of possible capacity-delay trade-
offs, Ciullo et al. [118] studied the impact of correlated mobility on performance of delay
and throughput capacity. They considered a mobility model in which nodes in the network
are grouped and each group, occupying a disc area, moves following i.i.d mobility. Although
each node visits uniformly the entire network, movements of different nodes belonging to
the same group are not independent. It was shown that the correlated mobility pattern
has a significant impact on asymptotic network performance and it is possible to achieve
better delay and throughput performance than that shown in [123].

2.3.4 Delay and Capacity Scaling without Exploiting Mobility

In [125], El Gamal et al. established delay-capacity tradeoffs for static ad hoc networks.
It was shown that the tradeoff when applying multi-hop schemes is given by D = Θ(Nλ),
where λ and D are respectively the throughput and delay. Following [77], throughput and
delay tradeoff by means of hierarchical cooperation has been studied in [135], showing that
D = N log2(N)λ for λ between Θ( 1√

N logN
) and Θ( 1

logN
). To serve delay sensitive traffic,
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Comaniciu and Poor [136] reported the delay-constrained capacity scaling of mobile ad
hoc networks. Without taking advantage of mobility, they exploited multiuser detection
among other signal processing techniques to enhance user capacity.

2.4 Infrastructure Matters: Capacity and Delay of

Hybrid Wireless Networks

Unlike pure ad hoc networks of homogeneous nodes operating in the same manner, hybrid
wireless networks consist of at least two types of nodes functioning differently. After [58],
significant efforts have been made to investigate capacity and delay scaling considering
node heterogeneity, i.e., for hybrid networks, including wireless ad hoc networks with in-
frastructure aiding nodes, ad hoc networks with wireless helping nodes, multihop acess
networks, and cognitive radio networks, among others.

2.4.1 Ad Hoc Networks with Supportive Infrastructure

It has been shown that adding wired infrastructure nodes, such as base stations, to ad hoc
networks can render significant benefits in terms of both throughput capacity and delay.
In the context of related investigations, the fixed infrastructure supports the underlying
ad hoc networks by relaying their packets, rather than access points to the Internet. The
advantage of infrastructure nodes is to overcome geographic limitations since the packet
can be relayed over a long distance through high-bandwidth wired links, as a complement
of local ad hoc delivery.

Liu et al. [137] initiated the study on capacity scaling of hybrid wireless networks.
By placing N stationary nodes and M base stations in the network, they found that the
throughput capacity increases linearly with M if M = ω(

√
N), otherwise the improvement

is negligible. Different from the hexagonal cell structure of base station in [137], access
points in [138] are randomly distributed in the network and the results show that it is
possible to achieve a throughput of Θ( 1

logN
) under the condition that the number of ad

hoc nodes associated with each access point is upper bounded. Allowing power control,
a constant throughput of Θ(1) is reported in [139]. In [140], Toumpis derived capacity
bounds of hybrid wireless networks assuming randomly located access points and a general
fading channel model and reported very similar results to those in [137]. In [1], Zemlianov
et al. provided upper bounds of per-node throughput capacity for the network of randomly
distributed ad hoc nodes and base stations placed in any deterministic fashion. By allowing
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Table 2.5: Scaling regimes shown in [1]

Regime Number of infrastructure nodes Per-node throughput capacity

i) M .
√
N/ logN Θ(1/

√
N logN)

ii)
√
N/ logN .M . N/ logN Θ(M/N)

iii) M & N/ logN Θ(1/ logN)

power control of base stations, they determined three scaling regimes as shown in Table
2.5. It can be seen that there is no need to deploy any infrastructure for regime i), since
the throughput is achievable by only leveraging ad hoc communications; and for regime
iii), adding more infrastructure nodes does not make any improvement in throughput, at
least in the order sense.

Table 2.6: Impact of network geometry [2]

Network geometry Number of BS Throughput capacity Average delay

1-D network & M logM = O(N) Ω(M/N) O(N/M logN)
2-D strip with M logM = ω(N) Ω(1/ logM) O(N/M logN)
strip width of o(logN)

2-D square & M = O(
√
N) Ω(1/

√
N) O(

√
N)

2-D strip with M = ω(
√
N) Ω(min{M/N, 1/ logM}) O(

√
N/M logN)

strip width of Ω(logN)

By noting that previous studies usually consider a two-dimensional square or disk net-
work area, Liu et al. [2] investigated the impact of network geometry on capacity scaling
by exploring one-dimensional networks and two-dimensional strip networks with regularly
placed base stations. The main implications of theirs results (shown in Table 2.6) are:
i) for the one-dimensional network, even a small number of supportive base stations can
significantly increase the per-node throughput capacity; and ii) for a two-dimensional strip
network, depending on the width of the strip, the behavior of capacity scaling is the same
as that of either the one-dimensional network or the two-dimensional square network. The
upper bound of average packet delay for each type of network was also derived, as shown in
Table 2.6. Impacts of both network topology and traffic pattern were considered in [141].
Traffic patterns differ from each other in number of destination nodes in the network. The
capacity scaling is determined by the number of base stations, the shape of network area,
and the traffic pattern. Moreover, the impact of base station placement, i.e., regular or
random placement, was also considered in [141].
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Table 2.7: Scaling regimes shown in [3]

Regime Number of base stations Throughput capacity Average delay

i) M = O(N/ logN) Ω(
√

M
N logN ) Ω(

√
N

M logN )

ii) M = Ω(N/ logN) Ω(M/N) O(1)

An important implication of results shown in [1, 2, 137, 138, 140, 141] is that capacity
gain will be insignificant if the number of infrastructure nodes placed in a square or disk
network area grows asymptotically slower than certain threshold. By pointing out that
such a “threshold” comes from the underutilization of the capability of base stations, Shila
et al. [3] provided a better capacity and delay scaling, as shown in Table 2.7. The basic
strategy they adopted is to deliver a packet to the nearest base station through multiple
hops, in contrast to the one-hop transmission from the node to the associated base station
assumed in previous studies, which yields a sublinear capacity scaling with the number of
base stations.

Li et al. [142] revisited capacity and delay scaling in hybrid wireless networks by ex-
ploiting an L-maximum-hop routing strategy. Specifically, if the destination can be reached
within L hops, packets from the source are delivered without relying on any infrastructure
node. More importantly, it was shown that without degrading throughput, network delay
can be improved substantially, however, at the expense of built infrastructure. It is pos-
sible to achieve both constant throughput and delay in this type of networks. By using
the L-maximum-hop routing strategy as well, Zhang et al. [143] studied the throughput
capacity for a network of N randomly distributed nodes, each of which is equipped with a
directional antenna, and M regularly placed base stations. By analyzing the relationship
between L, M , and directional antenna beamwidth θ, they showed a “threshold” result
on impacts of directional antenna, i.e., throughput gain can be achieved by implement-
ing directional antenna only when the number of base stations grows slower than certain
threshold. Multiantenna systems were also considered. In [144], Shin et al. investigated
the capacity scaling in the network with supportive base stations, at each of which the
number of antennas scales at arbitrary rates relative to N . It is beneficial to exploit the
spatial dimension of infrastructure by deploying multiple antennas, which enable simulta-
neous uplinks, at each base station. Wang et al. in [145] considered the impact of fading
impairments when operating hybrid wireless networks where base stations are deployed to
support long-range communications between ad hoc nodes. The throughput capacity of
mobile hybrid networks was reported in [146], in which the mobility model considered is
similar to that in [134].

32



Normal nodes

Aiding nodes

Wireless backbone link

Source 

Destination
Wireless ad hoc link

Up link

Downlink link

Traffic flow

Figure 2.6: Ad hoc network supported by wirelessly connected aiding nodes

2.4.2 Ad Hoc Networks with Wireless Aiding Nodes

Deploying wired infrastructure to support ad hoc networks may incur a prohibitive cost
which is always an important concern of building real-world communication networks.
Moreover, under some emergency (e.g., earthquake) or extreme (e.g., underwater) cir-
cumstances, infrastructure is typically unavailable. Therefore, a potential substitute is to
deploy a set of aiding nodes which are wirelessly connected and more powerful than normal
nodes, as shown in Fig. 2.6. A natural question arises in the context: how much capacity
gain can be achieved? To answer this question, Li et al. [147] studied the throughput
capacity of ad hoc networks with the deployment of wireless helping nodes. Other specific
network features considered in [147] are rectangular network area, both regular and ran-
dom placement of helping nodes, and asymmetric traffic in which the number of destination
nodes can scale at a lower rate than Θ(N), all of which have large impacts on throughput
capacity. The main result of [147] illustrates that it is possible to achieve higher per-node
throughput than that of pure ad hoc networks when the allocated bandwidth of helping
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nodes scales at a much higher rate than Θ(1). In [148], Zhou et al. provided another
promising solution of wireless mesh structures. In such a hierarchical wireless mesh net-
work, mesh clients (normal nodes) are uniformly distributed, and mesh routers (aiding
nodes) constitute a wireless mesh backbone, some of which can function as infrastructure
gateways. Asymptotic throughput was derived and represented by the number of mesh
clients, the number of mesh routers, and the number of mesh gateways. Relying on only a
small number of mesh gateways, it was shown that such a mesh network can achieve the
same throughput capacity as that of a hybrid infrastructure-based network, however, with
a much lower cost. Literature [149] investigates a special scenario in which there exists only
one active source-destination communication pair, and all remaining nodes act as aiding
nodes. A constant capacity scaling is proved for that particular case.

2.4.3 Multihop Access Networks

Unlike ad hoc networks with supportive infrastructure nodes which do not generate or
consume any data traffic, multihop access networks consist of infrastructure gateways
bring/routing data traffic from/to the outside, such as Internet. Moreover, ad hoc trans-
missions between normal nodes are enabled and expected to enhance performance of such
access networks, including capacity, coverage, and connectivity. To justify the benefit of
augmenting access networks with multihop wireless links, Law et al. [150] investigated the
downlink capacity of multihop cellular networks with regular placement of normal nodes
and base stations. Due to poor spatial reuse, it was shown that one-dimensional multi-
hop cellular networks yield almost no capacity gain compared to pure cellular networks.
However, it is possible to significantly improve capacity of hexagonal hybrid network by
exploiting multihop wireless links. By analyzing mathematically, they also found that ca-
pacity scaling in this type of networks mainly depends on the coverage of the base station,
the transmission range of ad hoc links, and bandwidth allocation between different types
of links. As a follow-up effort, Li et al. in [151] investigated capacity scaling for multihop
cellular networks of randomly placed base stations and normal nodes distributed following
a general inhomogeneous poisson process (IPP). In addition, throughput capacity was ana-
lyzed under different fairness constraints: i) throughput-fairness, making throughput equal
over all the nodes; and ii) bandwidth-fairness, which guarantees that each node has equal
allocated bandwidth. A “log2N” result was shown in [151], i.e., multihop cellular network-
s with regular placement of nodes and base stations achieve higher per-node throughput
than pure cellular networks by a scaling factor of log2N , regardless the underlying fairness
constraint. For the network with heterogeneous node distribution, it is possible to obtain
the “log2N” result under certain conditions.
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2.4.4 Cognitive Radio Networks

Nowadays, the demand on the frequency spectrum is increasingly difficult to meet due to
scarce and underutilized spectrum resources. Cognitive radio is a paradigm created in an
attempt to enhance spectrum utilization, by enabling unlicensed users to opportunistically
utilize the spectrum bands owned by licensed users [152]. In cognitive radio networks,
licensed users and unlicensed users are referred to as primary users (PUs) and secondary
users (SUs), respectively. With overlapping primary and secondary networks operating
simultaneously, capacity and delay scaling laws of cognitive radio networks need to be
investigated carefully.

By only allowing single-hop communication between a pair of SUs, Vu and Tarok [153]
showed that the aggregate throughput of SUs can scale linearly with the number of SUs in
the presence of a single or multiple pairs of primary transmitter (TX) and receiver (RX).
In [154], Jeon et al. considered an ad hoc primary network of N randomly distributed
PUs overlapped with an ad hoc secondary network of M randomly distributed SUs. As-
suming M is much larger than N , they showed that an aggregate throughput of Θ(

√
N) is

achievable for the primary network, and in the meantime, the aggregate throughput of the
secondary network is Θ(M

1
2
−δ), for any arbitrarily small fraction of outage δ. The main

implication of their result is that both two networks have almost the same capacity scaling
as if each were a single network, given that one is much denser than the other. Another
assumption made in [154] is that SUs know the locations of primary RXs. However, such
prior knowledge is typically unavailable in practical scenarios. Instead, Yin et al. [155]
studied capacity scaling of cognitive radio networks on the assumption that the locations
of primary TXs are available to SUs and obtained very similar results to those in [154].
Huang and Wang [156] considered a more general model of cognitive radio networks, where
the primary network can be different types, including classic static network, network with
random walk mobility, and hybrid network, among others. Within this scope, they showed
that the secondary network can attain the same asymptotic capacity and delay as stan-
dalone networks. The literature [157] is different from previous works in twofold. First,
SUs are mobile and follow a specific heterogeneous speed-restricted mobility model. Sec-
ond, cooperative communications are enabled so that SUs are allowed to relay packets for
PUs. By exploiting the mobility heterogeneity of SUs, it was shown that almost constant
capacity and delay scalings (except for poly-logarithmic factors) are possible in such a kind
of cognitive radio networks.
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2.5 Summary

This chapter has surveyed the existing literature for scaling laws of throughput capacity for
both ad hoc wireless networks and wireless networks with communication infrastructure.
It has also presented a comprehensive overview of capacity-delay tradeoffs under a variety
of mobility models. Extensive comparisons of existing results have been done to reach a
better understanding.
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Chapter 3

Capacity of Delay-Tolerant Vehicular
Networks with Socialized Mobility

Mobility of vehicles facilitates the store-carry-and-forward delivery of information in ve-
hicular networks. In this chapter, we investigate the capacity of delay-tolerant vehicular
networks in which services/applications are delay-tolerant and can be delivered in a store-
carry-and-forward fashion. In addition, we specifically consider the social-proximity fea-
ture of the network which consists of N vehicles moving and communicating on a scalable
grid-like street layout following the social-proximity model: each vehicle has a restricted
mobility region around a specific social spot, and transmits via a unicast flow to a des-
tination vehicle which is associated with the same social spot. Furthermore, the spatial
distribution of the vehicle decays following a power-law distribution from the central social
spot towards the border of the mobility region. With vehicles communicating using a vari-
ant of the two-hop relay scheme, the asymptotic bounds of throughput capacity and the
average end-to-end delay are derived in terms of the number of social spots, the size of the
mobility region, and the decay factor of the power-law distribution. By identifying these
key impact factors of performance mathematically, we find three possible regimes for the
throughput capacity and the end-to-end delay. It is shown that although the throughput
and delay may degrade in a high density area, it is still possible to achieve almost constant
scaling for per-vehicle throughput and end-to-end delay, i.e., such a network is truly scal-
able. Moreover, it is shown that inherent mobility patterns of vehicles have considerable
impact on network performance.
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3.1 Introduction

We consider the following challenging features of VANETs in this chapter. Firstly, in
VANETs, vehicles have map-restricted and localized mobility with specific social fea-
tures. Notably, for most of the time, a vehicle only moves within a bounded region related
to the social life of the driver. For example, a vehicle often moves within a small area
daily close to the driver’s home, the work place or the city center. Such a mobility feature
has also been reported in [158] based on the analysis of the real-world mobility trace of
taxis in the city of Warsaw, Poland. It is observed that the mobility of taxis is typically
around certain social spots. Secondly, VANETs show high spatial variations of vehicle
density [19]. The analysis of the Warsaw trace data in [158] also reveals that the density
of vehicles within the proximity area of social spots is much higher than on average and
follows the empirical heavy-tailed distribution. Thirdly, we consider delay-tolerant applica-
tions running on top of the VANET, many of which are proximity-related, such as traffic
information publishing and localized social content sharing, since it is neither practical nor
necessary to maintain a long-lasting unicast communication flow among vehicles over a
long-distance. Although VANETs have received extensive attentions, the in-depth inves-
tigations on scaling laws on throughput capacity and end-to-end delay are very limited.
Such scaling laws are critical to predict network performance in face of the large-scale net-
works of connected vehicles [60]. Thus, it is desirable to know the fundamental capability
of VANETs for supporting delay-tolerant applications especially with the specific features
aforementioned, which motivates our work. (Refer to Chapter 1 for related works).

In this chapter, we investigate the throughput capacity and average packet delay of
the social-proximity urban VANET. Specifically, we model the urban area as a scalable
grid with equal-length road segments and a set of social spots. Considering the localized
and social features of vehicle’s mobility, we apply a restricted mobility model to each
vehicle surrounding a fixed social spot with the spatial stationary distribution of the vehicle
following a power-law decay from the social spot to the border of the mobility region. Over
this network model, we consider the delay-tolerant proximity applications such that the
data traffic is delivered through unicast flows; and for each unicast flow, its source and
destination vehicles belong to the same social spot. With a variant of the two-hop relay
scheme [122] applied, we derive the bounds of throughput capacity and average packet
delay, and show how the scaling laws depend on the inherent mobility pattern of the
network which is characterized by the number of social spots, size of the mobility region,
and the decay factor of the spatial distribution. The main contributions are three-fold:

• Our work represents the first theoretical study on the social-proximity vehicular net-
works. As vehicular communications are intensively affected by the social behaviors
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Figure 3.1: A grid-like street layout

of drivers, we argue that to accurately model the social features of vehicle mobility
is crucial for the study of vehicular communications.

• We provide a generic modeling framework to unveil the asymptotic performance
limits of the social-proximity vehicular networks. We obtain the bounds on per-
vehicle throughput, average per-vehicle throughput, and average packet delay.

• The attained asymptotic property of capacity and delay can be used to predict net-
work performance and provide guidance on design and analysis for different applica-
tion scenarios of VANETs.

The remainder of this chapter is organized as follows: In Section 3.2, we introduce
the system models. Section 3.3 summarizes the main results of this work. We analyze
the asymptotic throughput capacity and delay with the proposed two-hop relay scheme in
Section 3.4. Section 3.5 gives a brief summary.

3.2 System Model
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Table 3.1: Summary of Notations for Chapter 3

Notations Description

N Number of vehicles in the network
M Number of parallel roads in the grid
G Number of road segments in the grid
C Number of street blocks in the grid
ψ Network density
V Number of social spots
S Set of social spots, S = {S1, . . . , SV }
Hk Vehicle k’s social spot, Hk ∈ S
ν Exponent of V
κ Exponent of A
A Outermost tier of vehicle’s mobility region
π′α Steady-state location probability of each vehicle on a segment of Tier(α)
γ Decay factor
r Communication radius of the vehicle
∆ Guard factor
Φ Family of social-proximity VANETs
λ(Φ) Per-vehicle throughput

λ̃(Φ) Average per-vehicle throughput
pac Probability of a randomly selected road segment being active at a time

slot
dNi Vehicle density of road segment i
dNi Lower bound of dNi
d
N

i Upper bound of dNi
Fi Rectangular area of 2A(2A− 1) street blocks centered at road segment i
F s
i Number of social spots in Fi
Svj Number of S-D pairs associated with social spot Sj
Ni Number of vehicles on road segment i during a time slot
N SD
i Number of S-D pairs on road segment i during a time slot

P (Φ) Average number of road segments where there are at least two vehicles
during a time slot

Q(Φ) Average number of road segments where there is at least one S-D pair
during a time slot
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3.2.1 Street Pattern

The geographic area where the network is deployed is modeled as a grid-like street layout,
which consists of a set of M vertical roads intersected with a set of M horizontal roads,
as shown in Fig. 3.1. Each line segment of equal length represents a road segment with
bi-directional vehicle traffic. The grid street pattern is very common in many cities, such
as Houston and Portland [159]. In the model, M is used to characterize the scale of the city
grid. For example, M is roughly 100 for the downtown area of Toronto [160]. In addition,
the city grid is considered as a torus of unit area to eliminate the border effects, which is
a common practice to avoid tedious technicalities [134].

Let C denote the number of street blocks in the grid. The total number of road
segments (the road section between any two neighboring intersections) is therefore G =
2C = 2(M − 1)2. We define the network density ψ = N

G
= N

2(M−1)2
, where N is the

total number of vehicles on the roads. Since N would tend to infinity in the asymptotic
study, the city size, determined by M , cannot be fixed and should be scalable as well. Let
Θ(1) ≤ ψ ≤ o(N) to avoid two extreme cases which are not practical in real-world scenarios:
1) when ψ = o(1), the city size increases faster than the population of vehicles; and 2)
when ψ = Θ(N), the city size is fixed such that the network density will become extremely
high when more and more vehicles appear in the city. Note that ψ can represent the
average vehicle density on each road segment. However, as each vehicle moves following the
mobility model with social features, the spatial distribution of vehicles is inhomogeneous,
as examples shown in Fig. 3.3(b) and 3.3(c). It can be seen that a network with a very
large M and a relatively large ψ can represent metropolitan areas like New York City;
whereas for a small town, M and ψ are relatively small. Therefore, from a macroscopic
view, the grid street pattern with different values of M and ψ can model urban scenarios
of different scales. A summary of the mathematical notations used in this chapter is given
in Table 3.1.

3.2.2 Socialized Mobility Model

Markovian Mobility Pattern

We consider a time-slotted communication system, where time is slotted with equal dura-
tion. The road segments are indexed from 1 to G and vehicle nodes are indexed from 1
to N . Vehicles move independently from each other in the city. The mobility of a vehicle
k follows a discrete time Markovian process, denoted by Ck, k ∈ {1, 2, . . . , N}, which is
uniquely represented by a one-dimensional G-state ergodic Markov Chain. Ck(t) = i if
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vehicle k appears on road segment i, i ∈ {1, 2, . . . , G}, at time slot t, t ∈ {1, 2, . . . , T}. Let
P ij
k denote the transition probability that vehicle k moves from road segment i to the next

road segment j, j ∈ {1, 2, . . . , G}. Let Pk = {P ij
k }G×G denote the transition probability

matrix of Ck; the element P ij
k in Pk is non-zero only if j is a neighboring road segment

of i. The steady-state location distribution of vehicle k is πk = {πk(i)}1×G, where πk(i)
denotes the long-term proportion of time that vehicle k stays on road segment i. In our
analysis, we focus on the steady-state location distribution of the vehicles, since the ca-
pacity region only depends on how the node location distributes in the steady state [161],
and the Markovian mobility model converges to its steady-state location distribution at an
exponential rate [162].

Restricted Mobility Region with Social Spot

The mobility region of each vehicle is restricted and associated with a fixed social spot.
Geographically, the social spot is the center of a certain street block, as shown in Fig. 3.2.
Let V denote the number of social spots in the grid. We assume that all the social spots
in the grid are uniformly distributed and thereby do not consider the inhomogeneous
distribution of social spots in this study. Indexing all the street blocks from 1 to C,
we denote by S = {S1, S2, . . . , SV } ⊆ {1, 2, . . . , C} the set of social spots. Since we
are interested in the capacity order, let V = |S| = dCνe, where ν ∈ (0, 1]. Notably,
V = Θ((N/ψ)ν), which is represented by a power function of N . When ν = 1, all the street
blocks in the network contain a social spot. In addition, we consider all the intermediate
cases of ν between 0 and 1 in this research1. Each vehicle uniformly and independently
selects one social spot out of all the social spots. Let HN = (H1, H2, . . . , HN) denote
the vector which collects the locations of all the vehicles’ social spots, with each element
Hk ∈ S, denoting the index of the street block where vehicle k’s social spot is located. The
set S is fixed once the network is defined.

The mobility region of each vehicle consists of multiple tiers co-centered at its social
spot, as shown in Fig. 3.2. Tier(1) of the mobility region is collocated with the social
spot and contains four road segments. The adjacent street blocks surrounding Tier(1)
form Tier(2), and so on. We denote by Tier(A) the outermost tier of the mobility region,
where A = Θ(Mκ) = Θ((N/ψ)

κ
2 ) ≤ bM

2
c, κ ∈ [0, 1). When κ = 0, the size of the

mobility region is fixed and does not scale with the city grid. It can be easily derived that
Tier(α), α ∈ {1, 2, . . . ,A}, contains 16α − 12 road segments. Thus, the mobility of each
vehicle is constrained in A tiers with a total number of

∑A
α=1 16α− 12 = 4A(2A− 1) road

1We do not consider the extreme case in which ν = 0. When ν = 0, there is only one social spot in the
network.
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Figure 3.2: Restricted and socialized mobility with different tiers centered at a social spot
for a given vehicle.
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segments, and further the mobility region covers an area of (A + 1)2/C = Θ((N/ψ)κ−1).
For a randomly selected Tier(α), a vehicle has equal steady-state probability to appear on
each road segment. Let π′α denote the steady-state location probability of each vehicle on
one of the road segments of Tier(α). From Tier(1) to Tier(A), the steady-state location
probability of vehicles is modeled to exponentially decay as a power-law function with
exponent γ > 0. Therefore, we have π′α = α−γπ′1 which indicates that a vehicle is more
likely to stay in the area near its social spot. The same model has been used in [134] and
its accuracy is validated in [158] through real-world measurements. As the summation of
steady-state probability on road segments equals to 1, i.e.,

A∑
α=1

(16α− 12)π′α =
A∑
α=1

(16α− 12)α−γπ′1 = 1,

we have,

π′1 =
1∑A

α=1(16α− 12)α−γ
. (3.1)

Lemma 1 Given that κ > 0, as N → ∞, π′1 = Θ((N/ψ)−κ(1− 1
2
γ)), for 0 < γ < 2;

π′1 = Θ( 1
log(N/ψ)

), for γ = 2; π′1 converges to a constant value, for any γ > 2.

This lemma can be proved by applying results of partial sums of p-series [163]. Note
that when κ = 0, π′1 is constant for all γ. Under the socialized mobility model, the network
presents inhomogeneous vehicle densities. Fig. 3.3 illustrates the vehicle density when
vehicles are uniformly distributed and follow the socialized mobility model, respectively.

3.2.3 Traffic Model

We consider that there exist N unicast flows concurrently in the network. Each vehicle is
the source of one unicast flow and the destination of another unicast flow. We consider the
case in which the source and destination vehicles of each unicast flow have the same social
spot. This is motivated by the dominant proximity applications in vehicular communica-
tions. By doing so, the source and destination vehicles of each unicast flow are spatially
close to each other. Without loss of generality, N is considered to be even. We sort the in-
dex of vehicles such that vehicle k communicates with vehicle k+1, k ∈ {1, 3, 5, . . . , N−1},
and each communication pair independently and uniformly chooses a social spot from S.
The packet arrives in each unicast flow at an average rate η.
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Figure 3.3: Examples of homogeneous (a) and inhomogeneous (b) and (c) distributions of
vehicles in the network, in the case of N = 2000, M = 21, A = 10 and γ = 2.

3.2.4 Communication Model

Since the communication range of a vehicle is geographically limited in practice, the com-
munication radius should scale with M . Let r = 1

M−1
denote the communication radius

of each vehicle which can always cover the entire road segment, as shown in Fig. 3.4.
Without loss of generality, a pair of vehicles can communicate only when they are on the
same road segment at the same time slot, and the transmission spans the whole time slot.
Although the communication model has been simplified, such simplification does not affect
the order of throughput capacity and average packet delay derived in this chapter. The
success or failure of a transmission is determined by the protocol model defined in [58] as
follows. The transmission from vehicle i to vehicle j can be successful during time slot t
if and only if the following condition holds: dkj(t) ≥ (1 + ∆)r, for every other vehicle k
transmitting simultaneously, where dkj(t) denotes the Euclidean distance between vehicle
k and j at time slot t, and ∆ > 0 is the guard factor.

3.2.5 Definitions

We denote by Φ(N,ψ, γ,A(κ),S(ν),HN) the family of social-proximity VANETs. Let
Lk(T ) be the number of packets received by the destination of flow k, k ∈ {1, 2, . . . , N},
up to time T . An asymptotic per-vehicle throughput λ(Φ) of Φ is said feasible if there
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Figure 3.4: An example of non-interfering transmission group of road segments.

exist a scheduling policy and an N0 such that for any N > N0, we have,

lim
T→∞

Pr

(
Lk(T )

T
≥ λ(Φ),∀k

)
= 1. (3.2)

Furthermore, an average per-vehicle throughput λ̃(Φ) of Φ is said feasible if there exist a
scheduling policy and an N0, such that for any N > N0, the following holds

lim
T→∞

Pr

(∑N
k=1 Lk(T )

NT
≥ λ̃(Φ)

)
= 1. (3.3)

3.3 Summary of Main Results

This section presents the summary of our main results. The formal statement of the results
(Theorems 1, 2, and 3) and the derivations are given in Section 3.4.

The results of capacity and delay obtained in the analysis demonstrate three possible
regimes depending on different values of κ and ν, as shown in Fig. 3.5. Recall that the size
of mobility region and the number of social spots scale as Θ((N/ψ)κ−1) and Θ((N/ψ)ν),
respectively. i) Dense regime: when κ+ν > 1, the sum of all mobility regions associated
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Figure 3.5: Regimes for asymptotic performance limits with respect to κ and ν.

with different social spots is Θ((N/ψ)κ+ν−1) = ω(1), which indicates that V different
mobility regions are overlapped and fully cover the city grid; ii) Sparse regime: when
κ + ν < 1, the sum of all different mobility regions is o(1), which results in V typically
isolated mobility regions sparsely distributed in the city grid; and iii) Balanced regime:
when κ+ ν = 1, the sum of all different mobility regions has the same scale with the grid
area, making the mobility area of vehicles perfectly fit the grid area in the order sense.

A graphical representation of our results is reported in Fig. 3.6 and Fig. 3.7. The
results are shown in log-scale in terms of κ and ν, with ψ = Θ(1). For example, “-0.5”
corresponds to a throughput of Θ( 1√

N
). Fig. 3.6(a) shows the lower bound of the per-vehicle

throughput capacity for γ = 2. In the dense regime, bounds of per-vehicle throughput
capacity are dominated by κ given γ and ψ. It is observed that a large κ indicates a large
size of mobility region, which results in decrease in per-vehicle throughput because 1) the
contact probability of a pair of vehicles is reduced; and 2) different mobility regions are
largely overlapped so that potentially increase the vehicle density. In the sparse regime,
the performance is mainly dominated by ν. When ν tends to 1, the number of vehicles
associated with each social spot is significantly reduced, avoiding a high vehicle density in
the proximity of social spots. Therefore, the throughput performance is enhanced with a
large ν. The performance decreases in the sparse regime when κ+ ν tends to zero, due to
increasing empty area in the city grid where there is no any packet transmission occurs.
When κ+ ν = 1, the network achieves optimal bounds of per-vehicle throughput capacity,
since the geographic area of the city grid, i.e., the spatial resource of the network, is just
fully utilized for packet transmissions. From Fig. 3.6(b), the same insight on average packet
delay can be obtained. Therefore, it is possible to achieve almost constant (except for the
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polylogarithmic factor) per-vehicle throughput and average packet delay, i.e., in the case
of κ = 0 and ν = 1.
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Figure 3.6: Per-vehicle throughput and average packet delay

The average per-vehicle throughput represents a global performance metric of the net-
work with inhomogeneous vehicle densities. Fig. 3.7(a) and Fig. 3.7(b) demonstrate the
average per-vehicle throughput for γ = 2 and γ = 4, respectively. For γ = 2, almost
constant average per-vehicle throughput is achievable with high probability in the dense
regime. However, in this case, the per-vehicle throughput may degrade dramatically, as
shown in Fig. 3.6(a), in some hot area where is covered by a large number of different over-
lapped mobility regions. With a larger value of γ, e.g., γ = 4, the vehicles usually move
in a very limited area centered at the social spot. Due to the limited spatial resource, the
total number of concurrent transmissions is reduced. Therefore, the average per-vehicle
throughput decreases since the geographic area of the city grid is not fully used for packet
transmissions.

It has been shown that the performance metrics of interest depends on inherent mobility
patterns of the network. Notice that the parameters of the socialized mobility are not easy
to obtain, although they can be extracted from real-world mobility traces of vehicles. Once
the mobility pattern of the real-world scenario is determined, our results can be applied
to predict network performance, at least in the order sense. We provide an example
in the following. Consider a network of 104 vehicles with parameters of mobility model
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Figure 3.7: Average per-vehicle throughput

κ = 0.5, ν = 0.7, and γ = 2. The bandwidth of point-to-point link is 1 Mbps. From
the results obtained in the analysis, neglecting polylogarithmic factors and constant factor
ψ, a per-vehicle throughput of around 10 kbps is achievable. If we consider a duration
of 1 ms for each time slot, the time to deliver a packet could be from seconds to days.
We notice that the delay performance may not satisfy requirements of many applications.
It is important to note that there exists a throughput-delay tradeoff for a given mobility
pattern. The throughput and delay achieved in the example is under the proposed two-
hop relay scheme which is elaborated in Section 3.4. Better delay performance can be
obtained by using other forwarding schemes, such as multi-hop scheme with or without
packet redundancies, however, with a lower throughput. Considering another mobility
pattern where κ = 0.2 and ν = 0.8, the per-vehicle throughput is around 150 kbps and the
average packet delay could be at most several seconds. It can be seen that when κ and
ν tend to 0 and 1, respectively, the delay is small enough for many applications by using
the two-hop relay scheme, indicating that there is not necessary to sacrifice throughput to
improve the network delay. Therefore, another implication from our results is that it is
beneficial to design suitable forwarding schemes according to different mobility patterns of
the network.
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3.4 Asymptotic Capacity and Delay Analysis

In this section, a two-hop relay scheme is first proposed to delivery the packets from the
source to the destination. We then derive the bounds of per-vehicle throughput capacity
and average per-vehicle throughput, which are stated in Theorem 1 and 2, respectively.

3.4.1 Two-Hop Relay Scheme

All packets are transmitted by using a two-hop relay scheme X : a packet is either trans-
mitted directly from the source to the destination, or relayed through one intermediate
vehicle from the source to the destination. The packet transmission consists of two phases:

X -I: Each road segment in the network becomes “active” in every 1/pac time slots2.

X -II: For each active road segment where there are at least two vehicles,

1) if there exists at least one source-destination (S-D) pair on the road segment, one pair
is uniformly selected. If the source has a buffering packet for the destination, it transmits
the packet and deletes it from the buffer after the transmission; otherwise, the source stays
idle.

2) if there is no any S-D pair on the road segment, a vehicle, e.g., υA, is uniformly
selected out of all vehicles on this road segment to be the source or the destination equal-
ly likely, and in the meantime another vehicle, e.g., υB, is independently and uniformly
selected over the rest of vehicles to be the relay.

• If υA is the source, a source-to-relay transmission from υA to υB is scheduled. If υA
has a buffering packet to transmit, υA transmits the packet to υB and deletes the
packet from the buffer; otherwise, υA remains idle.

• If υA is the destination, a relay-to-destination transmission from υB to υA is scheduled.
If υB has a buffering packet destined for υA, υB transmits the packet to υA and deletes
the packet from the buffer; otherwise, υB remains idle.

We calculate the value of pac in the following, which is the probability of a randomly
selected road segment being active at a time slot. As shown in Fig. 3.4, we partition the
network into equal-size sub-areas. Each sub-area consists of β(β+1) street blocks where β

2A road segment is active when vehicles on the road segment can transmit successfully without any
interference of transmissions from other road segments. The value of pac is discussed later in the section.
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is an integer number. The road segments highlighted in each sub-area in Fig. 3.4 constitute
a non-interfering transmission group, such that simultaneous transmissions within one non-
interfering group do not interfere with each other. Totally, there are 2β(β+1) road segments
within one sub-area, and collectively 2β(β+1) non-interfering groups in the network. With
non-interfering groups transmitting alternately, each non-interfering group becomes active
every 1/pac = 2β(β + 1) time slots. This indicates that the vehicles on one specific road
segment obtain a transmission opportunity with probability pac at a randomly selected
time slot. With the grid scale of M , the minimum distance between any two neighboring
road segments of a non-interfering group is β

M−1
. By using the protocol model, we have

β/(M − 1) ≥ (1 + ∆)r.

With r = 1/(M − 1), we have β ≥ 1 + ∆. We set β = d1 + ∆e. By substituting it into
1/[2β(β + 1)], we have

pac = 1/(2d1 + ∆ed2 + ∆e).

3.4.2 Bounds of Per-Vehicle Throughput Capacity

In the following, we derive the bounds of the per-vehicle throughput capacity by using
the two-hop relay scheme X , which are formally stated in Theorem 1. We first obtain an
important result of vehicle density of a generic road segment (Lemma 3) by applying Cher-
noff bounds (Lemma 2) and the Vapnik-Chervonenkis Theorem which gives the uniform
convergence in the weak law of large numbers.

To characterize the vehicle spatial inhomogeneities of the network, inspired by [132],
we define the vehicle density (vehicles/road segment) of a generic road segment i by

dNi =
N∑
k=1

E[ICk(t)=i|HN ]. (3.4)

where ICk(t)=i is the indicator variable that takes value 1 if Ck(t) = i and 0 otherwise.

Lemma 2 (Chernoff bounds [164]) Let X be a sum of n independent random variables
{Xi}, with Xi ∈ {0, 1} for all i ≤ n. Write µ′ = E[X] = E[X1] + · · · + E[Xn]. Then for
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any 0 < ε ≤ 1,

Pr(X > (1 + ε)µ′) ≤ e−
ε2

2+ε
µ′ , and

Pr(X < (1− ε)µ′) ≤ e−
ε2

2
µ′ .

Lemma 2 is a well-known result and used to prove the following important lemma which
presents a bound of dNi .

Lemma 3 The following bounds of the vehicle density dNi hold w.h.p.3, ∀i ∈ {1, 2, . . . , G}:

i. when κ+ ν > 1,

dNi =


Ω(ψ), O(ψ(N/ψ)

1
2
κγ) 0 < γ < 2

Ω( ψ
log(N/ψ)

), O(ψ(N/ψ)κ

log(N/ψ)
) γ = 2

Ω( ψ

(N/ψ)κ(
1
2 γ−1)

), O(ψ(N/ψ)κ) γ > 2.

ii. when κ+ ν ≤ 1,

(a) κ = 0, dNi = O(ψ(N/ψ)1−ν log(N/ψ));

(b) κ 6= 0,

dNi =


O
( ψ log(N/ψ)

(N/ψ)ν+κ(1−
1
2 γ)−1

)
0 < γ < 2

O(ψ(N/ψ)1−ν) γ = 2

O(ψ(N/ψ)1−ν log(N/ψ)) γ > 2.

Proof. The proof of Lemma 3 consists of three parts in terms of different values of ν and
κ.

(i) 0 < ν < 1 and κ+ ν > 1:

We first show that Lemma 3 holds for 0 < ν < 1 and κ + ν > 1. Let Fi denote the
rectangular area of 2A(2A− 1) street blocks centered at road segment i, as shown in Fig.
3.8. If the social spot of vehicle k is not located in Fi, E[ICk(t)=i] = 0. In other words,
vehicles whose social spots are located in Fi contribute dNi . We denote by F s

i the number
of social spots contained in Fi. Intuitively, a social spot represents a mobility region of

3As N →∞, the probability of the event approaches 1.
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Figure 3.8: An example of one given road segment contained by different vehicles’ mobility
regions.

vehicles that are associated with this social spot. The vehicle density of a road segment
depends on how many mobility regions contain this road segment. Thus, the number of
social spot in an area plays an important role in determining the vehicle density of a road
segment, and further the throughput capacity. We first bound F s

i , for all i ∈ {1, 2, . . . , G}.
By definition, we have,

F s
i =

V∑
j=1

ISj∈Fi (3.5)

where ISj∈Fi , ∀j ∈ {1, 2, . . . , V }, are i.i.d Bernoulli random variables with expectation

µ = 2A(2A−1)
C

. Inspired by [132], from Lemma 2, we have

Pr
{
F s
i <

1

2
E[F s

i ] =
1

2
V µ
}
< e−

1
8
V µ, and

Pr
{
F s
i > 2E[F s

i ] = 2V µ
}
< e−

1
3
V µ < e−

1
8
V µ.
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Notably, µ = Θ((N/ψ)κ−1). By applying the union bound, we have

Pr
{⋂

i

{1

2
E[F s

i ] < F s
i < 2E[F s

i ]}
}

= 1−Pr
{⋃

i

{F s
i <

1

2
E[F s

i ] ∪ F s
i > 2E[F s

i ]}
}

≥ 1−
G∑
i=1

Pr
{
F s
i <

1

2
E[F s

i ] ∪ F s
i > 2E[F s

i ]
}

≥ 1−G2e−
1
8
V µ.

For κ+ ν > 1, G2e−
1
8
V µ → 0, as N →∞. Hence, w.h.p., we get

1

2
E[F s

i ] < F s
i < 2E[F s

i ], ∀i ∈ {1, 2, . . . , G}. (3.6)

Let Svj =
∑N−1

k=1 IHk=Sj denote the number of S-D pairs associated with social spot Sj,
where IHk=Sj , ∀k ∈ {1, 3, . . . , N −1}, are i.i.d Bernoulli random variables with expectation
1/V . From Lemma 2, for 0 < ε ≤ 1, we have

Pr
{(1− ε)N

2V
< Svj <

(1 + ε)N

2V

}
≥ 1− 2e−

ε2N
2(2+ε)V .

By applying union bound in the same manner,

Pr
{⋂

j

{(1− ε)N
2V

< Svj <
(1 + ε)N

2V
}
}

= 1−Pr
{⋃

j

{Svj <
(1− ε)N

2V
∪ Svj >

(1 + ε)N

2V
}
}

≥ 1−
V∑
j=1

Pr
{
Svj <

(1− ε)N
2V

∪ Svj >
(1 + ε)N

2V

}
≥ 1− V 2e−

ε2N
2(2+ε)V .
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Since V = Θ((N/ψ)ν) and ν 6= 1, V 2e−
ε2N

(2+ε)V → 0, as N →∞. Hence, w.h.p., we have

(1− ε)N
2V

< Svj <
(1 + ε)N

2V
, ∀j ∈ {1, 2, . . . , V }. (3.7)

By definition (3.4) and from (3.6) and (3.7), w.h.p., we obtain, ∀i,

1

2
V µ · (1− ε)N

V
· A−γπ′1 = dNi < dNi < d

N

i

= 2V µ · (1 + ε)N

V
· π′1

denoting by dNi and d
N

i the lower bound and upper bound of dNi , respectively. Letting

ε → ∞, we have dNi = Θ(π′1ψ(N/ψ)κ(1− 1
2
γ)) and d

N

i = Θ(π′1ψ(N/ψ)κ). Then (i) follows
according to Lemma 1.

(ii) ν = 1:

To prove Lemma 3 for the case in which ν = 1, we recall the Vapnik-Chervonenkis
Theorem [165]. Some relevant definitions are first provided. A Range Space is a pair
(X,F), where X is a set and F is a family of subsets of X. For any A ⊆ X, we define
PF(A), the projection of F on A, as {F ∩ A : F ∈ F}. We say that A is shattered by
F if PF(A) = 2A, i.e., if the projection of F on A includes all possible subsets of A. The
VC-dimension of F , denoted by VC-d(F) is the cardinality of the largest set A that F
shatters. If arbitrarily large finite sets are shattered, the VC dimension of F is infinite.

The Vapnik-Chervonenkis Theorem: If F is a set of finite VC-dimension and {Yj} is a
sequence of N i.i.d. random variables with common probability distribution P , then for
every ε, δ > 0

Pr

{
sup
F∈F

∣∣∣∣∣ 1

N

N∑
j=1

IYj∈F − P (F )

∣∣∣∣∣ ≤ ε

}
> 1− δ (3.8)

if

N > max

{
8VC-d(F)

ε
log

16e

ε
,
4

ε
log

2

δ

}
. (3.9)

We use the Vapnik-Chervonenkis Theorem to show that Lemma 3 holds for ν = 1.
Recall that Fi denotes the rectangular area of 2A(2A − 1) street blocks centered at road
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segment i.
∑N−1

k=1 IHk∈Fi , k ∈ {1, 3, . . . , N − 1}, is the number of S-D pairs whose social

spot falls into the region Fi. Pr(IHk∈Fi = 1) = 2A(2A−1)
C

= Θ((N/ψ)κ−1), ∀k. Let F be the
class of all such Fi rectangular areas. It is easy to show that the VC-dimension of F is at
most 4 [166]. Thus, ∀Fi,

Pr

{
sup
Fi∈F

∣∣∣∣∣
∑N−1

k=1 IHk∈Fi
N/2

− 2A(2A− 1)

C

∣∣∣∣∣ ≤ ε

}
> 1− δ.

The condition (3.9) holds when ε = δ = ∆ε log (N/ψ)
N/ψ

, where ∆ε := max{8VC-d(F), 16e}.
Thus, the Vapnik-Chervonenkis Theorem states that

Pr

{
sup
Fi∈F

∣∣∣∣∣
N−1∑
k=1

IHk∈Fi −Θ(ψ(
N

ψ
)κ)

∣∣∣∣∣ ≤ Θ(ψ log
N

ψ
)

}

> 1− ∆ε log (N/ψ)

N/ψ
.

We conclude that w.h.p., for κ = 0,

d
N

i = 2 max{
N−1∑
k=1

IHk∈Fi}π′1 = Θ(ψ log(N/ψ)), ∀i;

for 0 < κ < 1, dNi = Θ(π′1ψ(N/ψ)κ(1− 1
2
γ)) and d

N

i = Θ(π′1ψ(N/ψ)κ), ∀i. Hence, (ii) follows
according to Lemma 1.

(iii) 0 < ν < 1 and κ+ ν ≤ 1:

We apply the Vapnik-Chervonenkis Theorem in the same manner. From (3.5), we have,

Pr

{
sup
Fi∈F

∣∣∣∣∣
∑V

j=1 ISj∈Fi
V

− 2A(2A− 1)

C

∣∣∣∣∣ ≤ ε

}
> 1− δ.
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The condition (3.9) holds when ε = δ = ∆ε log (V )
V

= ∆ε log (N/ψ)
(N/ψ)ν

. Thus,

Pr

{
sup
Fi∈F

∣∣∣∣∣
V∑
j=1

ISj∈Fi −Θ((
N

ψ
)κ+ν−1)

∣∣∣∣∣ ≤ ∆ε log (
N

ψ
)

}

> 1− ∆ε log (N/ψ)

(N/ψ)ν
. (3.10)

Since κ + ν ≤ 1, we conclude that w.h.p., F s
i = O(log(N/ψ)), ∀i. From (3.7) and (3.10),

the upper bound of vehicle density d
N

i = Θ(π′1ψ(N/ψ)1−ν log(N/ψ)), ∀i, w.h.p.. Then (iii)
follows according to Lemma 1. �

Theorem 1 For the social-proximity grid-like VANETs, with the two-hop relay scheme X ,
the per-vehicle throughput λ(Φ) cannot be better than 1

2ψd1+∆ed2+∆e and w.h.p., we obtain

i. when κ+ ν > 1,

λ(Φ) =


Ω( 1

ψ(N/ψ)
1
2κγ

) 0 < γ < 2

Ω( 1
ψ(N/ψ)κ log(N/ψ)

) γ = 2, ψ = Θ(1)

Ω( log(N/ψ)
ψ(N/ψ)κ

) γ = 2, ψ = ω(1)

Ω( 1
ψ(N/ψ)κ

) γ > 2.

ii. when κ+ ν ≤ 1,

(a) κ = 0, λ(Φ) = Ω( (N/ψ)ν−1

ψ log(N/ψ)
);

(b) κ 6= 0,

λ(Φ) =



Ω( (N/ψ)ν−
1
2κγ−1

ψ log(N/ψ)
) 0 < γ < 1

Ω( (N/ψ)ν−
1
2κ−1

ψ
) γ = 1

Ω( (N/ψ)ν−κ(1−
1
2 γ)−1

ψ log(N/ψ)
) 1 < γ < 2

Ω( (N/ψ)ν−1

ψ log2(N/ψ)
) γ = 2

Ω( (N/ψ)ν−1

ψ log(N/ψ)
) γ > 2.

Proof. The proof consists of two parts. First, we apply Lemma 1 and Lemma 3 to derive
the lower bound of the per-vehicle throughput. Following the two-hop relay scheme X , the
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long-term throughput of flow k (denoting the source and destination of flow k by S and D,
respectively) is given by

λk(Φ) = lim
T→∞

Lk(T )/T

=
1

2
pac

G∑
i=1

Pr(Ni ≥ 2,N SD
i = 0|CD = i)πD(i)

1

Ni

+ pac

G∑
i=1

Pr(CS = i|CD = i)πD(i)
1

N SD
i

,

(3.11)

where Ni and N SD
i denote the number of vehicles and the number of S-D pairs on road

segment i in a time slot, respectively. Recall that πD(i) is the steady-state probability that
D stays on road segment i.

Let Ni denote the number of S-D pairs whose mobility region contains road segment
i. The probability of finding at least two vehicles and no any S-D pair on road segment i
given that D is on road segment i is given by, w.h.p., ∀i,

Pr(Ni ≥ 2,N SD
i = 0|CD = i)

≥ (1− π′1)

(
1−

(
1− 2π′1
Aγ + 2

( π′1
Aγ
)2
)Ni−1)

= (1− π′1)

(
1−

(
1 +

(
− A

γ

2π′1

)−1

+
1

2

(
− A

γ

2π′1

)−2
)− Aγ

2π′
1

(−2NiA−γπ′1+2A−γπ′1))
≥ (1− π′1)

(
1−

((
1 +

1

Z
+

1

2Z 2

)Z)−dNi −1/Z)
,

where we denote −Aγ/(2π′1) by Z . If dNi = ω(1), ((1 + 1/Z + 1/(2Z 2))Z )−d
N
i −1/Z → 0,

as N →∞. Hence, the event “Ni ≥ 2,N SD
i = 0|CD = i” holds w.h.p. when γ ≤ 2, and at

least with a constant probability 1−π′1 when γ > 2, according to Lemma 1. If dNi = Θ(1),

Pr(Ni ≥ 2,N SD
i = 0|CD = i) is lower bounded by (1 − π′1)(1 − e−d

N
i ). If dNi = o(1),

Pr(Ni ≥ 2,N SD
i = 0|CD = i)→ 0, as N →∞.

According to the results of partial sum of p-series, the probability of finding S and D
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on the same road segment during a slot is asymptotically given by

G∑
i=1

Pr(CS = i|CD = i)πD(i) =
G∑
i=1

πS(i)πD(i)

=
A∑
α=1

(16α− 12)α−2γπ′21 = π′21

A∑
α=1

( 16

α2γ−1
− 12

α2γ

)

=


Θ(π′21 (N/ψ)κ(1−γ)) 0 < γ < 1

Θ(π′21 log(N/ψ)) γ = 1

Θ(π′21 ) γ > 1.

(3.12)

Base on the analysis above, when dNi = Ω(1), ∀k, w.h.p. we have,

λk(Φ) ≥ c′pac

2d
N

i

G∑
i=1

πD(i) +
pac

d
N

i

G∑
i=1

πS(i)πD(i)

= c′pac/d
N

i +O(1)pac/d
N

i ,

where c′ is constant. Therefore, λ(Φ) = Ω(pac/d
N

i ), w.h.p.. When dNi = o(1), ∀k,

λk(Φ) ≥ pac(
G∑
i=1

πS(i)πD(i))/d
N

i .

Thus, w.h.p., we have

λ(Φ) = Ω(pac(
G∑
i=1

πS(i)πD(i))/d
N

i ).

From Lemma 1 and 3, the assert follows.

We then derive an upper bound of per-vehicle throughput considering any possible
stabilizing scheduling policies under X -I. Let Xd(T ) denote the number of packets delivered
in the network through direct transmissions from the source to destination, and Xr(T )
denote the number of packets delivered to the destination via relaying, during the interval
[0, T ]. Thus, provided the arbitrary and fixed ε > 0, there must exist arbitrarily large
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values of T such that the per-vehicle throughput λ (Φ) satisfies

Xd(T ) + Xr(T )

T
≥ Nλ(Φ)− ε. (3.13)

Let Y (T ) denote the total number of transmission opportunities during the interval [0, T ].
From (3.13), we have

1

T
Y (T ) ≥ 1

T
Xd(T ) +

2

T
Xr(T )

≥ 1

T
Xd(T ) + 2

(
(Nλ(Φ)− ε)− 1

T
Xd(T )

)
.

The first inequality holds since the relayed packet reaches to the destination through at
least two hops. Hence,

λ(Φ) ≤
1
T
Y (T ) + 1

T
Xd(T ) + 2ε

2N
,

i.e.,

λ(Φ) ≤ lim
T→∞

1
T
Y (T ) + 1

T
Xd(T )

2N
. (3.14)

Due to the transmission interference, the total number of transmission opportunities is
no larger than the maximum number of concurrent transmissions during [0, T ]. We have
limT→∞

1
T
Y (T ) ≤ Gpac. Similarly, we have limT→∞

1
T
Xd(T ) ≤ Gpac, where the equality

holds when there is always an S-D transmission on each road segment of a non-interference
group during each time slot. By plugging the inequalities into (3.14), we have

λ(Φ) ≤ Gpac +Gpac
2N

=
pac
ψ

= Θ(
1

ψ
). (3.15)

From (3.15), the per-vehicle throughput capacity of Φ cannot be better than Θ( 1
ψ

). �

3.4.3 Average Per-Vehicle Throughput

We next derive a lower bound of the average per-vehicle throughput λ̃(Φ), stated in The-
orem 2, based on the proposed two-hop relay scheme for γ ≥ 2, where the network shows
dramatic social features. To simplify the analysis, we let ψ = Θ(1) in this subsection, i.e.,

60



the network density keeps constant and does not scale up with the population of vehi-
cles. Considering all possible functions of ψ with the order of o(N) makes the derivation
very complex. The following lemmas (Lemma 4 to Lemma 8) are first presented to prove
Theorem 2.

Lemma 4 Let T be a regular tessellation of the network, whose elements Ti contains
d100N1−ν log(N)e street blocks. w.h.p., every element of T contains at least one social
spot.

Proof. Recall that each element Ti of T is a regular area containing d100N1−ν log(N)e
street blocks. Let T s

i denote the number of social spots contained in Ti. Applying the
Vapnik-Chervonenkis Theorem, ∀Ti,

Pr

{
sup

Ti∈T

∣∣∣∣T s
i

V
− 100N1−ν log(N)

C

∣∣∣∣ ≤ ε

}
> 1− δ.

Note that VC-d(T ) is at most 4. The condition (3.9) is satisfied when ε = δ = 50 log (N)
Nν .

Thus, ∀Ti,

Pr
{
T s
i ≥ 50 log(N)

}
> 1− 50 log (N)

Nν
.

The lemma follows as N →∞. �

We denote by P (Φ) = E[
∑G

i=1 INi≥2] the average number of road segments where there

are at least two vehicles during a time slot. Similarly, let Q(Φ) = E[
∑G

i=1 IN SD
i ≥1] denote

the average number of road segments where there is at least one S-D pair during a time
slot. Lemma 5 and 8 present a lower bound of P (Φ) respectively when ν 6= 1 and ν = 1.

Lemma 5 When ν 6= 1, w.h.p., we have,

P (Φ) =


Ω(N

2
γ

+ν(1− 2
γ

)/ log3(N)) κ+ ν > 1

Ω(Nν+ 2κ
γ / log(N)) κ+ ν < 1

Ω(N ν+ 2κ
γ+ϑ/ log(N)) κ+ ν = 1

where ϑ is a positive and arbitrarily small value.
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Proof. We consider a single social spot Sj in an area. Recall that Svj is the number of
vehicles associated with Sj. For road segment i in the mobility region of the vehicles, from
(3.7), we have,

Pr(Ni ≥ 2) = 1−Pr(Ni ≤ 1)

≥ 1− (1− π′B)
(1−ε)N
V − (1− ε)N

V
π′B(1− π′B)

(1−ε)N
V
−1

≥ 1− e−π′B (1−ε)N
V − π′B

(1− ε)N
V

e−π
′
B

(1−ε)N
V

+π′B

= 1− e−π′B (1−ε)N
V (1 + π′B

(1− ε)N
V

eπ
′
B)

where π′B = B−γπ′1 and B ≤ min{A, d10
√
N1−ν log(N)e} from Lemma 4. Further, it is

satisfied that π′B
N
V

= ω(1). Thus, letting ε→ 0, as →∞, the event “Ni ≥ 2” holds w.h.p..
Considering the regular tessellation T of the network, according to Lemma 4, w.h.p., we
have,

P (Φ) =
G∑
i=1

E[INi≥2] =
G∑
i=1

Pr(Ni ≥ 2)

≥ C

100N1−ν log(N)
· 1

4
· 4B(2B − 1) = Θ(

B2N ν

log(N)
).

(3.16)

For κ+ ν > 1, we choose B = Θ(N
1−ν
γ / log(N)). B can scale as Θ(N

κ
γ+ϑ ) for κ+ ν = 1.

When κ+ ν < 1, B can be Θ(N
κ
γ ). The lemma follows. �

Lemma 6 (Chebyshev’s Inequality) If X is a random variable with mean E[X] and vari-
ance Var(X), then, for any value k > 0,

Pr(| X − E[X] |≥ k) ≤ Var(X)

k2
.

Lemma 6 is well known and we use it to prove Lemma 7.

Lemma 7 When ν = 1, at least (1 − e−ψ)C social spots associate with at least one S-D
pair w.h.p..

Proof. We denote by IC =
∑C

i=1 ISvi =0 the number of social spots that are not selected

by any S-D pair in the network. Pr(ISvi =0 = 1) = (1 − 1
C

)
N
2 . Thus, the expectation and
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variance of ISvi =0 are E[ISvi =0] = (1− 1
C

)
N
2 and Var(ISvi =0) = (1− 1

C
)
N
2 − (1− 1

C
)N , respec-

tively. Next we need to determine the variance of IC . For any i 6= j, j ∈ {1, 2, . . . , C},
Cov(ISvi =0, ISvj =0) = E[ISvi =0ISvj =0]−E[ISvi =0]E[ISvj =0], where Cov(ISvi =0, ISvj =0) is the covari-

ance of variable ISvi =0 and ISvj =0. It is easy to get that E[ISvi =0ISvj =0] = (1 − 2
C

)
N
2 . Since

Cov(ISvi =0, ISvi =0) = Var(ISvi =0), we have

Var(IC) = Var

( C∑
i=1

ISvi =0

)
=

C∑
i=1

C∑
j=1

Cov(ISvi =0, ISvj =0)

=
C∑
i=1

Cov(ISvi =0, ISvi =0) + 2
C∑
i=1

∑
j<i

Cov(ISvi =0, ISvj =0)

= C

(
(1− 1

C
)
N
2 − (1− 1

C
)N
)

+ C(C − 1)

(
(1− 2

C
)
N
2 − (1− 1

C
)N
)

≤ C

(
(1− 1

C
)
N
2 − (1− 1

C
)N
)
.

The inequality holds because (1− 2
C

)
N
2 − (1− 1

C
)N = (1− 2

C
)
N
2 − (1− 2

C
+ 1

C2 )
N
2 ≤ 0. From

Lemma 6, choosing k = εC, we have

Pr(IC − E[IC ] ≥ εC) ≤ C[(1− 1
C

)
N
2 − (1− 1

C
)N ]

ε2C2
.

Note that E[IC ] = C(1− 1
C

)
N
2 . Thus,

Pr

(
IC
C
≥ (ρ+ ε)

)
≤ ρ− ρ2

ε2
· 1

C
,

where ρ = (1− 1
C

)
N
2 . Since N = 2ψC, as N →∞, ρ→ e−ψ. Therefore, we have

lim
N→∞

Pr(IC/C ≥ e−ψ) = 0,

i.e., the probability of IC being over a constant proportion of C tends to zero as N →∞.
The lemma follows. �

Lemma 8 When ν = 1, w.h.p., P (Φ) = Ω(N/ log2(N)) for γ = 2 and κ 6= 0; P (Φ) =
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Θ(N) for γ = 2 and κ = 0; P (Φ) = Θ(N) for γ > 2.

Proof. According to Lemma 7, we can obtain that w.h.p., there are at least 2(1− e−ψ)C
road segments, each of which belongs to a Tier(1) of vehicles’ mobility region. Let S denote
the set of road segments that are not contained in the mobility region of any vehicle. S̄ is
the complementary set of S in {1, 2, . . . , G}. Note that Pr(Ni ≥ 2) = 0, ∀i ∈ S. Thus,

P (Φ) =
G∑
i=1

E[INi≥2] =
G∑
i=1

Pr(Ni ≥ 2)

=
∑
i∈S

Pr(Ni ≥ 2) +
∑
j∈S̄

Pr(Nj ≥ 2)

= |S| · 0 +
∑
j∈S̄

Pr(Nj ≥ 2) ≥
∑
j∈S̄

π′21 ,

since for any j ∈ S̄, Pr(Nj ≥ 2) ≥ π′21 . The Lemma follows from Lemma 7. �

Theorem 2 For the social-proximity grid-like VANETs, with the two-hop relay scheme X ,
a bound of average per-vehicle throughput capacity λ̃(Φ) is given by w.h.p., i. when ν 6= 1
and γ ≥ 2,

λ̃(Φ) =


Ω(N

2
γ

+ν(1− 2
γ

)−1/ log3(N)) κ+ ν > 1

Ω(N ν+ 2κ
γ+ϑ
−1/ log(N)) κ+ ν = 1

Ω(N ν+ 2κ
γ
−1/ log(N)) κ+ ν < 1

and ii. when ν = 1, λ̃(Φ) = Ω( 1
log2(N)

), for γ = 2 and κ 6= 0; λ̃(Φ) = Θ(1) for γ = 2 and

κ = 0; λ̃(Φ) = Θ(1) for γ > 2.

Proof. Under the two-hop relay scheme X , we can use a decoupling queue structure,
similar to that in [122], to model each unicast flow, as shown in Fig. 3.9. Without loss of
generality, we consider that the packet arrival rate η follows the Bernoulli process. In other
words, in each unicast flow, one packet arrives with the probability η at the current slot,
and with the rest probability if there is no packet arrival. Hence, the source vehicle, e.g., vk,
can be represented as a Bernoulli/Bernoulli queue with packet arrival rate ηk and service
rate ζk. The buffering packet in the source is transmitted (served) to either its destination
directly or one of the relays within the mobility region of the source. The transmission
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Figure 3.9: A decoupling queue structure.

opportunity arises with probability ζk. Let rk1(N) denote the long term average rate at
which a direct transmission to the destination is scheduled to source vk, and rk2(N) denote
the long term average rate at which a source-to-relay transmission is scheduled to source
vk. The transmission opportunity arises at the rate ζk(N) = rk1(N) + rk2(N). As per the

definition, λ̃(Φ) =
∑N
k=1 ζk(N)

N
. Since the two-hop relay scheme X schedules a source-to-

relay transmission and a relay-to-destination transmission equally likely, the rate into the
relays is equal to the rate out of the relays. During each time slot, the total number
of transmission opportunities over the network is

∑N
k=1(rk1(N) + 2rk2(N)). Given that the

transmission opportunity arises on a road segment when it is active and at least two vehicles
are on it, we have,

pacP (Φ) =
N∑
k=1

(rk1(N) + 2rk2(N)). (3.17)

Since the two-hop relay scheme X schedules the source-to-destination transmission when-
ever possible, we have,

pacQ(Φ) =
N∑
k=1

rk1(N). (3.18)

From (3.17) and (3.18), we obtain
∑N

k=1 r
k
2(N) = pac(P (Φ)−Q(Φ))

2
and therefore

λ̃(Φ) =

∑N
k=1(rk1(N) + rk2(N))

N
=
pac(P (Φ) +Q(Φ))

2N
.
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Since P (Φ) ≥ Q(Φ) and from Lemma 5 and 8, the theorem follows. � Remark:

The average per-vehicle throughput is analyzed as a global metric to evaluate the network
performance with inhomogeneous vehicle density. For example, from Theorem 2, we can
attain that the constant per-vehicle throughput is feasible w.h.p. for Nf S-D pairs, where
Nf = Θ(N) ≤ N

2
, when ν = 1 and γ > 2. Due to the socialized mobility of vehicles and the

randomness of the locations of vehicle’s social spots, the network shows spatial variations
of vehicle density. Hence, the throughput performance of vehicles in different areas of the
city grid may be different. For example, in a hot area where is covered by a large number
of different overlapped mobility regions, the throughput of an S-D pair in that area may
drop significantly.

3.4.4 Average Packet Delay

We first analyze the average packet delay of a given unicast flow. The packet delay is
accounted starting from the time slot when the packet arrives at the source until the time
slot when the packet is delivered to its destination (including the queueing delay at the
source or relay vehicle).

Recall that the source vk can be represented as a Bernoulli/Bernoulli queue with arrival
rate ηk and service rate ζk. The expected number of packets buffered at the source is

Ek[ns] =
ηk(1− ηk)
ζk − ηk

. (3.19)

It has been shown in [122] that packets depart from the source at the rate of ηk when
the buffer of the source is stable. For a packet from the source, it is delivered to a relay

vehicle, e.g., vi, with the probability
rk2
ζk
· Pki, where Pki is the contact probability between

vk and vi. Therefore, the packet arrival rate to the relay vi is ηki =
ηkr

k
2

ζk
Pki. The packets

depart to the destination from the relay vi at the rate ζki = rk2Pki. This is because that the
source and the destination have the equal contact probability with the relay vehicles, and
moreover the packet injection rate from the source to the relays equals to that from the
relays to the destination, as shown in Fig. 3.9. With the packet arrivals and departures at
the relay vi following the Bernoulli process with mean rates ηki and ζki, respectively, the
average number of packets held by vi is

Eki[nr] =
ηki

ζki − ηki
=

ηk
ζk − ηk

. (3.20)
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Note that (3.20) holds for every relay. From Little’s law, the average packet delay of the
flow from vk is

Dk(N) =
Ek[ns] +Rk(N)Eki[nr]

ηk
=
Rk(N) + 1− ηk

ζk − ηk
, (3.21)

where Rk(N) is the total number of relay vehicles which have an overlapped mobility region
with source vk. As indicated by (3.21), the average packet delay is dependent of vehicle
density in the proximity region of a unicast flow.

We proceed to derive the lower bound and upper bound of the average packet delay of
the entire network. We neglect the queueing delay at the source vehicle and the propagation
delay in the calculation, as we are only interested in the packet delay caused by vehicles’
mobility.

Theorem 3 For the social-proximity grid-like VANETs, with the two-hop relay scheme X ,
w.h.p., we obtain the following bounds of the average packet delay D(N):

i. when κ+ ν > 1,

D(Φ) = O(ψ2(N/ψ)κ(2+γ));

ii. when κ+ ν ≤ 1,

D(Φ) = O
( ψ2 log2(N/ψ)

(N/ψ)2(ν−1)−κγ

)
, and

iii. D(Φ) = Ω((N/ψ)κ), for 0 < γ < 1; D(Φ) = Ω((N/ψ)κ/ log(N/ψ)), for γ = 1;
D(Φ) = Ω((N/ψ)κ(2−γ)), for 1 < γ < 2; D(Φ) = Ω(log2(N/ψ)), for γ = 2; D(Φ) = Ω(1),
for γ > 2.

Proof. The minimal delay of a flow is achieved when the source delivers the flow pack-
ets to its destination with the highest transmission priority. Moreover, the direct packet
transmission from the source to the destination has lower average delay compared to the
relay transmissions, with the condition that the contact probability between the source
and one of its relay vehicles is no larger than the contact probability between the source
and its destination. The source encounters the destination on the same road segment with
the probability PSD =

∑G
i=1 πS(i)πD(i). Therefore, the minimum packet delay is geometric

distributed with mean 1/PSD. According to (3.12), we obtain a lower bound of D(Φ).
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Next we derive an upper bound of the average packet delay. Let υA and υB be a given
pair of vehicles whose mobility regions are overlapped. υA intends to transmit a packet to
υB. The transmission between υA and υB can be scheduled during a time slot only when
the following three events occur at the same time: i) υA and υB are located on the same
road segment during the time slot; ii) that road segment is active in the slot; and iii) υA
and υB are both selected for a transmission from υA to υB. These three events occur with
probability φ1, pac and φ2 respectively. Thus, the distribution of the packet delay between
υA and υB can be treated as geometric with mean

1

φ1φ2pac
= O((

Aγ
π′1
d
N

i )2),

where φ1 cannot be lower than (A−γπ′1)2 and φ2 is Ω(1/(d
N

i )2). From Lemma 3, we can
attain an upper bound of D(Φ). The theorem follows. �

3.5 Summary

In this chapter, we have investigated the asymptotic capacity and delay for social-proximity
VANETs. We adopt a scalable city grid to deploy the VANET and consider a socialized
mobility model for each vehicle. The user applications have proximity nature, i.e., the
source and the destination of each flow have the same social spot. Under the proposed
two-hop relay scheme, the bounds of the per-vehicle throughput capacity and average per-
vehicle throughput have been derived with respect to different network parameters. We
have shown that the throughput capacity and delay of the network highly depend on the
inherent parameters of mobility patterns. Results in this chapter can be applied to predict
the network performance and provide guidance on the design and implementations for
large-scale VANETs.
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Chapter 4

Downlink Capacity of Vehicular
Networks with Access Infrastructure

Wireless access infrastructure, such as Wi-Fi access points and cellular base stations, plays
a vital role in offering pervasive Internet services to vehicles. However, the deployment
costs of different access infrastructure are highly variable. In this chapter, we analyze the
downlink capacity of vehicles and investigate the capacity-cost tradeoffs for the network
in which access infrastructure is deployed to provide a downlink data pipe to all vehicles.
Three alternatives of wireless access infrastructure are considered, i.e., cellular base stations
(BSs), wireless mesh backbones (WMBs), and roadside access points (RAPs). We first
derive a lower bound of downlink capacity for each type of access infrastructure. We then
present a case study based on an ideal city grid of 400 km2 with 0.4 million vehicles, in which
we examine the capacity-cost tradeoffs for different deployment solutions in terms of both
capital expenditures (CAPEX) and operational expenditures (OPEX). Rich implications
from the results provide fundamental guidance on the choice of cost-effective wireless access
infrastructure for the emerging vehicular networking.

4.1 Introduction

With growing awareness of road safety and the ever-increasing demand for high-speed mo-
bile Internet services, Internet connectivity is becoming a must-have feature of modern
vehicles. The telecommunication industry has responded promptly by using off-the-shelf
wireless technologies to establish a huge mass market of Internet-connected cars, which is
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expected to reach USD 131.9 billion by 2019 [5]. Not surprisingly, cellular technology, such
as 3G (UMTS, HSPA, HSPA+) and 4G (LTE), is the top choice for delivering Internet
service to cars due to its prominent role in providing reliable and ubiquitous mobile In-
ternet access. Very recently, via AT&T’s LTE network, General Motors’s LTE-connected
car has begun hitting the roads, powering many automotive telematics applications (e.g.,
emergency services and online diagnostics) [167]. However, the cellular network nowadays
faces an uphill battle against the explosive growth of mobile data traffic which has been
reportedly doubling each year in the last few years. Exploiting complementary spectrum
for vehicular Internet access is thereby an immediate need, which is also part of the solution
to the so-called 1000x data challenge [168].

Operating in unlicensed frequency bands, Wi-Fi is astonishingly popular with millions
of hotspots deployed all over the world for public Internet access. Due to its low per-bit
cost and the feasibility of serving outdoor users at vehicular mobility [33], Wi-Fi is expect-
ed to be an attractive and complementary tool to deliver broadband services to moving
cars — the built-in Wi-Fi radio or Wi-Fi-enabled mobile devices on board can access the
Internet when vehicles drive-thru the coverage of Wi-Fi hotspots. Recent advances in
Passpoint/Hotspot 2.0, powered by Wi-Fi Alliance, make Wi-Fi more capable of providing
secure connectivity than before. Moreover, with subscriber identity module (SIM)-based
authentication, seamless roaming between Wi-Fi and cellular networks is also enabled.

In this chapter, we derive the capacity scaling laws for networks with wireless access
infrastructure, where Internet services are delivered uniformly from infrastructure to all
vehicles in the network. Three candidate solutions are considered to provide Internet con-
nectivity to vehicles, i.e., off-the-shelf 3G or 4G cellular networks, drive-thru or roadside
Wi-Fi access points, and particularly a fixed wireless mesh backbone [169], which consists
of wirelessly connected mesh nodes (MNs) including one gateway to the Internet. The
difference between Wi-Fi access point and wireless mesh is that the latter uses wireless
mesh-to-mesh links as backhaul, while the former fully relies on external wired connec-
tivity. Since VANETs have yet to become reality, there remains great uncertainty as to
the feasibility of each type of wireless access infrastructure in terms of both network per-
formance and deployment cost. To better understand the capacity-cost issue in vehicular
access networks, we consider a scalable urban area where vehicles access Internet through
deployed infrastructure nodes. We first analyze the downlink capacity of vehicles to show
how it scales with the number of deployed infrastructure nodes. The downlink capacity is
defined as the maximum average downlink throughput achieved uniformly by all the ve-
hicles from the access infrastructure. Two operation modes of the network are considered
to provide pervasive Internet access: infrastructure mode, in which the network is fully
covered by infrastructure nodes, i.e., all the vehicles are within the coverage of the infras-
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tructure, and thereby only the infrastructure-to-vehicle (I2V) communication is utilized to
deliver the downlink traffic; and hybrid mode, in which the network is not fully covered
and the downlink flow is relayed to the vehicles in the area without coverage by means
of multi-hop V2V communications. A lower bound of the downlink capacity is derived
for the network with deployment of cellular base stations (BSs), wireless mesh backbones
(WMBs), and roadside access points (RAPs) (Wi-Fi/DSRC-like access), respectively. To
understand the effect of key factors, such as the deployment scale and the coverage of
infrastructure nodes, we present a case study based on a ideal city grid of 400 km2 with 0.4
million vehicles. Furthermore, we examine the capacity-cost tradeoffs for different deploy-
ments. We show that in the hybrid mode, to achieve the same downlink throughput, the
network roughly needs X BSs, or 6X MNs, or 25X RAPs1; whereas in the infrastructure
mode, if it is desired to improve the downlink throughput by the same amount for each de-
ployment, we roughly need to additionally deploy X BSs, or 5X MNs, or 1.5X RAPs. By
explicitly taking capital expenditures (CAPEX) and operational expenditures (OPEX) of
access infrastructures into consideration, the deployment of BSs or WMBs is cost-effective
to offer a low-speed downlink rate to vehicles; nonetheless, when providing a high-speed
Internet access, the deployment of RAPs outperforms the other two alternatives in terms
of deployment costs. This implication can provide valuable guidance on the choice of ac-
cess infrastructures for the automobile and telecommunication industry. In particular, as
automotive industry gears for supporting high-bandwidth applications, non-cellular access
infrastructure will play an increasingly important role in offering a cost-effective data pipe
for vehicles.

To the best of our knowledge, this research represents the first theoretical study on
the capacity-cost tradeoffs when providing pervasive Internet access to vehicles. [170] is
the most relevant literature, in which Banerjee et al. first examined the performance-cost
tradeoffs for VANETs by considering three infrastructure enhancement alternatives: BSs,
meshes, and relays. They showed that if the average packet delay can be reduced by a
factor of two by adding X BSs, the same reduction needs 2X MNs or 5X relays. They
argued that relays or meshes can be a more cost-effective enhancement due to the high cost
of deploying BSs. The objective of their work is to improve network delay by augmenting
mobile ad hoc networks with infrastructure, which is different from ours. In addition, our
methodology is also different from that adopted in [170]. Notably, quite a few research
works [43, 171, 172] focus on content downloading in VANETs. Although we consider a
downlink scenario as well, our focus is to unveil capacity-cost tradeoffs for deployment of
vehicular access networks.

The remainder of this chapter is organized as follows: Section 4.2 introduces the system

1X is used to represent a ratio relationship rather that a specific value.
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Figure 4.1: A grid-like urban street pattern.

model. In Section 4.3, we analyze the downlink capacity for each type of infrastructure
deployment. We present the case study and examine the capacity-cost tradeoffs in Sec-
tion 4.4. Section 4.5 summarizes this chapter.

4.2 System Model

4.2.1 Urban Street Pattern

Similar to Chapter 3, the street layout of the urban area is modeled by a perfect grid
G(M,L), which consists of a set of M vertical roads intersected with a set of M horizontal
roads. Each line segment of length L represents a road segment, as shown in Fig. 4.1. Let
G be a torus to eliminate the border effects. We denote the total number of road segments
in G by G = 2(M − 1)2. The scale of the urban grid is therefore determined by M and L.
For example, M is roughly 100 and L is generally from 80 m to 200 m for the downtown
area of Toronto [160]. A summary of the mathematical notations used in the chapter is
given in Table 4.1.

4.2.2 Spatial Distribution of Vehicles

Taking a snapshot of the city grid where vehicles are moving, it is considered that vehicles
are distributed according to a Poisson Point Process (p.p.) Φ with intensity measure Ξ on

72



Table 4.1: Summary of Notations for Chapter 4

Notations Description

N The average number of vehicles in the grid
M The number of parallel roads in the grid
L The length of road segment
G The total number of road segments
G The urban grid
β Path-loss exponent
ξ Vehicle density
W Communication bandwidth
θ Ratio between the number of MGs and NM

NB The number of deployed BSs
NM The number of deployed MNs
NR The number of deployed RAPs
RV Transmission radius of V2V communications
RM Transmission radius of M2M communications
τB The number of tiers in BS service square
τC The number of tiers in the coverage of BS
λB Downlink capacity for deployment of BSs
λPB Downlink capacity of B2V transmissions
λAB Downlink capacity of V2V transmissions (BS)
τM The number of tiers in WMB service square
τMR The number of tiers in the coverage of MN
τW The number of tiers in the coverage of WMB
λM Downlink capacity for deployment of WMBs
λMM Downlink capacity of M2M transmissions
λPM Downlink capacity of M2V transmissions
λAM Downlink capacity of V2V transmissions (WMB)
LR Service region of an RAP
RC Transmission radius of RAP
λR Downlink capacity for deployment of RAPs
λPR Downlink capacity of R2V transmissions
λAR Downlink capacity of V2V transmissions (RAP)
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G(M,L). Further, Ξ(dx) = ξdx, where ξ ∈ (0,+∞), indicating that the average number
of vehicles on the road of length dx is ξdx. We denote by N the average number of vehicles
in the grid. Thus,

N = Ξ(G) =

∫
G

Ξ(dx) = GLξ. (4.1)

And then ξ = N
GL

= N
2L(M−1)2

. Notably, M = Θ(
√
N), since ξ should be positive and

bounded. Particularly, ξL is typically much larger than 1 for urban areas. The assumption
of p.p. for vehicle distribution on the road can be found in many studies such as [61]
and [173].

4.2.3 Propagation and Channel Capacity

The received signal power Pij at receiver j from transmitter i follows the propagation
model described in the following: Pij = KPi/l(dij), where Pi is the transmission power
of transmitter i, dij is the Euclidean distance between i and j, and K is a parameter
related to the hardware of communication systems. The path-loss function is given by
l(dij) = (dij)

β, where β is positive and called the path-loss exponent. Typically, we have
β = 4 for urban environments [174]. Note that the phenomenon of channel fluctuations
is not considered since a macroscopic description of power attenuation shown above is
sufficient for throughput analysis of a long-term average.

The channel capacity of transmitter i and its receiver j is described by Shannon capac-
ity:

Tij = Wij log2(1 + SINRij), (4.2)

where Wij is the spectrum bandwidth for the transmission and SINRij is the signal-to-
interference-plus-noise ratio (SINR) at receiver j. The interference experienced by receiver
j is the aggregation of the signal powers received from all simultaneous transmitters, except
its own transmitter i. For ease of comparison, the same path-loss exponent and total
bandwidth, which is denoted by W , are applied for each type of deployment of wireless
access infrastructure.
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4.3 Analysis of Downlink Capacity

We derive a lower bound of downlink capacity in this section for each type of infrastructure
deployment, i.e., BSs, WMBs, and RAPs. Asymptotic results are also provided, describing
how the downlink capacity scales with the number of deployed infrastructure nodes (di-
rectly related to the deployment cost). The derivations in this chapter are mainly based
on geometric considerations about interference patterns under certain bandwidth plan-
ning. Note that the coverage of the infrastructure node is treated independently from the
transmission power in the analysis. It is not necessary to explicitly show the relationship
between these two parameters, since our results only depend on the coverage of infrastruc-
ture node. In addition, it is noteworthy that the difference between WMB and RAP is that
WMBs use wireless mesh-to-mesh links as backhaul, whereas RAPs fully rely on external
wired connectivity.

4.3.1 Network with Deployment of BSs

Let NB denote the number of BSs deployed in the city grid G(M,L). The grid is thereby
divided into NB squares of equal area, which is denoted by B and hence |B| = (M −
1)2L2/NB. Each square is associated with one BS, which is deployed in the central street
block of the square, as shown in Fig. 4.2. It is required that NB < (M−1)2, i.e., the number
of deployed BSs should be less than the total number of street blocks of G. Furthermore,
each square consists of multiple tiers co-centered at the BS. Tier(1) of the square is the
street block where the BS is located and contains four road segments. The adjacent street
blocks surrounding Tier(1) form Tier(2), and so on. It is easy to find that Tier(τ) contains
16τ − 12 road segments. We denote by τB the number of tiers of each square. Hence,

τB ≤
⌈1

2

√
|B|
L2

+ 1
⌉

=
⌈M − 1

2
√
NB

+ 1
⌉
, (4.3)

where d·e is the ceiling function.

The coverage of the BS is simply considered as a square area of τC tiers, although it
is often assumed that the cellular BS covers a hexagon region. A similar approximation
can be found in [175]. When τC ≥ τB, we let τC = τB. In this case, the network is fully
covered by BSs and thereby operates in the infrastructure mode. When τC < τB, the
network is partially covered by BSs and operates in the hybrid mode, i.e., BS-to-vehicle
(B2V) transmissions and vehicle-to-vehicle (V2V) transmissions coexist. Let λB(N,NB)
denote the downlink capacity for the deployment of BSs. Furthermore, we denote by λPB
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Figure 4.2: Grid-like VANETs with deployment of cellular BSs.

and λAB the downlink capacity of B2V and V2V transmissions, respectively. The downlink
capacity in the hybrid mode is determined in the following.

λB(N,NB) = min {λPB, λAB}. (4.4)

We first study the downlink throughput λPB for B2V transmissions in the hybrid mode.
The total bandwidth W is further divided into αW and (1−α)W respectively for B2V and
V2V transmissions. A simple spectrum reuse scheme is adopted to mitigate the interference
from neighboring squares in B2V transmissions: a square and its eight neighboring squares
use different channels for B2V transmissions, each of which is of bandwidth αW/9.

Let P τ
r denote the received signal power of vehicle V0 on a road segment of Tier(τ)

from its own BS in the square S0, where τ ≤ τC. From the propagation model, we have

P τ
r ≥

KPB[√
2L(τ − 1

2
)
]β , (4.5)

where PB is the transmission power of BSs. The interference experienced by V0, denoted by
IB, is the aggregated signal power of all the other BSs transmitting on the same channel.
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Thus

IB ≤
∞∑
q=1

8q · KPB[
(3q − 1

2
)
√
|B|
]β =

∞∑
q=1

8qKPB[
(3q − 1

2
) (M−1)L√

NB

]β
≤ 8KPBN

β
2
B

Lβ(M − 1)β

[(2

5

)β
+

∫ ∞
1

1

(3q − 1
2
)β−1

dq

]

≤ 2β+1KPBN
β
2
B

5βLβ(M − 1)β
· 12β + 1

3β − 6
.

Given that V0 is on a road segment of Tier(τ), the SINR of the received signal from the
BS at V0 is given by

SINRτ ≥
5β(3β − 6)

(12β + 1)2
3
2
β+1

[
M − 1

(τ − 1
2
)
√
NB

]β
. (4.6)

Throughout this chapter, we neglect the noise as did in previous works like [150] and [151],
since we focus on an interference-dominated vehicular environment.

For V0 on a road segment of Tier(τ), where τ ≤ τC − 1, from (4.2), we have

λPB = Wτ log2(1 + SINRτ ), (4.7)

where Wτ out of αW/9 is the bandwidth allocated to a single vehicle on a road segment
of Tier(τ). Since vehicles on road segments of Tier(τC) are required to relay the downlink
traffic to vehicles in the area without the BS coverage (see Fig. 4.2), we have

λPB =
WτC log2(1 + SINRτC)

(
∑τB

τ=τC
16τ − 12)/(16τC − 12)

. (4.8)

From (5.13) and (5.14), we have

τC−1∑
τ=1

(16τ − 12)ξLλPB
log2(1 + SINRτ )

+
(
∑τB

τ=τC
16τ − 12)ξLλPB

log2(1 + SINRτC)
=
αW

9
.
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Hence, λPB = αW/9
ξLU1 , where

U1 =

τC−1∑
τ=1

16τ − 12

log2(1 + SINRτ )
+

∑τB
τ=τC

16τ − 12

log2(1 + SINRτC)

≤
∑τB

τ=1 16τ − 12

log2(1 + SINRτC)
=

4τB(2τB − 1)

log2

(
1 + U2

[
M−1

(τC− 1
2

)
√
NB

]β)
≤

2(M−1√
NB

+ 4)2

log2

(
1 + U2

[
M−1

(τC− 1
2

)
√
NB

]β) .
The inequalities hold according to (4.3) and (4.6). We denote 5β(3β−6)

(12β+1)2
3
2β+1

by U2. A lower

bound of λPB is given by

λPB ≥
αW/(9ξL)

2(M−1√
NB

+ 4)2
log2

(
1 + U2

[
M − 1

(τC − 1
2
)
√
NB

]β)
. (4.9)

We denote τC = τκB , 0 < κ < 1 and NB = N ν , 0 < ν < 1. Asymptotically, it is clear that
λPB = Ω(NB

N
log2( N

NB
)) = Ω(Nν−1 log2N). Notably, λPB = Ω(NB

N
) = Ω(N ν−1) when κ = 1,

i.e., the network operates in the infrastructure mode.

We then study the downlink capacity λAB for V2V transmissions. Let PV and RV (≥
L) denote the transmission power and the transmission radius of V2V communications,
respectively. The Carrier Sensing Multiple Access (CSMA) with a carrier sensing radius
of 2RV is applied by vehicles to access the channel of bandwidth (1 − α)W . Due to
that simultaneous transmitters cannot be within a distance of 2RV as per the stipulation
of CSMA, the distribution of transmitting vehicles in the area without the BS coverage
follows a Matérn-like hard core (MHC) p.p. [176]. The MHC p.p. is a dependent marked
p.p. of original Poisson p.p. Φ of vehicles. Following [177], an average medium access
probability over all the vehicles of Φ is given by

Pac = (1− e−N̄ )/N̄ ,

where N̄ is the average number of neighbors of a generic vehicle within the carrier sensing
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Figure 4.3: A triangular lattice of simultaneous transmitting vehicles.

range. We have

N̄ ≤ ξL · 2
⌈4RV

L

⌉
(
⌈4RV

L

⌉
+ 1)

≤ 8ξL
(2RV

L
+ 1
)2
.

Therefore,

Pac ≥
1− exp (−8ξL(2RV /L+ 1)2)

8ξL(2RV /L+ 1)2
. (4.10)

Since exp (−8ξL(2RV /L+ 1)2) decays to 0 very fast, we can ignore this exponential term
in (4.10).

In V2V transmissions, the received signal power at destination V0 from its transmitter
is given by Pr ≥ KPV /R

β
V . Let IV0 denote the aggregate interference power experienced by

V0. A close-form expression of IV0 is difficult to determine. Therefore, we derive an upper
bound of IV0 in the following. Since we consider a high density urban environment, simul-
taneous V2V transmitters under CSMA scheme with carrier sensing radius 2RV cannot be
denser than a triangular lattice [178]. As shown in Fig. 4.3, the six nearest interferers in
the first layer are at distance 2RV . The next twelve form the second layer, and so on. The
distance between the receiver marked and interferers in the first layer is at least RV , and
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at least (
√

3q − 1)RV in the qth layer, q > 1. Thus,

IV0 ≤
6KPV

Rβ
V

+
∞∑
q=2

6q · KPV[
(
√

3q − 1)RV

]β
≤ 6KPV

Rβ
V

[
1 +

∫ ∞
1

1

(
√

3q − 1)β−1
dq

]
=

6KPV

Rβ
V

(
1 +

1√
3(β − 2)(

√
3− 1)β−2

)
.

We denote by SINRV the SINR of received signal at V0 from its V2V transmitter. It
follows that

SINRV ≥
(β − 2)(

√
3− 1)β−2

2
√

3 + (β − 2)(
√

3− 1)β−2
= U3(β). (4.11)

Notably, SINRV is lower bounded by U3(β), which merely depends on β.

Note that vehicles on road segments of Tier(τC) are required to relay the downlink
traffic to vehicles from Tier(τC + 1) to Tier(τB). On the average, every vehicle on road
segments of Tier(τC) needs to relay the traffic for η̄1 vehicles. We have,

η̄1 =
(
∑τB

τ=τC+1 16τ − 12)ξL

(16τC − 12)ξL

=
(2τB + 2τC − 1)(τB − τC)

4τC − 3
∼ τ 2−κ

B − τκB
2

.

(4.12)

Recall that τC = τκB , 0 < κ < 1. Hence, from (4.10), (4.11) and (4.12), the downlink
capacity λAB can be lower bounded as follows.

λAB ≥
(1− α)W log2(1 + SINRV )Pac

η̄1

≥ (1− α)W log2(1 + U3(β))

8ξL(2RV /L+ 1)2η̄1

∼ (1− α)W log2(1 + U3(β))

4ξL(2RV /L+ 1)2 · ( M−1
2
√
NB

+ 2)2−κ .

(4.13)

Let (RV /L) = τµB establish a relationship between the transmission range of vehicles and
the number of tiers of B, where 0 < µ < 1. Further, it is required that µ < κ, due to that
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the transmission range of vehicles should be smaller than that of BSs. Then, we obtain an
asymptotic lower bound of λAB from (4.13), i.e., λAB = Ω((NB

N
)1−κ

2
+µ). Recall that NB = Nν ,

0 < ν < 1. Hence, λAB = Ω(N (ν−1)(1−κ
2

+µ)).

As per (4.9) and (4.13), we obtain a feasible downlink throughput λB(N,NB) when
related network parameters are given. In the following, we show an asymptotic lower
bound of λB. Since λPB = Ω(NB

N
log2( N

NB
)) and λAB = Ω((NB

N
)1−κ

2
+µ), we have

i). when µ < κ
2
, λB(N,NB) = Ω

(
NB
N

log2( N
NB

)
)
;

ii). when κ
2
≤ µ < κ, λB(N,NB) = Ω

(
(NB
N

)1−κ
2

+µ
)
.

Notably, the downlink throughput of the network mostly depends on the number of
deployed BSs, the coverage of the BS, and the transmission radius of the vehicle. For
the case in which the transmission range of vehicles is relatively small compared with
the coverage of BSs, the downlink throughput of B2V transmissions is lower than that
of V2V transmissions and thereby determines the network throughput; with a relatively
large vehicular transmission range, V2V communications limit the network throughput
due to that medium access probability of vehicles is quite small and thereby degrades the
per-vehicle throughput in V2V transmissions.

4.3.2 Network with Deployment of WMBs

Fig. 4.4 shows the network with deployment of WMBs. There are NM MNs in the network,
θNM of which are functioned as mesh gateways (MGs) connecting to the Internet through
the wireline, where 0 < θ < 1. Similar to BSs, MGs are regularly deployed in the city grid,

each of which is deployed at the center of a square of area (M−1)2L2

θNM
. Let τM denote the

number of tiers of each square. We have,

τM ≤
⌈ M − 1

2
√
θNM

+ 1
⌉
. (4.14)

There are (1−θ)NM
θNM

mesh routers (MRs) deployed in each square, each of which can be

reached wirelessly by the MG through one hop or multiple hops. As such, 1−θ
θ

MRs and
one MG constitute a WMB in each square. Let RM denote the transmission radius of
mesh-to-mesh (M2M) communications. We consider a regular lattice deployment of MRs

with nearest nodal distance of
√

2
2
RM , as shown in Fig. 4.4, so that the Internet traffic is
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Figure 4.4: Grid-like VANETs with deployment of WMBs.

delivered from the MG to MRs of the first layer through one hop and to MRs of other
layers through multiple hops. In addition, each MN covers an area of

√
2

2
RM ×

√
2

2
RM with

τMR tiers, where

τMR ≤
⌈√

2RM/(4L) + 1
⌉
. (4.15)

Vehicles within the coverage of the MN receive the downlink traffic through mesh-to-
vehicle (M2V) communications. We denote by Q and τW the number of layers of MRs
and the number of tiers of the coverage region of each WMB, respectively. It follows that∑Q−1

q=1 8q ≤ (1− θ)/θ. Thus, Q ≤ 1
2

√
(1− θ)/θ + 1. We have

τW ≤
⌈√2RM(3 +

√
(1− θ)/θ)

4L

⌉
. (4.16)

When τW > τM , let τW = τM . The network is completely covered by WMBs if τW = τM ,
otherwise not. In the case where τW < τM , vehicles in the area without the WMB coverage
receive the downlink traffic through V2V transmissions and require the assistance of vehi-
cles on road segments of Tier(τW ). We denote the downlink capacity for the deployment of
WMBs by λM(N,NM). Furthermore, we denote by λMM , λPM , and λAM the downlink capacity
of M2M, M2V, and V2V transmissions in the hybrid mode, respectively.

We first study λMM for delivering Internet traffic from the MG to MRs. All the MNs
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apply the same transmission power PM for M2M transmissions. The total bandwidth W
is divided into W1, W2, and W3 respectively for M2M, M2V, and V2V transmissions. It
follows that W = W1 + W2 + W3. We consider that M2M communications are under
the coordination of CSMA scheme with carrier sensing radius 2RM . Let IM denote the
interference experienced by a receiver in M2M transmissions. Similar to the derivation of
IV0 , IM can be upper bounded as follows.

IM ≤
6KPM

Rβ
M

(
1 +

1√
3(β − 2)(

√
3− 1)β−2

)
.

Hence, the SINR of the M2M transmission is given by SINRM ≥ U3(β). Note that on
the average, every MG needs to deliver the downlink traffic for 1−θ

θ
MRs. Given a carrier

sensing radius of 2RM , an average medium access probability over all MNs, denoted by
P ′ac, is at least P ′ac = 1/

∑2
q=1 8q. Especially, P ′ac = 1 for Q = 1 and P ′ac ≥ 1/9 for Q = 2.

Hence, λMM can be lower bounded as follows.

λMM ≥
W1 log2(1 + SINRM)P ′ac

(1− θ)/θ

≥ W1 log2(1 + U3(β))P ′ac
(1− θ)/θ .

(4.17)

We then study λPM for delivering traffic from the MN to vehicles within its coverage.
Similarly, to mitigate the interference from neighboring MNs in M2V transmissions, an
MN and its neighbors (at most eight) use different channels for M2V transmissions, each
of which has bandwidth W2/9. Let PMV denote the transmission power for M2V commu-
nications. The interference experienced by vehicles in M2V communications, denoted by
IMV , is given by

IMV ≤
∞∑
q=1

8qKPMV[
(3q − 1

2
)
√

2
2
RM

]β ≤ 2
3
2
β+1KPMV

5βRβ
M

· 12β + 1

3β − 6
.

Let P τ
MV denote the received power of a vehicle on the road segment of Tier(τ) from its

own MN, where τ ≤ τMR. Since P τ
MV ≥ KPMV /(

√
2L(τ − 1

2
))β, we have

SINR′τ ≥
5β(3β − 6)

(12β + 1)22β+1

[
RM

(τ − 1
2
)L

]β
, (4.18)

where SINR′τ is the SINR of the received signal from the MN for vehicles on road segments

83



of Tier(τ).

Similar to the deployment of BSs, Wτ out of W2/9 is the bandwidth allocated to a single
vehicle on the road segment of Tier(τ) for each coverage of MNs. Since vehicles on road
segments of Tier(τW ) of the WMB are required to relay the downlink traffic, additional
bandwidth needs to be allocated to vehicles on the road segments of Tier(τMR) for MNs
located in the outmost layer Q of the WMB, as shown in Fig. 4.4. In the following, we
consider an MN on the boundary of the WMB and derive a lower bound of λPM . For vehicles
of Tier(τ), where τ ≤ τMR − 1, we have

λPM = Wτ log2(1 + SINR′τ ). (4.19)

We denote by η̄2 the average number of vehicles that need a vehicle of Tier(τW ) to relay
the downlink traffic. We have,

η̄2 =

∑τM
τ=τW+1 16τ − 12

16τW − 12
≤ τ 2

M − τ 2
W

τW − 1
. (4.20)

Hence,

λPM =
WτMR

log2(1 + SINR′τMR
)

1 + η̄2

. (4.21)

From (4.19), (4.20), and (4.21), it holds that λPM = W2/9
ξLU4 , where

U4 =

τMR−1∑
τ=1

(16τ − 12)

log2(1 + SINR′τ )
+

(16τMR − 12)(1 + η̄2)

log2(1 + SINR′τMR
)

≤ 4τMR(2τMR − 1) + η̄2(16τMR − 12)

log2(1 + SINR′τMR
)

.

Let U5 denote the numerator of the last fraction, which is an upper bound of the average
number of vehicles served by a single MN. From (4.14), (4.15), and (4.16), we can attain
a lower bound of λPM , i.e.,

λPM ≥
W2 log2(1 + SINR′τMR

)

9ξLU5

∼ W2

9ξLU5

log2

(
1 +

5β(3β − 6)

(12β + 1)2
1
2
β+1

)
.

(4.22)
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Furthermore, let NM = Nγ, where 0 < γ < 1. We have λPM = Ω(NM
N

) = Ω(Nγ−1)
asymptotically.

We follow the derivation of (4.13) to obatin λAM , since V2V communications are with
the same configurations in both BSs and WMBs deployments. Hence,

λAM ≥
W3 log2(1 + SINRV )Pac

η̄2

≥ W3 log2(1 + U3(β))(τW − 1)

8ξL(2RV /L+ 1)2(τ 2
M − τ 2

W )
.

(4.23)

Asymptotically,

λAM = Ω

(
NM(RM/L)

N(RV /L)2

)
.

We let (RM/L) = τσ1M to establish a relationship between the transmission range of MNs
and the size of the mesh square, where 0 < σ1 < 1. Similarly, RV /L = τσ2M , where

0 < σ2 < 1 and σ2 < σ1. Therefore, λAM = Ω(N (γ−1)(1+σ2− 1
2
σ1)). From (4.17), (4.22), and

(4.23), we can attain a lower bound of λM(N,NM) as follows.

λM(N,NM) = min

(
λMM
U5

,min (λPM , λ
A
M)

)
. (4.24)

Notably, λMM/U5 = Ω(Nγ−1). Then, we obtain the following asymptotic bound of λMM in
the hybrid mode:

i). when σ2 <
1
2
σ1,

λM(N,NM) = Ω
(NM

N

)
;

ii). when 1
2
σ1 ≤ σ2 < σ1,

λM(N,NM) = Ω
(
(
NM

N
)1− 1

2
σ1+σ2

)
.

When the network is fully covered by deployed WMBs, each MN covers an area of
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(M − 1)2L2/NM . Hence, RM ≥
√

2(M − 1)L/
√
NM . We then have

λPM ≥
(W −W1) log2(1 + SINR′τMR

)

9N/NM

∼ (W −W1)NM

9N
log2

(
1 +

5β(3β − 6)

(12β + 1)2
1
2
β+1

)
.

It follows that λM(N,NM) = min (NMλ
M
M/N, λ

P
M) in the infrastructure mode. Asymptoti-

cally, λM(N,NM) = Ω(NM/N) = Ω(Nγ−1).

4.3.3 Network with Deployment of RAPs

We consider that the coverage of the RAP is one-dimensional along the road, as shown in
Fig. 4.5. There are NR RAPs regularly deployed in the network and each RAP provides
Internet access service to vehicles on the road of length LR, which is called the RAP cell.

It can be seen that LR = 2(M−1)2L
NR

. The coverage radius of RAP is denoted by RC . When

RC >
1
2
LR, let RC = 1

2
LR. The network is fully covered by RAPs if RC = 1

2
LR. To provide

pervasive Internet access, the network operates in the hybrid mode when RV < RC <
1
2
LR:

vehicles within the coverage of the RAP receive the downlink traffic through RAP-to-
vehicle (R2V) communications; vehicles at distance (RC − RV , RC ] from the RAP are
required to relay the downlink traffic for vehicles in the area without the RAP coverage,
given the transmission radius of V2V communications RV . The downlink capacity for the
deployment of RAPs is denoted by λR(N,NR). Moreover, the downlink capacity of R2V
and V2V transmissions are denoted by λPR and λAR, respectively. Similarly, in the hybrid
mode,

λR(N,NR) = min {λPR, λAR}. (4.25)

We first study the downlink throughput λPR in the hybrid mode. A spectrum reuse
scheme is adopted to mitigate the inter-RAP interference: i) RAPs deployed along the
same road operate on one common channel; ii) RAPs on any two adjacent parallel roads
use different channels; and iii) RAPs on the horizontal roads and on the vertical roads use
different channels. To that end, four different communication channels, each of which has
bandwidth 1

4
φW , are allocated. The remaining bandwidth of (1 − φ)W is allocated for

V2V communications. The interference Id experienced by a vehicle at distance d from the
RAP, where d ≤ RC , in R2V communications is the aggregated signal power from all the
other RAPs operating on the same channel, as shown in the Fig. 4.6. We have
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Id ≤
∞∑
q=1

[
KPR

(qLR − d)β
+

KPR
(qLR + d)β

]

+
∞∑
q=1

2KPR
(2qL)β

+
∞∑
i=1

∞∑
j=1

4KPR

(i2(2L)2 + j2L2
R)

β
2

≤ 2KPR

[
1

(LR − d)β
+

∫ ∞
1

1

(qLR − d)β
dq

]
+

21−ββKPR
(β − 1)Lβ

+
22−βKPR

(LLR)
β
2

∞∑
i=1

∞∑
j=1

1

(ij)
β
2

≤ 2KPR
β − 1

(
βLR − d

LR(LR − d)β
+

β

(2L)β

)
+

22−ββ2KPR

(β − 2)2(LLR)
β
2

,

where PR is the transmission power of RAPs. The SINR of received signal from the RAP
is thereby given as follows.

SINRd ≥
(β − 1)/(2dβ)

βLR−d
LR(LR−d)β

+ β
(2L)β

+ 21−β(β−1)β2

(β−2)2(LLR)
β
2

= U6(d).

For vehicle Vd at distance d from the RAP, where d ≤ RC , it holds that

λPR = Wd log2(1 + SINRd)
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where Wd out of 1
4
φW is the bandwidth allocated to Vd. As discussed before, vehicles

at distance (RC − RV , RC ] from the RAP are required to relay the downlink traffic to
the vehicles at distance (RC ,

1
2
LR], which yields an average relaying traffic load of that

η̄3 = (1
2
LR − RC)/RV . Therefore, for vehicles at distance d ∈ (RC − RV , RC ] from the

RAP,

λPR =
Wd log2(1 + SINRd)

1 + η̄3

.

Given the constraint of the total bandwidth, we have

λPR ≥
1
4
φW

2ξ(RC−RV )
log2(1+SINRRC−RV )

+ 2ξ(1+η̄3)RV
log2(1+SINRRC )

≥
1
8
φW/ξ

RC−RV
log2(1+U6(RC−RV ))

+
RV + 1

2
LR−RC

log2(1+U6(RC))

.

(4.26)

Further, we let RC = (1
2
LR)ρ1 and RV = (1

2
LR)ρ2 , where 0 < ρ2 < ρ1 < 1. Denoting NR =

Nϕ, where 0 < ϕ < 1, it can be obtained that λPR = Ω(NR
N

log2( N
NR

)) = Ω(Nϕ−1 log2N)

asymptotically when ρ1 <
1
2
; λPR = Ω(NR

N
) = Ω(Nϕ−1) when ρ1 = 1

2
; λPR = Ω(NR

N
log2(1 +

(NR
N

)β(ρ1− 1
2

))) = Ω(N (ϕ−1)[1+β(ρ1− 1
2

)]) when ρ1 >
1
2
.

The derivation of λAR is in the same manner.

λAR ≥
(1− φ)W log2(1 + SINRV )Pac

η̄3

≥ (1− φ)W log2(1 + U3(β))RV

8ξL(2RV /L+ 1)2(1
2
LR −RC)

.

(4.27)

Asymptotically, λAR = Ω((NR/N)1+ρ2) = Ω(N (ϕ−1)(1+ρ2)).

As per (4.26) and (4.27), λR(N,NR) can be obtained from (4.25) when values of all the
impact factors are determined. In addition, the asymptotic bound of λR(N,NR) is given
by

i). when ρ1 ≤ 1
2
,

λR(N,NR) = Ω((NR/N)1+ρ2);
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Figure 4.6: An illustration of inter-RAP interference for horizontal roads.

ii). when 1
2
< ρ1 < 1,

λM(N,NM) = Ω
(
(NR/N)max[1+ρ2,1+β(ρ1− 1

2
)]
)
.

Especially, when the network is completely covered by RAPs, λR(N,NR) = λPR ≥ WNR log2(1+
U6(RC))/(4N). The asymptotic result of λR(N,NR) in the infrastructure mode is the same
as that of λPR in the hybrid mode.

4.4 Case Study

We present a case study of downlink capacity of vehicles based on the analytical results
from Section 5.5. The objective is to evaluate the impact of key factors, i.e., the number
of infrastructure nodes deployed and the coverage of infrastructure nodes, on capacity
performance and compare the three types of infrastructures in terms of the deployment
cost. The values of parameters for this study are given in Table 4.2.

Table 4.2: Values of Parameters

Parameter Value Parameter Value

M 201 L 100 m
ξ 0.05 veh/m N 4× 105

W 10 MHz β 4
RV 100 m θ 0.25
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Figure 4.7: Network with deployment of BSs.

4.4.1 Impact of Coverage of Infrastructure Nodes

We consider a ideal city grid of 20 km×20 km with an average vehicle density of 0.05
vehicle per meter (veh/m). The total bandwidth of 10 MHz is applied in all three types
of infrastructure deployment. The bandwidth allocation is done to maximize the downlink
throughput for each case. The downlink capacity is plotted with respect to the number
of deployed infrastructure nodes, as shown in Fig. 4.7, Fig. 4.8, and Fig. 4.9. With the
increase of the number of deployed infrastructure nodes, the network transits from being
partially covered to being fully covered, and accordingly the downlink throughput increases
gradually. The impact of coverage of infrastructure nodes on downlink throughput is also
investigated. Three different sizes of BS footprint are considered in Fig. 4.7. We show that
for each BS coverage, the achievable downlink throughput increases faster than a linear
increase with NB in the hybrid mode. The reason is that the relaying traffic load of relay
vehicles decreases very fast when the network gradually becomes fully covered and thereby
the capacity of V2V communications increases. When the network is fully covered by BSs,
the downlink throughput increases almost linearly with NB. In addition, it is very intuitive
that the network needs more BSs to be fully covered with a smaller size of BS coverage.
The similar insights for the other two deployments are obtained from Fig. 4.8 and Fig. 4.9.
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Figure 4.8: Network with deployment of WMBs.
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Figure 4.9: Network with deployment of RAPs.
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Figure 4.10: Comparison of number of deployed infrastructure nodes in the hybrid mode.

4.4.2 Comparison of Deployment Scales

Different trends of downlink throughput are shown in Fig. 4.10 when the network is not
fully covered by any type of infrastructure. From the average slope of each curve, an
important observation is attained that the network roughly needs X BSs, or 6X MNs, or
25X RAPs to achieve a certain downlink throughput in the hybrid mode. A whole picture
of the comparison is shown in Fig. 4.11. Regardless of the operation mode (hybrid or
infrastructure), on the average, the network requires X BSs, or 5X MNs, or 15X RAPs
to achieve a downlink throughput less than 15 Kbps with our settings. Furthermore, it is
observed that more MNs are needed than RAPs to achieve the same throughput after the
Point A shown in Fig. 4.11. The reason is that in the infrastructure mode, the relaying
traffic load from the MG to MRs limits the downlink throughput, and there is almost no
benefit from better coverage of MNs due to that the network is fully covered by either
RAPs or MNs. The downlink throughput decreases severely, as shown in Fig. 4.12, with
a very small value of θ, which reflects the backhaul capability of wireless mesh networks.
Another observation from Fig. 4.11 is that we roughly need to additionally deploy X BSs,
or 5X MNs, or 1.5X RAPs to improve the downlink throughput by the same amount,
given that the network operates in the infrastructure mode.
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Figure 4.11: Comparison of number of deployed infrastructure nodes in the infrastructure
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4.4.3 Capacity-Cost Tradeoffs

Deployment cost plays an important role in determining the cost-effective access infrastruc-
ture. CAPEX and OPEX contribute to the major component of the deployment cost [179].
As per the cost models in [179], the estimated deployment cost of each type of access in-
frastructure is described in Table 4.3. It can be seen that when the network operates in the
hybrid mode (low-capacity regime), the deployment of BSs or WMBs is cost-effective for
a five-year operation period (the cost is roughly 120X Ke to deploy X BSs, or 6X MNs).
On the other hand, when the network operates in the infrastructure mode (high-capacity
regime), the deployment of RAPs outperforms the other two alternatives in terms of de-
ployment costs for a given downlink throughput requirement. For instance, to provide a
downlink throughput of 40 Kbps to all the vehicles, roughly we need to pay 530 Me for the
deployment of 4200 BSs, or 210 Me for the deployment of 2.1× 104 RAPs for a five-year
period. From Fig. 4.11, the choice of the cost-effective access infrastructure can be made
as per the data demand of vehicles. Notably, non-cellular infrastructure like RAPs is a
good choice to offer a cost-effective high-speed data pipe for vehicles.

Table 4.3: Estimated Deployment Cost(Ke)

Deployment Cost BS MG (MR) RAP

CAPEX 58.9 10.9 (7.0) 3.0
OPEX (per year) 13.4 2.9 (2.0) 1.4
5-Year Cost 125.9 25.4 (17.0) 10.0

4.5 Summary

In this chapter, we have investigated the capacity-cost tradeoffs for different wireless ac-
cess infrastructures in vehicular access networks. The considered alternatives of wireless
access infrastructure include BSs, WMBs, and RAPs, which are respectively deployed to
provide downlink Internet service to all the vehicles uniformly in the network. The down-
link capacity of vehicles for each kind of deployment has been lower-bounded under the
same set of benchmark models by considering an ideal city grid with vehicles randomly
distributed on the roads. A case study has been presented to examine the capacity-cost
tradeoffs of different solutions in terms of both CAPEX and OPEX. Offering fundamental
guidance, results in this chapter imply that it is necessary to choose a cost-effective access
infrastructure according to the data demand of vehicle users.
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Chapter 5

Wi-Fi Hotspot at Signalized
Intersection: Capacity of Drive-Thru
Internet Access

In this chapter, we particularly investigate the average throughput capacity of drive-
thru Internet access considering interrupted vehicle traffic flow and with a focus on cost-
effectiveness of Wi-Fi solution for vehicular Internet access. Specifically, we define the
cost-effectiveness as the cost saving by deploying and operating a low-cost Wi-Fi infras-
tructure instead of a costly benchmark cellular network. To characterize the service quality
of Wi-Fi deployment, we also define the normalized service delay to fulfill data application
via Wi-Fi normalized by that via the cellular. To derive the service delay, we analyze
the average throughput capacity of a generic vehicle in the Wi-Fi network and the av-
erage downlink capacity in the cellular network. Especially, we propose deploying Wi-Fi
access point at signalized intersection and study the fundamental influence of traffic sig-
nals (which yield an interrupted vehicle traffic) on Wi-Fi access. Then, we examine the
tradeoff between cost-effectiveness and normalized service delay by identifying interplays
between controllable (e.g., the density of Wi-Fi deployment and user’s satisfaction) and
uncontrollable parameters (e.g., vehicle traffic statistics). Our results reveal the funda-
mental relation between the service quality and cost-effectiveness of Wi-Fi solution, and
provide a quick and efficient way of determining the Wi-Fi deployment strategy and the
corresponding cost savings.

95



5.1 Introduction

Compared to cellular access with wide availability, the Wi-Fi infrastructure has limited u-
tility of the service offering for vehicles over intermittent network connectivity, as observed
in real-world tests, e.g., [39]. Typically, vehicle users on the road have to experience a
number of drive-thrus/connections to fulfill a mobile application (e.g., buffering a video
clip of 100 MBytes from the Internet), implying a large service delay that degrades the
user’s satisfaction. While the Wi-Fi footprint can be enlarged by deploying more Wi-Fi
access points (APs), the network cost or TCO1 would be increased as well. Especially,
a solution that tries to achieve a ubiquitous coverage as cellular networks is prohibitive
and not practical [48]. Therefore, great uncertainty remains as to whether it makes eco-
nomic sense to deploy Wi-Fi networks for highly mobile vehicle users. Thanks to the new
generation Wi-Fi hotspot, many mobile network operators (MNOs), such as AT&T and
China Mobile, have shown strong interest in the Wi-Fi solution. However, the real benefit
of Wi-Fi solution should be validated through cost-effectiveness analysis considering user’s
satisfaction so that MNOs would be fully convinced to turn the strong interest to strong
commitment to deploy large-scale outdoor Wi-Fi networks in favor of vehicle users.

As an effort to that end, in this chapter, we study cost-effectiveness of vehicular Inter-
net access through Wi-Fi hotspots. The cost-effectiveness is defined as the TCO saving
by deploying and operating drive-thru Wi-Fi networks instead of the cellular network
for vehicular Internet access. To establish the relationship between cost-effectiveness and
network performance, we analyze the maximum average throughput of individual vehicle
under any given density of deployed Wi-Fi APs (different deployment yields different cost-
effectiveness), which can be used to determine the service delay once the total throughput
required for fulfilling a data application is given. For apple-to-apple comparison, the net-
work performance of benchmark cellular network is also analyzed so that the service delay
experienced in Wi-Fi network can be normalized by that in cellular network. This normal-
ized service delay is then able to reflect the service quality degradation because of using
Wi-Fi networks characterized by the corresponding cost-effectiveness. We examine tradeoff
between cost-effectiveness and normalized service delay, and then demonstrate the benefit
of Wi-Fi solution quantitatively.

The main contributions of this research are as follows:

• We deploy Wi-Fi APs at signalized intersections and study the fundamental influence
of traffic signals on drive-thru Internet access, which has attracted significant research

1Total cost of ownership, including one-time cost component (CAPEX, capital expenditures) and re-
curring cost component (OPEX, operational expenditures).
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interest. Deploying AP at intersection can reduce the need for non-line-of-sight (N-
LOS) transmissions along the road so as to provide better service coverage [180].
One example of real-world deployment is Wickedly Fast Wi-Fi network which covers
the downtown area of San Jose, CA, USA [181]. Interestingly, we show a signifi-
cant throughput gain for vehicles stopping at intersections due to red signals. Our
modeling and analysis are validated via SUMO and NS-3 simulations.

• We propose a framework for cost-effectiveness analysis of Wi-Fi network, in which
the cost-effectiveness (how much TCO can be saved for the MNO) and normalized
service delay (how much service degradation the vehicle user will tolerate) are mathe-
matically defined and the explicit relation between these two metrics are established.
Quantitatively, we show that the TCO of Wi-Fi can be traded with user’s satisfac-
tion, which could aid MNOs in strategic decision-making for Wi-Fi deployment. Our
framework also lays a foundation for helping in understanding cost-effectiveness of
other complementary wireless technologies for vehicle users, such as small cells and
super Wi-Fi operating on TV white space.

The remainder of the chapter is organized as follows. Section 5.2 presents the problem
formulation. We analyze the time-average throughput capacity of drive-thru Wi-Fi and
the average downlink capacity of cellular network in Section 5.3 and Section 5.4, respec-
tively. Section 5.5 presents the cost-effectiveness analysis. Further discussions are given in
Section 5.6. Section 5.7 provides concluding remarks.

5.2 Problem Formulation

We study the cost-effectiveness of drive-thru Wi-Fi access in a city area Ω with a set of
moving vehicles. Two different networking scenarios are considered. In the first scenario
(Wi-Fi), the Internet gateways are sparsely deployed Wi-Fi APs (at intersections) and
vehicles have only opportunistic drive-thru access. We use the second scenario (Cellular)
with cellular macrocell BSs providing full service coverage as a benchmark for performance
comparison.

We denote by NW the number of Wi-Fi APs deployed in Wi-Fi scenario, and NC

the number of macrocell BSs deployed in Cellular scenario. In both scenarios, vehicles
consume Internet data services as long as Internet connectivity is available. The maxi-
mum average data throughput achieved by individual vehicles are denoted by zW and zC ,
respectively for Wi-Fi and Cellular. To achieve a target aggregate throughput G (con-
sidering a mobile application of downloading a file of size G), the average time required
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(service delay) in Wi-Fi scenario and in Cellular scenario are denoted by DW and DC ,
respectively.

Definition 1 The normalized service delay (NSD) of a Wi-Fi deployment is defined as

α = DW/DC .

Straightforwardly, the NSD characterizes the service quality degradation if the vehicle
uses the Wi-Fi network instead of the cellular network. For a fixed deployment of cellular
network (NC), α merely depends on the deployment of Wi-Fi APs (NW ). From users’
standpoint, a lower NSD is desirable, as the delay incurred to achieve a target throughput
by using drive-thru Internet access would be easier to be tolerant instead of using fast but
costly cellular services.

We denote by eW the TCO (including CAPEX and OPEX) of deploying and operating
one Wi-Fi AP. The total cost of a Wi-Fi deployment is thereby EW = eWNW . Similarly,
we have eC for one macrocell BS and EC = eCNC .

Definition 2 Cost-effectiveness of a Wi-Fi deployment is defined as

η = 1− EW/EC (5.1)

The cost-effectiveness is used to characterize the cost saving for deploying and operating
a Wi-Fi infrastructure in a model city Ω. Intuitively, a lower NSD yields a lower cost-
effectiveness. The NSD cannot be reduced while increasing the cost-effectiveness. The main
objective of this research is to study the tradeoff between α and η. A summary of the
mathematical notations used in this chapter is given in Table 5.1.

5.3 Time-Average Throughput Capacity of Wi-Fi

To obtain service delay DW , we first derive the time-average throughput capacity zW of
Wi-Fi network. In an urban environment, vehicle mobility is regulated by traffic signals at
intersection, which imposes a significant impact on drive-thru Wi-Fi access: vehicle stop-
ping at the intersection prolongs the connection time with the Wi-Fi AP so as to potentially
increase the data volume downloaded/uploaded. To facilitate the throughput analysis, a
simple yet effective modeling of vehicle flow regulated by traffic signals is developed.
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Table 5.1: Summary of Notations for Chapter 5

Symbol Description

Ω Area of the target city
NW Number of Wi-Fi APs in the WiFi scenario
NC Number of BSs in the Cellular scenario
zW Time-average throughput capacity of WiFi
zC Time-average downlink capacity of Cellular
DW Average service delay of WiFi
DC Average service delay of Cellular
G Target aggregate throughput
α Normalized service delay
eW Per infrastructure cost of WiFi
eC Per infrastructure cost of cellular
EW Total infrastructure cost of WiFi
EC Total infrastructure cost of Cellular
η Cost-effectiveness of a WiFi deployment
L Distance between two adjacent intersections
R Radius of Wi-Fi AP coverage
λ Arrival rate of the vehicle flow to the AreaOI

τ Length of traffic signal cycle
τg Effective green period (EGP)
τr Effective red period (ERP)
v Constant vehicle speed unless it stops
∆ Time loss due to vehicle acceleration
ρ Density with which vehicles flow into the IArea

ρmax Jam density
N(t) Number of vehicles in an AreaOI in a TSC
τa Time instant when the tagged vehicle arrives at the IArea

S(τa) Sojourn time during which the tagged vehicle stays in an AreaOI

µ(t) Vehicle depart rate from the AreaOI, t ∈ [0, τ)
z(τa) Throughput capacity per drive-thru achieved by the tagged vehicle
Υ(t) Maximum spectrum efficiency of cellular network (bits/s/Hz)
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5.3.1 Modeling Vehicle Flow with Fixed Signals

Appropriate modeling of vehicle flow regulated by traffic signals at intersections is the pre-
requisite to analyze the network performance of urban drive-thru Wi-Fi networks. However,
it turns out to be a challenging task as it is difficult to determine how many details of ve-
hicle mobility and road network should be incorporated into the modeling. Traffic models
developed in transportation engineering, such as car following models, depend on many de-
tails/factors which increase the accuracy but could make the network analysis intractable
or tedious. Hence, we develop a simple yet effective modeling with adequate details, which
can capture the main characteristics of vehicle traffic at signalized intersections.

Road Network: The road network of the target city area Ω is considered as a regular
grid, which is a common street pattern in many cities, such as Houston and Portland in
U.S. [159]. In specific, we consider a two-way traffic on each road and one single lane
for each way. The intersection of any two roads is signalized, i.e., having traffic signal
control. We denote by L the distance between any two neighboring intersections. Further,
to facilitate our analysis, we define the intersection area (IArea) for each intersection. It
is a square centering at one intersection and consisting four lanes (eastbound, westbound,
northbound, and southbound) each of which is of length L, as shown in Fig. 5.1. By doing
so, the city area is partitioned into distinct IAreas.

Wi-Fi Deployment: In Wi-Fi scenario, Wi-Fi APs are deployed in the target city
area for vehicular Internet access. We consider the following random deployment strategy2:
Wi-Fi APs are deployed only at intersections and an intersection has an AP deployed with
probability pap. Deploying APs at intersections can reduce the need for non-line-of-sight
(NLOS) transmissions along the road so as to provide better service coverage [180], which
is also considered in literature, such as the theoretical study [48]. Moreover, placing APs at
intersections mathematically facilitates the investigation on the impact of traffic signals due
to the introduced symmetry. We denote by R the radius of AP coverage and define the area
of interest (AreaOI) for each intersection, which is a disk centering at the intersection with
radius R. The AreaOI thereby consists four lanes (eastbound, westbound, northbound,
and southbound) each of which is of length 2R, as shown in Fig. 5.1. It is obvious that if
one intersection has an AP deployed, the AreaOI will be the Wi-Fi coverage region3.

Stop-and-Go Flow: The objective of this section is to analyze the throughput of

2Although Wi-Fi APs may be regularly deployed at intersections, the encounter of next AP for a vehicle
is still random due to the randomness in movement when we observe the vehicle. Therefore, we consider
a random Wi-Fi deployment.

3We only consider the case in which R < L/2 so that there is no overlapped Wi-Fi coverage regions,
which simplifies the analysis and also makes economic sense.
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Figure 5.1: Wi-Fi hotspot at signalized intersections.

drive-thru Wi-Fi network, considering the impact of road intersections controlled by traffic
signals. To this end, we theoretically derive the vehicle connection time with AP (de-
pending on the time the vehicle arrives at the intersection) and how many vehicles share
the wireless resources within the AP coverage (changing over time during the connection
period). Under the control of traffic signals, vehicles arriving at the intersection during
the red period stop and form a queue, whereas vehicles arriving at the intersection during
the green period keep going without delay if the vehicle queue is completely dissolved. In
transportation engineering, many modeling approaches for signalized intersection focus on
the development of delay and queue models [182]. The main objective is to analyze the
signal delay a vehicle experiences at the intersection (i.e., the extra waiting time due to
signal operation and the vehicle queue), and the dynamics and the stochastic behavior of
the overflow queue (i.e., the vehicle queue at the end of a green period). For example,
one of the best-studied models is the fixed-cycle traffic light (FCTL) queue, where the
traffic signal alternates between fixed green and red periods, and vehicles queued at the
intersection are assumed to depart during the green period at equal time intervals [183].
However, the existing modeling approaches from traffic engineering cannot be directly ap-
plied to solve our problem. The reasons are two-fold: (i) the existing approaches focus on
the steady-state or time-dependent analysis of delay and overflow queue length (the mean
and the distribution), which are unable to characterize the dynamics of vehicle flow in the
AreaOI; and (ii) the existing approaches are for the analysis of one-way traffic interrupted
by traffic signals (the case of multiple lanes may be considered), and are too complex to
apply to the scenario where the whole intersection area (including four lanes of different
directions) is considered. In wireless networking research area, a stochastic traffic model is
proposed for VANETs in signalized urban road systems [173], which can describe the aver-
age vehicle density and the random interactions among vehicles. The difficulty of applying
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this model to our scenario is also the complexity. To describe the main behaviors of vehicle
flow in the AreaOI, we have to ignore the minor details, such as the random behavior of
individual vehicles. Thus, we develop a stop-and-go vehicle flow model controlled by fixed
traffic signals. The proposed model is described as follows.

As a common practice, we simplify the three signal periods (i.e., green, amber, and red)
into two periods, effective green period (EGP) and effective red period (ERP). We define the
traffic signal cycle (TSC) ([0, τ)). For the eastbound and westbound lanes, an EGP ([0, τg))
is followed by an ERP ([τg, τ)) during a TSC, whereas for the northbound and southbound
lanes, an ERP ([0, τg)) is followed by an EGP ([τg, τ)). The length of one TSC is hence
denoted by τ = τg + τr. We consider a deterministic vehicle flow, i.e, vehicles arrive at the
IArea on each lane with arrival rate λ(t) = λ. Every vehicle keeps moving at the same and
constant speed v unless it stops and joins a vehicle queue due to red signals. During the
EGP4, each stopped vehicle departs the intersection at the speed v after a short delay ∆ of
being head-of-line. We introduce ∆ to consider the time loss due to vehicle acceleration.
We also consider that vehicles do not change the lane at the intersection (i.e., no left, right,
or U turns) for simplicity. Thus, vehicles flow into the IArea with a density ρ vehicle/m,
and according to [184],

ρ = λ/v. (5.2)

Further, we denote the jam density (maximum density) by ρmax vehicle/m, which is the
density of vehicles stopping and queueing at the intersection due to signal operations
(typical range of ρmax is 0.116− 0.156 vehicle/m [185]).

We analyze the performance of the urban drive-thru Wi-Fi network by observing a
tagged vehicle. The tagged vehicle moves along a fixed lane (the eastbound lane in this
study) and traverses IAreas in sequence, as shown in Fig. 5.1. To simplify our analysis,
we have the following two assumptions5.

• Unsaturation: We consider the case that the length of vehicle queue is less than

4We make statement for the eastbound and westbound lanes unless otherwise specified.
5Relaxation of these two assumptions would be considered for future works.
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R, so that if the tagged vehicle stops at the intersection, it will always be in the
AreaOI, i.e., the AreaOI is always unsaturated. In addition, we assume that there is
no overflow queue, i.e., all queued vehicles can pass through the intersection during
the EGP. This assumption is often valid under a regular traffic load condition and for
a typical value of R.

• Independence: The IAreas are treated independently, i.e., traffic signals at different
intersections are not coordinated and the vehicle arrival process for one IArea does
not depend on the upstream traffic. We further assume that the tagged vehicle
arrives at the IArea equally likely for any instant τa during the cycle [0, τ), i.e, τa is
uniformly distributed over the interval [0, τ).

We denote by N(t) the number of vehicles in an AreaOI in a TSC, where t ∈ [0, τ).
Also, we denote by S(τa) the sojourn time the tagged vehicle stays in an AreaOI, where
the arrival time τa ∈ [0, τ). The sojourn time is equal to the connection time if there is
an AP deployed in the intersection. Next, we derive the analytic expressions of N(t) and
S(τa).

5.3.2 Vehicle Dynamics

As shown in Fig. 5.2, we first focus on the vehicle flow regulated by traffic signals on the
eastbound lane in a generic IArea, and denote the number of vehicles at time t in the
AreaOI (only the eastbound lane is considered) by Ne(t), where t ∈ [0, τ). We immediately
have Ne(0) = λ(τr + R/v), which is the number of vehicles that arrive in the AreaOI but
do not pass through the intersection during the previous TSC. Note that all these vehicles
are located in [−R, 0], i.e., Ne(0) should be less than ρmaxR, according to the unsaturation
assumption. Hence, vehicles arrive in the AreaOI at the rate λ(t) = λ during [0, τ). As the
arrival traffic would be regulated by the traffic signals, the vehicle departure rate from the
AreaOI is the key to characterize Ne(t). Let µ(t) denote this departure rate. Ne(t) can be
characterized as follows.

Ne(t) = Ne(0) +

∫ t

0

λ(t̂)dt̂−
∫ t

0

µ(t̂)dt̂, t ∈ [0, τ). (5.3)

The departure rate function µ(t) is given by Lemma 9.
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Figure 5.3: Comparison of vehicle dynamics in the AreaOI between our analytic results
and simulations based on SUMO. ρmax = 0.12 vehicle/m, v = 14 m/s, λ = 0.17 vehicle/s,
τr = τg = 40 s [4], ∆ = 1.3 s and R = 100 m.
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Figure 5.3: Comparison of vehicle dynamics in the AreaOI between our analytic results
and simulations based on SUMO. ρmax = 0.12 vehicle/m, v = 14 m/s, λ = 0.17 vehicle/s,
τr = τg = 40 s [4], ∆ = 1.3 s and R = 100 m.
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Lemma 9 Vehicles (on the eastbound lane) depart from the AreaOI at the rate µ(t), t ∈
[0, τ), where

µ(t) =


0, t ∈ [0, R

v
+ ∆);

ρ∗v, t ∈ [R
v

+ ∆, R
v

+ ∆ + t∗);

λ, t ∈ [R
v

+ ∆ + t∗, τg + R
v

);

0, t ∈ [τg + R
v
, τ),

where ρ∗ = ρmax
1+ρmax∆v

and t∗ = λ(τr+∆)
ρ∗v−λ .

Proof. Note that the time interval [0, τg) is the EGP and [τg, τ) is the ERP. At t = ∆,
the head-of-line vehicle queued in the previous ERP starts to pass through the intersection
at the speed v. Since the head-of-line vehicle has to move a distance of R to depart
from the AreaOI, during [0, R

v
+ ∆), there is no vehicle departures. At t = R

v
+ ∆, the

vehicle queue with the density ρ∗ starts to depart from the AreaOI, where ρ∗ can be easily
determined by the following equality: 1

ρmax
+ ∆v = 1

ρ∗
. Next, we determine the duration

of this departure, denoted by t∗. Since at t = R
v

+ ∆ + t∗, ρ∗vt∗ vehicles have departed
from the AreaOI and all the vehicles in the AreaOI are located in [−R,R] with density
ρ, we have the following equation with respect to t∗ under the unsaturation assumption:
λ(R

v
+ τr + R

v
+ ∆ + t∗) = ρ∗vt∗+ ρ2R. From (5.2), we have t∗ = λ(τr+∆)

ρ∗v−λ . Therefore, during

[R
v

+ ∆, R
v

+ ∆ + t∗), the departure rate is ρ∗v. Following the vehicle queue, vehicles depart
at the arrival rate λ until t = τg + R

v
. Note that at t = τg, the traffic signal turns from

green to red. Again, there is no vehicle departure during [τg + R
v
, τ). �

Thus, from (5.3) and Lemma 9, we have

Ne(t) =



λ(τr +R/v + t), t ∈ [0, R
v

+ ∆);

λ(τr +R/v + t)− ρ∗v(t−R/v −∆),

t ∈ [R
v

+ ∆, R
v

+ ∆ + t∗);

2λR/v, t ∈ [R
v

+ ∆ + t∗, τg + R
v

);

λ(R/v + t− τg), t ∈ [τg + R
v
, τ).

(5.4)

Under the same control of traffic signals, the vehicle flow on the westbound lane has
the same behavior as that on the eastbound lane. Thus, Nw(t) = Ne(t), where Nw(t) is the
number of vehicles at time t on the westbound lane in the AreaOI. Similarly, Nn(t) and
Ns(t) are denoted for the northbound and southbound lanes, respectively. Ns(t) = Nn(t)
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and Nn(t) can be derived in the same way as Ne(t). As N(t) is a summation of Ne(t),
Nw(t), Nn(t), and Ns(t), we can immediately have the following result.

Lemma 10 Under the stop-and-go flow model and the unsaturation assumption, the num-
ber of vehicles in the AreaOI at time t, t ∈ [0, τ), is given by

N(t) =



2λ(τr + 3R/v + t), t ∈ [0, R
v

);

2λ(τr + 2R/v + 2t), t ∈ [R
v
, R
v

+ ∆);

2λ(τr + 2R/v + 2t)− 2ρ∗v(t−R/v −∆),

t ∈ [R
v

+ ∆, R
v

+ ∆ + t∗);

2λ(3R/v + t), t ∈ [R
v

+ ∆ + t∗, τg + R
v

);

2λ(2R/v + 2t− τg), t ∈ [τg + R
v
, τg + R

v
+ ∆);

2λ(2R/v + 2t− τg)− 2ρ∗v(t− τg −R/v −∆),

t ∈ [τg + R
v

+ ∆,

τg + R
v

+ ∆ + t∗);

2λ(3R/v + t− τg), t ∈ [τg + R
v

+ ∆ + t∗, τ).

To evaluate how our proposed stop-and-go flow model can reflect the major behavior of
vehicle dynamics in the AreaOI, we perform simulations in an open-source traffic software
SUMO6 in which the car following model developed by Stefan Krauß [186] is used. We
compare the obtained analytic results with simulation results, as shown in Fig. 5.3.

5.3.3 Sojourn Time

The sojourn time S(τa) is the time duration the tagged vehicle stays in an AreaOI. Note
that the sojourn time is equal to the connection time for intersections with an AP deployed.
S(τa) depends on the arrival time τa, which is uniformly distributed over the interval [0, τ).
The analytic expression of S(τa) is given in the following lemma.

Lemma 11 Under the stop-and-go flow model and the unsaturation assumption, the so-

6SUMO is an open source, microscopic and continuous road traffic simulator designed to handle large
road networks.
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Table 5.2: NS-3&SUMO simulation parameters
SUMO Road Traffic NS-3

Parameter Value Parameter Value Parameter Value Parameter Value

Acceleration 1.5 m/s2 Deceleration 4.5
m/s2 Wi-Fi standard IEEE 802.11g Rate Adaptation AarfWifiManager

Minimum
vehicle gap 3 m Maximum

velocity 14 m/s Physical layer
model YansWifiPhy Channel model YansWifiChannel

Vehicle’s
netto-length 5 m Repetition

period 6 s Maximum
transmission level

40 mW (≈ 130
m) Data rate set [1,2,5.5,6,9,11,12,18,

24,36,48,54] mbps
Car-

following
model

SUMOKrauß Driver im-
perfection 0.1 Propagation Loss Log-Distance

model
Path-loss
exponent 4

Green (red)
period 10∼50 s Amber

period 1 s Application model OnOffApplication Off-time period 0

journ time of the tagged vehicle given the arrival time τa is as follows.

S(τa) =



λ(τr+
R
v

+τa)

ρ∗v
+ R

v
+ ∆− τa,
τa ∈ [0, t∗ + ∆− R

v
);

2R
v
, τa ∈ [t∗ + ∆− R

v
, τg − R

v
);

λ(τa−τg+R
v

)

ρ∗v
+ R

v
+ ∆ + τ − τa,
τa ∈ [τg − R

v
, τ).

Proof. Note that the tagged vehicle arrives in the location −R at τa. It can be seen
that the tagged vehicle will be the head of line in the vehicle queue if τa = τg − R

v
.

When τa ∈ [τ ′a, τg − R
v

), the tagged vehicle passes through the intersection without stop
(S(τa) = 2R/v), where τ ′a satisfies the following equality: λ(τ ′a + τr + R

v
) = ρ∗vt∗. Hence,

τ ′a = t∗ + ∆ − R
v

. If τa ∈ [0, τ ′a), the tagged vehicle will stop and join the vehicle queue
because the vehicle queue formed during the previous ERP has not been dissolved yet. The

sojourn time S(τa) is thereby
λ(τr+

R
v

+τa)

ρ∗v
+ R

v
+ ∆− τa. When τa ∈ [τg − R

v
, τ), the sojourn

time of the tagged vehicle can be expressed as τ − τa + τ ′′a . The first part denotes the time
elapsed before the traffic signal turning from red to green, and the second part denotes the
time the tagged vehicle continues the movement until it departs from the AreaOI. τ ′′a can

be obtained by τ ′′a =
λ(τa−τg+R

v
)

ρ∗v
+ R

v
+ ∆. �
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Table 5.3: Stop-and-Go flow model parameters for analytic results
Parameter Value Parameter Value

λ 0.17 vehicle/s v 14 m/s

ρmax
0.12

vehicle/m ∆ 1.3 s

τr 10∼50 s τg 10∼50 s
ϕmaxC 9 mbps R 130 m

5.3.4 Throughput Capacity Per Drive-thru

Based on Lemmas 10 and 11, we next derive the throughput capacity per drive-thru for
the tagged vehicle.

Definition 3 Throughput capacity per drive-thru: the maximum number of bits received
by the tagged vehicle from the Wi-Fi AP during one typical drive-thru of Wi-Fi coverage.

Wi-Fi transmission based on the IEEE 802.11 protocol adopts an adaptive modula-
tion scheme with different transmission bit rates, depending on the communication dis-
tance from the AP. However, to reduce the complexity of our model computation, we
consider a non-adaptive scheme with constant transmission bit rate in a fixed AP coverage
range. The non-adaptive transmission rate is also analytically considered in [187]. In addi-
tion, the contention-based MAC protocol, i.e., IEEE 802.11 DCF (distributed coordination
function), is adopted to schedule parallel transmissions. To characterize the protocol over-
head (including the overhead of physical layer), we introduce an empirical efficiency factor
ϕ ∈ (0, 1), which can be obtained from real-world measurements or through theocratical
analysis. We consider that the tagged vehicle share the Wi-Fi resource equally with oth-
er vehicles in the AP’s coverage range. Hence, the throughput capacity per drive-thru
achieved by the tagged vehicle is given by

z(τa) =

∫ τa+S(τa)

τa

ϕmaxC

N(t mod τ)
dt, (5.5)

where ϕmax is the maximum efficiency factor for a given transmission rate and C is the
AP’s transmission rate. ϕmaxC thereby indicates the maximum bit rate that can be utilized
for data transmission. For example, according to [188], ϕmax = 5/11 for IEEE 802.11b and
C = 11 Mbps, as the theoretical maximum throughput is shown to be 5Mbps for a 11Mbps
transmission rate. It is worthy noting that the throughput capacity per drive-thru depends
on the arrival time of the tagged vehicle. That is to say with different arrival time to the
AreaOI (with an AP deployed), the tagged vehicle achieves different throughput capacity
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Figure 5.4: z(τa) vs τa [τg = τr = 40 s].

per drive-thru, reflecting the impact of traffic signals. Particularly, there is a significant
throughput gain for vehicles stopping at intersections due to red signals, as shown in the
following simulation and analytic results, which is an important finding of this study.

To validate our modeling and analysis, we conduct simulations in the network simulator
NS-3 and the road traffic simulator SUMO. We first use SUMO to generate the mobility
trace file of vehicle traffic in one IArea. And then, the trace file is used as an input for
network simulations in NS-3. Simulation parameters and model parameters for analytic
results are respectively given in Table II and Table III. Fig. 5.4 presents the analytic and
NS-3&SUMO simulation results on throughput capacity per drive-thru with respect to the
arrival time. We adopt the IEEE 802.11g standard and adaptive data rates up to 54 Mbps
in the simulation. As the results shown in Fig. 5.4, vehicles arriving at the AreaOI with an
arrival time around 31 seconds (τa ≈ 31) in a TSC, which thereby stop at the intersection
due to the red signal so as to prolong the connection time with the AP, can achieve a much
higher throughput capacity per drive-thru (approximately three times as high as the lowest
one (τa ≈ 11) analytically), indicating a significant throughput gain. From Fig. 5.4, it can
be seen that even with the none-adaptive data rate and simplified MAC operation, our
theoretical and simulation measurements still match well in terms of general trends, which
demonstrates the validity of our proposed modeling approach on throughput analysis of a
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Figure 5.5: maxz(τa), τa ∈ [0, τ) vs τg.

vehicle driving through a Wi-Fi coverage considering the impact of traffic signals.

Fig. 5.5 presents the maximum throughput capacity per drive-thru, i.e.,

zmax = max
τa∈[0,τ)

z(τa),

under different configurations of TSC. It is intuitive that with a longer EGP or ERP, vehicles
achieve a larger zmax due to the prolonged connection time with the AP. However, the
gain is not very significant since the increase of EGP or ERP also incurs a larger number of
vehicles waiting at the intersection due to the red signal so as to increase the number of
vehicles contending for Wi-Fi resources. As shown in Fig. 5.5, the impact of increasing the
connection time after all dominates the impact of increasing the number of vehicles in the
AP’s coverage. Fig. 5.6 presents the throughput gain, which is the maximum value over
the mean value of throughput capacity per drive-thru with respect to τa (mathematically
defined as maxτa∈[0,τ) z(τa)/[

1
τ

∫ τ
0
z(τa)dτa]), under different configurations of TSC. It can

be seen that with a longer EGP or ERP, we have a higher throughput gain. For example, for
τg = τr = 40 s, the maximum throughput capacity per drive-thru (achieved when τa ≈ 31
s) is 1.9 times the mean value by simulation and 1.8 times by analysis, demonstrating a
significant impact of traffic signals.
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Figure 5.6: Throughput gain (max over mean) vs τg.

5.3.5 Time-Average Throughput Capacity

The tagged vehicle moves along the road and experiences alternate disconnected period
and connected period (being inside the AreaOI with an AP deployed). We are interested in
the average bit rate of the tagged vehicle received from the APs over a long time, e.g., the
entire travel time. Mathematically, we present the definition of time-average throughput
capacity.

Definition 4 Time-average throughput capacity: the maximum average bit rate received
by the tagged vehicle from the drive-thru Wi-Fi networks in a long term, which is given
mathematically by

zW = lim
t→∞

z̃(t)

t
, (5.6)

where z̃(t) is the total number of bits received by time t.

We next derive the time-average throughput capacity. The IAreas on the route of the
tagged vehicle are indexed by 1, 2, . . . n, as shown in Fig. 5.1. Let Tn denote the time from
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the departure of the (n−1)-th AreaOI to the departure of the n-th AreaOI. Thus, we have

Tn = (L− 2R)/v + S(τna ), (5.7)

where τna is the arrival time to the n-th AreaOI. It can be seen that T1, T2, . . . , Tn are
independent and identically distributed (i.i.d) random variables with a common distribu-
tion T under the independence assumption. Further, we denote by z̃n the throughput
capacity achieved in the n-th AreaOI. z̃n = z(τna ) with probability pap; and z̃n = 0 with
probability 1− pap. The number of AreaOIs passed through by the tagged vehicle by time
t is denoted by {I(t), t ≥ 0}. Then, we have

I(t)∑
n=1

z̃n ≤ z̃(t) <

I(t)+1∑
n=1

z̃n. (5.8)

Since z̃n can be considered as the reward earned during the time period of Tn, we
model {z̃(t); t > 0} as a renewal reward process with inter-renewal time {Tn;n ≥ 1}. The
inter-renewal times have a finite expectation E[T ] <∞. z̃1, z̃2, . . . , z̃n are i.i.d random
variables with a common distribution z̃. The following lemma holds for renewal reward
processes.

Lemma 12 (Theorem 5.4.1 in [189]) Consider a renewal reward process {R(t); t > 0}
with expected inter-renewal time E[X] = X < ∞. If each Rn is a random variable with
E[Rn] <∞, then with probability 1,

lim
t→∞

R(t)

t
=
E[Rn]

X
. (5.9)

Proposition 1 Under the independence assumption, with probability 1, the time-average
throughput capacity of the tagged vehicle is given by

zW =

pap

∫ τ

0

z(τa)dτa

τ(L− 2R)/v +

∫ τ

0

S(τa)dτa

. (5.10)

Proof. According to Lemma 12, zW = E[z̃]/E[T ], as obviously we have E[z̃] < ∞
and E[T ] < ∞. Specifically, from Lemma 11 and (5.7), E[T ] = L−2R

v
+ E[S(τa)] =
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L−2R
v

+ 1
τ

∫ τ
0
S(τa)dτa. From (5.11), E[z̃] = pap

1
τ

∫ τ
0
z(τa)dτa. Note that τa is uniformly

distributed over [0, τ). We omit the tedious calculations of these two integrals. �

It can be seen that the time-average throughput capacity of Wi-Fi network is deter-
mined by the urban environment (L), Wi-Fi deployment (pap), Wi-Fi coverage R, and
connection time depending on traffic signal operation (τg, τr) and vehicle traffic (λ, v).
The analytic and simulation results of zW in terms of deployment scale are shown in
Fig. 5.7. It can be seen that the time-average throughput capacity increases with a larger
Wi-Fi deployment. Note that the analytic result is quite optimistic. This is because we use
an empirical efficiency factor to simplify the MAC and physical layer operation of Wi-Fi.
Our analytic result can be considered as an upper bound of Wi-Fi throughput performance.

5.4 Benchmark: Cellular Macrocell Service

The performance of cellular macrocell service is considered as a benchmark in the study
of cost-effectiveness of Wi-Fi network. Thus, we use the networking scenario with cellular
macrocell BSs providing full service coverage for performance comparison. A macrocell
enables cellular services relying on a high-power cellular BS [190]. For apple-to-apple
comparison, we assume that the considered cellular network only serves vehicle users. We
focus on the analysis of average downlink capacity achieved by the tagged vehicle.

Definition 5 Average downlink capacity: the maximum average downlink data rate re-
ceived from cellular BSs in a long term, which is given mathematically by

zC = lim
t→∞

1

t

∫ t

0

U(t)dt, (5.11)

where U(t) is the instantaneous maximum data rate at time t.

5.4.1 Spectrum Efficiency

The maximum data rate U(t) can be determined by U(t) = b(t)Υ(t), where b(t) is acquired
transmission bandwidth and Υ(t) is the maximum spectrum efficiency (bits/s/Hz), at time
t. The maximum spectral efficiency is theoretically governed by the Shannon capacity.
However, the Shannon capacity is not achievable in reality due to limited coding block
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length, non-avoidable system overhead, etc. [191]. Following [192], we adopt a modified
Shannon capacity formula,

Υ = BWe · σ · log2(1 +
SINR

SINRe
), (5.12)

where BWe is the system bandwidth efficiency, SINRe is the efficiency of signal-to-interference-
plus-noise ratio (SINR), and σ is a correction factor due to the dependency between SINRe
and SINR. Formula (5.12) can be used to approximate the maximum spectrum efficiency
of real-world cellular systems with different settings. For example, for an LTE cellular
system with single antenna transmissions and Round Robin scheduling, BWeσ = 0.56 and
SINRe = 2.0 [192].

5.4.2 Distribution of SINR

The SINR on the wireless link between cellular BS and the tagged vehicle is an important
basis to determine the downlink capacity. The interference experienced by the vehicle
comes from the transmission of other-cell BSs. In urban areas with densely deployed BSs,
other-cell interference is a major impediment to high spectrum efficiency [193]. To model
the deployment of macrocell BSs in the considered area Ω, we consider a homogeneous
Poisson point process (PPP) of density ξ, in which each point represents a location of BS.
Modeling BS location as a PPP is widely adopted in the literature, e.g., [194] and [195],
which is able to characterize the variety of macrocell size due to differences in transmission
power, tower height, etc.. We consider the same vehicle density ρ as in the drive-thru
Wi-Fi scenario. The impact of traffic signals on vehicle density is not considered here since
cellular macrocell is much larger than Wi-Fi coverage and thereby not sensitive to such
variations of vehicle density. Considering Rayleigh fading on other-cell interference, the
complementary cumulative distribution function (CCDF) of SINR is given in [194], i.e.,

Pr(SINR > Z) =
1

1 + Z
2
β

∫ ∞
Z
− 2
β

1

1 + uβ/2
du

, (5.13)

where β > 2 is called the path-loss exponent. Typically, we have β = 4 for urban environ-
ments [174]. Thus, (5.13) can be further simplified as follows.

Pr(SINR > Z) =
1

1 +
√
Z(π/2− arctan(1/

√
Z))

(5.14)
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The distribution of downlink SINR given in (5.14) is for the configuration of single
transmit and single receive antenna. In addition, the thermal noise is ignored, as the
urban cellular network is often interference-limited.

5.4.3 Average Downlink Capacity

To derive the average downlink capacity of the tagged vehicle, we consider a simple band-
width sharing model: every vehicle can obtain a constant bandwidth b0 from BSs, i.e.,
b(t) = b0. Given that each BS provides a bandwidth of B, the total bandwidth resource in
Ω is thus ξΩB. As the total number of vehicles in Ω is given by Ω ·4Lρ/L2 (approximately
Ω contains Ω/L2 IAreas and each IArea contains 4Lρ vehicles), we have b0 = ξBL

4ρ
. Con-

sidering the spectrum efficiency and distribution of SINR, the following result of average
downlink capacity is obtained.

Proposition 2 The average downlink capacity of the tagged vehicle is given by

zC = U1

∫
r>0

1

1 +
√U2(π/2− arctan(1/

√U2))
dr, (5.15)

where U1 = ξBLBWeσ
4ρ

and U2 = SINRe(2
r − 1).

Proof.

zC = lim
t→∞

1

t

∫ t

0

b(t)Υ(t)dt = b0E[Υ]

=
ξBL

4ρ
E

[
BWeσ log2

(
1 +

SINR

SINRe

)]
=
ξBLBWeσ

4ρ

∫
r>0

Pr

(
log2

(
1 +

SINR

SINRe

)
> r

)
dr

=
ξBLBWeσ

4ρ

∫
r>0

Pr

(
SINR > SINRe(2

r − 1)

)
dr.

The third equality holds due to E[X] =
∫
x>0

Pr(X > x)dx for a nonnegative random
variable X. From (5.14), the proposition holds. �

In the analysis of average downlink capacity, the inter-cell interference management
techniques are not considered, such as frequency reuse. However, these advanced tech-
niques are indeed beneficial for improving the spectrum efficiency and available data rates.
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Especially, the performance of LTE system is more limited by other-cell interference com-
pared to 3G cellular systems [196], implying that interference management is also necessary
for LTE systems. Hence, our result given in Proposition 2 is conservative and can be consid-
ered as a lower bound of average downlink capacity. In providing the benchmark cellular
service for comparison, small cell service on top of the existing macrocell service is not
considered. We give a discussion on heterogenous networks in Section 5.6. Under the
same comparison level with Fig. 5.7, the analytic and simulation results of zC in terms
of deployment scale are shown in Fig. 5.8. It can be seen that the average downlink ca-
pacity increases with a larger celluar deployment in terms of ξ. We can also notice the
conservativeness of our analytic result that we have discussed.

5.5 Cost-Effectiveness Analysis

We examine the cost-effectiveness of Wi-Fi deployment in this section. For service delay
of Wi-Fi scenario, mathematically, DW = E

[
{min t0 : z̃(t0) > G}

]
. Since it is difficult

to obtain the distribution of z̃(t) and given that Pr(limt→∞
z̃(t)
t

= zW ) = 1, DW is
approximated to be G

zW
for a large G, e.g., one hundred MBytes. Similarly, DC ≈ G

zC
.

Hence, the NSD α ≈ zC/zW . The cost-effectiveness η depends on the TCO (including
CAPEX and OPEX) of infrastructure node and the number of infrastructure node deployed
in each scenario. The CAPEX includes the cost of equipment, planning, installation,
commissioning, etc., and the OPEX includes the cost of site rental, power, maintenance,
etc. [197]. Based on the cost model provided in [197], the ratio of the TCO of a Wi-Fi
AP to the TCO of a macro 3-Sector LTE BS is around 12%, i.e., eW/eC ≈ 0.12. To
evaluate the cost-effectiveness of a Wi-Fi scenario, we fix the cellular deployment (Ω, NC)
and thereby the zC is determined. Given that the average number of APs deployed in a
Wi-Fi scenario is papΩ/L

2, the explicit relation between η and α is given by

η = 1− eW
eC

ΩzC

(
τ(L− 2R)/v +

∫ τ
0
S(τa)dτa

)
αNCL2

∫ τ
0
z(τa)dτa

. (5.16)

This is the main result of this chapter, which presents the tradeoff between η (TCO
savings) and α (service degradation). It can be seen that η depends on both controllable
(e.g., Wi-Fi deployment (pap, R, α)) and uncontrollable (e.g., the urban environment (L,
τ), vehicle traffic statistics (λ, v)) parameters. The analytic and simulation results on η
are shown in Fig. 5.9. The gap between theory and simulation is due to the conservative
result on zC given in Proposition 2 (see Fig. 5.8). Through these results, the MNO is
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Figure 5.9: Tradeoff between cost-effectiveness and normalized service delay.

able to deploy Wi-Fi network according to the required level of service, and to have the
knowledge of the corresponding TCO savings (compared to cellular solution) immediately.
For example, theoretically from Fig. 5.9, almost 90% of the TCO can be saved if the
average service delay of Wi-Fi deployment is 3X larger than that of cellular deployment,
demonstrating the great potential of Wi-Fi solution for vehicle users in terms of cost-
effectiveness. Fig. 5.10 analytically presents the tradeoff between η and α under different
configurations of TSC. We can clearly see the impact of traffic signals on the tradeoff
between the cost-effectiveness of Wi-Fi deployment and the service degradation. However,
the impact is not significant especially for a large NSD. While for a single drive-thru, there
exists a significant throughput gain due to the impact of traffic signals.

5.6 Discussion

Small cells and heterogenous network : Both small cells and Wi-Fi are cost-effective solu-
tions to massive increase of mobile data demand. However, the feasibility of outdoor small
cells for mobile user at vehicular speed is not clear yet. In our study, we do not consider
deploying cellular BSs and Wi-Fi APs in one scenario for the purpose of apple-to-apple
comparison and explicitly showing the great potential of Wi-Fi. We believe that a het-
erogenous network with cellular macrocell service for coverage and small cells and Wi-Fi
for capacity would be desired.
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Figure 5.10: Tradeoff between η and α under different configurations of TSC.

V2V communications : In this chapter, although we do not consider store-carry-and-
forward communications between vehicles, which may incur additional cost/complexity
for opportunistic data exchange, V2V communications can indeed benefit Internet traffic
delivery. For example, the vehicles in the coverage of Wi-Fi hotspots can help to relay the
traffic so as to virtually extend the Wi-Fi service region.

5.7 Summary

In this chapter, we have investigated the cost-effectiveness of Wi-Fi solution for vehicular
Internet access considering the tradeoff with the user’s satisfaction. In Wi-Fi scenario,
we have particularly studied the fundamental impact of traffic signals at intersection on
Wi-Fi access. By examining the tradeoff between cost-effectiveness and normalized service
delay, we have demonstrated that Wi-Fi has great potential to serve vehicle users with
a much lower TCO. Our results provide a quick and efficient way of determining the
Wi-Fi deployment strategy and the corresponding TCO savings. Future work includes
large-scale simulations with real-world data set of vehicle mobility in urban scenarios, and
cost-effectiveness analysis taking V2V communications into consideration.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the main concepts and results presented in this thesis and
highlight future research directions.

6.1 Conclusions

In this thesis, we have investigated the scaling laws of vehicular networks. Based on the
analysis and discussion provided, we present the following remarks.

• The study of capacity scaling laws plays an vital role in understanding the fundamen-
tal properties of VANETs. Instead of showing the exact performance for a specific
network, theoretical capacity bounds present the performance limit of networks with
optimal operations, and thereby guide the network design and deployment. For large-
scale VANETs, capacity scaling results can also be applied to predict the network
performance, at least in the order sense.

• Vehicle mobility imposes many challenges in vehicular networking, but also brings
opportunities, one of which is to facilitate the store-carry-and-forward data delivery to
support delay-tolerant applications, such as traffic conditions update, advertisements
and social media dissemination, without any assistance of infrastructure. It has been
shown that the wireless network is not scalable without mobility [58]; while the
network will be truely scalable with i.i.d (extreme) mobility [88]. So in theory, we
would like to know if the vehicular network is scalable for serving delay-tolerant
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data delivery considering vehicle mobility, which is definitely time-correlated, map-
restricted, and related to the people’s social life. We argue that the capacity scaling
highly depends on the social features of vehicle mobility. From the capacity and delay
analysis, we also know that according to different mobility patterns, it is beneficial
to design suitable packet forwarding schemes.

• Wireless access technologies cannot be circumvented when it comes to VANETs, since
providing Internet services is the major solution to meet the ever-increasing mobile
data demand of vehicle users. The capacity-cost study provides some basic ideas
for the choice of access infrastructures. The main conclusion is that the deployment
of BSs or WMBs is cost-effective to offer a low-speed downlink rate to vehicles;
nonetheless, when providing a high-speed Internet access, the deployment of RAPs
outperforms the other two alternatives in terms of deployment costs. Therefore, we
believe that non-cellular access infrastructure will play an increasingly important
role in offering a cost-effective data pipe for vehicles, especially for supporting high-
bandwidth applications. Moreover, we show a significant throughput gain for vehicles
stopping at intersections due to red signals by considering the impact of traffic signals
in the Wi-Fi deployment.

6.2 Future Research Directions

In this thesis, we focus on the scaling law study of VANETs with and without access
infrastructure, respectively, mainly based on the theoretical analysis. Our future work
includes extensive simulation validations base on trace data of real-world scenarios and
further digging up the implication on network design and operation. Despite existing
studies on capacity analysis of VANETs, many issues remain unclear. For example, when
jointly considering more complex street patten and inhomogeneous vehicle densities, it
might be difficult to determine the throughput capacity and network delay. Moreover, due
to the emergent and public nature of safety applications, broadcasting leads an important
role in disseminating safety messages to vehicles in proximity. The study of broadcast
capacity is another research interest. We close this chapter with additional three thoughts
on future research directions in the field of scaling laws.

• The design, analysis and deployment of wireless networks necessitate a general under-
standing of capacity scaling laws. Existing works often adopt different methodologies
and sets of assumptions and models in developing capacity scaling laws, which may
yield custom-designed solutions without universal properties that can be applied to
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other types of wireless networks. To better understand the impact of various set-
tings and techniques on capacity scaling laws, it would be useful to provide a unified
framework. Two research works have been performed toward this end: the study of
capacity scaling laws under a generalized physical model [198] and the establishment
of a simple set of criteria that can be used to determine the capacity for various
physical layer technologies under the protocol model [199].

• The Shannon capacity was achieved by considering arbitrarily delay and vanishing-
ly small error probability. In [55], Andrews et al. referred to a throughput-delay-
reliability (TDR) triplet, since these quantities are interrelated. Thus, the throughput
capacity of wireless networks would likely be constrained by these two fundamental
quantities—delay and reliability jointly. Actually, the link reliability has been con-
sidered in studies of transmission capacity [200–202] which is the spatial intensity
of attempted transmissions under a target outage of wireless links. The tradeoff be-
tween throughput capacity, delay, and reliability should be investigated. However,
this is much more challenging.

• Investigations on throughput capacity and network delay of emerging wireless net-
works are also promising. Particular characteristics of networks being studied often
make the problem very challenging, such as road geometry and vehicle density in
vehicular networks. In addition to the aforementioned cognitive radio networks and
vehicular networks, femtocell networks [203] and smart grid have also gained much
interest recently, both of which have complex network architecture and heterogenous
communication devices, making the study of scaling laws a demanding task.
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