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ABSTRACT 

Nitrate (NO3
-) is one of the most widespread contaminants in freshwater systems globally. This is 

largely due to high fertilizer application rates that are required to maximize crop yield.  Elevated NO3
- 

concentrations can cause detrimental health effects to both humans and aquatic ecosystems. While the 

drinking water standard for NO3
- in Canada is 10 mg N/L, this level is often surpassed in small headwater 

agricultural streams and tile drainage.  Inorganic (synthetic) and organic (manure) fertilizers are the greatest 

non-point sources of NO3
- to freshwater and groundwater systems in Canada. Inherent isotope fractionation 

during production of inorganic and organic fertilizers allows these N sources to be differentiated using the 

isotopic ratios of nitrogen and oxygen.  

Small agricultural catchments play an important role in nutrient export to larger freshwater systems, 

however the source and timing of export is often unknown.  The main objective of this thesis is to better 

understand the sources and processes governing NO3
- concentration and export in four small agricultural 

catchments where large changes in nutrient concentration can occur over the course of a year.  Land-use 

within these catchments is predominantly agriculture (>77%). 

 Geochemical and isotopic analysis of the four creeks, the Conestogo River, the Grand River as 

well as tile drain and shallow groundwater piezometers located along one creek (Boomer Creek) was 

undertaken. NO3
- concentration varied seasonally, concomitantly with stream discharge, with increased 

concentrations and export occurring during the non-growing season at scales from small watershed to the 

Grand River. Peak concentrations (>10 mg N/L) occurred in late fall and early winter and lowest 

concentrations (<5mg N/L) occurred during the summer months. Median NO3
- concentrations from tile 

drains (5.9 mg N/L) were much higher than that of groundwater samples (0.1 mg N/L). Further, 

groundwater NO3
- concentrations remained consistently low even at times of high discharge and high NO3

- 

concentrations in both the tiles and the creek, indicating that the creek is more influenced by water 
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discharging from tile drains and not that of groundwater.     

The studied creeks NO3
- export varied seasonally with the greatest export occurring in all creeks 

during spring melt on both a per day basis and over the duration of the melt compared to other seasons. 

Summer low flow NO3
- concentrations in the Conestogo River is a function of the NO3

- concentration within 

the Conestogo Reservoir. Annual precipitation amounts as well as reservoir residence time are believed to 

be the largest factors governing reservoir NO3
- concentrations and thus summer Conestogo River NO3

- 

concentrations. 

δ15N and δ18O analysis of NO3
- was used to examine NO3

- sources as well as seasonal changes in 

N-cycling processes. Both δ15N and δ18O were lower (+ 6 to + 8‰ and - 2 to + 1‰) in the fall and winter 

months with higher values (> + 10‰ and > + 4‰) during the summer for all creeks with the exception of 

the δ18O of Swan Creek. Increased isotopic values occurred at lower NO3
- concentrations and concomitant 

increases in both 18O and 15N in an expected ratio (approx. 1:2) providing strong evidence of the 

occurrence of denitrification. Annual fluctuations in concentrations of N2O and CH4 are also consistent 

with active denitrification. δ15N-NO3
- values corrected for the isotopic effects caused by denitrification were 

consistent with that of values reported for manure (+ 8‰). Despite the δ15N being within that of manure, 

the source of NO3
- to these watersheds is inconclusive as a result several NO3

- sources also falling within 

the same range. Isotopic analysis suggests that Boomer Creek stream water is similar to water discharging 

from tile drains along Boomer Creek. NO3
- concentration and isotope data from tile drains and Boomer 

Creek indicate a strong influence from tile drains on annual stream NO3
- concentration and export. The 

influence of tile drains will only become greater as 30 million meters of new tiles are installed annually in 

Ontario. 

Understanding nutrient dynamics in small watersheds is vital to understanding and predicting water 

quality in larger surface water systems. This study re-emphasises the fact that understanding the seasonality 

in annual NO3
- export requires knowledge of the N sources and processes that govern N transformation.  

Only with this knowledge can effective best management practices be implemented to successfully maintain 

surface and ground water quality.  
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Chapter 1− Introduction 

1.1 Introduction 

Nitrate (NO3
-) is one of the more wide spread contaminants found in groundwater and surface 

waters globally (Socolow 6001-6008). Its presence has largely resulted from the intensification and 

industrialization of agriculture in the second half of the 20th century (Novotny 1-13). Post 1950’s, there was 

a shift in global farming practices towards large scale, intensively managed, monoculture farms. In order 

to maximize crop yields, fertilizer application to crops was greatly increased, leading to a large increase in 

nitrogen (N) loading to the local environment (Smil 569-601; Socolow 6001-6008; Novotny 1-13). 

Nitrogen in excess of crop and microbial requirements remains in the soil as residual soil nitrogen (RSN), 

most of which is in the form of NO3
-, a highly mobile form of nitrogen that can be leached into the local 

groundwater (Janzen et al. 85-102; Novotny 1-13; Hill 696-702). Subsequently, NO3
- leaches and 

contaminates surface waters through groundwater discharge to streams (Vitousek et al. 737-750), posing 

both an ecological and drinking water threat.  

During the second half of the 20th century anthropogenically created nitrogen exceeded that derived 

naturally from the terrestrial environment; this caused a shift in the global nitrogen cycle (Galloway and 

Cowling 64-71). It is estimated that from 1890 to 1990 the amount of NH3 emissions increased 

approximately 9 Tg N/yr to 43Tg N/yr as a consequence of food production and that river dissolved 

inorganic nitrogen fluxes to the ocean increased from 5 Tg N/yr to 20Tg N/yr. The increase in synthetic 

fertilizer production to ensure food production would meet increasing global demand has greatly affected 

the global nitrogen cycle. 

Recently, Canada has made an effort to estimate the change in RSN between 1981 and 2006. A 

report conducted by the Agriculture and Agri-Food Canada (Eilers et al. ) found that there had been an 



2 
 

statistically significant (p < 0.05) increase in the amount of RSN in Canadian but not Ontario soils in this 

time frame (Fig. 1.1a and Fig. 1.1b). Although RSN in Ontario soils are not increasing significantly over 

time inputs are three times as high, resulting in a much larger amount of RSN. The peak in RSN in 2002 is 

thought to be a result of a drought year, which decreased crop yield and therefore nitrogen output. In 2006, 

a decrease in RSN was observed as a result of an increase in nitrogen output and better weather conditions 

(Eilers et al. ).   
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Figure 1.1a & 1.1b: Figure 1.1a: Nitrogen input, output and residual soil nitrogen (RSN) in Canadian agricultural soils 

between 1981-2006. Figure 1.1b: Nitrogen input, output and residual soil nitrogen (RSN) in Ontario agricultural soils 

between 1981-2006. Adapted from (Eilers et al. ). 

Greater amounts of RSN increase the threat of nitrogen leaching into local groundwater. Using a 

simplified equation, where nitrogen loss equals the difference between nitrogen outputs and inputs, Janzen 

et al. (2003) roughly estimated that, in 1996, 0.43 Tg N/yr ± 30% was leached from Canadian 

agroecosystems. Nitrate contamination often persists in agricultural watersheds even after better 

management practises (BMPs) have been put in place (Tomer and Burkart 2158-2171). As a result nitrogen 

in excess of crop and microbial requirements creates a legacy of contamination that poses a direct risk to 

the quality of the groundwater, and it’s receiving waters.  
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High concentrations of NO3
- leached from agricultural catchments can be detrimental to human 

health. The Ontario Safe Drinking Water Act, (O. Reg. 169/03, Sched. 2; O. Reg. 268/03, s. 1; O. Reg. 

248/06, s. 2; O. Reg. 242/07, s. 1.) states that the maximum acceptable concentration of NO3
- is 10 mg N/L 

and concentrations above this can cause adverse health effects to humans. Infants under 3-months of age 

are at a greater risk of adverse health effects, as the reduction of NO3
- to NO2

- in the gut has been shown to 

cause methaemoglobinaemia, also known as blue baby syndrome (Adam 79). Methaemoglobinaemia 

converts haemoglobin to methemoglobin, a haemoglobin form that cannot carry oxygen, leading to cyanosis 

and suffocation. Methaemoglobinaemia can also occur in fish species at elevated NO3
- to NO2

- 

concentrations. Health Canada has also listed NO3
- /NO2

- as possible carcinogens but stipulate that it is a 

weak relationship, with little reliable evidence. For this reason, understanding NO3
- concentration and 

export from agricultural catchments into surface waters is important for drinking water supplies. Nitrate is 

also directly toxic to some aquatic life; the Canadian water quality guideline for that protection of aquatic 

life is 2.95 mg N/L (Canadian Council of Ministers of the Environment ). Nitrate concentrations need to be 

minimized and monitored in order to ensure water quality for both drinking water and aquatic ecosystems. 

1.2 Eutrophication 

Eutrophication occurs as a result of excess nutrients entering water bodies and can lead to 

detrimental ecosystem effects, such as excess algal growth. Inorganic nitrogen and phosphorus (P) are the 

two principal nutrients that govern algal growth in aquatic ecosystems, and elevated levels of either of these 

nutrients can potentially cause eutrophication (Smith, Tilman, and Nekola 179-196). Eutrophication can 

cause several undesirable effects such as: the depletion of dissolved oxygen concentrations (harmful 

particularly to fish species), the proliferation of potentially harmful cyanobacteria, and the aesthetically 

displeasing appearance of excess algal growth (Smith 7-49). In temperate lakes, phosphorus is almost 

always the limiting nutrient to algal growth, and undesirable algal growth may be controlled by limiting 

phosphorus inputs (Schindler 260-262; Schindler et al. 11254-11258). In contrast, many coastal and 
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estuarine systems have been observed to be sensitive to both phosphorus and nitrogen (Paerl 1154-1165; 

Howarth and Marino 364-376).  

Agriculture represents a large non-point source of nutrients into the environment.  The management 

and application of fertilizers must be well understood to avoid undesirable effects in both ground and 

surface waters. 

1.3 Nitrate and the Nitrogen Cycle 

The two major biological reactions that govern the amount of nitrogen as NO3
- in the environment 

are nitrification and denitrification (Fig 1.2). In simplest terms, nitrification creates NO3
- by the oxidation 

of reduced N, while denitrification breaks NO3
- down by reduction. 

NH4
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2
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Figure 1.2: Nitrification and denitrification in the nitrogen cycle 

Nitrification 

In soils, NO3
- is primarily created from nitrification, where ammonium (NH4

+) is aerobically 

oxidized to NO3
- through a series of biologically mediated reactions. For organic fertilizers such as manure, 

the organic nitrogen must first be transformed to an inorganic form (NH4
+) through mineralization. In many 

agricultural soil environments chemolithoautotrophic bacteria and archaea are responsible for the 



5 
 

conversion of NH4
+ to NO3

- (Schepers and Raun ). Zhongjun et al. (2009) found that bacteria were the 

dominant nitrifiers in several agricultural soils when compared to archaea.  The first step in nitrification 

involves ammonia oxidizing bacteria or archaea while the second involves nitrite (NO2
-) oxidizing bacteria 

(Hayatsu, Tago, and Saito 33-45). The first step in nitrification is termed nitrosification, in which NH4
+ is 

oxidized to NO2
- through a hydroxylamine (NH2OH) intermediate, NO2

- is then further oxidized by 

microorganisms in a process called nitrite oxidation to produce NO3
-. Bacterial NH4

+ oxidation is 

predominantly performed by three genera of bacteria (Nitrosomonas, Nitrosospira and Nitrosococcus) 

whereas archaeal NH4
+ oxidation is believed to be carried out by members of the phylum Crenarchaeota.  

Bacterial oxidation of nitrite is performed by four genera of bacteria (Nitrobacter, Nitrospina, Nitrococcus 

and Nitrospira). 

Nitrification will occur in environments where there is sufficient NH4
+ and oxygen. The optimal 

pH conditions for nitrifying bacteria is between 7 and 9, but nitrification will still occur at a pH of 6 (Allison 

and Prosser 935-941). A study conducted by Maag & Vinther (1996) on the effect of temperature on 

nitrification found the optimal nitrification temperature was 20°C, with decreasing efficiency at lower 

temperatures. In addition, N2O production increased with a decrease in temperature. Another study 

conducted by Saad & Conrad (1993) used a broader temperature range and found that optimum nitrification 

occurred around 25-30°C. In highly acidic agricultural soils (pH 3-5) nitrification has been observed, 

suggesting that some species of Nitrosospira may have the ability to oxidize NH4
+ (Hayatsu, Tago, and 

Saito 33-45). Nitrification has also been shown to occur throughout the year and contribute significant 

amounts of NO3
- to the groundwater (Savard et al. ). 

Denitrification 

Denitrification occurs when bacteria, in the absence of oxygen, use NO3
- as the electron donor in 

order to produce energy. Denitrification is a series of reactions in which NO3
- is reduced by microbial 

reactions to NO2
- and further reduced to NO, N2O, and finally to nitrogen gas (N2). Denitrification is 

primarily carried out in nature by heterotrophic bacteria, i.e. Pseudomonas and Paracoccus (Knowles 43; 
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Hayatsu, Tago, and Saito 33-45). Heterotrophic bacteria will actively denitrify in anaerobic conditions 

when there is a water-extractable carbon source (Knowles 43; Bremner 7-16) or in an environment with an 

available source of pyrite (Tesoriero, Liebscher, and Cox 1545-1559). In addition, fungal species such as 

Fusarium oxysporum and Fusarium solani have been observed to reduce NO3
- in low O2 conditions 

(Hayatsu, Tago, and Saito 33-45). Recently several archaea have also been found to be capable of 

denitrification but there importance in the natural environment is currently unknown. Denitrification is 

temperature dependent and occurs optimally at temperatures of 25-30°C (Saad and Conrad 21-27).  Maag 

& Vinther (1996) found that the ratio of N2 to N2O increased with increasing temperature from 5 to 20°C. 

1.4 Sources of Nitrogen in the Environment 

In general agricultural NO3
- derived from nitrification receives a nitrogen atom originating from 

one of three main sources: the atmosphere, inorganic fertilizer, or manure/sewage.  Reactive or fixed 

nitrogen in the terrestrial environment is naturally derived from the atmosphere in two ways; lighting in 

conjunction with precipitation, and biological fixation from cyanobacteria or leguminous plants (Vitousek 

et al. 737-750). According to a study conducted by Ro et al. (1988) the mean annual wet deposition of NO3
-

-N between the years of 1981-1985 in southern Ontario was estimated to be 0.52 kg/km2.  

 In the early 1900s, the Haber-Bosch process was created, a process by which nitrogen from the air 

is combined with hydrogen gas to synthesize NH4
+. This process has allowed for cheap and efficient 

manufacturing of fertilizers, and revolutionized the agricultural industry by the middle of the century (Frink, 

Waggoner, and Ausubel 1175-1180). 

 Often referred to as the recycling of nitrogen because no new nitrogen is fixed, crop residues, 

manure and sewage also contribute large amounts of nitrogen to the environment by providing an organic 

nitrogen source that can be mineralized to NH4
+. Both inorganic and organic fertilizers are typically applied 

in early spring prior to or during seeding to ensure nutrients are available during plant/crop growth. 

However, under the Nutrient Management Act, (O. Reg. 267/03, s. 60 (2); O. Reg. 338/09, s. 44,) stored 
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manure must be removed at least once per year, or more frequently if the accumulated manure may produce 

adverse effects. Farmers must dispose of stored manure once they can no longer safely store it. Since 

manure is an organic form of nitrogen there is also time associated with the process of mineralization 

(organic nitrogen in the manure converted into an inorganic form, NH4
+). As a result, manure residues from 

past years (as a result of exceeding the biological needs of the plants) are likely to increase the NO3
- pool 

in the soil (Angle et al. 141-147). Although the effects were not quantified in the current study, tillage 

practices can also affect NO3
- leaching to groundwater. Angle et al. (1993) found that soil NO3

- 

concentrations under no-tillage fields were consistently lower when compared to conventional tillage. This 

was believed to result from increased denitrification and increased N uptake by crops under no-tillage soils. 

Some wastewater treatment plants are equipped with the capacity to nitrify their wastewater, decreasing the 

amount of NH4
+ but increasing the amount of NO3

- in their discharge. 

1.5 Stable Isotopic Ratios of Nitrate within the Nitrogen Cycle 

The analysis of stable isotope ratios can aid in NO3
- source identification and provide information 

on N-cycling. Stable isotope analysis can be carried out on both the nitrogen (15N/14N) and oxygen (18O/16O) 

atoms that compose NO3
-.  Nitrogen has two stable isotopes 15N and 14N with relative abundances of 0.37% 

and 99.63%, respectively (Junk and Svec 234-243). Oxygen has three stable isotopes 18O, 17O and 16O with 

relative abundances of 0.20%, 0.04% and 99.76%, respectively (Nier 789).  Stable isotopic ratios are often 

reported as a delta (δ) value with the units in per mil (‰) in accordance to (Equation 1.1) 

𝛿 =  (
𝑅𝑆𝑎𝑚𝑝𝑙𝑒

𝑅𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1)  

Where Rsample is the isotopic ratio of the sample and Rstandard is the isotopic ratio of the standard. The isotopic 

standard for nitrogen is N2 in atmospheric air (15N/14N = 1/272) and the isotopic standard from oxygen is 

the Vienna Standard Mean Ocean Water (VSMOW) (18N/16N = 1/499). 

Equation 1.1 
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There are several factors that influence the isotopic ratios of both N and O.  Fractionation is the 

preference of one isotope (reacts faster) over the other (reacts slower) in the products of chemical, physical 

or biological reactions (Kendall and Aravena 261-297). Often it is the case that the lighter isotope reacts 

faster and is more quickly incorporated into the products compared to the heavier isotope (Kendall and 

Aravena 261-297). In order to accurately estimate the source of NO3
- the fractionation factors associated 

with biological and or chemical reactions involving NO3
- must be known. In kinetic reactions, the 

fractionation factor (α) is defined as the isotopic ratio of the products relative to the substrate (reactants) 

(Equation 1.2): 

𝛼𝑝−𝑠  =  
𝑅𝑝

𝑅𝑠
⁄  

Where Rp is the isotopic ratio of the products and Rs is the isotopic ratio of the substrate. Isotope enrichment 

factors (ε) are modelled as (Equation 1.3) 

𝜀𝑝−𝑠  =  (𝛼 − 1) 

In 1st order reactions within closed systems with respect to the reactants, where there is a constant 

fractionation factor, the progression of the isotopic composition of the residual reactant (substrate) can be 

modelled by the formulation of the Rayleigh equation as (Equation 1.4).  

𝛿 ≈   𝛿0 +  𝜀𝑝−𝑠ln (𝑓) 

Where δ0 is the initial composition (isotopic abundances) of the substrate, f is the fraction of the substrate 

remaining. 

Fractionation is most likely to be observed during the rate determining step, or the slowest step of 

a reaction, when a large pool of substrate is able to develop because the amount of material used is small 

by comparison (Kendall and Aravena 261-297). In reactions where the substrate is quickly used, the 

development of a large pool is prevented, and observed isotopic fractionation of the substrate is minimal. 

Equation 1.2 

Equation 1.3 

Equation 1.3 
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Volatilization  

In context of the nitrogen cycle, volatilization is the loss of ammonia gas to the atmosphere from 

soils or organic waste reservoirs (Fig 1.3). Most of the nitrogen in manure is in the form of urea, which is 

hydrolysed to NH4
+. During hydrolysis a hydrogen atom disassociates from NH4

+ increasing the pH, which 

in turn favours the loss of ammonia gas by volatilization. This causes a kinetic fractionation in which the 

lighter isotope is preferentially lost in the gaseous products, resulting in the remaining NH4
+ to become 

more enriched in 15N (Kendall and Aravena 261-297).  NH4
+ remaining after volatilization can have δ15N 

values in excess of 20‰ (Kendall, Elliott, and Wankel 375-449). 

 

Figure 1.3: Simplified diagram of the isotopic fractionation of nitrogen within an agricultural environment, and the 

hypothetical division between the oxic and anoxic zone (not to scale).  Mineralization: results in very little change in the 

δ15N value of the resulting NH4
+. Volatilization: causes the remaining NH4

+ to have a greater δ15N value. Nitrification: 

results in the remaining NH4
+ having a greater δ15N, unless it is completely nitrified in which case the δ15N  will be similar 

to that of the initial δ15N of NH4
+ . Denitrification: causes the remaining NO3

- to have a greater δ15N value. 
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In summary, stable isotopic ratios can allow for separation of NO3
- sources and can aid in 

identifying the processes governing nitrogen transformation. In the context of this study, there were two 

probable sources of NO3
- to these intensively agricultural watersheds: inorganic (synthetic) or organic 

fertilizer. The typical δ15N- δ15N NO3
- for synthetic fertilizers range from – 2 to + 4‰ (Gormly and Spalding 

291-301; Kendall and Aravena 261-297; Wassenaar 391-405) whereas the typical range of δ15N-NO3
- 

derived from manure is + 8 to + 22‰ (Kreitler and Jones 53-62; Wassenaar, Hendry, and Harrington 4626-

4632). It is also possible that a small portion of NO3
- is derived from precipitation, and although δ15N NO3

- 

can be similar to that of inorganic and organic fertilizers, precipitation has a distinctly higher δ18O value (+ 

28‰ - +75‰) making it distinguishable from other sources. 

Assimilation 

Assimilation is the transformation of inorganic N to organic N compounds through biological 

reactions. Mariotti et al. (1982) found that the fractionation of nitrogen from incorporation of NO3
- into 

pearl millet (P. americanum) was dependent on NO3
- concentration and plant nitrate reductase, with 

increased fractionation occurring at higher NO3
- concentrations and lower nitrate reductase activity. During 

plant growth, isotopic fractionation decreased from day 12 (ɛ=-4.5‰) to day 25 (ɛ=-2.5‰). Nitrate 

reductase activity was also observed to increase with increasing plant age causing a decrease in the nitrogen 

fractionation.  

Nitrification 

The mineralization of organic N to inorganic N is associated with very little fractionation (Kendall 

and Aravena 261-297). In areas with large pools of NH4
+, such as agricultural fields that have had organic 

or inorganic fertilizer applied, there can be significant fractionation (Kendall and Aravena 261-297). There 

are two steps in nitrification, the oxidation of NH4
+, and the oxidation of NO2

-. The rate-determining step 

in this reaction is likely the oxidation of NH4
+as the oxidation of NO2

- is rapid and prevents significant 

fractionation from occurring. In a closed system the instantaneous NO3
- produced will be depleted 

compared to the NH4
+.  As the NH4

+ pool decreases and becomes completely nitrified it becomes more 
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enriched in δ15N, causing the δ15N of the NO3
- pool to approach that of the original δ15N-NH4

+ pool values. 

Many studies have found that the δ15N of NO3
- closely reflects the δ15N value of the NH4

+ source (Kendall 

and Aravena 261-297). Prior models used to calculate the δ18O value of NO3
- produced by nitrification state 

that NO3
- derived from nitrification contained two oxygen atoms from water and one oxygen atom from 

oxygen (O2), however recent experiments conducted by Snider et al. (2010) indicate that other isotopic 

effects as well as oxygen exchange with H2O must be taken into consideration. If not, this may lead to 

inaccurate estimation of the δ18O value of NO3
- produced from nitrification. Bacterial nitrification generally 

results in the δ18O of NO3
- having a value between 0‰ and + 20‰ (Snider et al. 5358-5364). However, 

several field experiments have found δ18O values higher than this, possibly resulting from evaporation or a 

change in O source apportionment (Kendall and Aravena 261-297; Kendall, Elliott, and Wankel 375-449). 

Denitrification 

In anoxic environments the reduction of NO3
- becomes thermodynamically favourable and NO3

- 

remaining in the soil, groundwater, or stream may undergo denitrification. Denitrification can be an 

effective way of reducing NO3
- concentrations in groundwater under the proper conditions. Denitrification 

is the step-wise sequential reduction of NO3
- to N2. As with nitrification, the kinetic nature of the process 

allows for significant fractionation to occur, whereby the remaining NO3
- has elevated δ15N and δ18O values 

(Kendall and Aravena 261-297; Kendall, Elliott, and Wankel 375-449). The approximately 1:2 relationship 

between δ18O and δ15N values of the residual NO3
- that results from denitrification has been observed in 

many groundwater studies (Aravena and Robertson 975-982; Mengis et al. 448-457; Cey et al. 45-67). A 

δ18O:δ15N ratio of 1:1 has been observed for lab incubations of marine denitrifying bacteria (Granger et al. 

2533). Denitrification enrichment factors for soil denitrifies which convert NO3
-  N2 range from -19‰ 

(Snider, Schiff, and Spoelstra 877-888) to -38‰ (Tilsner et al. 249-267).  A denitrification 15N enrichment 

value (ɛ15N) of -27.6‰ will be used for calculations, as this was found to be the enrichment factor in a 

similar catchment (Strawberry Creek) within the Grand River Watershed, with the assumptions that 

Strawberry Creek is of comparable size, land-use, soil type and climate (Mengis et al. 448-457).  
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Nitrate Source Determination 

If the stable isotopic ratios are known for NO3
- it is possible to determine the source of NO3

- by 

using a NO3
- dual isotope source plot (Fig 1.4). Several authors have made compilations of δ15N-NO3

- (Fogg 

et al. 418-426; Kendall and McDonnell ) and δ18O-NO3
- (Kendall and McDonnell ) of varying NO3

- sources, 

allowing for the estimation of a NO3
- source based on the δ15N-NO3

- and δ18O-NO3
- values. The NO3

- source 

plot is broken down into different boxes, the location of which has been determined empirically. Each of 

these boxes is an approximate range of δ15N and δ18O of potential sources of NO3
-. As similar δ15N values 

can come from several sources; e.g., atmospherically derived NO3
- and nitrified NH4

+,   δ18O values are 

often used in conjunction to differentiate sources. NO3
- derived from fertilizer NH4

+ can be subdivided into 

fertilizers having an inorganic source and fertilizers that have an organic source, such as manure.  

 

Figure 1.4: NO3
- source plot. Boxes indicate empirical δ15N and δ18O of different NO3

- sources. The denitrification line 

(dashed line) represents the relationship between δ15N and δ18O values of the residual NO3
- that results from denitrification 
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and has been observed in many groundwater studies to typically be regarded as a 2:1 ratio (Kendall and McDonnell ). The 

percentages on the denitrification line correlate to the fraction of NO3
- that has been denitrified. The location of the 

percentages on the denitrification line is dependent on the enrichment factor. 

1.6 Tile Drains 

Tile drains are porous pipes installed within the subsurface of farm fields that work to ensure excess 

water is quickly drained from the soils, often into a ditch or nearby creek. This is advantageous as it allows 

farmers to till and plant their crops earlier during the spring, under what would normally be saturated soil 

conditions. Seasonality plays a large role in controlling the saturated conditions of the soil as temperature 

and precipitation cause the water table to fluctuate. Tile drains will flow during times when the water table 

is above the tile depth. During the fall and spring, precipitation and/or snowmelt increases, and 

evapotranspiration due to plant growth is minimal, causing the water table to rise and the tile drains to flow. 

In the winter, depending on air temperatures and soil conditions, tile drains may flow at certain times such 

as during mid-winter melt events. During the summer, a combination of increased plant evapotranspiration, 

decreased precipitation, and increased air temperature cause the elevation of the water table to decrease, 

and as a result there can be very little to no flow coming from the tile drains (Fig 1.5). Due to the high 

solubility of NO3
-, groundwater directly below agricultural fields can be easily contaminated by excess 

NO3
- not taken up by crops in the growing season. Water in the absence of tile drains will follow the local 

natural shallow groundwater flow system, slowly making its way to natural discharge areas. NO3
- within 

the water that follows this natural flow path has the possibility to denitrify or mix with other groundwater 

sources, both of which can result in a decrease in the NO3
- concentration of the groundwater. As a result of 

tile drains, groundwater transit time between agricultural fields and nearby streams is drastically reduced, 

and elevated concentrations of NO3
- can be discharged directly into local surface water features. This 

becomes a large factor in creek NO3
- concentration during melt events or large precipitation events 

occurring after crops have been harvested.  
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Figure 1.5:  Seasonal schematic cross-section of a generalized active farm field, riparian zone and adjacent creek. Arrows 

indicate water flow coming from either tile drains (fall and spring) or surface run-off (spring). 
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1.7 Research Objectives 

The overall objective of this thesis is to try to identify the sources and processes governing NO3
- 

concentration and export in small agricultural catchments within the Grand River Watershed. The 

importance of this research is that several communities use the Grand River as their source of drinking 

water and in order to prevent pre-treatment of drinking water, sources and processes governing NO3
- 

concentrations must be identified so that surface water and therefore drinking water contamination can be 

minimized. Ecologically this research is important as excess nutrients in fresh water aquatic ecosystems 

often causes various undesirable effects and by understanding NO3
-  sources and processes, better 

management strategies can be put in place to better aquatic ecosystem health.  This thesis contains four 

chapters: Chapter 1 is an introduction to the nitrogen cycle and the use of stable isotopic ratios of NO3
-, 

Chapter 2 describes an investigation of annual NO3
- fluctuations in four agricultural catchments within the 

Grand River watershed as well as the Conestogo and Grand River, Chapter 3 contains the applicability of 

NO3
- stable isotopic ratios in source and process identification  of NO3

- from four agricultural catchments 

within the Grand River watershed and Chapter 4 is a summary of the key findings and recommendations.  

The objective of Chapter 2 was to investigate both inter and intra annual fluctuations of NO3
- 

concentration in four small agricultural catchments and compare this to historical data. This information 

will better allow for drinking water treatment managers to have improved predictions for when increased 

NO3
- concentrations will occur, and may also help dictate hydrological conditions when fertilization of 

agricultural fields should be conducted.  Seasonal concentrations were then used in conjunction with flow 

data to estimate export of NO3
- to downstream water bodies. The relationship between land-use and NO3

- 

concentration was also investigated, as well as the change in NO3
- concentration on receiving water bodies 

caused by these agricultural catchments. Finally, possible causes for the seasonal fluctuations in NO3
- 

concentration seasonality were examined. 

Chapter 3 investigates the applicability of using stable isotopic ratios to aid in NO3
- source and 

processes identification. Isotopes were also used to investigate the processes governing NO3
- concentration. 
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Finally stable isotopic ratios were used as a tool to assist in identifying the cause of NO3
- concentration 

seasonality.  
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Chapter 2 – Role of streams in small agricultural catchments on NO3
- 

concentrations and export 

2.1 Introduction 

The addition of excess nutrients to water systems can pose a risk to both drinking water resources 

and downstream water bodies. The influx of excess nutrients can lead to eutrophication and nutrient 

concentrations that are above the drinking water limit. Agricultural catchments can be a major source of 

nutrients to nearby surface water bodies; exporting large amounts of nitrogen downstream. Increased inputs 

of nutrients, such as nitrogen and phosphorus, have proven to lead to eutrophication in temperate lakes (D. 

Schindler, Armstrong, Holmgren, & Brunskill, 1971). In order to protect surface drinking water and 

ecosystem health, NO3
- concentrations and export in small agricultural catchments must be understood to 

ensure that drinking water and aquatic ecosystem quality can be protected and maintained. 

Nitrate (NO3
-) is a contaminant in many fresh water systems globally. This is due in most part to 

the intensification of agriculture leading to increased fertilizer application during the 20th century. As a 

result of nitrogen in excess of crop and microbial requirements large amounts of nitrogen often remain in 

agricultural soils. This nitrogen can leach into local groundwater and eventually discharge to surface water 

bodies. The majority of water that enters into agricultural creeks originates from tile drains or groundwater 

discharge.  Several studies have examined groundwater NO3
- contamination in southern Ontario watersheds 

(Cey, Rudolph, Aravena, & Parkin, 1999; Robertson, Russell, & Cherry, 1996). Streams and creeks that 

drain agricultural catchments often have elevated NO3
- concentrations (Omernik, 1976). These creeks are 

highly susceptible to large scale increases in nutrient export during significant hydrological events such as 

large precipitation events and snow melt events as nutrients are quickly flushed out of the soils into the 

creeks (Poor & McDonnell, 2007).  

There are two forms of inorganic nitrogen that cause concern for drinking water, NO3
- and nitrite 

(NO2
-). The Ontario water quality standards for NO3

- and NO2
- are 10 mg N/L and 1.0 mg N/L respectively.  
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NO3
- concentrations in excess of 10 mg N/L can cause adverse health effects, particularly to infants. The 

Grand River is the primary source of drinking water to the residents of Brantford and the Ohsweken 

community, with populations of approximately 93000 and 6000 as of 2011 (Statistics Canada ). In addition 

NO3
- is also directly toxic to some aquatic life; the Canadian water quality guideline for the protection of 

aquatic life is 2.95 mg N/L (Canadian Council of Ministers of the Environment ). The Conestogo River and 

the agricultural creeks examined in this study enter the Grand River upstream of these communities. The 

Conestogo River is divided between its upper and lower reaches by the Conestogo Reservoir, whose 

primary purpose is to prevent flooding of downstream communities and augment downstream river flows 

during the summer. Conestogo Dam management practices typically store water in the spring months and 

slowly release it over late spring and summer months to maintain downstream river flows. This general 

pattern is followed but may differ from year to year in response to weather.  

The Grand River also dilutes the wastewater coming from two major wastewater treatment plants 

located in Waterloo and Kitchener.  Prior to 2010, the Kitchener wastewater treatment plant released 

nitrogen primarily as ammonium (NH4
+) to the Grand River (Earth Tech ). Starting in 2010, the Kitchener 

wastewater treatment plant underwent upgrades to their treatment system to nitrify the wastewater 

(converting NH4
+ to NO3

-) before it is released to the river. This combination of NO3
- sources to the river 

could pose serious water quality problems to aquatic ecosystems and communities downstream. 

The Grand River Watershed represents approximately 25% of the drainage for Lake Erie, therefore 

knowledge of sources of potentially harmful nutrients such as nitrogen and phosphorus within the Grand 

River Watershed are important as these nutrients will eventually flow into Lake Erie. During the 1960’s 

and 1970’s excess phosphorus from point and non-point sources from Canada and the United States caused 

large algal blooms and decreased water quality in Lake Erie (Michalak et al. 6448-6452). As a result Canada 

and the United States implemented phosphorus reduction strategies to mitigate the phosphorus pollution 

from point sources. These reduction strategies resulted in a decrease in large scale harmful algal blooms 

until the mid-1990’s when there was a resurgence of annual large scale algal blooms. Since the mid-1990’s 
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there has been an upward trend in the amount of phytoplankton biomass in Lake Erie (Scavia et al., 2014).  

2011 saw the largest bloom on record covering an estimated area of   5000 km2 (Michalak et al. 6448-6452). 

Increases in the magnitude of algal biomass in recent decades is thought to partially result from increasing 

non-point sources such as agriculture. High NO3
- concentrations in groundwaters as a result of agriculture 

may indirectly cause the release of phosphorus from soils. In addition to organic carbon NO3
- can also be 

reduced by ferrous iron, ferrous iron bearing carbonates (siderite) and sulphides (pyrite) (Smolders et al. 1-

7). Of particular interest is the reduction of NO3
- by iron sulphides which results in an increased 

concentration of sulphate (SO4
-) in the groundwater. The reduction of SO4

- yields sulphide which interferes 

with the phosphorus sulphur cycle, which in turn decreases a soils capacity to retain phosphorus which can 

ultimately result in the increased mobility of phosphorus. As a result downstream receiving bodies may 

have increased phosphorus concentrations leading to a greater chance of eutrophication, which was 

indirectly caused by high NO3
- concentrations.  

The overall objective of this thesis chapter is to gain a better understanding of 1. NO3
- concentration 

and export with season, and 2. the physical or chemical processes and sources controlling NO3
- export in 

small agricultural catchments in the Grand River Watershed. This study focused on NO3
-, both a current 

and legacy contaminant in groundwater in southern Ontario, which will continue to be a nuisance in the 

future. The effect of land-use on annual stream NO3
-concentration was also investigated. Presented here are 

the NO3
- concentrations and export estimates from the Conestogo River and four agricultural creeks within 

the Grand River watershed.  

2.2 Study Sites 

The Conestogo River is a 6th order river that drains a total area of 819 km2 and is a major tributary 

to the Grand River (Fig 2.1). The 66 km Conestogo River flows from its headwaters in Arthur, Ontario 

down to Conestogo Ontario where it enters into the Grand River. The Conestogo River Watershed land-use 

is characterized as 83% agricultural (cultivated annual and mixed crops) (The Ontario Ministry of Natural 
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Resources ). In addition to the Conestogo River, four small agricultural catchments were also examined as 

part of the present study (Fig 2.1; Table 2.1).     .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Figure 2.1: Map of the Conestogo and the agricultural catchments studied (Grand River Conservation 

Authority, 2014) 
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Table 2.1: Characteristics of the four studied agricultural watersheds. Drainage area, approximate channel Length, % 

land-use and mean annual flow (Ministry of Natural Resources and Forestry ). Stream Order (Grand River Conservation 

Authority ). % tile drains. N-Manure (Ontario Ministry of the Environment ). N-Fertilizer and N Total (Ministry of 

Agriculture, Food and Rural Affairs ). *Mean annual discharge was approximated by the Ministry of Natural Resources 

Ontario Flow Assessment Tool III. 

Catchment 

Drainage 

Area 

(km2) 

Approximate 

Channel 

Length (km) 

% Land-use 

(Agriculture) 

of total area 

Stream 

Order 

% Tile 

Drains 

of total 

area 

N-Manure 

(105 kg) 

N-

Fertilizer 

(105 kg) 

N-Total 

(kg/ha) 

*Mean 

Annual 

Discharge 

(m3/s) 

Boomer Creek 70 37 86 5 61 8.31 3.97 175.7 0.78 

Cox Creek 87 34 79 4 29 3.97 4.89 101.8 1.0 

Swan Creek 44 20 77 4 20 1.61 1.51 70.9 0.50 

Carroll Creek 65 34 83 5 36 4.37 3.92 127.5 0.71 

 

Boomer Creek is a tributary to the Conestogo River while the other creeks are small tributaries of the Grand 

River entering upstream of the Conestogo River. These catchments are impacted by non-point source 

nitrogen sources, with no municipal wastewater effluent discharges. The Conestogo River also dilutes 

effluent from the St. Jacobs (population 1900) wastewater treatment plant representing a point-source of 

nitrogen to the river (Statistics Canada ). Agriculture is the dominant land-use in these watersheds, ranging 

from 77 to 86% (Table 2). Tile drains underlie 20-61% of the area within these watersheds. Tile drains are 

porous pipes installed under agricultural lands that allow excess water to be quickly drained from the field. 

The water from the field is often drained into a ditch or nearby creek. This is advantageous as it allows 

farmers to till their fields and plant their crops during the spring under what would be normally saturated 

soil conditions.  Septic systems from local households may also be contributing nutrients to these creeks, 

but due to the low population density within these watersheds it is believed that septic systems would have 

little impact on NO3
- concentrations within these creeks when compared to NO3

- originating from 

agricultural, and thus were not separately quantified here.  
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Sampling of the Conestogo River was conducted at four locations beginning approximately 2.5 km 

downstream of the Conestogo Reservoir and ending approximately 1.5 km from where the Conestogo River 

enters into the Grand River (Fig  2.2).  The creeks in this study were sampled at locations that were easily 

accessible, and close to where they discharge to the Conestoga River. Background geochemical data for 

Boomer and Cox Creek was obtained through the Provincial Water Quality Monitoring Network 

(PWQMN).  

 

Figure 2.2: Map of field sampling locations within the agricultural catchments studied 

2.2.1 Climate 

The Grand River Watershed is classified in the Humid High Moderate Temperate Ecoclimatic 

Region (Ecoregions Working Group ). The historical 30-year (1981-2010) mean temperatures and 

precipitations in January and July are -7.2°C, 19.8°C and 74.8, 89.8 mm, respectively (Fig 2.3). The data 

were taken from the Glen Allan Environment Canada meteorological station (43°41'02.1"N 80°42'37.1"W), 
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which is located within the Conestogo watershed and is the best long-term weather station in proximity to 

the study sites (Fig 2.3).  

 

Figure 2.3: 30 year climate history as recorded at Glen Allan. 

Environment Canada (2014). 

Temperature and precipitation data gathered during the study period were taken from the University of 

Waterloo’s Weather station (Seglenieks ) (43°28’24.58”N, 80°33’25.95”W) as mean monthly temperature 

and total precipitation data were not available from Glen Allan. Both precipitation (Fig 2.4) and temperature 

(Fig 2.5) during the study period (August 2012 to December 2013) periodically deviated from that of the 

Waterloo Wellington 2 Environment Canada weather station 30-year average, which is used by the 

University of Waterloo weather station. Between January 2012 and August 2012, six out of the eight months 

had on average 45mm less precipitation than average, and 2012 was the second hottest year in the region 

on record with eleven months being above average (Seglenieks ). The largest deviations from the average 

occurred between January and August with temperatures deviating above the average by 3.6°C. In contrast 

2013, had mean monthly temperatures that deviated on average by only 1°C. Precipitation was remarkably 

different in 2013 as it was the wettest year on record with six months having above average precipitation, 
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large amounts of precipitation were seen particularly in July and October when > 80mm above the average 

was recorded (Seglenieks ).   
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Figure 2.4: Monthly total precipitation data recorded at the University 

of Waterloo weather station. The 30 – year monthly mean data were 

collected at Glen Allan. 
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Figure 2.5: Monthly mean daily temperature data recorded at the 

University of Waterloo weather station. The 30 – year monthly mean 

data was collected at Glen Allan 

Precipitation occurring between the months of February to August 2012 was below average causing 

a dry summer, with greater precipitation occurring during September and October. In 2013 however, the 

University of Waterloo weather station recorded the wettest year on record with only 3 months with below 

average precipitation. Eleven out of the twelve months in 2012 had mean temperatures above average. 

Warmer than average temperatures and little precipitation during the winter months of 2012 resulted in a 

low snow pack, causing only a small spring melt. Average temperatures during 2013 were much closer to 

the 30-year average. 

The difference between “wet” (defined as above average precipitation) and “dry” (defined as below 

average precipitation) years on both the Conestogo River and Boomer Creek was also examined in 

conjunction with this study. The definition of wet and dry was based on the University of Waterloo weather 

station which uses the 30-year average (1971-2000) from the Waterloo Wellington 2 weather station as 
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determined by Environment Canada to estimate average precipitation and range. For this region the average 

total annual precipitation is 904.0 mm with a range of 847.4 – 982.3 mm (Seglenieks ). 

2.2.2 Hydrology 

The flow of the Conestogo River in the lower reaches is controlled by the Conestogo dam 

(43°40'31.3"N 80°42'57.3"W). The dam was constructed in 1958 and was primarily designed as a flood 

control during spring melt or extreme hydrological events and flow augmentation during low flow summer 

periods. Operation of the Conestogo reservoir follows a characteristic pattern of filling during the spring 

when river flows are high, and slowly discharging water throughout the summer months. The Conestogo 

dam releases water from the bottom of the reservoir. 

Flow in the lower reaches of the Conestogo River follows a predictable annual pattern of higher 

flows during the spring and fall and lower flows during the winter and summer; which is largely regulated 

by the Conestogo dam. Flow data for the Conestogo River was taken at the St. Jacobs flow monitoring 

station (43° 32' 28'' N 80° 33' 12'' W) , which is approximately 8.2 km upstream from the mouth of the 

Conestogo River (Grand River Conservation Authority ). The flow of the Conestogo River is also measured 

at Glen Allan but, because this gauge is located in close proximity to the Conestogo dam and complicated 

by macrophyte growth, the flow at St. Jacobs is more representative of flow conditions (Mark Anderson, 

personal communication, June 26, 2013). 

2.2.3 Surficial Geology 

The surficial geology of the study area is characterized by heterogeneous glacial outwash deposits 

summarized in Table 2.2 (Ontario Geological Survey ). The Conestogo watershed is characterized by the 

Tavistock Till in the north, Elma Till in the northwest and Mornington Till in the southwest. The lower 

reaches of the watershed to the mouth of the Conestogo River also consist of glacial outwash deposits. The 

Boomer creek watershed consists primarily of Mornington Till with smaller deposits of gravel, sand, clay 

as well as Catfish Creek Till and Tavistock Till close to its mouth. Cox Creek consists primarily of 
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Wentworth Till with small amounts of sand and gravel. Swan Creek is dominated by the Wentworth Till as 

well as glacial outwash and to a smaller degree the Guelph formation (dolomite). Carroll Creek consists of 

Wentworth Till, Tavistock Till, gravel, sand and some Catfish Creek Till. 

Table 2.2 : Characteristics of surficial Geology of study sites (Ontario Geological Survey ). 

Formation Age Lithology Permeability 

Tavistock Till Late Wisconsian (Port Bruce Stade) Clayey silt till Low 

Elma Till Late Wisconsian (Port Bruce Stade) Stoney sandy silt till Low-Medium 

Mornington Till Late Wisconsian (Port Bruce Stade) Silty clay till Low 

Catfish Creek Till Late Wisconsinan (Nissouri Stade) Sandy to silty, stoney till Low-Medium 

Wentworth Till Late Wisconsian (Port Bruce Stade) Sandy Till Low-Medium 

 

2.3 Methodology 

The Conestogo River was sampled on multiple occasions between August 2012 and December 

2013. Sampling of the agricultural creeks began in the fall of 2012 and continued until December 2013. 

Tile drains and shallow groundwater piezometers samples along Boomer Creek were collected during the 

fall of 2013 and spring of 2014 (Fig 2.6). Sampling of both tile drains and adjacent piezometers was done 

to compare NO3
- concentrations between water coming from the tile drains and water from shallow 

groundwater in the riparian zone. Water originating from tile drains was collected more frequently since 

groundwater piezometers were not installed until late fall 2013. Piezometers were purged in spring 2014, 

one day before samples were taken. Sampling of the tile drains was conducted three times between October 

2013 and December 2013, and four times in the spring of 2014. Paired sampling of both tile drain and 

shallow groundwater was conducted on three occasions. Water samples from the Conestogo River and the 

agricultural creeks were typically collected every two weeks.  
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Figure 2.6: Map of tile drain sampling locations along Boomer Creek. 

Increased sample frequency occurred during some major precipitation or melt events. Storm or 

spring melt sampling typically consisted of a background measurement, followed by measurements taken 

during the storm or melt event and then a post event measurement when flow had returned to background 

levels. Return to background flow normally occurred within a week or two after the storm/melt event had 

begun depending on the duration and intensity of the event. This allowed for the changes in NO3
- 

concentration as a result of a storm or melt event to be accurately defined. The data collected represent at 

least one storm or melt event from each season with the exception of the summer.  

Sampling of the Grand River was also conducted during 2013 to understand the influence of the 

Conestogo River on water quality in the Grand River. Sampling was conducted at two locations, upstream 

(West Montrose) and downstream (Bridgeport) of the Conestogo River confluence (Fig 2.1). 

All water samples were collected and analysed for NO3
-, NO2

-, NH4
+, nitrous oxide (N2O), and total 

nitrogen (TN). When samples were taken, field parameters were also measured such as dissolved oxygen 
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(DO), pH, temperature and specific conductivity using a Hach HQ30d meter with attached IntelliCAL™ 

LDO, IntelliCAL™ PHC301 and IntelliCAL™CDC401 probes. Samples for chemical analysis were 

collected in 40-mL Starplex containers, 50-mL centrifuge tubes for TP and SRP, and 40-mL glass vials for 

DOC and TN. Samples for dissolved gases were collected in 60-mL serum bottles, capped with no 

headspace using a baked red Vaccutainer stopper and preserved with 0.2 mL of saturated mercuric chloride 

solution.  Samples collected in the field were kept cool during transport back to the University of Waterloo. 

All water samples were filtered using a Whatman 0.45-μm syringe tip filter except for TP and N2O. Filtering 

was done in the field during the summer and fall months. During the winter and spring, 1-L plastic bottles 

were used to collect water samples and were filtered back at the University of Waterloo Environmental 

Geochemistry Laboratory. Samples were subsequently frozen until analysis with the exception of DOC and 

dissolved gases. The concentration of organic nitrogen was found indirectly by subtracting inorganic forms 

of nitrogen (NO3
-, NO2

- and NH4
+) from total nitrogen and assuming the difference is organic nitrogen. 

Manual velocity measurements on Boomer creek were completed at various times using a Marsh 

McBirney® flow meter. To calculate flow the width of the stream was divided into 12.5cm transects, depth 

was found at the start and end of each transect and a cross sectional area was calculated from these 

measurements. Flow was then calculated by multiplying the velocity found at the 50% depth of each 

transect and multiplying by the cross sectional area.  Total flow was estimated by summing all the flows 

calculated in each transect. This flow data was then compared to flow measurements taken from the 

Floradale watershed, which is of a comparable area, is located within the Grand River watershed, and has 

continuous flow measurements taken by the GRCA. The mouth of the Floradale watershed is located 

approximately 9.5 km northeast of the mouth of Boomer Creek. From this comparison a relationship was 

developed where past flow conditions for Boomer Creek over the time of study could be estimated based 

on the continuous flow  data available from Floradale.  

None of the other agricultural creeks studied had flow measurements taken or flow data available 

during the time of study (August 2012 to December 2013), as a result, the Floradale Creek flow data was 
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used to develop flow relationships from past flow conditions so that flow during the current study could be 

estimated. Past (2004 to 2008) daily mean flow estimates for Carroll, Cox and Swan Creek were modelled 

by the GRCA using the GAWSER model. These records were then compared to historical flow records 

from Floradale Creek. The years with the most complete Floradale Creek flow records (2005 and 2008) 

were compared to flows modelled by the GRCA. A relationship comparing modelled (GAWSER) flow 

from each creek to historical flows on Floradale Creek was then created by performing a model 2 regression 

analysis. In all creeks, 2008 was found to have a better R2 value then 2005. Boomer Creek, which did not 

have historical or modelled data available, was measured manually 10 times during 2013 and 2014; the 

relationship to Floradale Creek was then developed through model 2 regression analysis by comparing 

manual flow measurements on Boomer Creek to those of historical measurements taken by the GRCA at 

Floradale Creek. The relationship between the flow at Boomer Creek and that of Floradale Creek was found 

to have an R2 value of 0.97; of the other creeks Carroll Creek had the best R2 value of 0.33 whereas Cox 

and Swan Creek had values of 0.22 and 0.21, respectively (Fig 2.7). The relationship for each creek was 

then applied to Floradale hourly flow data from the current study period to estimate daily discharge from 

Carroll, Cox and Swan Creek. Seasonal discharge was calculated by summing daily discharge for a given 

season. Percent discharge per season was also calculated for the water year of October 18th 2012 to October 

17th 2013. 
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Figure 2.7: Correlation between creek flow and Floradale flow. Flow data from Cox Creek, Swan Creek and Carroll Creek 

is modelled (Gauser) mean daily flow for the year of 2008. Mean daily flows from Floradale Creek were taken from the 

year 2008. Boomer Creek flows were measured manually between November 2013 and July 2014. Floradale flow data used 

to compare to Boomer Creek flow data was recorded when manual measurements of Boomer Creek flow were taken. 

 In order to estimate NO3
- export from each creek, NO3

- concentration data had to be interpolated 

between sampling dates. Two methods were used to estimate export. The first method was a simple linear 

interpolation between sampling dates in which the change in concentration between sampling dates was 

divided equally between sampling times. This method assumes a constant change in concentration between 

sampling times. The second method used was based on a method created by Swistock et al. (1997) here 

after referred to as Method 2. In summary, this method takes the mean concentration between two 
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consecutive sampling dates and applies this concentration to all days over the given time interval. NO3
- 

concentrations were then multiplied by daily discharge from each creek.  

These calculations provide an estimation of NO3
- export from these catchments. Due to the nature 

of the data, there are however several inherent inaccuracies in these calculations. First, there were several 

assumptions that had to be made in order for these calculations to be possible.  It was assumed that Floradale 

was a comparable catchment to all the other catchments with respect to discharge fluctuations. Also flow 

data, whether they were modelled or not, were assumed to be accurate and representative of flow conditions 

at the given time. Due to the lack of frequency of high flows, high flow data may be unrepresentative. Low 

R2 values indicated there wasn’t a good correlation between modelled creek flows and historical Floradale 

flow measurements particularly during times of high flow (storm flow). Although Boomer Creek did have 

an R2 value of 0.97 the relationship between Boomer Creek and Floradale was based on only 10 manual 

flow measurements and only two were from times of elevated flows, making this high R2 value likely 

unrealistic. Creek export from the fall of 2012 may be underestimated as a result NO3
- concentration not 

being collected prior to October 31st 2012 for Carroll, Cox and Swan Creek and October 23rd for Boomer 

Creek, because no available concentration data was available during this time there was no export calculated 

for these days. Any export that occurred during this time is not known and therefore was not included.  

Manure and crop data was provided by the Ontario Ministry of Agriculture, Food and Rural Affairs 

(OMAFRA), manure data was provided on the dissemination tract scale (resolution 10-30 km), while crop 

data was given on field tract scale (0.1 km resolution) (Ontario Ministry of Agriculture ). Fertilizer nitrogen 

loads were calculated by multiplying crop type area by the recommended application of nitrogen fertilizer 

per hectare set out by the Ontario Ministry of Agriculture and Foods in the 2014 Field Crop Budgets. Fruits, 

vegetables, herbs and nursery crops which did not have a recommended fertilizer application amount 

together occupy < 1% of agriculture land within all the watersheds and therefore fertilizer N contributions 

from these crops was ignored. Land classified as “Beans” was considered coloured beans and land classified 

as “Other Crops” was considered flax when assigning N application rates. Land classified as either 
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“Hay/pasture” or “Soybeans” was assigned a value of zero as nitrogen fertilizer application is not 

recommended. The following assumptions were made: i) fertilizers are applied at the rate of crop 

requirement as recommended by the Ontario Ministry of Agriculture, Food and Rural Affairs (2014) and  

ii) crop N removal is zero. As a result this may lead to an over estimation in total N as N removal is ignored. 

Nitrate Concentration 

Water samples were analyzed for NO3
- concentrations using a Dionex ICS-90 ion chromatography 

machine, equipped with an IonPac AS14A column and AS40 automated sampler. Samples were corrected 

to a calibration curve, created using standards that were run at the same time. The minimum detection limit 

(MDL) for this analysis was 0.05 mg N/L. 

Nitrite Concentration 

Water samples were analyzed for NO2
- concentrations using a Unity Scientific SmartChem 200 

(Discrete Analyzer) based on the method outlined by the USEPA EPA 353.2 Revision 2.0 (1993). The 

nitrite concentrations are measured by diazotizing the sample with sulphanilamide followed by coupling 

with N-(1-naphthyl)-ethylenediamine dihydrochloride to form a highly coloured azo dye which is measured 

colorimetrically at 550 or 520nm. The (MDL) for this method is 0.001 mg NO2-N/L.  

Ammonium Concentration 

Water samples were analyzed for total ammonia nitrogen (NH4
+ + NH3) concentrations using a 

Unity Scientific SmartChem 200 (Discrete Analyzer) based on the method outlined by the USEPA EPA 

350.1 Revision 2.0 (1993). The sample is buffered at a pH of 9.5 with a borate buffer and then distilled into 

a 2% solution of boric acid. Ammonia reacts with alkaline phenol and hypochlorite to form indophenol 

blue, the colour is intensified through the addition of sodium nitroprusside and measured colorimetrically 

at 630nm. The (MDL) using this method to determine total ammonia nitrogen concentration is 0.003 mg 

NH4-N /L. 
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Total Nitrogen Concentration 

Water samples were analyzed for Total Nitrogen (TN) using a Shimadzu Total Organic Carbon 

(TOC-L) analyzer coupled with a Total Nitrogen (TNM-L).  Nitrogen is converted to NO by the combustion 

furnace. Using a carrier gas the sample is passed through a non-dispersive infared detector (NDIR). The 

carrier gas with the sample then proceeds to the nitrogen module where NO is converted to the excited state 

NOx by mixing NO with ozone (O3). Chemiluminescence photodiode detector (CLD) detects the light given 

off by NOx when it returns to its ground state. The (MDL) for this method is 0.001 mg TN N/L. 
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2.4 Historical Data 

2.4.1 Historical Nitrate Concentration Data 

The Conestogo River enters the Grand River east of the town of Conestogo. Past research at the 

University of Waterloo has been conducted on nutrient concentrations both upstream (West Montrose) and 

downstream (Bridgeport) of where the Conestogo River enters the Grand River (Fig 2.8).  

 

Figure 2.8: Map of the Conestogo and Grand River Watershed with sampling locations upstream 

(West Montrose) and downstream (Bridgeport) of the Conestogo River on the Grand River, as well 

as the continuous flow monitoring location on the Conestogo River (St. Jacobs). 
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Historical NO3
- concentration data from these studies reveals a seasonal pattern of increased NO3

- 

concentrations in the fall and winter, and decreased concentrations occurring in the summer months (Fig 

2.9).  

 

Figure 2.9: Historical (2005-2011) NO3
- concentrations from 

upstream (WM) and downstream (BR) of the mouth of the 

Conestogo River on the Grand River (Schiff, unpublished data). 

The downstream location (Bridgeport) has consistently elevated NO3
- concentrations when 

compared to the upstream location of West Montrose and the difference is greatest during the winter.  In 

addition to the Conestoga River, two wastewater treatment plants discharge to the Grand River between 

West Montrose and Bridgeport. 

Ontario’s Provincial Water Quality Monitoring Network (PWQMN) has historical nutrient 

concentration data available for two of the creeks studied: Boomer Creek and Cox Creek. Because of recent 

changes to the riparian zone by land owners to improve water quality in Boomer Creek, the geochemical 

historical data available for Boomer Creek is from the years 2007-2011. Cox Creek is no longer monitored 

by the PWQMN but historical geochemical data was available for the years of 1990-1996. The Conestogo 

River is also monitored by the PWQMN at St. Jacobs, which is approximately 8.2 km upstream from the 
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mouth. Samples taken by the PWQMN are gathered typically on a monthly basis between March and 

November, and, as a result, storm flow and winter concentrations are typically not represented. 

The historical NO3
- concentration data of these creeks (Fig 2.10) show a pattern of increased 

concentrations in the winter/early spring and fall, and decreased concentrations during the summer. Data 

from Boomer creek displays a large seasonal range in NO3
- concentrations with peaks of ~7.0-7.5 mg N/L 

occurring in the early spring and fall and minimum concentrations < 1.0 mg N/L approaching detection 

limits in the summer. Cox creek NO3
- concentrations during the early spring are ~ 6 mg N/L with fall peak 

concentrations of 7.6 mg N/L. Summer concentrations decreased to 1-2 mg N/L. 
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Figure 2.10: Annual NO3
- concentration data (2007-2013) for Boomer 

Creek. 2007-2011 NO3
- concentration data was collected and 

archived by the PWQMN. Data from 2012-2013 was collected in the 

current study. The red line represents the 10 mg N/L-NO3
- provincial 

drinking water limit. 
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2.4.2 Historical Flow Data 

Historical flow data was also used to divide the year into seasons based on the flow regime of 

Floradale Creek. This was done because dates corresponding to a certain season do not always indicate the 

flow conditions within the river. Flow data from the last five years (2009-2013) was taken and then 

normalized by dividing by the mean annual flow (Fig 2.11). Five distinct seasonal flows were then 

categorized based on flow (Table 2.3). 

Highest flows occurred at several times during the year, including: fall with the onset of heavy 

precipitation, early January winter melt events coupled with precipitation, spring melt, and late spring with 

increased precipitation. Increased flows were also seen during the summer likely as a result of heavy, short-

lived storms.  For this region the average total annual precipitation is 904.0 mm with an average range of 

847.4 – 982.3 mm (Seglenieks ).The years 2010, 2011 and 2013 were classified as years with more than 

average precipitation, 2012 had below average precipitation and 2009 was classified as a year with average 

precipitation. 
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Figure 2.11: Floradale normalized flow 2009-2013. Flow was 

normalized to mean annual flow. 

Table 2.8: Annual seasonal divisions based on flow data from Floradale Creek. Start date, end date 

and duration are based on patterns observed in normalized flows 2009-2013. 

Season Start Date End Date Duration (Days) 

Winter December 25 February 28 65 

Spring Melt March 1 April 15 45 

Spring April 16 June 14 60 

Summer June 15 October 17 125 

Fall October 18 December 24 70 

 

Since 1999, an effort has been made by the GRCA and land owners to improve the riparian zone 

along Boomer Creek in an effort to improve water quality and aquatic habitat (Grand River Conservation 

Authority et al. ). Farmers in the Boomer Creek Watershed fenced off approximately 13 km of stream, and 

approximately 8.5 km of treed buffers were planted in order to improve the conditions of the riparian zone 
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along Boomer Creek. This resulted in a marked increase in fish abundance and diversity (Grand River 

Conservation Authority et al. ). According to the report produced in 2007, the increase in fish abundance 

and species was attributed to an increase in water quality due to restoration of the riparian zone around 

Boomer Creek.  

2.5 Results 

2.5.1 Annual Nitrate Concentration Patterns 

NO3
- was the primary form of nitrogen within the creek and river water samples (Fig 2.12) and 

therefore the primary nitrogen form of interest for this study. NO2
- concentrations did not exceed 0.2 mg 

N/L in all creeks with the exception of Boomer Creek on October 23, 2012 and May 8th, 2013 and Cox 

Creek in July and early September 2013. The highest NO2
- concentration (0.5 mg N/L) was observed in 

Cox Creek on July 4th, 2013. NH4
+ concentrations did not exceed 0.2 mg N/L, except during late February 

and early March and briefly in July in Cox Creek and October in the Conestogo River. Boomer Creek had 

the highest observed NH4
+ concentration of all creeks of 0.9 mg N/L on March 11, 2013. 
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Figure 2.12: Annual nitrogen species concentrations in Boomer Creek 

November 2012 to October 2013. Data from November 2012 to March 

2013 was collected as part of the current study. Concentration data 

from April 2013 to October 2014 was gathered and archived by the 

PWQMN. 

The minimum NO3
- concentration observed in the Conestogo River during the study period was 

0.50 mg N/L on September 28th 2012, with a maximum concentration of 11 mg N/L on January 14th 2013 

(Fig 2.13). The average winter NO3
- concentration in 2013 was 6.1 mg N/L. Summer NO3

- concentrations 

dropped to below 2.2 mg N/L in 2013 and below 2.0 mg N/L in 2012. Late fall concentrations were above 

4.0 mg N/L with maximum concentrations above 10 mg N/L. The range in NO3
- concentrations in the 

Conestogo River were ~0.5mg N/L in the fall of 2012 to 11.0 mg N/L in January of 2013. The concentration 

range from months with historical data are similar to years of comparable seasonal conditions. 
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Figure 2.13: NO3
- concentration data (2012-2013) for the Conestogo River. Maximum 

concentrations occur during the months of October to January with minimum 

concentrations occurring in August and September. The red line represents the 10 mg 

N/L-NO3
- provincial drinking water limit. 

NO3
- concentrations had a much larger range in the four creeks studied then that observed in the 

historical data (Fig 2.14). This may result from the lack of historical PWQMN data taken during the winter 

and storm flow events. Minimum and maximum concentrations by season for each creek during the current 

research can be seen in (Table 2.4). Maximum seasonal NO3
- concentrations for winter, spring and fall 

occurred during either melt or large precipitation events. Minimum NO3
- concentrations for Boomer, Cox 

and Swan creek occurred during the summer months. Maximum and minimum concentrations did not 

necessarily occur simultaneously in all creeks. Carroll Creek’s observed minimum concentration occurred 

during the fall of 2013 but was close to the minimum values observed in winter and summer. Annual NO3
- 

concentration ranges were observed to be larger than that taken by the PWQMN. Minimum NO3
- 

concentrations collected by the PWQMN agree well with the data gathered for Boomer Creek and Cox 

Creek during this study.  
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Figure 2.14: NO3
- concentration data (2012-2013) for Boomer Creek, Carroll Creek, Cox Creek and 

Swan Creek catchments. The red line represents the 10 mg N/L provincial drinking water limit for 

NO3
-. 

Table 2.9: 2012-2013 Seasonal maximum and minimum NO3
- Concentrations (mg NO3

-- N/L). *2012 Data is from October 

2012 forward 

 *2012-2013 Seasonal Maximum and Minimum NO3
-  Concentrations (mg N/L) 

 Winter Spring Summer Fall 

 Dec 22 - Mar 21 Mar 22 - Jun 21 Jun 22 - Sep 21 Sep 22 -Dec 21 

 Min Max Min Max Min Max Min Max 

Boomer 

Creek 

3.8 11.6 2.7 8.0 0.2 4.1 1.5 12.3 

Cox 

Creek 

4.8 11.5 3.0 7.0 1.8 4.3 3.6 12.8 

Swan 

Creek 

2.9 6.8 2.6 4.4 0.8 3.9 2.0 5.6 

Carroll 

Creek 

3.1 9.6 4.2 7.3 3.1 4.0 3.0 7.8 

 

During the fall of 2013 and the spring of 2014, water samples were collected from tile drains and 

shallow groundwater piezometers along Boomer Creek in addition to creek samples. NO3
- concentrations 
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for the tile drains during the fall had a large range in values from 1.3 mg N/L up to 20.7 mg N/L with a 

median concentration of 5.9 mg N/L. In the spring of 2014, tile drain NO3
- concentrations ranged from              

2.4 mg N/L up to 16.2 mg N/L with an median concentration of 6.7 mg N/L. Shallow groundwater obtained 

from piezometers from both fall 2013 and spring 2014 had a NO3
- concentration range from below the 

detection limit to 1.6 mg N/L. Stream NO3
- concentrations were between shallow groundwater 

concentrations and that of water from the tile drains.  

Historical NO3
- concentration data were used in conjunction with data obtained from the current 

study as well as precipitation data to obtain a concentration record for the years between 2004 and 2013 

that were considered wet, dry or average. Regardless of the amount of precipitation, annual NO3
- 

concentration follows the pattern of high concentrations during the winter months, which slowly declines 

toward summer minimum values, followed by a rise in concentration during the fall months (Fig 2.15). 

NO3
- concentrations during wet years tend to be higher than those at the same time in dry years. The lowest 

NO3
- concentration for all wet years was 1.6 mg N/L compared to the lowest NO3

- concentration from dry 

years of 0.23 mg N/L. Data from years with total precipitation that fell within the average range tended to 

fall between wet and dry with the lowest concentration being 0.78 mg N/L.  
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Figure 2.15: Conestogo River annual NO3
- concentration data (2004-2013). Dry years 

(below average precipitation) are in red, wet years (above average precipitation) in blue and 

average (average precipitation) years in green. 2004-2011 NO3
- concentration data was 

collected and archived by the PWQMN. Data from 2012-2013 was collected in the current 

study. The red line represents the 10 mg N/L-NO3
- provincial drinking water limit. 

Concentration patterns for wet and dry years were also analyzed for Boomer Creek (Fig 2.16). 

There was very little observable concentration difference between wet and dry years, particularly during 

the summer months. 
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Figure 2.16: Boomer Creek annual NO3
- concentration data (2007-2013). Dry years (below 

average precipitation) are in red, wet years (above average precipitation) in blue and average 

(average precipitation) years in green. 2007-2011 NO3
- concentration data was collected and 

archived by the PWQMN. Data from 2012-2013 was collected in the current study. The red 

line represents the 10 mg N/L-NO3
- provincial drinking water quality limit. 

The Conestogo River has consistently higher NO3
- concentrations throughout the year than the 

Grand River (Fig. 2.17a). The upstream Grand River location (West Montrose) has consistently lower 

concentrations than the downstream location (Bridgeport) (Fig 2.17b).  
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Figure 2.17a & 2.17b: Figure 2.17a: NO3
- concentration data (2012-2013) for the Conestogo River (at St. Jacobs) and the 

Grand River at West Montrose (upstream location). Figure 2.17b: NO3
- concentration data (2012-2013) for the Grand River 

at West Montrose (upstream location), and Grand River at Bridgeport (downstream location). The red line represents the 

10 mg N/L provincial water quality guideline for NO3
-. 

Paired sampling of both groundwater and tile drains was conducted during the fall of 2013 and 

spring of 2014 (Fig 2.18). Tile drains show consistently elevated NO3
- concentrations when compared to 

both Boomer Creek and shallow groundwater. Groundwater was found to have median NO3
- concentrations 

of ~0.1 mg N/L, much lower than Boomer Creek (3.8 mg N/L) and tile drains (7.8 mg N/L).  
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Figure 2.18: NO3
- concentration data (2013-2014) for tile drains and shallow groundwater 

piezometers along Boomer Creek as well as Boomer Creek itself. Samples in the month of May 

were taken in 2014, samples in the month of November were taken November 2013. The red line 

represents the 10 mg N/L provincial drinking water limit for NO3
-. 

2.5.2 Annual Discharge 

During sampling it was noted that the studied creeks and the Conestogo River experienced the 

lowest flows during the summer with the highest flows occurring during spring or winter melt events and 

during heavy autumn precipitation.  Flow data on the Conestogo River discharge was continuously 

measured by the GRCA at St. Jacobs over the study period (Fig 2.19).  In 2012 after the spring melt, flow 

remained low for the remainder of the year. The maximum average daily flow occurred on January 3rd with 

a discharge of 63 m3/s. In 2013 flows were highly variable with several peaks occurring throughout the 

year. 2013 had 19 days with average daily flows higher than 63 m3/s, with a peak average daily flow of  

123 m3/s occurring on April 10th. When comparing total annual discharge calculated using hourly discharge 

measurements, it was found that 2012 had approximately 36% of the total discharge of 2013.  
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                                Figure 2.19: Mean daily flow data (2012-2013) for the Conestogo River (at St. Jacobs) (GRCA). 

Flow data during the time of study, for the studied creeks was not available but flow data was 

available for another watershed of comparable size (Floradale; Fig 2.20). 

F
lo

w
 (

m
3
/s

)

0

2

4

6

8

10

12

14

Mean Daily Flow 2012

Mean Daily Flow 2013

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
 

Figure 2.20: Mean daily flow data (2012-2013) for Floradale Creek (GRCA). 
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Discharge in the Floradale Creek followed a very similar pattern to that observed in the Conestogo River. 

2013 had a larger range in flow and possessed higher and more frequent increases in flow throughout the 

year. Both the Conestogo River and Floradale Creek display elevated flows at some point during early 

winter (January), spring melt (March), spring (April-May) and fall (late October early November). Low 

flows occurred in the summer months (June-September) with occasional storms increasing discharge. 

Floradale Creek flow data (2004-2013) was also used to compare differences in seasonal discharges 

between years with greater, less and average amounts of precipitation (Table 2.5). There was large 

variability in the percentage of flow per season regardless of a year being classified as wet, dry or average. 

The spring melt however did represent 19-39% of the annual flow in all years. The largest difference 

between years in percent discharge per season was during the winter. Years that had average or below 

average precipitation (dry) had over 40% of the discharge occur within the winter, whereas only 10-17% 

occurred in the winter during above average (wet) years. Wet years had a higher percentage of discharge 

occur within the fall when compared to both average and dry years. Spring melt represented a similar 

amount (22-32%) of discharge in all years. Both wet and average years had similar percent discharge during 

the spring and summer with the exception of the summer of 2010 which saw 22% of annual discharge occur 

in the summer.  

Table 2.10: Summary of % discharge per season for Floradale creek from 2004-2012. 2007 was not 

included as a large portion of data was missing. 

Season/Year 2004 2005 2006 2008 2009 2010 2011 2012 2013 

Winter 14% 27% 25% 28% 41% 17% 10% 49% 17% 

Spring Melt 26% 19% 21% 39% 27% 32% 22% 25% 29% 

Spring 21% 13% 26% 4% 13% 17% 16% 6% 19% 

Summer 24% 24% 17% 12% 12% 22% 13% 9% 15% 

Fall 15% 17% 11% 17% 8% 12% 39% 11% 21% 
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2.5.3 Export Estimation 

NO3
- Export estimation was done by interpolating concentration data between sampling dates and 

by developing relationships between past modelled flows (Carroll, Cox and Swan) or manual flow 

measurements (Boomer) and flow measurements taken at Floradale Creek. It was found that there was little 

variation in export estimation between concentration estimates based on linear interpolation or Method 2 

(Table 2.6).  Even though these methods for interpolating concentration data agreed well with each other it 

still must be stated that these export estimates are based on discharge relationships that did not have a good 

correlation to Floradale Creek, or as in the case of Boomer Creek had very few times to compare flow, as 

such these are merely rough estimates calculated for the sake of this study.  Although every season with the 

exception of fall differed by less than 10%, the method developed by Swistock et al. (1997) (Method 2) 

was chosen as the best representation for N export. This was done as Swistock et al. (1997) found that this 

method agreed well with concentration interpolation based on regression analysis which was believed to be 

the most accurate estimation of unknown concentration data. The sum of NO3
- export for days within a 

given season was used to estimate seasonal export from each creek (Table 2.7).  
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Table 2.11: Summary of seasonal NO3
- export calculated based on concentration interpolation 

using linear interpolation and a Method 2 developed by Swistock et al. (1997). Seasons are 

from fall 2012 to fall 2013. 

Creek Season Linear 

Interpolation 103 

(kg N-NO3
-) 

Method 2 Swistock et 

al. (1997) 

(103 kg N-NO3
-) 

% Difference 

B
o

o
m

er
 

C
re

ek
 

Fall 15.3 13.5 13% 

Winter 33.7 34.3 -2% 

Spring Melt 60.8 61.3 -1% 

Spring 30.9 29.9 3% 

Summer 9.4 10.2 -7% 

C
ar

ro
ll

 

C
re

ek
 

Fall 15.3 14.6 4% 

Winter 22.3 23.0 -3% 

Spring Melt 27.0 27.3 -1% 

Spring 19.9 19.7 1% 

Summer 22.8 22.9 0% 

C
o
x
 C

re
ek

 Fall 33.0 30.9 7% 

Winter 42.2 43.4 -3% 

Spring Melt 40.0 40.2 -1% 

Spring 25.1 25.2 -1% 

Summer 28.3 28.5 -1% 

S
w

an
 C

re
ek

 Fall 21.0 19.9 5% 

Winter 25.4 26.2 -3% 

Spring Melt 23.4 23.7 -1% 

Spring 18.6 18.5 0% 

Summer 24.5 25.2 -3% 
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Table 12: Summary of creek N-NO3
- export, discharge, % discharge and %export per year for Boomer Creek, Carroll 

Creek, Cox Creek and Swan Creek over all seasons from Fall 2012 to Fall 2013. 

Watershed/ 

Total Annual 

Export 

(103 kg NO3
—

N/ha) 

Season Discharge 

(105 m3) 

% 

Discharge/year 

Export 

N-NO3
- 

(kg/ha) 

% Export/year 

Boomer Creek 

27.3 

Fall 17.8 7% 1.9 9% 

Winter 50.8 20% 4.9 23% 

Spring Melt 94.3 37% 8.7 41% 

Spring 57.6 22% 4.3 20% 

Summer 36.4 14% 1.5 7% 

Carroll Creek 

16.6 

Fall 29.7 14% 2.2 14% 

Winter 41.1 19% 3.5 21% 

Spring Melt 47.6 22% 4.2 25% 

Spring 41.1 19% 3.0 18% 

Summer 58.6 27% 3.5 21% 

Cox Creek 

19.2 

Fall 48.2 14% 3.5 18% 

Winter 63.3 19% 5.0 26% 

Spring Melt 68.8 20% 4.6 24% 

Spring 62.3 18% 2.9 15% 

Summer 94.8 28% 3.3 17% 

Swan Creek 

26.1 

Fall 53.9 16% 4.6 18% 

Winter 62.4 19% 6.0 23% 

Spring Melt 56.0 17% 5.4 21% 

Spring 59.2 18% 4.2 16% 

Summer 105.5 31% 5.8 22% 

 

The percentage of discharge that occurred throughout seasons varied by creek. Winter and spring 

represented about 20% and 19% of discharge in all creeks, while spring melt represented 17-37%. Both fall 

and summer had discharge that varied greatly between creeks, but fall represented the lowest discharge in 

all creeks. Apart from Boomer Creek, all other creeks had summer discharges of approximately 30%. 

Export also varied between watersheds and season. Winter and spring melt both represented over 

20% of the export per year from all watersheds. Spring represented between 15 and 20% of export, whereas 

summer export drastically changes depending on watershed. Fall export varied between creeks but 

represented less than 18% of export in all watersheds. 
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2.6 Discussion 

2.6.1 Seasonality of NO3
- Concentrations in Agricultural Catchments 

NO3
- concentration varied seasonally among the Conestogo River and the agricultural watersheds. 

During the study period both the creeks and the Conestogo River had similar patterns to that observed in 

the historical data; increased NO3
- concentrations during late October to April and decreased NO3

- 

concentrations occurring from late May to September (Fig 2.21). Since this pattern in NO3
- concentration 

was also observed on the Conestogo River and Grand River it appears to be independent of watershed scale.   
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Figure 2.21: NO3
- concentration data (2012-2013) for Boomer Creek, Carroll Creek, Cox Creek and 

Swan Creek catchments. The red line represents the 10 mg N/L provincial drinking water limit for 

NO3
-. 

Year round and increased sampling during times of increased discharge captured a wider range of 

NO3
- values within the Conestogo River and the studied agricultural creeks, than that indicated by routine 

monitoring programs that do not include winter (e.g PWQMN).  This is due to the fact that routine 

monitoring programs often gather data on a monthly basis to estimate trends and are less focused on detailed 
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concentration changes. The current data reveal that, in addition to the seasonal pattern of high NO3
- 

concentrations in the winter and fall, there is also an increase in NO3
- concentration associated with spring 

melt events. Sampling during times of increased discharge such as during melt or large precipitation events 

is critical to accurate estimation of NO3
- export.  

2.6.2 Seasonal Weather Controls on Agricultural River and Creek NO3
- concentrations (Wet 

vs. Dry Years) 

The amount and timing of precipitation an area receives during a given year governs several 

important parameters within a watershed. The amount and timing of precipitation will affect the snowpack, 

water table depth and both groundwater and creek discharge. For instance, during a wet year, the water 

table would be higher and groundwater and creek discharge would be greater. Changes to these parameters 

could have an effect on NO3
- concentrations and export by altering the amount and timing of NO3

- discharge 

from agricultural fields. 

The use of recent (2004-2012) historical NO3
- concentration data from the Conestogo River and 

Boomer Creek has allowed for a comparison between wet and dry years.  PQWMN data does not cover the 

entire year and some years only have concentration data from several months, typically the largest number 

of data points comes from measurements conducted during the summer and early fall months (June-

October) when sampling conditions are ideal. Predominantly summer NO3
- concentration will be discussed 

as there is the most available data for this time of the year and the largest variation in NO3
- concentration 

between wet and dry years is observed during this time. 

Due to the small amount of historical data from Boomer Creek, it is difficult to draw conclusions 

between wet and dry years, but the available data suggests that there may be little difference in NO3
- 

concentrations between years (Figure 2.16). Conversely in the Conestogo River a difference in NO3
- 

concentration between wet and dry years can be observed during the late summer/early fall (August-early 

October) (Figure 2.15). Even with the larger data set there were still only 9 samples taken from this time 



56 
 

(August-early October) in years classified as dry and 10 from years classified as wet. With the available 

data, wet year (August-early October) concentrations averaged 2.2 mg N/L whereas dry year (August-

October) concentrations averaged 0.6 mg N/L. A Mann-Whitney-Wilcoxon Test indicated that NO3
- 

concentrations in the Conestogo River between wet and dry years are significantly different (p = 0.02) 

therefore there is likely a process controlling NO3
- concentrations in Conestogo River that is not occurring 

within Boomer Creek.  

2.6.3 Effect of the Conestogo Reservoir on NO3
- Concentrations in the Conestogo River  

The Conestogo Reservoir has an effect on downstream NO3
- concentrations. The effect on 

downstream NO3
- concentrations may be weather dependent with dryer years leading to lower downstream 

NO3
- concentrations and vice versa. The first hypothesis is that during dry years it is expected that the 

reservoir would have a stronger influence on river chemistry as there is little contribution from other 

sources. During a dry year, when there is little input and it is feasible that the reservoir as a result of little 

mixing could become thermally stratified, as colder water will sink to the bottom as warmer water which 

is less dense remains in the upper water column. As a result the sediments of the reservoir may become 

anoxic due to the increased microbial respiration during the decomposition of organic matter (Cooke et al. 

). This would create an environment favourable to denitrification and, dependent on water residence time 

within the reservoir, a decrease in the NO3
- concentration could occur (Friedl and Wüest 55-65). Because 

the Conestogo reservoir is a bottom draw dam, any water released would subsequently have a low NO3
- 

concentration under this denitrification scenario. This is an important consideration when trying to explain 

the Conestogo River’s NO3
- concentration, particularly during a dry summer when the reservoir is 

contributing a large proportion of water to the river. During a wet year there will likely be a larger input 

from tributaries, this may lead to a decrease in the residence time of the water within the reservoir as more 

water may need to be let out over the course of the year to maintain operational water levels. A decrease in 

the residence time would likely increase the amount of mixing and may result in the reservoir not becoming 

thermally stratified which would prevent the bottom of the reservoir from becoming anoxic causing 
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increased concentrations of NO3
- to be released to the Conestogo River. Yet increased precipitation during 

wet years will dilute NO3
- concentrations within the reservoir and reduce residence time. Of particular 

importance is if a large amount of precipitation occurs during spring melt, which would dilute NO3
- laden 

water from agricultural field runoff. A large amount of precipitation would also decrease reservoir residence 

time possibly allowing for highly NO3
- concentrated water to be flushed out. In addition to precipitation 

factors such as timing of precipitation and residence time will affect NO3
- concentrations within the 

reservoir 

The Conestogo Dam begins filling during the time of spring melt when flood risk is the greatest. 

After this time the reservoir slowly lets out water to maintain river levels downstream throughout the rest 

of the year. The second hypothesis as to why there is a difference between wet and dry years in the 

Conestogo River is that water that fills the reservoir during the spring will continue to have an effect on the 

river for the remainder of the year, assuming it has undergone little biochemical changes while in the 

reservoir. Therefore if water entering the reservoir during the spring has high NO3
- concentrations then for 

the remainder of the year the river downstream may display this legacy NO3
- and vice versa if the water 

filling the reservoir has low NO3
- concentrations.   

Low NO3
- concentrations are preferred from both an aquatic ecology and drinking water standpoint, 

and maintaining low concentrations during either a wet or dry year is ideal.  This is a difficult management 

problem and is not easily solvable as current data has revealed that elevated concentrations are often 

associated with elevated flows. A better understanding of reservoir, nutrient, and flow dynamics must be 

known in order to optimize reservoir and downstream riverine health.  
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2.5.4 Role of Riparian Zone on Groundwater NO3
- Concentrations  

Boomer Creek experiences the largest range in NO3
- concentration followed by Cox Creek, Swan 

Creek and Carroll Creek (Table 2.4). Although all creeks followed the same general annual trend, the range 

was quite variable between creeks. Variation in both the range and maximum and minimum concentrations 

can be influenced by several factors such as tile drains, size of riparian zone, crop type, seasonality, 

irrigation and fertilizer practises.  

Tile drains can play an important role in governing annual NO3
- concentrations and flows in 

agricultural creeks (Kellman and Hillaire-Marcel 87-102). To determine the extent of tile drain influence 

on agricultural creek NO3
- concentrations, one of the agricultural watersheds (Boomer Creek) was studied 

in great detail. When tiles drains are present and flowing, NO3
- laden water is discharged into a nearby ditch 

or stream, short-circuiting the natural groundwater flow path. In this study, water originating from tile 

drains displayed a wide range of NO3
- concentrations, yet the majority of tile drains displayed elevated NO3

- 

(> 5mg/L) when compared to both the shallow groundwater and Boomer Creek.  

 Had Boomer Creek only been receiving water from a groundwater source then it would be expected 

that the NO3
- concentrations within the creek would be similar to concentrations within the groundwater. 

Thus tile drains appear to play a major role in the elevated NO3
- concentrations of Boomer Creek.  

Unfortunately not all tile drains along Boomer creek could be assessed and flow measurements from the 

tile drains were not taken. Consequently a quantitative estimate for the contribution of tile drains to the flow 

of the creek is unknown.  

The data in this study are consistent with the following hypothesis: a) tile drains govern the NO3
- 

concentration seasonality in agricultural creeks, b) the highest concentrations occur at times when tile drains 

are flowing (fall – spring), and c) lowest concentrations occur at times when tile drains have minimal to no 

flow (summer). Tile drains flow during times of saturated soil conditions, which typically occur from late 

fall to late spring when there is very little to no uptake of water by crops, and increased precipitation or 
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snow melt depending on the season. Tile drains will also flow during the winter depending on weather and 

soil conditions. During the summer, tile drains will have minimal flow as a result of the water table being 

lower because of plant uptake and decreased recharge. However tile drains may flow briefly following large 

precipitation events during the summer months. Times when tile drains are flowing closely reflects times 

of increased NO3
- concentrations. The largest amount of precipitation typically falls during the fall in 

Waterloo region (Seglenieks ), and this increase in precipitation leads to a rise in the water table elevation, 

this causes NO3
- to be flushed out of the agricultural soils and into tile drains. Tile drain NO3

- concentration 

data confirms this with a concentration median of approximately 8.0 mg N/L as well as increased NO3
- 

concentrations observed in Boomer Creek without an increase in the shallow groundwater NO3
- 

concentrations. This also occurred during the spring when Boomer Creek had increased NO3
- concentrations 

during times of tile drain flow, whereas shallow groundwater concentrations remained consistently low (< 

1.6mg N/L). The time at which Boomer creek NO3
- concentrations drop occurs when the influence of the 

tile drains decrease. This occurs as crops begin to grow, the soil becomes drier, and the water table drops. 

Although cessation of tile drain flow is not synchronized, it was observed that over a couple of weeks in 

late May there was a drastic decrease in flow from all tile drains. By June, tile drain flow decreased until 

June 5th when no flow was detected from half of the tile drains. Three tiles remained active into the summer 

until the end of the current study (August 3rd). Spring rainfall was close to the average but possibly due to 

the colder than average winter and large snowpack there was a greater amount of water to recharge the 

groundwater, causing water tables to remain high well into the spring. Annual NO3
- concentration 

fluctuations are likely controlled by tile drains. 

Data collected from shallow groundwater piezometers during fall 2013 and spring/summer 2014, 

within the riparian zone of Boomer Creek indicate that riparian groundwater has very low NO3
- 

concentrations. Summer NO3
- concentrations within Boomer creek may have decreased NO3

- to below that 

observed in the other creeks due to management actions taken to improve the riparian zone. Although not 
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quantified in this study, topography, DOC and dissolved oxygen concentrations affect riparian zone 

effectiveness.  

 The hypothesis that tile drains are governing the NO3
- concentrations within these agricultural 

watersheds has several management implications. Agricultural watersheds are known to be a non-point 

sources of nutrients to catchments, which can have detrimental effects on both aquatic ecosystems and 

drinking water quality. Instead of treating water downstream it may be easier and significantly more cost 

effective to manage nutrient concentrations and export as close to the source as possible. Agricultural 

catchments will continue to be a source of non-point source nutrient pollution but tile drains may act as a 

catalyst to this system, increasing the speed at which nutrients are transported downstream as well as the 

quantity of nutrients, by circumventing the riparian zone. When water draining from these agricultural fields 

is able to take its natural flow path, this research would suggest that it has reduced NO3
- concentrations.   

Tile drains may also play an important role during storms, particularly when the water table is 

already high. Storm and melt events in this study were found to correspond with the highest NO3
- 

concentrations in streams, greatly increasing export. This is of particular importance if rainfall occurs close 

to the time of fertilizer application. Poor & McDonnell (2007) observed that rainfall events during or shortly 

after the time of fertilization led to a large export of nutrients into nearby streams. Tile drains have a 

compounding effect during storms: they allow for the relatively quick draining of water from fields, 

increasing discharge to creeks and rivers and also work to flush highly mobile NO3
- out of the soil leading 

to increased concentration and export. 

The decrease in NO3
- concentration in both the Conestogo River and Boomer Creek occurs at a 

similar time of year but the decrease in NO3
- concentration is greater in Boomer Creek. During the summer 

of 2013 the NO3
- concentrations in Boomer Creek dropped to less than 0.19 mg N/L compared to the 

Conestogo River whose concentrations decreased to only 2.2 mg N/L. This may have resulted from a) little 

NO3
- entering into Boomer Creek during the summer, b) insufficient removal of NO3

- from denitrification 
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within the Conestogo river, or c) due to the influence the Conestogo  reservoir has on  the Conestogo River 

NO3
- concentrations. During the summer there is a limited supply of NO3

- to Boomer Creek due to tile 

drains ceasing to flow and riparian zone denitrification may be limiting NO3
- entering the creek. The 

Conestogo River is strongly influenced by NO3
- originating from the reservoir upstream, which could cause 

elevated (> 1mg N/L) NO3
-concentrations. Sampling conducted at several locations downstream of the 

reservoir found that there was little difference in NO3
- concentrations downstream of the reservoir and often 

concentrations were higher further downstream. This indicates that there is possibly little denitrification 

within the river and also that additional water entering the river downstream of the reservoir has elevated 

NO3
- concentrations. Although denitrification has been observed to occur within anaerobic zones in stream 

sediments (Garcia-Ruiz, Pattinson, and Whitton 467-476; Hill and Sanmugadas 1579-1586; Birgand et al. 

381-487), denitrification may not be effective at decreasing NO3
- concentrations as a result of unfavourable 

conditions or due to the small fraction of NO3
- within the river being denitrified at the thin anoxic sediment 

water interface. It is also possible that denitrification is high but cannot overcome the input of NO3
-.  

The use of tile drains is becoming increasingly popular with 100 million feet installed annually in 

Ontario as farmers wish to maximize the growing season by ensuring there soils are dry in the spring so 

that they may be tilled and seeded (Pearce ). There is a need for further research and a better understanding 

of the role tile drains play in agricultural watersheds so that management practises can be suggested or put 

in place to attempt to mitigate this problem. Alternatively bio-reactors have been shown to cheaply and 

effectively reduce NO3
- concentrations in tile drain discharge (Blowes et al. 207-221). 

2.6.5 NO3
- Concentrations Related to Fall and Spring Wet Up 

During the fall, water tables rise due to increased precipitation and decreased plant uptake, causing 

a wetting up of the soil. This works to quickly mobilize residual NO3
- remaining within the upper soil which 

was previously unsaturated, this mechanism is described as the flushing hypothesis (Creed et al. 3337-

3354). During the summer months, groundwater is less susceptible to NO3
- contamination as a result of the 

water tables being lower and having less contact with NO3
- within the pore spaces of the upper unsaturated 
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zone. During the fall, winter and spring months, when there is little to no uptake by crops, as the water table 

rises it mobilizes NO3
- within the previously unsaturated zone into groundwater and tile drains.  

The timing and amount of precipitation is also an important factor when trying to understand 

seasonality in NO3
- concentration. During 2012, there was very little precipitation from April onward 

(Seglenieks ), decreasing base flows in the river and contributing to added pressure on the Conestogo 

Reservoir to maintain adequate base flows. In addition, this may also increase the amount of nutrients that 

come out of agricultural fields during the fall. During a dry year it would be expected that there would be 

a greater drop in the water table when compared to an average or a wet year. A consequence of this would 

be that, during the fall “wet up” phase, the water table would encounter a larger amount of previously 

unsaturated soil, which may cause a greater flushing of nutrients at that time. Wassenaar (1995) observed 

a flushing of NO3
- as a result of NO3

- being generated through nitrification of fertilizer in the summer and 

mobilized when the water table elevation increased. Flushing of NO3
- resulted in increased stream and tile 

NO3
- concentrations during the times of increased precipitation. Flushing of NO3

-  could also occur during 

the spring from nitrification occurring throughout the winter. Despite nitrification being soil moisture 

sensitive (Breuer, Kiese, and Butterbach-Bahl 834-844) and known to decrease during dry periods, NO3
- 

generated during this time may still represent a significant source of NO3
- to groundwater and nearby creeks 

and streams.  

2.6.6 Storm and Melt Events 

Concentrations of NO3
- during storm and spring melt events can represent a large amount of export 

within a short period of time. Storm events provide large amounts of precipitation within a short period of 

time, often leading to a large increase in river or creek discharge. If this increased discharge is coupled with 

elevated NO3
- concentrations this can lead to a large amount of nitrogen being exported out of the basin and 

into the river, towards Lake Erie. 
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Several storm events were sampled between the years of 2012-2013. During a storm event, 

sampling was done in rapid succession in order to capture the storm hydrograph. Storm and melt events 

have produced elevated NO3
- concentrations in the agricultural creeks and the Conestogo River, but 

concentrations still follow seasonal trends. Spring melt peak concentrations were not observed to exceed 

NO3
- concentrations seen in either the early winter or fall following the observed seasonal trend. During the 

spring melt, NO3
- concentrations rose and peaked for Boomer Creek at 8.0 mg N/L whereas during the 

winter storm event the peak concentration was 11 mg N/L. This trend was similarly observed in the other 

creeks and the Conestogo River. Samples that are only taken monthly will miss these events and will most 

likely underestimate the range of seasonal NO3
- concentration as well as the amount of NO3

- exported. 

2.6.7 Dynamics in Seasonal Nitrate Export 

Nitrate export was found to be dependent on seasonal conditions. Although the spring melt period 

only represents 45 days out of the entire year it is estimated that spring melt accounts for over 20% of the 

annual export in all creeks and over 40% for Boomer Creek. During spring melt NO3
- is rapidly flushed out 

of agricultural fields and represents a large percentage of annual export. Export estimations during spring 

melt are also important as the water filling reservoirs will have a high concentration of NO3
- and could 

cause elevated concentrations to persist downstream for the remainder of the year. 

2.6.8 Effect of Land-Use on NO3
- concentrations 

Land-use may influence NO3
- export and concentration. In catchments where the dominant land-

use is agriculture, export of nutrients to nearby water-bodies is greater than that in undisturbed catchments 

(Hill 696-702; Poor and McDonnell 54-68). Greater input of nutrients would result in elevated nutrient 

concentrations in the receiving waters of these catchments. Agricultural catchments can differ in several 

intrinsic factors and this thesis looked to identify and evaluate if there was a correlation between these 

factors and NO3
- concentration. The factors investigated in each catchment were: percent agriculture (Fig. 

2.22), manure density (Fig. 2.23), total nitrogen density (Fig. 2.24), and percent tile drained.  
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Figure 2.22: % Agriculture and NO3
- concentration boxplot, NO3

- concentration data (2012-

2013) for Boomer Creek, Carroll Creek, Cox Creek and Swan Creek catchments. 
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Figure 2.23: Manure density reported in 103 kg/watershed km2 and NO3
- concentration 

boxplot, NO3
- concentration data (2012-2013) for Boomer Creek, Carroll Creek, Cox 

Creek and Swan Creek catchments. 
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Figure 2.24: Total N (nitrogen) reported in 103 kg/watershed km2 and NO3
- concentration 

boxplot, NO3
- concentration data (2012-2013) for Boomer Creek, Carroll Creek, Cox Creek 

and Swan Creek catchments. 

 The percent of land-use classified as agriculture in these catchments falls between a small range of 

76-86%. Manure density ranges from 3.6 x 103 kg/km2 in Swan Creek to 12 x 103 kg/km2 in Boomer Creek. 

The total nitrogen per km2 which is the sum of the amount of nitrogen from manure as well as the amount 

of nitrogen from fertilizer ranges from 7.1 x 103 kg/km2 in Swan Creek to ~ 18 kg/km2 in Boomer Creek. 

 All catchments fall within a 10% range of each other in terms of percent agriculture. This is in 

contrast to the range between catchments for both manure density and total nitrogen density. Boomer Creek 

has in excess of triple the manure density of Swan Creek and nearly double that of Carroll Creek. Boomer 

Creek also has the highest density of total nitrogen, accounting for almost triple that of Swan Creek. Cox 

Creek, which had a similar manure density to Swan Creek and slightly over half the total nitrogen density, 

displayed the highest NO3
- concentration and the second highest range in annual NO3

- concentrations. Cox 

Creek peak concentrations may result from rapid flushing of NO3
- laden waters during storm events. Yet 

Carroll Creek, which had a higher percentage of tile drains (36%), did not have as large of range or peak 
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NO3
- concentrations. Due to the lack of both historical concentration data from the time of the land-use 

survey and current land-use data it is difficult to interpret the results of Cox Creek as land-use and fertilizer 

application may have changed.  Despite differences in land-use there was little variability observed in NO3
- 

concentrations and ranges between watersheds.  

2.6.9 Effects on Downstream Water Bodies 

In addition to the seasonal variation in NO3
- concentrations in the Conestogo River, this study also 

aimed to investigate the effect of the Conestogo River on the Grand River’s NO3
- concentrations. The 

Conestogo River was shown to possess consistently higher NO3
- concentrations than the Grand River (2.17a 

& 2.17b), causing a marked increase in Grand River NO3
- downstream of the Conestogo River confluence. 

This study emphasizes the importance of understanding nutrient concentrations in waterways within 

agricultural catchments, as these tributaries can have a strong effect on downstream water bodies. For 

nutrient management purposes, emphasis should be put on managing nutrients from sources such as 

agricultural watersheds in order to minimize the nutrient impact these watersheds have on their receiving 

water bodies. Greater attention should be paid to tributary water quality if the goal is to improve downstream 

ecosystem health and drinking water quality, such as that of the Grand River and Lake Erie. 

2.7 Conclusions 

The objectives for Chapter 2 were to 1. Better understand NO3
- concentrations and export both seasonally 

and annually in four small agricultural catchments and compare this to historical data and 2. Investigate 

the physical/chemical processes and source of NO3
- within these watersheds. 

Annual NO3
- concentrations within all the studied creeks revealed a seasonal pattern which showed 

good agreement with seasonal patterns observed in past research done on the Grand River as well as 

available historical NO3
- concentration data on the Conestoga River, Cox Creek and Boomer Creek. The 

seasonal pattern is described as having the highest NO3
- concentrations from fall to spring with lowest 

concentrations occurring during the summer months. Although the range in annual NO3
- concentrations 
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were not the same between the agricultural creeks and the larger river systems (Conestoga River and Grand 

River) the pattern still existed and appears to be independent of scale. Times of increased NO3
- most often 

occurred simultaneously with times of increased discharge, which equates to increased export. Spring melt 

in particular, represents a large amount of the annual export of NO3
-. During the 2013 spring melt >35% of 

the annual NO3
- export occurred within 45 days. Although spring melt was defined as the season with the 

fewest number of days, it represented >20% of the export in Carroll, Cox and Swan Creek, and >40% in 

Boomer Creek. In contrast summer which was defined as days between June 15th and October 17th only 

represented between 7-22% of seasonal NO3
- export.  

In addition to the verification that a seasonal NO3
- concentration pattern existed, the 

physical/chemical processes and source of NO3
- within these watersheds was also investigated. Annual 

precipitation patterns were observed to influence NO3
- concentrations within the Conestogo River but not 

within Boomer Creek. This is thought to be a result of the influence the reservoir has on downstream NO3
- 

concentrations in the Conestogo River. Specifically in-reservoir redox conditions may differ between years 

with below average and above average precipitation which in turn may affect NO3
- concentrations within 

the reservoir and water discharged into the Conestogo River.  

Agricultural creeks primarily receive water from either groundwater discharge or discharge from 

tile drains. Groundwater samples taken from the riparian zone along Boomer Creek were found to contain 

very low NO3
-concentrations, while water discharging from adjacent tile drains were found to have 

consistently elevated (~ 8 mg N/L) concentrations. High NO3
-concentrations within tile drains are believed 

to occur because of the rapid movement of water from fertilized agricultural fields. Times of increased in-

stream NO3
-concentrations often corresponded to times of increased flow conditions (late fall and during 

melt events in winter and spring), while decreased flows (summer) related to times of decreased NO3
-

concentrations. Times of increased flows correspond to times when tile drains are discharging the greatest 

amount of water. Increased NO3
- concentrations occurring in the fall and spring are therefore thought to 

result from the increased discharge from tile drains as a result of an increase in the water table elevation. 
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This increase in water table elevation allows groundwater to encounter shallow soils which have high NO3
- 

concentrations, as this is where fertilizer is applied and the most active nitrogen cycling occurs.  This NO3
- 

is then quickly mobilized and flushed out through the tile drains into the creek. Boomer Creek had elevated 

NO3
- concentrations compared to the groundwater demonstrating the influence that tile drains have on 

agricultural creeks.  

Despite differences in various land-use categories there existed little difference in NO3
- 

concentration ranges. In Boomer Creek, there was nearly triple the amount of manure density and total 

nitrogen in comparison to Swan Creek yet the median NO3
- concentration differed by only 1.5 mg/L. Based 

on current data Boomer Creek was observed to have the greatest amount of annual NO3
- export (27.3 x 

103kg/ha) while Swan Creek which had the lowest manure and total nitrogen density of all the studied 

creeks had the second highest annual NO3
- export (26.1 x 103kg/ha). There is little evidence that land-use 

has an effect on either NO3
- concentrations or export in agricultural creeks. 

In conclusion there is strong evidence to suggest that tile drains play an important role in seasonal 

NO3
- patterns as the highest concentrations and greatest export occur during times of high tile drain 

discharge. 
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Chapter 3 – The Applicability of Stable Isotopic Ratios of Nitrate in Small 

Agricultural Creeks in Identifying Sources or Processes 

3.1 Introduction 

Agriculture represents one of the largest non-point sources of NO3
- to the aquatic environment. 

Nitrogen in excess of crop and microbial requirements remains in the soil. In Canada, nitrogen remaining 

in the soil after crop harvest will predominantly be in the form of NO3
-, which is highly mobile (Eilers et 

al. ). NO3
- can be flushed out of agricultural systems and pollute nearby and downstream water bodies. 

Therefore, it is important to understand the sources and fate of NO3
- in order to mitigate any detrimental 

effects. 

Source identification of NO3
- can be done through the use of stable isotopic ratios. Several 

biogeochemical processes generate NO3
- and without the use of isotopes it is very difficult to conclusively 

identify the source. Several studies have shown the applicability of stable isotope analysis of NO3
- for 

source determination (Kellman 131-137; Aravena and Robertson 975-982; RW.ERROR - Unable to find 

reference:103). NO3
- produced by synthetic/inorganic (anthropogenically produced) or organic (animal 

waste) fertilizers have distinct isotopic signitures. The typical range of δ15N-NO3
- in synthetic fertilizers is 

– 2 to + 4‰ (Gormly & Spalding, 1979; Kendall & Aravena, 2000; Wassenaar, 1995) whereas the typical 

range of δ15N-NO3
- derived from manure is + 8 to +22‰ (Kreitler & Jones, 1975; Wassenaar, Hendry, & 

Harrington, 2006).  

Stable isotopic analysis of NO3
- can also be used to understand the processes governing nitrogen 

transformation. This is particularly useful when explaining decreases in NO3
- concentration as the 

occurrence of denitrification causes a change to the stable isotopic ratios of NO3
-. The process of 

denitrification is predominantly a unidirectional kinetic reaction. As a result, the lighter isotopes (14N, 16O) 

react faster and the products (N2O + N2) become preferentially enriched leaving the remaining NO3
- 

isotopically more abundant in both 15N and 18O (Kendall and Aravena 261-297; Kendall, Elliott, and 
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Wankel 375-449). The isotopic analysis of δ18O of NO3
- is particularly important as differing sources of 

NO3
- can have similar δ15N values and δ18O values can be used in addition to separate these sources. For a 

more detailed explanation on the subject and the fractionation associated with certain biogeochemical 

processes, please refer to Chapter 1. 

Isotopes analysis was used for several purposes during this study. Sources of NO3
- were estimated 

based on the stable isotopic ratios of nitrate (δ15N, δ18O). Isotopic ratios were also used to assist in 

understanding the reasons for fluctuations in NO3
- concentrations throughout the year. 

 

The overall objectives of this chapter were 1) to use isotopes to assist in identifying the processes 

governing NO3
- concentrations in small agricultural catchments and 2)  determine the applicability of the 

stable isotopic ratios of NO3
- for source determination. 

3.2 Site Description & Methodology 

For site descriptions, sample collection details and chemical analysis techniques aside from stable 

isotopic analysis, please refer to the site description and methods outlined in Chapter 2. 

In brief, water samples were collected from creeks in four small agricultural watersheds during the 

years of 2012 to 2013. Nitrate isotopic analysis was performed on selected water samples from each creek 

in an effort to represent both the entire year and specific storm/melt events.  Nitrate isotopic analysis was 

also performed on surface, tile drain, and groundwater samples collected from the Boomer Creek watershed 

during the fall of 2013 and the spring/summer of 2014.  

δ15N and δ18O Isotopic Analysis  

Nitrate stable isotopic analysis was conducted using two methods: the bacterial denitrification 

method (Sigman et al. 4145-4153) and the chemical denitrification method (Spoelstra, Kralt, and Elgood 

14), this was due to a contamination issue with δ18O using the bacterial denitrification method. All samples 

were kept frozen prior to isotopic analysis. Samples from October 23rd-31st, 2012 and January 10th-25th, 
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2013 were analyzed using the bacterial denitrification method at the University of California Davis Stable 

Isotope Facility. All other samples for isotopic analysis were analyzed at the University of Waterloo 

Environmental Geochemistry Laboratory (EGL), and the Environmental Isotope Laboratory (EIL) using 

the chemical denitrification method  

Bacterial Denitrification Method 

Water samples (minimum of 10mL) for isotopic analysis were filtered to 0.45μm and kept frozen 

until analysis. Water samples were prepared on location according to the procedure outlined by Sigman et 

al. (2001). Isotope ratios of δ15N and δ18O were measured using a ThermoFinnigan GasBench + PreCon 

trace gas concentration system interfaced to a ThermoScientific Delta V Plus isotope-ratio mass 

spectrometer (Bremen, Germany).  In brief, sub-samples containing 10-20 nmoles N (5-10 nmol N2O) are 

placed into glass vials, these vials are then incubated overnight with denitrifying bacterial cultures which 

convert NO3
- to N2O. This N2O is then extracted and is first purged from vials through a double-needle 

sampler into a helium carrier stream (25 mL/min).  This gas sample is then passed through a CO2 scrubber 

(Ascarite) and N2O is trapped and concentrated in two liquid nitrogen cryo-traps operated in series such 

that the N2O is held in the first trap until the non-condensing portion of the sample gas has been replaced 

by helium carrier, then passed to the second, smaller trap. The second trap is then warmed to ambient 

temperature and the N2O is carried by helium to the IRMS via an Agilent GS-Q capillary column (30m x 

0.32 mm, 40°C, 1.0 mL/min). This column separates N2O from residual CO2. A reference N2O peak is used 

to calculate provisional isotope ratios of the sample N2O peak. δ15N values are calculated by adjusting the 

provisional isotopic ratios such that correct δ15N values for an internal check are obtained. Standards are 

included in each batch to monitor and correct for instrumental drift and linearity.  The limit of quantification 

is 2 µM of NO3
- in water with a precision of ±0.4‰ for 15N and ±0.5‰ for 18O. 
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Chemical Denitrification Method 

Samples were prepared according to Spoelstra et al. (2014), which is a modified version of the 

chemical denitrification method by (McIlvin and Altabet 5589-5595; Ryabenko, Altabet, and Wallace 545-

552) in which δ15N and δ18O values of nitrate are measured by chemically converting NO3
- to N2O and 

measuring the isotopic composition of N2O. Isotopic analysis following the chemical denitrification method 

was conducted at the University of Waterloo Environmental Isotope Laboratory (EIL) using a Trace Gas 

IRMS.  In brief, sub-samples containing 2 µg of NO3
- -N were freeze-dried for a minimum of 48 hours then 

redissolved in 3 mL of sodium chloride – imidazole solution in a 3.7-mL Exetainer® vial. Following 

redissolution, activated cadmium is added to each vial to reduce nitrate to nitrite over a 24-hour period.  

Samples are then syringe filtered into a 20-ml helium-filled serum vial where a buffer solution (acetic acid 

and sodium azide) is added to convert nitrite to nitrous oxide. The reaction is then allowed to proceed to 

completion until sodium hydroxide is added to quench the reaction. Nitrous oxide from the headspace of 

the vial can then be either directly injected or sub-sampled into a suitable autosampler for isotopic analysis. 

Prior to analysis the Trace Gas IRMS stability tests are run on a reference gas, deviations are typically better 

than 0.05‰ for δ15N and δ18O after 10 cycles.  Standard gas (standardized at the University of California 

Davis Stable Isotope Facility) is then injected to check daily peak height behaviour. From this, ideal sample 

volumes for analysis are chosen. The isotopic composition of the original NO3
- is then determined by 

creating a correction equation using the nitrate standards (EGC 17, USGS 34, USGS 35) included in the 

run. The correction accounts for any isotopic fractionation that occurred during the various reactions, 

oxygen exchange between water and NOx, and the fact that one N atom of the N2O comes from the original 

nitrate and one from azide. Isotopic analysis results for the 15N/14N and 18O/16O ratios are reported using δ-

notation. Duplicate samples and standards within each run are typically within ±0.3‰ and ±0.8‰ for δ15N 

and δ18O, respectively. 

A comparison of results (Fig. 3.1) revealed that δ15N values between methods correlated well to 

each other (r2 = 0.92) and had an average δ15N difference between methods of ±0.4‰ between duplicates, 



74 
 

δ18O did not show as strong of correlation (r2 = 0.65) between methods and had a larger δ18O average 

difference (±0.8‰) between methods. This difference is thought to have resulted from a difference in 

assigned reference values. Although there was a difference between methods, these methods are interpreted 

to be comparable because the difference in isotopic values between methods is small when compared to the 

range in δ15N (-5‰ to + 30‰) and δ18O (-5 to +5‰) of probable NO3
- sources in these catchments 

(inorganic fertilizer, organic fertilizer, septic) (Ctp 1; Fig 1.4) 
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Figure 3.1: Comparison of δ15N-NO3
- and δ18O-NO3

- run at the University of California Davis Stable Isotope Facility using 

the bacterial denitrification method and δ15N-NO3
- and δ18O-NO3

- values run at the University of Waterloo Environmental 

Isotope Lab. The dashed line represents a 1:1 line.  

N2O and CH4 

Dissolved gasses were measured using a headspace equilibration technique. Samples were first 

prepared by creating 5 mL of headspace by injecting 10 mL of ultra-high purity helium.  This created 

positive pressure allowing for headspace to be removed without causing a vacuum. Sample bottles were 

then put on an orbital shaker for 2 hours to equilibrate. A sample headspace of 2.5 mL was then analyzed 
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for concentration using a Varian 3800 GC equipped with TCD, FID and ECD. Certified gas standards were 

run to ensure accuracy. The method precision for N2O and CH4 was +/- 5 %. 

3.3 Results  

3.3.1 Creek δ15N-NO3
- and δ18O-NO3

- 

An annual pattern in NO3
- concentrations was observed in all creeks (Cpt. 2; Fig 2.19), in which 

elevated NO3
- concentrations (≥6 mg N/L) were observed from fall to spring, with reduced concentrations 

(<4 mg N/L) during summer months in all catchments  

Isotopic values for δ15N-NO3
- were similar between creeks seasonally with the exception of Swan 

Creek which was observed to have a smaller range in δ15N-NO3
- (Fig 3.2). Lower δ15N-NO3

- values occurred 

during the fall and winter months with higher values during the summer. All δ15N-NO3
- values were greater 

than +6.5‰ (Table 3.1), which is above the values typically associated with synthetic fertilizer. The highest 

δ15N-NO3
- values occurred in Boomer Creek during the summer (+17.0 ‰). Boomer Creek had the greatest 

range (+8.6‰) in δ15N-NO3
- of all the creeks. Swan Creek had the smallest range with δ15N-NO3

- values 

ranging from +6.8 to +11.5 ‰. Both Cox Creek and Swan Creek have δ15N-NO3
- ranges of approximately 

+7.5 ‰, which is similar to that of Boomer creek. The lowest δ15N-NO3
- values occurred in Swan and Cox 

Creek in late October (+6.5‰).  
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Figure 3.2: δ15N-NO3
- values from Boomer Creek, Carroll Creek, Cox Creek and Swan Creek, 

collected at various times of year throughout the study period. 

Table 3.1: Summary of maximum, minimum and range of δ15N-NO3
- from Boomer, Carroll, Cox and Swan Creek. Samples 

collected at various times of year throughout the study period.  

Creek Maximum δ15N-NO3
- Minimum δ15N-NO3

- Range δ15N-NO3
- 

Boomer +17.0 +8.4 +8.6 

Carroll +15.7 +8.1 +7.5 

Cox  +14.2 +6.5 +7.7 

Swan +11.5 +6.8 +4.7 

 

The values for δ18O-NO3
- follow a seasonal pattern similar to that of the δ15N-NO3

- values (Fig 3.3). 

Lower δ18O-NO3
- values were present during the fall and winter months with higher values during the 

summer. The most enriched δ18O-NO3
- values occurred in Boomer Creek in early May (+6.1‰). Boomer, 

Cox and Swan Creek all had δ18O-NO3
- within +7.0‰ range. Swan Creek had a notably smaller range than 



77 
 

the other creeks with δ18O-NO3
- values ranging from -1.9 to +1.3 ‰. Swan and Cox creek had the lowest 

δ18O-NO3
- values (~ +1.8 ‰), which occurred in late October.  
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Figure 3.3: δ18O-NO3
- values from Boomer Creek, Carroll Creek, Cox Creek and 

Swan Creek, samples collected at various times throughout the study period.  

3.3.2 Creek δ15N-NO3- and NO3- 

Low NO3
- concentrations in all creeks were generally associated with increased δ15N values as well 

as an increased range in δ15N (Fig 3.4). δ15N-NO3
- values peaked at NO3

- concentrations of ~ + 3.5 to + 4.5 

mg N/L. A further decrease in NO3
- concentration caused very little change to the δ15N-NO3

- values, except 

at Boomer Creek where one low δ15N-NO3
- value (+10.2 ‰) was observed at a low NO3

- concentration (1.9 

mg N/L). It was also observed that lower NO3
- concentrations were associated with increased δ18O values 

as well as an increased range in δ18O (Fig 3.5). The highest NO3
- concentrations were associated with     

δ18O-NO3
- values ranging from ~ -1.8 and + 0.5 ‰. Peak δ18O -NO3

- values for the creeks ranged from 

approximately + 1.3 to + 6.1 ‰ with Swan Creek at the low end and Boomer Creek the high end. δ18O-

NO3
- values for the creeks peaked at ~ + 2.5 to + 4.5 mg N/L and remained fairly consistent at low NO3

-
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concentrations. Boomer Creek however, had a low δ18O-NO3
- (+ 1.5 ‰) that occurred at the same 

concentration as the low δ15N-NO3
-. 
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Figure 3.4: δ15N-NO3
- and NO3

- values from Boomer Creek, Carroll Creek, Cox Creek and 

Swan Creek, samples collected at various times of year throughout the study period. 
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Figure 3.5: δ18O-NO3
- and NO3

- values from Boomer Creek, Carroll Creek, Cox Creek and 

Swan Creek, samples collected at various times of year throughout the study period. 

3.4 Discussion 

3.4.1 Role of Denitrification in Streams and Groundwater 

Denitrification in streams and groundwater plays an important role in both NO3
- concentration and 

isotopic abundances. The use of both δ15N and δ18O values together aid in the determination of the 

occurrence of denitrification, but isotopic abundances, particularly of δ18O, can be misleading due to the 

rapid cycling of NO3
- within anoxic soils or stream sediments (Kool et al. 1180-1185; Wunderlich, 

Meckenstock, and Einsiedl 31-45).  

The majority of δ15N and δ18O values from all the agricultural creeks with the exception of Swan 

Creek had 
δ O18

δ N15  slopes greater than that expected for denitrification in groundwater (0.5-0.7)                  (Fig 

3.6), the
δ O18

δ N15  slopes and R2 values for which are summarized in Table 3.2. 
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Figure 3.6: δ15N-NO3
- and δ18O-NO3

- values from Boomer Creek, Carroll Creek, Cox Creek and Swan Creek, samples 

collected at various times of year throughout the study period. The black lines represent a line of best fit, the exact slopes 

of which can be seen in Table 3.2 
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Table 3.2: Summary of  
𝛅 𝐍𝟏𝟓

𝛅 𝐎𝟏𝟖  type II linear regression analysis and R2 values from Boomer, Carroll, Cox and Swan Creek. 

Analysis was conducted using RStudio R Core Team (2014). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. Model II Regression was 

conducted using Pierre Legendre (2014). lmodel2: Model II Regression. R package version 1.7-2. http://CRAN.R-

project.org/package=lmodel2 

Catchment 
δ O18

δ N15  slope R2 

Boomer Creek 0.81 0.87 

Carroll Creek 0.81 0.80 

Cox Creek 0.89 0.81 

Swan Creek 0.59 0.83 

 

Slopes and R2 values varied between sites, with a range in slope of 0.59 to 0.89 and a range in R2 

range of 0.8 and 0.87. A high level of model fit was observed at Boomer Creek (R2 = 0.87) despite the 

anomalous δ15N value that occurred at a low NO3
- . The low slope (0.59) observed at Swan Creek, which 

was the only creek to fall within the empirical 
δ O18

δ N15  denitrification slope (0.5-0.7) may be caused by the 

small range of measured NO3
- concentrations.  

Denitrification rates are not uniform throughout the year and are dependent on seasonal conditions 

such as temperature and dissolved oxygen concentrations, with greater denitrification occurring during 

times of warmer temperatures (summer). This not only affects the amount of NO3
- within groundwater but 

also affects the enrichment factor associated with denitrification, as it is dependent on the denitrification 

rate and the concentration of NO3
- within the substrate. All creeks displayed an increase in both δ15N (Fig 

3.7) and δ18O values with declining NO3
- concentrations, which may indicate that denitrification is 

occurring. Swan Creek which had a 
δ O18

δ N15  denitrification slope (0.59) closest to that observed in other 

groundwater studies, had a much smaller annual range in δ15N. One possible explanation for this may be a 
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result of Swan Creek having a lower input of manure (1.61 x 105kg). When compared to the other creeks 

studied Swan Creek has less than half of the manure input as Cox Creek (3.97 x 105kg ) which has the 

second lowest input of manure. Also it is estimated that Swan Creek has almost equal the amount of input 

from inorganic fertilizer (1.51 x 105kg). Inorganic fertilizer typically has lower δ15N values (0‰) when 

compared to manure (> 8‰), this may result in δ15N values of the Creek reflecting a mix of these sources.   
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Figure 3.7: δ15N-NO3
- values and NO3

- concentrations from Boomer Creek, Carroll Creek, Cox Creek and Swan Creek, 

samples collected at various times of year throughout the study period. The black line represents the enrichment in δ15N-

NO3
- as a result of denitrification causing NO3

- concentrations to decrease. This line was calculated using the Rayleigh 

fraction equation with a ε of -27.6‰. Since a site specific enrichment factor was not calculated the single dot dashed line 

represents an enrichment factor of -5‰ and the double dot dashed line represents an enrichment factor of -38‰ which 

represent the possible range in enrichment factors The start of this line is based on an estimation of source values from each 

creek: (Boomer Creek: 14‰, Cox Creek: 14‰, Swan Creek: 8‰, Carroll Creek: 12‰.  
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Slopes from δ15N vs. NO3
- are less than that of the modelled denitrification line. Although it has been found 

that groundwater denitrification can produce enrichment factors of -5‰ it is unlikely that the data observed 

in this study would have enrichment factors less than -10‰ as it was found that denitrification occurring in 

the Strawberry Creek catchment had an enrichment value of -27‰. This would suggest that denitrification 

as well as dilution or mixing with a low NO3
- source is occurring. This would cause a decrease in the NO3

- 

concentration but would not cause a change in the δ15N (Kendall and Aravena 261-297).  

3.4.1.1 N2O as an Indicator for Denitrification 

N2O is generated through the processes of nitrifrification and denitrifrification (Yokoyama and 

Ohama 967-972). N2O is created as a by-product of nitrification and is an intermediate product of 

denitrification. The production of N2O during denitrification is greater than that of nitrification (Snider, 

Schiff, and Spoelstra 877-888). Nitrifying bacteria can create N2O in two ways, either through nitrification 

or through nitrifier denitrification. Hayatsu et al. (2008) effectively summarizes these reactions; during 

nitrification, N2O is produced as a by-product as a result of ammonia oxidation. During ammonia oxidation 

an unstable intermediate (HNO) is formed which spontaneously decomposes to N2O. In nitrifier-

denitrification NH4
+ is oxidized to NO2 and subsequently reduced to N2O. N2O produced through 

denitrification is an intermediate product of the reduction of NO3
- to N2.  

The generation of N2O through nitrification has been shown to be strongly influenced by O2 

availability (Khalil, Mary, and Renault 687-699) as well as NH4
+ (Yokoyama and Ohama 967-972). N2O 

in an agricultural system will be produced through both nitrification and denitrification. Concentrations of 

N2O from the studied creeks followed a similar seasonal pattern to the NO3
-, but maximum peak 

concentrations did not occur simultaneously. Specifically, higher N2O values occurred during fall 2012, 

spring 2013 and to a lesser degree during the winter of 2013 (Fig 3.8a & 3.8b). Similar to the pattern 

observed in NO3
- concentrations, N2O decreased during the summer months but was still present at saturated 

concentrations. Unlike NO3
- concentrations however, which were observed to have peak concentrations 

during the late fall and early winter when the water table is closer to the surface and tile drains are likely to 
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be active, N2O was observed to reach its greatest concentration during the time of spring melt. Following 

fertilization, which likely occurs during times of tile drain flow (fall-spring) it would be expected that a 

large amount of N2O would be produced through nitrification, yet peak concentrations occur during spring 

melt. As a result it is likely that N2O produced during spring melt is a result from denitrification. Increased 

concentrations occurring during the fall may be a combination of N2O produced through both denitrification 

and nitrification as it was observed that fertilizer application took place during this time. The solubility of 

N2O is a function of temperature with increased solubility occurring at lower temperatures (Weiss and Price 

347-359). The range between summer and winter temperatures within the studied creeks was approximately 

30°C, which results in close to three-fold increase                                       (2.16 mol L-1 atm-1 to 5.93 mol 

L-1 atm-1 ) in the solubility of N2O, even so this cannot account for the N2O concentrations observed during 

spring melt, indicating that N2O is either being produced or is being rapidly exported into the creeks during 

these times. 
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Figure 3.8a & Figure 3.8b: Figure 3.8a: N2O concentrations from Boomer Creek, Carroll Creek, Cox Creek and Swan 

Creek, collected at various times of year throughout the study period. Figure 3.8b:  N2O as % saturation with respect to 

the atmosphere at 9°C (average groundwater temperature) for Boomer Creek, Carroll Creek, Cox Creek and Swan Creek, 

collected at various times of year throughout the study period. 

Since the highest N2O concentrations did not occur at times of low NO3
- concentrations (Fig 3.9) 

an alternate process may be controlling N2O concentrations. There are two hypotheses as to why this is 

occurring that will be discussed in detail in this section; 1) denitrification causes the increased N2O 
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concentrations, but as a result of the large NO3
- pool even if a small percent of the NO3

- were denitrified 

this would create a large amount of N2O, or 2) nitrification occurs throughout the year, causing an N2O 

build up in the soil that is flushed when the water table rises. 1) Denitrification during the spring and fall 

causes increased N2O concentrations.  Times of increased NO3
- concentrations, such as those observed in 

the fall, spring and to a lesser extent the winter, correspond to times of increased N2O concentrations, 

however there is no increase in the δ15N-NO3
- indicative of denitrification. This may be due to the fact that 

between the fall and spring the water table rises and is exposed to a large amount of NO3
- from the shallow 

soil layer. Some of the NO3
- will likely undergo denitrification but due to the large NO3

- pool the changes 

in the NO3
- concentration, δ15N and δ18O values is small. This denitrification still causes an increase in the 

N2O concentration, even if only a small amount of the NO3
- pool is denitrified.  During the summer, there 

is an observed increase in both δ15N and δ18O with a decrease in NO3
-, which could be attributed to 

denitrification. This may be a result of a smaller NO3
- pool, causing denitrification to have a large effect on 

the overall NO3
- concentration and isotopic values. 

Another possible indicator of denitrification is the presence of metheane (CH4). In the absence of 

O2, NO3
-, manganese, iron, sulphate, redox conditions will change causing the reduction of carbon dioxide 

(CO2) to become thermodynamically favourable, resulting in the production of CH4 (Bremner 7-16). 

Therefore if CH4 is being produced it is likely that the majority of the NO3
- in the soil has been denitrified. 

Methane data would suggest that during late April to late May, depending on the creek, conditions become 

thermodynamically favourable for the production of CH4 (Fig 3.10).  A change in redox conditions making 

the reduction of CO2 thermodynamically favourable would indicate that denitrification is going to 

completion, which would decrease the amount of N2O produced; as denitrification approaches completion 

the N2O:N2 ratio decreases reducing the amount of N2O produced (Van Cleemput 187-194). The production 

of CH4 is strongly influenced by temperature as well as particulate organic matter (Jones Jr et al. 155-173). 

During the late spring, anoxic conditions in the soil due to increased water levels from spring melt, increased 

temperatures and likely a large source of organic carbon from fertilizer (manure) application promote 
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favourable conditions for CH4 production.  Methane concentrations likely decrease once the water table 

decreases and there is no longer a large source of organic carbon. Since tile drains were observed to have 

consistently elevated concentrations of NO3
-, it is likely that CH4 is being produced in the groundwater and 

subsequently entering the creek through groundwater discharge. Methane concentrations decline 

throughout the summer, this is likely a result of a change in redox conditions whereby the reduction of CO2 

is no longer thermodynamically favourable.   
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Figure 3.9: N2O and NO3
- concentrations from Boomer Creek, Carroll 

Creek, Cox Creek and Swan Creek, collected at various times of year 

throughout the study period. 
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Figure 3.10: CH4 concentrations from Boomer Creek, Carroll Creek, Cox 

Creek and Swan Creek, collected at various times of year throughout the 

study period. 

A second hypothesis could be that nitrification occurs throughout the year, causing an N2O build 

up in the soils that is flushed when the water table rises. Nitrification has been shown to occur in soils 

throughout the winter (Savard et al. ). It has also been observed that at lower temperatures nitrification 

generates more N2O than at higher temperatures (Maag and Vinther 5-14). Manure applied onto the fields 

after crop harvest will be slowly nitrified over the coming months. This nitrification will generate NO3
- as 

well as N2O. This N2O is then subsequently flushed out during melt or large precipitation events. 

It is likely that both of these factors contribute to the increased N2O observed in the spring and fall. 

During the fall, when crops are harvested, precipitation increases causing the water table to rise. This would 

also occur in the spring when the snowpack begins to melt with the onset of spring precipitation and to a 

lesser degree during a mid-winter melt event. With the rise of the water table NO3
-, as well as the N2O, is 

rapidly flushed out of the soil through tile drains and into the groundwater. Studies conducted on the N2O 

concentrations in the Strawberry Creek watershed by Rempel et al. (2008) and Thuss et al. (2006), found 

that elevated N2O concentrations were observed in tile drain discharge during melt and storm events. 
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Isotopic analysis of samples collected by Rempel found that the N2O was likely generated by denitrification. 

The increased rate of transport and access to previously unsaturated soil is reflected by the increased N2O 

concentrations in the creeks. 

3.4.2 Calculation of Source δ15N   

In order to identify potential source contributions of NO3
- to these agricultural streams, the δ15N 

must be adjusted for the isotopic enrichment due to denitrification. In order to do this, the δ18O of the source 

NO3
- has to be estimated. The lowest δ18O value for Boomer, Cox, Swan and Carroll Creek was     -0.81‰, 

-1.70‰, -1.92‰ and -1.01‰ respectively (Fig 3.11).  
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Figure 3.11: δ15N-NO3
- and δ18O-NO3

- values from Boomer Creek, Carroll 

Creek, Cox Creek and Swan Creek, samples collected at various times of 

year throughout the study period. 

By rearranging equation 3.1 it is possible to calculate the δ 15N of the NO3
- source. The Δ18O value 

is calculated by subtracting the NO3
- - δ18O of the sample by the estimated NO3

- - δ18O of the source. If 

denitrification is the only process controlling isotopic ratios then the calculation of the δ 15N of the source 
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should lead to a common value. A type II regression performed on δ 15N and δ 18O data from all the creeks 

was used to find the denitrification slope (DS). 

𝐷S =
∆δ 𝑂18

∆δ 𝑁15  

∆δ 𝑂18

𝐷𝑆
= ∆δ 𝑁15  

∆δ 𝑂18

𝐷𝑆
= δ 𝑁2 −  δ 𝑁1 15  15  

δ 𝑁1 15 = δ 𝑁2 −
∆δ 𝑂18

𝐷𝑆
15  

 

This simple equation makes several critical assumptions: 

1. All fractionation in O or N occurs as a result of denitrification 

2. Single NO3
- source. 

The results of correcting the individual δ15N values for denitrification can be seen in (Fig 3.12). All of the 

agricultural creeks corrected to a similar δ 15N source range (+ 6 to + 8 ‰). This gives strong evidence that 

these watersheds share similar sources of NO3
- . The majority of data points were within the + 6‰ to               

+ 8‰ range, which is slightly below the expected δ15N values of manure.  

Equation 3.1 
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Figure 3.12: Corrected δ15N-NO3
- values and NO3

- concentrations from 

Boomer Creek, Carroll Creek, Cox Creek and Swan Creek, samples 

collected at various times of year throughout the study period. δ15N-NO3
- 

values have been corrected for denitrification. 

3.4.3 NO3
- Sources to Streams 

After correcting for denitrification a more accurate estimation of the source of NO3
- can be made. 

Stable isotopic analysis reveals (Fig 3.13) δ15N values (+6 to +8‰) that are slightly below values associated 

with manure (> + 8‰).  Despite being close to the δ15N which has been empirically found for manure, 

several studies also describe similar δ15N values to belong to other sources. A study conducted by Chang et 

al. (2002) on small streams in the upper Mideast US described δ15N values of +5.5‰  as characteristic of 

inorganic fertilizer and soil nitrate. Gormly & Spalding (1979) stated that differentiating the NO3
- sources 

between inorganic and organic fertilizers solely on δ15N values in groundwater between 3.5‰ to 9.5‰ was 

not possible. In addition there is also strong evidence that ammonia volatilization of inorganic fertilizers 

can cause an enrichment of +6‰ (Flipse and Bonner 59-67). Therefore although the δ15N values for the 
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creeks are within which has been found for manure, it is not possible at this time to definitively say that 

NO3
- in these creeks is derived from manure.  

 

Figure 3.13: δ15N-NO3
- and δ18O-NO3

- values from Boomer Creek, Carroll Creek, Cox Creek and Swan Creek, samples 

collected at various times of year throughout the study period. δ15N-NO3
- has been corrected for denitrification. Boxes 

indicate empirical δ15N and δ18O of different NO3
- sources. The denitrification line (dashed line) represents the relationship 

between δ15N and δ18O values of the residual NO3
- that results from denitrification and has been observed in many 

groundwater studies to typically be regarded as a 2:1 ratio (Kendall and McDonnell ). The percentages on the denitrification 

line correlate to the fraction of NO3
- that has been denitrified. The location of the percentages on the denitrification line is 

dependent on the enrichment factor. 
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3.4.4 The Effects of Land-Use on δ15N-NO3
- 

Despite differences in land-use, there was very little difference in the δ15N-NO3
- values (Fig 3.14). 

The percent of total nitrogen attributed to manure varied between creeks with Boomer Creek having the 

most (68%) and the other creeks falling having between (45-53%) (Ontario Ministry of the Environment ). 

Percent agriculture (The Ontario Ministry of Natural Resources ) is similar in all creeks (77-86%) yet there 

is a large difference in % tile drains, total nitrogen density and manure density between creeks data 

(Ministry of Agriculture, Food and Rural Affairs ). Despite these differences all creeks had similar δ15N 

values (+ 6‰ to + 8). 
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Figure 3.14: Box plot of corrected δ15N-NO3
- values as well as land-use data from Boomer Creek, Carroll Creek, Cox Creek 

and Swan Creek, samples collected at various times of year throughout the study period. 
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3.4.5 Effect of Tile Drains on δ15N-NO3
- and δ18O-NO3

- 

In order to better understand the sources and processes controlling NO3
- concentrations on 

agricultural creeks, stable isotopic analysis was conducted on water originating from the tile drains as well 

as water from adjacent shallow groundwater along Boomer Creek. Unfortunately the majority of 

groundwater samples had NO3
- concentrations very close to the detection limit or had NO2

- concentrations 

that were too high to be run for isotopic analysis. The tile drains showed a large range in both δ15N-NO3
- 

and δ18O-NO3
- (Fig 3.15). 
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Figure 3.15: δ15N-NO3
- and δ18O-NO3

- values from Boomer Creek and tile drains 

located along Boomer Creek. Samples for Boomer Creek were collected at various 

times of year throughout the study period. Samples for tile drains were collected in 

November 2013. 

Tile drains along Boomer Creek had similar δ15N and δ18O-NO3
- values when compared to Boomer 

Creek. Minimum δ15N values in the tile drains were approximately + 9.5‰ whereas Boomer Creek 

minimum δ15N values occurred close to + 8‰. Although there was a large range (10 mg/L) in NO3
- values 
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in both the tile drains and Boomer Creek δ15N values were similar at similar concentrations. This gives 

further evidence that tile drains strongly influence NO3
- concentrations within Boomer Creek. In addition 

δ15N and δ18O values at higher concentrations from tile drains are very close to that of Boomer Creek at 

high concentrations (+ 8 to + 10‰ and 0‰) (Fig 16a & b).  
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Figure 3.16a & 3.16b: Figure 3.16a: δ15N-NO3
- values and NO3

- concentrations from tile drains located along Boomer Creek. 

Figure 3.16b: δ18O-NO3
- and NO3

- concentrations from tile drains located along Boomer Creek. Samples for tile drains were 

collected in November 2013. 

3.4.6 δ15N and δ18O at High flows  

Times of high discharge often occurred during time of increased tile drain flow such as spring melt 

and large precipitation events. During times of increased discharge tile drains were observed to have lower 

values in both δ15N and δ18O (Fig 3.17 a & b). Times of increased discharge were also related to lower 

ranges in both δ15N and δ18O in all creeks. During times of lower flows, the δ18O and δ15N values of the 

creeks show a larger range (Fig 3.18 a & b).  This is likely a result of several factors, reduced input from 

tile drains and increased denitrification. During the summer there is a reduced amount of water being 

discharged from the tile drains as a result of the water table being lower, causing some tile drains to cease 
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to flow. Although water from flowing tile drains was observed to have NO3
- concentrations > 4mg/L, their 

water contribution to the creeks is likely very small during this time. Also during the summer, increased 

temperatures will cause denitrification to be favourable both within the soil and in stream increasing both 

the δ18O and δ15N within the remaining water.  
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Figure 3.17a & 3.17b: Figure 3.17a: δ15N-NO3
- values from tile drains located along Boomer Creek and estimated Boomer 

Creek discharge. Figure 3.17a:  δ18O-NO3
- values from tile drains located along Boomer Creek and estimated Boomer Creek 

discharge. Samples for tile drains were collected in November 2013. 
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Figure 3.18a & 3.18b: Figure 3.18a: δ15N-NO3
- values from Boomer Creek, Carroll Creek, Cox Creek and Swan Creek and 

respective estimated creek discharge. Figure 3.18b:  δ18O-NO3
- values from Boomer Creek, Carroll Creek, Cox Creek and 

Swan Creek and estimated creek discharge. Samples collected at various times of year throughout the study period. 

3.4.7 Systematics of NO3
- stable isotopes in Small Agricultural Catchments 

In order to better explain variations in annual NO3
- isotopic a simplified conceptual model was 

created. In this model NO3
- that has undergone denitrification will have elevated δ15N -NO3

- and δ18O -NO3
- 

values, while NO3
- that has not undergone denitrification will have isotopic values close to that of the source. 

If a denitrification line can be modelled and plotted on a δ15N -NO3
- vs. NO3

- graph, then a theoretical area 

under which all possible data should fall can be calculated (Fig 3.19). How close data matches do this 

denitrification line will be dependent on the fraction of NO3
- remaining and the isotopic fractionation factor. 
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Figure 3.19: Model of possible δ15N-NO3
- values and associated NO3

-. The dashed black line represents the enrichment in 

δ15N-NO3
- as a result of denitrification causing NO3

- concentrations to decrease. This was calculated using the Rayleigh 

fraction equation with a ε of -27.6‰. The start of this line is based on an estimation of source values. The solid black line 

represents dilution, decreasing the NO3
- concentration without any change in δ15N-NO3

-. 

The Rayleigh distillation equation (Equation 3.2) allows for the calculation of fractionation effects 

on 15Nof the remaining NO3
- . 

𝛿 ≈   𝛿0 + 𝜀
𝑁2−𝑁𝑂3

ln (𝑓) 

Where δ is the composition of the remaining NO3
- , δ0 is the initial composition of the NO3

-, f is the 

remaining fraction of substrate and ε the enrichment factor. The application of the Rayleigh distillation 

equation in this study is based on the following assumptions; closed system, finite source of NO3
- and the 

enrichment factor does not change throughout the reaction (Kendall and McDonnell ). These assumptions 

are not valid in this system as this is an open system where NO3
- is being contently added through the 

addition of fertilizer or the nitrification of NH4
+, also it is very unlikely that the enrichment factor is constant 

throughout as this will be dictated by the environmental conditions. 

Equation 3.2 
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An 15N enrichment factor of -27.6‰ will be used for calculations, as this was found to be the 

enrichment factor in a similar catchment (Strawberry Creek) within the Grand River Watershed (Mengis et 

al. 448-457). Once the δ15N values were calculated based on the fraction of NO3
- remaining, this curve was 

then plotted on a δ15N vs NO3
- and compared to δ15N and NO3

- concentrations from the creeks (Fig 3.20). 
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Figure 3.20: δ15N-NO3
- values and associated NO3

- from Boomer Creek, Carroll Creek, Cox Creek and Swan Creek. The 

dashed black line represents the enrichment in δ15N-NO3
- as a result of denitrification causing NO3

- concentrations to 

decrease. This was calculated using the Rayleigh fraction equation with a ε of -27.6‰. The start of this line at 14 mg N/L 

and 6‰ is based on an estimation of the average source NO3
- values in each creek. The solid black line represents dilution, 

decreasing the NO3
- concentration without any change in δ15N-NO3

-. Samples collected at various times of year throughout 

the study period. 

All creeks show an increase in the range of both δ15N and δ18O at low concentrations. Higher 

concentrations tend to have lower δ15N and δ18O values. Depending on the initial NO3
- concentration 

chosen, in a system where denitrification was the lone factor affecting NO3
- concentrations and isotope 
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fractionation, the δ15N values should fall along the same slope as the denitrification line calculated with the 

Rayleigh equation. If there was little denitrification occurring then the δ15N and δ18O would not show a 

marked change with a decrease in NO3
- concentration. The creeks appear to be strongly influenced by 

denitrification as there is a clear increasing trend in δ15N as the NO3
- concentrations decreases. However 

there is also some dilution occurring as the data does not fall along the slope for denitrification. This is 

unsurprising as the creeks receive inputs from groundwater which has strong evidence of denitrification  

and from the tile drains which has little evidence of denitrification. In addition the amount of input from 

tile drains as well as the conditions for denitrification changes throughout the year leading to the input from 

the different sources changing throughout the year. 

This denitrification model was also applied when interpreting tile drain isotopic values. The tile 

drains located in Boomer Creek displayed a large range in δ15N-NO3
- in comparison to NO3

- concentration 

(Fig 3.21). 
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Figure 3.21: δ15N-NO3
- values and associated NO3

- from Boomer Creek, tile drains along Boomer Creek and from a tile 

drain (Harris Tile) from the Strawberry Creek watershed (Rempel, 2008). The dashed black line represents the enrichment 

in δ15N-NO3
- as a result of denitrification causing NO3

- concentrations to decrease. This was calculated using the Rayleigh 

fraction equation with a ε of -27.6‰. The start of this line at 30 mg N/L and 3‰ is chosen on an estimation of source values. 

The solid black line represents dilution, decreasing the NO3
- concentration without any change in δ15N-NO3

-. Boomer Creek 

samples were collected at various times of year throughout the study period. Tile drain samples were taken November 2013 

and samples from the Harris tile were taken between November 1998 and July 2000. 

The tile drains along Boomer Creek show little variation in δ15N values at elevated NO3
- 

concentrations (> 14 mg N/L) with most of the variability occurring at lower concentrations.  As seen with 

δ15N-NO3
- in the creeks, water from the tile drains is also appear to be affected by both denitrification and 

dilution. A previous study conducted by Rempel (2008) on tile drains in the Strawberry Creek watershed 

found that the tile drain known as the Harris Tile which drained an agricultural field fertilized with inorganic 

fertilizer, experienced little change in the δ15N values regardless of NO3
- concentration. This data may 

suggest that that field conditions were not ideal for denitrification.  
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At high concentrations the isotopic abundances of the tile drains along Boomer Creek likely reflect 

the source of NO3
- as there has likely been little denitrification. The δ15N value of approximately    +10 ‰ 

found in the tiles at high NO3
- concentrations closely matched δ15N values found in Boomer Creek (+8 to 

+10 ‰) at high NO3
- concentrations. Evidence presented in this study would indicate that tile drains dictate 

the isotopic abundances of δ15N and δ18O of NO3
- within Boomer Creek. As mentioned in the previous 

chapter, there is evidence that tile drains play a strong role in the annual NO3
- concentration patterns, tile 

drains also have a strong influence on δ15N and δ18O values. Data suggests that during times of decreased 

tile discharge water coming from tile drains likely undergoes denitrification. An increase in the δ15N and 

δ18O values as well as the range was observed during times with reduced tile drain flow (summer), possibly 

reflecting shallow groundwater discharging into the creek or in stream processing. This shallow 

groundwater based on observed NO3
- concentrations has likely undergone denitrification as it passed 

through favourable denitrification conditions (low O2, high organic matter) in riparian zones. This is thought 

to occur in all the creeks studied as elevated δ15N and δ18O values were observed in all creeks during the 

summer when compared to times of tile flow (fall-spring). During times of elevated water tables (fall 

through spring) tile drains flow, and contribute large amounts of water and NO3
- to Boomer Creek. During 

times when tile drains were flowing Boomer Creek had similar δ15N and δ18O values to that of water from 

tile drains. During times of tile drain flow isotopic signatures from samples taken from Boomer Creek 

resemble those found in tile drains, indicating that tile drains may control the isotopic signatures of the of 

δ15N -NO3
-  and δ18O- NO3

-  found within the creek.  

3.5 Conclusions 

Isotopes alone cannot in this instance differentiate between sources of NO3
- to these catchments, it 

can however give insight into processes such as denitrification, which strongly influence NO3
- 

concentrations within these creeks. The stable isotopic ratios of tile drain samples at high NO3
- 

concentrations match those of Boomer Creek at high NO3
- concentrations. During times when the tile drains 

are not flowing both δ15N and δ18O increase, indicating that the shallow groundwater discharging into the 
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creek has likely undergone denitrification in the riparian zone, which is supported by supplementary data 

(N2O, CH4). This leads to the conclusion that tile drains influence the isotopic abundances of NO3
- 

throughout the year. 
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Chapter 4 − Conclusions and Recommendations 

4.1 Conclusions 

 Several research objectives were achieved during this study. The first objective was to characterize 

annual fluctuations in NO3
- concentration within four small (44-87 km2) agricultural catchments, as 

agricultural catchments represent a large non-point source of nitrogen to the environment. It was found that 

the range in annual NO3
- concentrations differed between catchments but the annual pattern of elevated 

concentrations during the fall through to spring and decreased concentrations during the summer (June-

September) existed in all catchments. The pattern found in this study was also seen in historical 

concentration data collected by the PWQMN over the past 10 years. Historical data and data collected 

during this study indicated that this pattern exists independent of scale as it also occurred in the Conestogo 

River watershed (819km2) and the Grand River watershed (2253 km2).  

 Annual NO3
- concentrations observed during this study indicated that samples taken by the 

PWQMN did not adequately capture the annual NO3
- concentration fluctuations. As PWQMN’s aim is to 

simply track general changes in stream chemistry throughout time and not try to accurately estimate annual 

NO3
- concentration fluctuations, samples are typically taken on a monthly grab-sample basis, and only 

typically from March to November. As a result concentration information at key times of discharge is not 

collected. This is particularly true during melt and storm events where it was found that NO3
- concentrations 

rapidly increase by up to two to threefold for a short duration of time. Year-round and storm/melt event 

sampling is also crucial in estimating annual NO3
- export as increased concentrations occurred with 

increased discharge. Therefore if the goal is to accurately estimate export a more rigorous approach to 

sampling must be taken, as any export calculations based on monthly grab samples may underestimate NO3
- 

export.  

Historical concentration data on both Boomer Creek and the Conestogo River allowed for the 

comparison between years classified as wet and dry based on monthly precipitation data. Boomer Creek 
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was found to have small NO3
- concentration differences between wet and dry years. However there was a 

notable difference in summer NO3
- concentrations in the Conestogo River between wet and dry years. Dry 

years were found to have lower summer NO3
- concentrations when compared to wet years. This may be 

due to longer water residence time and/or denitrification occurring within the reservoir during dry years. 

Subsequently any water discharged from the reservoir for the remainder of the year will likely have a lower 

NO3
- concentration. Wet years had higher summer NO3

- concentrations when compared to dry years, this 

may result from a large influx of NO3
- latent water during the spring, which is slowly discharged the 

remainder of the year. Regardless of the weather conditions of a given year (wet or dry) the reservoir 

appears to influence NO3
- concentrations downstream. 

 Investigation into NO3
- concentrations in Boomer Creek, tile drains along Boomer Creek and 

shallow groundwater within the riparian zone adjacent to tile drains revealed insight into important 

processes governing NO3
- processes. Tile drains had consistently elevated NO3

- concentrations when 

compared to shallow groundwater at the same location. Groundwater from the adjacent riparian zone had 

consistently low NO3
- and was low in all samples collected. Boomer Creek had consistently higher NO3

- 

concentrations than that of shallow riparian groundwater. Elevated NO3
- concentrations within Boomer 

Creek compared to groundwater demonstrates the influence that tile drains have. 

 During times of significant tile drain flow (fall to spring) Boomer Creek had elevated NO3
- 

concentrations. Boomer Creek experienced decreased NO3
- concentrations during the summer when tile 

drain flow was minimal and Boomer Creek was predominantly fed by groundwater discharge. This led to 

the hypothesis that tile drains have a significant influence on NO3
- concentrations within Boomer Creek 

and that increased concentrations in the creek will occur when tile drains are flowing, with decreased 

concentrations occurring when tile drain flow is minimal.  

 Increased NO3
- concentrations during the fall and spring are believed to partially result from a “wet 

up” that occurs (a rapid increase in water table elevation).This increase in water table elevation allows 
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groundwater to gain access to a greater contributing NO3
- source. Calculations on export found that spring 

melt represents a large amount of the annual NO3
- export. During the 2013 spring melt >20% of the annual 

NO3
- export occurred within 45 days. In contrast, export during the summer (125 days) only accounts for 

7-22% of annual export as water tables and NO3
- concentrations within the creeks are low. Fall (70 days) 

made up 9-18% of annual discharge as increased water tables flush nutrients from agricultural soils. 

Whereas winter and spring made up between 15-26 % of export again most likely as a result of elevated 

water tables and reduced plant uptake. 

Despite differences in various land-use categories there existed little difference in NO3
- 

concentration and isotope ranges. In Boomer Creek, there was nearly triple the amount of manure density 

and total nitrogen in comparison to Swan Creek yet the median NO3
- concentration differed by only 1.5 

mg/L and the difference in δ15N was less then 2‰. Based on current data Boomer Creek was observed to 

have the greatest amount of annual NO3
- export (27.3 x 103kg/ha) while Swan Creek which had the lowest 

manure and total nitrogen density of all the studied creeks had the second highest annual NO3
- export (26.1 

x 103kg/ha). There is little evidence that land-use has an effect on NO3
- concentrations, isotopes or export 

in agricultural creeks. 

 The second objective of this study was to evaluate the applicability of stable isotopic ratios as a 

tool to analyze the sources and processes governing annual NO3
- concentrations within these agricultural 

catchments. Elevated δ15N-NO3
- and δ18O-NO3

- values occurred during late spring and summer months 

(May to September), with lower values occurring during the fall-spring (October to April). Isotopic 

abundances followed an opposite pattern to that observed in NO3
-. Elevated δ15N-NO3

- and δ18O-NO3
- 

values occurred when NO3
- concentrations were low, whereas lowδ15N-NO3

- and δ18O-NO3
- values were 

associated with times of high NO3
- concentrations. This indicated that denitrification was likely affecting 

NO3
- concentrations. Slopes from δ15N-NO3

- vs δ18O-NO3
- regression lines also gave evidence that 

denitrification was occurring.  Data from all creeks displayed slopes between 0.5-0.9, with three of the four 
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creeks having slopes greater than 0.8 which is higher than the range expected for denitrification in 

groundwater and closer to that observed in marine environments. 

 N2O and CH4 concentration data was also used in an effort to confirm the presence and appropriate 

redox conditions for denitrification. Boomer Creek N2O concentrations were greatest in early spring. The 

N2O concentration pattern closely matched that of NO3
-. Although isotopes and NO3

- concentrations may 

not indicate denitrification during the fall and spring, it is likely occurring and being masked by the 

relatively high NO3
- low δ15N and low δ18O water coming from tile drains. CH4 concentration data indicated 

a change in redox conditions during late spring, and early summer. Increasingly reduced conditions 

demonstrated by the presence of CH4 would indicate that denitrification is likely going to completion, which 

would cause a decrease in the N2O:N2, one possible explanation as to why N2O concentrations during 

summer months are so low. In addition ongoing nitrification of NH4
+ from fertilizers throughout the year 

may also generate N2O within the soil, yet the evidence of denitrification in this environment would indicate 

that likely denitrification generates the majority of N2O.  

  Due to the kinetic fractionation associated with denitrification, δ15N-NO3
- and δ18O-NO3

- values 

must be corrected for denitrification before source determination analysis can be performed. Correction for 

denitrification was done by finding the δ15N-NO3
- vs δ18O-NO3

- slope from all creeks and finding the lowest 

δ18O value for each creeks. The majority of corrected δ15N-NO3
- values from all creeks fell within + 6 to + 

8‰, which is within the expected range of manure and outside the range expected for synthetic fertilizers. 

Plotting δ15N-NO3
- vs δ18O-NO3

- values on a NO3
- source plot found that despite the apparent match in δ15N 

to that which has been empirically found for manure, several studies also describe similar δ15N values to 

belong to other sources such as inorganic fertilizer or soil nitrate.  

Despite large ranges between catchments in land-use parameters (manure density, nitrogen 

application density and tile drains) all creeks had similar δ15N values (+ 6 to + 8).  
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Isotopic analysis was also conducted on samples from tile drains along Boomer Creek. Tile drain 

δ15N-NO3
- and δ18O-NO3

- values were very close to those samples from Boomer Creek taken during 

increased tile drain flow (fall-spring). The highest NO3
- concentrations in both the tile drains and Boomer 

Creek had similar δ15N-NO3
- values. Furthermore during times of increased flow both the tile drains and 

Boomer Creek had decreased δ15N-NO3
- and low δ18O-NO3

- values. These values are thought to reflect 

source δ15N-NO3
- which has not undergone significant denitrification as a result of rapid transport from 

agricultural fields via tile drains. 

These results were used to develop a model to explain δ15N-NO3
- values found within these creeks. 

Water that has undergone denitrification should follow the denitrification line on a δ15N-NO3
- vs. NO3

- 

graph. Groundwater discharging through the riparian zone into the stream will have likely undergone 

denitrification, which is supported by the low (< 2 mg N/L) NO3
- concentrations found in this study 

regardless of season or flow conditions. Alternatively as NO3
- concentration decreases, water which does 

not undergo denitrification should have very little change in the δ15N value. Times of elevated NO3
- 

concentrations and lower δ15N values in both tile drain and Boomer Creek occurred during times of 

increased flow. During times of increased flow there would be a lower possibility of denitrification when 

compared to times of low flow, as water is quickly transported from crop fields to creeks through tile drains. 

Therefore water in the creeks should theoretically fall between lines representing denitrification and dilution 

as creek water will be a mix of groundwater discharge and water discharging from tile drains. During times 

of tile drain flow Boomer Creek had NO3
- concentrations above groundwater and δ15N and δ18O that were 

close to that in the tile drains. At low NO3
- concentrations when tile drains are contributing minimal amounts 

of water to the creeks the δ15N-NO3
- will have a slope closer to that of denitrification with lower NO3

- 

concentrations. This indicates the influence of tile drains on creek NO3
- concentrations. 

The overall objective of this thesis was to try to identify the sources and processes governing NO3
- 

concentration and export in small agricultural catchments within the Grand River Watershed. The use of  

NO3
- isotope for source  identification as not applicable in this situation as isotopic values obtained for NO 
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were too similar to that of other sources.  Isotopic ratios of δ15N and δ18O of  NO3
- did however give strong 

evidence that denitrification was occurring. Isotopic ratios also provided evidence that tile drains are the 

likely source of high NO3
- concentrations observed in agricultural creeks. 

In summary during times of reduced tile drain flow (summer), agricultural creeks will have lower 

NO3 
-concentrations and high δ15N and δ18O, in contrast during times of tile drain flow (fall-spring) 

agricultural creeks will have elevated NO3 
-concentrations and low δ15N and δ18O (Fig 4.1).  
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4.2 Recommendations 

 In order to protect groundwater and surface water resources nutrient dynamic from small 

agricultural catchments must be understood. Based on the results found in this study in order to mitigate 

high NO3
- concentrations in streams and to minimize export the following recommendations were made: 

monitoring of the Conestogo reservoir nutrient levels, maintaining and protecting riparian zones, the use of 

in-line bioreactors and fertilizer best management practices. 
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 Monitoring of the Conestogo reservoir nutrient concentrations should be performed on a regular 

basis to better understand concentrations downstream, as NO3
- concentrations from spring melt were 

perceived to affect NO3
- concentrations in the Conestogo River throughout the rest of the year. With 

knowledge of reservoir concentration, reservoir management practices could be altered to allow for 

incoming high NO3
-concentration water during spring melt to be discharged. Assuming there is no flood 

risk, water that has high NO3
- concentrations like that in spring melt could be discharged as soon as possible. 

This could help to avoid discharging high NO3
- concentrations for the remainder of the year. This is based 

on the assumption that after the initial pulse of high NO3
- during spring melt, the remainder of the year the 

reservoir will fill up with low NO3
- concentration water. This scenario also does not change to amount of 

annual NO3
- export. 

 Protecting and enhancing riparian zones is also important in maintaining good water quality. 

Riparian zones can work as zones of concentrated denitrification and can effectively decrease the amount 

of NO3
- being discharged into nearby creeks by groundwater. In this study it was found that groundwater 

within the riparian zone had consistently low (< 1 mg N/L) concentrations. Yet tile drains are the major 

contributors of NO3
- to these agricultural catchments and circumvent the riparian zone. Bioreactors 

could be installed in-line of tile drains to effectively remove NO3
-. These bioreactors work as denitrification 

hotspots by providing the ideal environment for denitrifying bacteria. Blowes et al. (1994) found that an in-

line bioreactor filled with sand and organic matter was effective at decreasing NO3
- concentrations. This is 

a relatively simple and cost effective way to reduce NO3
- concentrations in stream.   

 Best management practices by farmers would also help to reduce the amount of nitrogen remaining 

in the soil, eventually this may lead to a decrease in the NO3
- in the groundwater and surface water systems. 

Best management practices include ensuring that the right fertilizer is applied to the right crop, at the right 

rate, at the right time and the right place known as the “Four R’s”. Fertilizer timing is critical to minimizing 

NO3
- pollution. If precipitation occurs close to the time of fertilization there is a high probably much of the 

fertilizer will run-off through tile drains into a nearby creek.  
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The use manure as a fertilizer can also be troublesome as the nitrogen in manure must first be 

mineralized in order to be taken up by plants. This process can be preferable as plants are given more time 

to sequester nitrogen, but the amount of manure needed each year must be accurately estimated in order to 

reduce the chance over fertilizing, as the process of mineralization of organic nitrogen can take years and 

can create a legacy of excess NO3
- in the soil as more manure will be applied in the following years. Since 

manure must be disposed of when it can no longer be safely stored in a farmer’s storage tank, it is often 

applied to agricultural fields throughout the year when crops are no longer growing. During these times 

there is little to no plant uptake, which allows for much of the nutrients in the manure to directly flow into 

the groundwater or off fields via tile drains. If laws instead allowed for the amount of manure stored to be 

correlated to the number of animals allowed on a property then this may prevent over fertilization as well 

as large nutrient runoff as a result of spreading manure during non-ideal conditions.  
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