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Abstract 

Subacromial impingement syndrome (SAIS) is common in the shoulder and precedes 

several additional pathologies. SAIS occurs when the tissues interposed between the acromion 

process of the scapula and superior surface of the humeral head become compressed. Though 

SAIS is well studied, definitive mechanical cause(s) of impingement still remain elusive due to 

the multitude of parameters contributing to subacromial space reduction. Within this 

multifactorial etiology, each exhibits considerable interpersonal variability, and because of this, 

deterministic approaches to estimate the subacromial space size are unable to assess the 

distribution of risk in the population. This research used a probabilistic modelling approach to 

quantify the variability in both morphological and fatigue-related kinematic factors in terms of 

how they modulate the minimum subacromial space width. Through four distinct symbiotic 

stages, this work employed a combination of experimental and modelling techniques to develop 

a novel probabilistic model of subacromial space geometry from which SAIS risk was estimated.  

The first stage applied probabilistic concepts to an existing deterministic model to 

evaluate the sensitivity of predicted muscle forces to model parameter variation. This model 

demonstrated that modest variation of muscle attachment locations and a glenohumeral stability 

constraint resulted in considerable variability in predicted rotator cuff muscle forces, with 

differences up to 50% between lower and upper confidence limits. This initial study provided a 

conceptual framework for the probabilistic subacromial geometry model.  

The subsequent interdependent experimental studies (Stages II and III) were designed to 

acquire the necessary kinematic and morphological input distributions for the large-scale 

probabilistic subacromial geometry model. The first of these studies evaluated the effects of 
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muscle fatigue and arm elevation on shoulder kinematic parameters. Specific quantities 

measured included: superior/inferior humeral head translation and scapular rotation, tilt and 

protraction/retraction, as well as the minimum subacromial space width (SAS). While significant 

superior humeral head translation occurred following fatigue (mean = 0.5 to 4.3mm, 0 to 120° 

elevation), concurrent compensatory scapular movements appeared to maintain the subacromial 

space size. However, the fatigue responses and elevation responses were highly variable, with 

half of the population demonstrating a combination of fatigue-induced changes that reduced the 

subacromial space. The second study quantified intrinsic static morphological characteristics of 

the scapula, including: acromial anterior slope, lateral acromial angle, acromial tilt, acromion 

index and glenoid inclination. Additionally, the interposed subacromial tissue thicknesses, 

specifically the supraspinatus tendon and subacromial bursa, were measured. Similar to the 

kinematic outcomes, each of the parameters measured in these studies showed considerable 

interpersonal variability. However, even the average occupation ratio (65.3 [21.6 – 108.9] %) 

implied a high risk of tissue compression in elevated arm postures.  

The distributions of experimentally measured kinematic and morphological 

characteristics were used as inputs into a three-dimensional probabilistic subacromial geometry 

model which subsequently generated a distribution of SAS (Stage IV). Additionally, relative 

importance factors were obtained from the probabilistic modeling approach, which established 

which parameters (morphological, kinematic) contributed more to the variability in SAIS risk. 

Overall, the probability of tissue compression (a mechanical indicator of SAIS risk) increased 

markedly with elevation, from <5% at initial elevation, to ~50% at mid-elevation to 75% at 

maximal elevation. The considerable variability present in each of the measured characteristics 

in addition to the modelled output suggested a highly differential risk of fatigue-related SAIS 
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across the population, with glenoid inclination identified as the most important factor in 

modulating the size of the subacromial space. At the average population level, the predominant 

recommendation elucidated from this work is avoidance of overhead exertions, which would 

contribute to rotator cuff tissue damage, facilitated through repetitive tissue compression at 

elevation angles ≥60°. Additionally, the presence of fatigue-induced superior humeral head 

translation, despite the maintenance of the subacromial space size, may increase the likelihood of 

several other degenerative pathologies (glenoid degeneration, osteophyte formation, 

glenohumeral instability). Thus, rotator cuff strengthening programs, to maintain a stable 

glenohumeral relationship, are suggested for those exposed to repetitive elevation or upper 

extremity fatiguing activities, particularly if diagnosed with scapular dyskinesis. Lastly, the 

outcomes of this research highlight the utility of probabilistic modelling approaches for 

characterizing interpersonal variability and subsequently estimating the distribution of 

musculoskeletal injury risk in a population. 
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Glossary 

The following is a glossary of terms that appear throughout the document. This glossary 

also provides alternate terms used to describe the same property or characteristic. While 

footnotes are provided in certain sections to re-iterate terminology, this glossary should serve as 

an overview or reminder of important terms. While acronyms are defined throughout the text, 

those that appear frequently are listed below. The glossary is divided into three sections: (1) 

Clinical Terms, (2) Probabilistic Terms, and (3) Methodological Terms. 

A. Clinical Terms 

Term Definition 

Subacromial Space The Subacromial Space is a general term describing the area in the 

internal geometry of the shoulder that is bordered superiorly by the 

acromion process of the scapula and inferiorly by the superior surface of 

the humeral head.  

Minimum Subacromial 

Space Width 

Acronym: SAS  

Also known as: acromio-humeral interval (AHI), acromio-humeral 

distance (AHD), subacromial width, subacromial distance  

The minimum subacromial space width (SAS) is a measureable 

characteristic that is used to evaluate injury risk. It is defined as the 

smallest (superior-inferior) distance between the superior aspect of the 

humeral head and the dense cortical undersurface of the acromion 

process. This is a two-dimensional property, measured in millimeters, 

and can be captured using a variety of imaging techniques, including 

radiographs, and ultrasound. 

Subacromial Tissues The soft tissues residing within the subacromial space; notably the 

supraspinatus tendon and subacromial bursa as well as the long head of 

the biceps tendon and joint capsule. 

Subacromial Impingement 

Syndrome 

Acronym: SAIS 

 

In this research, Subacromial Impingement Syndrome (SAIS) refers to 

mechanical impingement or compression of the vulnerable subacromial 

tissues in the subacromial space. In this document, subacromial 

impingement risk refers to the likelihood or increased likelihood 

(resulting from morphological or kinematic characteristics) that the 

subacromial tissue thicknesses will exceed the minimum subacromial 

space width. 

Glenohumeral Kinematics 

Acronym: GH 

Orthopaedic relationship between the humerus and the glenoid cavity of 

the scapula; primarily translational in this research. 

Humeral Head Translation Also known as: humeral head migration or excursion 
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Movement (translation) of the humeral head with respect to the glenoid 

cavity, primarily in a Superior-Inferior direction (measured in 

millimeters). Note: no translation indicates that the geometric centre of 

the humeral head is aligned with the center of the glenoid cavity. 

Scapulothoracic Kinematics 

Acronym: ST 

Orthopaedic relationship between the scapula and the torso; primarily 

rotational in this research. 

Scapular Rotation Scapular rotation about the anterior-posterior axis of the scapula; 

upward rotation is lateral movement of the inferior border of the 

scapula. 

Scapular Tilt Scapular rotation about the medial-lateral axis of the scapula; posterior 

tilt is anterior movement of the inferior border of the scapula. 

Scapular 

Protraction/Retraction 

Also known as: Scapular internal/external rotation 

Scapular rotation about the superior-inferior axis of the scapula; 

retraction (external rotation) is posterior movement of the lateral border 

of the scapula 

Morphology Innate bone geometry (shape) characteristics that remain constant across 

a short-duration exercise period (such as in this research). Changes in 

morphology primarily result from injury or degeneration accompanying 

age. 

Rotator Cuff Musculature A group of four muscles (supraspinatus, infraspinatus, subscapularis, 

teres minor) originating on the scapula and inserting on the humerus 

thereby influencing the glenohumeral relationship. The supraspinatus 

functions primarily as an abductor, infraspinatus and teres minor as 

external rotators and subscapularis as an internal rotator of the humerus. 

Additionally, the lines of action of each of the muscles are postulated 

such that they act to compress the humeral head in the glenoid cavity 

and resist upward translation. 

Scapula Stabilizing 

Musculature 

In this document the upper trapezius, lower trapezius and serratus 

anterior muscles of the upper extremity are collectively referred to as the 

scapula stabilizer muscles as they are the muscles that primarily guide 

and control scapular movement during elevation. 

B. Probabilistic Terms 

Term Definition 

Probabilistic Also known as: Stochastic 

Probabilistic analysis considers the uncertainty (variability) present in 

model parameter(s) by treating them as distributions rather than a single 

value (typically the mean) eliciting a distribution of possible outputs. 

Input In this document, a model Input describes a variable(s) that corresponds 

to a particular experimental condition (i.e. arm elevation angle, fatigue 

state). The simulation can be run with multiple inputs depending on the 

experimental condition. Model inputs can directly affect model 

parameters.  
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Parameter In this document, a model Parameter describes a variable(s) that is 

‘hard-wired’ into the model’s geometric formulation (i.e. acromial 

shape, muscle origin). Each parameter is modelled as a continuous 

random variable with a particular distribution. 

Random Variable 

(Continuous) 

A variable that can take on any value (either within a particular range, or 

any real number) which can be used to define each parameter in the 

model. Therefore, each parameter in this research is described as a 

random variable with a particular distribution.  

In this document, all Random Variables are Continuous Random 

Variables, as possible values exist on a continuous scale. 

Standard Normal Space A fundamental concept of Probabilistic Reliability Analysis. Describes a 

transformed coordinate system where the statistical parameters are in 

their reduced (standard normal) form with a zero mean and unit standard 

deviation. Therefore, each variable (despite different units) can exist in 

this non-dimensionalized space, and their relative effect on the output 

variable(s) can be evaluated. 

Limit State Function Most reliability problems have a particular failure criterion (i.e. breaking 

point, fracture threshold, etc.). The function that separates the design 

space into “safe” and “unsafe” regions is the Limit State Function.  

Beta (β) Also known as: Reliability Index 

Minimum distance between the coordinate system origin in the 

transformed coordinate system (standard normal space) and the limit 

state function. A smaller value of β is associated with a larger 

probability of failure. 

Most Probable Point The point on the limit state surface corresponding to the minimum 

distance (β) is termed the Most Probable Point. In structural reliability 

examples, this is the most probable point of failure. This point also 

coincides with the point of maximal density on the joint probability 

distribution function. 

Alpha (α) Also known as: Importance Factors or Relative Sensitivity Factors 

Directional cosine of the unit vector at the most probable point. Each 

parameter will have an associated value for alpha, and as their squared 

sum is equal to 1, the relative importance of each variable can be 

assumed from each corresponding value of alpha. 

Probability Level (p-level) The probability of a particular event or output value (z-value) occurring. 

It is determined by specifying ‘performance levels’ in probabilistic 

analysis software from which the corresponding probability level(s) can 

be calculated.  

z-value The output associated with a particular p-level (probability level). It is 

determined by specifying ‘probability levels’ in probabilistic analysis 

software from which the corresponding z-value(s) can be calculated. 
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C. Methodological Terms 

Term Definition 

Neutral Posture The arm resting down by the participants’ side with 0° of arm elevation 

and 0° of axial rotation (anatomical position with thumb facing lateral). 

Sagittal Plane The plane dividing the body into medial/lateral components. Arm 

flexion occurs about this plane (elevating the arm in front). 

Coronal/Frontal Plane The plane dividing the body into anterior/posterior components. Arm 

abduction occurs about this plane (elevating the arm out to the side). 

Transverse Plane The plane dividing the body into superior/inferior components. Arm 

horizontal abduction occurs about this plane (moving the arm across the 

body). 

Scapular Plane The plane located 30° anterior to the coronal plane. Arm movement in 

this plane is referred to as “scaption” or “scapular plane elevation”. 

Session In this document, the term Session refers to the fatigue state. There will 

be two sessions: “Pre-fatigue” session and “Post-fatigue” session. 

Exertion In Chapter 3 of this document, the term Exertion refers to a particular 

combination of the three defined inputs (Abduction x Force Direction x 

Force Magnitude). 

i.e. A particular exertion may be 45° of abduction, internal rotation force 

direction, 40N force magnitude. 

Condition In Chapters 4 to 6, the term Condition refers to a particular combination 

of the two primary experimental modifiers: Session (Pre-fatigue, Post-

Fatigue) and Arm Elevation Angle (0°, 30°, 60°, 90°, 120°).  

Trial Also known as: iteration (primarily in Monte Carlo methods) 

Probabilistic term (primarily for Advanced Mean Value methods) that is 

calculated by: (number of parameters + 1) * (number of outputs) 

Simulation Probabilistic term used to describe running a probabilistic analysis (with 

a particular set of trials) for a particular condition 

i.e. A simulation for a particular condition (ex. pre-fatigue session, 30° 

arm elevation angle) with a particular set of trials (ex. 10 trials ([9 

parameters + 1] * 1 output)). 
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Chapter 1  

Introduction 

1.1 Motivation 

The shoulder is highly mobile, which permits a spectrum of joint translations and 

rotations that may precipitate pain and injury. Subacromial impingement syndrome (SAIS) is the 

most frequently diagnosed shoulder disorder, accounting for approximately 44 to 65% of all 

injuries of the shoulder (Michener et al. 2003, van der Windt et al. 1995, 1996). This disorder 

subsequently leads to additional shoulder pathologies, notably rotator cuff tears (preceding 95% 

of cases) (Neer 1983).  

Shoulder pain prevalence is positively related to occupational physical shoulder demands. 

The Workplace Safety and Insurance Board (WSIB) has identified overexertion to be the leading 

cause of lost time claims in the shoulder, with the number of reported claims remaining steady 

over the past five years (WSIB 2013). Extensive research has specifically associated overhead 

and/or repetitive working tasks with an increased risk of shoulder pain and injury (Bernard 1997, 

Herberts et al. 1981, Grieve and Dickerson 2008, Punnett et al. 2000, van Rijn et al. 2010). Jobs 

in the construction and manufacturing industries, specifically, have a particularly high 

prevalence of shoulder disorders. A comparison of shoulder pain development in welders and 

office workers showed that 27% of welders reported shoulder pain, compared to 2% of office 

workers (Herberts et al. 1981). Further, the prevalence of shoulder tendinitis in the group of 

welders was 18%. A two- to three-fold increase in shoulder injury risk existed for automobile 

assembly plant worker whose jobs required flexion/abduction above 90° (Punnett et al. 2000); 
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this risk was further elevated if this posture was maintained for greater than 10% of the work 

cycle. Researchers studying the mechanistic link between repetitive overhead working postures 

and shoulder injury have identified upper extremity muscle fatigue as a possible intermediary, 

with work-induced muscle fatigue altering healthy shoulder kinematics and subsequently leading 

to subacromial space reduction (Michener et al. 2003, Grieve and Dickerson 2008, Dickerson et 

al. 2011).   

Despite the increased prevalence of workplace shoulder pain and injury development, 

workers in jobs requiring shoulder intensive tasks are not the only population at risk. A review of 

shoulder pain in the general population identified the point prevalence to be 7-27%, and the one 

month and one year prevalence to be 19-31% and 5-47%, respectively (Pope et al. 1997). 

Additionally, the pain prevalence in the general population with differing occupations/lifestyles 

was 30% with a relatively narrow range of 22.6% to 37.8% depending on the occupation 

(Makela et al. 1999). Specifically, those with sedentary lifestyles had the lowest prevalence 

(22.6%), agriculture workers the highest prevalence (37.8%) and those working in industry, 

housewives or miscellaneous were reported to have between 29.1 to 30.6% prevalence. This 

suggests that while certain workplace exposures exacerbate the risk of shoulder injuries, shoulder 

pain exists across the entire population. 

Much research has identified the increasing risk of shoulder injuries, particularly of the 

rotator cuff, with age. Both the incidence and severity of tears increases over the age of 60 years, 

with 28% of the population over 60 years having a full thickness tear and 26% a partial thickness 

tear (Sher et al. 1995). However, in the middle-aged group between 40 to 60 years, 28% were 

still diagnosed with a rotator cuff tear, despite 24% being partial thickness tears. In the 

previously discussed study evaluating welders (unexperienced, experienced and elderly), a 
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correlation with age was not identified, with the average age of those with supraspinatus 

tendinitis (39 years) not significantly different from the average age of the entire sample 

(Herberts et al. 1981). Age has been identified as a factor for increasing the risk of shoulder 

pathology in research suggesting that the increased pain that exists in workers may be due to age-

related degenerative changes that make the rotator cuff more vulnerable to injury after age 40-45 

years (Bjelle 1989). Thus, the high prevalence of rotator cuff disease that exists in the aging 

population may be a function of degenerative changes. However, innate predisposing bone 

geometry that increases tissue vulnerability, in addition to workplace factors that exacerbate the 

risk of injury at middle-age, may be contributory to the widespread development of shoulder 

pathology that accompanies age.  

With the increased prevalence of SAIS and subsequent rotator cuff tears accompanying 

both age and certain occupational exposures, researchers have attempted to identify the 

mechanistic progression of SAIS development. Several mechanisms have been suggested, 

including those related to both innate bone geometry and those resulting from upper extremity 

muscle fatigue. Each of these mechanisms is described in Sections 2.4 and 2.5; from these 

discussions it is evident that there are several variables that may contribute to subacromial space1 

reduction and subsequent SAIS risk. With the subacromial space existing on a very small 

measurement scale (less than 2cm across the population), interpersonal variability in each of 

these mechanisms can pose widely differential risk for SAIS development across the population. 

In the existing impingement literature, this variability, and especially co-varying variability, 

                                                 
1 The subacromial space is the area between the acromion process of the scapula and the superior surface of the 

humeral head where impingement of the interposed tissues can occur. It is described in detail in Section 2.3 with the 

aid of anatomical figures. 
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while discussed, has not been evaluated with respect to the distribution of risk that exists across 

the population.  

 Evaluating the morphological characteristics and kinematic relationships relevant to 

subacromial space reduction in a young, healthy population not yet confounded with age-related 

degeneration or many years of high workplace shoulder demands, provides critical information 

for developing prevention strategies to alleviate the risk of impingement that increases 

considerably with age. While many studies, including our own (Chopp et al. 2010, 2011, Chopp 

and Dickerson 2012) have evaluated several partial components in this area, the interrelationship 

of these factors, particularly in the presence of upper extremity muscle fatigue, remains elusive. 

Further, though each of these variables has demonstrated significant variability, there have been 

no attempts to quantify this variability and determine its influence on subacromial space 

reduction. Determining the influence of predisposing (genetic) and fatigue-related predictive 

variables and their relative contributions to SAIS risk has substantial rehabilitative, treatment and 

ergonomic implications, in addition to provoking more targeted research in the area of shoulder 

mechanics and injury. While morphological measures may suggest recommendations such as 

task avoidance and the likelihood of eventual surgery necessities, healthy and/or fatigue-related 

kinematic measures would inform rehabilitative treatment and ergonomic work-design decisions 

to prevent the risk of SAIS and subsequent injury (i.e. rotator cuff tears) through limiting fatigue 

likelihood of specific muscles or muscle groups.  

1.2 Global Research Aim and Hypothesis 

The global aim of this research was: to evaluate the effects of morphological and 

fatigue-induced kinematic variability on the prediction of subacromial space geometry as a 

means of estimating subacromial impingement (SAIS) risk. A combined experimental and 
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probabilistic modelling approach was employed to first capture the variability in several 

predictive parameters in a young, healthy male population, and then implement that data into a 

novel probabilistic model to predict the distribution of the minimum subacromial space width 

(SAS) across the population for controlled and fatigued conditions. This distribution was then 

compared to healthy and injurious classifications in the literature, as well as to the distribution of 

subacromial tissue thicknesses measured from the same participant population. The unique 

probabilistic approach additionally quantified the relative importance of each parameter in 

reducing the subacromial space to establish whether the risk of SAIS development was more 

related to innate morphology, fatigue-induced kinematic alterations, or the inter-relationship of 

the two. Overall, it was hypothesized that the SAS, and subsequent risk of SAIS, would be 

highly variable in the population, with a subset of participants having innate geometry that 

predisposed them to SAIS risk which was further exacerbated by glenohumeral and 

scapulothoracic kinematic responses to muscle fatigue. 

1.3 Outline 

This dissertation was conceptually divided into four symbiotic research projects which 

included experimental and modelling approaches. The relationship between these project 

components is illustrated in Figure 1. The end product was the probabilistic subacromial 

geometry model developed in Stage IV (Chapter 6). This model was developed using data 

collected experimentally in Stages II (Chapter 4) and III (Chapter 5). Stage I (Chapter 3) served 

a dual purpose: first, as a training tool to develop a small scale probabilistic model capable of 

evaluating the sensitivity of rotator cuff muscle forces to variation in geometric parameters 

existing within an upper extremity deterministic model and second, as a development tool for 
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future research that will in part evaluate the influence of variability in exposure in addition to the 

variability in the response for a set exposure (which is the focus of the current work).  

 

Figure 1. Flowchart outlining the contribution of each of the four projects contained within this 

research to the overall probabilistic model. Kinematic (Stage II) and Morphological (Stage III) 

data were used to create population distributions for each of the parameters, which were 

subsequently used as input into the probabilistic geometry model (Stage IV). Stage I serves as a 

development tool for future research that will evaluate the influence of exposure variability in 

addition to the variability in exposure responses (Stages II and III). The legend is displayed in 

the top, right corner of the figure. 



7 

 

Chapter 2  

Literature Review 

2.1 Overview of Literature Review 

This chapter provides a review of literature relevant to measuring and modelling the 

subacromial space. Initially, a definition of the anatomy and motion of the shoulder is provided 

as a context for describing glenohumeral and scapulothoracic kinematics (Section 2.2). 

Subacromial impingement syndrome is described next, which includes details regarding the 

subacromial space and its contents (Section 2.3). This section also discusses changes in the size 

of this space resulting from arm elevation and different workplace factors. The following two 

sections review the kinematic (Section 2.4) and morphological (Section 2.5) mechanisms of 

subacromial space modulation, respectively. Each of the documented factors that affect the size 

of the subacromial space has demonstrated high variability in the population. This variability and 

contributors to this variability are discussed (Section 2.6). Lastly, in order to capture and 

describe the variability of subacromial impingement risk, probabilistic modelling methods were 

applied. Thus, a review of probabilistic theory and simulation methods is included (Section 2.7). 

2.2 Anatomy and Motion of the Shoulder 

The shoulder is highly flexible kinematically, which allows for greater mobility than any 

other region in the body. It is comprised of articulations between the humerus, scapula, clavicle 

and thorax. Motion of the shoulder is made possible by the integration of four joints: (1) 

acromioclavicular (between the acromion process of the scapula and the clavicle), (2) 

sternoclavicular (between the sternum and the clavicle), (3) glenohumeral (between the glenoid 

cavity of the scapula and the humeral head), and (4) scapulothoracic (between the scapula and 
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the thorax). The static and dynamic integrity of these joints is maintained by passive and active 

tissues, including several morphological constraints (Rockwood et al. 2009). The approximate 

glenohumeral and scapulothoracic relationships, when the arm is in a resting, neutral posture2, 

are well known. Generally, for a healthy individual, the humeral head resides relatively central 

with respect to the glenoid surface of the scapula. The scapula is approximately positioned 30° 

anteriorly with respect to the coronal plane (termed the scapular plane), and is rotated upwards 

approximately 3° with respect to the midline of the sagittal plane (Rockwood et al. 2009). 

Documented scapulohumeral relationships or “rhythms” have identified that, during scapular 

plane elevation, the ratio of humeral elevation to scapular upward rotation is approximately 4:13 

during initial phases of elevation and is then 5:4 for the remainder of elevation (Poppen and 

Walker 1976). This elicits an average scapulohumeral rhythm of 2:1, indicating that humeral 

elevation is generally double the amount of scapular upward rotation during elevation. Thus, 

though these joints can act independently, all work in unison to maintain healthy functional 

movement of the upper extremity (Inman et al. 1944).   

 Anatomical Axes of the Shoulder 

In this section, the anatomical axes of the humerus and scapula are described, as well as 

humerothoracic and scapulothoracic motion and glenohumeral translations. The joint coordinate 

systems used to describe upper extremity kinematics are consistent throughout this document and 

reflect systems recommended by the International Society of Biomechanics (Wu et al. 2005).  

 

 

                                                 
2 Neutral posture is defined as the arm resting down by the individual’s side with 0° of arm elevation and 0° of axial 

rotation (anatomical position with thumb facing laterally). 
3 A ratio of 4:1 indicates that for every 4° of humeral elevation there is 1° of scapular upward rotation. 
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Humerus Joint Coordinate System (Humerothoracic Rotations) 

The coordinate system of the humerus is used in conjunction with the coordinate system 

of the torso to describe the angle of elevation, plane of elevation and axis of rotation of the 

humerus with respect to the torso. The origin of the humeral coordinate system is the 

glenohumeral joint center of rotation, which can be estimated by regression or motion recordings 

(Wu et al. 2005). Figure 2 displays the humerus coordinate system for a right shoulder;  

+𝑌ℎ directed approximately superior (along the long axis of the humerus) 

+𝑋ℎ directed approximately anterior 

+𝑍ℎ directed laterally (approximately to the right)  

The rotation sequence for the humerus with respect to the torso is Y-X-Y'. Rotating the humerus 

about the 𝑌ℎ axis would determine the plane of elevation. Rotation about the 𝑋ℎ axis, with 0° 

rotation about the 𝑌ℎ axis would elicit humeral abduction in the coronal plane (Figure 3). 

Rotation about the 𝑋ℎ axis with preceding +30° and +90° rotation about the 𝑌ℎ axis would elicit 

scapular plane and sagittal plane (forward flexion) elevation, respectively (Figure 3). The third 

rotation about the 𝑌ℎ ' axis (long axis of the humerus) would determine the axial rotation about 

the humerus (internal or external rotation). Note: at 0° of humeral elevation (𝑋ℎ) the plane of 

elevation and axial rotation are indistinguishable due to gimbal lock. 
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Figure 2. Humerus coordinate system: Axis of rotation: Glenohumeral Joint Center of Rotation; 

Rotation Sequence Y-X-Y': 𝑌ℎ = Plane of Elevation, 𝑋ℎ = Elevation, 𝑌ℎ ' = Axial Rotation (Figure 

adapted from Wu et al. 2005).   

 

 

Figure 3. Planes of Humeral Elevation (Superior View): 0° = coronal plane (abduction), 30° = 

scapular plane, 90° = sagittal plane (flexion). 
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Scapula Joint Coordinate System (Scapulothoracic Rotations) 

The coordinate system of the scapula can be used in conjunction with the coordinate 

system of the torso to describe the rotation, tilt and protraction/retraction of the scapula with 

respect to the torso. The origin of the scapular coordinate system is the angulus acromialis, 

which is the most laterodorsal point on the acromion process of the scapula (Wu et al. 2005). 

Figure 4 displays the scapula coordinate system for a right shoulder;  

+𝑌𝑠 directed approximately superior 

+𝑋𝑠 directed approximately anterior 

+𝑍𝑠 directed laterally (approximately to the right) 

The rotation sequence for the scapula with respect to the torso is Y-X-Z. Rotation about the 𝑌𝑠 

axis produces protraction/retraction (internal/external rotation)4. Rotation about the 𝑋𝑠 axis 

provides upward/downward rotation. Rotation about the 𝑍𝑠 produces anterior/posterior tilting 

(Figure 5). Protraction of the scapula is created by anterior movement of the lateral border of the 

scapula (posterior movement of the medial border of the scapula), therefore creating a “winging” 

effect. Downward rotation of the scapula coincides with medial movement of the inferior border 

of the scapula, while anterior tilting coincides with posterior movement of this inferior border. 

 

                                                 
4 The terms “protraction” and “internal rotation” and the terms “retraction” and “external rotation” of the scapula are 

used interchangeably in the literature.  
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Figure 4. Scapular coordinate system: Axis of rotation: Angulus Acromialis; Rotation Sequence 

Y-X-Z:  𝑌𝑠 = Protraction/Retraction, 𝑋𝑠 = Upward/Downward Rotation, 𝑍𝑠 = Anterior/Posterior 

Tilt (Figure adapted from Wu et al. 2005).   

 

 

Figure 5. Three-dimensional scapular rotations (Right Shoulder): (A) Posterior view 

(upward/downward rotation), (B) Lateral view (posterior tilting/anterior tilting), (C) Superior 

view (retraction/protraction) (Figure adapted from Ludewig and Reynolds 2009). 

Glenoid Cavity Joint Coordinate System (Glenohumeral Translations) 

Glenohumeral translations are typically described by relating the glenohumeral joint 

center to the center of the glenoid cavity of the scapula (Bey et al. 2008, Poppen and Walker 

1976). Translations describe the three-dimensional movement of the humeral head with respect 

to the glenoid cavity; these are described using a glenoid coordinate system. The origin of the 
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glenoid system is the center of the glenoid cavity. Figure 6 displays the glenoid coordinate 

system for a right shoulder;  

+𝑌𝑔 directed approximately superior (from the inferior-most border to the superior-most 

border of the glenoid cavity, termed the “glenoid axis”) 

+𝑋𝑔 directed approximately anterior (from the posterior-most border to the anterior-most 

border of the glenoid cavity) 

+𝑍𝑔 directed laterally (approximately to the right)  

This coordinate system was developed in accordance with previous definitions of glenohumeral 

translation (Poppen and Walker 1976) while maintaining approximate consistency with ISB 

recommendations (Wu et al. 2005).  Thus, superior translation indicates upward movement of the 

humeral head towards the inferior aspect of the acromion process of the scapula (+𝑌𝑔), medial 

translation indicates compression of the humeral head into the glenoid cavity (−𝑍𝑔), and anterior 

translation indicates movement of the humeral head along the +𝑋𝑔 axis. 

 

Figure 6. Glenoid coordinate system used to determine glenohumeral translations: 

Superior/Inferior translation described along the 𝑌𝑔 axis, Medial/Lateral translation described 

along the 𝑍𝑔  axis, Anterior/Posterior translation described along the 𝑋𝑔 axis. 
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2.3 Subacromial Impingement Syndrome  

The subacromial space of the shoulder is the site of the largest proportion of shoulder 

disorders, with subacromial impingement syndrome (SAIS) accounting for approximately half of 

all shoulder complaints (van der Windt et al. 1995). This space is bordered superiorly by the 

undersurface of acromion process of the scapula, and inferiorly by the superior portion of the 

humeral head. Within this space resides the supraspinatus tendon, the long head of the biceps 

tendon, the subacromial bursa and the shoulder capsule (Michener et al. 2003). The term “SAIS” 

(or “shoulder impingement syndrome”) as a clinical diagnostic label has been the topic of much 

controversy in recent literature (Braman et al. 2014, de Witte et al. 2014). For this current 

research, SAIS refers to a process in which morphological or kinematic factors cause the 

subacromial space to reduce, thereby compressing (mechanically impinging) the interposed 

tissues.  

 Subacromial Space Width in Healthy and Unhealthy Individuals 

Extensive documentation exists for the approximate magnitudes of healthy and 

progressively unhealthy subacromial space widths. With the arm in a neutral posture, reported 

healthy widths range from approximately 6 to 14mm. Conversely, in patients with radiological 

abnormalities, such as rotator cuff tears, the space is markedly reduced (Cotton and Rideout 

1964, Golding 1962, Weiner and MacNab 1970). Specifically, the subacromial space width of 

seven cadaveric specimens with full-thickness rotator cuff and bursa tears was reported to be 

1mm in three cases and 2, 3 and 4mm in the other three cases; it was 9mm in the last case 

(Cotton and Rideout 1964). Similarly, radiographs from 58 living patients who had surgically 

diagnosed rotator cuff tears showed that 50% had subacromial space widths less than 6mm, with 

44% less than 5mm (Weiner and MacNab 1970). Typically spaces with minimum widths below 
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5mm were characterised as unhealthy, and spaces above 7mm were considered healthy, while 

spaces in the 5-7mm range remained inconclusive. 

 Work-related Impingement Exposures 

Two global theories have been presented regarding the initiation of SAIS. Both intrinsic 

and extrinsic mechanisms, while precipitated differently, can result in SAIS (Michener et al. 

2003, Seitz et al. 2011, de Witte et al. 2011). Intrinsic impingement is a process whereby gradual 

or acute tissue loading and/or age-related degeneration causes partial or full-thickness tendon 

tears, which subsequently leads to kinematic changes, and consequently tissue impingement. 

Alternatively, extrinsic impingement is an exposure-related process, whereby certain factors alter 

healthy glenohumeral and scapulothoracic kinematics which leads to subacromial space 

reduction and thus impingement and damage of the interposed tissues.  

The differential postulated mechanisms of impingement initiation have resulted in 

divergent research foci. Intrinsic impingement is not easily preventable. A positive linear 

relationship exists between partial or full-thickness rotator cuff tears and age, with 50% of the 

population having tears in their dominant arm by age 60 and 80% having tears by age 80 

(Milgrom et al. 1995). Due to these complications, more research has focused on assessing the 

multitude of extrinsic factors (morphological and/or kinematic) that can mechanically alter the 

glenohumeral and scapulothoracic relationships in an attempt to predict their effects on 

subacromial space reduction. This dissertation specifically explores extrinsic impingement. 

Many mechanical exposures are capable of modulating the subacromial space. Different 

agents, such as posture, force and repetitive activity, all interact with the musculoskeletal tissues 

in this region to create internal exposures (Wells et al. 2004); these exposures can subsequently 

increase the risk of space reduction and consequently, SAIS. 



16 

 

2.3.2.1 Posture  

Arm posture influences the development of shoulder pain and injury. A strong 

association exists between working with the arms above shoulder height (approximately 90° of 

elevation) and the development of pain and injury (Bernard 1997, Herberts et al. 1981, Grieve 

and Dickerson 2008, Punnett et al. 2000, van Rijn et al. 2010). Specifically, SAIS, subsequently 

leading to damage of the rotator cuff tendons is recognized as the predominant injury resulting 

from these awkward postures (Miranda et al. 2005, Svendsen et al. 2004, van Rijn et al. 2010). 

This has resulted in the extensive evaluation of the relationship between upper extremity posture 

and alterations in subacromial space size. 

Both humeral elevation (both passive and active) and axial rotation demonstrably alter 

the size of the space. The space may decrease by as much as 6mm as the arm is elevated (Bey et 

al. 2007, Graichen et al. 1999a). This reduction in space with arm elevation is attributed, at least 

partly, to the greater tuberosity of the humerus, which moves closer toward the acromion process 

during elevation (Graichen et al. 1999b). However, this finding was only consistent for elevation 

angles up to approximately 90°, after which conflicting results alternately report increases, 

decreases or no change in space size (Bey et al. 2007, Graichen et al. 1999b, Hinterwimmer et al. 

2003). Humeral elevation and muscular contributions also interact, in that abducting muscle 

activity further reduces the space compared to passive elevation, and that adducting activity 

increases the space (Graichen et al. 1999a, 2005, Hinterwimmer et al. 2003). This coincides with 

findings that strengthening adductor muscles with large depressor moment arms, such as 

pectoralis major, latissumus dorsi and teres major, increased the subacromial space 

(Hinterwimmer et al. 2003, Kuechle et al. 1997). Axial rotation of the humerus may also alter the 

size of the space. In one study, with the arm elevated to 90° in the scapular plane, the space 
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reduced by 3mm when the humerus was externally rotated, compared to when internally rotated 

(Graichen et al. 1999a).  

2.3.2.2 Repetition 

 A defined relationship between repetitive working tasks and the development of SAIS 

exists. However, its influence has rarely been studied independently. Rather, the interaction 

between overhead arm postures and repetitive activity have been discussed in terms of their 

relationship to SAIS and rotator cuff pathology (Frost and Andersen 1999, Jobe et al. 2000). 

However, it was determined that workers whose jobs entailed repetitive tasks were at two to 

three times greater risk of developing shoulder tendinitis with positive signs of SAIS (Frost et al. 

2002). Additionally, the relationship between repetitive tasks and non-specific shoulder pain has 

been widely reported in the literature (Bernard 1997, Leclerc et al. 2004, Miranda et al. 2005). 

2.3.2.3 Force 

The relationship between force requirements and SAIS development has received little 

attention, with only a few existing conflicting studies. In one study, workers having high force 

requirements (≥10% of their maximal voluntary contraction (MVC)) were more likely to develop 

shoulder tendinitis (OR = 4.21), compared to those with low force requirements (OR = 2.17) 

(Frost et al. 2002). Similarly, female participants exposed to heavy lifting greater than 10 times 

per day, and high hand force requirements for greater than one hour/day for over three years, 

demonstrated an increased risk of developing shoulder disorders (Miranda et al. 2005). In other 

research, no significant relationship between low, medium and high hand force requirements and 

rotator cuff pathologies were identified in machinists, car mechanics and house painters 

(Svendsen et al. 2004). 
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2.3.2.4 Relationship between workplace agents and the development of muscle fatigue 

Upper extremity muscle fatigue is a possible intermediary that relates these work-related 

task characteristics to SAIS development (Dickerson et al. 2011, Grieve and Dickerson 2008, 

Michener et al. 2003). The established relationship between repetitive or prolonged work above 

shoulder height and the development of upper extremity muscle fatigue, in addition to subjective 

ratings of discomfort (Grieve and Dickerson 2008, Herberts and Kadefors 1976, Herberts et al. 

1980, Sakakibara et al. 1995, Wiker et al. 1989), has led to the evaluation of the relationship 

between differential muscle fatigue and subacromial space modulation, by means of altered 

glenohumeral and scapulothoracic kinematics. These kinematic alterations and their relevance to 

SAIS development are discussed in Section 2.4.  

 Location of minimal subacromial space width 

Although research evaluating changes in the subacromial space most often solely report 

absolute magnitudes of the minimum subacromial space width (SAS), some have additionally 

examined the location of the SAS, and associated implications of that location, for tissue 

impingement risk. During scapular plane elevation, the acromial contact region has been shown 

to move from the anterolateral edge (neutral posture) to the anteromedial edge (elevated posture) 

(Flatow et al. 1994). Thus, at all arm positions, the anterior acromion was the primary site for 

likely impingement; this was previously suggested (Neer 1983). With respect to the humerus, the 

contact region was initially located at the proximal ends of the biceps and supraspinatus tendons; 

however, as the arm elevated, the contact region moved more distally along these tendons, and 

between 60° and 120° the contact was primarily problematic for the supraspinatus tendon. This 

suggests that mid-range elevation is particularly problematic for SAIS and subsequent tissue 

damage.  



19 

 

The location of the SAS width respect to the interposed supraspinatus tendon and/or its 

insertions point on the greater tuberosity has been studied. In one study, at 30° and 60° of 

abduction, the SAS vector passed through the supraspinatus tendon in all 12 subjects (Figure 7) 

(Graichen et al. 1999a). At 90° abduction, the vector was located laterally to the supraspinatus 

tendon in half of the subjects, and with further abduction, it was located laterally in all subjects 

(Figure 7). Additionally, when the arm was internally rotated, the vector passed through the 

supraspinatus in all subjects, with the contact point on the anterior-inferior border of the 

acromion. When the arm was externally rotated, the vector was located at the central part of the 

acromion and passed through the supraspinatus in just under half of the cases. A subsequent 

study reported that the SAS vector passed through the supraspinatus tendon at angles of 60° and 

90° and passed laterally at 120° (Graichen et al. 1999b). More recently, the SAS vector has been 

shown to be located within the tendon footprint (insertion point) of the supraspinatus between 

34° and 72°, while moving laterally to the humeral shaft with further elevation (Giphart et al. 

2012). The discrepancy in this the range deemed to be critical for tissue compression is likely 

attributed to methodological differences, including the imaging posture and plane of humeral 

elevation. Specifically, in the earlier research, participants were lying supine with their arm 

elevated in abduction (Graichen et al. 1999a,b), while in later research participants were seated 

upright with their arm elevated in both scapular plane elevation and forward flexion (Giphart et 

al. 2012). The upper end of the range in which the SAS vector was located within the 

supraspinatus tendon footprint was demonstrated to differ by plane of elevation, with a limit of 

72 ± 12° shown for scapular plane elevation and 65 ± 8° for forward flexion (Giphart et al. 

2012). It is likely that upper limit of 90° demonstrated in several participants in earlier research 

was due to the humeral elevation plane, as well as the possible gravitational effects of the supine 
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posture during the image capture. However, this discrepancy may also be related to the 

participant population. The sample size in each study was ≤12, with highly variable outcomes 

demonstrated. Thus, while an upper limit of 90° may be an overestimation, a limit of 72° may 

not be representative of the entire population.  

 

Figure 7. 3D reconstruction of subacromial space: location of minimum subacromial space 

width (SAS) vector at 60° (a) and 120° (b) of abduction. Note that at 60° (a) the SAS vector is 

passing through the supraspinatus tendon, whereas at 120° (b) the vector is passing lateral to the 

tendon (Figure obtained from Graichen et al. (1999a) with kind permission of Springer 

Science+Business Media). 

Arm postures and their related musculoskeletal geometric changes thus critically modify 

SAIS risk assessment, as, although the SAS may be smaller at higher abduction angles, it may 

not pose high risk for rotator cuff impingement. Mid-range elevation, in the 60° to 120° range, is 

consistently implicated as particularly problematic for the development of supraspinatus tendon 

impingement. Several clinical diagnostic tests for SAIS such as the Hawkins-Kennedy, the Jobe-
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Yocum and the internal rotation resistance stress test all involve resisted rotation with the arm 

first positioned at 90° of elevation (Rockwood et al. 2009). Additionally, the ‘painful arc’ test is 

one of the most well-known SAIS diagnostic tests. A positive test occurs when the patient 

exhibits pain in the 60 to 120° arm elevation range, while pain in a higher range of elevation 

suggests acromioclavicular joint pain (Kessel and Watson 1977). As recent research suggests 

that the SAS vector passes laterally to the supraspinatus tendon at elevation angles <90°, this 

implicates other possible mechanisms of pain development during further elevation to an 

overhead posture. Internal impingement, which occurs when the articular surface (undersurface) 

of the supraspinatus tendon becomes entrapped between its attachment site on the humerus and 

the superior glenoid cavity, is a likely cause for shoulder pain and/or rotator cuff pathologies at 

higher elevation angles, particularly when coupled with humeral external rotation (Braman et al. 

2014). Several additional structures have been implicated as possible contributors to shoulder 

pain, including the biceps tendon, superior glenoid labrum and the coracoacromial ligament 

(Braman et al. 2014). Additionally, it is important to consider that while research suggests that 

the supraspinatus tendon has vacated the subacromial space at elevated postures thereby no 

longer posing risk for SAIS, thickening of the subacromial bursa may still be cause for SAIS and 

subsequent pain at higher elevation angles (Kibler et al. 2013, Tsai et al. 2007). Thus, the 

assessment of SAIS risk requires not only the consideration of the changing SAS, but also the 

location of this SAS vector in relation to the subacromial tissues.    

2.4 Kinematic Mechanisms of Subacromial Impingement 

Glenohumeral (GH) and scapulothoracic (ST) relationships modulate the size of the 

subacromial space posing possible risk for SAIS. Two predominant mechanisms that can reduce 

the subacromial space are: (1) superior humeral head translation and (2) scapular reorientation. 
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Humeral head translation reduces the subacromial space from the inferior aspect (bottom-up 

mechanism) whereby the humeral head position migrates superiorly with respect to the glenoid 

cavity, consequently impinging tissues interposed within the space. Scapular reorientation 

involves a series of three-dimensional scapular rotations which orient the acromion more 

inferiorly, impinging tissues from the superior aspect (top-down mechanism) (Figure 8). The 

following sections discuss these mechanisms, while also highlighting some key limitations of 

previous measurement techniques for GH and ST kinematic changes. 

 

Figure 8. Proposed mechanisms of subacromial impingement: (1) Superior humeral head 

translation (Solid Arrow), (2) Scapular reorientation (Dashed arrow).  

 Superior Humeral Head Translation 

Humeral head translation affects the glenohumeral relationship. Assuming a neutral 

position, with the geometric center of the humeral head approximately aligned with the center of 

the glenoid cavity, superior humeral head translation is movement of the center of the head 

upwards along the vertical glenoid axis (Figure 6), which moves it closer to the acromion 

process. Mechanically, translation has been attributed to the coupling of the deltoid and rotator 

cuff musculature. Muscular contributions towards centering or translating the humeral head have 
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been established through measuring muscle moment arms and their angle relative to the glenoid 

cavity (Poppen and Walker 1978). The supraspinatus moment arm remained relatively constant 

in length throughout the range of abduction (22mm) and was angled at approximately 80° to the 

glenoid face, thereby classifying it primarily as a humeral head compressor, while also an 

elevator. Concurrently, the moment arms of the anterior and middle deltoid gradually increased 

over the range of abduction (5 to 44mm and 17 to 32mm, respectively) with angles of 30° at 30° 

of abduction, 60° at 90° of abduction and 80° at maximal abduction, implying that its upward 

shearing force, pulling the humeral head superiorly, is primarily present during the initial 

elevation phase. 

 GH translation has been evaluated for a variety of conditions. Specifically, the influences 

of: (1) elevated arm postures, (2) dynamic arm elevation, (3) shoulder instability or rotator cuff 

tears, and (4) muscle fatigue have all been studied with regards to the magnitude of superior-

inferior translation of the humerus with respect to the neutral, centralized position on the glenoid 

(Table 1). With the rotator cuff positioned such that it compresses the humeral head into the 

glenoid cavity, mechanical deficiency of the rotator cuff by means of injury would hinder its 

ability to maintain a centered GH position, thereby creating increased translation throughout the 

range of elevation. Additionally, aside from the superior humeral translation resulting from 

shoulder instability or rotator cuff injury, rotator cuff muscle weakness, by means of exhausting 

the rotator cuff through a fatiguing protocol, produces a similar result, though the magnitude of 

translation is less than in patients with tears. 
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Table 1. Trends and approximate magnitudes of superior-inferior humeral head translation with 

respect to the glenoid cavity for 4 different conditions (static elevated arm postures, dynamic 

elevation, shoulder injury and muscle fatigue).   

Condition Trend Magnitudes Reference 

Arm Elevation  

(Static Arm 

Positions) 

Superior translation during 

initial elevation, followed by 

inferior translation to more 

central position (>45 to 60°) 

 0° to mid-elevation  

= ~1 to 2.5mm  

Chopp et al. 2010, 

Graichen et al. 2000 

Matsuki et al. 2012 

Superior translation during 

initial elevation, followed by 

constant position 

 0 to 60° = ~3mm 

 60°+ = <1mm 

superior/inferior 

Poppen & Walker 1976 

Constant humeral head position 

throughout the range of 

elevation 

 Across elevation = 

<0.7mm 

Chen et al. 1999 

Deutsch et al. 1996 

Yamaguchi et al. 2000 

Continuous superior translation 

from initial inferior position to 

central position 

 ~2.9mm Cote et al. 2009 

Arm Elevation 

(Dynamic Arm 

Elevation) 

Greater superior translation 

during dynamic elevation than 

at same postures measured 

statically 

 Largest difference = 

0.92mm 

 

Bey et al. 2008 

Teyhen et al. 2010 

Rotator Cuff 

Tear/ Shoulder 

instability 

Increased superior translation 

in both neutral and elevated 

postures 

 ~Injured has double 

superior translation 

compared to healthy 

 Tear > Instability > 

Healthy 

 Multi-tear > Single tear 

 Correlation with pain 

(asymptomatic vs. 

symptomatic) conflicting  

Bey et al. 2008 

Bezer et al. 2005 

Deutsch et al. 1996  

Keener et al. 2009 

Paletta et al. 1997 

Poppen & Walker 1976 

Yamaguchi et al. 2000 

  

Muscle Fatigue Increased superior translation 

present generally:  

Tear ≥ Fatigue ≥ Healthy  

 ~1 to 2mm > Healthy 

 Largest difference at 

higher elevation angles 

due to lack of inferior 

translation present at 

these angles 

Chen et al. 1999 

Chopp et al. 2010 

Cote et al. 2009 

Royer et al. 2009 

Teyhen et al. 2008 

 

Though not as well studied as superior-inferior translation of the humeral head, some data 

exists regarding the anterior-posterior displacement of the humeral head in healthy and injured 

populations. Though anterior translation has been linked to shoulder instability and/or SAIS 
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(Ludewig and Cook 2002, Michener et al. 2003, Paletta et al. 1997), the results are inconclusive, 

and the volume of evidence is limited compared to that for superior translation.  

 Scapular Reorientation 

Scapular reorientation affects the ST relationship. While altered scapular positioning as a 

potential cause of SAIS is less definitive, notable trends exist. In a neutral posture, the scapula 

has a resting position of 30° anterior with respect to the coronal plane (thus termed the scapular 

plane), and is rotated upwards approximately 3° with respect to the midline of the sagittal plane 

(Rockwood et al. 2009). The scapula remains stable with respect to the thorax by means of 

periscapular stabilizing musculature, primarily the upper and lower trapezius and serratus 

anterior (Michener et al. 2003, Phadke et al. 2009). Similar to humeral head translation, certain 

normal and abnormal kinematics occur for many scenarios including healthy elevation, unstable 

or impinged shoulders and with upper extremity muscle fatigue (Table 2). 

Table 2. Trends and approximate magnitudes of three-dimensional scapular kinematics for 3 

different conditions (arm elevation, shoulder injury and muscle fatigue).   

Condition Trend Magnitudes Reference 

Arm Elevation  Upward rotation (UR), posterior tilt 

(PT), retraction (R) 

 Inconsistent and 

highly variable in 

magnitude 

 UR ~ 34-50° 
 PT ~ 15-30° 
 R ~ 13-24° 

 

Ebaugh et al. 2005 

Freedman & Munro 

1966 

Inman et al. 1944 

Ludewig et al. 1996 

McClure et al. 2001 

Poppen & Walker 1976 

Rotator Cuff 

Tear/ Shoulder 

instability 

Healthy kinematics (UR, PT, R) 

impaired or reversed = downward 

rotation, anterior tilt, protraction 

*One researcher found increased 

UR and PT trend for injured 

patients at increased elevation 

angles 

 Inconsistent and 

highly variable (~ 

<10°) 

Endo et al. 2001 

Lin et al. 2005 

Ludewig & Cook 2000 

Ludewig & Reynolds 

2009 

Lukasiewicz et al. 1999 

*McClure et al. 2006 

Phadke et al. 2009 
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Muscle Fatigue Increased or no change (one or all) 

of:  

UR, PT, R  

Similar to healthy kinematics 

 Inconsistent and 

highly variable (~ 

<10°) 

Chopp et al. 2011 

Ebaugh et al. 2006 

McQuade et al. 1998 

Suzuki et al. 2006 

 

Decreased/reversed (one or all) of:  

UT, PT, R 

Similar to injured kinematics 

 Inconsistent and 

highly variable (~ 

<10°) 

Borstad et al. 2009 

Su et al. 2004 

Tsai et al. 2003 

Though more relative uncertainty exists regarding the directionality of scapular 

orientation changes that reduce the subacromial space compared humeral head translational 

changes, certain orientations have been identified in those with SAIS. Specifically, a 

downwardly rotated, anteriorly tilted and protracted scapula would produce a top-down intrusion 

of the acromion, thereby reducing the subacromial space (Ludewig and Cook 2000, Ludewig and 

Reynolds 2009, Michener et al. 2003). Further, kinematic and electromyographic results have 

prompted discussion regarding the most critical movement impacting SAIS risk. As discussed, 

most early research solely examined scapular upward/downward rotation (Freedman and Munro 

1966, Inman et al. 1944, Poppen and Walker 1976). Upward rotation of the scapula rotates its 

inferior border laterally and the acromion process upwards, thereby increasing the acromio-

humeral interval and allowing more space for the subacromial tissues. This upward motion is 

controlled by the combined activity of the serratus anterior and the upper and lower portions of 

the trapezius muscle. Posterior tilting of the scapula rotates the inferior border anteriorly and the 

acromion process posteriorly, similarly increasing the subacromial space. Some authors argue 

that this tilting is the most critical scapular movement for SAIS prevention as the anterior portion 

of the acromion is the most common site of tissue impingement (Flatow et al. 1994, Ludewig and 

Cook 2000). This in turn would implicate serratus anterior as the most critical muscle for 

reducing SAIS risk via a scapular orientation mechanism, as it generally has the most 

advantageous moment arm for tilting the scapula (Borstad et al. 2009). Additionally, Solem-

Bertoft et al. (1993) documented that scapular retraction, a motion controlled primarily by the 
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serratus anterior and lower trapezius muscles, also re-locates the anterior acromion into a more 

elevated position, thereby increasing the subacromial space (Borstad et al. 2009). Thus, 

impairment of scapular upward rotation, posterior tilting and retraction during arm elevation may 

increase the risk of SAIS development. This leads to a further assertion that inhibition of serratus 

anterior and upper and lower portions of the trapezius muscle by means of injury or fatigue may 

provoke these potentially harmful orientation changes. 

Impingement Mechanisms Summary: 

The totality of existing evidence leads to the following conclusions: 

I. A superiorly (and possibly anteriorly) translated humerus, mediated by rotator cuff 

dysfunction, poses risk for SAIS through reduction of the subacromial space from a 

bottom-up intrusion, primarily when the humerus is in mid-range elevation. 

II. A reduction in scapular upward rotation, posterior tilt and retraction, mediated by serratus 

anterior and trapezius dysfunction, likely poses risk for SAIS through a reduction of the 

space from a top-down intrusion of the acromion process. 

Together, these mechanisms cause the greater tuberosity of the humerus to come into close 

contract with the anterior portion of the acromion, leaving considerably less space for the 

interposed tissues (Ludewig and Cook 2000). However, reported statistically significant changes 

in the above research were on a small measurement scale (<5mm and 5°), making it necessary to 

evaluate the clinical relevance of these changes. 

2.5 Morphological Mechanisms of Subacromial Impingement 

Besides the influence of muscle damage and/or fatigue on GH and ST kinematics, 

specific innate factors may predispose an individual to SAIS based on their musculoskeletal 
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geometry. Acromial morphology, glenoid angulation and subacromial tissue thickness all 

influence the overall size of the subacromial space, and subsequently, the risk of SAIS.  

 Acromial and Glenoid Morphology 

Morphological characteristics of both the acromion and glenoid cavity relate to SAIS 

and/or rotator cuff pathology (Table 3).  

Table 3. Description of morphological variables, their classifications (unhealthy = association 

with rotator cuff pathology) and relation to age and/or pathology. 

Variable Definition Classifications 
Relation to 

Age/Pathology 
Reference 

Acromial 

Anterior Slope 

(Acromial 

Type)  
 

Angle formed by the 

intersection of a line 

drawn along the 

undersurface of the 

acromion and a line 

extending from the tip to 

the junction of the hook 

(angle: anterior) 

 

 
 

 Type I (0-12°*): 

Flat 

 

 Type II (13-27°*): 

Curved 

 

 Type III (>27°*): 

Hooked  

 

Increased acromial 

anterior slope angle 

associated with: 

 Increased rotator 

cuff tear 

prevalence 

 Increased tear 

severity 

 Increased age 

Balke et al. 2013 

Bigliani 1986 

Edelson 1995 

Gill et al. 2002 

Kitay et al. 1995 

MacGillivray et al. 

1998 
*Toivonen et al. 

1995 

Tuite et al. 1995 

Lateral 

Acromial 

Angle 

Intersection of the glenoid 

axis with a line drawn 

along the undersurface of 

the acromion process 

(angle: superior/medial) 

 

 ≤70° (Unhealthy) 

 

 >70° (Healthy) 

Decreased lateral 

acromial-AG angle 

associated with 

increased rotator 

cuff tear prevalence 

Banas et al. 1995 

Tetreault et al. 2004 
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Acromial Tilt Angle formed by a line 

connecting the most 

anterior and posterior 

points on the inferior 

aspect of the acromion, 

and a line connecting the 

posterior point on the 

acromion with the most 

inferior point on the 

coracoid process (angle: 

anterior) 

 
 

 <30° (Unhealthy) 

 

 >30° (Healthy) 

Decreased acromial 

tilt associated with 

increased rotator 

cuff tear prevalence 

Aoki et al. 1986 

Balke et al. 2013 

Kitay et al. 1995 

Zuckerman et al. 

1992 

Acromion 

Index 

Ratio of the glenoid-

acromial distance (glenoid 

axis to lateral acromion) to 

the glenoid-humeral 

distance (glenoid axis to 

lateral humerus)  

 
 

 >0.65 (Unhealthy) 

 

 <0.65 (Healthy) 

Increased lateral 

extension of the 

acromion (increased 

ratio) associated 

with increased 

rotator cuff tear 

prevalence 

Balke et al. 2013 

Nyffeler et al. 2006 

Torrens et al. 2007  

Glenoid 

Inclination 

Intersection between the 

glenoid axis and a line 

drawn along the floor of 

the supraspinatus fossa 

(angle: superior/lateral)  

 

 >90°:           

Upward Tilt 

 

 <90°:      

Downward Tilt 

Increased glenoid 

inclination angle 

associated with: 

 Increased rotator 

cuff tear 

prevalence 

 Increased superior 

humeral head 

migration 

 

Flieg et al. 2008  

Hughes et al. 2003  

Konrad et al. 2006 

Maurer et al. 2012 

Wong et al. 2003  

 

 

Acromial type is the most been widely studied morphological parameter and has 

exhibited extensive interpersonal variability. Historically reported acromial type variation has 

been described, noting an incidence of type I acromion that ranged from 3 to 43%, type II from 
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28 to 62.3% and type III from 2.1 to 69.5% (Wang and Shapiro 1997). Though the relationship 

between these morphological characteristics and rotator cuff pathology is generally agreed upon, 

the variability could contribute to other conflicting reports, such as the relationship between 

acromial type and age (Edelson 1995, Gill et al. 2002, Vahakari et al. 2010). Even among a 

young, healthy population, high variability in acromial morphology has been documented 

(Nicholson et al. 1996, Vahakari et al. 2010). 

Conflicting research describes the prevalence of different acromial types. It has been 

theorized that acromial types are not genetic variants, but rather develop over time. Projections 

or ‘bone spurs’ extending from the coracoacromial arch may develop due to ossification at the 

acromial insertion of the coracoacromial ligament (which extends from the acromion to the 

coracoid processes of the scapula) (Nicholson et al. 1996). These ossifications potentially cause 

the ‘hook’ in the acromion. This has implicated mechanistic causes, as tension on the 

coracoacromial ligament resulting from attempting to limit superior humeral head translation 

(particularly in the absence of healthy rotator cuff function) may lead to traction-type spurs 

(Nicholson et al. 1996).  

 Tissue Thickness and the Available Subacromial Space 

The vulnerable contents of the subacromial space include the supraspinatus tendon, the 

long head of the biceps tendon as well as the subacromial bursa. The subacromial bursa acts to 

allow smooth motion between the rotator cuff and the overlying acromion (Rockwood et al. 

2009). Inflammation of the tendons or bursa can create a reduction in the overall space thereby 

contributing to SAIS. Moreover, those with SAIS often have this tissue inflammation. Neer 

(1983) first described the three universally known stages of SAIS which are classified based on 

increasing tissue damage severity.  
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 Stage I impingement: edema and hemorrhaging (symptoms reversible)  

 Stage II impingement: fibrosis and tendinitis, as well as bursal thickening 

 Stage III impingement: rotator cuff tears, bicep ruptures, bone changes (i.e. spurs) 

Thus, this is a cascading problem, with subacromial space reduction causing the interposed 

tissues to become inflamed and this tissue inflammation further reducing the subacromial space 

ultimately resulting in tendon tears. 

 There are limited measurements of the relationship between the size of the subacromial 

space and the corresponding subacromial tissue thickness. However, even among healthy 

individuals, the tissues generally occupy approximately 50-75% of the space (Girometti et al. 

2006, Michener et al. 2013, Wang et al. 2005). Reported subacromial tissue thickness 

measurements vary extensively, with magnitudes of approximately 2.5-7mm reported in healthy 

individuals (Cholewinski et al. 2008, Girometti et al. 2006, Joensen et al. 2009, Leong et al. 

2012, Michener et al. 2013, Wang et al. 2005). The relationship between tissue thickness and 

injury remains inconclusive. Some suggest that increased tissue thickness is a sign of chronic 

tearing and SAIS onset (Joensen et al. 2009, Leong et al. 2012, Michener et al. 2013, Wang et al. 

2005), while others that impingement reduces the tissue thickness (Cholewinski et al. 2008). 

Recently, subacromial tissue thickness and the minimum subacromial space width have been 

measured ultrasonically in healthy participants and those with SAIS (Michener et al. 2013). 

Participants with SAIS had significantly greater supraspinatus tendon thickness (0.6mm) and 

occupation ratios (7.5%) (ratio of tissue thickness to minimum subacromial space width) 

compared to the healthy group. However, even among healthy participants, with their arms in a 

neutral posture, the tissues occupied over 50% of the space.  
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Therefore, although documenting the subacromial space width as a function of elevation 

angle and muscle debilitation is important in predicting SAIS risk, it is critical to consider the 

thickness of tissues residing within the space. The subacromial space reduces with humeral 

elevation in healthy individuals. Although the tissue volume conceivably remains constant 

during arm elevation, the tissue thickness interposed within the minimum subacromial space may 

change, which may either alleviate or exacerbate SAIS risk. 

2.6 Variability in Shoulder Mechanics and Musculoskeletal Geometry 

Each of the kinematic and morphological parameters discussed exhibit high interpersonal 

variability. All of these parameters exist on different measurement scales (millimeters and 

degrees) while influencing a final minimum subacromial space width that is less than 2cm 

(typically less than 1.5cm). Thus, large variability in any or all of these parameters has 

significant implications for SAIS risk (Dickerson et al. 2011). Two main types of variability 

contribute to the total variability present in these parameters: (1) innate variability (‘real’ 

variability), and (2) introduced variability (‘error-induced’ variability). The following sections 

describe the many factors that may contribute to each type. 

 Innate Variability 

The population variability present in these parameters is partly attributed to the innate or 

‘real’ kinematic and morphological differences that exist between humans in a given population. 

Internal geometry, independent of health status, varies substantially, even between those of 

similar age and the same gender. Differences exist due to variability in factors related to 

musculoskeletal geometry and differing responses to the same exposure. In research evaluating a 

specific population sub-group (i.e. those with rotator cuff injury or muscle fatigue), individual 

differences within that sub-group, such as location and severity of tear, or level of fatigue may 
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have a large effect on study variability (Yamaguchi et al. 2000). Further, whether subjects are 

given the identical hand load, or even if the load given is scaled to their strength, their level of 

fatigue and output response to that level of fatigue will vary in the population (Dickerson et al. 

2011). The importance of variability in injury assessment was highlighted in a study reporting 

that even subjects performing the same task under strictly controlled conditions demonstrated 

considerable inter- and intra-subject variability in responses (Mathiassen et al. 2003). In previous 

work evaluating fatigue-induced humeral head translation, mean humeral head position in pre- 

and post- fatigue states with the arm at neutral was -0.85mm and 0.01mm, respectively (Chopp et 

al. 2010). However, individual analysis demonstrated that the range of humeral head position for 

these two states was -3.10mm to 3.50mm and -3.10 to 2.60mm. Additionally, maximal upward 

excursion (from pre-fatigue to post-fatigue) was 4.60mm, while the mean only indicated modest 

upward translation magnitudes of less than 1mm. Many studies evaluating translation, scapular 

orientation and other measures have also discussed considerable inter-subject variability, stating 

that many subjects do not represent the mean (Ebaugh et al. 2005, Graichen et al. 1999a, 

Ludewig and Cook 2000, Ludewig et al. 2009, McClure et al. 2006, , Seitz and Michener 2011).  

This variability has implications that indicate that seemingly small mean differences may 

have large clinical importance. For example, while differences in scapular positions as small as 

4-5° have existed between experimental conditions (active and passive elevation) (Ebaugh et al. 

2005), this same magnitude of change previously distinguished healthy and impinged patients 

(Ludewig and Cook 2000). The clinical implications of these variable results have been 

considered by evaluating humeral head translation in the context of tissue thickness and 

allowable space (Chopp et al. 2010). Accordingly, less than 1mm of superior humeral head 

translation may influence SAIS risk. Thus, with certain members of the population experiencing 
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greater than 4mm of translation, it is critical to consider population distributions when 

interpreting SAIS risk. This is by extension potentially relevant to all of the contributing factors 

influencing the subacromial space size due to their similar levels of variance. 

 Introduced Variability  

A second contributor to the variability of reported values of these output parameters is 

error that is introduced by methodological errors or constraints. These sources of variability 

include: equipment constraints, methodological differences, modifications in measurement and 

processing techniques, as well as other human errors. Though equipment constraints are typically 

consistent within a well-controlled study, all others could introduce artificial inter-subject 

variability within a study, or could be the source of contrasting results across studies. Some 

common methodological discrepancies include: 

1. Scapular Plane Definition 

 30° anterior to the coronal plane as per Chen et al. 1999, Chopp et al. 2010, 

2011, Cote et al. 2009, Freedman and Munro 1966, Laudner et al. 2006, Ludewig 

et al. 1996, Teyhen et al. 2008  

 40° anterior to the coronal plane as per Borstad et al. 2009, Ludewig and Cook 

2000, Ludewig et al. 2009, Lukasiewicz et al. 1999, McClure et al. 2001, 

McClure et al. 2006 

 Range (30-45° or 40±10° anterior to the coronal plane) as per Ebaugh et al. 2005, 

Ebaugh et al. 2006, Poppen and Walker 1976 

2. Specific anatomical landmarks used for measurement (Langenderfer et al. 2009) 

3. Conventions used to calculate joint angles and describe motion  

 Most researchers have adhered to ISB recommendations (Wu et al. 2005) 
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4. Human/Experimental Error 

 Consistency in posture 

 Consistency in measurement protocol 

 Consistency in measurement technique (Seitz and Michener 2011) 

Processing discrepancies have often been addressed by testing the reliability of the measurement 

with the use of both intra- and inter- observer reliability techniques. The original experimenter 

performs the measurement multiple times to test their own reliability (intra-) and then compares 

those results to a secondary (ideally expert) measurer (inter-). 

Therefore, as each of the measures influencing the subacromial space width vary 

considerably due to both individual geometric differences and potentially introduced 

methodological errors there is a critical need, when capturing subacromial space geometry, to 

consider the distribution of output, rather than collapsing all data and concentrating on summary 

statistics that depend primarily on mean values. This also provides reinforcement for the 

recommendation to capture all measures simultaneously and assess the contents of the space in 

the context of the allowable space (occupation ratio); this will provide more confidence in the 

identification of those in the population that are at particular risk for SAIS development, while 

also establishing to a degree, the covariance of parameters.  
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2.7 Probabilistic (Stochastic) Modelling in Biomechanics and its application 

to Subacromial Impingement Prediction 

Two primary forms of analysis can be employed when modelling the behaviour of a 

system: deterministic and probabilistic5. While deterministic analysis calculates the output 

associated with a particular set of inputs, probabilistic analysis considers the randomness or 

uncertainty present in the inputs that elicit a distribution of output (Olofsson 2005). Deterministic 

analysis can be used in situations in which the uncertainty is small; however in biomechanics 

research, many variables of interest (such as subject geometry, kinematics, material properties, 

etc.) have documented high levels of variability that deterministic analysis cannot adequately 

capture (Choi et al. 2007, Laz and Browne 2010, Mavris and Bandte 1997). To incorporate this 

variability, the model inputs and/or parameters are modelled as random variables with a specified 

probability distribution; rather than as a single representative value (typically a population mean) 

that may not adequately represent the population being modelled. These input distributions 

produce a distribution of possible outputs, from which the probability of a particular event can be 

estimated (Laz and Browne 2010). 

Random variables can be characterized as discrete or continuous. A discrete random 

variable is one that can only equal a finite set of possible values (𝑥1, 𝑥2, … , 𝑥𝑁). Alternatively, a 

continuous random variable is one that can take on an infinite set of values, either restricted to a 

particular range (𝐴 ≤ 𝑥 ≤ 𝐵), or any real number (−∞ ≤ 𝑥 ≤ +∞) (Choi et al. 2007, Devore 

2008, Haldar and Mahadevan 2000). For this dissertation, each manipulated variable was 

represented by a continuous random variable as each measurement existed on a continuous 

                                                 
5 The terms: Probabilistic and Stochastic can be used interchangeably 
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measurement scale. Therefore, only functions and probabilistic methods pertaining to continuous 

random variables are described. 

 Randomness is incorporated into probabilistic analysis by representing random variables 

as distributions rather than a particular value (Laz and Browne 2010). A probability density 

function (PDF) is often used to describe individual distributions. A PDF is a mathematical 

function that describes the probability that different events will occur; with higher density 

representing more probable events and lower density (the tail regions) representing less probable 

events (Choi et al. 2007, Devore 2008, Haldar and Mahadevan 2000, Laz and Browne 2010). For 

example, the probability that a random variable, 𝑋, will take on a value between values 𝑎 and 

𝑏 is described by [Eq. 2-1]. A cumulative distribution function (CDF) is most often used in 

probabilistic analysis to calculate the probability that the random variable, 𝑋, will take on a value 

less than or equal to a specified value (x). A CDF is achieved by integrating all of the values in 

the PDF less than or equal to x [Eq. 2-2] (Figure 9) (Choi et al. 2007). As well, a CDF can 

similarly be used to calculate the probability that X will take on a value between two limits (i.e. a 

and b) [Eq. 2-3].  

𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
             [Eq. 2-1] 

𝐹𝑥(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥

−∞
              [Eq. 2-2] 

𝐹𝑥(𝑏) − 𝐹𝑥(𝑎) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

−∞
− ∫ 𝑓(𝑥)𝑑𝑥

𝑎

−∞
           [Eq. 2-3] 
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Figure 9. Probability density function (PDF) (left) and cumulative distribution function (CDF) 

(right) used to determine the probability of random variable x taking on a value of ≤ x1 (Figure 

adapted from Choi et al. 2007). 

 The following sections provide details regarding the different types of continuous 

distributions that a random variable can assume, and how they are represented mathematically.  

Specific probabilistic simulation techniques are also described, including Monte Carlo 

simulations and Most Probable Point techniques, such as First- and Second-order Reliability 

Methods and Mean/Advanced Mean Value Methods. Following this, the nature and 

interpretation of probabilistic output are discussed; this includes a discussion of the theory 

behind extracting importance factors.  

 Types of Continuous Distributions 

Random variables can be represented by distributions with varying characteristics and 

complexity. Each distribution type requires the definition of specific parameters which are then 

used in probabilistic simulation methods. Thus, an understanding of common distributions, 

including their mathematical representation, is essential to applying probabilistic methods. Three 
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common distributions are described in Table 4. The most common type of distribution used in 

science and engineering is the Normal (Gaussian) distribution. For many probabilistic analysis 

approaches, random variables (normally or non-normally distributed) are first transformed to 

standard normal variables, which have a normal distribution with a mean of 0 and a standard 

deviation of 1, denoted N(0,1). Given the standard normal cumulative distribution function 

(CDF), widely available tables, can then be used to calculate the probability that a particular 

event will occur (i.e. the probability that the output will be greater than or less than a specified 

value, or that it will be between two specified limits). 

Table 4. Types of continuous distribution functions: description, necessary parameters, and the 

probability density function (PDF) (Choi et al. 2007, Haldar and Mahadevan 2000). 

Distribution Description Parameters PDF 
Normal 

(Gaussian) 

 Bell-shape curve that 

is symmetric about the 

mean 

 Most common 

distribution in science 

and engineering 

Mean (𝜇) 

Standard Deviation (𝜎) 
𝑓𝑥(𝑥) =  

1

√2𝜋𝜎𝑥

𝑒𝑥𝑝 [−
1

2
(
𝑥 − 𝜇𝑥

𝜎𝑥

)
2

], 

 

−∞ < 𝑥 < +∞ 

Lognormal  Non-symmetric bell-

shape curve 

 Natural logarithm will 

be normally distributed 

 Used when variables 

cannot take on 

negative values 

𝜆𝑥 = 𝑙𝑛 𝜇𝑥 −
1

2
𝜁2

𝑥
 

𝜁𝑥 = √𝑙𝑛 [1 + (
𝜎𝑥

𝜇𝑥

)
2

] 

 

𝑓𝑥(𝑥) =  
1

√2𝜋ζ𝑥
𝑒𝑥𝑝 [−

1

2
(
𝑙𝑛𝑥 − 𝜆𝑥

𝜁𝑥

)
2

], 

 

0 < 𝑥 < +∞ 

Beta 

 

 Used when the 

variable is bound 

between two limits (𝑎 

and 𝑏) 

𝑎 = 𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 

𝑏 = 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 

𝜇 = 𝑎 +
𝑞

𝑞+𝑟
(𝑏 − 𝑎)  

𝜎2 =
𝑞𝑟

(𝑞 + 𝑟)2(𝑞 + 𝑟 + 1)
(𝑏

− 𝑎)2 

𝑓𝑥(𝑥) =
1

𝐵(𝑞, 𝑟)
 
(𝑥 − 𝑎)𝑞−1(𝑏 − 𝑥)𝑟−1

(𝑏 − 𝑎)𝑞+𝑟−1
,  

 

𝑎 ≤ 𝑥 ≤ 𝑏 

 

There are many other less common distributions that can be applied to random variables. 

These include more simplistic distributions, such as the Uniform, as well as more complicated 

including those in the Gamma family of distributions, such as Exponential and Chi-Square 



40 

 

distributions, in addition to one of the Extreme Value distributions, such as the Weibull 

distribution (Choi et al. 2007, Haldar and Mahadevan 2000). 

 Probabilistic Simulation  

The following sections describe different probabilistic simulation techniques commonly 

employed to evaluate the influence of variability in one or a number of model inputs and/or 

parameters on the corresponding output(s). Specifically, the Monte Carlo technique is described, 

followed by discussion of Most Probable Point techniques, such as First-order and Second-order 

Reliability Methods and Mean Value and Advanced Mean Value techniques. The research 

performed in this dissertation used both Monte Carlo and Advanced Mean Value simulation 

methods. Other methods are described to provide context for the development of the more 

advanced techniques. 

2.7.2.1 Monte Carlo Simulation 

A Monte Carlo simulation is an iterative process often considered the ‘gold standard’ of 

probabilistic techniques. In concept, given enough iterations, the Monte Carlo simulation will 

elicit a correct solution, which has been determined by evaluating the solution variation in the 

final iterations (i.e. final 10% of iterations) (Langenderfer et al. 2008, Reinbolt et al. 2007). 

However, the accuracy of this method depends on the number of iterations executed (Easley et 

al. 2007, Laz and Browne 2010). The underlying process of a Monte Carlo simulation involves 

performing many iterations of a deterministic function using combinations of values obtained 

through random number generation. The key components of a Monte Carlo simulation are: (1) 

random number generation for a specific distribution, and (2) repeated iterations, which are used 

to create the cumulative distribution function for a given random variable and/or determine the 

reliability of a function (Easley et al. 2007, Laz and Browne 2010, Mavris and Bandte 1997). 
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Though highly accurate, this method is very computationally extensive, which has led to the 

development of more computationally efficient techniques with comparable accuracy (Section 

2.7.2.2). However, Monte Carlo methods remain the gold standard which most researchers use to 

validate their simulations. An example describing the specific steps of the simulation is presented 

in Appendix 1. 

2.7.2.2 ‘Most Probable Point’ Reliability Methods 

Depending on the distribution of each of the random variables and the linearity of a given 

function, a number of reliability methods have been employed, most of which are based on a 

‘most probable point’ (MPP) technique. Compared to the continuous Monte Carlo method, MPP 

methods can be considered discrete. These methods do not construct an entire cumulative 

distribution function (CDF), but rather determine the z-values (output values) at particular 

probability levels (Langenderfer et al. 2008, Mavris and Bandte 1997). The process is then 

repeated over a number of iterations to construct the CDF, with additional iterations (probability 

levels) providing more detail to the CDF. These methods can be grouped into: First-Order 

Reliability Methods (FORM) and Second-Order Reliability Methods (SORM), which can 

evaluate linear and non-linear (second order) functions, respectively. Additionally, methods such 

as the Advanced Mean Value (AMV) method have been developed which are capable of 

evaluating more complex, higher order functions (Wu et al. 1990). The AMV method has been 

demonstrated to have comparable results to the Monte Carlo technique, while requiring far less 

computational strength (Laz and Browne 2010). For example, the number of trials performed 

using AMV is a function of the number of parameters modulated and the number of outputs ([# 

parameters + 1] * # outputs). However, for the Monte Carlo method, generally many thousands 

of trials (or iterations) must be performed to obtain an accurate solution (Laz and Browne 2010). 
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Computationally, this could be the difference between minutes/hours versus days/weeks of 

simulation time per subject and/or condition. 

Probabilistic methods have been used most often in risk-based design for structural 

reliability applications. For this purpose, researchers design a specific performance or “limit state 

function” that separates the design space into ‘safe’ and ‘unsafe’ regions, from which the 

probability of failure and the corresponding design criteria can be obtained (Haldar and 

Mahadevan 2000, Wu et al. 1990). A relatively simple technique designed to calculate this 

failure probability is the mean value first-order second moment method (MVFOSM); this is an 

early, basic FORM method. It is based on a first-order Taylor series approximation in that the 

function is linearized at the mean values of the random variables [Eq. 2-4] (Haldar and 

Mahadevan 2000).  

For a function, 𝑌 = 𝑔(𝑥1, 𝑥2, … , 𝑥𝑁), where 𝑥𝑖 is a set of uncorrelated random variables, 

and the mean and standard deviation of each variable are known, the function can be expanded in 

a Taylor series approximation about the mean values (𝜇𝑥𝑖
):  

𝑌 = 𝑔(𝜇𝑥𝑖
) + ∑ (𝑥𝑖 − 𝜇𝑥𝑖

)𝑛
𝑖=1

𝜕𝑔

𝜕𝑥𝑖
+

1

2
∑ (𝑥𝑖 − 𝜇𝑥𝑖

)2𝑛
𝑖=1

𝜕2𝑔

𝜕𝑥𝑖
2 + ⋯               [Eq. 2-4] 

     First-order terms              Second-order terms             

…+
1

𝑘
∑(𝑥𝑖 − 𝜇𝑥𝑖

)
𝑘

𝑛

𝑖=1

𝜕𝑘𝑔

𝜕𝑥𝑖
𝑘
 (𝑘 = 1,2, … , 𝑛) 

                                                                                     Higher-order terms 

Given [Eq. 2-4], please note the following: 

(1) For two correlated random variables 𝑥𝑖 and 𝑥𝑗, the second order (and higher order) 

terms can be replaced with: 
1

𝑘
∑ ∑ (𝑥𝑖 − 𝜇𝑥𝑖

) (𝑥𝑗 − 𝜇𝑥𝑗
)𝑛

𝑖=1
𝜕𝑘𝑔

𝜕𝑥𝑖𝑥𝑗

𝑛
𝑖=𝑗  
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(2) For most probable point methods, the Taylor series approximation occurs about the 

most probable point (𝑥𝑖
∗) rather than the mean value (𝜇𝑥𝑖

). 

(3) Including higher order terms will provide a better representation of a higher order 

function. However, for a relatively linear function, a first-order Taylor series 

approximation may be adequate.  

The MVFOSM is a relatively easy method to evaluate select cases, such as those in 

which all random variables are independent normal variables and the function is linear (Example 

2-1) or when all variables are independent lognormal variables, and the function is a 

multiplicative-type function. The most common example used to describe and compare 

probabilistic methods is the following (from Haldar and Mahadevan 2000): 

Example 2-1: Given the following limit state function: 

    𝑔 = 𝑅 − 𝑆               [Eq. 2-5] 

Where,  

R is the resistance of a cable, defined as a normal random variable with mean (𝜇𝑅) 120 

kip and standard deviation (𝜎𝑅) 18 kip. 

S is the load effect, defined as a normal random variable with mean (𝜇𝑆) 50 kip and 

standard deviation (𝜎𝑆) 12 kip. 

Assuming independent normal variables, the probability that the cable will break; that is, when R 

< S or g < 0, is given by the equation: 

    𝑝𝑓 = 𝜙(−𝛽) = 1 − 𝜙(𝛽)             [Eq. 2-6] 

Where,  

𝛽 is standard normal variate at the probability level 1 − 𝑝𝑓, where 𝑝𝑓 is the probability of 

failure. This is otherwise known as the reliability index, as a large magnitude of 𝛽 will indicate 

that the probability of failure (𝑝𝑓) (or risk of the cable breaking) is small. 𝛽 is calculated by: 
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    𝛽 =
𝜇𝑅𝑁

−𝜇𝑆𝑁

√𝜎𝑅𝑁
2+𝜎𝑆𝑁

2
               [Eq. 2-7] 

𝜇𝑅𝑁
 and 𝜇𝑆𝑁

 are the first order approximate means for R and S respectively, given by [Eq. 

2-8]. 

    𝜇𝑅𝑁
 ≈  𝜇𝑅  and  𝜇𝑆𝑁

 ≈  𝜇𝑆            [Eq. 2-8] 

𝜎𝑅𝑁
 and 𝜎𝑆𝑁

 are the first order approximate standard deviations for R and S respectively, 

given by [Eq. 2-9]. 

  𝜎𝑅𝑁  ≈  √((𝜎𝑅)(
𝜕𝑍

𝜕𝑅
))

2

  and   𝜎𝑆𝑁  ≈  √((𝜎𝑆)(
𝜕𝑍

𝜕𝑆
))

2 

         [Eq. 2-9] 

Therefore, the probability that the cable will fail (pf) can be calculated:  

𝑝𝑓 = 𝜙(−𝛽) = 1 − 𝜙 (
𝜇𝑅 − 𝜇𝑆

√𝜎𝑅𝑁
2 + 𝜎𝑆𝑁

2
) = 1 − 𝜙 (

120 − 50

√((18)(1))2 + ((12)(−1)2
) =  1 − 𝜙(3.24) = 0.00060  

Note: 𝜙(𝑥) is the cumulative distribution function of a standard normal distribution of x, and can 

be determined using widely available tables. 

It is not often the case that all variables will be normal and the limit state equation linear.  

As well, comparative calculations indicate that the reliability index (β) is sensitive to both the 

type of distribution (i.e. normal or lognormal), as well as the formulation of the limit state 

equation; that is, though [𝑅 − 𝑆 < 0] and  [
𝑅

𝑆
< 1] are mathematically equivalent, the calculated 

probability of failure from each equation is different (Haldar and Mahadevan 2000). For 

example, given the function [𝑅 − 𝑆 < 0], both R and S are treated as normally distributed 

random variables and the probability of failure is calculated with [Eq. 2-7] used to calculate 𝛽. 

However, given the function [
𝑅

𝑆
< 1], both R and S are treated as lognormal variables as they 

cannot take on negative values and 𝛽 is subsequently calculated using [Eq. 2-10]. 
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𝛽 =
𝜆𝑅−𝜆𝑆

√𝜁𝑅
2+ 𝜁𝑆

2
                     [Eq. 2-10] 

Where, 

𝜆𝑅 and 𝜁𝑅  are the lognormal parameters related to the mean and standard deviation of the 

random variable 𝑅 

𝜆𝑆 and 𝜁𝑆 are the lognormal parameters related to the mean and standard deviation of the 

random variable 𝑆 

 

 Due to the aforementioned difficulties of the MVFOSM method, the Hasofer-Lind 

Advanced First-Order Second Moment Method (AFOSM) was developed, which is the currently 

used FORM method in probabilistic analysis. Provided that the limit state function is linear and 

all of the random variables are normal, the reliability index calculated by the MVFOSM method 

and AFOSM method will be equal. These methods differ in that the AFOSM linearizes the 

function at the most probable point rather than at the mean value (as noted in [Eq. 2-4]). 

Additionally, the AFOSM method is better able to address non-linear state functions, using an 

iterative process to calculate the reliability. This iterative technique provides the basis for other 

‘most probable point’ methods (such as Advanced Mean Value) and thus, the steps in the 

technique, as described by Haldar and Mahadevan (2000), will be provided in detail (Table 5) to 

provide context for terminology used later in the document (primarily Chapters 3 and 6). 

 The most fundamental concept in this technique is the transformation of the random 

variables from the original coordinate system g(x) to standard normal space g(u) [Eq. 2-11] 

(Figure 10). In this transformed coordinate system, the reliability index (β) can be calculated as 

the minimum distance between the coordinate system origin and the limit state surface. Recall 

[Eq. 2-6] – it should be noted that a closer distance between the origin of the transformed 

coordinate system and the point on the limit state surface coincident with the minimum distance, 

𝑥𝑖
′∗, will be associated with a larger the probability of failure (Example 2-2); thus this point has 

been termed: the most probable point (MPP), indicating it is the most probable point of failure. 
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The MPP also coincides with the point of maximal density on the joint probability distribution 

function. 

    𝑥𝑖
′∗ =

𝑥𝑖
∗−𝜇𝑋𝑖

𝜎𝑋𝑖

 (𝑖 = 1,2, … , 𝑛)            [Eq. 2-11] 

Where,  

𝑥𝑖 corresponds to each normal random variable, i, in the original coordinate system, with 

corresponding mean (𝜇𝑋𝑖
) and standard deviation (𝜎𝑋𝑖

) 

𝑥𝑖
′ is the standard normal variable in the transformed coordinate system with zero mean 

and unit standard deviation 

 

 

Figure 10. Transformation of random variables into standard normal space in the process of 

calculating the Most Probable Point (MPP) (Figure obtained from NESSUS Theoretical Manual 

(Version 7.0, 2001) with permission from Southwest Research Institute).  
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Example 2-2: 

𝑝𝑓 = 𝜙(−𝛽) = 1 − 𝜙(𝛽)  

Case 1: β = 0.5 

Case 2: β = 2.0 

 

𝑝𝑓 = 1 − 𝜙(0.5) = 1 − 0.69 = 0.31  

𝑝𝑓 = 1 − 𝜙(2.0) = 1 − 0.98 = 0.02  

Therefore, with a smaller minimum distance to the limit state surface, the probability of failure is 

higher.  

  This concept of the most probable point (MPP) can also be applied to a non-linear state 

function, in which the minimum distance must be solved iteratively using an optimization 

algorithm. The steps provided in Table 5 outline this iterative process which aims to determine 

the reliability index (β) and the MPP (𝑥𝑖
∗). An example of this process using Example 2-1 is 

presented in Appendix 2. 

Table 5. Steps in the iterative ‘Advanced First-Order Second Moment’ probabilistic method 

used to calculate the reliability index (β) and the Most Probable Point (MPP). 

Step Description *Associated Equations 

1 Define the limit state equation * 

g(x) = 0 

2 Provide an initial assumption for 𝑥𝑖
∗, (i=1,2,...,n) 

Note: In most cases, the mean value (μ) of each 

random variable is used. Then, calculate the 

coordinates of each variable in the standard 

normal space (𝑥𝑖
′∗) using [Eq. 2-11] *. 

Recall [Eq. 2-11]: 

 

𝑥𝑖
′∗ =

𝑥𝑖
∗ − 𝜇𝑋𝑖

𝜎𝑋𝑖

 (𝑖 = 1,2, … , 𝑛) 

3 Evaluate the partial derivatives of each reduced 

variate * and then calculate 𝛼𝑖 
* 

𝜕𝑔

𝜕𝑥𝑖
′ = 

𝜕𝑔

𝜕𝑥𝑖

𝜎𝑥𝑖

𝑁 (𝑖 = 1,2,… , 𝑛) 

𝛼𝑖 =

(
𝜕𝑔
𝜕𝑋𝑖

′)
∗

 

√∑ (
𝜕𝑔
𝜕𝑋𝑖

′)
2∗

𝑛
𝑖=1

 (𝑖 = 1,2,… , 𝑛) 

Where, 

(
𝜕𝑔

𝜕𝑋𝑖
′)

∗

is the partial derivative of each reduced random variate (𝑥𝑖
′)  

𝜎𝑥𝑖

𝑁 is the equivalent standard deviation of the reduced random 

variate (𝑥𝑖
′) 

𝛼𝑖 is the unit normal vector at the MPP at the limit state surface. 
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4 Obtain the new value for the MPP ( 𝑥𝑖
′∗) in terms 

of β * 

 

Note: The directional cosines of the unit vector, 

𝛼𝑖, satisfy the rule 𝛼1
2 + 𝛼2

2 + ⋯𝛼𝑖
2 = 1; 

therefore each 𝛼𝑖
2 is a contributor to the 

probability, where a higher magnitude implies a 

greater contribution. This will be discussed 

further in Section 2.7.3.2. 

 𝑥𝑖
′∗ =  −𝛼𝑖𝛽 (𝑖 = 1,2,… , 𝑛) 

𝛽 = −

∑ 𝑥𝑖
′∗ (

𝜕𝑔
𝜕𝑥𝑖

′)
∗

𝑛
𝑖=1

√∑ (
𝜕𝑔
𝜕𝑥𝑖

′)
2

𝑛
𝑖=1

 

 

5 Algebraically, substitute the new  𝑥𝑖
′∗ into the 

reduced limit state equation g(x') = 0 and solve 

for β * 

 𝑥𝑖
′∗ =  −𝛼𝑖𝛽 (𝑖 = 1,2,… , 𝑛) 

 

6 Using the new β obtained in Step 5, re-calculate 

 𝑥𝑖
′∗ * 

 𝑥𝑖
′∗ =  −𝛼𝑖𝛽 (𝑖 = 1,2,… , 𝑛) 

7 Repeat STEPS 2-6 until the value of β converges 

to within a specified tolerance (0.001 is often 

used as a tolerance level). 

 

8 Once β converges, each random variable in the 

original coordinate system (design coordinates) 

can be calculated * 

𝑥𝑖
∗ =  𝜇𝑥𝑖

− 𝛼𝑖𝜎𝑥𝑖
𝛽 (𝑖 = 1,2,… , 𝑛) 

  

 The biggest limitation of this described method is its disregard for the distribution of the 

random variables; that is, it assumes each variable is normally distributed. If the variables are 

non-normal (i.e. lognormal), additional steps are required in the above process to transform the 

non-normal variables into equivalent normal variables. The Rackwitz-Fiessler method is a 

common transformation used in the literature to transform non-normal variables to normal 

variables (Haldar and Mahadevan 2000, Wu et al. 1990). An example of this transformation for a 

lognormal random variable is demonstrated in Appendix 2. There are different modifications to 

the previously described FORM methods to consider different distributions of random variables, 

but they generally follow the same technique and, therefore, a detailed description of each is not 

included in this document. The SORM method improves upon the FORM method, considering 

second order terms, which provides a better estimate of the reliability than FORM for non-linear 

functions. Additionally, the SORM method can incorporate the covariance between multiple 

normal or non-normal variables; re-examining [Eq. 2-4], it can be seen that FORM methods are 

unable to consider the correlated variables, unlike higher order approximations. Specific steps for 
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additional FORM methods in addition to the SORM method are presented in Haldar and 

Mahadevan (2000).  

 While the SORM method can address non-linear functions, it only considers first and 

second order terms and therefore may be inadequate for addressing more complex functions, 

particularly at the tail regions. The Advanced Mean Value (AMV) method is a first-order method 

which combines the earlier mean value methods with a MPP technique. AMV contains a 

correction term that reduces the truncation error caused by the Taylor series approximation, and 

is thus better able to evaluate more complex, highly non-linear functions (Wu et al. 1990). 

Given the function: 

    𝑍(𝑥) = 𝑍1(𝑥) + 𝐻(𝑥)           [Eq. 2-12] 

Where, 

𝑍1 represents the Taylor’s series first-order approximation at the mean values [Eq. 2-4]  

 𝐻(𝑥) represents higher order terms  

AMV provides an extension of this mean value method, in which the higher order terms, 𝐻(𝑥), 

are replaced by a function based on the linear approximation 𝐻(𝑍1) [Eq. 2-13]. 

    𝑍(𝑥) = 𝑍1(𝑥) + 𝐻(𝑍1)           [Eq. 2-13] 

The correction term of the AMV method, 𝐻(𝑍1), is the difference between the linear first order 

approximation (𝑍1 or ‘the mean value approximation’) and the 𝑍 calculated at the most probable 

point locus (which connects all of the most probable points for each of the z-values) of 𝑍1. In 

other words, it uses the MPP calculated by the linear approximation to iteratively compute a 

more accurate MPP that incorporates higher-order terms (Figure 11). 
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Figure 11. Advanced Mean Value (AMV) method where ZMV = Z1 (first order approximation) 

and ZAMV = H(ZMV) or H(Z1) (Figure obtained from NESSUS Theoretical Manual (Version 7.0, 

2001) with permission from Southwest Research Institute). 

The AMV method is more computationally efficient compared to other techniques, 

particularly the Monte Carlo method. Its ability to address highly complex, non-linear functions 

with this efficiency, while still providing similar results compared to Monte Carlo (‘gold 

standard’), makes it an advantageous probabilistic technique (Laz and Browne 2010, Wu et al. 

1990). Small differences of 1.84N and 0.42Nm for lower limb joint forces and moments 

(Langenderfer et al. 2008), 0.18° for upper limb kinematics and 4mm for anatomical landmark 

locations (Langenderfer et al. 2009) have been reported to exist between AMV and Monte Carlo 

methods.  

 Probabilistic Output 

2.7.3.1 Performance vs. Probability Levels 

NESSUS Probabilistic Analysis Software (SwRI, San Antonio, TX) is a tool that enables 

the user to conduct two forms of probabilistic analysis, depending on the output levels of 

interest: performance or probability. Performance levels are used most often in reliability 

problems, where the probability of a particular z-value (such as structural failure, 𝑃(𝑔 ≤ 0)), is 
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being evaluated. Alternatively, probability levels can be specified for which the particular z-

value associated with that level can be calculated. When specifying probability levels, multiple 

levels can be applied with more levels corresponding to a more detailed CDF. However, most 

often the 50% and end limits of a 1-99% confidence interval, are reported (Easley et al. 2007, 

Langenderfer et al. 2008, Pal et al. 2007).  

2.7.3.2 Importance Factors 

A unique feature of certain probabilistic methods is the ability to calculate importance 

factors. Given a function in which the output is influenced by variability of more than one 

random variable, importance factors can be calculated to determine which variable is more 

important in modulating the predicted output. Importance factors, otherwise known as relative 

sensitivity factors, can be calculated when ‘Most Probable Point’ (MPP) techniques are used; 

that is, for methods that require the transformation from normal to standard normal space (Figure 

10). 

The importance (sensitivity) factors, 𝛼𝑖, for each random variable (𝑖 = 1,2, … , 𝑛) 

describe their relative contribution to the performance output. Mathematically, the sensitivity 

factors are represented by [Eq. 2-14], in which 𝛼𝑖 describes the change in the reliability index (𝛽) 

with respect to the standard normal variable in the transformed coordinate system (𝑥𝑖
′) (Choi et 

al. 2007, Easley et al. 2007, Laz and Browne 2010). 

    𝛼𝑖 =
𝜕𝛽

𝜕𝑥𝑖
′ =

𝜕𝑝

𝜕𝑥𝑖
′

𝜕𝛽

𝜕𝑝
             [Eq. 2-14] 

Where,  

𝑝 is the specified probability level. 

Recall [Eq. 2-6], 

𝑝𝑓 = 𝜙(−𝛽) = 1 − 𝜙(𝛽)            
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And [Eq. 2-15] (Step 4, Table 5) used to calculate the new value for the MPP,  

 𝑥𝑖
′∗ = −𝛼𝑖𝛽 (𝑖 = 1,2, … , 𝑛)            [Eq. 2-15] 

As 𝛼𝑖 is related to the reliability index (𝛽) [Eq. 2-15] which describes the probability [Eq. 2-6], 

and since 𝛼𝑖 is the direction cosines at the MPP (𝑥𝑖
′) such that it follows the rule outlined in [Eq. 

2-16], the relative magnitudes of  𝛼𝑖
2 describe the relative contributions of each random variable 

(𝑖 = 1,2, … , 𝑛) to the output (Choi et al. 2007, NESSUS Theoretical Manual 2001). 

𝛼1
2 + 𝛼2

2 + ⋯𝛼𝑖
2 = 1            [Eq. 2-16] 

It is because the probabilistic analysis is being evaluated in standard normal space that 

variables with different units, distributions, and characteristics can be normalized (or non-

dimensionalized) and compared on the same scale to evaluate their relative contributions to the 

output. Therefore, calculation of these importance factors is a major advantage of using 

probabilistic methods such as Advanced Mean Value. Monte Carlo simulations can also measure 

the sensitivity of the output to the corresponding input variables, but do so by calculating 

correlation coefficients, which exhibit unreliability in highly non-linear functions (Laz and 

Browne 2010).  

This current research used probabilistic methods to evaluate the influence of model 

parameter variability on the predicted outputs. Specifically, the study discussed in Chapter 3 

used Advanced Mean Value simulations to quantify the sensitivity of predicted rotator cuff 

muscle forces to variability in muscle attachment locations and glenohumeral stability 

constraints. Similarly, using the empirical data measured in Chapters 4 and 5, the study 

discussed in Chapter 6 used both Advanced Mean Value and Monte Carlo simulation methods 

to examine the variability in subacromial space geometry resulting from kinematic and 

morphological differences. Using the Advanced Mean Value method, each of these studies 
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reported which of the several modelled parameters contributed more to modulating the output, 

which assisted both with output interpretation as well as ergonomic and clinical intervention 

recommendations. Thus, the concepts discussed in this review (Section 2.7) are briefly reiterated 

in these chapters in which probabilistic methods are employed to calculate cumulative 

distribution functions and importance factors (Chapters 3 and 6). Additionally, the 

definitions/descriptions of several terms related to probabilistic methods are provided Section B 

of the Glossary.    
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Chapter 3  

*Probabilistic evaluation of predicted force sensitivity to muscle 

attachment and glenohumeral stability uncertainty 

*Publication: Chopp-Hurley JN, Langenderfer JE, Dickerson CR. (2014). Probabilistic 

evaluation of predicted force sensitivity to muscle attachment and glenohumeral stability 

uncertainty. Annals of Biomedical Engineering, 42(9), 1867-79. 
– Reprinted with kind permission of Springer Science+Business Media 

Overview 

A major benefit of computational modelling in biomechanics research is its ability to 

estimate internal muscular demands given limited input information. However, several 

assumptions regarding model parameters and constraints may influence model outputs. This 

research evaluated the influence of model parameter variability, specifically muscle attachment 

locations and glenohumeral stability thresholds, on predicted rotator cuff muscle force during 

internal and external axial humeral rotation tasks. Additionally, relative sensitivity factors 

assessed which parameters were more contributory to output variability. Modest model 

parameter variation resulted in considerable variability in predicted force, with origin-insertion 

locations being particularly influential. Specifically, the scapula attachment site of the 

subscapularis muscle was important for modulating predicted force, with sensitivity factors 

ranging from α = 0.2 to 0.7 in a neutral position. The largest variability in predicted forces was 

present for the subscapularis muscle, with average differences of 33.0 ± 9.6% of normalized 

muscle force (1-99% CI), and a maximal difference of 51% in neutral exertions. Infraspinatus 

and supraspinatus muscles elicited maximal differences of 15.0% and 20.6%, respectively, 

between confidence limits. Overall, origin and insertion locations were most influential and thus 

incorporating geometric variation in the prediction of rotator cuff muscle forces may provide 

more representative population estimates. This research subsequently demonstrated the 
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implications of model parameter variation and the advantages of employing probabilistic 

modelling methods to estimate variation in biological tissue loads. 

3.1 Introduction 

Computational modelling has considerable utility for biomechanics research. Modelling 

allows the evaluation of tasks and scenarios that are either not feasible, too tedious or time 

consuming to evaluate experimentally, for modest financial cost (King et al. 1995). Despite these 

advantages, a fundamental criticism of the modelling process is the meticulousness of validation 

procedures to ensure model reliability and accurate representation of the modelled system 

(Lewandowski 1982). Biological tissues exhibit substantial variability within a human 

population, which complicates the validation further, and potentially undermines the adequacy of 

deterministic modelling approaches for biomechanics research. To incorporate this variability, 

probabilistic approaches can be employed. Model inputs and/or parameters are treated as random 

variables, with specified probability distributions, rather than as a single representative value 

(typically a population mean) that likely fails to fully characterize the population of interest. 

These input distributions subsequently produce a distribution of possible outputs, from which the 

probability of a particular event can be estimated (Laz and Browne 2010). 

 Rotator cuff muscle forces can be predicted as a relative measure of muscular demand 

between multiple simulated upper extremity tasks. Frequently, existing deterministic 

musculoskeletal upper extremity shoulder models use optimization-based inverse dynamics to 

estimate upper extremity muscle forces. These models have considerable utility for shoulder 

musculoskeletal disease prevention, allowing assessment of various scenarios (Dickerson et al. 

2008, Hogfors et al. 1991). Excessive muscular demands can produce fatigue and exhaustion 
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which can subsequently lead to numerous pathologies, notably subacromial impingement 

syndrome (Michener et al. 2003, Phadke et al. 2009).  

The sensitivity of predicted force to the modelled location of muscle attachment sites and 

other geometric model parameters has been evaluated both deterministically and 

probabilistically, with contrasting results in the literature. Hogfors et al. (1995) determined that 

small perturbations of model parameters did not elicit a large change in output response, while 

Raikova and Prilutsky (2001) reported that predicted muscle forces in the leg were highly 

sensitive to changes in muscle moment arms and physiological cross-sectional area. Further, 

modest variability can propagate to large errors in predicted force (Delp and Maloney 1993, 

Dickerson et al. 2008). Hughes and An (1997) used a probabilistic approach to assess the 

influence of rotator cuff and deltoid moment arms on predicted muscle force in an optimization-

based planar model of the glenohumeral joint based on data obtained from cadaveric specimens. 

This research supported the usefulness of probabilistic techniques to examine variability in 

muscle force predictions as average muscle forces were in the middle of the 95% confidence 

interval for predictions obtained using Monte Carlo simulations. Pal et al. (2007) also used a 

probabilistic approach to evaluate the sensitivity of model predicted moment arms in the lower 

limb to variability in kinematic parameters as well as muscle attachment locations specifically 

and determined that small perturbations resulted in substantial variation in predicted magnitudes. 

 A glenohumeral stability constraint is necessary for biomechanical shoulder models to 

ensure that the glenohumeral joint contact force does not exceed dislocation tolerances. Lippitt 

and Matsen (1993) documented glenohumeral stability thresholds based on their cadaveric study 

in which compressive loads were applied to the humeral head, normal to the glenoid cavity, 

following which tangential forces were increasingly applied in the superior-inferior, anterior-
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posterior and intermediate directions until dislocation occurred. These dislocation forces have 

since been used as constraints in shoulder models, in which a certain percentage of this maximal 

force is used to constrain the joint (Dickerson et al. 2007). Research has demonstrated that 

variation in this constraint can substantially influence predicted muscle forces, with a more 

restrictive dislocation force ratio (i.e. 0.2) increasing the predicted forces.   

Evaluating the influence of variability in each of these parameters on rotator cuff muscle 

force predictions is critical in ensuring the tissues are being modelled appropriately. While there 

are many parameters that can be considered, muscle attachment sites and glenohumeral 

dislocation thresholds were selected based on their previously demonstrated importance in both 

probabilistic and deterministic modelling research, respectively. Determining whether model 

parameter variability, independent of the variability present in the model inputs (force, posture, 

etc.), influences muscle force predictions will inform whether both inputs and model parameters 

related to subject geometry should be treated stochastically.   

Primary Research Objectives: 

1. To determine the sensitivity of model predicted rotator cuff muscle forces to variability in 

model parameters, specifically (1) rotator cuff origin and insertion locations and (2) 

glenohumeral stability thresholds and ratios, using probabilistic methods. 

2. To determine whether certain parameters, or sub-parameters (i.e. the origin of a particular 

muscle) were more important in predicting variation in muscle forces. 

3. To evaluate the influence of anthropometrics on the variability of predicted force. 

Secondary Research Objectives: 

1. Apply probabilistic modelling techniques, specifically Advanced Mean Value (AMV) 

and Monte Carlo methods, using NESSUS Probabilistic Analysis Software, to a 
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simplified application as a precursor to developing a large-scale population subacromial 

geometry model (Chapter 6).  

2. To provide a preliminary step towards the larger goal of predicting subacromial 

impingement risk over a variety of tasks with varying levels of muscular demand. 

Research Hypotheses: 

It was hypothesized that variation in both muscle attachment sites and glenohumeral stability 

thresholds, regardless of anthropometrics, would elicit high variation in model predicted muscle 

forces; indicating the need to consider variation in these musculoskeletal geometric parameters in 

research using biomechanical shoulder models to predict internal muscular demands. 

3.2 Methods 

This research consisted of four sequential components: (1) postural data construction, (2) 

Shoulder Loading Analysis Modules (SLAM) deterministic model, (3) model parameter 

selection and acquired distributions, (4) probabilistic model development, execution, and 

assessment (Figure 12).  
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Figure 12. Methodological outline: Postural and anthropometric data [created using 3D SSPP 

(University of Michigan, Ann Arbor, MI)] and external hand forces [applied within the SLAM 

upper extremity deterministic model (Dickerson et al. 2007)] were used as input into the SLAM 

upper extremity model from which a distribution of rotator cuff muscle forces were predicted 

from probabilistic analysis [using NESSUS Probabilistic Analysis Software (SwRI, San Antonio, 

TX)], to consider variability in rotator cuff moment arms and glenohumeral stability 

thresholds/ratio. 

 Postural Data Construction 

 The three-dimensional static strength prediction program (3D SSPP) (University of 

Michigan, Ann Arbor, MI) was employed to place two subjects (5th percentile female and 95th 

percentile male) in two postures (0° and 45° of humeral abduction, both with 90° of elbow 

flexion) by modifying the body segment angles of the right arm, following which upper 
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extremity joint center locations were extracted. In these postures, internal and external rotation 

forces were applied at the hand, which would subsequently target the rotator cuff muscles. 

 SLAM Model Description and Manipulation 

The SLAM Model is an inverse upper extremity model that uses joint center locations, 

anthropometric data, and external hand forces to predict internal muscular demands using 

optimization to minimize the sum of cubed muscle stresses (Dickerson et al. 2007). The model 

consists of three modules: a musculoskeletal geometry model of the shoulder bones and muscles, 

an external dynamic torque model and an internal muscle force model. The geometry model 

consists of five segments (scapula, clavicle, humerus, torso and combined radial/ulnar forearm 

link) and 23 muscles modelled as multiple (38) components. Each muscle is modelled as a line 

connecting the two muscle attachments which are computed as a percentage of segment length 

(Dickerson et al. 2007, Makhsous 1999). Due to the inadequacy of a straight line-of-action to 

represent the rotator cuff muscles, a spherical wrapping technique was employed to provide a 

better physiological representation of the muscles’ path from the medial aspect scapula, around 

the humeral head to their attachment points on the proximal humerus (Dickerson 2005, 

Makhsous 1999, van der Helm 1994). Additionally, to adequately represent varying arm posture, 

the relationship between the positions of the scapula, humerus, clavicle and torso were 

maintained by an established shoulder rhythm which is based on a consistent relationship 

between the humerus and torso (Dickerson 2005, Hogfors et al. 1991, Karlsson and Peterson 

1992, Makhsous 1999). Anthropometric data was varied in the model using the regression 

equations reported by Zatsiorsky and Seluyanov (1993), while joint center and center of mass 

locations of each segment were calculated using methods described by Nussbaum and Zhang 

(2000) and Clauser et al. (1969). The external dynamic torque module of this model used an 
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inverse dynamics approach to calculate the static and dynamic joint forces and moments given a 

certain external hand force and posture. Lastly, the internal muscle force model used both the 

geometry and external torque models to predict muscle forces using an optimization approach. 

SLAM also included a number of constraints to ensure physiological realism. Of particular 

relevance to the current study was the novel glenohumeral contact force constraint that used the 

empirical direction-specific joint dislocation force ratio thresholds measured by Lippitt and 

Matsen (1993).  

SLAM was used to predict rotator cuff muscle forces. Two hand force magnitudes (40N, 

60N) were applied to the center of the hand with the model positioned according to the 3D SSPP 

postural data previously obtained to generate internal and external axial rotation moment 

demands. Muscle force magnitudes were presented as a percentage of the respective maximal 

producing capability. This normalization allowed comparisons between subjects as well as 

exertion types (Dickerson et al. 2008). Maximal force bounds for each muscle were calculated 

based on the individual physiological cross sectional area (PCSA) and a constant specific tension 

of 87.9 N/cm2 obtained from cadaveric specimens (Dickerson et al. 2007, Makhsous 1999). This 

model has demonstrably correlated well with empirical musculoskeletal geometry and muscle 

activity data (Dickerson et al. 2008, Gatti et al. 2007). 

 Model Parameter Selection and Acquired Distributions 

Within SLAM, numerous parameters are defined based on literature datasets. This is 

similar to other approaches that used living and cadaveric datasets (Dul 1988, Hogfors et al. 

1987, 1991, 1995, Karlsson and Peterson 1992, Lippitt and Matsen 1993, Makhsous 1999). In 

this study, two parameters were evaluated probabilistically: (1) rotator cuff muscle attachment 

sites and (2) glenohumeral stability thresholds/ratios. The sensitivities of these two parameters 
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were assessed in terms of their influence on rotator cuff muscle force predictions for each task 

evaluated. 

3.2.3.1 Rotator Cuff Muscle Attachment Sites 

Three-dimensional coordinates of the humeral and scapular rotator cuff attachment sites 

were systematically altered. The supraspinatus and teres minor were represented as having a 

single muscle line of action, while the infraspinatus and subscapularis were divided into two 

(upper and lower) and three (upper, middle and lower) portions, respectively with different 

humeral insertion locations. Hogfors et al. (1987) measured origin and insertion locations for 

three subjects, where coordinates were given as a proportion of segment length from individual 

segment coordinate systems (Makhsous 1999). The mean and corresponding standard deviation 

of each coordinate, for each muscle, was used to create the normal distribution (Table 6).  

Table 6. Mean and standard deviations used as input for muscle attachment model parameters. 

Values represent the [x y z] coordinates of the humeral and scapular attachment points of each of 

the rotator cuff muscles given as percentage of bone length (Hogfors et al. 1987, Makhsous 

1999). Coordinates with negative means are highlighted. 

Attachment 

Site 
Muscle 

Mean Standard Deviation 

X Y z x y z 
Humerus Infraspinatus (Upper) -0.018 -0.025 0.094 0.012 0.013 0.013 

Infraspinatus (Lower) -0.018 -0.025 0.094 0.012 0.013 0.013 

Subscapularis (Upper) 0.012 0.085 0.011 0.003 0.008 0.004 

Subscapularis (Middle) 0.012 0.085 0.011 0.003 0.008 0.004 

Subscapularis (Lower) 0.012 0.085 0.011 0.003 0.008 0.004 

Supraspinatus -0.042 0.031 0.079 0.004 0.011 0.008 

Teres Minor 0.039 -0.045 0.037 0.006 0.008 0.019 

Scapula Infraspinatus (Upper) 0.607 0.240 -0.106 0.057 0.008 0.024 

Infraspinatus (Lower) 0.760 0.115 -0.069 0.025 0.028 0.031 

Subscapularis (Upper) 0.523 0.307 -0.137 0.049 0.013 0.019 

Subscapularis (Middle) 0.668 0.164 -0.108 0.046 0.036 0.012 

Subscapularis (Lower) 0.763 0.069 -0.064 0.030 0.023 0.030 

Supraspinatus 0.305 0.348 -0.112 0.056 0.023 0.019 

Teres Minor 0.600 -0.049 -0.024 0.042 0.017 0.016 
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3.2.3.2 Glenohumeral Stability Constraint 

The glenohumeral stability ratio and glenohumeral maximal dislocation force thresholds 

were varied stochastically to evaluate their influence on rotator cuff muscle force predictions. 

The glenohumeral stability ratio constrains the translational force to a certain percentage of that 

required to dislocate the joint. Thus, similar to muscle attachment manipulations, a normal 

distribution was applied to this coefficient assuming a mean of 0.7 and standard deviation of 0.1 

(Table 7). As there is limited information regarding physiologic statistics for this coefficient, the 

multi-directional maximal dislocation thresholds were also treated as normal random variables to 

determine their influence on the predicted rotator cuff muscle force (Table 7). 

Table 7. Mean and standard deviations used as input for glenohumeral stability model 

parameters. On-axis forces obtained from Lippitt and Matsen (1993), off-axis forces extrapolated 

from on-axis forces, stability ratio obtained from Dickerson et al. (2007). All maximum 

translating forces are assuming a 100 Newton glenohumeral compressive load scenario. 

Direction 
Maximum Translating Force (N) 

Mean Standard Deviation 
Superior (0°) 51.0 9.0 

Off-axis (45°) 32.9 6.4 

Anterior (90°) 29 5.0 

Off-axis (135°) 39.7 7.7 

Inferior (180°) 56.0 12.0 

Off-axis (225°) 43.9 22.5 

Posterior (270°) 30.0 12.0 

Off-axis (315°) 35.2 13.1 

Stability Ratio 0.7 0.1 

 Probabilistic Model Development 

The probabilistic model was constructed in NESSUS Probabilistic Analysis Software 

(SwRI, San Antonio, TX). This software acts to interface with other mathematical software, such 

as Matlab®, to consider random variables as particular distributions and then apply probabilistic 

analysis methods to determine the output distribution. 
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This study had 51 random variables that were treated normally using the mean and 

standard deviations previously described. The muscle attachment parameters constituted 42 of 

the random variables (7 muscles [rotator cuff portions] x 2 locations [origin and insertion] x 3 

coordinates [x y z]) while the stability parameters comprised 9 of the random variables (8 

direction-specific thresholds [superior, inferior, anterior, posterior, + 4 intermediate] + 1 stability 

coefficient) (Table 8). The Advanced Mean Value (AMV) probabilistic simulation method was 

used due to its computational efficiency and excellent agreement with Monte Carlo methods 

(Easley et al. 2007, Langenderfer et al. 2009). AMV achieves efficiency by combining reliability 

techniques with optimization to determine the most probable point (MPP), which is the 

combination of parameter values predicting performance at the specified probability level (Wu et 

al. 1990). The AMV method first transforms the original variables, which can have any 

distribution type, into independent normal variables, then uses optimization to locate the MPP, 

and lastly computes the performance value at the desired probability level. 

Table 8. Example of 2 out of the 51 random variables defined by the muscle, location and 

coordinate.  

Random Variable Muscle Location Coordinate 

Infra1_o_x Infraspinatus – Upper 

Portion 

Origin x-coordinate 

Subscap2_i_z Subscapularis – 

Middle Portion 

Insertion z-coordinate 

 

These random variables were defined in two separate sub-programs within the SLAM 

model, programmed in Matlab® (Mathworks®, Natick, MA). The location of these variables 

were mapped within NESSUS, ensuring that the input and output format include the maximum 

plausible ranges of each of the variables. Following correct mapping between programs, 
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NESSUS enabled the user to select one of many different possible probabilistic analysis 

methods. The Advanced Mean Value (AMV) probabilistic simulation method was used due to its 

computational efficiency and excellent agreement with Monte Carlo methods (Easley et al. 2007, 

Langenderfer et al. 2009). 

Each of the 16 exertions (8 exertions x 2 subjects) were evaluated using AMV to 

determine the distribution of predicted muscle forces for each of the seven rotator cuff muscle 

portions given the variability in the 51 modified model parameters. Thus, 364 trials were 

simulated for each of the 16 exertions (total of 5824 simulations).  

3.2.4.1 Validation 

Two different validation techniques were employed to ensure accuracy in the resulting 

force predictions. First, for a subset of five exertions, a Monte Carlo probabilistic approach with 

2500 iterations was performed to compare the accuracy of the AMV method outputs. Secondly, 

for a different subset of five exertions, the distribution type of all variables with a positive 

population mean (Table 6) was changed to lognormal to determine the robustness of the 

simulation results to the assumed distribution. 

3.3 Data Analysis 

Using the techniques described, a distribution of predicted rotator cuff muscle forces 

(normalized to their maximal capability) over a 1 to 99% confidence interval was calculated for 

each exertion. This interval corresponds to ±3 standard deviations. A total of 56 confidence 

intervals were thus calculated per subject (8 exertions x 7 muscle force predictions). 

Additionally, as the AMV method required a transformation of each of the random variables 

from their original variables to standard normal space, the parameters were non-dimensionalized 

and their relative influence on the resulting output was obtained. Therefore, relative sensitivity 
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factors (α) [Eq.3-1] were calculated in order to determine which parameters were more important 

in predicting the variability in muscle force (Haldar and Mahadevan 2000, NESSUS 2001). 

𝛼𝑖 =
𝜇𝑖

∗

𝛽
                             [Eq. 3-1] 

Where,  

𝛼𝑖 is the unit normal vector at the most probable point (MPP) at the limit state surface.  

 

𝛽 is the reliability index, calculated as the minimum distance between the coordinate 

system origin and the limit state surface. 

 

𝜇𝑖
∗ is the MPP or point on the limit state surface corresponding to 𝛽. This point also 

coincides with the point of maximal density on the joint probability distribution function. 

 

Note: The directional cosines of the unit vector, 𝛼𝑖, satisfy the rule 𝛼1
2 + 𝛼2

2 + ⋯𝛼𝑖
2 = 1; therefore 

each 𝛼𝑖
2 is a relative contributor to the probability, where higher magnitude implies a greater 

contribution to output variability.  

3.4 Results 

Probabilistic analysis demonstrated that modest variation in model parameters resulted in 

a high level of variability in muscle force predictions across exertions, particularly for the 

subscapularis muscle. This variability in muscle force was mainly attributed to variability in the 

humeral and scapular rotator cuff muscular attachment sites. For internal rotation exertions, of 

the rotator cuff musculature, solely subscapularis muscle force was predicted. Alternatively, for 

external rotation exertions, whereby the hand force was applied by the dorsal surface of the hand, 

infraspinatus and supraspinatus muscle force was predicted. Teres minor muscle force was not 

predicted for either type of exertion. 
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 Internal Rotation Exertions: Subscapularis force prediction 

 The magnitude of predicted force for the subscapularis muscle components differed 

considerably depending on arm posture. Generally, results showed that the upper portion of the 

subscapularis was more active when the humerothoracic angle was neutral (0°), while the lower 

portion was active when the arm was abducted to the 45° posture (Figure 13). However, 

compared to the abducted exertions, internal rotation with the arm at neutral showed on average 

twice the magnitude of predicted force, with predicted force magnitudes reaching their maximal 

bounds (100%) for the 60N hand force exertion. Further, as expected, the 5th percentile female 

overall demonstrated higher predicted normalized force for each of the exertions compared to the 

males for the subscapularis muscle. 

 Predicted subscapularis muscle force demonstrated high variability as a result of model 

parameter variation for both simulated subjects. Depending on the particular exertion, muscle 

component and subject, the subscapularis muscle demonstrated a 10 to 540% increase in 

predicted force as a result of model parameter variation between end ranges of the population, as 

calculated by the percent change between lower (1%) and upper (99%) confidence limits. This 

variability was notably larger for the neutral arm posture, showing 10 to 16 times the variability 

for middle and upper portions of the subscapularis, compared to the abducted posture. Variability 

was similar for both anthropometries, with the female demonstrating slightly greater sensitivity 

to the model parameter variability. The mean difference between upper and lower confidence 

limits was calculated to be 33.0 ± 9.6% and 6.7 ± 5.0% for neutral and abducted arm postures 

respectively, with the greatest variability exhibited by the 5th percentile female in the 60N hand 

force internal rotation task with the arm in a neutral posture (Figure 13). For this exertion, the 

lower extreme (1% confidence limit) demonstrated no muscle force produced for this exertion 
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for the lower portion of the subscapularis, while for the upper extreme (99% confidence limit) 

for the same 5th percentile female subject, this same muscle component produced 51% of their 

maximal capability. 

 

Figure 13. Predicted muscle force (% of Maximum Producing Capability) for the subscapularis 

muscle through different internal rotation exertions (humeral abduction angle by hand force 

magnitude) while varying muscle attachment sites and glenohumeral stability properties. Bars 

represent a 50% probability with the error bars signifying the 1-99% confidence intervals. 

Results provided for both a 5th percentile female and a 95th percentile male. 
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 External Rotation Exertions: Infraspinatus and Supraspinatus force 

prediction 

Despite exhibiting comparable variability (percent change between lower and upper 

confidence limits) to the subscapularis muscle, the infraspinatus and supraspinatus muscles 

produced less force during exertions in which they were active (external rotation tasks). 

Resulting cumulative distribution functions for these muscles demonstrated a 50% confidence 

level of 24.0 ± 8.0% and 15.8 ± 6.5% of their maximal capabilities respectively for the 5th 

percentile female and 28.1 ± 9.8% and 16.2 ± 5.7% respectively for the 95th percentile male, 

across exertion postures and hand force magnitudes (Figure 14). Unlike the response of the 

subscapularis muscle during internal rotation tasks, predicted force for the infraspinatus and 

supraspinatus muscles did not differ markedly with altered arm posture (neutral versus abducted 

to 45°). Greater hand force requirements (60N versus 40N) demanded an approximate force 

increase of 30% from both infraspinatus and supraspinatus muscles. 

Across all exertions and between subjects, the variability in predicted force for both 

infraspinatus components remained somewhat uniform. Differences between upper and lower 

confidence limits demonstrated a mean of 9.9 ± 3.2% between exertions for the infraspinatus, 

while showing slightly larger variability with larger hand force demands (Figure 14). 

Alternatively, for the supraspinatus muscle, the variability was much greater in the elevated 

posture compared to the neutral posture, with the average difference between upper and lower 

confidence limits for the abducted exertions demonstrated to be double that of neutral exertions. 

However, compared to the variability in predicted subscapularis force during internal rotation 

exertions, variability in the infraspinatus and supraspinatus muscles remained somewhat lower 

with peak differences between confidence limits shown to be 15.0% and 20.6%, respectively. 
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Figure 14. Predicted muscle force (% of Maximum Producing Capability) for the infraspinatus 

and supraspinatus muscles through different external rotation exertions (humeral abduction angle 

by hand force magnitude) while varying muscle attachment sites and glenohumeral stability 

properties. Bars represent a 50% probability with the error bars signifying the 1-99% confidence 

intervals. Results provided for both a 5th percentile female and a 95th percentile male.  

 Importance Factors 

 With the AMV probabilistic approach involving a transformation of each random 

variable into standard normal space, these model parameters with different units and potentially 
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predicted output. Results demonstrated that across exertions, subjects and muscles components, 

uncertainty in muscle attachment sites was generally far more important in predicting muscle 

force variability than glenohumeral stability constraints.  

 For the internal rotation tasks, the sensitivity of subscapularis muscle force 

predominantly relied on the attachment sites of the middle portion of the subscapularis. While 

each attachment site showed larger relative importance (α>0.2) than those of other muscles and 

glenohumeral stability constraints, there were particular coordinates that were more influential in 

contributing to force variability. Specifically, for exertions at a neutral arm posture, the y-

coordinate (medial-lateral axis) of scapular insertion (muscle origin) of the subscapularis (middle 

portion) had a higher relative sensitivity for predicting the force for all three muscular 

components with sensitivity factors ranging from α = 0.5 to 0.7 (Figure 15).  
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Figure 15. Importance factors (α) of muscle attachment sites for the prediction of (A) average 

subscapularis muscle force (between muscle components) during internal rotation tasks, and (B) 

average infraspinatus muscle force and supraspinatus force during external rotation tasks. Results 

show the 0° and 45° arm posture for a 60N exertion performed by a simulated 95th percentile 

male. Coordinate description for muscle attachment sites: hum,X = proximal-distal, hum,Y = 
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anterior-posterior, hum,Z = medial-lateral, scap,X = superior-inferior, scap,Y = medial-lateral, 

scapZ = anterior-posterior. 

 For the external rotation tasks, the specificity of importance factors was less pronounced, 

with many of the muscle attachment parameters related to the infraspinatus and supraspinatus 

demonstrating sensitivity levels between α = 0.20 and 0.50 and limited consistency of those 

factors exhibiting higher contributions (Figure 15). The trend in importance was generally 

similar to the internal rotation tasks in that the muscle attachment sites of the infraspinatus 

influenced infraspinatus force variability and supraspinatus attachments influenced supraspinatus 

force variability. For both muscles, the trend tended to show higher importance for humeral 

attachment sites of these muscles, rather than scapular.  

 While muscle attachment sites were generally more influential for modulating predicted 

rotator cuff force than glenohumeral stability constraints, the inferior stability threshold was 

important during both internal and external rotation when the arm was elevated. Notably, for 

external rotation tasks, forces for the lower portion of the infraspinatus were highly influenced 

by the inferior constraint, with α-levels greater than 0.45. This infraspinatus component was 

similarly influenced by the overall stability ratio (α = 0.3 to 0.4). For internal rotation tasks, the 

forces of all three portions of the subscapularis were influenced by the inferior stability 

constraint (α-levels ~ 0.2 to 0.4).  

 Validation: Simulation Techniques and Distribution Effects 

 Validation procedures provided confidence in both probabilistic approach and the 

normality assumption. The AMV probabilistic approach was in good agreement with the Monte 

Carlo approach with mean differences between techniques for the 1 to 99% confidence interval 

of 1.5 ± 1.5% of maximal force capacity (Figure 16). As well, overall, the mean difference 
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between the two distributions (normal and lognormal) for the 1 to 99% confidence interval was 

2.1 ± 2.7%. The largest discrepancies were for the subscapularis predictions at the tail regions, 

particularly the middle portion. Alternatively, for the infraspinatus (upper and lower portions) 

and the supraspinatus muscles, differences between distribution types was less than 1% of their 

total capability for each of the external rotation exertions where force was predicted (Figure 16). 
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Figure 16. Cumulative distribution function (CDF) representing a 1-99% confidence interval for 

the Infraspinatus (upper) (top, left), Infraspinatus (lower) (top, right), and Supraspinatus (bottom) 

muscles for an exertion in which both validation techniques were evaluated: AMV Normal [solid 

line] versus Monte Carlo Normal [dashed line] versus AMV Lognormal (AMV) [dot-dash line] 

treated random variables were evaluated. Exertion Description: Abduction (45°), Force direction 

(external rotation), Force magnitude (40N) for 5th percentile female subject. 
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3.5 Discussion 

 This research evaluated the influence of model parameter variability on predicted rotator 

cuff muscle forces. Modest variation in model parameters resulted in a high level of variability in 

muscle force predictions illustrating the necessity for incorporating model parameter variability 

in upper extremity musculoskeletal models.  

 Relative contributions of model parameters to muscle force variability 

While both of the modulated parameters related to aspects of musculoskeletal geometry, 

their influence on force variability differed. The AMV probabilistic method indicated that 

muscle attachment coordinate variability was more influential in predicting muscle force 

variability than uncertainty related to glenohumeral stability thresholds (Figure 15). The trend of 

higher importance for humeral rather than scapular insertions for the supraspinatus and 

infraspinatus muscles is supported in research by Murray et al. (2002) who concluded that peak 

moment arms scale to the shortest distance between the axis of rotation and muscle attachment 

location. Extending this concept to the rotator cuff muscles, with the axis of rotation of the 

glenohumeral joint being the geometric center of the humeral head, it is intuitive that the shortest 

distance, and thus more significant parameter, would be the muscle attachment on the humerus. 

Similarly, in an effort to normalize muscle moment arms between measured cadaveric 

specimens, a scaling factor considering the radius of the humeral head has been used, further 

reinforcing the relative importance of the humerus (Kuechle et al. 1997, 2000). While the 

relative predicted force magnitude and corresponding variability remained somewhat uniform 

across external exertion types (Figure 14), internal rotation tasks produced notably different 

trends. Predicted force levels were consistently lower for the 40N exertions compared to the 60N 

exertions, however, for those exertions with the arm at neutral, greater force was predicted for 
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the subscapularis, with a reverse trend in the magnitude of force predicted for individual muscle 

components compared to exertions in an abducted posture (Figure 13). That is, for the neutral 

exertions, larger relative force was predicted for the upper portion of the subscapularis, followed 

by middle and lower, while for abducted exertions, larger relative force was predicted for the 

lower portion, followed by middle and upper. Overall, the predicted force for the subscapularis 

muscle was larger with the arm at neutral with considerably more variability, compared to in an 

abducted posture. There are several possible hypotheses for this trend. With the arm abducted, it 

is possible that several surrounding synergistic muscles are better positioned to contribute to the 

moment, or alternatively, that there are less antagonistic muscles producing competing moments 

that require much larger subscapularis force to counteract. It is also possible that differences in 

elicited force for each muscle compartment could be related to changes in their muscle moment 

arms, however more research is required to substantiate these hypotheses. 

Variability in the predicted force across muscles and postures in particular cannot be 

solely attributed to variability in muscle attachment sites. While the origin and insertion locations 

overall showed considerably more importance for modulating predicted rotator cuff force than 

glenohumeral stability constraints, there were exceptions to this trend. Specifically, the inferior 

glenohumeral stability threshold, demonstrated high importance for both infraspinatus (α>0.45) 

and subscapularis (α = 0.2 to 0.4) muscle force predictions. The selective importance of the 

inferior stability constraint may be the consequence of the inferiorly directed lines of action of 

both the subscapularis and infraspinatus muscles. Given that these muscles both compress and 

resist superior translation of the humerus by applying forces inferiorly, variability in the inferior 

stability constraint may largely influence the predicted force (Yanagawa et al. 2008). A less 

restrictive inferior stability threshold may pose risk for inferior dislocation of the glenohumeral 
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joint, thereby causing lower predicted infraspinatus and subscapularis force to maintain adequate 

glenohumeral stability. Thus, while previous research suggests that the moment arms of the 

infraspinatus and subscapularis reduce with abduction, which suggests a corresponding increase 

in force to achieve the required moment, the similarity in force for the infraspinatus and 

reduction in force for the subscapularis in these postures may be associated with the 

glenohumeral stability constraint which may have been more important in modulating force in 

these abducted postures (Kuechle et al. 2000, Langenderfer et al. 2006).  

 Influence of Anthropometrics on Output Variability 

While comparable variability was present across the anthropometric range, these results 

demonstrate potential implications for task capabilities. Across all exertions, the shoulder 

capability as calculated by 3D SSPP, was found to be ≥86% for the 95th percentile male and 63% 

for the 5th percentile female. These capabilities however, do not consider the geometric variation 

amongst these population, which have been shown to have markedly different predicted force 

levels. Additionally, for internal rotation exertions, despite demonstrating that 79% of the 

population had shoulder capability to perform this exertion, the lower portion of the 

subscapularis muscle demonstrated that for the same 5th percentile female subject, the lower limit 

predicted the muscle to be inactive, while the upper limit was working at half of their maximal 

capacity. Similarly, for the same exertion, there were those in the population (upper outliers) that 

were exerting their maximal producible force for the upper portion of the subscapularis muscle. 

Thus, failing to incorporate the high variability in muscle demands could significantly 

underestimate the demands of the task for extremes in the population which in turn would 

underestimate fatigue development and possible injury. 
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 Validation Procedures 

 A dual model validation was performed. Similar to the findings of previous researchers, 

the results elicited by the Advanced Mean Value (AMV) probabilistic technique agreed with the 

Monte Carlo method (Easley et al. 2007, Langenderfer et al. 2008, 2009). The greatest deviance 

between methods occurred at the tails, with Monte Carlo demonstrating larger variability. 

Although, differences in the tail region are characteristic of the AMV method, despite 

improvements from earlier Mean Value techniques, the high variability observed slightly 

underestimated the variability predicted by Monte Carlo simulations (Easley et al. 2007, Laz and 

Browne 2010, Wu et al. 1990). The second validation procedure confirmed the normality 

assumption given for each of the random variables. Normal distributions have been applied in 

other biomechanics research and were generally identified as adequate for representing the 

random variables of interest (Flieg et al. 2008, Hughes and An 1997, Langenderfer et al. 2008, 

Pal et al. 2007). In this research, the 1 to 99% confidence intervals for the lognormal solution of 

the infraspinatus and supraspinatus muscles agreed to within 1% of the normal solution. The 

middle portion of the subscapularis muscle demonstrated the highest deviance, with a particular 

exertion demonstrating a 9% difference between normal and lognormal solutions. Despite 

showing lower average differences across all other exertions, this deviance highlights the 

recommendation to, if possible, mathematically determine the particular distribution for each 

variable using goodness-of-fit tests (Haldar and Mahadevan 2000). 

 Model limitations  

 Several model limitations should be considered when interpreting this study. Despite 

using a non-linear objective function, selected based on its previously documented ability to 

correlate well with empirical data and its ability to better predict synergistic muscle activity 
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amongst agonists, a fundamental limitation of optimization is the frequent prediction of zero 

force for particular muscle(s) (Crowninshield and Brand 1981, Dickerson et al. 2007, 2008, Dul 

et al. 1984). The zero predicted muscle force of the teres minor muscle can be explained by its 

relatively small physiological cross-sectional area (PCSA). As this objective function acts to 

minimize muscle stress among synergistic muscles, it allots larger predicted forces to more 

mechanically advantageous muscles, thereby predicting little to no force in smaller muscles that 

would otherwise result in high individual stresses (Crowninshield and Brand 1981, Dul et al. 

1984). The lack of subscapularis muscle force predicted during the external rotation tasks, and 

supraspinatus and infraspinatus during the internal rotation tasks can additionally be attributed to 

the optimization approach. Optimization-based models often fail to capture antagonistic activity 

as most objective functions are based on mechanical efficiency and muscles that are not directly 

contributing to achieving the net joint moment solely increase the physiological cost (Brookham 

et al. 2011, Dickerson et al. 2008). Additionally, while muscle origin and insertion locations 

were particularly influential in modulating the predicted force, future research is necessary to 

evaluate the many other contributors to muscle force variability. Researchers have urged 

consideration of model output sensitivity to model parameters including PCSA (Brand et al. 

1986, Herzog 1992), muscle line-of-action and/or wrapping (Blajer et al. 2010, Nussbaum et al. 

1995), number of modelled muscles (Blajer et al. 2010), muscle moment arms (Hughes and An 

1997), body segment parameters (Langenderfer et al. 2008), data collection uncertainties such as 

anatomical landmark locations (Langenderfer et al. 2008), in addition to the choice of objective 

function as discussed above. Each of these parameters could potentially dramatically influence 

predicted individual muscle forces. Thus, the current results highlight the potential importance of 
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considering the relative influence of each parameter on individual muscle force predictions made 

by computational musculoskeletal models. 

3.6 Conclusions 

 This research reinforced the importance of considering model parameter variability in 

musculoskeletal modelling, in particular of the shoulder, highlighting the necessity of 

incorporating geometric variation, regardless of anthropometry, in the prediction of rotator cuff 

muscle forces. This study also further emphasized the utility of the AMV probabilistic method in 

its ability to compute an accurate, computationally inexpensive solution while also identifying 

the particular variables contributing to output variability. These sensitivity factors may have 

important surgical, rehabilitative and treatment implications, for applications such as tendon 

transfers, or the maintenance of adequate active or passive glenohumeral stabilizing structures. 

Specifically, results showed that for the prediction of rotator cuff muscle forces, failure to 

incorporate variation in origin and insertion locations can result in output variability up to 50% 

of maximal capability, between the upper and lower extremes in the population. Thus, solely 

considering the “average” population in clinical and ergonomic research, may significantly 

underestimate the risk of injury as these results indicate a likely wide range of tissue-specific 

task demands within an anthropometrically similar population, consequently leading to possibly 

different health outcomes.  
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Chapter 4  

Glenohumeral and scapulothoracic kinematic fatigue responses: 

Implications for subacromial impingement syndrome 

Overview 

Superior humeral head translation and scapula reorientation can reduce the subacromial 

space. While these kinematic abnormalities exist in injured populations, the effect of muscle 

fatigue is unclear. Additionally, these mechanisms were typically studied independently, thereby 

neglecting potential covariance. This research evaluated the influence of upper extremity muscle 

fatigue on glenohumeral and scapulothoracic kinematics and defined their relationship. 

Radiography and motion tracking systems captured these kinematic relationships, during scapula 

plane elevation, both before and after fatigue. Fatigue-induced changes in humeral head position, 

scapular orientation and the minimum subacromial space width were measured. High inter-

subject variability existed for each measure which precluded identification of mean differences at 

the population level. However, significant scapula upward rotation occurred following fatigue at 

≥90° elevation, with magnitudes up to 5.5°. Despite similar population mean results, between 35-

57% of participants exhibited fatigue-related changes in disadvantageous orientations. 

Additionally, correlations between measures were generally fair (0.21-0.40) and highly 

dependent on elevation, likely attributed to the variable fatigue responses. Overall, the data 

confirms fatigue-induced changes in kinematics that are consistent with elevating the risk of 

subacromial impingement syndrome are highly variable across individuals. Thus, solely 

considering the “average” or mean population response likely underestimates potentially 

injurious fatigue consequences. 
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4.1 Introduction 

Glenohumeral (GH) and scapulothoracic (ST) kinematic variation can influence the 

healthy geometry of the shoulder by altering the relative relationship between the humerus and 

scapula. A predominant focus in shoulder biomechanics research has targeted the quantification 

of these kinematic differences in populations suffering from rotator cuff pathology and/or 

subacromial impingement syndrome (SAIS) to determine whether a causal relationship can be 

identified (Deutsch et al. 1996, Endo et al. 2001, Lin et al. 2005, Ludewig and Cook 2000, 

Ludewig and Reynolds 2009, McClure et al. 2006, Paletta et al. 1997, Poppen and Walker 1976). 

SAIS results from compression of the tissues, notably the supraspinatus tendon of the rotator 

cuff, residing between the superior humerus and inferior acromion in an area termed the 

subacromial space (Michener et al. 2003). This disorder is the most frequently diagnosed injury 

in the shoulder and has been identified as the primary precursor to the development of rotator 

cuff pathology, preceding 95% of cases (Michener et al. 2003, Neer 1983, van der Windt et al. 

1995, 1996). Debilitating pain, decreased quality of life, lack of independence and compromised 

function, all accompany rotator cuff pathology (Milgrom et al. 1995). Thus, the prevention of 

SAIS in society is critical.   

While GH and ST kinematic trends have been identified in injured populations, the 

development of SAIS in healthy individuals is less studied. Different exposures, such as posture, 

force and repetitive activity historically relate to shoulder pain and injury, with SAIS the 

predominant diagnosis (Frost and Andersen 1999, Jobe et al. 2000, Svendsen et al. 2004, van 

Rijn et al. 2010). Upper extremity muscle fatigue is a possible intermediary that relates these 

work-related task characteristics to SAIS development (Dickerson et al. 2011, Grieve and 

Dickerson 2008, Michener et al. 2003). Specifically, humeral head position and scapular 
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rotation, tilt and protraction/retraction, demonstrably change as a function of muscular exposure 

and accompanying fatigue, as the surrounding muscles act to stabilize these bones in a healthy 

individual (Borstad et al. 2009, Chen et al. 1999, Chopp et al. 2010, 2011, Cote et al. 2009, 

Ebaugh et al. 2006, McQuade et al. 1998, Teyhen et al. 2008, Tsai et al. 2003). 

Primary Research Objectives: 

1. Determine the effect of global upper extremity muscle fatigue, from a task that fatigues 

both the rotator cuff and scapula stabilizer muscles, on GH and ST relationships over the 

range of scapular plane elevation. Specifically, the effects of fatigue on: 

 Humeral head position (superior-inferior translation) 

 Three-dimensional scapular orientation (rotation, tilt, protraction/retraction) 

 Minimum subacromial space width (SAS) 

2. Identify whether a relationship exists, in terms of subacromial space reduction, between 

fatigue-induced GH and ST changes by assessing the correlation between each kinematic 

variable and the SAS. 

3. Propose an alternate humeral head translation measurement technique that is less 

dependent on scapular orientation to better quantify the GH relationship.  

Secondary Research Objective: 

1. Construct population distributions for each of these measures based on the spread of data 

across subjects to be used as input into a probabilistic subacromial geometry model 

(Chapter 6). 

Research Hypotheses: 

It was hypothesized that fatigue would induce changes that reduced the subacromial space, 

thereby increasing SAIS risk. These changes consist of superior humeral translation (Chopp et al. 
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2010, Graichen et al. 2000, Matsuki et al. 2012) and downward rotation, anterior tilting and 

protraction of the scapula (Ludewig and Reynolds 2009, Phadke et al. 2009). It was also 

hypothesized that these subacromial space reducing mechanisms would be correlated with one 

another and with the size of the space.  

4.2 Methods 

This study was collected at St. Joseph’s Healthcare Hamilton. The data required to 

address the research questions posed in this study were collected simultaneously with that of 

Chapter 5.  

 Participants 

Thirty healthy, right-hand dominant male participants between the ages of 18 and 35 

participated in this research. Healthy was defined as having no self-reported incidences of 

shoulder pain or discomfort within the previous year or past shoulder injury or structural 

damage, such as fractures or dislocations.  

Age was restricted to below 35 years to prevent including participants with degenerative 

changes in bone and tissue geometry. Many degenerative changes occur with age, and directly 

affect the subacromial space width, thus creating intrinsic impingement (Section 2.3.2). Rotator 

cuff tear prevalence and acromial deformities indicative of subacromial space reduction increase 

with age, particularly over the age of 50 (Edelson 1995, Milgrom et al. 1995, Sher et al. 1995). 

Participants were also selected to represent a younger work force, presumably one that has not 

yet been exposed to many years of strenuous and possibly fatiguing-type tasks that may have 

already contributed to kinematic changes in the shoulder. In a 2013 statistical report, the 

Workplace Safety and Insurance Board (WSIB) identified males between the ages of 50-54 years 
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in the motor vehicle and transit driver sector as the leading demographic for shoulder-related lost 

time claims (WSIB, 2013).  

Each participant tested negative on Neer and Hawkins-Kennedy clinical impingement 

tests and had a healthy active range of motion in both sagittal and coronal planes (Boone and 

Azen 1979, Park et al. 2005). Subjective reports of injury were verified with a full shoulder 

ultrasound exam (Toshiba Aplio XU, Toshiba Medical Systems Corporation, Japan) using a 7-

14MHz linear transducer set to 14MHz. The exam specifically evaluated the rotator cuff, biceps 

tendon, subacromial bursa, posterior labrum, acromioclavicular joint, and spinoglenoid notch for 

moderate to severe abnormalities, as well as identified any signs of anterior and/or lateral 

impingement. Two participants were excluded due to moderate abnormalities in their biceps and 

supraspinatus tendons. Therefore, twenty-eight participants with a mean age of 24.9 ± 3.6 years 

and height and weight of 1.8 ± 0.8m and 84.1 ± 14.2kg, respectively, were included. 

Sample size was initially selected by conducting an a priori power analysis. A post hoc 

power analysis was similarly conducted using G*Power3 software (Faul et al. 2007). Statistical 

power was calculated using a two tailed paired t-test with an alpha level of 0.05. Fatigue-induced 

differences in scapular rotation with magnitudes previously classified as clinically meaningful 

(4-5°) (Ebaugh et al. 2005, Ludewig and Cook 2000) and their corresponding standard deviations 

were used to calculate the power. In addition, power was calculated from the fatigue-induced 

alternate humeral head translation measurements when differences were of magnitudes which 

could be considered clinically meaningful (>1mm). Post hoc power of the above measures 

ranged from 0.92 to >0.99, indicating the sample size was adequate (Cohen 1992). 
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 Instrumentation 

Digital radiography, optical motion tracking and electromyography systems were used to 

measure GH, ST and humerothoracic (HT) kinematics and verify muscle fatigue.  

4.2.2.1 Digital Radiography 

  Ten anterior-posterior digital radiographs of the glenohumeral joint were captured for 

each participant on their right side using the Discovery XR656 Digital Radiography System (GE 

Healthcare, UK) with technical factors of 70kV and 320mA. Lead shielding protected against 

radiation. 

4.2.2.2 Motion Capture 

  Six Vicon MX20 motion capture cameras (Vicon, Oxford, UK) were used to track 

rotations of the scapula and humerus with respect to the torso. Kinematic data was measured at 

50Hz. Ten reflective markers were placed on anatomical landmarks of the upper limb (Table 9). 

Additionally, two marker clusters secured on rigid plates were positioned over the posterior-

lateral acromion (van Andel et al. 2009) and on the mid-humerus. These marker clusters tracked 

the movement of the scapula and humerus during the trials in an effort to reduce skin motion 

artifact. Cameras were configured around the x-ray system to ensure that each marker was 

visible on at least two cameras during measurement trials. This allowed for simultaneous 

measurement of the two systems (radiography and motion capture). 
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Table 9. Reflective markers required to calculate the local coordinate systems, and subsequently 

calculate scapulothoracic and humerothoracic joint angles as per ISB recommendations (Wu et 

al. 2005). 

Segment Markers Required for Calculation of Local Coordinate System 

Humerus Medial Epicondyle (ME), Lateral Epicondyle (LE), 

Acromioclavicular Joint (AC), Angulus Acromialis (AA) 

Scapula Trigonum Spinae Scapulae (TS), Angulus Inferior (IA), Angulus 

Acromialis (AA) 

Torso C7 Vertebrae (C7), Incisura Jugularis (IJ), T8 Vertebrae (T8), 

Xiphoid Process (PX) 

 

4.2.2.3 Electromyography 

Electromyography (EMG) was used to measure muscle activity from six muscles. 

Surface electrodes were used to collect activity from the primary scapula stabilizer muscles: the 

serratus anterior muscle and the upper and lower portions of the trapezius muscle (Michener et 

al. 2003). Intramuscular electrodes were used to collect activity from three of the four rotator 

cuff muscles: supraspinatus, infraspinatus, and subscapularis. Activity collected from the teres 

minor muscle using intramuscular electrodes often contains significant motion artifacts and was 

therefore not included (Brookham and Dickerson 2013). Additionally, surface electrodes were 

placed on the supraspinatus and infraspinatus muscles (surrounding the wire). 

Bipolar Ag-AgCl Noraxon dual surface electrodes (Noraxon, Arizona) with a fixed 2cm 

spacing were placed over the muscle belly of each muscle on the right side of the body using 

published placements (Cram and Kasman 1998) (Table 10). Prior to placement, the skin 

overlying the muscle was shaved with a disposable razor and cleaned with isopropyl alcohol to 

minimize impedance.  
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Hypodermic needles, each containing two sterilized fine-wires with hooked ends (Motion 

Lab Systems, Inc., Louisiana), were inserted into the rotator cuff muscles on the right side of the 

body. Electrodes were gamma radiation sterilized and each was contained within its own 

sterilized packaging. Prior to insertion, the area overlying the muscle was shaved with a 

disposable razor (if required) and cleaned with isopropyl alcohol. The insertions were performed 

in accordance with previously published instructions (Geiringer 1999, Nemeth et al. 1990) 

(Table 10). After each needle was inserted to the appropriate depth into the muscle (using visual 

feedback) it was removed and safely disposed in a sharps biohazardous waste container. The pair 

of wires remained inserted into the muscle where they were used to measure muscle activity.  

Table 10. EMG electrode placements for collected muscles. Surface EMG electrode placements 

from Cram and Kasman (1998), fine-wire EMG electrode placements from Geiringer (1999) 

(Supraspinatus, Infraspinatus) and Nemeth et al. (1990) (Subscapularis). 

Muscle EMG Electrode 

Placement6 

Figure of Electrode Placement 

Supraspinatus  

(fine-wire/surface) 

Participant lay prone with 

their arm at their side 

Needle was inserted 

superior to the medial one-

third of scapular spine 

Note: Surface electrodes 

were placed on either side 

of the wire once inserted 
 

                                                 
6 For all surface electrode placements, participants were in a relaxed seated posture. For fine-wire needle insertions, 

the participant was positioned as described in Table 10.  



90 

 

Infraspinatus  

(fine-wire/surface) 

Participant lay prone with 

their arm at their side 

Needle was inserted into 

the center of the fossa; 

midway between the 

scapular spine and the 

inferior tip of the scapula 

and between the medial and 

lateral borders  

Note: Surface electrodes 

were placed on either side 

of the wire once inserted 

 

 

Subscapularis (fine-wire) Participant seated with 

their arm elevated in the 

sagittal plane and elbow 

flexed to 90° (assistant 

holding their arm)  

Needle was inserted under 

the edge of the scapula in 

the posterior axillary line at 

a point 8cm above the 

inferior angle of the scapula 

adjacent to an underlying 

rib 
 

Upper Trapezius (surface) Surface electrodes were 

placed along the ridge of 

the shoulder slightly lateral 

and half the distance 

between the C7 vertebrae 

and the acromion 

 



91 

 

Lower Trapezius (surface) Surface electrodes were 

placed approximately 5cm 

below the scapular spine at 

a 55° angle next to the 

medial edge of the scapula 

 

Serratus Anterior (surface) Surface electrodes were 

placed below the axillary 

area at the level of the 

inferior tip of the scapula  

 

 

All EMG signals were collected at 3000Hz using the Noraxon Telemyo 2400 T G2 

wireless system. Raw signals were band pass filtered from 10-1000Hz and differentially 

amplified with a common-mode rejection ratio >100dB and an input impedance of 100MΩ. 

Analog signals were converted to digital using a 16 bit A/D card with a ±3.5V range. 

 Protocol 

The experimental protocol was completed in approximately 2.5 hours and involved 

several stages which have been described as follows.  
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4.2.3.1 Strength Scaling 

  Strength scaling procedures were performed to determine the individualized load lifted 

during the fatiguing protocol (Chopp et al. 2010). With the arm abducted to 90° and the humerus 

externally rotated (palm facing forward), participants exerted a maximal posterior force and 

anterior force against an ErgoFet 300TM hand dynamometer (Hoggan Scientific, LLC, Utah). 

These specific internal (anterior force) and external (posterior force) exertions above shoulder 

height were selected as they directly relate to rotator cuff muscle demands, while also requiring 

scapular stabilization; thus they should target each of the six muscles described. Each exertion 

was performed twice unless directional exertions differ by ±5N, in which case a third exertion 

was performed. The average of these four exertions (two anterior and two posterior) were 

defined as participants’ “maximal force”. 

4.2.3.2 Pre-Fatigue Kinematic Measurement 

Participants were instrumented with the ten reflective markers and two clusters (Table 9), 

following which five randomized kinematic trials were collected. For each trial, participants 

were positioned at 30° (scapular plane) to the plane of the x-ray beam; their arm was elevated to 

five elevation angles (0, 30, 60, 90 and 120°) in neutral axial rotation. A digital radiograph and 

five-second motion capture trial were simultaneously collected in each posture. Participants held 

a 1kg weight during each trial, consistent with previous research (Chen et al. 1999, Chopp et al. 

2010, Cote et al. 2009, Teyhen et al. 2008). Foot placement and elevation angles were marked to 

replicate the kinematic trial posture following fatigue (Section 4.2.3.5).    

4.2.3.3 Pre-Fatigue EMG Reference Exertions 

Following kinematic trials, participants were instrumented with EMG and completed 

five-second static reference exertions in two postures. Specifically, lying prone on a clinical 
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bench, participants elevated their arm to 60° and 120° in the coronal plane while holding a load 

scaled to 10% of their maximal force (Section 4.2.3.1).  

4.2.3.4 Fatiguing Protocol 

Participants performed an upper extremity fatiguing protocol consisting of an overhead, 

repetitive task designed to exhaust the rotator cuff and scapular stabilizing muscles. Lying prone, 

participants started with their arm fully extended and abducted to 60° in the coronal plane with 

their palm facing anteriorly (Figure 17). They repeatedly lifted and lowered their arm from this 

position to 120° of elevation holding a weight scaled to 10% of their maximal force (Section 

4.2.3.1). Participants repeated this motion at a pace set by a metronome (44 beats per minute), 

while cycling through 15 seconds of exertion, followed by 10 seconds of rest. After each minute 

of performing the task, participants were asked to indicate their rating on Borg’s modified (10-

point) rate of perceived exertion (RPE) scale (Borg 1982). This task was performed until 

participants verbally indicated that they could no longer continue (‘10’ on the RPE scale), and/or 

could no longer complete the task properly, such as dropping the arm below 90°, or being unable 

to maintain the pace set by the metronome. 
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Figure 17. Experimental Fatiguing Protocol: lying prone, arm was elevated between 60° (left) 

and 120° (right) in the coronal plane holding a weight scaled to 10% of their maximal force. 

4.2.3.5 Post-Fatigue EMG Reference Exertions and Kinematic Measurement 

Immediately upon indicating that they could no longer continue the fatiguing protocol, 

participants completed post-fatigue EMG reference exertions identical to those described in 

Section 4.2.3.3, the maximal exertions described in Section 4.2.3.1 and post-fatigue kinematic 

trials, identical to those described in Section 4.2.3.2. 

4.3 Data and Statistical Analyses 

 Kinematic Measurement 

Six kinematic variables were measured in all trials (Table 11). GH variables (SAS, 

humeral head position), captured using imaging techniques, were analyzed using GE PACS 

software (GE Healthcare, United Kingdom). Each variable obtained from radiographic images 

was measured to the nearest 0.1mm. ST and HT angles, captured using motion capture, were 
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analyzed using custom Matlab® software. The following sections outline the specific 

measurement techniques used to obtain each variable.  

Table 11. Glenohumeral and scapulothoracic kinematic variables measured in both pre- and 

post-fatigue states, including their units and the measurement system from which they were 

captured. 

Variable Units Measurement System 

Minimum Subacromial Space Width millimeters Radiography 

Superior-Inferior Translation millimeters Radiography 

Scapular Upward-Downward Rotation degrees Motion Capture 

Scapular Posterior-Anterior Tilt degrees Motion Capture 

Scapular Protraction-Retraction degrees Motion Capture 

Humeral Elevation degrees Motion Capture 

 

4.3.1.1 Minimum Subacromial Space Width (SAS) 

The minimum subacromial space width (SAS) was measured on ten radiographic images 

for each participant, corresponding to the two fatigue states (pre-fatigue and post-fatigue) and 

five arm elevation angles (0°, 30°, 60°, 90°, 120°). Specifically, the measurement technique has 

been described as: the minimum distance between the superior aspect of the humeral head and 

the dense cortical undersurface of the acromion process (Gruber et al. 2010, Lehtinen et al. 2000, 

Petersson and Redlund-Johnell 1984, Thompson et al. 2011, Weiner and MacNab 1970) (Figure 

18).  
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Figure 18. Radiographic measurement of: (1) minimum subacromial space width (left), (2) 

humeral head position – standard measurement technique (left) and (3) humeral head position – 

alternate measurement technique (right). GH indicates the center of the humeral head 

(determined by identifying the center of a true circle fit to the outer contours of the humeral 

head). CG indicates the center of the glenoid cavity (determined by identifying the midpoint of a 

line connecting the most superior to the most inferior points of the anterior articular margin of 

the glenoid cavity [glenoid axis]). Humeral head position is a linear measurement along the 

glenoid axis. This figure represents an inferior humeral head position as the GH is inferior to the 

CG.  

4.3.1.2 Superior-Inferior Humeral Head Translation  

The humeral head position was measured on radiographic images for both pre- and post-

fatigue states at five elevation angles (0°, 30°, 60°, 90°, 120°). The measurement technique was 

standardized by Poppen and Walker (1976) and used in many research studies (Chen et al. 1999, 
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Chopp et al. 2010, Cote et al. 2009, Paletta et al. 1997, Royer et al. 2009, Teyhen et al. 2008, 

2010, Yamaguchi et al. 2000). This technique required first identifying the center of a true circle 

fit to the outer contours of the humeral head and connecting a line (glenoid axis) from the most 

superior to the most inferior points of the anterior articular margin of the glenoid cavity (Figure 

18). A perpendicular line was then drawn from the center of the humeral head to the glenoid 

axis, from which the distance (along the glenoid axis) between the center of the glenoid axis and 

this perpendicular line was extracted. This measurement was termed the humeral head position. 

The difference in this distance (humeral head position) between fatigue states was termed the 

humeral head translation. A positive translation resulted when the center of the humeral head 

was positioned more superiorly to the center of the glenoid cavity following fatigue, while 

negative translation occurred when the humeral head moved to a more inferior position. 

The alternate humeral head translation measurement technique developed in the current 

research involved a modification to the standardized technique to better quantify the 

glenohumeral superior-inferior shift in conditions where considerable scapular rotation may have 

confounded measurement outputs. This method first involved determining the centers of the 

humeral head and the glenoid cavity, using an identical process to the standard method. Two 

lines horizontal to the image axis were then drawn through these centers. The distance between 

these two centers, determined from a line drawn parallel to the glenoid axis (to maintain 

anatomical relevance), was then calculated and the difference in these measurements between 

fatigue states was considered the humeral head translation (Figure 18). Similar to the previous 

measurement, a positive magnitude indicated a superior shift, while a negative magnitude 

indicated an inferior shift.  
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4.3.1.3 Scapulothoracic and Humerothoracic Rotations 

ST and HT angles were derived from the Vicon motion capture data using custom 

Matlab® software. Kinematic data was low pass filtered using a fourth order Butterworth filter 

with 4Hz cut off. Local coordinate systems were then constructed for the humerus, scapula and 

torso segments according to International Society of Biomechanics (ISB) recommendations 

(Table 12) (Wu et al. 2005) using the landmarks indicated in Table 9. Local coordinate systems 

for the rigid clusters (acromial cluster, humerus) were constructed, and the relationship between 

the clusters and the anatomical landmarks on the corresponding segments were determined from 

the static calibration trial. The clusters were then used to track the movements of the scapula and 

humerus with respect to the torso during trials. Using the previously defined relationship 

between the clusters and the anatomical markers, relative rotation matrices between the 

reconstructed scapula and torso and the reconstructed humerus and torso were calculated. Euler 

angles were then extracted using a Y-X-Z rotation sequence [Eq. 4-1] for the scapulothoracic 

relationship and Y-X-Y′ rotation sequence [Eq. 4-2] for the humerothoracic relationship, as per 

ISB recommendations (Wu et al. 2005).  

Table 12. Local coordinate systems of the humerus, scapula and torso as per ISB 

recommendations (Wu et al. 2005). 

Segment Landmarks Required Local Coordinate System 

Humerus GH*, ME, LE, E**  𝑦ℎ =
(𝐺𝐸−𝐸)

‖(𝐺𝐸−𝐸)‖
  

𝑡𝑒𝑚𝑝ℎ =
(𝑀𝐸−𝐸)

‖(𝑀𝐸−𝐸)‖
   

𝑥ℎ =
𝑡𝑒𝑚𝑝ℎ×𝑦ℎ

‖𝑡𝑒𝑚𝑝ℎ×𝑦ℎ‖
   

𝑧ℎ = 𝑥ℎ × 𝑦ℎ  
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Scapula TS, IA, AA 𝑧𝑠 =
(𝐴𝐴−𝑇𝑆)

‖(𝐴𝐴−𝑇𝑆)‖
  

𝑡𝑒𝑚𝑝𝑠 =
(𝐴𝐴−𝐼𝐴)

‖(𝐴𝐴−𝐼𝐴)‖
   

𝑥𝑠 =
𝑡𝑒𝑚𝑝𝑠×𝑧ℎ

‖𝑡𝑒𝑚𝑝𝑠×𝑧ℎ‖
   

𝑦𝑠 = 𝑧𝑠 × 𝑥𝑠  
 

Torso C7, IJ, T8, PX 
𝑦𝑡 =

((
𝐼𝐽+𝐶7

2
)−(

𝑃𝑋+𝑇8

2
))

‖((
𝐼𝐽+𝐶7

2
)−(

𝑃𝑋+𝑇8

2
))‖

  

𝑡𝑒𝑚𝑝𝑡 =
(𝐼𝐽−𝐶7)

‖(𝐼𝐽−𝐶7)‖
   

𝑧𝑡 =
𝑡𝑒𝑚𝑝𝑡×𝑦𝑡

‖𝑡𝑒𝑚𝑝𝑡×𝑦𝑡‖
   

𝑥𝑡 = 𝑦𝑡 × 𝑧𝑡  
*GH = Glenohumeral Rotation Center. This landmark is located 60mm caudal from the acromion process (midpoint 

between AA and AC markers) along the torso long axis (𝑦𝑡) (Nussbaum and Zhang 2000). 
**E = Elbow Joint Center. This landmark is obtained by finding the midpoint between the ME and LE markers. 

 

𝑅𝑇_𝑆 = 𝑅𝑍(𝛼)𝑅𝑋(𝛽)𝑅𝑌(𝛾)              [Eq.4-1] 

𝑅𝑇_𝑆 = [

𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛼 − 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛼 −𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛼 + 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛼
𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛼 + 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝛼 − 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽

−𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛽 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛽
] 

Where, 

 𝛼 is scapula anterior/posterior tilt  

 𝛽 is scapula upward/downward rotation 

 γ is scapula protraction/retraction 

𝑅𝑇_𝐻 = 𝑅𝑌′(𝛾2)𝑅𝑋(𝛽)𝑅𝑌(𝛾)              [Eq.4-2] 

𝑅𝑇_𝐻 = [

𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛾2 − 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛾2 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾2 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛾2 + 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛾2

𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽 −𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛽
−𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛾2 − 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛾2 𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛾2 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛾2 − 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝛾2

] 

Where, 

 γ is plane of humeral elevation 

 𝛽 is humeral elevation 

 𝛾2 is humeral internal/external rotation 
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To more accurately quantify the effects of ST kinematics on the radiographic humeral 

head translation measurements, scapular upward/downward rotation was also measured on 

radiographs using a simplified technique previously described in the literature (Freedman and 

Munro 1966, Poppen and Walker 1976). This angle was calculated from a line drawn along the 

horizontal image axis, approximately perpendicular to the long axis of the torso, and the 

previously defined glenoid axis (Section 4.3.1.2). The angle in the superior-medial quadrant was 

the scapula radiographic rotation angle, with 90° indicating neutral rotation, a lower angle (<90°) 

indicating higher scapula upward rotation and a higher angle (>90°) indicating higher scapula 

downward rotation.  

 Electromyography  

EMG was processed in the frequency domain to assess whether the six measured muscles 

were fatigued from the protocol, as demonstrated previously in pilot research. Raw signals were 

first high pass filtered with a 30Hz cut off to remove heart rate contamination (Drake and 

Callaghan 2006) and a Fourier transform was performed on the resulting signals. The mean 

power frequency (MPF) of each 0.5 second window for the first two seconds of each trial was 

then calculated, and an overall mean obtained, which was compared between fatigue states. 

Changes in EMG amplitude were not used for fatigue verification due to its previously described 

unreliability (Dimitrova and Dimitrov 2003).  

 Statistical Analyses 

4.3.3.1 Kinematics 

Five two-way repeated measures analysis of variances (ANOVAs) were used to 

determine the effects of fatigue state (pre-fatigue, post-fatigue) and elevation angle (0°, 30°, 60°, 

90°, 120°) on all GH and ST kinematic variables. Paired t-tests were used to evaluate angle-
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specific fatigue responses. A p-value of 0.05 was used to determine significance. Statistical 

analyses was performed using JMP software (SAS Institute, North Carolina). 

Variable covariance was determined by calculating correlation coefficients between 

fatigue-related differences (post-fatigue measurement – pre-fatigue measurement) at each 

elevation angle. Coefficients were classified as excellent (0.81 – 1.00), good (0.61 – 0.80), 

moderate (0.41 – 0.60), fair (0.21 – 0.40) or poor (0.00 – 0.20), as described in Balke et al. 

(2013). As well, the clinical significance of fatigue-induced differences was assessed by 

considering the proportion of participants exhibiting kinematic changes consistent with SAS 

narrowing (superior humeral head translation, downward scapula rotation, anterior scapular tilt, 

scapular protraction and a reduction in SAS).   

4.3.3.2 Fatigue 

Paired t-tests were used to determine the effect of fatigue state (pre-fatigue, post-fatigue) 

on: (1) MPF for each of the six muscles during both 60° and 120° exertions, and (2) maximal 

muscle force for internal and external exertions. Statistically significant decreases in MPF in the 

post-fatigue state provided evidence of fatigue for the specific muscle, while overall upper 

extremity fatigue was verified by a statistically significant reduction in maximal force from 

internal (anterior) and external (posterior) exertions. A p-value of 0.05 was used to determine 

significance. 

4.3.3.3 Verification and Reliability 

 Measurement reliability was performed on a subset of 15 randomized and blinded 

images. All measurements were performed by JN Chopp-Hurley who has previous experience 

extracting humeral head position measurements from anterior-posterior GH radiographs, as 

confirmed by an experienced musculoskeletal radiologist (Chopp et al. 2010). An intra-rater 
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reliability analysis was conducted to assess the measurement reliability of the SAS and to re-

confirm humeral head position measurement reliability. Given this confirmation, an inter-rater 

reliability analysis was performed for the measured SAS. The second rater was the same 

experienced musculoskeletal radiologist, who previously confirmed the initial reliability of the 

primary rater for humeral head position measurements (Chopp et al. 2010). The Bland-Altman 

approach, conducted using Matlab®, was used to evaluate measurement reliability (Bland and 

Altman 2010). For each measurement, the differences between initial and repeated 

measurements (d) were calculated for each participant from which the mean (𝑑̅) and standard 

deviation (s) of these differences were obtained. The average measurement for each participant 

(x-axis) were plotted against the difference between the initial and repeated measurement (y-axis) 

and lines were drawn representing the mean difference (𝑑̅) as well as approximate 95% 

confidence limits (𝑑̅ ± 2s) (Bland and Altman 2010). Additionally, paired t-tests (p<0.05) were 

performed and intraclass correlation coefficients calculated using SPSS Statistics 22 (IBM 

Corporation, USA) to confirm results of the Bland-Altman analysis.    

 Two verification procedures were performed to evaluate the accuracy of the motion 

tracking system. The humeral elevation angle, as measured using a hand-held goniometer was 

compared to that extracted from the motion capture data. As well, the scapula rotation angle, as 

measured from the motion capture data was compared to the magnitude measured 

radiographically. As scapulothoracic angles were measured using different procedures, 

verification was performed by evaluating the pre-post fatigue differences at each elevation angle. 

Bland-Altman analysis and intraclass correlation coefficients were used to verify the ability of 

the motion tracking system to adequately measure ST and HT joint angles (Matlab®; SPSS 

Statistics 22, IBM Corporation, USA). 
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4.4 Results 

 Kinematics 

Considerable inter-subject variability existed across all kinematic variables, which 

generally resulted in non-significant mean fatigue response differences. However, significant 

fatigue-induced upward rotation of the scapula was present, as well as angle-dependent 

responses for each of the GH and ST kinematic variables.  

4.4.1.1 Humeral Head Position 

 Humeral head position was not largely influenced by muscle fatigue. Using the standard 

measurement technique, there was no statistically significant effect of fatigue (p=0.1495) and no 

angle-fatigue interaction (p=0.9216). Humeral head position was, however, affected by arm 

angle (p<0.0001). The humeral head, which was located at an inferior position at neutral (0°) 

elevation, translated approximately 3mm superiorly as the arm was elevated to 120° (Table 13). 

This trend was consistent between fatigue states. Overall, the mean intra-angle differences 

between fatigue states (humeral head translation) were ≤ 0.3mm, however considerable 

variability was present (Table 13, Figure 19).  

Humeral head position using the alternate measurement technique demonstrated main 

effects of both fatigue (p<0.0001) and arm angle (p<0.0001) as well as a significant interaction 

effect (p=0.0001). Specifically, fatigue-induced superior translation was present at all elevation 

angles, increasing in magnitude up to 4.3mm as the arm was elevated to 120° (Table 13).   

 

 

 

 



104 

 

Table 13. Humeral head position for the pre- and post- fatigue states (standard measurement 

technique), and the fatigue-induced humeral head translation using standard and alternate 

measurement techniques. Asterisk (*) indicates statistically significant (p<0.05) fatigue-induced 

translation.  

Elevation 

Angle (°) 

Pre-Fatigue (mm) 

(Mean [1-99% CI])1 

Post-Fatigue (mm) 

(Mean [1-99% CI])1 

Humeral Head 

Translation: 

Standard 

Measurement 

(Mean [1-99% CI])2 

Humeral Head 

Translation: 

Alternate 

Measurement 

(Mean [1-99% CI])2 

0 -0.4 [-4.6 – 3.8] -0.6 [-6.0 – 4.7] -0.2 [-4.3– 3.8] 0.5 [-10.4 – 11.4] 

30 0.7 [-3.1 – 4.4] 0.5 [-4.2 – 5.3] -0.1 [-2.7 – 2.5] 1.9 [-5.8 – 9.7] * 

60 1.4 [-2.4 – 5.3] 1.4 [-2.0 – 4.7] -0.1 [-2.9 – 2.8] 1.9 [-6.3 – 10.2] * 

90 2.1 [-0.5 – 4.6] 1.8 [-1.2 – 4.8] -0.3 [-2.7 – 2.1] * 3.6 [-8.2 – 15.3] * 

120 2.5 [-0.6 – 5.5] 2.4 [-0.7 – 5.6] 0.0 [-3.3 – 3.3] 4.3 [-5.8 – 14.4] * 

1 Positive values (+) indicate the center of humerus is located superior to center of glenoid cavity 
2Positive values (+) indicate a superior translation of the humeral head with respect to the glenoid cavity following 

fatigue. 

 

Figure 19. Frequency histogram displaying distribution of humeral head translation at 120° of 

elevation, fit with a normal curve. 
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4.4.1.2 Scapular Orientation 

Fatigue-related changes only existed for scapula upward rotation (p=0.0002) while both 

upward/downward rotation and protraction/retraction were significantly influenced by arm angle 

(p<0.0001). Individual angle-specific evaluation identified fatigue-induced upward rotation 

magnitudes up to 5.5° at 120° of elevation (Table 14). Scapula tilt and protraction/retraction 

were not significantly influenced by fatigue. With respect to elevation angle, upward rotation of 

the scapula existed across the range of elevation with a mean rotation angle of 0.1 ± 5.9° at 

neutral to 31.3 ± 13.7° at 120° of elevation. Additionally, the scapula demonstrated increased 

protraction of 5-6°, while the scapular tilt angle remained unchanged. 

Table 14. Fatigue-induced scapula rotation, tilt and protraction/retraction across the range of 

scapular plane elevation. Asterisk (*) indicates statistically significant (p<0.05) fatigue-induced 

changes. 

Elevation 

Angle (°) 

Upward Rotation (°) 

(Mean [1-99% CI]) 

Posterior Tilt (°) 

(Mean [1-99% CI]) 

Retraction (°) 

(Mean [1-99% CI]) 

0 0.7 [-17.1 – 18.5] -1.0 [-25.6 – 23.7] -3.0 [-29.5 – 23.5] 

30 2.3 [-14.9 – 19.5] * 0.4 [-16.5 – 17.3] -1.6 [-21.8 – 18.6] 

60 1.3 [-14.0 – 16.6] -0.8 [-20.2 – 18.7] -0.9 [-17.5 – 15.7] 

90 3.6 [-18.2 – 25.5] * -0.5 [-18.4 – 17.3] -1.3 [-19.3 – 16.7] 

120 5.5 [-21.7 – 32.7] * -0.9 [-38.8 – 37.1] 2.2 [-25.0 – 29.5] 

Negative values (-) indicate downward rotation, anterior tilt, protraction 

 

 Scapula rotation quantified from radiographic images was significantly influenced by 

fatigue (p<0.0001), arm angle (p<0.0001), and demonstrated a fatigue-angle interaction effect 

(p=0.0046). Fatigue-induced upward rotation of the scapula occurred across all elevation angles 

with larger differences present at higher elevation angles (Table 15). Additionally, the scapula 
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upwardly rotated between 35 to 40° (depending on fatigue state) as the arm was elevated from 

neutral to 120° of elevation.  

Table 15. Scapula radiographic rotation angle across the range of scapular plane elevation for 

the pre- and post-fatigue states. Asterisk (*) indicates statistically significant (p<0.05) difference 

from pre-fatigue state. 

Elevation Angle (°) 
Pre-Fatigue (°) 

(Mean [1-99% CI]) 

Post-Fatigue (°) 

(Mean [1-99% CI]) 

0 96.3 [73.8 – 118.9] 94.8 [71.0 – 118.5] 

30 88.1 [64.2 – 112.0] 83.8 [58.8 – 108.8] * 

60 79.0 [55.5 – 102.5] 74.9 [51.4 – 98.4] * 

90 72.3 [49.2 – 95.4] 64.9 [43.5 – 86.2] * 

120 60.9 [38.7 – 83.2] 54.2 [31.8 – 76.7] * 

90° = Neutral rotation, >90° = Downward rotation, <90° = Upward rotation 

 

4.4.1.3 Minimum Subacromial Space Width (SAS) 

The SAS was not significantly affected by fatigue (p=0.5896) and there was no angle-

fatigue interaction (p=0.7660). However, the SAS was affected by arm angle (p<0.0001), with a 

significant reduction in space as the arm was elevated (Table 16). Within each fatigue state, the 

SAS was lowest at the 90° arm angle, and slightly increased as the arm was elevated to 120°. In 

the post-fatigue state, the SAS was increased at 0° and 60° and reduced at 90° and 120°, 

compared to the pre-fatigued state (Table 16). However, all of these changes were small and not 

statistically significant, likely due to high variability.  
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Table 16. Minimum subacromial space width (SAS) across the range of scapular plane elevation 

for the pre- and post- fatigue states. 

Elevation Angle (°) 
Pre-Fatigue (mm) 

(Mean [1-99% CI]) 

Post-Fatigue (mm) 

(Mean [1-99% CI]) 

0 9.6 [4.1 – 15.2] 10.0 [3.1 – 16.9] 

30 7.6 [3.4 – 11.8] 7.6 [2.3 – 12.9] 

60 5.4 [1.3 – 9.5] 5.9 [2.6 – 9.2] 

90 4.2 [-0.4 – 8.9] 4.1 [-0.3 – 8.6] 

120 4.6 [-0.1 – 9.3] 4.4 [0.2 – 8.5] 

 

4.4.1.4 Covariance and Interactions 

 Correlation coefficients were generally classified as fair and depended largely on 

elevation angle. The strongest correlation existed between humeral head translation and the SAS 

(-0.69) (Table 17). Changes in scapular tilt and protraction/retraction were also moderately 

correlated with the SAS, and posterior tilting was moderately correlated with humeral head 

translation. All other relationships had a fair correlation (0.21 to 0.40) for at least one elevation 

angle (Table 17). However, for all variables interactions, both coefficient magnitudes and 

polarities were markedly different across elevation angles. 
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Table 17. Correlation matrix between fatigue-induced kinematic changes (strongest (s) and 

weakest (w) relationships across elevation angles presented). Relationships classified as 

moderate to excellent are bolded. 

 

Δ Humeral 

Head Position 

(+=Superior) 

Δ Scapular 

Rotation 

(+=Upward) 

Δ Scapular 

Tilt 

(+=Posterior) 

Δ Scapular 

Protraction/ 

Retraction 

(+=Retraction) 

Δ Subacromial 

Space Width 

(+=Increase 

SAS) 

Δ Humeral 

Head Position 

(+=Superior) 

 
s: 0.29 

w: -0.23 

s: 0.41 

w: -0.13 

s: 0.27 

w: -0.25 

s: -0.69 

w: 0.20 

Δ Scapular 

Rotation 

(+=Upward) 

s: 0.29 

w: -0.23 
 

s: -0.23 

w: -0.05 

s: 0.38 

w: -0.10 

s: -0.39 

w: 0.25 

Δ Scapular 

Tilt 

(+=Posterior) 

s: 0.41 

w: -0.13 

s: -0.23 

w: -0.05 
 

s: -0.33 

w: -0.12 

s: 0.49 

w: -0.42 

Δ Scapular 

Protraction/ 

Retraction 

(+=Retraction) 

s: 0.27 

w: -0.25 

s: 0.38 

w: -0.10 

s: -0.33 

w: -0.12 
 

s: 0.51 

w: -0.30 

Δ Subacromial 

Space Width 

(+=Increase 

SAS) 

s: -0.69 

w: 0.20 

s: -0.39 

w: 0.25 

s: 0.49 

w: -0.42 

s: 0.51 

w: -0.30 
 

 

When averaged across elevation angles, a large proportion of participants exhibited 

fatigue-induced GH and ST orientation changes indicative of subacromial space narrowing. 

Specifically, between 35-57% of participants, depending on the particular measure, demonstrated 

changes in disadvantageous orientations (Figure 20). Depending on elevation angle, between 32-

46% of participants exhibited superior translation following fatigue, with 80-92% of these 

participants showing scapular orientation changes indicative of subacromial space reduction and 

between 31-70% exhibited two or more of these orientation changes. As well, the percentage of 
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those demonstrating fatigue-related subacromial space reduction ranged from 29% at 0° to 50% 

at angles ≥ 60° of elevation (Figure 20).   

 

Figure 20. Percentage of participants with fatigue-induced kinematic changes that would 

increase (white) or decrease (black) the subacromial space, as well the percentage of participants 

with an increased or decreased SAS. Grey regions indicate no fatigue-related changes. 

 Fatigue Verification 

 Fatigue analysis confirmed that all muscles were fatigued following the protocol. The 

average bottle weight lifted during the protocol was 7.8 ± 2.0 N and average time to fatigue was 

18.0 ± 10.3 min. Each muscle showed a statistically significant (p<0.05) reduction in mean 

power frequency (MPF) for the 60° exertion with magnitudes ranging from 8.7 to 24.9% (Table 

18). For the 120° exertion, each muscle, with the exception of the lower trapezius, also had a 

significant reduction in MPF ranging from 6.9 to 29.1% (Table 18). A reduction in MPF for the 

lower trapezius existed, however it was of low magnitude (4.9%) and not statistically significant 

(p=0.0569). Additionally, each muscle with the exception of the lower trapezius and 
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supraspinatus (surface electrode) for the 120° exertion, demonstrated MPF decreases >8%, 

which has been used as a criterion for identifying muscle fatigue (Oberg et al. 1990).   

Table 18. Mean power frequency reduction (mean ± standard deviation) and corresponding p-

value for each of the measured muscles following fatigue. Statistical significance indicated by 

p<0.05. 

 60° exertion 120° exertion 

 Mean 

(%) 

SD  

(%) 
p-value 

Mean 

(%) 

SD  

(%) 
p-value 

Supraspinatus (Wire) -24.9 33.8 0.0007 -28.4 16.2 <0.0001 

Infraspinatus (Wire) -23.2 28.0 0.0004 -27.0 19.0 <0.0001 

Subscapularis (Wire) -19.2 22.9 0.0001 -29.1 27.8 0.0010 

Upper Trapezius (Surface) -19.8 12.6 <0.0001 -12.5 12.3 <0.0001 

Lower Trapezius (Surface) -8.7 12.1 0.0015 -4.9 12.8 0.0569 

Serratus Anterior (Surface) -16.2 20.9 0.0003 -18.4 31.2 0.0083 

Supraspinatus (Surface) -13.0 12.7 <0.0001 -6.9 11.3 0.0022 

Infraspinatus (Surface) -22.4 11.7 <0.0001 -15.9 11.3 <0.0001 

 

 Beyond EMG, reduction in maximal force was used to confirm global upper extremity 

fatigue. Statistically significant reductions in both internal (anterior) force (p = 0.018) and 

external (posterior) force (p<0.0001) occurred following the protocol. The reduction was larger 

for the external force (22.0 ± 14.7 N) than the internal force (8.0 ± 16.8 N).    

 Verification and Reliability 

Intra- and inter-rater reliability analysis indicated excellent agreement both within the 

primary rater and between raters. The Bland-Altman analysis revealed no outliers with the 95% 
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confidence limits for humeral head position (intra-rater) and one outlier for the minimum 

subacromial space width for each of the intra- and inter- rater analyses (Bland and Altman 2010). 

Reliability was confirmed using paired t-tests that revealed there was no statistically significant 

difference (p>0.05) between the repeated measurements of the primary rater, or measurements 

between raters. Additionally, intraclass correlation coefficients ranged between 0.90 and 0.98, 

indicating excellent measurement repeatability. Bland-Altman plots for inter- and intra- rater 

reliability are presented in Appendix 3.  

 The humeral elevation angles extracted from motion capture data generally overestimated 

the measured angles at a neutral arm posture (0°) and increasingly underestimated the measured 

angles as the arm was elevated to 120°. The average difference between measured and extracted 

angles was -10.0 (±13.9)°. At 0°, the extracted angles overestimated the measured by 9.9 (±6.5)°, 

while at 30°, 60°, 90° and 120°, the extracted angles underestimated the measured by 4.6 (±7.8)°, 

12.9 (±7.1)°, 19.3 (±5.8)° and 24.6 (±7.0)°, respectively. Statistical reliability analysis revealed 

an intraclass correlation coefficient of 0.95 (95% CI, 0.83 to 0.98) between measured and 

extracted angles and Bland-Altman analysis revealed between one and three outliers at each 

angle of elevation. The scapula rotation angles extracted from motion capture data slightly 

underestimated (mean, 2.2°; SD 5.5°) the angles measured from radiographs. Absolute 

differences between measured and extracted angles were similar across elevation angles with 

average magnitudes between 3 to 5.5°. The calculated intraclass correlation coefficient between 

methods was 0.74 (95% CI, 0.60 to 0.82) and the Bland-Altman analysis revealed five outliers 

across all elevation angles. 
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4.5 Discussion 

While the population means observed indicate generally low risk for subacromial space 

reduction following an upper extremity fatiguing task, this risk is highly variable. Indeed, a 

considerable proportion of the population demonstrated kinematic changes associated with SAS 

reduction. Analysis using an alternate humeral head translation measurement technique indicated 

that the standardized measurement protocol underestimated the humeral head movement with 

respect to the glenoid following fatigue which additionally initiated ST movement. 

 Fatigue-induced kinematics: glenohumeral interaction 

 The minor effect of combined rotator cuff and scapula stabilizer muscle fatigue on 

humeral head position was initially unexpected. Superior translation of the humeral head 

following upper extremity fatigue is widely reported (Chen et al. 1999, Chopp et al. 2010, Cote 

et al. 2009, Royer et al. 2009, Teyhen et al. 2008). While the previously reported translations 

have been of modest magnitude, with angle-specific translation magnitudes between 0.1 to 

1.3mm, a similar fatigue effect on humeral head translation was expected in this current research. 

Assessing the humeral head translation in conjunction with scapular orientation changes, 

superior translation occurred but was likely obscured by scapular upward rotation. The standard 

method of extracting the GH position from radiographs involves drawing a perpendicular line 

from the center of the humeral head to the glenoid axis (Poppen and Walker 1976). Thus, it is 

intuitive to suggest that varying the angle of the glenoid axis, corresponding to scapula 

upward/downward rotation, would similarly vary the projection of the humeral head center on 

the glenoid cavity and could subsequently largely influence the measured humeral head 

translation (Table 17). Specifically, a more upwardly rotated glenoid would measure as less 

superior translation than a downwardly rotated glenoid (assuming a consistent humeral head 
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position). The scapula rotation angle, as measured on both radiographs and motion capture, 

showed significant upward rotation of the scapula following muscle fatigue (Table 14 & Table 

15), thereby creating the expectation for the resulting negligible superior, or even inferior 

fatigue-induced humeral head translation. The dependence of this measurement on the scapula 

position was confirmed using an alternate humeral head translation measurement technique 

which, following fatigue, demonstrated significant superior translation, up to a magnitude of 

4.3mm across the range of arm elevation (Table 13). Thus, it is likely that previous researchers 

documenting fatigue-induced changes to humeral head position using the standard measurement 

approach substantially underestimated true superior humeral head translations. 

 Fatigue-related kinematic compensation strategies: additional 

considerations 

 The mean effect of fatigue on scapular rotation was protective against subacromial space 

reduction. It has previously been hypothesized that fatiguing the scapula stabilizing muscles 

would induce ST kinematic changes analogous to those with SAIS due to the inability of these 

muscles to maintain healthy scapular kinematics (Michener et al. 2003). Downward rotation, 

anterior tilting and protraction of the scapula all orient the acromion more inferiorly, such that it 

reduces the SAS (Chopp and Dickerson 2012). These orientation changes exist in those with 

SAIS (Ludewig and Reynolds 2009, Phadke et al. 2009). However, significant upward rotation 

occurred following fatigue. This trend has been documented in previous research and may act as 

a possible compensatory mechanism to widen the SAS, while assisting with further arm 

elevation to an overhead posture (Chopp et al. 2011, Ebaugh et al. 2006, McQuade et al. 1998). 

Despite this apparent protective outcome, excessive scapula upward rotation has been suggested 
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to potentially lead to glenohumeral instability or alteration of the length-tension relationships of 

the rotator cuff muscles (McQuade et al. 1998, Michener et al. 2003). 

The alternate humeral head translation measurement procedure identified a fatigue-driven 

superior translation of the humerus. While concurrent scapula upward rotation apparently 

maintained SAS size, thereby countering this superior translation, several other musculoskeletal 

health implications bear consideration. Superior humeral head translation may lead to the 

development of bone spurs and the alteration of the contact area and stresses on the glenoid 

cavity, which can result in morphologically-induced SAIS, bone degeneration, and instability 

(Anetzberger et al. 2002, Kelkar et al. 2001, Nicholson et al. 1996, Rockwood et al. 2009, Shah 

et al. 2001, Terrier et al. 2007, von Eisenhart-Rothe et al. 2008). While acromial morphology has 

often been attributed to genetic origins (Nicholson et al. 1996, Vahakari et al. 2010), researchers 

have indicated that a ‘hooked’ acromion may also be formed by excessive loading of the 

coracoacromial arch by means of superior humeral head translation (Nicholson et al. 1996, Shah 

et al. 2001, Wang and Shapiro 1997). This loading can result in the development of an 

enthesophyte and subsequently increase the risk of SAIS. A superior humeral head position, 

caused by instability or rotator cuff tears, can also alter the contact area and maximal contact 

stress imparted on the glenoid cavity (Anetzberger et al. 2002, Kelkar et al. 2001, von Eisenhart-

Rothe et al. 2008). This altered loading pattern may promote early cartilage degeneration (Kelkar 

et al. 2001), wear on the superior glenoid rim and reduced glenoid concavity (Rockwood et al. 

2009) as well as possible osteoarthritis (Terrier et al. 2007).  

 Kinematic Variability: Implications for SAIS 

 While the effect of fatigue on GH and ST kinematics was small, each measure exhibited 

substantial variability in the participant group. Humeral head position differed by 5.1 to 10.7mm 
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between 1-99% confidence limits (Table 13) depending on the elevation angle and fatigue state, 

with the post-fatigue state generally showing higher variation. Further, fatigue-induced ST 

changes of different polarity and of widely differing magnitudes existed across participants 

(Table 14). Extensive GH and ST kinematic variability coincided with previous reports (Borstad 

et al. 2009, Chen et al. 1999, Chopp et al. 2010, Ebaugh et al. 2006, Teyhen et al. 2008) and 

subsequently produced comparably diffuse magnitudes of changes in SAS size following fatigue, 

with differences of 5.7 to 9.3mm between confidence limits (Table 16). The thickness of 

subacromial tissues averages approximately 6mm in healthy individuals (Chapter 5 Results; 

Michener et al. 2013). Regardless of fatigue status, average subacromial tissue thickness 

measured in this study exceeded the average SAS as the arm was elevated to and above 60° 

(Table 16). This suggests that the average individual is at risk for tissue compression during 

controlled and fatigued arm elevation and further that individuals with tissue thicknesses above 

the mean and/or a SAS below the mean are at even higher risk for SAIS and eventual rotator cuff 

pathology. Additionally, the clinical significance of the extensive variability was assessed by 

considering the proportion of participants exhibiting kinematic changes consistent with SAS 

narrowing. Across all measures, a large proportion of participants exhibited fatigue-induced 

changes in disadvantageous orientations (Figure 20). Therefore, despite benign mean kinematic 

differences, half of the participants were at increased risk for fatigue-induced impingement 

beyond 60° of arm elevation, and over 2/3 of the population are at risk for alternate 

musculoskeletal disorders posed by a superior decentering of the humeral head. 

 Covariance of Kinematic Fatigue Responses 

 Correlation coefficients generally showed weak relationships. The strongest relationship 

identified was between superior humeral head translation (standard measurement) and SAS 
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reduction (-0.69) (Table 17). This strong correlation was expected given the significant fatigue-

induced upward scapula rotation. Any calculated positive (superior) fatigue-induced translation 

would indicate either: (1) enough upward movement of the humerus such that it exceeded the 

confounding effect of scapula upward rotation, or (2) very little to no scapula upward rotation 

was present following fatigue; either would subsequently result in a reduction of the subacromial 

space. Each of the three ‘injury-related’ rotation orientations (downward rotation, anterior tilt, 

protraction) were expected to strongly correlate with SAS reduction. Anterior tilting (0.49) and 

protraction (0.51) had moderate correlations, while upward rotation did not. Discrepancies in the 

directionality and magnitudes of coefficients across the range of elevation angle were likely 

attributed to the considerable inter-subject variability, and the associated differences in several 

factors, including the muscle moment arms and lines of action (Poppen and Walker 1978, 

Yanagawa et al. 2008), as well as individualized muscle fatigue in measured and unmeasured 

muscles. 

 Humerothoracic and Scapulothoracic Joint Angles: Multiple Measurement 

Verification 

 Humeral elevation angles between trials and participants were set using a manual 

goniometer and verified using angles derived from motion capture data. The derived angles 

generally overestimated the measured angles at 0° of elevation and increasingly underestimated 

the angles as the arm was elevated to 120°. Grewal (2011) similarly found that humeral elevation 

angles derived from recorded motion tracking data differed from the measured arm angles using 

a goniometer and reported that discrepancies were not uncommon. Overestimation of the 

extracted angles at a neutral posture may be due to soft tissues surrounding the arm and torso that 

prohibit the long axis of the humerus (y-axis) at neutral from being aligned with the y-axis of the 
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torso. As well, increasing discrepancies as the arm was elevated could be the result of possible 

trunk rotation. Similar to research by Grewal (2011), while a back plate was behind participants 

and upright posture encouraged, trunk posture was not constrained and thus participants may 

have leaned to assist with achieving higher elevation angles. It was anticipated that participants 

would have increased trunk lean following fatigue due to the increased difficulty in elevating 

their arm to the required postures. Thus, participants were verbally reminded not to lean, 

particularly during the post-fatigue trial. Despite eliciting differences in extracted angles (motion 

capture) from measured angles (goniometer), the resulting mean difference in elevation angle 

from pre-fatigue to post-fatigue states was less than 1° with an intraclass correlation coefficient 

of 0.99 (99% CI 0.98 – 0.99). This verified that participants were able to maintain a nearly 

identical posture between fatigue states and that differences can be attributed to fatigue effects 

rather than postural differences.  

Scapular upward/downward rotation was both extracted from recorded motion tracking 

data and measured from anterior-posterior radiographs. While the method of angle calculation 

differed, reliability was evaluated by comparing the change in rotation angle induced from 

muscle fatigue. Analysis revealed that there was generally good agreement between the 

measured and extracted angles, with motion capture slightly underestimating the measured 

fatigue-induced differences at each elevation angle. However, neither measurement approach 

could be considered a gold standard, as each had its associated limitations. Deviances may have 

been due to limitations associated with the acromial tracker which slightly underestimates 

scapula rotation (~2°) compared to gold standard non-invasive tracking methods (Grewal 2011). 

For motion capture methods, the scapula local coordinate system was created using markers 

placed on the skin, overlying anatomical landmarks. While these landmarks can be accurately 
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palpated, small differences between these landmarks and the radiographic image may persist due 

to soft tissue artifact (Langenderfer et al. 2008). Deviances may also arise from differences in 

anatomical axis definitions between measured and extracted angle methods. For angles extracted 

from motion capture data, three-dimensional anatomical axes were created for the scapula and 

torso according to ISB recommendations and were used to describe the ST orientation. For 

radiographic measurement, the long axis (y-axis) of the torso, which was required for scapula 

rotation measurement, was assumed to be vertically aligned with the image axis. As described 

earlier, while participants were encouraged to maintain an upright posture, even in neutral, the 

long axis of the torso may not have been perfectly upright.  

 Limitations 

 Certain limitations should inform future evaluation of subacromial kinematics. While 

humeral head position could be accurately extracted from all twenty-eight participants, the 

landmarks required for SAS measurement were unclear in half of the participants. Thus, 

presented results for this variable only reflected measurements from 14 participants. The 

difficulty stems from the three-dimensional positioning of the scapula and frequently sub-

optimal density of the inferior acromion. Across participants, those whose SAS was 

unidentifiable had 6.7 ± 3.5° greater anterior tilting depending on elevation angle, suggesting a 

more anteriorly tilted scapula as a potential cause for unreliable subacromial space 

measurements. Additionally, despite the previously confirmed ability of the acromial marker 

cluster to accurately measure three-dimensional ST changes (Grewal 2011), using a three-

dimensional imaging technique would reduce potential errors in extracted angles resulting from 

minor tracker movements on the skin, soft tissue artifact, or improper placements. Lastly, certain 

kinematic and electromyographic trials were excluded due to experimental recording error. 
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Specifically, one pair (pre-fatigue/post-fatigue) of rotation angles (0°), three pairs of 

protraction/retraction angles (0°, 30°, 60°) and 10 HT angles had to be excluded from analysis. 

Additionally, occasional channels of EMG from each exertion had to be excluded from analysis 

due to artifact. Generally, data from ≤ 3 participants were excluded for each muscle/exertion. 

However, data from four participants had artifact contamination in their infraspinatus wire 

electrode signal. For these participants, their corresponding infraspinatus surface electrode 

demonstrated MPF reductions of >25%. In addition, 50% of subscapularis wires for the 120° 

exertion had to be excluded. Thus, for this muscle, fatigue was primarily verified using the 60° 

exertion, however both 60° (p=0.0001) and 120° (p=0.0010) exertions indicated a significant 

reduction in MPF with magnitudes of 19.2 and 29.1%, respectively (Table 9). 

4.6 Conclusions 

Overall, three central conclusions were generated: 

1. Fatigue-induced GH and ST responses were highly variable among the measured 

population, thus solely considering the population mean may strongly underestimate 

SAIS risk. 

2. While the population mean responses did not implicate fatigue as a probable mechanism 

for SAIS development, approximately 50% of the measured population demonstrated 

kinematic responses that were indicative of subacromial space reduction.  

3. Fatigue-induced humeral head translation poses risk for the development of several 

additional pathologies such as bone spurs and/or alteration of contact area and contact 

stresses that can subsequently lead to glenoid cavity bone degeneration.  

Thus, repetitive overhead activity that is likely to exhaust the upper extremity 

musculature increases the risk for the development of musculoskeletal pathologies, notably 
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rotator cuff disorders. Therefore, exercise programs that strengthen these muscles groups to 

enable the maintenance of healthy kinematics should be designed for those frequently exposed to 

workplace tasks or activities of daily living that pose risk for their fatigue development.   
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Chapter 5  

Distribution of bone and tissue morphological properties related to 

subacromial space geometry in a young, healthy male population 

Overview 

Particular bone and tissue morphological features of the scapula and humerus often exist 

disproportionately in persons with subacromial impingement syndrome (SAIS) and/or rotator 

cuff pathology. The reported research evaluated the distribution of and correlation between these 

characteristics and the minimum subacromial space width (SAS) among a young, healthy, male 

population. Anterior-posterior and trans-scapular radiographs and musculoskeletal ultrasound 

were used to measure morphological characteristics related to the subacromial space. Each bone 

morphological characteristic was classified as healthy or unhealthy based on previous 

definitions. Further, the distribution of risk was evaluated by calculating the range of 

subacromial occupation ratios (tissue thickness to SAS) that exists in this population.  Each 

characteristic demonstrated considerable variability, with some participants having ‘unhealthy’ 

variants for each bone characteristic examined. The percentage of the population with bone 

characteristics classified as “unhealthy” ranged from 15 to 55% across those evaluated. The 

strongest correlation existed between the acromion index and the minimum subacromial space 

width (-0.59) suggesting that a larger lateral extension of the acromion may predispose an 

individual to SAIS. The average occupation ratio was 65.3% with a 1-99% confidence interval 

ranging from 21.6% to 108.9%. Occupation ratios indicated that individuals within this 

population are at risk for subacromial tissue compression solely based on morphological 

variation. This suggests that intrinsic predisposing geometry likely contributes to the 

development of SAIS and eventual rotator cuff pathology.   
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5.1 Introduction 

Variants of different morphological characteristics related to upper extremity bone 

(acromion, glenoid, and humerus) and tissue (supraspinatus tendon and subacromial bursa 

thickness) exist in the population. Each characteristic has been studied in terms of its variability 

across various populations and the differential influences of age and injury. While many of the 

studies documenting these characteristics have had large samples, included samples primarily 

consisted of surgical patients (Gill et al. 2002, MacGillivray et al. 1998, Toivonen et al. 1995, 

Tuite et al. 1995) or cadaveric specimens (Bigliani 1986, Edelson 1995). As well, these large 

samples were extended over a broad age range, from approximately 14 to 86 years and included 

both genders (Gill et al. 2002, MacGillivray et al. 1998, Tuite et al. 1995). No existing research 

defines the distribution of these characteristics amongst a relatively homogeneous group of 

healthy, young individuals, for which degenerative changes are not expected. 

The risk of developing subacromial impingement syndrome (SAIS), while exacerbated 

by musculoskeletal exposure, has been related to these morphological characteristics of the 

shoulder region.  Bone characteristics such as increased acromial anterior slope (Balke et al. 

2013, Bigliani 1986, Edelson 1995, Gill et al. 2002, Kitay et al. 1995, MacGillivray et al. 1998, 

Toivonen et al. 1995, Tuite et al. 1995), and lateral acromial angulation angles (Banas et al. 

1995, Tetreault et al. 2004), reduced acromial tilt angle (Aoki et al. 1986, Balke et al. 2013, 

Kitay et al. 1995, Zuckerman et al. 1992), and an increased lateral acromion to humerus ratio 

(acromion index) (Balke et al. 2013, Nyffeler et al. 2006, Torrens et al. 2007) have all been 

associated with SAIS and/or rotator cuff pathology. Additionally, an increased glenoid 

inclination angle has been associated with both increased superior migration of the humeral head 

and rotator cuff tear prevalence (Flieg et al. 2008, Hughes et al. 2003, Konrad et al. 2006, 

Maurer et al. 2012, Wong et al. 2003). While these abnormal morphological features have been 
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generally identified in an elderly population, leading researchers to hypothesize mechanistic 

origins to their development, variability in morphological features also exists in younger 

populations, suggesting possible genetic origins that would predispose individuals to SAIS 

(Nicholson et al. 1996, Vahakari et al. 2010). Additionally, while the interdependence of certain 

variables has been recently evaluated (Balke et al. 2013), the correlation between each of these 

variables and the minimum subacromial space width (SAS) has not been quantified.  

Identifying the bone morphological properties that contribute to reducing the size of the 

subacromial space amongst a young, healthy population is important in identifying the 

relationship between predisposing geometry and SAIS risk. However, to adequately assess the 

risk, a quantification of both the subacromial space and the thickness of the interposed tissues is 

necessary. Michener et al. (2013) recently calculated the ratio of supraspinatus tendon thickness 

to SAS, measured with musculoskeletal ultrasound, in participants with SAIS and matched 

controls and determined that even within a healthy population in a neutral arm posture, the 

tissues can occupy more than half of the space. This fraction is expected to be greater in elevated 

arm postures as the space is markedly reduced (Bey et al. 2007, Graichen et al. 1999a).  

Evaluating both bone and tissue related morphological features related to SAIS 

simultaneously on the same young, healthy population provides a comprehensive evaluation of 

inherent geometric predisposition, independent of age-related degenerative influences. 

Variability in morphological features within this population sub-group has important 

implications for the prevention of SAIS and eventual rotator cuff pathology.   
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Primary Research Objectives: 

1. Within a young, healthy male population, determine the distributions of bone and tissue 

morphological characteristics related to the subacromial space. 

2. Classify individual bone morphological characteristics as healthy or unhealthy based on 

previously defined ranges. 

3. Identify the correlation between each of the measured bone morphological 

characteristics, including the minimum subacromial space width. 

4. Calculate the occupation ratio (subacromial tissues to the minimum subacromial space 

width) as measured using radiographs and ultrasound. 

Secondary Research Objective: 

1. Construct population distributions for each of these measures based on the spread of data 

across subjects to be used as input into a probabilistic subacromial geometry model 

(Chapter 6). 

Research Hypotheses: 

It was hypothesized that while participants would generally show morphological characteristics 

that do not predispose them to SAIS risk, these characteristics, and the calculated occupation 

ratios, would be highly variable in the population. This would result in some individuals 

demonstrating a high predisposition to SAIS (tissues occupying a larger [>50%] proportion of 

the space and SAIS-related bone characteristics), and others demonstrating a low predisposition 

to SAIS (tissues occupying a smaller [<50%] proportion of the space and healthy bone 

characteristics). It was also hypothesized that the minimum subacromial space width, as 

measured using radiographs would consistently result in occupation ratios greater than those 

measured using ultrasound.  
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5.2 Methods 

The data required to address the research questions posed in this study were collected 

simultaneously with that of Chapter 4. Therefore, this study also took place at St. Joseph’s 

Healthcare Hamilton. 

 Participants 

Thirty-three healthy, right-hand dominant male participants between the ages of 18 and 

35 participated. A priori power analysis indicated that 30 participants would be sufficient to 

obtain adequate power (80%) from bone and tissue measurements (Cohen 1992). While the 

effect size calculated from healthy and rotator cuff tear groups varied across the literature (d = 

0.8 – 1.5), a sample size of less than 30 participants was calculated for most characteristics 

(exception of acromial anterior slope, d = 0.4) using two-tailed independent t-tests (Balke et al. 

2013, Faul et al. 2007, Hughes et al. 2003, Tetreault et al. 2004). Participants were initially 

screened using self-reports of pain and injury. Health status was verified by clinical impingement 

tests and a full shoulder ultrasound. This exam specifically identified the presence of tears in the 

supraspinatus, infraspinatus, subscapularis and long head of the biceps tendon, as well as 

documented any enthesophytes extending from the humerus, osteophytes, joint effusion or 

capsular distension of the acromioclavicular joint and/or bursal distension greater than 2mm (van 

Holsbeeck and Strouse 1993). Additionally, any abnormalities to the spinoglenoid notch and the 

posterior labrum were documented as well as ensuring participants did not exhibit anterior or 

lateral impingement of the subacromial tissues. As earlier described, two participants were 

excluded due to moderate abnormalities, including a dislocation of the long head of the biceps 

tendon superficial to the subscapularis and calcific tendinosis of the supraspinatus tendon. No 

other abnormalities were identified in any of the included participants, with bursal thicknesses all 
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≤ 1.4mm. Thus, data from thirty-one participants (25.0 ± 3.5 yrs, 1.8 ± 0.1m, 83.6 ± 13.9kg) 

were included in these analyses.  

 Instrumentation 

Radiography and Ultrasonography systems were used to capture relevant data from the 

right-side subacromial region of each participant. A Discovery XR656 Digital Radiography 

System (GE Healthcare, United Kingdom) with technical factors of 70kV and 320mA and a 

Toshiba Aplio XU (Toshiba Medical Systems Corporation, Japan) with a 7-14MHz linear 

transducer set at 14MHz were used to capture bone and tissue characteristics. 

 Experimental Procedures 

5.2.3.1 Radiography 

Anterior-posterior (frontal) view and trans-scapular (lateral) view radiographs were 

captured for each participant’s right shoulder. The x-ray beam was positioned perpendicular to 

the imaging plate with no caudal angulation. For the anterior-posterior radiograph, participants 

were rotated 30° to the beam (scapular plane) with their arm resting at neutral. For the trans-

scapular radiograph, the participants were rotated 90° to the imaging plate and their elbow was 

bent to 90° resting against their abdomen. Participants held a 1kg weight for each radiograph. 

Lead shielding was provided to protect against radiation. 

5.2.3.2 Ultrasonography 

Following the full shoulder ultrasound exam (to ensure study inclusion), three tissue 

measurements were captured: 1) supraspinatus tendon thickness, 2) maximal bursa thickness and 

3) minimum subacromial space width (SAS). The supraspinatus tendon was measured with the 

transducer positioned in a transverse (short axis) orientation, perpendicular to the tendon long 

axis. Participants placed their arm in the Middleton/Modified Crass position, in which the arm 
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was extended and elbow flexed such that their hand rested on their ipsilateral hip (Michener et al. 

2013, O’Neill 2008). Both the subacromial bursa thickness and the SAS were measured with the 

participant’s arm resting at neutral and the transducer oriented in a longitudinal (long axis) 

ultrasonic view with its medial margin placed upon the lateral margin of the acromion and 

spanning over the greater tuberosity. 

5.3 Data Analysis 

 Morphological Measurement 

Eight measures were extracted from the acquired images. Bone morphological 

characteristics were extracted from the radiographic images post hoc using GE PACS software 

(GE Healthcare, United Kingdom), while tissue measurements were obtained from real time 

freeze-framed ultrasonic images during the experimental collection.   

5.3.1.1 Acromial Anterior Slope (Radiographic) 

Acromial anterior slope, otherwise known as ‘acromial type’, was measured using the 

trans-scapular (lateral) radiographic view. First, the most anterior and posterior points on the 

inferior aspect of the acromion were identified. Two lines were then drawn from the midpoint 

(junction) of the inferior acromion to each of the identified points. The acromial anterior slope 

was the angle formed by the intersected lines, which was subsequently used to classify the 

acromial type (Balke et al. 2013, Bigliani 1986, Kitay et al. 1995). 

5.3.1.2 Lateral Acromial Angle (Radiographic) 

The lateral acromial angle was measured using the anterior-posterior (frontal) 

radiographic view. The lateral acromial angle, as defined by Banas et al. (1995), was determined 

by finding the intersection of the glenoid axis and a medial-lateral line drawn along the 

undersurface of the acromion process. The glenoid axis is a line connecting the superior-most 
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and inferior-most points of the anterior articular glenoid margin. The angle formed in the upper 

medial quadrant was defined as the lateral acromial angle.     

5.3.1.3 Acromial Tilt (Radiographic) 

Acromial tilt was measured using the trans-scapular radiographic view. This tilt angle 

was formed by the intersection of a line connecting the anterior-most and posterior-most points 

on the inferior aspect of the acromion, with a second line connecting the same posterior point on 

the acromion with the inferior-most point on the coracoid process (Aoki et al. 1986, Balke et al. 

2013, Kitay et al. 1995).  

5.3.1.4 Acromion Index (Radiographic) 

The acromion index was measured using the anterior-posterior radiographic view. This 

index was determined by calculating the ratio of the glenoid-acromion distance to the glenoid-

humerus distance. Specifically, the distance between the glenoid axis and the most lateral aspect 

of the acromion was measured and divided by the distance between the glenoid axis and the most 

lateral aspect of the humerus (Balke et al. 2013, Nyffeler et al. 2006).  

5.3.1.5 Glenoid Inclination (Radiographic) 

Glenoid inclination was measured using the anterior-posterior radiographic view. The 

inclination angle was defined as the intersection between the glenoid axis and a line drawn along 

the floor of the supraspinatus fossa (Maurer et al. 2012). The angle formed in the upper lateral 

quadrant was defined as the glenoid inclination (Bishop et al. 2009, Hughes et al. 2003). There 

have been several variations of the glenoid inclination measurement. This definition was selected 

due to its confirmed reliability (Maurer et al. 2012), however the supplementary angle was 

recorded to enable comparisons to injury-related research. 
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5.3.1.6 Supraspinatus Tendon Thickness (Ultrasonic) 

The average supraspinatus tendon thickness from three anterior-posterior tendon 

locations were calculated. Locations were measured at 5, 10 and 15mm lateral to the 

hyperechogenicity of the biceps tendon (Figure 21). At each location, the thickness of the tendon 

was defined as a linear measurement perpendicular to the tendon from the hypoechoic thin rim 

articular cartilage of the humeral head (inferiorly) to the peribursal hyperechoic fat and bursal 

capsule (superiorly). Specific measurement locations were selected to be more anterior than 

previously described literature (Cholewinski et al. 2008, Michener et al. 2013, Wallny et al. 

1999). The supraspinatus extends approximately 2.3cm (range: 1.8 to 3.3cm) in length (anterior-

posterior) and 1.6 cm (range: 1.2 to 2.1cm) in width (medial-lateral) (Curtis et al. 2006) with 

considerable interdigitation with the infraspinatus occurring at the posterior aspect of the 

supraspinatus tendon (O’Neill 2008). The contact area and primary site of SAIS is the anterior 

third of the acromion (Flatow et al. 1994, Neer 1972). Thus, previous techniques that averaged 

the measured tendon thicknesses at 10, 20 and 30mm (Cholewinski et al. 2008, Wallny et al. 

1999) or even 10, 15 and 20mm (Michener et al. 2013) may have underestimated injury risk and 

included anterior portions of the infraspinatus tendon. 

5.3.1.7 Subacromial Bursa Thickness (Ultrasonic) 

The subacromial bursa overlays the supraspinatus tendon and thus occupies additional 

subacromial space. The thickness of the bursa was defined as a linear measurement between the 

capsular wall/peribursal fat layers on either sides of the bursa at the point of maximum thickness. 

In a longitudinal orientation, the transducer was moved from the lateral biceps tendon to 

approximately 15mm posterior, from which the maximal bursa was recorded. 
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5.3.1.8 Minimum Subacromial Space Width (Radiographic and Ultrasonic) 

The minimum subacromial space width (SAS) was recorded using both measurement 

systems. Radiographically, the SAS was measured on the anterior-posterior image. It was 

defined as the minimum distance between the superior aspect of the humeral head and the dense 

cortical undersurface of the acromion process (Gruber et al. 2010, Lehtinen et al. 2000, Petersson 

and Redlund-Johnell, 1984, Thompson et al. 2011, Weiner and MacNab 1970) (Chapter 4). 

Ultrasonically, the SAS was quantified at two transducer locations, anterior and mid-lateral. The 

transducer was positioned in a longitudinal orientation with the participant’s arm in neutral. For 

the anterior measurement, the transducer was placed on the anterior-most aspect of the acromion 

with the long axis of the transducer oriented in the scapular plane, parallel to the flat surface of 

the acromion (Michener et al. 2013). For the mid-lateral measurement, the transducer was moved 

to the midpoint of the acromion. The SAS was defined as a linear measurement between the 

superior aspect of the humeral head and the inferior cortical margin of the acromion. 
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Figure 21. Supraspinatus tendon thickness measurements obtained using a transverse ultrasonic 

view. Measurements were captured at 5mm (F), 10mm (D) and 15mm (B) lateral to the 

hyperechogenicity of the biceps tendon. At each location, the thickness of the tendon was 

measured perpendicular to the tendon from the hypoechoic thin rim articular cartilage of the 

humeral head (inferiorly) to the peribursal hyperechoic fat and bursal capsule (superiorly). 

 Morphological Classifications and Characteristic Comparisons 

Several evaluations of the morphological data contextualized them with respect to SAIS 

risk. For each characteristic, the mean and 1-99% confidence interval were calculated. 

Distributions were generated by performing Kolmogorov-Smirnov (K-S) statistical tests using 

custom Matlab® software to determine the goodness-of-fit between the experimental measures 

and theoretical distributions (Haldar and Mahadevan 2000, Massey 1951). All characteristics 
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were first tested for normality using a conservative alpha (α) level of 0.01 and number of 

participants (n) of 35, which elicits a criterion of d = 0.21.  

Bone morphological characteristics for each participant were classified according to 

previously defined ranges which assess each participant’s relative predisposition to SAIS (Table 

19).  

Table 19. Classification of bone morphological characteristics (unhealthy = association with 

rotator cuff pathology). 

Morphological 

Characteristic 

Morphological Sub-

characteristic Classification/Health Status  

Reference from which 

classification obtained 

or healthy/unhealthy 

trend developed 

Acromial 

Morphology 

Acromial anterior 

slope (acromial type)  

x > 27° (Type III)               

13° ≤ x ≤ 27° (Type II) 

0° ≤ x ≤ 12° (Type I)           

[Unhealthy]  

 

[Healthy] 

Toivonen et al. (1995) 

Lateral acromial angle 
x ≤ 70°       

x > 70°                                                         

[Unhealthy]  

[Healthy] 

Banas et al. (1995) 

Tetreault et al. (2004)  

Acromial tilt 
x ~ < 30°   

x ~ > 30°                                                     

[Unhealthy]  

[Healthy] 
Zuckerman et al. (1992) 

Acromion index 
x ~ > 0.65      

x ~ < 0.65                                                    

[Unhealthy]  

[Healthy] 

Balke et al. (2013) 

Nyffeler et al. (2006) 

Torrens et al. (2007) 

Glenoid 

Orientation 
Glenoid inclination 

x > 95° Upward Tilt           

x < 95° Downward Tilt                         

[Unhealthy]   

[Healthy] 

Extrapolated from Hughes 

et al. (2003) who reported 

90° using slightly modified 

measurement technique 

Subacromial 

Space Width 

Acromio-humeral 

distance 

x < 5mm                             

5mm < x < 7mm (Grey) 

x > 7mm                                 

[Unhealthy]  

 

[Healthy] 

Cotton & Rideout (1964) 

Golding (1962) 

Weiner & MacNab (1970) 

 

Correlation coefficients between each of the bone morphological measurements, 

including the minimum subacromial space width obtained from the radiographic image, were 

calculated to develop a correlation matrix. Correlation coefficients were classified as excellent 

(0.81 – 1.00), good (0.61 – 0.80), moderate (0.41 – 0.60), fair (0.21 – 0.40), or poor (0.00 – 
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0.20), similar to previous research (Balke et al. 2013). Additionally, three occupation ratios were 

calculated for each participant. This ratio was obtained by dividing the combined subacromial 

tissue thickness by the SAS (Michener et al. 2013). This tissue thickness was divided by each of 

the three measured SASs obtained from (1) radiographs and (2) ultrasound (both anterior and 

mid-lateral). 

 Measurement Reliability Analysis 

Radiographic measurements were performed by JN Chopp-Hurley who has previous 

experience extracting kinematic measurements from anterior-posterior shoulder radiographs. An 

intra-rater reliability analysis was performed by re-measuring a sample of 15 radiographs. All 

radiographs were blinded with the re-measurement protocol occurring two weeks following the 

primary measurement. An inter-rater analysis was performed by an experienced musculoskeletal 

radiologist. A sample of 15 radiographs were randomly selected for which each measurement 

was performed. Ultrasonic measurements were performed by a senior ultrasound technologist 

with over 30 years of experience. As measurements were obtained in real-time, solely intra-rater 

reliability was evaluated. However, the full shoulder ultrasound exam and all measurements were 

reviewed and confirmed by the musculoskeletal radiologist following completion of the 

experimental collection. A random sample of nine participants were selected in which all 

measurements were repeated.  

To verify intra- and inter-rater agreement a Bland-Altman analysis was conducted using 

Matlab® (Chapter 4; Bland and Altman 2010). Additionally, paired t-tests (p<0.05) were 

performed and intraclass correlation coefficients calculated using SPSS Statistics 22 (IBM 

Corporation, USA) to confirm results of the Bland-Altman analysis. 
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5.4 Results 

Despite the similarity in age and health status of the included participants, there was a 

wide range of morphological characteristic magnitudes. Each characteristic displayed 

considerable variance which subsequently produced large confidence intervals (Table 20 – Table 

22). The K-S statistical test (α = 0.01) indicated that each of the eight characteristics (i) measured 

were normally distributed with dmaxi values ranging from 0.07 to 0.14 (dmaxi < d [0.21]), thus 

frequency diagrams plotting real participant-measured data were fit with normal distributions, 

further highlighting the extensive variability exhibited across all characteristics (Figure 22).     

Table 20. Mean (1-99% Confidence Interval) and the percentage of participants in the healthy 

and unhealthy ranges for each bone morphological characteristic. 

Characteristic Mean [1-99% CI] % in Healthy Range 

(n=31) 

Acromial anterior slope (°) 18.0 [0 – 53.9] ° 84%  

 32% Flat 

 52% Curved 

Lateral acromial angle (°) 79.9 [49.2 – 110.7] ° 84% 

Acromial Tilt (°) 31.5 [15.9 – 47.0] ° 61% 

Acromial Index 0.62 [0.35 – 0.89] ° 45% 

Glenoid Inclination (°) 95.0 [75.6 – 114.3] ° 45% 
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Table 21. Mean (1-99% Confidence Interval) and the percentage of participants in the healthy 

and unhealthy ranges for the minimum subacromial space width measured using the anterior-

posterior radiograph and ultrasound with the transducer positioned at the anterior (Ant) and mid-

lateral (M/L) acromion. 

Subacromial Space Measurement 

Technique 

Mean [1-99% CI] 

 

% in Healthy Range (n) 

(>7mm) 

Radiograph (n=28) 9.7 [4.8 – 14.5] mm 97% (n = 27) 

Ultrasound (Ant) 

(n=31) 

11.5 [5.9 – 17.1] mm 100% (n = 31) 

Ultrasound (M/L) 

(n=31) 

11.3 [5.1 – 17.6] mm 100% (n = 31) 

 

Table 22. Mean (1-99% Confidence Interval) of the measured subacromial tissues, their 

calculated sum and the occupation ratios (Total Tissue Thickness/Minimum Subacromial Space 

Width – Radiographs and Ultrasound).  

Tissue Mean [1-99% CI]  

Supraspinatus Tendon Thickness 5.3 [2.7 – 7.9] mm 

Subacromial Bursa Thickness 0.9 [0 – 1.8] mm 

∑Tissue Thickness (Supraspinatus Tendon 

Thickness + Subacromial Bursa Thickness) 
6.1 [3.4 – 8.8] mm 

Occupation Ratio (∑Tissue Thickness/Minimum 

Subacromial Space Width [Radiograph]) 
65.3 [21.6 – 108.9] % 

Occupation Ratio (∑Tissue Thickness/Minimum 

Subacromial Space Width [Ant Ultrasound]) 

54.1 [25.2 – 83.0] % 

Occupation Ratio (∑Tissue Thickness/Minimum 

Subacromial Space Width [M/L Ultrasound]) 

54.8 [25.6 – 84.2] % 
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Figure 22. Frequency histograms of each bone morphological characteristic with overlying 

normal distribution curve. 

Bone morphological characteristics were classified for health status based on previously 

defined ranges for healthy individuals and those with SAIS and/or rotator cuff tears (Table 19). 

Generally, for each bone morphological characteristic, most participants were classified as 

healthy (Figure 23). However, over half of participants (58%) presented with two or more 

unhealthy morphological characteristics. The lateral acromial angle and acromial anterior slope 
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showed the largest percentage (84%) of healthy measurements across participants (Figure 23, 

Table 20). For the remaining three characteristics (acromial tilt, acromion index, glenoid 

inclination), close to half of participants were classified as healthy. However, for the acromion 

index and glenoid inclination, slightly more than half measured in the unhealthy range (Figure 

23, Table 20).  

The mean measured SAS was classified as healthy for nearly all participants when 

captured from both radiographic and ultrasonic images. Only one participant presented with a 

SAS that was classified in the lower grey region (5.2mm). Further, for three participants, it was 

not possible to reliably measure the SAS radiographically as they lacked the dense white cortical 

line of the inferior acromion. While generally identified as healthy, the SAS obtained from 

radiographs were consistently lower than that obtained from either ultrasound images, with a 

confidence interval extending into the previously identified injury range (Figure 23). The SAS 

measured with two different ultrasound views were similar with a maximum intra-participant 

difference of 2.8mm. 
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Figure 23. Bone morphological characteristics (mean, standard deviation) classified into healthy 

and unhealthy ranges; n = the number of participants presenting with each classification (Note: 

ntotal = 31).  
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 There was a wide distribution of tissue thicknesses and subsequently, occupation ratios, 

among the population. The radiographic occupation ratio elicited an average of 10.5% and 11.2% 

greater than mid-lateral and anterior ultrasonic ratios, respectively (Table 22). Due to high 

variability in both SAS and tissue thickness, substantial overlap exists between their fit normal 

distributions (Figure 24). This overlap was confirmed by the 99% confidence limit for the 

radiographic occupation ratio which exceeded 100% (108.9%) (Table 22).   

 

Figure 24. Frequency histograms of the minimum subacromial space width (measured using 

anterior-posterior radiographs) and the interposed subacromial tissue thickness (sum of 
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supraspinatus tendon thickness and subacromial bursa) with overlying normal distribution 

curves.  

The covariance between each of the five morphological characteristics and the minimum 

(radiographic) subacromial space width ranged from poor to moderate (0.01-0.59) (Table 23).  

The strongest correlations were negative between the acromion index and both the SAS (-0.59) 

and the lateral acromial angle (-0.41).  

Table 23. Correlation matrix for bone morphological properties captured using radiographs. 

 
Acromial 

Anterior 

Slope 

Lateral 

Acromial 

Angle 

Acromial Tilt 
Acromion 

Index 

Glenoid 

Inclination 

Minimum 

Subacromial 

Space Width 

Acromial 

Anterior 

Slope 

 0.13 -0.01 -0.09 0.07 0.12 

Lateral 

Acromial 

Angle 

0.13  -0.16 -0.41 -0.27 0.16 

Acromial Tilt 

 

 

-0.01 -0.16  -0.02 0.20 0.17 

Acromion 

Index 

 

-0.09 -0.41 -0.02  0.18 -0.59 

Glenoid 

Inclination 

 

0.07 -0.27 0.20 0.18  0.01 

Minimum 

Subacromial 

Space Width 

0.12 0.16 0.17 -0.59 0.01  

 

5.4.1.1 Measurement Reliability 

 Measurement reliability for each of the described characteristics was determined to be 

adequate based on the combined outcomes of Bland-Altman plots, paired t-tests and intraclass 

correlation coefficients. Bland-Altman plots generally showed good agreement for both intra-

rater and inter-rater measurements, despite the presence of outliers in occasional measurements. 
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This agreement was supported by paired t-tests that showed no statistically significant (p>0.05) 

differences present within or between rater measurements. Additionally, intraclass correlation 

coefficients indicated excellent agreement with coefficients ranging from 0.951 to 0.995 for 

intra-rater and 0.897 to 0.991 for inter-rater measurements. For ultrasound measurements 

excellent agreement was similarly identified with intraclass correlation coefficients between 

0.868 and 0.983, with no statistically significant (p>0.05) differences present between 

measurements and a single outlier across all characteristics. Bland-Altman plots for inter- and 

intra- rater reliability are presented in Appendix 3.  

5.5 Discussion 

The wide distribution of bone and tissue morphological characteristics supported the 

hypothesis that while most participants had bone morphological characteristics classified as 

healthy, each of these characteristics were highly variable amongst this population, suggesting 

their subsequent variable predisposition to SAIS risk. For the acromial anterior slope, lateral 

acromial angle and acromial tilt, most participants had bone shapes classified as healthy (Table 

19). Alternatively, for the acromion index and glenoid inclination, just over half of participants 

had measurements associated with higher risk of SAIS and/or rotator cuff pathology (Balke et al. 

2013, Hughes et al. 2003, Konrad et al. 2006). For both radiograph and ultrasonic measurements 

of the SAS, all but one participant (on radiograph) was classified as healthy (Table 20).  

Calculation of the occupation ratios confirmed a wide range of risk posed to participants 

based on their bone and tissue morphology (Table 22). Beyond increased risk for individuals, 

with some demonstrating ratios >80%, the average occupation ratios were also informative. An 

inverse relationship between the SAS and humeral elevation exists, with SAS less than 4mm at 

elevated arm postures (Chapter 4 Results; Bey et al. 2007, Graichen et al. 1999a). Given the wide 
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distribution of values in a neutral arm posture (Table 22), with a mean ratio >50%, even the 

“average” participant is at risk for SAIS with arm elevation, and the ends of the distribution will 

almost certainly have tissue compression. In a study by Graichen et al. (1999a), the smallest SAS 

across the range of elevation was measured at 120°, however, they reported that the SAS vector 

passed through the supraspinatus tendon in 100% of participants at 60° of elevation and 50% of 

participants at 90° of elevation while at greater elevation angles (such as 120°), the vector passed 

lateral to the tendon. More recent research suggests that during scapular plane elevation, the 

vector passes lateral to the tendon at angles above 72°, however this upper limit was shown to be 

highly variable (Giphart et al. 2012). Thus, this mid-range of elevation likely poses the highest 

risk for tendinous injury. This can be visualized by evaluating the overlap between the 

distribution of subacromial tissue thicknesses and the SAS at a neutral arm posture (measured in 

this research) (Figure 24 & Figure 25) and elevated arm postures (measured in Chapter 4) 

(Figure 25). The substantial overlap between the tissue thickness and SAS at 60° and 90° 

indicates nearly universal risk for tissue compression with arm elevation. 
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Figure 25. Normal distribution curves for the subacromial tissue thickness (measured in this 

research), the minimum subacromial space width (SAS) at neutral (measured radiographically in 

this research), and the SAS at both 60° and 90° of elevation (measured in Chapter 4). Shading 

indicates areas of overlap between the SAS (at neutral and/or in elevated postures) and the 

interposed tissues where tissue compression occurs. 

As anticipated, a higher occupation ratio was calculated for the radiographic image, given 

the imaging restrictions of ultrasound. Average ratios of 65.3%, 54.1% and 54.8% were 

calculated using radiographic and ultrasonic (anterior, mid-lateral) space measurements, 

respectively (Table 22). The measurement of the SAS on anterior-posterior radiographs seldom 

occurred at the lateral-most point of the acromion where ultrasound measures are captured. 
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Additionally, the undersurface of the acromion may be outside the ultrasound imaging area 

resulting in the subsequent underestimation of the true occupation ratio (Michener et al. 2013).  

The occupation ratio calculated using exclusively ultrasound with the anterior transducer 

measurement was nearly identical to that reported by Michener et al. (2013). Despite the 

previous use of the anterior measurement of the subacromial space, the mid-lateral location 

elicited a slightly closer magnitude to the radiographic measurement, likely due to higher 

visibility and thus more robust identification of the inferior acromion on the mid-lateral 

measurement. 

 Morphological covariance 

 In evaluating the interdependence of bone morphological characteristics and the 

minimum (radiographic) subacromial space width several characteristics showed poor to fair 

correlations, while few showed moderate correlations (Table 23). Both the coefficient 

magnitudes and directionalities closely agreed with recent research (Balke et al. 2013). The 

relatively strong relationship between the acromion index and SAS (-0.59) can be explained, as a 

larger lateral extension of the acromion, which would increase the acromion index, would 

influence the path of the deltoid muscle around the humeral head and create a higher superior 

shear force, thereby reducing the subacromial space (Nyffeler et al. 2006). The acromion index 

had a moderate negative relationship with the lateral acromial angle, likely due to the common 

glenoid axis between measurements (Balke et al. 2013, Nyffeler et al. 2006). With a reduced 

lateral acromial angle (downward sloping acromion), the distance between the glenoid axis and 

the most lateral acromial point is increased, subsequently increasing the acromion index. All 

other correlations were < 0.30.  
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 Implications of bone and tissue morphological variability 

Despite solely including a young, healthy population, considerable variation in bone and 

tissue morphological properties suggests that intrinsic genetic variation contributes to eventual 

SAIS development. Association of specific morphological characteristics, in particular the 

acromial anterior slope angle, with age-related degeneration or rather genetics has been subject 

to debate. The distribution of acromial types in the lifespan displays an increased proportion of 

type III (hooked) acromions and fewer type I (flat) acromions, indicating that acromial 

morphology is related to age-related degeneration (Wang and Shapiro 1997). Instead of a genetic 

variant, the hook has been attributed to the development of a bone spur or enthesophyte 

extending from the anterior-inferior aspect of the acromion as a result of repeated contact with 

the humeral head (Nicholson et al. 1996, Shah et al. 2001, Wang and Shapiro 1997). Shah et al. 

(2001) has presented histologic evidence supporting age-related degeneration of the acromion, 

showing that type II and III acromial types showed degeneration in the collagen, fibrocartilage or 

bone of the anterior-inferior acromion, while type I types did not. Despite these reports, there is 

also conflicting data indicating limited to no relationship between acromial type and age, with 

type III acromions existing across the entire age range (Balke et al. 2013, Banas et al. 1995, 

Nicholson et al. 1996, Vahakari et al. 2010). While age-related changes to shoulder morphology 

are certainly possible, the presence of predisposing bone morphology in this research supports 

the role of genetics in the risk of SAIS and/or rotator cuff pathology. 

 Limitations 

 Limitations related to image capture and measurement should be considered when 

interpreting these results. The relationship between the radiographic beam angle and the 

positioning of the participant can influence post hoc measurements (Fehringer et al. 2008, Stehle 
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et al. 2007). For both radiographic views (anterior-posterior and trans-scapular), the beam was 

oriented perpendicular to the imaging plate. The caudal tilt angle of the beam has varied between 

studies (5 to 20°) and has been shown to largely influence the measured angles, particularly the 

acromial anterior slope (Stehle et al. 2007). Thus, capturing images with no caudal tilt may have 

resulted in an underestimation of the acromial anterior slope angle, which may have 

subsequently lead to more participants falsely classified as “healthy”. Further, while all 

measurements had excellent inter- and intra- rater reliability, there were outliers for some 

measures that may be consequent to the radiograph quality.  

Lastly, while all injury classification ranges were based on available data, the glenoid 

inclination classification may slightly diverge from those in the literature due to the variation in 

measurement technique. The measurement method in this research was one established recently 

by Maurer et al. (2012) that was shown to reliably measure inclination on radiographs. Thus, the 

injury classification of approximately 90° by Hughes et al. (2003) was modified to 95° to include 

the difference in measurement technique. 

5.6 Conclusions 

Large variation in bone and tissue morphology around the subacromial space existed 

among a population of young, healthy males. This large variation extended into unhealthy 

classifications of bone shapes, suggesting that members of the population may be predisposed to 

SAIS risk and/or rotator cuff pathology due to their intrinsic genetic morphology. These results 

also suggest that the risk itself is also highly variable, as evidenced by occupation ratios with a 

99% confidence interval ranging from a modest 21.6% to 108.9%. This supports altered 

rehabilitation and treatment strategies and the prospective utility of morphological evaluations 

that may enable proactive injury reduction strategies.  
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Chapter 6  

Development of a Probabilistic Model for the Prediction of 

Subacromial Geometry  

Overview 

Glenohumeral and scapulothoracic kinematic relationships, as well as morphological 

characteristics of the scapula and humerus affect the dimensions of the subacromial space. Each 

of these measures vary considerably within the population, which can lead to misleading 

estimations of subacromial impingement risk (SAIS). Additionally, the relative influence of each 

parameter on subacromial space variability is unclear. This research used a probabilistic 

modelling approach to predict the size of the subacromial space and estimate the SAIS risk using 

empirically measured distributions of fatigue-induced kinematics and morphological parameters. 

Through use of the Advanced Mean Value (AMV) probabilistic method, relative sensitivity 

factors were calculated to establish which parameters contributed more to the variability in SAIS 

risk. As expected, the predicted minimum subacromial space width (SAS) had considerable 

variability as evidenced by 1-99% confidence intervals differing by an average of 8mm. While 

the SAS was not influenced by muscle fatigue, within each fatigue state the space reduced with 

arm elevation to magnitudes between 4.5-5mm, which were comparable to those measured in 

vivo. This reduction in space with elevation, coupled with the measured interposed tissue 

thickness, resulted in an estimated 65-75% of the population at risk for tissue compression at 

elevation angles of 90 and 120°. Calculated importance factors showed morphological 

parameters, notably glenoid inclination, to be particularly important in modulating the size of the 

SAS over the range of elevation, while kinematic parameters depended on elevation angle and 

fatigue state. This reinforced avoiding overhead work postures if possible, as they certainly pose 
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additional risk for rotator cuff tendon compression. Further, as glenoid inclination is difficult to 

diagnose and treat, and relates to superior humeral head translation, rotator cuff strengthening 

programs are recommended to maintain glenohumeral stability, particularly in populations 

exposed to overhead postures and/or fatiguing exertions. 

6.1 Introduction 

Incorporating variability into predictive models, particularly in biomechanics research, is 

crucial for capturing physiological realism. Each variable or parameter that contributes to the 

overall output has an associated level of uncertainty and thus relying on population mean values 

to represent each variable fails to capture this variability, subsequently resulting in possibly 

misleading outcomes (Langenderfer et al. 2006, Laz and Browne 2010). Probabilistic approaches 

can be used to evaluate the influence of model parameter uncertainty on the predicted output by 

representing each parameter as a probability distribution. Often, minor perturbations in inputs 

and/or model parameters can have a remarkable influence on the predicted outputs (Easley et al. 

2007, Langenderfer et al. 2006, 2008, 2009, Pal et al 2007). However, despite demonstrating 

critical utility for characterizing biological tissue variation, the overall use of probabilistic 

modelling in biomechanics is still limited.  

The risk of developing subacromial impingement syndrome (SAIS), and subsequent 

tissue damage, has been attributed to several bone and tissue morphological characteristics in 

addition to kinematic alterations that may result from fatiguing overhead and/or repetitive tasks. 

The considerable interpersonal variability that exists for each of these characteristics (Chapters 4 

and 5) coupled with the clinical relevance of small changes in magnitude (~1mm) demonstrates 

the essential need to apply probabilistic methods in the evaluation of SAIS risk that exists in the 

population. Our research group has previously tried to evaluate this variability in risk by using a 
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deterministic modelling approach, which evaluated the influence of humeral head translation and 

scapular reorientation on the size of the subacromial space, while considering both ‘average’ and 

‘worst-case’ scenarios for reducing the subacromial space (Chopp and Dickerson 2012). Even in 

a relatively homogeneous sample (gender, age, health status), there was significant variability in 

each kinematic parameter, which subsequently led to a highly variable prediction of the 

minimum subacromial space width (SAS).  

The many parameters contributing to subacromial space reduction, and their collective 

interpersonal variability, reinforced the necessity to apply probabilistic methods to evaluate the 

distribution of subacromial space geometry resulting from parameter variation. Additionally, 

employing the Advanced Mean Value (AMV) probabilistic approach enabled the calculation and 

comparison of importance factors that describe which of the several factors were more 

contributory towards the output variability. Determining the distribution of subacromial 

geometry and the primary mechanisms (morphological, kinematic) contributing to the reduction 

in this space, both in controlled and fatigue-related scenarios, is critical in the prevention of 

SAIS, as each mechanism may be addressed by different targeted rehabilitative and prevention 

strategies as well as ergonomic interventions.  

Research Objectives: 

1. Develop a probabilistic model to predict the distribution of minimum subacromial space 

width (SAS) of a young, healthy male population, based on varying empirically measured 

morphological characteristics and fatigue-related glenohumeral and scapulothoracic 

kinematics. 

 Estimate the probability of SAIS risk by comparing the predicted SAS to the 

distribution of subacromial tissue thicknesses. 
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2. Determine which parameters (kinematic, morphological) contributed more to 

subacromial space reduction. 

Research Hypotheses: 

It was hypothesized that superior humeral head translation would be a more important 

contributor to subacromial space reduction than three-dimensional scapular orientation following 

fatigue due to reported fatigue-initiated glenohumeral and scapulothoracic kinematics (Chapter 4 

Results; Chen et al. 1999, Chopp et al. 2010, 2011, Cote et al. 2009, Ebaugh et al. 2006, 

McQuade et al. 1998, Teyhen et al. 2008). This would highlight the importance of rotator cuff 

strengthening in a population exposed to overhead and/or repetitive tasks that fatigue these 

muscles. It was also hypothesized that morphological parameters that have shown strong 

associations with rotator cuff damage and/or SAIS, such as acromial morphology and glenoid 

inclination (Balke et al. 2013, Hughes et al. 2003, Toivonen et al. 1995), would be as important 

as the kinematic factors for subacromial space reduction, as demonstrated by model predicted 

relative sensitivity factors. Further, it was anticipated that the risk, both kinematic and 

morphological, would vary across the studied population, with certain members at considerably 

greater risk than others. Confirmation of these hypotheses would reinforce the overall research 

hypothesis that the SAS size, and subsequent SAIS risk, is highly variable in the population. 

Specifically, that certain members of the population have innate geometry that predisposes them 

to SAIS risk which is further exacerbated by fatigue-related kinematic factors, such as humeral 

head translation, while others demonstrate healthy morphological classifications and kinematic 

fatigue responses, thus having low risk of SAIS development.   



151 

 

6.2 Model Parameters and Simulations 

Nine parameters (four kinematic, five morphological) were treated as continuous random 

variables in the probabilistic model. Kinematic parameters were obtained from the experimental 

research described in Chapter 4, and the morphological parameters were obtained from the 

experimental research described in Chapter 5.  

Model Parameters 

Kinematic (Chapter 4) 

 Superior-inferior translation (mm) 

 Upward-downward rotation (°) 

 Posterior-anterior tilt (°) 

 Retraction-protraction (°) 

Morphological (Chapter 5) 

 Glenoid inclination (°) 

 Lateral acromial angle (°) 

 Acromial anterior slope (acromial type) (°) 

 Acromial tilt (°) 

 Acromion index 

 

The effect of model parameter variability on the minimum subacromial space width (mm) (SAS) 

was predicted for ten different experimental conditions: 

 Humeral Elevation Angle (0°, 30°, 60°, 90°, 120°) 

 Fatigue State Session (pre-fatigue, post-fatigue) 

It is important to note that only the kinematic parameters varied as a function of these conditions; 

thus for the acromion and glenoid morphological characteristics, identical distributions were 

used for each condition (all arm elevation angles and for each fatigue state). 
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6.3 Model Construction 

 Deterministic Subacromial Geometry Model 

The Probabilistic Subacromial Geometry Model first required the development of a 

Deterministic Subacromial Geometry Model that described and manipulated the geometric 

relationships and bone morphology (Figure 26). This model was sub-divided into the 

Deterministic Morphological Model and the Deterministic Kinematic Model. The Deterministic 

Morphological Model preceded the kinematic model, in that it permitted altering the specific 

geometry of the humerus and scapula corresponding to the measured morphological parameters, 

prior to altering the kinematic relationship between the bones. This model is described in Section 

6.3.1.1. Following morphological manipulation, the Deterministic Kinematic Model established 

the relationship between the humerus, the scapula and the torso, which permitted modifying 

glenohumeral superior-inferior translation and scapulothoracic rotations associated with specific 

humerothoracic positions. This model is summarized in Chopp and Dickerson (2012) and is 

described briefly in Section 6.3.1.2. The overall output of the Deterministic Subacromial 

Geometry Model was the calculated minimum subacromial space width (SAS) between the 

inferior-most point on the acromion and superior-most point on the humeral head.  
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Figure 26. Overview of Subacromial Geometry Model. Morphological and Kinematic 

Parameters are measured in vivo from which population distributions for each measurement are 

obtained. The model is manipulated such that the bone shapes correspond to the measured 

distributions. The morphologically manipulated model is used as input into the kinematic model. 

The model is then manipulated such that the relationships between the bones correspond to the 

measured distributions, for each of the ten conditions (fatigue state, elevation angle). The 

predicted output is a distribution of minimum subacromial space width for each condition.  

6.3.1.1 Deterministic Morphological Model 

The bone segments used in the construction of this model were obtained from the CT 

images of the Visible Human Male dataset of The Visible Human Project (U.S. National Library 

of Medicine, Ackerman 1988). The geometric input for this model, specifically the three-
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dimensional point clouds (coordinate data) of each of the upper extremity bones (humerus, 

scapula, clavicle, and torso [ribs, spine]) in a common coordinate system, were obtained from the 

upper extremity model presented in Dickerson et al. (2007). The humerus was constructed from 

3807 points7, the scapula from 3601 points, the clavicle from 1207 points, the ribs from 7659 

points and the spine from 19739 points. Each point was defined as a three-dimensional vector in 

the common ‘global’ or ‘scan’8 system. Prior to commencing morphological manipulation, the 

points (three-dimensional coordinates) associated with three sub-segments on the scapula were 

identified: (1) acromion process, (2) coracoid process, and (3) glenoid cavity.  

Five morphological manipulations were performed: (1) Glenoid Inclination, (2) Lateral 

Acromial Angle, (3) Acromial Anterior Slope, (4) Acromial Tilt, and (5) Acromion Index. 

Parameters were manipulated in the described order to account for certain landmark/axis 

dependencies. Each of the first four morphological manipulations followed the same three 

general steps: (1) determine the global/scan angle, (2) alter the bone geometry so that the angle 

corresponded to the measured angle specified, and (3) verify that the new angle was correct. 

Alternatively, the Acromion Index involved a different manipulation protocol. While the first 

four parameters were ‘rotational’, the Acromion Index was ‘translational’. The morphological 

manipulation procedure for the first four parameters is described, followed by a description of 

the Acromion Index manipulation procedure. 

 

 

 

                                                 
7 The term ‘point’ represents a three-dimensional vertex (x,y,z) on one of the upper extremity bones (humerus, 

scapula, clavicle, ribs, spine) 
8 For the purpose of model description, the “Scan” coordinate system, represents the “Global” coordinate system 
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A: Glenoid Inclination, Lateral Acromial Angle, Acromial Anterior Slope, Acromial Tilt 

Part I: Determine the ‘Scan (Global)’ Angle 

1. Local Glenoid System Identification 

The local glenoid system was defined using points located on the superior, inferior, medial 

and lateral-most borders of the glenoid cavity. The +𝑋-axis was directed approximately 

anteriorly, the +𝑌-axis was directed approximately superiorly, and the +𝑍-axis was directed 

approximately laterally (as described in Section 2.2.1). Though this system has not been 

previously defined in the literature, these directions correspond to ISB recommended orientations 

(Wu et al. 2005), consistent with all other local coordinate systems created in this model.  

For all five morphological parameters, as in vivo measurements were obtained from 

anterior-posterior and trans-scapular radiographs in two-dimensions, the local glenoid system 

was used as the global reference axis where: the Glenoid Y-Z plane represented an anterior-

posterior radiograph and the Glenoid X-Y plane represented a trans-scapular radiograph. Thus, all 

parameters were projected onto the local glenoid system, with corresponding angles calculated in 

two dimensions (consistent with in vivo measurements). This concept is fundamental to the 

understanding of all morphological manipulations described. 

2. Rotation Matrices from Global (‘Scan’) system to glenoid local coordinate system 

A rotation matrix between the global system (defined as an identity matrix) and the local 

glenoid system was created [Eq. 6-1]. Note: for each of the measurements, the original 

(unaltered) glenoid coordinate system was used to develop the rotation matrix, as the intended 

goal was to make the local glenoid system synonymous with the radiographic image.  

    𝑅𝐺𝐿𝐸𝑁
𝐺𝐶𝑆 = [

𝑖𝐺𝐿𝐸𝑁 ∙ 𝑖𝐺𝐶𝑆 𝑗𝐺𝐿𝐸𝑁 ∙ 𝑖𝐺𝐶𝑆 𝑘𝐺𝐿𝐸𝑁 ∙ 𝑖𝐺𝐶𝑆

𝑖𝐺𝐿𝐸𝑁 ∙ 𝑗𝐺𝐶𝑆 𝑗𝐺𝐿𝐸𝑁 ∙ 𝑗𝐺𝐶𝑆 𝑘𝐺𝐿𝐸𝑁 ∙ 𝑗𝐺𝐶𝑆

𝑖𝐺𝐿𝐸𝑁 ∙ 𝑘𝐺𝐶𝑆 𝑗𝐺𝐿𝐸𝑁 ∙ 𝑘𝐺𝐶𝑆 𝑘𝐺𝐿𝐸𝑁 ∙ 𝑘𝐺𝐶𝑆

]         [Eq.6-1] 
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Where,  

𝑅𝐺𝐿𝐸𝑁
𝐺𝐶𝑆  is the rotation matrix to rotate points from the global-to-glenoid coordinate system 

𝑖, 𝑗, 𝑘 are the unit vectors of the x, y and z axes, respectively 

 

3. Identification of Anatomical Landmarks required for Angle Definition 

The points corresponding to the anatomical landmarks used to measure the specific angle 

were identified. Note: specific measurement procedures for each of the parameters have been 

previously described (Chapter 5). 

4. Rotation/Translation of Points into the Local Glenoid System 

Each of the points identified in Step 3 were then rotated into the local glenoid system about 

the glenoid system origin (center of the glenoid cavity) [Eq. 6-2]. 

𝑃⃑ 𝐺𝐿𝐸𝑁,𝑝,𝑖 = 𝑅𝐺𝐿𝐸𝑁
𝐺𝐶𝑆 ∗ (𝑃⃑ 𝐺𝐶𝑆,𝑝,𝑖 − 𝐶𝐺𝐺𝐶𝑆)             [Eq.6-2] 

Where, 

𝑃⃑ 𝐺𝐿𝐸𝑁,𝑝,𝑖 and 𝑃⃑ 𝐺𝐶𝑆,𝑝,𝑖 are the points/anatomical landmarks (𝑖 = 1,2, … , 𝑛) that create the 

specific angle for each parameter (𝑝 =  𝑔𝑙𝑒𝑛𝑜𝑖𝑑 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛,
𝑎𝑐𝑟𝑜𝑚𝑖𝑎𝑙 𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑠𝑙𝑜𝑝𝑒,…) in the local glenoid and global (scan) coordinate systems, 

respectively 

𝑅𝐺𝐿𝐸𝑁
𝐺𝐶𝑆  is the rotation matrix to rotate the points from the global-to-glenoid coordinate 

system [Eq. 6-1] 

𝐶𝐺𝐺𝐶𝑆 is the origin of the local glenoid system (center of the glenoid cavity) in the global 

coordinate system 

 

5. ‘Scan’ (Global) Angle Calculation 

The ‘scan angle’ or ‘global angle’, which corresponded to the parameter angle before 

being rotated, was calculated [Eq. 6-3]. This angle, however, may have changed if its angle was 

dependent on previous parameters (i.e. the glenoid inclination and lateral acromial angle 

parameters both use a common glenoid y-axis in its angle manipulation, thus modifying the 

glenoid inclination would subsequently alter the lateral acromial ‘scan’ angle). 
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For the angle calculation, only two coordinates were used to more accurately reflect the 

two-dimensional in vivo measurement protocol. The Glenoid Inclination, Lateral Acromial 

Angle, and Acromion Index parameters were obtained from an anterior-posterior radiograph (Y-

Z glenoid plane) and thus only y and z coordinates were used. The Acromial Anterior Slope and 

Acromial Tilt parameters were obtained from a trans-scapular radiograph (X-Y glenoid plane) 

and thus only x and y coordinates were used. 

𝜃𝑆𝐶𝐴𝑁,𝑝 = 𝑐𝑜𝑠−1(
𝑉1⃑⃑⃑⃑  ∙ 𝑉2⃑⃑ ⃑⃑  ⃑

‖𝑉1⃑⃑⃑⃑ ‖∗‖𝑉2⃑⃑⃑⃑ ‖
)               [Eq. 6-3] 

Where, 

𝜃𝑆𝐶𝐴𝑁,𝑝 is the scan angle of the parameter (𝑝)  

𝑉1
⃑⃑  ⃑ and 𝑉2

⃑⃑  ⃑ are the two vectors that create the specific angle for each parameter (𝑝), 

calculated using the specific points described in Step 4 (Chapter 5). 

 

Part II: Change the Angle to the ‘Measured’ angle 

6. Local Coordinate System Construction for Parameter-specific Coordinate Systems 

Each parameter was rotated about parameter-specific coordinate systems, consistent with 

measurement descriptions described in Chapter 5. For example, in the case of the Acromial 

Anterior Slope, a local coordinate system about the distal acromion was developed. 

7. Rotation Matrices from Global (‘Scan’) system to LCS 

Rotation matrices to rotate points from the global ‘scan’ system to the parameter-specific 

LCS were constructed [Eq.6-4]. 

    𝑅𝐿𝐶𝑆,𝑝
𝐺𝐶𝑆 = [

𝑖𝑝 ∙ 𝑖𝐺𝐶𝑆 𝑗𝑝 ∙ 𝑖𝐺𝐶𝑆 𝑘𝑝 ∙ 𝑖𝐺𝐶𝑆

𝑖𝑝 ∙ 𝑗𝐺𝐶𝑆 𝑗𝑝 ∙ 𝑗𝐺𝐶𝑆 𝑘𝑝 ∙ 𝑗𝐺𝐶𝑆

𝑖𝑝 ∙ 𝑘𝐺𝐶𝑆 𝑗𝑝 ∙ 𝑘𝐺𝐶𝑆 𝑘𝑝 ∙ 𝑘𝐺𝐶𝑆

]            [Eq.6-4] 

Where, 

𝑅𝐿𝐶𝑆,𝑝
𝐺𝐶𝑆  is the rotation matrix to rotate points from the global coordinate system to the 

parameter-specific local coordinate system 
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𝑖, 𝑗, 𝑘 are the unit vectors of the x, y, and z axes, of the parameter-specific (𝑝) local 

coordinate system (𝐿𝐶𝑆) and global (𝐺𝐶𝑆) coordinate systems 

 

8. Definition of Measured/Manipulation Angle 

To accommodate probabilistic interfacing, the manipulation angle was defined such that 

altering a single value for each parameter would rotate the required points so that the resulting 

angle corresponded to that measured in vivo. This was achieved by first subtracting the initial 

Scan Angle from the measured angle [Eq. 6-5]. 

    𝛽𝑝 = 𝜃𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷,𝑃 − 𝜃𝑆𝐶𝐴𝑁,𝑝              [Eq.6-5]  

Where, 

𝛽𝑝 is the manipulation angle for each parameter (𝑝) 

𝜃𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷,𝑃 and 𝜃𝑆𝐶𝐴𝑁,𝑝 are the measured and scan angles, respectively, expressed in 

radians 

 

9. Direction Cosine Matrix Construction 

The manipulation angle was defined about one of the local axes of the parameter-specific 

coordinate systems described in Step 6. For example, in the case of the Acromial Anterior Slope 

(captured from a trans-scapular radiograph; X-Y glenoid plane), the points would be rotated 

about the z-axis (approximate lateral axis) of the local distal acromion (parameter-specific) 

coordinate system [Eq. 6-6]. 

    𝑅𝜃𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷 ,𝑝
𝜃𝑆𝐶𝐴𝑁,𝑝

= [

cos𝛽𝑝 −𝑠𝑖𝑛𝛽𝑝 0

𝑠𝑖𝑛𝛽𝑝 𝑐𝑜𝑠𝛽𝑝 0

0 0 1

]            [Eq.6-6] 

Where, 

𝑅𝜃𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷,𝑝
𝜃𝑆𝐶𝐴𝑁,𝑝

 is the rotation matrix to rotate points from the original scan angle to the 

measured in vivo angle about the local z-axis. 
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10.  Rotation of Points to Correct Orientation 

The rotation was then applied to each of the points specific to the particular parameter 

definition (distal acromion, coracoid and/or lateral glenoid cavity) [Eq. 6-7]. The rotation point 

was specific to each parameter and was selected to most accurately represent the in vivo 

measurement description. For example, for the Acromial Anterior Slope, the rotation point was 

the mid-substance of the acromial junction (Figure 27). 

𝑉⃑ 𝐿𝐶𝑆,𝑝,𝑖 = 𝑅𝐿𝐶𝑆,𝑝
𝐺𝐶𝑆 ∗ (𝑉⃑ 𝐺𝐶𝑆,𝑝,𝑖 − 𝑃𝐺𝐶𝑆,𝑝)            [Eq. 6-7] 

𝑉⃑ 𝐿𝐶𝑆,𝑝,𝑖,𝛽 = 𝑅𝜃𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷 ,𝑝
𝜃𝑆𝐶𝐴𝑁,𝑝

∗ (𝑉⃑ 𝐿𝐶𝑆,𝑝,𝑖)  

𝑉⃑ 𝐺𝐶𝑆,𝑝,𝑖,𝛽 = ([𝑅𝐿𝐶𝑆,𝑝
𝐺𝐶𝑆 ]

′
∗ 𝑉⃑ 𝐿𝐶𝑆,𝑝,𝑖,𝛽) + 𝑃𝐺𝐶𝑆,𝑝   

Where, 

𝑉⃑ 𝐺𝐶𝑆,𝑝,𝑖 and 𝑉⃑ 𝐿𝐶𝑆,𝑝,𝑖 are all of the points specific to the parameter definition (𝑖) of the 

particular parameter (𝑝) in the global and their local coordinate system, respectively 

𝑉⃑ 𝐺𝐶𝑆,𝑝,𝑖,𝛽 and 𝑉⃑ 𝐿𝐶𝑆,𝑝,𝑖,𝛽 are all of the points specific to the parameter definition (𝑖) of the 

particular parameter (𝑝) in the global and their local coordinate system, respectively, 

following the angle manipulation 

𝑅𝐿𝐶𝑆,𝑝
𝐺𝐶𝑆  is the rotation matrix to rotate points from the global coordinate system to the 

parameter-specific local coordinate systems for each particular parameter (𝑝). 

𝑃𝐺𝐶𝑆,𝑝 is the rotation point for the angle manipulation of a particular parameter (𝑝) in the 

global coordinate system  
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Figure 27. Manipulation of the Acromial Anterior Slope (Acromial Type); Left: 7.1° (𝜇 − 1𝜎), 

Right: 28.9° (𝜇 + 1𝜎). 

Part III: Verify that New Angle is correct 

 The final step was to ensure that the new angle following the morphological manipulation 

was equal to the angle specified (in vivo measurement angle). This was achieved by repeating 

Steps 4-5 described in Part I, using the new rotated points in the angle calculation. 

Morphological manipulations were rigorously tested to ensure this verification prior to 

commencing probabilistic simulation.  

B: Acromion Index 

The Acromion Index is a parameter describing the lateral extension of the acromion 

process relative to that of the humeral head and thus morphological manipulation involved both a 

translation of existing points and the addition of new points, depending on the measured ratio. 

While certain assumptions were required for the manipulation of each morphological parameter, 
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two important assumptions for the Acromion Index are necessary for the understanding of the 

morphological manipulation. First, changing the Acromion Index (ratio of [lateral acromion–

glenoid axis] to [lateral humerus–glenoid axis]) could result from the bone extension of either the 

acromion process or humeral head. For the purpose of this research, it was assumed that any 

modification to the ratio was a result of equal alteration of the acromion and humeral head. 

Second, as described, the common reference axis for both measurement components (acromion, 

humerus) was the glenoid axis, as measured in vivo. To maintain physiologically feasible bone 

morphology, the scan glenoid axis (prior to altering glenoid inclination) was used as the common 

reference axis. Initial testing using the rotated glenoid axis, resulted in creating bone dimensions 

that were physiologically impossible.  

The manipulation procedure for the Acromion Index is summarized as follows: 

1. Identification of Lateral-most Points on the Acromion Process and Humeral Head 

The lateral-most vertices on the acromion process and humeral head were first identified. 

These points were obtained by determining the points with the largest z-coordinate magnitude 

after the vertices were rotated into the local glenoid system, in which +𝑧 was directed laterally. 

2. Rotation/Translation of Points into the Local Glenoid System 

Each of the points identified in Step 1 were then rotated into the local glenoid system 

about the glenoid system origin [Eq. 6-2]. Only the y and z coordinates were used in further steps 

as in vivo measurements were obtained from an anterior-posterior radiograph. 

3. ‘Scan’ (Global) Index Calculation 

The scan (global) Acromion Index was calculated by determining the length of two 

vectors perpendicular to the glenoid axis passing through: (1) the lateral-most acromion point 
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and (2) the lateral-most humeral point. The ratio of these two vectors defined the Acromion 

Index [Eq. 6-8]. 

    𝐴𝐼𝑆𝐶𝐴𝑁 = 
𝐺𝐴𝐴

𝐺𝐴𝐻
                [Eq.6-8]  

    𝐺𝐴𝐴 =  
‖(𝑃𝐺𝑆−𝑃𝐺𝐼)×(𝑃𝐴−𝑃𝐺𝐼)‖

‖(𝑃𝐺𝑆−𝑃𝐺𝐼)‖
  

    𝐺𝐴𝐻 = 
‖(𝑃𝐺𝑆−𝑃𝐺𝐼)×(𝑃𝐻−𝑃𝐺𝐼)‖

‖(𝑃𝐺𝑆−𝑃𝐺𝐼)‖
  

Where, 

𝐺𝐴𝐴 and 𝐺𝐴𝐻 are the perpendicular vectors between the glenoid axis and the lateral-

most acromion point and humeral head point, respectively 

𝑃𝐺𝑆 and 𝑃𝐺𝐼 are the superior-most and inferior-most points of the glenoid cavity, 

respectively, and (𝑃𝐺𝑆 − 𝑃𝐺𝐼) defines the glenoid axis 

𝑃𝐴 and 𝑃𝐻 are the lateral-most points on the acromion and humeral head, respectively 

 

4. Definition of Measured/Manipulation Index 

The Acromion Index measured in vivo was then defined and used to calculate the 

required translation for both acromion and humerus points [Eq.6-9].  

 𝑑𝐺𝐴𝐴 =
(𝐴𝐼𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷∗𝐺𝐴𝐻)−𝐺𝐴𝐴

2
  [Eq.6-9] 

    𝑑𝐺𝐴𝐻 =

𝐺𝐴𝐴

𝐴𝐼𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷
−𝐺𝐴𝐻

2
  

Where, 

𝑑𝐺𝐴𝐴 and 𝑑𝐺𝐴𝐻 are translation terms for the acromion points and humeral head points, 

respectively 

 𝐴𝐼𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷 is the Acromion Index measured in vivo 

 𝐺𝐴𝐴 and 𝐺𝐴𝐻 are the terms described in [Eq.6-8] 

 

5. Specification of Translation Conditions and Application of Translation 

All of the points on the lateral acromion and lateral humerus were identified using a 

similar procedure to that described in Step 1. Each of these points was then rotated into the local 

glenoid system where a translation about the local z-axis was applied [Eq.6-10] (Figure 28). 

Note: if 𝐴𝐼𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷 > 𝐴𝐼𝑆𝐶𝐴𝑁, then there was more acromial extension which would 
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subsequently result in lateral translation of the lateral acromion points (+z) and medial translation 

of the lateral humeral points (-z). If 𝐴𝐼𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷 < 𝐴𝐼𝑆𝐶𝐴𝑁, the opposite would occur. 

𝑉⃑ 𝑋,𝐺𝐿𝐸𝑁,𝑖 = 𝑅𝐺𝐿𝐸𝑁
𝐺𝐶𝑆 ∗ (𝑉⃑ 𝑋,𝐺𝐶𝑆,𝑖 − 𝐶𝐺𝐺𝐶𝑆)                            [Eq. 6-10] 

𝑉⃑ 𝑋,𝐺𝐿𝐸𝑁,𝑖,𝑡 = 𝑉⃑ 𝑋,𝐺𝐿𝐸𝑁,𝑖 + [0 0 𝑑]   

𝑉⃑ 𝑋,𝐺𝐶𝑆,𝑖,𝑡 = ([𝑅𝐺𝐿𝐸𝑁
𝐺𝐶𝑆 ]′ ∗ 𝑉⃑ 𝑋,𝐺𝐿𝐸𝑁,𝑖,𝑡) + 𝐶𝐺𝐺𝐶𝑆   

Where, 

𝑉⃑ 𝑋,𝐺𝐶𝑆,𝑖 and 𝑉⃑ 𝑋,𝐺𝐿𝐸𝑁,𝑖 are all of the points (𝑖) on the lateral acromion or humerus (𝑋) in the 

global and glenoid coordinate systems, respectively 

𝑉⃑ 𝑋,𝐺𝐶𝑆,𝑖,𝑡 and 𝑉⃑ 𝑋,𝐺𝐿𝐸𝑁,𝑖,𝑡 are all of the points (𝑖) on the lateral acromion or humerus (𝑋) in 

the global and glenoid coordinate systems, respectively, following translation 

𝑅𝐺𝐿𝐸𝑁
𝐺𝐶𝑆  is the rotation matrix to rotate points from the global-to-glenoid coordinate system 

𝐶𝐺𝐺𝐶𝑆 is the origin of the local glenoid system (center of the glenoid cavity) in the global 

coordinate system 

𝑑 is the translation term for 𝑋 (either 𝑑𝐺𝐴𝑃or 𝑑𝐺𝐴𝐻) 

 

 

 

Figure 28. Manipulation of the Acromion Index; Left: 0.54 (𝜇 − 1𝜎), Right: 0.70 (𝜇 + 1𝜎). 
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6. Verification of New Index 

Similar to other morphological parameters, Steps 1-3 were repeated using the new 

translated points to ensure that the new Acromion Index was equal to the Index specified (in vivo 

measurement angle). 

7. Addition of New Acromion/Humeral Head Vertices 

As the Acromion Index parameter required translational manipulation rather than 

rotational (as was the case with other parameters), an increase or decrease in Acromion Index 

from the original Scan Index resulted in a stretch to the acromion and humerus, respectively. 

This stretch presented as an area with no vertices. As it was possible that the location of the 

minimum distance (SAS) calculated following kinematic manipulation could exist in this area, a 

conditional statement was added to the model to create additional points (3D vertices) for each 

bone segment where the area was stretched and a gap existed. There were 12 points created for 

the acromion and 36 points created for the humeral head. These vertices were created at 25, 50 

and 75% of the distance between the points on either side of the stretched surface. 

The ‘new’ scapula and humerus were used as input into the kinematic model, where 

humerothoracic, scapulothoracic and glenohumeral rotations and translations were defined 

and applied to the morphologically varied bones. 

6.3.1.2 Deterministic Kinematic Model 

The kinematic model involved nine sequential steps, described as follows: 

1. Anatomical Landmark Identification and Local Coordinate System Construction  

Anatomical landmarks required to construct local coordinate systems (LCS) of the 

scapula, humerus and torso, as per ISB recommendations, were manually identified from the 

three-dimensional (3D) coordinate data (Wu et al. 2005) [Eq.6-11]. A local glenoid coordinate 

system (as described in the morphological model) was additionally constructed. 
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 𝑧𝑆𝐶𝐴𝑃 =
(𝐴𝐴−𝑇𝑆)

‖(𝐴𝐴−𝑇𝑆)‖
                                                                [Eq.6-11] 

 𝑡𝑒𝑚𝑝 =  
(𝐴𝐴−𝐴𝐼)

‖(𝐴𝐴−𝐴𝐼)‖
 

𝑥𝑆𝐶𝐴𝑃 =
(𝑡𝑒𝑚𝑝−𝑧𝑆𝐶𝐴𝑃)

‖(𝑡𝑒𝑚𝑝−𝑧𝑆𝐶𝐴𝑃)‖
  

𝑦𝑆𝐶𝐴𝑃 = 𝑧𝑆𝐶𝐴𝑃 × 𝑥𝑆𝐶𝐴𝑃  
 

Where, 

[𝑥𝑆𝐶𝐴𝑃, 𝑦𝑆𝐶𝐴𝑃, 𝑧𝑆𝐶𝐴𝑃 ] is the local coordinate system of the scapula, defined as per ISB 

recommendations 

𝐴𝐴, 𝑇𝑆, 𝐼𝐴 are the anatomical landmarks used in the LCS definition (Angulus Acromialis, 

Trignoum Spinae Scapulae, Angulus Inferior)  

 

2. Rotation Matrices from Global (‘Scan’) system to LCS 

Rotation matrices to rotate points from the global/scan system to the humerus, scapula 

and torso LCS were constructed, in addition to a rotation matrix between the glenoid and scapula 

LCS.  

3. Definition of the Measured Humeral Head Translation Parameter 

The humeral head translation (HHT) parameter was implemented into the model as a 

translation along the y-axis of the glenoid system (to accurately represent the in vivo 

measurement protocol). This parameter was defined in the local glenoid system (𝑡𝐺𝐿𝐸𝑁 =

[0 𝐻𝐻𝑇 0]) and converted from millimeters to ‘scan units’ using a scaling factor of 2.7920. This 

scaling factor was calculated from a conversion factor reported in Garner and Pandy (1999), 

which presented the 3D coordinates of specific anatomical landmarks and the corresponding 

distances between landmarks in millimeters, using the same Visible Human Male dataset. The 

acromioclavicular and sternoclavicular landmarks were used to calculate the scaling factor as 

they exist on the same segment, thus differences in inter-segmental relationships between this 

model and that presented by Garner and Pandy (1999) would not affect the scaling factor.  

 



166 

 

4. Definition of the Measured Scapulothoracic Parameters and Humerothoracic Position 

The scapulothoracic parameters (scapula rotation, tilt and protraction/retraction), in 

addition to the humerothoracic position (elevation, plane of elevation, axial rotation) were 

implemented into the model using the experimentally measured Euler Angles. As the joint angles 

were being used to set the bone positions, a reverse process to that described in Chapter 4 was 

used. Specifically, joint angles (in radians) were used to define direction cosine matrices around 

X, Y or Z axes, depending on their particular rotation axis. The ISB recommended rotation 

sequences were then used to create a rotation matrix from the local torso to scapula system [Eq. 

6-12] and to humerus system [Eq. 6-13], from which their inverses were obtained [Eq. 6-14]. 

Note: a neutral humerothoracic position was defined as 0° of elevation, 34.3° plane of elevation 

and 35.7° of external rotation. Plane of elevation and internal/external rotation positions were 

consistent across conditions evaluated and represented the average positions of those 

experimentally measured. A neutral scapulothoracic position was 0.3° of downward rotation, 

19.3° of anterior tilt and 31.8° of protraction which represent the average positions of those 

experimentally measured in the pre-fatigue state at 0° of elevation. These resting scapulothoracic 

angles are comparable to those previously reported (Ludewig et al. 2009).     

𝑅𝑇_𝑆 = 𝑅𝑍(𝛼)𝑅𝑋(𝛽)𝑅𝑌(𝛾)                                                [Eq.6-12] 

𝑅𝑇_𝑆 = [

𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛼 − 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛼 −𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛼 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛼 + 𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛼
𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛼 + 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛼 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝛼 − 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽

−𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛽 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛽
] 

Where, 

𝛼 is scapula anterior/posterior tilt  

𝛽 is scapula upward/downward rotation 

𝛾 is scapula protraction/retraction 
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𝑅𝑇_𝐻 = 𝑅𝑌′(𝛾2)𝑅𝑋(𝛽)𝑅𝑌(𝛾)                                             [Eq.6-13] 

𝑅𝑇_𝐻 = [

𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛾2 − 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛾2 𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾2 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛾2 + 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝛾2

𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽 −𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛽
−𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝛾2 − 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛾2 𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛾2 𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛾2 − 𝑠𝑖𝑛𝛾𝑠𝑖𝑛𝛾2

] 

Where, 

𝛾 is plane of humeral elevation 

𝛽 is humeral elevation 

γ2 is humeral internal/external rotation 

 

𝑅𝑆_𝑇 = [𝑅𝑇_𝑆]
′
                                                                   [Eq.6-14]  

    𝑅𝐻_𝑇 = [𝑅𝑇_𝐻]
′
 

Where, 

𝑅𝑆_𝑇 is the rotation matrix from the local scapula system to the local torso system 

𝑅𝐻_𝑇 is the rotation matrix from the local humerus system to the local torso system 

 

5. Definition of the Scapula and Humerus Centers of Rotation 

The centers of rotation of the scapula (acromioclavicular joint) and humerus 

(glenohumeral joint center) were rotated into the local torso system. The rotation of the 

glenohumeral joint center into the torso system, first involved three-dimensionally aligning it 

with the center of the glenoid cavity following which a lateral offset of 9.5 units (26.5mm) along 

the glenoid lateral axis (z-axis) was applied (Chopp and Dickerson 2012) [Eq. 6-15]. Note: a 

neutral posture was defined as having no superior-inferior humeral head translation, thus the 

glenohumeral joint center was three-dimensionally aligned with the center of the glenoid cavity 

with the lateral offset applied. 
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𝐺𝐻𝑇𝑂𝑅 = (𝑅𝑇𝑂𝑅
𝑆𝐶𝐴𝑃 ∗  (𝑅𝑆𝐶𝐴𝑃

𝐺𝐿𝐸𝑁 ∗ 𝐺𝐻𝐺𝐿𝐸𝑁)) + (𝑅𝑇𝑂𝑅
𝑆𝐶𝐴𝑃 ∗ 𝐶𝐺𝑆𝐶𝐴𝑃) + 𝐴𝐶𝑇𝑂𝑅               [Eq.6-15]  

Where, 

𝐺𝐻𝑇𝑂𝑅 is the glenohumeral joint center in the local torso system 

𝐺𝐻𝐺𝐿𝐸𝑁 is the glenohumeral joint center in the local glenoid system incorporating a 

lateral offset from three-dimensional alignment with 𝐶𝐺 ([0 0 𝜑]) (𝜑 = 9.5 (26.5𝑚𝑚)) 

𝐶𝐺𝑆𝐶𝐴𝑃 is the center of the glenoid cavity, defined as the midpoint between superior and 

inferior borders of the glenoid cavity, in the local scapula system 

𝑅𝑇𝑂𝑅
𝑆𝐶𝐴𝑃 and 𝑅𝑆𝐶𝐴𝑃

𝐺𝐿𝐸𝑁 are rotation matrices to rotate points from the scapula-to-torso and 

glenoid-to-scapula coordinate systems 

𝐴𝐶𝑇𝑂𝑅 is the acromioclavicular joint in the torso system 

 

6. Rotate points from scan system to local torso system 

The collective points defining each of the segments (humerus, scapula, clavicle, and torso 

[ribs, spine]) were rotated into the common local torso coordinate system. This sequence of 

rotation incorporated the measured humerothoracic and scapulothoracic joint angles, in addition 

to the lateral humeral offset. An example of these rotations and translations, for the humerus 

segment is demonstrated in [Eq. 6-16]. 

𝑉⃑ 𝐻𝑈𝑀,𝑖 = 𝑅𝐻𝑈𝑀
𝐺𝐶𝑆 ∗ (𝑉⃑ 𝐺𝐶𝑆,𝑖 − 𝐺𝐻𝐺𝐶𝑆)                                   [Eq. 6-16] 

𝑉⃑ 𝑇𝑂𝑅,𝑖 = (𝑅𝑇𝑂𝑅
𝐻𝑈𝑀 ∗ 𝑉⃑ 𝐻𝑈𝑀,𝑖) + 𝐺𝐻𝑇𝑂𝑅  

Where, 

𝑉⃑ 𝐺𝐶𝑆,𝑖, 𝑉⃑ 𝐻𝑈𝑀,𝑖 and 𝑉⃑ 𝑇𝑂𝑅,𝑖 are all of the points of the humeral head (𝑖) in the global, 

humerus and torso coordinate systems, respectively. 

𝑅𝐻𝑈𝑀
𝐺𝐶𝑆  and 𝑅𝑇𝑂𝑅

𝐻𝑈𝑀are rotation matrices to rotate points from the global-to-humerus and 

from humerus-to-torso coordinate systems, respectively 

𝐺𝐻𝐺𝐶𝑆 and 𝐺𝐻𝑇𝑂𝑅 is the glenohumeral joint center in global and torso coordinate 

systems, respectively  

 

7. Apply humeral head translation 

The humeral head translation, 𝑡𝐺𝐿𝐸𝑁 (defined in Step 3), was then applied to the new 

humerus points [Eq. 6-18]. Since the humerus was in the local torso system, 𝑡𝐺𝐿𝐸𝑁 also needed to 
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be defined in the torso system (𝑡𝑇𝑂𝑅). This was achieved by a rotation from the local glenoid 

system to scapula system and scapula system to torso system [Eq. 6-17]. 

𝑡𝑇𝑂𝑅 = 𝑅𝑇𝑂𝑅
𝑆𝐶𝐴𝑃 ∗ (𝑅𝑆𝐶𝐴𝑃

𝐺𝐿𝐸𝑁 ∗ 𝑡𝐺𝐿𝐸𝑁)                                      [Eq. 6-17] 

𝑉𝑡⃑⃑⃑⃑ 
𝑇𝑂𝑅,𝑖 = 𝑉⃑ 𝑇𝑂𝑅,𝑖 + 𝑡𝑇𝑂𝑅                                                    [Eq. 6-18] 

Where, 

𝑡𝐺𝐿𝐸𝑁 and 𝑡𝑇𝑂𝑅 are the translation terms in the glenoid and torso systems, respectively 

𝑅𝑆𝐶𝐴𝑃
𝐺𝐿𝐸𝑁 and 𝑅𝑇𝑂𝑅

𝑆𝐶𝐴𝑃are rotation matrices to rotate points from glenoid-to-scapula and from 

scapula-to-torso coordinate systems, respectively 

𝑉𝑡⃑⃑⃑⃑ 
𝑇𝑂𝑅,𝑖 is all of the points of the humeral head (𝑖) in the torso coordinate system with the 

humeral head translation applied 

 

8. Determine the minimum distance between each of the points on the humeral head and on the 

acromion process 

Each of the points on the humeral head and acromion process were identified and the 

distance between these coordinates calculated [Eq. 6-19], from which a minimum distance was 

identified (SAS) (Figure 29). 

𝐷𝑖𝑠𝑡𝑆,𝐻 = ‖𝑉⃑ 𝑇𝑂𝑅,𝑆 − 𝑉𝑡⃑⃑⃑⃑ 
𝑇𝑂𝑅,𝐻‖                                         [Eq. 6-19] 

Where, 

𝐷𝑖𝑠𝑡𝑆,𝐻 is the distance between each of the points (𝑆) on the acromion (𝑉⃑ 𝑇𝑂𝑅,𝑆) and each 

of the points (𝐻) on the (translated) humeral head 𝑉𝑡⃑⃑⃑⃑ 
𝑇𝑂𝑅,𝐻 (Note: all points are in the 

common local torso system) 

 

9.  Scaling factor applied to obtain minimum distance in millimeters 

The minimum distance obtained from Step 8 when then converted to millimeters using 

the scaling factor described in Step 3. 
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Figure 29. Kinematic Manipulation; Left: SAS increasing kinematics – Inferior Translation, 

Upward Rotation, Posterior Tilt, Retraction, Right: SAS decreasing kinematics – Superior 

Translation, Downward Rotation, Anterior Tilt, Protraction. Orientation magnitudes are: 𝜇 + 1𝜎 

with subsequent minimum SAS widths of 10.4mm and 8.5mm, respectively. 

In addition to the steps described, two constraints were applied within the deterministic 

model: (1) glenohumeral constraint, and (2) acromiohumeral constraint. The glenohumeral 

constraint ensured that a minimum medial-lateral glenohumeral distance was maintained to 

prevent humeral head collision with the glenoid cavity. Following the superior-inferior 

translation of the humerus (Step 7), the distance between the glenohumeral joint center and the 

most lateral point on the glenoid cavity was calculated. If this distance was less than that 

calculated in a neutral9 posture, the humerus was translated a corresponding distance laterally 

along the glenoid axis (+Z-axis). The acromiohumeral constraint was applied due to polarity 

limitations associated with calculating the vector norm. Solely calculating the norm of the 

                                                 
9 Recall: a neutral posture is one in which the scapulothoracic angles were α = 19.3°, β = -0.3°, γ = -31.8° and 

humerothoracic angles were γ = -34.3°, β = 0°, γ2 = 35.7°, with tGLEN = 0mm. 
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difference between acromion points and humeral head points (as described in Step 8) would not 

be able to identify whether the humeral head collided with the acromion process. Thus, a 

constraint was applied such that if any point on the acromion had a distance from the 

glenohumeral joint center that was less than the radius of the humeral head, a collision was 

assumed and the minimum distance was zero.  

 Probabilistic Subacromial Geometry Model 

The deterministic subacromial geometry model was created such that the characterization 

of each of the nine parameters was defined by modifying a single value for each parameter. The 

appropriate distribution for each model parameter, determined from empirical data, was applied 

within probabilistic analysis software. This software interfaced with the deterministic 

subacromial geometry model created in Matlab® to predict a distribution of minimum 

subacromial space width (SAS) for each of the ten experimental conditions. A description of the 

model input and the construction of the probabilistic model are detailed in the following sections.  

6.3.2.1 Model Input 

The probabilistic subacromial geometry model required input distributions for each of the 

nine model parameters. Collecting empirical data (Chapters 4 and 5) permitted using statistical 

tests to evaluate the appropriate distribution for each parameter for each of the measured 

conditions (fatigue state sessions, humeral elevation angles). Kolmogorov-Smirnov (K-S) 

goodness-of-fit tests (α = 0.01) were used to evaluate the error between the proposed theoretical 

distribution and the measured data. Each of the characteristics (i) measured were normally 

distributed with dmaxi values ranging from 0.06 to 0.17 (dmaxi < d [0.21]). Thus, model input 

included the means and standard deviations for each parameter, across conditions (Table 24). 
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Table 24. Morphological and Kinematic Parameter Input; Morphological Input: Mean (µ) and 

Standard Deviation (σ) for each of the measured parameters. Kinematic Input: Mean (µ) and 

Standard Deviation (σ) for each of the measured parameters for each condition (five humeral 

elevation angles (β) and two fatigue state sessions (Pre/Post)). Note: positive kinematic 

orientations: superior humeral head translation, scapular upward rotation, scapular anterior tilt, 

scapular retraction. All morphological parameters were identical across all conditions.  

Morphological Parameter Input 

 µ σ 

Glenoid Inclination (°) 95.0 5.9 

Lateral Acromial Angle (°) 79.9 9.3 

Acromial Anterior Slope (°) 18.0 10.9 

Acromial Tilt (°) 31.5 4.7 

Acromion Index 0.62 0.08 

Kinematic Parameter Input 

 Humeral Head Position (mm) 
 µ σ 

β (°) Pre Post Pre Post 

0 -0.4 -0.6 1.3 1.6 

30 0.7 0.5 1.1 1.4 

60 1.4 1.4 1.2 1.0 

90 2.1 1.8 0.8 0.9 

120 2.5 2.4 0.9 1.0 

  
Scapular Rotation (°) Scapular Tilt (°) 

Scapular 

Protraction/Retraction 

(°)  µ σ µ σ µ σ 

β (°) Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post 

0 -0.3 0.4 5.5 6.3 19.3 20.3 7.3 8.3 -31.8 -34.8 6.7 8.3 

30 2.6 4.9 7.1 8.0 20.1 19.7 7.4 9.1 -31.3 -32.9 6.3 7.7 

60 11.0 12.3 8.3 7.5 20.0 20.8 9.5 9.7 -32.1 -33.0 7.1 7.0 

90 18.1 21.7 11.9 9.1 20.1 20.6 11.0 10.9 -33.5 -34.9 8.4 7.9 

120 28.6 34.1 13.4 13.8 17.5 18.3 13.9 14.5 -39.0 -36.7 9.8 11.0 

 

Each of the variables, both morphological and kinematic, presented with extensive 

variability which subsequently produced wide 99% confidence intervals for the measured 
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population. To ensure physiological realism, in both the input and predicted output, truncated 

normal distributions were used to represent all of the measured values. This distribution assumed 

a normal distribution about the mean and standard deviation, while constricting the upper and 

lower limits to a specified value. For this research, limits of ±1 standard deviation were imposed. 

These limits produced a conservative estimate of the variability of SAIS risk in the population as 

members of the measured population would likely present with magnitudes outside of the 

truncated normal distribution, while not necessarily reaching the limits of the entire 1-99% 

normal distribution.   

6.3.2.2 Probabilistic Simulation and Validation 

Several probabilistic simulations were conducted to evaluate the sensitivity and validity 

of the modelled output. The probabilistic model was created using NESSUS probabilistic 

analysis software (SwRI, San Antonio, Texas). This software interfaced with Matlab® such that 

the statistical information and selected distribution(s) were applied by mapping each of the 

parameters defined within the deterministic model. This subsequently predicted a distribution of 

SAS. Six simulations were performed for the entire set or a subset of the ten conditions, which 

evaluated: different simulation methods, alternate model parameter distributions, parameter 

covariance assumptions, and additional iterations. The simulations were divided into those 

addressing predicted output sensitivity and input sensitivity (Table 25). 
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Table 25. Description of probabilistic simulations conducted to evaluate model input and output 

sensitivity 

Output Validation Tests 

Simulation Description 

Advanced Mean Value Truncated Normal Reliability/Optimization-based approach 

Monte Carlo 2500 Truncated Normal Gold-standard approach 

Monte Carlo 3000 Truncated Normal Gold-standard approach with additional 

iterations 

Input Validation Tests 

Simulation Description 

Advanced Mean Value Normal Normal distribution (based on goodness-of-fit to 

empirical data) 

Advanced Mean Value Lognormal Alternate distribution 

Advanced Mean Value Normal Covariance Normal distribution with correlation matrix 

applied (calculated from empirical data) 

 

 Advanced Mean Value (AMV) is a probabilistic approach that uses a combination of 

reliability and optimization-based approaches to predict the output at specified discrete 

probability levels. Monte Carlo iteratively calculates several deterministic solutions to construct 

an entire cumulative distribution function for the predicted output. AMV is computationally 

efficient and accurately converges to the Monte Carlo solution (Easley et al. 2007, Langenderfer 

et al. 2008, 2009). Additionally, as the method requires a transformation of each variable into a 

non-dimensionalized standard normal solution space, it permits calculation of relative sensitivity 

(importance) factors which are used to describe the relative importance of each parameter to the 

predicted output. The validity of the AMV solution was evaluated by comparing the predicted 

output to the output obtained from 2500 iterations of Monte Carlo simulations. As well, a subset 

of five conditions were randomly selected in which an additional 500 iterations were performed 

(3000 iterations total). This was to ensure that 2500 iterations were adequate to converge on the 

correct solution. 

 NESSUS probabilistic analysis software permits applying multiple distributions and 

modelling parameters as independent or co-varying variables. However, while the predicted 
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output from the conservative truncated normal distributions was the primary output of this 

research, truncated lognormal distributions and multivariate truncated normal distributions are 

not currently supported by the software. Thus, to evaluate the influence of the assumed 

distribution and model parameter covariance, an additional AMV simulation was performed with 

parameters assuming normal (not truncated) distributions. For the lognormal simulation, each of 

the parameters with a positive mean value were modelled with a lognormal distribution, while 

those with negative values (i.e. scapular protraction/retraction in all conditions, and humeral 

head translation and scapular rotation at neutral) were modelled with a normal distribution. As 

well, additional simulations were performed by calculating the correlation between each of the 

parameters (morphological and kinematic) from the measured data for each individual condition 

and applying a correlation matrix within the software.  

6.3.2.3 Predicted Output 

The probabilistic subacromial geometry model together with the integrated deterministic 

model predicted a distribution of the minimum subacromial space width (SAS). As described, 

Monte Carlo simulations produced continuous cumulative distribution functions, while AMV 

predicted the output at eleven incremental probability levels along the 1-99% confidence 

interval. Three probability levels (1%, 50%, 99%) representing the median and tail regions of the 

curve were selected for comparative purposes between each of the described simulations. 

Additionally, a comparison between the distributions of model predicted and radiographically 

measured SAS (Chapter 4) was performed. 

As AMV simulations required a transformation of each parameter from its original 

coordinate system to standard normal space, relative sensitivity factors of each of these non-

dimensionalized parameters could be calculated. These sensitivity factors (α) represent the 
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direction cosines of the unit vector (β) at the most probable point, which is coincident with the 

point of maximal density on the joint probability distribution function in the transformed 

coordinate system. Since the direction cosines satisfy [Eq.6-20], the relative contribution of each 

parameter to the predicted SAS width was calculated for each of the ten conditions. 

 ∑ 𝛼𝑖
2

𝑖=1:9 = 1                                                                      [Eq.6-20] 

Where,  

𝛼𝑖is the direction cosine of each of the nine parameters (𝑖) 

 Probabilistic Impingement Risk Prediction Model 

A probabilistic impingement risk model was created using the predicted output from the 

probabilistic subacromial geometry model and the measured tissue thicknesses (Chapter 5). As 

previously described, the probabilistic subacromial geometry model predicted the distribution of 

the minimum subacromial space width (SAS) resulting from morphological and kinematic 

variability. The impingement risk model calculated the probability that the experimentally 

measured subacromial tissue thicknesses (Chapter 5) would exceed the SAS predicted from the 

subacromial geometry model, thereby generating an estimate of the SAIS risk. This model was 

similarly created in NESSUS, whereby a limit state function [Eq.6-21] consisting of the two 

normally distributed parameters (SAS, subacromial tissue thickness) was used to calculate the 

probability of ‘failure’10 (tissue thickness > available space) for each of the ten conditions.      

 

 

 

 

                                                 
10 The probability of failure (probability of tissue compression) is very similar to the traditional 𝑅 − 𝑆 problem 

described in Example 2-1 of section 2.7.2.2 of the Literature Review 
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 𝑝𝑥 = 𝑆𝐴𝑆𝑥 − 𝑇                                                                   [Eq. 6-21] 

Where,  

𝑆𝐴𝑆𝑥 is the predicted minimum subacromial space width obtained from the probabilistic 

subacromial geometry model for each of the ten conditions (𝑥) 

T is the combined subacromial tissue thicknesses obtained experimentally  

The model calculated the probability of tissue compression; that is 𝑝𝑥 < 0 or 𝑆𝐴𝑆𝑥 < 𝑇  

6.4 Results 

The model predicted minimum subacromial space width (SAS) was not influenced by 

fatigue, but reduced considerably with arm elevation within each fatigue state. Across all 

conditions, the SAS was highly variable, as evidenced by wide 1-99% confidence intervals. 

Morphological parameters were particularly important in modulating the size of the SAS over 

the range of elevation, while kinematic parameters depended on elevation angle and fatigue state. 

Validation simulations demonstrated that the predicted output was generally robust for the mid-

portion of the cumulative distribution function (CDF), while showing some discrepancies at the 

lower (1%) and upper (99%) limits of the curve.  

 Advanced Mean Value versus Monte Carlo Probabilistic Methods 

The Advanced Mean Value (AMV) probabilistic method overall showed excellent 

agreement for the mid-region of the cumulative distribution function (CDF), with discrepancies 

towards the tail regions of the curve, with mean differences of 1.1mm and 1.6mm between 

methods at the 1 and 99% levels, respectively. AMV generally overestimated the SAS at the 1% 

level and underestimated the SAS at the 99% level, though these discrepancies were not present 

for all conditions (Figure 30). The largest overestimation by AMV (synonymous with an 

underestimation of the SAIS risk) was 1.9mm which occurred at 90° of elevation in both pre- 

and post-fatigue states at the 1% probability level. The largest underestimation by AMV 
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(3.2mm) also occurred at 90° of elevation but at the 99% probability level, with AMV predicting 

a SAS of 6.5mm, while Monte Carlo a SAS of 9.7mm. Despite these large discrepancies at the 

tail regions, the mean difference between methods within the 10-90% confidence interval ranged 

from 0.1mm to 0.6mm. Additionally, for all conditions (fatigue state, elevation angle), there 

were probability levels with differences ≤ 0.3mm. 

Note: Due to the inaccuracies at the lower (1%) and upper (99%) confidence limits, 

subsequently reported SAS output (and interpretation) will reflect those captured from Monte 

Carlo analysis unless otherwise stated.   
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Figure 30. 1-99% Cumulative distribution function (CDF) of model predicted minimum 

subacromial space width (SAS) for two conditions (Pre-Fatigue, 0° Elevation (top); Post-Fatigue, 

0° Elevation (bottom)). Filled markers represent the SAS predicted using the Advanced Mean 

Value (AMV) probabilistic method and unfilled markers represent the SAS predicted using the 

Monte Carlo probabilistic method. The Post-Fatigue solution displays a relatively monotonic 

system with excellent agreement between probability methods, while the Pre-Fatigue solution 

despite showing excellent agreement in the mid-portion of the curve, behaved non-monotonically 

at the tail regions of the curve. 



180 

 

 Muscle Fatigue and Elevation Effects on SAS 

Fatigue state had a negligible effect on the SAS. The average difference between sessions 

across all elevation angles was 0.1 [range, 0 to 0.2] mm, 0.1 [range, 0.1 to 0.2] mm and 0.2 

[range, 0.1 to 0.3] mm at the 1%, 50% and 99% probability levels, respectively (Table 26). In 

fact, the SAS increased these small magnitudes following fatigue. However, the SAS was largely 

influenced by elevation angle, reducing a mean of 5.5mm at the 50% probability level with arm 

elevation from 0 to 120° of elevation within each fatigue state (Table 26). The largest reduction 

in SAS occurred between 30° and 60° of elevation with a mean reduction of 3.4mm at the 50% 

probability level. Additionally, at each elevation angle and within each fatigue state, the SAS 

was highly variable, as demonstrated by wide 1-99% confidence intervals (Table 26). The mean 

difference between 1% and 99% probability levels across all conditions (fatigue state, elevation 

angle) was 8.0 [range, 6.6 to 8.9] mm, with SAS magnitudes as high as 13.1mm at the 99% 

probability level at 0° of elevation and as low as 0.5mm at the 1% probability level at 120° of 

elevation. 
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Table 26. Minimum subacromial space width (mm) (SAS) for each condition (fatigue state, 

elevation angle) for 1%, 50% and 99% probability levels, calculated using Monte Carlo analysis. 

Fatigue State Elevation Angle 

(°) 

Minimum Subacromial Space Width (mm) 

p = 0.01 (1%) p = 0.50 (50%) p = 0.99 (99%) 

Pre 0 6.2 9.5 12.8 

30 5.9 9.3 12.6 

60 1.9 5.9 10.6 

90 0.7 4.6 9.5 

120 0.5 4.1 9.2 

Post 0 6.2 9.7 13.1 

30 6.0 9.4 12.9 

60 2.0 6.1 10.7 

90 0.9 4.7 9.7 

120 0.5 4.2 9.4 

 

 Importance Factors 

Overall, morphological parameters (particularly glenoid inclination) demonstrated 

consistently high relative importance across the range of elevation and between fatigue states, 

while kinematic parameters varied in importance as a function of condition. Despite showing 

modest differences in α-levels across the extracted probability levels between the 1-99% 

confidence interval, the relative importance of each parameter remained mostly consistent. Due 

to the non-monotonicity at the tail regions of the distribution (reported in the preceding section), 

the α-levels documented represent the mean levels between the 10-90% confidence interval. 

Glenoid inclination had the highest relative importance of all parameters in both fatigue states 

from 0 to 60° of elevation (α = 0.63 [range, 0.59 to 0.71]) with lower but still high importance at 

higher elevation angles (α = 0.49 [range, 0.33 to 0.68]) (Table 27, Figure 31). The lateral 

acromial angle, acromial anterior slope and acromial tilt parameters all demonstrated consistent 
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moderate α-levels, with means of α = 0.19, 0.22 and 0.28, respectively (Table 27). The acromion 

index had high importance at 90 and 120° of elevation (α = 0.52 [range, 0.36 to 0.64]) while low 

or no relative importance at lower elevation angles.  

The importance factors of kinematic parameters varied by fatigue state and elevation 

angle. Humeral head translation demonstrated more importance during initial elevation (0 to 

30°), with a mean α = 0.40 [range, 0.32 to 0.60] compared to a mean α = 0.06 (range, 0.0 to 0.20) 

at elevation angles exceeding 30° (Table 27). Additionally, at elevation angles between 0 and 

60°, its relative importance increased from pre- to post-fatigue states, with a maximum increase 

of α = 0.24 at 0° of elevation (Figure 31). Alternatively, scapular tilt and protraction/retraction 

increased in importance with elevation angles exceeding 30° (Table 27), with higher relative 

importance in the pre-fatigue state. This was particularly evident at 120° of elevation which 

showed α = 0.62 and 0.33 in the pre-fatigue state for tilt and protraction/retraction, respectively. 

Scapular rotation only demonstrated α > 0.3 in the post-fatigue state at 0 and 30° of elevation and 

in both pre- and post- fatigue states at 60° of elevation, however all α-levels were ≤ 0.40 (Table 

27).  
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Table 27. Importance Factors (α-levels) across all conditions (fatigue state, elevation angle). 

Dash ( ̶ ) indicates an α-level of 0. 

Model Parameter 
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Glenoid Inclination 0.69 0.60 0.59 0.61 0.59 0.71 0.45 0.68 0.33 0.49 

Lateral Acromial Angle 0.36 ̶ 0.31 ̶ 0.21 0.19 0.16 0.18 0.17 0.34 

Acromial Anterior Slope 0.36 0.31 0.31 0.32 0.21 0.19 0.16 0.18 0.00 0.17 

Acromial Tilt 0.36 0.31 0.59 0.32 0.21 0.19 0.16 0.18 0.33 0.17 

Acromion Index ̶ ̶ ̶ 0.32 0.40 0.19 0.59 0.36 0.48 0.64 

Humeral Head Translation 0.36 0.60 0.32 0.33 ̶ 0.20 ̶ ̶ 0.17 ̶ 

Scapular Rotation ̶ 0.31 ̶ 0.32 0.40 0.37 ̶ ̶ ̶ 0.17 

Scapular Tilt ̶ ̶ ̶ 0.32 0.40 0.37 0.59 0.53 0.62 0.34 

Scapular Protraction/Retraction ̶ ̶ ̶ ̶ 0.20 0.19 0.16 0.18 0.33 0.17 

 

 

Figure 31. Importance Factors (α-levels) for four conditions (Pre/Post Fatigue State, 0° and 60° 

Elevation Angle). Morphological Model Parameters: GI = glenoid inclination, LAA = lateral 

acromial angle, AS = acromial anterior slope, AT = acromial tilt, AI = acromion index; 

Kinematic Model Parameters: HHT = humeral head translation, SR = scapular rotation, ST = 

scapular tilt, SPR = scapular protraction/retraction.  
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 Additional Validation and Simulation Considerations 

The additional simulations conducted to evaluate the sensitivity of the output to certain 

model input and output criteria showed that the simulations were generally robust for the mid-

portion of the cumulative distribution function (CDF), while showing some discrepancies at the 

tails. The influence of model parameter distribution selection, parameter independence and the 

number of Monte Carlo iterations are discussed as follows. 

6.4.4.1 Truncated Normal versus Normal 

The differences between the entire normal and truncated normal solutions increased 

towards the tail regions of the CDF. At the 50% probability level the predicted output from both 

parameter distributions (entire, truncated) was identical across all conditions, while at the 1% 

and 99% probability levels there were differences of 2.1 [range, 0.7 to 3.8] mm and 1.8 [range, 

0.2 to 3.8] mm, respectively. The importance factors (α-levels) were not affected by truncating 

the parameter distributions (mean difference = 0.01 [range, 0 to 0.02]). 

6.4.4.2 AMV Normal versus Lognormal 

Modelling parameters as lognormally distributed variables, rather than normally 

distributed variables resulted in modest mean differences across conditions and probability levels 

(0.38mm). However, discrepancies between 2.0 – 2.9mm were present at higher elevation angles 

(90°, 120°) for both fatigue states at the upper confidence limit. 

6.4.4.3 AMV Normal versus Normal Covariance  

Model predicted SAS was not highly sensitive to model parameter correlation. Mean 

differences between simulations with parameters modelled as independent and co-varying 

normally distributed variables were 0.34 [range, 0 to 1.5] mm, with the largest discrepancies 

occurring during initial elevation at the upper confidence limit. For each condition, the mean 

difference between the 10-90% confidence interval was 0.25mm with all differences ≤ 1mm.  
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6.4.4.4 Monte Carlo 2500 versus Monte Carlo 3000 

Monte Carlo analysis with 2500 iterations was sufficient to converge on the correct 

solution. For the subset of five conditions, across all probability levels, differences between 

solutions from simulations with 2500 and 3000 iterations were ≤ 0.1mm with a mean difference 

of 0.024mm. 

 SAS: Modelled versus Measured 

The absolute magnitudes and the trend of SAS as predicted by the model and measured in 

vivo were similar both between fatigue states and across elevation angles. The model predicted 

SAS generally showed the highest agreement with measured values at 0 and 120° of elevation in 

both fatigue states (mean = 0.3mm), and lowest agreement at 30° of elevation (1.8mm) (Table 

28). While the model underpredicted the SAS at 0° of elevation, it overpredicted the SAS at all 

other elevation angles in both fatigue states. The variability was generally higher for the 

measured SAS at low elevation angles, particularly in the post-fatigue state (as evidenced by 

wider confidence intervals). Differences between confidence intervals (upper limit SAS – lower 

limit SAS) were less than 1mm for remaining conditions, with the exception of 60° in the post-

fatigue state where the modelled SAS was more variable than the measured SAS (Table 28). 
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Table 28. Comparison of the model predicted and radiographically measured (Chapter 4) 

minimum subacromial space width (Mean [1-99% confidence interval]) for each condition 

(fatigue state, elevation angle).  

Elevation Angle (°) 
Pre-Fatigue (mm) 

(Mean [1-99% CI]) 

Post-Fatigue (mm) 

(Mean [1-99% CI]) 

 Modelled Measured Modelled Measured 

0 9.5 [6.2 – 12.8] 9.6 [4.1 – 15.2] 9.7 [6.2 – 13.1] 10.0 [3.1 – 16.9] 

30 9.3 [5.9 – 12.6] 7.6 [3.4 – 11.8] 9.4 [6.0 – 12.9] 7.6 [2.3 – 12.9] 

60 6.3 [1.9 – 10.6] 5.4 [1.3 – 9.5] 6.3 [2.0 – 10.7] 5.9 [2.6 – 9.2] 

90 5.1 [0.7 – 9.5] 4.2 [-0.4 – 8.9] 5.3 [0.9 – 9.7] 4.1 [-0.3 – 8.6] 

120 4.8 [0.5 – 9.2] 4.6 [-0.1 – 9.3] 4.9 [0.5 – 9.4] 4.4 [0.2 – 8.5] 

 Probabilistic Impingement Risk 

The probability that subacromial tissue thickness would exceed the SAS (probability of 

impinging the tissues) was not influenced by fatigue (maximum difference = 3.5%), but was 

highly influenced by elevation angle (Table 29). At low elevation angles the probability of 

impingement was <5%, while at higher elevation angles the probability was as high as 73.6%. 

Across all conditions, the SAS had considerably higher relative importance compared to tissue 

thickness in predicting the variability in tissue impingement, as demonstrated by α-levels ranging 

between [0.87 – 0.92] for SAS and [0.39 – 0.50] for tissue thickness. 
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Table 29. Probability that the distribution of measured tissue thickness exceeded the predicted 

minimum subacromial space width for each condition (fatigue state, elevation angle).  

Elevation Angle (°) 
Probability of SAIS Risk 

Pre-Fatigue Post-Fatigue 

0 1.7% 1.7% 

30 2.4% 2.6% 

60 46.1% 46.1% 

90 68.6% 65.1% 

120 73.6% 72.0% 

 

6.5 Discussion 

The predicted minimum subacromial space width (SAS) across the measured conditions 

(fatigue state, elevation angle) generally supported the research hypotheses. Both kinematic and 

morphological parameters were important in predicting SAS variability. However, kinematic 

parameters were strongly influenced by elevation angle and fatigue state while morphological 

parameters showed more consistency across conditions. Additionally, the relatively high 

importance of glenoid inclination further implicated superior humeral head translation as a risk 

factor for shoulder pathologies, including SAIS. Finally, across all conditions the predicted SAS 

demonstrated considerable variability which subsequently suggested a wide distribution of SAIS 

risk amongst the population.  

 Model Predicted SAS: Influence of Muscle Fatigue and Arm Elevation  

The model predicted SAS was generally consistent both with values reported in the 

literature from a healthy population and those measured experimentally in the current research 

(subsequently modelled population). With the arm in neutral (0°), in both fatigue states, the 

predicted SAS was primarily in the documented healthy classification range (Cotton and Rideout 
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1964, Golding 1962, Weiner and MacNab 1970), with the lower confidence limit within the grey 

area (approximately 5-7mm; Table 19) between unhealthy and healthy ranges. As the arm was 

elevated from 30 to 120°, the predicted magnitudes were comparable to those reported (Graichen 

et al. 1999a, Hinterwimmer et al. 2003). Modelled results overestimated those reported by 

2.3mm at 30°, however differed by <1mm at angles of 60, 90 and 120°. Additionally, despite the 

considerable variability in the predicted output (mean = 8.0mm between 1-99% confidence 

intervals) the variability was less than that previously reported at elevation angles exceeding 60° 

(Graichen et al. 1999a, Hinterwimmer et al. 2003). When compared to the experimentally 

measured SAS magnitudes (Chapter 4), from a population subsequently used to predict the 

modelled SAS, excellent agreement was demonstrated at the 0 and 120° elevation angles. 

However, the model moderately overestimated the measured values approximately 1mm at 60 

and 90°, and largely overestimated the measured values (mean = 1.8mm) at 30° (Table 28). 

Aside from the absolute magnitudes, the trend of SAS changes with elevation differed between 

modelled and measured outputs at the 120° elevation angle. While the mean measured values 

suggested a reduction of the subacromial space from neutral to 90° followed by a slight increase 

in space, the model predicted values demonstrated a continuous reduction in space with elevation 

up to 120°. This trend of continuous reduction was consistent with previous literature (Graichen 

et al. 1999a, Hinterwimmer et al. 2003). While Graichen et al. (1999a) did report a slight 

increase in SAS at elevation angles exceeding 120° (specifically 150°), the smallest measured 

SAS magnitude in their research was observed at the 120° elevation angle. 

Through comparisons between the model predicted SAS and those both reported in the 

literature and measured in the current research (Chapter 4), two overall trends evolved. First, the 

model consistently overestimated the SAS at the mean and 1% probability levels. The 
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overestimation at the lower confidence limit was likely due to the decision to model parameters 

with truncated input distributions, rather than the entire distribution range. While this prediction 

implied an underestimation of SAIS for those at the lower end of the distribution, truncation was 

performed to ensure physiological realism for each of the kinematic and morphological 

parameters. The large variability of each parameter resulted in a 1-99% confidence interval with 

limits that would likely be physiologically unachievable, such as scapulothoracic collisions. A 

second trend that existed within each fatigue response was that the largest reduction in SAS 

occurred between the 30 and 60° elevation angles. This trend can likely be attributed to the 

humeral portion of the minimum distance (SAS) vector. Between 30 and 60° of elevation was 

likely the range when the inferior border of the subacromial space transitioned from the superior 

surface of the humeral head to the greater tuberosity of the humerus. This bony protrusion (and 

tendon insertion point) is largely responsible for the reduction in subacromial space that occurs 

with humeral elevation (Graichen et al. 1999b). Thus, while a more gradual transition between 

30 to 60° was anticipated, a reduction in the SAS due to the encroachment of the tuberosity was 

expected.  

 Model Parameter Importance: Clinical Implications 

While the model predicted SAS identified new and reinforced existing kinematic trends 

resulting from fatigue and humeral elevation, the primary innovative contribution of the 

probabilistic subacromial geometry model is the identification of the relative importance of each 

parameter to modulating the size of the subacromial space. Overall, morphological parameters, 

notably glenoid inclination, were the largest and most consistent contributors to SAS variability. 

While kinematic fatigue responses were not markedly different from the pre-fatigue state, the 

relative importance of individual kinematic parameters varied by fatigue and humeral elevation 
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angle. Humeral head translation was an important modifier during initial phases of elevation 

(particularly in the post-fatigue state), whereas the influence of scapular positioning became 

more prominent as the arm was elevated. It was anticipated that humeral head translation would 

have high relative importance across all post-fatigue elevation angles, however its prominence 

primarily during early elevation is mechanically logical. Throughout the range of elevation, 

while also generating humeral movement, the rotator cuff muscles are essential in maintaining 

glenohumeral stability. The supraspinatus acts as a humeral head compressor, while the 

infraspinatus, subscapularis and teres minor muscles impose both compressive and inferior shear 

forces (Yanagawa et al. 2008). The deltoid (as well as the pectorals) impose large superior shear 

forces that promote superior humeral head translation, however, this shearing potential is greatest 

at low elevation angles (Poppen and Walker 1978). As the arm is elevated, the moment arms of 

the deltoid fascicles progressively increase, but their angles to the glenoid face similarly 

increase, subsequently reducing shearing potential. Thus, the high relative importance of humeral 

head translation at low elevation angles, particularly following fatigue of the muscles that resist 

this superior translation, is explainable. Its continued dominance at elevated arm angles (as it 

continued to reduce the SAS) was surpassed by the compensatory scapular movement (rotation, 

tilt, protraction/retraction) that was concurrently increasing the SAS. Thus, the kinematic 

importance factors suggest that subacromial space reducing mechanisms are highly prominent 

during initial elevation, even more so in the presence of upper extremity muscle fatigue, and 

subacromial space increasing mechanisms are highly prominent during later elevation to 

alleviate the risk of SAIS. 

While kinematic mechanisms showed high relative importance in modulating the size of 

the subacromial space, morphological factors, in particular glenoid inclination, demonstrated the 
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highest importance across almost all simulated conditions. While targeted interventions for 

morphological characteristics which predispose an individual to SAIS are more challenging, 

glenoid inclination has unique implications directly related to both glenohumeral kinematics and 

the development of pathologies including SAIS. Both experimental and modelling research has 

demonstrated that increased glenoid inclination directly relates to superior humeral head 

translation (Flieg et al. 2008, Wong et al. 2003). Considering the previously described 

mechanical relationship between the deltoid-rotator cuff force couple and superior translation of 

the humerus, a more superiorly inclined glenoid would increase the net shearing potential of the 

deltoid, therefore requiring less total deltoid force to translate the humerus superiorly (Hughes et 

al. 2003). This was shown experimentally in research by Wong et al. (2003) who reported that 

the force required to translate the humeral head superiorly decreased between 14.2 to 37.5% as 

glenoid inclination increased 5° to 15°. Similarly, probabilistic analysis has established the 

relationship between glenoid inclination and superior humeral translation (Flieg et al. 2008). The 

probability of superior translation was directly related to glenoid inclination, increasing from 

approximately 20% to 80% as the glenoid orientation increased from -5° to 20°. Thus, unlike 

other morphological characteristics that inflict rotator cuff damage likely through intrinsic 

impingement, glenoid inclination imposes risk by facilitating extrinsic impingement with 

humeral head translation as the intermediary. As previously discussed, superior humeral head 

translation can lead not only to SAIS, but additional pathologies including glenohumeral 

instability, osteoarthritis and musculotendinous abnormalities. Given that glenoid inclination is 

not conservatively treatable and cannot be identified without imaging techniques, these results 

support promoting rehabilitation strategies that target glenohumeral stability maintenance and 

rotator cuff strengthening to prevent superior humeral head translation. 
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 Estimation of SAIS Risk across the Population 

Apart from the prediction of the minimum subacromial space width (SAS) and those 

characteristics that are predominantly contributing to its reduction, the measurement of 

subacromial tissues thicknesses on the same population enabled the estimation of SAIS risk as a 

function of different fatigue and arm elevation conditions. This probabilistic impingement model 

predicted that the probability of subacromial tissue thicknesses exceeding the predicted SAS 

(estimation of SAIS risk) increased with arm elevation, while being unaffected by muscle fatigue 

(Table 29). Notably, the probability of impingement increased from 1-3% at neutral and initial 

elevation to 46-69% at mid-range elevation, to 74% at 120° of elevation. However, interpretation 

of this SAIS risk requires consideration of both the location of the SAS vector as well as the 

location of clinically documented rotator cuff tears. Research evaluating both the SAS and the 

supraspinatus tendon over the range of abduction reported that at angles between 30 to 90° the 

SAS vector passed through the tendon, while at 120° the vector passed lateral to the tendon 

(Graichen et al. 1999a, 1999b). Recent research suggests that this vector passes lateral at angles 

>72° in scapular plane elevation, however this angle was shown to be highly variable (Giphart et 

al. 2012). Additionally, while supraspinatus tendon tears most often occur at its insertion point at 

the greater tuberosity (also known as the tendon footprint), tears may alternatively occur in the 

mid-substance of the tendon. Research that loaded cadaveric tendons until failure demonstrated 

that, while the primary site of the tendon tear was its insertion point, 21% of tendons failed at the 

mid-substance (Itoi et al. 1995). Considering these relationships and the outcomes of this 

research, it appears that the critical arm posture for SAIS risk is between 60-90° of elevation 

(possibly even <90°), however impingement at lower and higher elevation angles should not be 

discounted. At lower elevation angles between 30-60°, the SAS vector may not pass through the 
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tendon footprint if the greater tuberosity has not rotated beneath the acromion process, however 

tears to the tendon mid-substance may occur if morphological variation results in tissue thickness 

that exceeds the available space. At higher elevation angles exceeding 90°, the model predicted 

the highest risk of SAIS (>70%). While evidence indicates that the SAS vector passes laterally to 

the tendon at elevation angles as low as 72° (Giphart et al. 2012, Graichen et al. 1999a, 1999b), it 

is important to consider that the subacromial bursa may still be at risk of compression at these 

elevated postures (Kibler et al. 2013). Additionally, this critical range was demonstrated to be 

highly variable, likely due to the variability in humeral head morphology. Thus, reporting the 

absolute minimum subacromial space width aids both in establishing relative risk (considering 

occupation ratios, etc.) and comparisons; however SAIS risk assessment should focus more 

specifically on how the relationship between the minimum distance and the location of the 

interposed tissues changes with humeral elevation and the potential contributors to variation in 

that relationship. It is likely that internal impingement is a more prominent contributor to pain in 

these elevated arm postures, however SAIS should not be entirely discounted particularly at 

angles close to 90°. Thus, while the current results indicated that muscle fatigue did not increase 

the risk of SAIS, the high probability of tissue compression (tissues thickness > SAS) at mid-

range arm elevation, implicates repetitive arm elevation in initiating and/or furthering the 

progression of cumulative rotator cuff tissue damage.  

 Probabilistic Simulation Methods: Implications on Predicted Results 

The predicted output from the Advanced Mean Value (AMV) simulations had excellent 

agreement with Monte Carlo simulations for the mid-portion of the cumulative distribution 

function (CDF) (≤1mm), although there were discrepancies at the tail regions (1% and 99%). 

These discrepancies were not consistent across the tested conditions, however those with 
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discrepancies had clinically meaningful magnitudes; >1mm for 40% of conditions tested at the 

1% probability level and 80% of conditions at the 99% level. Divergence at the tail regions is not 

an uncommon limitation of the AMV method, and can be attributed to the non-monotonic 

behaviour of the function when transformed to standard normal space (Wu et al. 1990). Errors 

may also arise from multiple parameter combinations predicting the same p-value or z-value. 

Due to the clinical implications of small magnitude differences (~1mm), interpretations at the tail 

regions were performed on the Monte Carlo solution. However, the excellent agreement between 

solutions for the remainder of the CDF permitted the interpretation of the importance factors. 

 Several additional probabilistic simulations were conducted to test the sensitivity of the 

output to various modelling selections and methods. Similar to comparisons with Monte Carlo, 

predicted output was generally robust for the 10-90% confidence interval with discrepancies at 

the lower and upper confidence limits. Overall, the verification simulations generated three main 

suggestions or outcomes. First, the differences in predicted output (predominantly at the upper 

confidence limit) from using normal and lognormal input distributions, reinforced the utility of 

mathematically determining the appropriate distribution for each model parameter using 

empirical data, if at all possible. Second, 2500 iterations of Monte Carlo were adequate for this 

research, confirming previous suggestions (Langenderfer et al. 2009). Lastly, including model 

parameter covariance had little influence on the predicted output. Similar to previous research, 

differences between univariate and multivariate predictions at the lower and upper confidence 

limits were observed (though generally <1mm), while no differences were present at the median 

probability level (Hughes and An, 1997). However, it should be noted that even in the univariate 

solution, all parameters cannot be considered independent as certain parameters include common 

axes. For example, both morphological and kinematic parameters, specifically glenoid 
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inclination, lateral acromial angle, acromion index and humeral head translation are all 

influenced by a common glenoid axis.  

Thus, while caution should be exercised when interpreting the tail regions of the CDF 

curve, as they are sensitive to differences in simulation method and input distributions, the 

excellent convergence throughout the remainder of the curve demonstrates the considerable 

utility of the AMV simulation method, primarily for the prediction of relative importance factors. 

 Model Assumptions 

Several assumptions were required in the construction of the deterministic model. While 

important decisions were described in the methodology (Section 6.3.1), general assumptions 

specifically regarding the bone geometry should also be considered. First, it was assumed that 

bone shape (morphological characteristics) was not influenced by the muscle fatiguing protocol 

or by humeral elevation. Second, for parameters that involved altering more than one bone 

segment (acromial tilt, acromion index) it was assumed that each segment equally contributed to 

its modification. As well, while bone morphological properties of the scapula and humerus were 

manipulated in the model, the dimensions of the bones were not scaled from the original Visible 

Human Project dataset. With respect to the Probabilistic Impingement Model, the risk of SAIS 

was estimated by determining the probability of subacromial tissue thickness exceeding the 

available subacromial space. This estimation results in impingement being defined as a finite 

point rather than a continuous process. In a clinical sense, while a point certainly exists where the 

tissues begin to become compressed, a SAIS-related injury (rotator cuff tendinitis, tendinosis, 

bursitis, biceps rupture) is most often a cumulative process in which continued compression 

results in the degradation of the tissues. Therefore, while the model predicted a likelihood of 

70% for SAIS at high elevation angles, this is not equivalent to asserting that 70% of the 
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population lifting their arm will develop rotator cuff pathologies. Additionally, truncation of the 

normal input distributions was performed to promote physiological realism in the model 

predictions. Due to the considerable variability in both kinematic and morphological parameters, 

including the entire distribution resulted in output errors, primarily scapulothoracic collisions. 

These errors can be attributed to the bone scaling limitation in addition to not considering 

alterations in the clavicular rhythm, particularly with humeral elevation >90° (Fung et al. 2001). 

Truncating the distribution underestimates the risk (overestimation of the lower confidence 

limit). This underestimation can be confirmed by plotting individual subject data along the 

predicted cumulative distribution function, which demonstrated that even subjects in the 

measured population fell outside of the predicted 1-99% confidence interval (Figure 32). Lastly, 

while the input distributions were populated by empirically measured data, the influence of 

fatigue on the predicted (and measured) outputs may have been understated by both the sample 

size and the selected population. Though the sample size was of adequate statistical power, a 

larger sample (i.e. exceeding 100) may have demonstrated an altered distribution. Similarly, 

fatigue responses may be markedly different in other population sub-groups. In the current 

research, while age and health status were controlled, activity level was not. Thus, including 

solely an athletic population or alternately a sedentary population may have elicited different 

fatigue responses. 
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Figure 32. Probability density function (PDF) of model predicted minimum subacromial space 

width for two conditions (Pre-Fatigue, 0° Elevation (left); Post-Fatigue, 90° Elevation (right)). 

Markers indicate subject-specific results with filled markers representing those that reside along 

the 1-99% confidence interval, and unfilled markers representing outliers.  

6.6 Conclusion 

The model predicted SAS was considerably variable across all measured conditions. 

While muscle fatigue did not influence the predicted SAS and subsequent probability of SAIS 

risk, arm elevation angle greatly influenced risk when interposed tissue dimensions were 

considered. The high probability of tissue compression at critical elevation angles (60-90°) 

suggested that repetitive arm elevation may be an important contributor to rotator cuff 

degeneration. Additionally, while superior humeral head translation (SAS reducing) was 

important during initial elevation and scapular orientation (SAS increasing) at higher elevation, 

the high relative importance of glenoid inclination across all conditions supports glenohumeral 
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stability maintenance and rotator cuff strengthening to alleviate the risk of SAIS and additional 

shoulder pathologies.  
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Chapter 7  

Overall Research Outcomes and 

Future Direction 

7.1 Summary of Research 

The aim of this research was to explore, both experimentally and computationally, how 

shoulder bone morphology and fatigue-related kinematic relationships influence the size of the 

subacromial space; enabling an estimation of subacromial impingement (SAIS) risk. In addition, 

using a probabilistic modelling approach, this researched aimed to establish which parameters 

(morphological, kinematic) were more contributory to the subacromial space size. Measured and 

predicted output both supported and refuted certain aspects of the overall research hypothesis. 

While the kinematic responses to fatigue for the “average” person did not suggest an elevated 

risk of SAIS, both individual morphological characteristics and kinematic relationships varied 

widely, subsequently resulting in diffusely distributed subacromial space measurements and 

predictions. This interpersonal variability was also related to calculated correlation coefficients 

between parameters that varied greatly by elevation angle and were generally of small 

magnitudes. This subsequently resulted in negligible differences between univariate and 

multivariate simulations. In addition, estimating the risk of SAIS by considering variability in 

subacromial space dimensions in the context of the interposed tissues suggested that a 

considerable portion of the population is at risk for tissue compression with arm elevation, which 

can be exacerbated by muscle fatigue. Further, while not as strongly implicated in the 

development of SAIS as hypothesized, fatigue did initiate altered kinematics; similar alterations 

have implications for other shoulder pathologies, particularly for persons with certain 
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morphological variants (i.e. increased glenoid inclination). Thus, this research suggested that 

solely considering the population mean may strongly underestimate the risk of SAIS and 

subsequent rotator cuff pathology resulting from upper extremity fatiguing tasks. As well, it 

demonstrated that even the average person is at risk for cumulative shoulder injuries from short-

duration fatiguing tasks as well as eventual SAIS development if exposed to repetitive arm 

elevation (overhead tasks).   

7.2 Implications for the Average and Entire Population 

The risk of SAIS development from upper extremity muscle fatigue and differing arm 

elevation angles was estimated from the collective outcomes of each experimental/modelling 

study which generated specific conclusions for both the average person and population 

distribution from this young, healthy male population: 

AVERAGE member of this population – risk for SAIS 

A) A short-duration fatiguing protocol alters glenohumeral and scapulothoracic kinematics, 

but does not affect the overall size of the subacromial space. 

 Alterations do not immediately elevate the risk for SAIS – the scapulothoracic 

relationship adapts to compensate for subacromial space reducing glenohumeral 

translation (superior humeral head translation) (Chapter 4). 

 Alterations immediately elevate the risk for developing additional pathologies – fatigue 

causes the humerus to translate superiorly along the glenoid cavity, despite maintaining a 

consistent subacromial space width (Chapter 4). 

 

 



201 

 

B) The risk for tissue compression (and subsequent SAIS) increases with arm elevation. 

 The average occupation ratio (Subacromial tissue width : Minimum subacromial space 

width) was 65.3% when the arm was at neutral (arm posture in which the space is the 

largest ~ 9-10mm) (Chapter 5). 

 The subacromial space reduced to between 4-5mm for elevation angles ≥90°; this 

resulted in an estimated 65-75% of the population at risk for tissue compression 

(probabilistic impingement risk prediction model, Chapter 6) and an estimated average 

occupation ratio exceeding 100% (Chapters 4 & 5) when the arm is elevated.  

ENTIRE distribution of this population – risk for SAIS 

A) A short-duration fatiguing protocol causes highly variable kinematic responses, which 

subsequently leads to a highly differential risk of SAIS. 

 The 1-99% confidence interval for each measured and modelled output indicated 

considerable variability in SAIS across the population (Chapters 4 – 6) from: 

1. Morphological characteristics (bone variants and subacromial tissue thickness) 

2. Controlled and fatigue-related kinematic relationships (superior humeral head 

translation, scapular orientation)  

 Despite negligible mean fatigue responses, an average of 35 to 57% of participants 

exhibited fatigue-related changes that would reduce the subacromial space (superior 

humeral head translation, downward scapular rotation, anterior scapular tilt, scapular 

protraction), with half of the population demonstrating fatigue-induced reduction in the 

subacromial space following fatigue at elevation angles ≥60° (Chapter 4). 
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B)  The risk for tissue compression (and subsequent SAIS) is highly variable at neutral and 

mid-range elevation and increases considerably with arm elevation above 60°, with members of 

the population almost certainly at risk for tissue compression.  

 The occupation ratio with the arm at neutral ranged from 21.6 – 108.9%, indicating that 

even in a neutral posture, members of the population would have tissue compression 

(Chapter 5). 

 Subacromial tissue thickness ranged from 3.4 – 8.8mm and the subacromial space size 

reduced to as low as <1mm with arm elevation, with estimated average occupation ratios 

exceeding 100%. This magnitude of reduced space (<1mm) was present at the 1% 

confidence limit despite truncating the input distribution (reducing the input variability) 

(Chapters 4 – 6).  

7.3  Practical Implications of Research 

The outcomes of this research have different practical implications for both ergonomic 

and clinical applications which can inform specific recommendations. 

 Applying Variability in Ergonomic Design 

With the consistent overarching conclusion that the risk of SAIS is highly variable even 

among a young, healthy population, the practicality of designing for the population rather than 

the mean needs to be addressed. Probabilistic modelling was extremely useful for 

conceptualizing the extent to which variability in certain anatomical factors or model parameters 

affects the predicted output. The study presented in Chapter 3 highlighted that predicted muscle 

force capability can differ by up to 50% based on modest changes in model parameter 

definitions. The study presented in Chapter 6 confirmed the highly variable risk of SAIS that 

exists, based on variability in kinematic fatigue responses and morphological characteristics. 
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These studies showed the potential utility of probabilistic modelling for practical applications, 

such as job design. However, as the anticipated benefit for designing an inclusive job 

environment that considers the entire population range (1-99% confidence interval) may not be 

feasible or warrant the resulting financial cost, recommendations can be made to assist with 

assessing this trade-off.  

1. If the ‘average’ person (as predicted from a deterministic model) is at risk, it is critical to 

consider those residing outside of the mean. 

 In this research, the average person was not classified as at risk for SAIS at lower 

elevation angles and was not at any additional risk following muscle fatigue. 

However, they were at elevated risk with arm elevation ≥60°. Thus, overhead 

work should be avoided to prevent shoulder injuries. 

2. If the average person is not predicted to be at risk, consider the standard deviation (68%) 

or the inter-quartile range (50%) surrounding the mean. 

 In this research, considering modest variability by truncating the input 

distributions to ±1 standard deviation resulted in over 46% of the population 

having tissue compression at elevation angles ≥60° and over 65% of the 

population having tissue compression ≥90°. However, <5% were at risk when the 

arm posture was <60°. This reinforces the importance avoiding overhead work 

while demonstrating a relatively safe work space at lower arm postures. 

3. If the average person, with modest variability (±1 standard deviation) is not at risk, 

considering a greater proportion of the population distribution, including the outliers 

(toward the tail regions of the curve) becomes a job-specific or task-specific problem that 
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must be weighed against the cost, as well as the implications of the risk and/or potential 

injury severity (i.e. injuries causing death).  

 Prevention Strategies to Maintain Shoulder Health 

The relative sensitivity (importance) factors, calculated from the probabilistic 

simulations, provided insight into which parameters (morphological, kinematic) were more 

predictive for the development of SAIS. These importance factors have excellent practical 

applications as they can assist with the development of more targeted prevention and 

rehabilitation strategies used to maintain shoulder health. While kinematic importance factors 

varied by elevation angle and fatigue state, overall, glenoid inclination had the highest relative 

importance compared to all other morphological and kinematic factors. The identified fatigue-

related superior humeral head translation (Chapter 4, alternative humeral head translation 

measurement) coupled with the demonstrated relationship between glenoid inclination and 

superior humeral translation reinforced that rotator cuff strengthening is critical in maintaining 

glenohumeral stability. Targeting these muscles, which are largely responsible for maintaining a 

neutral glenohumeral position, would assist in preventing excessive movement of the humerus 

on the glenoid face. This would subsequently: (1) prevent bone degeneration, osteophyte 

formation and altered contact stresses (which may reduce stability), and (2) reduce the likelihood 

for SAIS development, particularly for those with morphological predisposition to impingement 

(inclined glenoid, hooked acromion), as well as for those whose scapulothoracic positioning 

demonstrates less compensatory adaptions with fatigue and/or arm elevation, for example those 

with scapular dyskinesis (downward rotation, anterior tilt, protraction).   
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7.4 Future Direction 

The outcomes of this work inspire additional considerations and future directions in this 

research area. The probabilistic subacromial geometry model developed for this research was 

used to calculate a single output (SAS) over a narrow subset of postural conditions. In future 

work, this model can be used and further improved to address several other research questions 

related to the subacromial space. These may include: (1) evaluating the distribution of SAS over 

multi-plane evaluation, while also considering different hands loads (integration of Study 1 and 

Study 4), (2) determining how the location of the minimum distance vector changes over the 

range of elevation, and whether variability in morphological features significantly influence this 

location, (3) determining whether the acromio-humeral interval is consistently the limiting factor 

over the range of multi-plane elevation and rotation. Additionally, this work studied a young, 

healthy male population to examine the variability that existed in morphology and kinematic 

relationships prior to age-related degenerative changes. This model can be employed in future 

work to study different population sub-groups, for example different age groups and those with 

shoulder pathologies. As well, the evaluation of morphological and fatigue-related kinematic 

variability in a female population should be considered as the distribution of the SAS and 

subsequent SAIS risk may be markedly different from males. 

Apart from SAIS risk, this research determined that significant fatigue-induced superior 

glenohumeral translation occurred, despite maintaining a consistent subacromial space size. This 

prompts the consideration of translation-related shoulder damage, apart from SAIS, which may 

include studying differences in contact area and contact stresses that exist from varying the 

glenohumeral position (present in injured sub-groups or induced in cadaveric specimens). 

Additionally, while the scapula demonstrated adaptation strategies following fatigue to 
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compensate for the superior humeral head translation, the effect of excessive scapular movement 

on glenohumeral stability should be considered.  

Including three-dimensional imaging techniques, particularly for the measurement of 

kinematic parameters at elevated postures would assist with validating and/or strengthening both 

the measured and modelled outputs. Validation of the deterministic subacromial geometry model 

in addition to developing and refining ultrasound techniques to reliably capture subacromial 

characteristics are two future goals which would have considerable financial and practical 

benefits, as it would reduce the necessity to capture three-dimensional images (CT, MRI) to 

study SAIS risk. 

7.5 Overall Conclusions and Contributions 

The primary product of this current research is the development of a novel probabilistic 

orthopaedic model for the evaluation of subacromial geometric variability. This model and the 

outputs generated regarding SAIS risk provide significant contributions to the shoulder 

biomechanics literature, in addition to motivating several possible future applications. This 

model permits rapid, cost-effective study of glenohumeral and scapulothoracic trends, including 

those related to differing tasks and population sub-groups. Additionally, the application of 

probabilistic techniques enables a more detailed risk assessment, including assessment of risk 

distribution as well as the relative contribution of task or anthropometric parameters. 

Several outputs and accompanying trends were generated from this work, which yielded 

three central conclusions:   

1. The size of the SAS, interposed tissue thickness and subsequent SAIS risk are all highly 

variable even amongst the measured young, healthy male population and thus solely 

considering the ‘average’ person may highly underestimate the risk. 
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2. The average member of the population will not acutely develop rotator cuff damage 

(through SAIS) from a short-duration fatiguing protocol. However, both repetitive 

overhead work and/or upper extremity muscle fatigue may lead to SAIS as well as 

additional pathologies long-term.  

 Repetitive arm elevation promotes continuous incidences of occupation ratios 

exceeding 100% (tissue > space), which can cumulatively lead to extrinsic 

impingement and subsequent rotator cuff disease. 

 Short-term muscle fatigue causes superior decentering of the humeral head (in 

84% of the measured population) which can lead to osteophyte formation, glenoid 

degeneration, GH instability and subsequently intrinsic impingement and rotator 

cuff disease. 

This research therefore supported and explained previously reported injury trends, 

including the highly researched and documented trend of increasing rotator cuff 

pathologies with advancing age. These findings imply that cumulative fatigue-initiated 

kinematics are in part contributing to rotator cuff pathologies, in addition to age-related 

tissue degeneration.  

3. SAIS and rotator cuff damage is not limited to elderly populations and can exist in young 

populations due to interpersonal variability in both subacromial morphology and 

kinematic responses to fatigue. 

 Certain morphological variants (notably glenoid inclination) can facilitate altered 

kinematics (superior humeral head translation) or pose risk for tissue damage 

independently (i.e. acromial characteristics)  
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 Short-duration fatigue responses were highly variable, with a large percentage of 

the population showing subacromial space reducing orientation changes. 

Thus, depending on innate morphology or individual kinematic responses, even younger 

populations can develop SAIS from fatiguing tasks (work-related, sport-related), or even 

from activities of daily living (awkward arm postures). 

While further work is required to quantify a broader range of tasks for a more comprehensive 

population group, specific recommendations for the prevention of SAIS and subsequent rotator 

cuff damage stemmed from this research: 

1. Avoid prolonged/repetitive work in overhead postures (≥60° elevation) to prevent 

subacromial tissue compression. 

2. If overhead work is unavoidable, ensure frequent/adequate rest breaks to prevent superior 

humeral head translation and subsequent degenerative damage and/or instability. 

Additionally, although its current use is limited, characterization of population variability is 

rapidly becoming recognized for its importance amongst the biomechanics community. The 

outcomes of the probabilistic modelling studies presented in Chapter 3 (for the prediction of 

rotator cuff muscle force) and Chapter 6 (for the prediction of minimum subacromial space 

width) strongly highlight and reinforce the utility of incorporating probabilistic methods in 

biomechanics research. 
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Appendix 1 

The specific steps of a Monte Carlo simulation are described as follows given a simple 

example that was created using the explanations by Choi et al. (2007), Haldar and Mahadevan 

(2000) and Rao (1992). 

STEP 1: Define the function and the statistical parameters for each of the random variables. 

𝐽 = 3𝐶 − 𝐻 + 2        
Where, 

 C is a uniformly distributed random variable with endpoints [5, 10] 

H is a normally distributed random variable with a mean, 𝜇𝐻 = 20 and standard 

deviation, 𝜎𝐻 = 5 

 

STEP 2: Generate uniformly distributed random numbers, 𝜇𝐶, between 0 and 1. 

For this example only 5 numbers will be generated (using Excel), however generally many 

thousands of iterations are performed. 

𝜇𝐶 

0.320264 

0.026759 

0.019510 

0.694102 

0.553795 

 

STEP 3: Transform the uniformly distributed random variables, 0 ≤ 𝜇𝐶 ≤ 1, to the appropriate 

characteristics for each random variable. 

(Step 3A) 𝐶: uniformly distributed with endpoints [5,10] 

𝜇𝐶 =
𝑥𝐶−𝑎

𝑏−𝑎
   therefore  𝑥𝐶 = 𝑎 + (𝑏 − 𝑎)𝜇𝐶 

Where, 

 𝑎 is the lower limit of the distribution  

 𝑏 is the upper limit of the distribution 

𝜇𝐶 is the random number generated with a uniform distribution (no additional 

transformation required) 

𝑥𝐶 is the value for 𝐶 with the appropriate characteristics 

𝜇𝐶 𝑥𝐶 

0.320264 6.601319 

0.026759 5.133794 

0.019510 5.097551 

0.694102 8.470512 

0.553795 7.768977 
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(Step 3-B)  𝐻: normally distributed with mean, 𝜇𝐻 = 20 and standard deviation, 𝜎𝐻 = 5 

 

The uniformly distributed random numbers need to be transformed to a normal distribution using 

the inverse of the CDF for a standard normal variable. 

𝜇 =  𝐹𝐻(𝑥𝐻) = 𝜙(𝑠𝑖) =  
𝑥𝐻−𝜇𝐻

𝜎𝐻
 therefore  𝑥𝐻 = 𝜇𝐻 + 𝜎𝐻𝜙−1(𝜇𝐶) 

𝜇𝐶 𝜇 
(normal) 

𝑥𝐻 

0.320264 -0.47 17.65 

0.026759 -1.93 10.35 

0.019510 -2.06 9.70 

0.694102 0.51 22.55 

0.553795 0.13 20.65 

 

Note: the values of 𝜙−1(𝜇𝐶) can be obtained from widely available tables. 

This process can be applied to any of the distributions discussed. 

 

STEP 4: Substitute each value for each of the random variables into the function presented in 

Step 1 to obtain 5 ‘realizations’ of the function. 

 

𝑥𝐶(= 𝐶) 𝑥𝐻(= 𝐻) 𝐽 = 3𝐶 − 𝐻 + 2 

6.601319 17.65 -2.447 

5.133794 10.35 1.918 

5.097551 9.70 2.495 

8.470512 22.55 -3.609 

7.768977 20.65 -3.112 

 

STEP 5: If we were to assume this was a reliability problem where 𝐽 < 0 = failure and  𝐽 > 0 = 

safe, then we can calculate the probability of failure. 

𝑝𝑓 =
𝑁𝑓

𝑁
  

Where, 

 𝑝𝑓 is the probability of failure 

𝑁𝑓 is the number of iterations that 𝐽 < 0 

 𝑁 is the total number of iterations 

𝑝𝑓 =
𝑁𝑓

𝑁
= 

3

5
= 60% probability of failure 

 

STEP 6: Given Step 5, we can also calculate the error associated with the simulation. 

𝜀% =  √
(1−𝑝𝑓)

𝑁 x 𝑝𝑓
x 200%  

𝜀% =  √
(1−0.60)

5 x 0.60
x 200% = 73.0% error 

This high level of error is due to the limited number of iterations. If the desired error level was 

10%, given this probability of failure we would need to run 267 simulations. 

     10% = √
(1−0.60)

𝑁 x 0.60
x 200%  𝑁 = 267 
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Appendix 2 

The following example is based on Example 2-1 in Section 2.7.2.2 (Haldar and Mahadevan 

2000); it evaluates the limit state function 𝑔(𝑥) = 𝑅 − 𝑆 for the Hasofer-Lind Advanced First-

Order Method. The steps and corresponding equations are reiterated for clarity. 

 

STEP 1: Define the limit state equation. 

𝑔(𝑥) = 𝑅 − 𝑆 = 0 

STEP 2: Provide an initial assumption for 𝑥𝑖
∗, (i=1,2,...,n). Note: In most cases, the mean value 

(μ) of each random variable is used. Then, calculate the coordinates of each variable in the 

standard normal space (𝑥𝑖
′∗). 

𝜇𝑅 = 120 Mean R 

𝜇𝑆 = 50 Mean S 

𝜎𝑅 = 18 Standard deviation R 

𝜎𝑆 = 12 Standard deviation S 

Coordinates of variables in standard normal space: 

𝑥𝑖
′∗ =

𝑥𝑖
∗ − 𝜇𝑋𝑖

𝜎𝑋𝑖

 

 

𝑅′ =
𝑅−𝜇𝑅

𝜎𝑅
= 

120−120

18
= 0  𝑆′ =

𝑆−𝜇𝑆

𝜎𝑆
= 

50−50

12
= 0  

Note: Since in this example both R and S are normal random variables, the equivalent mean and 

standard deviation are the same as the original mean and standard deviation. 

Note: If R was a lognormal random variable, the following equations would be used to calculate 

its equivalent mean and standard deviation: 

𝜁𝑅 = √𝑙𝑛  (1 +
𝜎𝑅

𝜇𝑅
)2 = √𝑙𝑛  (1 +

18

120
)2 = 0.149   

𝜆𝑅 = 𝑙𝑛 𝜇𝑅 −
1

2
𝜁𝑅

2 = 𝑙𝑛(120) −
1

2
(0.149)2 = 4.776  

𝜇𝑅
𝑁 = 𝜇𝑅(1 − ln 𝜇𝑅 +𝜆𝑅) = 120(1 − 𝑙𝑛(120) + 4.776) = 118.665 

𝜎𝑅
𝑁 = 𝜁𝑅𝜇𝑅 = (0.149)(120) = 17.9 

 

Where 𝜇𝑅
𝑁 and 𝜎𝑅

𝑁 are the equivalent normal mean and standard deviation of the lognormal 

variable R. 
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Therefore, the coordinate of R in standard normal space: 

𝑅′ =
𝑅−𝜇𝑅

𝑁

𝜎𝑅
𝑁 =  

120−118.665

17.9
= 0.075  

 

STEP 3: Evaluate the partial derivatives of 𝑅′ and 𝑆′ and then calculate 𝛼𝑖. 

Partial Derivatives: 

𝜕𝑔

𝜕𝑅′ = 
𝜕𝑔

𝜕𝑅
𝜎𝑅 = (1)(18) = 18  

𝜕𝑔

𝜕𝑆′ = 
𝜕𝑔

𝜕𝑆
𝜎𝑆 = (−1)(12) = −12  

 

𝛼𝑖:   

𝛼𝑅 =
(

𝜕𝑔

𝜕𝑅′)
∗
 

√(
𝜕𝑔

𝜕𝑅′)
2
+(

𝜕𝑔

𝜕𝑆′)
2
= 

(18)

√(18)2+(−12)2
= 0.832  

𝛼𝑆 =
(

𝜕𝑔

𝜕𝑆′)
∗
 

√(
𝜕𝑔

𝜕𝑅′)
2
+(

𝜕𝑔

𝜕𝑆′)
2
= 

(−12)

√(18)2+(−12)2
= −0.555     

 

STEP 4: Obtain the new value for the MPPs 𝑅′ and 𝑆′ in terms of β 

𝛽 =  −
𝑅′(

𝜕𝑔

𝜕𝑅′)+𝑆′(
𝜕𝑔

𝜕𝑆′)

√(
𝜕𝑔

𝜕𝑅′)
2
+(

𝜕𝑔

𝜕𝑆′)
2
=

(0)(18)+(0)(−12)

√(18)2+(−12)2
= 0  

𝑅′ = −𝛼𝑅𝛽 = −(0.832)(0) = 0  

𝑆′ = −𝛼𝑆𝛽 = −(−0.555)(0) = 0  

STEP 5: Algebraically substitute the new 𝑅′ and 𝑆′ into the reduced limit state equation and 

solve for β. 

Recall: 𝑔(𝑥) = 𝑅 − 𝑆 = 0 

Recall: 𝑅′ =
𝑅−𝜇𝑅

𝜎𝑅
 and 𝑆′ =

𝑆−𝜇𝑆

𝜎𝑆
 

𝑔(𝑥′) = 𝜎𝑅𝑅′ − 𝜎𝑆𝑆
′ + 𝜇𝑅 − 𝜇𝑆 = 0  

Recall: 𝑅′ = −𝛼𝑅𝛽 and 𝑆′ = −𝛼𝑆𝛽  

𝑔(𝑥′) = (𝜎𝑅)(−𝛼𝑅𝛽) − (𝜎𝑆)(−𝛼𝑆𝛽) + 𝜇𝑅 − 𝜇𝑆 = 0 

𝛽 =
𝜇𝑆 − 𝜇𝑅

𝛼𝑆𝜎𝑆 − 𝛼𝑅𝜎𝑅
=

50 − 120

(−0.555)(12) − (0.832)(18)
= 3.24 
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STEP 6: Using the new β obtained in Step 5, re-calculate 𝑅′ and 𝑆′   

𝑅′ = −𝛼𝑅𝛽 = −(0.832)(3.24) = -2.69  

𝑆′ = −𝛼𝑆𝛽 = −(−0.555)(3.24) = 1.79  

STEP 7: Repeat STEPS 3-8 until the value of β converges to within a specified tolerance (0.001 

is often used as a tolerance level). 

 

Note: because both R and S are normal random variables the value of β in the second iteration 

will be identical. Therefore, to solve for the coordinates in the original system: 

𝑅 =  𝜇𝑅 − 𝛼𝑅𝜎𝑅𝛽 = 120 − (0.832)(18)(3.24) = 71.47 

𝑆 =  𝜇𝑆 − 𝛼𝑆𝜎𝑆𝛽 = 50 − (−0.555)(12)(3.24) = 71.57 

𝑔(𝑥) = 𝑅 − 𝑆 = 71.4776 − 71.5784 =  −0.1 

Thus, R=71.47 and S=71.57 are the failure points. 

The probability of failure can be determined as: 𝑝𝑓 = 1 − 𝜙(𝛽) =  1 − 𝜙(3.24) = 0.0006  
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Appendix 3 

 

Figure A3-1. Intra-rater reliability Bland-Altman plots for each bone morphological property 

captured using radiographs. The mean measurement (x-axis) plotted against the difference 

between measurements, d, (y-axis). Solid line indicates the mean of measured differences, 𝑑̅ and 

dashed lines indicate the approximate 95% confidence limits (𝑑̅ ± 2*standard deviation). 

Encircled points represent outliers. 
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Figure A3-2. Inter-rater reliability Bland-Altman plots for each bone morphological property 

captured using radiographs. The mean measurement (x-axis) plotted against the difference 

between measurements, d, (y-axis). Solid line indicates the mean of measured differences, 𝑑̅ and 

dashed lines indicate the approximate 95% confidence limits (𝑑̅ ± 2*standard deviation). 

Encircled points represent outliers. 
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Figure A3-3. Intra-rater reliability Bland-Altman plots for each morphological property captured 

using ultrasound. The mean measurement (x-axis) plotted against the difference between 

measurements, d, (y-axis). Solid line indicates the mean of measured differences, 𝑑̅ and dashed 

lines indicate the approximate 95% confidence limits (𝑑̅ ± 2*standard deviation). Encircled 

points represent outliers. 
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Figure A3-4. Bland-Altman plots for humeral head position (intra-rater) and minimum 

subacromial space width (intra- and inter-rater). The mean measurement (x-axis) plotted against 

the difference between measurements, d, (y-axis). Solid line indicates the mean of measured 

differences, 𝑑̅ and dashed lines indicate the approximate 95% confidence limits (𝑑̅ ± 2*standard 

deviation). Encircled points represent outliers. 

 




