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Abstract 

 

The imminent inception of third-generation (3G) mobile communication networks offers an 

unprecedented opportunity for the development of video streaming applications through wireless 

Internet access. Different design challenges exist in implementing video streaming connections 

spanning both wired and wireless domains.  A split-domain TCP-friendly streaming video 

transmission protocol is presented based on adaptive rate encoding in the MPEG-4 video format.  

Network simulations are conducted to demonstrate the benefits and viability of such a video 

streaming scheme over existing options.  Further feature enhancements and refinements are 

necessary for the proposed protocol to achieve its full potential. 
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1 Introduction 

The advent and proliferation of the Internet in the last decade have tremendously facilitated the 

spread of information amongst individuals throughout the world.  At the same time, the 

explosive growth of personal wireless communication systems has rendered them as an 

indispensable part of the modern society.  Besides supporting ordinary voice communications, 

cellular phones and other wireless devices serve as connection portals to the Internet, for 

providing seamless Internet connections to mobile users.      

 

However, because of the intrinsic differences that exist between wired and wireless domains, 

granting the Internet connection does not translate into full access to Internet resources and 

capabilities, such as for video streaming and other multimedia applications.  For instance, the 

principal challenge in providing streaming video applications to mobile users lies on devising a 

single protocol that is able to harmonize the different design parameters of wired and wireless 

domains, guarantee the quality of service (QoS) requirements of the video stream, and minimize 

conflicts with other existing Internet connections.  Both wired and wireless domains introduce 

various degrees of network volatility and design complexity that pose as a formidable obstacle in 

guaranteeing high video streaming QoS.   

 

Because of historical factors and other technical limitations, the currently implemented protocols 

such as Transmission Control Protocol (TCP) [2] and User Datagram Protocol (UDP) [5] are 

deemed inadequate in providing a genuine end-to-end cross-domain solution for video streaming.  

A number of research papers offer different strategies in dealing with the various problems 

associated with video streaming over the Internet [9], while others attempt to resolve similar 
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difficulties in the wireless domain [10] [11].  Besides not catering to the specific requirements 

for cross-domain end-to-end video streaming scenarios, these various proposals often involve 

extensive network parameter gathering and complex mathematical computation to determine the 

optimum video transmission rate for the instantaneous Internet traffic profile.  Given the 

inadequacies of the existing protocols in implementing video streaming across both domains, this 

thesis proposes a relatively simple split-domain TCP-friendly protocol based on TCP.  The 

protocol is optimized for the recently developed MPEG-4 video encoding standard [7] [8] to 

achieve video streaming over a hybrid wired and wireless link while addressing the following 

issues: 

 

• Maintaining video QoS amidst wired network congestion 

Network congestion in the wired domain results in excessive transmission delay and packet 

loss that can seriously corrupt cross-domain connections.  For delay-sensitive loss-tolerant 

data such as video traffic, odd packet losses can be tolerated or concealed through 

algorithmic recovery schemes.  However, prolonged network congestion will severely 

degrade video quality, so a reduction in source video rate may be undertaken to maintain 

acceptable video QoS.  The video streaming server should also be able to adapt to improving 

network conditions through gradually increasing the encoding rate for better video QoS.  In 

either case, rate fluctuations must be minimized in order to guarantee video playback 

smoothness. 

 

• Achieving fairness (or TCP-friendliness) in wired network resource allocation 

Although video streaming is inherently demanding to have a higher priority over other forms 

of Internet traffic, excessive bandwidth allocation for video transmission stifles other data 
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connections.  In other words, such network unfairness guarantees video quality at the 

expense of degrading the QoS of other sessions.  It follows that all the video streaming 

applications should follow the principle of TCP-friendliness such that all of the connections 

receive a fair share of the total available bandwidth while still guaranteeing an acceptable 

level of video QoS.   

 

• Coping with high bit error rate (BER) in wireless links 

Wireless transmission is subject to fading and delay dispersion, as well as interference and 

background noise, all of which lead to high BER on wireless data transmission.  During high 

BER intervals, video packets are bombarded with random errors over their entire payload 

length.  In case of MPEG-4 streaming, corruption to the TCP/IP header section or the header 

portion of the MPEG-4 video segment results in the dropping of the entire packet, while 

other errors can be partially recovered by MPEG-4 recovery tools.  The video streaming 

application should rectify any packet loss occurred, possibly through frequent 

retransmissions, with promptness and efficiency. 

 

• Minimizing the deployment of MPEG-4 error resilience tools at the mobile receiver 

Although packet losses in the transmission channel can be mitigated through MPEG-4 

recovery mechanisms, these error resiliency tools should be kept as a backup strategy when 

other measures fail since the invocation of these corrective algorithms will considerably raise 

the demand for processing power and memory space at the mobile device.  Therefore the 

video streaming application should rely on other less computation-intensive schemes for 

packet loss recovery and regard the MPEG-4 resiliency tools as a last resort. 
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• Exploiting split wired-wireless domain architecture 

Since each of the domains requires different sets of matching design criteria in video 

streaming, a split domain architectural approach for protocol design should be explored.  The 

intermediate proxy can be enhanced to assume a more elevated role on regulating video 

streaming traffic between the two distinct domains.   

 

The rest of the thesis is organized in the following manner.  A summary of the various protocol 

design considerations and challenges regarding wired and wireless domains is provided in 

Chapter 2, while Chapter 3 provides a general description of some of the existing and proposed 

video streaming methods, and discusses their effectiveness and drawbacks.  Next, a brief 

overview of the MPEG-4 video encoding standard is given in Chapter 4.  The specifics of the 

proposed split-domain TCP-friendly protocol are presented in detail in Chapter 5, with the 

corresponding test strategies and simulations results placed in Chapter 6.  Finally, Chapter 7 

gives some concluding remarks and outlook for further research work. 
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2 Current Internet Video Streaming Environment 

The modern Internet is essentially a ubiquitous, self-sustaining mesh that interconnects electronic 

computing devices around the world.  Within this massive heterogeneous inter-network structure 

that is woven from a myriad of sub-networks such as the cross-continental trunks, local area 

networks, wireless wide area networks, satellite connections, etc., there exist two distinctive 

transmission domains: wired and wireless.  Before delving into defining the specification for a 

cross-domain video transmission protocol, it is important to first closely examine the 

characteristics of each domain and identify the obstacles in implementing video streaming in 

both environments.  

 

2.1 Wired Domain 

Optical fibres, a transmission medium that is deemed to provide high-bandwidth transmission 

and low bit error rates, constitute the majority of the global network backbone structure.  The 

probability of random bit errors occurring in data transmissions over this wired trunk is 

extremely low (~10-10) [18] and therefore can be effectively approximated to zero.  Despite the 

assumed absence of random bit errors, data transmission can be corrupted by the persistent 

likelihood of network congestion.  Congestion happens when a large number of connections, 

both delay sensitive (real-time video, audio streams) and non-delay sensitive (text content, email, 

FTP, Telnet), contend for limited available bandwidth.  Excess bandwidth demand leads to the 

occurrence of packet loss due to buffer overflow at intermediate routers.  To reduce such 

undesired instances, congestion control should be implemented on the Internet transmission 

protocols so that when congestion occurs, data senders can throttle the data rates accordingly to 

prevent unnecessary packet loss and achieve overall network stability.   
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For video applications, however, frequent fluctuations in sending rate can seriously affect the 

perceived picture quality at the end user terminal, as illustrated in Figure 1.  If the server is 

encoding the video stream at a constant rate, then intuitively the available video transmission rate 

should be at least as large as the encoding rate for optimum playback results.  Unlike common 

bulk file transfers, streaming video is less demanding in achieving the maximum bandwidth 

possible since the video encoding rate remains relatively constant, as dictated by predetermined 

QoS settings, in response to increasing bandwidth availability.  Excessive abundance of network 

bandwidth in comparison to a modest video encoding rate leads to possible bandwidth under-

utilization that fails to exploit further video quality enhancements through the increase of video 

encoding rate.  On the other hand, a reduction in the video transmission rate can create buffer 

underrun at the receiver.  Eventually, the user will experience possible stoppage of video 

playback stream when sudden bursts of extremely congested traffic cause high packet loss at 

intermediate routers.  So care must be taken in video application design to compensate for the 

congestion effects while maintaining acceptable video delivery QoS.   

Figure 1: Effects of video transmission rate changes vs. video encoding rate. 
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When packet loss due to network congestion is detected during transmission of loss-sensitive 

media, the lost packets must be retransmitted to preserve data integrity.  However, video 

streaming can tolerate some degree of data loss as a possible trade-off for guaranteeing real-time 

delivery.  Often, video encoding algorithms are equipped with complex data resiliency tools to 

recover or conceal errors stemmed from packet loss or corruption.  Therefore it is not necessary 

for the video transmission protocol to enforce stringent requirements on the retransmission 

mechanism.  For instance, as Internet connections often span across the continents, the sheer 

transmission distance increases the round trip time (RTT) considerably.  Whenever 

retransmissions are required during congestion periods, the high turnaround time experienced by 

the video packet may cause it to arrive at the receiver too late to be processed, thus forcibly 

discarded.  As a result, before initiating retransmissions, the video transmission protocol should 

evaluate the probability of successful processing of retransmitted packets at the receiver to 

prevent such wasteful episodes from occurring.  

Figure 2: Video packet arrival patterns. (a) Ideal (b) Bursty. 
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Besides combating against network congestion, video streaming applications also need to be 

resilient against bursty arrivals of video packets.  Ideally, video packets should arrive in regular 

intervals such that the inter-packet arrival time should exhibit little variance, as shown in Figure 

2(a).  Under this condition, only a small buffer space is needed for queuing the incoming video 

packets at the video decoder.  However, when a video stream is passed through a long multi-hop 

Internet connection, the ever-changing network dynamics and routing path fluctuations introduce 

inter-packet delay jitter that increases the arrival time variance between consecutive video 

packets at the receiver.  In addition, large bursts of video traffic can gather and arrive at the 

receiver within a short time span, as illustrated in Figure 2(b).  If the receiver buffer space is not 

adequately allocated, then the video stream faces the risks of playback stoppage caused by 

extended inter-packet delay jitter that leads to buffer underrun, or lost data because of buffer 

overflow during high arrival bursts of video packets.  Therefore during video streaming sessions, 

abundant buffer space should be made available at the receiver to absorb these bursty 

transmission effects.   

 

While commonly the buffer length is set by the receiver based on user preference, its value in 

turn determines the number of retransmissions allowed for a given connection that ultimately 

affects the robustness of video packet transmission.  As mentioned before, retransmissions are 

required whenever video packets are lost during congested periods.  In that case, a longer buffer 

would naturally allow more retransmissions, as illustrated in Figure 3, and therefore ensuring 

high video stream integrity.  In addition, a short RTT implies that a video packet can be 

acknowledged in the shortest amount of time, thereby permitting additional retransmissions 

during heavily congestion periods to expedite data packet recovery.  However, smaller 
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computing devices may not have the luxury to afford large buffer spaces, and the end user may 

have to tolerate the longer buffering time at the beginning of the video stream.  So the design 

decision on optimal buffer length depends on connection path RTT, available storage resources 

at the video decoder, and user preference. 

Figure 3: Relationship between buffer length and RTT. (a) Short buffer with short RTT.          
(b) Short buffer with long RTT.  (c) Long buffer with short RTT. (d) Long buffer with long RTT. 

 

2.2 Wireless Domain  

Compared to its wired counterpart, the wireless network poses additional design challenges to 

implement video streaming since it suffers from a number of intrinsic deficiencies and 

shortcomings.  First of all, the scarce radio spectrum within the wireless domain limits the 

capacity and bandwidth of wireless data transmission.  For the impending third-generation (3G) 

mobile communications standards, the International Telecommunication Union (ITU) stipulates 

data rate requirements of up to 384 kbps outdoors and up to 2 Mbps indoors [19].  While the 

increase in available transmission rate is a major upgrade over previous first and second 

generation systems [20], it is still a far cry from the transmission bandwidth offering by fibre 

optics that is measured upwards in units of gigabytes/s.  Therefore, bandwidth-intensive 
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applications such as video streaming cannot be implemented over wireless links without severely 

degrading video quality as a trade-off for lower available transmission rate. 

 

Second, during propagation through the physically open environment, radio waves are easily 

prone to attenuating effects such as path fading, multipath dispersion, cochannel interference and 

background noise [21].  As a result, random bit errors and burst errors frequently appear to 

corrupt data packets and instigate packet loss in the wireless channel.  When detected, the mobile 

device must discard the corrupted packets and request for retransmission.  In addition, heavy data 

traffic over the wireless link increases the overall interference level in 3G Wideband Code 

Division Multiple Access (W-CDMA) systems, thus degrading the signal-to-noise ratio and 

elevating the effective bit error rate (BER).  A common approach to reduce BER is to apply 

error-correcting channel coding techniques such as Forward Error Correction codes (FEC) [17] 

at the link layer.  Even with such added protection, the resultant BER over the wireless link can 

still reach up to 10-2 [22]. 

 

Third, wireless devices are often equipped with constrained processing power and battery life 

along with limited memory space and display screen size.  Therefore the ideal transmission 

protocol for wireless devices should be simple, lightweight, and involve as few transmission 

overhead and buffering space as possible while not sacrificing any video QoS requirements.  

Also, the video decoder on the mobile device has to execute as few instructions and algorithm 

computations as possible to conserve power.  In short, the processing burden for video streaming 

should be alleviated from mobile devices as much as possible with assistance from a more 

simplified transmission protocol structure and more efficient video encoding algorithms, as well 
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as active involvement from fixed hosts such as the video streaming server and intermediate 

cross-domain proxy.  

 

Fourth, while the cellular structure for wireless wide area network (WAN) offers user the ability 

to roam about the coverage area, the inter-cell handoff process, shown in Figure 4, can get quite 

complicated, especially for data transmission.  During a video streaming session, the mobile user 

first obtains a unique identification marker, known as an IP address [24], which binds the 

wireless device to the service access point for that particular cell for the video packets to be 

delivered correctly to the receiver.  As the mobile user switches from one cell to another amidst 

video data transfer, the mobile device either binds the current IP address to the new service 

access point, or a new IP address is assigned to the mobile user for the new service access point.  

In the first case, the routing of video packets tends to become problematic, considering the 

mobile device may continue to switch cells and incur frequent handoffs during a connection 

session.  The second case is even worse since it is almost impossible to maintain end-to-end 

transport and higher-layer connections.  Although these handoff issues are adequately handled by 

the Mobile IP protocol [23] and other ad hoc cellular network schemes currently employed by 

mobile telecommunications providers, there exists the problem of buffer space allocation at the 

intermediate proxy for split-domain video streaming connections during handoffs which is to be 

explained further in later section. 

Figure 4: Inter-cell handoff. 
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Apart from the above adverse effects, the wireless network does possess one prominent design 

advantage over the wired network.  That is, the wireless link between the mobile user and 

intermediate proxy often constitutes the last lop of a connection linking a fixed host web server 

located a long distance away.  Since the wireless domain only involves several short network 

hops, the variance of delay jitter tends to remain relatively stable as long as the intermediate 

proxy can send the video packets at a constant rate to offset the delay jitter effects spilled over 

from the wired domain.  Also because of the short distance between the base station and the 

mobile device, retransmissions due to packet corruption will be prompt and direct as the RTT in 

the wireless domain is short.  Therefore the amount of buffer space required at the mobile 

terminal can be reduced accordingly. 

 

2.3 End-to-End Cross-Domain Considerations 

The main considerations and challenges in providing video transmission separately over the 

wired and wireless domains are summarized in Table 1.    

 

Table 1: Main design considerations and challenges for wire and wireless domains. 

 Wired Domain Wireless Domain 
Advantages • High transmission bandwidth 

• Low BER 

 

• Shorter RTT, faster 
retransmissions 

• Non-bursty arrival of video 
packets (assume no spill-over 
effects from wired network) 

Drawbacks 1. Congestion causes transmission 
rate fluctuations 

2. Longer RTT, slower 
retransmissions 

3. Bursty arrival of video packets 

• Low transmission bandwidth 

• High BER 

• Limited power and processing 
capability for wireless devices  

• Handoff complexity 



 

13 

As discussed in the above sections, the disparities in design characteristics between both domains 

make it evident that superimposing a single protocol over an end-to-end cross-domain video 

streaming connection (see Figure 5) is considerably difficult.  Not only does the protocol have to 

exploit the design advantages for both domains, it has to harmonize the respective drawbacks 

such that the integration of the two domains does not exacerbate their disruptive effects further.  

For example, the bursty arrival pattern for video transmission in the wired domain will propagate 

over to the wireless link if the intermediate proxy does not intervene.  As a result, the resource-

strapped mobile device has to bear the load of providing large buffering storage and possibly 

requesting and processing more retransmissions, each of which is highly undesirable.   

Figure 5: Cross-domain video connection. 

 

Also for cross-domain video transmission, end-to-end delay takes into account the total time 

taken to traverse the network from the streaming server to the mobile receiver that includes 

transmission, buffering and processing delays.  For real-time applications such as live 

broadcasting and video conferencing, prolonged end-to-end delay leads to poor QoS 

performance.  For other video streaming applications, increasing the buffer size is an effective 

way to offset the negative effects of delay jitter.  In return, buffering delay is increased 

accordingly that leads to an overall increase of end-to-end delay.  Extended end-to-end delay 

Internet

Mobile Devices

Wired Link
Wired Link

Wireless Link

Server
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protection should not affect the video stream quality, albeit a potentially lengthy buffering wait 

at the beginning of playback. 

 

Another major issue that plagues cross-domain video connections is the urgency to maintain end-

to-end security.  As the link between the wired and wireless domains hinges at the intermediate 

proxy, it is very vulnerable to gateway attacks or unscrupulous system insiders attempting to 

steal original data that can gravely compromise end-to-end network security, even with other 

transport and application level security mechanisms protecting each of the two parts [25].  The 

optimum solution is to involve the intermediate proxy as little as possible in the end-to-end 

traffic processing.  In other words, the intermediate proxy should simply act as a relay for video 

packets without breaking the end-to-end connection semantics or intervening in packet assembly 

and data processing.  However, this approach may sacrifice the transmission efficiency on the 

wireless link as a single unbroken end-to-end connection often creates conflicts between wired 

and wireless domain characteristics.   

 

Despite the monumental challenges faced in creating an end-to-end cross-domain Internet video 

transmission protocol, different proposals surfaced over the years that offer mixed approaches in 

supporting video streaming applications over either or both domains [9] [10] [11].  The next 

chapter explores the principal protocols, TCP and UDP, their technical features pertinent to 

video transmission, and their degree of adaptation to video streaming.  
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3 Current Internet Video Streaming Protocols 

Any newly proposed video streaming protocol must coexist with other resident Internet 

transmission protocols since it is technically and financially improbable to overhaul the entire 

Internet to incorporate new protocols.  Because of their design maturity and performance 

stability, current end-to-end video streaming applications mostly rely on TCP and UDP as the 

main vehicles for video packet delivery over the Internet [1].  Thoroughly investigating the 

specifics of these two protocols related to video streaming assists in defining a new video 

streaming protocol that is able to incorporate proven design methodologies and remedy 

deficiencies.  

 

3.1 TCP 

TCP [2] is a connection-oriented transmission protocol that was first contrived with the intent of 

operating over terrestrial wired networks to guarantee data transmission integrity while 

maintaining overall network stability, particularly through the universal deployment of the TCP 

congestion control [14].  Without this regulatory mechanism to promote voluntary restraint on 

sender transmission rates, unrestricted data flows would inundate the Internet to cause pervasive 

buffer overflows at the intermediate routers that eventually lead to congestion collapse [6].  Even 

if the network is able to handle the swarming traffic, the receiver needs a means to notify the 

sender of its buffer capacity such that it would not be overwhelmed with the incoming packets.   

 

3.1.1 Congestion Control 

The clever design of TCP congestion control is able to solve both problems simultaneously by 

maintaining two transmission windows, known as receiver window and congestion window, at 
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the sender.  The receiver window value is advertised by the receiver to signify the amount of data 

it is willing to accept, and the congestion window is periodically computed to determine the 

amount of data the sender can transmit without causing network congestion.  The number of 

bytes that may actually be sent is the minimum of the two windows.  Consider Table 2, which 

outlines the sender actions based on congestion window and receiver window, as an example on 

how the deliberation process works.  With the receiver window size set at 8 kB and the 

congestion window at 4 kB, it is clear in the first case that the receiver has ample buffer space to 

digest the smaller incoming batch of data.  Therefore the sender is given permission to send the 

whole 4 kB of data.  In the second case, since both the congestion window and receiver window 

are listed at 8 kB, it is also safe to transmit the entire packet load.  The third case has the 

congestion window larger than the receiver window.  As a result, the sender is allowed to send 

the full amount advertised by the receiver window, which is 8 kB.  

 

Table 2: Sender actions based on congestion window and receiver window. 

Case Congestion Window  Receiver Window  Sender Action 

1 4 kB 8 kB Sends 4 kB of data 

2 8 kB 8 kB Sends 8 kB of data 

3 16 kB 8 kB Sends 8 kB of data 

 

While the receiver window is often set based on the amount of buffer space available at the 

receiver, the congestion window is dynamically determined by the slow start and congestion 

avoidance algorithms [14] during a data transmission session.  When a connection is established, 

the sender initializes the congestion window to the size of the initial window, which usually is 

equivalent to the maximum segment size in use on the connection, where a segment is defined as 

any TCP/IP data or acknowledgment packet, or both.  Afterwards, it sends one maximum 
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segment and waits for either an acknowledgement (ACK) from the receiver or a loss event.  If 

this segment is acknowledged before a loss event is sensed, it increases the congestion window 

by one maximum segment to make it two maximum size segments and sends two segments.  The 

congestion window is subsequently increased by one maximum segment size as each of these 

segments is acknowledged.  With the congestion window is n segments, if all n are 

acknowledged on time, the congestion window is increased by the byte count corresponding to n 

segments.  In other words, each burst of successfully acknowledged packets effectively doubles 

the congestion window.  The exponential growth of the congestion window continues until either 

a loss event occurs or the receiver’s window is reached.   

 

The goal of this algorithm, called slow start, is to determine the optimal congestion window size 

without incurring network congestion by using this trial-and-error method.  For instance, the 

network condition permits congestion window sizes of n, 2n, 4n and 8n bytes without any 

hitches, but complains (through loss events) when a congestion window of 16n bytes is used by 

the sender.  Even though the receiver window is advertised at a much large size, the sender 

should settle with a maximum congestion window of 8n nonetheless. 

 

In addition to the congestion and receiver windows, TCP congestion control also employs a third 

parameter, the threshold, for network probing and congestion avoidance.  Initially it is arbitrarily 

set at a default value.  When a loss event is detected, the threshold is set to half of the current 

congestion window, and the congestion window is reset to the value of loss window that always 

equals to one maximum segment.   The slow start algorithm is then restarted to probe the 

network limits, until the exponential growth of the congestion window reaches the threshold.  
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Henceforth, successive acknowledged segments increase the congestion window linearly (by one 

maximum segment for each burst of r segments) instead of one per segment.  Another way is to 

increment the congestion window by 1 full-sized segment per RTT so that the sender does not 

need to maintain an extra state variable for segment count.  Together, this process is known as 

the congestion avoidance algorithm and it tentatively increases the congestion window in linear 

mode to reach the previous threshold level and beyond until a loss event occurs.  

Figure 6: Example of TCP congestion control algorithm. 

 

To better illustrate how TCP congestion control works, its sample characteristics are shown in 

Figure 6 as an example.  For this connection, the maximum segment size is 1 kB.  The 

congestion window starts at the initial window of 1 kB and grows exponentially until it reaches 

the threshold at 32 kB.  Afterwards it increments linearly till the detection of a loss event.  

Immediately the congestion window reverts back to the loss window of 1 kB and restarts the 

slow start algorithm with the threshold set at half its original value to 20 kB.  If no more loss 

event occurs, the congestion window will continue to grow up to the size of the receiver window.  



 

19 

After that, it will stop growing and remain constant as long as no more loss events occur and the 

receiver window does not change size. 

 

3.1.2 Acknowledgement Generation and Loss Recovery 

While the original purpose of the congestion control algorithm is to avoid brewing network 

congestion by controlling the sender transmission rate, a loss event eventually will happen.  In 

other words, a transmitted segment has been lost in the network en route to the receiver.  In 

response, the sender must retransmit the lost segments to preserve data integrity.  The primary 

means in notifying the sender the occurrence of a loss event is through the retransmission timer.  

During data transmission, the receiver returns ACKs to the sender to notify the successful 

delivery of a particular segment.  For increased Internet efficiency, the receiver can implement 

delayed ACK, which is to send fewer than one ACK per data segment received [28].  Whenever 

a segment is sent through TCP, the corresponding retransmission timer is started at the sender.  If 

the segment is acknowledged before the retransmission timer expires, the timer is stopped.  On 

the other hand, if the retransmission timer goes off before the ACK comes in, the segment is 

retransmitted with a restarted retransmission timer.  The duration of the retransmission timer is 

computed dynamically according to the guidelines outlined in [26]. 

 

Typically, TCP uses a cumulative acknowledgement scheme in which received segments that are 

not at the left edge of the receive window are not acknowledged.  Because of network dynamics, 

individual segments are often dropped or reordered in delivery sequence as they pass through a 

string of intermediate routers.  When an out-of-order segment arrives at the destination, the 

receiver should send an immediate duplicate ACK, as shown in the sequence of events listed in 

Table 3.  This ACK notifies the sender that a segment was received out-of-order and which 
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sequence number is expected.  In addition, the receiver should send an immediate ACK when the 

incoming segment completely or partially fills in a gap in the sequence space.  This will generate 

more updated information for a sender recovering from a loss event through a regular 

retransmission timeout, a fast retransmit [14], or an experimental loss recovery algorithm, such 

as NewReno [27]. 

 

Table 3: TCP cumulative retransmission scheme. 

Step No. Incoming Event Receiver Action 

1 Packet n arrives Acknowledges packet n 

2 Packet n+1 arrives Acknowledges packet n+1 

3 Packet n+4 arrives Acknowledges packet n+1 

4 Packet n+3 arrives Acknowledges packet n+1 

5 Packet n+2 arrives Acknowledges packet n+2 

 

Specifically, if the sender receives multiple duplicate ACKs, the fast retransmit algorithm should 

be invoked to repair the loss.  In practice, the arrival of 3 duplicate ACKs, i.e. 4 identical ACKs 

received without the arrival of any other intervening packets, is treated as an indication that a 

segment has been lost.  Immediately the sender retransmits the assumed missing segment without 

waiting for the retransmission timer to expire.  After the fast retransmit, instead of reverting the 

congestion window to the loss window according to the slow start algorithm, the congestion 

window should follow the fast recovery algorithm [14] that handles the transmission of new data 

until the reception of a non-duplicate ACK.  The reason is that since the receiver can only 

generate a duplicate ACK when a segment has arrived, it shows that segment has left the 

network and it is no longer consuming network resources.  Therefore it is not necessary to resort 

to drastic bandwidth reduction measures like slow start algorithm at that moment.  Furthermore, 
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since the ACK clocking is left unchanged, the sender can continue to transmit new segments, 

though transmission must continue using a reduced congestion window as computed below. 

Figure 7: Example on congestion window changes during fast retransmit and fast recovery. 

 

Figure 7 shows an example on how the fast retransmit and fast recovery algorithms are 

implemented together.  From transmissions 1 to 14, the congestion window grows as dictated by 

the slow start and congestion avoidance algorithms.  A segment is not received in-sequence at 

the receiver, thus duplicate ACKs start to appear at the sender in transmission 15.  When the 

third duplicate ACK is received in transmission 17, the fast recovery begins with the threshold 

set to no more than half of the current congestion window.  The lost segment is then immediately 

retransmitted and the congestion window is set to equal to the threshold plus 3 maximum 

segments.  This intentionally inflates the congestion window by the number of segments, which 

is three, that have left the network and which the receiver has buffered.  Further duplicate ACKs 

are received in transmissions 18 and 19, for which each increments the congestion window by 

another maximum segment.  This intentional increase again refers to the additional segment that 
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has left the network.  If the new value of the congestion window and the receiver window permit, 

the sender may transmit a segment.  In transmission 20, a non-duplicate ACK arrives, and it 

should be the acknowledgment originally expected by the sender, and it should acknowledge all 

the intermediate segments sent between the lost segment and the receipt of the third duplicate 

ACK, if none of these were lost.  As a result, the congestion window is set to the threshold in 

order to deflate it.  Thereafter, the congestion window proceeds according to the congestion 

avoidance algorithm to indicate the end of the fast recovery period. 

 

The combination of fast transmit and fast recovery algorithms elevate the transmission efficiency 

and channel throughput over the sole use of retransmission timers in hastening retransmissions 

while not compromising the congestion window size as extreme as the slow start algorithm.  

However, in face of multiple losses in a single burst of packets, this combination is found not to 

recover very efficiently in such situations [29].  In general, multiple packet losses from a window 

of data, stemming from severe packet dropping at intermediate routers or burst errors on wireless 

channel (to be discussed below), could have a catastrophic effect on TCP throughput such that 

the TCP cumulative acknowledgment scheme forces the sender to either wait a RTT to find out 

about each lost packet, or to unnecessarily retransmit segments which have been correctly 

delivered to the receiver.  Therefore, this prolonged round-trip wait for multiple dropped 

segments causes the retransmission timers to expire, thus reducing overall throughput.   

 

The NewReno algorithm [27], as mentioned earlier, is an experimental loss recovery algorithm 

that slightly modifies the fast recovery algorithm to address this problem.  In particular, it 

identifies the use of a partial ACK that acknowledges some but not all of the segments that were 
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unacknowledged at the beginning of the fast recovery period.  Instead of deflating the congestion 

window, partial ACKs received during the fast recovery period are interpreted to show that the 

packet immediately after the acknowledged segment in the sequence space has been lost and 

should be retransmitted.  This procedure proceeds with retransmitting one lost segment per RTT 

until all of the lost segments from that window have been acknowledged. 

 

Still, these additional changes do not solve the fundamental problem that the TCP sender can 

only learn about and retransmit at most one lost segment per RTT.  A simpler and more intuitive 

solution is to use a selective acknowledgment (SACK) mechanism, combined with a selective 

repeat retransmission policy to overcome these limitations [15].  In this scheme, the receiver 

compiles a SACK packet that informs the sender about all the segments that have arrived 

successfully, so the sender needs to retransmit only the missing data segments.  During the TCP 

connection establishment phase, the sender and receiver must mutually agree upon exercising the 

SACK option.  When multiple segment losses occur during data transmission, sequence number 

gaps will appear in between contiguous blocks of correctly received segments at the receiver 

buffer, as illustrated in Figure 8(a).  The construction of the SACK packet in relation to the 

receiver buffer profile is shown in Figure 8(b), in which the inter-block relationship is contained 

within the options area of a TCP packet.  The left edge of a block is the first sequence number of 

this block, whereas the right edge of a block is the sequence number immediately following the 

last sequence number of this block.  The segment that triggered the SACK is contained in the 

first block, unless that segment advanced the acknowledgment number field in the TCP header, 

to assure SACK reflects the most recent change in the receiver buffer.  Upon reception of a 

SACK packet, the sender should immediately retransmit the missing segments without resetting 
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the retransmission timer.  In short, implementing the SACK option does not interfere with 

normal operations of the congestion control mechanisms while still being able to combat 

multiple segment losses. 

Figure 8: Multiple segment losses. (a) Receiver buffer profile. (b) Corresponding SACK packet. 

 

3.1.3 TCP over Wireless Links 

One of the reasons behind TCP’s domination in regulating Internet traffic can be attributed to 

robust protocol design based upon a number of clearly defined underlying assumptions [2] [30], 

one of which is that TCP runs on network conditions pertinent to the wired domain, as discussed 

in Chapter 2.  However, applying the same set of TCP specifications over wireless 

communication links leads to a list of problems.  When the wireless domain is filled with high 

BER and burst errors that leads to multiple packet loss, the correct approach is to resend the 

same packets as vigorously as the sender can until the receiver confirms their arrival [17].  The 

problem with TCP over wireless links is its assumption that all packet loss is the result of 

network congestion rather than packet corruption [31].  In response to wireless BER, the TCP 

sender first attempts fast retransmits of the missing segments.  If this does not correct the 

situation, the retransmission timer will expire, causing the sender to reset the congestion window 

and revert back to the slow start algorithm.  Not only did TCP fail to resolve the packet 
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corruption problem, it exacerbates the situation by degrading the overall connection throughput 

and transmission performance. 

 

Beside adopting the TCP fast retransmit and fast recovery algorithms and SACK option, as 

described in the previous section, to deal with the high BER in the wireless channel, a number of 

other proposals have suggested TCP enhancements and other mechanisms to accommodate 

wireless domain characteristics.  They can be classified into several categories:  

 
• Split the end-to-end TCP connection into wired and wireless parts to implement separate 

transmission protocols optimized for each domain [3] [16] [34].   

• Enable network routers to generate explicit congestion or packet corruption messages to 

inform the sender to take relevant recovery actions [35] [36]. 

• Rely on link-layer packet recovery mechanisms on the wireless link that automatically 

retransmits lost packets to preserve the TCP end-to-end connection [4] [32] [33].   

 

Each set of solutions has its own strengths and drawbacks.  For instance, the split approach can 

effectively decouple the TCP congestion control with BER effects by separating the TCP 

connection, but it is also plagued with issues such as additional proxy design and handoff 

complexity, and security concerns as discussed in Chapter 2.  The second approach also allows 

the TCP sender to differentiate congestion and corruption instances, but any modifications to 

existing network routing structure are always highly undesirable.  While the link-layer approach 

preserves end-to-end TCP semantics that avoids much of the problems surrounding the previous 

two approaches, it does not fully eradicate the possibility of ever invoking the congestion control 

algorithm at the sender due to wireless BER.  In short, no matter how much the end-to-end TCP 
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connection is bombarded with network congestion or wireless link BER, it is evident that the 

main goal is to avoid invoking the slow start algorithm as much as possible (since it is 

detrimental to the overall transmission throughput) while still maintaining data integrity.   

 

3.1.4 Adaptation to Video Streaming 

TCP has been instrumental in allowing the spontaneous, decentralized growth of the Internet 

since its birth while still maintaining overall network stability.  However, based on the above 

discussions about the various TCP features, it can be concluded that TCP is not optimized for 

video streaming applications.  First of all, the perpetual changes in the TCP congestion window, 

caused by the congestion control algorithm, introduce undesirable fluctuations and other side 

effects in video transmission rate.  Typically during steady state operations, the TCP congestion 

window, bounded by the congestion avoidance algorithm, continues to increase linearly beyond 

the threshold until a loss event is detected.  As a result, the saw-tooth profile of the TCP 

congestion window, shown in Figure 9, makes it difficult to maintain a constant video streaming 

rate that is critical in providing acceptable picture QoS.   

 

After a loss event, the congestion window reverts back to the size of the loss window, causing a 

dramatic decrease in video transmission rate.  For the congestion window to climb back to the 

previous size before the loss event if network conditions permit, it has to endure the linear 

congestion avoidance phase that may take a long time, as illustrated in Figure 10.  In this figure, 

line 1 denotes the congestion window size that sustains the current video streaming rate.  While 

this recovery period may seem insignificant for connections with short RTTs, users on distant 

links with much longer RTTs will certainly notice the painstaking climb through since the 

prolonged loss of transmission bandwidth causes rebuffering timeouts at the receiver.  
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Figure 9: Saw-tooth profile of TCP congestion window. 

Figure 10: Congestion window recovery after loss event. 

 

Another general example on the undesired fluctuating effects of TCP congestion control is 

demonstrated in Figure 11.  Lines 1 and 2 represent the maximum and minimum congestion 

window sizes that support the maximum and minimum video streaming rates, respectively.  Line 

3 denotes the loss window size that is equivalent to the size of one maximum segment.  The 

receiver window is set to be higher than line 1.  In region A, the network traffic is able to support 

the video playback at a rate that lies between lines 1 and 2, but the congestion window’s 

continuous growth triggers frequent loss events.  Because of this, the congestion window is not 

able to maintain a steady transmission rate greater than the minimum video streaming rate and 

possibly causing buffering underrun at the receiver.  Region B shows an even grimmer situation 
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where the network is not permitting the congestion window to grow beyond line 2, thereby 

effectively disrupting normal video streaming since the minimum playback rate cannot be 

sustained.  The best network conditions are shown in region C where the congestion window is 

able to grow above line 1 to achieve the maximum video streaming rate.  However, the 

congestion window will take a much longer time to recover from any future loss event because 

of the linear congestion avoidance algorithm (refer to Figure 10) 

 

Figure 11: Example on undesired effects of TCP congestion control. 

 

Secondly, the TCP retransmission scheme does not exploit the loss-tolerant nature of video 

traffic such that unnecessary retransmissions can be minimized.  As discussed previously, TCP 

goes to great lengths to guarantee data integrity through a number of loss recovery schemes.  

However, because of the loss-tolerant nature of video streaming combined with advanced error 

recovery tools in video encoding standards such as MPEG-4, data integrity becomes lower in 

priority than providing in-time delivery of video packets.  In situations where a video packet is 

consistently deemed lost but originally scheduled to be consumed by the video decoder, any 

further retransmissions of this packet will be meaningless and therefore unnecessary.  However, 
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TCP fails to comprehend this unique situation and will continue to execute useless 

retransmissions that otherwise can be bypassed. 

 

Finally, in the cross-domain connections, TCP cannot distinguish the source of packet loss as due 

to congestion in the wired network or random bit errors in the wireless network, thus degrading 

the overall throughput.  Other proposed TCP enhancements or new protocols discussed in 

Section 3.1.3 do alleviate the problem somewhat, but they do not specifically target video 

streaming applications.  In summary, current TCP implementations, while effective in most 

cases, face a number of drawbacks in providing robust cross-domain video streaming 

connections.  Additional changes to current TCP versions are necessary to deal with congestion 

window fluctuations, redundant retransmissions and wireless domain issues. 

 

3.2 UDP 

Unlike TCP, UDP [5] is a lightweight connectionless transmission protocol that is more suitable 

for real-time video streaming since it is not hindered by any congestion control or retransmission 

mechanisms.  The streaming rate is guaranteed to be constant and smooth at all times without the 

constraint of a congestion window structure.  Also, UDP-based connections have higher priority 

over TCP-based connections in competing for network bandwidth because of the lack of UDP 

congestion control [1].  This argument can be demonstrated as follows.  Within a heterogeneous 

connection environment, different TCP and UDP sessions compete for limited bandwidth 

resources that reach the equilibrium as seen in Figure 12(a).  During heavily congested periods, 

shown in Figure 12(b), additional UDP and TCP session joins into the competition for network 

bandwidth, thereby upsetting the delicate network balance and creating packet loss.  As long as 
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the UDP sessions keep their respective data rates unchanged, other TCP-based sessions will 

eventually reduce their output rate as bounded by the congestion control algorithms.  In the end, 

the unrelenting UDP sessions gain extra bandwidth share at the expense of voluntary retractions 

on behalf of other “generous” TCP sessions, as illustrated in Figure 12(c).   

Figure 12: Competing UDP and TCP connections in heterogeneous network environment. 

 

Despite these seemingly advantages over TCP, there exist a number of drawbacks, though, in the 

use of UDP on video streaming applications.  First of all, without the restrictions of congestion 

control, multiple UDP sessions unfairly starve other TCP connections of network bandwidth.  In 

the worst case, uncontrolled admission of new UDP sessions induces fierce network bandwidth 

competition that may eventually lead to congestion collapse [6].  Also since UDP video 

streaming rates are usually predetermined at the application level, they often fail to adapt to 

changing network dynamics.  For instance, in Figure 13, a UDP video streaming session is 

outputting at a constant rate that is unchanged throughout the entire duration.  The available 

network bandwidth, marked by diagonal lines, decreases initially and rises again during the 
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middle of the UDP session.  Apparently, the UDP session is wasting valuable network bandwidth 

that can improve playback quality near the start and finish of the video clip, and suffers from 

avoidable packet losses around the middle of the streaming session. 

Figure 13: UDP video transmission behaviour. 

 

Second, because UDP is so lightly equipped, its packet header lacks the essential processing 

details such as sequence number and timestamp for it to function properly in a video streaming 

session.  As a result, the Real-Time Protocol (RTP) and Real-Time Control Protocol [37] [38] 

are developed to work on top of UDP/IP stack to provide more adapted video streaming services.  

However, these transport-level enhancements do not address the first problem above, so the RTP 

specification stipulates that the video streaming application implementers should take 

appropriate precautions to limit accidental bandwidth usage, which is sometimes difficult to 

monitor in reality.  

 

Third, UDP connections tend to suffer high packet loss over noisy wireless links due to the lack 

of retransmissions, which substantially degrades video quality at the mobile host.  Although the 
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problem can be alleviated with the protection of error resiliency tools incorporated by video 

encoding standards such as MPEG-4 [7] [8], additional processor and battery power must be 

consumed at the mobile device for recovery computations, which may be undesirable as 

discussed in Section 2.2.  

 

3.3 Cross-Domain Video Streaming Protocol Design Considerations 

The deficiencies in applying TCP and UDP on video streaming applications breed new research 

into attempting to discover the optimum video transmission protocol with some focus on the 

wired domain [9] while others concentrate on the wireless link [10] [11].  From the discussions 

in Chapters 2 and 3, for cross-domain video streaming protocols, it is imperative to incorporate 

the following essential features:  

 

• TCP-Friendliness - achieve optimal video streaming rate while maintaining overall fairness 

in bandwidth sharing with other Internet sessions in the wired domain 

• Loss Recovery - follow best effort strategy in recovering lost video packets in both domains 

• Cross-Domain Harmonization - compromise all the strengths and weaknesses that preside 

over both sections of the connection within a single protocol 

• Lightweight Structure - avoid overburdening mobile device with excessive processing. 

 

Before the specifications of the proposed protocol are presented, an overview of MPEG-4 

standard and its error resiliency tools are presented in the next chapter.  A good understanding 

into this standard helps to refine the design characteristics of the proposed protocol for better 

results in cross-domain video streaming. 
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4 MPEG-4 Overview 

MPEG-4, a video compression standard developed by Moving Picture Experts Group (MPEG), 

is the latest algorithm that primarily targets low-bit-rate video applications up to 384 kbps for 

common interchange format (CIF) of 352 x 288 pixels resolution that is well-suited for mobile 

video devices over 3G wireless links [39].  Its development follows a couple of earlier video 

compression standards, namely MPEG-1 (interactive video on CD-ROM) [40] and MPEG-2 (the 

core compression technology underlying the transmission, storage and display of digitized 

moving images and sound tracks) [41], that are widely deployed in numerous applications.  

Besides focusing on low-bit-rate video communications, MPEG-4 provides functionalities that 

encompass all types of multimedia coding applications [8].  Specifically, they include: 

 
1) the ability to efficiently encode mixed media data such as video, graphics, text, images, 

audio, and speech, called audiovisual objects (AVOs), 

2) the ability to create a compelling multimedia presentation by compositing these mixed 

media objects by a compositing script, 

3) error resilience to permit robust transmission of compressed data over noisy 

communication links, 

4) the ability to encode arbitrarily shaped video objects, 

5) multiplexing and synchronization of the data associated with these objects so that they 

can be delivered over network channels providing a QoS appropriate to the nature of the 

specific objects, 

6) the ability to interact with the audiovisual scene generated at the receiver. 
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Besides the third and fifth points, all other major functionalities are beyond the scope of this 

thesis and their technical details are given in [7].  Here, the emphasis is on constructing a robust 

cross-domain video streaming protocol that can efficiently deliver MPEG-4 data, particularly 

through noisy wireless channels, via a combination of open-loop error resiliency and closed-loop 

loss recovery tools.  In the following section, a brief description of the MPEG-4 error resilience 

tools is presented. 

 

4.1 Error Resiliency Tools and Packet Structure 

MPEG-4 provides error resilience to support delivery of image or video data over a wide range 

of storage and transmission media [7].  To achieve error resilience, MPEG-4 devises schemes to 

facilitate early detection of corrupted data, and reduction and concealment of playback errors. 

Four error resilience tools, namely resynchronization markers, data partitioning, reversible 

variable length codes (RVLC), and header extension code (HEC), are employed by MPEG-4 to 

ensure error resilience within a video packet [8].  These tools have been used by many 

researchers working in the area of video data error resilience, and therefore are not unique to 

MPEG-4.  The MPEG-4 video packet structure is shown in Figure 14.   

Figure 14: MPEG-4 video packet structure. 

 
A single MPEG-4 stream is usually broken up into a series of video packets of roughly fixed 

lengths, with a resynchronization marker separating each packet.  The resynchronization markers 

assist in regaining resynchronization at various locations in the bitstream in the event of channel 
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errors.  High-activity areas of the video stream possess a higher concentration of 

resynchronization markers since these markers are typically inserted into the MPEG-4 bitstream 

periodically every K bits.   

 

In the presence of a short burst of errors, the decoder can quickly localize the error to within a 

few macroblocks in high-motion regions and preserve the corresponding image quality.  To 

further enhance error resilience, MPEG-4 video packets are constructed to be independently 

decodable by removing all data dependencies between successive video packets within the same 

image.  This is achieved by insertion of two additional fields, namely the macroblock address 

(MBA) and the quantization parameter (QP), after the resynchronization marker at the beginning 

of each video packet.   

 

When error occurs, the header contains information that is necessary to restart the decoding 

process.  However, any bit errors occur in the three fields of the header will result in the 

inevitable dropping of the entire packet.  To reduce this likelihood, a 1-bit field of HEC is added 

to the video packet header.  If this bit is set, the presence of additional resynchronization 

information within the packet is indicated.  This redundant information is made available to 

protect against the case the packet header has been corrupted. 

 

If an error in the bitstream is detected, resynchronization procedure enables the decoder to locate 

the error to be in the macroblocks between the two resynchronization markers.  Normally, video 

decoders replace all the erroneous macroblocks by data from the corresponding macroblocks in 

the previous frame for error concealment.  This is so because often the motion and texture data 
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for each macroblock are coded together such that any bit error would corrupt the entire section.  

MPEG-4 reduces such occurrences by partitioning the motion and texture data by a unique 

motion boundary marker (MBM) such that errors in one section would not corrupt the other, and 

more video data can be salvaged through the computation of RVLC.  Further explanation of 

these error resiliency tools can be found in [7] [8]. 

 

4.2 MPEG-4 Over Cross-Domain Connections 

The MPEG-4 error resiliency tools provide additional protection against wireless channel errors, 

which is achieved at the expense of sacrificing extra processing and battery power at the mobile 

devices.  Thus it may advantageous to couple the error resilient encoding scheme with a 

transmission protocol that applies appropriate loss recovery policies for video streaming in the 

wireless domain.  On the other hand, the main purpose of applying MPEG-4 error resiliency 

tools over the wired domain is to compensate for packet loss due to network congestion.  As 

discussed in the previous chapters, congestion control and relevant loss recovery strategies are 

needed to minimize deployment of MPEG-4 error resiliency tools in the wired network.  As a 

result, extending the MPEG-4 video connection over a cross-domain environment requires a 

composite transmission protocol that is able to manage the unique combination of problems and 

challenges associated within each domain.   
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5 The Proposed Protocol 

The main objective of the proposed protocol, named as Split-Domain TCP-Friendly Protocol 

(SDTFP), is to implement a TCP-based closed loop control mechanism (including dynamic 

source rate adjustment, congestion control and loss recovery), which minimizes the invocation of 

open loop control (MPEG-4 error control) at the mobile device and during end-to-end video 

transmission.  The features of the proposed protocol include: 

 

• Split-domain approach 

Because of the drastic condition disparity between the wired and wireless domains, a single 

end-to-end solution is intuitively very difficult.  Therefore, a split protocol approach is used 

with the aid of a cross-domain proxy, similar to the one advocated by Wireless Application 

Protocol (WAP) [12], as shown in Figure 15.  Although the split approach has its share of 

problems such as increased handoff complexity, broken end-to-end connectivity and security 

threats, it offers the ability to isolate the congestion and BER related complications which 

otherwise cannot be differentiated and resolved easily.   

Figure 15: SDTFP system overview. 

 

• Window-based congestion control with proxy assistance  

To manage congestion effects in the wired domain, SDTFP uses a window-based congestion 

control scheme to regulate video transmission rate in order to achieve TCP-friendliness.  

Unlike normal TCP additive-increase-multiplicative-decrease (AIMD) congestion window 
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profile, SDTFP produces a smoother congestion window shape through active proxy 

participation to provide periodic proxy receiver window1 adjustments.  In other words, the 

SDTFP congestion control mechanism on the wired network is jointly managed by the web 

server and the intermediate proxy. 

 

• Large initial and loss windows in congestion control 

To eliminate possible playback stalls due to the TCP slow start algorithm reset that leads to 

buffer underruns, the SDTFP congestion control initial and loss windows are set to be large 

enough to support the minimum playback rate allowed in MPEG-4 video streaming.  As a 

result, any congestion window size would guarantee acceptable QoS at the video decoder 

while still being able to perform functional congestion control.  In other words, the priority 

level of video traffic is inversely proportional to the instantaneous video encoding rate. 

 

• Adaptive rate video source encoding with respect to congestion window changes 

To capitalize on the frequent fluctuations of the congestion window, the source video 

encoder dynamically adapts the source encoding such that a smaller congestion window 

entails a lower video streaming rate, and vice versa.  By pegging the source encoding rate 

with congestion window changes, the probability of buffer underruns or overruns is greatly 

reduced.  Although the existence of an adaptive rate video encoder is assumed true, 

discussions on the exact implementation details of this integral component is beyond the 

scope of this thesis and is subject to further research. 

 

                                                 
1 Note the use of two receiver windows in SDTFP: one for the wired link that is managed by the proxy, and the other 
for the wireless link that is regulated by the mobile device.  For clarity, they are separately named throughout this 
thesis as proxy receiver window and mobile device receiver window. 
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• Best effort loss recovery with selective acknowledgements 

Traditional TCP offer 100% reliability on data reception that is sometimes not necessary for 

video streaming applications, especially with the help of MPEG-4 error resiliency tools.  

However, SDTFP is still required to provide a best effort loss recovery scheme in order to 

guarantee video QoS and minimize the deployment of data recovery tools at the mobile 

receiver.  To further increase the efficiency of the loss recovery scheme, SACKs are used to 

deliver acknowledgement and retransmission information in both wired and wireless links. 

 

In order to simplify the system model, the following assumptions are made: 

• The current proposal on SDTFP primarily focuses on unicast connections as an initial step.  

Future proposals, if any, may include support for multicast connections. 

• Both the intermediate proxy and mobile device have sufficient physical memory for 

buffering.   

• Each SDTFP packet has the same header structure as a TCP/IP segment, and it encapsulates 

only one video packet to achieve simplicity in performance comparison during simulation. 

• This study focuses only on the network transfer of video streams.  Other aspects such as 

connection management and inter-cell handoffs are left for future investigations. 

• Accurate measurements of RTT are readily available for calculating the correct dimensions 

of the congestion window, proxy receiver window and retransmission timeout period.   

 

5.1 Source Initialization 

For each video streaming session, the upper and lower bounds on source encoding rate are 

predetermined by the application as constants.  The minimum playback rate is defined as the 
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lowest video streaming rate at which the minimum video QoS requirements are guaranteed.  For 

a mobile device at quarter common interchange format (QCIF) format at 176 x 144 pixels, 32 

kbps should be adequate as being the barely acceptable minimum.  The maximum playback rate 

is set as the highest possible video streaming rate, likely determined by mobile device 

parameters, wireless channel throughput and user preferences.  Since the rate values are 

translated into congestion and proxy receiver window sizes via multiplying the RTT for each 

domain, so it is important to obtain accurate RTT measurements, possibly through the use of 

methods suggested in [13].   

Figure 16: Encapsulation of MPEG-4 packets in TCP/IP header structure. 

 

We start by first examining the behaviour of the connection between the web server and the 

proxy.  After initial connection establishment, the MPEG-4 video encoder at the web server 

outputs a video stream at a playback rate that is dictated by the congestion window size.  Each 

MPEG-4 video packet is encapsulated in a TCP/IP header structure, as shown in Figure 16, and 

branded with a timestamp and queued in the web server buffer for transmission.  Since random 

bit errors within the MPEG-4 video packet can be recovered via the error resiliency tools, the 

checksum field of the TCP/IP header should be limited to provide cyclic redundancy check 

(CRC) protection only to the TCP/IP header in order to expedite the checksum process for each 

video packet at the mobile device.   The video packet should remain at the source buffer until a 

positive acknowledgement from the corresponding SACK packet is received.  If retransmissions 

are needed, the web server simply transmits the requested video packets again without changing 
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the TCP/IP header timestamp.    

 

5.2 Congestion Control Algorithm 

Figure 17 illustrates the desired SDTFP congestion window profile.  Initially, the proxy receiver 

window is set by the proxy to support the default maximum playback rate, for instance 

equivalent to 384 kbps, as indicated by line 1.  Less aggressive approaches can lower the initial 

proxy receiver window value, but the congestion window will take longer to attain the maximum 

rate during steady-state operation.  In accordance to TCP specifications, the original intent of the 

proxy receiver window should indicate the amount of buffer space available at the proxy such 

that the sender can regulate the transmission rate to achieve flow control [2].  As mentioned 

above, an abundance of physical memory is assumed to be allocated at the proxy, and the 

MPEG-4 video streaming rate is kept at a relatively low level for mobile applications.  Since the 

probability of proxy buffer overflow is therefore reduced, the receiver window field in the TCP 

header can be reconfigured to assist in maintaining a constant video streaming rate. 

Figure 17: Desired SDTFP congestion window profile. 
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Line 2 in Figure 17 specifies the initial window/loss window that is small enough to support the 

minimum playback rate.  However, the actual RTT for the video connection is likely not known 

at the initialization phase.  Therefore a default value should be assigned to the initial window in 

the beginning.  As the RTT estimation is refined after several packet transfers, the loss window 

value is adjusted accordingly to reflect the minimum playback rate.  There are two advantages in 

setting the initial window/loss window to be as large as the minimum QoS requirement for the 

video stream.  First of all, it guarantees the quality of the video stream at worst to be barely 

acceptable to the user during highly congested situations.  Although the proposed large initial 

window/loss window may exceed the initial window/loss window limit set by TCP [14], it 

avoids video stoppage instances when the slow start algorithm resets the congestion window to 

the loss window that leads to rebuffering delay.  The second advantage is that with a large initial 

window/loss window, the congestion window size will recover much faster during the 

exponential increase phase of the slow start algorithm, thus shortening the disconcerting glitches 

in video playback during the growth phase of the congestion window. 

 

When transmission commences, the congestion window enters the slow start phase and increases 

multiplicatively until it reaches the proxy receiver window size.  Similar to the TCP slow start 

algorithm, successive SACK packets exponentially increase the web server’s congestion window 

size.  The video encoder at the web server dynamically references the congestion window to 

arrive at the optimal video encoding rate that can adapt to changing network conditions.  On the 

other hand, unlike common TCP implementations, SDTFP does not implement the congestion 

avoidance phase in a continuous linearly sloped fashion.  In other words, the threshold value of 

the slow start algorithm is pegged against the advertised proxy receiver window size such that 
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the congestion window stops growing once it reaches the threshold.  During video streaming, the 

congestion and proxy receiver windows should remain relatively constant for a stable period of 

time to avoid fluctuations that damage picture smoothness.  In favourable network conditions, 

the video sequence should be able to run at the maximum allowable end-to-end data rate, as 

indicated by region A in Figure 17. 

 

When a timeout occurs due to increased network congestion, as indicated by region B, the video 

server first sends a timeout notification to the proxy along with the congestion window size set 

prior to the timeout event.  The proxy should then decrease the proxy receiver window size 

accordingly to reduce bandwidth consumption and prevent further timeouts (to be explained in 

the next section).  The web server congestion window then retracts to the loss window and goes 

through the slow start phase again.  Because of the lack of slow start threshold, the congestion 

window is able to enjoy a rapid exponential recovery and bypass the slow congestion avoidance 

stage.  The exponential growth phase stops when the congestion window size reaches the newly 

advertised proxy receiver window size.     

 

Since the proxy receiver window size is less than the maximum allowable proxy receiver 

window size at region C, further increases of the window size are possible through the modified 

congestion avoidance algorithm that is governed by the proxy.  After some wait time, say 1 

minute, the proxy receiver window is increased slightly, perhaps by a single loss window, for 

more prudent congestion avoidance network probing.  If no timeout events occur during the next 

wait time, the proxy receiver window is then increased yet by another loss window.  This process 

continues until the proxy receiver window reaches the maximum proxy receiver window size, or 
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experiences another timeout.  In the latter case, the congestion window recovery process is once 

again repeated.  This time around, however, the next wait time is increased by 2 times.  Any 

single timeout henceforth would further increase the wait time by another 2 times.  If no timeouts 

occur during three consecutive increases of the proxy receiver window, the wait time is then 

reduced by half until it reaches the preset minimum.  This proxy receiver window adjustment 

procedure is designed to ensure relatively constant video playback rate while allowing periodic 

network probing for higher bandwidth without ending in rate oscillations as illustrated in Figure 

18. 

 

Figure 18: SDTFP congestion avoidance. (a) With rate oscillations. (b) Without rate oscillations. 

 

If network conditions deteriorate substantially to a point such that excessive loss occurs even at 

the lowest transmission rate as indicated in region D of Figure 17, then video transmission is not 

viable at that instant.  However, since the proposed protocol exhibits UDP behaviour at the 

lowest transmission rate, persistent transmission of video packets may wrestle extra bandwidth 
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from the busy network through the reduction of congestion windows of other TCP connections.  

Although this phenomenon does contradict the notion of TCP-friendliness, the inherent higher 

priority of video transmission should be precedent over other TCP connections to guarantee the 

minimal video QoS.  If network deterioration persists, the connection can be terminated 

automatically when the detected packet loss rate exceeds a certain threshold when transmitting at 

the minimum rate, or manually by the understandably frustrated end user.   

 

5.3 Acknowledgement Generation, Loss Recovery and Timeout Management  

Selective acknowledgements (SACKs) in SDTFP are based on the TCP SACK option [15] and 

are used for acknowledging multiple packet reception.  Given the higher transmission overhead 

required by SACK packets, the proxy should delay SACKs, which is to return a SACK after the 

reception of a predetermined number of packets, to cumulatively acknowledge these receptions.  

Since SACKs themselves offer excellent protection against multiple packet losses, TCP fast 

transmit and fast recovery algorithms are bypassed at the current deliberation for the SDTFP 

specification.  Further research can be conducted to explore the viability of uniting these two 

TCP loss recovery schemes within SDTFP.  

 

If multiple video packets are delayed or lost in the network, gaps would appear within the 

reception buffer, as shown previously in Figure 8(a).  To the web server, these gaps within the 

SACK block sequencing space indicate the possible occurrence of increased network traffic, and 

retransmissions of the missing packets are necessary.  Again, the construction of the SACK 

packet in relation to the receiver buffer profile is shown in Figure 8(b), in which the inter-block 

relationship is contained within the options area of a TCP packet.  The left edge of a block is the 
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first sequence number of this block, whereas the right edge of a block is the sequence number 

immediately following the last sequence number of this block.  The segment that triggered the 

SACK is contained in the first block, unless that segment advanced the acknowledgment number 

field in the TCP/SDTFP header, to assure that SACK reflects the most recent change in the 

receiver buffer.  Upon reception of such SACK packets, the web server should immediately 

retransmit the packets indicated by the gaps without waiting for the full timeout.   

 

Because of the real-time nature of video traffic, some packet loss can be tolerated by bypassing 

the missing packet sequences.  When the lost packets do not arrive in time at the proxy before 

they are due to be relayed to the wireless domain, the missing packets are considered correctly 

received by the proxy and future SACK packets will have the corresponding gaps removed to 

prevent further useless retransmission of the lost video packets from the web server.  For 

instance in Figure 19, blocks of video packets sent from the web server are shown to be cached 

in the proxy buffer waiting to be forwarded to the wireless domain with gaps of lost packets 

intertwined within the buffer.  The thick black line in the middle of the buffer indicates the 

virtual boundary between the wired and wireless domains in a sense that the packets on the right 

of the line have already departed for the mobile receiver.  Therefore any future retransmitted 

packets arrived at the proxy that belong to gaps 3 and 4 will not be forwarded to the wireless 

device.  The sequencing space in the SACKs should fully acknowledge the packets within gaps 3 

and 4 to prevent these meaningless retransmissions and reduce bandwidth wastage.  

 

As for gaps 1 and 2, the appropriateness of retransmitting those packets located within depends 

on the buffer consumption rate (i.e. the rate at which the packets leave the buffer and sent over 
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the wireless link), remaining buffer length and wired domain RTT.  For example, if the 

retransmitted packets of gap 2 arrive before the gap passes the thick black line, then the 

retransmission is rated as a success.  In contrast, if the retransmitted packets are known to not be 

delivered in time beforehand, then it is better to alter the sequencing space of the corresponding 

SACKs to stop further such retransmissions. 

Figure 19: Best effort loss recovery at proxy buffer. 

 

The retransmission mechanism is only suitable for odd lost packets.  Persistent deterioration of 

network condition triggers significant packet loss and timeouts.  In order to integrate with the 

congestion control algorithm, the timeout period must be set such that it permits rapid 

retransmission of video packets, while still correctly interpreting the changing dynamics of 

network traffic.  The timeout interval should be set appropriately according to RTT estimates 

such that the web server can react to changing network conditions promptly.  Similar to TCP, the 

duration of the retransmission timer can be computed dynamically by following the guidelines 

stated in [26]. 

 

Immediately following a timeout, the web server sends a timeout notification to the proxy that 

contains the congestion window size set prior to the congestion window size that presides this 

timeout event.  The logic is that if the web server was able to increment the congestion window 
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from its previous value through congestion avoidance and then a timeout occurs, it indicates that 

the immediate network conditions are able to support a video rate that is dictated by the previous 

congestion window but not the current one.  Therefore by reverting the congestion window to its 

previous value, the video stream should be delivered without complaint from the network.  In 

other words, the proxy should decrease the proxy receiver window to equal to the congestion 

window size specified in the timeout notification in order to reduce bandwidth consumption and 

prevent further loss events.  Like TCP, web server reiterates the slow start phase after a timeout, 

and all unacknowledged packets are continually retransmitted until they are acknowledged by 

successive SACKs.   

Figure 20: SDTFP steady state timeout recovery. 

 

To put the timeout recovery mechanism into perspective, first consider Figure 20 where it shows 

how the video sending rate responds to a steady state timeout (i.e. a timeout that occurs during 

the modified congestion avoidance period).  The first 4 transmissions run at 128 kbps and then 

the video rate is increased by 32 kbps to 160 kbps due to the modified congestion avoidance 

algorithm.  After 4 more successful transmissions, the video rate is increased yet again to 192 
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kbps.  However, the current network conditions cannot support the video stream at such a rate 

and therefore causes a timeout.  The web server responds by sending a timeout notification to the 

proxy and it contains the congestion window size set prior to the congestion window that 

presides the current timeout event.  In this case, it equals to the congestion window 

corresponding to a video rate of 160 kbps.  Afterwards, the proxy receiver window is reduced 

accordingly and the web server goes through the slow start phase again, starting at 32 kbps.  The 

exponential growth of the video rate will stop at 160 kbps, as restricted by the new proxy 

receiver window.  As mentioned in the previous section, the current wait time is increased by 2 

times, so the next congestion avoidance network probing will happen 8 RTTs later.  The video 

rate will be increased if the network conditions improve then, or it will repeat the recovery 

process again if another timeout occurs.    

 

In other instances, timeouts may occur in the slow start phase either during the video streaming 

initialization or the congestion avoidance recovery process.  Figure 21(a) shows the exponential 

growth of video streaming rate from 32 kbps to 384 kbps without the occurrence of timeouts.  

This suggests the current network conditions are able to sustain the maximum video streaming 

rate at 384 kbps as bounded by the proxy receiver window.  When the network condition is only 

able to support a lower video rate, as indicated in Figure 21(b), timeouts will occur if the source 

video streaming rate exceeds a certain value, and in this case it is at 256 kbps.  This implies the 

current network conditions are most likely able to maintain a video rate between 128 kbps, where 

no timeouts have been recorded, and 256 kbps.  To recovery the congestion window or video 

streaming rate, the web server sends a timeout notification to the proxy with the congestion 

window size corresponding to 128 kbps.  Upon its arrival, the proxy will then reduce the proxy 
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receiver window to match a video rate of 128 kbps.  Therefore when the slow start phase repeats 

again at the web server, the video streaming rate will stop at 128 kbps to prevent further 

timeouts.  The constant rate will be changed only after the wait time where the congestion 

avoidance network probing happens.  Similarly in Figure 21(c), the network conditions cannot 

support any video rate higher than the minimum playback rate.  Consequently, timeouts 

occurring at 64 kbps suppress the subsequent video rate at 32 kbps for the next wait time 

interval. 

Figure 21: Timeout recovery during slow start. (a) No timeout. (b) Timeout at medium video 
rate. (c) Timeout at low video rate. 

 

5.4 Proxy Processing 

Typically, the intermediate proxy simply passes every packet received from one domain onto the 

other domain.  While this ensures simplicity on proxy implementation, it puts the burden of 
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congestion control and loss recovery mechanism on the receiver, which in our case is a 

processing power-limited mobile device.  In the proposed system, the proxy is responsible for 

handling rigorous processing duties that span both wired and wireless domains, especially the 

congestion control algorithm of the wired link.  In addition to managing two separate 

connections, the proxy should meticulously manage the interchange of packets between the two 

domains.      

 

Packets received from the web server are first placed in the proxy buffer, waiting to be 

forwarded to the mobile device.  During a steady state period, the rate at which the packets are 

sent over the wireless link should mimic the sending rate of the original video server by 

referencing the timestamps of the received packets at the proxy.  The correlation between the 

timestamps of consecutive video packets indicates the relative departure rates from the proxy to 

the mobile device.  Since the packet arrival rate is presumably identical to the video playback 

rate, forwarding the packets at a high data rate over the wireless channel creates buffer overflow 

at the mobile device since the video packets are not consumed as rapidly as they are received.  

Also if packets are sent faster than they arrive, buffer underrun occurs at the proxy.  Setting the 

wireless data rate lower than the video playback rate reverses the situation at the proxy and 

mobile device buffers, which is also undesirable.  Therefore, the ideal solution for the proxy is to 

deliver video packets to the mobile device at a rate that is exactly the same as the server 

transmission rate. 

As discussed in Section 3.1.3, the main problem with implementing TCP over wireless links is 

the slow start algorithm.  Whenever packet loss occurs over the wireless link during high BER 

periods, the TCP sender misinterprets it as congestion and reduces the congestion window 
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accordingly, whereas the correct approach is to increase the frequency of retransmission to 

compensate for the fading dispersive channel while keeping the current video streaming rate 

constant.  As congestion seems to be less of a factor in radio communications, the concepts of 

slow start and congestion avoidance that are prevalent in TCP are not particular applicable in 

such an environment.  Also since the intermediate proxy relays the video packets according to a 

predetermined rate based on inter-arrival timestamps, this implies that there is no direct 

relationship between the congestion window dimensions and the eventual video streaming rate 

over the wireless link.  Therefore the wireless video connection is valid as long as the video 

streaming rate does not create buffer overflow at the mobile device and is below the maximum 

data throughput rate supported by the wireless channel.  According to this reasoning, the 

congestion window structure seems irrelevant over the wireless link, so the SDTFP approach is 

to eliminate all congestion control mechanisms for this section of the end-to-end connection.     

 

Similarly, retransmission timers over the wireless link are deemed optional since the link itself is 

not regulated by a congestion window mechanism just as the proxy is continuously forwarding 

video packets from the wired domain, thus preventing the streaming connection to stall.  

Bypassing the retransmission timer option relieves some of the proxy processing load, while 

maintaining this option may offer marginal performance enhancements in packet loss recovery, 

especially during high BER periods.  If implemented, the retransmission timers can be set upon 

transmissions of individual video packets, where the timeout interval should be set appropriately 

according to RTT estimates such that the proxy can react to changing channel conditions 

promptly.  Similar to the SDTFP wired domain implementation, the duration of the 

retransmission timer on the wireless link can be computed dynamically by following the 
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guidelines stated in [26] that offer a different result because of the discrepancy in RTT 

estimation of both domains.  On the return channel, acknowledgement packets are often 

corrupted because of high probability BER.  Therefore adjustments to the timer duration 

estimation may be necessary to compensate for this effect.   

 

Again similar to the wired domain implementation, packet loss retransmissions are triggered by 

the gaps in sequencing space indicated by SACK packets.  An extremely poor wireless channel 

causes frequent packet corruptions that lead to increased number of retransmissions.  If channel 

deterioration persists, a backlog of unacknowledged video packet will appear at the proxy.  The 

proxy keeps on retransmitting the unacknowledged packets until a positive SACK packet is 

received.  Since the wireless channel often experiences periods of high bit error loss, the 

frequency of SACK generation should be increased accordingly to more expediently recover 

corrupted video packets and to minimize messaging errors due to SACK packet loss.  The delay 

SACK estimation should also exploit the short RTT and simple network topology of the wireless 

link.   

 

5.5 Mobile Device Processing 

Normally, the mobile device allocates enough buffer space that is able to sustain video streams 

of any rate as defined during the initialization process.  The amount of available buffer space 

should be advertised to the proxy via the mobile device receiver window field in SACKs.  Apart 

from managing the reception of video packets over the wireless SDTFP connection, the mobile 

terminal caches all received packets that feed to the MPEG-4 decoder.  Because of technical 

scope limitations, details about the implementation of the MPEG-4 decoder will not be discussed 
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in this thesis and will be left for future research.  Any erroneous receptions are recovered through 

the error resiliency tools, though the proposed transmission protocol should have minimized such 

algorithm invocations.  Similar to the wired network approach, any missing packets at playback 

time is deemed as unrecoverable.  The corresponding gap within the SACK packet sequencing is 

filled accordingly.     

 

5.6 SDTFP Advantages, Disadvantages and Other Considerations 

Analyzing solely from the proposed protocol implementation details without considering actual 

simulation performance results, tentative conclusions can be drawn on SDTFP regarding its 

advantages and disadvantages in realizing reliable cross-domain video streaming connections in 

comparison with other existing options and proposed candidates.  These issues and other design 

considerations mentioned elsewhere in this chapter are collectively summarized in the following 

sections. 

 

5.6.1 Advantages 

The principal feature of SDTFP is its split architecture in spanning both wired and wireless 

domains to isolate the respective design issues with separate dedicated protocols.  In the wired 

domain, the TCP-friendly congestion control algorithms and loss recovery schemes coupling 

with adaptive rate MPEG-4 video encoding assure video playback QoS by effectively dampen 

the crippling congestion effects on video streaming applications, while still are able to induce 

fairness in bandwidth sharing of network resources.  By opting for an end-to-end approach in 

implementing wired domain congestion control for video applications, SDTFP avoids 

complicated and often expensive network upgrades as required for network-assisted schemes, 

given the enormous capital and effort already invested in today’s Internet infrastructure.  The 
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SDTFP TCP-based congestion control mechanism combines sender-based slow start algorithm 

with receiver-based congestion avoidance scheme to provide smooth video picture quality as 

well as fair bandwidth sharing with prudent incremental network probing simultaneously.  In 

recovering from loss events, large initial and loss windows in congestion control expedite 

congestion window growth to limit QoS degradation.   

 

The wireless portion of SDTFP, on the other hand, combats channel errors with adaptive 

transmission policies and loss recovery techniques to complement open loop error resiliency of 

MPEG-4 encoding standard.  By walling off congestion effects of the wired domain, SDTFP 

allows dedicated techniques for video delivery on the wireless link.  For instance, the elimination 

of slow start algorithm in the wireless domain enables the video transmission rate to be sustained 

during high BER periods, as opposed to being reverted back to the minimum rate in the case of 

selecting TCP as the wireless protocol.   

 

For loss recovery, SDTFP adopts the best effort delivery strategy that is effective in removing 

redundant retransmissions, especially when buffering space is not abundant at the proxy or the 

mobile receiver.  When packet loss happens, SDTFP guarantees the receiver with some degree of 

packet loss recovery, depending on receiver buffer length, without sacrificing streaming video 

fluidity or incurring unnecessary retransmissions.  In this aspect, SDTFP triumphs over both 

UDP, which does not provide any loss recovery mechanisms, and TCP, which decreases overall 

streaming video efficiency in allowing redundant retransmissions. 
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Apart from the split architecture and best effort delivery strategy, the design of SDTFP 

incorporates a lot of methodologies imported from TCP.  Other than the web server, the 

intermediate proxy and the mobile device, SDTFP require no additional processing involvement 

or upgrade from other TCP network nodes such as routers, switches and bridges for an end-to-

end video streaming connection since all of the SDTFP features and options are embedded 

within the TCP header.  Therefore the migration of video applications to the new protocol should 

be less tremulous than to other protocols that are based on drastically different principles.  Also, 

the resonating breadth and depth attained by researchers regarding TCP over the years should 

greatly assist further development of SDTFP.  Perhaps the only aspect that requires special 

attention is the intermediate proxy design in facilitating the interchange of cross-domain traffic.  

Given the opportunity, this issue will be further investigated in later research projects. 

 

5.6.2 Disadvantages 

In incorporating within SDTFP the list of design attributes that yield the above system 

advantages, some level of protocol performance trade-off must be expected and tolerated.  For 

example, the SDTFP split architecture emphasizes on the need for a robust intermediate proxy 

that should encounter as few critical failures as possible.  Unlike a network router breakdown 

where data traffic can be re-routed to bypass the blockage, crashes of the intermediate node 

completely terminate all mobile connections and render the situation unrecoverable.  Given the 

heavy load of proxy processing envisioned by SDTFP, the expected frequency of such fatal 

crashes may be increased.  Therefore stringent software reliability standards must be enforced in 

constructing resilient proxy executables. 
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Also, since the proposed method relies heavily on a precise RTT estimation, it is important to use 

the most accurate mathematical model to calculate RTT.  Correct dimensions of the congestion 

window, timeout period, and proxy receiver window all depend on the accuracy of RTT.  

However, accurate measurement of RTT may be difficult both in theory and in implementation 

[13].  Often, RTT is determined through the use of the TCP Timestamp option that relies on 

cumulative empirical estimates of RTT.  In comparison, it is more involved to obtain accurate 

RTT estimation for the wired domain because of the shear number of possible inter-network 

routes, high variance of router processing delay and the constant occurrence of network 

congestion.   

 

During the initial phase of transmission, the SDTFP proxy receiver window is determined by the 

product of maximum playback rate and RTT, and the initial/loss window is calculated by 

multiplying the minimum playback rate and RTT.  Both values may not be accurate because of 

the lack of cumulative data for RTT estimation, and so the initial playback quality may fluctuate 

as a result of constant adjustments of RTT estimation.  This effect will be smoothed out as 

historical data for RTT estimation accumulates.  In order to have a consistent interpretation of 

RTT, both the sender and receiver should periodically exchange network information such that 

discrepancies in RTT estimation between the two endpoints are minimized.   

 

As demonstrated in Section 5.2, SDTFP exhibits UDP-like bandwidth hogging at the minimum 

playback rate.  Though this feature slightly deviates from the TCP doctrine on congestion control 

and bandwidth sharing, the inherent higher priority of video transmission should be precedent 

over other TCP connections to guarantee the minimal video QoS.  Furthermore, the low value of 
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minimum playback rate should pose minimal impact on other network connections unless an 

unforeseen number of SDTFP connections are running concurrently. 

 

Finally, transmission protocols that implement acknowledgements typically have intrinsic 

protection mechanisms, particularly through packet timeouts, in recovering from loss ACKs.  

While SDTFP is no exception, it faces additional vulnerability in the potential loss of timeout 

notification such that the proxy is not informed of the most recent web server timeout.  This 

results in no reduction in proxy receiver window and the web server will continue to assume the 

previous proxy receiver window size as the bandwidth maximum that likely leads to another 

timeout.  The incorrect proxy receiver window advertisement should be rectified by the next 

SACK packet or timeout event. 

 

5.6.3 Other Considerations 

The following issues are general impediments in developing cross-domain video streaming 

applications that are not unique to SDTFP.  This thesis does not intend to address these design 

considerations in detail, nor provide thorough examples or solutions on how SDTFP may be 

implemented in these situations.  It is up to later research projects to come up with further 

suggestions on this matter. 

 

• Handoff 

Although the user mobility issue is largely solved by Mobile IP as mentioned in Section 2.2, 

there exists the problem of buffer content migration for SDTFP video connections.  

Assuming the intermediate proxies are located within the base stations, then when a mobile 

device moves outside the coverage of a cell with the channel handed off to a new base 
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station, the video packets stored inside proxy buffers at the previous base station will have to 

routed to the new base station.  This causes extra processing overhead that may result in 

temporary video playback stoppages.  Fortunately, 3G systems (in particular CDMA-based 

networks) employ soft handoffs [48] that allow the mobile device at the cell coverage 

boundary to maintain contact with both base stations such that the previous base station will 

have extra leeway in flushing out buffered video packets while any new arrivals will be 

directed to the new destination.  In addition, if the wireless WAN is configured to have a 

single intermediate proxy administrating several geographically adjacent base stations, then 

the probability of a full buffer migration during inter-cell handoff will be further reduced.   

 

• Video seeking 

While real-time video broadcasts must synchronize with the server, other video streaming 

applications may allow video seeking that dynamically alters the current starting point of 

video playback.  Whenever the video seeking function is invoked during a streaming session, 

all the buffered video packets at both the proxy and the mobile receiver must be discarded 

and be replaced with newer video packets that pertain to the new starting point of playback.  

This process will incur extra buffering delay that is dependant on the predetermined buffer 

length.  Again, there exists a trade-off of having a larger buffer to offset packet loss, and the 

need to have swift response to video seeking with a smaller buffer. 

 

• Security 

A split-domain connection such as a SDTFP video streaming session can suffer gateway 

attacks at the base station junction where communication between a mobile handset and an 
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existing web server travels through.  Gateway attacks or an unscrupulous system insider 

attempting to steal original data can gravely compromise network security.  One of the ways 

to circumvent this problem is to establish a separate end-to-end connection between the web 

server and the mobile device purely for control and security information exchanges.  

Therefore the proxy will have a dual role of both actively regulating cross-domain video 

packets and passively forwarding end-to-end sensitive data.  Another solution is to employ 

other security mechanisms above the transport layer, like TLS [46] or SOCKS [47], for end-

to-end security. 

 

• Multicast 

Multicast applications are useful particularly in real-time broadcasting, but designing a good 

multicast congestion control protocol is much more difficult since it has to scale to large 

receiver sets and be able to cope with heterogeneous network conditions at all the receivers.  

As mentioned before in the design assumptions for SDTFP, multicast support is not 

considered at this moment. 
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6 Simulation Strategy and Results Analysis 

To ideally evaluate the effectiveness of the proposed SDTFP scheme, the performance of video 

transmission over the SDTFP should be compared with the throughput of the same video stream 

delivered over UDP, TCP, and other proposed TCP-friendly protocols respectively within a 

heterogeneous cross-domain network environment.  In all cases, the video components such as 

commercial MPEG-4 streaming codecs and playback software should be used and the wired and 

wireless domains should be placed under identical sets of channel and congestion parameters.  

Performance analysis should based on subjective tests such as visual comparison of input/output 

video signals (picture crispness and smoothness, buffering delays), and raw numerical results 

(error recovery statistics, retransmission rates, actual transmission throughput) for contrasting 

sets of input attributes.  After thorough analysis, the optimal sets of design parameters can be 

determined under different application scenarios.  

 

In reality, because of technical limitations, manpower constraints and other adverse factors, 

extensive verification of the SDTFP system model cannot be undertaken within the short time 

frame of this master research program.  As a result, several structural concessions have to be 

made in order to simplify the simulation process while still is able to produce meaningful results, 

as listed below: 

• Forgo adaptive rate MPEG-4 video encoder/decoder components 

The success of the SDTFP in some way hinges on the ability of the MPEG-4 video encoder 

to adapt to the dynamic changes of the congestion window.  However, the construction of 

such an encoder involves much more in-depth research and therefore cannot be completed 

with the currently available resources, likewise for the decoder.  As replacements for these 
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two integral system components, a software program will run at the web server that produces 

a continuous stream of equally sized packets to mimic the MPEG-4 video packet stream, and 

another software program will emulate the video decoder at the mobile receiver to log the 

relevant statistics with respect to the arrival of the data packet stream.  

 

• Emulate network conditions artificially  

The main purpose of SDTFP is to allow cross-domain transmission of video streams to 

withstand or mitigate the negative effects of congestion in the wired network and 

transmission errors in the wireless channel.  Rather than verifying the theoretical results 

directly with real-world unsettling Internet traffic, a controlled network environment is 

needed for maintaining consistent input parameters and testing conditions in order to 

facilitate the simulation process.  In this way, more tangible simulation results can be readily 

obtained without expending undue research efforts and resources.   

 

• Compare SDTFP with separate end-to-end UDP and TCP connections only 

As mentioned in previous chapters, there exist a number of TCP-friendly video transmission 

protocols as proposed by the research community with only a handful that can apply in cross-

domain connections well.  The simulation process can be further simplified by reducing the 

comparison subjects to include only end-to-end UDP and TCP connections.  In other words, 

SDTFP is intended to only demonstrate its validity in claming TCP-friendliness and 

predicted performance superiority over both end-to-end UDP and TCP at the current research 

stage.  Later projects can involve broad comparisons of SDTFP with other similar video 

transmission protocols under a variety of probable network conditions. 
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6.1 System Setup 

The simulation system model for SDTFP consists of five entities, shown in Figure 22, 

constructed using the C programming language.  Each of the system components, i.e. sender, 

wired network emulator, proxy, wireless network emulator, and receiver, may run on individual 

terminals of a local area network (LAN), or be collectively executed in a single test bench 

machine.  The interconnections between each system component should be reliable and stable 

with provisions for high traffic throughput.  For simulating end-to-end SDTFP and UDP/RTP 

video streams, the interconnecting protocol of choice is UDP, while TCP is intuitively used for 

end-to-end TCP video sessions.  During a simulation run, test data streams originate from the 

sender, passing through the wired network emulator onto the proxy.  Then the proxy delivers the 

packets via the wireless network emulator to the receiver.  The following sections explore the 

implementation details about each of the system components.  

Figure 22: Simulation system model configuration. 

 

6.1.1 Sender 

The SDTFP sender is mainly responsible for handling data generation, congestion control, loss 

recovery, and timeout management on the wired domain.  When simulation commences, the 

sender emits a flow of equally sized packets, each with its own unique sequence number and 

timestamp with simulated MPEG-4 video data, directed towards the wired network emulator for 

a specific length of time.  On the return channel, the sender processes SACKs relayed by the 

wired network emulator and performs relevant congestion window adjustments and loss recovery 

procedures.  The sender should record the sequence numbers and timestamps of departing 
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packets, reception of incoming SACKs, timeout instances, and congestion window changes 

throughout the entire simulation process.   

 

The TCP sender manages the similar duties as the SDTFP sender, but extended to cover the 

whole end-to-end connection.  Amongst the discussed data recovery schemes in Section 3.1.2, 

the TCP sender will only implement SACK in order to achieve a better performance comparison 

with SDTFP simulated results.  In case of UDP connections, the sender only provides data 

generation at a fixed constant rate without catering to packet losses.   

 

6.1.2 Wired Network Emulator 

The wired network emulator attempts to reproduce wired network characteristics such as 

congestion and RTT in a controlled manner.  To simulate a network delay, each incoming packet 

is delayed at the emulator for a random amount of time with a predetermined mean RTT value.  

Likewise, heavy congestion packet loss is simulated by selectively dropping packets by the 

emulator with respect to a preset network traffic profile for the duration of the simulated video 

stream.  Separate network traffic profiles are constructed and tuned to distinctly portray probable 

congestion patterns in individual test cases (refer to Section 6.3).  For data gathering, the 

emulator should record the nature and relevant information of all incoming packets from both 

downlink and uplink directions, and sequence numbers of intentionally dropped packets for the 

test duration. 

 

6.1.3 Proxy 

The SDTFP proxy takes on the laborious roles described in Section 5.4 to regulate cross-domain 

simulated video traffic.  Because of the busy cross-domain interactions and transactions, the 
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proxy should log a larger set of data that include the sequence numbers and timestamps of 

incoming and departing packets, generations and receptions of SACKs, receptions of timeout 

notifications, and proxy receiver window changes in the wired domain.  In simulating TCP and 

UDP/RTP connections, however, the proxy realizes a much simpler role in relaying packets from 

one domain onto another without any intermediate buffering or processing. 

 

6.1.4 Wireless Network Emulator 

Similar to its wired counterpart, the wireless network emulator introduces wireless characteristics 

such as RTT and BER to traversing data packets.  While imitating RTT behaviour can be easily 

accomplished by the emulator, replicating channel errors artificially involve precise bit 

manipulation of the data packets that may complicate the simulation process.  A simpler solution 

prescribes that each packet is attached with a flag that indicates packet corruption and it is set 

randomly at the emulator using a 2-state Markov model to be further explained in Section 6.2.5.  

Therefore, bit corruptions can be instantly interpreted by the receiver without going through 

intensive CRC, FEC or HEC computations.  Again, the emulator should record the nature and 

relevant information of all incoming packets from both ways, and sequence numbers of 

corrupted packets for the whole test duration. 

 

6.1.5 Receiver 

The SDTFP receiver simply handles the task of the mobile device as indicated in Section 5.4.  

The receiver log should record the information about incoming data packets and generation of 

SACKs that would eventually determine the overall transmission throughput and efficiency.  

End-to-end UDP/RTP connections are even simpler for the receiver to manage, as no return 
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acknowledgements are required.  The TCP receiver functions in a similar fashion as the SDTFP 

receiver with tasks such as buffering of incoming data packets and returning SACKs. 

 

6.2 System Variables and Parameter Derivations 

After outlining the individual components within the simulation model in the previous section, a 

set of systems variables are needed to be defined in order to carry forth the simulation process in 

a controlled network environment, as discussed in the following sections.  In parameter 

derivations, the use of the asterisk differentiates terms that are defined exclusively for the 

wireless domain. 

 

6.2.1 Maximum and Minimum MPEG-4 Video Streaming Rates 

As defined in Section 5.1, the minimum playback rate is the lowest video streaming rate at which 

the minimum video QoS requirements are guaranteed, whereas the maximum playback rate is the 

highest possible video streaming rate, likely determined by mobile device parameters, channel 

conditions and user preferences.  Given a mobile device at QCIF (176 x 144 pixels) format, 32 

kbps should be adequate as being the barely acceptable minimum.  At the other end of the 

spectrum, 3G networks permit a maximum rate of 384 kbps for outdoor connections.  To 

facilitate for simpler simulations, the range of video streaming rates are reduced such that the 

upper and lower bounds are set to be 256 kbps and 64 kbps respectively.      

 

6.2.2 Wired and Wireless Network RTTs 

Table 4 lists the estimated RTT values based on geographical distances and expected processing 

delays for a number of connection types [49].  Although this does not give accurate 

measurements of actual RTT, it demonstrates the possibility of assembling simulation scenarios 
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from a combination of RTT values.  For simulation simplification, a constant RTT is assumed 

for both wired and wireless domains in a given test case such that the network conditions are 

reasonably portrayed.  This value is known globally by all participating nodes at the start of 

transmission and remains unchanged through the video session.   

 

Table 4: Wired and wireless RTT estimates. 

Connection Type Example Approximate Distance Estimated RTT 
Wireless WAN Base station to mobile device  3 km 2 ms 

Inter-city  Toronto to Vancouver 4 500 km 125 ms 

Cross-continental  Toronto to Vancouver 4 500 km 250 ms 

Inter-continental  Vancouver to Hong Kong 12 000 km 500 ms 

 

 

6.2.3 MPEG-4 Packet Size and Header Length 

Referring to the MPEG-4 packet structure as mentioned in Section 4.1, assume the length of a 

MPEG-4 video packet to be L, the length of the header portion, which includes resynchronization 

marker, MBA, QP and HEC, to be A, and the length of the data portion (motion and texture data) 

and to be B.  The average header portion length is                   

 
LH

BA

AL
A

MBMB

MB =
+

=  (1) 

 

where MBA  is the average number of bits per macroblock in the header portion, and MBB  is the 

average number of bits per macroblock in the data portion.  Therefore, H corresponds to the 

proportion of a video packet that is occupied by the header information.  If V is the proportion of 

a video packet assigned to the data portion, then the average data portion length is               
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Given a relatively low and narrow range of video streaming rates along with various values of 

RTTs for both wired and wireless domains, an arbitrary value of 1 kB (8 kb) is selected as the 

size of each video packet.  Since the relationship between A and B are largely dependent on the 

MPEG-4 encoder attributes, a value of 0.25 is assigned to H that is to be constant for all test 

scenarios.  This selected value is typical for MPEG-4 bitstreams encoded for low bit rate wireless 

applications [42].  Equations (1) (2) can be later used to derive the packet loss probability *
lP  

due to channel error probability of *
eP over the wireless link in Section 6.2.5. 

 

6.2.4 Wired Network Traffic Profile and Packet Loss Rate 

To demonstrate the performance of SDTFP, TCP and UDP/RTP in video streaming applications, 

test cases will be constructed with various system parameters along with a wired network 

congestion profile, shown in Figure 23, that represent different realistic network scenarios.  They 

are: 

• Maximum video streaming rate (0 to 90 seconds) 

• Gradually degrading network conditions (90 to 180 seconds) 

• Intermediate video streaming rate sustained by the network (180 to 270 seconds) 

• Gradually improving network conditions (270 to 360 seconds) 

•  Drastic reduction of video streaming rate to the minimum value (360 to 400 seconds)  

 

During simulations, the packet loss rate in the wired domain largely depends on the difference 

between the instantaneous video transmission rate allowed by the network that is specified by the 
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test scenario during initialization, and the current video transmission rate dictated by the sender 

congestion window.  If the latter figure is larger than the former value, then the excessive traffic 

will be deemed lost by the wired network emulator.  If the reverse is true, then intuitively no 

packet loss should be recorded, though odd packet drops may occur in order to intentionally test 

the loss recovery mechanisms.  To simplify the performance analysis, the return channel for 

SACK packets is assumed to be free of congestion effects.  

Figure 23: Wired network congestion profile for simulations. 

 

6.2.5 Wireless Network BER and Packet Loss Rate 

Since packet loss in the wireless domain is instigated by channel errors rather than congestion, 

intuitively the BER values must be specified prior to computing for packet loss rate of the 

wireless link.  Previous studies have shown that a first-order Markov chain, such as a two-state 

Markov model illustrated in Figure 24, is adequate in producing a good approximation in 

modeling the error process at the packet level in fading channels [10].  In this model, the channel 

alternates between a “good state” and a “bad state”, S0 and S1, respectively, with transitional 

probability matrix     
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Figure 24: Two-state Markov channel model. 

 

The two-state Markov model can be extended to a N-state Markov model, shown in Figure 25, to 

incorporate additional channel states defined as Sn, n = 0,…, N-1 in which S0 indicates no bit 

errors due to channel fading, and all other states represent fading channel conditions.  When the 

channel is in state Sn, n ∈ {0,…, N-2}, the transition of the channel state is either to the next 

higher state or back to state S0 based on the status of the currently received data.  If the channel is 

in state SN-1, it will always return to state S0.  Therefore it is only possible to generate burst errors 

of at most length N-1 with this model.  

Figure 25: N-state Markov channel model.  

 

As noted in Section 4.1, any bit errors occurring in the MPEG-4 header will result in the 

inevitable dropping of the entire packet.  In addition, bit errors detected within the 

SDTFP/TCP/UDP/IP encapsulating header also cause the packet to be discarded.  Therefore the 
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packet loss rate in the wireless channel is related to the location of bit corruption within the video 

packet such that packet retransmission is required if the header portion is corrupted.  In other 

words, a packet is not considered lost when there are no bit errors within the header portion, even 

though some of the video data may be corrupted.  It follows that the computation for the burst 

error length becomes less relevant as long as the probability of any bit error occurring in the 

packet header is known.  So for the current simulations, the simpler two-state Markov model is 

selected to calculate the packet loss rate. 

 

First, assume the first header bit of every video packet begins at state S0.  Given the wireless 

channel error probability *
eP , the transitional probability matrix at state S0 can be written as 

 [ ]**1 ee PPP −= , (4) 

 

where *
eP is selected to be in the range from 10-4 to 10-6 and be kept constant in each test case. 

 

The probability of bit n being the first corrupted bit within a video segment in the wireless 

channel is      

 ** )1( e
n

en PPP −= . (5) 

 

For the protocol headers, all SDTFP, TCP and UDP/RTP headers occupy 20 bytes of packet 

space, with the IP header itself covering another 20 bytes of data.  So the effective error 

probability for the protocol header is        
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The summation in Equation (6) can be simplified to  

 320*
1 )1(1 eeff PP −−= . (7) 

 

As defined in Section 6.2.3, the length of am MPEG-4 packet is set at 1 kilobyte with a header 

ratio of 0.25, which equals to 256 bytes.  The effective error probability for the MPEG-4 video 

packet header given no errors occur in the TCP/IP header can be expressed as  

 ))1(1()1( 2048*320*
2 eeeff PPP −−−= . (8) 

 

Combining Equations (7) and (8), the overall packet loss probability due to random bit errors in 

the wireless forward channel is  

 *
lP  21 effeff PP +=  

  ))1(1()1()1(1 2048*320*320*
eee PPP −−−+−−=  

  2048*320* )1()1(1 ee PP −−−=  

  2368* )1(1 eP−−= . 

(9) 

 

Since random bit errors are also assumed to be prevalent on the reverse wireless channel, the 

possibility of SACK packet loss for TCP and SDTFP connections must also be put into 

consideration.  The SACK packet loss rate is calculated in a similar manner as Equation (7) with 

the inclusion of 64 bits of additional SACK data to the TCP/IP/SDTFP header.  The uplink and 

downlink packet loss rates are computed are shown in Table 5. 

 

Table 5: Wireless Channel Packet Loss Rates. 

*
eP  Downlink *

lP  Uplink *
lP  

10-4 0.210860 0.037674 
10-5 0.023402 0.003833 
10-6 0.002365 0.000384 
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6.2.6 Proxy and Mobile Device Buffer Length 

During system initialization, abundant physical memory is allocated at the proxy and mobile 

device to buffer incoming video packets.  The choice of buffer length is often dependent on 

application preferences as there exist performance trade-offs as discussed earlier in this thesis.  

For the simulations, a buffer length of 5 seconds for both the mobile device will be applied 

against various network conditions for each of the transmission protocols under scrutiny.  This 

translates to having to provide a buffer size with upper bounds of 320 kB to 1.28 MB, which 

should be sustainable in a functional mobile device.  In addition, a 5-second proxy buffer is 

allocated for SDTFP test cases, whereas TCP and UDP/RTP proxies will simply forward inter-

domain packets without buffering, assuming the data throughput rate supported on the wireless 

link is greater than the maximum video streaming rate. 

 

As an aside, given a proxy buffer length (in seconds) of Tproxy and wired network RTT of TRTT, 

the maximum number of retransmission attempts for each video packet on the wired network is 

approximated as  

 








≈
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Similar to the wireless domain, the maximum number of retransmissions allowed for a video 

packet given a mobile device buffer length (in seconds) of Tmobile and wireless link RTT of *
RTTT  

is approximately given by 
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6.2.7 SDTFP Window Dimensions and Congestion Avoidance Parameters 

Since the minimum video playback rate is defined to be 64 kbps in Section 6.2.1, the initial and 

loss windows for SDTFP are correspondingly calibrated in proportion to 64 kbps.  During the 

congestion avoidance phase, it is at the proxy’s discretion to select its degree of aggressiveness 

in probing for network resources.  In this simulation, a more prudent approach is preferred such 

that each probing step equals one loss window and the minimum wait time is set at 15 seconds.   

 

6.2.8 TCP Window Dimensions 

In establishing TCP connections, it is important to first determine the values of TCP initial and 

loss windows that are often equal to the maximum segment size in use for the path.  This in turn 

is computed by using the path maximum transfer unit (MTU) discovery algorithm [43] that 

involves using Internet Control Message Protocol (ICMP) messages [44] to garner path MTU 

information dynamically from network routers.  As this algorithm obviously cannot be 

implemented within the simulated environment, both initial and loss windows are therefore 

preset to be 1 kB in order to simplify the simulation process.  This also implies that the practice 

of increasing TCP initial window to enhance transmission performance [45] will not be 

considered in this set of simulation runs.  

 

6.2.9 SDTFP and TCP Loss Recovery Parameters 

Since both SDTFP and TCP use SACK and retransmission timers as part of their loss recovery 

schemes, sharing the same simulation parameters helps in arriving at better performance 

comparisons.  Typically, the length of the retransmission timer is calculated via the most recent 

estimate of RTT.  Because the RTTs are assumed to remain constant throughout each test 
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session, all retransmission timers should be arbitrarily set to be around 2 times RTT for each 

domain.  

 

As for the delay SACK frequency, the maximum allowed number of video packets collectively 

acknowledged by a single SACK packet is determined by  

 




 ∗

=
L

RTTR
N SACK

min , (12) 

 

where Rmin, RTT and L represent the minimum MPEG-4 video streaming rate, wired network 

RTT and the length of a video packet respectively for a particular simulation session.  Since Rmin 

and L are already defined to be 64 kbps and 8 kb, Equation (12) can be simplified to 

  RTTN SACK ∗= 8 . (13) 

 

If the delay SACK frequency exceeds NSACK, there exists the possibility of stalling the video 

connection when the streaming rate is running at the default minimum rate.  During simulations, 

each test case can select a delay SACK frequency value that is less than or equal to NSACK in 

order to demonstrate the relationship between delay SACK frequency, transmission throughput 

and packet loss recovery efficiency.  For example, a wired network RTT of 125 ms produces a 

NSACK value of 1.  It implies that each SACK packet can acknowledge at most 1 video packet, 

thus effectively discarding the SACK option.  On the other hand, NSACK equals 4 when the RTT is 

set at 500 ms. Therefore, a delay SACK frequency value ranging anywhere from 1 to 4 can be 

assigned in such a circumstance. 

 

Unlike TCP, SDTFP incorporates a separate SACK scheme for packet recovery in the wireless 

link as explained in Section 5.4.  In order to reduce transmission overhead and exploit the short 



 

76 

RTT between base station and mobile device, a default value of 4 packets per SACK is used in 

the SDTFP simulations.  In addition, these SDTFP simulations elect not to implement 

retransmission timers in order to lighten the processing load of the proxy. 

 

6.2.10 UDP/RTP Transmission Rate 

The transmission rate for UDP/RTP connections is determined during initialization and is kept 

constant throughout each simulation session.  For each test case, three separate UDP/RTP 

sessions are transmitted at 256 kbps (maximum), 128 kbps (medium) and 64 kbps (minimum) to 

demonstrate the alleged UDP/RTP shortcomings in network bandwidth adaptation. 

 

6.2.11 Summary of System Parameters 

Table 6 lists the testing attributes specific to each protocol, whereas Table 7 records the 

important global system parameters defined above that are to be incorporated in the various test 

cases. 

 

Table 6: Specific protocol parameters for simulations. 

Parameter Name SDTFP TCP UDP/RTP 

Proxy Buffer Length 5 seconds 0 seconds 

Initial Window 64 kbps * RTT 3 * 1 kB N/A 

Loss Window 64 kbps * RTT 1 kB N/A 

Retransmission Timer Length 2 * RTT N/A 

Delay SACK Frequency (Wired) 1 to 4 packets per SACK N/A 

Delay SACK Frequency (Wireless) 4 packets per SACK N/A 

Transmission Rate varies 64, 128, 256 kbps 

Probing Step 64 kbps * RTT N/A 

Minimum Wait Time 15 seconds N/A 
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Table 7: Global system parameters for simulations. 

Parameter Name Value(s) 

Video Streaming Rate Range 64 to 256 kbps 

Wired Network RTT 125, 250, 500 ms 

Wireless Network RTT 2 ms 

MPEG-4 Packet Size 1024 bytes 

MPEG-4 Header Ratio 0.25 

Wireless Network BER 10-4 to 10-6 

Mobile Device Buffer Length 5 seconds 

 

6.3 Implementation Notes and Simulation Results 

The simulation runs were conducted in the Broadband Communications Research Laboratory in 

July 2002.  Each of the 5 network components ran on separate SUN Ultra 60 terminals with 512 

RAM, all interconnected in a 100 Mbps LAN configuration.  Typically, a simulation run 

involves transmitting imitated video data from the sender continuously for 400 seconds whilst 

exposed to the effects of a set of selected system parameters for that particular test case.  As 

identified in the previous section, the major system variables for the simulation model are wired 

network RTT, delay SACK frequency, and wireless link BER.   

 

6.3.1 UDP/RTP Test Results 

In total, 9 UDP/RTP test cases are assembled with different combinations of data rate and 

wireless channel BER values as shown in Table 8.  Since UDP/RTP connections contain no 

acknowledgement structure, simulating all test cases with a single wired network RTT value of 

250 ms should be adequate to reveal meaningful results.  The raw data produced by each test 

case is arranged in graphs, shown from Figure 26 to Figure 34, to depict two performance 

criteria: video packet throughput detected at the receiver and the overall packet loss rate 

(expressed as a percentage) in the end-to-end cross-domain connection. 
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Table 8: UDP/RTP test cases. 

Test Case Data Rate (kbps) Wireless Channel BER 
1 64 10-4 
2 64 10-5 
3 64 10-6 
4 128 10-4 
5 128 10-5 
6 128 10-6 
7 256 10-4 
8 256 10-5 
9 256 10-6 

 

Figure 26: UDP/RTP test case 1 results. (a) Throughput. (b) Overall packet loss rate. 
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Figure 27: UDP/RTP test case 2 results. (a) Throughput. (b) Overall packet loss rate. 
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Figure 28: UDP/RTP test case 3 results. (a) Throughput. (b) Overall packet loss rate. 
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Figure 29: UDP/RTP test case 4 results. (a) Throughput. (b) Overall packet loss rate. 
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Figure 30: UDP/RTP test case 5 results. (a) Throughput. (b) Overall packet loss rate. 
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Figure 31: UDP/RTP test case 6 results. (a) Throughput. (b) Overall packet loss rate. 
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Figure 32: UDP/RTP test case 7 results. (a) Throughput. (b) Overall packet loss rate. 



 

85 

 
 
 
 
 
 
 

Figure 33: UDP/RTP test case 8 results. (a) Throughput. (b) Overall packet loss rate. 
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Figure 34: UDP/RTP test case 9 results. (a) Throughput. (b) Overall packet loss rate. 

 

6.3.2 TCP Test Results 

Similar to UDP/RTP simulations, a total of 9 test cases are constructed as listed in Table 9.  

Amongst them, the maximum number of video packets acknowledged per SACK is empirically 

determined to be 2.  Although a value of 4 packets per SACK is theoretically feasible, it would 

induce frequent timeouts during simulations that eventually stalls the entire TCP connection.  As 

for the collected simulation data, a third performance criterion, namely congestion window 
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changes, is graphically presented from Figure 35 to  Figure 42 along with the two performance 

criteria already utilized in UDP/RTP simulations.   

 

Table 9: TCP test cases. 

Test Case Packets per SACK Wired Network RTT (ms) Wireless Channel BER 
1 1 125 10-4 
2 1 125 10-5 
3 1 125 10-6 
4 2 250 10-4 
5 2 250 10-5 
6 2 250 10-6 
7 2 500 10-4 
8 2 500 10-5 
9 2 500 10-6 

 

 

6.3.3 SDTFP Test Results 

Table 10 shows the 12 test cases created for SDTFP simulations, which include the testing of the 

attribute of 4 packets per SACK.  Similar to TCP simulations, the resultant data is organized 

graphically from Figure 44 to Figure 55 against the three aforementioned performance criteria. 

 

Table 10: SDTFP test cases. 

Test Case Packets per SACK Wired Network RTT (ms) Wireless Channel BER 
1 1 125 10-4 
2 1 125 10-5 
3 1 125 10-6 
4 2 250 10-4 
5 2 250 10-5 
6 2 250 10-6 
7 2 500 10-4 
8 4 500 10-4 
9 2 500 10-5 
10 4 500 10-5 
11 2 500 10-6 
12 4 500 10-6 
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Figure 35: TCP test case 1 results. (a) Throughput. (b) Overall packet loss rate. (c) Congestion 
window changes. 
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Figure 36: TCP test case 2 results. (a) Throughput. (b) Overall packet loss rate. (c) Congestion 
window changes. 
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Figure 37: TCP test case 3 results. (a) Throughput. (b) Overall packet loss rate. (c) Congestion 
window changes. 
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Figure 38: TCP test case 4 results. (a) Throughput. (b) Overall packet loss rate. (c) Congestion 
window changes. 
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Figure 39: TCP test case 5 results. (a) Throughput. (b) Overall packet loss rate. (c) Congestion 
window changes. 
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Figure 40: TCP test case 6 results. (a) Throughput. (b) Overall packet loss rate. (c) Congestion 
window changes.
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Figure 41: TCP test case 7 results. (a) Throughput. (b) Overall packet loss rate. (c) Congestion 
window changes. 
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 Figure 42: TCP test case 8 results. (a) Throughput. (b) Overall packet loss rate. (c) Congestion 
window changes. 
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 Figure 43: TCP test case 9 results. (a) Throughput. (b) Overall packet loss rate. (c) Congestion 
window changes.  
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Figure 44: SDTFP test case 1 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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Figure 45: SDTFP test case 2 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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Figure 46: SDTFP test case 3 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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Figure 47: SDTFP test case 4 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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Figure 48: SDTFP test case 5 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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Figure 49: SDTFP test case 6 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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Figure 50: SDTFP test case 7 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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Figure 51: SDTFP test case 8 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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Figure 52: SDTFP test case 9 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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Figure 53: SDTFP test case 10 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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Figure 54: SDTFP test case 11 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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Figure 55: SDTFP test case 12 results. (a) Throughput. (b) Overall packet loss rate. (c) Wired 
network congestion window changes. 
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6.4 Simulation Results Analysis 

Even a quick glance over the graphically organized simulation results from Figure 26 to Figure 

55 would reveal the tremendous extend of performance discrepancy of the three protocols under 

similar testing conditions.  Despite these apparent differences, there exist certain behavioural 

patterns and weaknesses exhibited by each protocol in their respective test runs.  Upon thorough 

examination, operational merits and performance comparisons of the three protocols are 

summarized categorically in the following sections.   

 

6.4.1 UDP/RTP 

In the first three test cases, the video encoding rate is set at 64 kbps, which is below the 

minimum traffic threshold of the wired network congestion profile (see Figure 23).  As a result, 

receiver throughput is generally able to maintain at 64 kbps for the majority of the playback 

duration, and the video QoS is therefore presumably preserved.  Still, the UDP/RTP connection 

fails to fully maximize bandwidth utilization because of the lack of a network traffic probing 

instrument, whereas the absence of a packet loss recovery mechanism leads to high packet loss 

and degradation of video QoS during episodes of high BER in the wireless channel.  The most 

severe degradation occurs when BER equals 10-4.  It leads to frequent 100% packet loss 

instances that are detrimental to video quality, even with the assistance of MPEG-4 error 

resilience tools. 

 

When the video encoding rate at the sender is increased to 128 kbps in test cases 4 to 6, the wired 

network emulator begins to drop packets when the allowed throughput is reduced to 64 kbps in 

the last 40 seconds of video streaming.  During this period, the average packet loss rate, apart 

from those inflicted by wireless channel errors, ballooned to over 50% with the effective receiver 
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throughput reduced by more than half.  Elsewhere, the throughput profile behaves in a similar 

manner as test cases 1 to 3 with the random bit errors in the wireless channel producing the same 

disturbing effects and the bandwidth utilization not maximized.   

 

The rise of the video encoding rate to 256 kbps in the last three test cases further magnifies the 

problems experienced above.  Additional packet losses are recorded amidst the wired network 

congestion profile modifications from 90 to 360 seconds.  Although the packet loss rate may 

seem prominent, in reality the actual throughput may not suffer as much because the persistent 

UDP/RTP stream of video packets will gradually wrench extra bandwidth from other TCP-

compliant connections that are sharing the same path, as illustrated in Figure 12, thereby 

infringing upon other Internet connections’ right for a fair share of transmission bandwidth. 

 

In summary, an end-to-end UDP/RTP connection is able to maintain video QoS only in the 

absence of wired network congestion, and is unable to absorb or rectify errors both during high 

wireless BER periods and heavily congested periods in the wired domain.  Likewise, the notion 

of TCP-friendliness and the minimization of MPEG-4 error resilience tools deployment at the 

mobile receiver cannot be guaranteed by UDP/RTP.  Overall, the UDP/RTP simulation results 

provided by test cases 1 to 9 vindicate the protocol’s weaknesses pertinent to video streaming as 

outlined earlier in Section 3.2. 

 

6.4.2 TCP 

Despite the disparities in input system parameters, most of the TCP test runs are able to produce 

a receiver throughput that can, to a certain extent, follow the contours of the wired network 

congestion profile.  This demonstrates TCP’s revered ability to adapt to dynamic changes in 
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network bandwidth, at least moderately.  However, the rather rough throughput envelopes with 

intermittent spikes and valleys of varying data rates cause undesirable fluctuation in video 

quality and possibly frequent timeouts.  The main culprit is the characteristic TCP saw-tooth 

AIMD congestion window pattern previously described in Section 3.1.4.  Also, bursts of wireless 

channel errors that corrupt both video packets and SACKs are mishandled by the TCP sender as 

a flood of timeouts limits the growth of the congestion window to stifle data transmission rate. 

 

Although TCP has often been relied upon to provide data transmission integrity in normal 

circumstances, unusually high packet losses, which are defined as packets that do not arrive in 

time for playback processing at the receiver, have been detected in most of the test case results.  

Closer examination on the figures exposes the fact that undeterred congestion window growth 

caused the instantaneous data rate to go beyond the 256 kbps threshold, thus leading to 

unnecessary packet loss in the wired network emulator.  Packet stream integrity is also 

compromised during high BER periods in test cases 1, 4 and 7 as the TCP sender fails to 

retransmit lost packets in time after long error bursts.  In reality, the video encoder would only 

transmit at a maximum rate of 256 kbps regardless of the instantaneous TCP congestion window 

dimensions, so the assumed packet losses will be less likely to occur.  However, the simulated 

results still show the futility of unabated TCP congestion window growth for video streaming 

applications. 

 

Compared to others, test cases 1 to 3 collectively generate the best receiver throughput envelope 

and the lowest packet loss rate, but they also cause the largest degree of congestion window 

fluctuation.  More packet losses are recovered in TCP test cases 1 to 3 because of the shorter 
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RTT at 125 ms and larger buffer to RTT ratio (see Figure 3) that accommodates more 

retransmission attempts.  Test cases 7 to 9 produce the worst results in data throughput that are 

laden with isolated spikes of data intertwined with long lengths of connection stalls, even though 

congestion window fluctuations are kept at a smaller degree than the other test cases.   

 

6.4.3 SDTFP 

Under similar testing conditions, SDTFP comprehensively outperforms the other two tested 

protocols in maintaining a much more stable data throughput at the receiver that closely adheres 

to the wired network congestion profile via a highly structured and steady congestion control 

algorithm, while remarkably suffering from virtually no packet loss in all SDTFP test case 

results.  In particular, the proxy excels in its role of regulating wired domain traffic in face of 

changing network dynamics and overcoming bursts of wireless channel errors simultaneously.  

Again, the simulations results splendidly demonstrate the advantages of SDTFP as outlined in 

Section 5.6.1. 

 

Still, the simulation results expose a few areas of minor concern.  In test cases 1 to 3 with RTT at 

125 ms, SDTFP fails to achieve the intended maximum streaming rate because of the higher ratio 

of processing time to RTT.  The increase in processing time could be due to the heavier 

computation load instigated by the short delay SACK frequency of 1.  While this situation could 

be remedied by dynamic adjustment of RTT estimation in relation to processing delay, it shows 

the vulnerability of SDTFP against an inaccurate RTT value.   

 

Even with the luxury of a predetermined constant RTT value, there exist some minor local 

fluctuations in data throughput due to subtle volatility in attaining a stable encoding rate.  
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Though the degree of fluctuation is much smaller than those of TCP origin, such slight changes 

would still be enough to inflict picture smoothness inconsistencies.  In practical applications, 

SDTFP should more closely cooperate with the adaptive rate video encoder to ensure a smoother 

encoding rate in response to dynamically changing RTT values and SDTFP congestion window 

dimensions. 

 

During the first 90 seconds of video streaming with the wired network congestion profile at its 

maximum value of 256 kbps, some test cases experience unexpected timeouts that render the 

congestion window to undergo network probing phase.  The cause of the initial timeouts is a 

combination of high video traffic and a low delay SACK frequency to RTT ratio.  Because of 

high traffic volume at 256 kbps, packets often arrive at the proxy delayed and out of order, thus 

creating premature gaps in the proxy buffer.  If the delay SACK frequency is small compared to 

the wired network RTT, then multiple SACKs containing the same gaps in their sequencing 

space are sent back to the sender.  This leads to redundant and often unnecessary retransmissions 

that overwhelm the wired channel with useless data.  The wired network emulator reacts by 

discarded all the excessive traffic that unfortunately creates more superfluous retransmissions at 

the proxy.  Eventually a timeout occurs that reduces the sender output to stop the downward-

spiralling cycle. 

 

Besides unnecessary reduction in video streaming rate, early timeouts also affect wait time 

calculations in congestion window management.  As indicated in Section 5.2, the wait time is 

increased by 2 times when a timeout occurs.  Therefore early unnecessary timeouts will have a 

considerable effect on the congestion window recovery efficiency in some later time.  As a side 
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note, the wired network congestion profile modifications from 90 to 360 seconds inflicts some 

rather fluctuating changes on data throughput in some of the test cases.  These are mainly due to 

a short default wait time value of 15 seconds for the purpose of expediting simulations.  An easy 

solution is to set a longer wait time, say 1 minute, during practical video streaming sessions. 

   

In SDTFP test cases with RTT = 500 ms, as expected, a smaller delay SACK frequency of 2 

causes the sender to commit unnecessary retransmits, thus inundating the wired network with 

extra packets that lead to timeouts and degradation of overall performance.  Interestingly though, 

this high level of sensitivity to packet loss is of advantage when real packet loss occurs such that 

the corresponding packet recovery is much quicker.  In comparison, a delay SACK frequency of 

4 creates less transmission overhead that is able to maximize congestion window dimensions and 

overall traffic throughput, but sustains a higher packet loss rate than its counterpart as a high 

delay SACK frequency value is less sensitive to packet loss.  Therefore in practical situations, 

the SDTFP should be able to dynamically determine the optimal delay SACK frequency to 

balance the tradeoff between data throughput maximization and packet loss rate reduction.   
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7 Conclusions and Future Work 

Because of the discrepancies in the intrinsic physical characteristics between both wired and 

wireless domains, there exist a number of design challenges in implementing cross-domain video 

streaming connections.  Current protocols such as TCP and UDP often fail to provide a 

comprehensive solution to overcome the many cross-domain video streaming hurdles.  Devising 

a single optimized end-to-end protocol for cross-domain video streaming applications remains 

one of the prime challenges for the research community. 

 

This thesis proposes the Split-Domain TCP-Friendly Protocol for MPEG-4 adaptive rate video 

streaming over 3G networks that aims to maintain video QoS amidst wired network congestion, 

achieve fairness (or TCP-friendliness) in wired network resource allocation, cope with high bit 

error rate in wireless links, minimize the deployment of MPEG-4 error resilience tools at the 

mobile receiver, and exploit split wired-wireless domain architecture.  The principal features of 

SDTFP include a split-domain approach, window-based congestion control with proxy 

assistance, large initial and loss windows in congestion control, adaptive rate video source 

encoding with respect to congestion window changes, and best effort loss recovery with selective 

acknowledgements.  

 

The main advantage of SDTFP is its ability to isolate the cross-domain design issues with 

separate dedicated protocols that assures fairness in network resources sharing in the wired 

network and combats wireless channel errors simultaneously.  It provides additional performance 

enhancements through the best effort delivery strategy and retransmission mechanisms.  By 

integrating SDTFP features with the widely accepted TCP structure, the proposed protocol 
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avoids undesirable network upgrades to existing Internet infrastructure, and takes advantage of 

the vast amount of TCP research and application results currently available to assist future 

development of SDTFP.   

 

During simulations, SDTFP demonstrates a more stable data throughput at the receiver with 

virtually no packet loss recorded in all test scenarios.  In comparison with end-to-end TCP and 

UDP/RTP emulated video streaming connections under similar testing conditions, SDTFP shows 

convincing superiority in all performance criteria.  However, there exist some minor concerns 

within the SDTFP protocol design that slightly hinder the overall performance.  Further protocol 

improvements will address these subtle issues. 

 

As the current set of simulations is based on a number of underlying assumptions and network 

model simplifications, future testing should stride for a closer portrayal of practical usage 

scenarios.  Specifically, custom adaptive rate MPEG-4 codecs should be constructed and 

incorporated into the system model to produce genuine video streaming data.  Also, a more 

sophisticated cross-domain traffic profile that includes realistic Internet congestion episodes and 

extensions on the two-state Markov wireless link BER model should be considered.  In addition, 

specific considerations such as connection management procedures, inter-cell handoffs, 

interactive user features (video seeking, security), and multicast capabilities should be explored 

in further research projects in order to refine the rudimentary SDTFP specifications into a truly 

integrated cross-domain video streaming protocol.   
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A List of Abbreviations 

 
3G   Third Generation 
 
ACK  Acknowledgement 
 
AIMD  Additive Increase Multiplicative Decrease 
 
AVO  Audiovisual Object 
  
BER  Bit Error Rate 
 
CDMA  Code Division Multiple Access 
 
CIF   Common Interchange Format 
 
FEC  Forward Error Correction 
 
FTP   File Transfer Protocol 
 
HEC  Header Extension Code 
 
ICMP  Internet Control Message Protocol 
 
IP   Internet Protocol 
 
ITU   International Telecommunication Union 
 
kb   Kilobit 
 
kB   Kilobyte 
 
kbps  Kilobits per second 
 
MBA  Macroblock Address 
 
MBM  Motion Boundary Marker 
 
MPEG  Moving Picture Experts Group 
 
MTU  Maximum Transfer Unit  
 
QCIF  Quarter Common Interchange Format 
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QoS   Quality of Service 
 
QP   Quantization Parameter 
 
RTP  Real Time Protocol 
 
RTT  Round Trip Time 
 
RVLC  Reversible Variable Length Codes 
 
SACK  Selective Acknowledgement 
 
SDTFP  Split-Domain TCP-Friendly Protocol 
 
TCP  Transmission Control Protocol 
 
TLS   Transport Layer Security 
 
UDP  User Datagram Protocol 
 
W-CDMA  Wideband Code Division Multiple Access 
 
WAN  Wide Area Network 
 
WAP  Wireless Application Protocol 


