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Abstract

In this thesis we consider the problem of choosing financial assets from the equity
markets for portfolio construction purposes. We adapt various measures to model the
dependence structure among financial assets, taking both the linear and the non-linear re-
lationships into consideration. The dependence structure is reflected by the social networks.
We apply the data clustering technique (Frey and Dueck, 2007) to the social networks and
study the equity selections based on different dependence measures. The regime switching
model (Perlin, 2014) is considered as well in order to identify the changes in the market
phases. The performance of the equity selections is evaluated within the mean-variance
framework. In addition, we present a diversification analysis of the equity selections with
the methodology proposed by Meucci (2009). The numerical tests are applied on three
major Chinese equity markets. Through changing the market environment, we acquire a
good understanding of the influencing factors for choosing financial assets.
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Chapter 1

Introduction

1.1 Overview

Over the past few decades, asset allocation theories have been actively studied by re-
searchers and widely used by practitioners. To fulfill the need of seeking profits while
avoiding potential risk of loss during the investment process, a robust portfolio strategy
plays a key role.

Markowitz’s mean-variance model was introduced more than 60 years ago and it is still
considered as one of the most popular approaches in portfolio optimization. Under a given
set of constraints, the investor could either seek minimizing its portfolio’s variance for a
given expected return or maximizing the expected return with a specified variance.

A major flaw of the classical mean-variance model is the assumption that returns admit
multivariate normality with constant correlation. Nowadays, there is compelling evidence
that the assets’ return distributions are asymmetrical with extreme correlations. The tra-
ditional linear correlation alone is not sufficient to reveal the dependence structure among
returns. As a result, new dependence measures such as tail dependence have been intro-
duced to financial literatures. The emergence of these dependence measures has energized
the study of portfolio theories as they are capable of capturing the observed non-linear
dependence structure.

In this thesis, we will consider a portfolio construction problem focus on stock selection.
More explicitly, we assume that an investor is participating in a large equity market, e.g.
Shanghai Stock Exchange A which contains over 800 trading stocks. The task would be
how to select stocks from the market. This is highly intuitive because the risky assets
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composing a portfolio should be chosen based on some principles. Also, a portfolio which
is either too small or too large will impose difficulties on the investor’s management. We
are interested in studying this topic from a new perspective called social network analysis
(SNE). The good feature about using this technique is that the SNE offers a possibility
of dimension reduction based on various dependence structures. We can view the stock
selection process as a dimension reduction process. Stocks chosen by such a technique are
usually less correlated.

An investor will also like to evaluate risk from suffering a heavy loss in his portfolio.
In mitigating such risk, the utilization of a diversification principle in a portfolio shall
not be ignored. To tackle this problem, we introduce a proper measure of diversification
for portfolios. Many popular methodologies have been proposed to act on diversification
analysis. In this thesis, we are interested in using a mean-diversification framework to
evaluate our portfolios.

In summary, the main goal of this thesis is to reasonably select stocks for portfolio
construction from large equity markets. Such a selection methodology should be built upon
consideration of various dependence structures. Then, we evaluate the portfolio selections
in a mean-variance framework and measure their diversification in a mean-diversification
framework. Before dwelling into our work, let us introduce some related works from the
literature.

1.2 Selected Literature Review

Since the appropriateness of linear correlation for financial time series came under close
scrutiny, a number of study has been performed to study nonlinear correlations. Longin
and Solnik (2001) study the conditional correlation structure of stock returns on five largest
international equity markets (US, UK, France, Germany and Japan). A method for deriv-
ing a distribution of conditional tail correlation using extreme value theory is developed
in their paper. Their results suggest that equities are more correlated when US market is
moving downside than upside. Ang and Chen (2002) perform tests on US equity market,
comparing the correlations implied by a normal distribution with those conditional on bear
markets. They find that the latter are higher on average. Their study also shows stocks
exhibiting stronger asymmetric correlations. Patton (2004) explores influences on portfolio
decisions by asymmetric dependence between stocks. They use a copula approach to model
dependence structure and find that models capturing asymmetric dependence yield better
portfolio performance. Hong et al. (2007) extend Ang and Chen(2002)’s work by providing
a test on symmetry which does not require specifying a statistical model on data. Their
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empirical facts show that portfolios with strong asymmetric betas and covariances tend to
have better performance. Chordia et al. (2011) search for reasons that account for asym-
metric correlations between return distributions. They conjecture that trading activity in
small stocks performed by retail investors leads to asymmetric correlations. Zhao and Lin
(2011) measure the dependence structure in stock markets from the perspective of a copula
entropy. The copula entropy approach they apply under a non-Gaussian distribution as-
sumption results in a superior numerical analysis. They show that the copula entropy could
be used as an alternative approach to compute another dependence measure named mu-
tual information. As so many approaches have been proposed in the literature to measure
the dependence structure of financial data more accurately, we are motivated in putting
various measures of dependence structures into our portfolio construction framework.

On the other hand, equity market usually consists of thousands of securities. From the
computational point of view, we are dealing with high dimensional financial data. Hence,
one has to find a suitable low-dimensional representation of the data that can be used for
portfolio problems, i.e. dimension reduction (Putzig et al., 2010). In various financial ap-
plications, dimension reduction techniques have proved to be quite helpful in tackling the
aforementioned problem. Boyle et al. (2008) show that using a dimension reduction tech-
nique leads to a dramatic improvement in the efficiency of simulation-based computation
of optimal portfolios. Resta (2011) proposes a model to uncover the underlying assets in a
portfolio. He suggests that assets’ dynamics can be characterized by a number of factors,
but only a few of them play as dynamics’ natural drivers. By utilizing dimension reduc-
tion techniques, an asset drivers framework is developed such that the driving factors are
extracted, while those less significant ones are excluded from consideration. Bai and Shi
(2011) examine different dimension reduction techniques in estimating high dimensional
covariance matrices of financial data, including factor analysis and principal components
analysis. Lai et al. (2011) demonstrate that dimension reduction can facilitate parameter
estimation with the issue of large number of assets relative to trading periods. Factor
models are implemented in the article to reduce the number of parameters to be estimated
in an empirical Bayes approach. Papanicolaou (2013) considers a market with partial in-
formation. An approximate dynamic programming algorithm is proposed because a typical
dynamic programming problem in an optimal portfolio is non-Markovian and it is diffi-
cult to compute. The approximate dynamic program in the paper initializes a dimension
reduction process from the high-dimensionality of the non-Markovian problem. Takano
and Gotoh (2014) study an optimal portfolio problem in multi-period using a kernel-based
framework. A kernel principal component analysis is introduced to reduce the size of the
optimization problem. The optimization model with a dimension reduction technique em-
ployed has several advantages, e.g. higher computation efficiency and better investment
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performance. At this point, we have already understood the importance of dimension
reduction in studying high dimensional problems. Indeed, the initial task of choosing a
certain number of securities from a huge market in our case is a high dimensional problem.

Therefore, we are in need of a scheme which takes both various dependence structures
and dimension reduction into consideration. In this sense, social network analysis (SNE),
may act as a powerful tool. The idea underlying the SNE is intuitive. Firstly, social
network is used to study different kinds of relationships in social science, which is also
applicable to dependence structures in assets’ returns. Secondly, a dimension reduction
process can be perceived as a clustering process in SNE. Few social network techniques
have been applied to stock selection process in the literature so far. However, networks
have already been introduced into different financial aspects. Mantegna (1999) seems to
be the first who utilizes network methods to study financial markets. Mantegna computes
the correlation coefficients between the logarithm of stock price and uses them to measure
the distances between stocks trading in the market. A graph representing the hierarchical
structure of the financial market is obtained based on those distances. This graph is known
as the minimal spanning tree (MST). Extending Mantegna (1999)’s work, Bonanno et al.
(2003) study stock network’s properties of minimal spanning tree based on correlations.
Their results point out that the spanning tree obtained by empirical data is a complex
network, which can not be accurately reproduced or approximated by ordinary models.
Onnela et al. (2003) also study minimal spanning tree of correlations between stocks.
Their work focuses more on the time dependence and shows that during the episode of a
“bear market”, the whole network shrinks topologically due to correlations between stocks.
This is related to the fact that the network graph is built upon some highly connected
nodes. The tree network developed in their paper can also facilitate a characterization of
the market taxonomy and proves to be robust. Eom et al. (2006) focus their study on
finding factors that affect a specific stock’s relations to other stocks in the network. Eom
et al. (2009)’s study combine property of stock networks and random matrix theory. They
compare the stock network developed from actual returns and the one from correlation
matrix created by random matrix theory. Eom et al. (2006) suggest that the consistency
between two networks is positively related to the number of eigenvalues considered. In the
following year, Mantegna and other researchers dedicate more work to correlation based
networks. In Tumminello et al. (2010), they propose some ways to construct different
network models such as hierarchical trees from the correlation matrix. Partial correlation
network is investigated in Kenett et al. (2010) to unveil the underlying backbone of the
correlation structure of the market. The idea in the paper is to detect the influence on
the correlation between two stocks caused by a third one. Tabaka et al. (2010) provide
a network analysis on different sectors in a stock market. Štefan Lyócsa et al. (2012)
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demonstrate a comparison of properties of minimal spanning trees obtained by dynamic
conditional correlations and by rolling window correlations. Apart from the literature which
only focuses on properties of minimal spanning tree or other patterns of stock networks,
some researchers view the term ’network’ from wider aspects. Schweitzer et al. (2009)
emphasize the need for a good understanding of economic networks in the background of
financial crisis. Ferrara and Fiumara (2012) particularly examine different models’ ability
to describe social network’s structure. Nettleton (2013) reviews the popular concepts and
tools in social networks focusing on their graph structure and discuss their applications
in some topics. Hereby, we have introduced the development of study on stock networks
originated from Mantegna (1999) and some applications of social network analysis. Social
network is another branch of network theory and has not drawn much attention in financial
application yet. Recall that our main goal is to select a pool of stocks from the market.
In the context of SNE, we want to initialize a stock clustering process. Social network
graph’s property of forming clusters around its vertices suitably provides a path to solve this
question. Meanwhile, the ”distances” between all nodes on the graph work as a measure
of dependence structure among assets’ returns. Different dependence structures will lead
to different graphs. If we are able to locate precise vertices on some well constructed
stock clusters, these ”nodes” stocks would be our choice of elements to be inserted into the
portfolio.

Imagine now that we had already selected some stocks to compose our initial port-
folio. A natural step to follow is to reasonably allocate our wealth to assets in order to
construct the portfolio. Here, we briefly review the development of portfolio theory. The
modern portfolio theory is built upon Markowitz (1952)’s work “Portfolio Selection”. A
framework of describing portfolios is established in the article with the insight that assets’
risks and returns are viewed together in terms of variances and means. For this reason,
the framework is also known as a mean-variance model. The framework states that a
portfolio is considered to be optimal if the expected return of the portfolio is maximized
for a given level of risk (proxied by the standard deviation of the portfolio’s expected re-
turns) or has a minimized risk level for a given level of the portfolio’s expected return.
In both views, portfolio optimizations are achieved but they differ in the fact that in the
former the objective function is linear with the constraints being quadratic whereas the
latter is a quadratic optimization with linear constraints. In the following few decades,
various new approaches are introduced to extend this famous framework. The Capital
Asset Pricing Model (CAPM) proposed by Sharpe (1964) considers a very important ap-
plication of mean-variance analysis. CAPM takes into consideration the equilibrium asset
pricing consequences of investors’ individually rational actions and provides a foundation
for an asset pricing model (Pennacchi, 2007). It introduces a capital market line and sug-
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gests an efficient portfolio is actually a linear combination of the market portfolio and the
risk-free asset. Ross (1976) proposes Arbitrage Pricing Theory (APT), which is a gener-
alization of CAPM. Instead of considering a single risk factor, assets’ returns are driven
by multiple risk factors. Merton (1972) derives an analytical solution of portfolio weights
in mean-variance framework when assets’ returns and their covariance matrix are given.
Nowadays, portfolio theory is being enriched as new techniques are introduced. The new
methods include but are not limited to evaluating portfolios in new risk measures (Value
at Risk, Expected Shortfall), robust portfolio construction approaches (Black-Litterman
approaches, shrinkage approaches, resampled approaches), regime switching techniques
etc.

Evaluating portfolios plays an active role in risk management. At this stage we assume
that a portfolio consisting of the chosen stocks is constructed. We have efficiently allo-
cated our wealth. An adequate diversification will guarantee a less risky portfolio against
fat-tailed underlying distributions or other risk source. Put differently, a well diversified
portfolio is not exposed to any risk factor that might evidently drive returns. Meucci (2005)
introduces different backgrounds of diversification in the context of asset allocation. An
effective methodology to perform diversification analysis on portfolios is then proposed by
Meucci (2009). In the paper Meucci utilizes principal component analysis to decompose
risk sources and introduces Shannon (1948)’s entropy as the representation of a diversifica-
tion measure. Xiong (2009) and d-fine GmbH (2011) put Meucci’s diversification technique
into practice separately. Other applications of Shannon’s entropy is reviewed in Zhou et al.
(2013).

1.3 Issues and Methods

As we mention above, researchers study the dependence structure of assets’ returns from a
new perspective. Also, various techniques of dimension reduction have been implemented
to process large financial data. A network method is capable of taking both aspects into
account. However, the minimal spanning tree method suffers from certain limitations.
Firstly, the stock networks built from this methodology can only reveal linear relationships
whereas other nonlinear patterns of dependence structure are not considered. Secondly,
such networks are mainly constructed in hierarchical forms (trees) other than the clustering
forms by k-means or fuzzy-C method. The expansion of a hierarchical tree can reflect the
overall relationship among its nodes but it is still difficult to capture some nodes (or stocks)
as its “representatives”. In other words, it is not efficient when we are looking for some
cluster centers.
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In the thesis, we tackle the stock selection problem within a social network framework
to overcome those issues. We study the association structure among all stocks through
various dependence measures, i.e. linear correlation, rank correlations, tail dependence
and mutual information. The nonlinear measures are constructed via copulas. Then, we
construct stock networks through an efficient clustering technique proposed by Frey and
Dueck (2007) so that the networks’ structures are revealed by various dependence measures.
We choose the cluster centers of a network as the stocks to be included in a portfolio. Such
a scheme also considers regime changes in the market. We use a Markov Regime Swithing
Model to identify different market phases.

Then, we evaluate the portfolio selection based on different dependence measures and
market phases. Such a task is achieved within a mean-variance framework. In order to
mitigate the risk of suffering heavy loss, we also measure the portfolio diversification against
different risk sources with a diversification framework proposed by Meucci (2009).

The thesis structure is designed as follows:

In Chapter 2, we introduce the foundation for the theoretical framework used in this
thesis.

In Chapter 3, we perform the social network clustering analysis to achieve the goal of
stock selection. Various dependence measures and the regime switching effects are
studied within the social network clustering framework.

In Chapter 4, we make a comparative analysis to evaluate the portfolio selection through
the mean-variance and the mean-diversification framework. The analysis suggests
the suitable stock selection under various market environment. The influence of the
dependence measures, portfolio sizes and regime switching effect are examined in the
analysis.

In Chapter 5, we conclude our findings.
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Chapter 2

Theoretical Backgrounds

In this chapter, we will introduce some background studies to lay the theoretical foundation
for methods used in this thesis. We firstly discuss how to construct various dependence
measures via copulas. Then, we introduce the framework of social network analysis and
the mechanism of Affinity Propagation Clustering with an improvement criterion. Finally,
we introduce the mean-variance framework and the diversification technique as evaluation
tools for the portfolio selections.

2.1 Modeling Dependence Structure

The statistical features of financial time series can be described by multi-variate distribu-
tions of random vectors. Both univariate and multivariate distributions of financial time
series are observed with some stylized facts such as heavy-tailed return series, extreme re-
turns clustering, coincidence of extreme returns between some series, etc. Hence, to obtain
a good understanding of the dynamics of our underlying securities, we need a model which
is able to describe probabilistic properties of distributions of time series and the dependence
structure among them (McNeil et al., 2005). The concept of copula, since 1990s, is often
used in the financial literature to tackle the above question due to its various advantages
in the flexibility and completeness of characterizing multivariate distributions’ properties.
If we say a joint distribution implicitly consists of two parts: individual properties of its
marginal distributions and a pattern of dependence structure associated with them, copula
method will make it possible to decompose the two parts and explain the latter with cop-
ula’s special features. Copula also leads to the derivation of some important dependence
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measures, such as rank correlations and coefficients of tail dependence. In this sense, cop-
ula is chosen to be the base point of our introduction of this section. There are many good
textbooks discussing copulas, such as Nelsen (2006), Cherubini et al. (2004), McNeil et al.
(2005), Kemp (2010), Cherubini et al. (2011), Rĺźschendorf (2013). We will only introduce
the basics of copulas and some dependence measures that serve the purposes of this thesis.
We mainly refer to McNeil et al. (2005) in the definition of relevant concepts.

2.1.1 Introduction of Copulas

In this subsection, we discuss the concept of copulas.
Consider a general d-dimensional random vector X = (X1, . . . , Xd)

′
. The joint distri-

bution function of X can be written as

FX(x) = FX(x1, . . . , xd) = P [X 6 x] = P [X1 6 x1, . . . , Xd 6 xd] . (2.1)

For simplicity, we write F instead of FX . Then, the marginal distributions of X can be
characterized by the marginal distribution function FXi , or simply Fi. For all i we have

Fi(xi) = P [Xi 6 xi] = F (∞, . . . ,∞, xi,∞, . . . ,∞). (2.2)

We refer to fi, the ith partial derivative of F , as the ith marginal density function of X,
if the marginal distribution function Fi is absolutely continuous. Inversely, if there exists
some non-negative function f so that

F (x1, . . . , xd) =
∫ x1

−∞
. . .
∫ xd

−∞
f(u1, . . . , ud)du1 . . . dud, (2.3)

we say that the distribution function F is absolutely continuous with f being the corre-
sponding joint density function ofX. We note here that the existence of marginal densities
for all k-dimensional marginals can be implied by the existence of a joint density. Nonethe-
less, the existence of marginal densities does not necessarily imply the existence of a joint
density (McNeil et al., 2005).

For simplicity, we introduce the following concepts in terms of bivariate cases. They
can also be generalized to a high dimensional case.

Let R denote the ordinary real line (−∞,∞), R the extended real line [−∞,∞]. The
extended real plane R×R is denoted by R2. Let the Cartesian product B = [x1, x2]×[y1, y2]
denote a rectangle in R2. Then, the points (x1, y1), (x1, y2), (x2, y1) and (x2, y2) are all the
vertices of rectangle B. A 2-place real function H is a function whose domain, denoted by
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DomH, is a subset of R2 and whose range, denoted by RanH, is a subset of R (Nelsen,
2006).

Definition 2.1.1. Let A1 and A2 be two non-empty subsets of R. Let ai denote the least
element of Ai, i = 1, 2. A 2-place real function H : A1 × A2 → R is called grounded if, for
all (x, y) in A1 × A2,

H(a1, y) = 0 = H(x, a2).

Definition 2.1.2. Consider the same function H : A1×A2 → R. Let B = [x1, x2]× [y1, y2]
denote a rectangle all of whose vertices lie in A1 × A2, such that x1 6 x2, y1 6 y2. Then
the H-volume of B is defined as

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1). (2.4)

Definition 2.1.3. A 2-place real function H : A1 × A2 → R is called 2-increasing if
VH(B) > 0 for all rectangles B whose vertices are in A1 × A2.

The H-volume of B can actually be regarded as a measure of mass of rectangle B in
the domain of 2-place real function H (Cherubini et al., 2004).

Lemma 2.1.4. Let a 2-place real function H : A1×A2 → R be grounded and 2-increasing.
Then H is nondecreasing in each argument. Proof. see Nelsen (2006).

Lemma 2.1.5. Let a 2-place real function H : A1×A2 → R be grounded 2-increasing and
with margins. Let (x1, y1) and (x2, y2) be any points in A1 × A2. Then

|H(x2, y2)−H(x1, y1)| 6 |F (x2)− F (x1)|+ |G(y2)−G(y1)| .

Proof. see Nelsen (2006).

With the above results, we can proceed to the definition of copulas.

Definition 2.1.6. (Nelsen, 2006) A two-dimensional subcopula C is a real function with
the following properties:

1. C is defined on S1×S2, where S1 and S2 are non-empty subsets of I = [0, 1] containing
0 and 1:

C : S1 × S2 → I;

2. C is grounded and 2-increasing;
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3. For every u in S1 and v in S2, C(u, 1) = u and C(1, v) = v.

As 0 6 C(u, v) 6 1 for every (x, y) in the domain of C, the range of C is a subset of I.

Definition 2.1.7. (Nelsen, 2006) A two-dimensional copula C is two-dimensional subcop-
ula whose domain is I2:

C : I2 → I

with the following properties:

1. For every u, v in I,
C(u, 0) = 0 = C(0, v), (2.5)

and
C(u, 1) = u, C(1, v) = v; (2.6)

2. For every u1, u2, v1, v2 in I such that u1 6 u2 and v1 6 v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) > 0. (2.7)

Note here since C(u, v) = VC ([0, u]× [0, v]), C(u, v) can be viewed as a number in I,
which measures rectangle [0, u]× [0, v].

Theorem 2.1.8. C is a subcopula, then for every (u, v) in the domain of C,

max(u+ v − 1, 0) 6 C(u, v) 6 min(u, v). (2.8)

Proof. See Nelsen (2006).

Let M(u, v) = min(u, v) and W (u, v) = max(u + v − 1, 0). Then for every copula C
and every (u, v) in I2,

W (u, v) 6 C(u, v) 6M(u, v). (2.9)

Inequality 2.9 is the Fréchet-Hoeffding bounds inequality for copula, with M being the
Fréchet-Hoeffding upper bound and W being the Fréchet-Hoeffding lower bound. M(u, v)
and W (u, v) are called maximum copula and minimum copula respectively, another impor-
tant copula is the product copula (or independence copula) ∏(u, v) = uv.

Theorem 2.1.9. If C is a subcopula, then for every (u1, v1), (u2, v2) in the domain of C,

|C(u2, v2)− C(u1, v1)| 6 |u2 − u1|+ |v2 − v1| . (2.10)

11



Proof. Let C denote H and set F (x) = x,G(y) = y in Lemma 2.1.5.

Theorem 2.1.9 reveals that a subcopula C is uniformly continuous on its domain. Since
C is grounded 2-increasing, it is also nondecreasing on its domain. These are two very
important properties of subcopula. Definition 2.1.6, 2.1.7 and Theorem 2.1.9 tell us that
a copula is actually a joint distribution function of standard uniform distributions:

C(u, v) = P [U 6 u, V 6 v] . (2.11)

Definition 2.1.10. (Nelsen, 2006) The diagonal section of a copula C is the function δC
from I to I defined by δC(t) = C(t, t).

Theorem 2.1.11. (Nelsen, 2006) Let C be a copula. For any v in I, the partial derivative
∂C(u, v)/∂u exists for almost all u, and for such v and u,

0 6
∂

∂u
C(u, v) 6 1. (2.12)

Likewise, for any u in I, the partial derivative ∂C(u, v)/∂v exists for almost all v, and for
such v and u,

0 6
∂

∂v
C(u, v) 6 1. (2.13)

Furthermore, the functions u 7→ ∂C(u, v)/∂v and v 7→ ∂C(u, v)/∂u are defined and non-
decreasing almost everywhere on I. Proof. See Nelsen (2006)

Definition 2.1.12. (Nelsen, 2006) A quasi-inverse of distribution function F is any func-
tion F (−1) with domain I such that

1. if u is in RanF , then F (−1)(u) is any number x in R such that F (x) = u, i.e., for all
u in RanF ,

F (F (−1)(u)) = u;

2. if u is not in RanF , then

F (−1)(u) = inf {x | F (x) > u} = sup {x | F (x) 6 u} .

If F is strictly increasing, then it has a unique quasi-inverse, which is known as the ordinary
inverse F−1. In the following context, we mainly refer to F−1.

Next, we introduce the core in copula theory: Sklar’s theorem, which links multivariate
distribution functions and their margins together.

12



Theorem 2.1.13. Sklar (1959)’s theorem. Let H be a joint distribution function with
margins F and G. Then there exists a copula C such that for all x, y in R,

H(x, y) = C(F (x), G(y)). (2.14)

If the margins F and G are continuous, then copula C is unique; otherwise C is uniquely
determined on RanF×RanG. Conversely, if C is a copula and F and G are distribution
functions, then the function H defined in 2.14 is a joint distribution function with margins
F and G.

Proof. For full proof, please see Nelsen (2006). Here we give a very intuitive proof. By
Equation 2.11 and Definition 2.1.12 we have:

H(x, y) = P [X 6 x, Y 6 y]
= P

[
F−1(U) 6 x,G−1(V ) 6 y

]
= P [U 6 F (x), V 6 G(y)]
= C(F (x), G(y)). (2.15)

If we substitute F (x) and G(y) with u and v respectively in Equation 2.14 and reverse
the proof of 2.15, then we can obtain the following corollary.

Corollary 3.3.13. Let H be a joint distribution function with margins F and G, and let
F (−1) and G(−1) be their quasi-inverses respectively. Then there exists a subcopula C, for
any (u, v) in the domain of C,

C(u, v) = H(F (−1)(u), G(−1)(v)). (2.16)

If F and G are continuous, Corollary 2.1.1 applies to copulas and Equation 2.16 can
be written as:

C(u, v) = H(F−1(u), G−1(v)). (2.17)

Equation 2.17 offers us a way of constructing copulas from joint distribution functions
(Nelsen, 2006). On the other hand, in practice, we can use multiple statistical tools to
accurately estimate marginal distributions F (u), G(v), nonetheless the joint distribution
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is usually difficult to describe due to the complex dependence structure. In this sense,
Equation 2.14 simply explains how copulas can handle this task.

Before we head into the next subsection that deals with different classes of copulas,
we will introduce one more concept, the copula density. Theorem 2.1.11 tells us about
the property of partial derivative of copula. Although the joint density of copula may not
always exist, in our context we can say the density exists almost everywhere in the interior
of I2 and is non-negative.

Definition 2.1.14. Let C be a copula, the density c associated to copula C is described
by

c(u, v) = ∂2C(u, v)
∂u∂v

. (2.18)

Suppose that in Equation 2.14, the joint density of H(x, y) is denoted by h(x, y) while
the densities of H(x, y)’s marginal distributions F (x), G(y) are denoted by f(x), g(y) re-
spectively, and also suppose they are all continuous. Then, by Sklar’s Theorem 2.1.13, we
can see the relationship between the copula density and the density of distribution H:

H(x, y) = C(F (x), G(y))
∂2H(x, y)
∂x∂y

= ∂2C(F (x), G(y))
∂x∂y

h(x, y) = c(F (x), G(y))f(x)g(y). (2.19)

Hence, Equation 2.19 indicates that the joint density of distribution H equals the
product of its copula density and densities of marginal distributions.

2.1.2 Classes of copulas

In this subsection, we briefly present some frequently used copulas in financial applications.
There are various kinds of copulas in their big family and each of them possesses some

unique features. For those most popular ones, McNeil et al. (2005) divided them into three
categories: fundamental copulas, e.g. maximum copula, minimum copula and independence
copula we introduced in Theorem 2.1.8, which represent some extreme dependence struc-
tures; implicit copulas which are built from Sklar’s Theorem 2.1.13, e.g. Gaussian copula
and t-copula, which nonetheless are difficult to be expressed in closed-form in high dimen-
sions; explicit copulas, e.g. Gumble copula, Clayton copula and Frank copula, which have
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simple closed-forms and can be easily constructed from Sklar’s Theorem 2.1.13. Cheru-
bini et al. (2011) also call implicit copulas and explicit copulas as elliptical copulas and
Archimedean copulas, respectively, based on the way they are constructed. We will first
represent the Archimedean families and then discuss Gaussian copula and t-copula.

For simplicity, we still stick to bivariate cases. To step into the Archimedean copulas,
consider two heuristic concepts: pseudo-inverse and generator.

Definition 2.1.15. (Nelsen, 2006) Let ϕ be a continuous, strictly decreasing function
ϕ : I → R+ such that ϕ(1) = 0. The pseudo-inverse of ϕ is the function ϕ[−1] with
Domϕ[−1] = R+ and Ranϕ[−1] = I given by

ϕ[−1](t) =
{
ϕ−1(t), if 0 6 t 6 ϕ(0),

0, ϕ(0) 6 t 6 +∞. (2.20)

Note here ϕ[−1] is continuous and non-increasing on R+, and strictly decreasing on [0, ϕ(0)].
In addition,

ϕ[−1](ϕ(u)) = u, for every u ∈ I.
Finally,

ϕ[−1] = ϕ−1, if ϕ(0) = +∞.

Definition 2.1.16. Let ϕ be a continuous, strictly decreasing and convex function ϕ :
I → R+ such that ϕ(1) = 0, then ϕ is called a generator. ϕ is called a strict generator
whenever ϕ(0) = +∞.

Definition 2.1.17. Let ϕ be a generator and ϕ[−1] be its pseudo-inverse given by 2.20.
An Archimedean copula C : I2 → I is generated as follows:

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)). (2.21)

Given Equation 2.21, copulas can be constructed with proper generators. Next we will
introduce three most popular one-parameter Archimedean copulas whose generators ϕθ(t)
are indexed by one parameter θ.

Definition 2.1.18. Let generator ϕθ(t) = (− ln t)θ, with θ ∈ [1,+∞]. The Gumbel copula
is given by:

Cθ(u, v) = exp
(
−
[
(− ln u)θ + (− ln v)θ

]1/θ)
. (2.22)

Gumbel copula equals product copula ∏(u, v) if θ = 1, and Fréchet-Hoeffding upper bound
M(u, v) if θ → +∞.
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Definition 2.1.19. Let generator ϕθ(t) = 1
θ

(t−θ − 1), with θ ∈ [−1, 0) ∪ (0,+∞). The
Clayton copula is given by:

Cθ(u, v) = max
[(
u−θ + v−θ − 1

)−1/θ
, 0
]
. (2.23)

Clayton copula equals Fréchet-Hoeffding lower bound W (u, v) if θ = −1, and Fréchet-
Hoeffding upper bound M(u, v) if θ → +∞. Furthermore, Clayton copula becomes product
copula if θ = 0.

Definition 2.1.20. Define a generator ϕθ(t) = − ln e−θt−1
e−θ−1 , with e = lim

n→∞

(
1 + 1

n

)n
and

θ ∈ (−∞, 0) ∪ (0,+∞). The Frank copula is given by:

Cθ(u, v) = −1
θ

ln
1 +

(
e−θu − 1

) (
e−θv − 1

)
e−θ − 1

 . (2.24)

Frank copula attains a Fréchet-Hoeffding lower bound W (u, v) if θ → −∞, and a Fréchet-
Hoeffding upper bound M(u, v) if θ → +∞. Furthermore, Frank copula becomes product
copula if θ = 0.

Next, we will present the Gaussian copula and t-copula. Recall that Equation 2.17 could
be used to construct copulas from marginal distributions. This illustrates how Gaussian
copula and t-copula can be defined.

Definition 2.1.21. Let Φρ denote the joint distribution function of a bivariate standard
normal vectors, with a linear correlation coefficient ρ. Let Φ denote the marginal standard
normal distribution function. The Gaussian copula is given by:

CGa(u, v) = Φρ

(
Φ−1(u),Φ−1(v)

)
=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1
2π
√

1− ρ2 exp
(
−s

2 − 2ρst+ t2

2 (1− ρ2)

)
dsdt. (2.25)

The density of Gaussian copula is then given by:

cGa(u, v) = 1√
1− ρ2 exp

(
s2 + t2

2 − s2 − 2ρst+ t2

2 (1− ρ2)

)
. (2.26)

Gaussian copula has a wide range of financial applications, especially in credit market
(Cherubini et al., 2011).
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Definition 2.1.22. Let tν denote the univariate Student’s t distribution function with ν
degrees of freedom. Let tν,ρ denote the bivariate distribution corresponding to tν with ρ in
I. The Student’s t-copula is given by:

Ct
ν,ρ(u, v) = tν,ρ

(
t−1
ν (u), t−1

ν (v)
)

=
∫ t−1

ν (u)

−∞

∫ t−1
ν (v)

−∞

1
2π
√

1− ρ2 exp
(

1 + s2 − 2ρst+ t2

ν (1− ρ2)

)− ν+2
2

dsdt. (2.27)

t-copula will converge to Gaussian copula as the degree of freedom ν diverges (Cherubini
et al., 2004). However, the t-copula captures more observations in the tails comparing to
the Gaussian copula, making it more suitable in capturing tail dependence. In the next
subsection, we will discuss the concept of dependence structure and how the copulas relate
to it.

2.1.3 Dependence

This subsection plays a key role in this thesis as the social network clustering methodology
for stock selection totally relies on some descriptions of dependence structures. There is a
variety of forms to measure the dependence, namely:

1. the traditional linear correlation which captures the linear relationship between ran-
dom vectors;

2. the rank correlations which aim at capturing concordance (roughly speaking, concor-
dance represents the fact that extreme values tend to appear together with respect
to a pair of random vectors, while non extreme values of random vectors are less
associated);

3. the tail dependence measures, which flexibly describe tails of the joint distribution
function through different copulas.

Most of the above measures of dependence structures are related to copulas in terms
of the ways they are constructed. We will start from the basic linear correlation.

Suppose we have two continuous univariate random vector X, Y . Let E[·] denote the
mean of a random vector, and var(·) denote the variance of a random vector. Then the
covariance is denoted by:

σX,Y = cov(X, Y ) = E[XY ]− E[X]E[Y ]. (2.28)
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Definition 2.1.23. Given two continuous univariate random vector X, Y , the Pearson
linear correlation coefficient is given by:

ρLX,Y = cov(X, Y )√
var(X)var(Y )

. (2.29)

The linear correlation coefficient is designed to effectively capture the linear relationship
between random vectors, however it is not very suited to measure dependence structures
that are nonlinear. In other words, it can cause issues if we are studying some non normal
distributions (Cherubini et al., 2011).

Different from the linear correlation which depends both the joint distribution and
marginal distributions, rank correlations, as measures of dependence, can be constructed
independently of the marginal distribution (McNeil et al., 2005). Normally, the rank
correlations refer to Kendall’s τ and Spearman’s ρS.

Kendall’s τ is a measure of concordance between random vectors. Suppose that we
have bivariate random vectors (X, Y ). If Y tends to increase with X, then we say that
the probability of concordance is relatively high; if Y tends to decrease with increasing X,
then we say the opposite. To understand this measure, we use the following definition of
Kendall’s τ .

Definition 2.1.24. (Nelsen, 2006) Let (X1, Y1) and (X2, Y2) denote two independent and
identically distributed bivariate random vectors with the same joint distribution function
H. Then the Kendall’s τ is defined as the probability of concordance minus the probability
of discordance:

τX,Y = P [(X1 −X2) (Y1 − Y2) > 0]− P [(X1 −X2) (Y1 − Y2) < 0] . (2.30)

Kendall’s τ can also be presented in terms of copula (for details please see Cherubini
et al. (2004) and Nelsen (2006)). The following definition presents the relationship between
them.

Definition 2.1.25. Let X, Y be continuous random variables whose copula is C. Then
the Kendall’s τ is given by:

τX,Y = τC = 4
∫∫

I2
C(u, v)dC(u, v)− 1. (2.31)

In addition to Kendall’s τ , another rank correlation measuring concordance is Spear-
man’s ρSX,Y .
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Definition 2.1.26. (Nelsen, 2006) Let (X1, Y1), (X2, Y2) and (X3, Y3) denote three inde-
pendent random vectors with the same joint distribution function H. Then the Spearman’s
ρ is defined as follows:

ρSX,Y = 3 (P [(X1 −X2) (Y1 − Y3) > 0]− P [(X1 −X2) (Y1 − Y3) < 0]) . (2.32)

Similar to Kendall’s τ , Spearman’s ρ can be interpreted in terms of a copula as well.

Definition 2.1.27. Let X, Y be continuous random variables whose copula is C. Then
the Spearman’s ρ is given by:

ρSX,Y = ρC = 12
∫∫

I2
C(u, v)dudv − 3. (2.33)

Spearman’s ρ is somehow linked to the linear correlation. In Equation 2.29, we present
a linear correlation by random vectors X, Y . Suppose X, Y are characterized by marginal
distribution function F (X), G(Y ) and joint distribution H(X, Y ) with copula C(u, v). If
we substitute random vectors X, Y with their corresponding marginal probability measures
F (X), G(Y ), we obtain another interpretation of Spearman’s ρ:

ρSX,Y = cov(F (X), G(Y ))√
var(F (X))var(G(Y ))

= cov(U, V )√
var(U)var(V ))

= E[UV ]− E[U ]E[V ]√
var(U)var(V ))

. (2.34)

Since in copula C(u, v), U, V are uniformly distributed, E[U ] = E[V ] = 1/2, var[U ] =
var[V ] = 1/12, we can rewrite Equation 2.34 in the form of Equation 2.33. In this sense,
Spearman’s ρ can be perceived as the linear correlation of probability-transformed random
vectors (Cherubini et al., 2011):

ρS(X, Y ) = ρL(F (X), G(Y )).

Pearson’s linear correlation, Kendall’s τ and Spearman’s ρ are all symmetric dependence
measures ranging from −1 to 1. If the random vectors are mutually independent, they all
take the value 0, but not visa versa. As we mentioned above, rank correlations do not
depend on marginal distributions. Hence, they can be estimated by the ranks of empirical
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data alone. In addition, due to the connection to copulas, rank correlations can capture
nonlinear dependence which linear correlation can not offer. In practical applications, rank
correlations are quite useful in calibrating copulas to data (McNeil et al., 2005).

Previously we mentioned financial time series are often not distributed as Normal with
extreme correlations, presenting fat tails and other extreme correlations. The associa-
tion between extreme values can be described by tail dependence. In other words, tail
dependence measures the dependence between tail distributions of random vectors. The
coefficients of tail dependence can be defined using the concept of ”limiting conditional
probabilities of quantile exceedances” (McNeil et al., 2005). A detailed definition is given
by Nelsen (2006):

Definition 2.1.28. Let X, Y denote two continuous random variables with distribution
functions F and G, respectively. The coefficient of upper tail dependence λU is defined as
the limit (if it exists) of the conditional probability that Y exceeds the t-th quantile of G
given that X exceeds the t-th quantile of F as t approaches 1, i.e.

λU = lim
t→1−

P
[
Y > G(−1)(t)|X > F (−1)(t)

]
. (2.35)

Likewise, the coefficient of lower tail dependence λL is defined as the limit (if it exists) of
the conditional probability that Y is less than or equal to the t-th quantile of G given that
X is less than or equal to the t-th quantile of F as t approaches 0, i.e.

λL = lim
t→0+

P
[
Y 6 G(−1)(t)|X 6 F (−1)(t)

]
. (2.36)

Similar to rank correlations, tail dependence depends only on the copula of random
vectors. Equation 2.35 and 2.36 can be rewritten in terms of copulas. Let C be the copula
of X, Y in Definition 2.1.28, then for lower tail dependence λL we have:

λL = lim
t→0+

P
[
Y 6 G(−1)(t)|X 6 F (−1)(t)

]
= lim

t→0+
P [G(Y ) 6 t|F (X) 6 t]

= lim
t→0+

P [G(Y ) 6 t, F (X) 6 t]
P [F (X) 6 t]

= lim
t→0+

C(t, t)
t

(2.37)

= δ
′

C(0+), (2.38)

where δC(·) is the diagonal section of copula (see Definition 2.1.10).
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Accordingly, the upper tail dependence λU can be rewritten as:
λU = lim

t→1−
P
[
Y > G(−1)(t)|X > F (−1)(t)

]
= lim

t→1−
1− 2t+ C(t, t)

1− t (2.39)

= 2− δ′C(1−). (2.40)

By looking at Equation 2.37 and Equation 2.39, we understand the way a copula inter-
prets tail dependences. Copula C admits upper (or lower) tail dependence if λU (or λL)
takes value in (0, 1], and presents no upper (or lower) tail dependence if λU = 0 (or λL = 0).
In the last part of this subsection, we will present the expressions of tail dependence of
some copulas discussed before.

The bivariate Gumbel and Clayton family of Archmedean copulas admits upper and
lower tail dependence respectively. Suppose that the bivariate Archmedean copulas are
indexed by one parameter θ, then the coefficient of upper tail dependence of Gumbel
copula is given by:

λGuU = lim
t→1−

1− 2t+ CGu
θ (t, t)

1− t = 2− lim
t→1−

CGu
θ (t, t)− 1
t− 1 = 2− 21/θ. (2.41)

Accordingly, the coefficient of lower tail dependence of Clayton copula is given by:

λClL = lim
t→0+

CCl
θ (t, t)
t

= 2−1/θ. (2.42)

Neither Gumbel copula nor Clayton copula admits tail dependence on the other end.
Frank copula shows no tail dependence on both ends. Due to the property of uniquely
presenting tail dependence on one side, Gumbel copula and Clayton copula are frequently
implemented in studying asymmetric distributions. For example, Gumbel copula enables
us to model the association of extreme gains between two assets while Clayton copula
enables us to handle the case of extreme losses.

Gaussian copulas show no tail dependence on two ends unless the correlation coefficient
ρ equals 1. In this extreme case, λU = λL = 1. This is called the asymptotic independence
of the Gaussian copula (McNeil et al., 2005).

In contrast, Student t-copula presents both upper and lower tail dependence of the
same magnitude. Follow the settings in Definition 2.1.22, the symmetrical tail dependence
of t-copula is given by:

λtU = λtL = 2tν+1

−
√

(ν + 1)(1− ρ)
1 + ρ

 . (2.43)
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Given ρ > −1, bivariate t-copula shows asymptotic dependence in both tails (also called
radial symmetry (McNeil et al., 2005)).

Up to now, we have introduced three main dependence measures: linear correlation,
rank correlations and tail dependence. Linear correlation mainly captures the linear rela-
tionship between random vectors while rank correlations and tail dependence focus more
on the non-linear association between random vectors. The rank correlations are designed
to describe the concordance while tail dependence measures the strength of association in
the tails of a bivariate distribution. Dependence measures are closely linked to copulas
in different aspects and their coefficients can be estimated from the data. In the next
subsection, we will quickly introduce the basic technique of calibrating copula from data.

2.1.4 Fitting Copulas to Data

As we presented above, copulas are good expressions for multivariate distributions. If we
can obtain an accurate estimation of the copula parameters from raw data, we say the
copula is properly fitted to the data. Currently, the most popular methodology that can
be applied is the maximum likelihood estimation (MLE). The exhaustive theory of MLE is
too long (usually due to the needs of solving complex numerical optimizations and mixed
derivatives involved in likelihood (Cherubini et al., 2004)) for this thesis and out of its
purpose. Here we provide the basic idea of implementing the method.

Recall that the multivariate distribution functions given in Equations 2.1, 2.2 and the
copula density given in Equation 2.19. In a d-dimensional random vector, we have:

f(x1, x2, . . . , xd) = c(F1(x1), F2(x2), . . . , Fd(xd)) ·
d∏
i=1

fi(xi), (2.44)

where c is the copula density of F (X), f is the joint density of X and fi is the marginal
density of Xi.

Based on Equation 2.44, a scheme for estimating copula could generally be split into
two steps:

1. Estimation of the marginal distributions of raw data;

2. Estimation of proper copula parameters via MLE.

In practice, we rarely observe copula data directly. Hence, to estimate copulas, we have
to model their marginal distributions first, i.e. obtaining estimation of Fi and fi for i =
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1, . . . , d. Then, we transform the sample marginal distribution (X̂1, . . . , X̂d) into standard
uniform distribution (Û1, . . . , Ûd) and estimate copula parameters through MLE.

Suppose that we have N observations for each marginal random variable. Thus, the
log-likelihood function is given by:

l(θ) =
N∑
j=1

ln c(F1(x1j), . . . , Fd(xdj)) +
N∑
j=1

d∑
i=1

ln fi(xij), (2.45)

where θ denotes all of the parameters (including those of both copula and marginal p.d.f.s)
to be estimated. Given the forms of sample marginal p.d.f.s fi and a target copula function,
the maximum likelihood estimator is then given by:

θ̂MLE = max
θ∈Θ

l(θ). (2.46)

Moreover, in a so-called Canonical Maximum Likelihood (CML) method (Cherubini et al.,
2004) where only copula parameters are to be estimated, the log-likelihood 2.45 could
simply be written as:

lnL(θ; Û1, . . . , Ûd) =
d∑
i=1

ln cθ(Ûi), (2.47)

where θ is the set of copula parameters to be estimated in C, and Ûi denotes the observa-
tions of copula transformed from marginals X̂i. By maximizing CML 2.47, we obtain the
MLE θ.

There are other methods that can be used to estimate the copula parameters, e.g non-
parametric estimation, Method-of-Moment using rank correlation, eigenvalue method and
so on (McNeil et al., 2005). As to MLE, the task of estimation presents difficulties in high
dimensions as it carries a heavy computational load. Decomposing the whole task into two
steps of estimating marginals and copulas separately allow us to pick the statistical model
that best fits marginal distribution and plug in the copula function.

2.2 Social Network Clustering

This section is devoted to the question on how to view the dependence structure between
assets’ returns under a social network framework. We first look at the basic concepts of
social network analysis and discuss the essential tools related to this thesis. Then, we
introduce a data clustering technique proposed by Frey and Dueck (2007), in order to
separate assets into different groups.
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2.2.1 Introduction of Social Network Analysis

As often used in studying social science in the past few decades, Social Network Analysis
(SNA) has various definitions. In a way, SNA is a branch of Network Science, whose
objective is to understand networks emerging in nature, technology and society using a
unified set of tools and principles (Du, 2014). Wasserman and Faust (1994) argue that SNA
focuses on the importance of relationships among interacting units and contains theories,
models, and applications which involves interpretations of relational concepts or processes.
They also mention that the units in SNA is not the individual, but an entity consisting of
a collection of individuals and the linkages among them. Briefly speaking, SNA could be
seen as the mapping and measuring of relationships and flows between entities. The term
entities could represent different concepts and in our case, they are the stocks trading in
market. Intuitively, we know there are no independent stocks and we want to study the
patterns of ties among them.

Social network analysis can be performed by mathematical models or statistical meth-
ods, and in this thesis, we mainly need two concepts from them: Graph Theory and Network
Structure. There are many common terminologies used in both concepts such as centrality
and clustering.

Graph theory generally speaks of the study of graphs. We could view a graph as a
mathematical representation of a network modeling pairwise relations between entities. A
graph basically consists of a set of:

1. Nodes or Vertices which stand for the individuals in the whole network;

2. Edges or Arcs that connect certain pairs of nodes.

In this thesis, we set each node as an individual security. In this sense, the edges connecting
the nodes (securities) could be seen as a certain pattern of the dependence structure among
them, e.g. correlations or tail dependence. Note that a graph may be directed, meaning
that there is a direction on the edge associated with a certain pair of nodes. But we
can skip this concern since we perceive dependence structure as a mutually equivalent
relationship among two financial assets. For instance, we show in Figure 2.1 two sample
graphs of stock networks. Each node on both graphs represents a certain stock trading
in the market. The edges illustrate linear relationships among them. Note that there
should be such ties between all of the nodes, the above figures are designed to facilitate
the understanding of clustering, which reflects a relatively strong relationships inside one
group.
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(a) 2 clusters of stocks (b) 11 clusters of stocks

Figure 2.1: Sample graphs of stock network after clustering based on linear correlation.

Alternatively, graphs can be represented in a quantified way. One of the basic method
for mathematically describing a social network is the Adjacency Matrix :

A =


0 1 1 0 1
1 0 1 0 1
1 1 0 1 0
0 0 1 0 1
1 1 0 1 0

 .

In the above matrix, each “1” means there exists a certain pattern of relationship (or edge)
between the corresponding two entities (or nodes). Likewise, “0” means no ties among
them. Since we are studying such ties between nodes but nodes themselves, all diagonal
cells are set to “0”. One drawback of this kind of adjacency matrix is that there could exists
too many “0” entries, thus making the density of social network quite low. To deal with
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this issue, we alter the above matrix so that it could be interpreted as a “valued graph”:

A =


0 a1,2 · · · a1,n
a2,1 0 · · · a2,n

... ... . . . ...
an,1 an,2 · · · 0

 . (2.48)

In this new matrix, each cell ai,j stands for a quantified relationship between nodes i
and j, e.g, a linear correlation ranging from -1 to 1 among returns of two securities. With
the knowledge that all stocks are correlated with each other at certain levels (we will show
it later in Chapter 3), almost all entries except diagonals are filled with nonzero values.

Alternatively, each ai,j in the adjacency matrix A could be transformed and then viewed
as a measure of distance between nodes on a graph. In other words, we are looking at how
close or how far the nodes are to each other instead of directly saying whether there
exists ties among them. We mainly refer to the Euclidean distance which measures nodes’
similarity. The similarity can be obtained by a certain transformation of each cell in the
above adjacency matrix A. For instance, suppose that each ai,j in A is originally given
by ρLi,j (2.29), the linear correlation between certain entities i and j as an indicator of
similarity. Then we assign a

′
i,j =

√
2(1− ai,j). We can easily tell that the more positively

correlated a pair of nodes is, the shorter their distance is and vice versa. In this sense, the
new matrix A′ of a′i,j is treated as a numerical expression of similarity among all nodes.
In addition, when we study this pattern of relationship, it is always symmetrical, thus
making a

′
i,j = a

′
j,i. This means that we only need to learn the network from a highly

dense triangular matrix. The intriguing feature of this transformation is that all types of
parameters measuring dependence introduced in 2.1.3 can be inserted into the adjacency
matrix, yielding new similarity matrices which capture the specific dependence structure
in place of distance. We will introduce afterwards how it contributes to the process of
clustering.

Now we describe the basic features of graphs for social network analysis. The building
block of SNA is the network structure. Imagine a case in which we can numerically
explain entities’ relationships by means of a similarity matrix. We might be interested in
the question: “which is(are) the most important or central entity(entities) in a network?”
This question may have multiple answers, depending on what we mean by importance. It
naturally leads to the term centrality in network structure. There are various centrality
measures, e.g. degree centrality, betweenness centrality, closeness centrality, eigenvector
centrality, page rank centrality etc. In this thesis, we are particularly interested in closeness
centrality since it analogously follows the content of similarity matrix. Generally, closeness
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centrality in a network states that the more central a node is, the lower it total distance
to all other nodes.

To be able to locate those “central nodes” on a social network, we will need assistance
from the clustering technique. Strictly speaking, we will divide all nodes into certain groups
so that within each group all nodes are geometrically close while the nodes from different
groups are relatively distant. Such groups are called clusters. Then we will find a centrality
within each cluster. Such centrality is treated as a representative locally since it is close
or strongly tied to all of the remaining nodes inside its cluster.

The ordinary clustering methods include hierarchical clustering, k-means clustering,
fuzzy C-means clustering and etc. Each of them possesses certain advantages and limit-
edness. In applications, we often face the clustering problem with enormous data and the
number of potential clusters is unknown. Due to these reasons, Frey and Dueck (2007)
devised clustering by affinity propagation which efficiently provides good solutions. In the
next subsection, we briefly discuss this technique.

2.2.2 Clustering by Affinity Propagation

A typical task in data clustering is to identify certain “central nodes” in the whole network.
A traditional way to accomplish this is the K-means Clustering. Briefly speaking, we first
assign a presumed number of clusters and randomly pick the same amount of nodes from
all data points which are treated as initial centrality. Then we construct initial clusters
based on these nodes and look for a set of better centrality within each cluster. We
recursively refine the results by this step until we reach a stable solution. However, we
could obtain some very distinguished solutions from the same experiment when choosing
initial choices randomly1. To get a convincing result requires picking the nodes closest to
the “real centrality”. In addition, the number of clusters we presume in advance might not
be coherent with the real data structure. The above two issues are the major drawbacks of
K-means Clustering. The Clustering by Affinity Propagation (AP) (Frey and Dueck, 2007)
effectively resolves those issues since it does not assume the amount of clusters and treats
all points as potential centrality (which are given the name exemplars in their paper).

AP considers a measure of similarities between pairs of nodes in a network. Suppose
that we have n nodes in total with a n× n similarity matrix S taking the form as in 2.48
(note that the diagonal entries will no longer be zeros). Then each entry s(i, k) in the
matrix is a real value indicating to what degree is node k suitable as the exemplar for node

1In K-means Clustering, distinguished solutions could exist due to the structure of raw data.
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i. Such s(i, k) could be obtained by different applications. One typical example is the
Euclidean distance introduced in Section 2.2.1, in which s(i, k) takes value as

√
2(1− ρLi,k).

Meanwhile, the feature of not prescribing the number of clusters in AP is realized by the
diagonal elements s(k, k). They are not taking the value of 0. Instead, they take real values
referred to as “preferences” with notion p(k)1 for node k. Certain node k (k = 1, 2, . . . , n)
associated with a greater input value s(k, k) (greater “preference” p(k)) possesses a higher
probability of being chosen as an exemplar. Alternatively, given that the data structure
is known at the beginning, we can assign a common value to all s(k, k) (k = 1, 2, . . . , n),
meaning all nodes share the same probability of being identified as exemplars initially. In
this case, assigning a great value of preferences2 initially will result in a large number of
clusters at last.

Then, the mechanism of AP is built upon two kinds of messages transfered between
all nodes. Frey and Dueck (2007) define two terms to interpret them, the “responsibility”
with notion r(i, k) and “availability” with notion a(i, k). The “responsibility” r(i, k) is the
message sent from node i to a potential exemplar k. It works as a collection of evidence and
indicates how good is node k at serving as the exemplar for node i, considering all other
potential exemplars for i. On the other hand, the “availability” a(i, k) is the message sent
from a potential exemplar k to node i. It is also a collection of evidence telling the fact to
what extent it will be appropriate for node i to choose node k as its exemplar, considering all
other nodes choosing node k as their exemplar. r(i, k) shares an accumulative relationship
with a(i, k). It can be displayed by iterating the following rules:

 r(i, k)← s(i, k)−max
{
a(i, k′) + s(i, k′)

}
, k

′s.t.k′ 6= k,

a(i, k)← min
{

0, r(k, k) +∑max
{

0, r(i′ , k)
}}

, i
′s.t.i′ 6= i, k.

(2.49)

Initially, we will set all availabilities a(i, k) at 0. Hence, during the initial iteration of
r(i, k) in 2.49, it does not take into consideration that the rest of the nodes will choose
other exemplars. After a few iterations, some nodes may find it better to be assigned to
other exemplars rather than node k. This can be shown in the second rule of 2.49: their
availabilities a(i, k) become negative. In return, certain negative values a(i, k′) will weaken
the influences of their pairwise similarities s(i, k′) in the first rule, kicking the corresponding
potential exemplars out of the game. In order to control the positive responsibilities in
the second rule, a minimum threshold is added to assure that a(i, k) is not greater than 0.
When it comes to a special case such as i = k, Frey and Dueck (2007) name r(k, k) and

1The “preference” p(k) means the initial value assigned to the diagonal element s(k, k) in the similarity
matrix S. The input value of p(k) will have an influence on the potential exemplar node k.

2p(k) usually takes value from the interval of similarities.
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a(k, k) as “self-responsibility” and “self-availability” respectively. They are given by:
 r(k, k)← s(k, k)−max

{
s(k, k′)

}
, k

′s.t.k′ 6= k,

a(k, k)← ∑max
{

0, r(i′ , k)
}
, i

′s.t.i′ 6= k.
(2.50)

We implement Equations 2.49 and 2.50 iteratively to update responsibilities and avail-
abilities. At any stage of AP, responsibilities and availabilities are put together to choose
exemplars for the whole network. Frey and Dueck (2007) claim that for node i, the node
k associated with the greatest value of a(i, k) + r(i, k) will be its suited exemplar and AP
procedure could be terminated by different options, e.g. returning stable solution after
some iterations, obtaining a desired result based on some conditions and etc. When up-
dating r(i, k) and a(i, k) during iterations, we might encounter numerical oscillations. To
avoid such situations, a damping factor λ is introduced so that in each iteration step j,
r(i, k) and a(i, k) will be updated with their previous values, i.e.:{

r(i, k)(j) = (1− λ)× r(i, k)(j) + λ× r(i, k)(j−1),
a(i, k)(j) = (1− λ)× a(i, k)(j) + λ× a(i, k)(j−1),

(2.51)

where λ usually takes value in [0, 1] and takes 0.5 as a default value.
In conclusion, each iteration of AP consists of three steps:

1. updating all r(i, k) based on availabilities and similarities;

2. updating all a(i, k) based on responsibilities;

3. computing a(i, k) + r(i, k) to identify possible exemplars.

After each step the solution will be monitored to decide whether AP could be termi-
nated.

2.2.3 Between-Within Proportion

In applications we usually use a criterion to evaluate the clustering result, such as the
Silhouette Value which measures how similar a node is to other nodes in its own cluster
compared to nodes in other clusters. The silhouette value ranges in [−1, 1] and indicates a
well-suited result when taking high value. When the majority of the nodes indicate good
silhouette values, the clustering solution is deemed as acceptable (Kaufman and Rousseeuw,
2005).The silhouette value has been widely proved to be useful and reliable when associated
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with K-means clustering, but maybe not so seamless with AP (Zhou et al., 2010b) (Zhou
et al., 2011). Zhou et al. (2010a) devise a new criterion called Between-Within Proportion
(BWP) for clustering assessment. Zhou et al. (2011) revise BWP to make it particularly
fit for working with AP clustering algorithm. Here we briefly interpret the definitions of
the criterion.

Definition 2.2.1. Let K = {X,R} denote the clustering space, where X = (x1, . . . , xn)
stand for all the nodes in a network. Suppose that n nodes are grouped into c clusters,
then we define the minimal average distance between the ith node in the jth cluster and
all of the rest nodes in its cluster as Between Distance, given by bd(j, i):

bd(j, i) = min
16k6c,k 6=j

 1
nk

nk∑
p=1
‖x(k)

p − x
(j)
i ‖

 , (2.52)

where k, j are indexes for clusters. x(j)
i stands for the ith node in the jth cluster and x(k)

p

stands for the pth node in the kth cluster. nk indicates the total number of nodes in cluster
k and ‖·‖ represents a Euclidean distance.

Definition 2.2.2. Given same preliminaries as in Definition 2.2.1, we define the average
distance between the ith node in cluster j and all the other nodes in cluster j as the Within
Distance, denoted by wd(j, i):

wd(j, i) = 1
nj − 1

nj∑
q=1,q 6=i

‖x(j)
q − x

(j)
i ‖, (2.53)

where the settings of notations are identical to those used in Definition 2.2.1.

Definition 2.2.3. Given same preliminaries as Definition 2.2.1, we define the clustering
distance for the ith node in cluster j as sum of bd(j, i) and wd(j, i), namely Between-and-
Within Distance and denoted by bawd(j, i):

bawd(j, i) = bd(j, i) + wd(j, i)

= min
16k6c,k 6=j

 1
nk

nk∑
p=1
‖x(k)

p − x
(j)
i ‖

+ 1
nj − 1

nj∑
q=1,q 6=i

‖x(j)
q − x

(j)
i ‖, (2.54)

where the settings of notations are identical to those used in Definition 2.2.1.

Definition 2.2.4. Given same preliminaries as those in Definition 2.2.1, we define the
clustering deviation distance for the ith node in cluster j as difference between bd(j, i) and
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wd(j, i), denoted by bswd(j, i):

bswd(j, i) = bd(j, i)− wd(j, i)

= min
16k6c,k 6=j

 1
nk

nk∑
p=1
‖x(k)

p − x
(j)
i ‖

− 1
nj − 1

nj∑
q=1,q 6=i

‖x(j)
q − x

(j)
i ‖, (2.55)

where the settings of notations are identical to those used in Definition 2.2.1.

Definition 2.2.5. Given same preliminaries as those in Definition 2.2.1, we define the
Between-Within Proportion for the ith node in cluster j as ratio of bswd(j, i) to bawd(j, i),
denoted by BWPd(j, i):

BWPd(j, i) = bswd(j, i)
bawd(j, i)

= bd(j, i)− wd(j, i)
bd(j, i) + wd(j, i) (2.56)

=
min16k6c,k 6=j

(
1
nk

∑nk
p=1‖x(k)

p − x
(j)
i ‖

)
− 1
nj − 1

∑nj
q=1,q 6=i‖x(j)

q − x
(j)
i ‖

min16k6c,k 6=j
(

1
nk

∑nk
p=1‖x

(k)
p − x(j)

i ‖
)

+ 1
nj − 1

∑nj
q=1,q 6=i‖x

(j)
q − x(j)

i ‖
,

where the settings of notations are identical to those used in Definition 2.2.1.

The previous definitions are built upon the concept of distance. In our thesis, since we
aim at clustering securities based on the dependence structure among them, the similarities
measured by linear correlations or tail dependence will be preferred. In fact, distance
corresponds to non-similarity. Zhou et al. (2011) also offer the option of measuring BWP
based on non-similarity. It simply alters Definition 2.2.1 and Definition 2.2.2.

Definition 2.2.6. Let K = {X,R} denote the clustering space, where X = (x1, . . . , xn)
stand for all the nodes in a network. Suppose n nodes are grouped into c clusters, then we
define the minimal average non-similarity between the ith node in the jth cluster and all
of the rest nodes in its cluster as bd(j, i):

bd(j, i) = min
16k6c,k 6=j

( 1
nk
H(x(k)

p , x
(j)
i )
)
, (2.57)

where k, j are indexes for clusters. x(j)
i stands for the ith node in the jth cluster and x(k)

p

stands for the pth node in the kth cluster. nk indicates the total number of nodes in cluster
k and H(·) represents non-similarity.
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Definition 2.2.7. Given same preliminaries as those in Definition 2.2.6, we define the
average distance between the ith node in cluster j and all the other nodes in cluster j as
the Within Distance, denoted by wd(j, i):

wd(j, i) = 1
nj − 1

nj∑
q=1,q 6=i

H(x(k)
p , x

(j)
i ), (2.58)

where the settings of notations are same as those used in Definition 2.2.1.

Definition 2.2.8. Given same preliminaries as those used in Definition 2.2.6, we define
the Between-Within Proportion based on non-similarity, denoted by BWPs(j, i):

BWPs(j, i) = bd(j, i)− wd(j, i)
bd(j, i) + wd(j, i) (2.59)

=
min16k6c,k 6=j

(
1
nk

∑nk
p=1H(x(k)

p , x
(j)
i )
)
− 1
nj − 1

∑nj
q=1,q 6=iH(x(k)

p , x
(j)
i )

min16k6c,k 6=j
(

1
nk

∑nk
p=1H(x(k)

p , x
(j)
i )
)

+ 1
nj − 1

∑nj
q=1,q 6=iH(x(k)

p , x
(j)
i )

,

where the settings of notations are same as those used in Definition 2.2.6.

BWP is able to reflect closeness within clusters and dispersion between them based on
bd(j, i) and wd(j, i) (Zhou et al., 2011). The value of BWP ranges in [−1, 1]. Individually,
a large value of BWPs(j, i) indicates a well-suited solution for a single node. As to the
entire network, the greater the average value of all nodes’ BWP is, the better solution the
clustering algorithm indicates. This also helps to decide the best solution. For instance, if
we were using AP towards a network and obtained several results with different number
of clusters, then we would choose the optimal solution which maximize the average BWP
value.

2.3 Mean-variance Framework for Portfolio Selection

A complete investment strategy requires a portfolio optimization. The primary purpose of
this thesis is to select stocks based on their dependence structure but we also need to make
evaluations on the portfolio selections. We firstly choose the basic mean-variance frame-
work to accomplish the task. In fact, to emphasize the influence of clustering method, a
naive strategy which equally allocates wealth among all assets may express the performance
more clearly. However, applying mean-variance framework is more practical.
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Assume our investment universe consists of N risky assets with T price periods. Let
S

(p)
i denote the price of asset i at time p, where i = 1, 2, . . . , N and p = 1, 2, . . . , T . Then

the logarithmic return of asset i at time p is denoted by:

r
(p)
i = ln

 S
(p)
i

S
(p−1)
i

 , where p > 2. (2.60)

We use a vector ri =
(
r

(1)
i , r

(2)
i , . . . , r

(T )
i

)′
to denote the logarithmic returns of asset i

and let R = {r1, r2, . . . , rN} denote return matrix of all assets over the entire investment
horizon. Then the ith asset’s mean return and variance of return is respectively given by:

µi = E[ri], (2.61)

Var(ri) = σ2
i = E[(ri − E[ri])(ri − E[ri])

′ ]. (2.62)

In a vectorized form for all assets, we have µ = (µ1, µ2, . . . , µN)
′

and σ = (σ1, σ2, . . . , σN)
′
.

Following Equation 2.28, the covariance of returns between assets i and j is given by:

Cov(ri, rj) = E[(ri − E[ri])(rj − E[rj ])
′ ] = ρijσiσj, (2.63)

where ρij is the linear correlation between returns i and j. Let Σ denote the covariance
matrix corresponding to R. Next, suppose that ω = (ω1, ω2, . . . , ωN)

′
is an N × 1 vector

of portfolio proportions, such that ω1 is the proportion of total portfolio wealth invested
in asset i. It follows that the expected return of the portfolio is given by:

µport(ω) = ω
′
µ =

N∑
i=1

ωiµi, (2.64)

and the total variance of the portfolio returns is given by:

σ2
port(ω) = ω

′Σω =
N∑
j=1

N∑
i=1

ωiωjσiσjρij. (2.65)

Given all assets returns and the corresponding covariance matrix, the mean-variance
framework (Markowitz, 1952) considered a portfolio to be optimal if it is risk minimal for
a given level of return µobj,

min
ω

ω
′Σω

s.t. ω
′
µ = µobj

Aω = b ,

(2.66)
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where A and b define budget constraints1. If we do not allow for short selling, there will
be additional constraint 0 6 ωi 6 1,∀i. The inequality constraints can be integrated into
A.

Alternatively, the optimal portfolio in the mean-variance framework could be con-
structed by maximizing its return for a given level of risk σobj,

max
ω

ω
′
µ

s.t. ω
′Σω = σobj
Aω = b .

(2.67)

The optimal portfolio can be obtained by solving either one of the problems, depending
on the investment goal. Mathematically, if we do not take the inequality constraint into
consideration, 2.66 works as a quadratic optimization problem with linear constraints. In
contrast, 2.67 has a linear objective function with quadratic constraints.

If we choose to solve 2.66 with respect to different levels of µobj, then in a σ, µ space
the optimal portfolios will form a curve which is called efficient frontier. The optimal
portfolios are thus called frontier portfolios as well. Suppose that we have found optimal
portfolio weights ω∗ for a given µobj, then the variance of the frontier (optimal) portfolio
is given by (Pennacchi (2007) pp.53-54):

σ2
port(ω∗) = ω∗′Σ ω∗

=
δµ2

obj − 2αµobj + ς

ςδ − α2

= 1
δ

+
δ
(
µobj − α

δ

)2

ςδ − α2 . (2.68)

where α ≡ µ′Σ−11N = 1′NΣ−1µ, ς ≡ µ′Σ−1µ, and δ ≡ 1′NΣ−11N are scalars. Equation
2.68 stands for a parabola in a σ2

port, µport space. In practice we often substitute the variance
σ2
port with volatility σport and the curve becomes the efficient frontier.

2.4 Diversification Technique

Diversification techniques play an important role in reducing the chance of suffering great
investment loss. The loss could be caused by the investment project being heavily exposed

1Usually we set A = 1
′

N and b = 1 as default choice, where 1
′

N = (1, . . . , 1) is a N -dimensional vector
of ones.
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to some significant risk factors. In financial applications, diversification could be utilized
to construct portfolios or to evaluate the risk of investment by some definitions. Since
we would accomplish our major work of choosing stocks based on dependence structure in
Chapter 3 and then build up corresponding portfolios by means of mean-variance frame-
work in Chapter 4, the remaining task would be to evaluate the diversification of this
investment. Note that if we say “measuring how well certain risks are diversified”, the
“risks” are not restricted to volatilities of financial assets only. Instead, the term could
refer to any abstract risk factors that exist within the investment universe.

In this thesis we choose to implement a diversification technique proposed by Meucci
(2009). The methodology aims at describing portfolios in terms of uncorrelated risk source
by applying Principal Component Analysis. It makes diversification easier to handle due
to several reasons. In what follows, we briefly introduce how to obtain uncorrelated risk
factors and what are the advantages of this technique.

2.4.1 Non-additive Risk Sources

Consider a portfolio P (ω) 1 which consists of N risky assets with investor’s wealth alloca-
tion characterized by ω. The total return of the portfolio P (ω) is given by Equation 2.64,
which is a sum of weight-adjusted returns of all risky assets. Then, the portfolio risk is
characterized by the variance of total return, reads: Equation 2.65. Given an additional
condition that all assets are perfectly uncorrelated in our portfolio, 2.65 can be rewritten
in a form which consists of additive sources of risk:

σ2
port(ω) = ω

′Σω =
N∑
i=1

Var(ωiµi) =
N∑
i=1

ω2
i σ

2
i . (2.69)

In this case, the maximum diversification of P (ω) is easily achieved by equal volatility-
adjusted weights. However, such a portfolio formed by mutually uncorrelated risky assets
is not feasible in the real world. From the statistical aspect, the correlation structure of
the assets can not be expressed by a diagonal matrix (d-fine GmbH, 2011). However, we
are still attracted by the above amazing feature. If we are not able to find uncorrelated
assets, maybe we can decompose the risk sources of them into uncorrelated parts which
are therefore additive. In Meucci (2009), Principal Component Analysis is used to perform
such decomposition.

1ω follows the setting in subsection 2.3.
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2.4.2 Principal Component Analysis

The aim of Principal Component Analysis (PCA) is to reduce the dimensionality of highly
correlated data (McNeil et al., 2005). Given a covariance matrix Σ of return matrix R,
PCA is concerned with using a few uncorrelated linear combinations to explain most
of the variations in the structure of Σ. It could be also perceived as a data-rotation
technique. Suppose that we have certain data points scattered on Cartesian Coordinate
System. We rotate axises so that in a new coordinate system the data points will have the
largest variance in their first coordinate. The primary idea of PCA is to find the principal
components with maximal variances and are mutually uncorrelated.

The N ×N covariance matrix Σ in 2.63 is symmetric. Hence, Σ is orthogonally diago-
nalizable and has an orthonormal set of N eigenvectors:

E
′ΣE = Λ, (2.70)

where E = {e1, e2, . . . , eN} is an N × N matrix whose columns form an orthonormal set
of eigenvectors of Σ and Λ = diag {λ1, λ2, . . . , λN} is a diagonal matrix containing all the
corresponding eigenvalues (normally λ1 > λ2 > · · · > λN). Note that since E is orthogonal,
E
′ = E−1 or E ′E = I. Then, by applying a spectral decomposition, we have:

Σ = λ1e1e
′

1 + λ2e2e
′

2 + · · ·+ λNeNe
′

N . (2.71)

With the above knowledge, the idea of PCA is that the ith principal component of
return matrix R = {r1, r1, . . . , rN} in 2.60 is the linear combination(Tsay, 2010):

r̃i = e
′

iR, i = 1, . . . , N, (2.72)

such that,
Var(r̃i) = e

′

iΣei = λi, (2.73)
while between different principal components i and j,

Cov(r̃i, r̃j) = e
′

iΣej = 0. (2.74)

It indicates that the principal component r̃i and r̃i of R are mutually uncorrelated. PCA
makes the variances of each principal component as large as possible with the constraint
that e′iei = 1. It follows that the first principal component r̃1 = e

′
1R accounts for the

largest variance and it is denoted as λ1. λ2 accounts for the second largest variance among
them, and theNth principal component has minimum variance among them. The variances
of principal components are exactly the eigenvalues of the corresponding eigenvector. Let
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R̃ = {r̃1, r̃2, . . . , r̃N} denote a new matrix consisting of principal components. Then it can
be proved that

Var(R) = Var(R̃) = tr(Σ) =
N∑
1
λi =

N∑
1

Var(r̃i), (2.75)

and
Var(r̃i)
Var(R) = λi

λ1 + · · ·+ λN
. (2.76)

It means that the total variance of R and R̃ are the same while the variances are additive in
terms of uncorrelated principal component. Moreover, by Equation 2.76, we can compute
how much portion of total variance each component contributes to.

In risk analysis, we perform PCA to find first few principal components (risk factors)
that account for the major sources of uncertainty of a market. Then each of the major risk
factors are extracted for further analysis.

2.4.3 Diversification Distribution

In the context of investment study, the orthonormal eigenvectors given by 2.70 form a set
of N uncorrelated portfolios. Each eigenvector ei is given the name principal portfolio
(Meucci, 2005). Therefore, the returns of principal portfolios read:

R̃ = E−1R. (2.77)

According to the features of PCA, variances of the principal portfolios are reduced as their
corresponding eigenvalues λi decrease. Meucci (2009) mentions that the such principal
portfolios exist for any market with a well-defined covariance matrix.

Progressively, the portfolio P (ω) defined in Subsection 2.4.1 can be replicated as a
linear combination of the uncorrelated principal portfolios, whose weights are given by (see
also Partovi and Caputo (2004)):

ω̃ = E−1ω. (2.78)

The “substituting weights” ω̃ is obtained by applying PCA to the original portfolio por-
tions ω. ω̃ therefore represents the set of linear combination coefficients allocated to the
principal portfolios.

Meucci (2009) follows this path and introduces the variance concentration curve:

vi ≡ ω̃2
i λi, i = 1, 2, . . . , N, (2.79)
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where vi represents the variance of the ith weighted principal portfolio. Once again, all
weighted principal portfolios are uncorrelated, so that the total portfolio variance is:

Var(P (ω)) = ω
′Σω = ω

′
EΛE

′
ω = ω̃

′
Λω̃ = Var(P (ω̃)) =

N∑
i=1

ω̃2
i λi =

N∑
i=1

vi. (2.80)

Next, let σ(ω̃) denote the standard deviation of P (ω̃). Then the volatility concentration
curve is defined as:

si = vi
σ(ω̃) = ω̃2

i λi√∑N
i=1 ω̃

2
i λi

, i = 1, 2, . . . , N. (2.81)

The above expression actually implies the impact of changes in principal weights on vari-
ance contributions of the corresponding weighted portfolios. In fact, 2.81 is referred to as
the decomposition of volatility or tracking error with respect to the contributions of each
weighted principal portfolio in Litterman (1996).

Likewise, Meucci (2009) defines the diversification distribution as follows:

pi = vi
Var(ω̃) = ω̃2

i λi∑N
i=1 ω̃

2
i λi

, i = 1, 2, . . . , N. (2.82)

In one way, the above expression could be regarded as a percentage measure of total vari-
ance each weighted principal portfolio contributes to. In another way, each pi is equivalent
to the “r-square from regression of total portfolio return on corresponding weighted prin-
cipal portfolios” (see Meucci (2009)).

Given above definitions, we may have an intuitive idea of diversification that each
weighted principal portfolio should have equal influence on the total portfolio risk. Since
we know all components are mutually uncorrelated, well diversified investments would be
some allocations of principal portfolios associated with uniform diversification distributions
in terms of 2.82 (see also Xiong (2009) d-fine GmbH (2011)).

In real financial markets, we sometimes require portfolio management measured against
a benchmark with weights b. Meucci (2009)’s methodology is applicable to such a case by
a simple modification:

ω 7→ ω − b, (2.83)

where we replace original portfolio weights ω with the vector of the relative bets ω − b.
2.81 and 2.82 are renamed as tracking error concentration curve and relative diversification
distribution respectively.
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2.4.4 Entropy as a Diversification Risk Measure

It will be convenient to express the level of diversification in terms of a single value. Recall
that from diversification distribution 2.82:

N∑
i=1

pi = 1, with 0 6 pi 6 1 for all i, (2.84)

and we state approximately equal probability masses pi to indicate a well-diversified portfo-
lio. The above settings of pi naturally comply with the concept of entropy, which originated
from thermodynamics but was adapted to information theory as a measure of uncertainty
in a system (Shannon, 1948). Following the definition in Cover and Thomas (2006), the
entropy of the entire portfolio characterized by diversification distribution 2.82 is given by:

H(P (ω̃)) = −
N∑
i=1

pi ln pi. (2.85)

The concept of entropy itself can work as a risk measure. Philippatos and Wilson (1972)
regard entropy as a substitute of variance in looking for efficient portfolios. Subsequently,
the principal of maximum entropy (MEP) becomes popular. Loosely speaking, MEP
states that the probability density function with the largest entropy is the best fit to the
situation with current state of knowledge and constraints. Such applications of entropy in
finance are reviewed in Zhou et al. (2013).

Back to diversification, Meucci (2009) interprets it as the exponential of diversification
distribution’s entropy:

NEnt = exp
− N∑

i=K+1
pi ln pi

 , (2.86)

where K is the number of current existing constraints (K = 0 for the unconditional case).
Such NEnt is coined as the “number of effective uncorrelated relative bets” by Meucci.
We can treat the value of NEnt as an indicator of the current level of diversification. In
a generic portfolio P (ω) consisting of N risky assets, NEnt = 1 means that the P (ω̃) is
entirely concentrated in one principal direction or the total risk is completely generated
from the first principal portfolio alone. In such a case we see a sharp peak on diversification
distribution and the portfolio is ill-diversified. On the contrary, NEnt = N (NEnt = N −K
in conditional cases) means that the total risk of portfolio is equally spread among all
N principal portfolios and the diversification distribution illustrates a perfect uniformity
with pi = 1/N . Indeed, the number of effective uncorrelated relative bets NEnt utilizes
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principal of maximum entropy that the maximal degree of diversification is achieved when
an entropy function of probability mass distribution pi maximized its value.

Such a diversification technique built upon MEP is not unique. Bera and Park (2008)
study an optimal portfolio with diversification based on MEP. They propose a cross-
entropy measure and look for shrinkage estimation of portfolio weights. Using Meucci
(2009) the words, “Bera and Park (2008) act on the portfolio weights, and thus do not
account for the volatilities and the correlations in the market.” However, the portfolio op-
timization terminology Mean-Diversification Efficient Frontier is also applicable to Meucci
(2009)’s work.

In the investment universe defined in 2.3, the mean-diversification efficient frontier can
be described as:

max
ωϕ

NEnt(ω)
s.t. Aω = b

µ
′
ω > ϕ,

(2.87)

where ω, A, b,µ are defined as in 2.67, while parameter ϕ ∈ [ϕ, ϕ] indicates our bias on
objective function:

ϕ = µ
′ arg max

Aω = b
NEnt(ω),

ϕ = arg max
Aω = b

µ
′
ω. (2.88)

We are more concerned about diversification when ϕ approaches ϕ. Accordingly, we are
more concerned about expected returns when ϕ gets closer to ϕ. In a simplified form, 2.87
and 2.88 are combined as (Xiong, 2009):

ωϕ = arg max
Aω = b

{
ϕµ

′
ω + (1− ϕ)NEnt(ω)

}
, (2.89)

where ϕ ∈ [0, 1] and it adjusts the importance of diversification and expected return.
Analogous to the mean-variance frontier, we can draw the mean-diversification efficient

frontier with the above expressions. But unlike the curve in the MV framework, the one
with the mean-diversification could be non-smooth or even discontinuous. This is due to
the difference between variance and entropy. In principle, a consistent relationship among
volatility and expected return could ensure a smooth frontier. However, this does not occur
in the actual markets. Although, the frontier is not perfectly smooth sometimes, it still
reflects a convex curve. Thus, it suffices to evaluate the diversification of a portfolio based
on its location comparing to the frontier and its number of effectively uncorrelated relative
bets.

40



Chapter 3

Social Network Analysis and
Clustering

This chapter is devoted to the selection of stocks based on their dependence structure.
We first work with data from three large Chinese equity markets and perform essential
data cleaning. Then, we model the dependence structure of market data via copula func-
tions. We estimate the coefficients of dependence measures including linear correlation,
rank correlations, tail dependence and mutual information. Such estimation is performed
with respect to the entire length of investment horizon as well as different market phases
based on Markov Regime Switching Result. Next, we conduct the social network cluster-
ing experiment. The coefficients of dependence measures are transitioned into similarity
matrices for clustering algorithm. We improve the AP clustering method by reducing its
computational intensity and integrating BWP value into it. The final solutions of data
clustering are presented with the corresponding cluster centers denoting the stocks selected
to be inserted into portfolios.
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3.1 Data Collection and Cleaning

We collect daily adjusted closing prices1 of all trading stocks from the following three
Chinese markets2:

1. Shanghai Stock Exchange A Share Index (SHASHR), from 1/4/2006 to 11/28/2013;

2. Shenzhen Stock Exchange A Share Index (SZASHR), from 1/4/2006 to 11/28/2013;

3. Shanghai Shenzhen Csi 300 Index (SHSZ300), from 1/4/2006 to 11/28/2013.

The original data contains a lot of invalid values and thus can not be analyzed directly.
It is due to the length of investment horizon and the sample size. Some stocks are not
actively traded in the markets during the entire horizon and some do not have IPOs until
later dates. As a result, we see a number of empty values in their historical prices. We
also find some abnormal values in the form of sharp jumps in stocks’ dynamics which go
against the threshold set in the Chinese stock markets that the intra-day price fluctuation
shall not be over 10%.

Since we organize the market data in a matrix with each column displaying a certain
stock’s entire price dynamics and each row showing the date, the data cleaning algorithm
is designed as follows:

The threshold η in Steps 2 is set depending on the actual needs and a referenced value
in our experiment is 0.20. In Steps 5 we consider three different interpolation methods:
linear interpolation, polynomial interpolation and spline interpolation. It turns out that
the linear interpolation presents fast convergence (usually fewer than 3 loops). Moreover,
filling empty values by the linear interpolation is in line with situations in the real stock
market. We perform the algorithm to all three equity stock indexes and the statistics is
presented in Table 3.1.

Note that the first column(risky asset) in each of the three equity stock indexes rep-
resents the corresponding market index. Although parts of the stocks are eliminated by
data cleaning, based on Table 3.1 we still obtain a well-organized data which consists of a
relatively large number of stocks trading among almost 2000 days.

1“A stock’s closing price on any given day of trading that has been amended to include any distributions
and corporate actions that occurred at any time prior to the next day’s open. The adjusted closing price is
often used when examining historical returns or performing a detailed analysis on historical returns.”(see
INVESTOPEDIA)

2Data Source: Bloomberg.
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Algorithm 1: Algorithm of Data Cleaning
Input: Raw Data
Output: Cleaned Data

1 Count the number of empty values in all columns;
2 Set a threshold level at η;
3 Delete the columns whose nulls exceed η;
4 Replace abnormal values with nulls for each remaining column;
5 Use interpolation to find substitutes for all nulls in each column;
6 Check,

(I) If abnormal values still exist, then repeat Steps 4 to 5;
(II) If no abnormal values exists any more, then move on;

7 Summarize statistics;
8 Terminate algorithm.

Table 3.1: Data statistics of all three indexes after cleaning. “Untouched Data” refers to
number of originally existing values which are not influenced by interpolation and

“Similarity Percentage” indicates the portion of those values.

Market SHASHR SZASHR SHSZ300
Kept Rows (Trading Days) 1917 1917 1917
Kept Columns (Stocks) 593 340 153
Empty Values 0 0 0
Abnormal Values 0 0 0
Total Data Points 1136781 651780 293301
Untouched Data 1079495 614759 278031
Similarity Percentage 94.9607% 94.3200% 94.7937%
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Table 3.2: Statistics of Estimated Linear Correlations and Rank Correlations.

SHASHR Cols: 593 Rows: 593 Pairs: 175528
Coefficient Min Max Mean Median Std Kurtosis Skewness
Linear 0.1198 0.8458 0.4157 0.4203 0.0745 2.9322 −0.1475
Kendall’s 0.0862 0.6769 0.2869 0.2887 0.0521 3.1927 −0.0014
Spearman’s 0.1270 0.8345 0.4065 0.4101 0.0688 3.0677 −0.1185

SZASHR Cols: 340 Rows: 340 Pairs: 57630
Coefficient Min Max Mean Median Std Kurtosis Skewness
Linear 0.1337 0.8311 0.4248 0.4269 0.0736 3.2799 0.0135
Kendall’s 0.0942 0.6496 0.2902 0.2905 0.0516 3.6772 0.1917
Spearman’s 0.1403 0.8172 0.4114 0.4129 0.0676 3.4676 0.0690

SHSZ300 Cols: 153 Rows: 153 Pairs: 11628
Coefficient Min Max Mean Median Std Kurtosis Skewness
Linear 0.1318 0.8561 0.3988 0.3985 0.0869 4.2821 0.4678
Kendall’s 0.0857 0.6903 0.2751 0.2730 0.0639 5.5494 0.7881
Spearman’s 0.1267 0.8540 0.3912 0.3900 0.0836 4.6012 0.5388

3.2 Modeling Dependence Structures via Copulas

In this section, we present the details of numerical experiment in modeling various depen-
dence structures among assets’ returns. The theoretical framework is built upon Chapter
2.

For convenience purposes, we denote the time series’ features of the cleaned data using
the same notations from Section 2.3. We utilize Equation 2.60 for all of the adjusted closing
prices in order to acquire the corresponding continuously compounded (or log) returns.

One of the simplest dependence measures is the linear correlation given by Equation
2.29. Meanwhile, though closely related to copulas, the rank correlation Spearman’s ρSX,Y
can be directly estimated from the data by Equation 2.34. With Spearman’s ρSX,Y given,
we calculate another rank correlation Kendall’s τX,Y by combing Equations 2.31 and 2.33.
That is to say, we are able to empirically describe linear relationships and concordances
between all pairs of time series from the data, bypassing the procedures of actually fitting
copulas to the data. Hence, we first look into these three dependence measures.

The coefficient estimates are presented by Figure 3.1 and Table 3.2. The minimum
values of the linear correlation are positive in all three markets, indicating that the linear
relationships exist among all pairs of returns. Although some display weak linear ties with
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(a) Linear Correlations (b) Kendall’s τX,Y (c) Spearman’s ρSX,Y

(d) Linear Correlations (e) Kendall’s τX,Y (f) Spearman’s ρSX,Y

(g) Linear Correlations (h) Kendall’s τX,Y (i) Spearman’s ρSX,Y

Figure 3.1: Distributions of Estimated Linear Correlations and Rank Correlations. (a),
(b) and (c) refer to the Market Data of SHASHR. (d), (f) and (g) refer to the Market

Data of SZASHR. (g), (h) and (i) refer to the Market Data of SHSZ300.
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each other, the majority of securities are moderately positively correlated. We conjecture
that the unanimity of positive values comes from the length of investment horizon which
lasts almost 8 years (1917 trading days in total). In such a long duration it is not entirely
unexpected that we do not observe negative correlations. Under a much shorter period
which could be 1 year, we observe negatively correlated returns. On the other hand,
even with a long investment horizon, some securities are still extremely correlated with
the maximum values of correlation being around 0.85. As we see from the figure, all
distributions of correlations have fat tails on the right-hand side, especially SHSZ300. This
asymmetric phenomenon is consistent with the results reported in Ang and Chen (2002)
and Hong et al. (2007). The securities abstracted from such tail distributions demonstrate
high consistency in price movement, which is considered as a risky signal in the portfolio
construction due to the lack of diversification. The reasons for the asymmetrical and
extreme correlations could be trading activities as explained by Chordia et al. (2011).

Next, we consider Kendall’s τ and Spearman’s ρS. The shapes of their distributions
are similar to those of the linear correlations while their meanings are completely different.
The rank correlations aims at capturing concordance which is more concerned about non-
linear relationships. As we mentioned earlier, the two dependence measures differ in their
expressions but both of them are constructed independently of the marginal distributions
and reflect the ties of the extreme values in pairs of returns to some degree. From Table 3.2
we see that concordance suggested by Kendall’s τ and Spearman’s ρS are widely observed.
In addition, Spearman’s ρS always expresses such ties stronger.

The above three measures imply basic dependence structures among market data, but
we are more concerned with the joint structure of the tail distributions of equities’ returns.
It leads to one of the major work in this thesis: modeling tail dependence measures. We
mentioned previously that by McNeil et al. (2005) the coefficient of tail dependence is a
concept of “limiting conditional probabilities”. Yet empirically, such coefficients must be
estimated through fitting copulas to data.

Following the steps described in Section 2.1.4, we will need to acquire smooth and
accurate density estimation of marginal distributions first. Among various techniques,
Kernel Density Estimation is probably the best choice as its estimators are smoother and
converge to the true density faster. Wasserman (2004) and Wasserman (2007) explain the
Kernel methods in details while we present a basic review of them.
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Kernel (Wasserman, 2007) refers to any smooth function K such that

K(x) > 0,∫
K(x)dx = 1,∫
xK(x)dx = 0,

σ2
K ≡

∫
x2K(x)dx > 0.

(3.1)

Some of the frequently used Kernels are:

the boxcar kernel: K(x) = 1
2I(x) ,

the Gaussian kernel: K(x) = 1√
2π

e−x2/2 ,

the Epanechnikov kernel: K(x) = 3
4(1− x2)I(x) ,

the tricube kernel: K(x) = 70
81(1− |x|3)3I(x) .

where

I(x) =

1, |x|6 1,
0, |x|> 1.

Normally we can obtain a general description of empirical data by histograms, nonethe-
less such nonparametric estimation is always discontinuous or not smooth. Kernels solve
the smoothing problem properly by taking local averages. A formal definition of kernel
density estimation is given below:

Definition 3.2.1. (Wasserman, 2004) Given a kernel K and a positive number h, called
the bandwidth, the kernel density estimator is defined as:

f̂n(x) = 1
n

n∑
i=1

1
h
K
(
x−Xi

h

)
. (3.2)

Hence, a kernel density estimator f̂n(x) is the average value of the kernels spread around
observation Xi with respect to each x.
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Although both the choice of kernel functionK and bandwidth h could affect the smooth-
ness of density estimation, the impact of h is more important. As h becomes smaller, the
smoothness of estimation decreases and f̂n displays a lot of spikes around each observation
Xi. While increasing h makes estimation smoother with the extreme case of uniform den-
sity when h goes to infinity. Roughly speaking, we may obtain an accurate estimation close
to real density distribution when h→ 0 and n→∞. However, this is neither empirically
nor computationally tractable and thus of a little practical use. In fact, we make a trade
off between the smoothness and the accuracy of kernel density estimation.

In practice, one possible tool to select the optimal bandwidth h is the so-called Normal
Reference Rule (Wasserman, 2007). It states that if we assume the real density function f
to be very smooth, then the bandwidth of a normal kernel is given by:

hn = 1.06σ̂
n1/5 , (3.3)

where σ̂ is the sample standard deviation of the data.
When the reference rule is not applicable due to the non-smooth assumption, h is

selected to minimize a Cross-Validation Score (Wasserman, 2007):

Ĵ(h) =
∫
f̂ 2(x)dx− 2

n

n∑
i=1

f̂−i(Xi), (3.4)

where f−i is the kernel estimator with Xi omitted.
In our applications, the histograms of most equities’ returns are non-smooth so that

the reference rule is abandoned. On the other hand, we choose not to use cross-validation
either because we empirically find no material impact on the kernel density estimates of
our data when the bandwidth h approaches 0. More specifically, the experiments with h
taking value of 0.001 or 0.002 may differ a little bit in their shapes of density curve but
they are of little impact to the step of fitting copulas. To computationally fit copulas
to the data, we need the marginal density estimates from a large quantity of data points.
Considering the global size of market environment, the influence caused by some variations
in very small h is numerically immaterial in the estimation of copula parameters and thus
can be omitted.

We illustrate the kernel density estimation on empirical distribution in Figure 3.2.
The blue bars in the plot represent the histogram of empirical returns of SHASHR Index.
Note that we choose the index of SHASHR because it is capable of reflecting the whole
market movement. As the index embraces a tremendous stock market, it exhibits relative
robustness comparing to those of the individual stocks. Indeed, the kurtosis and skewness
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Figure 3.2: Kernel Estimation on Empirical Distribution of SHASHR Index.
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of the empirical distribution are 6.195 and −0.392 respectively. We observe a number of
extreme values on both ends of the distribution, indicating “bull days” or “bear days”
when most stocks experience great price movements. However, those movements can not
go over 10% threshold as it is a protection mechanism in Chinese stock market. Based on
the statistics of empirical data we plot the Gaussian fitted distribution in black curve. Not
surprisingly, the curve could not well capture the histogram in its peak due to unreconciled
kurtosis. Likewise, the histogram displays steeper and rougher slopes on both sides. In
contrast, the kernel density estimation curve in red exhibits a similar structure as the
histogram. In this experiment, we choose the Gaussian kernel function with a bandwidth
of 0.001 for the estimation.

After performing the density estimation of the marginal distributions, we can estimate
the parameters of copulas via MLE. For instance, the bivariate Gumbel copula is defined in
Equation 2.22. It is quite obvious that there only exists one parameter θ which dominates
the Gumbel copula. We set up the log-likelihood function following Equation 2.45 with the
marginal density estimation. Then the MLE θ̂ of Gumbel copula is obtained by maximizing
the log-likelihood function as in Equation 2.46. In some simplified cases, we can also use
the CML method (2.47) for estimation of the copula parameters. Hence, we obtain all
parameters of the fitted copulas.

We randomly pick a pair of securities’ returns and illustrate the result of the experiment
relative to fitting copulas in Figure 3.3. In this experiment, the two stocks are “600005
CH” and “600006 CH” from SHASHR. We present their marginal distributions in 3.3a and
a histogram plot of their cumulative distributions in 3.3b. In the “3D” version 3.3b, we
observe an approximate probability scatter. Next we perform the kernel density estimation
and transform the distributions into cumulative scale as displayed in 3.3c. At this stage,
we use MLE to fit all copulas to our data. In order to visually interpret results, we present
results from the simulations with samples generated from five commonly used copulas
we have estimated. Among these simulations, the t-copula in 3.3e perhaps best captures
the original data structure. It shows a symmetric pattern in both tails of the empirical
distribution. Likewise, the Clayton copula in 3.3g and the Gumbel copula in 3.3h capture
particular dependence at one tail of the empirical distribution respectively.
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(a) Empirical Scatter Plot with Marginal
Distributions (b) Bivariate Histogram

(c) Transformation into Cumulative
Probability Scatter Plot

(d) Gaussian Copula Fitted Probability
Scatter Plot, ρGa = 0.5636
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(e) t Copula Fitted Probability Scatter Plot,
ρt = 0.5831, νt = 3.5981

(f) Frank Copula Fitted Probability Scatter
Plot, θFr = 4.2926

(g) Clayton Copula Fitted Probability Scatter
Plot, θCl = 1.0452

(h) Gumbel Copula Fitted Probability Scatter
Plot, θGu = 1.5864

Figure 3.3: Fitting Different Copulas to the Returns of 600005 CH Equity and 600006
CH Equity.

It would be questionable if we just use these copulas to describe the entire data struc-
ture. As shown in the plots, none of those could fully restore the scatter of original data.
In fact, even sophisticated models could not fit the data sufficiently well. The deviation
always exists due to certain restrictions in the model. However, in this thesis we focus on
dependence structures of the empirical distribution, and not on the entire structure. We
only use these copulas to capture the data structure in its tails. In other words, the degrees
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for measuring such dependence are reflected by the scale of coefficients λU (2.35) and λL
(2.36). In this case, the estimates of the copula parameters will be utilized to compute tail
dependence measures.

The tail dependence measures written in terms of a copula are defined in Equation
2.37 and 2.39. More specifically, we can measure the extent of the tail dependence with
Clayton, Gumbel and t copulas as defined in 2.41, 2.42 and 2.43 respectively. The extent
could be regarded as the similarity of association of extreme gains or losses in the clustering
context.

Note that when we push the quantile value t of conditional probability defined in 2.1.28
to the limit (0+ or 1−), Gaussian and Frank copulas admit no tail dependence. However,
we still observe some degree of points clustering near both ends in 3.3d and 3.3f. It implies
that these two copulas also capture some associations in tail distributions1. We will not
discard such features as they can be used to describe the dependence structure in a new
way called Mutual Information (MI).

The concept of mutual information is closely linked to entropy. In information theory,
mutual information represents the communication rate in the presence of noise while en-
tropy indicates the complexity of a random variable (Cover and Thomas, 2006). While in
Equation 2.85 we deem entropy as a measure of uncertainty of a single random variable.
For simplicity, we denote H(X) as the entropy of random variable X. Then we denote
H(X|Y ) as the conditional entropy of X given the knowledge of random variable Y .

Definition 3.2.2. (Cover and Thomas, 2006) For random variables X, Y , the reduction
in uncertainty of X due to the knowledge of Y is called the mutual information, given by:

I(X, Y ) = H(X)−H(X|Y ). (3.5)

The mutual information I(X, Y ) is a measure of the dependence between two random
variables. Moreover, it is always symmetric and nonnegative.

As Cover and Thomas suggest, mutual information speaks of the amount of information
one random variable contains about another and in this sense entropy is seen as the self-
information of a random variable. Both of these two terms can be interpreted as functions
of the probability distributions and for continuous random variables X, Y we have:

H(X, Y ) = −
∫ +∞

−∞

∫ +∞

−∞
f(x, y) ln f(x, y)dxdy, (3.6)

1In such a case, the conditional probabilities defined in 2.1.28 exist when their quantile values t are not
pushed to the limit.
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I(X, Y ) =
∫ +∞

−∞

∫ +∞

−∞
f(x, y) ln f(x, y)

f(x)f(y)dxdy. (3.7)

In addition,

I(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X, Y ). (3.8)

This is the connection between mutual information and entropy. Furthermore, mutual
information measures dependence among random variables. Such a structure based on
entropy is nonlinear. It also differs from the measures we have previously presented. How-
ever, computing mutual information in Equation 3.7 is intractable without knowing the
joint density function which is usually difficult to describe. Zhao and Lin (2011) and Ma
and Sun (2011) tackle this problem from another route. Both of them verify two important
facts:
Theorem 3.2.3. The Mutual information of some random variables is equivalent to the
negative copula entropy of these random variables.
Theorem 3.2.4. The joint entropy of some random variables can be decomposed as two
parts: the sum of entropy of individual random variables and the corresponding copula
entropy.

Proof. The mutual information of a general d-dimensional random vectorX = (X1, . . . , Xd)
′

is given by:

I(X) =
∫ +∞

−∞
. . .
∫ +∞

−∞
f(x1, x2, . . . , xd) ln f(x1, x2, . . . , xd)

d∏
i=1

fi(xi)
dx1 . . . dxd. (3.9)

Using Equation 2.44,

I(X) =
∫ +∞

−∞
. . .
∫ +∞

−∞
c(F1(x1), F2(x2), . . . , Fd(xd)) ·

d∏
i=1

fi(xi)

· ln c(F1(x1), F2(x2), . . . , Fd(xd))dx1 . . . dxd

=
∫ +∞

−∞
. . .
∫ +∞

−∞
c(u1, u2, . . . , ud) ·

d∏
i=1

fi(xi)

· ln c(u1, u2, . . . , ud)dx1 . . . dxd

=
∫ 1

0
. . .
∫ 1

0
c(u1, u2, . . . , ud) · ln c(u1, u2, . . . , ud)du1 . . . dud

= −HC(u1, u2, . . . , ud)
= −HC(U). (3.10)
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Hence, mutual information I(X) is equivalent to a negative copula entropy −HC(U).
Then, by Equation 3.8,

H(X) =
d∑
i=1

H(Xi)− I(X)

=
d∑
i=1

H(Xi) +HC(U ). (3.11)

Thus the joint entropy H(X) is composed of the sum
d∑
i=1

H(Xi) and the copula entropy

HC(U).

Since we are able to empirically fit copula functions to data via maximum likelihood,
the corresponding copula entropy on pairs of returns can be calculated. In this sense, we
reduce the computation complexity in the estimation of mutual information. Moreover,
the equivalence revealed by Equation 3.10 provides an alternative way to capture mutual
information as it takes advantages of both the copula and the entropy. For the entropy
we can quantify the amount of uncertainty in the data while for the copula we can depict
the associations among different variables in the data. When the negative copula entropy
achieve its maximum, the uncertainty of one random variable decreases to its minimum
due to the knowledge of another. In fact, if the random variables are mutually indepen-
dent, then there exists maximum uncertainty and mutual information displays 0. On the
contrary, if we fully understand the behavior of one random variable given the knowledge of
another one, then there exists no uncertainty among them with mutual information holding
value 1. As a result, mutual information can be applied to measure the dependence among
returns in all orders and such ties will grow stronger with more mutual information being
revealed.

Introducing mutual information helps us complete the steps in modeling a dependence
structure. Following the previous estimation results of the linear and the rank correlations
(which are presented in Figure 3.1 and Table 3.2), we illustrate the estimation of tail
dependence and mutual information in Figure 3.4 and Table 3.3. We relegate additional
results to Appendix A.1, where the estimation from Market SZASHR and SHSZ300 are
displayed in Figure A.1 and A.2 respectively.

The results reveal some features of price co-movement. We start presenting our findings
from the distributions of the lower tail dependence and the upper tail dependence. In all
three markets, the distributions of the upper tail dependence show higher kurtosis than
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(a) Lower Tail Dependence
Revealed by Clayton Copula

(b) Upper Tail Dependence
Revealed by Gumbel Copula

(c) Tail Dependence Revealed
by t Copula

(d) Mutual Information
Revealed by Negative

Gaussian Copula Entropy

(e) Mutual Information
Revealed by Negative t

Copula Entropy

(f) Mutual Information
Revealed by Negative

Clayton Copula Entropy

(g) Mutual Information
Revealed by Negative Frank

Copula Entropy

(h) Mutual Information
Revealed by Negative

Gumbel Copula Entropy

Figure 3.4: Distributions of Estimated Tail Dependence and Mutual Information of
Market Data of SHASHR.
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Table 3.3: Statistics of Estimated Tail Dependence and Mutual Information.

SHASHR Cols: 593 Rows: 593 Pairs: 175528
Coefficient Min Max Mean Median Std Kurtosis Skewness
Lower Tail (Clayton) 0.0116 0.7702 0.3660 0.3746 0.0908 2.9078 −0.3551
Upper Tail (Gumbel) 0.0889 0.7335 0.3252 0.3288 0.0590 3.1432 −0.1181
Tail (t Copula) 0.0010 0.6828 0.1846 0.1866 0.0734 2.8624 0.0276
MI (Gaussian) 0.0084 0.6092 0.1006 0.0986 0.0371 5.5248 0.7250
MI (t Copula) 0.0103 0.7425 0.1198 0.1177 0.0437 5.2237 0.6820
MI (Clayton) 0.0081 0.5318 0.1153 0.1134 0.0406 3.7804 0.4718
MI (Frank) 0.0084 0.6508 0.0999 0.0975 0.0368 5.6946 0.7747
MI (Gumbel) 0.0054 0.6574 0.0862 0.0839 0.0348 7.0852 0.9292

SZASHR Cols: 340 Rows: 340 Pairs: 57630
Coefficient Min Max Mean Median Std Kurtosis Skewness
Lower Tail (Clayton) 0.0340 0.7515 0.3697 0.3763 0.0909 2.9525 −0.2475
Upper Tail (Gumbel) 0.0828 0.7112 0.3292 0.3313 0.0581 3.4504 0.0248
Tail (t Copula) 0.0010 0.6140 0.1797 0.1817 0.0769 2.6574 0.0462
MI (Gaussian) 0.0108 0.5838 0.1040 0.1007 0.0384 7.9744 1.1544
MI (t Copula) 0.0126 0.6670 0.1222 0.1190 0.0450 6.4506 0.9407
MI (Clayton) 0.0147 0.4990 0.1175 0.1145 0.0422 4.9161 0.7441
MI (Frank) 0.0100 0.5885 0.1021 0.0987 0.0378 7.8450 1.1445
MI (Gumbel) 0.0046 0.6093 0.0891 0.0859 0.0357 9.3246 1.2934

SHSZ300 Cols: 153 Rows: 153 Pairs: 11628
Coefficient Min Max Mean Median Std Kurtosis Skewness
Lower Tail (Clayton) 0.0186 0.7876 0.3235 0.3271 0.1065 3.2948 0.0974
Upper Tail (Gumbel) 0.0941 0.7454 0.3155 0.3141 0.0715 4.8958 0.6055
Tail (t Copula) 0.0011 0.6841 0.1540 0.1472 0.0823 4.6104 0.7723
MI (Gaussian) 0.0090 0.6711 0.0961 0.0890 0.0497 18.6588 2.6898
MI (t Copula) 0.0124 0.7751 0.1114 0.1035 0.0565 18.0800 2.5790
MI (Clayton) 0.0111 0.5864 0.0990 0.0933 0.0473 12.6130 1.9826
MI (Frank) 0.0083 0.6864 0.0938 0.0867 0.0495 19.6374 2.7691
MI (Gumbel) 0.0069 0.7063 0.0857 0.0781 0.0485 23.3240 3.1011
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those shown by the lower tail dependence, indicating a concentration of ties of extreme
gains among pairs of securities. However, although more concentrated, the degree of the
upper dependence are generally lower than those of the lower dependence. Hence, we
conjecture that the associations of extreme loss among pairs of securities are stronger than
the ones of extreme gains. In addition, the ties in the lower tails could vary a lot depending
on the selection of securities. Secondly, we look at the tail dependence revealed by t Copula.
Due to the endogenous property of capturing symmetric tail structures, t Copulas have
to take both ends into account simultaneously. As a result, the strength of ties shown
by them is weaker than the previous two copulas. We interpret this phenomenon as a
compromise between describing structures on both tails at the same time and utilizing
only one value for explaining the degree of association. These distributions assume that
the probabilities of getting pairwise extreme loss and pairwise extreme gains are the same.
Still, such chances vary a lot depending on the chosen pair of securities. Thirdly, we look
at the distributions of mutual information. As we discussed earlier, mutual information is
also a measure of dependence and we use the negative copula entropy value to quantify
it. We observe similar shapes in distributions of all five types MI estimation in Figure
3.4. Theoretically, there should only exists one unique mutual information to finish the
job. However, from the computational point of view, none of the copulas could perfectly
capture the entire dependence structure of data, thus resulting in different negative copula
entropy estimations.

So far, we have presented results based on linear correlation, rank correlations, tail de-
pendence and mutual information. Also, so far we have discussed the dependence structure
of data. However, the measures from different categories have not been introduced for the
purpose of a comparative study. We intent to analyze the stock networks constructed by
a data clustering technique where the dependence measures play key roles. Ultimately, we
make comparisons among the diversification of the stock networks. In this sense, we can
make conjecture as to which of the dependence measures has more impact on the portfolios.

Before we can proceed to the clustering section of social network analysis, there is one
more issue which needs to be covered: market phases. The market data we study in the
thesis holds a duration of almost 8 years (which contains 1917 observations for each asset).
Empirically, the market would undergo multiple states1 in long-terms2. The dynamics of
general market movements are importantly distinguished between periods of “bulls” and
“bears”. As a result, the estimation of dependence measures also varies in different market

1For instance, the states can represent upside and downside movements of the market.
2The Shanghai Shenzhen Csi 300 Index (SHSZ300) has been calculated since April 8, 2005. We extract

the adjusted daily closed price of SHSZ300 Index ranging from 1/4/2006 to 11/28/2013. In this sense, we
call it “long-term” data.
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phases which will impart further influence on the clustering results or in other words the
stock networks. Hence, it is necessary to identify market phases to us. We will perform a
Markov Regime Switching estimation in the next section.

3.3 Markov Regime Switching Analysis

The idea of considering time series with changes in regime is that “many variables undergo
episodes in which the behavior of the states seems to change quite dramatically.”(Hamilton,
1994). In the past decade, the implications of regime shifts are studied in a variety of fi-
nancial literatures. Hardy (2001) defines a regime-switching log-normal model to study
long-term stock returns and compares it with other switching models. Ang and Bekaert
(2002) characterize the regime switching process of correlations and volatilities in interna-
tional equity market, pointing out both variables grow stronger in bear states. The same
results are also demonstrated for individual stock returns (Ang and Chen, 2002). Kritzman
et al. (2012) specially discuss the impact of regimes on investment strategies.

In our thesis, we aim to identify regime shifts in entire markets rather than individual
equities so that we can globally observe its impact on dependence structure. Considering
our markets’ sizes, we speculate that regime changes in single equities are unlikely to
be significant. To accomplish the task, we implement the methods designed by Perlin
(2014)1. Perlin’s Markov regime switching models have great flexibility and allow for
handling processes with a variety of statistical specifications.

In next section, we briefly introduce Perlin (2014)’s framework of Markov regime switch-
ing models.

3.3.1 The Switching Model

The theoretical framework of Perlin (2014)’s model is built upon Hamilton (1994) and
Hamilton (2005). Hamilton (1989), Kim and Nelson (1999) and Tsay (2010) also pro-
vide useful details. For instructional purposes, we first introduce Markov Chains and the
Transition Matrix.

Definition 3.3.1. (Hamilton, 1994) Let st be a random variable that takes an integer
value from set {1, 2, . . . , N}. If st = j, then the process {sT , T = 1, 2, . . . , } is said to be in

1Available at http://ssrn.com/abstract=1714016. The package of source code is offered by the author
on his website: https://sites.google.com/site/marceloperlin/.
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state (or regime) j at time t. Suppose that the probability that st equals some particular
value j depends on the past only through the most recent value st−1:

P [st = j|st−1 = i, st−2 = k, . . . ] = P [st = j|st−1 = i] = pij. (3.12)

Such a process is described as an N-state Markov chain with transition probabilities
{pij}i,j=1,2,...,N . The transition probability pij gives the probability that state i will be
followed by state j. Since the probabilities are nonnegative and since the process must
make a transition into some states, we have

N∑
j=1

pij = 1. (3.13)

Let P denote the matrix of one-step transition probabilities pij. Such matrix P is
known as the transition matrix :

P =


p11 p12 · · · p1N
p21 p22 · · · p2N
... ... . . . ...
pN1 pN2 · · · pNN

 . (3.14)

For simplicity, the transition matrix of a two-state Markov chain is:

P =
[

p11 1− p22
1− p11 p22

]
, (3.15)

where for 2 states, a numerical transformation (Hamilton, 1994) is applied for p11, p22, so
that p12 = 1− p11 and p22 = 1− p21.

Perlin (2014) assumes that a time series yt follows a generalized Markov switching model
of the form:

yt =
NnS∑
l=1

βlx
nS
l,t +

NS∑
m=1

φm,stx
S
m,t + εt, (3.16)

εt ∼ P(Φst). (3.17)
This generalized model could cover a number of Markov switching specifications. In Equa-
tion 3.16, the notations S and nS globally represent whether or not a parameter contains
a switching effect. Then, the term NS (or NnS) is the total number of coefficients which
have (or do not have) switching effects. xm,t (or xl,t) are some explanatory variables. The
terms εt are the innovations (or white noises) with probability density function P(Φst).

60



In practical applications, we usually consider the time series of continuously com-
pounded returns of assets as autoregressive processes (Hamilton, 1989) or simply as mixture
distributions (Hamilton, 1994).

Here, we briefly express a model considering 2 -states mixture distributions as an illus-
tration of how the Markov switching model1 works. In this case, the model can be written
as:

yt =
{
µ1 + εt, if st = 1,
µ2 + εt, if st = 2. (3.18)

{
εt ∼ N(0, σ2

1), if st = 1,
εt ∼ N(0, σ2

2), if st = 2. (3.19)

Hence, the density of yt conditional on the random variable st taking on regime j is:

f(yt|st = j; Θ) = 1√
2πσj

exp
{
−(yt − µj)2

2σ2
j

}
, (3.20)

where j = 1, 2. Note here Θ is a vector of population parameters that includes
µ1, µ2, σ1, σ2.

Additionally, assume that the regime variable st is generated by some probability dis-
tribution function. The unconditional probability that st = j is denoted by:

P [st = j; Θ] = πj for j = 1, 2. (3.21)

Hence, the population parameters Θ can be rewritten as:

Θ = (µ1, µ2, σ1, σ2, π1, π2)′. (3.22)

Then, by the rules of conditional probability, we have:

P [yt, st = j; Θ] = f(yt|st = j; Θ) · P [st = j; Θ] (3.23)

= πj√
2πσj

exp
{
−(yt − µj)2

2σ2
j

}
. (3.24)

The unconditional density of yt is thus given by:

f(yt; Θ) =
2∑
j=1

P [yt, st = j; Θ] . (3.25)

1Further details on deductions of the model are presented in (Chapter 22, Hamilton (1994)).
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In this case, we estimate the model parameters by MLE. The log likelihood function
of the model is given by:

lnL(Θ) =
T∑
t=1

ln f(yt; Θ) (3.26)

=
T∑
t=1

ln
2∑
j=1

P [yt, st = j; Θ] . (3.27)

The full likelihood function can be perceived as a weighted average of the likelihood
function for each st. The estimates of Θ are obtained by maximizing Equation 3.26.
Hamilton (1994) provides an analytical solution of the MLE based on EM Algorithm1:

µ̂j =

T∑
t=1

yt · P
[
st = j|yt; Θ̂

]
T∑
t=1

P
[
st = j|yt; Θ̂

] , for j = 1, 2, (3.28)

σ̂2
j =

T∑
t=1

(yt − µ̂j)2 · P
[
st = j|yt; Θ̂

]
T∑
t=1

P
[
st = j|yt; Θ̂

] , for j = 1, 2, (3.29)

π̂j = T−1
T∑
t=1

P
[
st = j|yt; Θ̂

]
, for j = 1, 2. (3.30)

The above is the illustration of Markov switching framework in the case of mixture
distributions. In general, a Markov switching model assumes that the time series yt follows
a process such as an auto-regression.2. A 2 -states MSA model is given as follows:

yt = cst +
p∑
i=1

φst,pyt−i + εst,t, (3.31)

εst,t ∼ N(0,Σst), (3.32)
1Alternatively, Perlin (2014) provides an iterative algorithm for updating the estimates of the model.
2The Markov switching autoregressive (MSA) model (Hamilton, 1989). Further details can also be

found at Hamilton (1994),Hamilton (2005),Tsay (2010). We only present a general representation of the
model here.
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Σst =
(
σ2

11,st σ2
21,st

σ2
12,st σ2

22,st

)
, (3.33)

st = 1, 2. (3.34)

In the next section, we present our regime switching results based on Perlin (2014)’s
method1.

3.3.2 Regime Switching Results

We perform Markov regime switching experiment on all three market indexes (which are
SHASHR, SHZSHR and SHSZ300) to identify phases. Initially, we choose the simplest
model, i.e. 2 -states mixture distributions. The details of the switching model is expressed
in Equation 3.18,3.19. Then, the switching model is enriched with 3 -states mixture dis-
tributions. Moreover, for comparative purposes, we also implement a Markov switching
autoregressive model with specifications introduced by Equation 3.31.

We put the graphical results of all experiment on SHASHR Index in Figure 3.5 whereas
some comparative analysis between markets are displayed in 3.6. Additional graphics are
illustrated in A.3, A.4 and A.5 . Lastly, full details of the model parameters are stated in
Table 3.4.

The regime switching experiment reveals some important properties of market phases.
Taking Figure 3.5a as an example, the top row represents the continuously compounded
returns of market index during the entire period. The middle row displays the conditional
standard deviation of Equation 3.18 with respect to different market states. Afterwards,
the bottom row which is the most important one, indicates the regime changes with respect
to time.

We discuss the detail of each experiment. For 2-states mixture distributions, we observe
that the probability of state 2 holds a firm value of 1 lasting from time 500 to 700, indicating
state 2 can represent the market phase during this period. From Table 3.4, we see the
estimates of switching parameter in state 2 is −0.0013 with innovations εt ∼ N(0, 6.79 ×
10−4). As showed in Figure 3.5d, it captures the sharp decreasing phase of SHASHR Index.
In other words, the returns during a rapid market contraction period can approximately be
characterized by a normally distributed random variable ŷt ∼ N(−1.3× 10−3, 6.79× 10−4)
while this contraction period can be observed by states probabilities. The experiment using

1Note that Perlin’s method does not allow for time varying transition probabilities or state space models
with Markov switching effects. In addition, the estimation of model parameters are achieved by directly
maximizing the log likelihood function rather than implementing the EM algorithm.
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(a) 2-states Mixture Distributions Regime
Switching Result

(b) 3-states Mixture Distributions Regime
Switching Result

(c) 2-states Autoregressive Regime Switching
Result

(d) Historical Price Dynamics of SHASHR
Index

Figure 3.5: Markov Regime Switching Results on SHASHR Index. We present the price
dynamics for comparison.

an autoregressive model in 3.5c suggests that the time period [500, 700] can be identified
as a special market phase.

All three switching experiment identify the time period [1200, 1800] as another stable
market phase, especially the 3-states mixture distributions. In Figure 3.5b, this period
attributes to state 1 which is characterized by ŷt ∼ N(2× 10−4, 1.29× 10−4). Indeed, from
Figure 3.5d we see that after undergoing “bulls” and “bears” periods, the market remains
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(a) Comparison of SHASHR and SHSZ300
with 2-states Autoregressive Regime

Switching

(b) Comparison of SHASHR and SZASHR
with 2-states Autoregressive Regime

Switching

Figure 3.6: Markov Switching Autoregressive Model with Two Market Indexes. The MSA
model can handle two time series together.

low volatility during this period.
Here comes another question: “Can the fast increasing market phase be identified by a

Markov regime switching estimation?”. The answer is “Yes, but with some conditions.” In
all three experiments, we do not observe that some states entirely dominate the growing
period roughly consisting of [0, 500]. We conjecture that it is because this rising phase
internally consists of multiple regimes each of which can be expressed by a special state of
the model. Based on the model specifications adopted in this thesis, the states transform
to each other in order to capture some very tiny changes of returns. As a result, although
we notice a generally upward trend of the market, it essentially experiences some regime
transitions during time [0, 500] based on our models. A more sophisticated switching model
perhaps could better explain what happened at that time but it is beyond the purpose of
this thesis. After all, the regime of downside markets imposes more challenges on portfolio
construction and its diversification.

In addition to the analysis based on a single market, Figure 3.6 exhibits two compara-
tive switching results between markets. The dynamics of conditional standard deviations
and states probabilities imply great similarity of the regime changes in all three markets.
Though some fluctuations are observed, the transitions of states in the other two markets
(SZASHR and SHSZ300) are consistent with those in SHASHR. Such inference is also sup-
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Table 3.4: Statistics of Markov Switching Results.

2-states Mixture Distributions
Market Index Switching Parameters Transition Matrix

SHASHR State 1 µ̂1 : 0.0011 σ̂2
1(εt) : 0.000135 0.99 0.02

State 2 µ̂2 : −0.0013 σ̂2
2(εt) : 0.000679 0.01 0.98

SZASHR State 1 µ̂1 : 0.0023 σ̂2
1(εt) : 0.000177 0.98 0.04

State 2 µ̂2 : −0.0023 σ̂2
2(εt) : 0.000789 0.02 0.96

SHSZ300 State 1 µ̂1 : 0.0013 σ̂2
1(εt) : 0.000166 0.98 0.03

State 2 µ̂2 : −0.0012 σ̂2
2(εt) : 0.000767 0.02 0.97

3-states Mixture Distributions
Market Index Switching Parameters Transition Matrix

SHASHR
State 1 µ̂1 : 0.0002 σ̂2

1(εt) : 0.000129 1.00 0.00 0.01
State 2 µ̂2 : 0.0059 σ̂2

2(εt) : 0.000166 0.00 0.91 0.08
State 3 µ̂3 : −0.0068 σ̂2

3(εt) : 0.000793 0.00 0.09 0.91

SZASHR
State 1 µ̂1 : 0.0017 σ̂2

1(εt) : 0.000176 0.98 0.10 0.00
State 2 µ̂2 : 0.0093 σ̂2

2(εt) : 0.000167 0.02 0.00 0.39
State 3 µ̂3 : −0.0051 σ̂2

3(εt) : 0.000884 0.00 0.90 0.61

SHSZ300
State 1 µ̂1 : 0.0010 σ̂2

1(εt) : 0.000019 0.02 0.30 0.00
State 2 µ̂2 : 0.0014 σ̂2

2(εt) : 0.000242 0.95 0.70 0.02
State 3 µ̂3 : −0.0017 σ̂2

3(εt) : 0.000804 0.03 0.00 0.98

2-states Autoregressive Model (Lag = 1)
Market Index Switching Parameters Transition Matrix

SHASHR State 1 φ̂1 : 0.03 σ̂2
1(εt) : 0.00014 0.99 0.02

State 2 φ̂2 : −0.01 σ̂2
2(εt) : 0.00066 0.01 0.98

SZASHR State 1 φ̂1 : 0.09 σ̂2
1(εt) : 0.00019 0.99 0.03

State 2 φ̂2 : 0.06 σ̂2
2(εt) : 0.00079 0.01 0.97

SHSZ300 State 1 φ̂1 : 0.04 σ̂2
1(εt) : 0.00017 0.99 0.03

State 2 φ̂2 : 0.01 σ̂2
2(εt) : 0.00075 0.01 0.97

ported by the illustration of Figure A.4 and A.5. Moreover, from a statistical point of view,
the variances of innovation terms εt take much greater values when the switching parame-
ters display negative than positive. Smaller positive values of µ̂j always associate smaller
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variances. It is also consistent with the empirical fact in the market that the volatility
soars as market index falls rapidly and remain mild in a relatively stable market period.

Hence, the Markov regime switching results lead to a further partition of the entire
investment period. The analysis indicates that we can identify market phases representing
an increasing regime, a decreasing regime and a stable regime. As a result, we identify
three corresponding time intervals:

1. Upside Market-movement Phase: t ∈ (0, 500] (approximately from 1/4/2006 to
1/4/2008);

2. Downside Market-movement Phase: t ∈ (500, 700] (approximately from 1/4/2008 to
10/26/2008);

3. Mild Market-movement Phase: t ∈ (1200, 1800] (approximately from 1/11/2011 to
6/7/2013).

3.4 Social Network Clustering Experiment

We have modeled the dependence structure among equities’ returns using a set of al-
ternative measures and identified different market phases by using the regime switching
technique. We are now in the position to present and discuss a social network analysis
(SNA). This section plays a key role in this thesis as it provides a bridge connecting
dependence structures and diversification.

Recall from Section 2.2.1, we interpret SNA as the mapping and measuring of relation-
ships and flows between entities. The equities in our data are treated as those entities and
the relationships among them are revealed by dependence measures. Worthy of further
explanation, all equities are seen as nodes or vertexes on a network with a lot of edges as
the linkage. Such a linkage represents a certain pattern of the dependence structure among
equities and can be quantified by a measure of distance. In our thesis, the distance s(i, k)
between two nodes (equities) i, k is computed as:

s(i, k) =
√

2(1− ai,k), (3.35)

where ai,k denotes the coefficient of a certain dependence measure between i and k. In
Section 3.2, we compute such ai,k among all equities with various dependence measures so
that we can quantitatively depict the equity networks with some similarity matrices. A
network also turns into a valued graph in this sense.
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Then, we locate all “central nodes” on an equity network as these nodes build the
foundation of its structure. The network will be viewed as a collection of clusters each of
which contains only one “central node”. Naturally, the set of the “central nodes” becomes
our selection of equities for a portfolio. This goal is achieved by affinity propagation
clustering (AP) (Frey and Dueck, 2007) (see Section 2.2.2). In our study, we also slightly
improve the AP algorithm to reduce the computational intensity.

Suppose that we have N equities in total including the market index. Then the simi-
larity matrix which consists of entries s(i, k) is of size N ×N1. In Frey and Dueck (2007),
the “responsibility” r(i, k) and “availability” a(i, k) are characterized by Equation 2.49: r(i, k)← s(i, k)−max

{
a(i, k′) + s(i, k′)

}
, k

′s.t.k′ 6= k,

a(i, k)← min
{

0, r(k, k) +∑max
{

0, r(i′ , k)
}}

, i
′s.t.i′ 6= i, k.

In order to update a certain r(i, k) (where the message is sent from node i to a potential
exemplar k), the running time is of order O(N) (in search for max{a(i, k′) + s(i, k′)}).
Considering the complexity of order O(N2) for simply going over all r(i, k), the full running
time of updating “responsibility” is of order O(N3) currently. Now, we tackle the algorithm
from another view. For a fixed node i, the choice of max{a(i, k′) + s(i, k′)} remains the
same with respect to all potential exemplars k (still, k′s.t.k′ 6= k). We then define w(i) as:

w(i) = max
{
a(i, k′) + s(i, k′)

}
, k

′s.t.k′ 6= k, (3.36)

and assume that the maximum for node i corresponds to a certain exemplar k′max(i), so
that

w(i) = a(i, k′max(i)) + s(i, k′max(i)). (3.37)

Now for fixed node i and exemplar k, it still takes a running time of order O(N) to find
its maximum, i.e. the value of w(i), or more explicitly the exemplar k′max(i) (k′max(i) 6= k).
But we can skip such repetitions for different exemplars k since the maximum remains
unchanged for them. In this way, the substitute term w(i) can be inserted directly into
the following equation:

r(i, k)← s(i, k)−max
{
a(i, k′) + s(i, k′)

}
, k

′s.t.k′ 6= k.

Hence, the new running time of updating “responsibilities” for all nodes i with their ex-
emplars k is of order O(N2).

1In this section, i = 1, 2, . . . , N and k = 1, 2, . . . , N .
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Accordingly, such an improvement can be applied to the “availability” a(i, k) (where
the message is sent from a potential exemplar k to a node i) with a substituting term:

q(k) =
∑

max
{

0, r(i′ , k)
}
, i
′s.t.i′ 6= i, k. (3.38)

As a result, the total computational complexity of updating the messages of “responsi-
bility” and “availability” reduces from O(N3) to O(N2).

In practical applications, we should not only consider the algorithm’s computational
efficiency but also the flexibility of the clustering scheme in meeting the investors’ needs.
A typical need of the investors is to control the size of portfolio. For instance, individual
investors may prefer holding a small number of equities in a time with more fundamental
analysis whereas professional fund managers could manage some portfolios which consist
of a large number of equities due to their access to additional capacity of money and
information.

Therefore, we expect to obtain some clustering solutions with their number of clusters
(or cluster centers) located in some desired intervals. In the original AP method, the
number of clusters is influenced by the values of the input “preferences” p(i) which indicate
preference that node i is chosen as a cluster center(Frey and Dueck, 2007). However, such
values of p(i) are always difficult to prescribe and do not necessarily lead to desired numbers
of clusters (Wang et al., 2008). To solve this problem, we plan to integrate Between-Within
Proportion (BWP) (Zhou et al., 2011) into the AP method. As we introduced in Section
2.2.3, BWP works as a criterion to evaluate the clustering result. The solutions with high
BWP values will be considered as good ones. In this integrated clustering framework, our
full scheme is described in Algorithm 2.

With the improved clustering technique, the construction of the social network structure
based on various dependence measures is accomplished. We choose one item from each of
the following categories to implement Algorithm 2 and generate stock networks,

1. Market Source: SHASHR, SZASHR and SHSZ300;

2. Market Phase: Full Length(from 1/4/2006 to 11/28/2013), Bull Phase (from
1/4/2006 to 1/4/2008), Bear Phase (from 1/4/2008 to 10/26/2008) and Mild Phase
(from 1/11/2011 to 6/7/2013);

3. Dependence Measures: Linear Correlations, Kendall’s, Spearman’s, Lower Tail
Dependence indicated by Clayton Copula, Upper Tail Dependence indicated by Gum-
bel Copula, Tail Dependence indicated by t Copula, Mutual Information (or Negative
Copula Entropy) indicated by Gaussian, t, Clayton, Frank and Gumbel Copula.
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The entire experiment is conducted through all combinations of the above items and
leads to a large amount of results, so we choose some examples to illustrate our analysis.
Figure 3.7 illustrates the equity networks constructed by the social network clustering. It
contains all equities from SHASHR and its dependence structure is revealed by the linear
correlation. On the plot, each node represents an unique equity. Every node belongs to
a certain cluster and such a relationship is described by an edge linking the node and its
cluster center. The centers indicate the target equities to be inserted into a portfolio. We
display some locally optimal solutions to control the size of a portfolio based on different
needs.

In Figure 3.8, we fix the portfolio size and observe the equity networks constructed
by different dependence measures. Note the true meaning of cluster centers behind these
dependence measures. When we obtain a network based on a certain structure, e.g. a
linear correlation, it is not that the cluster centers are more linearly correlated to each
other in terms of their returns. On the contrary, they are chosen with a prediction of weak
correlation among them. This is due to the transform of all nodes’ similarity (which are
denoted by the coefficients of dependence measures) so that the nodes located in different
clusters are “distantly correlated” to each other and the cluster centers indeed act as the
“leading roles”. Accordingly, in terms of lower tail dependence, we expect the equities to be
less likely to suffer a pairwise significant loss. In this sense, a cluster center will hold weak
associations with all other cluster centers and we expect a better diversification from these
equities, especially in the case when the market undergoes an extreme downside-movement
(e.g. SHASHR from 1/4/2008 to 10/26/2008).

The statistics of some social networks are presented in Table 3.5 and Table 3.6, with
the former displaying long-term results and the latter summarizing the results associated
with the bear phase, respectively. Based on various dependence measures, the statistics
reveals the optimal solutions located in continuous intervals with corresponding BWP
values1. In particular, Figure 3.7 corresponds to the 1st row in Table 3.5 whereas Figure
3.8 corresponds to the 4th column of Table 3.6. Furthermore, Table 3.7 presents a full
description of the chosen equities as an expansion of Table 3.5’s 1st row.

Therefore, with the modeling of dependence structure and the construction of social
network clustering framework, we are able to achieve the first main goal of this thesis: to
find a strategy of selecting equities for portfolios. The cluster centers in the final solutions
represent those target equities to be inserted into a portfolio. In the next two chapters we
discuss our portfolios under a mean-variance framework and measure their diversification.

1Note that in brackets we time all BWP values by 100 for better views.
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Algorithm 2: Algorithm of Social Network Clustering
Input: Cleaned Data (from Algorithm 1)
Output: Cluster Centers and Values of BWP

1 Model the dependence structure of market data,
(I) Estimate the coefficients ai,k for all dependence measures on full time scale,
(II) Estimate ai,k for all dependence measures on different market phases;

2 Compute the distances s(i, k) among all pairs of data points,

s(i, k) =
√

2(1− ai,k) ;

3 Prescribe number of clusters k and execute Steps 4 to 8 for all k ∈ {2, 3, . . . , 30};
4 Set the range of “preferences” p,

p ∈
[1
8 min{s(i, k)},max{s(i, k)}

]
;

5 Pick a value for p from its range;
6 Apply affinity propagation clustering algorithm with the given value of p, obtaining

a solution with n clusters;
7 Check,

(I) if n equals k, then retain the solution,
(II) if n does not equal k, then apply bisection method to the range of p in Step 4
and redo Steps 5 to 7;

8 Compute the solution’s BWP value: BWP(k);
9 Set 6 intervals,

[2, 5], [6, 10], [11, 15], [16, 20], [21, 25], [26, 30];

10 Find a k in each of the intervals (in Step 9) with the maximum BWP(k) and such
corresponding solutions will be chosen at last.
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(a) 3 Clusters (b) 7 Clusters

(c) 12 Clusters (d) 16 Clusters

Figure 3.7: Social Network Clustering on Linear Correlations. Data: Market SHASHR
from 1/4/2006 to 11/28/2013 (Entire Length).
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(a) Pearson’s Linear Correlation (b) Kendall’s

(c) Lower Tail (Clayton Copula) (d) Upper Tail (Gumbel Copula)
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(e) Tail Dependence (t Copula) (f) MI (Gaussian)

(g) MI (Clayton) (h) MI (Gumbel)

Figure 3.8: Social Network Clustering on Multiple Dependence Measures with Illustration
of 16 Clusters. Data: Market SHASHR from 1/4/2008 to 10/26/2008 (Bear Phase).
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Table 3.5: Statistics of Social Network Clustering Results. Data: Market SHSZ300 from
1/4/2006 to 11/28/2013 (Entire Length).

Optimal Number of Clusters (with BWP×102) in Different Ranges
Dependence Measures 2− 5 6− 10 11− 15 16− 20 21− 25 26− 30
Linear 3(0.63) 6(−0.96) 11(−3.83) 20(−6.83) 24(−6.03) 30(−5.35)
Kendall’s 2(0.38) 6(−1.01) 11(−3.69) 16(−6.08) 24(−6.04) 30(−5.28)
Spearman’s 3(0.80) 6(−0.61) 11(−4.01) 16(−7.23) 25(−6.75) 30(−4.90)
Lower Tail (Clayton) 3(0.96) 6(−1.15) 11(−3.37) 17(−5.73) 25(−3.89) 28(−2.82)
Upper Tail (Gumbel) 3(0.38) 6(−0.85) 11(−3.36) 16(−6.11) 24(−5.81) 30(−5.20)
Tail (t Copula) 2(0.50) 6(−1.41) 11(−3.37) 16(−4.62) 25(−3.53) 30(−1.38)
MI (Gaussian) 2(−0.07) 6(−1.26) 11(−2.60) 16(−4.48) 25(−5.13) 30(−3.87)
MI (t Copula) 2(0.17) 6(−0.74) 11(−2.44) 18(−4.20) 25(−2.94) 30(−1.74)
MI (Clayton) 2(−0.02) 6(−1.32) 11(−2.93) 20(−4.18) 25(−3.06) 28(−2.36)
MI (Frank) 2(0.08) 6(−1.09) 11(−2.44) 16(−4.32) 25(−4.06) 30(−3.43)
MI (Gumbel) 2(−0.01) 6(−1.00) 11(−2.38) 16(−4.06) 25(−4.63) 28(−3.69)

Table 3.6: Statistics of Social Network Clustering Results. Data: Market SHASHR from
1/4/2008 to 10/26/2008 (Bear Phase).

Optimal Number of Clusters (with BWP×102) in Different Ranges
Dependence Measures 2− 5 6− 10 11− 15 16− 20 21− 25 26− 30
Linear 2(1.14) 6(−0.93) 12(−1.62) 16(−2.33) 22(−4.38) 26(−4.39)
Kendall’s 2(0.30) 6(−0.50) 11(−0.83) 16(−1.51) 21(−2.30) 26(−3.07)
Spearman’s 2(1.05) 7(−1.12) 11(−1.15) 17(−2.29) 21(−3.91) 26(−4.00)
Lower Tail (Clayton) 2(0.59) 6(−1.03) 12(−1.99) 16(−2.84) 22(−3.33) 26(−3.51)
Upper Tail (Gumbel) 2(0.30) 6(−0.85) 11(−3.36) 16(−6.11) 21(−5.81) 26(−5.20)
Tail (t Copula) 5(−0.13) 6(−0.13) 11(−0.92) 16(−1.68) 22(−2.66) 26(−3.23)
MI (Gaussian) 2(0.30) 6(−0.34) 11(−0.90) 16(−1.25) 21(−2.26) 26(−3.16)
MI (t Copula) 2(0.25) 7(−0.32) 11(−0.61) 16(−1.30) 21(−1.63) 27(−2.56)
MI (Clayton) 2(0.22) 6(−0.53) 11(−1.10) 16(−1.56) 21(−2.21) 26(−2.73)
MI (Frank) 2(0.20) 6(−0.30) 11(−1.10) 16(−1.36) 21(−1.66) 26(−2.50)
MI (Gumbel) 2(0.22) 6(−0.28) 12(−1.43) 16(−1.80) 21(−2.17) 26(−2.47)
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Table 3.7: Selection of Stocks by Social Network Clustering on Linear Correlations. Data:
Market SHSZ300 from 1/4/2006 to 11/28/2013 (Entire Length).

Equity Tickers Corresponding to Cluster Centers

Number 2− 5(3) 6− 10(6) 11− 15(11) 16− 20(20) 21− 25(24) 26− 30(30)
1 000630 CH 000002 CH 000002 CH 000002 CH 000002 CH 000002 CH
2 600085 CH 000528 CH 000528 CH 000422 CH 000422 CH 000063 CH
3 600642 CH 000630 CH 000630 CH 000528 CH 000528 CH 000528 CH
4 600030 CH 600000 CH 000630 CH 000630 CH 000629 CH
5 600085 CH 600019 CH 000656 CH 000656 CH 000630 CH
6 600642 CH 600029 CH 000729 CH 000729 CH 000656 CH
7 600030 CH 000983 CH 000983 CH 000729 CH
8 600085 CH 002001 CH 002001 CH 000792 CH
9 600188 CH 600000 CH 600000 CH 000983 CH
10 600642 CH 600019 CH 600019 CH 002001 CH
11 600809 CH 600029 CH 600029 CH 600000 CH
12 600030 CH 600030 CH 600019 CH
13 600085 CH 600085 CH 600029 CH
14 600104 CH 600104 CH 600030 CH
15 600118 CH 600118 CH 600085 CH
16 600489 CH 600315 CH 600104 CH
17 600642 CH 600340 CH 600118 CH
18 600694 CH 600415 CH 600132 CH
19 600703 CH 600489 CH 600315 CH
20 600809 CH 600598 CH 600340 CH
21 600642 CH 600415 CH
22 600694 CH 600489 CH
23 600703 CH 600550 CH
24 600809 CH 600598 CH
25 600642 CH
26 600694 CH
27 600703 CH
28 600783 CH
29 600809 CH
30 600832 CH
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Chapter 4

Portfolio Selection Evaluation

This chapter is dedicated to the performance evaluation of the portfolios consisting of
the selected equities based on the social network clustering. The numerical analysis is
performed through both the mean-variance framework (which is introduced in Section 2.3)
and the mean-diversification framework (introduced in Section 2.4). With such an analysis,
we are looking to acquire a good understanding of the portfolio selection strategies in terms
of the dependence measures and the market phases.

4.1 Mean-Variance Analysis

In the classical mean-variance framework, the optimization goal is to maximize a portfo-
lio’s return given a acceptable level of risk (denoted by variance or standard deviation of
returns), whose optimization structure is presented in 2.67. Alternatively, we can choose
to minimize a portfolio’s risk with a targeted level of return as presented in 2.66. In both
applications we aim at achieving the optimal portfolio allocations.

In ideal situations where we do not consider the portfolio constraints but only a general
budget constraint1, the efficient frontier could reach the optimal level of returns or risk.
However, such a situation is not applicable to most real investors as they are usually
restricted by further constraints. Here, we describe the full portfolio constraints for the
MV analysis:

1The portfolio weights ωi follows
N∑

i=1
ωi = 1, i = 1, 2, . . . , N.
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• Long-Short constraint: −0.1 6 ωi 6 1, i = 1, 2, . . . , N ;

1. We allow for short sell on a certain risky asset up to 10% of total wealth;
2. The money allocated to a certain risky asset should not exceed total wealth.

• General budget constraint:
N∑
i=1

ωi = 1.

Next, we describe the historical return of a certain risky asset by Equation 2.60. The
risky assets in one portfolio selection are the cluster centers coming from the social network
clustering solution based on some specific settings. For instance, the pool of equities will
be the 5th column of Table 3.7 with the following settings:

Market Source for Clustering: SHSZ300;
Time Series Length for Clustering: 1/4/2006 to 11/28/2013 (Entire Length);

Dependence Measure for Clustering: Linear Correlation;
Portfolio Size Preference: 21− 25 (Picking the one with largest BWP).

In the following context, all of the portfolio selections will follow a similar pattern of
market settings as the above example. The mean-variance efficient allocation strategies
are then performed on our selections based on a variety of specific settings, e.g. choices of
market source, time series length, dependence measures and so on.

Figure 4.1 illustrates the performance of the MV allocations1 on some selections from
Market SHASHR2. In each of the sub-figures, the blue curve represents the efficient fron-
tier based on the current stock selection given the portfolio constraints whereas the blue
points scattered under it denote the individual stocks from the selection with the corre-
sponding mean returns and the corresponding volatilities3. In each row of the sub-figures,
we compare the allocation performance with the same dependence measure but a distinct
number of stocks. The result indicates that with a given level of risk, the expected returns

1To obtain MV efficient allocations, we solve 2.66 or 2.67 for optimal portfolio weights. Equation 2.68
describes the efficient frontier in a σ (standard deviation), µ (expected return) space.

2Shanghai Stock Exchange is one of the major stock exchanges operating in China. A shares are issued
for the domestic currency trading.

3Note that these points are not portfolios. Any two distinct portfolios on the frontier can generate the
entire frontier. However, the individual stocks can not replace the efficient portfolios. As a result, given a
pool of some risky assets and some allocation constraints, there will exist a unique mean-variance efficient
frontier.

78



(a) Spearman 6 Equities (b) Spearman 21 Equities

(c) Tail Dependence (t Copula) 6
Equities

(d) Tail Dependence (t Copula) 21
Equities

(e) MI (Clayton) 6 Equities (f) MI (Clayton) 21 Equities

Figure 4.1: MV Efficient Frontiers Consist of Small or Large Number of Equities based
on Various Dependence Measures. Data: Market SHASHR from 1/4/2006 to 11/28/2013

(Monthly Scale, Entire Length).
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(a) Linear Correlation 22 Equities (b) Kendall’s 21 Equities

(c) Lower Tail Dependence 23 Equities (d) Upper Tail Dependence 21 Equities

(e) Tail Dependence (t Copula) 22
Equities (f) MI (Gumbel) 21 Equities

Figure 4.2: MV Efficient Frontiers Consist of Large Number of Equities based on Various
Dependence Measures. Data: Market SHASHR from 1/4/2008 to 10/26/2008 (Weekly

Scale, Extreme Bear Phase).
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significantly improve as we insert more stocks into the allocations. Vertically viewing, the
stock selections based on the tail dependence (the stocks are distantly scattered on the
social network in terms of the tail dependence structure revealed by the t copula) have
better performance in both the small and the large portfolios comparing to the remaining
two portfolios. Considering the length of historical data, we conjecture that the tail depen-
dence indicated by the t copula will better capture the association structure among assets
than the Spearman’s rank correlation. Thus, the corresponding stocks chosen by the data
clustering technique are less associated in the movement of their returns and can achieve a
higher level of expected return given the same level of risk. In contrast, we observe slight
differences in the performance of the equity selections between the tail dependence and the
mutual information.

To gain another perspective of the equity selections based on various dependence mea-
sures, we apply the MV approach to the large portfolios on an extreme downside market
phase. The corresponding efficient frontiers are illustrated in Figure 4.2. The Markov
regime switching model identifies 1/4/2008 to 10/26/2008 as a “bear” phase where the
SHASHR index sharply decreases from 4951.35 to 2083.77. The market is highly volatile
with a depressing weekly expected return of −0.0217. Such a severe depression is not only
caused by the global financial crisis but also due to the violent bursts of the deceptive
bubbles inflated by the Chinese real estate industry1. During the depression, most equities
admit negative expected returns and even the MV efficient allocations fail to produce prof-
its. As we see in Figure 4.2b, all the efficient points (with the current portfolio constraints)
of the equity selection by the Kendall’s τ imply a loss and those of the selection by the mu-
tual information (Gumbel copula) (i.e., the negative Gumbel copula entropy) can hardly
make through the break-even level. This suggests a recommendation to withdraw wealth
from the equity market during this period as there do not exists a fully feasible short selling
option2. Even in such bad times, we still obverse some favorable portfolio selections. The
equity selection plotted in Figure 4.2c are the cluster centers based on the linear correlation
which pursues the lowest degree of such dependence among the selected equities. With a
proper allocation, these less correlated equities are able to provide a good premium in
the MV approach. Accordingly, the selection by the lower tail dependence which focuses
on weakening the association of the extreme loss also proves to be impressive in the bear
phase. Such equity selections provide choices for the investors who can not fully withdraw

1The SHASHR Index has been climbing up before the bursts, breaking through 6000 in 2007. With
the confidence in the local economic blooming and the faith in the Government policy control for the 2008
Olympic Games hosted in the city of Beijing, some researchers “predict” SHASHR Index would hit 10000.

2The Chinese futures market was not reopened at that point. Not to mention that any hedging strategies
by longing the put options can not work as they are not available for trading at all.
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themselves from the market.
We further present a cross-sectional performance of the MV efficient allocations with

respect to all the dependence measures. In Table 4.1, the first 3 columns on the left
represent the monthly volatilities corresponding to the expected returns in the small equity
selections. The 3 columns in the middle display the scenarios of the large equity selections.
We use the long-term dependence data for the social network clustering in order to obtain
the above selections. As we can observe, with the current portfolio constraints, some levels
of the expected returns are not attainable by the MV efficient allocations. Removing the
constraints might bring a chance for reaching a target of returns, but it is at the cost of
greatly increasing the portfolio’s volatility. In the case of the small portfolios, the selection
with the linear correlation turns out to be the best. The 2nd place is taken by the selection
with the lower tail dependence and the third by the MI (Mutual Information, Clayton
Copula). However, it is rather obscure to see if these small portfolio selections could beat
the market in long terms. We raise the target levels of expected returns for the large
portfolios. In this case, the selection with the linear correlation seems rather unpredictable
when we require high premiums. We conjecture that the investment length should partially
have influence on it. As shown in Figure 3.1, all equities are positively correlated to
each other in longer investment periods. The corresponding correlation matrix might not
necessarily lead to a clustering solution in which the cluster centers are all distantly located.
In the market view, it is possible to find some stocks which are less mutually correlated in
long terms but difficult to do so with a large number of equities. In contrast, the selections
with the measures representing the non-linear dependence structure give an impressive
performance. Among them the selections by the lower tail dependence and the MI (Clayton
Copula) outrun the rest. The tail structure and the mutual information indicated by t
copulas also lead to good selections. Their dependence data always emphasize the ties
lurked in the tail distributions, leading to excellent social networks and clear clustering
solutions even in the long run. With less uncertainty, the selections by the tail dependence
and the mutual information admit good risk premiums.

The previous selections are chosen based on the data over a long time. In the right 3
columns of Table 4.1, we examine the performance of the equity selections from the bear
market phase. Note that we refer the “bear” phase (from 1/4/2008 to 10/26/2008) to
the market data for studying the dependence structures and the clustering results. Then
we apply the MV approach to the equity selections with the same data (from 1/4/2006
to 11/28/2013) as in the previous studies. Hence, these selections hold particularly weak
ties in terms of their dependence during the extreme downside market phase. To our
surprise, with respect to all the dependence measures, the equity selections from the bear
phase outrun those from the longer term. We observe the lower level of volatilities given
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the same level of expected returns, especially in the linear correlation case. Indeed, during
this extremely depressing and relatively short period, the discrepancies among the pairwise
correlations (or other dependence measures) can be better observed and appreciated. Thus,
the corresponding social network clustering solutions contain more meaningful information.
On the other hand, the equity selections with the lower tail dependence and the MI (Clayton
Copula) still admit more robust performance. The MI (Frank Copula)’s selection slightly
outrun the others.

With more interest in studying the “bear” phase, we present the equity selections with
the MV approach in Table 4.2. In this table, both the equity selections and the backtests
are built upon the bear market data. Due to the sharp decrease, the returns and the
corresponding volatilities are weekly scaled. In this case, the small selections are basically
not profitable, though the ones with the tail dependence (indicated by Clayton copula and
t copula) and the MI (t Copula) are less risky than the market portfolio. They will be
slightly profitable when switching to a large size, however the corresponding risk is not
substantially reduced.

As a result, the equity selections by the social network clustering based on the lower
tail dependence prove to be more robust than the equity selections by other dependence
measures within a mean-variance framework. The large equity selections with the tail
dependence indicated by the t copula also show good performance. The large equity
selections with the linear correlations are outstanding if the data is abstracted from the
bear market phase.

In the next section, we study the equity selections from the perspective of diversification.
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4.2 Portfolio Diversification Analysis

As we documented in Section 2.4, the diversification is another important key to achieve a
robust portfolio selection. Meucci (2009) proposes to decompose market risk sources into
uncorrelated ones using the principal component analysis (PCA). Then, the portfolio risk
can be further characterized as some additive risk contributions which are denoted by a
diversification distribution (see Equation 2.82). Through an entropy risk measure, we are
able to quantify the degree of the total diversification in some portfolios. Such a method-
ology also provides a framework for proper reallocations in order to obtain the efficient
portfolios considering the maximum diversification or the maximum expected returns (see
Equation 2.87). Hence, analogous to the mean-variance analysis, a mean-diversification
efficient frontier comes to life.

The diversification analysis is initialized with our MV results. The portfolio constraints
stay the same as in the previous section. Here, we add a specified reallocation constraint:

• reallocation constraint:
N∑
i=1

∆ωi = 0.

1. We allow for re-allocation on all equities none of which is suspended;
2. We do not allow for refinancing.

We illustrate the MD analysis of an equity selection in Figure 4.3. The equities in the
selection (the portfolio is denoted by the red dot in Figure 4.3a) come from a clustering
solution built upon 8 years’ linear correlations. The portfolio consists of 21 equities from the
Market SHASHR with their covariance matrix denoted by Σ (which is 21×21). Its current
allocation is given by the MV model with a monthly expected return of 2.85%. Figure 4.3b
describes this portfolio in details with its top row denoting the MV allocation weights ω
on all equities. The second row in 4.3b represents the “substituting weights” ω̃ = E−1ω on
the principle portfolios where E is obtained by applying the PCA to the original portfolio
(see Equation 2.70, 2.78). E holds the same dimensions as Σ, so that we have exactly
21 principal portfolios. The third row in 4.3b displays the principal portfolios’ volatilities
which are implied by E’s eigenvalues λ1, λ2, . . . , λ21. With the properties of the PCA, the
leading eigenvector always holds the largest eigenvalue so that the first principal portfolio
accounts for the major volatility in total (shown as the first bar in 4.3b). In this sense, the
uncorrelated principal portfolios can be treated as the additive risk sources with the first
one denoting the dominating risk factor in the market. It also builds up a connection to a
diversification measure. Due to ω̃ = E−1ω, we can denote the weight-adjusted uncorrelated
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risks by vi ≡ ω̃2
i λi (see Equation 2.79). Then the volatility concentration curve and the

diversification distribution (see Equation 2.81, 2.82) are presented in 4.3b by its 4th and
the last row, respectively. These two bar plots imply how well the uncorrelated risk source
are diversified by the current portfolio allocation. In a perfect diversification situation, all
bars shall be of the same height. Apparently, the current MV efficient allocation does not
produce the portfolio at that level.

A more straightforward view of the diversification is given by the “number of effective
uncorrelated bets” NEnt (see Equation 2.86). Meucci (2009) quantifies the level of the port-
folio diversification by taking the exponential of its diversification distribution’s entropy.
In Figure 4.3a, the current MV portfolio allocation displays NEnt ≈ 10 which implies that
it is well diversified on 10 risk source. Considering that the market is characterized by 21
uncorrelated risk sources, the diversification of the current portfolio is not optimal but still
meaningful.

Following the principal of the maximum entropy (MEP), a further portfolio optimiza-
tion framework is built upon the entropy diversification measure NEnt. Meucci (2009)
names the optimization framework as “mean-diversification”(MD). It generates an MD
efficient frontier by solving the optimizations proposed in 2.87 and 2.88. The ideas of the
MD and the MV efficient frontiers share some similarities. In both frameworks the optimal
solutions are obtained by adjusting the allocations subject to some constraints, e.g. the
portfolio constraints and a target level of returns. On the other hand, the differences in
both frameworks are obvious as well. Since NEnt represents the level of diversification, it
is aimed to be as large as possible (which is exactly opposite to the volatility). Unlike in
the MV, the preference between the expected return and the diversification in the MD is
controlled by a parameter ϕ in 2.88. Xiong (2009) gives a more intuitive expression of the
parameter in 2.89.

The MD efficient frontier for the equity selection is illustrated in Figure 4.3a. The
frontier consists of all the efficient points each of which maximizes both expected returns
and NEnt with respect to ϕ. The efficient point on the top left end represents the allocation
considering the maximum expected returns while the one at the bottom right end denotes
the allocation considering the maximum diversification. The red dot represents our current
MV allocation on the equity selection with the corresponding expected return and the level
of the diversification.
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(a) MD Efficient Frontier

(b) Diversification of Current Portfolio

(c) Portfolio with Maximized Expected Return (d) Portfolio with Maximized Diversification

Figure 4.3: The Mean-Diversification Analysis of the Equity Selection (21 Equities) based
on the Linear Correlation. The original portfolio weights are given by the MV efficient

allocation with a monthly expected return of 0.0285. Data: Market SHASHR from
1/4/2006 to 11/28/2013 (Monthly Scale, Entire Length).
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In an ideal situation, the MD efficient frontier in Figure 4.3a should be able to smoothly
stretch across NEnt approximately from 1 to 21. “1” means that the allocation is fully
concentrated on a risk source and “21” means that the allocation is fully diversified on all
risk sources. However, such a frontier can only be achieved without any constraints, so that
maximizing the entropy will lead to a uniform diversification distribution with pi = 1/21.
In our case, the existence of portfolio constraints restricts the investors from buying or
short selling assets as much as they want. Hence, a perfectly diversified allocation that all
principal portfolios are exposed with the same volatility adjusted proportion on the total
volatility (d-fine GmbH, 2011) might not be attainable. In our previous MV analysis, the
portfolio constraints also restrict the MV efficient frontier to be part of the entire parabola.
Additionally, Meucci (2009)’s experiment comes with an assumption that µ ≡ 0.5σ so that
the values of expected returns are forced to be half of the corresponding volatilities. It
potentially leads to a smooth and convex frontier. Xiong (2009) replicates Meucci (2009)’s
work with the market data of real returns and the corresponding covariance matrix. He
finds discontinuities on the efficient frontiers. He conjectures that the discontinuity is
mainly due to the similarity in some largest volatilities of the principal portfolios. In our
experiment, the real historical data does not suggest µ ≡ 0.5σ either, which leads to some
bumps on the frontier curve. We conjecture that another possible reason which contributes
to the non-smoothness could be the choice of the initial allocation1 (in our case it is the
MV efficient allocation). In real applications, the MD optimization initializes with an
existing portfolio selection and adjusts its allocation in searching for the efficient points.
Different choices of the initial allocations could generate a lot of ambiguities in the process
of finding the optimal solutions. In our experiment, random MV allocations mostly lead
to identical frontiers. Sometimes, slight differences at both ends are observed with similar
overall trends. Occasionally, a few allocations lead to strange looking curves.

The current MV allocation implies NEnt ≈ 10 and µ = 0.0285. In view of diversifi-
cation, it is pretty close to the MD efficient frontier. To guarantee this level of expected
return given the portfolio constraints, the MV allocation almost achieves the optimal di-
versification (in which NEnt ≈ 10.5).

Analogous to Figure 4.3b, Figure 4.3c and Figure 4.3d represent the maximum expected
return and maximum diversification on the MD frontier, respectively. We can observe the
difference between them in their diversification distributions. The distribution with the
maximum diversification reduces the large concentrations of the risky principal portfolios
and increases the allocations on the less risky principal portfolios, thus making itself more
like a “uniform distribution”. Once again, due to the portfolio and the reallocation con-

1The initial allocation in Meucci (2009) is a naive strategy (ω ≡ 1/N) relative to a benchmark with
its weights proportional to all equities’ market capitalization.
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straints, an ideal uniform with NEnt ≈ 21 is not attainable. On the other hand, we observe
how the allocation changes from 4.3b to 4.3c. To achieve the maximum expected return,
the reallocation increases weights on some stock holdings and short more on the remaining
ones. The diversification distribution is more concentrated on some principal portfolios in
4.3c than in 4.3d.

Figures 4.4, 4.5 and 4.6 illustrate more MD analysis. These cases vary in the depen-
dence measures for the equity selections, the initial MV allocation and the market phase.
Due to the reasons presented earlier, we observe non-smoothnesses in their MD efficient
frontiers. In these cases, the initial MV allocations are way off the frontier curves and
thus heavily suboptimal. As shown in 4.4b, 4.5b and 4.6b, the diversification distributions
of the MV allocations are strongly concentrated on a few principal portfolios. In con-
trast, the maximum diversification distributions effectively mitigate such concentrations
by spreading them among the other principal portfolios. From the initial MV allocation
to the maximum diversification reallocation, the weights on both the selected equities and
the transitioned principal portfolios vary significantly.
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(a) MD Efficient Frontier

(b) Diversification of Current Portfolio

(c) Portfolio with Maximized Expected Return (d) Portfolio with Maximized Diversification

Figure 4.4: The Mean-Diversification Analysis of the Equity Selection (21 Equities) based
on the Lower Tail Dependence. The original portfolio weights are given by the MV

efficient allocation with a monthly expected return of 0.033. Data: Market SHASHR
from 1/4/2006 to 11/28/2013 (Monthly Scale, Entire Length).
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(a) MD Efficient Frontier

(b) Diversification of Current Portfolio

(c) Portfolio with Maximized Expected Return (d) Portfolio with Maximized Diversification

Figure 4.5: The Mean-Diversification Analysis of the Equity Selection (21 Equities) based
on the Tail Dependence Indicated by t Copula. The original portfolio weights are given
by the MV efficient allocation with a monthly expected return of 0.033. Data: Market

SHASHR from 1/4/2006 to 11/28/2013 (Monthly Scale, Entire Length).
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(a) MD Efficient Frontier

(b) Diversification of Current Portfolio

(c) Portfolio with Maximized Expected Return (d) Portfolio with Maximized Diversification

Figure 4.6: The Mean-Diversification Analysis of the Equity Selection (22 Equities) based
on the Linear Correlation in the Bear Market Phase. The original portfolio weights are

given by the MV efficient allocation with a monthly expected return of 0.030. Data:
Market SHASHR from 1/4/2006 to 11/28/2013 (Monthly Scale, Entire Length).
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The previous MD analysis focuses on studying a certain equity selection. Below we
present a comprehensive analysis covering a variety of market settings, e.g. different de-
pendence measures, time series length and so on. By applying Meucci (2009)’s methodol-
ogy, we verify the diversification of the equity selection with all the dependence measures
implemented in our study. Each of the equity selections is given an initial MV efficient
allocation with the same identical level of expected returns. Such portfolio selections are
compared in terms of NEnt and the volatility σ. Then, we reallocate the wealth on each
of the equity selections to achieve its maximum expected return and the maximum diver-
sification on the MD efficient frontier. Such portfolio selections take NEnt, the expected
return µ and the volatility σ into account. In practice, the new allocations are given by
the MD optimal solutions, e.g. the first row illustrated in Figure 4.3c or 4.3d.

Table 4.3 presents the result of the MD analysis for the long-term market (SHASHR).
The dependence measures for the social network clustering are built upon the data lasting
8 years with daily scaled returns. The equities are selected based on the long-term market
performance. The size of the equity selections is chosen as “large” (21− 25 equities). The
MV allocation and the MD optimization are operated on the same data but with monthly
scaled returns. The initial MV efficient allocations sets a target at a monthly expected
return of 2.75%.

All equity selections result in 21 equities. In terms of the initial MV allocations, the
equity selections by the Kendall’s rank correlation and the upper tail dependence (Gumbel
copula) show greater NEnt. The portfolios have already effectively diversified the risk
concentrations on 11 principal portfolios out of 21. However, their total volatilities are
also much greater than the other portfolios. Taking both the diversification and the total
volatility into consideration, the equity selections by the linear correlation and the MI
(negative Gaussian copula entropy) represent the compromised solutions.

We next move to the MD efficient reallocation targeting at the maximum expected
returns. The equity selection by the tail dependence (t copula) reaches the highest monthly
return of 4.13% at the cost of bearing the largest total volatility 0.2076 and the lowest level
of diversification 7.7916. Comparing with the other equity selections, this one seems too
risky, thus it is not recommended. The proper dependence choices for the equity selection
that pursues high risk premiums while suitably suppresses the total risk with impressive
diversification are the Spearman’s rank correlation and the MI (negative Gaussian copula
entropy). Through the MD efficient allocation, these two portfolios preserve the higher end
of the expected return (above 3.1%) and the relatively moderate level of the total volatility
(about 0.17). Moreover, they indicate outstanding diversification in which NEnt ≈ 14.
In this sense, they effectively diversified the volatility concentrations among 14 principal
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portfolios which account for the majority of the total risk. If the investor still prefers
lower total risk, the equity selections by the Kendall’s rank correlation and the upper tail
dependence (Gumbel copula) will be the preferred choices.

The third session focuses on the MD efficient reallocation targeting at the maximum
diversification. In this case the priority switches from producing high profits to mitigating
the portfolio’s risk. If the investor merely pursues diversifying the portfolio’s risk, the
equity selections by the linear correlation and the Kendall’s rank correlation are the best.
The values of NEnt come up to almost 17. With some slight sacrifice of the diversification
and the total volatility, the performance of the equity selections by the lower tail (Clayton
copula) and the upper tail dependence (Gumbel copula) are also impressive. If the investor
has more bias on the expected return in the maximum diversification (e.g. 2% monthly), the
equity selections by the Spearman’s rank correlation, the MI(t copula) and the MI(Clayton)
are recommended. The MI(Gaussian) is not preferred in this case as it goes against the
priority of mitigating the total risk.

Table 4.4 also presents the result of the MD analysis for the long-term market (SHASHR).
The only difference is that the equities are selected from the extreme bear market phase
(1/4/2008 to 10/26/2008). The size of the equity selections is chosen as “large” (21 − 25
equities). The MV allocation and the MD optimization are operated on the same long-term
data as Table 4.3.

Analogously, we evaluate the initial MV allocations first. In this case, none of the
equity selections indicates a good diversification. The “best” diversification belongs to
the equity selection by the MI(Gaussian copula) with NEnt of only 6.8 out of 21. Taking
both the total risk and the diversification into considerations, the equity selections by the
linear correlation and the MI(Frank copula) slightly outperform the others. Without the
MD efficient reallocation, the equity selections from the bear phase generally show a poor
diversification.

Then, we observe obvious differences between Table 4.4 and Table 4.3 in their maximum
expected returns of the MD reallocations. The equity selections from the extreme bear
phase generate much higher profits than those from the longer term. This finding is
consistent with our MV analysis presented in Table 4.1. In exchange for higher premiums,
lots of equity selections turn out to be riskier with a lower degree of diversification than in
Table 4.3. The equity selection by the tail dependence (t copula) indicates an exceptional
monthly expected return of 7% with the middle-class diversification and the volatility
overall. The selection by the MI (Gumbel copula) is very well diversified with lowest total
volatility. Its neighbor by the MI (Frank copula) seems slightly more volatile, but the
improvement in the expected return is more substantial. These three equity selections
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with the MD reallocations are good choices for the investors. They beat those selections
by the same dependence measures presented in Table 4.3 in terms of all three indicators,
i.e. NEnt, µ and σ.

Lastly, we observe the MD reallocation for the maximum diversification in Table 4.4.
In this case, most selections hold higher NEnt than those reported in Table 4.3, indicating
that the equity selections from the bear phase are better diversified by the MD efficient
allocations. In 4.4, the selection by the linear correlation is overall a great choice with a
top diversification, a bottom volatility and a good expected return. The selection by the
MI (Frank copula) preserves the robust performance, showing a top diversification and a
leading monthly expected return of 3.58%.

In conclusion, we examine the performance of the equity selections under a mean-
diversification framework. The equity selections are built on the social network clustering
with various dependence measures. The focus of this section is to verify the relationship
between the dependence measures and the portfolio selections under different market set-
tings. In the case when the dependence structure1 is described by the long-term data,
the Spearman’s rank correlation and the Kendall’s rank correlation prove to be preferred
choices for the equity selections with the general market settings. The selection by the lin-
ear correlation can be well diversified. On the other hand, when the dependence structure
is constructed by the extreme downside market data, the corresponding equity selections
lead to better diversification. In this case, the linear correlation and the MI (Frank copula)
give rise to good results. Overall, we recommend the selections extracted from extreme
downside market data as they have the ability to be well diversified in “bear” market and
give robust performance in long terms.

1In other words, it refers to the estimation of dependence measures.
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Chapter 5

Conclusion

In this thesis, we have studied a portfolio construction technique and proposed a new
methodology to select the equities from the large trading markets. The methodology con-
siders various dependence structures in the market. The equity selections are realized by
the social networks and a data clustering technique. We have also considered the influences
of market regime changes on the equity selections. Then we have evaluated the selection
strategy to complete the portfolio construction. The evaluation analysis was performed
within the mean-variance optimization framework. At last, we have examined the diversi-
fication of the relevant portfolio selections within the mean-diversification framework. The
evaluation analysis has suggested the proper equity selections in different market settings.
All numerical results and relevant analysis were obtained based on three major Chinese
equity markets.

The motivation of the equity selection methodology came from the concept of the
dimension reduction technique. A large equity market can be treated as high dimensional
data with each of its dimensions representing an asset. Intuitively, we used the dependence
to properly describe the organization of the market data and the associations among its
components. Lots of literatures indicated asymmetric and extreme correlations between
financial assets. In our work, the dependence structure was modeled through the linear
correlation and the copula related dependence measures so that it accounts for both the
linear and the non-linear associations among the assets. More explicitly, the estimation of
the relevant dependence measures included the linear correlation, the rank correlations, the
tail dependence (revealed by copulas) and the mutual information (revealed by negative
copula entropies). Each of the measures represented a unique pattern of the dependence
structure. In our applications, they were interpreted as the numerical estimation of relevant

99



coefficients.
The dependence structure among the data was further described by the social networks.

In the social networks, the individual assets were denoted by the nodes with their scatter-
ings which explain the associations. More explicitly, we used the distances between pairs of
the nodes to measure the strength of the relevant dependence structure. The construction
of the social networks based on the dependence laid the foundation of the equity selections
as it provided us with a platform to apply the specifically designed dimension reduction
techniques. In our work, we chose to use the data clustering technique for dimension reduc-
tion in order to find all cluster centers as the selected equities. We studied and implemented
the popular Affinity Propagation Clustering technique (AP) proposed by Frey and Dueck
(2007), due to its various advantages in handling large data. We slightly improved the
AP algorithm to reduce the computational intensity and integrated the BWP into it for
a better control of the clustering solutions. As a result, we built up a full social network
clustering framework to perform the equity selection based on various patterns of the de-
pendence structures. We also studied and applied the Markov Regime Switching Model
(Perlin, 2014) to identify different market phases in which the social network clustering for
equity selections were used.

We examined the equity selection strategies under the mean-variance framework (Markowitz,
1952) as well as the mean-diversification framework (Meucci, 2009). With such an anal-
ysis, we acquired a good understanding of a reasonable selection strategy in terms of the
dependence measures and the other factors.

In the classical mean-variance framework, we observed the influence of the dependence
measures, the equity selection sizes and the market phases on the portfolio returns and
volatilities. We obtained some empirical findings based on the mean-variance analysis. In
the social network clustering framework we built up, the equity selections by the lower
tail dependence prove to be more robust than the equity selections by other dependence
measures. In addition, the large equity selections by the tail dependence indicated by the
t copula have outstanding performance. In the case when the data is abstracted from the
bear market phase, the large equity selections by the linear correlations also show good
performance.

Diversification also plays a key role in the robust portfolio construction. In the mean-
diversification framework, Meucci (2009) unitizes the PCA to decompose the correlated
components of the market into the uncorrelated principal portfolios and expresses the
diversification with an entropy related measure. We studied this methodology and ap-
plied the mean-diversification optimization for the efficient asset allocations. In the mean-
diversification framework, the equity selections are built on the social network clustering
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with various dependence measures. We analyzed the salient features of the equity se-
lections based on the consideration of the mean-diversification performance, the depen-
dence measures and the market phases. We reached some conclusions based on our mean-
diversification analysis. Long-term data indicate that the selections by the Spearman’s
rank correlation and the Kendall’s rank correlation are more preferred. The selection by
the linear correlation can also be well diversified. From another point of view, when the
dependence measures are estimated by the extreme downside market data, the obtained
equity selections lead to better diversification. In this case, the equity selections by the
linear correlation and the MI (Frank copula) show robust performance.
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Appendix A

Additional Figures and Tables

A.1 Estimation of Tail Dependence and Mutual In-
formation on Other Markets
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(a) Lower Tail Dependence
Revealed by Clayton Copula

(b) Upper Tail Dependence
Revealed by Gumbel Copula

(c) Tail Dependence Revealed
by t Copula

(d) Mutual Information
Revealed by Negative

Gaussian Copula Entropy

(e) Mutual Information
Revealed by Negative t

Copula Entropy

(f) Mutual Information
Revealed by Negative

Clayton Copula Entropy

(g) Mutual Information
Revealed by Negative Frank

Copula Entropy

(h) Mutual Information
Revealed by Negative

Gumbel Copula Entropy

Figure A.1: Distributions of Estimated Tail Dependence and Mutual Information of
Market Data of SZASHR.
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(a) Lower Tail Dependence
Revealed by Clayton Copula

(b) Upper Tail Dependence
Revealed by Gumbel Copula

(c) Tail Dependence Revealed
by t Copula

(d) Mutual Information
Revealed by Negative

Gaussian Copula Entropy

(e) Mutual Information
Revealed by Negative t

Copula Entropy

(f) Mutual Information
Revealed by Negative

Clayton Copula Entropy

(g) Mutual Information
Revealed by Negative Frank

Copula Entropy

(h) Mutual Information
Revealed by Negative

Gumbel Copula Entropy

Figure A.2: Distributions of Estimated Tail Dependence and Mutual Information of
Market Data of SHSZ300.
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A.2 Markov Regime Switching Results on Other Mar-
kets

Figure A.3: Markov Regime Switching on SHASHR Index with 4-states Mixture
Distributions.
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(a) 2-states Mixture Distributions Regime
Switching Result

(b) 3-states Mixture Distributions Regime
Switching Result

(c) 2-states Autoregressive Regime Switching
Result

(d) Historical Price Dynamics of SHSZ300
Index

Figure A.4: Markov Regime Switching Results on SHSZ300 Index.
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(a) 2-states Mixture Distributions Regime
Switching Result

(b) 3-states Mixture Distributions Regime
Switching Result

(c) 2-states Autoregressive Regime Switching
Result

(d) Historical Price Dynamics of SZASHR
Index

Figure A.5: Markov Regime Switching Results on SZASHR Index.
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