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Abstract

Recent advances in quantum technologies enabled us to make �large� quantum states
and pushed towards examining quantum theory at the macroscopic level. However obser-
vation of quantum e�ects at a macroscopic level still remains a demanding task. In this
thesis we try to address one of the challenges and propose and explore some new solutions.

One of the obstacles for observation of macroscopic quantum e�ects is the sensitivity
to the measurement resolution. For many di�erent cases, it has been observed that the
precision requirement for measuring quantum e�ects increases with the system size. We
formalize this as a conjecture that for observation of macroscopic quantum e�ects, either
the outcome precision or the control precision of the measurements has to increase with
system size. This indicates that the complexity of macroscopic quantum measurement
increases with the system size and sheds some lights on the quantum-to-classical transition
at the macroscopic level.

We also introduce a technique to go around the sensitivity problem for observation
of micro-macro entanglement. We propose that using a unitary deampli�cation process,
one can bring the system back to the microscopic level where the measurements are less
demanding and quantum e�ects are easier to verify. As the unitary processes do not change
the entanglement, this serves as a veri�cation tool for micro-macro entanglement.

We also explored the connection between quantum e�ects and thermodynamics of
macroscopic quantum systems for two speci�c cases. For one, we investigated the e�ect of
entanglement in composite bosons and Bose-Einstein condensation. We showed that as the
state of the composite boson approaches a maximally entangled state, the condensation
rate also approaches one.

The other case we considered was heat-bath algorithmic cooling. We proved the cool-
ing limit of this class of thermodynamic transformations and showed that it decreases
exponentially with the number of qubits.

We also developed an entropic version of Mermin's inequality. Here the idea is to
develop a tool to reveal the entanglement in many-body quantum systems based on the
entropy of the measurement outcomes. We introduce a new inequality that holds for locally
realistic models, yet can be violated with quantum measurements. One of the nice features
of this inequality is that it can be violated maximally with quantum measurements. This
resembles the GHZ paradox but for entropies of the measurement outcomes.
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Chapter 1

Introduction

Quantum theory has been investigated at di�erent scales and it is well accepted for mi-
croscopic systems. Predictions and phenomena such as entanglement and non-locality has
been examined with di�erent techniques and it seems that quantum theory gives a good
description of these phenomena.

Recent progress in the control and the measurement of quantum systems provided the
opportunity to push towards testing quantum mechanics over �larger� systems. [67, 107,
10]. Yet it is a challenge to reconcile the macroscopic world that we experience in our
everyday life with quantum theory. Speci�cally, it is unclear when and how systems stop
behaving according to quantum theory and become classical.

Microscopic versus macroscopic in quantum mechanics can be studied at two di�er-
ent levels: state preparation and measurement. For state preparation, a wide variety of
quantum states like Bell states are microscopic whereas, states like GHZ state and NOON
state are often recognized macroscopic. Note that in general the border between micro and
macro is not clear, there are di�erent de�nitions for macroscopic states which categorises
states di�erently. Similarly quantum measurements could be microscopic and macroscopic.
Microscopic measurements usually deal with a few particles or quantum degrees of free-
dom whereas macroscopic measurements can measure states that involves �large� number
of particles and belong to large Hilbert spaces.

From this point of view, four di�erent setting can be perceived, which involves the two
possible kind of measurements on the two possibilities for the state. See �gure (1.1).

Probably the most exciting category is the one where a macroscopic measurement is
applied on a macroscopic state. This is closely connected to studies on quantum-to-classical
transition. Our conjecture on the e�ect of coarse-graining falls into this category.
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Figure 1.1: An overview of how each chapter of this thesis �ts into the big picture of
understanding quantum mechanics at microscopic and macroscopic level. Both measure-
ment and the state preparation in quantum mechanics could be both microscopic and
macroscopic and this gives four di�erent possibilities for quantum measurements.
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One of the approaches to understand the quantum-to-classical transition inside quan-
tum theory is through the imperfections of measurements, where the classical theory is
explained as an extreme of the quantum theory where measurements are coarse-grained
[118, 132, 94]. For many quantum systems the required measurement or control precisions
for observing macroscopic quantum e�ects increases with the system size [118, 132, 94,
139, 180, 70]. and as a result, it gets almost impossible to observe the quantum e�ects at a
macroscopic level. For instance, observation of an optical Schrödinger's cat was claimed in
[47], but later it was shown that even without any decoherence in the experiment, it still
would be impossible to verify the claim with the experimental data because of the coarse-
graining in the photon detections. More speci�cally, ref. [139] showed that even with a
small coarse-graining, it would be possible to reconstruct the outcomes with classical cor-
relations instead of entanglement. They also suggested that this may be a general property
for macroscopic quantum systems. There was however a counterexample [87] where a ro-
bust measurement for the observation of macroscopic states of photons was proposed. We
showed that even in the case of the corresponding counterexample, high precision is still a
requirement, but it shows up di�erently, speci�cally as the control precision for the mea-
surement. We also formalized a conjecture that for observation of macroscopic quantum
e�ects, either the outcome precision or the control precision of the measurements has to
increase with the system size[180]. This work makes up chapter (3) of this thesis, most of
which is published in [180].

Although observation of quantum e�ects like micro-macro entanglement at a macro-
scopic level turned out to be challenging, we proposed a technique for their veri�cation.
The idea is to transform the macro-macro state to a micro-micro state through a unitary
transformation which does not change the entanglement. So if we detect any entanglement
for the micro-micro state, it implies the existence of the entanglement at the macroscopic
level as well. Note that this falls under the category of microscopic measurements on a
macroscopic state. This work makes up chapter (2) of this thesis, most of which is taken
from the published paper in [140]. Our idea has been modi�ed and adapted to other imple-
mentation techniques of micro-macro state [69, 160, 68]. It also has been used in [114, 25]
for the �rst optical realization of Schrödinger's cat.

The other category is to �nd a macroscopic measurement that could illustrate quantum
e�ects like entanglement at a microscopic level. For instance, it is shown that some ther-
modynamic properties like magnetic susceptibility [182] and heat capacity[183] can be used
to witnesses entanglement. Chapter (5) of this thesis attempts to achieve a similar goal.
More speci�cally, we investigated the Bose-Einstein condensation in a system of composite
particles and the e�ect of the entanglement between the entities of the composite bosons.
Speci�cally, we considered bi-bosons and bi-fermions and showed that as the entanglement

3



inside the composite boson increases, the condensation rate approaches one. This work was
done in collaboration with D. Kaszlikowski's group. The results of this work are presented
in chapter (5) most of which also appears as a preprint on the arxiv [108].

The �nal chapter falls into the well-studied category of microscopic measurements on
microscopic states. One of the famous examples in this category is the Bell inequality
which is often used as a witness of entanglement [12]. Later it was generalized to multi-
partite systems by Mermin [119]. In parallel there has been some attempts to establish
violations of local realism in terms of information rather than correlation. This may be
motivated by two points, �rst, information may be more fundamental than correlation
[20, 84, 30] and second, it may be easier to understand the transition from microscopic
regime to the macroscopic regime in terms of the information. Here we use the �triangle
principle� method introduced in [100] and extended it to construct Bell-type inequalities
for multi-partite systems. We introduce a new entropic distance and use it to construct
an inequality similar to Mermin's inequality. Interestingly, this inequality can be violated
maximally with quantum measurements. This is similar to the GHZ paradox, however it
works with the entropy of the measurement outcomes instead of the outcomes directly.
This part is presented in chapter (6). Most of the material also appeared in a preprint on
arxiv [137].

We also looked at another example related to quantum thermodynamics, namely heat-
bath algorithmic cooling techniques which does not really fall under any of the categories.
We showed that the work extraction limit in this class of transformations improves ex-
ponentially with the number of particles involved in the cooling process. Although this
example is not as directly connected to the main context, it provides valuable insights to
a problem that has been open for almost 10 years, namely, we proved the cooling limit of
all the heat-bath algorithmic cooling techniques. The result of this work is presented in
chapter (4), most of which is taken from [138].

The structure of this thesis is as follows. In the second chapter, the idea of inverted
cloning for veri�cation of micro-macro entanglement is presented. Most of the text is
taken from the published work in [140]. The third chapter focuses on our conjecture that
high precision is required for the observation of macroscopic quantum e�ects. Most of the
text of this chapter is taken from the published paper [180]. In chapter (4), we explain
the details of our result on heat-bath algorithmic cooling. The content of this chapter
is also published as a preprint on arxiv [138]. Chapter (5) presents our results on the
Bose-Einstein condensation of composite bosons. The content of this chapter is also on
arxiv[108]. The last chapter presents our entropic version of the GHZ paradox and the
details of the derivation. The content can also be found in [137]. In each chapter I also
explain my contribution in the corresponding project.
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Chapter 2

Inverted Cloning for Quantum Photons

Most of the content of this chapter was published in [140]. I proposed the main idea of
the paper and did some of the calculations, and double checked the rest of them. I also
contributed in writing the paper.

2.1 Introduction

2.1.1 State Cloning in Quantum Mechanics

The no-cloning theorem [184, 48] states that it is impossible to build a quantum copying
machine that would perfectly copy arbitrary quantum states. This is a direct consequence
of the linearity of time evolution in quantum physics. It is also essential in order to rule out
the possibility of superluminal communication using quantum entanglement [81]. However,
approximate quantum cloning is possible [28] and has been studied extensively. Di�erent
types of quantum cloners have been introduced, including universal cloners [28, 72], which
clone all input states equally well, and phase-covariant cloners [26], which produce equally
good copies for all input states that lie on the equator of the Bloch sphere.

In all cases, the �delity of the clones has to satisfy certain bounds, whose exact form
depends on the type of cloner considered. One way of understanding these bounds is to
realize that the clones cannot contain more information about the initial state than the
initial state itself [27]. One may then wonder if the clones contain exactly the same amount
of information as the initial state (or less). In the case of optimal phase-covariant cloning
it is easy to see that the answer is yes because the cloning transformation can be realized in
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a unitary fashion. It is thus in principle possible to invert the cloning transformation and
recover the initial state. The answer can be shown to be yes for universal cloning as well,
but one has to use more sophisticated arguments based on state estimation, as the cloner
uses auxiliary systems and is thus non-unitary if only inputs and clones are considered [27].

Implementations of quantum cloning have been studied extensively over the last decade
[152]. A particularly simple and intuitive way of realizing quantum cloners in the context of
quantum optics (where the inputs are photons) is by using stimulated emission; in this case
the bounds on the �delity of the clones can be seen as being due to the unavoidable presence
of spontaneous emission [165, 45]. Both universal [104] and phase-covariant [126] quantum
cloners have been realized based on stimulated parametric down-conversion. However, in-
verting these cloning transformations has not been considered so far. The feasibility of this
inversion is the topic of the present paper. Focusing on the case of phase-covariant cloning,
we take into account the most important experimental imperfection, namely photon loss.

2.1.2 Quantum Optics Background

Here we introduce some basic background of quantum optics that we used in this work. We
start by the description of the quantum state. We use the polarization degree of freedom
of the photons. In particular, the initial state that we use in our proposal is an entangled
photon pair in a polarization singlet state

|ψ−〉 =
1√
2

(a†hb
†
v − a†vb†h)|Ω〉, (2.1)

where h and v denote horizontal and vertical polarization and |Ω〉 is the vacuum state for
all modes.

The other element that we use is the parametric down conversion process which is given
by the following Hamiltonian

H = iχa†ha
†
v + h.c. . (2.2)

This corresponds to type-II collinear parametric down-conversion [126, 47]. The coupling
constant χ includes the non-linear coe�cient of the crystal and the amplitude of the pump
laser. The spatio-temporal mode a in the Hamiltonian has to be indistinguishable from
that of the input photon in order for stimulated emission to occur [165, 45]. We use this
process as the phase-covariant cloner.

We also consider the photon loss in our proposal. For this purpose, we use the typical
beam-splitter model for the loss. Speci�cally, we model a channel with transmitivity η,
with a beam-splitter with transmission rate

√
η.
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2.1.3 Micro-Macro Entanglement

Experimentally inverting quantum cloning would be a striking demonstration of the infor-
mation preservation in the cloning process. We will in particular focus on the case where
the initial input photon is entangled with another photon. The preservation of this entan-
glement after the cloning process and its inversion is a good criterion for verifying if the
original photon is indeed regenerated with its quantum character intact. However, there is
another reason why this scenario is particularly interesting. There is a recent experiment
[47] where one photon from an entangled pair was phase-covariantly cloned, and where the
number of clones produced was up to tens of thousands. The authors of [47] claimed to have
demonstrated micro-macro entanglement between one original photon and a large number
of photons (the clones). This claim was subsequently challenged [157], leading to a number
of detailed theoretical investigations [161, 168, 167, 139]. The conclusion of this debate
is that it is not easy to prove the existence of micro-macro entanglement in this system
experimentally without too many assumptions. The present approach via the inversion
of the cloning transformation is one possible avenue. If there is still entanglement after
cloning and inverted cloning, then there de�nitely had to be micro-macro entanglement
after the cloning step. Our proposal with some modi�cation has been exploited recently
for experimental demonstration of micro-macro entanglement [114, 25].

2.2 Proposal for Inverted Cloning

We now describe the system that we are considering in more detail; see also Figure 1 for
the setup. The initial photon pair is in the polarization singlet state in Eq. (2.1). The
photon in spatial mode B is detected directly in a polarization-sensitive way and serves
as a herald. The photon in spatial mode A is subjected to the unitary phase-covariant
cloning transformation U = e−iHt, where the Hamiltonian is the spontaneous parametric
down-conversion (SPDC) Hamiltonian in Eq. (2.2) which is

H = iχa†ha
†
v + h.c. . (2.3)

Identifying h and v with the north and south poles of the Bloch sphere and introducing
equatorial modes aφ = 1√

2
(ei

φ
2 ah + e−i

φ
2 av) and aφ⊥ = aφ+π, one has

H =
iχ

2
(a†2φ + a†2φ⊥) + h.c. . (2.4)

The Hamiltonian thus corresponds to a sum of two squeezers for any two orthogonal equa-
torial modes. As a consequence, U factorizes into two independent unitaries, one for aφ
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𝑈−1 𝑈 

𝜂2 

𝜂1 𝜂3 
A 

B 

Figure 2.1: Setup considered in this paper. A source creates a pair of entangled photons.
The photon in mode B is detected directly. The photon in mode A is cloned by the
phase-covariant cloning transformation U , then this transformation is inverted, U−1. The
pump laser beams necessary for implementing the cloning transformations are not shown.
Losses before, in between and after the cloning transformations are taken into account
through the transmission factors η1, η2 and η3. We are interested in the regime where
the �nal state in mode A is again at the single-photon level. We study whether the �nal
state of modes A and B can be shown to be entangled using the witness W of Eq. (4),
which is based on polarization-sensitive photon counting in both modes. The presence of
(strong) entanglement between A and B in the �nal state can be interpreted as showing
that the quantum information present in the original photon in mode A is regenerated
in the �nal single-photon level state of mode A. Furthermore, any entanglement that is
detected between A and B in the �nal state implies that the multi-photon state created
by the �rst cloning transformation in A was entangled with the single photon in mode B
(micro-macro entanglement), since entanglement cannot be created locally.
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and one for aφ⊥. Note that since the choice of φ is arbitrary, we will use the notation a
and a⊥ for the equatorial modes for simplicity.

The inverted cloning transformation U−1 can be implemented by changing the sign of
χ. Physically this can be done by changing the phase of the pump beam for the down-
conversion process. Note that if U−1 acted on a single-photon input state, it would create
a large number of clones in full analogy with U , with changes only in certain phase factors
that depend on the sign of χ. However, acting after U it has the e�ect of converting a
multi-photon state back to the single-photon level.

We want to study the entanglement in the �nal state, i.e. after cloning and inverted
cloning. In the absence of imperfections, inverting U trivially leads one back to the initial
state. The situation is more interesting when realistic imperfections are taken into account.
We consider photon loss before U , between U and U−1, and after U−1, characterized by
transmission coe�cients η1, η2 and η3 ( see Figure 1). We will see that all three types
of loss a�ect the entanglement, but it is clear that the loss between U and U−1 plays a
special role, because it prevents the cancellation of U and U−1. We are interested in the
regime where the cancellation is still close to perfect, such that the �nal state in mode
A is at the single-photon level, but may nevertheless contain signi�cant vacuum and few-
photon components. We therefore need an entanglement witness that can deal with these
components. We use the entanglement criterion of ref. [157], which is based on that of ref.
[164]. The state is proven to be entangled if

W = |〈 ~JA · ~σB〉| − 〈NA〉 > 0, (2.5)

where ~JA is the vector of Stokes operators for mode A, i.e. JAz = a†hah − a†vav, J
A
x =

a†0a0 − a†0⊥a0⊥, JAy = a†π
2
aπ

2
− a†π

2
⊥aπ2⊥, where a0, a0⊥, aπ

2
and aπ

2
⊥ are equatorial modes

as introduced above; ~σB is the corresponding vector of Stokes operators for mode B, but
restricted to the single-photon subspace; and NA = a†hah + a†vav is the total number of
photons in A. Physically this corresponds to the fact that classically, | 〈JA.JB〉 |≤| 〈JA〉 ||
〈JB〉 |.

The multi-photon states generated by the cloning transformation U are quite complex
[47, 157, 161]. It is therefore much more convenient to work in the Heisenberg picture, i.e.
to transform the operators and evaluate their expectation values for the initial two-photon
singlet state. Applying the appropriate sequence of beam splitter and squeezer operations
corresponding to Figure 1, we �nd the overall transformation for any equatorial mode,

a′ =
√
η1η2η3 a+

√
(1− η1)η2η3 c1 +√

(1− η2)η3(cosh(g) c2 − sinh(g) c†2) +
√

1− η3 c3, (2.6)
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where a′ is the �nal mode, a is the initial mode, c1, c2, c3 are the vacuum modes injected
into the system by the losses before, in between, and at the end (see Figure 1); g = χt
is the gain of the cloner (and of the inverted cloner). The �rst term corresponds to when
the photon transmits through all the beam-splitters which has an amplitude of

√
η1η2η3.

Similarly the second and the last term corresponds to the cases where the photon is lost on
the �rst beam-splitter and when it is lost on the last one respectively. The interesting case
is when the photon is lost on the second beam-splitter between the U and U−1. In this case
the vacuum �uctuations injected in the second beam-splitter are ampli�ed with U−1 which
gives the second term in Eq. (2.6). One can see that c1 and c3 just cause loss. In contrast
the vacuum �uctuations due to c2 are ampli�ed by the second (inverting) cloner. This
shows clearly that the intermediate loss is particularly important in the present context.

In order to calculate expectation values in the Heisenberg picture we also need the
initial state. It is given by Eq. (2.1), which corresponds to the vacuum state for all
the loss modes. It is helpful to rewrite it in terms of equatorial modes a and a⊥ as
|ψ−〉 = 1√

2
(a†b†⊥ − a†⊥b

†)|Ω〉, using the simpli�ed notation that we introduced after Eq.
(2.4). The �nal mean photon number in A is

〈ψ−|NA|ψ−〉 = 〈1|a′†a′|1〉+ 〈0|a′†a′|0〉 =

η1η2η3 + 2(1− η2)η3 sinh2(g), (2.7)

where |0〉 and |1〉 are the zero-photon and one-photon states for the initial mode a. We are
interested in the regime where the transmission factors ηi are all fairly close to one (with
η2 very close to one, see below), such that the η1η2η3 term in Eq. (2.7) is of order one,
and where 2(1− η2)η3 sinh2(g) is small compared to η1η2η3, such that the �nal state in A
is again at the single-photon level. That is, the regime where the e�ect of the ampli�ed
vacuum �uctuations discussed above is relatively small.

Turning now to the question of entanglement in the �nal state, using Eq. (2.6) we get

〈ψ−|JAx σBx |ψ−〉 = 〈ψ−|JAy σBy |ψ−〉 =

−
(
〈1|a′†a′|1〉 − 〈0|a′†a′|0〉

)
= −η1η2η3. (2.8)

Furthermore
〈ψ−|JAz σBz |ψ−〉 = −η1η2η3. (2.9)

Note that JAz commutes with H and is thus not a�ected by the cloners at all. Putting all
these pieces together, one �nds

W = 2
(
η1η2 − (1− η2) sinh2(g)

)
η3. (2.10)
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From Eq. (2.10) one can see that di�erent loss channels have quite di�erent e�ects on
the entanglement witness, as was to be expected following the discussion after Eq. (2.6).
Loss after the second cloner a�ects both terms equally and is thus relatively benign. The
value of the witness just decreases proportionally to the transmission η3. Loss before the
�rst cloner reduces the �rst term, but only linearly in η1. Note that this is in contrast to
the situation for just one cloner, where loss before the cloner greatly a�ects the violation
of the same entanglement criterion, see section VI.C of ref. [161]. This di�erence is due
to the fact that in the present situation errors due to loss before the �rst cloner (which
can be viewed as �uctuations due to the injected vacuum mode) are ampli�ed by the �rst
cloner, but de-ampli�ed by the second one. The main problem in the present situation
is loss between the two cloners, characterized by η2. Errors due to this intermediate loss
are ampli�ed by the second cloner by a factor sinh2(g). The size of this ampli�cation is
directly related to the mean number of photons (clones) after the �rst cloner, which is

NA
c = 〈ψ−|ã†ã|ψ−〉 = 2(1 + η1) sinh2(g) + η1, (2.11)

where the subscript c is for �clones� and ã = (
√
η1a +

√
1− η1c1) cosh(g) + (

√
η1a
† +√

1− η1c
†
1) sinh(g).

Eqs. (2.10) and (2.11) give

W =
η1(1 + η2 + 2η1η2)η3

1 + η1

− (1− η2)η3

1 + η1

NA
c . (2.12)

The negative term in this expression for W is proportional to both (1− η2) and NA
c . This

implies that in order to prove entanglement using the witnessW for increasing intermediate
numbers of clones NA

c , the transmission η2 has to be closer and closer to one. This is
illustrated in Figure 2. This probably rules out detecting entanglement for photon numbers
of order 104, as in the experiment of ref. [47]. Supplementary assumptions thus would still
have to be made in order to prove entanglement for such large photon numbers, see also the
discussion in the introduction and refs. [47, 157, 161, 168, 167, 139] . However, the approach
described here should allow to demonstrate entanglement for photon numbers much bigger
than one without any additional assumptions, see Figure 2. Using anti-re�ection coatings
it should be possible to keep the losses between the two cloners, i.e. 1−η2, at the level of at
most a few percent. The transmission �before�, η1, is equivalent to the heralding e�ciency
for single-photon sources based on parametric down-conversion, for which values as high
as 0.83 have been reported [135]. The transmission �after�, η3, is mainly limited by the
detection e�ciency, for which values as high as 0.95 have been achieved using transition-
edge sensor detectors [112]. In Figure 2 we have conservatively assumed η1 = η3 = 0.8.
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Figure 2.2: The number of clones after the �rst cloner NA
c for which the entanglement

witness W for the �nal state takes values 0, 0.5, 1 (from top to bottom), as a function
of the intermediate transmission η2, for �xed η1 = η3 = 0.8. Points below the top curve
correspond to entanglement. Note that the theoretical maximum value for the witness is 2.
As a consequence of Eqs. (9-10), proving entanglement is more di�cult for larger numbers
of clones in the intermediate state (i.e. for higher gain), requiring values of η2 increasingly
close to 1.
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The �gure shows that micro-macro entanglement involving a hundred photons or more on
the macro side should be provable with the present approach, which therefore provides a
new avenue for proving micro-macro entanglement without supplementary assumptions.

The high sensitivity to the transmission η2 (in the high photon-number regime) shown
here is closely related to the results of refs. [167] and [139], which show that the detectable
micro-macro entanglement is highly sensitive to loss (for a homodyne measurement) and
coarse-graining (for photon counting measurements) respectively. Let us note that micro-
macro entanglement is present even for small values of η2 (i.e. large loss), at least for the
simple model used in this paper. This follows from the results of ref. [157], where the
same entanglement witness that we use here was applied directly to the micro-macro state.
However, the presence of this entanglement can be proved experimentally only by very
di�cult measurements, which involve counting large photon numbers with single-photon
level resolution [139].

2.3 Applications

So far we have discussed the proposed experiment from a purely foundational point of view,
as a way to demonstrate information preservation in quantum cloning and the existence of
micro-macro entanglement. We now argue that it might also be interesting from a much
more applied perspective. Detecting small variations in transmission across a sample is
one of the most fundamental problems in optical imaging. For example, biological samples
often have very low contrast, see e.g. [131] for more details. The standard approach is to
use a classical beam of light (corresponding to a coherent state in the quantum description)
and measure the variation of the transmitted intensity. However, a coherent state has a
Poissonian photon number distribution, which implies that it has photon number �uctu-
ations of

√
N , for a mean number of photons N in the beam. This means that a small

change in transmission ∆η is only observable if N∆η >
√
N , or ∆η > 1√

N
. For small ∆η

one thus requires quite large N , which can be a problem for highly light-sensitive samples
(e.g. living cells).

In contrast, consider a situation where the sample is placed between the �rst and second
cloner in Figure 2. Eq. (2.12) implies that W varies strongly with a change in η2,

dW

dη2

=
η3

1 + η1

NA
c +

η1η3(1 + 2η1)

1 + η1

. (2.13)

The �rst term dominates over the second one even for quite modest intermediate photon
numbers NA

c . This means that dW
dη2

is linear in the total number of photons NA
c transmitted
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through the sample. For comparison with the above discussion of the coherent-state case
we will refer to this number as N ≡ NA

c . The smallest detectable change (∆η2)min is
given by (∆W )min/(

dW
dη2

), where (∆W )min is the smallest detectable change in W . Under
typical experimental conditions (∆W )min will depend on the precision of the experiment
and on the number of repetitions, but it will be independent of N . As a consequence, for
large enough N , (∆η2)min scales like 1

N
, compared to 1√

N
in the case of the coherent state.

This much more advantageous scaling is a quantum enhancement that is due to the use
of entangled light. It is analogous to the Heisenberg limit (in contrast to the standard
quantum limit) in interferometry [71, 56]. This suggests that the present approach may be
promising as a quantum measurement technique.

This work was supported by AITF, NSERC and General Dynamics Canada.
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Chapter 3

Precision requirements for observing

macroscopic quantum e�ects

Most of the content of this chapter was published in [180]. I contributed to the main ideas
and the calculations in this work. Speci�cally, I did some of the calculations and double
checked the rest of them.

3.1 Introduction

What are the requirements for observation of macroscopic quantum e�ects such as Schrödinger's
cat? Although isolation and avoiding decoherence is necessarily [192], there are results that
show that this is not enough and the precision of the measurements also plays a signi�cant
role.

In 1980 Mermin [118] showed that for a Bell inequality violation with a singlet state of
two large spins s, the required angular resolution of the directions of the spin measurements
increases with the size of the spins as 1/s. This is an example for necessary measurement
control precision, i.e. the precision with which relevant physical parameters have to be
controlled in order to implement the desired measurement procedure.

Later Peres [132] showed that not only the control precision, but also the precision with
which the measurement outcomes are known is also important. He showed that quantum
predictions for the correlation functions can be reproduced from a classical model if the
measurement outcome precision is worse than O( 1√

s
) in relative terms, i.e. if the mea-

surement error ∆m grows faster with than O( 1√
s
), then the outcome can be reconstructed
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classically. Similar results were obtained for single spin in Ref. [94]. Ref. [164] studied
multi-photon singlet states equivalent to Mermin's and Peres' spin singlets and showed
that O( 1√

N
) relative outcome precision (where N is the photon number) is su�cient to

demonstrate entanglement. Most recently Ref. [139] studied so-called micro-macro entan-
gled states of light that are obtained by greatly amplifying one half of an initial entangled
photon pair. They found that a relative outcome precision of order 1

N
was necessary to see

quantum e�ects in this case. Similar results on the e�ect of coarse-graining on macroscopic
entanglement were reported in Refs. [168, 178, 167, 136].

Ref. [139] also conjectured that demonstrating quantum e�ects in macroscopic systems
always requires high measurement precision. However, there is a proposal in [87] that is
in contrast with this conjecture. In this proposal, Kerr non-linearities is exploited to get
a Bell inequality violation for macroscopic state with coarse-grained measurements. Ref.
[139] pointed out that the non-linear operations used in this proposal involve large (π)
phase shifts between neighbouring Fock states which could be seen as high resolution in a
more general sense. It was shown in Ref. [70, 179] that in order to prepare entangled states
in the proposal of Ref. [87], the phase of the non-linear operations has to be controlled
with a precision that increases with system size. Ref. [70, 179] is linked to the present work
in that it already highlighted the importance of phase precision. However, it focused on
state preparation. Here we explicitly address the question of measurement precision posed
in Ref. [139]. We show that even if one assumes that the states under consideration are
ideal, measurement precision - in particular control precision - has to increase with system
size in order to be able to demonstrate quantum e�ects.

3.2 Macroscopic Superpositions: Requirement for High

Outcome Precision

We study superpositions and entanglement involving coherent states with opposite ampli-
tudes, |α〉 and | −α〉, where we will take α to be real for simplicity. We will pay particular
attention to the macroscopic limit α � 1. We study this example not only because these
states lie at the heart of the proposal of Ref. [87], but also because they are a well-known
�archetype� for macroscopic quantum superpositions [189, 24, 120, 129, 5, 91]. Let us note
right away that the proposal of Ref. [87] is more complex than the simple cases considered
here. However, our conclusions concerning control precision apply to that work as well.
We focus on simple states and measurement schemes for clarity.
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We begin by considering the superposition state

|α+〉 =
1√
2

(|α〉+ i| − α〉), (3.1)

focusing on the regime where α is large enough such that the overlap 〈α| − α〉 = e−2α2

is negligible. The phase factor i is chosen for convenience. This state can be created, for
example [189, 91], from an initial coherent state with the help of a Kerr nonlinearity,

e−i
π
2
N̂2 |α〉 = e−i

π
4 |α+〉, (3.2)

where N̂ = a†a, and a is the bosonic annihilation operator for which the coherent state is
an eigenstate, a|α〉 = α|α〉. It was shown in Ref. [70, 179] that the phase of the unitary
operation in Eq. (3.2) has to be precisely equal to π

2
in order to generate this state with high

�delity, with a precision that increases with α. However, as mentioned in the introduction,
this is not our concern here. We will assume that the ideal state is given to us and focus
on the question of how to prove that we have a quantum superposition state, as opposed
to a �classical� mixture of the same two coherent states,

ρ =
1

2
(|α〉〈α|+ | − α〉〈−α|). (3.3)

Let us �rst consider measurements of the quadrature x̂ = 1
2
(a + a†). For the state of Eq.

(3.1), this will give a symmetric bimodal distribution of results corresponding to the two
components of the superposition,

P (x) = |〈x|α+〉|2 =
e−(x+α)2 + e−(x−α)2

2
√
π

, (3.4)

where x̂|x〉 = x|x〉. Note that for α � 1 one can distinguish the two components using
very coarse-grained measurements of x̂; this point will be signi�cant below. However, this
does not prove that one is dealing with a macroscopic superposition state, since the mixed
state of Eq. (3.3) will produce the exact same distribution of outcomes. Often, one has to
measure at least two non-commuting observables in order to prove the quantum character
of any system. One obvious choice for an observable that does not commute with x̂ is the
complementary quadrature, p̂ = −i

2
(a− a†). The probability distribution of the associated

outcomes p is

P|α+〉(p) = |〈p|α+〉|2 =
e−p

2
(1− sin(2αp))√

π
(3.5)
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Figure 3.1: Probability of outcomes for measurements of the p̂ quadrature for the super-
position state of Eq. (3.1) and the mixed state of Eq. (3.3) for α = 2 (left) and α = 16
(right). The oscillatory structure that distinguishes the two distributions becomes harder
to resolve as α increases, see also Eqs. (3.5) and (3.6).

where p̂|p〉 = p|p〉, whereas for the mixed state of Eq. (3.3) one has

Pρ(p) = 〈p|ρ|p〉 =
e−p

2

√
π
. (3.6)

The two probability distributions are di�erent, which means that the measurement of p̂ can
indeed be used to discriminate Eq. (3.1) from Eq. (3.3). However, the di�erence is due to
the oscillatory term in Eq. (3.5), whose oscillation frequency increases with increasing α.
Detecting this oscillation therefore requires a precision in the p̂ measurement that increases
with α, see also Fig. 3.1. In fact, this was one of the examples mentioned in Ref. [139] in
order to argue for the plausibility of the considered conjecture. The same e�ect can also be
discussed in terms of the Wigner function [191]. Fig. 3.1 could also be compared to Fig.
2 of Ref. [139], which shows a similar e�ect for a di�erent macroscopic quantum state.

3.3 Nonlinear Rotations of Coherent-State Qubits: Re-

quirement for High Control Precision

There is a di�erent approach to proving the superposition character of |α+〉, which is
closely linked to the proposal of Ref. [87]. One can view the states |α〉 and | − α〉 as
the computational basis states of a �coherent state qubit� [35, 125, 85]. Measurements
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Figure 3.2: Outcome distributions for measurements of the x̂ quadrature for the states |α〉
(solid) and |−α〉 (dashed) for α = 8. For large enough α, the two states can be distinguished
by a very coarse-grained measurement. Positive values (red) of x̂ can be assigned to |α〉
and negative values (blue) to | − α〉. The overlap between the two distributions, and thus
the error of this measurement scheme, is negligible.

in the computational basis, which we will also refer to as σz measurements (where σz =
|α〉〈α| − | − α〉〈−α|), can clearly be done in a very coarse way, e.g. by measuring x̂.
For large enough α, positive (negative) values correspond to the state |α〉 (| − α〉) with
extremely high �delity, and coarse-graining the x values only has a negligible e�ect on the
measurement �delity, see also Fig. 3.2.

As before, proving the quantum character of (3.1) requires at least one other mea-
surement that does not commute with σz. A natural choice from the qubit perspective
is

σy = |α+〉〈α+| − |α−〉〈α−|, (3.7)

where |α−〉 = 1√
2
(i|α〉+ | − α〉). If σy can be measured, then it is obviously easy to prove

that a given source produces the state Eq. (3.1) - the corresponding measurement will
always give the result +1 and never −1, whereas for the mixed state (3.3) the results
would be 50/50.
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Figure 3.3: The x̂ quadrature distributions for the states |α+〉 = 1√
2
(|α〉+ i| −α〉 (top left)

and |α−〉 = 1√
2
(i|α〉 + | − α〉 (bottom left) are identical. However, application of the Kerr

rotation Eq. (3.9) transforms |α+〉 into |α〉 (top right) and |α−〉 into |−α〉 (bottom right).
These states can now be distinguished by a coarse-grained measurement as in Fig. 3.2.

The required measurement of σy can be implemented using a Kerr non-linearity, see also
Ref. [85]. Changing the sign of α in Eq. (3.2) one has e−i

π
2
N̂2| − α〉 = e−i

π
4 |α−〉. Inverting

these relations one sees that the Kerr operation allows one to rotate the σy eigenstates into
the σz eigenstates, i.e.

U |α+〉 = |α〉, U |α−〉 = | − α〉, (3.8)

where
U = e−i

π
4 ei

π
2
N̂2

. (3.9)

This means that a measurement of σy can be done on an arbitrary state by �rst applying
the rotation U , followed by a measurement in the σz basis, as shown in Fig. 3.3. As
mentioned before and in Fig. 3.2, the σz measurement can be done in a very coarse way.
This means that it is possible to prove the presence of the macroscopic superposition (3.1)
using measurements that are coarse in terms of outcome resolution.

However, we argue that it is physically important to also consider the necessary control
precision. The control parameter that we focus on here is the phase of the Kerr rotation

20



U . Suppose that instead of exactly π
2
this phase is π

2
+ φ. Then, when trying to perform

the σy measurement, the state |α+〉 will be rotated not into |α〉, but into eiφN̂2|α〉, and
|α−〉 into eiφN̂2 | − α〉. For simplicity let us consider a Gaussian distribution for φ with
a width σ � 1 (which is the relevant regime, as will become clear below). Note that a
constant wrong angle, would lead to simple bit-�ip error because it creates components of
the orthogonal state. Then the �nal state corresponding to |α+〉 is

Cσ(|α〉〈α|) =
1√
2πσ

∫ ∞
−∞

dφe−
1
2
φ2

σ2 eiφN̂
2|α〉〈α|e−iφN̂2

=

e−α
2

√
2πσ

∫ ∞
−∞

dφe−
1
2
φ2

σ2

∞∑
n,n′=0

eiφ(n2−n′2) αn+n′

√
n!
√
n′!
|n〉〈n′|, (3.10)

where we have introduced the notation Cσ for the associated error channel, extended the
range of integration for φ to in�nity (which can be done with negligible error for σ � 1),
and expanded |α〉 in terms of photon number states. Performing the integration over φ
one �nds

e−α
2
∞∑

n,n′=0

e−
1
2
σ2(n2−n′2)2 αn+n′

√
n!
√
n′!
|n〉〈n′|. (3.11)

The term containing σ leads to a suppression of the o�-diagonal elements in the number
state basis. The key point for the present work is that this suppression happens faster
for larger values of α. This can be seen by remembering that the number distribution for
a coherent state is a Poissonian with a peak at α2 (and a corresponding width α). For
large enough α one can then approximate the factor (n2 − n′2)2 = (n + n′)2(n − n′)2 in
the exponential in Eq. (3.11) by 4α4(n − n′)2. This shows that the o�-diagonal elements
are suppressed by a Gaussian factor e−2σ2α4(n−n′)2 . This means that for σα2 & 1 the
state (3.11) is essentially diagonal in the number basis. Moreover the state corresponding
to |α−〉, which we denote Cσ(| − α〉〈−α|), converges to the same diagonal form. In this
regime there is therefore no way to distinguish these two states, see also Fig. 3.4.

This means that the described procedure for measuring σy breaks down for phase errors
σ that are of order 1

α2 , or 1
N
, if N = α2 is used to denote the typical number of particles

in the system. The precision with which φ has to be controlled thus increases with system
size. The coherent state qubit approach relies on being able to con�ne the dynamics of
the system to the two-dimensional subspace spanned by |α〉 and | − α〉, even though the
number of Fock states that e�ectively contribute to the dynamics is of order α (due to the
Poisson distribution of numbers for coherent states). This becomes more and more di�cult
for increasing α. The evolution of coherent states under small Kerr rotations is discussed
also in di�erent terms in Refs. [92, 80].
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Figure 3.4: Outcome distributions for x̂ quadrature measurements for the states Cσ(|α〉〈α|)
(solid) and Cσ(| − α〉〈−α|) (dashed) that are created from the states |α+〉 and |α−〉 by a
Kerr rotation with Gaussian phase uncertainty σ, see Eq. (3.10). We show the case
N = α2 = 4 on the left and N = 36 on the right, with σ increasing from top to bottom.
One sees that the distributions overlap much faster for greater N , leading to errors in the
σy measurement of Fig. 3.3, see also Fig. 3.2. For large enough σ it becomes impossible
to distinguish the two states.
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Figure 3.5: (a) The bit-�ip error ε in the σy measurement of Fig. 3.3 as a function of
the Kerr phase uncertainty σ, for the cases N = α2 = 4, 16, 64 from bottom to top. One
sees that ε approaches 1

2
for increasing σ, and this happens faster for greater N . The

log-log plot in the inset shows that the value of σ for which ε = 1
4
(i.e. half its asymptotic

value) scales like 1
N
, as expected from the analytical argument given in the text. (b)

Expectation value of the entanglement witness W of Eq. (3.13) for the state of Eq. (3.12),
for N = α2 = 4, 16, 64 from top to bottom in blue, red and yellow respectively. For
increasing σ the value of W approaches 1 (the bound for separable states), due to the
bit-�ip errors in the σy measurement shown in (a). This happens faster for greater values
of N .
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This result holds no matter how the �nal measurement in the σz basis is performed. For
concreteness, we show in Figs. 3.4 and 3.5(a) how the phase error σ a�ects the measurement
strategy described in Figs. 3.3 and 3.2. Fig. 3.4 shows that the x̂ quadrature distributions
for the states Cσ(|α〉〈α|) and Cσ(| − α〉〈−α|) begin to overlap for increasing σ, and that
this happens much faster for greater values of α. Fig. 3.5(a) shows the resulting bit-�ip
error ε for the σy measurement of Fig. 3.3. This can be calculated as ε =

∫ 0

−∞ dxP (x),
with P (x) the x̂ quadrature distribution for the state Cσ(|α〉〈α|). As expected from the
above discussion, ε approaches 1

2
(corresponding to complete indistinguishability of the two

states) for increasing σ, and this happens faster for greater values of α.

3.4 Macroscopic Entanglement

So far we have discussed macroscopic superposition states. We now turn to the detection
of macroscopic entanglement. Consider the state

|Φ−〉 =
1√
2

(|α〉|α〉 − | − α〉| − α〉), (3.12)

where the relative sign between the two terms is chosen for convenience. This state can
be created, for example, using a Kerr non-linearity, combined with a beam splitter and
phase space displacements [70, 179, 85, 150, 151]. Again our focus here is not on how to
create the state, but on whether its entanglement can be demonstrated by coarse-grained
measurements.

As before, coarse quadrature measurements alone are not su�cient, but the coherent
state qubit approach using the Kerr nonlinearity can be applied to the present case as well.
Again measurements only in the computational basis (σz) are not su�cient to distinguish
the entangled state (3.12) from a separable state, in particular from the 50/50 mixture of
the product states |α〉|α〉 and |−α〉|−α〉. However, the entanglement can be demonstrated
using the witness operator

W = σy ⊗ σy + σz ⊗ σz. (3.13)

One easily veri�es that 〈Φ−|W |Φ−〉 = 2, whereas the modulus of the mean value of W
for separable states is bounded by one. This follows from the fact that for any state
|χ〉 the norm of the two-dimensional vector {〈χ|σy|χ〉, 〈χ|σz|χ〉} is bounded by one. For
any product state, the mean value of W is the scalar product of two such vectors, and its
modulus is therefore also bounded by one; and every separable state is a convex combination
of product states, thus satisfying the same bound, see also Ref. [51]. This witness can be
turned into a conventional witness simply by using 1−W .
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By performing measurements of σz and σy on each subsystem one can therefore prove
the entanglement in the state (3.12). As discussed above, a coarse-grained measurement
of the x̂ quadrature, for example, is su�cient to do the σz measurement, but the σy
measurement requires moreover the Kerr rotation (3.9). Therefore the exact same control
precision requirements as above apply here as well. We showed in Fig. 5(a) that for a
phase error σ & 1

α2 , the bit-�ip error ε in the σy measurement approaches 1
2
. The measured

mean value ofW , which is equal to 1+(1−2ε)2 (as can easily be shown, assuming that the
σz measurement is perfect), therefore tends to 1, see also Fig. 3.5(b). This means that the
macroscopic entanglement becomes increasingly hard to detect as α increases. Note that
as long as the mean value is greater than one, entanglement can in principle be proven.
Our main point here is the scaling with α. Due to this scaling, for any given non-zero level
of experimental imperfection, there is a system size above which entanglement is no longer
measurable.

3.5 Conjecture and Discussion

We have seen that using macroscopic �coherent state qubits� one can in principle observe
macroscopic quantum features such as superposition and entanglement using measurements
that are very coarse in terms of outcome precision. However, there is a price to be paid.
The measurements rely on being able to perform a rotation of the macroscopic qubit basis.
When this rotation is implemented using a Kerr non-linearity, the control precision of
the Kerr phase shift has to increase with the size of the system. The apparent counter-
example of Ref. [87] has thus led us to a re�ned formulation of the conjecture of Ref.
[139] that is both more precise and more general: the measurement precision required for
demonstrating macroscopic quantum e�ects seems to increase with the size of the system,
provided that both outcome precision and control precision are taken into account. This
could be compared, for example, to the results of Ref. [95], which studied the e�ect of
coarse graining on macroscopic realism as de�ned by Leggett [110] and emphasized the
computational complexity (rather than the precision) of the operations that were required
to observe violations of macroscopic realism.

The above conjecture is attractive, but it is far from proven. Di�erent parts of our
argument have a di�erent degree of generality. The requirement for a rotation from a
macroscopic superposition basis to a �computational� basis is very general in the present
context. On the one hand, for a coarse-grained measurement approach to work there has
to be one basis for which the relevant states are easy to distinguish. On the other hand, to
prove quantum characteristics one also has to be able to measure at least one observable
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that corresponds to a di�erent basis, hence the need for a rotation between that basis
and the computational basis. As a simple extension, one might want to consider other
superposition states or entangled states using the same coherent-state qubits. Proving
superpositions or entanglement then requires slightly di�erent rotations. More general
qubit basis rotations can be constructed out of the Hadamard-type rotation U of Eq. (3.9)
and phase space displacements [85]. The same control precision requirements apply for
this construction. They also apply to the measurements proposed in Ref. [87].

But could there be other ways of performing the basic Hadamard rotation? Do they
necessarily have the same control precision requirements? In fact, it is known that the
Kerr non-linearity is not the only possible solution [189]. Higher powers of N̂2 also work.
However, by adapting the argumentation around Eqs. (3.10,3.11) to these cases one can
easily show that the control precision requirements are only increased in this case. For a
Hamiltonian proportional to N̂2k the necessary control precision scales as 1

N2k−1 . So the
Kerr non-linearity is optimal at least for this family of possible approaches.

We suggest that the basic di�culty with implementing a macroscopic basis rotation of
the type of Eq. (3.9) stems from the fact that the underlying Hilbert space is very large.
In our case the e�ective Hilbert space dimension is of order α, corresponding to the range
of photon numbers that have signi�cant weights for a coherent state. For increasing α it
requires more and more �ne-tuning to perform a non-trivial operation on the states |α〉
and | − α〉, while con�ning them to the two-dimensional subspace that they span. This
may be a generic di�culty for macroscopic quantum systems.

We feel that proving these conjectures and intuitions would be very interesting, as it
would signi�cantly advance our understanding of the macroscopic limit of quantum physics.
It would possibly be even more interesting if one could �nd a counter-example, since the
latter might provide a promising avenue towards the demonstration of truly macroscopic
quantum e�ects.

This work was supported by AITF, NSERC, Industry Canada, Mprime and CIFAR.
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Chapter 4

The Asymptotic Cooling of Heat-Bath

Algorithmic Cooling

Most of the content of this chapter was published in [138]. I proposed the main idea of the
paper, found the solution and did all of the calculations. I also contributed in writing the
paper.

4.1 Overview

The purity of quantum states is a key requirement for many quantum applications. Improv-
ing the purity is limited by fundamental laws of thermodynamics. Here we are probing the
fundamental limits for a natural approach to this problem, namely heat-bath algorithmic
cooling (HBAC). The existence of the cooling limit for HBAC techniques was proved by
Schulman et al. [153] A bound for this value was found by Elias et al. [53] and numerical
testing supported the hypothesis that their bound may be the actual limit. A proof or
disproof of whether their bound was the actual limit remained open for the past decade.
Here for the �rst time we prove this limit. In the context of quantum thermodynamics,
this corresponds to the maximum extractable work from the quantum system. We also
establish, in the case of higher dimensional reset systems, how the performance of HBAC
depends on the energy spectrum of the reset system.
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4.2 Introduction

The purity of quantum states is often one of the limiting factors in many applications
and quantum technologies. For instance, the signal to noise ratio (SNR) in spectroscopy
and medical imaging [4, 78, 99, 127, 147] or the resolution in metrology and quantum
sensing [123, 171, 144, 188] are often limited by the purity of the quantum states. High
purity is also a necessity for quantum computation. Fault-tolerant quantum computing
relies on using fresh ancillary quantum bits. Recently Ben-Or, Gottesman and Hassidim
proposed a quantum refrigerator to prepare high purity quantum states for this purpose
using algorithmic cooling [13].

Di�erent methods have been exploited to improve the purity but all of these techniques
are limited by the laws of thermodynamics [83, 1]. It is interesting both fundamentally
and practically to understand these limits. In the context of quantum thermodynamics,
extracting work from a quantum system is equivalent to increasing its purity and cooling
it [82] and cooling limits correspond to Carnot-like e�ciency limits. Quantum thermody-
namics has been studied as a resource theory of purity [82, 73, 19] and recently Horodecki
and Oppenheim extended this paradigm for general thermodynamic transformations. They
found the limit for the extractable work in terms of relative entropy when the Hamiltonian
of the process is time independent. Usually quantum applications involve quantum control
which means that the Hamiltonian is time-dependent, and in these cases their result gives
an upper bound.

Heat-bath algorithmic cooling is another method which takes a more practical approach
to the cooling problem. Here a natural subclass of general thermodynamic transformations
is considered where we have control over a part of the system, and have limited control
over how the system interacts with an external heat-bath [1, 181]. This model applies to a
wide range of quantum implementation techniques like nuclear magnetic resonance (NMR)
[148, 9, 21], ion-traps [7] and recently in quantum optics [186]. The HBAC methods have
also been studied from the thermodynamic viewpoint [143, 181].

4.2.1 Model

We consider a quantum system that is in interaction with a heat-bath. The quantum
system comprises two kind of qubits, the computation qubits and the reset qubits. The
computation qubits are the high quality qubits with long decoherence time that are used
for computation. The reset qubits on the other hand have shorter relaxation time and
equilibrate fast. Figure 4.1 shows a schematic of the model that we are considering in our
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Figure 4.1: The schematic of the model. The quantum system comprises computation
qubits and reset qubits and interacts with a heat-bath. The heat-bath incorporates degrees
of freedom in the environment that couple to the qubits in the quantum system. Usually,
di�erent qubits couple di�erently to these degrees of freedom. The computation qubits
interact weakly and the reset qubits interact strongly with the heat-bath. We ignore the
weak interaction between the computation qubits and the heat-bath and assume that only
the reset qubits are e�ected by the interaction with the heat-bath. The goal is to cool
down the qubits in the system. Note that this is just a schematic and in reality they are
not necessarily spatially arranged in this way. The HBAC does not cool all the qubits
to the same temperature and the asymptotic temperature of di�erent computation qubits
would be di�erent. We �nd the asymptotic state and consequently the temperature for all
the qubits including the �rst one which is the cooling limit for all the HBAC techniques.
Note that the heat-bath is hotter than the system which is indicated by the red color.

work. Thus, the HBAC model does not consider the possibility of irreversible operations
on the computation system (other than interacting reversibly with the reset system).

This model applies to a variety of physical systems. For instance, in NMR, the system
is the few nuclear spins that can be controlled and the heat-bath comprises the other
magnetic moments in the sample. These magnetic moments couple to the nuclear spins in
the system and eventually equilibrate them. Di�erent spin species have di�erent coupling
rates [148, 9].

4.2.2 Heat-bath Algorithmic Cooling

The class of cooling transformations that we are considering here are known as heat-bath
algorithmic cooling [17, 153, 9]. HBAC is a quantum computation technique for cooling
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computation qubits by transferring their entropy to the reset qubits. The reset qubits are
regularly refreshed through their interaction with the heat-bath.

The original idea of algorithmic cooling was developed by Schulman and Vazirani
in [155] which uses a technique for Schumacher's quantum data compression [34, 89].
Later it was proposed to use a heat-bath to enhance the cooling beyond the compres-
sion bounds[17, 59]. The idea is that after the entropy transfer, the heat-bath refreshes the
hot qubits and then the entropy transfer can be repeated. Di�erent iterative methods were
developed based on this idea[53, 55, 89]. All of these methods are referred to as �Heat-Bath
Algorithmic Cooling�.

In [153] Schulman et al. established a lower-bound for the asymptotic temperature
and proved that none of these iterative techniques can extract all of the entropy from
the computation qubits. In [53], a steady state of HBAC was identi�ed and was used to
establish an upper bound for the limit under the assumption that HBAC starts from the
maximally mixed state and converges to a steady state. They found numerical evidence
that the bound was tight, however no proof of this limit was known.

In this work, we show that this process has an asymptotic state and �nd this asymptotic
state of the computation and reset qubits. This gives the cooling limit of the qubits in
this framework. This fundamental limit sets the ultimate limit of any practical cooling
approach under similar constraints.

4.2.3 Partner Pairing Algorithm

We use the technique that was introduced in [153]. It is called the �Partner Pairing Algo-
rithm (PPA)� and is the optimal technique for HBAC. We �nd the cooling limit for the
PPA and as it is the optimal technique, the limit applies to all the HBAC techniques as
well.

The PPA is an iterative method. In each iteration, the diagonal elements of the density
matrix are sorted and then the reset qubit is refreshed. For example, if we have n = 1
computational qubits, plus one reset qubit, with combined probabilities corresponding to
0.45 for |00〉, 0.15 for |01〉, 0.3 for |10〉 and 0.1 for |11〉, then the sort step will swap |01〉
and |10〉. After this swap step, the probabilities of the computational basis states are in
decreasing order with respect to the lexicographic ordering of the qubits, which corresponds
to increasing the probability of a 0 in the leftmost qubit.
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Reset process

The reset process is equivalent to

R(ρ) = TrR(ρ)⊗ ρR. (4.1)

TrR (∗) is the partial trace over the reset qubit and ρR = 1
e−ε+eε

(
eε 0
0 e−ε

)
, is the �xed

point of the reset process.The parameter ε is called the polarization and ε = ∆
2KbTB

, where
∆ is the energy gap of the reset qubit, Kb is the Boltzmann constant, and TB is the
temperature of the heat-bath. Polarization is commonly used to quantify the purity of
spins. The higher the polarization, the purer and colder the qubit is. For a qubit with the

state ρ =

(
a 0
0 b

)
the polarization is given by 1

2
log
(
a
b

)
.

We use [ρt] =
{
λ

(t)
1 , λ

(t)
2 , · · ·λ(t)

2n+1

}
to show the state of n computation qubits plus one

reset qubit which is the last one. The superscript represents the iteration index and the
subscript is the index of the diagonal elements.

The state after the reset is [ρ∞] =
{
p∞0 , p

∞
1 , · · · p∞2n−1

}
⊗ [ρR] , where the �rst part

represents the state of the n computation qubits. The reset step cools down the reset
qubit and changes the diagonal elements of the density matrix which also changes their
ordering. For instance, for some speci�c i, it could be that pie−ε ≤ pi+1e

ε.

After the reset, the sort operation in the following iteration would then increase the
polarization of computation qubits. Figure 4.2 shows the procedure of each iteration.

4.3 Asymptotic state of HBAC

HBAC cools the �rst qubit monotonically which means that we just need to �nd the
asymptotic temperature to �nd the cooling limit. If the system converges to an asymptotic
state (which we show happens), then this state determines the cooling limit.

4.3.1 Steady state condition

Despite the simplicity of each iteration, the dynamics are complicated and it is di�cult
to understand how the state evolves under these dynamics. In particular, even assuming
the system converges to an asymptotic state, it is challenging to �nd the asymptotic state

31



Figure 4.2: The schematics of each iteration of PPA algorithmic cooling. The diagonal
elements of the density matrix are sorted decreasingly and the sort increases the polariza-
tion of the �rst computation qubit and decreases the polarization of the reset qubit. Next
the reset process, refreshes the reset qubit and restores its initial polarization.

[55, 53]. Note that the sort operation depends on the probability distribution and thus
is changing in each iteration. Thus results for time-homogeneous Markov processes (such
as conditions under which they converge to a steady state) do not apply to the cooling
process.

We use the fact that an asymptotic state should be invariant under PPA and �rst
identify steady states of the PPA. This gives a necessary condition for the asymptotic
state. We then specify the asymptotic state by proving a condition on the dynamics of
PPA.

The asymptotic state does not change under the operations of HBAC and is a �xed
point of the dynamics. Technically this implies that if it is reset, it still will be sorted. We
mentioned that the state after the reset is [ρ∞] =

{
p∞0 , p

∞
1 , · · · p∞2n−1

}
⊗ [ρR] ,.

The fact that the full density matrix is sorted after the reset step, implies that p∞i e
−ε ≥

p∞i+1e
ε ,∀i.

Note that this condition does not specify the asymptotic state. In fact the steady state
is not unique and any state that satis�es the condition above is invariant under PPA.
Therefore the invariance under PPA is a necessary condition, but not su�cient. This was
also recognized in [53] where the state in Equation (4.5) was found and shown to establish
a lower bound on the asymptotic polarization. Their numerical evidence [53], and other
numerical studies independent of this work [145], suggested the bound is tight when the
initial state is maximally mixed.
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4.3.2 Evolution condition

One of the key elements of our work is the following theorem which speci�es the steady
state that is the asymptotic state of HBAC. It states that while the distances between
consecutive pi are increasing in PPA, the ratio of two consecutive diagonal elements of the
density matrix would never exceed e2ε.

For simplicity we de�ne a distance. Consider two consecutive elements of the density
matrix, pi and pi+1. We de�ne the following distance between the elements of the density
matrix

di
Def
= log

pi
pi+1

. (4.2)

Theorem 1. For PPA algorithmic cooling with a reset qubit [ρR] = 1
e−ε+eε

{eε, e−ε}, for
any iteration t and i, 0 ≤ i ≤ 2n − 1,

pti
pti+1
≤ max

{
e2ε,

p0i
p0i+1

}
.

The sketch of the proof is as follows. For any index i and any iteration t, if the ratio of
pti
pti+1
≤ e2ε, then we can show that pt+1

i ≤ eε
(
pti + pti+1

)
and pt+1

i+1 ≥ e−ε
(
pti + pti+1

)
and as a

result pt+1
i

pt+1
i+1

≤ e2ε. On the other hand, if the ratio of pti
pti+1
≥ e2ε, then it is easy to see that

pt+1
i

pt+1
i+1

≤ pti
pti+1

. Note that the sort operation in this case could only decrease pi or increase pi+1,

both of which leads to a lower pt+1
i

pt+1
i+1

. Therefore we can always bound pt+1
i

pt+1
i+1

≤ max
{
e2ε,

pti
pti+1

}
.

Induction on t completes the proof of the theorem. A more detailed proof is given in the
4.7.

If the initial state satis�es d0
i ≤ 2ε for all i, which holds, for a broad class of states like

the maximally mixed state or the thermal state when the computation qubits have a smaller
gap than the reset qubit, then one obtains the following condition for the asymptotic state:

p∞i e
−ε = p∞i+1e

ε , ∀i, (4.3)

where pi are the diagonal elements of the density matrix of computation qubits. Note that
in general, it could be that d0

i ≥ 2ε. We investigate the more general case in 4.7.

4.3.3 Asymptotic state

The condition in Eq. (4.3) together with the normalization of the state is enough to
determine the full state. Equation (4.3) can be rewritten as p∞i = e−2iεp∞0 and considering
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Figure 4.3: Comparison of the upper bound and value of λ∞1 . The gap between the upper
bound and the actual value gets larger as ε, the polarization of the reset qubit increases.

state normalization gives:

p∞0 =
e−2ε − 1

(e−2ε)2n − 1
. (4.4)

Comparison with previous results

Schulman et al. upper bounded λ∞1 by e2
nε

2n
in [153] which is consistent with our result.

Note that λ∞1 = eε

e−ε+e−ε
p∞0 . Figure 4.3 gives a comparison between this bound and the

actual value from equation (4.4). Plots are for n = 2 and one reset qubit. Figure 4.3
illustrates how the upper bound in [153] compares to the actual value.

Asymptotic state and temperature

Equations (4.3) and (4.4) give the asymptotic state

[ρ∞] = p∞0
{

1, e−2ε, e−4iε, · · ·
}
⊗ ρR. (4.5)

The �rst qubit has the lowest temperature. Therefore, we focus on the �rst computation
qubit for �nding the cooling limit. We �nd that the polarization of the �rst qubit is

P = 2n−1ε. (4.6)
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Figure 4.4: Asymptotic cooling ratio. The cooling limit depends on the number of qubits
and the ratio of the energy gaps of the computation qubit to the one for the reset qubit, δ

∆
.

The cooling limit improves exponentially with increasing n and linearly with decreasing δ
∆
.

This result is consistent with the lower bound that was calculated in [53], in the case
of ε� 1

2n
. In fact we proved that this lower-bound is tight.

Equation (4.6) shows that the performance of HBAC increases exponentially with the
number of qubits, n. The simple way to see this is to look at the e�ective temperature.
The e�ective temperature of the �rst qubit is

Te� =
δ

∆

TB
2n−1

, (4.7)

where δ is the energy gap of the qubit and is often di�erent from ∆, the energy gap of the
reset qubit. Usually the reset and computation qubits should be of di�erent species as the
reset qubits have a shorter relaxation time. The cooling limit would improve if the energy
gap of the reset qubit is much larger than the one for the computation qubits. For instance,
if an electron is used as the reset qubit and hydrogen nuclear spins for computation, this
ratio would be 1

660
which lowers the cooling limit by a factor of 660.

Figure 4.4 shows how the e�ective temperature decreases with increasing the number
of computation qubits, n. It also shows that changing the δ

∆
changes the cooling limit.
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4.3.4 Generalization of the reset process

We can also answer one of the important questions about HBAC, namely, identifying how
the performance of HBAC depends on the energy spectrum of the reset system in the case
of higher dimensional reset systems.

Equation (4.3) can be generalized for arbitrary reset state, ρR. For a D-level reset
system we get a similar condition as in equation (4.3) with the di�erence that the gap is
replaced by the sum of the gaps. We refer to this as the �large gap� and use ∆total to show
it. The cooling limit for qudits is

Te� =
δ

∆total

TB
2n−1

, (4.8)

which similar to the one in Equation (4.7) with ∆ replaced by ∆total.

It is interesting that despite the more complicated energy structure of the reset qubit,
the �large gap� is the only parameter that would in�uence the cooling limit. In particular,
the cooling limit does not directly depend on the number of energy levels or the spacing
between them, as long as the total gap does not change.

Multi-qubit Reset

This result also has an interesting implication for multi-qubit reset systems. The energy
gap of a multi-qubit reset system is the sum of the energy gaps of the individual qubits.
As a result the large gap increases as one adds reset qubits, and this improves the cooling
limit. For instance, if k identical qubits are used for the reset, then the energy gap would
be ∆total = k∆ and it lowers the cooling limit by a factor of 1

k
. In other words, using such

a multi-qubit reset is linearly better (in terms of the number of qubits) than using a single
qubit reset.

Note that the energy structure of the reset system could still change the complexity or
the number of operations for HBAC but the asymptotic state only depends on the largest
gap of the reset system.

4.4 Decoherence

So far, we have studied PPA algorithmic cooling under the assumption of perfect operation
and no decoeherence. In practice however, there are imperfections in the implementation.
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These experimental imperfections could a�ect the minimum achievable cooling. The HBAC
operations are optimized based on the probability distribution at each step, and thus
unknown errors in the probability distribution mean the cooling steps will not be optimal.

It is therefore critical to investigate these imperfections. Some of these, like decoherence
has been recently studied [22].

Note that it is unclear if it is possible to go around these imperfections with fault
tolerance. This is because fault tolerance requires ancillary qubits with high purity and
the main purpose of HBAC is to provide these ancillary qubits. So assuming that we can
do the operations of HBAC with fault tolerance is not practical.

HBAC techniques are often quite complicated even in the absence of the imperfections.
In most cases, it is not clear how di�erent noise processes would a�ect the implementation
and �nal outcome of the HBAC. In principle, some imperfections may even improve the
asymptotic limit of cooling.

An obvious noise model that reduces the asymptotic cooling, is a coherent noise model
where every operation is conjugated by some unitary which may even change from one
iteration to the other. Imperfections in the control could lead to these kind of noise.
For instance, a x-rotation by θ may be implemented with some deviation which gives
Rx(δθ)Rx(θ). Consider PPA where the operations are permutations. It is shown that if
permutations are followed by some unitary, the �nal density matrix would have a higher
temperature than the state of the perfect PPA [153].

On the other hand, one can in principle imagine some imperfection that improves the
cooling limit of HBAC. For instance, consider the following noise model

UρU † → C(ρ) = (1− p)UρU † + p|0〉〈0|. (4.9)

Although this may not be a realistic noise model, it shows that noise may in principle
improve HBAC.

4.5 Complexity of the Implementation

On of the critical problem about the HBAC is the implementation costs. This is often
analysed in terms of the number of iterations required [154, 153, 145]. However the number
of operations is not necessary a good cost function.
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In particular for PPA algorithmic cooling, the implementation cost of each iteration may
be exponential in n, which means that although the total number of operations to achieve
a certain polarization may be polynomial in n, the total cost may still be exponential.

PPA is one of the most challenging HBAC techniques from the implementation point
of view. This is mainly because of two reasons:

1. Permutations are changing from one iteration to the other.

2. Each iteration involves implementing a unitary over n qubits and it is not clear that
there is an e�cient way to implement the permutation.

Further investigation is required to show that PPA is e�ciently implementable as well
as to address how to implement it.

4.6 Conclusion and Applications

In conclusion, we establish the fundamental limit of cooling for all HBAC techniques and
show that it reduces exponentially with the number of qubits. It also depends on the ratio
of the energy gap of the reset qubit to the gap of the computation qubits. We studied the
e�ects of the changes to the energy spectrum of the reset system and showed that only
the large gap of the reset system a�ects the asymptotic state. In particular, the number
of energy levels, for a constant energy gap, does not in�uence the cooling limit.

Note that this limit is di�erent from the third law of thermodynamics [117, 111]. With
HBAC the temperature does not approach zero as time or the number of iterations ap-
proaches in�nity.

Note that experimental imperfections could a�ect the minimum achievable cooling.
The HBAC operations are optimized based on the probability distribution at each step,
and thus unknown errors in the probability distribution mean the cooling steps will not
be optimal. It is therefore critical to investigate these imperfections. Some of these, like
depolarization, have been recently studied [22].

Besides the fundamental signi�cance, the cooling limit could have practical applications
as well. For instance, it could give a quantitative measure of imperfection for implementing
and studying the HBAC. One natural choice would be the distance from the asymptotic
state, ρ∞, which requires the full density matrix. This may be expensive experimentally.
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An easier solution is |p0 − p∞0 | which approaches zero as the state approaches the asymp-
totic cooling limit. Or, simply |P0 − 2n−1ε|, where P0 is the achieved polarization of the
�rst computation qubit.

For experimental implementation of HBAC, this measure quanti�es how far the exper-
iment is from the cooling limit and gives a metric for the assessment of the progress in the
experiment.

Similarly, it can be used for theoretical cost analysis of HBAC which requires a notion
of distance from the asymptotic state. The number of operations that are needed to achieve
a certain �delity to the asymptotic state can be calculated in terms of such a distance.
Some studies have investigated this problem in terms of the number of iterations required
[154, 153, 145]. By calculating the cost of an iteration in terms of resources such as gates,
time or energy, one could build on these works in order to calculate the resource cost of
implementing HBAC, and to decide when the costs of additional iterations of HBAC no
longer outweigh the bene�ts of further cooling.

4.7 Proofs

We �rst prove the Theorem (1) in the paper and its extension for qudit reset and then
prove the convergence of the PPA algorithmic cooling.

Before we get to the proof, it is useful to explain a few details about the dynamics and
the update rules of the PPA.

We start by explaining �crossings� which are the building block of the cooling in PPA.

Crossings

When the reset qubit is reset, the ordering of the elements on the diagonal of the density
matrix changes. These changes are what lead to the cooling. The reset step takes the state
[ρ] = {λ1, λ2, · · ·λ2n+1} of n computation qubits and one reset qubit to[

ρ
′
]

= {p0, p1, · · · p2n−1} ⊗ [ρR] ,

where pi = λ2i+1 + λ2i+2 and [ρR] = {eε, e−ε} /z. This can be generalized for the reset
with a qudit [ρR] = {a1, a2, ..., ak} as well. For convenience, we assume these values are
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sorted (so a1 ≥ a2 ≥ . . . ≥ ak) 1. Although the probabilities pi are sorted, the full density
matrix is not necessarily sorted. For instance, for some indices i < j, and mi > mj, we
could have

piami < pjamj , (4.10)

In this case, the sort operation in PPA would rearrange the terms and update the value
of pi. We refer to this condition as �crossing from below� for the ith probability. Similar
crossing for the ith probability could occur from above which we refer to as �crossing from
above�.

Despite the complexity of di�erent crossings, we can make the following general remarks.
Remark 2. Crossing from above If pi combined with the reset qudit probabilities gives
the values {pia1, pia2, · · · piak} and there is crossing from above (and none from below),
the sort operation on all k2n probabilities yields the values λ1 ≥ λ2 ≥ · · · ≥ λk = piak for
the (ik + 1)th, (ik + 2)th, . . . (ik + k)th probabilities (i.e. the probabilities that will add
up to determine p′i) such that

piaj ≥ λj ≥ piak. (4.11)

Proof. The second inequality is easier to see. It comes from the fact that ∀j < i, pj ≥ pi
and therefore, for any m, we have pjam ≥ piak.

The �rst inequality comes from the ordering. The value λj is by de�nition the �rst
element that is ≥ λj+1. One can use induction (starting with k = j + 1 as the base case)
to prove the �rst inequality. Speci�cally, if λj+1 ≤ piaj+1 then (since aj ≥ aj+1) we have
piaj ≥ λj+1 implies which implies that λj ≤ piaj.

Remark 3. Crossing from below If pi+1 combined with the reset qudit probabilities
gives the values {pi+1a1, pi+1a2, · · · pi+1ak} and there is crossing from below (and none
from above), the sort operation on all k2n probabilities yields the values δ1 = pi+1a1 ≥
δ2 ≥ · · · ≥ δk for the ((i + 1)k + 1)th, ((i + 1)k + 2)th, . . . ((i + 1)k + k)th probabilities
such that

pi+1aj ≤ δj ≤ pi+1a1. (4.12)
1Depending on the physical system, one might simply label the states in this way. For other physical

systems, the natural labelling might not be in descending order of probability. In these cases, one must ac-
count for this labelling when computing the permutation of the combined computational and reset system.
For example, for a reset qudit that is the product of identical qubits, the reset system probabilities will
not follow a lexicographic ordering. The probabilities will decrease as the Hamming weight of the strings
increase. The appropriate permutation of these reset system strings (or alternatively, the corresponding
conjugation of the permutation of the combined system) will a�ect the overall complexity of implementing
the HBAC permutations.
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The proof is similar to the one for crossing from above.

We use the distance and generalise the Theorem (1) in the following way.

Theorem 4. For PPA algorithmic cooling with a reset qudit [ρR] = {a1, a2, ..., ak} where
al are sorted decreasing and sum to 1 and for any iteration t , dti ≤ max

{
d0
i , log a1

ak

}
.

Proof. We focus on di for some arbitrary iteration and prove the bound.

After the reset step of the iteration, we break down the sort operation into two steps.
First we separately sort the values pual for u ≥ i+1, and also the values pval for v ≤ i. This
means that the sort does not involve sorting between terms of the form pial and pu≥i+1al
nor between terms of the form pi+1al and pv≤ial.

Let λj be the (k − j + 1)th smallest number after the sort operation among the pjal
values for j ≤ i and let δj be the jth largest value after the sort operation among the pjal
values for j ≥ i + 1. Note that δ1 = pi+1a1 and λk = piak. In the next step we complete
the sort by combining and sorting the probabilities that lie between pi+1a1 and piak.

Let's �rst consider the case that λ1 ≥ δ1 and λk ≥ δk. Then when we merge and resort
the λj and δj values, for some integer r ≥ 0 the values δ1, δ2, . . . , δr will appear among the
largest k values, and δr+1, . . . , δk will appear among the smallest k values. Similarly, the
values λ1, . . . , λk−r will appear among the largest k values, and the values λk−r+1, . . . , λk
will appear among the smallest k values.

The sub-case where r = 0 corresponds to when there is no crossing between pi and pi+1

(i.e. piak ≥ pi+1a1) and we will come back to this case as well.

Let us next consider the sub-case that 1 ≤ r ≤ k/2. Thus we get

p′i =
r∑
j=1

(λj + δj) +
k−r∑
j=r+1

λj

p′i+1 =
k∑

j=k−r+1

(λj + δj) +
k−r∑
j=r+1

δj.
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Using Remark 2 and Remark 3 we �nd the following bounds

p′i ≤
r∑
j=1

(piaj + pi+1a1)

+
k−r∑
j=r+1

piaj ≤ ra1 (pi + pi+1) + piχ

p′i+1 ≥
k∑

j=k−r+1

(piak + pi+1aj)

+
k−r∑
j=r+1

pi+1aj ≥ rak (pi + pi+1) + pi+1χ,

where χ =
∑k−r

j=r+1 aj. We want to show that p′i
p′i+1
≤ a1

ak
which follows from the fact that

piak ≤ pi+1a1 when there is at least one crossing between pi and pi+1. In other words,

p′i
p′i+1

≤ ra1 (pi + pi+1) + piχ

rak (pi + pi+1) + pi+1χ
≤ ra1 (pi + pi+1)

rak (pi + pi+1)
≤ a1

ak
.

Let us next consider the sub-case that k/2 < r < k. Thus we get

⇒p′i =
k−r∑
j=1

(λj + δj) +
r∑

j=k−r+1

δj

⇒p′i+1 =
k∑

j=r+1

(λj + δj) +
r∑

j=k−r+1

λj.

Using Remark 2 and Remark 3 we �nd the following bounds

p′i ≤(k − r)(pi + pi+1)a1 + (2r − k)pi+1a1

p′i+1 ≥(k − r)(pi + pi+1)ak + (2r − k)piak

⇒p′i/p′i+1 ≤
((k − r)(pi + pi+1) + (2r − k)pi+1) a1

((k − r)(pi + pi+1) + (2r − k)pi) ak

≤ ((k − r)(pi + pi+1) + (2r − k)pi+1) a1

((k − r)(pi + pi+1) + (2r − k)pi+1) ak
≤ a1

ak
.
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For the case where r = 0, we get

p′i =
k∑
j=1

λj ≤
k∑
j=1

piaj = pi

p′i+1 =
k∑
j=1

δj ≥
k∑
j=1

pi+1aj = pi+1.

It follows that p′i
p′i+1
≤ pi

pi+1
.

Now we get to the case when either all the λj ≤ δ1 = pi+1a1 or when all the δj ≥
λk = piak (or both). If it is the former, we get p′i ≤ kδ1 = kpi+1a1 and we also know
that p′i+1 ≥ kpi+1ak which gives the desired result. Similarly, if all the δj ≥ λk then
p′i+1 ≥ kλk = kpiak and p′i ≤ kpia1 which again leads to p′i/p

′
i+1 ≤ a1/ak.

So the distance d′i is bounded above by max
{
di, log a1

ak

}
which proves the theorem.

Note that for the case of k = 2 and a1 = eε and a2 = e−ε we get Theorem (1).

Now we use this to prove that all of the pi converge.

To prove the convergence, we �rst prove that p0 converges and then the convergence of
all the pi follows from that. In order to make the connection between the convergence of
p0 and other pi, we use Theorem 4.

Theorem 5. Let pt0 be the �rst diagonal element of the reduced density matrix of the
computation qubits in the tth iteration of PPA algorithmic cooling. Then lim

t→∞
pt0 = p∞0 , for

some constant p∞0 .

Proof. The sequence of values pt0 are increasing because there can only be crossings from
below for p0. The sequence is also upper-bounded, therefore it must converge: p∞0 =
limt→∞ p

t
0.

Theorem 6. Let pti be the ith diagonal element of the reduced density matrix of the com-
putation qubits in the tth iteration of PPA algorithmic cooling with a qubit reset [ρR] =

1
e−ε+eε

{eε, e−ε}. Then assuming that d0
i ≤ 2ε,∀i, the limit lim

t→∞
pti = e−2iεp∞0 exists. We

refer to the limit as p∞i .
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Proof. We already proved that the p∞0 exists. This means that

lim
t→∞

(pt+1
0 − pt0) = 0. (4.13)

On the other hand, as pt+1
0 = pt0

eε

z
+ pt1

eε

z
we �nd that 4 implies that as t→∞

pt+1
0 − pt0 = pt1

eε

z
− pt0

e−ε

z
. (4.14)

The limit of the last term, pt0
e−ε

z
exists and the left hand side converges to zero, so lim

j→∞
pt1

must be e−2εp∞0 . The convergence of the rest of the pti follows by induction. Note that
although there could be crossings from above for i ≥ 1, the change from above approaches
zero and we get

pt+1
i − pti = ζti + pti+1

eε

z
− pti

e−ε

z
, (4.15)

where ζti corresponds to the change to pi due to crossing from above, where for su�-
ciently large t (once the ptj, for j ≤ i, are close enough to p∞j that there is at most one
crossover between ptj and p

t
j−1), we have ζ

t
i = (pti−1e

−ε − ptieε)/z.
Since (for su�ciently large t) pt+1

i−1 − pti−1 = (pti−2e
−ε − pti−1e

ε)/z + (ptie
ε − pti−1e

−ε)/z =
pti−2e

−ε/z − pti−1e
ε/z − ζti , then taking limt→∞ of both sides yields

lim
t→∞

ζti = 0.

Therefore we get
p∞i+1 = e−2εp∞i . (4.16)

For the PPA with a reset qudit [ρR] = {a1, a2, ..., ak}, the proof is similar. As j → ∞
we get (pt+1

0 − pt0)− (pt1a1 − pt0ak)→ 0 and since as t→∞ the left hand side and the last
term converge, so does pt1. The rest of the proof follows similarly.

If we start with a maximally mixed state for the computation qubits, d0
i = 0, i.e.

initially all the distances are zero, then for any iteration t and any index i, we get

dti ≤ log

(
a1

ak

)
(4.17)

and thus Theorem 6 (and its generalization to qudits) applies.
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Note that for the case where the qubits are not initially in the maximally mixed state,
Theorem 4 still applies and can be used to �nd the asymptotic state. A su�cient condition
for getting the asymptotic state in Equation (4) is that log2(

p00
p02n−1

) ≤ 2(2n − 1)ε.

For the more general case of [ρ0] =
{
p0

0, p
0
1, . . . , p

0
2n−1

}
, it is more complicated to de-

termine the asymptotic state, however, Theorem 4 applies. In this case, the probabilities
could be grouped in di�erent blocks of consecutive probabilities where in each block, the
distance between any two consecutive p0

i is less than 2ε and is greater between two di�er-
ent blocks. These blocks are referred to as assemblies [33]. Using theorem 4 , we can see
that the distance between the probabilities in each assembly would increase to 2ε. This
also implies that two neighbouring assemblies may merge together. To �nd the asymp-
totic state, we can go through the expansion and merger of all the assemblies until the
�nal asymptotic state is found. The asymptotic state would be a combination of di�erent
assemblies (referred to maximal assemblies in [33]) where di = 2ε inside the blocks and is
di > 2ε in between the assemblies.

This work was supported by Canada's NSERC, MPrime, CIFAR, and CFI. IQC and
Perimeter Institute are supported in part by the Government of Canada and the Province
of Ontario.
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Chapter 5

Quantum information approach to

Bose-Einstein condensation of

composite bosons

Most of the content of this chapter was published in [108]. I contributed to the main
ideas and the calculations in this work. Speci�cally, I did some of the calculations, double
checked the rest of them and produced some of the plots.

5.1 Introduction

The idea of Bose-Einstein condensation (BEC) was originally introduced for a uniform,
non-interacting gas of elementary bosons [75]. In reality, BEC experiments are conducted
using potential traps for gases of bosonic particles, like alkali atoms, atomic hydrogen or
metastable helium, that are composite particles made of fermions, and for which inter-
particle interactions cannot be neglected [2, 18, 44]. Alternative BEC scenarios also take
into account composite systems, e.g., condensation of fermionic pairs in liquid 3He [134]
or excitons (electron-hole pairs) in bulk semiconductors [16, 41, 52, 88]. In addition,
these BEC scenarios are closely related to other macroscopic quantum phenomena like
super�uidity and superconductivity [133].

In many studies the internal structure of composite particles is neglected. On the
other hand, it was noted that in some cases this structure plays an important role [146,
149, 39, 36, 40, 38]. Therefore, it is interesting to see how BEC can be a�ected by the
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internal structure of composite bosonic particles. Previously BEC was investigated with the
interpolation between bosonic and fermionic statistics [6], and with individual exchanges
between the constituent fermions [37].

In this work we consider a simple model of BEC with composite bosonic particles.
In particular, we assume that neither the composite particles nor their constituents in-
teract, such that the internal structure of composite particles is stable and temperature
independent.

Of course, the bound states between constituent particles have to result from their
interaction. However, here we assume that once the constituents form a composite particle
state, they do not interact anymore. Physically, this may correspond to a dilute gas
of composite particles for which energy scales of a binding interaction potential between
constituents are much greater than energy scales of the con�ning trap. As an example, one
may think of an atomic hydrogen gas in which ionization temperature is much higher than
the standard temperatures required to obtain BEC. Such a simpli�ed model allows us to
focus on the fundamental problem of how BEC depends on the internal state of composite
particles, while neglecting other physical properties.

Nowadays, the phenomenology of composite bosons such as excitons, can be explained
using the tools developed by quantum information theory [38]. The role of quantum cor-
relations between constituents forming a bound composite particle state can be studied
qualitatively and quantitatively using the notion of entanglement. In particular, it was
shown that the degree of entanglement between a pair of fermions (bosons) is responsible
for their behavior as a single bosonic particle, i.e., only entangled particles behave like a
single boson and the more entanglement between them, the more (less) bosonic they are
[105]. Here, we raise the question: how is BEC a�ected by the entanglement between the
two constituent fermions or bosons?

5.1.1 Composite Bosons

De�nition

Before we start our discussion, let us recall the important results that are relevant to this
work. Imagine a pair of distinguishable fermionic or bosonic particles. The system is
described by the creation operators â†k and b̂†l , where the indices k, l = 0, 1, . . . ,∞ label
di�erent modes that can be occupied by the two particles. These modes can for example
correspond to di�erent energies, or di�erent momentum states. The wave function of the
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system is of the form
∞∑

k,l=0

αk,lâ
†
kb̂
†
l |0〉, (5.1)

where αk,l is the probability amplitude that particle a is in mode k and particle b is in mode
l, and |0〉 is the vacuum state. Using insights from entanglement theory, the mathematical
procedure known as the Schmidt decomposition allows us to rewrite the above state as
[105]

∞∑
m=0

√
λmâ

†
mb̂
†
m|0〉 ≡ ĉ†|0〉, (5.2)

where the modes labeled by m are superpositions of the previous modes k and l and
√
λm

are probability amplitudes that both particles occupy mode m. Note that despite the fact
that â†m and b̂†m share the same label, physically these modes might be totally di�erent.
What is important is that, the modes labeled by m give rise to the internal structure of a
composite particle.

Entanglement of Composite Bosons

We have introduced a composite boson creation operator ĉ†, that creates a pair of particles.
Note that this operator resembles the one for Cooper pairs [38]. The entanglement between
particles is encoded in the amplitudes

√
λm. In particular, one can introduce a measure of

entanglement known as purity

P =
∞∑
m=0

λ2
m, 0 < P ≤ 1. (5.3)

For P = 1 the particles are disentangled, whereas in the limit P → 0 the entanglement
between particles goes to in�nity. The degree of entanglement can be also expressed via
the so called Schmidt number K = 1/P . Intuitively, K estimates the average number of
modes that are taken into account in the internal structure of a composite boson.

The bosonic properties of ĉ† can be studied in many ways. For example, the commuta-
tion relation gives [ĉ, ĉ†] = 1+ξ

∑
λm(â†mâm+ b̂†mb̂m), where ξ = −1 if a and b are fermions,

or ξ = +1 if they are bosons. On the other hand, following the approach in [105] one may
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study the ladder properties of this operator

|n〉 ≡ χ−1/2
n

(ĉ†)n√
n!
|0〉,

ĉ|n〉 =

√
χn
χn−1

√
n|n− 1〉+ |εn〉, 〈n− 1|εn〉 = 0, (5.4)

〈εn|εn〉 = 1− n χn
χn−1

+ (n− 1)
χn+1

χn
,

where |n〉 are states of n composite bosons, parameters χn are normalization factors, such
that 〈n|n〉 = 1, and |εn〉 are unnormalized states that can result form subtracting a single
composite particle from a state |n〉. The states |εn〉 do not correspond to n− 1 composite
bosons of the same type, but rather to a complicated state of n− 1 pairs of particles a and
b. The ladder structure of operators ĉ† and ĉ starts to approach those of ideal bosons if
χn+1

χn
→ 1 for all n. In Ref. [105, 32] it has been shown that for a pair of fermions the ratio

χn+1

χn
can be bounded from above and below by the function of entanglement

1− nP ≤ χn+1

χn
≤ 1− P.

Then, it has been improved with a tighter upper bound [174]

1− nP ≤ χn+1

χn
≤ 1− nP

1 + (n− 1)
√
P
≤ 1− P.

This result shows that in the limit of large entanglement (P � 1/n) the pairs of particles
behave like real bosons. Other results on the relation between composite bosons and
quantum correlations can be found in [174, 141, 176, 102, 175, 66, 65, 170, 173, 109, 31, 172].

To simplify our model, we assume BEC in Gaussian states which are represented by a
combination of coherent, thermal, and squeezed states. Assuming that composite bosons
are in a thermal state or in a harmonic trap, we can describe the composite bosons with a
Gaussian state. Thus, the Gaussian formula of the composite bosons is represented by the
following modi�ed operator that is based on the one studied in [105]

ĉ†r =
∞∑
m=0

√
(1− x)xmâ†m,rb̂

†
m,r, (5.5)

where the double indices refer to internal (m) and to external degrees of freedom (r).
The internal index m represents their position values when the proton and electron are
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strongly correlated [32]. In our case r labels the energy levels of the trap in which the BEC
takes place. Moreover, as we assumed in the beginning, the internal structure parameters
λm = (1 − x)xm (for 0 ≤ x < 1) are independent of r. The above operator has desirable
properties, since it is possible to analytically evaluate the factors χn and one can control
the entanglement between constituents a and b via the parameter x [105]. For x = 0 the
system is separable and in the limit x→ 1 entanglement goes to in�nity. In addition

0 ≤ (
χn+1

χn
)F =

xn(n+ 1)(1− x)

(1− xn+1)
< 1 (5.6)

for a pair of fermions [105] and

1 < (
χn+1

χn
)B =

(n+ 1)(1− x)

(1− xn+1)
≤ n+ 1 (5.7)

for a pair of bosons [105]. Finally, the Schmidt number is given by [105]

K =
1 + x

1− x. (5.8)

The rest of the paper is organized as follows. We begin with investigating the meaning
of 〈ĉ†rĉr〉. Then, we discuss the BEC of composite bosons made of fermionic pairs. We
consider two cases, a potential trap with only two levels and the 3D harmonic potential
trap with an in�nite number of energy states. Next, we repeat the same for the composite
bosons made of bosonic pairs. Finally, we analyze our results in the last section.

5.2 Number-operator mean value of cobosons

Before going ahead, we look into the meaning of the number-operator mean value (NMV)
of cobosons. Using the Eqs. (4) and (5), we evaluate the NMV of cobosons in an N number
state |N〉r, which represents N cobosons on the r-th energy level,

r〈N |ĉ†rĉr|N〉r = 1 + (N − 1)
χN+1

χN
,

where (χN+1/χN) = 1 as the cobosons become ideal bosons. For pairs of fermions, the
normalization ratio (χN+1/χN)F is less than one due to the Pauli exclusion principle be-
tween pairs fermions. Thus, r〈N |ĉ†rĉr|N〉r is less than the number of cobosons. We can
imagine that the other cobosons move to other energy levels due to the Pauli exclusion
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Figure 5.1: BEC using indistinguishable cobosons in (a) a two-level system and (b) a
multi-level system.

principle. It requires that the number of cobosons be less than the number of energy lev-
els. For pairs of bosons, the normalization ratio (χN+1/χN)B is larger than one due to the
bunching e�ect between the two constituent bosons. Thus, r〈N |ĉ†rĉr|N〉r is larger than the
number of cobosons. We can imagine that the extra cobosons came out of wave nature of
the two constituent bosons. It is explained by the second-order correlation functions which
represent intensity-intensity correlations [113], as below.

Expanding the Eq. (5) in the r〈N |ĉ†rĉr|N〉r, the NMV of the cobosons is given by

r〈N |ĉ†rĉr|N〉r =
∞∑
n=m

λn〈â†n,rân,rb̂†n,rb̂n,r〉 (5.9)

+
∞∑
n 6=m

√
λnλm〈â†n,râm,rb̂†n,rb̂m,r〉.

The �rst term is the sum of unnormalized second-order correlation functions. The second
term is, we called, the sum of cross correlation functions. According to the second-order
correlation functions G(2)[113], Gaussian states of bosons exhibit bunching e�ect with
1 < G(2) < ∞ whereas fermions exhibit anti-bunching e�ect with 0 ≤ G(2) < 1. Based
on the information of the G(2) functions, thus, we can understand the NMV of cobosons
as follows. By bunching e�ect, pairs of bosons can produce large number rather than
the number of cobosons. On the other hand, pairs of fermions can reduce the number of
cobosons by anti-bunching e�ect, expelling the other cobosons to other energy levels.

Therefore, for pairs of fermions, we know that the NMV of cobosons can be same as a
mean occupation number of cobosons in a multi-level system. For pairs of bosons, on the
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other hand, the NMV of cobosons can be larger than the total mean occupation number of
cobosons due to bunching e�ect between the two constituent bosons. In the next sections,
we deal with the NMV of cobosons in a two-level system and a multi-level one.

5.3 BEC of Bi-Fermions

We consider indistinguishable cobosons in a two-level system and in a multi-level system,
where each coboson is comprised of two fermions (bi-fermion). We investigate the case
in which indistinguishable cobosons are in a Gaussian state, such that the normalization
ratio of the coboson operator is represented by the parameter x [105]. From Eq. (8), x
represents the degree of entanglement between a pair of fermions, where x = 0 (x = 1)
means that a pair of fermions are separable (maximally entangled).

5.3.1 Two level approximation

First we consider a two-level system with a �xed number of N cobosons, see Fig. 1
(a). Although the NMV of cobosons in the ground state does not exhibit a BEC phase
transition, it is still interesting to compare its thermal behaviour with respect to a two-level
system occupied by N cobosons.

The thermal state of this system reads

ρ =
1

Z

N∑
n=0

e−βnE0e−β(N−n)E1

|n,N − n〉〈n,N − n|, (5.10)

where the total number of cobosons is N and

|n,N − n〉 =
(ĉ†0)n√
χnn!

(ĉ†1)N−n√
χN−n(N − n)!

|0, 0〉,

Z =
N∑
n=0

e−βnE0e−β(N−n)E1 ,

where β = 1/(kBT ) and χn (χN−n) is a normalization constant [105]. E0 and E1 denote

52



the energy levels. We derive the NMV of cobosons in the ground state as

〈n̂0〉 = Tr[ĉ†0ĉ0ρ] (5.11)

=
1

Z

N∑
n=0

e−βnE0e−β(N−n)E1 [1 + (n− 1)
χn+1

χn
].

Putting E0 = 0 and E1 = 1, the Eq. (11) becomes

〈n̂0〉 =
1

Z

N∑
n=0

e−β(N−n)[1 + (n− 1)
χn+1

χn
], (5.12)

where the partition function Z is given by 1−e−β(N+1)

1−e−β . For a Gaussian state, the normaliza-
tion ratio is given by Eq. (6). When a pair of fermions is not entangled (x = 0), the NMV
of cobosons in the ground state becomes equal to one, regardless of temperature. Note
that the phenomenon is not possible in the two-level system because every pair of fermions
occupies di�erent energy levels. In the two-level system, thus, it is hard to consider pairs
of fermions experiencing Pauli exclusion principle. When a pair of fermions is maximally
entangled (x = 1), the NMV of cobosons in the ground state is given by

〈n̂0〉x=1 =
1

1− e−β(N+1)
[N − e−β(1− e−βN)

1− e−β ] (5.13)

β→∞−−−→ N.

Hence for maximally entangled fermions the 〈n̂0〉 converges to N as temperature tends
to zero. In this case the cobosons behave like elementary bosons. The NMV of cobosons
is equal to the total mean occupation number of cobosons (N) so that all the cobosons
occupy the ground state.

For near maximal entanglement (K � N) between a pair of fermions, we can derive
the analytical result by taking the normalization ratio χn+1/χn ≈ 1−n/K [105]. As T → 0
(β →∞), the 〈n̂0〉 is given by

〈n̂0〉 = 〈n̂0〉x=1 −
N

K(1− e−β(1+N))
[N − 1− 2e−β

1− e−β +
2e−β(1− e−βN)

N(1− e−β)2
]

T→0−−−→N − N(N − 1)

K
≥ 0
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Figure 5.2: NMV of N = 100 cobosons in a two-level system as a function of T : from the
bottom to the top (x = 0.995, 0.999, 0.9999).

where the Schmidt number K is represented by the parameter x in Eq. (8). From Eq.
(8) and the condition K � N , the parameter x has the following range 1−x� N−1

N+1
. For

N = 100 we have 1 − x � 0.98. When the Schmidt number K goes to in�nity, then the
〈n̂0〉 goes to one. All the cobosons occupy the ground state energy level E0.

In Fig. 2 we plot the 〈n̂0〉 as a function of T against the range of 1−x� 0.98. The 〈n̂0〉
increases with the degree of entanglement as well as with decreasing temperature. This
coincides with the behaviour of an ideal bosonic gas. As T → ∞, the 〈n̂0〉 of cobosons
being perfect bosons is saturated with N/2. When x is slightly less than 1, the saturation
value of cobosons for T →∞ can be less than N/2. Note that 〈n̂0〉 < N/2 is not available
in the two-level system because there is no way for the number of particles inverted in
equilibrium. Due to the reason, it makes sense to consider BEC in a multi-level system.

5.3.2 Multi-level system: Realistic model

Let us now consider a more realistic physical system consisting of cobosons distributed
over the in�nitely many energy levels of a 3D isotropic harmonic trap, see Fig. 1 (b). We
�x the average number of cobosons to be 〈N̂〉 = N and describe the system via a grand
canonical ensemble with a chemical potential µ. In this paper we do not take the proper
thermodynamical limit (such a limit cannot be attained in real experiments) and thus
we cannot observe a genuine BEC phase transition. Instead, we follow Mullin [124] and
investigate the �pseudo-critical" temperature T0 below which the increase in the chemical
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Figure 5.3: NMV of an average number of N = 100 cobosons in a multi-
level system as a function of T/T0: from the top to the bottom (x =
0.9999, 0.99, 0.98, 0.97, 0.8, 0.7, 0.001). The small box on the right-side corner rep-
resents the 〈N̂0〉 for x = 0.8, 0.7, 0.001.

potential slows and the number of particles in the ground state begins increasing rapidly
(this is also known as the accumulation point).

In the grand canonical ensemble, the number-operator mean value (NMV) of the m-th
energy level Em and the total NMV are given by

〈N̂m〉 =
1

Zm

∞∑
n=0

e−β(Em−µ)n[1 + (n− 1)
χn+1

χn
],

N =
∞∑
m=0

〈N̂m〉, (5.14)

where N̂m = ĉ†mĉm and Zm = (1 − e−β(Em−µ))−1. The energy levels in the 3D isotropic
harmonic potential are given by Em = ~ω(mx + my + mz + 3/2), where mx, my, mz =
0, 1, 2... The normalization ratio is given by Eq. (6). When a pair of fermions is not
entangled (x = 0), the NMV in the ground state is given by

〈N̂0〉 =
1

e−βµ − 1
− (1− eβµ)

∞∑
n=0

eβµn(n− 1) = 1, (5.15)

where the energy E0 has been taken to be zero. It exhibits that only one pair of fermions
stay on the ground state energy level E0, irrespective of T . Note that we cannot �nd
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any temperature dependance of 〈N̂0〉 for x = 0. When a pair of fermions is maximally
entangled (x = 1), the NMV of the ground state energy level becomes the same as the
Bose-Einstein distribution. In this scenario we perfectly recover the conventional Bose-
Einstein condensation results.

For all regime of x (0 < x < 1), the NMV of cobosons in the ground state can be
numerically estimated using the approximations,

〈N̂0〉 ≈ 〈N̂0〉α∼1/N −N(
T

T0

)3S, (5.16)

〈N̂0〉α∼ 1
N

= (1− e−1/N)
∞∑
n=1

e−n/N [1 + (n− 1)
χn+1

χn
],

S =
∞∑
n=1

(
1

n3
− e−1/N

(1 + n)3
)e−n/N [1 + (n− 1)

χn+1

χn
],

where S approaches ζ(3) =
∑∞

p=1
1
p3
≈ 1.202 as N → ∞ and x → 1, i.e., for an in�nite

number of maximally entangled cobosons. The mean value 〈N̂0〉α∼1/N satis�es the bound-
ary conditions, 〈N̂0〉α∼1/N ≈ 1 at x ∼ 0 (almost no entanglement) and 〈N̂0〉α∼1/N ≈ N
at x = 1 (maximal entanglement). For near maximal entanglement between the two con-
stituent fermions, the detailed calculations are given in the Appendix.

We plot the NMV of cobosons in the ground state 〈N̂0〉 as a function of T/T0 for
di�erent x in Fig. 3. The 〈N̂0〉 increases with decreasing temperature as well as with the
degree of entanglement between the two constituent fermions. At T/T0 ∼ 0, we �nd that
as the entanglement approaches 0, the 〈N̂0〉 converges to 1. It is possible that only one
pair of fermions occupy the ground state whereas the rest of pairs of fermions occupy all
the di�erent energy levels. Thus, di�erent from the two-level system, we can observe the
〈N̂0〉 in all regime of x. In Fig. 3, we can also see that the transition temperature is an
increasing function of entanglement, where we have de�ned the transition temperature as
the point at which there are no cobosons in the ground state. This re�ects the fact that
the 〈N̂0〉 increases with the degree of entanglement.

We can �nd that our model has some similarities with the references [146, 6]. In the
reference [146], for a Gaussian state, the maximum occupation number is approximated as
2(W/v)3, where W is the width of the one-boson state and v is the width of the fermion
distribution inside one boson. So the maximum occupation number increases with the
width of the one-boson state. In our model, the number-operator mean value (NMV) of bi-
fermions in the ground state increases with the entanglement between the two constituent
fermions. The entanglement corresponds to the width of the one-boson state, such that the
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NMV of bi-fermions in the ground state corresponds to the maximum occupation number
at T → 0. In the reference [6], which is about N quons that interpolate between bosonic
and fermionic statistics, the condensate depletion is represented by (N − N0)/N0. N0 is
given by 1 − qN/(1 − q), in which q = 1(−1) for boson (fermion). For q = 1 (boson), the
condensate depletion is equal to 0 which corresponds to our result that all the cobosons
are in the ground state at T → 0. For q = −1 (fermion), the condensate depletion for odd
N is equal to N − 1 which also corresponds to our result that only one pair of fermions
stay on the ground state at T → 0.

As an example, we consider how T0 (pseudo-critical temperature) and Tc (critical tem-
perature) are di�erent in a BEC comprised of atomic hydrogen gas for which T ec (experi-
mental critical temperature) was observed at 50µK [61]. Given the density of the hydrogen
BEC (n = 1.8×1020m−3), the corresponding theoretical critical temperature in the thermo-
dynamic limit is obtained as T tc = h2

2πmkB
( n
ζ(3/2)

)2/3 ≈ 51µK. Since the theoretical critical
temperature is derived for ideal BEC, the corresponding pseudo-critical temperature is
obtained as T t0 = T tc [ζ(3)]1/3 ≈ 54.06µK. For the experimental critical temperature, the
pseudo-critical temperature is derived as a function of the degree of entanglement between
the proton and electron. Using the purity of the proton P = 33

4
√

2π
(a0
b

)3 [32] with the ex-
perimental trapping size (b ≈ 9.6 × 10−8m), we �nd that the proton and the electron are
highly entangled with the purity P ∼ 10−10 while the maximum entanglement is obtained
at P = 0. Thus, using the relation (T/T0)3ζ(3) ≈ (T/Tc)

3, the corresponding pseudo-
critical temperature is derived as T e0 = T ec [ζ(3)]1/3 ≈ 53.16µK. Therefore, we see that our
pseudo-critical temperature is a good approximation for the critical temperature.

5.4 Bi-boson: a pair of bosons

We consider cobosons comprised of two bosons (bi-boson). For a Gaussian state, the nor-
malization ratio is represented by Eq. (7). Here x parametrizes the degree of entanglement
between a pair of bosons. An example of a coboson is a bi-photon generated by spontaneous
parametric down conversion, which exhibits composite behavior even if the two photons
are spatially separated [105]. To keep bi-photons together, we can consider a dye solution
which repeatedly absorbs and re-emits photons [93]. Previously bi-bosons were considered
for super-bunching e�ect [102, 173].
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5.4.1 Two-level system: Simpli�ed model

We consider a two-level system with a �xed number of N cobosons. All the formulas used
in the previous section are applied here as well - the only di�erence is the normalization
ratio χn+1/χn. As we mentioned in Sec. II, due to the bunching e�ect between the two
constituent bosons, the number-operator mean value (NMV) of cobosons can be larger
than the total mean occupation number of cobosons (N) when the degree of entanglement
between the two constituent bosons is quanti�ed by a value of x < 1.

When a pair of bosons is not entangled (x = 0), from Eq. (12) the NMV of cobosons
in the ground state is given by

〈n̂0〉x=0 =
N

1− e−β(1+N)
[N − 2e−β

1− e−β +
e−β(1 + e−β)(1− e−βN)

N(1− e−β)2
]
T→0−−−→ N2, (5.17)

where β = 1/(kBT ). Hence for separable bosons the 〈n̂0〉x=0 converges to N2 as tem-
perature tends to zero. Although the cobosons are no longer behaving like ideal bosons,
the dissociated components of each bi-boson pair will both independently exhibit bosonic
behavior. This causes the 〈n̂0〉 to increase as the entanglement between the two constituent
bosons decreases. We can see this directly from the formula for ĉ† in Eq. (5). At x = 0
(no entanglement), the coboson operator is represented by ĉ† = â†b̂†. As T → 0, from Eq.
(12), the state of cobosons in the ground state can be described by the coboson number
state |N〉. So the NMV of the cobosons in the ground state is given by

〈N |ĉ†ĉ|N〉 = 〈Na, Nb|â†âb̂†b̂|Na, Nb〉 = N2, (5.18)

where a and b represent di�erent modes. Note that the NMV of bi-bosons is not same as
the mean occupation number of the dissociated components of bi-bosons (2N) at x = 0.
It can be explained that the enormous value N2 comes out of the sum of the correlation
functions in Eq. (9), where the correlations functions can exhibit super-bunching e�ects
by wave nature. When a pair of bosons is maximally entangled (x = 1), the 〈n̂0〉 converges
to N as temperature goes to zero.

For near maximal entanglement (K � N) between a pair of bosons, we can make the
approximation, χn+1/χn ≈ 1 + n/K [105]. As T → 0, the 〈n̂0〉 approaches

〈n̂0〉 = 〈n̂0〉x=1 +
N

K(1− e−β(1+N))
[N + 1− 2e−β

1− e−β +
2e−2β(1− e−βN)

N(1− e−β)2
]

T→0−−−→N +
N(N + 1)

K
≥ N,
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Figure 5.4: NMV of N = 100 cobosons in a two-level system as a function of T/T0: from
the bottom to the top (x = 0.9999, 0.99, 0.8, 0.7, 0.5, 0.2, 0.001). The small box on the
right-side corner represents the condensate fraction for x = 0.9999, 0.99. Here x represents
the degree of entanglement for a pair of bosons.

where 〈n̂0〉x=1 is given by Eq. (13). If the Schmidt number K goes to in�nity, then
the 〈n̂0〉 goes to N . For all regimes of x (0 < x < 1), we plot the 〈n̂0〉 as a function T
in Fig. 4. The 〈n̂0〉 decreases with increasing temperature as well as with the degree of
entanglement between the two constituent bosons. At T ∼ 0, the 〈n̂0〉 is maximized as a
decreasing function of entanglement which ranges from N2 to N . In contrast to cobosons
comprised of fermions, therefore, the 〈n̂0〉 decreases with entanglement between the two
constituent bosons, due to the super-bunching e�ects between the two constituent bosons.

5.4.2 Multi-level system: Realistic model

We consider a 3D isotropic harmonic trap which contains an average of N cobosons. When
a pair of bosons is not entangled (x = 0), the NMV of the ground state in Eq. (15) is given
by

〈N̂0〉 =
1

Z0

∞∑
n=0

e−β(E0−µ)nn2 =
z(1 + z)

(1− z)2
, (5.19)

where z = exp(βµ) is the fugacity and E0 has been taken to be zero. Compared with the
Bose-Einstein (BE) distribution where N0 = z/(1− z), the 〈N̂0〉 is always greater than the
BE distribution one. When a pair of bosons is maximally entangled (x = 1), the 〈N̂0〉 is
the same as for BE distribution. This rea�rms the potential for BEC of bi-bosons.
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Figure 5.5: NMV of an average number of N = 100 cobosons in a multi-
level system as a function of T/T0: from the bottom to the top (x =
0.9999, 0.99, 0.98, 0.97, 0.8, 0.7, 0.001). The small box on the right-side corner rep-
resents the condensate fraction for x = 0.9999, 0.99, 0.98, 0.97. Here x represents the
degree of entanglement for a pair of bosons.

In Fig. 5 we plot the 〈N̂0〉 as a function of T/T0, for bi-bosons exhibiting a range of
entanglement values. The 〈N̂0〉 decreases with the degree of entanglement between the two
constituent bosons. As bi-bosons become less entangled they behave more like a system
of two independent bosons. Hence at T/T0 ∼ 0, the 〈N̂0〉 is maximized as a decreasing
function of entanglement. Using Eq. (20), we derive the maximum condensate fraction at
x ∼ 0 as

〈N̂0〉x=0 = (1− e−1/N)
∞∑
n=1

e−n/Nn2 ≈ 2N2, (5.20)

where N is su�ciently large. In Fig. 5, we can also see that the transition temperature
decreases with increasing entanglement. This re�ects the fact that the 〈N̂0〉 decreases with
the degree of entanglement. Therefore, similarly to the two-level system, we observe that
the 〈N̂0〉 decreases as a function of entanglement between the two constituent bosons.

We have never experimentally observed the phenomenon of bi-boson BEC, but a BEC
experiment has been conducted using photons in an optical micro-cavity [93]. Based on
the techniques used to create a BEC from photons, we look forward to observing future
bi-photon condensates in optical cavities.
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5.5 Conclusion

We studied how the deviation from ideal bosonic behavior exhibited by cobosons a�ects
BEC. We speci�cally consider bi-fermions trapped in a two-level system or a 3D isotropic
harmonic system. By the Pauli exclusion principle between bi-fermions, we �gured out that
the number-operator mean value (NMV) of bi-fermions is the same as the mean occupation
number (MON) of bi-fermions in the 3D isotropic harmonic system. We demonstrated that
the (NMV) of bi-fermions in the ground state is an increasing function of entanglement
between a pair of fermions, where the whole regime of the entanglement parameter (0 <
x < 1) could be investigated only in the 3D isotropic harmonic system due to the Pauli
exclusion principle. Heuristically the higher the level of entanglement between a pair
of fermions the more bosonic the bi-fermions behave. Correspondingly, we found that the
transition temperature for the 3D isotropic harmonic system, i.e., the temperature at which
all the bi-fermions moved to the excited states, is an increasing function of entanglement.

Furthermore, we discussed coboson BEC, where each coboson is a bi-boson. Due to
the bunching e�ect between a pair bosons, we �gured out that the NVM of bi-bosons
can be larger than the total MON of bi-bosons, regardless of system. Surprisingly it
was shown that the NMV of bi-bosons in the ground state decreases with the degree
of entanglement between a pair of bosons, due to the bunching e�ect between a pair of
bosons. As the entanglement parameter (x) increased from 0 to 1, the NMV of bi-bosons
in the ground state decreased for T < T0 in the 3D isotropic harmonic system. The
higher the entanglement the more closely the bi-bosons imitated indivisible bosons. When
the entanglement between a pair of bosons became su�ciently small, the bi-boson pairs
dissociated, increasing the bunching e�ect in the NMV of bi-bosons. Correspondingly, the
transition temperature for the 3D isotropic harmonic system decreased with increasing
entanglement.

This may open a new avenue for detecting entanglement at the microscopic level using
a macroscopic measurement. In other words, the condensation rate could be used as a
witness for entanglement.

Another direction to explore is to study composite particles that involve more than two
entities. Clearly, it is more complicated to study these kinds of composite particles due to
the lack of Schmidt decomposition. However, it would be interesting to see if some of the
tools from quantum information and entanglement theory may be exploited to characterise
these kinds of particles.

This work was supported by the National Research Foundation and Ministry of Edu-
cation in Singapore. S.R. was supported by Canada's NSERC, MPrime, CIFAR, and CFI
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Chapter 6

Entropic Version of the

Greenberger-Horne-Zeilinger Paradox

Most of the content of this chapter was published in [137]. I proposed the main idea of
the paper and did some of the calculations, and double checked the rest of them. I also
contributed in writing the paper.

6.1 Introduction

It was �rst observed by Bell [12] that bipartite quantum systems can violate local realism
and later this observation was extended to multipartite systems [119, 3, 11]. It was also
shown that for more than two particles it is possible to formulate the Greenberger-Horne-
Zeilinger (GHZ) paradox [74], that is an all-versus-nothing contradiction of local realism,
in a sense that it employs deterministic measurement outcomes. Around the same time it
was shown that the local realism of bipartite systems can be studied using the notion of
Shannon entropy and the bipartite information-theoretic Bell inequalities were proposed
[23]. However, multipartite entropic inequalities have not been constructed up to now. In
this work we extend the previous results, provide a tripartite information-theoretic Bell
inequality and formulate an entropic version of the GHZ paradox.
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6.1.1 GHZ Paradox

The original GHZ paradox [74] occurs in multipartite quantum systems. In a simplest
scenario one considers a system of three qubits in the GHZ state

|GHZ〉 =
1√
2

(|000〉+ |111〉) (6.1)

and four observables A = Y Y X, B = Y XY , C = XY Y and D = XXX, where X and Y
are Pauli operators (whose measurement outcomes are ±1) and we used the simpli�ed no-
tation XXX ≡ X⊗X⊗X. Any local realistic theory that assigns measurement outcomes
to local observables (deterministic) necessarily predicts that the product ABCD = 1, since
in this product each ±1 observable X and Y occurs twice. However, for the GHZ state
all four observables are determined and are A = −1, B = −1, C = −1 and D = 1 which
contradicts local realistic predictions.

Here, we show that similar all-versus-nothing contradiction can be formulated in terms
of information. In particular, we de�ne four observables A, B, C and D for which classical
reasoning predicts that if we have full knowledge of A, B and C, then we automatically
have full knowledge of D. However, for the GHZ state one has full knowledge of A, B, C
and at the same time no knowledge of D at all.

6.1.2 Triangle Principle

We use the previously developed information-theoretic distance approach to nonclassical
correlations [100, 156] and propose a new distance-like property that can be applied to
binary ±1 measurements. This property quanti�es multipartite correlations in terms of
Shannon entropy and can be applied to derive a tripartite inequality whose structure re-
sembles the tripartite Mermin inequality [119]. However, in our case we relate entropies
of multipartite measurement outcomes, not multipartite correlation functions like in Ref.
[119]. The inequality is satis�ed whenever the information-theoretic distance-like property
applies to the system (which is true for example in case of classical local realistic sys-
tems), but is violated by measurements on quantum systems. Interestingly, our tripartite
inequality can be maximally violated within quantum theory, which does not happen in
the bipartite case [23]. Due to this fact, our inequality can be interpreted as an entropic
version of the GHZ paradox.

The information-theoretic distance was originally proposed by Zurek [190]. Initially, it
was de�ned using the notion of Kolmogorov entropy, but it can be also de�ned via Shannon
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entropy [100, 156] as
d(A,B) = H(A|B) +H(B|A), (6.2)

where A and B are random variables, H(A|B) = H(AB)−H(B) is the conditional Shannon
entropy, H(B) is the entropy of the variable B and H(AB) is the joint entropy of A and
B. It can be shown that H(A|B) + H(B|A) satis�es all of the requirements of a distance
[100].

The information-theoretic Bell inequalities can be constructed via multiple applica-
tion of the triangle inequality [100], e.g., d(A,B) ≤ d(A,B′) + d(B,B′) and d(B,B′) ≤
d(A′, B′) + d(A′, B) give

d(A,B) ≤ d(A,B′) + d(A′, B′) + d(A′, B). (6.3)

Here, {A,A′} and {B,B′} label di�erent measurable properties of Alice's and Bob's sys-
tems, respectively, and d(A,B), d(A,B′), . . . are information-theoretic distances between
them. The natural intuition behind this inequality is that the shortest path goes directly
from A to B and if one chose to go around through B′ and A′ one would have to take a
longer route. The violation of such inequalities indicates that the system does not obey
some properties of a metric and it was shown that this can happen for quantum systems
[100, 156].

The notion of a distance is designed as a property between two points. In the information-
theoretic framework a distance describes a relation between two random variables � in our
case, two jointly measurable observables. It is therefore somehow unnatural to expect
that the same framework can be adopted for three or more jointly measurable properties.
However, here we show that this can be done.

The rest of the chapter is organised as follows. First, we introduce an information-
theoretic distance-like property that applies to more than two measurements. Next, we
use this property to derive a tripartite information-theoretic Bell inequality. Then, we
show that this inequality can be maximally violated within quantum theory and interpret
it as an entropic version of the GHZ paradox. Finally, we discuss our results and suggest
further avenues of research on this topic.

Distance-like property. Let us consider the following function de�ned for binary observ-
ables A and B

d (A,B) = H (A ·B) , (6.4)

where H (.) is the Shannon entropy, i.e. −p+1 log(p+1)−p−1 log(p−1) for outcomes ±1 with
di�erent probabilities p±1. Before we proceed, we should emphasis that this function is a
distance only if the outcomes of A and B are ±1. The measurement of A ·B is one where
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the outcomes are the product of the outcomes of A and B, i.e. if the outcome of A is a
and the outcome of B is b , then the outcome of A ·B is ab.

The function in Eq.(6.4) satis�es all of the following properties.

1. d (A,A) = H(A ·A) = 0 because the outcome of this measurement is always one and
d (A,B) ≥ 0 because H (X) ≥ 0, ∀X.

2. d (A,B) = d (B,A).

3. The triangle inequality: H (A ·B) ≤ H (B · C) +H (A · C) , ∀A,B,C.

The triangle inequality is satis�ed because

H (A ·B|A · C,B · C) = 0, (6.5)

In other words, if the outcomes of the two measurements A ·C and B ·C are known, then
the outcome of A · B is the product of the two outcomes and is therefore known. More
precisely,

H (A ·B) ≤ H (A ·B,B · C,A · C) = H (A ·B|A · C,B · C) +H (B · C,A · C) (6.6)
= H (B · C,A · C) ≤ H (B · C) +H (A · C) . (6.7)

In the above we used the facts that H(AB) = H(A|B)+H(B), H(AB) ≤ H(A)+H(B)
and H(A) ≤ H(AB).

The distance in Eq. (6.4) can simply be extended to a distance-like property for the
multipartite measurements. Note that for a set of operators {A1, A2, . . . , An} one can
de�ne

δ (A1, A2, . . . , An) = H (A1 · A2 · . . . · An) , (6.8)

which is the natural extension of the distance for two operators. We need this later to �nd
the multi-partite Mermin-like inequality.

Tripartite information-theoretic Bell inequality. Let us examine the properties of (6.8)
in the context of multipartite measurements. For multipartite measurements, Ai would
be the local observable. Within quantum theory this measurement would be represented
by the local Ai operator for the speci�c party conjugated with the identity operators for
other parties. For instance, for the measurement of A for Alice and B for Bob and C
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for Charlie one would have A1 = A ⊗ I ⊗ I, A2 = I ⊗ B ⊗ I, A3 = I ⊗ I ⊗ C leading to
δ (A1, A2, A3) = H (A⊗B ⊗ C).

The function δ is obviously symmetric, but it also has a nice associative property which
is

δ (A1, A2, A3) = d (A1, (A2 · A3)) . (6.9)

This comes from the fact that H (A1 · A2 · A3) = H (A1 · (A2 · A3)). Note that using to the
symmetry property, any two Ai could be associated.

Now we derive the following inequality:

δ (A1, B1, C1) ≤ (6.10)
δ (A1, B2, C2) + δ (A2, B2, C1) + δ (A2, B1, C2) .

The derivation is as follows:

δ (A1, B1, C1) ≤ d (A1, (B2.C2)) + d ((B2.C2) , (B1.C1))

= d (A1, B2.C2) + δ (B2, C1, B1, C2)

≤ δ (A1, B2, C2) + d (A2, B2 · C1) + d (A2, B1 · C2)

= δ (A1, B2, C2) + δ (A2, B2, C1) + δ (A2, B1, C2) .

The �rst and the last inequalities come from using the triangle inequality with B2 ·C2 and
A2 respectively and equality in the middle comes from the symmetry property.

Note that the derivation holds not only for the function δ, but for any distance with the
associativity property in (6.9). For instance, applying the generalisation of the co-variance
distance [100, 156], δ (A1, A2, A3) = 1 − 〈A1 · A2 · A3〉 to the inequality (6.10) gives the
original tripartite Mermin inequality [119].

The inequality (6.10) was derived using the classical properties of Shannon entropy,
therefore it must hold in any theory that obeys them. In particular, in local realistic
theories there exists a joint probability distribution for all observables A1, . . . , C2 [60] and
as a consequence there exists a joint entropy H(A1 . . . C2) which implies the validity of
(6.10). However, one may expect the violation of this inequality if a theory does not admit
a joint probability distribution.

6.2 Quantum violation and the paradox

Let us consider a three-qubit system in a GHZ state |GHZ〉 = 1√
2
(|000〉 + |111〉) shared

between Alice, Bob and Charlie. Each of them performs one of the two possible local
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measurements on their subsystem: A1, A2, B1, . . . As previously discussed, we can choose
δ(Ai, Bj, Ck) = H(Ai ⊗ Bj ⊗ Ck) (for i, j, k = 1, 2) and plug these measurements to the
inequality (6.10) to obtain

H (A1 ⊗B1 ⊗ C1) ≤ H (A1 ⊗B2 ⊗ C2)

+ H (A2 ⊗B1 ⊗ C2) +H (A2 ⊗B2 ⊗ C1) . (6.11)

Note that Ai ⊗ Bj ⊗ Ck are binary ±1 observables, therefore H(Ai ⊗ Bj ⊗ Ck) cannot
exceed one. If this entropy is equal to one, then we have no knowledge of Ai⊗Bj⊗Ck and
if it is zero, we are certain about the value of this observable. To simplify the notation we
set A ≡ A1⊗B2⊗C2, B ≡ A2⊗B1⊗C2, C ≡ A2⊗B2⊗C1 and D ≡ A1⊗B1⊗C1. The
inequality (6.11) takes form

H(D) ≤ H(A) +H(B) +H(C). (6.12)

It bounds the entropy of D via the entropies of A, B and C. In particular, it predicts that
if A, B and C are known (their entropy is zero), then D must be known too. An additional
argument for that is along the GHZ reasoning � if the outcomes are predetermined, then
the values of A, B, C and D (denoted as a, b, c and d) must multiply to one (abcd = 1).
Therefore, if we know A, B and C, we automatically know D, since d = abc.

However, quantum theory allows for a violation of the inequality (6.12). If Alice, Bob
and Charlie chose

A1 = B1 = C1 = cos
(π

6

)
X + sin

(π
6

)
Y,

A2 = B2 = C2 = cos
( π

12

)
X − sin

( π
12

)
Y, (6.13)

they would observe that H(A) = H(B) = H(C) = 0, but at the same time H(D) = 1. We
achieved maximal algebraic violation and observed that although A, B and C are known,
D is completely unknown!

6.3 Test via compression

The plausible feature of the original GHZ paradox is that it does not involve probabilities,
despite the fact that quantum theory is fundamentally probabilistic. Here, the entropies
H(A), H(B) and H(C) are zero, therefore the corresponding measurement events are fully
predetermined. On the other hand, H(D) = 1 indicates that D is maximally random. Still
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the entropic GHZ paradox can be investigated without invoking quantum probabilities by
using the data compression approach proposed in [101].

Imagine that Alice, Bob and Charlie perform n rounds of measurements Ai, Bj and
Ck, respectively. They produce bit strings a(i) = a

(i)
1 a

(i)
2 . . . a

(i)
n , b(j) = b

(j)
1 b

(j)
2 . . . b

(j)
n , and

c(k) = c
(k)
1 c

(k)
2 . . . c

(k)
n . Due to the fact that each measurement round is performed on a

di�erent independent triple of qubits prepared in the GHZ state, the subsequent bits in
each string are independent and identically distributed (i.i.d.). In this case, the expression
nH(Ai⊗Bj ⊗Ck) is the Shannon entropy of a bit string that is a concatenation (XOR) of
bit strings a(i), b(j) and c(k), i.e. H(a(i) ⊕ b(j) ⊕ c(k)).

For i.i.d. bit strings Shannon entropy gives the best possible compression rate [42].
In case of real life compressors, like gzip or Hu�man code, the compression rate is worse
than the Shannon entropy. Still, for uniform (deterministic) bit strings a(i)⊕ b(j)⊕ c(k) the
compression rate C(a(i) ⊕ b(j) ⊕ c(k)) obtained by a real life compressor C is of the order
O(log n) [14, 33]. It is therefore justi�ed to use a modi�ed version of the inequality (6.11)

C(a(1) ⊕ b(1) ⊕ c(1)) ≤ C(a(1) ⊕ b(2) ⊕ c(2))

+ C(a(2) ⊕ b(1) ⊕ c(2)) + C(a(2) ⊕ b(2) ⊕ c(1)) (6.14)

as a valid bound on classical theories, if the compression rates on the right hand side are
O(log n). The above inequality will be violated by the quantum measurements discussed
in the previous section, because the bit strings on the right hand side are predicted to be
uniform, whereas the bit string on the left hand side is predicted to be maximally random,
therefore C(a(1)⊕ b(1)⊕ c(1)) = O(n). Although we do not provide the proof, we speculate
that the above inequality will be also valid (as a classical bound) in case of experimental
noise and for an arbitrary measurement scenario.

Interestingly, the tripartite inequality (6.11) is more robust to noise than the bipartite
information-theoretic inequality studied in [23]. In case of the white noise admixture I/8
to the pure GHZ state ρ(p) = (1− p) |GHZ〉〈GHZ| + pI/8, the value of p for which
the violation vanishes is p ≈ 0.123. The corresponding threshold value for the bipartite
inequality [23] is p ≈ 0.04. Of course, this comparison can be only used as a reference,
since in reality it is much harder to engineer the tripartite GHZ state than the bipartite
singlet state.
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6.4 Conclusions

We proposed a tripartite information-theoretic Bell inequality based on a distance-like
property. The inequality is maximally violated by measurements on three qubits in the
GHZ state and we used this fact to formulate the entropic version of the GHZ paradox.
Finally, we discussed the test of this paradox in terms of compressibility of bit strings
generated from the measurement data obtained by parties sharing the three qubits and
showed that our multipartite scenario is more robust to noise than the corresponding
bipartite scenario.

Arguably the entropic inequality may be interpreted to be more fundamental than cor-
relation inequalities because arguably information may be seen as being more fundamental
than probabilities [50]. There are even proposals for de�ning and calculating entropy with-
out probabilities. For instance in thermodynamics one can calculate the entropy using the
free energy without knowing the probabilities directly.

Another signi�cance of the entropic inequalities is that they may be easier to be ex-
tended to the macroscopic regime. We know from thermodynamics that the microscopic
entropy could simply extend to the macroscopic one. Similarly, one may expect that a char-
acterization of quantum mechanics in terms of information may have a smooth transition
from the microscopic scale to the macroscopic one.

There are several open problems that require further investigation. First of all, it is
natural to look for an extension of our result to more than three parties and to higher-level
systems. Moreover, bipartite information-theoretic Bell inequalities are less e�cient in
detection of the lack of local realism than the correlation based inequalities. It is therefore
important to investigate the class of states violating our inequality and to compare this
class with the class of states violating the Mermin inequality. It is also interesting to explore
this kind of inequalities for more practical informations like Renyi entropies that can be
measured experimentally. more Finally, it would be important to prove (or disprove) our
conjecture that the inequality (6.14) is always valid.

Acknowledgements. S.R. was supported by Canada's NSERC, MPrime, CIFAR, and
CFI and IQC. P. K. and D. K. were supported by the Foundational Questions Institute
(FQXi) and by the National Research Foundation and Ministry of Education in Singapore.
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Chapter 7

Conclusion

I probed the transition between microscopic and macroscopic quantum e�ects at di�erent
levels. As I mentioned in the introduction chapter, quantum systems could have two
di�erent kind of macroscopicity: the state could be macroscopic and the measurements
could be macroscopic. In this thesis, we gave example of the all four possible situations
(See �gure 1.1).

We mentioned some of the proposals and experiments for macroscopic measurements
on macroscopic quantum states and and pointed out the in most cases, the measurements
are highly sensitive to the precision of measurements and coarse-graining. We studied
a proposal that was known to be a counter-example to this trend and showed that this
proposal also su�er from the high precision requirement, it only requires a di�erent kind
of precision, namely, control precision. We also conjectured that this is a general property
of all of the macroscopic quantum states. Speci�cally the conjecture is that a macroscopic
measurement of macroscopic states would require a precision that increases with the size
of the system, this precision may be in the outcome or control of the measurement, but
either ways, it makes the measurement challenging.

We also proposed a solution to go around this problem. We proposed to use a mi-
croscopic measurement on a macroscopic measurement and showed that this can be used
to demonstrate entanglement between a single photon and a macroscopic state. We also
mentioned that idea was exploited experimentally.

We also looked at the Bose-Einstein condensation properties of composite bosons and
showed that the condensation rate depends on the entanglement between the entities of
the composite particle. This suggests that condensation rate, although a macroscopic
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(thermodynamic) behaviour of these systems, can be used to witness entanglement at a
microscopic level, between the entities of the composite particle.

At a more abstract level, we also found an entropic Mermin-like inequality which has
the potential to be extended for macroscopic systems, although at this point, it only applies
to microscopic measurements of microscopic states.

We also solved a ten year old problem related to HBAC, namely the limit of cooling
in these methods. We proved the asymptotic state and the cooling limit of the optimal
technique of cooling which therefore applies to all the HBAC techniques as well.
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