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Abstract 

Optimal scheduling is an active area of research as the economics of many chemical processes is 

affected to a great extent with the optimality of schedules of their operations. Effective use of 

resources and their capacities is paramount in order to achieve optimal operations. Manual and 

heuristics-based approaches used for scheduling have their limitations which inhibit the chemical 

process industries to achieve economically attractive operations. One such sector is the analytical 

services industries and success of companies in this sector highly relies on the effective 

scheduling of operations as large numbers of samples from customers are received, analyzed and 

reports are generated for each sample. Therefore, it is extremely important to efficiently use all 

the various resources (labor and machine) for such facilities to remain competitive. This study 

focuses on the development of an algorithm to schedule operations in an actual large scale 

analytical services plant using models based on multi-commodity flow (MCF) and integer linear 

programming (IP) techniques. The proposed scheduling algorithm aims to minimize the total 

turnaround time of the operations subject to capacity, resource and flow constraints. The basic 

working principles of the optimization-based algorithm are illustrated with a small representative 

case study, while its relevance and significance is demonstrated through another case study of a 

real large scale plant. In the latter case study, the algorithm’s results are compared against 

historical data and results obtained by simulating the current policy implemented in the real 

plant, i.e., first-come first-served.  
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Along with scheduling, many chemical processes require the optimization of other aspects that 

play major part in the process economics, e.g. design and control. An important section of the 

chemical process industry produces various grades of products (multi-product) and the 

scheduling of the production of these grades along with optimal design and control play 

important roles in the economy of the operations. As part of this research study, a new 

methodology that can address three aspects of the economy of the multiproduct processes 

together; i.e. simultaneous scheduling, design and control, has been developed. A mixed integer 

non linear programming (MINLP) optimization framework has been formulated, which aims to 

simultaneously evaluate optimal design, steady state operating conditions for each grade as a part 

of design, optimal tuning parameters for the controllers, optimal sequence of production of 

various grades of product and optimal smooth transitions between the grades. This is achieved 

via minimization of overall cost of the operation. The proposed methodology takes into account 

the influence of disturbances in the system by the identification of the critical frequency from the 

disturbances, which is used to quantify the worst-case variability in the controlled variables via 

frequency response analysis. The uncertainty in the demands of products has also been addressed 

by creating critical demand scenarios with different probabilities of occurrence, while the 

nominal stability of the system has been ensured. Two case studies have been developed as 

applications of the methodology. The first case study focuses on the comparison of classical 

semi-sequential approach against the simultaneous methodology developed in this work, while 

the second case study demonstrates the capability of the methodology in application to a large-

scale nonlinear system. 
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Chapter 1 

Introduction 

Most of the chemical engineering industries involve highly integrated processes that need to be 

operated at near optimal conditions to become profitable and studies have been published in 

order to address various aspects of these industries, e.g., pharmaceutical [1,2], oil and gas [3-5], 

power generation [6-11]. The success of chemical process industry has always been subjected to 

the economics of several aspects such as the optimal design of a plant, the development of 

efficient control schemes that can maintain the dynamic operation of the process within feasible 

limits and optimal scheduling of the plant’s operations. Process scheduling has been an active 

area of research as a large sector of the chemical process industry highly relies on its optimality 

in order to achieve near-optimal economic operations. Industries like pharmaceuticals, 

steelmaking continuous-casting, paint, refinery operations, analytical services, multi-product 

processes require optimal scheduling in their operations in order to meet demands while reducing 

the cost and time of operations. Most of such processes are characterized by a complex network 

of processes, limited resources and capacities, and high level of exposure to deadlines. The 

limited capacities and resources bottleneck the processes if the schedules for activities are not 

optimal; thus, the management of resources directly affect the performance of the industry and 

eventually the process economics. The classical approach for scheduling, i.e., manual approach 

with dependence on human skills, may become challenging or even prohibitive when attempting 

to use the capacities and resources in the most optimized pattern. These concerns grow 

proportionally with the scale of the industry. With ever-increasing demands; it becomes a 

challenge to schedule operations in the most profitable way. A classical rules-based approach 

like 'first-come-first-served' also limits the optimum use of design capacities of the processes and 
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thus returns sub-optimal schedules. Following this, development of an optimization-based 

algorithm that generates the schedules via optimal management of resources and their capacities 

is paramount.  

One of the sections of the chemical process industry that highly relies on the effective scheduling 

for its success is the analytical services industry. In this sector, several types of analyses are 

performed by the application of a set of tests based on various analytical techniques for carrying 

out complete examination of material samples for multiple physical, chemical properties. The 

analysis of such properties is an important part of the decision-making process of several other 

companies and, therefore, the efficiency of its operations can have a significant impact in a large 

number of industries, e.g., life sciences, forensics, petroleum, mining. In this service sector, the 

inputs to the system are not known in advance and typically have high variability, which makes 

the task challenging. Along with components common to several scheduling problems, the 

analytical services industry also has some challenging specific characteristics. One such example 

is that the processing times of each of the different processes vary significantly from each other 

and uncertainties may be present in them. In addition, scheduling decisions need to be in the 

form of location of the samples in the system at any specific point in time and with the large 

scale size of the industry, a large number of scheduling decisions are required, amplifying the 

complexity of the problem. Based on the author’s knowledge, there is a lack of literature that 

focuses on the applications of optimal scheduling in the sector of analytical services industry, 

while the operational characteristics of the analytical services industry are not studied in detail. 

This constitutes the motivation behind the development of scheduling algorithm for this sector. 

The scheduling problem can be formulated to achieve specific objectives which may include 

reducing the overall cost of the operations while meeting the demand, minimizing the use of 
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resources to reduce maintenance and operating costs, and effective management of labor with 

multiple skills in order to achieve optimal assignments of various tasks.  

Apart from addressing the scheduling via optimization as a single aspect in the industries, 

various other aspects of the chemical processes need to be considered along with scheduling, i.e., 

design and control. These aspects can be addressed together where combinations of two of these 

aspects are considered together, e.g., scheduling and design, scheduling and control. In these 

approaches, optimal parameters are calculated for only two aspects, and therefore, there is no 

integration of all the aspects of process economics. The solutions obtained through these 

approaches are limited to only a few aspects. Following this, there is a need to develop an 

approach where all the aspects are addressed simultaneously by the integration of all three 

aspects to achieve the optimal scheduling, design and control. This approach is expected to 

provide more economically attractive results as compared to the classical approach. A section of 

the chemical process industry that involves scheduling, design and control and strongly needs 

such integration of theses aspects in order to achieve optimal operations is multi-product 

processes. These processes produce several grades of products that are specified with certain 

properties. Multi-product processes operate in two basic modes, i.e. transition between grades 

and production of the grades. The optimal variables need to be evaluated for equipment design 

and operating conditions, control parameters, slopes of transition that denote the rate of transition 

and sequence of production of grades. Most of the chemical processes are often subjected to 

process disturbances, therefore, an optimal scheduling, design and control obtained without 

consideration of these process disturbances may fail to comply with the process constraints when 

it is subjected to these disturbances (e.g., inlet stream’s temperature, flowrate and concentration). 

The resulting instances of infeasibility or constraint violations due to the presence of 
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disturbances will have adverse effects on the process economics. Thus, developing a 

methodology that takes into account these disturbances is necessary. The process disturbances 

can be specified in several ways including use of pre-defined function or randomly from a 

probability distribution. Another challenge that many chemical processes including multi-

product processes encounter is parametric uncertainty. The uncertainties are commonly present 

in several parameters and approaches developed without consideration of these uncertainties, i.e., 

approaches based on steady state optimization while using a perfect model (model parameters 

completely known) are not robust and can lead to constraint violation when subjected to these 

uncertainties. Therefore, the uncertainty in the parameters needs to be addressed at the design 

stage. Several methods can be found in the literature to address uncertainty which includes multi-

scenario approach, stochastic programming and chance-constrained programming. The literature 

focused on the integration of different aspects of the economics of the multi-product processes is 

available but there is lack of studies that address the all the three aspects, i.e., scheduling, design 

and control, under the influence of process disturbances and uncertainty in the parameter. This 

forms the motivation behind the research conducted to develop a methodology that can address 

all the aspects discussed above. 

 

1.1 Objectives and Contributions 

 

The research carried out in this thesis develops an application of optimal scheduling in the 

analytical services industry and a methodology for integration of scheduling with design and 

control for multi-product processes. The specific objectives of this research are listed below:  
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1. Development of a basic scheduling algorithm for the improvement of operations in an 

analytical services facility. An optimization model will be developed using integer 

programming techniques along with multi-commodity flow. The algorithm will be tested 

with a small representative case study in order to observe the outcomes of the scheduling 

algorithm and its potential to improve the turnaround time of operation, i.e., time required to 

complete the analysis of samples received in the facility. 

2. Historical data obtained from the industrial partner will be used to test the performance of the 

basic scheduling algorithm against the actual operations. This will demonstrate the potential 

of the scheduling algorithm to improve the actual operations in the facility under the 

assumptions considered while developing the algorithm.  

3. Develop a new methodology to simultaneously address the design, scheduling and control 

aspects of the multi-product processes under the influence of process disturbances and 

uncertainty in the process parameters. A mixed integer nonlinear programming (MINLP) 

optimization formulation will be developed which determines the decision variables related 

to equipment design, control parameters and optimal schedule for the grades to be produced 

while maintaining the stability of the system.  

4. Performance of the methodology will be compared against semi-sequential approach via 

application to a simple continuous stirred tank reactor (CSTR) system. The methodology will 

also be tested with a large scale high impact polystyrene (HIPS) process. 

The research work conducted with the objectives mentioned above will make significant 

contributions to the area of optimal scheduling and its integration with other aspects of process 

economics. The development of scheduling algorithm for an analytical services facility is a novel 

application considering the operational characteristics of this sector. Better operations with 
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shorter turnaround time can be achieved via optimal use of resources which eventually can 

increase the throughput of the operations. The study also brings to the literature the operational 

characteristics that are less studied and thus developments can be made in this sector of the 

chemical process industry. Similarly, the methodology developed for the integration of 

scheduling, design and control for the multi-product processes is a novel approach that integrates 

all the aspects under the influence of process disturbances and uncertainty in the parameters. 

Thus, a new contribution will be added to the field of integration of aspects to achieve 

economically attractive operations. This can be used as reference to further develop/enhance the 

methodologies in the field of integration of various aspects of chemical processes.  

 

1.2 Structure of the Thesis 

 

The thesis is organized in different chapters as follows: 

A detailed literature review is presented in Chapter 2, which outlines the studies available in the 

open literature that present the various methodologies and approaches developed in the field of 

optimal scheduling and its integration with other aspects, e.g., design and control. This includes 

studies that focus on industrial applications of scheduling using several methods. The literature 

review also focuses on the studies that address the integration of scheduling with design and/or 

control for various processes, which includes multi-product processes. Chapter 2 also lists 

several reviews on the optimal scheduling and its integration with the other aspects for chemical 

processes. 

Chapter 3 presents the algorithm developed for optimal scheduling in an analytical services 

facility owned by the industrial partner. The algorithm is based on an integer programming (IP) 

problem, which is presented with all the mathematical details along with modeling parameters. 
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The algorithm has been tested with a small-scale case study in order to depict the working 

principles of the algorithm along with its advantages and limitations. The second case study 

focuses on the comparison of actual operations in the facility against the results obtained from 

the scheduling algorithm, which shows the potential of the scheduling algorithm in achieving 

better operations, i.e., total time required to complete the analysis of samples has been 

minimized. 

Chapter 4 presents a new methodology that aims to integrate scheduling, design and control of 

the multi-product processes. The methodology takes into account the influence of process 

disturbances as well as parameter uncertainty. One of the key features of the approach is the use 

of ramp functions for smooth transitions between various grades of products considered for 

production. The nominal stability of the system is also ensured. Two case studies have been 

developed in order to present the comparison of the simultaneous methodology against the semi-

sequential approach and capability of methodology in the application to a large-scale nonlinear 

system, i.e., high impact polystyrene process. 

The conclusions derived from this research are presented in Chapter 5. The Chapter also 

discusses the possible future path for the research work completed in order to strengthen their 

applicability.  
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Chapter 2 

Literature Review 

 

Optimal scheduling has been addressed via several studies published in the literature since its 

impact on the economics of the operations is significant. There have been many studies that 

present various approaches and techniques to achieve optimal scheduling. These techniques and 

their applications in various industries and sectors are revised and reported in this chapter. The 

chapter also discusses the nature of scheduling decisions. The areas in the chemical process 

industry for which scheduling applications have been developed are also discussed through 

reviews available in the literature. The works published in the literature that focus on the 

integration of various aspects of the chemical processes are also discussed. Since the study under 

the scope of this thesis aims to simultaneously address the scheduling, design and control aspects 

of multi-product processes, review of the studies that address integration of various aspects have 

also been reviewed. A review of the studies that focus on multi-product processes is presented 

along with a discussion on the techniques used in those studies. In addition, the approaches and 

methodologies that take into account the presence of process disturbances and uncertainty in the 

parameters are reviewed and presented.  

 

2.1 Optimal scheduling for chemical processes 

Scheduling is an important aspect of most of the chemical process industries including 

manufacturing and services industries. Scheduling can be defined as the assignment of tasks to 

specified resources under constraints. The main purpose of scheduling is to ensure that resources, 

equipment, utilities, etc. are ready to execute a task whenever it is assigned to them. Optimal 
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scheduling is often used to achieve economically attractive operation via maximization or 

minimization of an objective function while assigning tasks to different resources.  

A basic scheduling problem can be conceptually formulated as follows: 

sConstraint Demand      

sConstraintCapacity       

sConstraint Resource      

sConstraint Process..

)(zmax

ts

P, C, Sf

                                                                                                       (2.1) 

where, z is an objective function representing the profit generated through operations. It is 

typically a function of market prices of products/services (P), cost incurred in operations (C) and 

schedule/sequence of operations (S). The optimization problem aims to find a schedule/sequence 

(S) of operations that corresponds to maximum profit, i.e., optimal scheduling decision variables. 

Note that problem shown in (2.1) can be also be formulated as a minimization problem to reduce, 

for example, the costs associated with process scheduling. The problem is subject to process 

constraints that aim to maintain feasibility of the solution in terms of process limitations, e.g., 

constraints on the operating conditions for the different units considered in process scheduling. 

Resource and capacity constraints ensure that the generated schedules are practically achievable 

in terms of design capacities of the resources. Deadlines can also be incorporated in a scheduling 

problem in the form of demand constraints in order to achieve required demands within due 

timelines. 

Following the general formulation presented in problem (2.1), scheduling problems can have 

various forms that differentiate them from each other. These problems can be categorized in 

several ways in terms of the representation of the optimization problem as well as the techniques 

employed to develop these problems. Reviews of process scheduling have been published that 
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discuss the classification of scheduling problems and various techniques used to develop such 

problems [14, 15]. Figure 2.1 describes the characterization of scheduling problems according to 

some of the key aspects.   

 

Figure 2.1. Classification of Scheduling Problems 

Process layout and its topological implication is one of the main features that affect the 

scheduling model in terms of model complexity. Many processes are sequential and can be 

single stage or multi-stage depending upon the units working in parallel. For more complex 
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processes, network process models need to be considered with complex recipes involving 

interaction of operations. Another important aspect used for the classification of scheduling 

problems is related to inventory policies, which involve finite and dedicated storage policies. 

Some cases also include shared tanks and zero-wait, non-intermediate and unlimited storage 

policies. Material transfer is one of the important aspects; although most cases are characterized 

by instantaneous transfer, some processes involve time-consuming transfers that also need to be 

accounted for while developing scheduling models. Another key factor is demand patterns which 

are typically represented by due dates though time horizons may also be used to consider 

production completion. Batch sizes must be handled depending upon the processes, fixed or 

variable. Fixed sizes do not involve mixing or splitting, while variable sizes may involve mixing. 

The costs associated with equipment, inventory, utilities and changeovers can affect the 

scheduling model to a great extent. Furthermore, the uncertainty in the parameters is one of the 

most important characteristics of the processes. Deterministic problems are easier to model as 

compared to stochastic ones which involve handling uncertainty in the parameters, e.g. 

production demands.  

A few important classifications are based on time representation, different characteristics of 

scheduling problems and the use of the techniques like integer programming, linear and 

nonlinear programming. In terms of time representation, the scheduling problems can be divided 

into discrete time and continuous time representations. A large number of applications in 

scheduling involve modeling the scheduling problems in discrete-time, in which the time the 

scheduling horizon is divided into a number of time intervals of uniform duration and the 

beginning and ending of a task are associated with the boundaries of these time intervals. A good 

approximation of the actual problem (real continuous time) is limited by the choice of the time 
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interval used for discretization. A smaller interval can achieve better results while increasing the 

problem’s size along with the number variables to be tracked. In order to overcome the 

limitations of the discrete time approach, continuous time representations of the scheduling 

problem have been attracting researchers; however modeling using this approach is more 

challenging task. Events are allowed to take place at any point in the continuous domain of time 

and therefore the limitation of having inactive event times associated with the discrete time can 

be eliminated. Thus, the continuous time representations also reduce the problem size and 

therefore are computationally attractive. However, modeling with this approach can add many 

complexities as compared to the discrete time approach. For example, handling the variable 

nature of the timing of the events is difficult, while the resource limitations need complicated 

definition for constraints increasing the complexity of the problem. 

Scheduling problems can be further classified according to their characteristics. Some of these 

include the processing sequences, the modes of operations and the types of objective functions. 

In terms of processing sequences, problems can be classified for sequential processes and 

network represented processes. In the sequential processes, the modeling is based on the fixed 

processing sequence. Several processing stages can be defined, i.e., single stage or multi-stage, 

while the processing units are present in the processing stages. For this type of processes, batches 

are used to represent production and therefore, it is not necessary to consider mass balances 

explicitly. When there are more complexities in the sequence of processing (i.e., processing 

sequence is not fixed), the network representation approach is used. The network represented 

processes are of two main types, state task network (STN) [12] and resource task network (RTN) 

[13]. In STN representation, two types of nodes are used. The ‘state’ nodes consist of raw 

materials, intermediate materials and final products, while the ‘task’ nodes represent the 
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operations. The representation also involves the arcs connecting the states to tasks, which denote 

the fraction of states consumed by tasks. The STN can be further extended to RTN representation 

by describing processing equipment, utilities, storage as resources. These are added to the 

network as resource nodes. The two representations can be used when the material balance is 

explicitly required.  

Scheduling problems can also be classified according to the operation modes of processing tasks, 

i.e., batch and continuous. In batch tasks, the material are fed at the start of the task and the 

products are produced at the end of the task, whereas in the continuous tasks the products are 

produced throughout the period of the tasks and the processing rates can be constant or remain in 

a range. The two representations depend upon the operations under consideration and the 

respective scheduling requirements. Another way of categorizing the scheduling problems is 

according to the objective function. The objectives can be of several types depending upon the 

operations. These objectives can include minimizing the make-span, where optimal schedule is 

generated in order to shorten the overall time of the operation. Another objective can be 

minimization of earliness or costs, where optimal schedules are searched that correspond to the 

lowest possible cost, which can be measured by simply the deviations from the deadlines or the 

costs calculated via various factors of the process economics. 

Apart from the characteristics of scheduling problems discussed above, various techniques can 

be used to develop scheduling problems. Scheduling problems often involve the use of integer 

programming techniques since the decision taken in these problems involves assignments of 

tasks to resources, which can be represented by non fractional entities (integers). Most 

commonly used techniques include linear integer programming (IP), mixed integer linear 

programming (MILP) and mixed integer nonlinear programming (MINLP). Linear programming 
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(IP) involves linear objective function as well as linear equality and inequality constraints, while 

the variables involved in this type of formulations are integers. One of the most commonly used 

techniques is the mixed integer linear programming (MILP), where linear optimization 

techniques are used which involves two types of variables. Some of the variables are restricted to 

be integers or binaries, while others are allowed to be continuous. Mixed integer nonlinear 

programming (MINLP) techniques have been successfully implemented in several scheduling 

applications. This technique is similar to the MILP technique, while the objective function and 

the constraints involved in this formulation can be nonlinear. These problems are much harder to 

solve as compared to MILP or IP problems. 

2.2 Industrial Applications of Optimal Scheduling 

Due to its significance for the chemical process industry, several studies that involve industrial 

applications of scheduling have been reported in the literature. The sectors like pharmaceuticals, 

oil and gas, paint industry, fast-moving consumer goods, paper and pulp, mining, power plants 

have been areas of research in terms of optimal scheduling. The industrial applications include 

work on scheduling in pharmaceutical pipelines involving decisions on scheduling and allocation 

of resources over development activities in multiple drug-related projects [16]. Case studies from 

the pharmaceutical sector have been presented that demonstrate the industrial application in that 

study. Scheduling in the large-scale steelmaking continuous-casting (SCC) process using unit 

specific event-based continuous time models has been published in the literature [17], where 

schedule were generated for the casts on machines including allocations, sequencing and timings. 

Another study presents the application in the same industry using robust optimization and 

stochastic programming in order to handle uncertainty in the production demands [18]. An 

industrial application of scheduling in a paint industry has been published which is based on an 
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MILP formulation and the decisions are made on the scheduling of wide variety of products 

competing for process equipment [19], whereas an application in the baker’s yeast industry for 

optimal planning and scheduling that can handle variations in production volumes is also 

available in the literature [20]. Furthermore, another section of the chemical process industry that 

has several applications in terms of process scheduling with industrial scale is refineries. These 

studies include several applications for pipelines which include studies that schedule multi-

product pipelines that connect the refinery to different distribution centers [21, 22] and work 

published with the application for hydrogen pipeline network [23]. There also have been studies 

for the lube oil operations where MILP formulations have been developed in order to schedule 

different modes of operation for the different processing units [24]. Optimal scheduling 

application for crude oil operations have been published which address scheduling of loading 

and unloading of crude oil in intermediate tanks, between port and distillation crude units in a 

refinery based on a mixed integer formulation [25] and state task network problem [26]. A multi-

period optimization model has been presented for optimal scheduling of the hydrogen system 

within a refinery, where solution is obtained on an iterative method between that of an MILP 

problem and that of a nonlinear programming (NLP) problem [27]. Scheduling of decoking 

operation for furnaces have been addressed in the available literature [28-30], where operational 

modes of the furnaces are scheduled in order to achieve economical operation. Additional studies 

that discuss applications of scheduling in other sectors are also available. These include fast 

moving consumer goods (FMCG) industry [31] with the case study that is focused on scheduling 

for production of ice cream batches. Another MILP formulation has been developed to address 

scheduling in make and pack continuous plant for assignment decisions with an industrial 

application in a candy production plant [32]. Application of scheduling for job-shop operation 
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has also been published in the literature which focuses on optimal scheduling of operations via 

assignments of machines with an objective to minimize the average tardiness [33]. Additional 

applications of scheduling can be found in the literature for distillation systems
 
presenting swing 

cut modeling for planning and scheduling [34] and pulp and paper industry with decisions are 

taken on the paper machine setup pattern and on the production rate of the pulp digester [35]. A 

study that summarizes the successful industrial applications of scheduling has been published in 

the literature [36], which involve industries from different sectors, e.g., dairy, petrochemical, 

paper and pulp, crude blending. Real world scheduling problems have been solved over a long 

period of time using rolling horizon technique by generating solutions for several smaller 

problems over small intervals. There are several successful applications that have been published 

in literature that demonstrate the use of this technique including applications in integration of 

production planning and scheduling [37, 38], chemical-pharmaceuticals industry [39,40], 

procurement planning [41], continuous plants [42] and multi-product pipelines [43]. 

 

2.3 Optimization of Multi-product processes 

Multi-product processes represent an important section of the chemical process industry which 

involves multiple aspects of process economics, i.e., scheduling, design and control. These 

processes aim to produce several grades of product specified by the compositions. The process 

needs to meet the demands and specifications of the required grades. The operation of these 

processes has two basic modes, i.e., transition and production. For each grade, the required 

composition of the product grade is achieved in the transition period while required amounts are 

produced in the production period. The optimization variables can typically include equipment 

design and operating conditions for each grade, control parameters and sequence of production, 
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i.e., the order in which the grades are produced. A methodology to address these aspects is 

essential in order to achieve economical operations.  

Various aspects of the multi-product processes have been traditionally addressed separately in 

order to generate optimal design, control and scheduling parameters that will result in most 

economic operations. Studies addressing the optimal design of multi-purpose /multiproduct 

processes have been published in the literature [44-46].
 
These studies show the typical approach 

considered to achieve optimal design, i.e. optimal equipment sizes and operating conditions are 

determined via steady-state optimization of plant economics. Another key aspect in multi-

product plants is process controllability, which is concerned with the choice and optimal 

performance of the plant in closed-loop [47-48]. Moreover, optimal process scheduling is a key 

subject of relevance for various sectors in the chemical process industry including multiproduct 

plants. In these processes, various grades of the product are produced and scheduling of the 

production of the different products affect the process economics and therefore it must be 

addressed in optimal fashion. Scheduling for multi-purpose/multiproduct plants without its 

integration with any other aspects has been reported in the literature, which includes optimal 

scheduling of various multiproduct processes [49-51].  

The limitation of these approaches is in the fact that the other aspects that affect the process 

economics are not considered simultaneously, which limits the optimal solution to address only a 

part of plant economics. Following this, integration of these aspects is necessary in order to 

address the complete plant economics.   

2.4 Methodologies that Integrate Scheduling, Design and Control 

The integration of design, scheduling and control for various chemical processes has been 

reported in various studies published in the literature including multi-product processes. 
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Consideration of process dynamics performance in the optimal design has been one of the most 

active research areas, i.e., integration of design and control. The integration of design and control 

has been addressed in many publications including the optimal design and control of various 

large-scale processes including bioethanol, extractive distillation, Tennessee Eastman process, 

sugar cane sulfitation tower, ternary distillation, multi-grade polymerization and styrene 

polymerization [52-59]. Several methodologies with different features and limitations for 

integration of design and control have also been proposed in the literature [60-65]. Most of the 

methodologies developed for the integration of design and control of chemical processes have 

considered conventional Proportional-Integral (PI) controllers in their analysis, while some of the 

studies discuss the simultaneous design and control using advanced model-based control 

techniques such as model predictive control (MPC) [66-71].
 
Integration of design and control 

approaches that have taken model parameter uncertainty into account has also been reported [72-

77]. The development in the area of integrated design and control has been reviewed [78-82]. 

Besides the integration of design and control, several studies are also available for the integration 

of design and scheduling for chemical process systems. In these methodologies, scheduling of 

the process is incorporated in the design, where scheduling decisions are made along with 

optimal design in order to achieve economically attractive operations. These works include the 

publications on simultaneous design and scheduling in plants, multipurpose plants, and 

multiproduct plants [83-91]. This integration has a limitation since the controllability of the 

process has not been taken into account and thus it can have adverse effects on the economics of 

the process. 
 
To circumvent this issue, another section of literature focuses on addressing the 

simultaneous scheduling and control. In this approach, the optimal scheduling and control is 

achieved with fixed process design and thus achieving less optimal solution considering the 
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complete process economics. The applications include the integration of scheduling and control 

for plants, polymerization processes, CSTRs, mixed-continuous processes, tubular reactors
 
and 

multiproduct continuous parallel lines [92-100]. Engell and Harjunkoski have summarized the 

possible ways of integration of scheduling and control [101] whereas Harjunkoski an co-authors 

have discussed the practical use of the integration of these two aspects [102].  

The different approaches proposed for integration of few of the three aspects for chemical 

processes have dealt with two aspects of the chemical process simultaneously. For the processes 

for which depend upon the optimal scheduling of their operations, integration of scheduling, 

design and optimal control is essential to improve the process economics. There are two main 

approaches through which the optimization of chemical processes can be addressed taking into 

account the three aspects described above. The first approach is to address each aspect one-by-

one, i.e. sequentially. In the sequential approach, optimal parameters are calculated for different 

aspects independent of each other, i.e. in sequence and therefore, there is no integration of the 

aspects. The solutions obtained through this approach are sub-optimal because of the lack of 

simultaneous consideration of all aspects involved. In the second approach, all the aspects are 

addressed simultaneously by the integration of all three aspects to achieve the optimal 

scheduling, design and control. To the author’s knowledge, there is only one study available in 

the literature that has attempted to integrate design, scheduling and control for multi-product 

plants. In that study, the decisions were made on design including steady-state operating 

conditions and equipment sizing, on scheduling including production sequence and on optimal 

control [103]. The optimal transitions were part of control decisions and were directly obtained 

from optimization. One of the limitations of that study is that the control decisions did not 

involve the evaluation of controller tuning parameters as no closed-loop control scheme was 
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implemented, i.e., the control actions were directly obtained from optimization and thus are only 

valid for the specific conditions used in the problem’s formulation. The study also did not 

consider the effect of process disturbances which is another limitation. Therefore, a methodology 

that address all the aspects described above simultaneously for multiproduct plants, i.e. design, 

control and scheduling, is still lacking in the current literature.  

The integration of the aspects must take into account the effect of process disturbances, since the 

optimal solution must comply with process constraints in presence of the disturbances. Many 

optimization-based approaches for the integration of aspects determine (or specify) the critical 

realizations in the disturbances that produce the largest deviations in the controlled variables. 

Several simultaneous methodologies have used time-dependent realizations in the disturbances 

following certain functions, e.g., a sinusoidal function [104, 105], or a series of step changes 

[106,107]. Another approach specifies the disturbances as stochastic time-varying perturbations 

that follow a user-defined probability distribution function [66]. Moreover, the uncertainty in the 

parameters needs to be handled in order to achieve optimal solutions that are robust to 

uncertainty in the parameters. The multi-scenario approach is one of the widely used methods to 

address the uncertainty in the parameters; especially in the cases where the process constraints 

must be satisfied. Although several methods have been developed to address the uncertainty in 

parameters, the multi-scenario approach is preferred because it is a widely used technique that 

has been successfully applied to various problems. Successful applications that use this approach 

in the optimization of different aspects of the chemical processes have been reported in the 

literature [8,108]. In this approach, critical scenarios are created for the uncertain parameters 

where each scenario describes the values of the uncertain parameter. Each scenario is assigned 

with a pre-defined probability of occurrence. This multi-scenario approach has been successfully 
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applied in previous scheduling studies and therefore will be considered in the present research 

study to address uncertainty in the parameters during the integration of scheduling, design and 

control.  

 

2.5 Chapter Summary 

The chapter has presented the recent developments published in the literature that are relevant to 

the research work considered in this thesis. The motivation behind the research work has been 

discussed through the extent of works available in literature and the scope for development in the 

area of scheduling. The chapter also discusses the studies published that show the successful 

implementation of the techniques used in this research in industrial applications, e.g. rolling 

horizon technique. Moreover, discussion has been included about the integration of various 

aspects of the chemical process industries, i.e., scheduling, design and control. The development 

of methodologies within the area of integration of such aspects has been presented, while 

limitations of developed approaches have also been discussed. Starting from studies that address 

only one aspect out of scheduling, design and control to the recent studies that integrate two of 

these aspects and studies that simultaneously address all the aspects have been presented. Review 

of multi-product processes in terms of integration of these aspects has also been conducted by 

highlighting the recent studies reported in this area.  

Following the literature review presented in this chapter, the application of optimal scheduling in 

the sector of analytical services industry is presented in the next chapter, which discuses in detail 

the development and implementation of a scheduling algorithm for a facility in this sector. 
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Chapter 3 

Optimal Scheduling of a Large-scale Scientific Services Facility via 

Multi-commodity Flow and Optimal Scheduling Algorithm 

 

As discussed in the previous chapter, the application of optimal scheduling in the chemical 

process industries is an active research field. However, the analytical services sector is a less-

studied area, while the operational characteristics of this sector clearly depict the need for a 

scheduling algorithm in order to optimize performance of the industry. The aim of this work is to 

develop a basic scheduling algorithm in order to optimally schedule the operations of the facility 

owned by the industrial partner involved in this project. This chapter is structured as follows. 

Section 3.1 provides an overview on the typical operations in analytical services industries and 

presents a flow of the operations and the typical characteristics of this industry. Section 3.2 

presents the model description and elements in the workflow of the algorithm. The mathematical 

formulation proposed in this work is described in detail in that section. Results and discussions 

are presented in Section 3.3. In this section, a small case study is presented first to illustrate the 

flow of the algorithm. Then, the effectiveness of this algorithm in developing optimal scheduling 

strategies for the analytical services sector is demonstrated by using an industrial case study. A 

comparison between the actual data from operations with simulated actual policy and the results 

obtained with the use of scheduling algorithm applied to the operational input data is presented. 

Section 3.4 discusses the summary of the developments and the work in this chapter. The content 

of this chapter has been published in the Industrial & Engineering Chemistry Research Journal 

[109].  
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3.1 Description of Operations in Analytical Services Industry 

In this section, the focus is on describing the operations that will be considered for scheduling. 

The plant considered receives a large number of testing samples from different clients with their 

own set of analysis requirements, which are performed through various tests. Before the tests are 

performed, the samples undergo various pre-processing steps (i.e., preparation and chemical 

processing of the samples). Once the tests have been completed, the results are analyzed and are 

sent to the customers with reports describing the properties analyzed. 

Before describing the typical workflow in the analytical services industry, below we summarize 

and define explicitly all the required terms used. These definitions will be relevant when 

presenting the optimization model in Section 3.2. 

1. Samples- Samples are the basic unit in the analytical service industry. A sample is a smallest 

testing entity provided by the customer to go through a set of analyses that are required to know 

the properties of the samples.  

2. Process- A process is an activity performed in the plant. This can be a test, a pre-process or a 

post-process activity that needs to be completed in order to complete the analysis.  

3. Resources- The resources are the means of execution of the process. A resource is for example 

a machine that performs a particular activity. Every resource is entitled to a limited capacity. 

4. Job- Samples going through the same analysis need to go through same set of processes in the 

system. A job is a group of samples that require the same analysis and belong to the same 

customer.  
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5. Path- The term path is assigned to each of the jobs. A path is a sequence of processes that a 

group of samples must go through. Given a particular analysis requested, the path that the 

samples must follow is pre-determined; therefore all samples in a specific job must go through a 

particular set of processes according to the path associated to that job. 

6. Turnaround time – The ‘turnaround time’ of a sample is the time passed from the time when 

that sample arrived to the time where all the tests are completed and the results on that sample 

are ready to be sent to the customer. This includes the time required to carry out every single 

process involved in the path of the job.  

7. Schedule- A schedule is the framework describing the execution of processes for various 

samples at various points in time. It provides the time of execution of each process for each 

sample. 

The definitions described above are associated to various sections of the analytical services 

industry. The sections of the industry are described in what follows and can be represented as 

shown in Figure 3.1. 

 

Figure 3.1. Overview of operations in Analytical Services Industry 
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Phase 1: Receive testing samples from various customers – this is a planning activity in 

preparation for analyses requested by customers, where the samples are made ready for the 

analysis and are assigned to go through specific processes, i.e. path, required to complete the 

analysis. This includes various sub-activities such as collecting, sorting samples as well as 

grouping them according to the analyses requested. This can be represented by the block 

‘Samples IN’ in Figure 3.1. 

Phase 2: Sample Analysis- the samples are examined with different testing techniques by using 

the various instruments referred to as resources. This stage also includes the processing required 

before conducting the tests, which may involve chemical processes carried out on samples so 

that they can be detected with certain properties with the instruments. The network of the 

processes is complex and is divided into a number of departments. There is high interaction 

between the departments because a department may receive samples from and send samples to 

various other departments simultaneously. The samples are processed in different numbers of 

processes depending upon the analysis requested, but the sequence of processes is pre-

determined based on the type of analysis required. The use of resources to conduct the activities 

depends on the quantity of samples to be treated in a particular process, time required and 

available capacity of resources. The major portion of the samples’ turnaround time of operation 

involves time spent in the analysis; therefore the effective scheduling of activities in this region 

becomes critically important. As shown in Figure 3.1, the processes carried out between blocks 

‘Samples IN’ and ‘Samples OUT’ represent the sample analysis phase. 

Phase 3: results and closure of analysis- This is the final phase of the operation where reports are 

generated detailing the results obtained from the analyses. All successful analyses are closed and 

that encompasses the final step in the scheduling process. Re-analyses are performed if the 
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results are not up to the standards. This is the last stage of the workflow and is represented by 

block ‘Samples OUT’ in Figure 3.1. 

As shown in Figure 3.1, for example, all the samples grouped in Job 1 have to go through 

processes in the specific order A, B, D, E and G, which is termed as the ‘path’ that must be 

followed to complete the analysis. The facility considered in the presented work receives around 

14,000-15,000 samples every week, which are grouped in about 400-500 jobs on average.  

3.2 Description of the Model 

In this section, the modeling of scheduling problem under consideration is presented; defining 

the appropriate mathematical notation and discussing a few simplifying assumptions that have 

been made to make the problem tractable. 

Consider that a set of samples have been received and need to be analyzed for different 

properties, while  is the set of processes in the system with  being the process. Samples 

are grouped together into a set of ‘jobs’ according to the analysis required, thus samples 

requiring the same analysis can be grouped together as a ‘job’. This set of jobs and the number of 

samples in each job is part of the input data to the scheduling algorithm. The jobs that are 

considered for scheduling can have various statuses, which represent the process where the 

samples are at a particular point in time. Thus, the new jobs can have status as ‘start of the first 

process’, while other jobs that have finished some processes required for analysis would have 

appropriate statuses depending on the process the job is undergoing or has completed. A job can 

also have multiple statuses depending on the processes that different groups of samples within a 

job are at, i.e., different groups of samples within a job can be undergoing different processes. 

Each job in has number of samples in it and goes through a specific path, denoted by . 
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Each path represents a fixed sequence of processes, where each process is an element of the 

path. For example, lets consider a facility that has 6 different processes A, B,C, D, E, F. A  

represents the path for job 1 that may correspond to processes A, B, F while represents the 

path for job 2 that may include processes A, C, D, F. Formally, will correspond to 

number of processes , , ..., , representing the first, second,…, last process ‘in the path’ 

of the job , while representing the length of the path, i.e., number of processes involved in 

the analysis of job . Thus in the example stated above, for (path for =1) , the first 

process in the path would be , the second would be and the last would be 

 and . This sequence of processes depends on the analysis required and the 

analysis completes once the last process in the path has been completed.  

From here onwards, to simplify notation, the indices for the job in terms of processes have been 

excluded, for example – in the context of job , 
 
is the same as

  
if the discussion is 

specifically limited to job .
  

Each process in the system requires a processing time to complete and there are 

resources available for that process at time . The resources can be machines or personnel 

performing the activity required to complete the process. Every unit of resource available for 

process has a fixed capacity , which corresponds to the number of samples that the 

resource can analyze per processing time. Every job present in the network is associated with a 

priority weight and a deadline . The priority weight is a user-defined parameter that 

determines a preference to each job so that the turnaround time for jobs with higher priority 
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weight will be given more importance by the scheduling algorithm. A deadline is the maximum 

allowed time that a job can take to complete the analysis. All the samples with their analyses 

finishing before the deadline are entitled to a ‘reward’ whereas analyses that finish after the 

deadline are penalized with a ‘penalty for finishing late’ . 

The scheduling problem has been modeled as a multi-commodity flow (network flow with 

multiple flow demands) process where the processes correspond to the nodes in the model. Time 

discretization is considered where system is tracked at finite time intervals, while the scheduling 

time horizon is provided as an input to the model. The samples that could not finish the analysis 

within the scheduling time horizon are penalized with 'penalty for not finishing' . The 

location of the samples at the end of the scheduling time horizon represents the starting point for 

the next scheduling time horizon (i.e., rolling horizon). The path dictates the flow through nodes 

and the capacity constraints limit the flow across nodes. The scheduling problem was formulated 

as an integer linear program. The integer linear program (IP) problem was solved using the 

software IBM ILOG CPLEX ver. 12.5.  

3.2.1 Mathematical Framework 

Let be the decision variable that represents the number of samples from job  that start 

process  in the path for the job  at time  and therefore would be ready to start process  

at time . In some cases, samples may need to wait at a certain process for some amount 

of time, e.g., if the resource has no capacity left to process more samples at time t. Accordingly, 

is an integer decision variable that denotes the number of samples in job  waiting at 
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process 
 
in the path from time  to . The decision variable or  describes 

the location of the group of samples in the path of the job and is defined such that there does not 

exist a variable that represents the samples moving backward in the path, i.e. samples going from 

process  to . This has been achieved by forcing such variables to be zero. Moreover, 

is an integer decision variable that specifies the number of resources used by process  starting 

at time . Similarly, 
 
is an integer parameter for job that represents number of new 

samples in job that enter the system to start process in the path of the job at time . These 

samples can be considered as fresh samples. These can be samples newly entering into the 

system, i.e. ready to start the first process in the path of the job or from backlog jobs, for which 

partial analysis has been previously completed. The samples from the backlog jobs are the 

samples that enter the system at a process except the first process in their path, i.e. they have 

completed some processes before being considered for the scheduling. 

The decision variables and  for a job and the parameter can be represented 

with the flow network as shown in Figure 3.2. These decision variables along with  can be 

interpreted as flows in the network of nodes. Each node in Figure 3.2 represents the process at 

each time unit. With time on horizontal axis and processes on vertical axis, the  decision 

variables and constitute the flow in terms of number of samples in the flow network. 
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Figure 3.2. Flow network of processes as nodes at each time unit 

 

3.2.2 Objective Function 

The expression for the objective function to be minimized for the optimal scheduling of the 

operations in the analytical services sector has been defined as follows: 

                                                                                                                    

                                                      
(3.1)

       

A job finishes at time  if it arrives at time t at its final process , which is an artificial 

(dummy) process created to represent the end of the analysis or equivalently when it starts 

process in the path of the job
 
at time

.
That is, is the processing time of 

the final ‘actual’ process whereas the processing time of the artificial process  is zero as no 

actual work is performed for it. Large part of the objective function is based on the minimization 
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of the samples’ turnaround time that have not finished their analysis completely (that are 

anywhere but at the last process in the network).  

The first term on the right-hand-side in the objective function (OF) in (3.1) determines the 

product of time  and the number of samples that start the second last process  (last actual 

process); thus, this term aims to account for the total amount of work left before finishing the 

analysis as well as the time required for it, i.e., this term considers the total turnaround time of 

the analysis. This term accounts for the samples that have completed the analysis before the 

deadline associated with the job and therefore, is entitled to a reward , which 

minimizes the objective function. The value of reward (R) has to be less than 1 so that it can 

reduce the weight on the objective function. The priority number  prioritizes the analysis for 

different jobs. The values assigned for different jobs are relative. 

The second term is similar to the first term but represents the samples that finish their analysis 

after deadline . Hence, the reward (R) weight is replaced by a penalty weight for finishing 

late  so as to add weight to the objective function. The value of the penalty can be a 

reasonably higher number that must be greater than the unity so that it adds sufficient weight to 

the objective function.  

The third and fourth summation terms on the left-hand-side in (3.1) correspond to the number of 

samples that cannot complete their analysis within the scheduling time horizon (i.e. final time 

unit ). These terms are added with the penalty for not finishing within the scheduling time 

horizon . The terms aim to minimize the number of samples that cannot finish within 

scheduling time horizon. The penalty  can be assigned a very high value as not finishing the 
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analysis is the least desired outcome of the schedule. As it will be shown in the case studies 

presented in section 3.3, the reward, penalty for finishing late and penalty for not finishing within 

the scheduling time horizon have been assigned the values: . These 

values were chosen experimentally so as to achieve required effects of the parameters on the 

objective function shown in (3.1). The values are suitable for the case studies discussed in this 

paper. While similar values can be used for other instances of the problem, it is recommended to 

perform a fine-tuning of the parameter values based on the quality of the final solution obtained 

via experiments.   

The last term in the expression is the summation of resources used multiplied by the cost of 

using a resource  for a process , which accounts for the expenditure on the use of resources. 

This makes the operation economical. For the presented work, all the weights corresponding to 

the costs of the resources have been set as 1 in order to simplify the problem , 

while the weights corresponding to the actual costs of the resources could be included in the 

expression to minimize the cost associated with the use of various resources.  

3.2.3 Flow Constraints 

Flow constraints can be interpreted as the measure to balance the input and output flow of the 

processes and the entire system. These constraints ensure that the total amount of samples from 

job waiting at a process at time  from a previous time unit and that from time 

 is equal to the amount leaving it after time  or waiting at the process after time 

Thus for each job , time such that , and for every : 

                                                                      (3.2) 
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For all jobs and all time units : 

                                                                                           (3.3) 

For all jobs and all time units such that , the flow constraint for the last 

process is: 

                                                                                    (3.4) 

For all jobs and time unit , i.e., constraint when time unit is set to 1, samples waiting at time 

unit 1 are the new samples entering the system from previous run or as fresh samples: 

                                                                                                                         (3.5) 

It is assumed that all the processes start only after time unit 1. This effectively means that time 

starts at . All the samples wait at the respective locations at time unit 1, i.e., 

 
for all , for .                                                                                        (3.6) 

3.2.4 Capacity and Resource Constraints 

The capacity constraints ensure that the number of samples in job leaving a process  (i.e. the 

samples completing the process ) at time  is not more than the total capacity of the machine. 

Thus, for every process and all times : 

                                                                                                                           (3.7) 
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Constraint (3.7) has been developed under the assumption that all the resources for a process 

have the same capacity. The assumption is based on the characteristics of the analytical services 

industry problem addressed in this study, i.e. the resources have similar capacities. However, the 

constraint can be generalized in order to account for different capacities for different resource of 

a process as follows.  

Let be a binary decision variable defined as follows: 

                     (3.8) 

The capacity constraint to account for different capacities can therefore be written as follows: 

                                                                                (3.9) 

where is the capacity of  resource of process , while is number of resources 

available for process at time unit . 

 Consider a process with processing time . All the resources that started to be used after 

time  would remain in use at time  as the process would still be running. Thus, the 

following expression sums up all such resources of that remain in use simultaneously at time   

and makes sure that the sum is no more than the total number of resources available. Thus, for 

each process in the system and time : 

                                                                                                                                            (3.10) 
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Based on these developments, the conceptual problem can be mathematically formulated as 

follows: 

                                                                   (3.11)                                        

Given that a feasible solution exists, the model outputs the location of groups of samples 

belonging to the jobs at each time interval ( ) and the number of machines that should be 
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used/turned ON ( ) to implement the schedule. As mentioned above, the rolling horizon 

technique is used to connect the end of the current run to the start of the next run, where the 

status of groups of samples in the jobs at the end of the current run are used as an input at the 

start of next run and the finite time horizon is shifted forward. Thus, the jobs for which the 

analysis has not been completed in the current scheduling run are considered for the next from 

their final location in the current run as the horizon rolls forward. The brief steps in the 

scheduling algorithm are presented in  Figure 3.3. 

Remarks 

Some assumptions/limitations are considered in this optimization framework to simplify the 

operational characteristics and some modeling aspects. These are described as follows:  

(1) Processing times for the processes are known in advance (deterministic) – average times are 

considered. 

(2) Availability of resources is known a priori. This is based on the fact that the resources in the 

analytical services industry are mostly machines and therefore the number of resources remains 

constant most of the time, while the unavailability of resources due to maintenance activities can 

usually be known before the start of scheduling horizon. No break downs of resources are taken 

into account. All resources for a process have the same characteristics, i.e. capacities. The 

assumption is based on the characteristics of the resources used in the analytical services 

problem under consideration. Most of the resources have similar capacities, while the specific 

information of each resource in the analytical services facility considered in this study was not 
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available for confidentiality. Thus, the average capacities have been used for all resources of a 

process.  

 

Figure 3.3. Summary of the scheduling algorithm 
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(3) The re-analysis of samples where sample may have to go through all or some processes in the 

path is not considered. 

 (4) Time is discretized into a finite set of time intervals, keeping track of the system at each 

interval. This is because the system under consideration behaves in a discrete form with input, 

processes involved and output being independent blocks in the system as shown in Figure 3.1. 

Thus, the system can be viewed as a set of batches and therefore tracking at specific intervals is 

suitable. To limit the problem size, time intervals of one hour were considered as this size of the 

interval tracks the system appropriately considering the changes occurring in the system per 

time. Also, processing times and the capacities can be easily modified according to the time 

interval of one hour, i.e. the values are adjusted as multiples of one hour to match with the time 

interval chosen. Finer discretization implies a more accurate representation of time, but will 

result in a higher number of variables/constraints involved in the problem. 

(5) The optimization is considered to generate schedules over a finite time horizon. If the desired 

total scheduling time exceeds the finite time horizon considered, the rolling horizon technique is 

used to connect the current run to the next run of the algorithm. In this technique, the final status 

of the samples/jobs at the end of the current run of the algorithm is used as the input in the next 

run, where the respective finite time horizon would be shifted forward. Though there is 

possibility of achieving sub-optimal solutions with shorter rolling horizon, the technique is used 

to limit the problem size with number of variables to track. 

(6) The samples from different jobs can be combined together for a process; therefore there is no 

issue of contamination of samples. The samples can be tracked as a group and not individually.  
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The assumptions/limitations stated above will be addressed in the future work associated with 

the presented study. 

3.3 Results and Discussions 

Two case studies have been considered in the present analysis. The first case study illustrates 

how the schedules were obtained from the optimization formulation presented in 3.2.1 and has 

been used mostly to demonstrate the capability of the algorithm. The second case study 

demonstrates the potential of the present scheduling algorithm via comparison of the model’s 

performance against the actual operation of a plant in the analytical services sector. The key 

difference between the case studies is the size of the problem. Actual plant data (real values for 

capacities, processing times, resources) was used in case study 2, while case study 1 was 

developed to describe the working principles of the algorithm via creating an example of smaller 

size than the actual plant with arbitrary values for capacities, resources and processing times. All 

the simulations were run using a machine with the configuration: Win 8,i3,@2.40GHz, RAM-

8GB. 

Case Study 1 

For this case study, an illustrative example consisting of 8 processes occurring in an analytical 

services facility is considered. The model is used to generate a schedule for 5 jobs (i.e., ) 

which contain 100 samples in total (i.e., 100). Three scenarios have been developed to 

evaluate the scheduling model’s performance under the effect of a few model parameters. All the 

jobs have been assumed to have a common deadline  of 30 hours.  

Scenario 1 – Standard capacities and priorities 

This scenario is a basic illustrative example of the schedule obtained via the optimization 

formulation shown in equation (3.11). The information related to the jobs considered for 
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scheduling is provided in Table 3.1. The scheduling time horizon has been set to 24 hours, while 

the capacities, processing times and resources considered for this scenario are reported in Table 

3.2.  

The results obtained as the output of the model are represented in the form of the Gantt charts. 

Figure 3.4 presents the results for Scenario 1.  

As shown in Figure 3.4, the latest turnaround time obtained for this scenario is 12 hours, though 

the scheduling time horizon was set to 24 hours. The model makes various combinations of 

samples from various jobs so that the capacity of all resources for each process can be used 

optimally. An example of such combination can be seen at time unit 2 at process 1, where 30 

samples from Job 1 are combined with 9 samples from Job 2 so that the maximum capacity of 39 

for process 1 can be used. All such combinations eventually minimize the overall turnaround 

time. As shown in Figure 3.3, if the scheduling time horizon is set to 10 hours, this would return 

the schedule only until 10 time units in the Gantt chart and then the samples that could not 

complete the analysis would be considered for the next scheduling time horizon as backlogs jobs. 

This procedure is repeated until all the samples considered in the analysis reach process . 

Scenario 2 – Effect of Reduced capacities  

This scenario has been generated to analyze the effect of capacities on the schedule generated as 

well as the overall turnaround time. In this scenario capacities per resource of all the processes 

are reduced to approximately 10% of the values shown in Table 3.2, while all other details 

remain the same as in Scenario 1. The new capacities are listed in Table 3.3. As shown in the 

table, capacity of process 5 has been kept same as in Scenario 1, as the capacity per resource is 

relatively small.  
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Table 3.1. Job Details for Case Study 1, Scenario 1 

Job 

Number 

 

Path to follow 

(processes to be 

completed)  

Number of samples 

in the job  

Priorities 

 

1 1,2,3,4,8 30 1 

2 1,2,3,5,8 20 1 

3 1,2,3,4,6,8 20 1 

4 1,2,3,4,8 20 1 

5 1,2,3,7,8 10 1 

 

Table 3.2. Data for Processes for Case Study 1, Scenario 1 

Process 

Number 

 

Process time 

(in hours) 

 

Resources 

(number of 

machines) 

 

Capacity 

(per resource, per 

process time) 

 

Total Capacity of 

all Resources 

1 1 3 13 39 

2 1 3 13 39 

3 1 3 160 480 

4 4 3 84 252 

5 1 3 6 18 

6 1 3 34 102 

7 2 3 20 60 

8 1 3 40 120 
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Figure 3.4. Schedule for the case study 1, Scenario 1 

 

Since the capacities have been reduced, the scheduling time horizon has been changed to 30 

hours with same priorities  for all the jobs. The latest turnaround time obtained for 

Scenario 2 increased to 25, while the schedule for each job also changed and can be tracked in 

Figure 3.5. Thus, a reduction of 90% in capacity resulted in increase of turnaround time by 13 

hours as compared to Scenario 1. Most of the samples wait for longer time as there is no enough 

capacity to process all the samples that queue up to complete the process. This can be seen in the 

Figure 3.5, where samples have to wait to start Process 1 as it represents the first bottleneck in 

the network with total capacity of 6 samples. Thus, the effect of capacities on the schedule and 

the turnaround time is verified with the present scenario. 
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Table 3.3. Reduced Capacities for Case Study 1, Scenario 2 

Process 

Number 

 

Capacity 

(per resource, per process time) 

 

Total Capacity of all 

Resources 

1 2 6 

2 2 6 

3 16 48 

4 8 24 

5 6 18 

6 3 9 

7 2 6 

 

Scenario 3 – Effect of Priorities  

This scenario depicts the influence that the priorities of the jobs have on the schedule generated. 

To analyze this effect, job 4 has been set to a higher priority  while all others have 

default priority . All the other input data is same as Scenario 2. Job 4 was chosen to have 

maximum priority since it was the job finishing latest in Scenario 2. The new schedule was 

expected to have shorter turnaround time for job 4 and this was confirmed through the results 

obtained.  

As shown in Figure 3.6, the schedule generated for this scenario shows that all the processes 

required for job 4 are completed faster than the other jobs, i.e. job 4’s analyses are completed in 

13 hours, while the total turnaround time is 26, which is greater than Scenario 2 by an hour (4%). 

Thus, the change in priorities affects the schedule, while the total turnaround time of operations 

increased for Scenario 3. 
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           Figure 3.5. Schedule for Case Study-1, Scenario 2 

 

In Scenario 1, the number of decision variables involved in the solution for the location of the 

samples  is 624, while there were 96 decisions taken on the resources to be used, 

represented by . The Scenario 2 involved 1300 decision variables in the solution for 
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location of samples as the number of time units required is more, while it goes up to 1352 in 

Scenario 3 with increase in total turnaround time. The number of decision variables involved in 

the solution for resources, , were 200 for  Scenario 2, while this number goes up to 208 for 

Scenario 3. The CPU time required to generate the schedules for these scenarios is 50 seconds on 

average. 

Case Study 2  

This case study has been developed to demonstrate the potential benefits of using an 

optimization-based scheduling algorithm for operations management in an actual analytical 

services facility. Here, the turnaround time obtained via the optimization model developed in this 

study is compared against actual turnaround time in the plant. There are 38 processes, each 

characterized by specific processing time, capacities and set of resources. All the values for 

capacities, resources are obtained from the actual operation, while averaged processing times 

were used in the analysis. In order to mimic the characteristics of operation in the actual plant, 

and be able to make a comparison between actual data and results obtained by the present 

analysis, the proposed scheduling model assumed that operations were limited to a shift of 8 

hours each day, 5 days a week. This was achieved through additional constraints which restrict 

turning ON the resources after the 8
th

 hour of the shift each day and all the time on 2 days of the 

week (weekend). Therefore, the resources can be started only for 8 hours of shift in a day. Thus, 

even if the model runs for a period of 24 hours, it effectively schedules operation over the period 

of 8 hours, while a ‘day’ refers to a shift of eight hours for this case study in further discussion. 

The time interval considered in the optimization model was set to 1 hr. 
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              Figure 3.6. Schedule with reduced capacities and priority on Job 4 

 



 47 

The number of jobs considered for scheduling was 408 , which contains about 

14,941 samples in total ; this represents the operation of a week in the actual 

plant. A rolling horizon technique has been used and schedules are obtained day by day. 

Samples in jobs entering the system as ‘new entities’ (i.e. starting first process in the 

analysis) in a day are not known in advance. Thus, only the samples present at the start of the 

scheduling horizon and the samples entering in the system after start of the horizon by 

finishing a process (i.e. backlogs) are considered for scheduling. The samples entering the 

system as ‘new entities’ during the scheduling horizon will be considered in the next 

scheduling horizon. To ensure that a fair comparison can be made, the model has been run to 

schedule the operations starting from 10 days before the start of the week under consideration 

and stopped after all the samples have finished the analysis. This has been done to create the 

load of samples similar to the actual load in the facility before, over and after the week 

chosen for the comparison. Because of this, the resources are occupied partially to fully 

before start of the week chosen for comparison, which is similar to the actual operations. For 

the presented case study all the jobs have been assigned the default priority and a 

common deadline of 336 hours . The input information consisting of number 

of resources, capacities and average processing times have been obtained from the facility 

owned by the industrial partner along with the historical data of jobs and samples and for 

confidentiality reasons, these values have not been reported in the presented work.  

Two approaches have been considered in the present analysis and the results obtained from 

each of them are compared against the actual operations. 
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Approach 1- Optimal Scheduling: The scheduling time horizon is set to 24 hours, though the 

effective schedule of operations is over shift of 8 hours as discussed above. After obtaining 

the schedule for the day, the algorithm is re-run for the next day for the next 24 hours. As 

shown in Figure 3.3, this procedure continues up until all samples received in the week 

considered have completed the analysis required.  

Approach 2- Simulated Actual Policy: The current scheduling policy used in actual 

operations (i.e. first-come first-serve) has been simulated using the present scheduling model. 

The rationale behind this approach is that there are several simplifications that the model 

makes (for instance using average processing times), which may be the reason for any 

performance improvement as compared to actual operations. Because the same strategy as in 

the actual operations is used in this approach, any improvement in the performance should be 

due to the simplifying assumptions. This allows the identification of what share of 

performance improvement of Approach 1 was obtained due to simplifying assumptions and 

what share due to better scheduling. 

The results obtained from the two approaches have been compared with the historical data 

obtained from the facility for the period before, after and including the one week under 

consideration as presented in Table 3.4. This has been done to analyze the performance of the 

model during that week. The Table 3.4 shows the comparison of actual operations against the 

optimal scheduling and simulated policy approach. This Table also presents a comparison 

between the optimal scheduling against simulated policy approach. This comparison in 

particular shows the improvement achieved solely due to optimization. 
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As shown in Table 3.4, the results show that the turnaround time with the optimal scheduling 

(Approach 1) is 67.5 % less than of the actual operations, which demonstrates the effect of 

optimization based scheduling under the modeling assumptions, while the approach with the 

simulated actual policy (Approach 2) also shows the improvement in the turnaround time by 

50% as compared to the actual operations.  

Table 3.4. Results for Case Study 2 

 

Optimal Scheduling 

(Approach 1) 

Scheduling using 

simulated actual 

policy (Approach 2) 

Actual 

operations in 

the facility 

Period  A week’s operation 

Latest finishing 

(turnaround) time  

32.5 % of actual 

time  

Around 50% of 

actual time  

 Actual 

turnaround 

time 

Deadlines violated  0 jobs, 0 samples  Around 12 %  jobs  
Around 16 % 

jobs  

Avg. no of  jobs 

finished per day  

39.5% > Actual 

Average  

12.1% > Actual 

Average  

Actual 

average 

Standard deviation in 

jobs finished per day  

7%< Actual 

(less variability)  

46% < Actual 

(less variability)  

Actual 

standard 

deviation 
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The results also show that no samples violated the deadline with the optimal scheduling 

(Approach 1). There are about 12% jobs that violated the deadline with simulated first-come 

first serve policy (Approach 2), while in actual operations 16% of the jobs in the specific 

week violated the deadline. The number of jobs analyzed per day is also higher in Approach 

1 as compared to actual operations and the simulated first-come first serve approach 

(Approach 2). In terms of comparison between optimal scheduling and simulated policy 

approach, 17.5% more improvement is achieved in the turnaround time in optimal scheduling 

approach, whereas the number of jobs finished per day is also greater by 27.4 in optimal 

scheduling approach. Table 3.4 also shows the values for standard deviation in the number of 

jobs analyzed per day. It is clear that with the scheduling algorithm (Approach 1), the 

variability in the jobs analyzed per day is slightly reduced, even though the variability for the 

first-come first serve policy (Approach 2) is even less. This is an unintended, but positive 

outcome for the optimization-based scheduling since no explicit enforcement of reduced 

variability is considered in the model. This can be seen in Figure 3.7(a), where the graphs are 

plotted for number of jobs finishing the analysis per day and daily average for actual plant, 

simulated policy and optimal scheduling approach (Approach 1), while Figure 3.7(b) shows 

the trend of number jobs entering the process per day. The graphs shown in Figure 3.7 are 

over 29 days of the month, which includes the week considered for comparison (days 11-15), 

the span before the week and after it as late as the deadline of the analysis for the jobs 

considered. In addition, the model allows the identification of processes with active capacity 

constraints. These processes may potentially represent bottlenecks in the operations, so 
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identifying these bottlenecks allow the recommendation of corrective measures to reduce 

their impact on operations management.  

The number of decision variables related to location of samples ( ) varies each days 

since it depends upon the number of jobs received on the day. The average number of 

decision variables involved in the solution each day (i.e. per run of the scheduling model) is 

8256 with a maximum of 10480. The number of decision variables related to use of resources 

 involved in the solution every day remains unchanged throughout the case study and is 

equal to 304. Furthermore, the optimality gap achieved for each solution was 0%. These 

figures provide an idea of the size of the scheduling problem in the analytical services 

industry that has been considered in the present study. The size of the problem is extensive in 

terms of number of decision variables involved in the solution while the problem becomes 

challenging with different operational characteristics. The CPU time required to generate 

schedules each day (an eight hour shift) is 130 seconds on an average depending on the 

number of samples under consideration for scheduling.  

3.4 Summary of the Chapter 

This Chapter has presented the details of the application of the optimal scheduling in an 

analytical services facility. This includes the overview of the operations in this industry 

which can be used to describe the scope for optimal scheduling and need of the scheduling 

algorithm. The mathematical model based on integer programming (IP) has been presented in 

detail. The model involves the objective function that focuses on minimization of turnaround 

x
st ,

p p ji,
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ip

y
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time of operation and various constraints including flow constraints, capacity constraints and 

resources constraints. 

 

Figure 3.7. (a) Comparison of number of jobs finished per day; (b) Number of jobs entering the 

system. 

The aim of applying flow constraints is to maintain the balance of the samples across 

processes, while capacity and resource constraints make sure that the numbers of samples 

processed do not exceed the design capacities of the resources. The case studies depict the 

advantages of optimal scheduling. The first case study also describes the basic working 

principles of the algorithm and effect of various parameters used in the optimization model. 
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A second case study has been presented in this chapter in order to demonstrate the potential 

of the algorithm to achieve operation that require lesser time than the actual operations in the 

facility. The results show that the scheduling algorithm can be used to improve the 

turnaround time of operations, while variability in the number of samples analyzed per day 

has been reduced. 

The industrial application discussed in this chapter focuses on optimal scheduling; however, 

other aspects of chemical process industry also play important roles in process economics. 

Thus, scheduling needs to be addressed simultaneously with other aspects of the chemical 

processes, i.e., design and control. In the next chapter, a methodology is presented in detail 

along with its application to two case studies. 
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Chapter 4 

Integration of Scheduling, Design and Control of Multi-Product 

Chemical Processes under Uncertainty 

 

An industrial application discussed in the previous chapter demonstrated the benefits of 

implementing optimal scheduling in the chemical processes. However, in order to achieve 

optimal operations in chemical processes, other aspects of process economics need to be 

addressed in integration with scheduling. Design and control are two important aspects which 

play important roles in the process economics of any chemical system. Multi-product 

processes represent a section of the chemical process industry that involve all the three 

aspects and require simultaneous optimization of those aspects. Despite the developments in 

the field of integration of scheduling, design and control, studies that account for all three 

aspects are limited. This chapter presents a methodology developed in order to 

simultaneously address scheduling, design and control for multi-product processes under the 

influence of process disturbances and uncertainty in the parameters. The organization of this 

paper is as follows: Section 4.1 presents the problem statement in terms of multi-product 

processes along with description of the operation, while Section 4.2 presents the 

mathematical formulation proposed in this work for the integration of scheduling, design and 

control of multiproduct processes. Section 4.3 presents the case studies developed to 

implement the methodology on a CSTR system and a large scale HIPS process. The results 

are discussed on each of the subsections of the case studies.  
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4.1 Problem Statement 

Consider a multiproduct plant which produces various grades of the product. Each grade has 

a particular specification and a demand to meet. As shown in Figure 4.1, the operation 

consists of production and transition periods for each grade i. During the transition period of 

a grade i , the required specification of the grade is reached and then the production stage of 

the grade starts. The production stage is continued until the required demand is met at the 

required grade specification. Once the required production of the grade i is achieved, 

transition to grade 1i  begins and eventually the production is achieved for that grade. The 

procedure is repeated until all the required product grades )(I  are produced to meet the 

product demands. The present study assumes that, once the production wheel is completed, it 

is immediately and indefinitely repeated. Also, each grade is produced only once in the 

complete production cycle. 

  

Figure 4.1. Various product grades in a multiproduct process 
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As shown in Figure 4.1, it  and 
ipt represent the transition and production times of grade i , 

while totalt  is the time required to complete productions and transitions for all product 

grades. 

All the transitions are assumed to occur following a ramp function to achieve the set point 

related to specification of the grades. The slope of the ramp )( i  denotes the transition rate 

for the i
th

 grade and is part of the optimization variables considered in the presented analysis. 

Once the transition of grade is completed and the required composition is achieved, the 

production period starts; the product is assumed to be stored in a product (storage) tank. 

The product tank starts filling only after the required specification is achieved, i.e. only 

within the production period, and stops when both the required composition (grade) and 

demand are achieved. The complete operation is assumed to occur under the influence of 

critical realizations in the process disturbances, which are assumed to follow an oscillatory 

behavior, and uncertainty in the system’s parameters, e.g., production demands. 

In the problem under consideration the given are (a) the actual dynamic nonlinear process 

model describing the behavior of a multiproduct process, (b) the process model parameters 

(e.g., molar flow rate of the feed), (c) the control scheme, (d) the required specifications and 

demands of the grades to be produced, (e) the disturbance specification, assumed to be a 

sinusoidal signal with given amplitude and critical frequency, (f) uncertainty specification in 

terms of critical scenarios and their probabilities for uncertain parameter, and (g) process 

constraints to be satisfied during operation. The problem to be formulated aims to determine- 

(a) the optimal equipment design and steady state operating conditions for each grade, (b) the 
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optimal tuning parameters for the control scheme, (c) optimal transition slopes for each grade 

and (d) optimal sequence of production. 

4.2 Methodology for Integration of Scheduling, Design and Control  

This section presents the details of the methodology developed for integration of scheduling, 

design and control. The description of the features considered in the methodology is 

presented next along with the mathematical description of the optimization formulation. 

4.2.1 Parameter Uncertainty 

The methodology presented in this work explicitly accounts for uncertainty in the process 

parameters, e.g., uncertainty in the demand of products. To account for this condition, the 

critical uncertain scenarios in the parameters are assumed to be discretized and need to be 

specified a priori, i.e., 

],...,...,,[ 21 nsz
wwwww                                                                                                                (4.1) 

where ‘ns’ denotes the number of critical scenarios to be considered in the analysis; each 

uncertain scenario 
z

w  has been assigned with a probability of occurrence
zP .  

4.2.2 Process Disturbances 

In the presented study, each k
th

 process disturbance is specified as follows: 

)sin()( tωt
k,imnom ckkk ηηη                                                                                                   (4.2) 

where 
nomkη is the nominal operating value of the process disturbance and 

mkη is the amplitude 

of the k
th

 process disturbance, which is chosen depending upon the process dynamics, 

whereas 
k,icω  represents the critical frequency evaluated for each grade i that generates 
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maximum variability in the controlled variables due to critical realizations in the k
th

 

disturbance. The critical parameter 
k,icω  is not known a priori and will be calculated 

internally. This is a new feature introduced by the present approach. The response in the l
th 

controlled variable as a result of a sinusoidal process disturbance input is as follows: 

)sin()(  tωt
k,imnom clll yyy                                                                                             (4.3) 

where 
nomly  is the nominal operating value of the process disturbance, 

ml
y  is the amplitude of 

the controlled variable and is the phase angle by which the l
th

 controlled output is delayed. 

The largest (worst-case) variability in the controlled variable due to k
th

 disturbance is 

determined by the frequency of the sine function, i.e. 
k,icω . In this work, this critical 

frequency
k,icω is identified from the linearization of the actual nonlinear closed-loop process 

model (fclosed) around the steady-state operating conditions specified for the production of 

grade i. The identification of the critical frequency from the actual closed-loop nonlinear 

process model (fclosed) requires the solution of an intensive optimization formulation, which 

needs to appear as a constraint in the overall integration of scheduling, design and control 

formulation. Therefore, this formulation can become prohibitive for large-scale applications. 

Thus, the approximation in terms of linearized process model along with frequency response 

analysis has been used in this work for the identification of the critical frequency (
k,icω ). 

Based on the above, the critical frequency 
k,icω is obtained from the linearized closed-loop 

process model via frequency response analysis as follows. 
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The closed-loop process model ( closedf ) is linearized around a steady state operating condition 

for each product grade i specified as part of decision variables ( d ) as follows: 

Iiiilin

iilin

...1, 



φDxCΩ

φBxAx
                                                                                                  (4.4) 

where linx is the vector of states of the linearized closed-loop process model, φ is an input 

vector which includes the disturbances affecting the process, while linΩ represent the output 

vector that includes controlled variables calculated from the linearized closed-loop process 

model. The matrices iA , iB , iC , iD are the state matrices of the linearized closed-loop process 

model. The closed-loop state-space model is identified at each single function evaluation of 

the optimization formulation for each grade i using the values specified for the optimization 

variables at each optimization step. The non-linear closed loop process model can be 

linearized analytically, e.g., using Taylor’s series expansion, or from systems identification 

methods using the traditional least-squares technique. 

The linearized closed-loop model (4.4) can further be represented in the frequency domain 

for each pair of k
th

 process disturbance and l
th

 controlled variable as follows:  

klklklklkl iii jj ηyiηyηyηyηy BAIC)(G 



  ,

1

,,, )(                                                                  (4.5)  

where j is imaginary number ( j = 1 ), while denotes the frequency domain. )(G ηy j
kli ,

represents the transfer function between the k
th

 process disturbance and the l
th

 controlled 

variable. The matrices shown in (4.5) represent the dynamics between the k
th

 process 
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disturbance and the l
th

 controlled variable and are subsets of the matrices shown in (4.4), i.e.,

ii kl
AA ηy , , ii kl

BB ηy , , ii kl
CC ηy , .  

)(G ηy j
kli ,  can be further decomposed as follows:  

)()(,  m

i klklkl
jIRj ηyηyηy )(G                                                                                       (4.6) 

where )(
kl

R ηy   and )(m

kl
I ηy  are the real and imaginary parts of the transfer function and 

are functions of the frequency  . The amplitude ratio representing the variability in ly  due 

to changes in kη can be expressed as follows: 

22 )()(  m

klklkl
IRAR ηyηyηy                                                                                         (4.7) 

From frequency response analysis, the maximum amplitude ratio, which corresponds to the 

maximum variability expected in ly due to kη , is achieved at the critical frequency
k,icω . 

Following equation (4.7), the maximum amplitude ratio can be expressed as follows: 

22max )()(
,, ikklikklkl c

m

c IRAR  ηyηyηy                                                                (4.8) 

The maximum amplitude ratio is pictorially represented in Figure 4.2 via Bode plot. Since 

the amplitude ratio corresponding to the critical frequency is maximum, the disturbance 

generates the worst case variability in the controlled variable at this frequency. Note that for 

the cases where there is no clear maximum frequency (e.g. first order system), i.e. a range of 

frequencies correspond to maximum amplitude ratio in a bode plot, a numerical 

approximation must be made by selecting as critical frequency the highest or smallest 

frequency value that generates the maximum variability in the controlled variable. 



 

61 

 

Following equation (4.2), the critical frequency for each process disturbance k is specified for 

each grade i and for each critical scenario z as shown in (4.1) from the following equation: 

)sin()( tωt z

c

z

k

z

k

z

k,imnom
ηηη                                                                                                   (4.9) 

That is, the process disturbances are specified for each grade i  using the critical frequency   

 (
k,icω ) that generates the maximum variability in the controlled variables at each critical 

realization z in the uncertain parameters w.  

 

Figure 4.2. Bode Plot- Frequency Response Analysis 

For the cases where multiple disturbances are simultaneously acting on the controlled 

variables, the critical frequency at which the disturbances generate the maximum variability 

in a controlled variable is the frequency that produces the maximum total amplitude ratio. 

The total amplitude ratio is the sum of individual amplitude ratios for the disturbances.  
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Therefore, equation (4.8) can be modified for multiple disturbances as follows: 




 
K

k

ic

m

ic klkll
IRAR

1

2

,

2

,

max )()(  ηyηyηy
                                                                            (4.10) 

where, K represents number of process disturbances acting simultaneously on l
th

 controlled 

variable, while ic ,  represents the common critical frequency for the simultaneously acting 

disturbances. 

Using these disturbances’ critical frequency specifications, the worst-case variability is 

computed in the controlled variables through simulation of the closed loop nonlinear process 

model closedf  of the system for transition and production for all the grades. As mentioned 

above, the approach relies on the linear approximation of the non-linear closed loop process 

model in order to identify the critical frequency for the process disturbances. Thus, the 

maximum (worst-case) variability in the controlled variables is the result of the linear 

approximation, which limits the approach from considering the true maximum variability of 

the non-linear behavior. This particular aspect of the methodology will be examined using 

one of the case studies presented in this work. 

4.2.3 Nominal Closed-loop Stability  

Once a linear closed-loop model representation of the actual nonlinear closed-loop system is 

available, it can be used to evaluate the system’s nominal stability under disturbances and 

uncertainty in the model parameters. The stability check can be conceptually formulated for 

each grade i and each critical scenario z of the uncertain parameter as follows: 

Iieig lin

z

i ...1,  0)|)(x(A d                                                                                              (4.11) 
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where ‘eig’ denotes the eigenvalues of linearized state matrices z

iA   at the operating point 

specified for grade i. Note that the z

iA  state space matrices include all the inputs and outputs 

considered in the linear state-space representation shown in (4.4) and they must be identified 

at each optimization step, i.e., around the set of values specified for the methodology’s 

optimization variables d. Constraint (4.11) will therefore be added to the methodology’s 

optimization formulation to enforce nominal stability for the different operating points that 

need to be achieved by the system to produce the required grades. 

4.2.4 Cost Function 

The cost function Φ  considered in the presented methodology includes the capital cost, 

operating cost, variability cost and transition costs. The annualized capital costs ( CC ) refers 

to the fixed costs/capital investments associated with the process equipment and units in the 

process and is given by the following equation: 

),,(),,(
1

PP

I

i

iEEE ZWVfZWVfCC 


                                                                               (4.12) 

where 
EV is the size of the process equipment and 

EW is the annual capital recovery factor 

per unit size of equipment; iV  represents the size of the storage tank used to store product 

grade i  whereas 
PW is the annual capital recovery factor per unit size of that product storage 

tank. 
EZ  and 

PZ denote the per unit capital costs associated with the equipment and product 

tanks. The volume of the product tank is considered to be a measure of the variability in the 

product grade specification, i.e., with higher product variability due to disturbances and 
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model parameter uncertainty, more off-specification product is produced which leads to 

larger volumes of the product tanks thus affecting the plant’s economy.  

The operating cost OC represents the expenditure associated with production in terms of 

consumption of utilities; this cost can be calculated from the per unit rates for utilities. The 

variability cost VC aims to measure the effect of time-varying disturbances and model 

parameter uncertainty during the production stage, i.e., product variability.  

 

As shown in Figure 4.3(a), the minimum and maximum values around the set point for 

specification of a grade i can be used to calculate the variability cost as follows:   

totaliVi

SP

i

SP

i

I

1i

ip tPtMinCCCtMaxCtVC
i

/)))(())((( ,


                                              (4.13) 

where 
ipt is the production time required for grade i , totalt  is the total time of production 

cycle, SP

iC denotes the specification for product grade i , while )(tMaxC i  and )(tMinCi are 

the maximum and minimum values associated with the specification at any time t within the 

production time interval for the grade i, i.e., tpi. Both )(tMaxC i  and )(tMinCi are obtained 

from simulations of the non-linear closed loop process model closedf  for the production stages 

of grade i. The term iVP , is a user-defined penalty cost associated with product variability of 

grade i per unit time. Furthermore, the transition cost TC  represents the cost associated with 

the waste production during the transition from one grade to another, which is off-

specification. 



 

65 

 

The deviations ( )(t ) between the set-point associated with the grade specification ( SP

iC ) 

and the actual grade at time t  ( )(tCi
) are shown in Figure 4.3(b), which are used to calculate 

the transition cost. The deviations )(t are evaluated at discrete time intervals over transition 

period it . The time is discretized in N intervals and sum of squared errors is evaluated as 

follows: 

tNtntttttnSSE
N

n

i 


.......3,2,,0,)(
0

2                                                            (4.14) 

where, t is the sampling time at which deviations are evaluated, while tN represents the 

total integration time, i.e. transition period it . 

 

Figure 4.3. (a) Variability cost (b) transition cost 
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Accordingly, the transition cost can be estimated as follows: 





I

1i

totaliiiT tSSEtPTC /,                                                                                                      (4.15) 

where it is the transition time for the grade i  and 
iTP

,
 is the user-defined penalty during the 

transition stage from grade i-1 to grade i, which is the cost associated with the production of 

the off-specification product of grade i per unit time. 

4.2.5 Optimization Formulation 

Following the developments in the previous sub-sections, an MINLP optimization 

formulation to address the simultaneous design, scheduling and control can be formulated for 

multiproduct process that produces I number of grades of product under the influence of 

process disturbances ( η ) and model parameter uncertainty (w): 

ul

zz

k

z

k

z

k

lin

z

i

z

i

z

i

z

lin

z

i

z

i

z

lin

zzzzzz

zzzzzzz

zzzzzzz

ns

z

z

knsznitt

nszni

nszIi

nsztttttt

nszttttttt

nszttttttt

TCVCOCCCP

ikmnom

ddd

ωηηη

xA

φDxCΩ

φBxAx

wSΛκθyηuxh

Λwyuccxxg

wκθyηuxxf

c

d

SΛκd






















,..1,....1,)sin()(

..1,....1,0))((eig

..1,...1,

..1,0))(,,,),(),(),(),(),((

..1,0)),(),(),(),(),(),(),((

..1,0))(,),(),(),(),(),(),((

s.t.

)(min

,

1
],,[







Φ

            (4.16) 

where the decision variables (d) consist of process design variablesκ , tuning parameters for 

the control scheme consideredΛ and the scheduling parameters S. The design variables (κ ) 
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consist of fixed/equipment design parameters and nominal operating conditions for each 

grade i, i.e.  

( iu and iy ), while the scheduling parameters ( S ) involve the optimal sequence of production

s , which is a set of integer variables, i.e. 1x
Zs

I , and the set of transition slopes for each 

grade i, 1x
Rα

I . The remaining variables used in (4.16) are listed in the notation section. 

The optimization formulation shown in (4.16) involves the use of linearized closed-loop 

model, frequency response analysis, nominal stability check via eigenvalues and dynamic 

simulations of the actual process model in closed-loop under critical realizations in the 

disturbances and for each uncertain (discrete) scenario considered in the analysis. Given, an 

initial set of values in the decision variables 0d , an nonlinear process model ( f ), closed-loop 

control scheme ( g ), nominal values ( nomη ) and amplitudes ( mη ) for disturbances, product 

grade specifications (
SP

iC ) and demands (
ipV ) and critical scenarios for uncertain parameters 

( w ), the following steps are followed at each optimization step to evaluate the cost function 

and constraints included in problem (4.16):  

(1) For each grade i, the linearized closed loop model of the system is identified for each 

critical realization in uncertain parameters by linearization of nonlinear closed-loop model 

closedf  at the nominal operating steady state conditions specified by decision variables d. The 

linearized closed-loop model will be used to identify the critical frequencies in the process 

disturbances that are expected to generate the largest variability in the production stage of 

grade i, i.e., 
k,icω . 
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(2) For each grade i, the critical frequency (
k,icω ) is identified from the linearized model for 

each critical realization in uncertain parameters via frequency response analysis as described 

by equations (4.2)-(4.9). The disturbances are specified using the critical frequency and 

model parameter uncertainty scenarios as shown in (4.9).  

(3) For each grade i and each critical realization in the uncertain parameter zw , a stability 

check is performed for the nominal stability of the system via evaluation of the eigenvalues 

as shown in (4.11).   

(4) For each critical scenario in the uncertainty in the parameters, the transition and 

production for all the grades is achieved through simulation of the closed loop nonlinear 

process model closedf  of the system. This is achieved under the influence of critical 

realizations in the disturbances using (
k,icω ) and that were identified from step 2 for each 

grade i. 

(5)  The simulation results from the previous step are then used to evaluate the process 

constraints and each of the cost function terms described above. If an optimization criterion 

is met, the optimization algorithm stops, else it leaves the workflow and the steps are 

repeated with new set of decision variables, i.e. go back to step 1.  

Remarks  

The methodology presented in this work integrates the design, scheduling and control aspects 

of the multi-product plants under the influence of process disturbances and uncertainty in the 

parameters. These aspects are novel features for the optimal design of multi-product plants. 
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The process disturbances ( η ) are specified as sinusoidal functions at critical frequency 

obtained from the linearized closed-loop process model. This variability may not be the true 

worst-case since the responses for controlled variables are linearized. While the actual 

critical frequency that generates the worst-case variability in the controlled variables can be 

obtained from a formal dynamic feasibility analysis test [64,77,80], this test needs to be 

performed for each grade i and at each optimization step thus increasing the computational 

costs and may even become prohibitive if the problem under analysis is relatively large. The 

approach proposed here is expected to provide reasonabley accurate results since the critical 

frequency is identified under feedback control. As such, it is expected that the control actions 

will aim to maintain the system around a nominal operating point (i.e., the product grade’s 

set-point) thus making the linear closed-loop approximation valid. Tests need to be 

performed to evaluate this approximation. Furthermore, the approach of computing critical 

frequency corresponding to worst case variability can be assumed when there is no prior 

information available for the anticipated range of frequencies of the disturbances. For the 

cases where this information is available a priori, the anticipated range of frequencies for the 

disturbances can be used to design the controller instead of critical frequency in order to 

attenuate most of the typical anticipated disturbances at a given (pre-specified) frequency 

range. This can provide more realistic (less conservative) designs for the controller. 

Accordingly, equation (4.8) can be modified to represent this range of frequencies that 

correspond to anticipated disturbances as follows: 

22max )()(
,, ikklikklkl c

m

c IRAR  ηyηyηy   , ucl ik
 

,
                                                          (4.17) 
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where, l and l are lower and upper bounds on the frequencies which represent the 

anticipated range of frequencies for the process disturbances that have been pre-specified a 

priori.  

 Moreover, the process flow-sheet of the multi-product process has been assumed to remain 

the same throughout the calculations in the presented methodology. The control scheme has 

also been assumed to be fixed. This leads the methodology to be able to compute the process 

scheduling, design and control parameters only for the fixed flow sheet and control 

structures. To make the methodology robust to the changes in the flow-sheet and control 

schemes, advanced approaches need to be considered which result in higher computational 

costs. The application of such highly demanding approaches to the methodology of 

integration of scheduling, design and control is considered part of the future work in this 

study. In terms of product grades, the production of all the grades has been assumed to be 

consumed/sold before the production begins, i.e. availability of storage tanks has been 

assumed to be constant. All grades are produced only once in the complete operation cycle.  

4.3 Results and Discussions 

This section describes the two case studies developed for the application of the methodology 

described in this study. The two applications demonstrate the effect of simultaneous 

consideration of the three aspects on the overall cost of operation, i.e. design, control and 

scheduling. The results presented for these case studies were obtained using MATLAB 

software on system with a Win Server 2012, Intel® Core i7-3770 CPU 340GHz, 8 GB RAM.  
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4.3.1 Case Study 1: Non-isothermal CSTR  

The methodology discussed in the previous section was applied to a non-isothermal CSTR 

system with an irreversible reaction which is assumed to produce 3 grades of the product. 

Figure 4.4 shows the CSTR system pictorially with a reactor, control system and product 

tanks for the three grades to be produced which are to be filled one by one. However, the 

sequence of filling the tanks, i.e. the production of grades, is part of the decision variables. 

The case study has been developed to simultaneously determine the optimal design, control 

and scheduling parameters for the CSTR system under consideration, compare the results 

against the semi-sequential approach, i.e., optimal design and control followed by optimal 

scheduling, and evaluate the methodology’s capability to handle uncertainty in grade 

demands. 

 

Figure 4.4. Non-isothermal CSTR system 
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Mathematical Model  

An irreversible exothermic reaction BA  occurs in the CSTR for the production of 

product B from reactant A.  The reaction has been assumed to follow first-order dynamics 

and the reaction rate is given by the Arrhenius law as follows: 

)exp(0
RT

E
Ckr AA                                                                                                           (4.18) 

where 
AC (mol/L) is the concentration of reactant A inside the reactor at any time t , 0k is the 

pre-exponential factor (7.2 X 10
-10

), E is the activation energy (83145 J/mol) and R is the gas 

constant (8.3144 J/mol K). The CSTR system is equipped with a cooling jacket in order to 

maintain the temperature inside the reactor (T). The concentration of reactant A in the inlet 

stream )( ,FAC has been assumed to remain constant during the operation )mol/lit2( , FAC . 

The mechanistic dynamic model that describes the non-isothermal CSTR system is given as 

follows: 

qq
dt

dV
F                                                                                                                       (4.19)
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)( *

,00
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p

BFA
FF CCQ
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CC
RT

E
kH

V

TTq
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










                                       (4.20) 

V

qC
CC

RT

E
k

dt

dC FB
BFA

B  ))(exp( ,0                                                                            (4.21) 

Vuq 210                                                                                                                        (4.22) 

11909.48 uQC                                                                                                                   (4.23) 
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where the volume of the reactor )(V , the temperature inside the reactor )(T , and the product 

concentration )( BC are the states and outputs of the system. As shown in (4.22) and (4.23), 

the outlet flow-rate of the reactor q  is used to control the volume )(V or level in the reactor, 

while the heat flow to the system )( CQ has been used as a handle to control the amount of heat 

transferred to the CSTR system, respectively. There are two manipulated variables available 

in the system, i.e., 
1u and

2u ]),[( 21 uuu . The two manipulated variables are used to control 

the volume of the reactor )(V and the product concentration )( BC , respectively. The density of 

the fluid is  (1 X 10
3
 g/L), pC  is the fluid’s heat capacity (0.239 J/g K), while 0H  is the 

heat of reaction (4.78 X 10
4
  J/mol). 

Two PI controllers have been used to regulate this process. 
1CK and 

2CK represent the two 

controller gains whereas 1 and 2 are the time integral time constants for the two 

controllers, i.e. tuning parameters ]),,,[( 2121
CC KKΛ . The errors 1e and 2e  for the two 

controllers at any time t  represent the difference between the set-points )and( **

BCV and the 

controlled variables’ values at time t , i.e. V(t) and 
BC (t). The aim of the irreversible reaction 

is to produce required grades of product B. Each grade is characterized with specification in 

terms of product concentration )( *

iBC  and a demand in terms of product volume )(
ipV . As 

shown in Figure 4.4, the system consists of a reaction vessel and a dedicated product tank for 

each grade of product.  



 

74 

 

The dynamics of the product tank for grade i of product B can be represented by the 

following equation: 

q
dt

dV
iP


                                                                                                                            (4.24) 

The product tank for a particular grade starts filling as soon as required product specification 

of a grade is achieved, i.e. production period for grade i starts. The time at which the 

condition is satisfied gives the transition time required for the grade i, i.e. 
it . The product 

tank continues filling until the required product demand is achieved and specification has 

been maintained. The product tank is then instantaneously changed to the product tank for 

the next required grade of the product. The time at which this happens is the production time 

of the grade i. 

The following operational constraint has been applied in order to impose limits on the 

temperature of the CSTR: 

500)(430  tT                                                                                                                 (4.25) 

Process Disturbances  

Following the disturbance description shown in (4.2), the process disturbances 
FT  and 

Fq are 

defined as follows: 

)sin(10200)(

)sin(10450)(
,

tωtq

tωtT

,iFq

iFT

cF

cF




                                                                                                (4.26) 
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For each grade i, the critical frequencies (
,iFqiFT cc ωω ,

,
) used to generate the disturbances are 

obtained from the frequency response analysis of linearized closed-loop process model at 

operating conditions for each grade i specified by the decision variables d. 

Cost Function 

The annualized capital cost of the CSTR system associated with the volume of the reactor 

and the volume of the product grade tanks can be formulated as follows: 





I

1i

pi
V100V100CC )1.0(0)1.0(0                                                                                   (4.27) 

where V is the volume for the reactor whereas 
ipV  is the volume of product tank for grade i. 

To simplify the analysis, all costs associate with the equipment have been assigned the same 

value. Following (4.12), yrW /1.0 , Z = $1000, yrWP /1.0 and 
PZ = $1000. 

Moreover, the variability cost can be calculated by modifying (4.13) as follows: 

totalBBB

I

1i

Bp ttMinCCCtMaxCtVC
iiiii

/10)))(())((( ** 


                                               (4.28) 

where, 
*

iBC is the product grade specification, )(tC
iB is the value at time t for the product 

concentration, while the penalty for variability has been assigned the value of $10/(mol/lit)-

min. 

The operating cost can be calculated as follows: 

total

I

1i

cp tQ10tOC
ii

)/)((


                                                                                                    (4.29) 
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where,  
icQ  is the steady state value for heat duty at production of each grade i, while 10 is 

the per unit cost of heat per unit time. 

Furthermore, the transition cost can be calculated from (4.15) as follows, i.e., 

total

I

1i

ii tSSEtTC /10


                                                                                                      (4.30) 

where iSSE is the sum of squared errors during the transition period of the grade i  as shown 

in (4.14). The penalty for waste production has been assigned the value of $10/
 2  (mol/lit) -

min.  

Following the developments above, the optimization formulation has been solved for the 

CSTR system. The decision variables to be evaluated include volume of the reactor and 

steady state operating conditions for each grade ]) ,,[( 21 ii
uuVκ , tuning parameters for the 

two PI controllers ]),,,[( 2121
CC KKΛ , slopes for transition of each grade, i.e., 

321 ,,  , 

and the optimal sequence of production ( s ). 

Scenario 1 

This scenario has been developed to compare the results obtained via the present 

simultaneous approach and a semi-sequential approach. In the semi-sequential approach, the 

following procedure was considered: in the first step, decision variables related to process 

design and control (i.e. integration of design and control) are evaluated first and then, in the 

second step, the scheduling decision variables are determined while the design and control 

variables obtained in step 1 remain fixed in the calculations. The specifications and the 

demands of the required product grades considered for the problem addressed for this 
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scenario are reported in Table 4.1. The methodology has been used to obtain results for the 

CSTR system to integrate the scheduling, design and control aspects of the system. For each 

single function evaluation, values for the decision variables are selected by the optimization 

algorithm. These decision variables are further used to calculate for each grade i, steady-state 

operating conditions (
i

u1 ,
i

u2 , Ti ) by solving the process model (f) at steady state. For each 

grade i, the steady-state operating conditions are then used to identify a linear closed-loop 

model of the system as shown in (4.4). The resulting linear model is further used to identify 

the critical frequency (
ikc ,

 ) for each grade i for each process disturbance ),( FF qT as 

described by equations (4.7)-(4.12), which is used to specify the process disturbances as 

shown in (4.2). The closed-loop process model described by equations 4.18-4.24 is simulated 

for each critical scenario for uncertainty in product demand. The results from this simulation 

are then used to evaluate the process constraints and cost function shown in (4.16). This 

procedure is repeated until an optimization criterion is met. 

The results obtained from the implementation of the two approaches are reported in Table 4.1 

(Results). The decision variables obtained from each approach vary significantly from each 

other and there is approximately 20% improvement in the overall cost with the simultaneous 

approach as compared to the semi-sequential approach. The maximum improvement can be 

seen in the transition costs (~60%). The volume of the reactor (V), which is a design decision 

variable, is almost 8% less in the simultaneous approach than that obtained in semi-

sequential approach, while tuning parameters for the two controller are also significantly 
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different, which indicates that different process performance may be obtained from the two 

solution methods. 

Table 4.1. Grade specifications, demands and results for scenario 1, case study CSTR 

Grade Specifications and Demands 

Grade Product Concentration 

(mol/lit) 

Demand (lit) 

1 1.7023 3,000 

2 1.830 3,000 

3 1.950 3,000 

Results 

Decision Variables and Costs Simultaneous Approach Semi-Sequential Approach 

Design: 

V (L) 

 

80.6828 

 

87.416 

Control: 

21,,,
21

CC KK  
 

-13.634, -0.002, 7.40, 8.77 

 

- 5.425, -0.0016, 2.235, 9.314 

Scheduling: 

s (sequence of grades)

321 ,,  (transition slopes) 

 

2-1-3 

0.0872, -0.0803, 0.006 

 

 

2-1-3 

0.0131, -0.0281, 0.0011 

Capital Cost ($/yr) 15,715.53 18,844.25 

Operating Cost ($/yr) 1,021.1 1,699.1 

Variability Cost ($/yr) 131.616 318.66 

Transition Cost ($/yr) 153.18 382.39 

Total Cost ($/yr) 17,021.43 21,244.4 
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The slopes obtained for the transition between the grades of the product are observed to be 

more aggressive in the simultaneous approach as compared to the semi-sequential approach, 

which provide the basis for the improvement in the transition cost. The transition and 

production of various grades are depicted in Figure 4.5(a). The variability in the 

concentration is the result of process disturbances oscillating at critical frequency, which has 

a different value for each grade obtained via frequency response analysis of linearized 

process model at the different operating conditions specified by d. The process constraint on 

temperature has been satisfied throughout the operation of the entire production cycle as 

shown in Figure 4.5(b). Thus, the results obtained via two approaches show that the 

simultaneous methodology generates more economical solution as compared to the semi-

sequential approach. 

 

 

 

Figure 4.5. CSTR case study, scenario 1 (a) transition and production of product grade (b) 

temperature profile 
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Scenario 2 

This second scenario has been developed to evaluate the capability of the methodology 

developed in this study to handle uncertainty in the parameters. As shown in the 

methodology’s formulation in (4.16), a multi-scenario approach has been used for this 

purpose; critical scenarios have been created with a specific demand for each grade of the 

product. Each scenario has been assigned the probability of occurrence of the scenario. As 

shown in Table 4.2, four demand scenarios have been created with first scenario with 

uniform production demands, i.e., 3,000 lit of each grade having the highest probability of 

occurrence. The other three scenarios consist of maximum and minimum of the demands for 

each grade of the product. 

The optimization formulation presented in (4.16) has been modified for this scenario and the 

results obtained are also shown in Table 4.2 (Results). As shown in this table, the optimal 

volume of the reactor is 75.655 lit, while the optimal sequence of production is determined to 

be 2-1-3, which is same as in Scenario 1, i.e. without uncertainty in demands.  

The Figure 4.6 depicts the trends for transition and production of the grades in four critical 

scenarios for uncertainty in demands, where optimal smooth transitions between grades is the 

result of optimal transition slopes computed by the optimization formulation. This is 

achieved while maintaining the dynamic operability of this process under their corresponding 

constraints. 

In terms of computational costs, the computational time required to complete a single 

evaluation of the optimization formulation for Scenario 1 was 40 seconds on average, while 
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the solution was obtained in 2.5 hours. For Scenario 2, the single evaluation of the 

optimization formulation required 60 seconds on average, while the solution was obtained in 

3 hours. 

Table 4.2. Demands and Probabilities of Scenarios, CSTR 

Demand Scenario 
Demands of Product Grades 

(1,2,3)(L) 

Probability 

1 3,000, 3,000, 3,000 0.4 

2 5,000, 2,000, 1,000 0.3 

3 2,000, 5,000, 1,000 0.2 

4 1,000, 5,000, 2,000 0.1 

Results 

Decision Variables and Costs Values 

Design: 

V (L) 

 

75.655 

Control: 

21,,,
21

CC KK  
 

-16.4633, -0.073, 3.6428, 10.0432 

Scheduling: 

s (sequence of grades) 

321 ,,  (transition slopes) 

 

2-1-3 

0.0507, -0.510, 0.00265 

Total Cost ($/yr) 17,2059.9 
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Figure 4.6. CSTR case study, scenario 2, transition and production of product grades 

 

4.3.2 Case Study 2: HIPS Polymerization Reactor 

The second case study has been developed with the goal of demonstrating the capability of 

the methodology to be applied to a large-scale problem with a strongly nonlinear behavior. 

The case study focusses on integration of scheduling, design and control aspects for the high 

impact polystyrene (HIPS) process characterized by the parameters and the mathematical 

model [57]. The process is operated by the continuous stirred tank reactor with highly non-

linear reaction mechanism. The results are obtained for the critical uncertain scenarios 

developed for the varying product demands.  
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Mathematical Model 

Initiator Concentration: 

id
im

in

iii CK
V

CqCq

dt

dC



                                                                                                          (4.31) 

Monomer Concentration: 

)(
)( 00

brmP
m

in

mmm CK
V

CCq

dt

dC
 


                                                                                      (4.32) 

Butadiene Concentration: 

)(
)( 00

2 bfbrfsrib
b

in

bmb KKCKC
V

CCq

dt

dC
 


                                                                  (4.33) 

Radicals Concentration: 

)(2 21 bimiridfr
mr CKCKCCKeC

V

q

dt

dC



                                                                      (4.34) 

Branched radicals concentration: 

))(())(( 00

3

00

2 brbrtmibrbrfbribbr
mbr CKCKCKCKCC

V

q

dt

dC



                     (4.35) 

Reactor temperature: 

VC

TTUA
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V

q
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Jacket Temperature: 
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Zeroth moment live polymer: 

0200

0

)()(
2

rbfbmfsr

t

p

mp
CKCK

K

V

q

dt

d






                                                                    (4.38) 

First moment live polymer: 

1011

1

)( rbfbmfsrrtp
mp

CKCKK
V

q
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d



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                                                                          (4.39) 

Zeroth moment dead polymer: 
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rmprfbbfsmbrbrtmp

brfsmmrimir
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First moment dead polymer: 

)())(( 000001
1

rrmprfbbfsmbrbrtmpr
mr CKKCKCCKCK

V

q

dt

d
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Zeroth moment butadiene: 
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0

))((2 bmpbfbbfsmbrbrtmpmbrib
mb CKKCKCCKCKCCK
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q
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d

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


    (4.42) 

Number molecular weight distribution: 

00

11

rp

rp

wM







                                                                                                                               (4.43) 

where Ci, Cm, Cb, Cr, Cbr, T and Tj are the initiator concentration, monomer concentration, 

butadiene concentration, radicals concentration, branched radical concentration, reactor 

temperature and jacket temperature, respectively. The live polymer moments are denoted by 

0

p  and
1

p , with first being zeroth moment, while the latter is first moment.  Similarly, 
0

r  and 
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1

r  are zeroth and first dead polymer moments, while 0

b and 
0

b  are zeroth and first butadiene 

moments. 

The terms iq , mq  and
cwq  represent the initiator, monomer and cooling water flow rates, 

respectively. V  is the reactor volume, CV  is the jacket volume, while ρ is the density, Cp is 

the specific heat and 
rH is the heat of reaction. Initiator efficiency is denoted by fe , wM  is 

the number average molecular weight, U is the global heat transfer coefficient, A is the heat 

transfer area, K is the Arrhenius kinetic rate constant. The superscripts d, p, i0, i1, i2, i3, fs, 

fb, t on the reaction rates represent the different free radical reactions steps. The superscript 

‘in’ stands for feed stream conditions, while ‘cw’ refers to cooling water properties. The 

symbol‘s’ in the subscripts denotes styrene properties. The parameters are listed in Table 4.3. 

Control Scheme: 

Two PI controllers have been implemented with the aim of controlling monomer conversion

mx  and reactor temperatureT . The manipulated variables used in order to control these 

variables are monomer flow rate mq and cooling water flow rate 
cwq , respectively.

1CK and 

2CK represent the two controller gains, 1 and 2 are the time integral time constants for the 

two controllers, i.e. tuning parameters ]),,,[( 2121
CC KKΛ . The errors 1e and 2e  for the 

two controllers at any time t  represent the difference between the set-points ),( ** Txm and the 

values at time t , i.e. ))(),(( tTtxm
. 
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Following the descriptions provided for this process [57], the following operational 

constraints have been applied to impose limits on the temperature of the reactor and the 

number molecular weight distribution: 

420)(330  tT                                                                                                                           (4.44)

3000)(500  tM w                                                                                                                      (4.45) 

Process Disturbance  

Following the disturbance description presented in (4.2), the disturbance considered for this 

process, in

mC , is defined as follows: 

)sin(8.08.63)( tωtC
i,

in
mC

c

in

m                                                                                               (4.46) 

For each grade i, the critical frequency (
i,

in
mC

cω ) that produces the largest variability in mx and 

T is obtained from the frequency response analysis of linearized closed-loop process model 

at the operating conditions specified by the optimization formulation as part of decision 

variables (d) as explained in section 4.2.1. 
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Table 4.3. Case Study 2: HIPS model parameters 

Parameter   Description                                    Value 

)/(9858.1ConstantGasIdeal

19.5areatransferHeat

/1densityWater

/915.0densityMonomer

0.57factorEfficiency

/7067energyActivation

843energyActivation

/18000energyActivation

/14400energyActivation

/29508energyActivation

/7067energyActivation

/7067energyActivation

/7067energyActivation

/27340energyActivation

)/(10x1factorexp.Pre

)/(10x7.1factorexp.Pre

)/(10x3.2factorexp.Pre

)/(10x6.6factorexp.Pre

10x1.9factorexp.Pre

)/(10x1factorexp.Pre

)/(10x2factorexp.Pre

)/(10x1factorexp.Pre

)/(10x1.1factorexp.Pre

)/(80tcoefficientransferHeat

/7048.4045capacityheatWater

/265.1647capacityheatMonomer

/6.69919reactionofHeat

2000volumeJacket

/0547.1ionconcentratbutadieneInlet

/9814.0ionconcentratinitiatorInlet

/63.8ionconcentratmonomerInlet

294etemperaturInlet

cw

s

3

2

1

0

7

9

9

7

113

7

3

6

2

7

1

225

0

2

KmolcalR

mA

Lkg

Lkg

e

molcalE

KE

molcalE

molcalE

molcalE

molcalE

molcalE

molcalE

molcalE

smolLA

smolLA

smolLA

smolLA

sA

smolLA

smolLA

smolLA

smolLA

sKmJU

kgKJC

kgKJC

molJH

LV

LmolC

LmolC

LmolC

KT

2

f

p

t

fb

fs

d

i

i

i

i

p

t

fb

fs

d

i

i

i

i

pcw

ps

r

C

in

b

in

i

in

m

in


























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The capital cost of the HIPS system consists of the costs associated with the volume of the 

reactor and the volume of the tanks for product grades produced and can be formulated as 

follows: 





I

1i

iVVCC )1.0(1200)1.0(1200                                                                                (4.47) 

where V is the volume for the reactor, while iV  is the volume of product tank for grade i. To 

simplify the analysis, all the costs associated with equipment have been assigned the same 

value. Following (4.12), yrW /1.0 , Z = $1,200, yrWP /1.0 and  
PZ = $1,200. 

Moreover, the variability cost can be calculated by modifying (4.13) as follows: 

totalmmm

I

1i

mp ttxMinxxtxMaxtVC
iiiii

/35))))((()))(((( ** 


                                 (4.48) 

where, 
*

imx is the product grade specification, (t)x
im is the value at time t for the monomer 

conversion, while the penalty for variability has been assigned the value of $35 per unit 

deviation in conversion set point per unit time. The operating cost for this process can be 

calculated as follows: 

totalm

I

1i

cwp tqqtOC
iii

)/)(30)(20( 


                                                                                  (4.49) 

where cwq  and mq are the steady-state values for cold water flow and monomer flow at 

production of each grade i, which are weighted by the respective costs per unit, i.e. $20/(L)-

min and $30/(L)-min. 
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Furthermore, the transition cost can be calculated from (4.15) as follows, i.e. 

total

I

1i

ii tSSEtTC /35


                                                                                                         (4.50) 

where iSSE is the sum of squared errors during transition period of the grade i . The penalty 

for waste production has been assigned the value of $35 per unit squared error in conversion 

per unit time. The decision variables related to the design, control and scheduling aspects are 

evaluated for the optimal solution. The volume of the reactor and inlet temperature
inT

]),[( inTVκ  are the design decision variable, while tuning parameters for the two PI 

controllers ]),,,[( 2121
CC KKΛ  are the control decision variables to be evaluated. The 

scheduling decision variables include slopes for transition of each grade i.e.
4321 ,,,  and 

optimal sequence of production i.e. s. 

Following the developments described above, the optimization formulation shown in (4.16) 

is solved with the specifications of HIPS system described above. The specifications of four 

different grades are shown in Table 4.4 along with the information related to the critical 

scenarios created for uncertainty in the product demands. The results obtained for the 

integration of scheduling, design and control of the HIPS case study are shown in Table 4.5.  

Figure 4.7(a) depicts the transition and production of various grades under the critical 

realizations in the disturbance ( in

mC ) for the production demand uncertainty scenario that 

presented the maximum variability in the monomer conversion. In order to validate the linear 
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approximation used to generate worst-case variability, a test has been performed where 

process constraints have been evaluated for the range of frequencies. 

Table 4.4. Case Study 2: Product Specifications and demand scenarios, HIPS 

Grade Monomer conversion 

1 0.25 

2 0.30 

3 0.35 

4 0.40 

Scenario Demands of Product Grades: 

1,2,3,4 (L) 

Probability 

1 10,000, 10,000, 10,000, 10,000 0.4 

2 15,000, 12,000, 7,000, 5,000 0.3 

3 7,000, 15,000, 5,000, 12,000 0.2 

4 5,000, 12,000, 15,000, 7,000 0.1 

 

The range includes minimum, maximum and the critical frequency obtained from the linear 

approximation proposed in this work.  

For this range of frequencies the profiles of number-average molecular weight for the 

uncertain demand scenario that correspond to the maximum variability in the controlled 

variable are shown in Figure 4.7(b). It is clear from the figure that the largest variability in 

this variable corresponds to the critical frequency and constraints are not violated over a 

range of frequencies and thus the linear approximation is valid. 
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Table 4.5. Case Study 2: HIPS results 

Decision Variables and Costs Optimal Values 

Design:  

V (L) 

T
in

 (K) 

 

7174 

387.74 

Control:  

21,,,
21

CC KK  

 

-1.732, -0.0183, 1132, 23 

Scheduling:  

s (sequence of grades) 

4321 ,,,  (transition slopes) 

 

2-3-4-1 

0.0124, 0.0386, 0.0213,-0.0311 

Capital Cost($/yr) 5,256,360.641 

Operating Cost($/yr) 1,766,102.077 

Variability Cost($/yr) 19,317.941 

Transition Cost($/yr) 87,042.738 

Total Cost($/yr) 7,128,822.82 

 

The CPU time required for the second case study was very high as compared to case study 1 

because of the presence of non-linearity and the size of the problem. Each single function 

evaluation takes around 205 seconds, while it took approximately 8 hours to generate the 

solution for this case study. The approach presented here assumes a fixed flow-sheet of the 

process as well as a fixed control scheme, while the scheduling decisions (sequence of 

product grades) were made for 3-4 grades in the case studies. The application of multi-
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scenario approach to handle uncertainty increases the computational time as more uncertain 

parameters are added into the analysis, while adding more integer decision variables in the 

analysis for the structural decisions related to flow-sheet and control structure can further 

increase the methodology’s computational time. 

 

 

Figure 4.7. (a) transition and production of grade for the scenario with maximum variability (b) process constraints 

evaluated for the range of frequencies 

Similarly, increasing the number of scheduling decisions can also make the task 

computationally more challenging. Thus, in the future work, the trade-off needs to be taken 

into account in order to control the computational time while adding more integer decision 

variables in the analysis. 

The results from the case study demonstrate the capability of the methodology to be applied 

to a large scale non-linear problem in the presence of process disturbances with oscillatory 
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behavior at critical frequency determined for production each grade, while uncertainty has 

been addressed in product demands.  

4.4 Chapter Summary 

A new methodology for the simultaneous scheduling, design and control of multi-product 

processes has been presented in this chapter. The characteristics of the multi-product 

processes along with the optimization formulation proposed in this study to address the 

simultaneous design of these plants have been presented in detail. The methodology has been 

presented with mathematical details describing the key features. The specification of process 

disturbances has been presented which is based on the sinusoidal function operating at a 

critical frequency obtained from the frequency response analysis of the linearized closed loop 

process model. The limitation of this approach is use of fixed disturbance function, while 

generic distributions can be used to increase the applicability of the methodology. The 

disturbances specified at this critical frequency generate the maximum variability in the 

controlled variable which has been justified in case study 2. Another key feature of the 

methodology presented in this chapter is use of ramp functions for the smooth transitions 

between grades of product. The slopes of these ramp functions form part of the decision 

variables. Moreover, uncertainty in the parameters has also been considered in this 

methodology. A multi-scenario approach has been used, where critical uncertain scenarios 

have been created and probabilities have been assigned to each of them. Descriptions of all 

these features have been provided in this chapter with mathematical details. A simple CSTR 

case study has been developed in order demonstrate an application of the simultaneous 
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methodology and compare the results obtained against the semi-sequential approach. A larger 

scale process has also been used for another application of the methodology in order to show 

the capability of the methodology in handling larger problems.  Thus, the methodology that 

integrates scheduling, design and control for multi-product processes has been successfully 

developed and tested. 
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Chapter 5 

Conclusions and Recommendations 

 

Optimal scheduling is paramount in many chemical process industries where several 

operations are involved which depend upon each other while their schedule affects the 

economics of the industry. Applications of scheduling in actual industries need to be 

designed in order to develop practical and efficient methods that can improve the process 

economics. Along with this, research that is focused on the integration of scheduling with 

other aspects of the process economics also needs development of methodologies. The work 

presented in this thesis focuses on these two areas. A summary of the findings concluded 

from this work is presented in Section 5.1; while the scope of future work in this field is 

discussed through recommendations in Section 5.2. 

 

5.1 Conclusions 

 

Part of the research work developed in this thesis focuses on an application of optimal 

scheduling in an analytical services industry. In this work, an optimization-based scheduling 

algorithm was developed for better scheduling of operations in the facility owned by the 

industrial partner. The optimization framework is an application of integer programming (IP) 

and multi commodity flow, where each process at each time unit is tracked as a flow node. 

The proposed mathematical formulation has an objective function to minimize the 

turnaround time of the operations subject to resource, capacity and flow constraints. Flow 
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constraints ensure the balance of samples across the processes, while the resource and 

capacity constraints make sure that design capacities of the processes are not violated. One of 

the key contributions of the work is addressing the scheduling issues of commercial scale 

plants in the analytical services sector with operational characteristics that are less studied, 

which include large number of simultaneous scheduling decisions on the location of samples, 

the specific sequences of processes followed by large number of samples and varying 

processing times. This makes the problem size extensive in terms of number of decision 

variables with their specific nature. Two case studies were considered to demonstrate the 

performance of the scheduling algorithm developed in this study. The first case study is an 

illustrative process where the working principles of the scheduling algorithm are discussed 

through small examples. Effects of various parameters used in the model on the results have 

been demonstrated via different scenarios. The second case study is the comparison between 

results obtained via the present optimization algorithm against historical plant data and the 

results obtained by simulating the current policy implemented in the real plant, i.e. first-come 

first-served basis. The analysis of the latter study shows potential improvement in the 

turnaround time of the operations. The results also show significantly less variance in the 

operations in terms of work performed each day, which is an additional positive outcome 

besides the objective of the study. The CPU time required to generate schedules each day (an 

eight hour shift) is 130 seconds on an average depending on the number of samples under 

consideration for scheduling. 
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Apart from an industrial application of optimal scheduling, the research work performed in 

this thesis also consists of the development of a methodology for integration of scheduling, 

design and control for the multi-product processes. The key novelty introduced by this 

methodology is that it explicitly addresses the scheduling, design and control simultaneously 

while taking into account the influence of process disturbances and uncertainty in the 

parameters, which aims to represent the actual operation of these processes. The process 

disturbances are specified as sinusoidal signals at critical frequency, which are determined 

via frequency response analysis. The uncertainty in the parameters has been addressed via 

multi-scenario approach, where critical scenarios were created and probability of occurrence 

was assigned for each of them. Another feature of study is in terms of smooth transitions 

between different product grades. Ramp functions have been used for the transition and the 

slopes of these ramps which determine the rate of transitions were part of decision variables. 

Two case studies were developed with first case study focusing in the comparison of a semi-

sequential approach to the simultaneous methodology developed in this work for the 

integration of scheduling, design and control. The improved results obtained from the 

simultaneous methodology in this case study demonstrate the need of integration of 

scheduling, design and control. The second case study tests the capability of the methodology 

in the application of larger non-linear process. This case study is larger in size and requires 

larger computational time, where solutions are generated in approximately 8 hours. The 

results from the case studies show that the methodology developed in this work is a practical 
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approach that can integrate the scheduling, design and control aspects of the large multi-

product processes.  

 

5.2 Recommendations 

The research work presented in this thesis has contributed in the field of optimal scheduling 

as well as integration of scheduling with design and control. The work can be further 

extended in several ways which involves working on the assumptions considered during the 

development of this work as well as taking into account some new factors. The following text 

discusses the possible way forward in the presented work.  

 

 Optimal Scheduling in an Analytical Services Industry 

The case studies presented in the Chapter 3 have demonstrated the potential of the 

scheduling algorithm developed in this work; however, there is scope to extend the work 

to address several factors that are present as operational characteristics of the analytical 

services industry. These characteristics include uncertainties in processing times, 

resource availability and account for re-analyses. The uncertainties can be addressed 

using stochastic programming techniques. The investigation of the uncertainties present 

in historical data can be the first step towards developing a formulation that can handle 

uncertainty in the process. The identification of the distribution that may possibly 

describe the uncertainty present in processing times or availability of resources can be 

very useful in this regard. As described in Chapter 3, one of the assumptions made is 

same characteristics for all the resources, i.e., all resources for a process have the same 
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formulation which requires further investigation in the available literature with similar 

capacities. In an actual analytical service facility, resources having different 

characteristics may be used and therefore, there is a need to investigate further in order to 

make the algorithm robust. The size of the problem considered in this study is fairly large 

involving 8,256 decision variables for location of samples per day and 304 decision 

variables for the resources, therefore, techniques can be employed/ developed in order to 

control the problem size. One of the methods to do this may be the development of a 

continuous time applications. Furthermore, another potential extension to the current 

work may be personnel reallocation. As the analytical services industry involves several 

processes which require different skills to operate the available machinery/programs, 

there is dedicated group of operators to work on each process, while there may be human 

resources possessing multiple skills to work on different processes. The scheduling 

problem can be augmented with the decisions on human resources (labor) available to 

operate various machines as per the availability of the work staff. This feature can 

potentially be developed considering multiple skill sets of the staff in order to address the 

optimal assignment of tasks. However, development of these features may add extra 

complexity to the existing problem and increase the computational costs associated with 

it. 

 

 

 

 



 

100 

 

 Integration of Scheduling, Design and Control for Multi-product Processes 

The methodology developed in this work and that was successfully tested with a CSTR 

case study has demonstrated the advantages of the simultaneous methodology over the 

semi-sequential approach, while a larger case study with HIPS process proved the 

applicability of the proposed methodology to a larger problem. Although, the features 

developed as parts of the methodology depict its importance, several factors can be 

considered in the future path of this work. In term of process disturbances, the 

methodology can be tested with specification of disturbances with functions other than 

sinusoid so as to increase the applicability of the methodologies to the processes with 

disturbances following different distributions/functions. Uncertainty considered for the 

case studies was limited to product demands, while in actual processes the uncertainty is 

also present in different parameters, which may include reaction parameters, heat transfer 

parameters, etc. Another area that can be considered for potential extension is the control 

scheme.  The case studies developed within this work only considered traditional 

Proportional-Integral (PI) controllers, while the methodology can be further tested using 

advanced control schemes like Model Predictive Control (MPC). Another potential 

extension to this study is accounting for structural decisions in the process/control 

schemes. 
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