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ABSTRACT 

Purpose:  Prolonged sitting while working in an office has become a standard function in 

our society.  While seated postures do conserve energy and permit a worker to focus on a 

task, the posture also involves a significant amount of spine flexion.  Held for a 

prolonged period of time, this non-neutral posture has the potential to generate low back 

pain through the loading, strain and compression tissues of the low back and buttocks.  

Indeed, literature points to an association between prolonged occupational sitting and 

back pain: an expensive problem in terms of direct and indirect health care costs.  Two 

factors involved in this problem, the flexed posture of the low back and the prolonged 

constrained nature of sitting, could be manipulated in order to reduce their respective 

contributions to pain and injury pathways.  Specifically, decreasing low back flexion 

could be achieved with various office chair design features and the quasi-static loading 

scenario could be broken up with movement.  The purpose of this thesis was to explore 

the effect of these two strategies on biomechanical parameters and perceived pain during 

prolonged sitting.   The first part of this thesis explores the effect office chair design 

features including lumbar support, forward seat pan tilt and a scapular relief backrest 

have on low back posture, muscle activity and pain compared to a control chair 

configuration.  The second part of this thesis explores the effect active (walking) and 

passive (lumbar spine manipulation) movement interventions have on those same 

biomechanical factors.   

Methods:  Twenty-eight participants (14 male and 14 female) were recruited for a 

radiographic study of low back and pelvic postures adopted in standing, maximum 

flexion and each of the four office chair conditions:  control configuration, lumbar 
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support, anterior seat pan tilt and backrest with scapular relief.  Measures of lumbar 

lordosis, intervertebral joint angles and sacral tilt were taken from lateral lumbar 

radiographs and compared between conditions.   To assess these chair features in a more 

realistic way, this radiographic study was followed by an in-vivo laboratory study 

allowing for prolonged exposures to each condition.  In this study, 31 (15 males and 16 

females) completed a standardized word processing task while sitting in each of the four 

chair conditions (control, lumbar support, forward seat pan tilt and scapular relief, 

presented in a random order) during four 30-minute blocks. Measures of spine posture 

(upper back, lower back and pelvis), torso muscle activity (abdominal, back and gluteal), 

seat pan pressure and perceived pain were collected throughout this two-hour exposure 

and compared between conditions.  To assess the impact of walking breaks on 

biomechanical parameters and perceived pain throughout a two-hour sitting exposure, 32 

subjects (16 males and 16 females) were recruited for two data collections.  In a random 

order, the subjects experienced either a control experiment that consisted of completing a 

standardized word processing task while sitting for two-hours on a neutral office chair 

seat pan (backrest removed) or an intervention experiment that was identical to the 

control session with the exception of two, two-minute, self-paced walking breaks at 40 

minute intervals.  Measures of spine posture (upper back, lower back and pelvis), back 

and pelvic muscle activity, seat pan pressure and perceived pain were collected 

throughout these two-hour exposures and compared between conditions.  The effect of a 

lumbar spine manipulation, a passive form of movement imparted to the body, on 

biomechanical parameters of muscle activity, back and pelvic posture and perceived pain 

was examined in a shorter intervention study.  Twenty subjects (10 male and 10 female) 
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received either a lumbar spine manipulation or a control maneuver (lumbar spine 

manipulation set-up with preload but no thrust) in a random order after 40-minute blocks 

of sitting on an office chair seat pan (backrest removed) completing a standardized word 

processing task.  Surface muscle activity for the low back and pelvis, indwelling activity 

of a deep back muscle, spine and pelvic postures and perceived pain were compared 

between conditions. 

Results:  The radiographic study confirms the extensive lumbar spine flexion in sitting 

compared to upright standing and maximum flexion.  Sitting in an office chair, regardless 

of design features to reduce spine flexion, results in postures of approximately 70 % of 

maximum range of low back flexion.  No significant differences in low back posture 

were found between the chair features or control configuration, however; significantly 

more anterior rotation of the pelvis was found with the lumbar support and forward seat 

pan configurations.  In the prolonged sitting experiment, Study 2, use of the lumbar 

support and seat pan tilt features were again found to impart significant anterior rotation 

of the pelvis but these features also resulted in significantly more upright spine postures 

as well.  These improved postures were maintained actively by muscles in the seat pan tilt 

condition and passively by the backrest in the lumbar support condition.  Chair conditions 

had minimal impact on seat pressure variables.  Despite the improvements in posture with 

two of the chair features and regardless of muscle activity levels, perceived back pain 

steadily increased to clinically significant levels throughout the two-hour exposure.  

Analysis of the pain scores revealed the presence of statistically different sub-groups:  

non-pain developers, subclinical pain developers and pain developers.  Reassessing the 

effectiveness of each chair condition in light of these groups revealed that pain 
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developers demonstrated a clear intolerance for the seat pan tilt configuration.  In the 

third study, brief walking breaks of self-selected intensity had no effect on most 

biomechanical factors with the exception of reduced seat pressure and seat pressure area.  

The walking breaks were able to provide a significant, but short-lived, reduction in 

perceived pain; however, they were not able to reduce the level of perceived pain that 

develops by the end of a two-hour exposure to prolonged sitting.  Similar to the walking 

breaks examined in Study 3; lumbar spine manipulation does not appear to effect 

postures or ultimate perceived pain levels during prolonged sitting.  However, the results 

from Study 4 show an immediate reduction in perceived pain following both the 

manipulation and control maneuvers and a significant reduction in muscle activity 

following spine manipulation.   

Conclusions:   Both posture and movement interventions are important to consider when 

addressing the issue of low back pain associated with sitting.  However, it does appear 

that altering seated posture through chair design features alone is not enough to solve this 

problem.  Indeed, while features such as lumbar supports and forward seat pan tilt have 

been shown reduce the flexion of the low back and pelvis; there is the potential for these 

features to add to the problem as opposed to reducing it.   Specifically, forward seat pan 

tilt without appropriate back support will likely increase pain in a portion of the 

population.  Movement interventions appear to be more promising in solving this 

problem, however, the ratio of work/break and intensity, frequency and duration 

parameters need to be explored further.  Brief walking breaks at 40-minute intervals can 

provide significant immediate relief of sitting associated back pain, however, this 

intervention is not able to alter biomechanical parameters or ultimate perceived pain in 
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prolonged sitting.  Similarly, there is evidence that lumbar spine manipulation may 

provide short term relief from sitting induced pain as well as reduced muscle activity in 

sitting, but future work needs to determine the implication of reduced muscle activation 

as well as the intervention dosage required to obtain longer lasting relief from pain.  
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Chapter 1 

1.0 Introduction 

 

Prolonged sitting has become a standard function of modern society.  Research shows 

that adults in developed countries spend up to one-third of the workday sitting  (Clemes 

et al., 2014)  and most fail to compensate with appropriate activity outside of work 

(Clemes et al., 2014; Jans et al., 2007).  A number of epidemiology reports have linked 

this sedentary lifestyle to increased risk of obesity, diabetes, cardiovascular disease and 

low back pain  (Frymoyer et al., 1980; Frymoyer and Cats-Baril, 1991; Healy et al., 2008; 

Hu, 2003; Hu et al., 2003; Katzmarzyk et al., 2009; Katzmarzyk and Lee, 2012; 

Mummery et al., 2005; Sisson et al., 2009). As such, the World Health Organization has 

highlighted the importance of the workplace for promoting healthy lifestyle choices 

regarding nutrition and physical activity (WHO/WEF, 2008). Despite this call to action, a 

systematic review by Chau et al. (2010) found literature regarding the effectiveness of 

workplace interventions to reduce prolonged sitting is too sparse to establish conclusions.  

From the perspective of low back pain, evidence-based solutions to the problem of 

prolonged sedentary work postures have also been slow to emerge.  While the field 

identifies the importance of reducing sitting duration, there has been limited consensus on 

administrative (i.e. work-rest cycles) or chair design strategies to improve this aspect of 

musculoskeletal health.   In this context, it is not surprising that low back pain remains 

one of the leading causes of lost work time and productivity (Courtney and Webster, 
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1999; Goetzel et al., 2003) and a significant burden on health care systems worldwide 

(Dagenais et al., 2008).   

 

1.1    General Themes and Research Questions 

 

The problem that this thesis addresses is that of low back pain associated with prolonged 

sitting.  In order to move forward with the large-scale studies necessary to ultimately 

minimize this issue, researchers must address the underlying scientific foundation and 

answer a few fundamental questions first.   Low back pain could be generated by a few 

different mechanisms in sitting: flexed postures place stress on the posterior elements of 

the spine, constant low-level muscle activation produces irritating metabolic by-products 

of fatigue and compression of tissues at multiple points (i.e. seat-interface) reduces blood 

flow.  All of the previous scenarios can trigger nociceptive signals to pain afferents via 

specific receptors (i.e. mechanoreceptors or chemoreceptors), which in turn are perceived 

as pain by the higher centers of the nervous system.  When these postures are maintained 

for long periods of time the potential for pain and injury increases, especially with time-

dependent changes to flexibility and muscle control from the effects of viscoelastic creep 

and stress relaxation.  Therefore, minimizing flexion and introducing movement could be 

considered two important avenues to explore with respect to reducing sitting associated 

pain.  Taking the workplace as a whole, it is logical to share focus between improvements 

to seated posture (i.e. reducing flexion passively by elements of the chair) as well the 

introduction of movement (i.e. walking breaks and passive manual therapies). The theme 

of this thesis is how lumbar spine posture facilitated by the office chair and movement 
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interventions performed by, or on, the occupant can improve biomechanical aspects of 

sitting.   Thus, the two fundamental questions this thesis will aim to answer include: 

 

1. Is there a general chair feature that has the greatest influence on lumbar 

spine posture?   

 

This question was addressed by the first two studies of the thesis.  In order to provide 

a gold standard measure of lumbar spine and pelvic postures, radiographs were used 

in the first study to determine which, if any, chair design features are effective at 

reducing low back flexion in sitting compared to a control chair configuration.  

Specifically, these features either targeted the low back indirectly (above with an 

altered thoracic backrest and below with an anterior tilt of the seat pan) or directly at 

the low back (lumbar support).   To address the effect of these design interventions in 

a more realistic scenario, Study 2 investigated a number of biomechanical measures 

(muscle activity levels measured by EMG, spine postures measured by 

accelerometers, seat pressure measured by pressure mat and perceived pain ratings 

via questionnaires) during a prolonged period of sitting at a computer workstation 

completing a standardized data entry task. 

 

2. Does movement, either active or passive, have the potential to improve the 

biomechanics of prolonged sitting and impact perceived pain?  
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a. Walking Breaks 

 

Study 3 used an intervention design to answer a very basic, and to date 

unanswered, question regarding the activity advice that is often recommended by 

ergonomists and clinicians alike.   What is the effect of walking breaks on 

biomechanical variables during prolonged sitting?  Standardized walking breaks 

of two minutes duration, at thirty-minute intervals were investigated for their 

effect on a biomechanical analysis of prolonged sitting compared to a control 

session.   

 

b. Spinal Manipulative Therapy to the Low Back  

 

In contrast to dynamic whole body movements, Study 4 investigated the potential 

for reflex-mediated responses of a passive movement intervention, a high-velocity 

low-amplitude lumbar spine manipulation, to alter biomechanics factors such as 

muscle activity, lumbar spine posture and perceived pain in prolonged sitting. 

 

A schematic relating the problem, questions and themes of this thesis to the studies 

completed is presented in  Figure 1. 
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 Figure 1: Schematic of thesis problem, questions, themes and research approach. 
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Chapter 2 

2.0 Review of Literature 

 

The following sections will address the current literature relevant to this work and 

highlight areas where there is a need for further research or deficiencies in current 

knowledge related to low back pain and prolonged seated exposures. 

 

2.1 Spine Biomechanics of Sitting 

 

This section will review the principle areas of spine orientation, forces and mechanisms 

for pain generation in seated postures.  

 

2.1.1 Kinematics: spine orientation in sitting 

 

To accommodate the sitting posture, the body must adopt the following sagittal plane 

changes relative to standing:  flexion at the hips, anterior rotation of the pelvis and 

flexion of the lumbar spine (Andersson et al., 1979a).  Since the human skeleton is 

composed of linked segments local lumbar spine posture can be altered indirectly by the 

movement of segments above or below.  Lumbar spine angles have been shown to 

depend directly on both lower  (Bridger et al., 1989a; Bridger et al., 1989b; Brunswic, 

1984; Eklund and Liew, 1991; Keegan, 1953) and upper limb (Stagnara et al., 1982) 

kinematics.   It appears that the closer the joint being moved is to the spine, the greater 
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effect it has on spine posture.  For instance, Eklund and Liew (1991) demonstrated that 

hip flexion angles had a greater impact on lumbar lordosis angle than those at the knee. 

This rotation of the pelvis and flattening of the lumbar spine (flexion, loss of lumbar 

lordosis or a decrease in the lumbar lordosis angle) has been documented radiologically 

in sitting in an automobile seat (De Carvalho et al., 2010; Hazard and Reinecke, 1995), 

on a stool  (Andersson et al., 1979b) and in regular chairs  (Alexander et al., 2007; Lord 

et al., 1997).  All authors have found an approximate decrease in lumbar lordosis angle of 

40º in sitting compared to standing.  The MRI study completed by Alexander et al (2007) 

also clearly demonstrated the posterior migration of the nucleus pulposus in sitting.  

External measures of spine posture tend to underestimate radiographic measures (Adams 

et al., 1986).   Despite this, these laboratory-based studies also show significant flexion of 

the low back in sitting often achieving near end range of active lumbar spine motion.  For 

instance, McGill and Fenwick (2009) reported average lumbar flexion angles of 23º (11) 

in airplane seats with most subjects sitting at 97 % of their total flexion range of motion.  

In a study comparing office chairs and automobile seats, Beach et al. (2008) found 

lumbar flexion angles of approximately 60 % of maximum flexion (ROM, SD 7) in office 

chairs and 55 % ROM (SD 5) in automobile seats for males and approximately 45 % 

ROM (SD 5) in office chairs and 59 % ROM (SD 5) in automobile seats for females.   

Long periods of flexed low back postures have been linked to a number of negative 

effects including:  altered muscle control (Morl and Bradl, 2013; O'Sullivan et al., 

2006a), increased disc pressure (Wilke et al., 1999), disrupted position sense  (O'Sullivan 

et al., 2013) and perceived pain  (Corlett, 2006a; Corlett, 2008; Damkot et al., 1984a; 

Frymoyer et al., 1980a; Magora, 1972; Pope et al., 2002a; Wilder et al., 1988).   
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There is some suggestion from the literature that gender differences in seated low back 

posture exists; however, contradictory results have been presented.  Females have been 

shown to adopt a more upright trunk posture in sitting than males in office chairs (Beach 

et al., 2008; Dunk et al., 2005; Gregory et al., 2006) but not airplane  (McGill and 

Fenwick, 2009) or automobile seats  (De Carvalho and Callaghan, 2011).  Further, a field 

study examining female office workers conducted by Mork and Westgaard (2009), found 

all participants sat with a notable amount of lumbar flexion and low trunk muscle activity 

throughout the day, which appears to contradict laboratory findings despite having a male 

group for comparison.  Perhaps effects of gender are sensitive to specific chair designs or 

work tasks thus confounding comparisons between studies.  Adopting different postures 

in sitting, i.e. more or less lumbar flexion, could lead to alternate pathways for pain and 

injury generation.  For example, more lumbar flexion would place greater stress on 

passive elements leading to ligamentous strain and less lumbar flexion would imply 

greater levels of muscle activity to maintain the posture leading to a build-up of irritating 

chemical byproducts.  Therefore, a better understanding of any potential gender 

differences in seated postures and their relationship to chair design are important areas 

for future research. 

 

Pain and injury can also change the low back postures adopted during sitting.  

Participants that report pain in response to sitting have been shown to adopt a more 

flexed lumbar spine and posterior rotation of the pelvis (Dankaerts et al., 2006a).  This 

may be related to decreased postural control and proprioception that has been 
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demonstrated in clinical populations (O'Sullivan et al., 2003a; Radebold et al., 2001) or it 

may be a coincidental finding.  It cannot be conclusively concluded that pain changes the 

way people sit.  For instance, pain free subjects have been shown to adopt a more flexed 

lumbar spine posture out of habit compared to what they, themselves as well as an 

external examiner consider ideal or more neutral (O'Sullivan et al., 2010).  In this study, 

it was shown that subjects could be reliably repositioned into a neutral or idea sitting 

posture, however, this work has yet to be replicated in a pain population. Adult subjects 

that develop pain in sitting have also been shown to have higher extensor muscle 

activation levels than non-pain developers (Dankaerts et al., 2006b), but this was not 

found in a follow up study of younger participants aged 14 to 16 years old (Astfalck et 

al., 2010; Dankaerts et al., 2006a).  It appears that there are many factors that could cloud 

the relationship between pain and seated postures.  Future work should attempt to 

determine these factors and better answer what comes first: posture or pain.   

 

Postures of the low back in sitting should not be considered static.  It appears that it is 

natural for some to adopt a dynamic strategy of postural adjustments over prolonged 

period of time (Black et al., 1996; Callaghan and McGill, 2001b).  The amount and type 

of movement, however, may differ between populations.  The work of Telfer et al. (2009) 

and Vergara and Page (2002) suggests pain free individuals make larger movements than 

those with back pain and preliminary work has shown that subjects with low back pain 

demonstrate greater fidget/shift movements during prolonged sitting  (Dunk and 

Callaghan, 2010).  There is also some evidence that gender differences in movement 

strategies exist, with females being found to shift their low back posture more frequently 
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than males (Rohlmann et al., 2014).  Whether these postural movements are proactive or 

reactive remains to be determined.  Regardless, the quality and quantity of these in-chair 

movements must not be enough to minimize pain as the majority of participants in lab-

based studies are shown to develop steadily increasing levels of perceived pain 

throughout prolonged exposures to sitting (Beach et al., 2005a; Dunk and Callaghan, 

2005).   

 

2.1.2 Kinetics: forces, pressures and strains in the seated spine 

 

Biological tissue relies on mechanical loading and stimulation to grow and maintain 

itself.  Specifically, the human spine needs cyclic compressive loading to maintain health.  

The alternation of loading and unloading the spine facilitates disc cell metabolism by 

hydrostatic pressure mediated diffusion (Grieco, 1986; Kramer, 1973).  However, there is 

a trade off in the amount of compressive loading that is beneficial.  Both low loading 

scenarios such as microgravity environments (Sayson and Hargens, 2008) or prolonged 

bed rest (Belavy et al., 2011) as well as high loading scenarios such lifting heavy loads 

(Magora, 1972) have the potential to result in pain and injury to the spine.  In sitting, 

compressive loading is low yet fairly static.  In a study examining low back loading at the 

L4/L5 disc level, Callaghan and McGill (2001) found average compressive loads to be 

significantly higher in unsupported sitting (1698 N SD 467) than standing (1076 N SD 

243).  The authors conclude that while standing can provide adequate rest from the 

passive strain induced by the seated posture, the static loading and muscular activation 

levels are not different enough to provide relief from discomfort and injury generation 
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pathways.  Further, the low level muscular activation could result in a build-up of 

irritating metabolic waste products such as lactic acid (Callaghan and McGill, 2001b).   

 

While the forces themselves are well below compressive tolerance values, intradiscal 

pressure has generally been shown to increase in sitting from standing (Andersson et al., 

1975; Callaghan and McGill, 2001a; Nachemson, 1975).  Reflective of an increase in 

pressure are reports of decreased disc height measured by MRI (Fryer et al., 2010) and 

stadiometry (van Deursen et al., 2005) observable after 15 minutes of sitting.   However, 

evidence also exists that there are higher pressures in standing compared to sitting (Claus 

et al., 2008; Rohlmann et al., 2001).  Measurement technique, posture and muscle activity 

are all factors that will affect disc loading  (Claus et al., 2008).  Regardless, when these 

pressures are maintained for long periods of time they have the potential to contribute to 

disc injury (McGill, 2004).  For instance, flexed postures have been found to decrease the 

flow of nutrients into the intervertebral discs, thereby increasing the risk of disc 

herniation (Kelsey, 1975). Considering many adults spend the majority of their workday 

in seated postures (Jans et al., 2007; Miller and Brown, 2004), the potential for disc 

injuries secondary to prolonged sitting should be a concern.   

 

In order to minimize injury risk, reducing spine loads in seated postures is important.  

Achieving this with chair design alone, however, does not seem to be effective.  

Rohlmann et al. (2001) measured loads on an internal spinal fixation device during 

unsupported sitting in a number of different chair types including:  stool, standard chair, 

office chair, exercise ball, knee stool and a stool with a padded wedge angled at 9.5° 
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angle.  The authors reported that seat type had minimal effect on implant loads, but noted 

that upright sitting resulted in an 11% increase in loads compared to slumped sitting.  

This result is in agreement with the findings of Andersson and colleagues (1974): which 

showed a reduction in disc pressure with reclined seatbacks compared to upright sitting.  

While relaxed sitting may be appropriate for some work tasks such as reading or talking 

with a colleague, most computer work requires upright postures (van Dieen et al., 2001).  

Dynamic seats, imparting passive motion to the sitter, have shown promise in theory  

(Lengsfeld et al., 2000a; van Deursen et al., 2000b); however, are not practical due to 

cost.  Taking breaks from sitting, on the other hand, may be the best way to mitigate these 

problems.   Rest breaks from prolonged sitting that include walking have been shown to 

result in significantly less amounts of spine shrinkage compared to sitting with no breaks  

(Helander and Quance, 1990), however, more work is needed to better assess the quantity 

and quality of breaks that should be recommended to workers. 

 

2.1.3 Sitting: pathways for potential injury and pain 

 

Compared to standing, sitting can be viewed as an attractive occupational posture given 

the reduced metabolic demand (Ainsworth et al., 2000).  However, factors such as 

increased disc pressure, static compressive disc loading, strain of the posterior passive 

tissues of the spine and muscular strain and fatigue have been identified by various 

authors as potential sources of pain and injury in the sedentary worker (Andersson et al. 

1974, Adams and Dolan 1986, Keegan and Nebraska 1953, McGill and Brown 1992 and 

Twomey and Taylor 1982).  These factors are all present to varying degrees in the flexed 
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lumbar spine postures adopted in the seated position.  As lumbar spine posture changes 

away from neutral, increased stresses and strains are unavoidable (Scannell and McGill, 

2003).   

 

Stress on passive tissues, which can occur in flexed postures, can result in viscoelastic 

creep of the posterior passive elements of the spine (Adams and Dolan, 2005; McGill and 

Brown, 1992; Solomonow et al., 2003a; Twomey and Taylor, 1982). A number of 

authors have discussed the mechanisms for pain and injury in both passive and active 

tissues resulting from creep with inadequate rest  (Adams and Dolan, 1996; McGill and 

Brown, 1992; Sanchez-Zuriaga et al., 2010; Solomonow et al., 2002; Solomonow et al., 

2003a).  Creep resulting from prolonged flexion of the lumbar spine has been shown to 

result in increased laxity, increased reflexive muscle spasm, altered kinesthetic awareness 

and delayed ligamentomuscular reflexes in the lumbar spine  (Sanchez-Zuriaga et al., 

2010; Solomonow et al., 2003a; Solomonow et al., 2003c).  Sánchez-Zuriaga, Adams and 

Dolan (2010) have shown that creep can be induced in subjects sitting in flexed postures 

for as little as one hour.   The authors suggest that it is creep, as opposed to muscle 

fatigue, that is responsible for altering normal muscle activation reflexes and preventing 

muscles from protecting the spine as evidenced by delayed muscle onset in response to 

sudden loads.  Pain can also be generated by the fatigue of postural muscles.  Prolonged 

static sitting reduces the blood flow to the lumbar muscles, resulting in fatigue and 

irritating metabolic waste products (McGill et al., 2000).  
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2.2 Ergonomic Considerations 

 

This section will review seat design, seat evaluation and interventions for seated workers. 

 

2.2.1  Seat Design and Evaluation 

 

Damkot et al. (1984) identified the inability to change position and the amount of chair 

support while sitting as factors that lead to the development of low back pain in a study 

of 303 men.  Ergonomic studies of the office setting have found that elements that 

encourage movement such as adjustable seatbacks, seat pans, arm rests and tilt 

mechanisms and administrative changes such as increased rest breaks and cycling of 

postures can minimize discomfort and stress to the body during sitting  (Corlett, 2006b).    

 

A number of novel office chair designs have been developed over the years since the 

introduction of the first “office” chair in 1902 (Pynt, 2014).  There is some evidence to 

suggest that passive movement devices have a beneficial effect on spine loads and tissue 

health  (Lengsfeld et al., 2000b; van Deursen et al., 2000a; van Deursen et al., 2000c).  

However, as discussed earlier cost would likely prohibit the use of these concept chairs in 

most workplaces.  Designs that are either too constraining (knee-rest chair) or not 

supportive enough (exercise balls) have been shown to have limitations as well. While 

increased lumbar lordosis has been documented with knee-rest chairs (Frey and Tecklin, 

1986; Link et al., 1990), increased lumbar spine loads (Ericson and Goldie, 1989), 

decreased comfort (Brunswic, 1984) and potential balance issues (Shenoy and Aruin, 

2007) likely outweigh any postural benefit the design might impart.  Sitting on an 
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exercise ball is also not recommended as evidence suggests that they result in higher 

spinal shrinkage (Kingma and van Dieën, 2009a) trunk muscle activations  (Gregory et 

al., 2006; Kingma and van Dieën, 2009b; McGill et al., 2006) and pain (Gregory et al., 

2006).   

 

Chair features, such as lumbar supports and tilting seat pans, have been shown to 

encourage more neutral low back postures in sitting  (Andersson et al., 1979a; Colombini 

et al., 1985; De Carvalho and Callaghan, 2009; Grondin et al., 2013; Makhsous et al., 

2003; Mandal, 1991; McGill and Fenwick, 2009; Reinecke et al., 1994a) as well as 

reduced muscle activity  (Andersson et al., 1974; Andersson et al., 1979a; Colombini et 

al., 1985).  Further, backrests that provide “free shoulder space”, or room for retraction of 

the shoulder blades, have also been shown to reduce muscle activity and reduce low back 

flexion  (Callaghan, 2006; Goossens et al., 2003).   However, while each of these features 

have been studied in isolation, very few have studied multiple combinations and there are 

no studies directly comparing lumbar supports, seat pan tilt and scapular relief backrests 

within the same study using the same chair.  

 

Regardless of the design, without appropriate ergonomic education, chair features do not 

necessarily translate into improve perceived comfort (Amick III et al., 2003; Amick III et 

al., 2012; Robertson et al., 2009a).  In a field study exploring user comfort ratings of 

ergonomic office chairs, when subjects were not instructed on the features that will 

improve comfort, they actually rated ergonomically superior chairs lower than chairs with 

inferior features (Mueller and Hassenzahl, 2010). 
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2.2.2 Ergonomic Interventions for Prolonged Seating  

 

A number of field studies have shown ergonomic interventions can be successful for 

reducing injury risk and decreasing whole body discomfort.  For example, work postures 

were improved and point prevalence of low back pain reduced by an ergonomic 

intervention (information brochure), personalized ergonomic assessment and appropriate 

changes, in a three-year crossover study conducted by Pillastrini et al. (2010).  Mekhora 

et al. (2000) examined the effect of an ergonomic intervention, ergonomic assessment 

and appropriate changes, on the discomfort ratings of 80 participants (3 males and 77 

females) over a 6-month period.  Discomfort in the eyes, shoulders, arms, neck, upper 

back and lower back were all significantly lower after the intervention compared to their 

initial measure.  Similarly, a seven month ergonomic intervention in newspaper 

employees, Nevala-Puranen et al. (2002) showed significant reducing in ratings of pain 

(neck, shoulder and arms) with the implementation of both workstation redesigns 

combined with changes in work technique (alternating hands for mouse use, exercises, 

use of headsets etc.).  The effect of stretching-type exercises performed at the workstation 

on ratings of discomfort was also tested in a small field study by Fenety and Walker 

(2002).  The intervention consisted of a series of in-chair stretches for the upper body as 

well as standing-with-extension stretch completed at 30-minute intervals throughout the 

testing period.  A significant decrease in whole body discomfort ratings was found during 

all intervention trials compared to increases in discomfort during the trials with no 

exercises.   A large-scale field intervention study conducted to investigate the effect of 

ergonomics education and a highly adjustable office chair found a significant 



 
 

17

improvement in worker knowledge and decreased musculoskeletal risk  (Robertson et al., 

2009b).  Additionally, the combination of both ergonomic training and the chair resulted 

in a reduction in symptom development throughout the workday (Amick III et al., 2003).  

While these results are encouraging, a systematic review on workplace interventions 

conducted by Brewer et al. (2006) concluded that more high quality research, such as 

random controlled trials, are needed to conclusively determine whether or not new chairs 

and ergonomic education can improve musculoskeletal outcomes.  The authors also 

conclude that there is moderate evidence that there is no effect of rest breaks together 

with stretching exercises on musculoskeletal outcomes (Brewer et al., 2006).   

 

2.3  Clinical aspects of low back pain 

 

The diagnosis of low back pain includes any pain that can be localized between the 12th 

rib and the inferior gluteal folds and may be accompanied by leg pain (Krismer et al., 

2007).  In 90 to 95 % of low back pain cases a specific cause of the pain, such as 

degenerative conditions or tumors, is not identified and these cases are classified as “non-

specific” (Krismer et al., 2007).  Lifetime prevalence of back pain has been reported to be 

84 % (Cassidy et al., 1998) with adult point prevalence ranging between 12 to 33 % 

(Walker, 2000).  The burden low back pain places on health care systems worldwide are 

significant.  Direct health care costs in the United States have been estimated to range 

from $102 billion (Martin et al., 2007) to $263 billion (Luo et al., 2004).  Another group 

speculates the cost is significantly higher, $500 billion, when indirect costs are 

considered (Dagenais et al., 2008). 
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Back pain is largely self-limiting, resolving completely in the majority of patients; 

however, one third of patients report persisting moderate pain one year after an episode 

of acute low back pain (Von Korff and Saunders, 1996).  Pengel (2003) found the one-

year recurrence rate to be as high as 73 %.  This becomes an important consideration for 

worker productivity and attendance as Von Korff estimates that 1 in 5 of these patients 

experience limitations in their activity.  Indeed, low back pain has been cited as the most 

common reason for employees to miss work, the main reason for compensation claims, 

and the greatest cause of lower worker productivity in the United States (Courtney and 

Webster, 1999; Goetzel et al., 2003; Goetzel et al., 2004).  Punnett et al. (2005) estimates 

that 37 % of back pain cases are related to occupational stressors echoing earlier results 

of work exposure and increased risk of low back pain by Norman et al. (1998). 

 

Low back pain sufferers have been shown to have altered postural control of the trunk 

(O'Sullivan et al., 2003b; Radebold et al., 2001) as well as increased back muscle activity 

at the end range of lumbar flexion (Solomonow et al., 2003b).  Solomonow et al. (2003) 

has proposed that this likely is a protective reflex mechanism that response to mechanical 

deformation of passive elements in the spine.  This increased activity at end range lumbar 

flexion is different the flexion-relaxation phenomenon typically observed in pain-free 

subjects (van Dieen et al., 2003).  Since increased co-contraction of muscles increases the 

force on the spine (Granata and Marras, 2000; van Dieen and de Looze, 1999), this 

increased muscle activation can result in increased activation and pain as proposed by the 

pain-spasm-pain model first described by Simons and Travell (1981) (van Dieen et al., 

2003). 
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2.4 Epidemiology of sitting and back pain: the relationship 

 

Sitting for prolonged periods has been associated with an increased incidence of low back 

pain (Frymoyer et al., 1980a; Magora, 1972; Wilder et al., 1988) regardless of whether or 

not an individual currently suffers from low back pain  (Damkot et al., 1984b; Majeske 

and Buchanan, 1984).  In fact, prolonged sitting has been found to generate transient pain 

in subjects that have no prior history of chronic back pain  (Andersson, 1999; Beach et 

al., 2005b; Beach et al., 2008; Reinecke et al., 1994b).  There is evidence that subsets of 

the population demonstrate an aggravation of prior symptoms or presentation of new low 

back pain symptoms in response to prolonged sitting  (O'Sullivan et al., 2006b; 

Womersley and May, 2006). This pain response is evident in in-vivo basic science 

research that has found increasing reports of perceived pain in young, healthy populations 

in response to sitting  (Anne Fenety et al., 2000b; Beach et al., 2005c; De Carvalho and 

Callaghan, 2011; Dunk and Callaghan, 2005; Gregory et al., 2006).  Many authors have 

suspected poor postures are the cause of low back pain in sedentary workers  (Eklund and 

Liew, 1991; Kelsey, 1975; Magora, 1972).  Specifically, the kyphotic lumbar posture 

when adopted for long periods of time has been found to be closely associated with low 

back pain (Keegan, 1953; Kottke, 1961) and an increased risk of pain has been identified 

in computer workers  (Fogleman and Lewis, 2002; Nakazawa et al., 2002). 

 

Numerous epidemiological studies have concluded that prolonged sitting is a risk factor 

for low back pain  (Corlett, 2006c; Corlett, 2008; Damkot et al., 1984a; Frymoyer et al., 

1980b; Pope et al., 2002b).  One epidemiology study has shown a positive association 

between low back pain and sitting in adolescents (Sjolie, 2004) and one case-control 
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study showed a trend towards increase low back pain with prolonged sitting when work 

and leisure time were combined (Nourbakhsh et al., 2001).  Wilder et al. (1996) has 

shown an association between back pain and sitting, particularly when exposure to 

vibration is present (Wilder and Pope, 1996; Wilder et al., 1996).  Indeed, research from 

around the world has linked higher prevalence of back pain with populations who drive 

for extended periods of time; especially with bus, taxi and truck drivers (Akinbo et al., 

2008; Andrusaitis et al., 2006; Chen et al., 2005; Costa et al., 1988; Gyi and Porter, 1998; 

Krause et al., 2004; Okunribido et al., 2007; Pietri et al., 1992; Szeto and Lam, 2007).  

These back pain cases result in lost work time:  a large cross-sectional survey of British 

drivers found that participants with increased exposure to driving were six times more 

likely to miss work due to back problems (Porter and Gyi, 2002).  However, controversy 

in the literature exists in determining whether or not low back pain is related to sitting 

specifically.  There are also systematic reviews that have failed to support a causal 

relationship between sitting and low back pain (Chen et al., 2009; Hartvigsen et al., 2000; 

Lis et al., 2007; Roffey et al., 2010).  Mork and Westaard (2009) have discussed reasons 

for these conflicting findings.  Specifically, they argue that since both seated postures and 

low back pain are so prevalent in the general population it would be difficult to determine 

association between the two factors using epidemiological techniques.  There is 

biomechanical plausibility to support the relationship between sitting and low back pain, 

however, it is clear that the nature of this problem is very complex and multifactorial 

which would explain the difficulty in teasing out the relationship without much further 

study.  

 



 
 

21

2.5 Spinal Manipulative Therapy 

 

Manipulation of the spine for therapeutic benefit is traceable to ancient times (Livingston, 

1981; Triano, 2001). While physiotherapists and some physicians employ this therapy in 

the spectrum of patient care, in North America, greater than 90 % of spine manipulative 

therapy is provided by Chiropractors (Shekelle, 1994).  A number of different 

manipulation styles exist, the most common being the diversified technique involving 

High-Velocity Low-Amplitude (HVLA) thrusts according to a 2005 study by Coulter and 

Shekelle.  This maneuver can be accomplished on any synovial joint and involves taking 

a joint just past its normal range of motion into the “paraphysiological space” (existing 

just beyond the passive end range of a joint without causing tissue damage) with a fast 

but shallow thrust (Gal et al., 1995).    The applied forces involved vary greatly 

depending on the region of the spine and between clinicians (Herzog, 2010; Triano and 

Schultz, 1997); however, the thrust times are reported to be very consistent and for the 

lumbar spine are approximately 150 ms (Herzog, 2010).   While initial reports focused on 

the importance of rate of application (Ianuzzi and Khalsa, 2005), current work suggests 

that velocity (both speed and direction of thrust) has the greatest contribution to 

beneficial treatment effects (Herzog, 2010). 

   

Studying the treatment effect of any manual therapy in a randomized control design is 

challenging due to the difficulties of designing an appropriate control intervention and 

ensuring a homogenous study population.  Despite these limitations, evidence from 

systematic reviews has steadily been accumulating supporting the use of spine 

manipulation  (Dagenais et al., 2010) and demonstrating patient satisfaction and cost 
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effectiveness (Paskowski et al., 2011).  Indeed, current clinical guidelines recommend 

spine manipulation as an evidence-based option in the care of acute and chronic low back 

pain patients  (Chou et al., 2007a; Chou et al., 2007b; Dagenais et al., 2010). 

 

2.5.1 Neuromuscular effects of manipulation. 

 

HVLA manipulations are hypothesized to elicit a number of reflex-mediated responses; 

however, limited understanding exists as to the specific reflex-pathways involved. Likely 

contributors are thought to include the activation muscle spindle, golgi-tendon and 

mechanoreceptors in the joint capsule and skin during the pre-load and thrust phase of the 

procedure (Herzog, 2010).  The responses most connected to therapeutic benefit include 

reduced pain (Bishop et al., 2011; Bronfort et al., 2004; Colloca and Keller, 2007; Herzog 

et al., 1999; Lehman et al., 2001; Mansilla-Ferragut et al., 2009; Melzack and Wall, 

1965; Raftis and Warfield, 1989; Song et al., 2006; Taylor and Murphy, 2010; Zusman, 

2002), increased range of motion (Lehman and McGill, 2001; Passmore et al., 2010), 

altered muscle activation  (Bicalho et al., 2010; Gill et al., 2007; Herzog et al., 1999; 

Keller and Colloca, 2000; Lalanne et al., 2009; Lehman and McGill, 2001; Suter et al., 

1999; Suter et al., 2005; Triano, 2001) increased postural awareness  (Haavik and 

Murphy, 2011; Haavik-Taylor and Murphy, 2007; Morningstar et al., 2003; Palmgren et 

al., 2009; Rogers, 1997; Sung et al., 2005) and improved performance of functional 

movements (Passmore et al., 2010).   
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While the literature generally agrees in the areas of pain reduction, conflicting findings 

exist in the areas of muscle activity and range of motion.  Muscle activity responses to 

manipulation have been measured by a number of researchers using surface 

electromyography  (Bicalho et al., 2010; Herzog et al., 1999; Lehman and McGill, 2001; 

Suter et al., 1999; Suter et al., 2005; Triano, 2001) diagnostic ultrasound imaging of 

morphological changes (Gill et al., 2007), indwelling electromyography in a patient 

(Tunnell, 2009) and animal models (Pickar and Kang, 2006; Pickar et al., 2007; Sung et 

al., 2005). The muscle activity responses documented from these studies appear to be 

variable and likely are related to a number of factors such as initial muscle activity prior 

to manipulation, the presence of pain and the presence of a chronic condition.  The reflex 

activation of the entire back musculature as well as the arm and leg has been documented 

in a pain free population by Herzog and colleagues (1999).   Similarly, significant 

increases in maximum voluntary contractions of the erector spinae were found after 

manipulation compared to a sham maneuver in a prospective clinical trial of low back 

pain patients (age and gender matched) (Keller and Colloca, 2000). Lehman and McGill 

have studied trunk muscle activity in static and dynamic lumbar motion in low back pain 

patients (Lehman and McGill, 1999; Lehman and McGill, 2001).  The first of these, a 

single subject case study, found decreased erector spinae activity in quiet stance and 

forward bending (Lehman and McGill, 1999).  A larger study involving seventeen 

subjects with low back pain found increased paraspinal muscle activity at the level of a 

painfully restricted lumbar spine motion segment which was found to decrease 

significantly after manipulation (Lehman and McGill, 1999; Lehman and McGill, 2001).  

In an analysis of static (quiet stance) and dynamic lumbar motions (range of motion in 
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flexion, extension, lateral bend and rotation) pre and post manipulation, variable changes 

in erector spinae muscle activity were found during dynamic motions: however, erector 

muscle activity was found to be significantly lower during quiet stance post 

manipulation.  It is possible that the variability could be related to the presence of pain in 

this population; however, without the inclusion of a healthy control group conclusions 

cannot be made about the effect of pain.   The findings of Lehman and McGill are in 

contrast to those of Bicalho et al. (2010) in a similar study design.  Paraspinal muscle 

activity was analyzed during a flexion-extension task in forty chronic non-specific low 

back pain patients randomly assigned to either a control (sham) or manipulation group. 

This protocol included a relaxation phase at the end range of flexion and extension (a 3 

second pause).  The authors found a significant reduction in muscle activity in the flexion 

relaxation phase and active extension phase for the manipulation group only.  Unlike the 

results from Lehman (2001) no significant muscle activity differences were found in the 

forward flexion phase of the movement.  Similar to the Bicalho group, Lalanne et al. 

(2009) found a reduction in paraspinal muscle activity during sustained trunk flexion 

after manipulation compared to a control group.   

 

Ferreira et al. (2007) did include a non-pain group in their investigation of trunk muscle 

activity in response to spinal manipulative therapy; however, they only examined 

abdominal musculature.  Using indwelling EMG recordings from the transversus 

abdominus and oblique muscles and surface recordings from rectus abdominus and 

anterior deltoid, they found an increase in responsiveness in the oblique muscles to 
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standing perturbation challenges in the pain group only, suggesting that muscle responses 

to manipulation might not have an effect on healthy subjects.   

 

Almost all studies investigating the muscle activity response to manipulation have used 

surface EMG.  Only one study has been published using indwelling EMG to study the 

response of multifidius activity to lumbar spine manipulation (Tunnell, 2009).  One 

patient, with low back pain, was instrumented with fine wire electrodes in multifidus at 

the L4/L5 level. And muscle activity was found to decrease post manipulation compared 

to initial levels.  However, since the author removed the wire electrodes for the 

manipulation and then replaced them for post-intervention measures, the reliability of this 

result should be questioned.  

 

While both Lehman et al. (1999, 2001) and Passmore et al. (2009) found increased ranges 

of motion after manipulation in the lumbar spine and neck respectively a recent study by 

Stamos-Papastamos et al. (2011) failed to find increases in lumbar motion after 

manipulation.  The importance difference between these findings may lie in the presence 

of pain, as all studies finding improvements in range of motion included patient 

populations compared to the asymptomatic population used by Stamos-Papastamos et al. 

(2011).  A likely contributor to the decreased range of motion pre-manipulation is the 

presence of “fear-avoidance behaviour” which has been documented in patients and 

relates both to the physical and cognitive aspects of the pain experience.  
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To date, no studies examining the effect of manipulation on posture of the lumbar spine 

have been identified.  Preliminary investigations in chronic neck pain patients have found 

significant improvements in head repositioning ability  (Rogers, 1997), neck posture 

(Morningstar et al., 2003), and elbow repositioning (Haavik and Murphy, 2011).    

 

2.6 Summary 

 

Prolonged sitting, a reality in the modern workplace, results in a number of adverse 

effects on the body. Even prior to the generation of long-term illness and injury, transient 

pain in response to sitting has been documented in healthy individuals.  Interventions 

targeted at mitigating or minimizing these effects aim to reduce flexion, decrease muscle 

activity and minimize stresses and strains at the low back.  Evidence suggests that 

ergonomic education, changes to seat design and exercise or stretching breaks may play a 

role in solving these problems.   With respect to seat design in particular, definitive 

conclusions have yet to be drawn regarding the best way to minimize flexion of the low 

back in sitting.  With regards to exercise breaks, there are very few laboratory-controlled 

or field studies from which to guide recommendations for practitioners.  Further, spine 

manipulation, with the potential to create reflex changes in posture, pain and muscle 

activity, have yet to be explored as an intervention for prolonged sitting. 
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Chapter 3 

Study 1:  The impact of office chair features on radiographic measures of lumbar 

lordosis, intervertebral joint and sacral tilt angles. 

 

3.0 Introduction  

 

Seated postures have been shown to result in higher spine loads compared to standing  

(Callaghan and McGill, 2001) and increased ligament laxity  (McGill and Brown, 1992; 

Sanchez-Zuriaga et al., 2010).  Therefore, extended time spent sitting, especially without 

adequate breaks from this loading scenario, has the potential to cause tissue injury and 

ultimately low back pain (McGill, 2004).  Thus, promoting a more neutral low back 

posture by minimizing flexion in sitting should be a targeted aspect of ergonomic seat 

design.  For a seated occupant to achieve more lumbar lordosis (a less flexed back 

posture) actively they need to adopt an upright torso and anteriorly rotate their pelvis 

(Castanharo et al., 2014).  Knee flexion and shoulder extension can further increase the 

extension of the low back in this posture (Bridger et al., 1992; Stagnara et al., 1982).  

Alternatively, passive direct pressure near the apex of the lumbar curve can also induce 

increased extension locally (De Carvalho and Callaghan, 2012).  Theoretically, indirect 

features that allow for extension of the torso and anterior rotation of the pelvis also 

should impact a change towards greater lumbar lordosis given the linkages between these 

regions.  Instructions to maintain an upright posture while sitting commonly lead to 

increased soreness and fatigue due to the higher levels of muscle activity.  Therefore, 

chair design features that have the ability to passively extend the lumbar spine in sitting 

would be preferable.   
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The chair design features that have the ability to reduce low back flexion in sitting can be 

summarized by the following three primary categories:  specialized thoracic supports, 

seat pan tilting mechanisms for pelvic posture alteration and lumbar supports.  Lumbar 

supports attempt to alter posture by applying forces directly to the low back. The other 

two approaches have the potential for indirectly impacting lumbar spine posture by 

altering the orientation of the thoracic spine above or the pelvis below the lumbar region.  

Lumbar spine angles have been shown to depend directly on both lower limb  (Albert et 

al., 2014; Bridger et al., 1992; Eklund and Liew, 1991; Keegan, 1953), pelvic (Dunk et 

al., 2009) and upper limb (Stagnara et al., 1982) kinematics.   It appears that the closer 

the movement is to the lumbar region, the greater its potential effect on posture.  For 

instance, Eklund and Liew (1991) demonstrated that hip flexion angles had a greater 

impact on lumbar lordosis angle than those at the knee.  Similarly, using video 

fluoroscopy, Dunk et al. (2009) demonstrated that the pelvis is capable of driving lumbar 

spine posture in unsupported sitting.  In standing, Stagnara et al. (1982) showed 

radiographically that alterations in upper body posture, including increased shoulder 

flexion and thoracic spine extension, significantly alter the lumbar lordosis angle.   

 

Preliminary work has investigated most of these chair features in separate studies, 

however; with respect to the effect on spine and pelvic posture only lumbar supports and 

a specialized seat pan have been examined radiographically.  Lumbar supports have been 

shown to increase the lumbar lordosis angle in automobile sitting (De Carvalho and 

Callaghan, 2012; Hazard and Reinecke, 1995) and office chair sitting  (Andersson et al., 
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1979a; Makhsous et al., 2003a).  Radiographic evaluation of a modified seat pan 

(posterior aspect of the seat pan removed, “ischial relief”) has been found to change the 

lumbar lordosis measure, although this effect was smaller than that of lumbar support or 

the combination of lumbar support and ischial relief (Makhsous et al., 2003b).   (For a 

complete summary of specific radiographic measures from the literature please see Table 

3). 

 

Currently, it is not known which approach to altering lumbar posture in sitting is 

biomechanically superior or more comfortable for the end user and to date these features 

have not been directly compared to each other.  To quantify the effect these seat features 

have on the general sitting population, field trials and randomized controlled studies are 

indicated.  However, prior to the initiation of these larger projects, lab-controlled 

comparison of these different features must be completed to guide the approaches most 

worth pursuing in large, time consuming and expensive field studies.  This thesis 

included two studies to address this gap in knowledge.  The first study used radiological 

measures of lumbar spine and pelvic posture to explore differences between the three seat 

features compared to a control seat configuration.  These measures are considered the 

gold standard of osseous kinematics and have the ability to provide undisputable 

information regarding regional angles and specific segmental angulations.  
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3.1 Purpose 

 

The purpose of this study was to compare radiographic measures of lumbar and pelvic 

postures between four office chair configurations in order to determine which feature(s) 

were able to impart a change in spine posture in sitting.   

 

3.2 Hypotheses 

 

This study tested the following null hypotheses: 

1) No differences in lumbar lordosis, intervertebral joint angles or sacral tilt angles 

will be found between seat conditions.   

 Trends are expected, with lumbar lordosis and pelvic angles most 

affected by the seat tilt followed by lumbar support and least by the 

scapular relief chair features.  This logic stems from the work of 

Dunk et al. (2009) that found pelvic orientation “drives” lumbar 

posture in sitting.   

2) There will be no significant gender differences in posture due to the scapular 

relief, lumbar support or seat tilt conditions as these features are expected to 

encourage all occupants to adopt similar upright postures.   Some evidence for 

this hypothesis has been found in preliminary work examining a tilting seat pan 

design (De Carvalho and Callaghan, 2007). 

 Trends are expected with lumbar lordosis and intervertebral joints 

being more extended and the pelvis less posteriorly rotated for 

female subjects in the control condition based on the results of 
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earlier work that showed females had a more upright posture than 

males in office chairs (Dunk and Callaghan, 2005).   

3.3 Methods 

 

3.3.1 Participants 

 

Ethics approval was received from the review boards of both the University of Waterloo 

and the Canadian Memorial Chiropractic College for 28 participants (14 male and 14 

females) to take part in a study using x-rays to examine postural response to seat features. 

The exclusion criteria for this study were as follows: history of severe back injury such as 

fracture or disc herniation, known spinal deformity (such as scoliosis or spondylotic 

spondylolisthesis) or a recent (within the past six months) episode of non-specific low 

back pain that caused them to miss at least one day of school or work. To minimize 

health risks associated with elevated ionizing radiation exposure, potential participants 

were also excluded from this study if they had one radiographic investigation within the 

past year (with the exception of dental x-rays), if they were exposed to radiation for 

occupational purposes, or if a previously unknown spinal deformity was identified on the 

first radiograph taken in this study.  Female participants were excluded from the study if 

there was a chance, however minimal, that they might be pregnant.  From the study 

population sampled there were no participants that met these exclusion criteria. 

 

Participants were recruited from both institutions and included:  14 males (average age 25 

years (SD 4), height 1.8 m (SD 0.1m) and mass 85 kg (SD 13 kg) and 14 females 
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(average age 25 years (SD 4), height 1.6 m (SD 0.1 m) and mass 60 kg (SD 9 kg). Figure 

2 illustrates the study population anthropometrics with respect to the general US adult 

population (Pheasant, S and Haslegrave, C, 2006).  Informed consent was completed in 

writing after the experimental protocol was completely explained by the researcher and 

the first radiograph taken was reviewed by a licensed Chiropractor to rule out previously 

unknown spinal conditions. 

 

 

Figure 2: Study 1 population anthropometric characteristics. 
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3.3.2 Instrumentation 

 

Test Chair 

 

To minimize variability, a single seat modifiable for each intervention was designed and 

constructed by an industrial partner (Core Chair Inc., Aurora, ON, Canada, Figure 3 and 

Figure 4).   The control configuration was based on current CSA standards (Canadian 

Standards Association, 2000) with a fixed backrest angle of 100°.   

 

Table 1: Standard office chair settings modified from current CSA standards 

(Canadian Standards Association, 2000):  control (C), scapular relief (SR), lumbar 

support (LS) and seat pan tilt (SPT). 

 

 
Control Scapular 

Relief 
Lumbar 
Support 

Seat Pan 
Tilt 

Seat Height                    
*Set such that seat pan is level to approximately 
5cm inferior to the popliteal fossae of the 
occupant’s knees in standing. 

38‐51 cm 38‐51 cm 38‐51 cm 38‐51 cm 

Seat Depth                        
*Set so the seat pan supports the thigh (i.e. 10 cm 
from popliteal fossae). 38‐54 cm 38‐54 cm 38‐54 cm 38‐54 cm 
Seat Width 45 cm 45 cm 45 cm 45 cm 
Seat Angle 

0º 0º 0º
10º 

anterior 
Lumbar Support 0 cm 0 cm 3 cm N/A 
Backrest Height 45‐55 cm 45‐55 cm 45‐55 cm N/A 
Backrest Width 

40 cm 

40 cm 
(lumbar 
portion) 
10 cm 

(thoracic 
portion)

40 cm N/A 

Backrest Angle 100º 100º 100º N/A 
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Figure 3:  Detail design schematic for the test chair built for this thesis.  Source: 

Patrick Harrison, Core Chair Inc. 

 

 

Figure 4: Test chair configurations from left to right: control, lumbar support, 

scapular relief and seat pan tilt. 
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The intervention configurations were then set as follows:  a piece of the back rest was 

removed for the scapular relief condition leaving support only in the middle of the spine, 

lumbar support (4 cm prominence) was created by adjusting the mid-section of the 

backrest forward (confirmed with a ruler fixed to the seat, Figure 5) and seat pan tilt was 

controlled by a lever (confirmed with a bubble inclinometer).  All adjustments were made 

with the participant seated in the test chair.   

 

 

Figure 5:  Top down view of the backrest controls.  Lumbar support prominence 

was increased from 0 cm to 4 cm by turning the black knob.  Excursion was 

confirmed by a ruler (arrow) that was glued to the mechanism. 

 

 



 
 

36

Radiographs 

 

Participants were radiographed in two whole body postures: standing (2 films) and sitting 

(4 films) in the test chair.   Two standing postures: upright standing and standing 

maximum lumbar flexion provided a functional range of motion context for the seated 

postures.  In the seated postures, four chair features were tested:  a cut out thoracic 

backrest (scapular relief, SR), a 4cm prominence lumbar support (LS), 10º anterior seat 

pan tilt (SPT) and a control configuration (standard office chair settings, C) (Figure 4, 

Table 1).   

 

 

Figure 6:  Radiographic set-up for the standing (left) and sitting in the thoracic 

condition (right). 
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Since it has been shown that slight alterations in arm flexion can have significant effects 

on the radiographic measurement of lumbar lordosis angle (Stagnara et al., 1982) the 

subjects were instructed to cross their arms over their chest during each exposure to 

standardize their posture (Figure 6).   All subjects were fitted with thyroid and gonadal 

lead shielding to protect radiosensitive tissues from x-ray scatter.  To ensure the pelvic 

apron did not impede visualization of the sacrum in female participants a specialized 

palpation and fitting method was developed and followed (Appendix A on page 296).  

Radiographs were taken with a diagnostic x-ray high voltage generator machine (HFQ-

12050P, Toshiba, Bennett X-ray Technologies Inc., Copiague, NY, USA) by an 

experienced Registered Radiology Technologist with a 36 by 43 cm film size using 400 

speed screen digital cassettes.  These cassettes were mounted vertically for the standing 

and seated conditions and horizontally for the maximum flexion condition (the top of the 

cassette rotated 90° counterclockwise from vertical).   The mounting clips within the 

system ensured the orientation of the cassettes in the vertical position matched the gravity 

line and the horizontal position was exactly perpendicular to vertical.  

 

For all films, breathing instructions were given such that the film was taken on suspended 

expiration in order to decrease the superimposition of the diaphragm over the vertebral 

bodies of the upper lumbar spine.  The central ray of the x-ray tube was directed 

perpendicular to the subject, 2.5 cm superior to the iliac crest slightly posterior to the 

mid-axillary line and the focal field distance set to 1.02 m (Botranger, 2002). The 

collimation was set superiorly to include T12, inferiorly to include S3 and slightly lateral 

to include the greater trochanter. Average technique factors, individually adjusted to the 
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thickness of the trunk in the coronal plane of each subject, were 91 KVP (SD 3), 200 MA 

(SD 0) and 52 MAS (SD 15) for males and 90 KVP (SD 0), 200 MA (SD 0) and 51 MAS 

(SD 15) for females.   

 

3.3.3 Data Collection  

 

This study was collected in the radiology department at the Canadian Memorial 

Chiropractic College in Toronto.  Participants arrived at the department and were given a 

tour of the x-ray suite.  They were asked to change into shorts and a gown and were given 

time to read the information letter for the study.  The researcher then discussed the 

informed consent with the participant and the form was signed.  Sagittal torso thickness 

at the level of L2 was then measured by the radiology technologist to set the technique 

factors for the study.  Two accelerometers were affixed to the skin over the spinous 

processes of L1 and S2 with double sided tape and secured with flexible medical tape 

with the participant in a seated position.   Range of motion was tested to ensure that the 

tape and accelerometers were secure in different postures.  Normalization trials were then 

collected for the accelerometers:  standing, standing maximum flexion and seated 

maximum flexion.  Lead shielding was applied and the standing radiograph was taken 

and reviewed by the technologist to ensure technique factors and collimation were 

adequate and by a licensed Chiropractor to rule out any previously unknown spinal 

deformities.  Following this check, the standing maximum flexion radiographs were 

taken. The seated radiograph conditions were presented in a random order with a two-

minute adjustment period for each condition prior to the radiographs being taken.  
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Shielding and accelerometers were then removed from the participant.  Prior to leaving, 

each participant received a copy of his or her radiographs on CD.  A schematic of the 

data collection is provided in Figure 7. 

 

 

Figure 7: Schematic of Study 1 Data Collection. 

 

3.3.4 Data Analysis 

 

Radiographs 

 

Radiographic measures of lumbar lordosis, intervertebral joint angles (L1/L2 – L5/S1), 

and sacral tilt were completed using eFilm WorkstationTM software (v 3.0, Merge 

Healthcare, Milwaukee, USA) according to Yochum and Rowe (1991) and shown in 

Figure 8 (Yochum and Rowe, 1996).   Specifically, the lumbar lordosis angle was taken 

as the difference between the lines perpendicular to the superior endplate of the L1 
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vertebral body and the inferior endplate of the L5 vertebral body.  For this measure, 

positive values represent extension and negative values represent flexion.  Due to the 

structure of the lumbar curvature (geometry of the vertebral bodies and intervening discs) 

the lumbar spine almost always has some degree of extension (lordosis).  In flexed whole 

body postures the lumbar spine does straighten; however, it rarely reverses its curvature 

to become flexed (kyphosis) as more flexion occurs at the hip joints than the low back.   

Intervertebral joint angles are formed by the lines parallel to the superior and inferior 

endplates surrounding the intervening disc.  Positive angles represent extension and 

negative angles represent flexion.  The sacral tilt angle was measured between a line 

parallel to the posterior aspect of the first three sacral vertebrae and a true vertical line 

(line of gravity).  Positive angles represent anterior rotation and negative angles represent 

posterior rotation.  This measure was chosen over several other measures of pelvic 

orientation since the tight collimation and extra lead shielding to protect radiosensitive 

tissues obstructed the majority of pelvic landmarks.  Prior to measuring the sacral tilt 

angle in the maximum flexion postures, the image was rotated clockwise 90° in order to 

place the spine/pelvis in the same orientation with respect to the gravity line as the rest of 

the postures.   To maximize intra-rater reliability, the average of three measures, made at 

least 24 hours apart, was used for each angle respectively. 

 



 
 

41

 

Figure 8:  Schematic of radiographic measures from left to right:  lumbar lordosis 

angle, intervertebral joint angles and sacral tilt (Image credit: schematic created 

from a scanned image that was hand drawn by D. De Carvalho). 

 

3.3.5 Statistics 

 

Statistical analyses were completed using SAS Statistical Software (version 9.4, SAS 

Institute Inc., Cary, NC, USA).  The radiographic outcome measures of:  lumbar lordosis 

angle, sacral tilt and intervertebral disc angles were compared using a two-way mixed 

general linear model with gender as the between factor and chair configuration as the 

within factor.  Significance was accepted at the p < 0.05 level.  Tukey’s test was 

completed post hoc where appropriate.   
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3.4 Results 

 

Example radiographs of the standing and seated control configuration are presented in 

Figure 9. 

 

 

Figure 9:  Representative radiographs of a female participant in the standing (left) 

and sitting in the control configuration (right). 

 

Lumbar Lordosis Angle 

 

A significant main effect of condition was found for the lumbar lordosis angle (<0.001) 

(Table 2, Figure 10).   The lumbar spine was significantly more extended (greater lumbar 

lordosis) in standing and significantly more flexed (least lumbar lordosis) in maximum 

flexion.  The seated conditions all resulted in lumbar postures that were significantly 
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flexed compared to standing and significantly more extended compared to maximum 

flexion: control (18° SD 12, p<0.0001), lumbar support (24° SD 13, p<0.0001), seat pan 

tilt (22° SD 14, p<0.0001) and scapular relief (18° SD 13, p<0.0001) seating 

configurations.  Among the seated conditions, there were no significant differences found 

between the control configuration and each of the interventions:  lumbar support 

(p=0.0832), seat pan tilt (p=0.05138) and scapular relief (p=1.000).  However, a trend 

towards greater lumbar lordosis was found with the lumbar support compared to the 

control (p=0.0832) scapular relief (p=0.0525) conditions.  Average lumbar lordosis 

angles were not different between genders for any conditions tested (p=0.4023) and there 

were no significant interactions between gender and condition (p=0.3830). 
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Figure 10: Radiographic lumbar lordosis angles for all postures from left to right:  

standing, standing maximum flexion and seated control, lumbar support, seat pan 

tilt and scapular relief configurations. 

 

 

Sacral Tilt Angle 

 

Significant main effects of gender and condition were found for the sacral tilt angle with 

no interaction (df = 5, F value = 1.23, p=0.2993).  With respect to gender, male subjects 

displayed less posterior pelvic rotation and therefore more anterior rotation compared to 

females in all conditions tested (p=0.0049, Figure 11 and Table 2).  With respect to 

condition, sacral tilt angles were significantly more posteriorly rotated in maximum 

flexion (males: 12° SD 1, females -1° SD 17) compared to standing (p<0.0001) and 

sitting with lumbar support (p=0.0049) and seat pan tilt (p<0.0001) (Figure 12).  There 

‐20

‐10

0

10

20

30

40

50

60

70

80

Standing MaxFlex Control Lumbar
Support

Seat Pan Tilt Scapular Relief

Lu
m
b
ar
 L
o
rd
o
si
s 
A
n
gl
e
 

(d
e
gr
e
e
s)

Fl
e
xi
o
n
   
   
   
   
   
   
   
   
   
   
  E
xt
e
n
si
o
n

Condition



 
 

45

was no significant difference in sacral angle between the max flex condition and sitting 

with the control (p=0.0823) or sacral relief (p=0.1777) configurations.   Whereas the 

sacral angle in the control and scapular relief chair conditions displayed significantly 

more posterior rotation compared to the lumbar support (p=0.0028) and seat pan tilt 

(p<0.0001) configurations.  Sacral angle was also significantly more posteriorly rotated 

in the lumbar support condition compared to seat pan tilt (p=0.0028).  Sacral tilt angles 

were significantly more anteriorly rotated in standing (males: 50° SD 5, females: 48° SD 

6) compared to all other conditions (p<0.0001).  For clarity, Figure 12 has been included 

to illustrate the relative pelvic rotations between each seated condition. 

 

 

Figure 11: Sacral tilt angles between genders for all conditions from left to right: 

standing, standing maximum flexion and seated with control, lumbar support, seat 

pan tilt and scapular relief configurations. 
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Intervertebral Joint Angles 

 

The upper lumbar segments (IVJ1/2 and IVJ2/3) displayed significant gender differences 

(p=0.0077 and p=0.0345 respectively) with male subjects exhibiting more extension at 

these joints in all conditions tested compared to females (Figure 13, Figure 14, Figure 15, 

Figure 16, Figure 17 and Table 2). 

 

 

Figure 12: Rotations of the pelvis in each condition.  All sacral angles measured 

were anteriorly rotated in the global axis system; thus, these global angles are 

shown in terms of relative posterior and anterior rotation of the pelvis (schematic 

above).  Anterior Seat pan tilt and lumbar support conditions were significantly 

more anteriorly rotated than maximum flexion, control and sacral tilt conditions.  

Standing was significantly more anteriorly rotated than all other conditions. 
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Figure 13:  IVJ 1/2 angles for all postures/seated conditions. 

 

 

Figure 14:  IVJ 2/3 angles for all postures/seated conditions. 
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Figure 15:  IVJ 3/4 angles for all postures/seated conditions. 

Figure 16:  IVJ 4/5 angles for all postures/seated conditions. 

  

Figure 17: IVJ 5/S1 angles for all postures/seated conditions. 

 

‐6

‐4

‐2

0

2

4

6

8

10

12

Standing MaxFlex Control Lumbar Seat Pan Tilt Scapular ReliefIn
te
rv
e
rt
e
b
ra
l J
o
in
t 
A
n
gl
e
 3
/4

(D
e
gr
e
e
s)

Male Female

‐5

0

5

10

15

20

Standing MaxFlex Control Lumbar Seat Pan Tilt Scapular Relief

In
te
rv
e
rt
e
b
ra
l J
o
in
t 
A
n
gl
e

5
/S
1

(D
e
gr
e
e
s)

Male Female

‐10

‐5

0

5

10

15

20

Standing MaxFlex Control Lumbar Seat Pan Tilt Scapular
Relief

In
te
rv
e
rt
e
b
ra
l J
o
in
t 
A
n
gl
e
 

4
/5

(D
e
gr
e
e
s)

Male Female



 
 

49

Between conditions, the extension angle of the IVJ1/2 was significantly more extended in 

standing compared to maximum flexion and sitting in the control or scapular relief 

configurations (p<0.0001). There were no significant differences between standing and 

sitting in the lumbar support (p=0.0049) or seat pan tilt (p=0.0135) conditions.  

Conversely, this intervertebral joint angle was significantly more flexed in maximum 

flexion compared to all other conditions.  When comparing specifically between seated 

configurations, there were no significant differences in the IVJ1/2 angle between control 

and lumbar support (p=0.6077), seat pan tilt (p=0.4088) or scapular relief (p=1.000) 

configurations. 

 

The remaining intervertebral joint angles between the 2/3, 3/4, 4/5 and 5/S1 segments 

were significantly more extended in standing and more flexed in maximum flexion than 

all other conditions (p<0.0001).  There were no significant differences between the 

control configuration and lumbar support seat pan tilt or scapular relief and there were no 

significant interactions between gender and condition. 
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Table 2:  Radiographic angles (degrees) measured for the lumbar lordosis (LL), 

intervertebral joint 1/2-5/S1 and sacral tilt (ST) angles for all postures and 

genders. 

 

  
Mean Radiographic Angle in Degrees (Standard Deviation) 

Male 

Posture LL IVJ1/2 IVJ 2/3 IVJ 3/4 IVJ 4/5 IVJ 5/S1 ST 

Standing 58 (9) 6 (2) 7 (2) 9 (2) 11 (2) 13 (3) 50 (5) 

MaxFlex   -0.40 (16)  -1(2)  -2 (2)  -2 (2)  -1 (3) 4 (5) 12 (23) 

Control 21 (13) 3 (3) 2 (3) 3 (3) 3 (3) 8 (5) 18 (10) 

Lumbar 28 (14) 4 (3) 4 (4) 4 (3) 4 (4) 7 (4) 20 (10) 

Seatpan Tilt 22 (14) 4 (2) 3 (3) 3 (2) 3 (3) 7 (4) 27 (9) 

Scapular Relief 20 (15) 3 (3) 2 (3) 2 (2) 3 (3) 7 (4) 15 (10) 

Female 

Standing 59 (9) 4(2) 6 (2) 9 (3) 11 (4) 12 (4) 48 (6) 

MaxFlex  -4 (12)  -2(2)  -3(1)  -3 (1)  -3 (2) 2 (4)  -1 (17) 

Control 16 (10) 1 (2) 1 (3) 1 (2) 1 (2) 7 (4) 7 (7) 

Lumbar 21 (10) 2(2) 2 (3) 2 (2) 2 (2) 7 (4) 10 (6) 

Seatpan Tilt 22 (14) 2 (3) 2 (4) 3 (4) 2 (4) 5 (4) 23 (8) 

Scapular Relief 16 (13) 0 (2) 0 (3) 1 (2) 2 (3) 7 (5) 8 (7) 
 

 

3.5 Discussion 

 

Radiographically measured lumbar lordosis and intervertebral joint angles were not 

statistically different between the chair configurations tested.  The sacral tilt angle, 

conversely, was significantly more anteriorly rotated in sitting with lumbar support and 

seat pan tilt compared to the control and scapular relief configurations.  Comparing these 

seated conditions to the standing and maximum flexion postures it was shown that the 

spine is significantly more flexed (average LL of 21° (SD 13) for males and 16° (SD 10) 

for females) and the pelvis significantly more posteriorly rotated (average ST 18° (SD 

10) for males and 7° (SD 7) for females) than in standing (average LL of 58° (SD 9) for 

males and 59° (SD 9) for females; average ST of 50° (SD 5) for males and 48° (SD 6) for 

females).  Using these functional postures as reference, it can be concluded that in sitting, 
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the participants in this study exhibited an average lumbar lordosis angle of 20° from the 

end range achieved in maximum flexion: in other words, 70 % of the range of motion in 

flexion.  The largest contributions to spine flexion appear to come from the lowest spine 

segment (L5/S1) in both standing and sitting making up 20 % and 41 % of the lumbar 

spine lordosis angle changes respectively.  Further, pelvic postures in sitting approach 

maximum levels of posterior rotation in some seat configurations (control and scapular 

relief) confirmed by the lack of significant difference in the sacral tilt angle between 

maximum flexion and the control and scapular relief configurations.   

 

The results of this study fall within the range of previously published lumbar lordosis 

measures in sitting and standing  (Alexander et al., 2007; Andersson et al., 1979b; Bae et 

al., 2012; De Carvalho et al., 2010; Endo et al., 2012; Hazard and Reinecke, 1995; 

Hirasawa et al., 2007; Itoi, 1991; Lee et al., 2011; Lee et al., 2014; Lin et al., 2006a; Lord 

et al., 1997; Mauch et al., 2010; Stagnara et al., 1982; Stephens et al., 2014; Zarate-

Kalfopulos et al., 2012; Zemp et al., 2014) (Table 3).  The average LL angle in the 

control configuration for this study was 18° (SD 12) which falls in the range of 14°- 30° 

reported for chair sitting previously  (Andersson et al., 1979a; Bae et al., 2012; Endo et 

al., 2012; Lee et al., 2011; Lee et al., 2014; Lin et al., 2006a; Lord et al., 1997; Makhsous 

et al., 2003c; Zemp et al., 2014).  They also fall in the range of 14°-20° reported for 

upright sitting on a flat surface (Hirasawa et al., 2007; Itoi, 1991; Stephens et al., 2014).  

The seated conditions from this study generally display lower lumbar lordosis values 

(more flexed spine postures) compared to those previously reported by Andersson et al., 

(1979) for a chair without lumbar support (28°) and with 2 cm (30°) and 4 cm (47°) 
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lumbar support and by Makhsous et al., (2003) for a prototype chair with lumbar support 

(38.94°) and an ischial relief seat pan (32.63°).  However, this variation is likely due to 

the very different chair designs and settings used in these studies.  Andersson et al. 

(1979) used a wooden chair with a 90° backrest angle and the prototype chair used by the 

Makhsous group (Makhsous et al., 2003) did not specify backrest angle, only that it was 

“fully fitted to the lower spine” of the participants.  

 

The sacral tilt (ST) angles measured in standing for males (50° SD 5) and females (48° 

SD 6) are larger than the range of 22° to 46° previously cited in the literature  (Andersson 

et al., 1979a; De Carvalho et al., 2010; During et al., 1985; Itoi, 1991; Stephens et al., 

2014).  However, the range of values in the various sitting configurations (15° to 27° for 

males and 7° to 23° for females) from this study fall within those reported for chairs in 

past studies: 16° to 28°  (Andersson et al., 1979b; Lin et al., 2006b; Makhsous et al., 

2003c; Stephens et al., 2014). 

 

Intervertebral joint angle magnitude and profile from this study for standing (4° to 13°, 

L1/L2-L5/S1) and sitting (1° to 8°, L1/2-L5/S1) agree with ranges reported previously in 

the literature.  In a population of 20 Korean males, Lee et al. (2014) found intervertebral 

joint angles progressively increase from 4° to 22° (L1/L2-L5/S1) in standing and from 

0.47° to 14° (L1/L2 – L5/S1) in sitting.  Also a healthy population of Korean males, Bae 

et al., (2012) reports progressively increasing intervertebral joint angles of 4° to 20° 

(L1/L2 – L5/S1 in standing, 6° to 10° (L1/L2-L5/S1) in chair sitting and 5° to 7° (L1/L2 

– L5/S1) in cross-legged sitting on the floor.  



Table 3:  Lumbar lordosis angle reported in this thesis compared to pre-existing literature. 

 

Authors N Flexed Upright Extended
Floor (cross‐
legged)

Chair
Chair with 

lumbar support

Chair with 
with Ishial 
Relief

Chair with 
scapular 
relief

Chair with 
ant. seat 
pan tilt

Automobile 
seat with 

lumbar support
Automobile seat

Study 1, Thesis 24
18° (SD 12) 18° (SD 12) 24° (SD 13)

18° (SD 
13)

22° (SD 
14)

De Carvalho et al. 2012 8

63° (SD 15)

25° (SD 15, 
2cm), 30° (SD 
10, 4cm) 20° (SD 13)

Hazard and Reinecke, 1995 1 41° 21°

Andersson et al., 1979b 38

9.7° (SD 4.1) 28° (SD 3.1)

29° (SD 3.8, 
2cm),  47° (SD 

5, 4cm)

Lin et al., 2006a 70

Makhsous et al., 2003 15
53.95 (SD 1.92)

38.94 (SD 
14.61)

32.63 (SD 
22.25)

Itoi, 1991 100 14.3°

Stephens et al., 2014 60
39.9 (range 32.3 ‐ 

47.9)

14.3 (range 
6.9‐22.2)

Hirasawa et al., 2007 29
53.3 (SD 13.4) 3°(SD 11)

20.5 (SD 
12.7) 46° (2)

Bae et al., 2012 30 50° (SD 9.2) 14° (SD 14) 30° (SD 16)
Lee et al., 2011 86 50°(SD 9) 
Lee et al., 2014 10 young 52° (SD 8) 14° (SD 12)
Lee et al., 2014 10 older 54° (SD 16) 28° (SD 9)
Endo et al., 2011 50 33.3° (SD 11.2) 16.7° (SD 11.2)
Lord et al., 1997b 109 49° 34°

Stagnara et al., 1982 90 50° (SD 30)
Zarate‐Kalfopulos et al., 2012 202 52.3° ‐ 61.43
Zemp et al., 2013 5 29° (SD 15)
Mauch et al., 2010 35 52.6° (SD 8.9)

Sitting

Posture

Standing
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While a trend towards greater lumbar lordosis was observed in the lumbar support and 

seat pan tilt configurations, statistically, the office chair design interventions tested in this 

study did not result in significant differences in lumbar lordosis or intervertebral disc 

angles.  However, significance was found for the pelvic measures:  specifically, there was 

more relative anterior rotation of the pelvis when lumbar support and seat pan tilt features 

were engaged.  Previous radiological investigations of lumbar supports have reported LL 

angles of 30°-41° in automobile seats (De Carvalho and Callaghan, 2012; Hazard and 

Reinecke, 1995) and 47° (SD 5) in a chair  (Andersson et al., 1979b).  The values found 

in this study are much lower (28° SD 14 for males and 21° SD 10 for females), however, 

differences in seat design such as seat pan angle (in automobile seats) and backrest angle 

(in chairs) could explain these differences.   Andersson et al. (1979b) also found 

significant increases in anterior rotation of the pelvis with lumbar support: (28°, SD 5) 

compared to no support (17°, SD 4). To date, there are currently no other studies that 

have investigated radiographic spine or pelvic angles in anterior seat pan tilt or scapular 

relief chair features that can be used for comparison. 

 

The seat pan tilt had the greatest effect on the sacral tilt angle followed by lumbar 

support. It was the lumbar support, however, that appeared to have a larger impact on 

lumbar lordosis angle.  However, this effect did not achieve statistical differences from 

the rest of the seated conditions. Rather than the pelvis driving spine posture from below 

it appears that these interventions had a localized effect on the pelvis/spine complex.  

These effects appear to be strongest at the pelvis, followed by the lumbar spine and least 

effective at the thoracic spine. 
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In both standing and seated postures, significant gender differences in spine posture were 

found for the intervertebral disc angles between L1/L2 and L2/L3 but not for overall 

lumbar lordosis angle.  Contrary to the expected trend, it was the male subjects that 

displayed greater extension of these intervertebral joints than females.  Similarly, male 

subjects were found to have more anteriorly rotated pelvic angles than females in all 

postures tested.  These conclusions lead to the acceptance of the second hypothesis that 

gender differences would not be found between seat conditions.  Not all radiographic 

studies of lumbar and pelvic postures separate results by gender.  Of those that have, 

there is some controversy in the literature regarding gender differences in lumbar lordosis 

or pelvic inclination.  A number of studies have shown no difference in standing lumbar 

lordosis between men and woman (Been et al., 2007; Korovessis et al., 1998; Lin et al., 

1992; Takao et al., 2010; Torgerson and Dotter, 1976; Wojtys et al., 2000) whereas a 

number of others have found larger angles in females (Fernand and Fox, 1985; Gelb et 

al., 1995; Murrie et al., 2003; Vialle et al., 2005; Youdas et al., 1996a) and one that has 

found significantly larger LL angles in males (Stephens et al., 2014).  In sitting, Endo et 

al. (2012) found significantly greater lumbar lordosis angles in females compared to 

males in the sitting position in a population of 50 young, healthy subjects (25 males and 

25 females).  It is important to note that the seated position used by the Endo group was 

different from the configurations used in this thesis:  the Endo group used a seat back 

inclination of 90° compared to the 100° in this study. Endo et al. (2012) also found that 

females had significantly greater anterior rotation of the pelvis (as determined by the 

sacral slope measure) in sitting.  This radiographic angle was different than the sacral tilt 

measure taken in this study, which prohibits a direct comparison of these results.  
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This study has contributed valuable information regarding the effect of seat features on 

radiographic angles of the spine in both genders, as well as providing data for the 

standing and maximum flexed postures.  However, the design of this experiment is not 

without limitations.  X-ray exposures could be a misleading way to characterize spine and 

pelvic postures.  Although radiological investigations can provide the most robust 

measures of spine angles, such short exposure times are unable to capture the likely 

variation of postures over time.  With the application of lead shielding and the 

requirement for participants to hold their breath during the exposure, the participants 

obviously become extremely aware of being observed. Along the same vein, other 

important information is excluded from this methodology, namely the ability to properly 

assess whether or not the postures induced by each chair condition can affect the growing 

levels of perceived low back pain that has been shown to develop when sitting for long 

periods of time. 

 

Lack of internal control, a limiting factor in prior seat design studies, was not an issue 

with the seat designed for this study.  However, the design challenges faced by 

incorporating enough adjustability to meet the requirements of each configuration did 

raise a few issues.  Specifically, standardizing the backrest angle at 100° resulted in poor 

contact of the thoracic support in some participants.  This likely reduced the impact this 

feature was able to have on spine posture.  Also the seat pan tilt condition did not feature 

any contact of the backrest.  This was due to a design constraint, specifically, it was not 

possible to design a mechanism that allowed backrest contact with the 10° seat pan tilt 

without imparting variation in the way the backrest would contact the occupant.  The lack 
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of low back support or even perhaps the sensation of contact at the low back might have 

changed the postures participants adopted in this condition.  There is suggestion in the 

literature, though, that with greater degrees of seat pan tilt; low back support is not 

necessary to maintain a balanced and natural sitting posture  (Mandal, 1975; Mandal, 

1991; Noro et al., 2012). 

 

The decision to limit the study population to young healthy subjects was based on the 

idea that older spines are more likely to exhibit degenerative changes, which could 

become a confounding factor if range of motion were limited for example.  Therefore, the 

results of this study might not be applicable to older individuals.    A review completed 

by Been and Kalichman (2014) has concluded that based on the existing literature, it does 

not appear that age affects lumbar lordosis angle.   The authors point to a number of 

studies that have found no association between age and lumbar lordosis angle (Kalichman 

et al., 2011; Murrie et al., 2003; Youdas et al., 1996b; Youdas et al., 2000; Youdas et al., 

2006) and one that has (Tuzun et al., 1999).  Following the publication of the Been and 

Kalichman (2014)  review, however, Lee et al. (2014) found that older individuals have 

significantly greater lumbar lordosis in the supine, 60° and 90° sitting postures.  The 

authors specifically noted that the upper lumbar spine is more flexible in younger 

compared to older individuals. 

 

Radiographic evaluation of pelvic posture was limited by the tight collimation and lead 

shielding used during exposures.  These factors, while beneficial for reducing radiation to 

sensitive organs such as the gonads, occluded the head of the femur which is a landmark 
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used by many researchers for the characterization of common pelvic parameters such as 

the pelvic incidence and pelvic tilt angles.  Thus, this limits the comparison of these 

results to a wider range of studies in the literature as was possible for the lumbar lordosis 

and intervertebral joint angles. 

 

3.6 Conclusion 

 

The low back and pelvis remains significantly flexed in sitting, close to the voluntary end 

flexion range, even when features designed to impart spine and pelvic extension are 

engaged.  Use of a lumbar support (4 cm prominence) and forward seat pan tilt (10°) do 

impart significantly more anterior rotation to the pelvis compared to a scapular relief 

backrest or control chair configuration.  No gender differences were found in any posture 

for the lumbar lordosis angle.  The intervertebral joint angles of the upper lumbar spine 

(L1/L2 and L2/L3) in males were more extended than females in all postures tested.  

Similarly, male subjects had significantly more posterior rotation of the pelvis than 

females in all postures tested.  Therefore, the chair conditions tested in this study were 

able to promote significantly different postures in seated participants; however, whether 

these differences are practically meaningful should be the focus of future work. 
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3.7 Contribution 

 

This study has provided the following contributions to the literature: 

 

 This study has shown that the lumbar lordosis angles and intervertebral joint 

angles measured radiologically are not significantly different between a control, 

scapular relief, lumbar support and forward seat pan tilt configuration.  Pelvic 

posture; however is significantly more anteriorly rotated with forward seat pan tilt 

and lumbar support. 

 

 The first radiological study of office seating to investigate gender differences in 

posture:  no gender differences were found for the lumbar lordosis in sitting; 

however, male subjects displayed significantly greater extension at the upper 

intervertebral joints and more anterior rotation of the pelvis in all postures tested. 
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Chapter 4 

Study 2:  Assessment of pelvic, lumbar and thoracic spine chair design features on 

lumbar spine posture and perceived pain during prolonged office sitting. 

 

4.0 Introduction 

 

Despite their value as a gold standard of osseous kinematics, radiographic data can only 

provide posture information for one instant in time.  In order to more realistically 

understand the impact these chair features have on prolonged sitting, it is necessary to 

study their effect on biomechanical factors and perception of pain over longer exposures.   

Thus, this second study expands on the chair features tested in study 1 to include a larger 

number of biomechanical responses in a more realistic scenario: continuous computer 

work for a period of two hours.   

 

Since the introduction of the typewriter’s chair in 1902 a number of novel office chair 

designs have been developed with goals ranging from improving productivity, aesthetics 

and comfort to minimizing pain and muscle fatigue (Pynt, 2014).  The first significant 

design deviation, a forward tiling seat pan with no backrest, was introduced by Mandal in 

1970 with the intention of returning seated spine postures closer to that achieved in 

standing (Mandal, 1975).  Benefits of this design feature were documented to include 

lower back muscle activity (with a 20° forward tilt) and intradiscal pressures (Colombini 

et al., 1985).  However, limitations of the design, namely sliding forward on the seat pan 
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and increased loading of the feet (Bendix et al., 1985; Graf et al., 1993) have largely 

eliminated this feature beyond a range of 3-5°.   

A number of studies have demonstrated the ability of lumbar supports impart extension to 

the low back  (Andersson et al., 1979a; De Carvalho and Callaghan, 2012; Grondin et al., 

2013; Makhsous et al., 2003; McGill and Fenwick, 2009; Reed and Schneider, 1996; 

Reinecke et al., 1994) and reduced muscle activity  (Andersson and Ortengren, 1974; 

Andersson et al., 1979b).  There is also preliminary evidence to suggest that a modified 

backrest allowing the extension of the shoulders during sitting (scapular relief) also can 

improve spine posture in sitting  (Callaghan, 2006; Goossens et al., 2003).  One 

shortcoming of these separate studies, however, is that each design feature has been 

studied in isolation.  Very few, with the exception of Makhsous et al. (2003, ischial relief 

seat pan with lumbar support), have used multiple configurations of the same chair and to 

the author’s knowledge; there are no studies that have directly compared lumbar 

supports, forward seat pan tilt and scapular relief backrests within the same study and the 

same chair. 

 

4.1 Purpose 

 

The purpose of this study was to determine whether or not there are differences in lumbar 

spine posture, trunk muscle activation, seat pressure variables and perceived pain 

between seat design features that specifically target the thoracic spine, lumbar spine and 

pelvis.   
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4.2 Hypotheses 

 

In this study, three ergonomic seat features were tested along with a control configuration 

in a random presentation of 30 minute sitting blocks.  The following null hypotheses 

were tested: 

1) No differences in lumbar flexion angles are expected between conditions. 

 A trend may be identified, however, with flexion angles being 

most affected by the seat pan tilt followed by lumbar support and 

least by the scapular relief configurations.  The logic for this 

hypothesis stems from the work of Dunk et al. (2009) and Levine 

et al. (1996) where pelvic orientation was found to “drive” lumbar 

posture.   

2) There will be no gender differences in lumbar flexion angles. 

 A trend is expected, with female participants adopting less flexion 

than males. 

3) Given the healthy population studied, lumbar spine movements (fidgets, shifts and 

TMI) will not be different between genders or conditions.  Increased movements 

have been shown previously in response to pain  (Dunk and Callaghan, 2010a; 

Fenety et al., 2000).  

4) There will be no differences in muscle recruitment responses (average muscle 

activity and gaps) between genders and chair interventions. 

 A trend of higher muscle activations are expected for all subjects 

in the seat pan tilt configuration due to the lack of a backrest, 

female subjects may have decreased gaps in muscle activity 
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compared to males secondary to their greater upright postures and 

both genders will exhibit fewer gaps in muscle activity when 

seated with anterior seat pan tilt due to the higher activations. 

5) Seat pressure variables will not be significantly different between all chair 

conditions.   

 A trend may be observed where the centre of pressure will move 

forward on the seat pan in the lumbar spine and anterior seat pan 

tilt configurations as these features might either push the occupant 

forward (lumbar support) or result in forward slide (seat pan tilt). 

6) Ratings of perceived pain will not be significantly different between genders or 

chair conditions due to the relatively short exposure of each condition.  Past work 

has suggested longer durations are necessary in order to monitor for discomfort in 

sitting (Fenety et al., 2000). 

 

4.3 Methods 

 

4.3.1 Participants 

 

Thirty-one subjects (15 males and 16 females), with no recent history of low back pain, 

were recruited from a university population.  This population was chosen since they 

would be accustomed to sitting for extended periods of the day and should generally be 

free from degenerative changes of the spine commonly found in older individuals.  

Participant profiles were as follows: males (average age 24 years (SD 4), height 1.8 m 
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(SD 0.1) and mass 81 kg (SD 12) and females (average age 24 years (SD 3), height 1.6 m 

(SD 0) and mass 60 kg (SD 8) (Figure 18).  Informed consent was completed prior to 

testing and the study received ethics approval from the Office of Research Ethics at the 

University of Waterloo.  

 

 

Figure 18: Study 2 population anthropometric characteristics. 

 

4.3.2 Instrumentation 

 

Motion Analysis 

 

Three-dimensional kinematics of the head, arms and trunk were collected using an 

optoelectronic system (Optotrak Certus, Northern Digital Inc., Waterloo, Ontario, 
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Canada) at a sample rate of 32 Hz continuously for all trials.  Clusters of 6 infrared 

markers on rigid bodies were fixed to the following segments:  head, thorax, pelvis, 

bilateral upper arms and bilateral forearms.  See Table 4 for the virtual markers used in 

model development. 

 

Table 4:  Segments and corresponding virtual markers for the arms, head and 

trunk. 

 

  Virtual Markers

Segment  Proximal Distal 

Head  R Stylus  L Stylus R Top of Head L Top of Head 

Thorax  R Acromion  L Acromion R Iliac Crest L Iliac Crest 

Right Upper Arm  R Acromion  R Lateral Epicondyle R Medial Epicondyle

Right Forearm  R Medial Epicondyle R Lateral Epicondyle R Radial Stylus R Ulnar Stylus 

Left Upper Arm  L Acromion  L Lateral Epicondyle L Medial Epicondyle

Left Forearm  L Medial Epicondyle L Lateral Epicondyle L Radial Stylus L Ulnar Stylus 

Pelvis  L Iliac Crest  R Iliac Crest L Greater Trochanter R Greater Trochanter

 

 

Accelerometers 

 

Sagittal thoracic, lumbar and pelvic angles were calculated from time-varying 

accelerometer data. To protect these tri-axial sensors (ADXL335, Analog Devices, 

Norwood, MA, USA) from damage during collection the 4 mm x 4 mm x 1.25 mm units 

were mounted on a 2 mm thick piece of plastic and covered with a thin layer of liquid 

plastic.  A tumble test (static testing at 10° intervals from 0° to 360°) was conducted 
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before and after this preparation to ensure the accuracy of the sensors was not altered by 

this protective covering.  Prior to the start of each collection day, the sensors were 

mounted on a cube and all axes were calibrated to +1 g/-1 g.  The sensitivity and 

accuracy in each axis was also checked (Figure 19).  The sensors were affixed to the skin 

of the participant with double sided tape in the +y down +z posterior orientation, over the 

following anatomical landmarks:  spinous processes of T1, L1 and S1.  Accelerometer 

data were collected continuously throughout each 15-minute trial, low-pass filtered at 500 

Hz; A/D converted using a 16-bit board at a sampling frequency of 2048 Hz.  Five, static, 

normalization trials were collected as follows: quiet standing, full lumbar flexion 

standing, full lumbar extension standing, full lumbar flexion seated and full thoracic 

spine flexion seated. 
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Electromyography 

 

Fourteen channels of surface electromyography (EMG) were collected continuously for 

each trial from two disposable electrodes (Ag-AgCl, Blue Sensor, Medicotest Inc., 

Ølstykke, Denmark) affixed over the following muscles bilaterally with a 2 cm inter-

electrode distance and parallel to muscle fiber orientation:  thoracic erector spinae 5 cm 

lateral from the spinous process of T9  (Callaghan et al., 1998), lumbar erector spinae 5 

cm lateral from the spinous process of L1  (Danneels et al., 2001), lumbar multifidus 1 

cm lateral from the spinous process of L4 (Stokes et al., 2003), external obliques inferior 

to the rib cage craniolateral orientation along a line between pubic rim and inferior costal 

angle (Ng et al., 1998),  internal obliques 1 cm medial to the anterior superior iliac spine 

in a craniolateral orientation (Ng et al., 1998), rectus abdominus vertical orientation 1cm 

superior and 2 cm lateral to the umbilicus (Ng et al., 1998) and gluteus medius 2.5 cm 

Figure 19: Tri-Axial Accelerometers (model ADXL 335), shown here with (right) and 

without (left) protective coating.   
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distal to midpoint of iliac crest (Zipp, 1982).  Ground electrodes were placed over the 

clavicles.  The skin was prepared with an alcoholic cleansing solution and lightly shaved.  

Test contractions of each muscle were performed to set amplifier gains in order to ensure 

maximum resolution of the EMG signal.  Raw EMG signals were band pass filtered from 

10-1,000 Hz, amplified (AMT-8, Bortec, Calgary, Canada: CMRR=115 dB at 60 Hz and 

input impedance = 10 GΩ) and collected at a sampling rate of 2,048 Hz with a 16-bit A/D 

converter (+/- 2.5 V range).  Two 10 s maximum voluntary contractions (MVC) trials 

were collected isometrically: subjects were instructed to ramp up and resist against an 

externally applied force provided by a lab technician in an appropriate direction for each 

muscle.   In order to prevent fatigue, a minimum of 3 minutes of rest separated each trial.  

The Beiring-Sorensen position was used to collect maximum lumbar erector spinae, 

thoracic erector spinae and multifidus muscle activations: participants extended their 

torso against resistance with their upper body suspended off the end of an examination 

bench while their lower body was fixed (Dankaerts et al., 2004).  Abdominal muscle 

contractions were collected in one trial in the following order: forward flexion, right 

lateral bend, left lateral bend, right rotation and left rotation while subjects were seated on 

the examination bench with arms crossed and lower body fixed (Dankaerts et al., 2004).  

Contraction of gluteus medius was collected during resisted hip abduction with the 

subject in the side lying position. Two 5 s quiet trials, with the participant lying supine 

and then prone, were collected as a baseline reference for the normalization procedure 

(see data analysis). 
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Seat Pressure 

 

A pressure mat was fixed to the seat pan of the test chair with the origin of the sensor 

located at the back right of the seat pan (Xsensor3 Seating System, XSensor Technology 

Corporation, Calgary, Alberta, Canada). Seat pressure data were collected synchronously 

with the motion analysis, accelerometer and EMG data via external trigger, and sampled 

at a frequency of 4 Hz continuously for each trial. A calibration procedure was completed 

in order to locate the pressure mats within the global coordinate system of the laboratory 

such that the centre of mass (CoM) of the head, arms and trunk could be tracked with 

respect to the centre of pressure (CoP) of the seat pan.  Specifically, a calibration trial 

was collected where the digitizing probe from the motion capture system was held 

stationary depressing the centre of the middle square of the seat pan pressure mat along 

the front edge of the chair.  Seat pressure data were triggered by the Optotrak Data 

Acquisition Unit to synchronize with the rest of the instrumentation signals, thus for this 

calibration trial, co-ordinates of the centre seat pan pressure mat square were captured 

along with a localized pressure reading on the mat.   

 

Perceived Pain 

 

Perceived ratings of pain were measured using a visual analogue scale throughout the 

study at 7.5-minute intervals. Subjects were asked to rate their pain for 8 areas of the 

body (right and left upper back, right and left lower back, right and left buttocks, right 

and left thighs and neck by sliding a bar along a 100 mm continuous line with the 
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following anchors: 0 = no pain whatsoever and 100 = worst pain imaginable (Figure 20) 

using a custom desktop program on their workstation computer (Matlab version R2012b, 

The MathWorks, Natick, MA, USA).  

 

 

Figure 20: Digital perceived pain VAS tool (run on the testing workstation’s 

desktop computer) used to determine pain at 8 locations of the body. 

 

Workstation 

 

The workstation used in this study consisted of an ergonomic computer desk and 

keyboard tray adjusted such that each participant initially sat with 90º of knee flexion 
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with their feet flat on the floor, 90º at the hips and 90º at the elbows with neutral wrist 

posture and relaxed shoulders.  A footrest was used when necessary.  The participants 

were told that this set up provided a common, well-accepted starting point for posture.  It 

was stressed that they were not required to maintain this position throughout collection; 

rather, they were free to change/relax their body position on the chair as they wished.   

Movement limitations to minimize variability, however, included not adjusting the 

workstation or chair parameters throughout the collection or rising from their chair. 

 

Figure 21:  The workstation was adjusted for each individual in the study.  This 

image was taken at a point during the scapular relief condition.   
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Exit Survey 

 

At the end of the experiment, prior to de-instrumentation, participants were asked to rate 

their overall impression of each of the four seat conditions on a 100 mm visual analogue 

scale answering the question “I would prefer this chair configuration…” with the 

following anchors: 0 “Never” to 100 mm “Always”.  Space was also provided for 

participants to comment on the particular aspects of each chair configuration if they 

wished.  Three short questions were also asked regarding whether or not the participant 

would have stood up for a break if they were permitted (yes or no), how often this would 

have been (open ended) and whether or not the work scenario presented in this data 

collection was typical for them.  Prior to completing this survey, the names of each 

condition were confirmed with the participants to ensure they attributed their responses to 

the correct chair configuration.   

 

4.3.3 Data Collection 

 

Subjects discussed and signed the informed consent document upon presenting to the 

laboratory.  This was followed by a report of baseline perceived pain, instrumentation 

and normalization trials (Figure 22).  The main experiment consisted of completing a 

controlled data entry task at a computer workstation for 4, half hour blocks, sitting 

randomly in one of the four seat conditions used in Study 1:  control (standard ergonomic 

chair), scapular relief backrest, lumbar support and anterior seat pan tilt (Figure 4).  The 

data entry task consisted solely of copying standardized text, taken from scientific 

reports, into a text box in a custom word processing program (Matlab version R2012b, 
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The MathWorks, Natick, MA, USA). This task was chosen in order to minimize 

variability that has been shown to occur with participant directed tasks such as internet 

surfing and reading (Gregory et al., 2006; van Dieen et al., 2001) and to replicate a 

realistic workplace scenario.  Ratings of perceived pain were completed at 15-minute 

intervals providing three measures for each seat condition (baseline, middle and end of 

each trial).  Motion analysis, accelerometer, seat pressure and EMG data were collected 

synchronously and continuously throughout each of the four trials.  
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Figure 22:  Schematic for Study 2 data collection. 

 

Figure 23:  Screen shot of the standardized data processing task.  Participants 

were instructed to type the contents of the window above into the text box below 

and press “enter” to move on to the next segment of text.  
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4.3.4 Data Analysis 

 

Motion Analysis  

 

Motion analysis coordinate data were dual pass filtered with a 2nd order Butterworth filter 

with an effective cut off frequency of 6 Hz.  A three-dimensional kinematic model of the 

body from the waist up was created using Visual 3D (C-Motion Inc.). Upper body (head, 

arms and trunk) center of mass (CoM) were calculated according to the equations and 

body segment parameters presented in Winter (2009).  To provide a comparison of the 

location of the upper body CoM with centre of pressure (CoP) from the seat mat data, the 

CoM coordinates (global lab system) were then transposed into the local co-ordinate 

system of the pressure mat.  

 

Accelerometers 

 

Custom software (Matlab2012, The Mathworks Inc., Natick, Massachusetts, USA) was 

used to process the accelerometer data as follows:  calibrate the y and z-axes with respect 

to gravity (Equation 1) and convert voltages to accelerations (Equation 2), calculate 

absolute inclinations from accelerations (Equation 3) smooth the data using a dual-pass 

2nd order Butterworth filter with an effective 1 Hz cut-off frequency and then adjust the 

accelerometer inclination according to which quadrant it is tilted in (based on the sign 

combination of the z and y axes, Figure 24). 
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௔௫௜௦ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ ൌ 	
ାܸଵ௚ െ ܸି ଵ௚

2
 

 

Equation 1: Sensitivity of each accelerometer axis, where V is the voltage in both 

the +1 g and -1 g orientations. 

 

 

ܽ௔௫௜௦ ൌ
௔ܸ௫௜௦ െ ଴ܸ௚

௔௫௜௦ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ
 

 

Equation 2:  Acceleration in each axis. Where Vaxis is the raw voltage signal for 

each axis, V0g is the voltage of the respective axis in a 0 g orientation (off axis 

noise). 

 

݊݋݅ݐ݈ܽ݊݅ܿ݊ܫ	݈ܽݐݐ݅݃ܽܵ ൌ 	 tanିଵ ቆ
ܽ௭

ඥܽ௫ଶ ൅	ܽ௬ଶ
ቇ 

 

Equation 3:  Inclination in the sagittal (flexion/extension) plane incorporating the 

accelerations of all three axes respectively for each sensor.   
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Figure 24:  Quadrant schematic for rotations about the x-axis (flexion/extension).  

The orientation of each accelerometer was determined to fall into one 4 quadrants 

based on the sign combination of the y and z-axes.  The global inclination angle 

(θ’) was then corrected, according to the equations in each quadrant above, such 

that the local inclination angle (θ) would be between 0 and -180° (extension) and 

0-180° (flexion).  A schematic has been included showing the orientation of an 

accelerometer on a participant in upright standing. 
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Relative thoracic and lumbar angles were then calculated from the absolute inclinations 

of the accelerometers mounted at T1, L1 and S2 (Equation 4 and Equation 5).  The pelvic 

angle was calculated from the absolute inclination of the accelerometer mounted at S2 

(Equation 6). 

݈݁݃݊ܣ	݊݋݅ݔ݈݁ܨ	ܿ݅ܿܽݎ݋݄ܶ	݁ݒ݅ݐ݈ܴܽ݁ ൌ ஺ଵߠ	 െ	ߠ஺ଶ 

 

Equation 4:  Relative thoracic flexion angle.  Where inclination, θ, has been 

adjusted based on quadrant trapping (Figure 24) and where A1 and A2 are the top 

and middle accelerometers mounted over the T1 and L1 spinous processes. 

 

݈݁݃݊ܣ	݊݋݅ݔ݈݁ܨ	ݎܾܽ݉ݑܮ	݁ݒ݅ݐ݈ܴܽ݁ ൌ ஺ଶߠ െ  ஺ଷߠ

 

Equation 5:  Relative lumbar flexion angle.  Where inclination, θ, has been 

adjusted based on quadrant trapping (Figure 24). 

 

݈݁݃݊ܣ	ܿ݅ݒ݈݁ܲ ൌ  ஺ଷߠ

 

Equation 6: Absolute pelvic angle.  Where inclination, θ, has been adjusted based 

on quadrant trapping (Figure 24). 

 

Finally, normalized versions of each of these angles were calculated according to 

Equation 7, Equation 8 and Equation 9). 
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݈݁݃݊ܣ	݊݋݅ݔ݈݁ܨ	ܿ݅ܿܽݎ݋݄ܶ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൌ
݈݁݃݊ܣ	݊݋݅ݔ݈݁ܨ	ܿ݅ܿܽݎ݋݄ܶ	݁ݒ݅ݐ݈ܴܽ݁

	݉ݑ݉݅ݔܽܯ	݊݋݅ݐܽݎܾ݈݅ܽܥ
∗ 100 

 

Equation 7:  Where Thoracic Flexion angle is the time varying angle in a given 

trial and Calibration Maximum is the maximum thoracic flexion angle achieved 

during calibration trials.  (Sign convention: flexion is positive and extension is 

negative). 

 

݈݁݃݊ܣ	݊݋݅ݔ݈݁ܨ	ݎܾܽ݉ݑܮ	݀݁ݖ݈݅ܽ݉ݎ݋ܰ

ൌ
݈݁݃݊ܣ	݊݋݅ݔ݈݁ܨ	ݎܾܽ݉ݑܮ െ ݐ݄݃݅ݎ݌ݑ	ܣܨܮ
݉ݑ݉݅ݔܽܯ	݊݋݅ݐܽݎܾ݈݅ܽܥ െ ݐ݄݃݅ݎ݌ݑ	ܣܨܮ

∗ 100 

 

Equation 8:  Where Lumbar Flexion Angle is the time varying relative angle in a 

given trial, Calibration Maximum is the maximum lumbar flexion angle achieved 

during calibration trials and LFA upright is the lumbar flexion angle from the 

upright calibration trial. (Sign convention: flexion is positive and extension is 

negative). 

 

ሻ݃݊݅݀݊ܽݐܵ	ݐݎݓሺ	݈݁݃݊ܣ	ܿ݅ݒ݈݁ܲ	݁ݒ݅ݐ݈ܴܽ݁ ൌ ݐ݄݃݅ݎ݌ݑ	݈݁݃݊ܣ	ܿ݅ݒ݈݁ܲ െ  ݈݁݃݊ܽ	ܿ݅ݒ݈݁ܲ

 

Equation 9: Where pelvic angle upright is the pelvic angle taken from the upright 

calibration trial and pelvic angle is the time varying angle in a given trial. (Sign 

convention:  posterior rotation is positive and anterior rotation is negative). 
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To assess low back movement throughout the prolonged sitting trials, fidgets (Equation 

10) and shifts (Equation 11) were calculated from the accelerometer signals based on 

similar analyses of CoP by Duarte and Zatsiorsky (Duarte and Zatsiorsky, 1999; Duarte 

et al., 2000) and explored previously for the low back by Dunk and Callaghan  (Dunk and 

Callaghan, 2010b).  A number of authors have postulated that these quick movements, 

termed “fidgets”, are indications of a subconscious movement strategy to temporarily 

relieve discomfort and improve circulation (Duarte and Zatsiorsky, 1999; Duarte et al., 

2000; Madeleine et al., 1998). Specifically, a fidget is defined as “a fast and large 

displacement followed by a return to approximately the same position; it is pulse-like”. 

Average number of fidgets per condition was then compared. 

 

ி݂௜ௗ௚௘௧ ൑ 	 ฬ
ௐݔ̅	ிିݔ
ௐܦܵ

ฬ 

 

Equation 10: Where xf  is the lumbar flexion angle at a given point in time, xw is 

the mean of the window and SDw is the standard deviation.  The threshold value 

for a fidget ( ி݂௜ௗ௚௘௧ሻ	was set at 3 standard deviations, window length of 60 

seconds, and fidget length of 3 seconds. 

 

Conversely, a shift is characterized by a displacement that does not return to 

approximately the same position (Equation 11).  For the purpose of this study, a 

displacement of greater than 10 degrees (the minimal clinically important change in 

lumbar lordosis angle) in normalized lumbar flexion angle was taken as the threshold 

value of a postural shift.  The average number of shifts per condition was then compared. 
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ௌ݂௛௜௙௧ ൑ 	 ቤ
௪ଵ௜ݔ̅ െ ௪ଶ௜ݔ̅

ඥܵܦௐଵ
ଶ ൅ ௐଶܦܵ

ଶ
ቤ 

 

Equation 11: Where	̅ݔ and SD are the mean and standard deviation of two 

respective windows of time (W1 and W2, both 3 seconds in duration).  The 

threshold value of shift amplitude ( ௌ݂௛௜௙௧ሻ was set to 10 degrees.  The width of the 

reference baseline was set to 60 seconds. 

 

To provide an overall representation of movement quality (changes in posture: shifts) and 

quantity (frequency of shifts), the resultant of these two variables, Total Movement Index 

(Callaghan et al., 2014) was assessed (Equation 12) and averaged for each chair 

configuration.  Additionally, amplitude probability distribution functions (APDF) of 

thoracic, lumbar spine and pelvic angles were analyzed for each condition. 

 

ሻܫܯሺܶ	ݔ݁݀݊ܫ	ݐ݊݁݉݁ݒ݋ܯ	݈ܽݐ݋ܶ ൌ 	ඥݏݐ݁݃݀݅ܨଶ ൅  ଶݏݐ݂݄݅ܵ

 

Equation 12: The Total Movement Index has been calculated to represent the 

quality and quantity of lumbar spine movement. 
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Electromyography 

 

EMG data were assessed and processed using custom software (Matlab2012, The 

Mathworks Inc., Natick, Massachusetts, USA).  The spectral content of each signal was 

first examined with a Fast Fourier Transform to check for contamination.  Since ECG 

contamination was detected on most torso channels due to the low level activations, a 

band pass filter of 30-500 Hz was applied to all signals (Drake and Callaghan, 2006).  

Similarly, 60 Hz noise was detected on most channels, a notch filter with cut-off 

frequencies of 59 to 61 Hz was also incorporated into the EMG processing algorithm of 

all channels (Mello et al., 2007).  In summary, the following summarizes the processing 

conducted for EMG signals:  bias removal, band pass filter of 30-500 Hz, notch filter 

with cut-off frequencies of 59 to 61 Hz, full wave rectification low-pass filtering using a 

2nd order Butterworth filter with a cut off frequency of 2.5 Hz (Brereton and McGill, 

1998), subtraction of resting EMG levels and then normalization to maximum voluntary 

contraction obtained for each muscle group. Following processing, average EMG, 

average gap numbers and amplitude probability distribution functions were calculated for 

each muscle group per block of sitting data.  In order to determine on/off characteristics a 

gap analysis was conducted.  For the gaps analysis, muscle activity at or less than 0.5 % 

MVC for longer than 0.2 s was considered inactive (Gregory et al., 2008; Veiersted and 

Westgaard, 1993).   
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Seat Pressure 

 

Seat pressure data were processed with a customized program (Matlab2012, The 

Mathworks Inc., Natick, Massachusetts, USA) to calculate the following variables:  CoP 

coordinates, peak pressure, peak pressure coordinates for the left and right half of the 

mat, total pressure, total pressure area, maximum pressure for the right and left halves of 

the mat and peak pressure area for the right and left halves of the mat.  Average values of 

each variable were compared between seat conditions. 

 

Ratings of Perceived Pain 

 

Custom software was used to record and measure perceived pain throughout the study 

(Matlab2012, The Mathworks Inc., Natick, Massachusetts, USA).  Data was extracted 

automatically by the program as the distance to the nearest mm from 0 to the location of 

the sliding bar that was moved along the scale by the participant.  To remove bias from 

any low level pain participants might be experiencing on the testing day, baseline 

responses from the start of the collection was removed from each subsequent data point 

to focus on changes in pain that have manifested throughout the sitting trial itself.   
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Exit Survey 

 

To qualitatively assess the subjects’ perception of each chair condition and the relevance 

of standardized work task an exit questionnaire was completed immediately following the 

end of the experiment.   Specifically, using a 10 cm visual analogue scale, subjects were 

asked to rate the likelihood of how often they would want to use each seat feature 

(anchors of 0 “never” and 10 “always”).  They were also given a chance to comment on 

the following: what they liked/disliked about each seat condition, whether or not they 

would have preferred to stand up at some point throughout the experiment and if so how 

frequently would they have preferred to take these postural breaks. 

 

4.3.5 Statistics 

 

The outcome measures include the following factors:  average normalized spine (thoracic 

and lumbar) and pelvic angles, angle movement variables (fidgets, shifts, TMI), seat 

pressure variables (centre of pressure (CoP) coordinates, peak pressure, peak pressure 

coordinates for the left and right half of the mat, total pressure, total pressure area, 

maximum pressure for the right and left halves of the mat and peak pressure area for the 

right and left halves of the mat), muscle activity variables (average EMG and gap 

numbers per condition) and the last perceived  pain score for each condition block.  The 

above variables were compared between seat conditions using a two-way mixed general 

linear model with gender as a between factor and seat condition and time as within 

factors.  Statistical significance was accepted at the p=0.05 level and Tukey post hoc 
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testing were completed as required (SAS Statistical Software, version 9.4, SAS Institute 

Inc., Cary, NC, USA). 

 

4.4 Results 

 

Spine Angles 

 

Thoracic spine posture was more upright in the seat pan tilt condition compared to the 

control and lumbar support.  Upper back posture was very consistent in the control and 

scapular relief conditions, but moved through a greater range of motion in the seat pan tilt 

block.  There was a significant main effect of condition for the normalized thoracic 

flexion angle (p=0.0054).  Specifically, the thoracic spine was significantly less flexed in 

the seat pan tilt condition (55 % ROM SD 8) compared to control (59 % ROM SD 9, 

p=0.0413) and lumbar support condition (60 % ROM SD 11, p=0.0050) (Figure 25).   

There were no significant gender differences (p=0.9858) or interactions between gender 

and seat condition (p=0.9427).  Analyzing the amplitude probability distribution function 

of thoracic spine posture throughout each time block (APDF, Figure 26), we can confirm 

the minimal difference in thoracic angle throughout the control, lumbar support and 

scapular relief conditions as well as the narrow range in thoracic flexion angle (9 % to 12 

%) achieved between the 10th and 90th percentiles adopted throughout each of these three 

conditions.  For 10 percent of the time thoracic angle was significantly less flexed in the 

seat pan tilt condition compared to the lumbar support condition (p=0.0423).  A 
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significantly greater range of thoracic flexion angles was achieved in the seat pan tilt 

condition compared to control (p=0.0265) and scapular relief (p=0.0291). 

 

 

Figure 25: Average normalized thoracic and lumbar spine flexion angles for all 

seated conditions.  No significant differences were found between genders; 

therefore, data is presented for all subjects combined. 
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Figure 26:  Amplitude Probability Distribution (APDF) results for Normalized 

Thoracic Angle.  Static (p=0.10), median (p=0.5), peak (p=0.9) and range (peak-

static) are presented for each chair condition.   

 

There was a significant main effect of condition for the normalized lumbar flexion angle 

(p<0.0001).  Specifically, the lumbar spine was significantly less flexed in the seat pan 

tilt (49 % SD 24) and lumbar support conditions (52 % SD 25) compared to control (67 

% SD 29, p=0.0112 and p=0. 0001 respectively) and scapular relief conditions (67 % SD 

28, p=0.0056 and p<0.0001 respectively) (Figure 25).  Figure 27 summarizes the 

distribution of lumbar spine postures throughout each condition.  There were no 

significant gender differences (p=0.1258) or interactions between gender and condition 

(p=0.2056). The differences between the control/scapular relief and lumbar support/seat 

pan tilt conditions are evident, with lower flexion angles overall when the lumbar support 

and seat pan tilt are present.  These differences achieved statistical significance: for 10 

percent of the condition lumbar angle was significantly lower with seat pan tilt than 
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scapular relief (p=0.0477), for 50 percent of the condition lumbar angle was significantly 

greater in the scapular relief condition compared to the lumbar support (p=0.0102) and 

seat pan tilt (p=0.0036) conditions and for 90 percent of the condition lumbar angle was 

significantly lower with lumbar support and seat pan tilt compared to scapular relief 

(p=0.0108 and p=0.0007 respectively) and lower with seat pan tilt compared to control 

(p=0.0316). The range varied from 21 to 30 % ROM between seated conditions.  There 

were no significant differences in the range (between the 10th to 90th percentiles) of 

lumbar angle achieved in any of the seat conditions tested (Table 5). 

 

 

Figure 27: Amplitude Probability Distribution Function results for Normalized 

Lumbar Flexion Angle.  Static (p=0.10), median (p=0.50), peak (p=0.90) and 

range (peak-static) are presented for each chair condition. 
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pelvis (24° SD17 scapular relief, 22° SD 16 control) and females adopt relative anterior 

rotation of the pelvis in the scapular relief condition compared to control (30° SD 14 

scapular relief, 31° SD 12 control).  Probably more meaningful, however, is how clearly 

the lumbar support and seat pan tilt conditions force occupants to adopt a similar pelvic 

posture (male average 12° SD 15, female average 12° SD 9, p=0.3048) compared to the 

control or scapular relief conditions.  From the APDF results (Figure 29, Table 5) it can 

be seen that pelvic angle is more anteriorly rotated with the seat pan tilt setting than all 

other conditions at all percentiles of each condition (p>0.0001).   The range of pelvic 

angles achieved throughout the seat pan tilt condition is also significantly greater 

compared to range achieved with lumbar support (p=0.0005).  

  

 

Figure 28: Pelvic Angle relative to upright standing between genders for all 

seating conditions.   
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Figure 29:  APDF results for the pelvic angle with respect to upright standing.  

Static (p=0.10), median (p=0.50), peak (p=0.9) and range (peak-static) are 

presented for each chair condition. 

 

Table 5: ANOVA results for APDF static, median, peak and range for spine 

angles. 

   Variable  Gender  Condition  Gender * Condition 

     df  F  p  df  F  p  df  F  p 

Thoracic 
Angle 

Static  1  0.12  0.7275  3  3.35  0.0231  3  0.94  0.4275 

Median  1  0.19  0.6647  3  2.06  0.112  3  1.03  0.3857 

Peak  1  0.34  0.564  3  1.74  0.1659  3  0.54  0.6594 

Range  1  0.21  0.6515  3  3.63  0.0165  3  0.34  0.7985 

Lumbar 
Angle 

Static  1  1.00  0.3253  3  2.92  0.0388  3  0.42  0.7419 

Median  1  1.39  0.2481  3  5.29  0.0022  3  0.36  0.7841 

Peak  1  1.56  0.2219  3  6.7  0.0004  3  1.25  0.2973 

Range  1  0.01  0.9141  3  0.81  0.4934  3  0.32  0.8144 

Pelvic 
Angle 

Static  1  0.72  0.4028  3  19.76  <0.0001  3  0.42  0.7422 

Median  1  0.5  0.4852  3  11.39  <0.0001  3  0.56  0.644 

Peak  1  0.46  0.5014  3  11.4  <0.0001  3  1.08  0.3604 

Range  1  0.1  0.7575  3  5.86  0.0011  3  1.29  0.2841 

0

5

10

15

20

25

30

35

40

45

50

static mean peak range

P
e
lv
ic
 A
n
gl
e
 w
rt
 U
p
ri
gh
t 
St
an

d
in
g

A
n
t.
 R
o
t.
   
   
   
   
   
   
   
   
   
   
   
   
   
P
o
st
. R

o
t.

Control

Lumbar
Support

Scapular
Relief

Seat Pan
Tilt

median



 
 

91

To better describe the movement of the lumbar spine throughout each seated condition, 

the tally of fidgets and shifts as well as a Total Movement Index (TMI, Equation 12) was 

analyzed (Figure 30).    A significant main effect of gender was found for fidgets 

(p=0.0459) with female subjects exhibiting higher fidget numbers across all seat 

conditions compared to male subjects.  No significant difference was found in the number 

of shifts (p=0.0567), fidgets (p=0.5720) or the TMI (0.0935) between chair conditions. 

 

 

Figure 30: Fidget, shift numbers and the TMI for each chair conditions and male 

(left) and female (right) subjects 

 

Electromyography  

 

Average muscle activity was very low overall for all muscles tested, with levels not 

exceeding 8 % MVC for back muscles or 2 % for abdominal muscles (Figure 32).   
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than males (LEO 2.38 % MVC SD 0.10 and LIO 1.29 % MVC SD 0.05 females, LEO 

1.20 % MVC SD 0.04 and LIO 0.66 % MVC SD 0.05 males).  A significant main effect 

of condition was found for the thoracic and lumbar erector spinae bilaterally.  In all cases 

there was significantly higher erector muscle activity in the seat pan tilt condition.  

Specific comparisons revealed the following:  right thoracic erector spinae (RTS) was 

higher in the seat pan tilt condition compared to control (p=0.0085), lumbar support 

(p<0.0001) and scapular relief (p<0.0001) conditions, right lumbar erector spinae (RLS) 

was higher in the seat pan tilt condition compared to lumbar support (p=0.0031) and 

scapular relief (p=0.0042) conditions, left thoracic erector spinae (LTS) was higher in the 

seat pan tilt condition compared to lumbar support (p=0.0134) and scapular relief 

(p=0.0144) conditions and left lumbar erector spinae (LLS) was higher in the seat pan tilt 

condition compared to the scapular relief condition (p=0.0233).  Analyzing the peak (90th 

percentile) value from the APDF results for the posterior muscles we can confirm that 

normalized EMG levels remained low for the majority of each seat condition block 

(Figure 31). 
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Figure 31:  APDF results for right (top) and left (bottom) posterior muscles 

(average values, gender combined) for each condition. 
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To quantify how constant muscle activation was throughout each condition the gap 

parameter was calculated; the number of times muscle activation dropped below 0.5 % 

MVC for more than 0.2s and thus could be considered effectively ‘off’ (Figure 33).  A 

significant main effect of gender was found for average gap number in the left external 

oblique (p=0.0030) and left lumbar erector spinae (p=0.0207).  In both cases, female 

subjects exhibited significantly lower gap numbers than male subjects (Figure 33).  A 

main effect of condition was found for the right thoracic erector spinae (RTS, p=0.0014) 

and the right lumbar multifidus (RML, p=0.0245).  Significantly higher RTS gap 

numbers were found in the lumbar support condition compared to control (p=0.0111) and 

seat pan tilt (p=0.0019) conditions.  The RML exhibited significantly higher gap numbers 

in the scapular relief condition compared to seat pan tilt (p=0.0330).  



 

Figure 32: Average EMG (% MVC) for all muscles, seat conditions and gender (males on left, females on right). 
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Seat Pressure 

 

The only seat pressure variables that showed significant differences between seat conditions 

were the y co-ordinate of CoP (p=0.0177) and the left location of peak pressure (x co-ordinate 
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Figure 33: Average gap number for each muscle and chair condition (male data above, 

female data below). 
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p=0.0160, y co-ordinate p=0.0443).  The CoP co-ordinate in the y direction was approximately 1 

cm more to the left in the lumbar support condition compared to the seat pan tilt (p=0.0313) and 

scapular relief (p=0.0275) conditions (Figure 34).  The location of peak pressure on the left side 

of the seat was located 2 cm (SD 10 control, SD 6 seat pan tilt) forward in the lumbar support 

condition compared to control and seat pan tilt and significantly farther forward than the scapular 

relief condition (4 cm SD 7, p=0.0182).  Left peak pressure location was also 1 cm closer to the 

left edge of the seat pan in the scapular relief condition compared to all other conditions, 

however, no significant differences were found with post hoc testing (Figure 34). 
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Figure 34: Seat CoP and bilateral peak pressure locations for each condition.  No 

significant differences were found between genders. 

 

There were no significant differences between gender and condition for the rest of the seat 

pressure variables calculated:  total pressure, total pressure area, peak pressure and peak pressure 

area (Table 6, Figure 35, Figure 36, Figure 37 and Figure 38). 
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Table 6: ANOVA results for pressure variables. 

Variable 
Gender  Condition  Gender * Condition 

df  F  p  df  F  p  df  F  p 

COPx  1  0.17  0.6856  3  1.04  0.3806  3  0.06  0.9824 

COPy  1  0.9  0.3533  3  3.59  0.0177  3  0.47  0.7042 

PEAKR  1  2.48  0.1287  3  1.76  0.1632  3  1.31  0.278 

PEAKL  1  2.39  0.1355  3  1.88  0.1413  3  1.73  0.1693 

PLRX  1  0.19  0.6708  3  1.16  0.3314  3  0.11  0.9514 

PLRY  1  0.19  0.6684  3  0.61  0.6118  3  0.59  0.6235 

PLLX  1  2.68  0.1148  3  3.67  0.016  3  1.73  0.1687 

PLLY  1  3.87  0.0607  3  2.83  0.0443  3  2.45  0.0705 

AREAR  1  0.24  0.6262  3  0.82  0.4883  3  1.74  0.1662 

AREAL  1  0.03  0.8595  3  1.35  0.2638  3  1.15  0.3332 

PPAR  1  0.86  0.3617  3  2.29  0.0861  3  0.24  0.8692 

PPAL  1  0.00  0.997  3  0.26  0.8561  3  0.88  0.4562 

 

 

Figure 35: Total Pressure (mmHg) for all seat conditions.  There were no significant 

differences between genders or conditions and no interactions between gender and 

condition. 
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Figure 36:  Total pressure area (cm2) for all conditions.  There were no significant 

differences between genders or conditions and no interactions between gender and 

condition. 

 

 

Figure 37: Peak pressure (mmHg) for all conditions.  There were no significant 

differences between chair conditions or genders and no interaction between gender and 

condition. 
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Figure 38: Peak pressure area (cm2) between conditions.  There were no significant 

differences between gender or condition and no interaction between gender and 

condition. 

 

To provide a more integrated picture of seat occupant posture and seat pressure, the centre of 

mass of the head, arms and trunk (CoMHAT) was projected onto the local co-ordinate system of 

the chair seat pan and compared to the CoP location in each condition (Figure 39).  CoMHAT for 

all conditions was located farther back and more midline compared to all CoP co-ordinates:  

control differential (-1.31 cm, -8.25 cm), lumbar support differential (-1.51 cm, -9.69 cm), seat 

pan tilt differential (-2.58 cm, -10.03 cm) and scapular relief differential (-2.59 cm, -10.73 cm).   

However, these relative co-ordinates were not statistically different between genders (x: 

p=0.2069, y: p=0.2069) or condition (x: p=0.5709, y: p=0.5790). 
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Figure 39: CoMHAT and CoP for each chair condition.  Grey box outlines the location of 

the seat pan. 
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developed moderate or severe pain (Figure 40).  Typically, if a person were to develop pain, it 

would become apparent within the first 30 minutes of sitting.   

 

 

Figure 40: Representative data for three participants that have been classified as a non-

pain developer (NPD), sub-clinical pain developer (SC) and pain developer (PD).  The 

solid (20 mm) and dashed lines (10 mm) represent clinical thresholds for low back pain 

used to classify each group.  
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Figure 41: Average perceived pain for all subjects throughout the time course of the data collection: neck, left upper back 

(LUB), right upper back (RUB), left lower back (LLB), right lower back (RLB), left gluteus (RG), right gluteus (RG), left 

thigh (LT) and right thigh (RT). LLB and RLB are presented as a line graph to highlight these results. 
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In order to capture this differential pain response, peak pain scores for each participant 

were used to classify subjects into three groups using clinical thresholds:  non-pain 

developer (NPD, <10 mm), sub-clinical pain developer (SC, between 10 mm and 20 mm) 

and pain developer (PD, > 20 mm) (Sokka, 2005).  Using these criteria, the distribution 

of the study population was fairly even between genders, with the majority of subjects 

experiencing either sub-clinical or clinically relevant levels of low back pain at some 

point in the study (Figure 42).  Statistics examining the low back region were calculated 

with a third factor (pain group) to reflect this new classification of data.   

 

Figure 42: Percentage of the study population in each pain group.  
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significant differences between the SC and NPD groups (RLB p=0.4831, LLB p=0.5493, 

AVG p=0.5111) or gender (RLB p=0.6361, LLB p=0.6620, AVG p= 0.06467). 

 

 

Figure 43:  Average perceived low back pain (baseline removed) over time for 

each pain group. 

 

With respect to chair condition, pain group differences were found again:  PD reported 

greater levels of pain than SC (RLB p=0.0179, LLB p=0.0051, AVG Low Back 

p=0.0091) and NPD (RLB p=0.0026, LLB p=0.0010, AVG Low Back p=0.0015) and 

there was no significant difference between pain levels reported by SC and NPD (RLB 

p=0.5374, LLB p=0.5907, AVG Low Back p=0.5592).  No significant differences were 

found in pain scores between genders (RLB p=0.6999, LLB p=0.7062, AVG Low Back 

p=0.6980) or chair conditions (RLB p=0.0736, LLB p=0.1745, AVG Low Back 

p=0.1072).  Removing the factor of gender, however, revealed significant interactions 

between chair condition and pain group for right, left and average low back pain (RLB 
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p=0.0046, LLB p=0.0156, AVG Low Back p=0.0072).  It appears that while the NPD 

and SC groups report similar levels of pain in each condition, pain developers tended to 

respond differently: while not reaching statistical significance, lower pain scores were 

reported in the lumbar support and scapular relief conditions and noticeably greater pain 

is reported in the seat pan tilt condition (Figure 44). 

 

Figure 44: Pain group response to each chair condition.  The last value of the 

condition block is plotted for each condition. 

 

Exit Survey 

 

The average response of overall impression of each of the four seat configurations 

showed a preference for the lumbar support and control conditions followed by scapular 

relief (Figure 45).  Least preferred was the anterior seat pan tilt. 
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Figure 45: Overall impression of each chair condition rated on a 100 mm VAS 

scale answering the question “I would prefer to use this chair feature…” where 0 

= Never and 10 mm = always. 

 

There was a strong negative correlation between perceived pain and exit survey scores (r2 

= -0.69).  The higher preference scores on exit survey were related to lower pain scores; 

thus, in this data set perceived pain was a strong variable in determining discomfort. 

 

From the exit survey responses the following key messages were gathered from the 

general comments: 

 Subjects generally liked the control and lumbar support conditions more than the 

scapular relief and seat pan tilt conditions.  Between the scapular relief and seat 

pan tilt, the scapular relief was preferred more. 
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 Every subject would have liked the option to walk around at some point during 

the two hours.  The commonly noted preferred break time was 30 minutes, which 

corresponded to the length of each condition in this study. 

 Common complaints about the seat pan tilt condition involved the lack of backrest 

and that it caused increased low back pain. 

 Those who liked the lumbar support condition cited the increased support to low 

back structures as a main reason for their choice. 

 Most commented that the control condition was unremarkable, although this was 

one of the favored conditions based on the numerical score. 

 

4.5 Discussion 

 

Use of the lumbar support and seat pan tilt features resulted in greater upright spine 

postures and anterior rotation of the pelvis in both males and females.  This upright 

posture was maintained actively by the extensor muscles of the spine in the seat pan tilt 

condition (indicated by significantly higher muscle activity) and passively by the backrest 

in the lumbar support condition (indicated by significantly higher gaps in muscle 

activity). Occupants adopted more back flexion in the control seat configuration.  There 

appears to be a differential response to the scapular relief backrest between genders with 

females adopting a more anteriorly rotated pelvis and males exhibiting the reverse: more 

posteriorly rotated pelvis.  Overall, the gross whole body position with respect to the 

centre of pressure on the seat pan was no different between conditions or genders.  

Similarly, besides a very slight difference in location of peak pressure (forward 1 cm and 
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to the right in the lumbar support condition) and the centre of pressure 1 cm farther 

forward in the scapular relief condition, there were no differences in any seat pressure 

parameters between configurations or gender. However, despite “improvements” in spine 

posture with certain seat features, and regardless of higher or lower muscle activity, 

perceived back pain steadily increased to clinically significant levels throughout the two-

hour exposure and appeared to be no different between chair conditions. When the study 

population was sub-divided based on their pain classification, a clear intolerance of the 

seat pan tilt condition was evident in the pain developer group.   

 

Spine Angles 

 

Thoracic spine posture was more upright in the seat pan tilt condition compared to the 

control and lumbar support.  Upper back posture deviated minimally throughout the 

control and scapular relief conditions, but moved through a significantly greater range of 

motion in the seat pan tilt block.   The low back was more upright in the seat pan tilt and 

lumbar support conditions compared to control and scapular relief, therefore, the first 

hypothesis that lumbar flexion will not be different between conditions can be rejected.  

The trends expected, that lumbar flexion angle will be affected more by the seat pan tilt, 

followed by lumbar support and least by the scapular relief condition were identified.   

This is different than the findings of Study 1, where there were no significant differences 

in lumbar lordosis angles between any of the seated conditions.  However, as discussed 

earlier, radiographic measures only capture an instant in time, therefore, we can conclude 

that the spine angle results of Study 2 are likely more representative of the postural 
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response to each chair condition than were shown in Study 1.   Perhaps because there was 

more time for occupants to settle into the seat condition and display a natural sitting 

response.   Indeed, numerous studies of sitting have also shown that lumbar supports  

(Andersson et al., 1979a; Carcone and Keir, 2007; De Carvalho and Callaghan, 2012; 

Grondin et al., 2013) and anterior seat pan tilt (Curran et al., 2014; Goonetilleke and Rao, 

1999; Mandal, 1991) significantly reduce spine flexion.  

 

There was no difference in the upper and lower back postures adopted by male and 

female subjects in any of the chair conditions.  Therefore, the second hypothesis that 

there will be no gender differences in spine posture can be accepted.  This finding agrees 

with the result of Study 1 and others (Howarth et al., 2013; Stephens et al., 2014), yet 

there is evidence to suggest that gender differences in spine posture due exist in sitting  

(Dunk and Callaghan, 2005; Endo et al., 2012; Gregory et al., 2006).  Considering both 

radiographic and laboratory based studies have drawn conflicting conclusions regarding 

gender we can be confident that this matter goes beyond measurement error and might 

involve another, yet unidentified, reason to explain these differences. 

 

The static spine postures observed in this study correlate well with the findings of 

previous investigations of prolonged office chair sitting in both the laboratory  (Beach et 

al., 2005; Dunk and Callaghan, 2005; Dunk and Callaghan, 2010a; Gregory et al., 2006; 

Grondin et al., 2013; Howarth et al., 2009; Howarth et al., 2013; McGill et al., 2006; 

Nairn et al., 2013; O’Sullivan et al., 2012; O'Sullivan et al., 2012; Parkinson et al., 2004; 

Schinkel-Ivy et al., 2013a) and field (Ellegast et al., 2012a; Groenesteijn et al., 2012a).  
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Despite the grossly inactive nature of sitting while performing computer work, there is 

some movement occurring.  In all conditions, the low back moved through a range of 21 

to 30 % ROM during the prolonged sitting blocks.  Movement parameters of the low 

back revealed significantly more fidgets in female subjects regardless of chair condition.  

Therefore we can reject the third hypothesis that there will be no gender differences in 

movement parameters.  These movement results matches a recent report by Rohlmann et 

al. (2014) that showed significantly greater number of spine movements in females 

compared to men and a range in lumbar angles from 5° to 10°.   It has been suggested 

that large changes in posture is indicative of greater discomfort  (Dunk and Callaghan, 

2010a; Telfer et al., 2009; Vergara and Page, 2002a).  Dunk and Callaghan (2010), for 

example, found significantly greater shifts in a pain population whereas fidgeting (quick 

movements that return to the same angle) was common in asymptomatic participants.  

However, in the current study there was no significant difference in the pain ratings 

between genders. While re-analyzing the movement indices in this study by pain 

response group shows that pain developers did display significantly greater shifts than 

non-pain developers (p=0.0355) there were not significant differences in the number of 

fidgets. This strengthens the conclusion that fidgeting might be a proactive movement as 

opposed to a reaction to pain.   

 

The lumbar support and seat pan tilt conditions clearly forced similar anteriorly rotated 

pelvic postures for both genders.  This response agrees with the radiographic findings of 

Study 1 where the lumbar support and seat pan tilt conditions resulted in significantly 

greater anterior rotation of the pelvis compared to control and scapular relief and a 
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previous study of a novel surgery stool  (Noro et al., 2012).  The seat pan tilt 

configuration also resulted in a significantly greater range of pelvic motion adopted at 

some point throughout the 30-minute block compared to the lumbar support.  This could 

either mean that the lumbar support provided a greater constraint on potential postures 

that could be adopted, or that participants started to move more secondary to higher pain 

levels they were experiencing in the anterior seat pan condition. The scapular relief 

condition resulted in a differential response between genders: males adopt posterior 

rotation whereas females adopt anterior rotation of the pelvis.  This result differs from the 

radiographic findings of Study 1 where males had greater anterior rotation of the pelvis in 

all conditions tested.  Because the backrest configuration at the pelvis did not change 

between the control and scapular relief conditions this difference was not expected and is 

difficult to explain especially given the lack of gender differences in upper and lower 

back posture with the scapular relief backrest.  

 

Muscle Activity 

 

The seat pan tilt condition resulted in significantly higher activation levels of all back 

muscles compared to the rest of the conditions allowing the rejection of the fourth 

hypothesis, that there would be no difference in muscle activity between conditions. 

Considering the upright postures induced and lack of a backrest in this condition, these 

results are not surprising.   It should be emphasized, however, that muscle activity in all 

seated conditions tested were relatively low (under 10 % MVC) and fall within the same 

ranges previously presented in the literature for neutral  (Andersson and Ortengren, 1974; 



 
 

114

Dunk and Callaghan, 2005; Ellegast et al., 2012b; Gregory et al., 2006; Kingma and van 

Dieën, 2009; Morl and Bradl, 2013; Nairn et al., 2013; Schinkel-Ivy et al., 2013b) and 

forward sloping seat pans (Curran et al., 2014; O'Sullivan et al., 2012).  Only the 

abdominal muscles, specifically the left external and internal obliques, demonstrated 

differences between genders: females having slightly higher (but significant) activations 

(+ 1.18 % MVC LEO and + 0.63 % MVC LIO) and lower gap numbers in these muscles 

(average of -10 LEO and -1 LIO). A lower number of gaps in muscle activity would 

suggest increased likelihood for the occlusion of blood vessels and buildup of 

metabolites:  increasing the potential for discomfort.  Indeed, Nairn et al. (2013), in a 

sample of male participants, documented increased abdominal muscle activity in transient 

pain developers during sitting.  However, no gender differences were found for perceived 

pain levels in this current study so it is unlikely that the increased abdominal activity 

found in Study 2 is related to pain. With the flexed postures in sitting buckling of the skin 

was often noted during the collection of this study, especially in females.  This bucking 

could have resulted in poor contact of electrodes. Given this concern, it would be 

conservative to avoid drawing a conclusion regarding this aspect of the fourth hypothesis. 

 

Seat Pressure  

 

The seat pressure distributions, with highest pressure located towards the rear of the seat 

are consistent with previous work  (Bush and Hubbard, 2008; Groenesteijn et al., 2009), 

and according to the conclusion of Groenesteijn and colleagues (2009) characteristic of 

all office chairs.   The lack of significant differences in most pressure variables measured 
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in this study leads to the acceptance of the fifth hypothesis, that seat pressure variables 

would be significantly different between all chair conditions.   The exception being the 

location of peak pressure in the lumbar condition and the slight deviation of the center of 

pressure to the left in the scapular relief condition. However, from a practical standpoint 

these statistical findings likely do not translate into meaningful differences for these seat 

features.  Especially given the lack of large differences in spine posture and the relation 

between the upper body COM and COP, we can confidently conclude that occupants 

generally adopted similar whole body postures in each chair configuration.  The seat pan 

in this test chair was sculpted somewhat which also might explain the absence of A/P 

differences in centre of pressure, especially in the seat pan tilt condition.  Previous work 

has shown that forward sloping seat pans result in forward slide of the occupant and 

increased pressures at the feet (Graf et al., 1993), so the sculpted seat pan shape of the 

test chair played a role in eliminating this problem in this study. 

 

Perceived Pain 

 

Steadily increasing perceived pain, as shown in this current work, has been well 

documented throughout all studies of prolonged sitting in the literature  (De Carvalho and 

Callaghan, 2011; Dunk and Callaghan, 2005; Dunk and Callaghan, 2010b; Gregory et al., 

2006; Nairn et al., 2013; Schinkel-Ivy et al., 2013a).  No significant differences in 

perceived pain were found between genders or chair configurations, which allows the 

acceptance of the sixth hypothesis.  Not as well studied, however, is the response of pain 

sub-groups in the sitting population.  In this study, a statistically separate group of pain 
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developers was found in an otherwise healthy group that were not identified as chronic or 

previous back pain sufferers.  This pain group showed a clear sensitivity to the forward 

sloped seat pan condition, an important difference that was hidden when pain response 

was examined only between genders and condition.  Increased anterior rotation of the 

pelvis and extension of the low back has been previously suggested as a factor that 

predicts low back pain in sitting (Vergara and Page, 2002b).  Recently, Curran and 

colleagues (2014) similarly identified that extension intolerant back pain patients report 

increased perceived pain when sitting on a forward sloping seat pan, regardless of 

whether or not a backrest is present. These results suggest that attention to certain seating 

parameters may be more important to a sub-portion of the population than the rest.  

Perhaps this may, to some extent, explain why some of the larger field studies have failed 

to consistently show significant impacts of ergonomic office chairs. 

 

Limitations 

 

Previously discussed in Study 1 on page 56, aspects of the test chair, such as potential for 

decreased contact of the thoracic support and lack of a backrest with the seat pan tilt 

condition, might limit the interpretation of these results.  Seat pressure information for 

the backrest was not included in this study as pilot work found the pressure mats 

introduce noise in the electromyographic signals, especially with such low levels of 

muscle activity as in the case with sitting.  Had it been present, these data could have 

provided valuable information regarding contact time and area for the control, lumbar 

support and scapular relief conditions.  That said backrest contact, especially in the 
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thoracic region, has been shown to be low (Vergara and Page, 2000) or non-existent 

(Bush and Hubbard, 2008).  Therefore, the lack of effect seen in the scapular relief 

condition may have been affected more by the task used in this study than the design of 

the back support itself.  This leads to the second limitation.   

 

Work task has been shown to have one of the strongest influences on postures and muscle 

activation in sitting (Ellegast et al., 2012c; Groenesteijn et al., 2012b; van Dieen et al., 

2001).  Perhaps the thoracic support would have a greater impact if the occupants 

reclined more in the chair as they tend to do when reading or speaking on the phone 

(Ellegast et al., 2012b; Groenesteijn et al., 2012b).  Therefore, it is reasonable to conclude 

that the minimal effect of the thoracic support might only be a reflection of the more 

upright postures typically adopted during computer work tasks.  Future work should 

explore the impact of this type of backrest on postures in other work tasks. 

 

The use of a laboratory-based study to answer basic questions regarding the impact of 

each design features allows for the control of many variables but ultimately cannot 

replicate a real-world scenario.  University aged, healthy volunteers were used in this 

study, which will limit the applicability of these results to the younger half of the working 

population.   The short duration of each sitting block also calls into question whether or 

not an accommodation period would have a difference on how occupants interact with 

the features.  Additionally, ergonomic training and education has been shown to be an 

imperative adjunct to the introduction of new equipment  (Amick III et al., 2003; Amick 

III et al., 2012; Mueller and Hassenzahl, 2010; Robertson et al., 2009).  All three of these 
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issues would best be addressed by extrapolating these study results to a field intervention 

experiment.    

 

4.6 Conclusion 

 

The lumbar support and seat pan tilt design features were capable of producing a more 

neutral low back posture in prolonged office sitting.  Despite the similarity in posture, 

these features result in different profiles of back muscle activity, which could have 

separate implications for their relationship to spine health and injury prevention.  Taken 

as a whole, the combination of increased low back extension and lower muscle activity 

provided by the lumbar support condition would be viewed as more advantageous from a 

pain prevention point of view.  This conclusion is further supported by the sensitivity to 

the forward tilting seat pan found in pain-developer group. Despite this, it must be 

stressed that perceived low back pain steadily increased, to clinically significant levels, 

for the majority of participants throughout the two-hour exposure regardless of chair 

configuration.   Therefore, chair features such as lumbar supports are clearly not capable 

of solving the problem of sitting associated back pain on their own.   
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4.7 Contribution 

 

This study makes the following contributions to the literature: 

 

 Insights into the comparison between data captured in radiological investigations 

and in-vivo lab controlled investigations of the same chair:  based on the results of 

these two studies combined it can be concluded that while lumbar supports and 

anterior seat pan tilt are both capable of improving spine and pelvic posture, 

lumbar supports may be best tolerated. 

 Demonstrates the presence of pain sub-groups in an otherwise healthy population. 

 Together with the Study 1a, these results lay the foundation for a study comparing 

the combined effects of lumbar supports and anterior seat pan tilt. 
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Chapter 5  

 

Study 3:  The effect of brief walking breaks on biomechanical measures and 

perceived pain in prolonged sitting. 

 

5.0 Introduction 

 

Sitting for prolonged periods of time has been associated with increased morbidity and 

mortality (Bauman et al., 2011; Chen et al., 2009; Chomistek et al., 2013; Dunstan et al., 

2012; Katzmarzyk and Lee, 2012). The logical remedy for counteracting the negative 

effects of any sustained posture is movement.  In fact, efforts to increase activity at work 

have been recommended by the World Health Organization and World Economic Forum 

(WHO/WEF, 2008). Walking is one of the most commonly prescribed activities to reduce 

sedentary lifestyles and has been described as an excellent form of daily exercise since it 

is dynamic, rhythmic and involves the large muscle groups of the body (Morris and 

Hardman, 1997).  Recent work has shown walking breaks from prolonged sitting can 

improve glucose metabolism (Bailey and Locke, 2014) and reduce resting blood pressure 

(Larsen et al., 2014a).   Occupational walking programs appear to be a promising way to 

achieve this goal, although a systematic review suggests that more evidence is needed to 

demonstrate effectiveness of these workplace interventions (Chau et al., 2010; Gilson et 

al., 2013).  Further to the detriment to global health parameters, there is evidence that 

occupational sitting is associated with low back pain  (Corlett, 2008; Damkot et al., 

1984a; Frymoyer et al., 1980).  Damkot et al. (1984) identified lack of posture variation 
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while sitting as a major factor in the development of low back pain.  Callaghan and 

McGill (2001) showed that standing breaks could minimize effects on passive tissues 

during prolonged sitting but fail to provide enough of a change in compressive loading or 

muscular activation to be considered a good strategy to prevent low back pain from 

sitting.   Anecdotally, clinicians and ergonomists suggest frequent short periods of 

walking as a good break from the loading scenario encountered during sitting (Triano, 

2010), however, limited research has examined the direct effect of walking breaks on 

perceived pain or biomechanical factors.  Walking and stretching breaks from prolonged 

sitting have been shown to reduce spine shrinkage  (Billy et al., 2014; Helander and 

Quance, 1990), reduce discomfort (Galinsky et al., 2007; Henning et al., 1997; Henning 

et al., 1994; McLean et al., 2001a) and there is some evidence that brief bouts of walking 

may affect the passive stiffness response to prolonged automobile sitting (De Carvalho 

and Callaghan, 2011).  However, there is a need for more laboratory-controlled studies of 

the effect of walking breaks on specific biomechanical factors such as muscle activity, 

seat pressure and posture.  

 

5.1 Purpose 

 

The purpose of this study was to investigate the effect of a standardized 2-minute walking 

break at forty-minute intervals throughout a prolonged sitting exposure on biomechanical 

factors and perceived pain. 
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5.2 Hypotheses 

 

The following null hypotheses were tested: 

 

1) Spine angles will not be significantly different between conditions.  

2) Spine angles will not be significantly different between genders. 

3) No differences in the number of postural movements are expected between 

conditions. 

4) No differences are expected for EMG parameters (average muscle activity or 

gaps) between conditions or genders. 

5) No differences are expected for seat pressure parameters between conditions or 

genders. 

6) No differences are expected in perceived pain between conditions. 

7) No differences in active lumbar spine range of flexion motion are expected 

between conditions or genders. 

 Creep of the posterior passive spine elements has been 

demonstrated in sustained full flexion (McGill and Brown, 1992).  

Since seated postures have been shown to be approximately 70 % 

of maximum end range flexion (Study 1), so it could be reasonable 

to assume that there will be an increase in active lumbar spine 

laxity in response to prolonged sitting that will be greater in the 

control sessions with no walking breaks (where recovery could 

occur).  
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5.3 Methods  

 

5.3.1 Participants 

 

Thirty-two subjects (16 males and 16 females), with no recent (6 months) history of an 

acute low back pain, an episode severe enough to seek treatment or miss school/work, 

were recruited from a university population.  This population was chosen since they 

would be accustomed to sitting for extended periods of the day and should generally be 

free from degenerative changes of the spine commonly found in older individuals.  

Participant profiles were as follows: males (average age 25 years (SD 6), height 1.8 m 

(SD 0.1 m) and mass 83 kg (SD 18 kg) and females (average age 22 years (SD 3), height 

1.7 m (SD 0.1 m) and mass 63 kg (SD 12 kg) (Figure 46).  Informed consent was 

completed prior to testing and the study received ethics approval from the Office of 

Research Ethics at the University of Waterloo. 
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Figure 46: Population anthropometrics for Study 3. 

 

5.3.2 Instrumentation 

 

Motion Analysis 

 

Three-dimensional kinematics of the head arms and trunk were collected using an 

optoelectronic system (Optotrak, Northern Digital Inc., Waterloo, Ontario, Canada) at a 

sample rate of 32 Hz continuously for all trials. Table 4 (page 65) details the virtual 

markers used in the kinematic model development. 
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Accelerometers  

 

Time-varying sagittal thoracic, lumbar and pelvic angles were calculated from 

accelerometer data.  Three tri-axial accelerometers were affixed to the skin with double 

sided tape in the +y down and +z anterior orientation over the following anatomical 

landmarks:  spinous processes of T1, L1 and S1.  Accelerometer data were collected 

continuously throughout each 20-minute trial, low-pass filtered at 500 Hz; A/D converted 

using a 16-bit board at a sampling frequency of 2048 Hz.  Five, static normalization trials 

(5 s duration) were collected from the lumbar active range of motion trials: quiet 

standing, full lumbar flexion standing, full lumbar extension standing, full lumbar flexion 

seated and full thoracic spine flexion seated. 

 

Seat Pressure 

 

A pressure mat was fixed to the seat pan of the test chair with the origin of the sensor 

surface located at the back right of the seat pan (Xsensor3 Seating System, XSensor 

Technology Corporation, Calgary, Alberta, Canada). Seat pressure data were collected 

and synched to the motion analysis, accelerometer and EMG data via an external trigger, 

and sampled at a frequency of 4Hz continuously for each trial. A calibration procedure 

was completed in order to locate the pressure mats within the global coordinate system of 

the laboratory such that the centre of mass (CoM) of the head, arms and trunk could be 

tracked with respect to the centre of pressure (CoP) of the seat pan.  Seat pressure data 
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was triggered by the Optotrak Data Acquisition Unit to synchronize with the rest of the 

instrumentation signals. 

 

Perceived Pain 

 

Perceived ratings of pain were measured using a visual analogue scale throughout the 

study at 15-minute intervals. Subjects were asked to rate their pain for 8 areas of the body 

(right and left upper back, right and left lower back, right and left buttocks, right and left 

thighs and neck by sliding a bar along a 100 mm continuous line with the following 

anchors: 0 mm = no pain whatsoever and 100 mm = worst pain imaginable (Figure 20) 

using a custom program on their workstation computer (Matlab version R2012b, The 

MathWorks, Natick, MA, USA).  

 

Workstation 

 

The workstation used in this study consisted of an ergonomic office chair (seat back 

removed), computer desk and keyboard tray adjusted such that each participant initially 

sat with 90º of knee flexion with their feet flat on the floor, 90º at the hips and 90º at the 

elbows with neutral wrist posture and relaxed shoulders (Figure 47).  A footrest was used 

when necessary.  The participants were told that this set up provided a common, well-

accepted starting point for posture.  It was stressed that they were not required to 

maintain this position throughout collection; rather, they were free to change/relax their 

body position on the chair as they wished.   Movement limitations to minimize 
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variability, however, included not adjusting the workstation or chair parameters or getting 

up from their chair throughout the prolonged sitting trials. 

 

 

 

 

 

 

 

 

 

 

Figure 47:  Workstation set up for Study 3.  Similar to Study 2, all aspects of the workstation 

were adjusted for each individual.  Participants were instructed to start the trial with their feet 

flat on the floor (or on a footrest where necessary as depicted in this picture) and then they 

were free to move throughout the trial as long as they did not get out of the seat. 
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Surface EMG 

 

Eight channels of surface electromyography (EMG) were collected continuously for each 

trial using two disposable electrodes (Ag-AgCl, Blue Sensor, Medicotest Inc., Ølstykke, 

Denmark) affixed over the following muscles bilaterally with a 2 cm inter-electrode 

distance and parallel to fibers:  thoracic erector spinae 5 cm lateral from the spinous 

process of T9  (Callaghan et al., 1998), lumbar erector spinae 5 cm lateral from the 

spinous process of L1  (Danneels et al., 2001), multifidus 1cm lateral from the spinous 

process of L4 with a superiomedial orientation (Stokes et al., 2003), gluteus medius 2.5 

cm distal to midpoint of iliac crest (Zipp, 1982).  A ground electrode was placed over the 

clavicle.  The skin was prepared with a diluted Isopropyl alcohol cleansing solution, 

lightly shaved and abraded with an exfoliating gel.  Test contractions of each muscle 

were performed to set amplifier gains on each electrode channel in order to ensure 

maximum resolution of the EMG signal.  Raw EMG signals was band pass filtered from 

10-1,000 Hz and amplified (AMT-8, Bortec, Calgary, Canada: CMRR=115 dB at 60 Hz 

and input impedance = 10 GΩ) and collected at a sampling rate of 2,048 Hz with a 16-bit 

A/D converter (+/- 2.5 V range).  Three maximum voluntary contractions (MVC) trials 

were collected isometrically against the resistance of an examiner for 10 s for each 

muscle group.  Specifically, for the lumbar and thoracic erectors participants extended 

against resistance with their torso suspended off the end of an examination bench while 

their lower body was fixed (Dankaerts et al., 2004).  Contraction of gluteus medius was 

collected during resisted hip abduction with the subject in the side lying position. Two 
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quiet trials (5 s) were collected with the participant lying prone as a baseline reference for 

quiet EMG (used in the normalization procedure). 

 

Exit Questionnaire 

 

At the end of the experiment and just prior to de-instrumentation, each participant 

completed an exit survey.  On a 100 mm visual analogue scale, they were asked to rate 

(1) how realistic was the work scenario in the experiment and (2) how comfortable they 

were during the experiment.  Following the walking session, they were additionally asked 

(3) whether or not they would have preferred the breaks to be more or less frequent then 

they were and (4) whether or not they would have preferred the breaks to be shorter or 

longer than they were.  The participants were also provided with space to recommend a 

frequency and duration that they thought would have been best. 

 

5.3.3 Data Collection 

 

Two experimental sessions (at the same time of day to control for diurnal variation and at 

least 2 days apart to eliminate any carry over effect) were booked for each participant.  

Control sessions and intervention sessions were presented in random order.   
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First Collection  

 

Subjects attended a 30-minute pre-experiment session immediately preceding the first 

data collection.  This additional time was used for the discussion/signing of the informed 

consent and the health history forms and for the completion of a detailed musculoskeletal 

history and standard physical examination of the spine and hips (Table 7) by the 

experimenter.  The purpose of this exam was to identify any contraindicating factors that 

would preclude participation in this study and to serve as the pre-experiment 

examination.  Specifically: (1) from the history: episode of low back pain within past 6 

months, history of spine or hip trauma or surgery, known spinal deformity or 

degeneration (2) from the physical exam: findings suggesting nerve root tension/irritation 

or active discogenic symptoms.  There were no instances where participants were 

excluded from the study based on the findings of their pre-experiment physical 

examination. 

 

Control Session 

 

At the start of the session a rating of perceived pain questionnaire was completed to 

provide a baseline measure.  The experimenter then conducted a directed history and 

physical examination (Table 7).  All test results and clinical impressions were recorded.  

Pain Pressure Threshold (PPT) was measured bilaterally at the locations of the thoracic 

erector spinae, lumbar erector spinae, multifidus and gluteus medius muscle recordings.  

Specifically, a 1cm2 diameter cylindrical indenter was depressed into the skin at a rate of 
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5 N/s force/1cm2 until the sensation appreciated by the participant changed from pressure 

to pain.  This threshold was taken as the pain pressure threshold (N/cm2). 

 

Before the participant was instrumented, the workstation was adjusted such that each 

participant sat initially with 90º flexion at the knees with the feet flat on the floor, 90º at 

the hips and 90º at the elbows with neutral wrist posture and relaxed shoulders.  The seat 

used in this study was the seat pan of an ergonomic office chair with a neutral seat pan 

angle. The seat pan height was adjusted for each participant such that it falls just inferior 

the popliteal fossae of the knees.  The computer desk height was then adjusted 

accordingly. Surface electromyography electrodes were applied to the participant and 

maximum voluntary contraction trials were collected as described in the preceding 

section on page 128.   The subject was then instrumented with motion analysis clusters 

(head, thorax, pelvis, upper arms and forearms, refer to page 65) and three accelerometers 

(page 125).  This was followed by calibration trials for the motion capture system:  

digitizing virtual markers and collecting a calibration pose.  Motion analysis and 

accelerometer data were then collected for an upright standing reference posture and 8 

ranges of active motion for the lumbar (flexion, extension, bilateral rotation and lateral 

bend) and thoracic (flexion) spine.  These range of motion trials were 5 s in duration and 

they were taken with the participant in a static posture at the end range of each motion. 

The subject was then seated at the workstation that had been previously adjusted for them 

and the prolonged sitting trial began.  For ease of data management and processing, the 

two-hour period was divided into six 20-minute blocks.  Motion analysis, seat pressure, 

electromyography and seat pressure data were collected continuously through each block.  
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Ratings of perceived pain were taken at 10-minute intervals throughout the sitting trials 

for a total number of 12 ratings over the 2-hour trial.  Throughout the prolonged sitting 

trials, the subjects were free to adjust their posture as necessary, but were not permitted to 

stand up or alter any chair or workstation settings.  At the end of the prolonged sitting 

trials an outtake questionnaire was completed and then ranges of low back motion were 

retested to assess changes in flexibility.  The history and physical exam were repeated to 

compare findings from the beginning of the trial. The participant was then de-

instrumented and free to leave.  For clarity, please refer to Figure 49 for a schematic of 

the control collection session timeline. 

 

F

i

g

Figure 48:  Posterior and side profile of a participant during the 

collection of Study 3.  The walking path was indicated on the floor with 

duct tape directly behind the workstation (arrow, left photo). 



Table 7: Physical examination tests for the low back and pelvis to be completed pre- and post-collection for each participant. 

 

 

Test Description Positive Findings References

Pressure Pain Threshold

The amount of force applied at a rate of 5 N/s required to 

elicit a sensation of pain (not pressure or discomfort) 

using a pressure algometer over a location of the body. 

sensation of pain not described as pressure 

or discomfort.

{{940 Srbely,J.Z. 2010; 941 Fischer,A.A. 1987; 942 

Chesterton,L.S. 2003}}

Active Range of Motion
Standing flexion, extension, lateral bend and rotation of 

the low back
reproduction of symptoms Magee, 2002

Kemp's Test  (combined 

extension/rotation)

Subject stands with weight equally distributed.  Rotates 

upper back and then extends.
reproduction of symptoms {{602 Lyle,M.A. 2005}}

Lower Neurological Screen  Reflexes, Motor, Sensation testing.  Recommended as important part of physical examination of low back  {{857 Chou,R. 2007; 477 Dagenais,Simon 2010}}

Motion Palpation of lumbar spinous 

processes

Subject seated.  Examiner isolates each spine level and 

challenges extension, bend, rotation and flexion.
Appreciation of decreased motion

{{966 Stochkendahl,M.J. 2006; 340 van Trijffel,E. 

2005}}

Slump Test 
Subject seated, examiner extends knee, then dorsiflexes 

foot.  Neck then flexed.  Repeat both sides.
reproduction of symptoms {{589 Stankovic,R. 1999}}

Yeoman's, Femoral Nerve Tension 

Test 

Subject lying prone.  Examiner reinforces ipsilateral PSIS, 

moves lower extremity into knee flexion
reproduction of symptoms {{603 Porchet,F. 1994}}

Straight Leg Raise (for disc 

herniation or lumbar radiculopathy)

Subject lying supine. Examiner raises one leg to 90 

degrees with neutral ankle.   Trunk and hips  should 

remain neutral.

reproduction of symptoms

{{591 CHARNLEY,J. 1951; 593 Hakelius,A. 1972; 

594 Spangfort,E.V. 1972; 595 Kosteljanetz,M. 

1984; 597 Lauder,T.D. 2000; 599 GURDJIAN,E.S. 

1961; 601 Vroomen,P.C. 2002; 603 Porchet,F. 

1994}}

Static challenge of L/s spinous  

process and over PSIS

Subject lying prone.  Examiner palpates  and exerts a  

moderate force laterally at each spinous  process and 

directly over the PSIS

reproduction of symptoms, appreciation of 

reduced motion

{{620 Stochkendahl,Mette Jensen 2006; 953 

Haneline,M.T. 2009}}

Patrick FABER

Subject lying supine.  Examiner places hip in figure four 

posture (hip flexion and knee flexion, with ankle resting 

over opposite knee)

reproduction of symptoms

{{955 Dreyfuss,P. 1994; 610 Broadhurst,N.A. 1998; 

611 Albert,H. 2000; 619 Hansen,A. 2005; 618 

Rost,C.C. 2004}}

Muscle palpation:  low back and 

glutes

Reproduction of symptoms, appreciation of increased 

tension or tender spots.
reproduction of symptoms {{966 Stochkendahl,M.J. 2006}}

Physical Examination of the Low Back and Pelvis



 

Figure 49: Schematic of data collection for the control session of Study 3.   

 

Intervention Session 

 

The collection procedure for the intervention session was identical to the control session, with 

the exception that the participant took two, 2 minute walking breaks after having been seated for 

40 minutes, walking back and forth along a 3 meter path (Figure 48) at a self-selected pace, at 

the end of sitting blocks 1 and 2 (Figure 50).  
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Figure 50:  Schematic of data collection for the intervention session of Study 3.  

 

5.3.4  Data Analysis 

 

Motion Analysis  

 

Motion analysis coordinate data were dual pass filtered with a 2nd order Butterworth filter with 

an effective cut off frequency of 6 Hz.  A three-dimensional kinematic model of the body from 

the waist up was created using the Visual 3D (C-Motion Inc.) program.  To compare active low 

back range of motion prior to and following the experimental sessions, a relative trunk angle was 

calculated between the pelvic and torso segments.  Upper body (head, arms and trunk) center of 
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mass (CoM) were calculated according to the equations and body segment parameters presented 

by Winter (2009).  To provide a comparison of the location of the upper body CoM with centre 

of pressure (CoP) from the seat mat data, the CoM coordinates (global lab system) were then 

transposed into the local co-ordinate system of the pressure mat. 

 

Accelerometers  

 

Custom software (Matlab2007, The Mathworks Inc., Natick, Massachusetts, USA) was used to 

process the accelerometer data according to the method outlined starting on page 75 to calculate:  

normalized spine angles (thoracic, lumbar and pelvic) and numbers of fidgets, shifts and the total 

movement index of the normalized lumbar spine sagittal plane angles. 

 

Electromyography 

 

EMG data were assessed and processed using custom software (Matlab2012, The Mathworks 

Inc., Natick, Massachusetts, USA) as described for Study 2 on page 82. Following processing, 

average EMG, average gap numbers and amplitude probability distribution functions were 

calculated for each muscle group per block of sitting data.  In order to assess the degree to which 

muscle groups were similarly activated, which would provide information about motor control 

and a possible source of pain, cross-correlations of several muscle pairs were calculated using 

custom software (Matlab2012, The Mathworks Inc., Natick, Massachusetts, USA) according to 

the method described by Nelson-Wong et al. (2009) using Equation 13. 
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Equation 13:  Normalized cross-correlation coefficient Rxy(τ) where x(t) and y(t) are two 

signals, τ is the phase shift (range +/-1) and T is the length of the recording assessed. 

 

Cross-correlations within a window of 500 ms were calculated for each minute of the sitting 

blocks throughout the study and the absolute maximum Rxy value was recorded.  After 

confirming no difference between these intervals, the average cross-correlation co-efficient was 

taken to compare between the control and walking conditions.  Eleven muscle pairs were 

assessed, depicted in Figure 51.  

 

 

 

 

 

 

 

RTS LTS 

RLS LLS 

RGM LGM 

Figure 51:  Schematic of muscle group pairings assessed by cross-correlation, 

where R = right, L = left, TS = thoracic erector spinae, LS = lumbar erector 

spinae and GM = gluteus medius. 



 
 

138

Seat Pressure 

 

Seat pressure data was processed with a customized program (Matlab2012, The Mathworks Inc., 

Natick, Massachusetts, USA) to calculate the following variables:  CoP coordinates, peak 

pressure, peak pressure coordinates for the left and right half of the mat, total pressure, total 

pressure area, maximum pressure for the right and left halves of the mat and peak pressure area 

for the right and left halves of the mat.  Average values of each variable were compared between 

seat conditions. 

 

Rating of Perceived Pain 

 

Custom software was used to record and measure perceived pain throughout the study 

(Matlab2012, The Mathworks Inc., Natick, Massachusetts, USA).  Data was extracted as 

described in Study 2 on page 83. Since pain ratings were found to consistently rise throughout 

prolonged sitting trials, the last pain score of each block was used for comparison.  In order to 

assess the immediate impact of the walking breaks the difference between the pain score taken 

immediately after the break was compared to the last pain score of the preceding sitting block.  

This post-walking break score was also compared to the last pain score of the preceding sitting 

block from the control session. 
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Physical Examination 

 

Manual tests performed prior to and following each experiment were scored as either a 0 

(negative finding) or 1 (positive finding) and totaled for each condition (pre, post for both control 

and walking sessions).  For the pain pressure threshold, the amount of force (N/cm2) 

corresponding to the threshold where participants could first distinguish between pain and 

pressure was recorded for four points on the back bilaterally.  The difference in the thresholds 

measured at the end of the experiment was taken from that measured at the start of the 

experiment.  These difference values were then averaged and compared between conditions. 

 

5.3.5  Statistics 

 

The outcome measures include the following factors:  normalized spine (thoracic and lumbar) 

and pelvic angles, angle movement variables (fidgets, shifts, TMI), seat pressure variables 

(centre of pressure (CoP) coordinates, peak pressure, peak pressure coordinates for the left and 

right half of the mat, total pressure, total pressure area, maximum pressure for the right and left 

halves of the mat and peak pressure area for the right and left halves of the mat), muscle activity 

variables (average EMG and gap numbers per condition) and the last perceived  pain score for 

each condition block.  The above variables were compared between seat conditions using a two-

way mixed general linear model with gender as a between factor and experimental session 

(control and walking) as within factors.  To assess the immediate impact of walking breaks the 

pain scores taken after the intervention (prior to the start of the following block) were compared 

to the last score of the preceding block.  Statistical significance was accepted at the p=0.05 level 
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and Tukey post hoc testing were completed as required (SAS Statistical Software, version 9.4, 

SAS Institute Inc., Cary, NC, USA). 

 

5.4 Results 

 

Accelerometers 

 

Introducing walking breaks into a two-hour prolonged sitting exposure did not make a difference 

in the spine or pelvic postures adopted by participants during sitting.  There were no significant 

differences in the average normalized pelvic (p=0.4088), thoracic (p=0.6731) or lumbar spine 

angles (p=0.9430) between the control and walking sessions (Figure 52).  Similarly, movements 

of the lumbar angle during prolonged sitting as quantified by fidgets (p=0.6185), shifts (p=2006) 

and the total movement index (TMI, p=0.5035) also did not differ between control and walking 

sessions (Figure 53). 

 

A significant gender difference was found for the normalized lumbar flexion angle (p=0.0215) 

(Figure 52). Men (76 % ROM SD 28 control, 78 % ROM SD 28 walking) adopted more lumbar 

flexion in sitting than females (61 % ROM SD 18 control, 62 % ROM SD 17 walking).  They 

also moved their lumbar spine more throughout the sitting trials than their female counterparts.  

The total movement index for the lumbar flexion angle was greater for males (18 per block SD 4 

control, 19 per block SD 6 walking) than females (16 per block SD 4 control, 17 per block SD 5 

walking, p=0.0452, Figure 53).  No significant gender differences were found for the normalized 
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thoracic flexion angle (p=0.5789), pelvic angle (p=0.1626), fidgets (p=0.9385) or shifts 

(p=0.2135). 

 

 

Figure 52:  Average normalized Thoracic and Lumbar Flexion Angles (% ROM), Pelvic 

angle with respect to upright standing (Degrees) for both genders and experimental 

sessions (control and walking). 
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Figure 53: Average number of fidgets, shifts and the TMI for both genders and 

conditions. 

 

These differences in magnitude and movement of the low back are consistent throughout each of 

the three, 40-minute sitting blocks for both the control and walking sessions.  The APDF results 

for the lumbar flexion angle are shown in Figure 54 and Figure 55.  It is clear that the average 

angles discussed above are a representation of the magnitude of flexion adopted for the majority 

of each sitting block (90 % probability).   With respect to movement, the APDF profiles also 

demonstrate a larger range of lumbar flexion angles adopted by males (28 % ROM, 32 % ROM 

and 37 % ROM in blocks 1 to 3 of the control session, 33 % ROM, 32 % ROM and 42 % ROM 

in blocks 1 to 3 of the walking session) than females (35 % ROM, 20 % ROM and 20 % ROM in 

blocks 1 to 3 of the control session and 22 % ROM, 29 % ROM and 30 % ROM in blocks 1 to 3 

of the walking session). 
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Figure 54: APDF results for the normalized lumbar flexion angle adopted by female 

subjects in each of the 3, 40-minute sitting blocks. 

 

 

Figure 55: APDF results for the normalized lumbar flexion angle adopted by male 

subjects in each of the 3, 40-minute sitting blocks.   

 

0

20

40

60

80

100

120

140

0.10 0.50 0.90 0.10 0.50 0.90 0.10 0.50 0.90

Probability (%MVC) Probability (%MVC) Probability (%MVC)

1 2 3

Lu
m
b
ar
 F
le
xi
o
n
 A
n
gl
e

(%
 R
O
M
)

Sitting Block (40 minutes)

Control Walking

0

20

40

60

80

100

120

140

0.10 0.50 0.90 0.10 0.50 0.90 0.10 0.50 0.90

Probability (%MVC) Probability (%MVC) Probability (%MVC)

1 2 3

N
o
rm

al
iz
e
d
 F
le
xi
o
n
 A
n
gl
e

(%
 R
O
M
)

Sitting Block (40 Minutes)

Control Walking



 
 

144

Electromyography 

 

Average activity of the right thoracic spinae muscle responded differently between the 

experimental sessions and genders.  This significant two-way interaction reflects lower RTS 

activity in the control session compared to walking for male subjects whereas female subjects 

demonstrated higher RTS activity in the control session compared to walking (p=0.0447).  

Muscle activity was no different throughout the sitting trials of the control or walking sessions 

for the rest of the muscles monitored (Table 8). Female subjects displayed significantly higher 

levels of activity in the multifidi and gluteal muscles than males (Figure 56, Table 8).   

 

 

Figure 56:  Average EMG for all muscle groups between the control (black) and walking 

(grey) sessions. 
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Table 8:  Two-way ANOVA results for Average EMG activity (% MVC) for bilateral 

thoracic erector spinae (TS), lumbar erector spinae (LS), lumbar multifidus (ML) and 

gluteus medius (GL).  

 

Variable 
GENDER  CONDITION  Gender * Condition 

df  F  p  df  F  p  df  F  p 

RTS  1  2.07  0.1611  1  0.01  0.9261  1  4.51  0.0447 

LTS  1  1.02  0.3215  1  0.18  0.6773  1  3.13  0.0894 

RLS  1  1.8  0.1892  1  0.02  0.9002  1  0.48  0.4956 

LLS  1  1.06  0.3114  1  1.28  0.2692  1  0.69  0.4127 

RML  1  5.08  0.0317  1  0.87  0.3599  1  0.03  0.8561 

LML  1  5.21  0.0297  1  0.22  0.6404  1  3.17  0.0875 

RGL  1  5.28  0.0288  1  0.72  0.4061  1  0.56  0.4622 

LGL  1  6.96  0.0131  1  3.61  0.0712  1  3.9  0.0617 

 

The APDF profiles of muscle activity throughout each block of the experimental sessions 

(Figure 58) show that the average session levels for each muscle are representative of the 

majority of the prolonged sitting blocks.  Very small ranges (from the 5th-90th percentile) in 

muscle activity occur throughout each session.  Activation levels throughout all blocks and 

sessions did not vary more than 9 % MVC or 12 % MVC for male and female subjects 

respectively.  Reflecting these static muscle activity levels were the results for total gap numbers 

(Figure 57).  Only two male subjects (MHW and PTJ) exhibited EMG levels low enough to 

satisfy the criteria for a gap in activity.   
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Figure 57:  Total gap numbers for each muscle in the control (black) and walking (grey) 

sessions.  Only the EMG profiles of two male subjects (MHW and PTJ) met the criteria 

for a “gap” in muscle activity.
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Figure 58:  APDF profiles (left to right within each cluster: static (p=0.1), median (p=0.5), peak (p=0.9) and range (peak-static) 

for each cluster) for average EMG levels during block of the control (left) and walking (right) sessions. 
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Figure 59: Peak cross-correlation co-efficient for all muscle combinations in the 

control (black) and walking (grey) sessions. 

 

Peak values for the cross-correlation co-efficient (Rxy) were examined for all 

combinations of muscle groups (Figure 59, Table 9).  No significant differences were 

found between experimental condition (control vs walking sessions) and/or gender. No 

perfect co-contraction relationships, +1.00, were discovered for any of the combinations.  

However, it appears that there is a stronger interplay between the erector spinae muscles 

of the upper and lower back compared to the lumbar erector spinae and gluteal muscles.  

This makes sense given anatomy and function of these muscle groups.  
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Table 9: 2-way ANOVA results for the peak cross-correlation co-efficient for 

each muscle combination. 

Variable 
GENDER  CONDITION  Gender * Condition 

df  F  p  df  F  p  df  F  p 

RTS_LTS  1  0.35  0.5567  1  0.00  0.9775  1  0.01  0.9288 

RTS_RLS  1  1.36  0.2527  1  0.00  0.9887  1  0.56  0.4618 

RTS_LLS  1  1.1  0.3037  1  1.24  0.2751  1  1.29  0.2656 

LTS_RLS  1  1.34  0.2561  1  0.28  0.5998  1  0.83  0.3707 

LTS_LLS  1  0.18  0.6747  1  2.52  0.1242  1  0.36  0.5529 

LLS_RLS  1  1.8  0.1903  1  0.13  0.7175  1  0.18  0.6716 

LLS_RGM  1  1.62  0.2128  1  0.14  0.713  1  1.24  0.2749 

LLS_LGM  1  0.09  0.7722  1  0.05  0.8286  1  0.88  0.3563 

LGM_RLS  1  0.33  0.5684  1  1.78  0.1936  1  0.67  0.4208 

RLS_RGM  1  0.65  0.4262  1  2.03  0.166  1  0.65  0.4259 

LGM_RGM  1  0.06  0.8148  1  2.06  0.1622  1  0.34  0.5626 

 

 

Seat Pressure 

 

Center of Pressure coordinates were not significantly different between the control and 

walking sessions (CoP x p=0.05984, CoP y p=0.9903, Figure 60, Table 10).  However, a 

significant main effect of gender was found for the CoP y co-ordinate (p=0.0378).  On 

average, female subjects sat such that their CoP was 1 cm farther left than the male 

subjects (males: 15.30 cm SD 1.66 control, 15.20 cm SD 0.80 walking, females:  16.08 

cm SD 1.50 control, 16.19 cm SD 1.10 walking).  There were no differences between the 

locations of the peak pressures on the right and left side of the seat pan between 

experimental sessions or conditions (Table 10). 
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Figure 60:  Center of Pressure (CoP) and bilateral peak pressure locations for both 

genders and experimental sessions. 

 

The peak pressure on the right side of the seat pan was significantly lower in the walking 

compared to the control session (p=0.028) and male subjects produced higher peak 

pressures bilaterally than females (R p=0.0056, L p=0.0176; Figure 61) throughout both 

sessions. 
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Figure 61: Peak pressure (mmHg) calculated for the right (peak-R) and left (peak-

L) sides of the seat pan pressure mat. 

 

Total seat pan pressure for both the right and left sides of the distribution was 

significantly lower in the walking than the control sessions (R p=0.0009, L p=0.0018, 

Figure 62).  These pressures were also significantly higher for male subjects compared to 

females in both experimental protocols (R p=0.0466, L p=0.0117, Figure 62).   

 

 

Figure 62: Total seat pan pressure (mmHg) calculated for the right (sum-R) and 

left (sum-L) sides of the seat pan pressure mat. 
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The area of peak pressures for the right and left sides of the seat pan were lower for males 

in both control and walking sessions, with the left side reaching statistical significance 

(PPA-L p=0.0005, Figure 63) 

 

 

Figure 63: Peak pressure area (cm2) for the right (PPA-R) and left (PPA-L) sides 

of the seat pan pressure mat. 
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Table 10: Two-way ANOVA results for all seat pan pressure variables between 

experimental sessions (control and walking) and gender. 

Variable 

GENDER  CONDITION  Gender * Condition 

df  F  p  df  F  p  df  F  p 

COP‐x  1  3.87  0.0583  1  0.28  0.05984  1  0.07  0.7862 

COP‐y  1  4.72  0.0378  1  0.00  0.9903  1  0.17  0.683 

Peak‐R  1  8.91  0.0056  1  5.33  0.028  1  0.02  0.8959 

Peak‐L  1  6.32  0.0176  1  1.65  0.2091  1  0.01  0.9242 

RPeakLoc‐X  1  0.24  0.6269  1  0.56  0.4592  1  0.77  0.3871 

RPeakLoc‐y  1  0.01  0.9241  1  0.41  0.5276  1  0.12  0.7332 

LPeakLoc‐x  1  0.03  0.8697  1  0.12  0.729  1  0.06  0.8096 

LPeakLoc‐y  1  0.47  0.497  1  0.02  0.8998  1  0.6  0.4452 

Sum‐R  1  4.31  0.0466  1  13.73  0.0009  1  0.21  0.6495 

Sum‐L  1  7.21  0.0117  1  11.70  0.0018  1  3.39  0.0755 

Area‐R  1  0.29  0.5943  1  2.66  0.1135  1  1.06  0.3107 

Area‐L  1  0.01  0.9437  1  0.40  0.5342  1  0.2  0.6608 

PPsum‐R  1  0.23  0.6373  1  1.61  0.2146  1  0.2  0.6602 

PPsum‐L  1  3.71  0.0635  1  0.41  0.5252  1  0.93  0.3417 

PPA‐R  1  2.83  0.1029  1  0.43  0.5155  1  0.11  0.7392 

PPA‐L  1  15.1  0.0005  1  0.01  0.9153  1  1.13  0.2964 

 

There were no significant main effects of condition or gender for the right and left total 

pressure area or peak pressure area magnitudes (Table 10, Figure 64 and Figure 65). 
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Figure 64: Total pressure area for the right and left side of the seat pan. 

 

 

Figure 65:  Sum of pressure in peak pressure areas on the right and left sides of 

the pressure mat. 
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Male subjects sat such that their centre of mass (CoM) was farther forward and to the left 

of the centre of pressure (CoP) in both the control (14.0 cm forward and 1 cm left) and 

walking (9 cm forward and 9 cm left) sessions (Figure 66).   Female subjects, conversely, 

sat with their CoM much closer to their respective CoP in both sessions (control 6 cm 

forward and 1 cm left and walking 5 cm forward and 0.01 cm left).  These differences 

were statistically significant between genders (M/L p=0.043 and A/P p=0.0498) but not 

between experimental sessions (M/L p=0.1855 and A/P p=0.3513). 

 

Figure 66:  CoM with respect to CoP on the seat pan for both conditions and 

genders. 
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Perceived Pain 

 

Similar to the findings of Study 2 (page 102), analysis of the raw perceived pain data 

revealed sub-groups of the population having a substantial differential response to the 

prolonged sitting exposures (Figure 67). 

 

 

Figure 67: Raw perceived pain (mm) ratings for a representative non-pain (NPD), 

sub-clinical (SC) and pain developer (PD) from the control session. 

 

Therefore, the same classification method (outlined on page 105) was applied to sub-

categorize this current study population based on the pain rating scores of the control 

session.    The resulting proportions are displayed in Figure 68. 
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Figure 68: Proportion of pain response groups found in the Study 3 population. 

 

There were no significant differences between the perceived pain ratings of male and 

female subjects in either of the experimental sessions (Table 11), therefore, perceived 

pain results have been displayed by pain grouping. 

 

Perceived pain scored by subjects classified as pain developers were significantly greater 

than the non-pain and sub-clinical pain developer groups for all nine areas of the body 

(Table 11, Figure 69).  Post hoc testing did not find any significant differences between 

the scores of the non-pain and sub-clinical pain developer groups.   

 

Pain ratings for the right and left gluteal region were significantly lower at the end of the 

walking session compared to control (LG p=0.0206, RG p=0.0330).  There were no 
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11). 
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Figure 69: Perceived pain scores for 9 areas of the body (bilateral upper and lower 

back, glutes, thighs and a general score for the neck) by all three pain groups 

(NPD=black, SC=light grey and PD=dark grey) in the control (left) and walking 

(right) sessions. 
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Table 11:  3-way ANOVA results for the perceived pain rating (baseline removed) for 9 areas of the body at the last time point 

of the collection:  bilateral upper (UB) and lower back (LB), glutes (G), thighs (T) and the neck (N, general). 

 

  
Gender  Condition  Pain Group 

Gender * Pain 
Group 

Condition * PG 
Gender * 
Condition 

G * C * PG 

df  F  p  df  F  p  df  F  p  df  F  p  df  F  p  df  F  p  df  F  p 

RUB  1  0.44  0.5115  1  1.55  0.2249  2  16.93  <0.0001  2  0.8  0.4598  2  1.37  0.2726  1  0.03  0.8543  2  1.56  0.2297 

LUB  1  1.02  0.3227  1  3.35  0.0785  2  16.92  <0.0001  2  0.34  0.7174  2  1.35  0.2763  1  0.18  0.697  2  2.37  0.1129 

RLB  1  0.06  0.815  1  3.31  0.0804  2  15.54  <0.0001  2  0.15  0.8635  2  2.23  0.1279  1  0.22  0.6407  2  0.66  0.5274 

LLB  1  0.01  0.9144  1  1.92  0.178  2  13.01  0.0001  2  0.05  0.954  2  2.09  0.1445  1  0.06  0.8114  2  0.19  0.8314 

LG  1  0.49  0.4908  1  6.08  0.0206  2  7.01  0.0037  2  0.18  0.8388  2  1.59  0.2224  1  1.28  0.2684  2  1.72  0.1986 

RG  1  0.6  0.4439  1  5.07  0.033  2  6.17  0.0064  2  0.29  0.7476  2  0.48  0.6242  1  0.38  0.5445  2  0.82  0.4518 

LT  1  0.75  0.3955  1  0.85  0.3639  2  3.44  0.0473  2  0.45  0.6415  2  0.3  0.7439  1  0.1  0.7592  2  0.68  0.5166 

RT  1  0.73  0.3997  1  4.14  0.0521  2  3.56  0.0429  2  0.46  0.9344  2  0.07  0.9344  1  1.25  0.2732  2  2.81  0.0784 

N  1  0.03  0.8709  1  0.42  0.521  2  6.93  0.0039  2  0.27  0.764  2  0.05  0.9494  1  0.45  0.5063  2  1.96  0.1614 
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In order to assess the immediate impact walking breaks had on average perceived low 

back pain during prolonged sitting the following analysis was employed:  the pain score 

measured immediately following each walking break (W1 and W2) were compared to the 

last pain score of the preceding sitting block (1D and 2D respectively, see line graph in 

Figure 70). 

 

 

Figure 70: Average low back pain throughout the control (bar graph) and walking 

(line graph) sessions. 

 

The differential scores (W1-1D and W2-2D) were found be significantly greater (larger 

reduction in pain) for pain developers compared to non-pain developers for both the left 
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differences between the differential scores resulting from the first (W1-B1D, P=0.8220) 

or second (W2-B2D, p=0.2117) walking break. 

 

 

Figure 71: Pain score differential (mm) for each walking break (W1-B1D = 

Walking Break 1, W2-B2D = Walking Break 2) by each pain group. 

 

There was no significant difference between the pain levels reported at the start of the 

second block (2A: LLB p=0.5917, RLB p = 0.4293) between the control and walking 

sessions.  However, there was a significant interaction between condition and pain group 

when the first pain level of the third block was compared (3A: LLB p=0.00419, RLB 

p=0.0387).  Specifically, pain developers reported significantly lower levels of pain at 

point 3A in the walking session. 
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Active Lumbar Range of Motion Pre/Post Prolonged Sitting 

 

Active ranges of low back motion were not significantly different pre/post control or 

walking sessions or between genders (Table 12, Figure 72). 

 

 

Table 12:  2-way ANOVA results for low back active range of motion angles 

tested prior to and following each experimental session. 

Variable 
Gender  Condition  Gender * Condition 

df  F  p  df  F  p  df  F  p 

Flexion  1  1.14  0.2956  1  0.52  0.4815  1  0.31  0.5866 

Extension  1  0.00  0.9931  1  0.14  0.7169  1  0.15  0.705 

Right Rotation  1  1.19  0.2846  1  1.05  0.317  1  0.22  0.6459 

Left Rotation  1  0.79  0.3822  1  0.24  0.6283  1  0.13  0.718 

Right Lat Bend  1  1.24  0.2754  1  0.04  0.8407  1  2.22  0.1515 

Left Lat Bend  1  0.00  0.9981  1  1.12  0.3034  1  0.02  0.883 

Seated Flexion  1  0.00  0.9565  1  0.5571  0.5571  1  0.3823  0.3823 
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Figure 72:  Active ranges of motion for the low back for both genders and experimental sessions. 
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Physical Examination 

 

The average number of positive findings from each physical examination did not exceed 

1.3 SD 1.6 for any of the sessions.  The low frequency of these findings qualifies this 

population as a non-clinical, healthy group (Figure 73). 

 

 

Figure 73:  Frequency of positive physical examination tests pre/post each session 

for males (left) and females (right). 
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found for the threshold differential at the right lumbar spine point (p=0.0194).  Female 

subjects displayed a higher pain pressure threshold (more pressure needed to elicit a 

sensation of pain) and male subjects displayed a lower pain pressure threshold (less 

pressure needed to elicit a sensation of pain) following the walking session (Figure 74).  

No other differences were found for gender or experimental session for the rest of the 

PPT locations tested (Figure 75, Table 13). 

 

 

Figure 74: Significant two-way interaction between gender and experimental 

session for the right lumbar spine pain pressure threshold point. 
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Figure 75:  Difference in pressure pain threshold between genders and 

experimental session. 

 

Table 13:  2-way ANOVA results for pain pressure threshold (kgcm2) between 

gender and experimental session. 

Variable 
Gender  Condition  Gender * Condition 

df  F  p  df  F  p  df  F  p 

RTS  1  0.01  0.914  1  0.73  0.401  1  0.00  0.9666 

LTS  1  0.24  0.6272  1  0.79  0.3806  1  0.17  0.6858 

RLS  1  2.61  0.1167  1  3.59  0.0678  1  6.10  0.0194 

LLS  1  0.01  0.9092  1  1.31  0.2623  1  0.01  0.9047 

RG  1  0.00  0.9677  1  0.43  0.5169  1  0.41  0.5279 

LG  1  0.44  0.513  1  0.71  0.4057  1  0.06  0.816 
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Exit Survey 

 

The qualitative information extracted from the outtake questionnaire at the end of each 

session supports that the experimental conditions imposed in both the control and 

walking break sessions were a fair simulation of a realistic “intense word processing 

scenario” that one might expect to encounter at school or work.  Participants rated the 

realism of the control scenario a 70 % (SD 25) and the walking break session a 72 % (SD 

23).  Participants rated the walking break session as more comfortable than the control 

session (54 % SD 23 compared to 45 % SD 22 respectively).  Following the walking 

break sessions, participants were asked to comment on the frequency and length of the 

walk breaks.  33 % of the population responded they would have preferred more frequent 

breaks, 67 % were happy with the timing of the breaks used in the study (40 minutes) and 

37 % wished the breaks were less frequent. The majority of participants suggested five 

minutes would be an ideal length of time for a walking break.  However, when these 

results were analyzed by pain subgrouping the trend was that pain developers preferred 

longer and more frequent breaks: over 60 % of pain developers wanted breaks earlier 

than 40 minutes whereas the majority of NPD (80 %) and SC (85 %) participants were 

happy with the timing of the breaks.  This result highlights the importance of studying 

pain sub-groups further and the likelihood that generalized recommendations for 

work/rest ratios are unrealistic. 
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5.5 Discussion 

 

Brief walking breaks of self-selected intensity had no effect on most biomechanical 

factors, with the exception of seat pressure variables, and were not able to reduce average 

perceived pain that develops by the end of a prolonged sitting exposure.  The breaks do, 

however, provide a significant immediate reduction in pain for the portion of the 

population classified as pain-developers immediately following the break time.   

 

Spine Angles 

 

The presence of walking breaks did not change the spine or pelvic postures adopted 

throughout the prolonged blocks of sitting.  All participants sat with approximately 54 % 

of maximum thoracic and 60 % of lumbar flexion range of motion and approximately 

12.5° of pelvic tilt compared to standing.  The magnitude of spine and pelvic angles and 

their overall static nature throughout both the control and walking break sessions of this 

study are largely consistent with the results of Study 2 and other studies of prolonged 

office sitting in laboratory  (Beach et al., 2005a; Dunk and Callaghan, 2005; Dunk and 

Callaghan, 2010; Gregory et al., 2006; Grondin et al., 2013; Howarth et al., 2009; 

Howarth et al., 2013; McGill et al., 2006; Nairn et al., 2013; O’Sullivan et al., 2012; 

O'Sullivan et al., 2012; Parkinson et al., 2004; Schinkel-Ivy et al., 2013) and field  

(Ellegast et al., 2012; Groenesteijn et al., 2012a) settings.   Contrary to the results of 

Study 2, however, are the presence of gender differences in low back angle and 

movement.  In this study, males were found to sit with more lumbar flexion than females 

and displayed greater movement of their lumbar spine as represented by the total 
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movement index.  The flexed spine postures of male subjects was also reflected in the 

results of comparison of COM and COP:  females displayed minimal difference between 

these parameters as they sat upright, whereas the average male COM was found anterior 

to the COP suggesting a forward hunched posture.  Thus we can accept the first 

hypothesis that spine angles will not change significantly between conditions and reject 

the second hypothesis that there will be no gender differences in spine angles.  

Hypothesis 3, however, that the walking intervention would have an effect on the number 

of postural movements is rejected.  In Study 2 no gender differences in lumbar angle 

were found, and females were found to fidget significantly more than males.  A number 

of laboratory and radiological studies previously published have found gender differences 

in sitting posture  (Beach et al., 2005b; Dunk and Callaghan, 2005; Endo et al., 2012; 

Gregory et al., 2006; Straker et al., 2009), with females tending to adopt a more extended 

lumbar spine.  The same work task was used in this study as in Study 2.  The only 

difference being the configuration of the chair:  in this study, a neutral seat pan with no 

backrest and in Study 2 the control condition featured a neutral seat pan with a backrest.  

Therefore, the presence of the backrest could be a confounding factor in the low back 

postures subconsciously adopted by males and females.  

 

Electromyography 

 

A significant interaction was found for the average muscle activity of the right thoracic 

erector spinae:  activity in this muscle was lower for males in the control than walking 

and lower for females in the walking than control sessions.  Therefore, the 4th hypothesis, 
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that there will be no differences in EMG parameters between conditions or genders can 

be rejected.  Considering there were no differences in posture between control and 

walking sessions, this is an interesting finding.  It could point to a difference in motor 

control strategy, especially since females were also found to have significantly higher 

levels of multifidus and gluteus activity compared to males, yet this pattern of activity 

was the same for both sessions.   Similarly, no gender or condition differences were 

found in the cross-correlation of muscle combinations further reducing the likelihood of a 

differential control strategy at play.  The trends in these data indicate that females used 

higher activations of all muscles compared to males, which makes sense given the fact 

that they adopted more erect postures; however this diverges from past results in a field 

study that used chairs with backrests (Mork and Westgaard, 2009). Although a statistical 

difference in response to session type was detected between genders, it remains to be 

seen whether or not this finding would have practical significance given the relative low 

magnitude of this difference (5 to 10 % MVC range).  Muscle activity for both genders 

and between both conditions was very constant with only two participants displaying 

gaps in activity.  Given the higher levels of activation in this study compared to Study 2, 

likely due to the absence of a backrest, it is not surprising that muscles did not fluctuate 

in activity level.  

 

Seat Pressure 

 

Significantly greater pressures (peak and total) and lower pressure areas were found for 

males compared to females and decreased pressures were found in the walking compared 
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to control sessions.  These findings allow us to reject the fifth hypothesis that no 

differences in seat pressure variables between genders or conditions.  These gender 

differences in seat pressure have been documented and directly related to morphological 

and anthropometrical differences between males and females (Dunk and Callaghan, 

2005; Moes, 2007; Tuttle et al., 2007).  Specifically, pelvis morphology (decreased 

distance between ischial tuberosities) and higher average mass leads to higher pressures 

for males in most cases.  Given that lower pressures were found in the walking session 

compared to the control session it also appears the length of time “settling” into the seat 

played a role in the seat pressure profiles.  Past studies have documented the slow rise of 

pressure and area in prolonged sitting (Callaghan et al., 2010; De Carvalho and 

Callaghan, 2011).  Unloading the seat (and buttock tissue) for 2 minutes after 40 minute 

blocks of sitting appears to be enough time to normalize any bottoming out process that 

might have been occurring.   

 

Perceived Pain 

 

Reductions in whole body discomfort resulting from walking or stretching breaks have 

been documented in previous studies conducted in both the laboratory (McLean et al., 

2001a) and field environment  (Galinsky et al., 2007; Helander and Quance, 1990; 

Henning et al., 1997; Henning et al., 1994).  In this study walking breaks resulted in a 

significant reduction in perceived gluteal region pain only. Therefore, the sixth 

hypothesis, that there will be no differences in perceived pain between conditions can be 

rejected.  Seat pressure has been shown to play a large role in the perception of seating 
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comfort and discomfort (Koo et al., 1996; Moes, 2007a; Vergara and Page, 2002b).  

Therefore, the reduced seat pressures in the walking break session might be one factor 

accounting for the lower ratings of perceived buttock pain in the walking session.  

However, effects of pain relief from physical activity have been well documented and 

likely played a part in this reduction (Kayihan, 2014; Kodesh and Weissman-Fogel, 2014; 

Sitthipornvorakul et al., 2014).  Kodesh and Weissman-Fogel (2014) have demonstrated 

an analgesic effect of moderate exercise resulting in increased pain pressure threshold 

(PPT).  In this study a significant interaction was found with the walking session causing 

an increased PPT threshold in female subjects and a decreased threshold in male subjects.  

This result is interesting, with the potential implication that this form of intervention 

might help women but might not be beneficial for men.  Further work should be 

conducted to test this effect in a larger population for confirmation.  Also pointing to the 

importance of examining the intervention effects on sub-groupings of the population is 

the finding of short-term pain relief in the pain-developer group immediately following 

each walking break.  While no significant differences were found between the ultimate 

pain rating at the end of the control or walking sessions, it does appear that the walking 

breaks may allow for a buffer in pain accumulation.  With more work to determine an 

optimal work/rest ratio and intensity of a movement intervention, hopefully this trend can 

be translated into substantial relief for those that are not able to tolerate sitting for 

prolonged periods of time.  
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Active Range of Motion 

 

Changes in active lumbar ranges of motion were not found following either the control or 

walking break sessions, therefore, the seventh hypothesis can be accepted.  There is some 

evidence in the literature that the posterior passive elements of the spine undergo 

viscoelastic creep during sustained postures at end range lumbar flexion  (Beach et al., 

2005c; Howarth et al., 2013; McGill and Brown, 1992; Solomonow et al., 2003).  While 

passive ranges of motion were not tested in this experiment, the end range achieved 

during voluntary active motion was used as an indication of whether or not alterations in 

the sensitivity of proprioceptive receptors had occurred as would be expected in response 

to viscoelastic creep  (Solomonow et al., 2003; Solomonow, 2004; Solomonow, 2006). 

Specifically, it would be assumed that if creep of the passive tissues had occurred, 

increased voluntary range of motion would be possible due to greater length changes 

necessary to activate desensitized mechanoreceptors.  This was not seen in either of the 

experimental conditions.  Participants adopted approximately 60 % of their maximum 

flexion range in sitting throughout both walking and control conditions.  Either this 

posture was not extreme enough to induce viscoelastic changes in the tissue or perhaps 

the lumbar angle (relative angle between the trunk and pelvis as measured by the motion 

capture system) was not specific enough to detect these changes.   
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Limitations  

 

Exit survey responses suggested that the majority of the study participants agreed that the 

testing protocol used in this study was a good approximation of an “intense word 

processing” scenario that they might experience when trying to finish a project for a 

deadline.  Despite the attempts to recreate a realistic office desk set up, the constraints of 

the laboratory environment and instrumentation limits the findings of this study.  The 

walking break itself, a 2 minutes of self-selected pacing limited to a 3-meter path, might 

not be the most appropriate break from prolonged sitting in an office.  However, it does 

mean that the results are applicable to a wide range of office spaces, even those with 

limited areas for walking.  While the parameters clearly need to be adjusted in order to 

have a greater impact on perceived pain, they were chosen with reference to current 

evidence in the literature (Galinsky et al., 2007; Henning et al., 1997; McLean et al., 

2001b) and can be a base from which future studies can expand from. 

 

Secondly, the lack of backrest on the office chair, while necessary from an 

instrumentation point of view, created a much more challenging sitting exposure for the 

participants.  Presence of a backrest presents a number of technical challenges such as 

occlusion of motion analysis markers and potential contamination of EMG signals 

(secondary to compression and movement of wires against the support).  It also increases 

the variability of seating postures and seat pan pressures (Nag et al., 2008).  A secondary 

benefit for not using a backrest was the desire to accelerate any potential low back pain 

resulting from the seated exposure with the hopes of seeing a greater intervention effect.  
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While further work would be needed for confirmation, there is the potential that the 

presence of a backrest would not change the findings of this study. A field-based study 

conducted by Mörl and Bradl (2013) found that unsupported sitting accounted for 41% of 

the time spent sitting at a desk and that task, over and above office chair characteristics, 

dictate muscle activity and postures during sitting, a conclusion echoed by a number of 

research groups (Graf et al., 1993; Groenesteijn et al., 2009; Groenesteijn et al., 2012b; 

van Dieen et al., 2001).  Similarly, Vergara et al. (2002) has shown that backrest use in 

sitting can be minimal or non-existent for computer work. Most directly related to the 

design of the current study is the work of Curran et al. (2014).  The presence of a backrest 

showed no difference in muscle activity or perceived pain in both a neutral and forward 

sloping desk chair. 

 

The population used in this study is applicable to the younger range of the working 

population.  The use of healthy participants, as confirmed by the history and physical 

examination, is also a limiting factor.  It has, however, contained a pre-clinical population 

that will be extremely useful to study in the future.  If interventions can be identified and 

formulated to halt or minimize the development of pain and injury in this pre-clinical 

group the benefits to society will outweigh this initial limitation. 

 

5.6 Conclusion 

 

Brief walking breaks of self-selected intensity have only modest effects on the 

biomechanics of sitting yet do provide a significant immediate reduction in pain for the 
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portion of the population classified as pain-developers.  These results provide important 

information for practitioners; it appears that suggesting more frequent activity breaks for 

individuals suffering from sitting associated back pain may be beneficial. However, it is 

clear that a better understanding of the pain group classification is necessary in order to 

develop appropriate interventions. Specifically, future work should aim to determine the 

optimal sitting/break ratio and intensity of this movement intervention.  Beyond simply 

pain reduction, brief and light walking breaks from prolonged sitting have been shown to 

result in improved health metrics such as reduced blood pressure (Larsen et al., 2012; 

Larsen et al., 2014b) and improved glucose metabolism (Bailey and Locke, ).  Therefore, 

the impact walking breaks can have on health beyond improvement of low back pain 

should not be ignored.   

 

5.7 Contribution 

 

This study provided the following novel contribution: 

 Demonstrated that walking breaks can provide temporary pain relief during 

prolonged sitting but do not change other biomechanical variables. 
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Chapter 6 

Study 4:  The effect of lumbar spine manipulation on biomechanical factors and 

perceived pain during prolonged sitting. 

 

6.0 Introduction 

 

Moderate evidence supports manipulation of spine facet joints for the treatment of acute 

and chronic low back pain  (Chou et al., 2007a; Chou et al., 2007b; Dagenais et al., 

2010).  While a number of studies have demonstrated beneficial treatment effects such as 

decreased pain, increased range of motion, decreased stiffness and decreased muscle 

spasm (Bronfort et al., 2004; Hondras et al., 2009; Mansilla-Ferragut et al., 2009) the 

exact mechanisms responsible have remained hypothetical.  Likely involved are reflex 

pathways from muscle spindle, golgi-tendon and mechanoreceptors in the facet joint 

capsules, ligaments, deep spine muscles and overlying skin of the back that are activated 

respectively during the thrust phase of the procedure (Herzog, 2010; Triano, 2001).   

 

A review of literature (page 21) has identified two knowledge gaps pertaining to the 

effect of manipulation on muscle activity and lumbar spine posture, two relevant factors 

pertaining to sitting.  Considering the close association to low back pain and the effect 

posture and muscle activity play during sitting, a clinical mind would ponder the effect of 

manipulation on these parameters in this same scenario.  Specifically, considering the 

evidence of reduced lumbar paraspinal muscle activity in forward trunk flexion (Bicalho 

et al., 2010a; Lalanne et al., 2009a) after manipulation and the knowledge that sustained 

low-grade muscle activity is hypothesized as a factor in the generation of discomfort 
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during sitting  (McGill et al., 2000), perhaps this intervention has a role in improving the 

effects of seated exposures.  Similarly, altered kinesthetic awareness has been shown to 

decrease in the lumbar spine in response to prolonged flexion  (Solomonow et al., 2003).  

Preliminary investigations of manipulation in chronic neck pain patients have found 

significant improvements in head repositioning ability  (Rogers, 1997) neck posture 

(Morningstar et al., 2003), and elbow-repositioning ability (Haavik and Murphy, 2011).   

While to date, there are no studies examining the effect of manipulation on postural 

changes in the lumbar spine, if the response is similar to the cervical spine, perhaps 

manipulation could improve lumbar posture in sitting as well by creating more postural 

awareness. 

 

At this point, most of the studies that have examined muscle activity responses to lumbar 

manipulation in humans have used surface electromyography.  A limitation of this 

method is that the deeper multifidus muscle, directly influenced by the spinal reflex loop 

initiated by stretch of the same level facet joint capsule mechanoreceptors, is not well 

represented by surface recordings (Stokes et al., 2003).  To date, only one study has been 

published using indwelling EMG to study the response of multifidius activity to lumbar 

spine manipulation (Tunnell, 2009).  Fine wire electrodes were inserted in the multifidus 

muscle at the L4/L5 level.  Multifidus muscle activity was found to decrease post-

manipulation compared to initial levels.  Unfortunately, this investigation was a case 

study completed on one subject who was experiencing an acute episode of low back pain 

and the experimenter removed the wire electrodes for the manipulation and then replaced 
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them for post-intervention measures, thus calling into question the reliability of this 

result.   

6.1 Purpose 

 

The main purpose of this study was to investigate the effect of a lumbar spine 

manipulation on trunk muscle activation, lumbar spine posture and perceived ratings of 

pain during prolonged office sitting.  Secondly, this analysis included indwelling 

recordings from multifidus to determine whether or not relevant electromyographic 

information has been missed in previous sitting studies and whether or not there are 

differences between surface and indwelling measures.   

 

6.2 Hypotheses 

 

The following null hypotheses were tested: 

 

1) No change in low back sitting posture will occur in response to the lumbar 

manipulation intervention.   

 While there is evidence to suggest that spine posture can be 

altered due to activation of proprioceptive receptors in passive 

elements and deep muscles of the spine, no evidence exists on 

the duration of postural responses from manipulation. Based on 

the reflex duration times seen in muscle activity, we can expect 

any changes to also be immediate, but likely short lived.  
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2) No gender differences in low back movement parameters will be found. 

3) No difference in muscle activation levels will be found between conditions.  In a 

review, Herzog et al. (2010) suggests reflex EMG responses from manipulation 

only last for approximately 100-400 ms) (Herzog, 2010).  

4) No difference in gap numbers will be found between conditions and/or genders. 

5) No difference in muscle co-contraction between conditions and/or genders. 

6) No differences in ratings of perceived pain are expected following the 

manipulation intervention. 

 However, a trend of reduced pain may be observed due to the 

potential of the manipulation to block pain according to the 

“gate theory” of Melzack and Wall (1965) and in accordance 

with the findings of prior studies (Bishop et al., 2011; Bronfort 

et al., 2004; Colloca and Keller, 2007; Herzog, 1999; Lehman 

et al., 2001; Mansilla-Ferragut et al., 2009; Raftis and 

Warfield, 1989; Song et al., 2006; Taylor and Murphy, 2010; 

Zusman, 2002). 

7) No difference will be found between surface and indwelling recordings of lumbar 

multifidus. 
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6.3 Methods 

 

6.3.1 Participants 

 

Twenty subjects (10 males and 10 females), with no recent (6 months) history of an acute 

low back pain, an episode severe enough to seek treatment or miss school/work, were 

recruited from a university population.  This population was chosen since they would be 

accustomed to sitting for extended periods of the day and should generally be free from 

degenerative changes of the spine commonly found in older individuals. Participant 

profiles were as follows: males (average age 25 years (SD 6), height 1.8m (SD 0.1m) and 

mass 84kg (SD 20kg) and females (average age 22 years (SD 3), height 1.6m (SD 0.1m) 

and mass 63kg (SD 11kg) (Figure 76).  Informed consent was completed prior to testing 

and the study received ethics approval from the Office of Research Ethics at the 

University of Waterloo. 
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Figure 76:  Anthropometric characteristics of the Study 4 population. 

 

6.3.2 Instrumentation 

 

Accelerometers  

 

Sagittal thoracic, lumbar and pelvic angles were calculated from time-varying 

accelerometer data.  Three tri-axial accelerometers were affixed to the skin with double 

sided tape in the +y down and +z forward orientation over the following anatomical 

landmarks:  spinous processes of T1, L1 and S1.  Accelerometer data were collected 

continuously in 20-minute blocks (2 per 40 minute sitting block), low-pass filtered at 500 
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Hz; A/D converted using a 16-bit board at a sampling frequency of 4096 Hz.  Five 

normalization trials were collected as follows: quiet standing, full lumbar flexion 

standing, full lumbar extension standing, full lumbar flexion seated and full thoracic 

spine flexion seated. 

 

Indwelling EMG 

 

Indwelling electromyographic data was collected from multifidus bilaterally at L4/L5.  

Bipolar 44 μm gauge, 10 cm long fine wire nickel alloy electrodes with 2mm exposed 

tips bent into hooks (VIASYS Healthcare, Excellence for Life Neurocare Group, 

Madison, WI, USA), were inserted into the deep multifidus muscle with a 27 gauge 

hypodermic needle using real-time diagnostic ultrasound imaging for guidance (M-

Turbo, Sonosite Inc., Bothell, WA, USA).  Specifically, the needle was inserted 10 mm 

lateral to the midpoint of the spinous process of L4 in a slight craniomedial orientation to 

a depth approximately 5 mm less than the vertebral lamina (Stokes et al., 2003).  Before 

the needle was withdrawn, the real-time EMG signal was checked by having the 

participant raise their ipsilateral leg against mild resistance applied by the researcher 

(Stokes et al., 2005). Before continuing, the participant was instructed to contract their 

muscles a few times while lying prone so any temporary muscle spasms (if present) could 

settle. Raw EMG signals were band pass filtered from 10-2,000 Hz, amplified (AMT-8, 

Bortec, Calgary, Canada: CMRR=115 dB at 60Hz and input impedance = 10 GΩ) and 

collected at a sampling rate of 4,096 Hz with a 16-bit A/D converter (+/- 2.5 V range).  

Maximum voluntary contraction trials were collected with the participant extending 
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against resistance with their torso suspended off the edge of an examination bench.  A 5 s 

resting trial was taken with the participant lying prone.  Removal of the electrodes at the 

end of collection was done under ultrasound guidance to ensure that there was no 

displacement of the wires during the collection (Blouin et al., 2007). 

 

Surface EMG 

 

Eight channels of surface EMG were collected from the thoracic erector spinae, lumbar 

erector spinae, lumbar multifidus (surface electrodes were placed such that the indwelling 

lead was between the pair, Figure 77) and gluteus medius as described for Study 3 on 

page 128 with the exception of sampling frequency, which was 4096 Hz for this study as 

opposed to 2048 Hz in Study 3. 

 

 

 

Figure 77:  Lumbar multifidus surface EMG electrodes surround the 

indwelling wire electrodes imbedded in the same muscle. 
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Perceived Pain 

 

Perceived ratings of pain were measured using a visual analogue scale throughout the 

study at 10-minute intervals. Subjects were asked to rate their pain for 8 areas of the body 

(right and left upper back, right and left lower back, right and left buttocks, right and left 

thighs and neck by sliding a bar along a 100 mm continuous line with the following 

anchors: 0 = no pain whatsoever and 10= worst pain imaginable (Figure 20) using a 

custom program on their workstation computer (Matlab version R2012b, The 

MathWorks, Natick, MA, USA).  

 

Workstation 

 

The workstation used in this study and instructions given to the participant were the same 

as that used for Study 3 and described on page 126. 

 

6.3.3 Data Collection 

  

Figure 78 shows a graphical representation of the timeline for the experimental 

procedure.  The data collection was identical to the intervention session of Study 3 

described on page 134 with the following exception:  after the first and second sitting 

block either a side posture lumbar manipulation (pre-load with a high velocity, low 

amplitude thrust) of the L4/L5 segment or control maneuver at the same level (side 

posture lumbar manipulation set up with pre-load but no thrust) was delivered in a 
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random order.   The experimenter, a registered Chiropractor with eight years of 

experience in private practice, performed the spine manipulation and control maneuvers. 

 

 

Figure 78: Collection schematic for Study 4. 

 

Manipulation Technique 

 

A chiropractic table was positioned close to the experimental workstation such that 

participants were one step away as they transitioned from their seat for the intervention 

(Figure 79).    
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Figure 79: The chiropractic table was located one step away from the workstation 

during Study 4 to minimize movement between seated and intervention trials. 

 

Subjects were positioned lying on their right side (left side up) on the treatment table.  

The L4/L5 spinous process was identified (having previously been identified and marked 

during the instrumentation process) and skin slack was tensioned at this level by flexing 

the top knee and rotating the upper body as illustrated in Figure 80.   
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Figure 80: Representation of the set up for a rotational lumbar spine HVLA 

manipulation. 

 

To accommodate the instrumentation fixed to the subject’s back; a “hook” contact 

(fingertips contacting the inferior/right aspect of the spinous process) on the spinous 

process was used with the forearm of the same arm taking a contact on the subject’s 

pelvis (Figure 81).  This contact is regularly used clinically and achieves the same 

outcome as a whole hand contact version of the maneuver.  The control maneuver 

consisted of holding this pre-loaded tension briefly, with no thrust.  The manipulation 

maneuver continued from this point with a spinous pull thrust: this movement rotates L5 
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and the pelvis towards the practitioner while the upper body is restrained from moving by 

support at the forearms. 

 

 

 

 

Figure 81: Close up of the "hook" contact at the spinous process of L4.  This contact 

permitted both the control and manipulation maneuvers to be achieved without 

interacting with the instrumentation fixed to the back of the participant. 
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6.3.4 Data Analysis 

 

Accelerometers 

 

Custom software (Matlab2012, The Mathworks Inc., Natick, Massachusetts, USA) was 

used to process the accelerometer data according to the method outlined starting on page 

75 to calculate:  normalized spine angles (thoracic, lumbar and pelvic) and numbers of 

fidgets, shifts and the total movement index of the normalized lumbar angle. 

 

Electromyography 

 

EMG data was assessed and processed using custom software (Matlab2007, The 

Mathworks Inc., Natick, Massachusetts, USA) as described for Study 2 on page 82. 

Following processing, average EMG, average gap numbers and amplitude probability 

distribution functions were calculated for each muscle group per block of sitting data.  As 

described for Study 3 on page 136, cross-correlation coefficients (Rxy) were calculated 

for 18 muscle pairs (Figure 82). 
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Figure 82: Schematic of muscle group pairings assessed by cross-correlation, 

where R = right, L = left, TS = thoracic erector spinae, LS = lumbar erector 

spinae, GM = gluteus medius, Ms = surface multifidus, Mi = indwelling 

multifidus. 

 

 

Perceived Pain 

 

Custom software was used to record and measure perceived pain throughout the study 

(Matlab2012, The Mathworks Inc., Natick, Massachusetts, USA).  Data was extracted 

and processed as described in Study 2 on page 83.   Since pain ratings have been shown 

to consistently rise throughout prolonged sitting trials for most participants, the last pain 

score of each block was used for comparison.  In order to assess the immediate impact of 

the control and manipulation maneuvers the differential between the pain score taken 

immediately after the intervention break was compared to the last pain score of the 

preceding sitting block. 
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6.3.5 Statistics 

 

The outcome measures include the following factors:  normalized spine (thoracic and 

lumbar) and pelvic angles, angle movement variables (fidgets, shifts, TMI, muscle 

activity variables (average EMG and gap numbers per condition) and the last perceived 

pain score for each condition block.  The above variables were compared in a two-way 

mixed general linear model with gender as a between factor and intervention type 

(control maneuver and manipulation) as within factors.  Statistical significance was 

accepted at the p=0.05 level and Tukey post hoc testing were completed as required (SAS 

Statistical Software, version 9.4, SAS Institute Inc., Cary, NC, USA). 

 

6.4 Results 

 

Accelerometer Data 

 

Participant’s spine (average normalized thoracic and lumbar) and pelvic posture 

throughout the prolonged sitting blocks were not significantly affected by either the 

control maneuver (thoracic 57 % ROM SD 17, lumbar 81 % ROM SD 23 and pelvic 19° 

SD 9) or manipulation intervention (thoracic 59 % ROM SD 19, lumbar 84 % ROM SD 

27 and pelvic 21° SD 8) compared to the pre-intervention sitting block (thoracic 56 % 

ROM SD 19, lumbar 77 % ROM SD 18 and pelvic 18° SD 7).  There were no significant 

main effects found for gender or intervention type found for any of these angles (Figure 

83, Table 14).  The APDF for these angles throughout each sitting block support the 
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conclusion that subjects sat with these average postures for the majority (90th percentile 

of probability) of each sitting block (Figure 84). 

 

 

Figure 83:  Average normalized thoracic, lumbar and pelvic flexion angles prior 

to intervention breaks (block 1) and the sitting blocks following the control 

maneuver (post-C) and manipulation (post-M). 
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Figure 84: APDF results (static p=0.1, median p=0.5, peak p=0.9 and range (peak-

static) for the normalized thoracic, lumbar and pelvic angles throughout each 

sitting block. 

 

From the APDF analysis, the range of postures subjects adopted throughout each block 

remains small for all angles (thoracic 9 % ROM to 11 % ROM, lumbar 13 % ROM to19 

% ROM and pelvic 6° to 10°, Figure 84).  Within these narrow ranges of posture, there 

were significant differences in the types of movements that were occurring in the lumbar 

spine. Male subjects moved their low back more than females.  This was reflected in a 

significantly larger TMI score (p=0.0097).  Fidgets, quick movements that return back to 

the original posture, were the dominant type of movement men were displaying 

(significant main effect of gender, p=0.0173). Intervention type also appeared to have an 

effect on movement type.  There were significantly greater number of shifts in the post-

manipulation sitting block (9 per block SD 0.6) compared to the post-control maneuver 

block (7 per block SD 1) and pre-intervention block (7 per block SD 2) (p=0.0352) 

(Figure 85).   
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Figure 85:  Lumbar spine movement variables:  Fidgets (FID), Shifts and the 

Total Movement Index (TMI) averaged over the first block of sitting and the 

sitting blocks following the control maneuver (post C) and manipulation (post M) 

for males (black) and females (grey). 

 

Table 14: Two-way ANOVA results for accelerometer variables. 

Variable 
Gender  Condition  Gender * Condition 

df  F  p  df  F  p  df  F  p 

Thoracic Angle  1  0.68  0.4222  2  1.74  0.1902  2  0.95  0.3957 

Lumbar Angle  1  0.28  0.6059  2  1.7  0.1976  2  0.17  0.843 

Pelvic Angle  1  0.22  0.6458  2  3.03  0.0613  2  0.04  0.9635 

Fidgets  1  6.69  0.0173  2  0.91  0.4141  2  0.36  0.7014 

Shifts  1  0.07  0.7918  2  3.7  0.0352  2  0.38  0.69 

TMI  1  8.47  0.0097  2  0.15  0.8654  2  0.17  0.8435 
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Electromyography 

 

Back muscle activity was very low throughout the entire experiment.  Average 

normalized EMG for all muscles did not exceed 4.6 % MVC.  Generally speaking, higher 

amounts of activity were found for the thoracic erector spinae, followed by the lumbar 

erectors and multifidii.   

 

The average muscle activity of the left thoracic and lumbar erector spinae was 

significantly lower in the sitting block following the manipulation intervention compared 

to block 1 and the sitting block following the control maneuver (LTS: 4.6 % MVC SD 

3.2 block 1, 4.4 % MVC SD 3.2 post C and 3.8 % MVC SD 2.7 post M p=0.0346, LLS:  

3.8 % MVC SD 3.1 block 1, 3.2 % MVC SD 2.5 post C and 2.7 % MVC SD 1.9 post M 

p=0.019, Figure 86).  There were no significant differences between the muscle activity 

levels between male and females (Table 16). 
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Figure 86:  Average EMG (% MVC) for each muscle group in the pre-

intervention sitting block (black) and the sitting blocks following the control 

maneuver (light grey) and manipulation (dark grey). 

 

The amplitude probability distribution functions for muscle activity throughout each 

sitting block shows the upper and lower back erector spinae muscles active ranging 

between 3 to 5 % MVC throughout each block and having an activation level of 7 % 

MVC or less throughout the entire collection.  The surface and indwelling multifidus 

muscles remain extremely low (no higher than 1 % MVC) with the exception of the left 

multifidus recorded by surface electrodes which recorded levels up to 4 % MVC SD 8. 
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Figure 87:  APDF results for average muscle activity (% MVC) throughout the 

three blocks of sitting block 1 (pre-intervention), post C (block following the 

control maneuver) and post M (block following the manipulation). 

 

Back muscles were not constantly activated throughout each prolonged sitting block.  

Gaps in activity were documented in all channels throughout the entire collection in both 

males and female subjects (Figure 88).  A significant 2-way interaction between gender 

and condition was found for the left lumbar multifidus (LMi) muscle measured with 

indwelling electrodes (p=0.0416).  Gap numbers in male participants dropped from 22 

SD 35 in block 1 to 15 SD 28 and 14 SD 26 in the post-C and post-M sitting blocks 
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respectively.  Conversely, LMi gap numbers in females dropped from 22 SD 28 in block 

1 to 10 SD 18 in the post-C block but increased to 23 SD 49 in the post-M block.   

 

A significant main effect of gender was found for the number of gaps occurring in the left 

lumbar multifidus muscle (surface electrodes).   Males displayed a significantly higher 

number of gaps (65 SD 7) in this muscle throughout all sitting blocks compared to 

females (17 SD 2, p=0.0078).  There were no differences in muscle activity gap numbers 

between any of the sitting blocks (Figure 88).   

 

 

Figure 88:  Number of gaps in muscle activity for male and females throughout 

each prolonged sitting block. 
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combination were compared between genders and sitting blocks. Of the erector spinae 

and multifidus combinations, significant two-way interactions between gender and sitting 

block condition were found for the right and left thoracic erector spinae (p=0.0454), right 

sided thoracic and lumbar erector spinae (p=0.0454) and right thoracic and left lumbar 

erector spinae (p=0.0400) ( 

Figure 90).  Specifically, for each of these muscle combinations, the degree of correlation 

stayed relatively the same throughout each block for female subjects but increased 

between block 1 and the post-C and M blocks for male subjects (Table 15). 

 

Table 15:  Peak Cross-Correlation Coefficients (standard deviation) for each 

muscle combination by sitting block and gender. 
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Figure 89:  Peak Cross-correlation coefficients (Rxy) for the RTS/LTS, RTS/RLS 

and RTS/LLS muscle combinations in each sitting block for males (right) and 

females (left).  A significant 2-way interaction was found for all three of these 

pairings. 

 

Generally, the erector spinae and multifidus muscles demonstrate a higher degree of co-

contraction than the superficial and deep recordings of multifidus (all combinations 

having peak Rxy of less than 0.40 SD 0.25).  There were no significant effects of gender 

or sitting block condition on these 6 combinations of surface and indwelling muscle 

channels.   

 

To assess the activity of the superficial and deep portions of the lumbar multifidus 

(recorded by surface and indwelling electrodes respectively) a two-tailed paired student’s 

T test was conducted for the first and left pairs of measures from the pre-intervention 

block only.  A significant difference between the surface and indwelling activity was 

found for the left side between the surface (2.6 % MVC SD 3.8) and indwelling 
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recordings (0.5 % MVC SD 0.88, p=0.02856).  There was no difference between 

measures taken for the right surface (0.1 % MVC SD 0.11) or indwelling signals (0.3 % 

MVC SD 0.45, p=0.1336) (Figure 86).  

 

 

Figure 90:  Peak Cross-Correlation co-efficient for all muscle combinations 

throughout each prolonged sitting block for males (right) and females (left). 
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Table 16:  Two-way ANOVA results for average EMG, gap number and peak 

cross-correlation coefficient between gender and within condition (intervention 

type). 

Variable 
Gender  Condition  Gender * Condition 

df  F  p  df  F  p  df  F  p 

AEMG 

RTS  1  0.6  0.4489  2  0.81  0.4533  2  0.09  0.9102 

LTS  1  0.01  0.911  2  3.74  0.0346  2  0.29  0.7472 

RLS  1  0.44  0.5144  2  2.57  0.0925  2  0.09  0.9116 

LLS  1  0.03  0.8681  2  4.5  0.019  2  0.07  0.9331 

RMs  1  0.41  0.5305  2  2.81  0.0749  2  0.3  0.7443 

LMs  1  0.43  0.5231  2  2.33  0.1141  2  0.79  0.4606 

RMi  1  0.79  0.3883  2  0.44  0.6507  2  0.56  0.5753 

LMi  1  0.13  0.7227  2  2.74  0.08  2  1.73  0.1934 

GAPS 

GAPRTS  1  0.8  0.3847  2  0.49  0.6159  2  0.86  0.432 

GAPLTS  1  0.5  0.4916  2  2.77  0.0776  2  1  0.3802 

GAPRLS  1  0.23  0.6413  2  3.07  0.0601  2  0.31  0.7388 

GAPLLS  1  0.48  0.4979  2  0.18  0.8323  2  1.06  0.3591 

GAPRMs  1  0.39  0.5401  2  1.54  0.2298  2  1.26  0.2962 

GAPLMs  1  9.24  0.0078  2  0.39  0.6834  2  0.96  0.3946 

GAPRMi  1  1.57  0.2286  2  1.43  0.2533  2  0.32  0.7249 

GAPLMi  1  0.25  0.6268  2  1.68  0.2023  2  3.52  0.0416 

XCF 

RTSLTS  1  2.33  0.1469  2  0.76  0.4776  2  3.41  0.0454 

RTSRLS  1  2.33  0.1468  2  0.76  0.4776  2  3.41  0.0454 

RTSLLS  1  3.02  0.1016  2  0.53  0.5961  2  3.56  0.04 

LTSLLS  1  3.43  0.0826  2  0.14  0.869  2  0.33  0.721 

LTSRLS  1  7.75  0.0133  2  0.12  0.8863  2  0.16  0.8491 

LLSRLS  1  2.25  0.153  2  1.44  0.2523  2  0.38  0.6846 

LMsLmi  1  0.01  0.9392  2  0.12  0.885  2  0.61  0.552 

RMsRMi  1  0.3  0.5892  2  0.06  0.9425  2  0.45  0.6442 

LLSLMs  1  0.16  0.6971  2  0.93  0.4055  2  2.3  0.1199 

LLSLMi  1  1.42  0.2513  2  0.91  0.4133  2  0.7  0.5032 

RLSRMs  1  0.46  0.5076  2  1.99  0.1593  2  2.02  0.1556 

RLSRMi  1  0.81  0.3803  2  0.21  0.8117  2  2.17  0.132 

LMsRMs  1  0.05  0.8229  2  0.77  0.4721  2  0.24  0.7918 
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Perceived Pain 

 

Similar to the findings of studies 2 and 3 (pages 102 and 156), analysis of the raw 

perceived pain data revealed sub-groups of the population having a substantial 

differential response to the prolonged sitting exposures.  Only two male subjects were 

characterized as sub-clinical based on the method described on page 105.  Considering 

this small number and the fact that studies 2 and 3 found no significant difference 

between the NPD and SC groups, the two SC subjects were added to the NPD group 

(Figure 91).  The proportion of the NPD and PD groups was equal between males and 

females (Figure 92). 

 

 

Figure 91: Representative raw perceived pain scores for a non-pain and pain 

developer.  Scores are shown over time, at 10-minute intervals.  M1 and M2 are 

the scores taken immediately following each intervention (control and 

manipulation, randomized). 
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Figure 92: Proportion of study population classified as a pain developer or non-

pain developer.  The sub-clinical classification was collapsed into the NPD group 

as it consisted only of 2 male participants. 

 

 

The perceived pain scores rated by participants classified as pain developers were 

statistically greater than those rated by non-pain developers for all body regions tested 

(Figure 93, Table 17).  There were no significant differences in the ultimate pain ratings 

between genders or sitting blocks (post control maneuver or manipulation).   
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Figure 93:  Perceived pain (baseline removed, mm) for each body region scored 

by participants.  Average scores calculated for the upper and low back are also 

presented. 
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Table 17:  Three-way ANOVA results for ultimate perceived pain scores. 

 

Variable 
Gender  Condition  Pain Group 

Gender * Pain 
Group 

C * PG  Condition * Gender  C*G*PG 

df  F  p  df  F  p  df  F  p  df  F  p  df  F  p  df  F  p  df  F  p 

LUB  1  0.28  0.6046  1  2.31  0.1481  1  35.11  <0.0001  1  0.07  0.7927  1  1.39  0.2551  1  0.03  0.8675  1  0.19  0.6677 

RUB  1  0.03  0.8614  1  0.93  0.3504  1  37.77  <0.0001  1  0.38  0.546  1  1.62  0.2215  1  1.18  0.2929  1  0.86  0.3665 

LLB  1  0.62  0.4436  1  0  0.9696  1  184.81  <0.0001  1  0.97  0.3388  1  0.14  0.7174  1  0.8  0.3856  1  0.24  0.6344 

RLB  1  0.71  0.4123  1  0.26  0.6161  1  92.22  <0.0001  1  1.09  0.3129  1  0.08  0.7852  1  1.5  0.238  1  0.94  0.3479 

LG  1  0.57  0.4617  1  0.79  0.3878  1  193.43  <0.0001  1  0.39  0.0806  1  3.48  0.5397  1  2.75  0.1167  1  0.46  0.5055 

RG  1  0.5  0.4905  1  0  1  1  38.67  <0.0001  1  0.24  0.6275  1  0.07  0.7903  1  1.25  0.2792  1  1.93  0.1834 

LT  1  0.62  0.4416  1  2.49  0.1342  1  23.06  0.0002  1  0.27  0.6096  1  1.2  0.2886  1  0.3  0.5907  1  0  0.9461 

RT  1  0.4315  0.4315  1  2.4  0.1412  1  6.74  0.0195  1  0.08  0.7823  1  0.86  0.3668  1  0.69  0.4168  1  0.05  0.833 

N  1  0.47  0.5025  1  0  0.9759  1  23.51  0.0002  1  1.32  0.2675  1  0.03  0.8638  1  0.25  0.6223  1  0.53  0.4772 

AVGUB  1  0.13  0.7217  1  1.65  0.2167  1  38.81  <0.0001  1  0.2  0.663  1  1.6  0.2239  1  0.41  0.5309  1  0.49  0.4933 

AVGLB  1  0.67  0.4263  1  0.1  0.7555  1  140.92  <0.0001  1  1.04  0.324  1  0.11  0.7436  1  1.36  0.2604  1  0.69  0.4188 
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A significant immediate reduction in perceived pain was found for the left low back 

following both the control and manipulation maneuvers (p=0.0342) (Figure 94).  There 

were no main effects of gender (p= 0.4239) or intervention (p=0.5159).  Statistical 

differences in perceived pain differential were not found for gender (p=0.9109), 

intervention (p=0.3710) or pain group (p=0.0997) for the right low back. 

 

 

Figure 94:  Differential perceived pain response immediately following the 

control maneuver (Post C) and manipulation (Post M) for the left and right low 

back.  The pain score taken immediately following the intervention was 

subtracted from the last time point of the proceeding sitting block. 
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Physical Examination 

 

The average number of positive findings from each physical examination did not exceed 

1.3 positive findings (SD 1.7) before or following the experiment.  The low frequency of 

these findings confirms this population as a non-clinical, healthy group (Figure 95). 

 

 

Figure 95:  Average frequency of positive physical test scores pre/post collection 

for males and females. 

 

6.5  Discussion 

 

Lumbar spine manipulation does not appear to change the postures people adopt during 

prolonged computer work; however, it may influence spine movement parameters and 

lower muscle activity in a young, healthy population.  Both lumbar spine manipulation 

and passive stretching (control maneuver) provide significant short-term relief from 

sitting induced low back pain. 
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Spine Posture 

 

Average thoracic, lumbar and pelvic angles were not different in any of the three sitting 

blocks: pre-intervention, post-c (following the control maneuver) or post-m (following 

the manipulation).  The magnitude of angles found in this study are comparable to the 

range found in this thesis and other published studies (Beach et al., 2003; Dunk and 

Callaghan, 2005; Gregory et al., 2006), however, it should be noted that with an average 

lumbar flexion angle of 81 % ROM SD 19 and pelvic angle of 19° SD 9 participants did 

sit with greater lumbar flexion and posterior pelvic rotation than seen in Study 3 with a 

similar seat set up (neutral seat pan with no backrest) and at the high range of lumbar 

flexion (30 to 80 % lumbar flexion in unsupported sitting) documented by Callaghan and 

McGill (2001). Unlike Study 3 and similar to Study 2, spine and pelvic postures were no 

different in the post-c or post-m compared to the pre-intervention sitting blocks, 

therefore, the first hypothesis, that there would be no change in low back sitting posture 

in response to the manipulation, can be accepted. 

 

Analysis of the time varying signals of low back posture during the prolonged sitting 

blocks has confirmed that male subjects moved significantly more than females as 

indicated by the higher number of fidgets and TMI score, leading to the rejection of the 

second hyopthesis.  Fidgets are quick changes in flexion angle that return to their original 

position.  This result is similar to what was seen in Study 3 but contradictory to the 

findings of Study 2 where females were found to fidget more than males.   
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From the APDF, it can be seen that lumbar flexion angle ranged between 13 and 19 % 

ROM across all sitting blocks examined in this study. Contrary to the previous 

interventions studied in this thesis, significant differences in shifts were found in the 

sitting block following the manipulation.  Shifts have been associated with increased 

discomfort in the literature  (Dunk and Callaghan, 2010).  However, given the small 

difference between shifts in each of the 3 sitting blocks (between 7 and 9) the likelihood 

that this difference has practical significance is low.  This conclusion is supported by the 

lack of significant differences found for perceived pain between each of the sitting 

blocks.   

 

Muscle Activity 

 

Contrary to the third hypothesis, that no differences in muscle activation levels will be 

found between conditions, significantly lower levels in low back muscle activity for the 

left thoracic and lumbar erector spinae muscles were seen in the sitting block following 

the manipulation.  This unilateral response corresponds to the side of the low back that 

would be stretched during the maneuvers (participants were lying down on their right 

side). While the majority of studies have identified a change in muscle activity following 

a high-velocity, low-amplitude manipulation, both increases and decreases have been 

cited (Lehman and McGill, 2001). The decreased levels of activation in muscle activity in 

this study agrees with the findings of previous work (Bicalho et al., 2010b; DeVocht et 

al., 2005a; Herzog et al., 1999; Lehman and McGill, 1999; Lehman and McGill, 2001; 

Owens Jr. et al., 2007; Shambaugh, 1987) but conflicts with the results of some studies 
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using healthy volunteers (Lalanne et al., 2009b; Nougarou et al., 2013; Nougarou et al., 

2014).  Dishman and colleagues (2008) have discussed the potential for spine 

manipulation to regulate the activation levels of the motoneuronal pool, either increasing 

or decreasing excitability, which may explain these different effects.  Further, passive 

muscle stretching has been shown to decrease EMG levels in the plantarflexor muscle 

group (Ryan et al., 2014).  However, methodological factors such as variation in EMG 

protocol, rate of the manipulation preload and thrust as well as underlying heterogeneity 

of the test population could also be factors contributing to the differences found. 

 

Effects of manipulation on muscle activity were also evident in muscle activity gap 

numbers.  A differential response was found for the gaps in lumbar multifidus as 

measured by indwelling electrodes in males and females: activity in this muscle became 

more constant (fewer number of gaps) in both the post-c and post-m sitting blocks for 

males, but dropped in the post-c block and increased in the post-m block for females.  In 

the surface recording of the left multifidus, male subjects demonstrated a significantly 

greater number of gaps in activity than females.  These results allow the rejection of the 

fourth hypothesis, that there will be no difference in gap numbers between conditions 

and/or genders.  Gender differences in gap number were not seen in either Study 2 or 3 of 

this thesis or previously published work on sitting (Gregory et al., 2006).  Morl and Bradl 

(2013) have noted that increased lumbar flexion in sitting results in increased gaps in 

multifidus surface recordings, however, no main effects of gender or condition were 

found for spine posture in this study.  The work of Morl and Bradl (2013) does explain 

why more gaps were seen in this study compared to 3: as discussed previously 
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participants sat with an increase of almost 20 % in lumbar flexion in this study compared 

to the walking intervention study on page 140.  In a recent review of literature, Lehman 

(2001) does conclude that short-term changes in EMG amplitude are associated with 

spinal manipulation.  So these differences are likely related to the manipulation in some 

way.  Yet, there should not be any physiological differences between males and females 

in the response to spine manipulation.  However, given that this is the first study that has 

examined these EMG parameters in prolonged sitting following manipulation there is no 

way of confirming whether or not these findings are reasonable. 

 

Both the control maneuver (manipulation set up with pre-load but no thrust) and 

manipulation (control maneuver plus thrust) appeared to have an effect on the co-

contraction of thoracic and lumbar erector spinae muscles in males.  Specifically, 

bilateral thoracic erector spinae, right sided thoracic and lumbar erector spinae and right 

thoracic and left lumbar erector spinae groups increased the degree of co-contraction in 

both the post-c and post-m sitting blocks compared to the pre-intervention block.  This 

finding permits the rejection of the fifth hypothesis.  Studies conducted in an animal 

model have shown that the magnitude of preload forces affects the discharge of 

paraspinal muscle spindle discharge and that increased duration of preload application 

amplifies this response (Dishman et al., 2005; Reed et al., 2014a).  Nougarou et al. (2014) 

confirmed the effect of preload parameters on thoracic spine muscles in a population of 

healthy male and female volunteers aged 20 to 38.  While differences in average EMG 

activity were only found in response to the manipulation and not the control maneuver in 

this study, it is possible that the sustained preload alone might have been enough to elicit 
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alterations in relative activation between these muscle groups.  Considering that the 

preload duration was kept the same (5 seconds) between both the control and 

manipulation maneuvers, perhaps it is the effect of the preload or induced muscle and 

joint stretch, and not necessarily the thrust phase, that resulted in the higher co-

contraction levels in both the post-c and post-m blocks for male subjects. 

 

Perceived Pain 

 

Similar to studies 2 and 3 in this thesis, significantly different pain groups were identified 

out of a young, healthy population free of musculoskeletal findings on physical 

examination.  Since the results of these prior studies did not find a significant difference 

between the non-pain developer and sub-clinical pain developer groups, and given the 

low number of sub-clinical pain developers identified only the NPD and PD groups were 

used for analysis.   

 

As in studies 2 and 3, no differences between genders or intervention type were found 

between the last pain score of each sitting block (post-m or post-c) allowing the 

acceptance of the sixth hypothesis.   Yet, just as walking breaks provided short-term 

relief to pain developers, both the control and manipulation maneuver resulted in 

significant decreases in left sided low back pain in this group.  Considering all 

participants received either a preload (control maneuver) or preload plus thrust 

(manipulation) to the left side of their low back, this differential response between the 

right and left sides make sense.  This allows the acceptance of the third hypotheses, with 
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the caveat that manipulation may be no different than the control maneuver as it also 

resulted in short term pain relief.  There is ample support in the literature for the 

analgesic effect of spine manipulation (Bicalho et al., 2010a; Fernández-de-las-Peñas et 

al., 2007; Maduro de Camargo et al., 2011; Reed et al., 2014a; Reed et al., 2014b; Reed 

et al., 2014d; Taylor and Murphy, 2010; Taylor and Murphy, 2008).  There is evidence to 

support that pain inhibition can occur at both the peripheral and central levels of the 

nervous system, depending on the magnitude and rate of the applied manipulative thrust 

(Haavik-Taylor and Murphy, 2007; Pickar and Bolton, 2012; Reed et al., 2014d).  

Preload parameters have been shown to affect neural responses without a thrust, which 

may explain the similar result of both the control and manipulation intervention used in 

this study (Reed et al., 2014a).  In fact, a number of groups have documented an 

analgesic effect from joint mobilizations, where no thrust is present (Gross et al., 2010; 

Krouwel et al., 2010; Willett et al., 2010), and stretching of the low back (Sayson and 

Hargens, 2008). 

 

Comparison of Indwelling and Surface Recordings of the Lumbar Multifidus 

 

In this study, significant differences were found between the average surface and 

indwelling recordings of the lumbar multifidus on the left side, but not the right side of 

the low back, permitting the rejection of the seventh hypothesis.  Levels of activity for all 

recordings were extremely low, well below 3 % MVC even for the relatively “high” left 

surface channel.  Given the high potential for cross talk in surface recordings over the 

lumbar multifidus (Stokes et al., 2003), a direct comparison of average EMG levels might 
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be misleading.  Therefore, to provide a more functional comparison of these signals the 

peak cross-correlation coefficient (Rxy) for the surface and indwelling signals in block 1 

(pre-intervention) was compared for each side ( 

Figure 90).  The left surface/indwelling combination had a peak Rxy of 0.39 SD 0.04 and 

the right combination had a peak Rxy of 0.23 SD 0.04.  Both of these coefficients are low 

enough to conclude that these muscle portions are functionally different, despite the lack 

of significant difference in average activity between the surface and indwelling 

recordings on the left side.  This conclusion agrees with the work of Stokes and 

colleagues (2003), who also found low correlation between superficial and indwelling 

multifidus recordings that supports the conclusion of differential function between the 

superficial and deep portions of the muscle proposed by Moseley et al. (2002). 

 

Limitations: 

 

This study represents the first investigation on the effect of spine manipulation on 

biomechanical factors and perceived pain in prolonged office sitting.  The results of this 

work suggest that spine manipulation has an effect on muscle activity and spine 

movement during prolonged sitting; however, there are a number of limitations that must 

be considered for follow up study.    Although most research in the area of spine 

manipulation confirms the extremely short-lived effects (DeVocht et al., 2005a; Herzog 

et al., 1999; Herzog, 2010; Nougarou et al., 2013; Pickar and Bolton, 2012), the design of 

this study did not provide a washout period for potential carry-over effects between the 

control or manipulation maneuvers.   



 
 

217

Subjects were not blinded to either the control or manipulation maneuvers; however, they 

were not told which order the interventions would be presented.  For the participants that 

have received a spine manipulation in the past, they would quickly be able to tell when a 

manipulation versus control maneuver was delivered.   However, since the purpose of 

this study was mainly focused on the effect on biomechanical parameters of posture and 

muscle activity, variables that are less likely influenced by placebo effect, this lack of 

blinding should not have been an issue.  It may, however, have affected the perceived 

pain ratings immediately after the interventions were performed. 

 

Despite the presence of a sub-clinical pain population within the subject pool, the 

participants involved in this study were young and healthy.  Spine manipulation is a 

therapy that is used to treat biomechanical lesions such as motion segment hypomobility, 

pain and muscle spasm (Henderson, 2012).  Investigating the effect of this intervention in 

an asymptomatic population has been raised as a potential limitation, perhaps minimizing 

effects that would be seen otherwise in a clinical population (Cao et al., 2013).  However, 

there have been studies that have found physiological effects of manipulation in healthy 

populations and animal models without the presence of these lesions, which does lend 

support for the use of this population as a starting point before moving to clinical groups 

(Cao et al., 2013; DeVocht et al., 2005b; Herzog et al., 1999; Nougarou et al., 2013; 

Pickar and Bolton, 2012; Reed et al., 2014a; Reed et al., 2014c). 
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6.6  Conclusion 

 

The results of this study suggest that spine manipulation may play a role in increasing 

low back movement parameters and lowering muscle activity in a young, healthy 

population.  Further, both the lumbar spine manipulation and control maneuver (passive 

stretching) provided significant short-term relief from sitting induced low back pain.  

Since there were no differences in the spine or pelvic postures adopted throughout this 

study, it can be concluded that effects on movement, muscle activation and pain are likely 

due to reflex-mediated responses to manipulation or passive stretching of spine tissues.  

While these responses appear to be beneficial, future work needs to determine the 

implication of reduced muscle activation as well as the intervention dosage required to 

obtain longer lasting relief from pain.   

 

6.7 Contribution 

 

This study has made the following novel contributions: 

 Demonstrated both lumbar manipulation and a passive stretch (control maneuver) 

can provide short-term relief of pain induced by sitting and alter thoracic and 

lumbar erector spinae co-contraction levels and gaps in muscle activity. 

 Provides evidence that spine manipulation has a temporary effect of lowering 

back muscle activity and induces spine movements in prolonged sitting. 

 

  



 
 

219

Chapter 7   

 

7.0 Discussion of Thesis Findings and Conclusions 

7.1 Background that drove this work 

 

During the development of this thesis, there was ample support in the literature for the 

association between low back pain and sitting as well as epidemiological work discussing 

the relationship to prolonged sitting with a number of negative health outcomes.  

Throughout the period of time during which this work was conducted, a significant 

amount of additional literature has been published documenting links with prolonged 

sitting/sedentary lifestyle and morbidity (diseases ranging from cardiovascular to cancer) 

and mortality.  These findings have even been sensationalized in the media.  Campaigns 

have portrayed sitting as the “new smoking” and as the pastime that is “killing you”.  

While these messages may be exaggerated, and without a conservative evaluation of the 

study limitations that have created them, they have served a valuable purpose. Simply 

highlighting the issue of prolonged sitting can create more awareness in society for the 

need for physical activity and even, perhaps, to re-evaluate the cultural and societal 

aspects of our office workspaces and workday schedule.  While larger corporations have 

introduced strategies to encourage physical activity throughout the workday and alternate 

working postures in the office, many workplaces are pervaded by the background notion 

that long periods of sitting at ones desk is directly proportional to worker productivity.  

Without a shift in the message sent from management, employees might feel they might 

be perceived as “unproductive” or “disruptive” if they move away from their workspace 

frequently.   Beyond the public health message, ramifications of prolonged sitting have 
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rippled in the world of litigation.  The case of Renner versus AT&T (New Jersey) in 2011 

set a discussion in motion regarding the potential for sedentary deskwork to be 

considered as a risk for workplace injury and death.  A female worker died of a 

pulmonary embolism after working 10 straight hours on a work project from her home 

office.  An initial workers compensation claim, initiated by the employee’s husband, 

found that despite various aspects of the worker’s medical history there was probable 

cause that prolonged sitting in this case directly lead to the embolic event.  The case was 

recently reversed at the level of the Supreme Court in July 2014, with the employer 

successfully arguing that the employee was free to move around and take breaks at any 

time and that the desk work required by her position was not of a “constrained nature” 

that might be required in other occupations such as truck driving (James P. Renner v. 

AT&T, A-71-11, 068744, July 30, 2014).  While the company correctly raises the notion 

of healthy work habits, one must wonder what, if any, emphasis or training is actually 

passed on to employees about prolonged sitting.  Furthermore, when present, how does 

this information translate into practice?  Hopefully a better understanding of the negative 

effects of seated postures, both with respect to low back pain and global health 

parameters, will lead to strategies that will address and prevent these issues in the office 

workplace.  

 

7.2 Thesis Theme Revisited 

  

The main problem addressed by this thesis is the issue of prolonged sitting induced low 

back pain.  Sitting involves a large amount of flexion: at the spine, pelvis and hips.  
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Sitting for long periods of time creates a constrained chronic loading scenario over all of 

the previously mentioned joints.  Both non-neutral postures and lack of movement are 

unhealthy for the body, especially the spine.  Therefore, this work aimed to quantify the 

role posture and movement interventions play in the low back pain development in 

response to prolonged sitting.  Specifically, the theme of this thesis is how office chair 

features and movement interventions (both active and passively induced) can affect 

biomechanical aspects of sitting and perceived low back pain. 

 

7.3 Addressing the “posture” component of the sitting problem. 

 

Despite a general lack of evidence that unequivocally supports a postural benefit for the 

wide variety of office chair features on the market and in the face of numerous studies 

that show occupants tend not to utilize these features even when present, demand for 

“ergonomic” chairs has not wavered.  Perhaps this means a new chair makes an employee 

feel valued or more important.  Or, perhaps there are aspects of this new chair that make 

the occupant feel more comfortable or less discomfort.  Soft cushioning, nice fabric, 

smart looking design, these are all aspects of seating that have been shown to lead an 

occupant to express higher levels of satisfaction and comfort (Pynt et al., 2002).    

Discomfort, however, is not the opposite of comfort (Helander and Zhang, 1997; Kyung 

et al., 2008).  It is a construct that is analogous with pain and therefore can provide 

insight into the potential for injury.  The cost of these chairs is significant, ranging from a 

few hundred to a few thousand dollars.  The question any employer will ask is whether 

the expense of these ergonomic aids is worth it? From a perspective of being able to 
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minimize low back pain and injury associated with sitting, it would be helpful to have 

more clear evidence supporting the design features that effectively improve spine posture 

in sitting thus providing more support for the benefit side of the cost/benefit equation for 

employers.  Thus, the first research question this thesis addressed is whether there is a 

general office chair feature that improves sitting posture best by reducing the flexion of 

the low back.  Both studies 1 and 2 were designed to answer this question in a direct 

(radiological) and practical (prolonged laboratory study) way.   

 

Study 1 involved the radiological investigation of upright standing, maximum lumbar 

flexion and lumbar flexion during sitting in four office chair conditions:  a control 

configuration, lumbar support, anterior seat pan tilt and backrest with scapular relief.   

The findings confirm that there is significant flexion of the lumbar spine in sitting 

compared to standing, with minimal improvement across the design features tested, and 

qualifies this functional posture with respect to the end range of forward flexion. From 

upright standing to standing with maximum flexion the population tested demonstrates 

approximately 60° of flexion range of motion.  This corresponds to a normal orthopedic 

range of forward flexion (Magee, 2002).  Typical sitting posture, as represented by the 

control configuration in this study, finds the lumbar spine flexes to approximately 40° or 

20° from the maximum end range of flexion, which also can be represented as 

approximately 70 % of maximum flexion.  These lumbar angles and proportions of 

maximum flexion are similar to what has been reported for sitting in both the radiological  

(Andersson et al., 1979; Bae et al., 2012; Endo et al., 2012; Lee et al., 2011; Lee et al., 

2014; Lin et al., 2006; Lord et al., 1997; Makhsous et al., 2003; Zemp et al., 2014) and 
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laboratory based literature  (Beach et al., 2005; Dunk and Callaghan, 2005; Dunk and 

Callaghan, 2010; Gregory et al., 2006; Grondin et al., 2013; Howarth et al., 2009; 

Howarth et al., 2013; McGill et al., 2006; Nairn et al., 2013; O’Sullivan et al., 2012; 

O'Sullivan et al., 2012; Parkinson et al., 2004; Schinkel-Ivy et al., 2013). The advantage 

this radiological data set has over laboratory based external measures of spine posture is 

the information it provides about the orientation of each vertebrae of the low back 

through the intervertebral joint measure.  From this study it can be confirmed that the 

largest contributions to the total lumbar spine angle (lumbar lordosis) comes from the 

lower spine segments in both standing and sitting.  Specifically, the L5/S1 intervertebral 

joint angle accounts for approximately 20 % of the total lumbar angle in standing and 40 

% in sitting.  The three lowest intervertebral segments (L3/4, L4/5 and L5/S1) undergo 

the greatest change in orientation between standing and sitting, however, this data set 

found the L4/5 intervertebral segment to have the greatest relative flexion from standing 

to sitting.  Considering the highest incidence of lumbar spine disc herniations occurs at 

the L4/L5 segment, this finding supports the viability of a pain and injury pathway for the 

flexed postures adopted in office chair sitting.  None of the office chair features tested in 

this study resulted in a significant difference in lumbar lordosis or distribution of the 

intervertebral joint angles.   This means that in office chair sitting, regardless of chair 

feature used, the lumbar spine is oriented at approximately 70 % of maximum flexion end 

range with the largest degree of relative flexion occurring in the three lowest segments.  

 

Despite the lack of improved posture in the lumbar spine with any of the features, the 

lumbar support and anterior seat pan tilt conditions did impart a significant amount of 
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anterior pelvic rotation compared to the control configuration.  With respect to the results 

for lumbar spine posture this was an interesting finding.  It generally has been thought, 

and indeed has been shown in slumped and extended sitting on a stool (Dunk et al., 

2009), that movement of the pelvis drives lower lumbar segment postures.  Evidence for 

this “bottom up” pattern was not found in this study.  Regardless of the pelvic posture in 

sitting, the intervertebral joint angles of the three lowest segments were not different 

between chair conditions.  Perhaps the spine only adopts this ordered flexion profile 

during active movements of the pelvis.  Or perhaps the two-minute accommodation 

period in each condition prior to radiographic exposure was not enough to cause a change 

in these lower spinal joints. The anterior rotation of the pelvis promoted by the seat pan 

tilt condition minimizes the relative difference between the pelvis angle and the L5/S1 

joint L5/S1 intervertebral disc compared all other seated conditions and was 

approximately 50 % of the same relationship in standing.   This would suggest that the 

seat pan tilt promoted a more neutral pelvic posture; however, with the lack of reduction 

on lumbar spine flexion the results of this study do not provide conclusive evidence to 

support this feature.  

 

These instantaneous radiographic measures of pelvic posture were confirmed in a 

prolonged scenario tested in Study 2.  Greater anterior rotation of the pelvis was found 

for the lumbar support and seat pan tilt conditions.  Contrary to the radiographic findings, 

however, were the significant differences found for lumbar posture between chair 

conditions: lumbar flexion in the seat pan tilt and lumbar support chair configurations 

were approximately 20 % ROM lower compared to the rest of the seating conditions.  
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Both the radiographic and laboratory study found similar percentages of maximum 

flexion (approximately 70 %) for the control and scapular relief configurations, 

suggesting we can be confident in the external measures used for Study 2.  Therefore, 

with the added realism provided by the prolonged experimental protocol, the posture 

results from this second study should be considered more representative than the 

instantaneous measures obtained in Study1.  Pairing the results of Study 1 and Study 2, it 

can be concluded that the lumbar support and anterior seat pan tilt result in improved 

lumbar spine and pelvic postures in sitting.  Study 2 also had the benefit of including a 

wider range of biomechanical variables, allowing a more complete assessment of these 

chair features beyond low back and pelvic postures alone.  Surprising, the chair features 

had very little effect on the other biomechanical variables tested with the exception of 

EMG and thoracic spine posture.  The analysis of muscle activity was able to clearly 

demonstrate a difference in the way back and pelvic postures were maintained between 

the lumbar support and seat pan tilt conditions:  actively by the back muscles with seat tilt 

and passively by the lumbar support.   Further evidence of this active postural strategy in 

the seat pan tilt was found in the results for the thoracic spine flexion angle.  Upper back 

posture, similar to the low back and pelvis, was significantly more upright in the seat pan 

tilt condition compared to all other chair configurations likely resulting from the higher 

activity in the erector spinae muscles.  When the back was supported, in the control, 

lumbar support and scapular relief conditions back muscle activity was lower and the 

thoracic spine posture similarly flexed.  The scapular relief condition, which would be 

thought to induce some upper back extension, did not have an effect on thoracic spine 



 
 

226

posture, suggesting that muscle activity may be a stronger factor in determining upper 

back posture than the type of backrest in sitting. 

 

Despite these improvements to spine posture induced by both the lumbar support and seat 

pan tilt interventions, statistically and clinically significant levels of perceived low back 

pain were still generated throughout the investigation.  Even more important to note, 

subjects classified as pain developers showed a clear intolerance of the seat pan tilt 

condition.  It is just as valuable to know when not to implement an intervention as when 

it should be used.  Understanding that there are office chairs features that could worsen 

an occupant’s pain is vital and further research should be conducted to characterize 

seating considerations for this pain group.  All things considered, it appears that of all 

features tested it is the lumbar support that provides effective reduction of spine flexion 

in sitting without becoming a source of pain for a subset of the population. 

 

The first section of this thesis provides a number of valuable contributions to the 

literature.  Study 1 is the first radiological data set on office seating to include females.  It 

is also one of the few data sets that include reference postures of standing and maximum 

flexion in addition to seated conditions to put these results in a functional context.  

Despite the instantaneous nature of the measures, the gold-standard confirmation of 

vertebral and pelvic orientations in the range of these functional seated postures provides 

a wealth of information that is beneficial for the fields of both applied ergonomics and 

fundamental spine biomechanics.  The linkage of these data, by using the same test chair, 

to the prolonged simulated work scenario tested in Study 2 further strengthens these 
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contributions.  Now insights that were gained by examining the instantaneous postures in 

various chair conditions can be qualified with a more realistic time frame.  Indeed, 

similar ranges of the percentage of maximum flexion were found for the control and 

scapular relief conditions between the two studies, but the prolonged study demonstrated 

that the instantaneous results of the radiography study do not apply to longer periods of 

sitting when individuals move and alter postures.  On its own, Study 2 is also able to 

colour in a larger portion of the sitting biomechanics picture by including additional 

measures.  Muscle activity, seat pressure and perceived pain data provided by this data 

set provide context for the posture findings of both Study 1 and 2.  It leads to important 

conclusions about how postures are maintained (reflected by muscle activity), interacting 

with the seat pan (reflected by the seat pressure data) and affecting levels of perceived 

pain.  The most important take away point from both Study 1 and 2 is that while certain 

seat features can change posture, the change is not able to alter the degree of pain 

experienced in prolonged sitting.  Further, these features could even become an 

aggravating factor for people that are sensitive to seated postures (otherwise healthy but 

considered a pain-developer in sitting).  One could only imagine these findings would be 

amplified in a clinical population, but this would need to be assessed and sub-classified 

based on pain source and response to postural changes. 

 

7.4 Addressing the “static” component of the sitting problem. 

 

From the results of the first two studies we learned that the lumbar support and seat pan 

tilt features are capable of changing spine and pelvic postures in sitting.  However, these 
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changes alone are not able to solve the issue of low back pain associated with sitting and 

in some cases have the potential to compound the problem.  If the solution does not 

involve changing seated posture, then the next logical avenue to examine would be 

getting up from the chair for a break.  While alternate office desk models such as sit to 

stand workstations are being explored, they could be considered to be just exchanging 

one chronic constrained posture for another.  As found in the second study with the 

forward seat pan tilt, a more neutral spine posture does not necessarily translate into 

reduced pain.  So a more effective break from a constrained scenario likely will involve 

movement of some kind and for the third study in this thesis a walking break intervention 

was chosen. 

 

Getting up from the chair and moving around in order to break up long bouts of sitting 

should be a natural inclination for people, especially when they are sore.  However, in 

practice, workers sit for approximately 51 to 68 % of the day worldwide  (Healy et al., 

2008).  Perhaps this is due to a subconscious priority for task completion over pain or 

maybe people become distracted by their tasks so that their central nervous system does 

not to attend to sensory information of pain, pressure, stretch etc. during prolonged bouts 

of sitting.  Clinicians, ergonomists and biomechanics researchers all recommend getting 

up and moving around to counterbalance the loading scenario and range of flexion that 

occurs during sitting.  The specifics of this recommendation, however, are not very clear.  

While there has been some preliminary work investigating walking breaks  (Bailey and 

Locke, 2014; Gilson et al., 2013; Helander and Quance, 1990; Larsen et al., 2014; 

McLean et al., 2001), the quantity of research on this topic is not yet large enough to 
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form a solid base for recommendations or guidelines.   Even beyond the realm of sitting, 

the golden ratio of break to work duration and magic numbers for break intensity, 

duration and frequency still elude the injury-prevention community.   There are numerous 

factors that complicate the search for these answers.   Namely they include the nature of 

the work tasks and breaks as well as the biological variability of worker capacity, tissue 

tolerance and recovery.  There is also the potential for underlying heterogeneity in the 

study population (the presence of sub-clinical populations for example).  With these 

limitations in mind, the purpose of Study 3 was to test a ‘best estimate’ for a work/break 

ratio based on the existing literature and document the impact this intervention had on 

typical biomechanical analyses of prolonged sitting in a controlled manner.  In this way, 

the results of the study could provide some information that could feed back into the 

decision loop for future work to determine appropriate work/break parameters.   

 

The striking finding of Study 3 was the lack of effect of walking breaks on all 

biomechanical parameters during sitting with the exception of seat pressure.  Given the 

previous discussion regarding the lack of consensus an appropriate work/rest break ratio 

as well as for the specific parameters of the break itself, this result should not be viewed 

as a comprehensive evaluation or finding for all active breaks.  The results do suggest, 

however, that we are on the right track.  While perceived low back pain continued to rise 

throughout the walking-break experiment in a very similar way to the control scenario, it 

appears to be slightly lower towards the end of the two-hour protocol.  While the overall 

cumulative reduction was not significant, perhaps these differences could be magnified 

with a different work/rest ratio or greater intensity, timing or duration of the break. 
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Further, there is always the potential that combining seat design and walking break could 

have a substantial effect as well: an area worth future study.  Another important 

conclusion from Study 3 is that the walking breaks provided a significant, but short-lived, 

reduction in perceived pain.  Thus, while not solving the main problem, the results do 

support the recommendation of walking breaks for the temporary relief of sitting 

associated pain.  This knowledge alone is a direct and valuable contribution to the 

literature. 

 

The second “movement” intervention analyzed by this thesis was one that was passively 

delivered, but with the potential for reflex alterations in muscle activity and posture.  

Spine manipulation has been shown to be an effective therapy for the relief of back pain  

(Dagenais et al., 2010). While the exact mechanisms explaining these benefits are still the 

focus of much research, there is evidence to suggest that high velocity, low amplitude 

thrust maneuvers delivered to the motion segments of the spine are able to alter the 

excitability of the motor neuron pool at the level of the spinal cord (Pickar, 2002), block 

incoming nociceptive information (pain) and return “normal” motion to restricted facet 

joints (Bronfort et al., 2004).  It is not uncommon for office workers to schedule manual 

therapy appointments (either physiotherapy or chiropractic) prior to or immediately 

following a workday.  In some cases, corporations have onsite health clinics where 

workers can seek care on breaks throughout their workday.  Hence the rationale to 

consider the immediate impact spine manipulation may have on biomechanical factors 

and perceived pain during prolonged sitting. Study 4 found that, similar to walking 

breaks, neither the spine manipulation nor control maneuvers were able to reduce the 
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ultimate level of low back pain that develops in response to a two-hour exposure to 

sitting, however, both maneuvers resulted in significant short term reduction in perceived 

pain. While walking breaks did not translate into any differences in biomechanical 

variables throughout the sitting trials a few interesting effects were noticed in response to 

spine manipulation and control maneuver.  In particular, a significant reduction in left 

sided back muscle activity and an increase in shifts in lumbar spine posture were found in 

the block immediately following the manipulation and a significant increase in co-

activation of the thoracic and lumbar erector spinae was found in male subjects in the 

sitting blocks following both the manipulation and control maneuvers.  Integrating these 

findings with those obtained in the walking break study, it can be concluded that both 

gross body movement (walking) and specific movement (passive stretch and/or thrust) to 

the lumbar spine both have the potential to provide short term relief from sitting 

associated back pain.  As discussed earlier, while not solving the problem of sitting 

associated back pain this knowledge is beneficial especially when developing strategies 

for sitting intolerant individuals.  Moving forward from this point, however, there are 

many unanswered questions.  Clearly, though, the lack of lasting response of these 

interventions warrants further investigation into dosage parameters.  Further, the effect of 

spine manipulation on spine movements (shifts) and muscle activity (amplitude reduction 

and increased thoracic and erector spinae co-activation) need to be explored further.  

While producing any change could be viewed as beneficial, caution must be taken before 

the implications of these effects are fully understood.   For instance, although not the case 

in this data set, an increase in postural shifts and muscle co-activation generally indicate 
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an increase in discomfort.  Therefore, it would be prudent to reexamine this research 

question with a larger sample size keeping these considerations in mind. 

 

7.5 A new aspect to consider: pain groups.  

 

At the time work on this thesis began, the identification of non-pain and pain-developer 

groups in response to prolonged standing was just emerging in the literature.  Therefore, 

the studies in this thesis were not designed to test the response of sub-groups beyond 

gender.  Retrospective analysis of each data set, however, clearly found that these pain 

sub-groups also exist in response to prolonged sitting, with similar proportions to those 

found in the standing literature (approximately 30 to 50 %).  While not significant for the 

study population numbers in this work there is also the indication that a third sub-clinical 

group may also exist.  Since the thresholds for each of these classifications are based on 

clinical definitions of pain score relevance, the presence of these pain groups in an 

otherwise young, healthy population suggests that these individuals may be somehow 

predisposed or already on their way to developing back pain in the future.  Indeed, a 

longitudinal study by Nelson-Wong et al. (2014) has shown evidence that developing 

transient pain in response to a prolonged standing protocol is a predictive factor for future 

cases of clinical back pain.   Therefore, the identification of these sub-groups in 

prolonged sitting protocols, and the investigation of their response to interventions could 

be a very important for developing strategies to alleviate and prevent sitting associated 

back pain.  Also, just because an individual is a pain-developer in sitting does not 

necessarily mean that they would be a pain-developer in standing and vice versa, 
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however; the potential always exists that individuals may be sensitive to both extremes.  

Understanding the differences between these groups and exposure situations will also 

provide valuable insights into alternative work paradigms such as sit to stand 

workstations where combinations of both postures are employed. 

 

7.6 Limitations 

 

While providing a number of valuable insights into the effect of both office chair features 

and movement strategies, the global limitations of this work should be considered.  First 

and foremost, the study populations for all investigations were young and healthy.  

Therefore, the results of this work are only directly relatable to the younger half of the 

working population (18 to 35 years old).  It is serendipitous; then, that by studying this 

group the identification of transient pain groups was possible.  This is important for two 

reasons.  First of all, it provides the opportunity to use these sub-classifications as a way 

to identify a pre-clinical population for the purposes of pain and injury prevention.  

Second, it suggests, that the responses of pain developers to these interventions may be 

magnified if tested in a clinical population.  These are both excellent avenues for future 

study.   

 

The development of a single test chair, configurable into each seat feature, was one of the 

largest strengths of the first two studies.  However, the design challenges involved could 

have resulted in the scapular relief condition being less effective than it could have been 

in a stand-alone chair.  However, it was clear that each seat design intervention had its 
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strongest effect at the level it was applied (lumbar support to the lumbar spine and seat 

pan tilt to the pelvis), therefore, it is likely that if the scapular relief feature is going to 

have an effect it would be at the level of thoracic spine and not play a large role in 

altering low back posture.   

 

This was the first study to test lumbar supports, forward seat pan tilt and a scapular relief 

backrest against a control configuration.  To examine the interaction of each of these 

design features in various combinations would have necessitated an additional 12 testing 

conditions:  this would have been unrealistic for the prolonged sitting protocol utilized.  

This does mean that the results of Studies 1 and 2 are limited to conclusions for each 

design feature in isolation: not necessarily how chair features are used in reality.   This 

limitation also might explain the lack of differences in perceived pain: perhaps the 

combinations of features are needed to minimize pain in prolonged sitting.   However, the 

results of this work can guide a follow up investigation that examines the interaction of 

lumbar supports and a forward seat pan tilt: the two features that have the most impact on 

low back posture. 

 

Discussed earlier in this thesis, there is a paucity of literature guiding appropriate 

work/break ratios and the parameters of those breaks.  The quality, frequency, intensity, 

timing and duration of the walking break intervention were based on the best available 

information from the existing literature.  It was expected from the outset that these 

parameters may not be enough to effect a change in sitting biomechanics and indeed they 

were not.  At the very least this work can serve to demonstrate that walking breaks can 
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cause an immediate reduction in pain, and perhaps future studies can use this data to 

develop a more effective break intervention for prolonged sitting. 

 

To the author’s knowledge, Study 4 is the first attempt to investigate the effect of spine 

manipulation on sitting biomechanics and perceived pain as well as the first to examine 

the effect of indwelling muscle activity during sitting.  As such, a smaller study 

population was used and a more condensed protocol was employed.  There is the 

potential that not enough time was allowed to wash out the effects of the spine 

manipulation and control maneuvers tested in the study.  Future work should evaluate 

these interventions in the same way the walking break study was conducted:  allowing for 

two separate testing days in a random order.   

 

7.8 Future Directions 

 

Based on the results of the first two studies, a follow up study focusing on the interaction 

of the lumbar support and seat pan tilt interventions should be completed.  This can then 

be followed by a field study of these features that could also be paired with screening for 

pain sub-classifications using online ratings of perceived pain. 

 

Future work should also build on the results of Study 3 to determine more effective 

parameters for walking breaks such as intensity, timing, duration and frequency.  To 

more fully understand the effect of spine manipulation on prolonged sitting, a more 

thorough investigation should be conducted with a larger sample size.  The results of 
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Study 3 also suggest that passive spine stretching could be worth studying as an 

intervention for prolonged sitting. 

 

7.9  Implications 

 

While not entirely able to answer the big picture question of what exactly causes sitting 

associated low back pain, this thesis has shed some light on the more probable pathways 

of pain generation.  Since all studies generally have shown that people sit with a great 

deal of lumbar flexion (close to their voluntary end range) and exhibit low levels of 

muscle activity the cause of the pain that developed in a large portion of the participants 

likely arises from the strain of passive tissues (ligaments, joint capsules, intervertebral 

discs, tendons etc.).    It would also make sense that prolonged exposures to this loading 

scenario could have a cumulative effect leading to reduced tissue tolerance over time and 

ultimately tissue injury.  Back pain is a complex and multifactorial condition, therefore, 

other factors such as psychological stress, previous injury, overall health, concurrent 

occupational exposures, age and gender make it extremely challenging to draw simplistic 

conclusions about injury mechanisms in the general population.  However, by inducing 

transient pain in an otherwise young, healthy population we can be confident in 

concluding that mechanical factors are responsible, to some extent, for generating pain in 

sitting.   

 

The hypothesis that passive strain is a major avenue for pain generation in sitting has 

important implications for the interventions explored in this thesis.  Most clearly, it 

suggests that chairs in general are most likely never going to be the answer to eliminating 
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back pain in prolonged sitting.  Evidence to support this conclusion is found in Study 2, 

where chair design features did not affect perceived pain levels.  It then follows that 

interrupting the quasi-static loading scenario of prolonged sitting with gross body 

movement of some kind is essential.  Distilling exactly what this movement should entail 

and whether or not different recommendations are necessary for subsets of the population 

are still not known.  However, the results of this thesis have provided a good starting 

point to work towards these answers. 

 

7.8 Thesis Conclusion 

 

Both posture and movement interventions are important to consider when addressing the 

issue of low back pain associated with sitting.  However, it does appear that altering 

seated posture through chair design features alone is not enough to solve this problem.  

Indeed, while features such as lumbar supports and forward seat pan tilt have been shown 

reduce the flexion of the low back and pelvis; there is the potential for these features to 

add to the problem as opposed to reducing it.   Specifically, forward seat pan tilt without 

appropriate back support will likely increase pain in a portion of the population.  

Movement interventions appear to be more promising in solving this problem, however, 

the ratio of work/break and intensity, frequency and duration parameters need to be 

explored further.  Brief walking breaks at 40-minute intervals can provide significant 

immediate relief of sitting associated back pain, however, this intervention is not able to 

alter biomechanical parameters or ultimate perceived pain in prolonged sitting.  

Similarly, there is evidence that lumbar spine manipulation may provide short term relief 

from sitting induced pain as well as reduced muscle activity in sitting, but future work 



 
 

238

needs to determine the implication of reduced muscle activation as well as the 

intervention dosage required to obtain longer lasting relief from pain. 
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Appendix A:  Proposed palpation-based method for placement of lead shielding for 

female gonadal tissue in lateral lumbar radiographs. 

 

Introduction 

 

In addition to adhering to the As Low As Reasonably Achievable (ALARA) principle 

and tight collimation, lead shielding of radiosensitive tissues is imperative to minimize 

risk due to ionizing radiation exposure in plain film radiography.  The British Standards 

Institution cites that radiation dose can be reduced up to 99.4 % with lead shielding that is 

at least 1 mm thick1.  While shielding protocols for thyroid, breast and male gonads are 

straightforward, controversy exists whether the ovaries can be adequately shielded given 

their variable positions.  Unlike the other radiosensitive tissues, the exact location of the 

ovaries within the pelvis cannot be determined externally without diagnostic imaging 

such as ultrasound2.  Anatomically, if present, the ovaries are located on each side of the 

uterus at the lateral edge of the broad ligament.  Due to this ligamentous connection, 

ovarian location is constrained with respect to the uterus3,4.   

 

Traditional placement for lead shielding of the ovaries is anterior at the midline of the 

pelvis, halfway between the level of the anterior superior iliac spines (ASIS) and the 

symphysis pubis (SP)5.  These shields typically cover about 11-13 cm vertically and 8-9 

cm laterally and purposely do not cover the entire distance between the ASIS to ensure 

that relevant anatomy is not obscured for the investigation6,7.  Ovarian shielding by this 
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method is applied only for anteroposterior directed imaging. No comparable protection is 

available for lateral view films. 

 

Questioning the efficacy of this shielding protocol, Bardo and colleagues investigated the 

location of ovaries in 336 females undergoing lumbar spine and pelvic magnetic 

resonance imaging (MRI)2.  The location of the gonadal tissue was measured with respect 

to the ASIS, SP and iliac crests (IC).  The authors found that the ovaries were most often 

located laterally in the pelvic cavity, specifically: at or below the IC and the umbilicus, 

just medial to the ASIS and above the SP.  They also found that bladder volume was not 

related to a change in position of the ovaries.  Given their results, the authors recommend 

a lateral placement of lead shielding for better protection of the ovaries.  While not 

explicitly stated, it is most probable that the lumbar and pelvic MRIs used in that study 

were taken in the supine position.  Thus, it would be expected that the ovaries would be 

located even lower in the pelvic cavity in weight bearing investigations such as standing 

or sitting. 

 

Purpose 

 

The purpose of this exploratory study was to investigate a lead shielding protocol for 

plain film imaging capable of shielding pelvic contents, specifically the ovaries, during 

acquisition of a lateral view image while not impeding visualization of the lumbar 

vertebral bodies or sacral base.   
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Materials and Methods 

 

One female cadaver was radiographed in an upright sitting position with and without lead 

shielding of the pelvis.  A 2.5 cm metal marker was inserted into the left ovary.  A lateral 

lumbopelvic radiograph was then taken of the subject without lead shielding. Technique 

factors used were 90 KVP 200 MA for 0.135 s (27 MAS).  The central ray was located 

first at the level of the ASIS, just posterior to the midline at a focal field distance of 1.02 

m. 

 

Based on this first x-ray, a standard lead apron was then placed on the subject as follows: 

the ASIS, sacral base, sacral body and greater trochanter were palpated, the lead apron 

was then draped across the subjects’ lap with the midpoint of the superior aspect placed 

just inferior to the ASIS, the lateral portion of the apron is then angled approximately 45º 

posterior-inferiorly towards the coccyx, covering the greater trochanter.  Figure 96 

illustrates the placement on a model for visualization purposes only (model was not 

radiographed). 
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Figure 96:  Proposed shielding technique for female subjects demonstrated on a 

model.  The lead apron was placed laterally over the pelvic in relation to the 

following anatomical landmarks:  just inferior to the ASIS and angled posterior-

inferiorly towards the coccyx, covering the greater trochanter.   

 

To evaluate this shielding method in a standard lateral lumbar radiograph, the central ray 

of the x-ray tube was then directed perpendicular to the subject, 2.5 cm superior to the 

iliac crest slightly posterior to the mid-axillary line with a focal field distance of 1.02 m4.  

The collimation was set superiorly to include T12, inferiorly to include S3 and slightly 

lateral to include the greater trochanter4.   

 

Results 

 

Without shielding, the ovary marker is clearly visible in the lower pelvis (black arrow), 

approximately 2.5 cm posterior to the greater trochanter (Figure 97).  When the shielding 

was placed on the subject, the second film demonstrated the effective coverage of the 
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ovary marker without blocking the superior or posterior aspects of the sacrum (Figure 

98).  For this film, the central ray was directed just anterior to the sacrum, thus, the beam 

was still able to penetrate the shielding enough to visualize a shadow of the marker in the 

ovary to confirm the relative placement of the lead apron (black arrow).   

 

 

Figure 97:  Seated lateral lumbopelvic film without lead shielding.  Black arrow 

points to radiopaque marker inserted in the left ovary. 
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Figure 98:  Shielding of pelvic contents with proposed surface palpation-based 

placement technique.  The vertical radiopaque object is a portion of the chair the 

subject is seated on. 

 

Utilizing the technique factors and central ray location used for a standard lateral lumbar 

radiograph in the third image, the lumbar spine and superior aspect of the sacrum are 

clearly visualized.  A small corner of the lead shielding covering the pelvic contents is 

just visible at the lower right hand corner of the film (Figure 99). 
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Figure 99: Seated lateral lumbar film with central ray located 2.5 cm superior to 

the iliac crests and just posterior to the mid-axillary line at a focal field distance of 

1.02m.  The lumbar spine and superior aspect of the sacrum are clearly visible.  A 

small corner of the lead shielding covering the pelvic contents (as illustrated in 

Figure 2) is just visible at the lower right hand corner of the film. 

 

Discussion 

 

The results of this pilot investigation demonstrate that the pelvic contents can be directly 

shielded for lateral view imaging while maintaining visualization of the sacral base and 

lumbar spine vertebrae for the purposes of measuring lumbar lordosis and sacral tilt 
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angles or assessing bone quality.  The goal of this shielding technique was to cover as 

much of the lateral and anterior portion of the pelvis as possible.  It exceeds the area and 

location of current coverage recommendations by traditional guidelines as well as those 

of a recent investigation1, 2, 6, 7.   

 

This preliminary study is limited by the use of a single subject and limiting the 

investigation to the lateral view only.  However, the goal of this work was to develop the 

palpation technique and it is hoped that future studies will test the effectiveness and 

practicality of adopting this method. 

While use of a cadaver is able to provide realism while eliminating ethical considerations 

surrounding non-medically indicated radiation, elderly age, dehydration and the altered 

tissue properties resulting from the embalming process may limit the applicability of 

these results.  Despite the soft tissue limitations of using a cadaver specimen, the skeletal 

landmarks and geometry of the pelvis and spine remain unchanged, thereby strengthening 

these preliminary findings.    

 

Attention to improved shielding methods is important especially when considering the 

protection of patients undergoing repeated radiographic investigations of the lumbar 

spine or pelvic region.   
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Conclusion 

 

The results of this study demonstrate that the pelvic contents can be covered while 

allowing visualization of the sacral base and lumbar vertebrae in lateral plain film 

imaging of the lumbar spine.  The proposed shielding technique is in agreement with the 

recommendations of Bardo et al. for lateral placement and exceeds current 

recommendations for ovarian shielding in spine radiographs by covering both the anterior 

and lateral aspects of the pelvis2. Future work should expand on these pilot findings and 

examine the effectiveness of this proposed shielding technique to reduce radiation dose to 

sensitive tissues in living participants.    
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