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Abstract

A three-dimensional (3D) predictive golfer model can be a valuable tool for investigating

the golf swing and designing new clubs. A forward dynamic model for simulating golfer

drives is presented, which includes: (1) a four degree of freedom golfer model, (2) a flexible

shaft model based on Rayleigh beam theory, (3) an impulse-momentum impact model,

(4) and a spin rate controlled ball trajectory model. The input torques for the golfer

model are provided by parameterized joint torque generators that have been designed to

mimic muscular inputs. These joint torques are optimized to produce the longest ball carry

distance for a given set of golf club design parameters. The flexible shaft model allows for

continuous bending in the transverse directions, axial twisting of the club and variable shaft

stiffness along its length. The completed four-part model is used for examining the following

parameters of interest in club design by performing simulation experiments: clubhead

mass, clubhead centre of mass location, clubhead moment of inertia, shaft flexibility, and

clubhead and shaft aerodynamics.

Analysis of the experiments led to the following recommendations for golf club design:

1. The clubhead mass should continue to be around 200g.

2. The centre of mass of the clubhead should be as close to the face as possible.

3. Shaft flexibility should be tuned for an individual golfer, depending on their particular

swing.

4. Clubhead and shaft aerodynamic drag have a significant effect on the ball carry and

clubhead orientation, and should be minimized during the club design process.

Finally, suggestions are made for future research which can be performed in this area.
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Chapter 1

Introduction

Golf is a sport played by an estimated 80 million people worldwide on nearly 40000 courses

[5]. Players and manufacturers spend billions of dollars on events, golf tourism, and equip-

ment to play the game. To capture this market, golf equipment companies are constantly

designing new clubs for players to use, promising gains in driving distance and accuracy,

improved spin control, or other benefits to players who buy the latest technology. While

it is clear that golf club technology has improved over the last 30 years [6], there is still a

significant lack of understanding of the mechanisms behind this improvement. Golfers are

left searching for answers within a haze of marketing information without clear scientific

basis.

This thesis seeks to build our scientific understanding of the golf swing through modeling

and simulation of golfers and their equipment. Along with improving our understanding of

the golf swing, simulations can be used to help design and evaluate new golf clubs quickly

and inexpensively.
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1.1 Motivation and Goals

Computer simulations are used extensively in the design of multibody dynamic systems. In

the past they have mostly been used for designing the mechanical and electrical components

of systems, but improved techniques have allowed researchers to begin simulating humans

interacting larger systems in biomechatronic models [7]. Simulations of the golf swing have

been used since the 1970s to attempt to discover how to golf more effectively. By modeling

the golf swing, we can gain insights into how golfers should swing and the best ways to

design their equipment.

The goal of this project is to develop a biologically-motivated golf swing model including

the golfer and club that can be evaluated based on its performance in striking the ball.

The model should include variable parameters for golfer to allow for optimization of the

swing and variable parameters for the golf club to test and evaluate different designs.

1.2 Project Outline

The project began with a review of existing golfer models that have been used to simulate

the golf swing. The review focused on establishing what parts of the swing have been

modeled and what opportunities exist for developing new golfer models. In addition, a

review of manufacturer’s claims for the capabilities of new golf clubs was performed to

determine what questions the model could be used to answer. This review led to the

conclusion that there was a need for a biologically-motivated golf swing model that could

be used for evaluating golf clubs and the marketing claims made about them. This model

should be able to swing clubs in an optimal fashion and capture the biomechanics relevant

to the golf swing.
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To easily evaluate golf clubs within the context of the model a four-step golfer model

was proposed including the golfer, club, impact with the ball, and aerodynamics of the

ball’s flight. Different models were considered for each step, and the resulting selections

combined together into a single simulation. This simulation of a golfer striking the ball is

then optimized by changing the timing of the muscular torques that drive the model.

The final model was then used to perform several experiments on the claims made by

manufacturers about new club designs. Club mass, club head moment of inertia, club

head centre of mass position, and club flexibility are all examined within the context of

the model. The effect of golfer strength was also investigated. Finally, the limitations of

the model are addressed and some recommendations made for how to improve and expand

its capabilities are made.

1.3 Contributions

� Overall contribution: A biological golfer model that can be evaluated using ball

trajectories.

� Inclusion of a continuous flexible golf club model based on Rayleigh beam theory in

a forward dynamic golfer and swing model.

� Method for providing joint torques that mimic those provided by muscles, including

both passive and active biological contributions.

� A combined impact and aerodynamics model for predicting ball flight.

� An optimization technique for determining the best swing based on ball carry for a

particular golfer and club combination.
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� A clubhead aerodynamic model that can be used in forward dynamic simulation.

� A shaft aerodynamic model that can be used in conjunction with the flexible beam.

1.4 Document Structure

This document describes the process through which the four-part golfer model is created.

Chapter 1 describes the goals and motivations for the project and the major contributions

of this work. Chapter 2 has two goals: first, in Sections 2.1 and 2.2 to describe the basic

biomechanics and physics which affect the golf swing and club design, and second in Section

2.3 to perform a literature review of the existing golfer models.

Chapter 3 describes the four-part golfer model created for this work. It is divided into

four sections: Section 3.1 describes the golfer portion of the model including active and

passive joint torques; Section 3.2 details the flexible club used, including aerodynamics on

the clubhead and shaft; Section 3.4 describes the impulse-momentum based impact model;

and Section 3.5 discusses the ball aerodynamic model.

In Chapter 4 the combined model is used to investigate the effect of golf club design

decisions on the performance of golf clubs. Evaluations of the effect of a variety of golfer and

club parameters on the success of the golf swing are performed and the results investigated.

Limitations of the model are also addressed in this chapter.

Finally, in Chapter 5 the project is summarized and recommendations for future work

are made.
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Chapter 2

Background and Literature Review

In 1968, Search for the Perfect Swing by Cochran and Stobbs began the serious scientific

study of the golf swing with a simple two-dimensional model of the swing based on a

spring-powered double-pendulum [8]. They investigated the golfer’s motion using strobe

photography and developed simple models for the biomechanics of the swing, impact with

the ball, and aerodynamic flight. Since then, the search has continued with ever more

refined models to improve our understanding of the golf swing and the equipment golfers

use.

This Chapter examines the basic mechanics of the golf swing, impact with the ball,

and aerodynamics in Section 2.1. Section 2.2 then provides a short summary of the factors

involved in designing a golf driver and the claims of manufacturers that are producing new

clubs. Finally, in Section 2.3, a literature review of previous golfer and club models is

provided. The conclusion of this review is that while a number of different golfer and club

models have been created, there is no model available that is well-suited for evaluating

club performance. No model exists that combines a biologically-motivated golfer model
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with a sufficiently complex club model where ball strikes can be evaluated based on the

success of the resulting drive. This is the gap which this project seeks to address.

2.1 Golf Swing

The golf swing is a complicated and precisely timed motion of the human body perfected

by the best players with tens of thousands of repetitions. A successful swing results in

striking the ball so that it flies to a desired location. For a drive, the goal is to hit the ball

as far downrange as possible and to land in the fairway. The result of any particular swing

depends on the behaviour of the golfer, club, impact with the ball, and the aerodynamics

of ball flight. This section describes the basic physical principles which are necessary for

describing and modeling the golf swing.

2.1.1 Biomechanics of the Golfer

The biomechanics of the swing can be broken down into three sections. First, during the

backswing, the golfer lifts the club from the address position and coils their torso, shoulder,

and wrist to position the clubhead for an accurate and powerful downswing. At the end

of the backswing, a typical, right-handed, golfer will have rotated their shoulders more

than 90 degrees [9], brought their left arm across the front of their body (abducted 75° to

90°) with the elbow fully extended, and maximally radially deviated their left wrist [10].

During the backswing, the club and arms generally travel within a single plane and the

left hand (of a right-swinging golfer) is in control of the club.

During the downswing, which generally lasts between 0.2 s and 0.25 s [8], the left arm

once again controls the club, providing the majority of the moment required to bring the
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club to the ball. The downswing begins with the rotation of the torso by the pelvis and

this motion generally begins before the backswing is complete [11]. The muscles of the

torso activate as the club is accelerated downwards, the arm externally rotates as it comes

across the body, and the wrist remains cocked as long as possible to maximize the speed

of the clubhead. In general, the motions follow the kinetic chain from proximal to distal

elements (torso, shoulder, arm rotation, and wrist uncocking) [12].

Finally, in the follow-through, the body and clubhead are decelerated using eccentric

muscle action. The arm and club continue to swing through along the club plane. The

golfer finishes their swing in a balanced position with the arms extended above the head.

Is the swing planar?

One question which has been examined by many researchers is whether the swing is planar

and whether it is useful to model the swing as a planar motion. While it seems clear that

many models have been able to obtain useful results from a planar swing, the question

remains as to whether more useful information can be found from more complicated models.

In particular, Coleman and Rankin conducted a study in 2005 that challenged the as-

sumption of a planar swing through experiment [13]. They used motion capture technology

to capture the motions of 7 low-handicap golfers. When examining the planes of motion

of the swing, they found that there was not a consistent plane throughout the downswing,

and that more complex models should be developed. This idea is confirmed by Iwatsubo,

who studied two link (planar) and four link (non-planar) models of the golf swing and

concluded that four link models are better for evaluating golfer performance [14]. In par-

ticular, the joint torques that are required to actuate the model are more accurate in the

four-link model.
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Figure 2.1: An illustration of muscle activation and deactivation dynamics [1].

2.1.2 Muscle Dynamics and Passive Joint Torques

An important aspect of the biomechanics of the golfer is the dynamics of the muscles that

power the swing. How the golfer’s muscles behave affect how the swing can be controlled

and how much power can be generated.

Muscles are not able to produce instantaneous force at any level within their range of

operation. After activation, it can take 5 ms to 10 ms for a single muscle fibre to reach its

maximum tension and the recruitment of all the muscle fibres in a single muscle can take

100 ms to 200 ms [1]. The force provided by a single muscle approaches the maximum value

over this period and is can be modeled using a first-order function. Similarly, when the

muscle is relaxed, the force does not drop instantaneously, but ramps down over a longer

time period. This phenomenon is illustrated in Figure 2.1.

In addition, there are two well-studied relationships which govern the amount of force

that a well-rested muscle can produce relative to its maximum. The force-length and

force-velocity curves for muscles are important in determining the amount of force that
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any given muscle can produce at an instant and need to be considered in the development

of biomechanical models. Other muscle characteristics, such as history dependence and

fatigue, are ignored as the time scales involved in the golf swing are very short.

Force-Length Relationship for Muscles

First the force-length relation describes the relation between muscle length and the force

the muscle can exert. The cross-bridge theory of muscle dynamics explains muscle force

generation as the interaction between adjacent filaments in the muscle [1]. Depending on

the amount of overlap between adjacent filaments more or less force can be generated. For

each muscle, there is an optimal length region where maximum force can be generated.

Beyond that region, the filaments overlap less and therefore less force is generated. At

shorter lengths, the filaments interfere with each other and force generation is reduced. In

addition, the force required to further deform the muscle at these lengths is increased and

less force is available to be applied beyond the muscle. Figure 2.2 illustrates the shape of

the force-length curve for active tensile strength of the muscle.

In addition to the active force-length relationship, there is a passive tensile force applied

by the muscle when it is stretched beyond its rest length [1]. The passive force is small

at first, but increases rapidly as the muscle reaches the limits of its flexibility as shown in

Figure 2.3. At the limits of the muscle’s range of motion, the passive force is often larger

than the active force. The forces or torques inputted to a golfer model should try to take

into account the force-length dynamics of human muscles. It’s unlikely that the reduction

in strength due to shortening occurs during the golf swing, but the passive tensile force

becomes important as the golfer reaches the limits of their range of motion at the start of

the downswing.
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Figure 2.2: Force-length curve for active portion of a human muscle [1].

Force-Velocity Relationship for Muscles

The second factor which affects the force output of the muscle is the force-velocity rela-

tionship. In the most basic form, this relationship states that as the velocity of the muscle

contraction increases, the force output decreases. Typically, this relation is described using

the Hill muscle model [1],

F =
(F0b− av)

b+ v
(2.1)

where F is the instantaneous force, F0 is the force produced in isometric (stationary)

contraction, v is the current contraction speed, and a and b are constants. This relation-

ship leads to the normalized force-velocity relationship shown in Figure 2.4. The exact

properties of the curve change depending on the muscle’s cross-sectional area, length, and

proportion of fast-twitch and slow-twitch fibres, but the general form stays the same [1].

The force-velocity relationship has a significant effect on muscle output and should be

accounted for in the development of the golfer model.
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The total force line shows how the combination of the passive and active components

can produce larger forces than the active force alone. Both components of this force are

important to include in the model. [1]

Figure 2.4: Normalized force-velocity curve for a typical muscle [1].
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Passive Moments at Joint Limits

In combination with the passive muscle forces describe earlier, passive elastic structure

(ligaments, joint capsules, skin, and other surrounding tissues) apply moments to joints to

prevent them from leaving their normal range of motion. These passive forces can be very

strong and have been shown to be important when modeling human gait [15]. The passive

moment begins to affect joints near the limits of their range of motion and grow quickly

as the joint goes beyond its normal range to prevent further bending.

Passive joint moments have been measured for many joints in the body and the general

shape of the joint angle vs. torque curves is shown in Figure 2.5. The passive moment is

small through the normal range of motion and quickly grows outside of those limits. The

angle at which the moment is applied and rate of growth differs from joint to joint but the

general shape of the applied torque remains the same.

Muscle Activity During the Golf Swing

Of these biological characteristics, the muscle activation dynamics described in Section

and shown in Figure 2.1 are the most important factor in controlling the golf swing. They

provide limits on the ability of the golfer to control the swing and make control strategies

that involve turning muscles on and off frequently difficult. Since the golf drive is an

activity where the goal is to achieve maximum distance, it is likely that the muscle groups

used are activated for their maximum power production and the golfer’s main role is to

control the timing of these activations [16] and thus the timing of the swing.

The passive joint forces that provide limits on joint angles are also important to con-

sider when modeling biomechanically possible swings. Especially at the wrist joint, the

passive forces prevent the wrist from bending backwards into an anatomically impossible
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Figure 2.5: General shape of the passive joint moment [2]. τ is the passive moment and θ

is the joint angle. θ1 and θ2 indicate the normal range of motion of the joint.
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position during the early portion of the swing while the golfer’s wrist muscles are not ac-

tive. In addition, the passive forces are able to store strain energy accumulated during the

backswing and provide more power to the swing. Passive forces are a significant part of

the stretch-shorten cycle which allows golfers to generate more power in their swing [10].

The force-velocity relationship is also important for the muscles involved in the swing.

As the golfer accelerates through the downswing, their muscles will be able to provide less

torque to continue accelerating the club. The velocity of the swing is probably not large

enough so that no torque can be provided, but the active torque applied is greatly reduced

near the impact point.

The force-length relationship will not have a large effect on the muscles during the golf

swing. For the range of motion required, the muscle sarcomere lengths will likely be within

the optimal range [17].

2.1.3 Club Flexibility

Club flexibility plays an important role in generating clubhead velocity and greatly affects

the presentation (orientation) of the clubhead at impact. During the downswing, the

clubhead first lags the hands as strain energy is stored in the shaft before whipping forwards

to contact the ball. By the time of impact, the club is usually bent forward, leading to

increased loft angle of the club face, and possibly an increase in clubhead speed [18]. Figure

2.7 shows the expected flexing pattern for the club throughout the swing in the forward

plane.

In addition to lead-lag flexing, the clubhead also droops during the swing to align the

centre of mass with the plane of rotation of the swing. The centripetal acceleration of the

clubhead tends to push the clubhead centre of mass downwards as the club accelerates.
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Figure 2.6: The clubhead droops as it accelerates, bringing the centre of mass closer in

line with the plane of the swing and the hands of the golfer. The amount of droop is

exaggerated in this Figure to better illustrate the effect.

This effect is illustrated in Figure 2.6. Finally, axial flexibility of the shaft introduces a

small amount of lag between the rotation of the grip and the rotation of the clubhead

about its vertical axis.

Flexible Club Models

Many attempts to model the flexible club have been made. In 1992, Milne and Davis

[18] created a mathematical model for the shaft using a two-dimensional double-pendulum
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Figure 2.7: The typical flexing pattern of the club during the swing. The amount of shaft

bending is magnified by 5 times in this image to make the bending patterns more obvious.

Timing information and the amount of bending is taken from Milne and Davis [18].
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model of the golf swing. This model used the principle of virtual work to derive a series of

shape equations for the shaft. Three golfers’ swings were tracked using optical markers and

strain gauges were used to verify the results. The model was used simply to describe club

flexing during the swing and it is not suitable for use in a forward dynamic simulation.

Another attempt to model the flexible golf shaft was made by Mackenzie as part of a

larger 3-D golfer model [19]. The hands of the golfer, along with the shaft and clubhead

(often considered as a single rigid body in many golfer and club models [20] [21] [22]) were

divided into 4 subsections, each with its own set of inertial properties. These sections

were connected with universal joints that allowed lead-lag and toe-down deflection. To

approximate the shaft stiffness characteristics, each joint was fitted with a rotational spring

and damper which provided a torque to the joint taking the form:

T = (−Kθ)− (Cω) (2.2)

where K was the stiffness coefficient, θ the angular displacement of the segment, C the

damping coefficient, and ω the relative angular velocity of the segment. To find the K

values, clubs were tested in a cantilever setup by suspending a 1kg weight at the hozel

and measuring the shaft deflection. K values were selected by an optimization process

that matched a simulated version of the test setup to the measured results. C values were

selected that best matched experimental results. This model is able to account for some

changes in stiffness characteristics along the length of the shaft but it cannot account for

continuous bending of the shaft or any axial deformations (rotational or translational) that

occur during the swing.

A more complete model of the flexible club was proposed by Sandhu et al. in 2010 [23].

This model uses Rayleigh beam theory to model the club and will be described in detail in

Section 3.2. Using Rayleigh beam theory allows for continuous bending and continuously
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varying stiffness properties along the length of the shaft. Sandhu used this model as part

of a kinematically driven forward dynamic golf club model and was able to achieve good

matches with the dynamic loft and droop of experimental results.

2.1.4 Impact

The impact portion of the golf swing is confined to a very short period of time (5 mi-

croseconds or less) so it is impossible for the golfer and shaft to have an effect on the

clubhead during the impact time. Therefore, the shaft dynamics and the golfer’s actions

and dynamics can be ignored during the impact phase and the clubhead assumed to be

moving freely during the impact [8]. The impact can be considered as an oblique impact

between two 3-D bodies. The results of this impact, the initial conditions of the ball’s

velocity and spin during its flight, are dependent on the physical and geometric properties

of the clubhead and ball, the orientation of the clubhead, the velocity of the clubhead, and

the relative positions of the two bodies at impact. This Section will describe the impact

of the golf club and the ball and explain how the mechanics of that impact are affected by

changing these parameters.

Clubhead Orientation

The clubhead orientation changes two features of the impact. First, the dynamic loft of

the clubface (the angle between the face of the club and a vertical plane at the point of

impact) affects the vertical launch angle and the amount of backspin of the ball following

the impact. Increasing the loft increases the launch angle and the amount of backspin.

The dynamic loft is a combination of the nominal loft of the club (usually 9° to 11° for

a driver) and the additional loft created by the flexing of the club shaft as described in
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Figure 2.8: Top view of an open clubface orientation (left) and a closed clubface orientation

(right).

Section 2.1.3. The dynamic loft can be adjusted by placing the ball further forward in the

swing, selecting a club with greater nominal loft, or increasing the flexibility near the tip

of the shaft. The amount of loft that is ideal depends on the individual swing and varies

from golfer to golfer.

Second, the opening/closing angle of the club face has an important effect on the

horizontal launch angle and the amount of side spin on the ball after impact. At impact,

due to the moment of inertia of the club about the shaft axis, the clubface tends to be tilted

backwards away from the golfer in an open position. This results in a slice spin on the ball

and a horizontal launch angle away from the golfer. In similar fashion if the clubface is

closed at impact, there is a resulting hook spin and launch angle towards the golfer. Since

it is more common for a golfer to hit from an open position, golfers intentionally work

to close the clubface at impact through the pronation of the arm. Ideally, the clubface is

perpendicular to the ball at impact, resulting in a straight shot with minimal side spin.

Figure 2.8 shows the open and closed clubface orientations.
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Centre of Mass Alignment

The alignment of the centre of mass of the golf club with the centre of mass of the ball

changes both the launch angles and the spin of the ball after impact. If the centre of masses

are perfectly aligned with the velocity vector of the club, this is a perfect strike of the ball

and the launch velocity will be entirely forward and upward with very little side spin.

More interesting is what happens when the ball is struck off-centre, with an eccentric

impact imparting angular momentum to the clubhead and ball. The spin of the ball after

such an impact comes from two sources: the tangential forces at the impact point, and

the gear effect between the clubhead and ball. Figure 2.9 illustrates this scenario, showing

a toe hit. In the figure, the impact location of the ball outside the centre of mass of

the clubhead causes the clubhead to rotate clockwise as indicated. In a normal eccentric

impact, this impact location would also lead to the ball spinning clockwise (opposite to

the indicated direction) and for the shot to slice, but the gear effect changes the result.

The contact point on the club face moves in the direction shown on the diagram and as

the ball rolls on the face of the club, the ball is caused to spin in the opposite direction

to the club. For a toed shot, there is resulting hook spin, and for a heeled shot, there is

a resulting slice spin. This effect is known as the “gear effect” because the club face and

ball act as two gears spinning in opposite directions.

The gear effect also affects the backspin of the ball for an impact that is out of alignment

in the vertical direction. If the ball strikes high on the face the backspin is reduced and if

the ball strikes low the backspin is increased.
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Figure 2.9: Illustrating the “gear effect” for a toed shot.

Clubhead Properties

Four properties of the clubhead have a significant effect on the impact and are therefore

limited by the rules of the US Golf Association (USGA). The clubhead mass is important

as it helps determines the amount of energy and momentum that is available during the

impact. If the mass of the clubhead is increased and its velocity stays the same, the ball

will be launched at greater speed following the impact. The mass of the clubhead is not

directly limited by the USGA, but most drivers have a clubhead mass of about 200 g.

The moments of inertia (MOI) of the clubhead have a more interesting role in deter-

mining the spin of the ball following impact. Because of the gear effect described above

in Section 2.1.4 the amount of angular velocity imparted to the clubhead by an off-centre

strike is important in determining the spin of the ball. By increasing the MOI about the

vertical axis, the spin imparted to the club by an off-center hit is reduced and therefore
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the side spin on the ball is reduced [24]. This helps reduce the hooking or slicing effect

of an off-center hit. To prevent golf clubs with extremely high MOI from being produced,

the USGA has limited the MOI of a golf club about its vertical axis through the centre of

mass to 5900 g cm2 [25].

The elasticity of the club face controls the energy lost due to deformation when the ball

and club collide. To increase the distance of the drive, club manufacturers try to increase

the flexibility of the face so that the natural frequencies of the ball and club match as

closely as possible to produce a ”trampoline effect” that minimizes the energy lost [26].

To limit this effect, the USGA has also limited the elasticity of the clubface by limiting

the contact time to 239 ± 18 µm as measured by striking the club face with a particular

mass and pendulum [25]. The measured contact time is directly related to the compliance

of the clubface. Increasing the coefficient of restitution (CoR) by increasing the elasticity

of the club face results in higher ball speeds after impact and longer drives.

Finally, the bulge and roll of the club face change the launch angles of the ball to

produce straighter shots from off-centre hits. Since hitting the ball off-centre horizontally

results in a slice or a hook spin due to the gear effect, the bulge of the clubface causes the

ball to have an initial velocity in a direction opposing the motion that will be caused by

that spin: e.g., for a toe hit which results in a hook spin the ball is initially launched with

some velocity away from the golfer to reduce the effect of the hook. Similarly, the bulge of

the club increases the vertical launch angle for hits above centre and decreases it for hits

below centre.
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Clubhead Velocity

By increasing the clubhead velocity, the ball will be launched at greater speeds. In fact,

the clubhead velocity is the single greatest determining factor in the distance the ball will

carry [20]. Increasing the clubhead velocity will make the effects of off-centre hits larger

as the greater impulse in the collision leads to increased side spin.

2.1.5 Ball Aerodynamics

The aerodynamic flight of the golf ball is dependent on the initial velocity of the ball and

the spin of the ball as it travels through the air. While the initial velocity is most important

for the total distance the ball flies with greater velocity producing greater distance, it is

the spin of the ball which has the most interesting effects on its flight path. The Magnus

effect of the spin of the ball produces both lateral and upward lift forces during its flight

[27]. In golf, these forces are influential in two ways.

First, the direction and amount of side spin (about the vertical axis of the ball) affects

the sideways motion of the ball during its flight. As viewed from the top, clockwise spin

causes the ball to ’slice’ to the right and counter-clockwise spin causes the ball to ’hook’

to the left [28] as shown in Figure 2.10. Sometimes side spin is intentionally applied to the

ball to produce a particular trajectory but in general side spin has an undesirable effect on

the shot and decreases the distance the ball will fly.

In contrast, backspin can increase the carry distance by providing lift to the ball during

its flight. Increasing the backspin increases the amount of lift on the ball, but there is

an upper limit to the amount of lift that can be usefully applied. If there is too little

backspin on the ball, no lift is applied to the ball and the flight path is parabolic, like
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Figure 2.10: Top view of the effect of side spin on the flight of the golf ball. The top path

is a ’hook’ shot for a right-handed golfer and bottom path is a ’slice.’

that of non-spinning projectile as seen in Figure 2.11a. If there is too much backspin (see

Figure 2.11b) the excess lift causes the flight path of the ball to balloon upwards, reducing

the carry distance. In addition, this flight path leads to a higher angle of impact with the

ground, reducing the distance the ball will roll. With the ideal amount of backspin (see

Figure 2.11c) the ball rises on a high, boring, trajectory during its flight, carrying further

downrange. The ideal amount of backspin depends on the launch velocity and angle of

the ball, but in general higher velocity trajectories require less backspin to maintain the

optimal trajectory [29]. One club manufacturer has stated that the optimal amount of

backspin is 1700 rpm [30].
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(a) Typical flight path of the golf ball for a low backspin shot. Notice how it follows a

parabolic path. There is no lift provided by the spin.

(b) Typical flight path of the golf ball for a high backspin shot. Too much lift causes the

flight path to balloon upwards, reducing the carry and reducing the roll after hitting

the ground.

(c) Typical flight path of the golf ball for a shot with a good quantity of backspin. Note

the boring trajectory that leads to a non-parabolic flight path and the increased carry

distance.

Figure 2.11: Flight paths of the ball illustrating the effect of backspin on the flight of the

golf shot.
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2.2 Golf Driver Design

Designing a golf driver requires the balancing of many factors within the framework dic-

tated by the rules of the US Golf Association (in the USA and Mexico) and the R & A

(worldwide). While the rules of the game provide hard constraints on several aspects of the

design of the club, there remain many trade-offs to be made in the design process. Each

year, club manufacturers release new clubs and make new claims about the scientific im-

provements they have made that will allow golfers to hit the ball further and straighter. In

this section, several different design decisions and manufacturers claims will be described

along with the possible and expected outcomes of those decisions. These decisions and

claims will be revisited and analyzed within the context of the model presented in Chapter

3 in Chapter 4.

2.2.1 Club Mass

One of the more recent claims of golf club manufacturers is that a lighter club would result

in longer drives [31]. The claim made was that by decreasing the club mass 10 g, the

golfer would be able to swing the club 1 mph (0.45 m/s) faster, resulting in longer drives.

The trade off here is that by decreasing the club mass, the momentum of the club is not

necessarily increased overall by an increase in clubhead speed and the momentum of the

clubhead before impact that controls the amount of energy that can be transferred to the

ball. It is likely that there is a sweet spot for club mass for each individual golfer and

finding that spot is one of the challenges in designing a club.
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2.2.2 Clubhead Moment of Inertia

Due to the gear effect of the ball interacting with the club (see Section 2.1.4, the amount

of angular velocity imparted to the clubhead during impact is important in determining

the side-spin of the ball. By increasing the moment of inertia (MOI) of the clubhead,

the angular velocity of the clubhead is reduced and the amount of spin imparted to the

ball is similarly reduced. By increasing the MOI of the clubhead about its vertical axis,

manufacturers have created drivers that can hit the ball straighter for off-centre impacts

on the club. This led to the creating of a rule by the USGA that no club may have a MOI

greater than 5900 g cm2 [25].

Even without this rule, improvements to the club made by increasing the clubhead

MOI were shrinking as the increase in MOI makes it more difficult for the golfer to close

the clubface at impact. Since the MOI is larger, more torque is required from the forearms

and hands to rotate the club to the appropriate angle. There is clearly a tradeoff between

increasing the MOI to reduce the spin and decreasing the MOI to increase the controllability

of the club.

2.2.3 Clubhead Centre of Mass Position

The ideal centre of mass position of the clubhead is also a matter of debate. While most

people agree that then the centre of mass of the clubhead should be low, to decrease the

amount of backspin on the ball, it is unclear whether it should be low and close to the

clubface or low and far from the clubface. In particular the TaylorMade SLDR driver

released in 2013 claimed that a low and forward centre of mass location would provide

better launch conditions.
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The centre of mass should be low so that the gear effect of the ball striking above

the centre of mass reduces the backspin of the ball as most golfers tend to hit with too

much backspin for an optimal flight (see Figure 2.11b). Striking above the centre of mass

causes the clubface to rotate upwards and reduces the backspin on the ball. Moving the

centre of mass forward or backwards normal to the clubface should not change this effect as

the moment arm of the impact force will not change. It’s unclear whether this movement

might have other effects and this should be further investigated. Moving the centre of mass

forward horizontally relative to the ground should reduce the backspin as the moment arm

of the impact will be increased.

2.2.4 Shaft Flexibility

The shaft of the golf driver bends forward at impact so that the clubhead strikes the ball

while angled slightly upwards. This can help to reduce the backspin of the ball and increase

the launch angle to improve the carry. The common wisdom is that a golfer with a faster

swing speed needs to use a stiffer club and a golfer with a slower swing speed should use

a more flexible club. It’s important for a golfer to select the correct shaft flexibility for

their particular swing and this selection is one of the parts of a traditional shaft fitting

performed by a golf pro.

While shaft flexibility does not involve design trade offs in the traditional sense the

selection of the appropriate shaft can be difficult and deserves consideration. Any single

shaft is unlikely to be correct for all golfers, but the question of fitting a shaft for a

particular golfer is an interesting one. In a world where more goods will be personally

manufactured for individual consumers the possibility of designing the shaft flexibility

directly for one particular golfer using a computer model is attractive. While the model
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presented in this paper is not subject-specific it can be used for testing different flexible

shafts and optimizing the stiffness.

2.3 Golfer Models

2.3.1 Early Golfer Models

Cochran & Stobbs

Search for the Perfect Swing, first released by Cochran and Stobbs in 1968, was the first

serious scientific study of the golf swing [8]. They developed a planar double-pendulum

model for describing the golf swing where each of the joints is powered by a rotational

spring that is loaded during the backswing and released during the downswing. They were

the first to propose the idea that the relative timing of the torques applied to each link in

the kinematic chain of the golf swing was crucial to a successful, powerful, swing and the

importance of swinging in a planar manner. They compared their model to stop-motion

photography of golfers and found that it was a reasonable fit for real golf swings. In the

same study, Cochran and Stobbs also analyzed a number of other scientific aspects of golf

such as shot strategy and putting, but these are not relevant for this work.

Lampsa - Golf Swing Optimization

One of the earliest attempts to optimize the golf swing was made by Lampsa in 1975 [20].

Lampsa made use of a planar double-pendulum model of the golf swing to investigate the

optimal control aspect of the golf swing. By applying Pontryagin’s Minimum Principle to

the joint torques applied to the double-pendulum model, Lampsa attempted to optimize
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the golf swing for maximum clubhead speed while maintaining biologically feasible joint

angles. The joint torques found through the optimization were dissimilar from those found

from inverse dynamics. Lampsa concluded that it should be possible to hit the ball much

further without increasing the golfer’s strength and that the key to longer drives would

be to delay uncocking the golfer’s wrists as long as possible to generate greater clubhead

speed. Lampsa’s study also performed a sensitivity analysis of changes to the club, varying

the mass of both the clubhead and shaft by 10 % to determine the effects on the optimal

swing. The conclusion was drawn that changing these parameters has little effect on the

optimal torques and results in at most a 1.3 % change in the optimal clubhead speed at

impact.

2.3.2 Modern Golfer Models

Sharp - Parameterized Joint Torques

A more recent influential model of the golf swing was proposed by Sharp in 2009 [22]. Sharp

compared the typical rigid double-pendulum model of the golf swing with a rigid triple-

pendulum model and concluded that including the rotation of the torso and shoulders as

part of the swing allowed for a significant improvement in matching captured experimental

data. In particular, the triple pendulum model allows for more range of motion in the

backswing and a fuller golf motion during the downswing. Sharp concluded that the

double-pendulum model of Lampsa was insufficient and created a new forward dynamic

model for the swing.

One of the main innovations of this model was the inclusion of parameterized joint

torques as inputs to the model to allow some flexibility for the inputs while simplifying

the optimization of the swing. The shapes of the torque functions were selected to provide
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reasonable matches to inverse dynamics results obtained through testing of a few highly

skilled golfers. Three joint torques were required and a different form was used at each

joint. The torque provided to rotate the shoulders was

Ts = Tsmax tanh (λt)− τs2(t− ts)H(t− ts) (2.3)

where Tsmax is the maximum exertion level, τs2 defines the linear drop-off in torque, ts is

the drop off start time, and H(x) is the Heaviside step function. The torque to rotate the

arm about the shoulder was given by

Ta = min(τa1t, Tamax)− τa2(H(t− ta)(t− ta)) (2.4)

where Tamax is the maximum exertion level, τa1 defines the linear increase in the torque

at the start of the swing, and τa2 defines the linear decrease in the torque after time ta.

Finally the wrist torque was defined as

Tw = Twmax tanh(λ(t− tw)) (2.5)

giving a negative maximum torque (Twmax) at the start of the simulation, followed by a

switch to a positive maximum torque after time tw.

Sharp also included passive joint torques in the form of linear spring-dampers at extreme

joint angles. The passive joint torques are 0 until the limits are reached and are then

activated.

By optimizing the parameters in the joint torque functions, Sharp was able to fit the

triple pendulum golfer model to real swings of 3 different highly skilled golfers with good

agreement. He then tried optimizing the swing to produce the maximum clubhead speed.

Contrary to Lampsa’s earlier results, the optimal torque did not show a holding-back phase

for the wrist. Changing the strength of the golfer did not change the general patterns of

the swing, but did increase the clubhead speed at impact.
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Mackenzie - A Biomechanical Model

Mackenzie’s golfer model, published in 2009 also used the concept of parameterized joint

torques to improve the feasibility of optimizing the golf swing [16]. He also introduced

a version of the triple-pendulum model that allows for 3-dimensional motion during the

swing. Instead of just swinging in a single plane, Mackenzie added an extra degree of

freedom along the long axis of the golfer’s left arm to allow supination and pronation of

the wrist during the swing and added a separate plane of rotation for the shoulders and

arms during the swing. Mackenzie’s parameterized joint torques will be described in detail

in Chapter 3 but in short, they allow for the same biologically-motivated parameterized

torque to be used at each joint.

In Mackenzie’s model, the shaft of the club was split into four sections with a spring

and damper at each joint to model the flexibility characteristics of the shaft. A number

of golf clubs were subjected to a flexing test and the stiffness parameters selected to best

match the shape of the club as measured in the test. This approach allows for flexing of

the shaft at a few points along its length, but cannot model continuously varying shaft

properties or bending.

Like Sharp, Mackenzie also used parameter optimization to attempt to find the best

possible swing. Genetic algorithms were used to pick the best possible activation and deac-

tivation times for the muscles using the clubhead speed as the objective function. Penalties

were added to avoid improper clubhead presentation. The final maximum clubhead speed

achieved by Mackenzie was 41.7m/s.
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2.3.3 Other Golfer Models of Interest

Other golfer models created over the last 50 years with many different goals and purposes

were examined during this work. A few of them with interesting details will be described

in this section. Many of these models included ideas that were incorporated into the final

model proposed in this paper.

Reyes and Mittendorf applied the fixed double-pendulum golfer model to the swing of a

long drive champion [21]. Unlike other studies, instead of just studying clubhead velocity,

an impact and carry model was used along with the golfer model to determine possible

changes to the swing to improve the distance. Increasing the backswing angle, wrist angle,

or changing to a lighter clubhead were the areas identified by the model as offering the

greatest change in clubhead speed. Ball carry was not affected by using a lighter clubhead

as the effect of using the lighter club on the impact reduced the carry.

Nesbit [32] and Serrano [33] created a full-body model of a golfer and used inverse

dynamics to study the swings of 1 female and 84 male golfers. He found significant subject

to subject variation in the swing, even among skilled golfers. More skilled golfers are able

to increase their club speed not by applying greater force, but through increased range

of motion. They do more work during the swing, and have a higher peak power output

during the swing. Power peaks slightly before impact during the swing and most of the

power output is provided by the torso and shoulder rather than the wrists or hands. The

amount of strain energy stored by the club is minimal compared to the total work.

Betzler’s thesis [34] examined the effects of changing the staff stiffness on the biome-

chanics of the swing using a motion capture system. Two different levels of club flexibility

were tested by a group of twenty skilled golfers. Decreasing the flexibility of the shaft

increased the clubhead speed significantly, due to increased recovery of the stiffer shaft
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from lag bending. The face angle and impact location were unaffected by shaft flexibility.

Similar tests were performed with a golf robot and the results confirmed. It seems that

golfers are able to adapt to different club flexibilities to hit the ball well but there may be

some difference in the distance of shots achieved.

Kenny [35] created a full-body golfer model with 42 degrees of freedom that was driven

by experimental data from a single golfer. This golfer-specific model was used to analyze

the kinetic energy of the kinematic chain of the golf swing. He found that the while the

kinetic energy increased from proximal to distal body segments, there was no sequential

ordering to the peaks in each body segment. Kenny concluded that each individual golfer

would likely have a unique profile to their golf swing. It will be important to accommodate

this variability into any golfer model produced.

Hauefle [36] investigated the effect of changing the mass of the club through simulation

and experiment. Using the double-pendulum model of Pickering [37] with two different

club models, it was found that increasing the club mass by 22g resulted in a swing that was

1.7% slower. In contrast, experimental results for actual golfers did not show a predictable

change in club speed with a heavier club. This showed the golfers respond to changes in

the golf club by changing they way that the club is swung, instead of swinging the same

way with every club.

2.4 Opportunities

Despite all of the work already done in this field, there remain significant opportunities for

creating an improved golfer model that allows for new questions to be asked and answered.

In particular a model which can include the following features would be valuable:
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� Forward dynamic model capable of answering ‘what-if’ questions regarding changes

to the club and golfer.

� Golfer model including a non-planar model of human motion, active joint torques that

act similarily to human muscle, and passive joint torques that mimic the storage of

energy during the backswing of the golfer.

� Flexible club model capable of predicting droop, dynamic loft, and clubface presen-

tation.

� Impact model and aerodynamic model for evaluating each swing.

� Optimization strategy that allows the model to swing optimally in a variety of con-

figurations.

Such a model would be able to answer questions that have been asked recently about club

design including how to distribute flexibility along the length of the shaft, whether a lighter

club can really hit the ball further, and where the centre of mass of the clubhead should

be positioned.

The model presented in Chapter 3 of this thesis accomplishes the goals stated here and

the experiments in Chapter 4 try to answer some of the questions posed. These questions

represent just the first of many that could be answered using this model.

35



Chapter 3

Golfer Model

To simulate the golfer and club and take advantage of the opportunities described in Section

2.4 a four-part model was constructed. The parts are

1. Biomechanical golfer model with parameterizable joint torques

2. Flexible club model including club aerodynamics

3. Impact model of the club and ball

4. Aerodynamic model of ball flight

This Chapter will describe each portion of the model and its implementation in detail.

3.1 Biomechanical Golfer Model

The golfer portion of the mathematical model consists of three rigid bodies representing

the torso, left arm, and left hand of the golfer. There are four degrees of freedom for the
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golfer. The first degree of freedom is the rotation of the torso. This represents the rotation

of the shoulders during the golf swing and is activated by the power of the muscles of

the legs and core. The second degree of freedom allows transverse flexion and transverse

adduction of the shoulder across the front of the body. The third degree of freedom allows

supination and pronation of the arm and the final degree of freedom allows for ulnar and

radial deviation of the wrist. These four degrees of freedom are illustrated in Figure 3.1.

This golfer model, based on the work of Mackenzie [16] was considered to be sufficient

to apply the correct kinetics to the golf shaft throughout the swing. A discussion of the

limitations of the model can be found in Section 4.8.

Four degrees of freedom are sufficient to provide the model golfer with the range of

motion required for the swing. The golfer begins the swing with the torso rotated backwards

(away from the target), the shoulder maximally adducted, the wrist maximally deviated

towards the radius, and the arm pronated so that the club extends over the golfers right

shoulder towards the target. During the swing, the torso rotates forward, the arm extends

across the body, the wrist fully deviates towards the ulna and the arm supinates to square

the face of the club towards the ball. A three body-model of the golfer is sufficient to

capture the main dynamics of the swing.

The mass and inertia properties for the torso and arm of the golfer were taken from

the work of Mackenzie [17] and are shown in Table 3.1. The mass and moment of inertia

of the hand also takes into account the mass of the grip of the shaft and is also shown in

Table 3.1. The segment geometries are shown in Table 3.2. Finally, the golfer’s torso was

inclined from the vertical by 30 degrees and the swing plane of the arms was inclined 50

degrees. Separate planes of rotation for the shoulder and arm rotation are better able to

mimic the swing of a human golfer than single-plane models [14].
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Figure 3.1: Golfer model with four degrees of freedom indicated
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Segment Mass (kg) Ixx (kg cm2) Iyy (kg cm2) Izz (kg cm2)

Torso 34.61 ... 3655 ...

Arm 3.431 1076 1096 58.06

Hand & Grip 0.6 10.24 10.24 6.04

Table 3.1: Segment mass properties of the golfer.

Segment Length (cm) CMLocx (cm) CMLocy (cm) CMLocz (cm)

Torso 20 0 0 0

Arm 60 0 0 26.1

Hand & Grip 20.0 0 0 9.0

Table 3.2: Segment geometry properties of the golfer.

3.1.1 Active Muscle Torques

Inputs are provided to the model at each degree of freedom in the form of parameterized

joint torques. When designing these input torques, a number of factors were taken into

account. The goals for the selection of these torques were:

� To provide realistic biologically-inspired inputs to the model;

� To capture the relevant muscle dynamics (described in Section 2.1.2) in producing

the torques;

� To contain the inputs within biological limits;

� To parameterize the inputs so that the optimal control of the swing can be performed

easily; and
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� To use the same form for the torque at each degree of freedom.

To accomplish these goals, the parameterized torque functions proposed by Mackenzie were

chosen as the active inputs to the model [38].

In this method, a two step calculation is used. In the first step, it is assumed that the

golfer attempts to apply a maximum joint torque instantaneously for some time and then

stops applying that torque. As muscles are unable to produce instantaneous torque due to

the dynamics discussed in Section 2.1.2 the applied torque ramps up and ramps down as

it is activated and deactivated. The equation used to describe step 1 is

Tpre(t) = Tm(1− e
ton
τact )− Tm(1− e

toff
τdeact ) (3.1)

where Tm is the maximum possible applied torque, τact is the time constant of activation,

and τdeact is the time constant of deactivation. ton and toff are the amount of time that

has passed since the torque was activated and deactivated respectively and are calculated

as piecewise ramp functions.

ton(t) =

 0 : t < tactivate

t− tactivate : t > tactivate
(3.2)

toff (t) =

 0 : t < tdeactivate

t− tdeactivate : t > tdeactivate
(3.3)

where tactivate is the time at which the joint torque is activated and tdeactivate is the time at

which it is deactivated.

The second step in generating the active torque component is to perform scaling based

on the current velocity of the muscles involved. The scaling performed is based on the Hill

muscle model described in Equation 2.1. By manipulating this equation, we can reach a
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Figure 3.2: A comparison of muscle torques generated by Equation 3.1 to a typical muscle

activation curve.

point where all of its components are easily determined biologically.

F =
(F0b− av)
b+ v

F = F0

b− a

F0
b+ v

F = F0

F0b

a
− v

F0b

a
+
F0

a
v

(3.4)

This seems more complicated, but each of the inner fractions can be replaced with

a more descriptive, biologically relevant, form. First F0b
a

can be replaced by vmax, the

maximum velocity at which the muscle is still able to exert force [1]. And second, the

inverse of the second fraction, a
F0

, has been measured in experiments to be close to 0.25 for

mammalian skeletal muscles [1]. Replacing F0

a
with the parameter Γ, we arrive at a scaling

equation for the muscle force.

F = F0
vmax − v
vmax + Γv

(3.5)
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Figure 3.3: Sample joint torque curve incorporating velocity scaling

Assuming that we can transform this equation from the translational (muscle force) to the

rotational (joint torque) domain using constant length moment arms, and including the

activation curves from Equation 3.1, the active portion of the joint torque is then generated

in the same manner as Mackenzie [16].

T (t, ω) = Tpre(t)
ωmax − ω
ωmax + Γω

(3.6)

A sample curve showing the active portion of the joint torque for the torso during a swing

can be found in Figure 3.3.

This approach was selected because it accounts for both the activation dynamics and the

force-velocity relationship for the muscles while keeping the number of control parameters

small. Since the maximum torque, activation constants, and shape parameters remain

constant across swings, only the activation timings need to be determined for each torque

generator in the model. This results in 8 muscle parameters that must be chosen during

the optimization process, a manageable number.

For each joint, the maximum torque provided (Tm) and the maximum angular velocity

(ωmax) must be selected. The parameters for each joint are shown in Table 3.3.
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Generator Tm (N m) τact (s) τdeact (s) ωmax (rad/s) Γ

Torso 200 0.02 0.04 30 4.0

Shoulder 160 0.02 0.04 30 4.0

Forearm 90 0.02 0.04 60 4.0

Wrist 90 0.02 0.04 60 4.0

Table 3.3: Parameters for the four active joint torque generators.

3.1.2 Passive Muscle Torques

To account for the torques applied to the golfer’s joints at the limits of their range of

motion (e.g., at the start of the downswing) and to keep the joints of the model within

the normal range of human motion, passive joint torques are applied to each degree of

freedom at the limits of its acceptable range. Passive joint torques are included for the

torso, shoulder and wrist, and represent the energy stored during the backswing. To model

this sort of passive force, Yamaguchi [2] proposed the use of Equation 3.7.

Tpassive(θ, θ̇) = k1e
−k2(θ−θ−) − k3e−k4(θ+−θ) − c1θ̇ (3.7)

This function is able to approximate the restoring moment at both extremes of the joint

range of motion and offer a smooth transition in joint torque from the normal range of

motion, where very little torque is applied, to the large moments applied at the edges.

The constants k1 and k3 govern the magnitude of the force at the breakpoints (θ− and θ+)

while k2 and k4 govern the sharpness of the break. For this form, θ− and θ+ should be set

well within the range of motion of the joint.

For each joint with a passive component, the values k1, k2, k3, k4, θ− and θ+ must

be found. A careful search of the literature found explicit values of these parameters for
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Figure 3.4: Contour plot illustrating the passive torques for the shoulder joint [3].

ankle, knee, and hip moments [2] [15] [40] but no values for the upper body were found.

Instead, the parameters were determined from experimental data.

Engin [3] performed experiments to determine the passive moments of the shoulder

complex for its full range of motion resulting in a contour plot like Figure 3.4. To find the

parameters for Equation 3.7 a point for each contour in Figure 3.4 was extracted at the

appropriate sagittal angle and the Matlab command nlinfit used to find the appropriate

values. The same process was repeated for the wrist joint using data from [41], for the

torso using data from [42], and for the forearm pronation/supination using data from [43].

The damping coefficient c1 was set to 0.1 as suggested by Yamaguchi [2].

Plots showing the experimental data and the fitted curves using Equation 3.7 are shown

in Figure 3.5 and the extracted parameters are given in Table 3.4.
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(a) Torso passive torque
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(b) Shoulder passive torque
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(c) Wrist passive torque
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Figure 3.5: Fitting curves for the passive forces at each joint in the golfer model. In each

graph, the measured experimental torques are shown in red and the fitted curve used in

the model in blue. For the torso in (a), the experimental paper also provided a regression

equation for the passive torques and this was also plotted for comparison.
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Joint θ− (rad) θ+ (rad) k1 k2 k3 k4 c1

Torso 0.0618 -0.693 3.898 2.082 3.814 2.098 0.1

Shoulder -1.289 1.210 2.111 3.354 2.704 2.241 0.1

Wrist -1.171 1.185 4.301 2.732 3.895 2.891 0.1

Forearm -1.237 1.340 3.206 2.624 2.216 1.752 0.1

Table 3.4: Parameters for passive joint torques at the torso, shoulder, and wrist joints

3.1.3 Control of the Swing

By replacing the golfer’s muscle dynamics with parameterized joint torque functions in

the form proposed by Mackenzie [38], control of the swing can be achieved by selecting

appropriate values for tactivate and tdeactivate in equations 3.2 and 3.3. It is assumed that the

swing is short enough that the golfer cannot turn their muscles on and off multiple times

during the swing and that the golfer attempts to swing with maximum power. By modifying

the relative timings of the joint torque activations, different swings can be achieved. The

process for selecting the optimal swing parameters for a particular club will be discussed

in detail in Section 3.6.

3.1.4 Validation

The golfer model was validated by Sasho Mackenzie by using the model to generate a

swing similar to that of a live golfer [16]. The model was found to be able to produce

angular displacement curves for the torso, shoulder, arm, and club that well matched the

swing of the real golfer given the same initial starting configuration. This matching was

performed by using the 8 control parameters for the joint torques along with a scale factor

for the maximum joint torque values and angular velocities for each joint. The passive joint
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torques added to Mackenzie’s model were validated against experimental data as they were

added to the model. The passive torque curves are shown fitted against the experimental

data in Figure 3.5.

3.2 Flexible Club Model

3.2.1 Flexible Shaft

The club model consists of two parts, the flexible shaft and the clubhead. The flexible shaft

used in the model is based on the work of Sandhu et al. [23]. The model uses a flexible

Rayleigh beam [4] to describe the flexing and twisting of the club as it is swung. The

approach makes use of a complete second-order elastic rotation matrix for a Rayleigh beam

and has been implemented in the simulation package MapleSim. Shear due to bending and

warping due to torsion are neglected, but the model can account for large deflections in

the transverse directions that occur during the golf swing. The model can also account for

changing stiffness, size, and density of material along the length of the shaft by defining

each as a function of the distance from the bottom of the grip, x. Figure 3.6 shows the

types of deformations that can be modeled using this type of beam.

In general, any particle of the flexible shaft can be located using four deformation

variables: u(x, t) for axial deformation, v(x, t) and w(x, t) for bending in the two transverse

directions, and φ(x, t), the angle of twist about the centroidal axis. Deformation of the

beam in each of these directions is approximated using Taylor series polynomials for the

spatial variations, combined with a certain number of time-varying elastic coordinates for

each of the four deformation variables. In this project, one elastic coordinate was used for

the twist and for bending in each of the transverse directions. As a consequence φ(x, t),
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Figure 3.6: Flexible beam model as proposed by Shi et al. [4].
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v(x, t) and w(x, t) are spatially approximated with 2nd order polynomials. No axial strain,

measured by u(x, t), was included in the model to improve computation times. To locate

any point on the flexible shaft within 3-D space its position can be written as the location

of the base frame of the shaft (in this model, the hands of the golfer), added to some

function of the elastic coordinates detailed in [44]. Using short hand notation, we can

rewrite this function as the position of the point with respect to the base frame, rp/b.

rp(x, t) = rb(0, t) + rp/b(x, t) (3.8)

This equation can be used to calculate the position in 3-D space of any point on the flexible

beam.

Flexible Club Parameters

Four different club shafts and their material properties, measured using a custom cantilever

test rig, were provided by a manufacturer. The cross-sectional area, Young’s modulus, shear

modulus, and second moment of cross-sectional area vary along the length of the club and

are approximated using sixth-order polynomials. Sixth-order polynomials were chosen to

achieve a good fit for the data found in Appendix A. Normalized plots of the four clubs

stiffness properties are shown in Figure 3.7. Non-normalized data cannot be shown due to

an agreement with the manufacturer. Examining this figure, we can say that the green and

orange shafts have a smooth transition of club stiffness and have likely not been tuned.

The red, and in particular the blue, shafts have sharp changes in their stiffness profiles or

are more heavily tuned. The density (1510 kg/m3) and length of the shaft below the hands

(0.91 m) are also required parameters for the model.

Sandhu et al. [23] validated the flexible club model with experimental testing and a

finite element model of the shaft. This testing found good agreement between the dynamic
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Figure 3.7: Flexible club properties provided by a club manufacturer. The specific units

and values cannot be shown.

∆X (mm) ∆Y (mm) ∆Z (mm) Mass (g) Iyy (g cm2)

40.42 13.2 56.0 200 4200

Table 3.5: Clubhead geometry and mass properties

loft, droop, and clubhead speed at impact, showing that the model is suitable for use in

forward dynamic simulation.

3.2.2 Clubhead

The clubhead is modeled as a rigid body fixed to the end of the flexible shaft. The most

important parameters for the clubhead are the location of the centre of mass, mass, and

moment of inertia of the clubhead about the vertical axis. These properties were measured

for a set of clubheads as part of a different project and one clubhead was selected for initial

use in this work. The properties of the selected clubhead are shown in Table 3.5. To

interpret these properties, look at Figure 3.8 for the relevant frames of reference.
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(a) Front view of clubhead model.

(b) Top view of clubhead model.

Figure 3.8: Diagram illustrating the frames of reference and measurements for the rigid

body clubhead.
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3.2.3 Clubhead and Shaft Aerodynamics

Clubhead Aerodynamics

The aerodynamics of the clubhead have a small, but not insignificant effect on the swing.

Recently, several golf club companies (Ping and TaylorMade) have claimed that they are

able to reduce the drag on their clubheads through the addition of small turbulators that

change the way the airflow affects the club [45]. To account for aerodynamic effects, drag

on the clubhead is included in the model using the standard drag equation:

Fd = −(
1

2
ρACd|Vclub|2)V̂club (3.9)

where ρ is the density of the air, A is the cross-sectional area of the clubhead, and Cd is

the aerodynamic coefficient of the clubhead.

Experimental measurements of Cd were provided from experiments performed in a wind

tunnel. A club was placed in the tunnel and rotated from a heel-first presentation to a

face-first presentation at a variety of wind speeds. The Cd value for the clubhead was

found to vary with both the presentation angle of the clubhead and the wind speed. The

Cd values for each yaw angle at high clubhead speeds (greater than 33.5 m/s) are shown in

Table 3.6. At lower speeds, Cd increases and it was found that the values are 50 % higher

at 22.5 m/s. There is a linear transition zone between the high low speed values and the

lower high speed values. Figure 3.9 shows a linear interpolation of the values of Cd for a

large range of values of the yaw angle and clubhead speed.

Since the Cd value is dependent on both the yaw angle and the velocity of the clubhead

relative to the air, we need to define these two variables within the context of the model.

This requires the definition of a new coordinate system which is body-fixed in the clubhead

with the X-axis pointing out of the face, the Y-axis upward along the shaft of the club, and
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Figure 3.10: An illustration of the relevant frames and velocities for calculating the aero-

dynamic loads on the clubhead.
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Yaw Angle (deg) Cd

0 1.10

10 0.76

30 0.74

50 0.82

70 0.57

80 0.51

90 0.55

Table 3.6: Measured values of Cd for a variety of yaw angles at high clubhead speeds. A

yaw angle of 0 degrees corresponds to a heel-first clubhead presentation (e.g., top of the

backswing) while a yaw angle of 90 degrees corresponds to a face-first presentation (e.g.,

at impact).

the Z-axis tangent to the club face. We use this coordinate system to define the X−Z plane

in which the yaw angle of the club is calculated. To calculate the yaw angle, the velocity

of the club is split into two components, vparallel in the X − Z plane, and vperpendicular

normal to the plane. The yaw angle is the angle between vparallel and the −Z axis. The

speed of the airflow used in the calculation of Fd is then vparallel. Figure 3.10 illustrates

the both the yaw angle and vparallel. The value of Cd at each moment is determined using

a two-dimensional look up table based on φ and |vparallel|. Using this information, we can

rewrite our aerodynamic equation as

Fd = −(
1

2
ρACd(φ, |vparallel|)|vparallel|2)v̂parallel. (3.10)

Finally, the effective cross-sectional area of the club was provided as a constant A =

0.004805 m2 and the density of the air used in the simulations was ρ = 1.1839 kg/m3.
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Shaft Aerodynamics

Shaft aerodynamics were also included in the club and golfer model using the same standard

aerodynamic equation as the basis of the analysis. This work was performed by Dr. Joydeep

Banerjee, and the resulting model included in the golfer model developed for this project.

The aerodynamics of the shaft are based on the aerodynamics of a cylinder moving through

the air. Since different portions of the length of the shaft will be moving at different speeds,

the standard aerodynamics equation is written in differential form as a function of the

distance along the length, x.

dFd(x) = −1

2
ρ(A(x)Cd(x)|Vshaft(x)|2)V̂shaft(x) (3.11)

To calculate the aerodynamic force, the values of Cd(x), A(x), and V(x) must be defined

along with a method for applying the calculated force back to the model. Cd(x) is defined

as a constant, 1.2 [46], and A(x) is simply the diameter of the shaft, D. Vshaft(x) is more

complicated as the flexing of the shaft must be taken into account. To define the position

of any point along the length of the shaft recall Equation 3.8 which adds the position of

the flexible coordinates of the shaft, rp/b to the position of the base frame, rb (defined as

the position of the golfer’s hands).

rp(x) = rb + rp/b(x) (3.12)

This equation is then differentiated to determine the velocity of the beam along its length.

Vshaft(x) = ṙp(x) = ṙb + r̊p/b(x) + ωshaft × rp/b(x) (3.13)

where r̊p/b is the velocity of the point of interest on the shaft with respect to the base frame

and ωshaft is the angular velocity of the base frame.

56



Once Cd(x), A(x), and V(x) have been defined, the total aerodynamic force applied to

the shaft can be calculated by integrating Equation 3.11 along the length of the shaft.

Fd = −1

2
ρCd

∫
D(x)|Vshaft(x)|2V̂shaft(x)dx (3.14)

Similarly, the moment applied by the aerodynamic force can be calculated by the integra-

tion of

Md =

∫
rp/b × dF(x) (3.15)

Unfortunately, MapleSim was unable to handle the integration of these equations sym-

bolically, so instead a numerical integration was performed by dividing the shaft into 13

discrete sections. The number of sections was selected using a convergence study. To per-

form the integration numerically, the diameter which represented the area term has to be

multiplied by the length of the segment.

A(x) = D(x)
L

N
(3.16)

where L is the length of the shaft and N is the number of sections into which it was divided.

3.2.4 Validation

The flexible shaft model was validated by Sandhu [23]. A motion capture experiment was

performed with four golfers in order to capture both the grip kinematics and the motion of

the clubhead. The grip kinematics were then given to the flexible model of the club and the

dynamic loft, droop, and clubhead speed compared between the analytical model, a finite

element model, and the experimental data. The analytical model was able to achieve good

agreement with the finite element model throughout the swing and good agreement with

the experimental results during the impact phase of the swing. The clubhead aerodynamics
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were compared to experimental data from [45] and found to be in good agreement. The

shaft aerodynamics have not been validated experimentally for this work, but the Cd value

for a cylinder in turbulent flow is well known [46].

3.3 Combined Club and Golfer Model

The combined club and golfer model is created by connecting the shaft of the flexible club

to the hand of the golfer with a weld joint. Figure 3.11 shows the combined model.

3.4 Impact Model

As one of the goals of this work was to develop a golfer model that could be evaluated based

on ball carry distance, it was important to include an impact model. The impact model

should be able to determine the ball launch conditions based on the speed and orientation

of the clubhead at impact and should result in slice and hook shots for hits with non-ideal

clubhead conditions. The impact model should also be fast as it needs to be used many

times within each simulation to determine the optimal location within the swing to hit the

ball.

The impact model selected was based on the work of Petersen and McPhee [24] and

is a three-dimensional impulse-momentum based approach. The equations which describe

the impact are based on five assumptions that allow an efficient and simple model to be

created:

1. Contact occurs at a single point between the clubhead and the ball.

58



Figure 3.11: The combined golfer and club model in the early part of a swing. The wrist

has yet to break.
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2. Contact occurs in a short period of time.

3. The velocity change of both the club and the ball happens instantaneously at the

moment of impact.

4. There is negligible displacement during impact.

5. The ball rolls without slipping on the clubface (the gear effect as described in Sec-

tion 2.1.4)

The impact model is used to determine the ball launch conditions based on the clubhead

speed and orientation.

System of Equations

The ball and the clubhead each have 6 degrees of freedom (3 translational and 3 rotational)

and therefore each have 6 velocity components following the impact. The three impulses

of the impact are also unknown and are defined as the integrals of the contact forces over

the length of the impact.

Pn =
∫

Fn dt Pz =
∫

Fz dt Py =
∫

Fy dt (3.17)

In total there are 15 unknowns which must be solved for by the model, 12 velocity com-

ponents and 3 impulses.

To solve for 15 unknowns, 15 equations are required and they can be formulated in the

following groups:

� 6 equations for linear impulse and momentum (3 for each body)

� 6 equations for angular impulse and momentum (3 for each body)
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� 1 equation for normal restitution

� 2 equations from the kinematic constraint of the the ball rolling without slipping on

the clubface (stiction)

Impulse and Momentum Equations

Figure 3.12 and Figure 3.13 shows the free body diagram and frames of reference used for

developing the impulse and momentum equations for the clubhead and the ball. There are

four relevant reference frames. The first is the global frame (X, Y, Z) in which the clubhead

velocity is inputted and the ball velocity is calculated. The term X is the downrange

direction, Y is upwards, and Z is outwards away from a right handed golfer. The second

reference frame (xc, yc, zc) is the clubhead frame which is the coincident with the global

frame when the club is at address position and is body fixed in the club at the centre of

mass. The third reference frame is the ellipsoid frame (xell, yell, zell) which is used to define

an analytical shape for the face of the clubhead. This frame has its origin at the center

of an ellipsoid defined by the clubhead’s bulge and roll and is inclined from the clubhead

frame by the loft angle (α) of the club so that the xell axis passes through the centre of

face of the club normal to the surface. The final frame of reference is the impact frame

(ximp, yimp, zimp) which is normal to the clubface at the point of impact. The angles γ and

β between the ellipsoid frame and the impact frame are caused for an off-centre impact by

the bulge and roll of the club and are calculated using the ellipsoid which approximates

the surface of the clubface. Throughout this section, the final subscript of each variable

will indicate the frame of reference in which it is defined.

The system equations are written in the impact frame. By applying the principle of

impulse and momentum to the bodies involved, the equations for the clubhead can be
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written as

mcVcimp −mcvcimp = −Pimp (3.18)

Ic ·Ωimpc − Ic · ωcimp = rimp ×−Pimp (3.19)

and the equations for the ball can similarly be written

mbVbimp −mbvbimp = Pimp (3.20)

Ib ·Ωbimp − Ib · ωbimp = rball ×Pimp. (3.21)

In these equations, and throughout this section, capital letters will stand for the velocity

and spin of the ball and club before impact and lowercase letters will be used for the

velocity and spin before impact. Also, mc, Ic, mb, and Ib represent the mass and inertia

tensors for the club and ball respectively. P is the combined vector of the three impulses,

Pn, Pz, and Py. rimp is the vector from the center of mass of the club to the impact point

in the impact frame, and rball is the vector from the center of mass of the ball to the impact

point in the impact frame.

Restitution Equation

The coefficient of restitution (CoR) is the factor which accounts for energy loss in the

impact of the ball and the club. By rule, e is restricted for golf clubs to be less than

0.83 [25]. In equation form, e is defined as the ratio of the final to initial velocities of the

colliding bodies in the impact frame, normal to the plane of contact between them.

e =
Vcximp − Vbximp
vcximp − vbximp

(3.22)

e implicitly accounts for the energy lost during the impact due to the deformation of the

ball and the vibration of the clubhead.
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Figure 3.12: Side view of the impact model illustrating impulses, frames of reference, and

the clubhead ellipsoid.
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Figure 3.13: Top view of impact mode illustrating impulses, frames of reference, and the

clubhead ellipsoid.
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Kinematic Stiction Constraint (Gear Effect)

Due to the gear effect, before the ball leaves the club face it is assumed to have reached

the state of rolling without slipping. Hence, two kinematic constraints can be added to

the system of equations to solve to find the impact conditions. In each of the tangential

directions, the point in contact between the ball and the club must be moving in the same

direction at the same speed after the impact.

Vcyimp − Vbyimp = 0 (3.23)

Vczimp − Vbzimp = 0 (3.24)

Equations 3.18 through 3.24 constitute the 15 equations required to solve for the 15

unknowns in the impulse-momentum balance. The velocity and spin of the ball and club-

head pre-impact are known along with the orientation of the clubhead and these are used

to calculate the change in the velocity and spin of the ball and club after impact in the

impact frame. A transformation matrix is found using the angles α, β, and γ to transform

this velocity back into the global frame.

Rotation Transformations Between Frames of Reference

As the inputs to the impact model are given in the inertial frame and the calculations occur

in the impact frame, a rotation transform between these frames is required to calculate the

appropriate values of the clubhead velocity and spin before impact and the ball velocity

and spin after impact. This rotation transform is calculated using the orientation of the

clubhead (the rotation matrix Rclub), the loft angle (α), and the impact location on the

face of the club relative to the centre of face (a two element vector defined in the ellipsoid

frame [∆Y ∆Z]).
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First, the impact location is used to calculate the angles β and γ and the value of

the x-coordinate of the impact location. Since the clubface is defined as an ellipsoid the

location of any point on the surface can be calculated using just the provided coordinates

∆Y and ∆Z using the ellipsoid equation,

x =

√
b2c2 − b2∆Z2 − c2∆Y 2ab

c
(3.25)

where a is ellipsoid radius in the x direction, b is the ellipsoid radius in the y direction

(roll), and c is the ellipsoid radius in the z direction (bulge).

The angles β and γ can then be calculated by taking the inverse tangent of the deriva-

tives of x with respect to y and z.

tan β =
dx

dz
=

ab∆Z√
b2c2 − b2∆Z2 − c2∆Y 2c

(3.26)

tan γ =
dx

dy
=

ac∆Y√
b2c2 − b2∆Z2 − c2∆Y 2b

(3.27)

A number of different useful rotation matrices are defined in terms of α, β, and γ. First a

rotation from the ellipsoid frame to the impact frame is calculated:

[Rell→imp] =


cos β 0 − sin β

0 1 0

sin β 0 cos β




cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 (3.28)

The rotation from the centre of mass frame of the club to the ellipsoid frame is just a

simple rotation about zCoM using the loft angle:

[RCoM→ell] =


cosα sinα 0

− sinα cosα 0

0 0 1

 . (3.29)
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And then finally the rotation matrix from the inertial frame to the impact frame is the

product

[R] = [Rclub][RCoM→ell][Rell→imp]. (3.30)

The inverse of this matrix [R]T , provides the inverse transformation needed after the ball

velocity is calculated.

Parameters for the Impact Model

The clubhead and ball parameters that are required for the impact model are shown in

Tables 3.7 and 3.8. For the clubhead, these parameters were taken from measurements of

a Ping i15 driver while the ball parameters are standard values.

Parameter Value

Mass (g) 200

Ixx (g cm2) 3000

Iyy (g cm2) 4200

Izz (g cm2) 2200

Bulge (cm) 30

Roll (cm) 30

Table 3.7: Required clubhead parameters for the impact model.

3.4.1 Validation

Validation of the impact model was performed as part of the work of Petersen and McPhee

[24]. In this work, the results of impulse-momentum impact model were compared to the
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Parameter Value

Mass (g) 45.93

Radius (cm) 2.1336

Table 3.8: Required ball parameters for the impact model.

results from a finite element model of the ball and club impact. For an impact at the sweet

spot of the club, the velocity of the ball after impact was within 6% of the finite element

model.

3.5 Ball Aerodynamics

After the ball launch velocity and spin has been calculated, the ball flight is computed

using an aerodynamic model to allow for comparisons of impacts. This model takes into

account the lift, drag, and gravitational forces on the ball in flight. It also includes a decay

term for the spin of the ball. A free body diagram of the ball in flight is shown in Figure

3.14. The aerodynamic model used is based on the work of Quintavalla [47] which provides

equations and coefficients for calculating the forces on the ball in flight. It also includes

the ability to include wind conditions and elevation data for the tee, but these factors were

not included in the model.

The model is simple and uses the usual aerodynamic equations for the forces on the

ball. The gravitational force W is just the weight of the ball acting in the negative Y

direction.

W = mballg (3.31)

The drag force D acts opposing the direction of motion of the ball and is proportional to
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Figure 3.14: Free body diagram of the ball in flight.
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the square of the velocity.

D =
1

2
ρAball|vball|2CD(−v̂ball) (3.32)

The lift force L acts perpendicular to the velocity of the ball (vball) and perpendicular to

the spin (ωball) in the direction of ωball × vball.

L =
1

2
ρAball|vball|2CL(ω̂ball × v̂ball) (3.33)

The final force Γ that acts on the ball is a torque that opposes the spin of the ball and

slows it down throughout its flight. The direction of the spin does not change.

Γ =
1

2
ρAball|vball|2CMDball(−ω̂ball) (3.34)

The coefficients CD, CL, and CM are determined experimentally and the values were

found to be dependent on the spin rate of the ball Sp.

Sp =
ωball

Dball
2

V
(3.35)

And the coefficients calculated as follows:

CD = 0.171 + 0.62Sp

CL = 0.083 + 0.885Sp

CM = 0.0125Sp

(3.36)

These values were provided for imperial units so a careful unit conversion was performed

before the aerodynamic calculations were performed.

Once the values of the aerodynamic coefficients were determined, the equations of

motion for the ball were found by projecting the force equations onto the XY Z coordinate

system. The resulting equations of motion for the ball are numerically integrated within

Matlab.
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3.5.1 Validation

Validation of the ball trajectory model was performed by comparing the results to robot

testing data. In this comparison, ball launch conditions from 10 different swings were

inputted into the aerodynamic model and compared to their actual trajectories from robot

testing. The mean carry distance was found to be 3.23 m less than the robot testing data

with the mean dispersion distance being only 0.36 m different. The ball model used in this

work is from older ball data and could be updated to include modern coefficients if they

were available. This would help to resolve the discrepancy between the model and the

robot testing results.

3.6 Optimal Control

In order for the simulated golfer to adapt to different situations, it is important to optimally

control the swing to produce the best swing for each set of simulation parameters used. A

real golfer would modify their swing when given a different club, and the simulated golfer

should similarly adjust as required. The optimal control of the golf swing is a difficult

problem to solve directly, as there are many inputs and biological constraints on the inputs

so instead of using conventional optimal control techniques (e.g., Pontryagin’s Minimum

Principle or dynamic programming) the control of the model was achieved by the selection

of parameters for the muscle torque generators.

The optimal control of the golfer model was performed through the activation and

deactivation timing of the four torque generators in the biomechanical model. From equa-

tions 3.1 to 3.3, each torque generator is controlled by the timing parameter tactivate and

tdeactivate. By proper selection of these two parameters, the action of the muscles is con-
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trolled. Through the use of these parameterized torque functions, the optimal control of

the swing is reduced from a free optimal control problem with arbitrary torques throughout

the duration of the swing to a parameter optimization problem.

To solve the parameter optimization, the Matlab routine patternsearch was used

to search the possible parameter space for the optimal swing. Two different objective

functions were developed to determine which one produced the best results.

3.6.1 Objective Function One: Maximum Clubhead Velocity

The first objective function developed attempts to maximize the clubhead velocity while

applying penalties to the swing based on the orientation and direction of motion of the

clubhead at impact. The function is simple

M = Vclub −Wa|∆Θa| −Wha|∆Θha| −Wc|∆Θc| −Wl|∆Θl| (3.37)

and requires the definition of the following parameters:

� Vclub : clubhead speed

� ∆Θa : deviation of the attack angle from the range of 2-6 degrees

� ∆Θha : deviation of the horizontal attack angle from 0 degrees

� ∆Θc : deviation of the face angle from 0 degrees

� ∆Θl : deviation of the dynamic loft from the range of 7-15 degrees

� Wi : weighting terms.

72



X

Z
X

Y

Figure 3.15: Illustrating the required angles for calculating the penalties in objective func-

tion 3.37. The blue arrow indicates the direction of the velocity of the clubhead, which is

required for calculating the attack angle, Θa, and the horizontal attack angle, Θha. The

green arrow on the left is normal to the clubface and the green arrows on the right are

tangent to the clubface. They are used to calculate the dynamic loft, Θl, and face angle,

Θc, at impact.

Figure 3.15 illustrates the definitions of these parameters. When using this objective

function, it is necessary to select appropriate values for the ranges of acceptable values for

each of the penalty terms. It is straightforward to select the ideal value for the horizontal

attack angle and face angle of the club as 0 degrees, but it is more difficult to select

the correct values for the dynamic loft and the vertical attack angle. Instead, a range of

acceptable values was selected.

This objective function was used to produce some preliminary results, but it was difficult

to decide if the swings produced were optimal in terms of the ball launch conditions. Hence,

the impact and aerodynamic model described above were created to allow the definition

of a second, more intuitive, objective function.
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3.6.2 Objective Function Two: Ball Carry

The goal of the second objective function is to use the most intuitive method for evaluating

a swing by examining the flight path of the ball. The goal is to maximize the distance

the ball carries while minimizing the lateral deviation of its flight. The objective function

is designed to allow for a small amount of lateral deviation without a significant penalty

to simulate the ball landing in the fairway, but larger deviations are heavily penalized to

simulate landing in the rough or out of bounds. The equation is

M = X −WeZ
2/Z2

max (3.38)

where X is the downrange carry, Z is the lateral deviation, Zmax is the maximum acceptable

deviation, and W is a weighting term. Figure 3.16 shows how this function behaves for

constant X and a range of values for Z. It’s clear from the Figure that for deviations greater

than Zmax (10 yards), the calculated goodness of the swing (M) is greatly decreased.

The objective function based on ball carry was used to evaluate swings for the remainder

of the project.

Striking the Ball

One important question remains in choosing the optimal parameters for the swing: “Where

should the ball be placed by the golfer?” or more accurately within the context of the

model: “Where within the swing should the golfer strike the ball?”

To determine the best position within each swing for striking the ball, the simulation

examines a range of points within the swing and tests them all to determine which ball

position results in the best flight. For every point where the clubhead is within 7 cm of its

lowest, the impact and aerodynamic analysis is performed and the value of the objective
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Figure 3.16: A plot of objective function 3.38 for constant X = 200 with Zmax = 10. The

function is flat across the acceptable range from -10 to 10, but steeply penalizes shots with

larger lateral deviations.
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function (Equation 3.38) calculated. The point with the highest value is selected as the

ideal point of contact for that swing, and that ball carry and objective function value are

considered to be the value for that particular swing. For all impact calculations, the ball

is assumed to strike the center of the clubface.

3.7 Complete Model

The completed golf model includes all the sub-models described so far. The combined

golfer-club model provides the clubhead position, velocity, and orientation to the impact

model, the impact model calculates the initial conditions for the ball flight, and the trajec-

tory model calculates the carry distance for the ball. Figure 3.17 show the inputs, outputs,

and parameters for each part of the model. The entire model is then controlled through

parameter optimization of the joint torque activation timings to maximize the ball carry.

3.8 Implementation

The golfer and club model was implemented in MapleSim 6.4 [48]. This software product

has the capability of easily and quickly generating the equations for multibody dynamic

systems. After implementation, the generated equations were then exported to create a C-

function which is able to calculate the velocity and orientation of the clubhead throughout

the swing given the muscle activations and initial conditions for the golfer’s joints. This

function was compiled into a .mex function in Matlab [49] where the optimization process

was performed.

A number of different optimization techniques were experimented with in Matlab in-

cluding fminsearch, patternsearch, and genetic algorithms (ga). The best and most
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Figure 3.17: The complete golfer-club, impact, and carry model.
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consistent results were obtained using patternsearch. The patternsearch algorithm

works by direct search starting from an initial guess for the optimal solution. The objec-

tive function is evaluated at the initial guess and then at a surrounding mesh of points a

certain distance away within vector space which contains acceptable variable values. The

search distance is initially 1 but changes as the algorithm progresses. If a surrounding

point is found to have a better objective function value, the center of the search is moved

to that point and the search distance increased. If there is no better point found, the

search distance is decreased and the closer points checked. The algorithm terminates when

the search distance is sufficiently small and there is no point evaluated which improves the

value of the objective function beyond a certain tolerance.

Within the optimization, the activation times of the various torque generators were

optimized simultaneously with the starting joint angles for the golfer. This meant that there

were 11 variables within the optimization. These variables along with their constraints are

shown in Table 3.9. In addition, the activations of the muscles were constrained to occur

before the deactivations.
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Variable Initial Guess Min. Value Max. Value

Torso Activation 0 s −0.1 s 0.1 s

Torso Deactivation 0.22 s 0.1 s simLength s

Shoulder Activation 0.004 s −0.05 s 0.1 s

Shoulder Deactivation 0.18 s 0.05 s simLength s

Forearm Activation 0.13 s 0.05 s simLength s

Forearm Deactivation 0.22 s 0.05 s simLength s

Wrist Activation 0.04 s 0 s 0.15 s

Wrist Deactivation 0.12 s 0.1 s simLength s

Initial Shoulder JA 70° 68° 72°

Initial Forearm JA 90° 88° 92°

Initial Wrist JA 110° 108° 112°

Table 3.9: List of the 11 variables that are optimized by the patternsearch and their

initial values and constraints. simLength means the end of the simulation time.
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Chapter 4

Results and Discussion

Results from the model will be discussed in the following order. First a detailed discussion

of the results from a swing with the default parameters can be found in Section 4.1. This

Section will provide an example of the results that can be obtained from the model and will

describe a normal swing obtained by the optimization process. Following in sections 4.2

through Section 4.7 will be a series of experiments performed using the model. These will

explore the effects of changing a variety of club parameters. The results shown in these

sections will highlight the differences from those in Section 4.1 and will try to explain

those differences both qualitatively and quantitatively. This Chapter will conclude with a

discussion of the usefulness of the model and its limitations in Section 4.8. Throughout

this chapter, a vertical line through a time plot will indicate the moment of impact. Since

the impulses of the impact are not applied back to the golfer model, results for the club

and golfer after impact are not plotted. For each impact, the ball is struck at the centre

of the driver face. For all the following plots unless otherwise specified, the X direction

is downrange, the Y direction is upwards, and the Z direction is pointed away from the
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golfer.

4.1 Results for the Default Parameters

After running the optimization procedure outlined in Section 3.6, the results from a single

swing were obtained. These results are presented here as a baseline for comparison to

the experiments that follow in Sections 4.2 to 4.7. The model used for this simulation is

the model presented in Chapter 3 using the default parameters and the Green shaft. The

following plots show the large range of swing characteristics that can be examined using

this model.

First, for the default parameters, the optimized ball carry is 214 yards with a lateral

deviation of 2 yards. After impact the ball has 3280 rotations per minute (RPM) of

backspin, a launch angle of 18.1°, and a ball speed of 60.8 m/s (136 mph). The trajectory

results can be found in Figure 4.1 and show a trajectory without upward ballooning as

discussed in Section 2.1.5. The backspin is a little high for the ball speed resulting in

higher than optimal trajectory but overall the swing leads to a reasonable ball flight for

the clubhead speed.

The clubhead speed is shown in Figure 4.2. Peak clubhead speed is reached slightly

before impact and the clubhead speed at impact is 41.5 m/s (92.8 mph). The clubhead

speed at impact is slightly slower than the peak clubhead speed to achieve better impact

conditions with the ball. By delaying the impact slightly, the club has started to move

upwards improving the attack angle of the swing and increasing the launch angle.

Figure 4.3b shows this delay illustrating how the club is moving upwards at impact.

Increasing the delay further decreases the benefit since the clubhead is slowing down and
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Figure 4.1: Ball trajectory for swing with default parameters.
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Figure 4.2: Clubhead centre of mass speed for swing with default parameters.
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clubhead speed is the most significant factor in the ball carry distance. The ball is struck

near the low point of the swing at a position about 1 m along the z-axis in front of the

golfer’s torso. The ball is struck 1.7 cm above the low point of the swing at a legal tee

height. This positioning can be seen in Figure 4.3a by comparing the low point of the

y-direction clubhead position with the impact point.

The golfer’s kinematics are also available from the model. The joint angles are shown in

Figure 4.4. This Figure clearly illustrates the kinematic sequencing of the swing. At t = 0,

the torso starts its forward motion, followed by the shoulder around t = 0.05, the wrist at

t = 0.1 and finally the forearm around t = 0.15. This progression from the proximal to

distal joints is similar to those found in experimental results [12] and previous modeling

results [19]. The forearm is a bit of special case as it is not more distal than the wrist.

Instead, it waits for the wrist to start rotating since the rotation of the wrist brings the

club in line with the arm reducing the moment of inertia of the arm-club complex. Once

the club is in line with the arm, it is easier for the pronation of the arm to occur.

The active joint torques for the default golfer can be found in Figure 4.5a. For the

shoulder and forearm, the joint torque is activated slightly before the motion begins, pro-

viding the main impetus for the motion. For the wrist and torso the wrist joint and torso

joint, a large passive moment (due to coiling at the top of the backswing) provides the

torque which starts the motion before the active torque fires. The passive torques can be

found in Figure 4.5b. The passive torque in the pronation and supination of the arm is

small since that joint does not reach the limits of the normal range of motion for the arm.

The combination of the passive and active torques for each joint is shown in Figure 4.6.

This Figure shows the joint torque at each joint peaking as the motion begins and falling

off as the joint is accelerated.

The model is especially sensitive to changes in the timing of the forearm torque as it
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Figure 4.3: Clubhead kinematics for swing with default parameters.
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Figure 4.4: Golfer joint angles for swing with default parameters.

is difficult to square the face of the club at impact without precise timing of the forearm

torque. Too early a torque will close the face at impact and too late a torque will open

the face at impact and both of these scenarios lead to large lateral deviations in the ball

trajectory. This effect will be examined more closely when experimenting with the clubhead

MOI in Section 4.5.

The clubhead aerodynamic drag force, which is a novel feature of this forward dynamic

model of the swing, is shown in Figure 4.7. Recall from Section 3.2.3 that the Cd value

for the clubhead is calculated using a 2-D look up table based on clubhead speed and yaw

angle. The clubhead speed has already been examined in Figure 4.2 and the magnitude

of the yaw is shown in Figure 4.7a. At the beginning of the swing (when there is little

clubhead velocity) the yaw angle cannot easily be calculated since it is measured between

the direction of the velocity vector and the z-axis of the club. Once the club starts moving

(t = 0.02) the yaw angle of the club remains close to 0 (heel-first presentation) until late in
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Figure 4.5: Golfer joint torques for swing with default parameters.
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Figure 4.6: Total golfer joint torques for swing with default parameters.

the swing when the face is squared to meet the ball. The yaw angle is nearly 90° at impact

indicating that the club velocity is normal to the face at impact. The Cd value calculated

from the yaw and the clubhead speed is shown in Figure 4.7b. This plot is spiky because

of the sharp upward trend as the yaw approaches 0° in the surface of the look up table

shown in Figure 3.9. An improved representation of the clubhead Cd value would lead to

a more realistic smoother curve. The final calculated drag force is shown in Figure 4.7c.

Peaking at 5 N for the clubhead speeds encountered is very similar to the values found in

the literature [45]. At higher clubhead speeds, higher drag forces would be expected.

Finally, the model is able to incorporate the flexing and bending of the shaft during

the swing. This is easiest to see in Figure 4.8. The forward and backward flexing of the

shaft clearly shows the club bend backwards during the swing and then flex forward for

impact. This is the expected result as shown in Figure 2.7. For the default golfer with

the green shaft, the club is bent forward 4 cm at impact. The droop oscillates more than
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Figure 4.7: Clubhead aerodynamics plots for swing with default parameters.
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Figure 4.8: Club flexing as measured from the grip.

expected but does exhibit downward bending (negative droop) at impact. This compares

favourably with the experimental results obtained by Sandhu et al. [23] which showed a

similar trend in the club droop.
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4.2 Effect of Golfer Strength

To demonstrate the ability of the model to adapt to different swing conditions, the strength

of the golfer was varied by scaling all of the active muscle torques by a factor from 0.9 to

1.7 times their default values. The expected result here was that a stronger golfer would

be able to generate increased clubhead speed and therefore increased carry distances. The

optimization process would have to change the timing of the muscle activations in order

to produce good swings with the new muscle characteristics. Both of these effects were

observed. First in Figure 4.9, the carry distances are plotted against the strength factor

showing a clear progression from a low strength golfer hitting the ball around 200 yards

to a high strength golfer hitting the ball over 250 yards. This change in carry distance is

caused by an increase in the peak clubhead speed from 40.5 m/s (90.5 mph) to 49.5 m/s

(110.7 mph) as shown in Figure 4.10. There appears to be slightly diminishing returns

from increasing the golfer strength as the slope of the curve is decreasing as we reach the

top of the range of golfer strengths tested.

The golfer’s torque activation timings varied significantly from the low-strength golfer

to the high-strength golfer. As one would expect, the high strength golfer requires earlier

timings as the faster clubhead speed needs earlier motion from the wrist and forearm to

snap the wrists and square the clubface. The active portion of the joint torques is shown

in Figure 4.11. The activation timings, and therefore the torques, follow the same patterns

as before since the goal of the swing is still the same, but the stronger golfer swings both

earlier and with more strength. This experiment showed two things. First the obvious

conclusion that a stronger golfer is able to hit the ball further. And second, that the

optimization scheme used to pick ‘good’ swings is able to adapt the swing to different

simulation conditions.
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Figure 4.9: Ball carry plotted against golfer strength factor.
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Figure 4.10: Clubhead speed plotted against golfer strength factor.
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Figure 4.11: Active joint torque comparison across golfers of different strength.
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Figure 4.12: Clubhead speed plotted against clubhead mass.

4.3 Effect of Clubhead Mass

The second effect tested was the effect of the clubhead mass on the golf swing. Changing

the mass of the clubhead is expected to have two effects. First, as the clubhead becomes

heavier, the golfer will not be able to swing the club as fast, leading to slower peak clubhead

speeds. This effect is shown in Figure 4.12. Due to the increasing clubhead mass from

150 g to 300 g, the clubhead speed is decreased from 45 m/s (100 mph) to 37.5 m/s (83.9

mph). The slower clubhead speed is expected to decrease the carry distance.

But, by increasing the clubhead mass, the clubhead has more momentum at the same

speed so when it strikes the ball more speed is imparted to the ball. Holding clubhead

speed constant and increasing the mass of the club would lead to longer drives so there
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Figure 4.13: Ball carry plotted against clubhead mass.

is a tradeoff to be made between decreasing the clubhead mass to increase the clubhead

speed and increasing the clubhead mass to improve the impact. Figure 4.13 illustrates this

tradeoff clearly. At very low clubhead masses, the carry of the ball is small despite the

high clubhead speeds shown in Figure 4.12. Similarly at high clubhead masses, the ball

carry is small despite the favourable mass balance in the impact between the ball and the

club. These results show that current clubheads (weighing around 200 g) are appropriately

weighted for the golfer modeled.

Examining the torques of the golfer when comparing the swing with different clubhead

masses, it was found that the golfer started the active torque for the torso much earlier

when swinging with a heavier club to try to compensate for the higher clubhead inertia.
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Figure 4.14: Comparison between golfer swinging the default club and swinging a club

with increased clubhead mass.

This change was not enough to counteract the heavier mass and increase the clubhead

speed. These results are shown in Figure 4.14.

To further examine this effect and get a better sense of what mass the clubhead should

be, the range of masses from 170 g to 230 g were simulated in 5 g increments. The resulting

plot is shown in Figure 4.15. The observed effect is less smooth and the optimal carry

point remained at 200 g. The results around 200 g are relatively flat, so any clubhead mass

between 190 g to 205 g would be appropriate. This result should not be interpreted as

indicating that all clubheads should be in this range as it could change depending on the

strength of the golfer, mass and flexibility of the shaft, or any of the other factors studied

in this project. But it is a strong indicator that each individual golfer and shaft will have a

particular clubhead mass that would be ideal for them and also that the selected clubhead

mass should be around 200 g.
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Figure 4.15: Ball carry plotted against clubhead mass on the range of 170 g to 200 g.

4.4 Effect of Clubhead Centre of Mass Position

The third experiment performed using the model was to shift the centre of mass position

backwards and forwards along the Y-axis shown in Figure 3.8b. This axis is not normal to

the clubface but for a perfectly squared clubface would be parallel to the downrange axis

with the origin fixed in the hozel of the club. Shifting the center of mass along this axis

then shifts the relative position to the ellipsoid axis shown in Figure 3.12, changing the

impact conditions for the ball and club. Moving the centre of mass will also have an effect

on the effective moment of inertia for the clubhead, may affect the ability of the golfer to

close the face of the club, and may change the amount of dynamic loft at impact. The

assumption made here is that we can change the centre of mass position without changing

the moments of inertia inherent to the clubhead.
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Figure 4.16: Ball carry plotted against clubhead centre of mass y-coordinate.

As can be seen in Figure 4.16, shifting the centre of mass away from the face of the

club has a small negative effect on the carry distance. Moving the centre of mass from

0 cm from the hozel to 3 cm from the hozel reduced the carry from 218 yards to 205 yards.

This effect is almost entirely due to the change in the impact model as the clubhead speed

does not change significantly across these simulations. Figure 4.17 shows that the clubhead

speed remains close to 41.7 m/s for all simulations varying the centre of mass position.

The golfer kinematics are nearly identical across the swings in this experiment. As we

can see in Figure 4.18 across all four joints, the swing is not affected by the change in the

centre of mass position of clubhead. The effect of the clubhead centre of mass position on

the golfer’s swing is small enough to be disregarded as part of this analysis.

Turning instead to the ball launch characteristics, there is a significant trend in the
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Figure 4.17: Clubhead speed plotted against clubhead centre of mass y-coordinate.

backspin imparted to the ball across these simulations. As can be seen in Figure 4.19 the

backspin of the ball increases from 3250 RPM to 3700 RPM as the centre of mass moves

further from the face of the club along a horizontal axis. The increase in spin changes the

trajectory of the ball and and prevents it from traveling as far downrange. This effect can

be seen in the carry diagram shown in Figure 4.20. Therefore the clubhead centre of mass

position should be kept as close as possible to the face of the club to reduce the backspin

and increase the range. How close the centre of mass can be to the face may be limited by

other considerations including clubhead MOI, club strength, and the materials selected.

The change in the ball launch conditions comes partly from the changes which occur in

the impact model and partly from a change in clubhead presentation. Moving the centre of

mass closer to the face increases the perpendicular length of the moment arm of the impact
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Figure 4.18: Joint angle comparison across swings with different clubhead centre of mass

positions.
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Figure 4.19: Launch backspin plotted against clubhead centre of mass y-coordinate.
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Figure 4.20: Comparison of ball trajectories for different centre of mass positions.
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Figure 4.21: Forward/backward flexing of the shaft for clubs with different center of mass

positions.

(yimp component of rimp in Figure 3.12). This increases the backwards counter-clockwise

rotation of the clubhead after impact. In turn, the gear effect (Equation 3.23) reduces the

amount of backspin on the ball.

The clubhead presentation is changed by a change in the amount of flexing of the club

during the swing. Examining a plot comparing the forward flex of the club in each case,

when the clubhead centre of mass is closer to the face of the club the shaft of the club flexes

a few millimetres further forwards at impact (See Figure 4.21). This slightly increases the

dynamic loft of the club and helps reduce the spin of the ball. This effect is likely secondary

to the change in the moment arm of the impact.
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Figure 4.22: Comparison of ball trajectories for different clubhead MOI.

4.5 Effect of Clubhead Moment of Inertia

The clubhead moment of inertia (MOI) about its vertical axis (when in address position)

was varied from 3000 g cm2 to 5800 g cm2. Having a low MOI increases the amount that

the clubhead will spin during an impact which is not perfectly aligned with the centre of

mass, increasing side spin on the ball. Despite the impact always occurring at the centre

of mass of the club, misaligned impacts will occur due to the face angle at impact. Having

a high MOI reduces side spin for off-line hits but may hinder the golfer’s ability to close

the clubface at impact, reducing the carry. The results showed this effect with a maximum

carry distance achieved with an MOI of 3800 g cm2. These results can be seen in Figure

4.22.
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Comparing the simulation results at 3000 g cm2 to the results at 3800 g cm2 shows very

similar golfer kinematics and very similar club speed and shaft kinematics. There is a

small reduction in clubhead speed from 41.4 m/s to 40.8 m/s for the 3000 g cm2 club which

is caused by the ball being struck slightly later in the swing after the club has begun to

move upwards and slow down. The main reason for the change in carry distance is difficulty

in controlling the orientation of the clubhead.

In general, when the MOI of the clubhead is low, the optimization process has a dif-

ficult time selecting the correct timing for the forearm torque to provide the best impact

conditions. Since the MOI is low, the system will respond quickly to this torque causing

the club to be in the optimal orientation for striking the ball for only a very brief period of

time. This problem is compounded by the effect mentioned at the beginning of this Sec-

tion where a low MOI causes increased side spin for an off-alignment hit. Using a torque

generator that can only provide an on/off activation timing for the forearm muscle may

not give us the granularity required to swing well for every MOI configuration.

When the MOI of the clubhead is high, the golfer is not able to square the clubface

properly for impact and the resulting shots are of lower quality.

4.6 Effect of Shaft Flexibility

Four different flexible shafts provided by a club manufacturer were studied within the

model. By changing the polynomials representing the area, moment of inertia, stiffness,

and torsional stiffness of the club, the four different clubs can be included in the model and

the golfer’s swing optimized for each club. The four clubs have differing stiffness profiles

as summarized here in Figure 4.23 and shown in detail in Appendix A.
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Figure 4.23: EI and GJ curves for flexible shafts used in the study.

It is difficult to determine any trends in whether a particular stiffness profile is better

or worse based on the results presented here. While we can determine what club is best for

a golfer that swings exactly like the model, the stiffness profile is likely a factor that should

be fit to a particular golfer rather than using a ‘one-size-fits-all’ approach. In this section,

the results for each shaft as compared to the default (green) shaft will be presented and

any interesting differences from the default behaviour will be noted.

First in terms of carry, the green shaft produced the longest carry (this is why it was

selected as the default shaft). The carry results for the four clubs are shown in Figure 4.24.

The shortest hitting club is the blue club, followed by the red club and then the orange

club. So the question becomes where does this change in carry come from? What changes

occur in the golfer’s swing as the shaft changes? The first thing to examine is the clubhead

speed as the carry distance is mostly influenced by the clubhead speed. As can be seen

in Figure 4.25, the clubhead speed for the two shortest carrying clubs (red and blue) is

slightly lower than the clubhead speed for the green club. A loss of 0.5 m/s of clubhead

leads to about 3.5 yards of lost carry in the model so while this is a contributing factor, it

is not sufficient to explain the whole difference in carry.
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Figure 4.24: Ball carry for different flexible shafts.
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Figure 4.25: Clubhead speed for different flexible shafts.
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Figure 4.26 shows the backspin of the ball struck with each of the flexible shafts.

Based on this figure, the orange and blue shafts have higher backspin than the green and

red shafts which would lead to reduced ball carry. This explains the differences in carry

between the green and orange and red and blue shafts that have very similar clubhead

speeds. Looking more closely at the simulation results, it was difficult to determine what

is causing the change in backspin. Likely, small differences in the shaft flexibility profiles

are leading to slightly different clubhead characteristics at impact and changing the ball

launch conditions. In particular the dynamic loft may be affected. This further stresses

the importance of selecting the correct flexible shaft for a particular golfer rather than

using a ‘one-size-fits-all’ approach to club fitting. It is also possible that the changes to

the flexibility of the shaft stress the optimizer in different ways, leading to less optimal

solutions depending on the shaft selected.

4.7 Effect of Club Aerodynamics

Club aerodynamics has the effect of slowing down the swing and reducing the carry dis-

tance. There are two types of club aerodynamics included in the model, clubhead aerody-

namics and shaft aerodynamics. This Section looks at the effect of removing each aerody-

namic force and examines the resulting carry and clubhead speed.

By removing all of the aerodynamic effects on the club, the downrange carry increases

by 4 yards from 214 yards to 218 yards (see Figure 4.27). More interesting though is the

change in the trajectory of the ball. Without aerodynamic effects, the ball is lifted much

higher in the air as significantly more backspin is imparted to the ball. As the launch angle

of the ball is nearly unchanged between the scenarios, the increase in the backspin from

3180 RPM to 4149 RPM causes the change in the trajectory of the ball and reducing the
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Figure 4.26: Backspin of the ball for different flexible shafts.
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Figure 4.27: Comparison of the ball trajectories with and without club aerodynamic drag.

improvement in the carry that was expected for higher clubhead speeds.

One possible reason for the change in the backspin is a change in the amount of flexing

of the shaft of the club. In the results including club aerodynamics, the shaft is bent

forwards 3.8 cm at the time of impact while in the results without aerodynamics the shaft

is only bent forwards 0.6 cm. The smaller amount of forward flex reduces the dynamic loft

(by about 1°) of the clubhead at impact and increases the amount of backspin on the ball.

4.8 Model Limitations

While the model that has been presented in this work captures many details of the golf

drive that have not been addressed before and can be used to answer many interesting club

design questions, there are still a few areas in which the model is limited in what it can

simulate. This Section will describe the limitations of the model, grouping them under the

110



four sections described in Chapter 3.

4.8.1 Limitations of the Golfer Model

Model Structure

There are many elements of the golf swing that have been intentionally left out of the golfer

model to decrease its complexity. The most obvious omission is the entire lower body of

the golfer. The omitted degrees of freedom include the horizontal shifting of the hips and

the independent rotation of the hips with respect to the torso. In the context of this model,

the removal of horizontal shifting is reasonable because the modern golf swing is primarily

a rotational movement. While the golfer feels a significant shift of weight from one leg

to the other during the swing, the actual translation of the hips is quite small during the

swing [50].

The independent rotation of the hips has been cited as an indicator of golfer excellence

[51] but it is not a degree of freedom that is required to capture the kinematics of the hands

of the golfer gripping the club. The rotation of the shoulders will have to start earlier if

the hip rotation is missing, but the motion of the shoulder joint will remain the same. If

the goal of the model was to determine what portion of the power is generated by different

joints this degree of freedom would be important, but since the goal is to evaluate club

performance, hip rotation can be lumped in with torso rotation. This same simplification

will also lead to a higher torque for the torso of the golfer as this torque must provide all

of the required angular acceleration of the arms.

The elbow joint in the leading arm of the golfer is not included in the model reducing

the degrees of freedom of the model. This joint is not included as most expert golfers keep
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their leading arm straight throughout the swing. In future versions of the model, it may be

interesting to include this joint and see if the optimization process keeps the elbow straight

throughout the swing or not.

The final omission from the mechanical structure of the model is the omission of the

trailing (right) arm of the golfer. The inclusion of this arm would have resulted in a closed

kinematic loop within the model and complicated the equations that must be solved to

determine its motion by introducing algebraic constraints to the differential equations. So

instead, it is assumed that the golfer’s trailing arm plays a negligible role in providing power

to the swing and is simply used for stabilization. Since the model golfer does not need to

stabilize the swing (the joints used are inherently stable), the second arm is unnecessary.

Since the trailing arm has been removed from the golfer, any power production from it

must be lumped into the leading arm and its strength has been slightly increased. In

particular, the pronation-supination strength is required to be larger to close the clubface.

Finally, the interaction between the hand of the golfer and the grip of the golf club

is modeled as a rigid weld. In reality there is some compliance in this joint but this was

considered as too difficult to model within the scope of this work.

Joint Torques

The joint torque model described in Section 3.1.1 describes how the golfer model is activated

in a way that approximates the muscles of a real golfer. This approximation of the muscle

activity of the golfer simplifies the model and reduces the number of parameters that must

be optimized to control the swing. A higher fidelity alternative would be to build a model

that included individual muscles attached to a skeletal model of the golfer [7]. The obvious

question here is: why use joint torques instead of a combination of muscles to power the
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model?

When answering this question, important to considering the purpose of the model is

important. The primary goal of this project was to build a model that can be used for

evaluating golf club design decisions so the primary role of the golfer portion of the model

is to deliver the correct forces and kinematics to the golf club grip. For this purpose, active

joint torque generators are sufficient as they can provide realistic motions and torques to

the joints without the added complications of multiple muscles. The inclusion of multiple

muscles for each of the joints would require the solution of the muscle redundancy problem

[52] and greatly increase the length of time for simulations. This would be necessary if the

goal of the model was to determine which muscles are used most during the swing but it

is not necessary for determining the club motion. The muscular joint torques are able to

show the relative timing of the golfer’s motion, which is sufficient for the analysis in this

work.

A second assumption of the joint torque model is that the muscles which power each of

the joints are activated to their maximum potential as soon as the torque is turned on and

remain fully activated until they are turned off. This leads to the torque profile represented

by Equation 3.1 which ramps up from 0 to a maximum value with first-order dynamics.

This activation profile is only correct if the golfer is attempting to deliver the maximum

torque at the joint. This is a reasonable assumption since the golf drive is a motion which

attempts to deliver the maximum amount of power to the swing. Therefore the golfer’s

muscles should be maximally activated once they start to be used.

In the results Section (Section 4.5) it was found that the model was very sensitive to

changes in the moment of inertia of the clubhead and it was hypothesized that this was

because the forearm torque generator was unable to be activated partially when the load

it must rotate is small. A biomechanic model that modulated the forearm torque may be
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able to achieve more consistent swing results.

Finally, the joint torque equation ignores the effect of the muscle force-length relation-

ship on the active torques applied. This relationship is unlikely to be important since the

muscle sarcomeres are unlikely to be brought outside the normal range of force production

during the golf swing [17].

4.8.2 Limitations of the Club Model

The club model represents the shaft of the club as a flexible Rayleigh beam which allows

for motion in the transverse directions as well as axial twist. The shaft properties can

vary along the length of the shaft but only as 6th-order polynomials. This representation

should be sufficient for most golf shafts, but as can be seen in Appendix A, there are several

properties which could not be well represented. It’s unlikely that this had a significant effect

on the results, and even a model which follows the trends as the shaft properties change is

an improvement on previous lumped parameter efforts.

The inertia matrix of the clubhead is represented only by the moments of inertia about

the three axes shown in Figure 3.8. These are not necessarily principal axes of the clubhead

and there should also be products of inertia included. This simplification was made because

it was difficult to measure the products of inertia for the clubhead and it is likely that they

have minimal effects on the outcome of the swing. This also makes the results of the

experiment performed in Section 4.5 easier to interpret.
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4.8.3 Limitations of the Impact Model

The impact model used for this work is simple because it was required to be very fast as

part of the optimization process. The assumptions required for the impact model outlined

in Section 3.4 are not necessarily true, but similar impact models have been used before

[24] with good agreement in trends to more sophisticated models. The model likely over-

estimates the amount of spin on the ball after impact as there is no deformation of the

ball against the surface of the club. In addition, the golfer model always assumes that the

golfer would be able to place the ball so that a center impact occurs (e.g., by raising or

lowering the tee or shifting their feet). For some joint angle combinations and clubhead

orientations this is probably not true. A model which dynamically sets the golfer and ball

location as part of the optimization process may be able to achieve more realistic results.

4.8.4 Limitations of the Ball Aerodynamic Model

The ball aerodynamic model used in this paper is a simple and effective one that has been

used to model the flight of many types of flying balls. There are more complicated golf

ball aerodynamics models that incorporate the Reynold’s number of the ball flight and

kinematic viscosity of the air when calculating the lift and drag coefficients for the ball,

but its unclear whether this increase in complexity results in significant changes to the

ball flight path. What might have a larger effect on the final carry distance would be the

incorporation of a more modern golf ball in the model. The equations for CL and CD found

in Section 3.5 are based on experiments performed on golf balls which are no longer current

technology. Newer golf balls have led to longer drives and changing the model in this way

could lead to longer carry distances. In addition, the aerodynamic model does not include

the roll of the golf ball. If the role were included, flatter trajectories (which lead to longer
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roll) might become preferable within the optimization.
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Chapter 5

Conclusions and Future Work

This Chapter will summarize the work completed in this thesis and outline the main

recommendations based on the results presented in Chapter 4. Finally, suggestions for

future research directions will be made.

5.1 Project Summary

This project consists of three sections. In the first section, a thorough review of the physics

of the golf swing and previous golfer models was undertaken. This portion of the project

concluded that there was a need of a physics-based simulation of the golf swing that takes

into account golfer biomechanics and can be used for evaluating golf drivers based on ball

carry distance.

The second portion of the project consisted of the development of a golfer, club, impact

and aerodynamic model that can be used for evaluating golf drivers. The golfer portion

of the model is a 4 degree of freedom model of the torso, left arm, and hand of the golfer
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that includes both passive and active joint torques. The active joint torques are calculated

by parameterized joint torque equations that have been carefully designed to mimic the

actions of human muscles acting on the joints in question, and can be turned on and off

during the swing. The club portion of the model consists of a flexible shaft modeled using

Rayleigh beam theory and a rigid clubhead. The shaft is able to accommodate bending in

the transverse directions and axial rotation. Is also has varying stiffness properties along

its length which are set using polynomial representations of the E, I, G, and J curves. The

third section of the model is an impulse-momentum impact model that is able to calculate

the ball launch conditions given the clubhead speed, orientation, and angular velocity.

Finally, the ball carry is calculated using a conventional aerodynamic model for golf ball

flight.

The model is controlled by manipulating the active joint torques of the golfer in an

optimization process that selects the correct times to turn the joint torques on and off

during the swing to achieve the maximum ball carry. After optimization, the model using

the default parameters was found to hit the ball 214 yards. To show that the algorithm

successfully optimizes the swing of the golfer, the strength of the modeled golfer was varied

and the muscle timings of the golfer were observed to change as the ball carry increased

from 209 yards to 255 yards.

Finally, the model was used to perform experiments on some of the parameters in-

volved in the design of a golf driver. The clubhead mass, clubhead centre of mass location,

clubhead moment of inertia, club aerodynamics, and shaft flexibility were all manipulated

within the model and the obtained carry results presented in Chapter 4. The recommen-

dations for golf club design from these experiments are summarized here.
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5.2 Recommendations

Based on the experiments performed in Chapter 4 the following recommendations can be

made with regards to the design of golf clubs.

1. The mass of the clubhead should be around 200 g for optimal carry distance.

2. The clubhead centre of mass should be located as close to the face of the club as

possible along a horizontal line.

3. Different flexible shafts allow the golfer to hit the ball different distances and shaft

stiffness should therefore be tuned for the golfer that is purchasing the club.

4. The aerodynamics of the club have a small effect on the carry and reducing the

aerodynamic drag would allow golfers to hit the ball further. To accommodate for

reduced drag force bending the club and reducing the dynamic loft, a more aerody-

namic clubhead may need to be combined with a more flexible club.

5.3 Future Research

Continuing this line of research there are at least three different directions which could be

taken. First, there are many more experiments which could be performed using the current

model to examine the effect of different club and golfer parameters on the swing. Here are

a few ideas, but there are probably many more questions that could be investigated using

this model.

1. Using a stronger golfer (to simulate higher clubhead speeds) perform the same set of

club experiments again to see if the experiments yield the same results for stronger
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golfers. It may be that a more powerful golfer would be able to accommodate a

larger clubhead more easily, or requires a different flexible shaft than the default

golfer simulated in this model.

2. Allow the start point of the swing to start in more wound and less wound positions

and change the passive strength properties of the golfer to simulate more or less

flexible golfers.

3. Experiment with the loft of the golf club to investigate the effect of driver loft on

carry distance.

4. Modify the shaft flexibility directly to produce flexibility profiles that follow certain

desired trends and examine their effect on the golfer performance.

This is just a small number of the many studies that could be performed using this model.

Another interesting approach might be to change the parameters that are varied in the op-

timization process from the golfer control parameters to the golf club parameters. Instead

of adapting the swing to the chosen club, the optimization process would then adapt the

club to the golfer’s swing. To make this work, it would probably be necessary to perform

a rotation of optimizations back and forth between the club and the golfer to find good

swings for the new club. Attempting to optimize both the golfer and club parameters at

the same time would probably be too many parameters for the current techniques to find

a good solution.

Second, the current model would benefit from significant experimental work being per-

formed to validate the model and confirm that the generated swings are possible by real

golfers. While this model was based on other models that have been validated experimen-

tally, and each individual component has been validated in previous work, the complete
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model has not been experimentally confirmed. An experimental study in which a num-

ber of golfers are examined and compared to the swings found by this model should be

undertaken to confirm the findings of this work. In particular, it would be interesting to

compare the maximum torques found through an inverse dynamic analysis with the torques

generated during the swing by the model in this work.

There are many ways that the model of the swing could be expanded to increase the

range of experiments that can be investigated through its use or to improve its fidelity.

1. Replace the joint torque generators with muscles like those used in other biomechan-

ical models [7] [53]. This should not have a large effect on the torques that can be

generated at each joint, but the model could then be used to determine which muscles

contribute most to the golf swing.

2. Include the hips of the golfer as both a torsional and translational degree of freedom.

This would improve the ability of the model to match the kinematics of a real golfer

at the cost of increased complexity in the model.

3. Similarly, the inclusion of the elbow joint could be used to determine whether the

optimized golfer would choose to keep their arm straight throughout the swing or to

start with it bent and straighten at some point during the swing.

4. The inclusion of joint torques that could be activated partially to allow the pronation

of the arm to happen more slowly during the swing could improve the ability of the

model to strike the ball and decrease the sensitivity of the swing to changes in the

joint torques timing.

5. The impact model which is used in this work could be replaced with a model that

accounts for the deformation of the ball and club during impact using a finite element
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modeling approach, a volumetric contact model, or some other modeling technique

that improves the accuracy of the ball launch conditions.

6. Modern aerodynamic coefficients for the ball aerodynamic model could be obtained

by experiment to improve the results of the carry model.

7. Place the ball at a location relative to the torso before the swing begins, detect

the impact point, and calculate the ball launch conditions based on the clubhead

orientation at that time. This would remove the constraint that the ball be struck

at the centre of face of the club and allow for the possibility of applying the impact

impulses backwards into the club and golfer. The location of the ball would probably

need to be included as part of the optimization parameters to achieve good swings,

and would require significant computing time and resources.

8. Include the backswing of the golfer so that the flexible club starts the swing with the

correct curvature due to the dynamic loads of the backswing.

These improvements to the model would increase the range of experiments that can be

performed with it and improve the accuracy of the results.
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Appendix A

Shaft Characteristics - Polynomial

Fits

The characteristics of the flexible club were modeled using 6th order polynomials to capture

the changes in the E,I,G, and J curves. 4 different clubs were modeled using data provided

by the manufacturer. While we are unable to provide the actual values due to an agreement

with the manufacturer the polynomial fits for each of the four clubs are presented in this

appendix.

In general, the fits are quite good but there are a couple cases where the polynomials

were unable to match the desired shape exactly.
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(a) Cross-sectional area vs. Distance

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Distance from grip (m)

D
ia

m
e
te

r 
(m

)

Shaft Diameter

 

 

Fitted Polynomial

Experimental Data

(b) Club shaft diameter vs. Distance
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(c) Club shaft thickness vs. Distance
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(d) Young’s Modulus vs. Distance
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(e) Shear Modulus vs. Distance
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(f) Moment of Inertia vs. Distance

Figure A.2: Yellow club polynomial fitting comparison.
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(b) Club shaft diameter vs. Distance
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(c) Club shaft thickness vs. Distance
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(f) Moment of Inertia vs. Distance

Figure A.3: Orange club polynomial fitting comparison
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(b) Club shaft diameter vs. Distance
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(c) Club shaft thickness vs. Distance
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(f) Moment of Inertia vs. Distance

Figure A.4: Red club polynomial fitting comparison
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