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Abstract

Quantum information processing offers potential improvements to a wide range of
computing endevaors, including cryptography, chemistry simulations and machine learn-
ing. The development of practical quantum information processing devices is impeded,
however, by challenges arising from the apparent exponential dimension of the space
one must consider in characterizing quantum systems, verifying their correct operation,
and in designing useful control sequences. In this work, we address each in turn by
providing useful algorithms that can be readily applied in experimental practice.

In order to characterize the dynamics of quantum systems, we apply statistical meth-
ods based on Bayes' rule, thus enabling the use of strong prior information and param-
eter reduction. We first discuss an analytically-tractable special case, and then employ
a numerical algorithm, sequential Monte Carlo, that uses simulation as a resource for
characterization. We discuss several examples of SMC and show its application in nitro-
gen vacancy centers and neutron interferometry. We then discuss how characterization
techniques such as SMC can be used to verify quantum systems by using credible re-
gion estimation, model selection, state-space modeling and hyperparameterization. To-
gether, these techniques allow us to reason about the validity of assumptions used in
analyzing quantum devices, and to bound the credible range of quantum dynamics.

Next, we discuss the use of optimal control theory to design robust control for quan-
tum systems. We show extensions to existing OCT algorithms that allow for including
models of classical electronics as well as quantum dynamics, enabling higher-fidelity
control to be designed for cutting-edge experimental devices. Moreover, we show how
control can be implemented in parallel across node-based architectures, providing a
valuable tool for implementing proposed fault-tolerant protocols.

We close by showing how these algorithms can be augmented using quantum sim-
ulation resources to enable addressing characterization and control design challenges
in even large quantum devices. In particular, we will introduce a novel genetic algo-
rithm for quantum control design, MOQCA, that utilizes quantum coprocessors to de-
sign robust control sequences. Importantly, MOQCA is also memetic, in that improve-
ment is performed between genetic steps. We then extend sequential Monte Carlo with
quantum simulation resources to enable characterizing and verifying the dynamics of
large quantum devices. By using novel insights in epistemic information locality, we are
able to learn dynamics using strictly smaller simulators, leading to an algorithm we call
quantum bootstrapping. We demonstrate by using a numerical example of learning the
dynamics of a -qubit device using an -qubit simulator.
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1 Introduction

1.1 Challenges for Large Quantum Systems

Over the past century, the ubiquity of information processing devices has transformed
society in a myriad of ways. A considerable fraction of the world's energy budget is now
spent on performing computational tasks, both on devices owned by individuals and
on consolidated servers. The sheer scale of modern computational tasks thus highlights
the difficulty intrinsic to finding solutions to many interesting problems with informa-
tion processing devices. Though efforts have been taken to explore new and interesting
computing architectures that reduce the energy and time costs in information process-
ing, such as massively parallel computation with general purpose graphics processors
[] or integrated field-programmable gate arrays [], these advances do not change the
scaling of the problems that we wish to solve or approximately solve.

This apparent difficulty is made more concrete by the extended Church-Turing thesis,
which conjectures that any physical computational device can be efficiently simulated
by a mathematical model known as a Turing machine []. Under this conjecture, at least
some computational problems that are intractable to modern information processors
will remain intractable regardless of architectural and algorithmic advances. The ex-
tended Church-Turing thesis is challenged, however, by the observation that quantum
systems can solve some computational tasks with better asymptotic scalings than any
known classical algorithms. Recent work in linear optics [], for example, has strongly
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suggested that there exist probability distributions that can be efficiently sampled using
quantum devices, but that do not admit tractable classical sampling algorithms.

In particular, Feynman famously observed [] that quantum systems can in princi-
ple efficiently simulate other quantum systems, in spite of the apparent intractability for
classical simulators. This insight suggests that by exploring a different set of computa-
tional axioms than is formalized in Turing machines, we can dramatically expand the set
of problems that we can solve within accessible energy and time budgets.

In the decades following this observation, new advances in quantum computing have
demonstrated a wide range of problems that can be accelerated by quantum informa-
tion processing (QIP) devices. For example, important problems in cryptography [],
chemistry simulation [], machine learning [; ; ] and data analysis [] have all
been shown to admit quantum algorithms. Acceleration of machine learning methods
in particular offer dramatic impact on society, given the ``web-scale'' application of ML to
problems as wide ranging as recommendation engines [], computer vision [], secu-
rity analysis [], human/computer interaction [], genome analysis [] and economic
forecasting []. Quantum algorithms thus offer improvements to a very wide range of
computational tasks, such that building useful quantum information processing devices
that can exploit these new algorithms is of immediate importance.

The task of building, controlling and debugging such devices presents difficult prob-
lems, however. Engineering quantum devices, for instance, is notoriously difficult, spurring
the investigation of many different physical modalities such as electron spin resonance
in organic systems [], superconducting qubits [], quantum dots [], ion trap arrays
[], and nitrogen vacancy centers in diamond []. Designing control based on explicit
models of quantum dynamics is made difficult due to the cost of simulating these mod-
els, and due to the cost of initially characterizing the system being controlled. Though
closed-loop solutions based on genetic algorithms [] and stochastic optimization []
have been proposed to address these difficulties, we are still left with the difficulty of as-
serting that control has been implemented correctly []. Thus, even once built, control-
ling, characterizing and validating quantum information devices are all difficult prob-
lems that demand new solutions.

In addition to accelerating information processing tasks, quantum information the-
ory has also enabled new advances in metrology, such that small quantum devices can
be deployed as sensors that outperform classical sensing devices [; ]. Quantum
metrology is enabled by engineering systems whose dynamics depend on a parameter
of interest, such that the same characterization techniques that we develop for control-
ling quantum systems immediately offer parallel advances in the development of new
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quantum sensing devices.

1.2 Small Quantum Devices and Co-Processors

In addition to solving the problems frustrating the development of large quantum re-
sources, we are also interested in applying small quantum devices that can feasibly be
experimentally realized within the next few years. Some quantum chemistry problems,
for instance, can enjoy superclassical advantages with as few as  logical qubits [].

Another compelling application of small quantum devices is found in the character-
ization and control of other quantum systems. Modern classical computers, by analogy,
are not designed and tested manually, but with the assistance of the previous genera-
tions of information processors. Making this analogy concrete, we propose three main
applications for a dedicated, small quantum device:

Characterization/Verification Small quantum devices can be used to learn properties of
large quantum devices, most notably their dynamical generators (Hamiltonians).

Calibration Small quantum devices can be used to test for and learn calibration errors
that, if left uncorrected, can lead to undesirable control terms, such as non-local
couplings introduced by correlations in control lines.

Control Design Small quantum systems can also be used to design control sequences
(pulses) for other devices that implement desired unitary operations (gates).

This last application in particular, explored in detail in Section .., demonstrates the
application of using small quantum devices in a quantum coprocessor architecture. That
is, much of the logic of control design and characterization algorithms can be made clas-
sical, leaving the use of quantum simulation as a ``black-box'' to which these classical
algorithms have access. For instance, in Figure ., we illustrate the concept for a typical
arrangement, in which a classical host queries the performance of a candidate control
sequence, using a parallel array of quantum coprocessors in order to predict the perfor-
mance on a system of interest.
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Figure .: Overview of using a parallel array of small quantum coprocessors to evaluate
the fidelity of a control pulse under different hypotheses about the true evolution of a
system of interest. A classical host computer is used to design input and apply control
to the quantum coprocessors. A specific algorithm is introduced in Chapter  to utilize
this arrangement.

1.3 Outline and Main Results
In this work, we focus on this problem of characterizing and controlling quantum sys-
tems in four distinct parts. In Chapter , we explore novel characterization techniques
based on classical simulation of quantum systems and demonstrate their utility to small
quantum devices within current experimental capabilities. Next, in Chapter , we show
how characterization methods can also be applied to verify the correct operation of quan-
tum systems. We then show in Chapter  how to derive approximate models for larger
systems that honestly capture the errors in a more complete description. In Chapter ,
we discuss problems with controlling quantum systems using classical resources alone
and introduce new design techniques to reduce the dimension in which control must be
designed, as well as methods for incorporating realistic models of classical devices into
quantum control algorithms.

Finally, in Chapter , we discuss how to apply these ideas in large quantum systems
by the use of small quantum coprocessors. By expressing the challenges of the previ-
ous chapters in terms of simulation, we are able to augment both optimal control (Sec-
tion ..) and Hamiltonian learning (Section .) algorithms with quantum resources
in a natural way. In doing so, we also introduce quantum bootstrapping, in which small
quantum resources are used to characterize, calibrate and verify larger quantum devices.
Together, these provide a path to the development of useful and practical quantum de-
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vices well beyond the scale that can be simulated classically.
The results presented here are based on a wide range of publications and collabora-

tions under the supervision and advice of D. G. Cory:

• Work in Bayesian inference for the characterization of quantum systems is based
on [; ], joint work with Christopher Ferrie.

• Application of the sequential Monte Carlo (SMC) algorithm to problems in Hamil-
tonian learning is based on [], joint work with Christopher Ferrie and Nathan
Wiebe. State-space applications represent previously unpublished work by the
current author.

• Application of the sequential Monte Carlo algorithm to randomized benchmarking
is based on [], joint work with Christopher Ferrie.

• All experiments with nitrogen-vacancy centers in diamond represent previously
unpublished work, joint with Ian Hincks, Fei Wang, Maryam Mirkamali and Osama
Moussa.

• The use of SMC for region estimation and model selection is based on [; ],
joint work with Christopher Ferrie and Nathan Wiebe, and includes a summary of
related work by Christopher Ferrie [; ].

• Model selection in state-space models represents unpublished work, joint with
Christopher Wood and Dimitri Pushin (neutron interferometry), and with Ian Hincks
(nitrogen-vacancy centers).

• The honest approximation of quantum channels is based on [; ], joint work
with Daniel Puzzuoli, Easwar Magesan, Ben Criger and Holger Haas.

• The extension of optimal control theory to include nonlinear models is based on
[], joint work with Ian Hincks and Troy Borneman.

• The design of composite pulse sequences for parallel control (wide quantum chan-
nels) is based on [], joint work with Troy Borneman.

• The MOQCA algorithm for quantum-accelerated optimal control is unpublished
work by the current author, with kind advice from Nathan Wiebe, Christopher
Ferrie and Joshua Combes.
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• Quantum Hamiltonian learning is based on [; ], joint work with Nathan Wiebe
and Christopher Ferrie.

• The extension of quantum Hamiltonian learning to provide a quantum bootstrap-
ping algorithm using information locality is based on [], joint work with Nathan
Wiebe.

Many of these results are presented along with example software implementations,
making it easier to quickly integrate the methods presented here into experimental prac-
tice. In particular, we focus on the following software libraries:

QuantumUtils for Mathematica [] Mathematica library for quantum information. De-
veloped by the author, in collaboration with Christopher Wood and Ian Hincks.

QuantumUtils for MATLAB [] MATLAB-language library for quantum information.
Developed by Ian Hincks.

QInfer [] Python library for statistical inference in quantum applications, using the
sequential Monte Carlo algorithm. Developed by the author in collaboration with
Christopher Ferrie, and with kind contributions by Ian Hincks and Yuval Sanders.

QuaEC [] Python library for quantum error correction. Developed by the author in
collaboration with Ben Criger.

QuTiP [] Python library for manipulating and simulating quantum dynamics. Devel-
oped by P. D. Nation and J. R. Johansson, including contributions from the author.

1.4 Introduction to Classical Statistics

Quantum mechanics is inherently a statistical theory, such that before delving into quan-
tum mechanics and quantum information processing, we must first introduce the termi-
nology and concepts that we will later rely upon.

1.4.1 Distributions, Expectations and Variances

In this work, we will consider many different examples of random variables following
probability distributions describing our lack of prior certainty about the outcome of
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some event. A random variate is then a specific value taken on by a random variable. For
instance, if we are to roll a die, we do not generally know a priori what the outcome will
be; it is this very property that makes dice fun! We can, however, reason about what pro-
portion of the time we will observe certain values. In this example, once we have rolled
a die, the number that we read off of it is the random variate d, and the probability that
we assign to each possible face of the die gives the distribution Pr(d).

Having defined such a distribution, we can now ask what will usually happen when
we draw samples from it. Formally, one way of addressing this question is to consider
the average over the distribution, also known as the expectation value. The expectation
value E[x] of a random variable x is defined as

E[x] := ∑
x

x Pr(x), (.)

where the sum is taken over all possible values of the random variable, known as the
support of x, supp(x). We can also consider the expectation over functions of a random
variable,

E[ f (x)] := ∑
x

f (x)Pr(x). (.)

When the summation variable is not immediately clear from context, we will denote it as
a subscript to the expectation operator. In the equation above, we write Ex, for instance.

One very important function that we will often consider is the variance of a random
variable,

V[x] := E[(x−E[x])2] = E[x2]−E[x]2. (.)

The square root of the variance is called the standard deviation, and gives insight into how
uncertain the outcome of a random variable is.

More generally, we can consider consider random variables such that the expectation
and variance are now given by integrals,

E[ f (x)] :=
∫

x
f (x)Pr(x) dx. (.)

In this case, the function Pr(x) is now a density, such that we must integrate over a range
of values to obtain a probability. For instance, we shall later demand that we can find
regions X such that

Pr(x ∈ X) :=
∫

x∈X
Pr(x) dx ≥ α (.)
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for some value α. That is, that the probability of drawing an x that lies within X is at least
some level α. Throughout the rest of this work, we will drop the measure dx when it is
clear from context, as we will be primarily concerned with numerical implementations
where the measure is fixed implicitly by the choice of parameterization.

In this work, we will mainly be concerned with random variables that are vector-
valued. In this case, the expectation and variance are both also vector-valued,

E[x]i = E[xi] (.a)
V[x]i = V[xi]. (.b)

We can also consider the covariance matrix, which describes the degree to which the
variation in one component of a vector-valued random variable depends on another
component. That is, we write

Cov(x) := E[xxT]−E[x]E[x]T. (.)

As we will see later, in Section ., for distributions that are approximately Gaussian
(also known as normal), the covariance matrix is a compact description of the regions in
which random variates of x are most likely to be located.

1.4.2 Conditional Distributions, Marginalization and Bayes' Rule

Often, we will be interested in two or more random variables at the same time. For in-
stance, it is particularly common to consider both experimental data d and a description
x of the experimental system as random variables. In this context, we cannot draw ex-
perimental data without also considering the system that we draw the data from. In
particular, if we consider the experimental device itself as being drawn from an ensem-
ble of similar devices, then the description of a particular device is not initially known,
but rather is exposed by the dependence of d on x.

In terms of distributions, we make this formal by considering that two random vari-
ables A and B are jointly distributed as Pr(A, B). For a given random variate drawn from
A, we can condition on that hypothesis,

Pr(A|B) :=
Pr(A, B)

Pr(B)
=

Pr(A, B)
EA[Pr(B|A)]

. (.)

The distribution Pr(B) that appears in the denominator is known as a marginal distribu-
tion, and is formed by taking an expectation value over the marginalized random vari-
ables.
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Expectation values and variances of conditional distributions can be expressed in
terms of marginal distributions by using the laws of total expectation and variance, re-
spectively given by

E[A] = EB[EA|B[A|B]] = ∑
A

A Pr(A|B)Pr(B)

Cov(A) = EB[CovA|B(A|B)] + CovB(EA|B[A|B]).
(.)

As we will see in Section .. and Section ., the law of total variance has a nice inter-
pretation in terms of hyperparameters.

Conditional distributions tell us about the way that two random variables are related,
and what information each carries about the other. Of particular note is that if we expand
(.) the other way to obtain Pr(B|A), we obtain Bayes' rule,

Pr(A|B) = Pr(B|A)

Pr(B)
Pr(A). (.)

Effectively, Bayes' rule allows for inverting the conditioning of distributions. This is es-
pecially useful in the case of learning, as we can invert a conditional distribution such as
Pr(d|x) to obtain a distribution Pr(x|d) that describes our uncertainty about a device or
system of interest.

While many other statistical approaches to learning exist, we focus here on the use of
Bayes' rule, as it nicely allows for the incorporation of prior information into inference
procedures.

1.5 Introduction to QuantumMechanics
Before proceeding to address the challenges of characterizing, controlling and verifying
large quantum systems, it is helpful to first establish some background and common
notation for quantum mechanics itself, as well as several key formalisms built on top
of quantum theory. Here, we will quickly describe a few key areas along with useful
software resources for further exploration.

1.5.1 States, Measurements, Processes and Dynamics

In quantum mechanics, measurements on a system are described in terms of a state
vector |ψ⟩ in some Hilbert spaceH. Throughout this work, we will assume thatH is the
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finite dimensional spaceH = Cd of d-dimensional vectors containing complex numbers.
In particular, we will write |i⟩ to be the elementary vector with a  in the ith component
and zeros everywhere else. The basis of such vectors, {|i⟩ : i ∈ {0, 1, . . . , d− 1}} is called
the computational basis. In the special case that d = 2, |ψ⟩ = α |0⟩+ β |1⟩ describes the
state of a qubit, the generalization of a classical bit to the full space of allowed states in
quantum mechanics. In matrix representation, we write that

|0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
. (.)

We will also denote the set of linear operators acting on these states as L(H).
The duals (conjugate transposes) ⟨ϕ| of state vectors describe measurements, such

that the inner product ⟨ϕ|ψ⟩ is the probability amplitude for observing |ϕ⟩ if we have
prepared a state |ψ⟩. The probability is then given in terms of the probability amplitude
by Born's rule []

Pr(ϕ|ψ) = | ⟨ϕ|ψ⟩ |2 = ⟨ϕ|ψ⟩ ⟨ψ|ϕ⟩ . (.)

Here, we have implicitly used the symbols ψ and ϕ to label preparations and measure-
ments, respectively, as random variables, such that we reason about what the outcome of
a measurement will be conditioned on having performed a given preparation procedure
|ψ⟩.

This description then suggests that instead of deterministically preparing a state |ψ⟩,
we can instead have a mixture such that |ψ⟩ is a random variable drawn from the en-
semble {(pi, |ψi⟩)}i. That is, that |ψ⟩ is chosen to be |ψi⟩ with probability pi. Then,
marginalizing over Born's rule for this ensemble gives us that

Pr(ϕ|ψ) = Ei[Pr(ϕ|ψi)] = ⟨ϕ|
(

∑
i

pi |ψi⟩ ⟨ψi|
)
|ϕ⟩ . (.)

We then identify ∑i pi |ψi⟩ ⟨ψi| as a useful object in its own right, the density operator ρ.
More generally, density operators are trace- positive semidefinite operators acting on
H, ρ ∈ L(H), representing mixtures of pure preparations.

By the von Neumann equation, the state of a quantum system evolves in time accord-
ing to the differential equation

d
dt

ρ(t) = −i[H, ρ(t)], (.)
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where the Hamiltonian H ∈ Herm(H) is a Hermitian operator acting on a Hilbert space
H that describes the dynamics of the system. This differential equation is then solved
by the operator U = e−iHt,

ρ(t) = Uρ(0)U�, (.)

where U� is the Hermitian conjugate (conjugate transpose) of U.
For any Hamiltonian, the resulting evolution operator U satisfies UU� = U�U = 1.

Operators are called unitary; the set of all such operators for a given Hilbert space is
written U(H). Since we will commonly consider conjugation by an operator, we use a
shorthand notation U • ρ := UρU�. This will be especially useful later, when we discuss
group actions, as • can then be discussed as a function • : U(H) → (L(H) → L(H)) in
its own right .

With these definitions in mind, we can now formally describe quantum mechanics
in terms of postulates about the allowable states and measurements [].

Postulate  (States) The state of a quantum system is described by a density operator ρ ∈
L(H), a trace- positive semidefinite linear operator acting on the Hilbert space H.

Postulate  (Evolution of States) Closed systems evolve under the action of unitary operators
U(t2, t1) ∈ U(H),

ρ(t2) = U(t2, t1) • ρ(t1) = U(t2, t1)ρU(t2, t1)
�. (.)

Postulate  (Measurement) A measurement of a quantum system is described by a positive
operator-valued measure (POVM); that is, a set of operators M = {Ei} such that ∑i E�

i Ei = 1

and such that each Ei is positive semidefinite. The probability of observing outcome i from a
measurement of M is then given by

Pr(i|ρ, M) = Tr(EiρE�
i ), (.)

Note that we have curried the definition of this group action, such that U • ``returns'' a function from
L(H) to itself. This is equivalent to the perhaps more familiar definition • : U(H)×L(H)→ L(H), under
the celebrated isomorphism Hom(X×Y, Z) ∼= Hom(X, Hom(Y, Z)). That is, all two-argument functions
can be thought of as one-argument functions which return one-argument functions.

In this case, our choice of definition will be useful in Section .., where we identify U • as being an
important special case of a more general kind of object called a superoperator, which maps linear operators
to other linear operators.
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and the post-measurement state ρ′ is given by Lüder's rule,

ρ′ =
EiρE�

i

Tr(EiρE�
i )

. (.)

Postulate  (Composition) The joint state space of two or more quantum systems, having in-
dividual state spaces {H1, . . . ,Hn} is given by the tensor productH =

⊗
iHi.

In order to predict and model measurements of a quantum system, we therefore must
know the state of the system. Since the space of allowable states of quantum systems
compose under the tensor product, the dimension of the Hilbert space on which ρ acts
grows exponentially with the size of a system. This makes it exceedingly difficult to
learn the state of a quantum system unless we take a statistical approach [].

For small systems, however, reconstructing the complete state from measurements
is feasible. Quantum state tomography [; ; ; ] reconstructs ρ from a measure-
ment record drawn from an informationally-complete POVM (IC-POVM) [; ; ; ].
Tomography has been used in a wide range of experimental contexts, and for a wide
variety of tasks, such as showing fidelity of preparation, entanglement, etc. [; ].

More explicitly statistical approaches to learning states, processes and Hamiltonians
can be enabled by interpreting Born's rule (.) as a likelihood function that depends on
a hypothesis. Conditioning the likelihood function on a hypothetical state, for example,
has allowed for applying both maximum-likelihood estimation [; ; ] and Bayesian
estimation [; ] to the problem of learning states.

In this work, we put special emphasis on the problem of learning Hamiltonians, as
accurate knowledge about the dynamics of a quantum system is a critical resource for
the development and implementation high-fidelity control. The problem of character-
izing dynamical generators has previously been considered, using assumptions such as
locality [], and complete positivity []. We improve upon previous work by demon-
strating a numerical algorithm that can be readily extended to consider a wide range of
experimental concerns, and that, as discussed at length in Chapter , serves as a platform
for incorporating quantum resources.

1.5.2 The Stabilizer Formalism

Here, we quickly review the stabilizer formalism, and its application to quantum error
correction, along with examples of software implementations using the QuaEC library
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for Python []. Because the stabilizer formalism is expressed in the language of group
theory, we first recall the definitions of group and subgroup.

Definition  (Group) A group (G, ·) is a set G and a binary operation · : G× G → G such
that the following properties hold:

. The set G is closed under ·; that is, for any g, h ∈ G, g · h ∈ G.

. There exists an identity element e ∈ G such that for all g ∈ G, e · g = g · e = g.

. The binary operation is associative, such that for all a, b, c ∈ G, a · (b · c) = (a · b) · c.

. Each element g of G has an inverse g−1 ∈ G such that g · g−1 = g−1 · g = e.

For brevity, we omit the operation in the definition of a group when this is implied by context. If
a subset H ⊆ G is also a group under ·, then H is a subgroup of G, denoted by H ≤ G.

For example, the set of unitary operators U(H) on a Hilbert spaceH is a group under
matrix multiplication, as every unitary operator U has an inverse U�. If we restrict the
determinants to det U = 1, then we obtain the special unitary group SU(H) ≤ U(H). In
particular, the states of a qubit transform under SU(C2) as global phases are irrelevant.
This group is more commonly written as SU(2).

A particularly important example of unitary transformations is that of the Pauli ma-
trices,

σ = (1, σx, σy, σz) σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (.)

The Pauli matrices form a basis for L(SU(2)), so that any linear operator A acting on the
state space of a qubit can be written as

A = a1+ bσx + cσy + dσz (.)

for some a, b, c, d ∈ C. If A is Hermitian, then a, b, c, d ∈ R, giving a real parameterization
of A. For this reason, the Pauli matrices are an especially important subset of U(2). In
the interest of brevity, we will sometimes write X = σx, Y = σy and Z = σz, or will index
the Pauli matrices by integers, {0, 1, 2, 3}.

These matrices are quite useful in quantum information, as they exhibit a number of
very nice properties beyond being a convienent basis for L(C2). For instance, σµσν is, up
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to a phase, also a Pauli matrix for any µ, ν ∈ {0, 1, 2, 3}, such that the Pauli matrices form
a subgroup of SU(2). In addition to representing the Pauli group as a subgroup of the
unitary matrices, we can easily define the Pauli group Pn on n qubits directly in terms of
its generators. That is, a set of elements such that all other elements of the group can be
written as products of the generators. We use the notation ⟨·⟩ to indicate that all products
of the contained elements are to be included. For example, ⟨a, b⟩ = {e, a, b, aa, ab, ba, . . . },
where e = aa−1.

Definition  (Pauli group) The Pauli group on n qubits is the group

Pn := ⟨i1, X1, . . . , Xn, Z1, . . . , Zn⟩ , (.)

where Xi is the n-qubit operator that acts as X on the ith qubit and as 1 on all other qubits, and
where Zi is defined similarly. The weight wt(P) of an element P of the Pauli group is the number
of qubits on which P acts nontrivially.

We will also consider the factor group P̂n := Pn/⟨i1⟩ that disregards phases. That is, P̂n is
the group of sets {P, iP,−P,−iP} for P ∈ Pn. For notational convenience, we will often denote
elements of P̂n by a single representative from each such set.

Writing the Pauli group in this way emphasizes that we need not keep track of the
matrix form of each element, but can write down a string of operators such as YZYX =
σy ⊗ σz ⊗ σy ⊗ σx. Each such Pauli group element can be recorded on a classical qubit
using 2n + 2 bits, as opposed to the O(22n) bits required to record a matrix representa-
tion.

In QuaEC, the +1 representatives of the elements of P̂n can be enumerated as a
Python iterator :

 >>> import qecc as q
>>> print list(q.pauli_group(2))
[i^0 II, i^0 IX, i^0 IY, i^0 IZ, i^0 XI, i^0 XX, i^0 XY, i^0 XZ,
i^0 YI, i^0 YX, i^0 YY, i^0 YZ, i^0 ZI, i^0 ZX, i^0 ZY, i^0 ZZ]

The elements of the Pauli group admit a group action • : Pn → (C2n → C2n
) on

the Hilbert space C2n of n qubits. In particular, the Pauli group acts on states by left
multiplication,

P ∈ Pn, |ψ⟩ ∈ C2n
: P • |ψ⟩ := P |ψ⟩ . (.)

Line breaks have been added to the listing for the sake of readability.
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We shall also write the group action of Pn on density operators ρ as P • ρ := PρP�,
by analogy to the group action of U(C2n

) on density operators. This notation has the
advantage that transformations are specified in the same way for pure and mixed states.

We say that a state |ψ⟩ is stabilized by an operator P if P • |ψ⟩ = |ψ⟩. For a given state,
the elements which stabilize that state form a semigroup, since PQ • |ψ⟩ = P • (Q •
|ψ⟩) = P • |ψ⟩ = |ψ⟩ for any operators P and Q which each individually stabilize |ψ⟩.
Moreover, since we draw the operators from the Pauli group, the stabilizer semigroup
is also a group. We can then readily extend this definition to sets of states.

Definition  (Stabilizer group) Given a set of states {|ψi⟩} ⊆ C2n , the stabilizer group stab({|ψi⟩})
is the set of elements P of Pn such that P • |ψ⟩ = |ψ⟩ for all |ψ⟩ ∈ {|ψi⟩}.

A famous result of Gottesman [] is that the subgroups of Pn which are stabilizer
groups for some set of states can be completely characterized.

Theorem  A subgroup S ≤ Pn of the Pauli group Pn is a stabilizer group for a set of states if
and only if S is an Abelian group and −1 /∈ S.

Importantly, this means that we can specify some states by listing the group that sta-
bilizes them. Such states are known as stabilizer states. For instance, the Bell state |β00⟩ =
(|00⟩+ |11⟩)/

√
2 is the unique state stabilized by ⟨XX, ZZ⟩ = {11, XX,−YY, ZZ}. Us-

ing QuaEC, we can readily calculate that this is the case.

Listing .: Bell state description as a stabilizer state.
 >>> import qecc as q
>>> stab = q.StabilizerGroup(['XX', 'ZZ'], [], [])
>>> print stab.stabilizer_subspace()
array([[ 0.70710678+0.j, 0.00000000+0.j, 0.00000000+0.j, 0.70710678+0.j]])

The dimension of the space of states stabilized by a subgroup S ≤ Pn is reduced by
a factor of two for each independent generator, such that n such generators are needed
to stabilize a unique state.

Since elements of the Pauli group Pn can each be identified on a classical computer
using 2(n+ 1) bits of data, this implies that a pure stabilizer state can be identified using
classical resources that are polynomial in the number of qubits. To complete the specifi-
cation of the stabilizer formalism as an efficiently simulatable subtheory, we then need
to show that transformations between stabilizer states are also classically tractible.
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Considering transformations of the Pauli group and its subgroups, then, we define
the Clifford group as the group of automorphisms, noting that every such automorphism
also has a representation as a unitary operator.

Definition  (Clifford group) Given the Pauli group Pn on n qubits, the Clifford group Cn is
Cn := Aut(Pn), the group of automorphisms ofPn. Equivalently, the Clifford group is the group
of operators that map Pauli group elements into the Pauli group,

Cn :=
{

U ∈ U(C2n
)|∀P ∈ Pn : U • P ∈ Pn

}
. (.)

Because each element of Cn is an automorphism of Pn, its action on Pn can be spec-
ified by listing the action on a presentation of Pn in terms of a generating set. One par-
ticularly useful such set is that given in (.), {X1, . . . , Xn, Z1, . . . , Zn}. This is the rep-
resentation used by QuaEC. For instance, the controlled- gate (also known as a 
gate) is the gate which maps X1 7→ XX and 1Z 7→ ZZ, leaving the other two generators
invariant:

 >>> print q.cnot(2, 0, 1)
XI |-> +XX
IX |-> +IX
ZI |-> +ZI
IZ |-> +ZZ

Two other important gates are the Hadamard and phase gates:
>>> print q.hadamard(1, 0)
X |-> +Z
Z |-> +X
>>> print q.phase(1, 0)

 X |-> +Y
Z |-> +Z

These three gates are actually a generating set for the Clifford group,

Cn =
⟨
i,j, Hi, Pi

⟩
i,j∈{1,...,n}, i ̸=j . (.)

We now have everything we need to offer the intuition behind the Gottesman-Knill
theorem []: since a Clifford group element maps Pauli elements to Pauli elements and
can be described using no more than 2n× 2(n + 1) classical bits, the action of a circuit
composed entirely of Clifford gates, stabilizer preparations and Pauli measurements can
be simulated classically using polynomially many resources in the number of qubits.
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1.5.3 Superoperators and Supergenerators

We now take a somewhat different tack, and describe how to reason about open quantum
systems. That is, those systems whose dynamics are uncertain or that are coupled to
an environment that we cannot directly measure or observe. In doing so, we rely on
the superoperator formalism, which utilizes a larger Hilbert space to represent open
processes and dynamics. We shall also show examples of Wood diagrams, a graphical
calculus for manipulating the open quantum system objects [].

1.5.3.1 Liouville Space

Consider a state ρ that is subject to one of two unitary operators, U or V, based on the
outcome of a coin flip. We can describe this by the map Λ

Λ : ρ 7→ 1
2

U • ρ +
1
2

V • ρ, (.)

since the resulting density operator should be a mixture of the two possibilities. This
follows by the same argument as (.), marginalizing instead over our choice of unitary
operator.

This seems somewhat unwieldy, however, in that to specify the operation that acts
on ρ, we naïvely seem to have to include ρ itself. Note, however, that 1

2U • is a linear
function, in that

1
2

U • (ρ + σ) =
1
2

U(ρ + σ)U� =
1
2
(UρU� + UσU�) =

1
2

U • ρ +
1
2

U • σ. (.)

Because the group action of U on density operators is linear, we can then represent it
by a linear operator acting on a vector space, ˆ̂U[ρ] := U • ρ. In particular, ˆ̂U acts on the
vector space of density operators,

ˆ̂U |ρy = |U • ρy , (.)

where |ρy represents a vectorization of the density operator ρ. We can now express the
map of (.) as the convex combination of two superoperators ˆ̂U and ˆ̂V,

ˆ̂SΛ =
1
2

ˆ̂U +
1
2

ˆ̂V, (.)

such that the action of Λ on ρ is given by ˆ̂SΛ |ρy.
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Concretely, any density operator ρ on a Hilbert spaceH is an element of the set L(H)
of linear operators acting onH. This set is a vectorspace with the Hilbert-Schmidt inner
product ⟨A, B⟩ := Tr(A�B), and can be written as the span of elementary operators Eij :=
|i⟩ ⟨j| for i, j ∈ {1, . . . , dimH}. Accordingly, we can assign a vector to each such basis
element to represent L(H). One convention for doing so is the row-stacking convention
that ∣∣Eijz = ||i⟩ ⟨j|y = |i⟩ ⊗ ⟨j|T . (.)
For 2× 2 matrices, ∣∣∣∣(a b

c d

)
} =


a
b
c
d

 , (.)

thus motivating the name: the rows of the matrix are transposed and stacked to form
the corresponding vector. The column-stacking convention ||i⟩ ⟨j|y = ⟨j|T ⊗ |i⟩ is also
quite common, and is used by quantum information software packages such as QuTiP
[] and QuantumUtils/MATLAB []. Importantly, either isomorphism preserves the
inner product,

Tr(A�B) = ∑
i
⟨i|A�B|i⟩ = ∑

ij
(A�)ijBji = ∑

ij
AjiBji = tA|By . (.)

Listing .: Example of vectorization in QuTiP [].
>>> from qutip import *
>>> print operator_to_vector(Qobj([[1, 2], [3, 4]]))
Quantum object: dims = [[[2], [2]], [1]], shape = [4, 1], type = operator-ket

 Qobj data =
[[ 1.]
[ 3.]
[ 2.]
[ 4.]]

For computational basis vectors {|i⟩ : i ∈ {1, . . . , dimH}}, ⟨j|T = |j⟩, such that
we can quickly identify that

∣∣Eijz ∈ H ⊗ H. This then gives us the operator-vector
correspondence L(H) ∼= H⊗H []. The spaceH⊗H is often called Liouville space.

Graphically, we can represent this correspondence using Wood tensor network dia-
grams [; ], in which each index of a tensor is depicted by a wire that can be bent to
represent transpositions. The Wood diagrams for |Ay in the row- and column-stacking
conventions are shown in Figure ..
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Figure .: Examples of Wood diagrams []. Indices of tensors (e.g.: vectors and ma-
trices) are indicated by wires, the tensor product by vertical concatenation and matrix
products by horizontal juxtaposition. Bent wires indicate contractions of those indices,
boxes indicate tensors and triangles represent vectorized operators. (a) Definition of
column-stacking and (b) row-stacking conventions for |Ay, and (c) a graphical proof of
Roth's Lemma (.) for row-stacking.

We can use other bases for L(H) as well as the row- and column-stacking conven-
tions. For instance, if dimH = 2n for some n, tensor products of the Pauli matrices are
commonly used, forming the Pauli basis{

σi1 ⊗ σi2 ⊗ · · · ⊗ σin /2n : i ∈ {0, 1, 2, 3}n} . (.)

More generally, one can use the Heisenberg-Weyl operators, but we focus here on the
qubit case. Since each element of the Pauli basis is a Hermitian operator, we can expand
any other Hermitian operator as a real vector in the Pauli basis. In particular, since 1⊗n

is the only traceful member of the Pauli basis, density operators can be represented by
a real vector r of dimension dimH− 1, known as a Bloch vector r. For instance, a qubit
density operator can be written as

ρ =
1

2
+

r · (σx, σy, σz)

2
, (.)

where the zeroth element is implied by demanding that Tr(ρ) = 1. In the special case
of a single qubit, it is straightforward to show that ρ is positive semidefinite if and only
if ∥r∥2 ≤ 1, such that the set of Bloch vectors representing valid states forms a ball of
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x
y

|0〉

|1〉

Figure .: States on the Bloch sphere corresponding to vectors r = (0.7, 0, 0) (green)
and r = (−1, 0, 1)/

√
2 (orange).

Listing .: Source code for above figure, using QuTiP.
from qutip import *

 from itertools import starmap
from operator import mul
from numpy import sqrt

sigma = lambda: (sigmax(), sigmay(), sigmaz())


def bloch_vector(r):
r"""
Returns the state ρr =

1
2 (1+ r · σ).

Here, starmap is used to produce terms of the form riσi.
 """

return sum(starmap(mul, zip(r, sigma())), identity(2)) / 2

b = Bloch()
b.add_states(bloch_vector([0.7, 0, 0]))

 b.add_states(bloch_vector([0, -1 / sqrt(2), 1 / sqrt(2)]))

b.show()
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radius  around the origin, known as the Bloch sphere (shown in Figure .). The surface
of this sphere corresponds to pure states, such that Tr(ρ2) = 1.

Once we have adopted a basis for L(H), superoperators, linear operators in L(L(H)),
can thus be represented as elements of L(H⊗H). It is straightforward to show that in
the row-stacking convention,

|ABCy = A⊗ CT |By . (.)

This fact, known as Roth's Lemma, allows us to represent group actions by superopera-
tors, such that for a unitary operator U,

|U • ρy = U ⊗U�T |ρy = U ⊗U∗ |ρy , (.)

where U∗ is the complex conjugate of U.
We need not consider only those superoperators corresponding to unitary evolution,

however. By the same argument as used to introduce density operators, we can also
consider convex combinations of unitary evolution,

ˆ̂S |ρy = ∑
i

pi
ˆ̂SUi |ρy , (.)

for ∑i pi = 1. Such mixed unitary channels describe the case in which the system evolves
under a unitary Ui with probability pi.

Superoperators of this form suggest two very useful properties that we will demand
of any physical process: they map positive operators to positive operators even when
composed with reference states, and they preserve the trace of their inputs. Together,
these properties imply that such superoperators map all valid states to valid states. More
generally, we can take the set of maps that satisfy these two properties, called completely
positive trace-preserving (CPTP) maps, to be the most general class of linear operators
acting on density operators [; ]. More general maps can be considered by including
correlations between the system of interest and its environment [; ]. That is, the
reduced action on a single subsystem need not be a well-defined CPTP map, even if the
extended map acting on the system and its environment is CPTP. Here, we shall restrict
our focus to those maps that are linear and CPTP.

Note that though we arrived at superoperators by considering mixed unitary chan-
nels, there are many CPTP maps which cannot be written in that form. For instance, the
amplitude damping channel

Λ[ρ] = |0⟩ ⟨0|Tr(ρ) (.)
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is a CPTP map that takes all inputs to a single fixed state. In particular, Λ[1] ̸= 1, such
that this is not a mixed unitary channel.

We also note that not all maps acting on quantum states need be ``rectangular.'' That
is, a process can add or remove degrees of freedom, for instance, by introducing an
additional register. Consider the map Λprep : ρ 7→ ρ⊗ |0⟩ ⟨0|, which adds a new register
prepared in a fiducial input state. This is, as before, a linear function of ρ, such that we
can write down the corresponding Liouville-representation superoperator. Assuming
ρ ∈ L(C2) is tensored with another qubit,

ˆ̂Sprep =



1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, (.)

with the corresponding Wood diagram shown in Figure .. In QuTiP, we can quickly
implement this preparation by using the super_tensor() function to handle the required
reordering of tensor indices.

Listing .: Calculation of state preparation superoperator using QuTiP.
>>> import qutip as qt
>>> q = qt.tensor(qt.identity(2), qt.basis(2))
>>> s_prep = qt.sprepost(q, q.dag())

Similarly, we can write down a superoperator for ΛTr1 : ρ 7→ Tr1(ρ) for the partial
trace over the first of two qubits, noting that Tr1(ρ) = ∑i ⟨i1|ρ|i1⟩. We can quickly find
the column-stacking Liouville representation

ˆ̂STr1 =


1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

 (.)

using the QuantumUtils` package for Mathematica [], with the code snippet below.
Thanks to Robert Johansson for suggesting the use of sprepost() here.
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Figure .: Wood diagram for a superoperators ˆ̂Sprep and ˆ̂Smeas representing respec-
tively preparation of an ancilla in the state ρanc, and measurement of that ancilla.

Listing .: Column-stacking partial trace superoperators in Mathematica.
In[1]:= Needs["QuantumUtils`"];

In[2]:= PartialTrSuperoperator[{2, 2}, {1}] // First // TeXForm
Out[2]//TeXForm= \left(

 \begin{array}{cccccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\

 \end{array}
\right)

1.5.3.2 Representations of Superoperators

Though the Liouville space representation of quantum maps is convienent in a number
of different contexts, there are several other useful representations that we will want
to consider. The Choi representation, for instance, is a natural choice both for deciding
properties of channels [] and for performing ancilla-assisted process tomography [].
For a map Λ, the Choi representation J(Λ) is defined up to normalization by acting Λ
on one half of a maximally entangled state |1y t1|,

J(Λ) := (Λ⊗ 1L(H))[|1Hy t1H|], (.)
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Figure .: Circuits for producing Choi states J(Λ)/d.

where for clarity, we have denoted by subscripts which space each identity acts upon.
The map Λ is then completely positive if and only if J(Λ) ≥ 0, is Hermicity preserving
if and only if J(Λ) is Hermitian and is trace-preserving if and only if Tr2(JΛ) = 1 [],
such that it is straightforward to reason about Λ given J(Λ). The definition (.) also
immediately implies an operational description, in which one performs state tomography
on the output of the circuit in Figure . in order to reconstruct J(Λ).

The Choi representation also nicely points to another useful representation, as can
be seen by considering the singular value decomposition of the Choi representation for
a map Λ,

J(Λ) = ∑
i

si
∣∣ÃizuB̃i

∣∣ (.)

where {si} are the singular values of J(Λ), and where
{∣∣Ãiz} and

{∣∣B̃iz} are the left and
right singular vectors, respectively. Let |Aiy =

√
si
∣∣Ãiz and |Biy be defined similarly.

Then, by Roth's Lemma (.),

J(Λ) = ∑
i
(Ai ⊗ 1H) |1Hy t1H| (Bi ⊗ 1H)

�, (.)

such that the action of Λ alone can now be given in terms of the Ai and Bi operators,

Λ[ρ] = ∑
i

AiρB�
i . (.)

This representation is known as the Kraus representation, and is useful for expressing
the action of Λ without the use of operators acting on a larger space. This feature is

 Note that this definition depends on one's choice of basis for Liouville space. In the column-stacking
convention, J(Λ) := (1L(H) ⊗Λ)[|1Hy t1H|].
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especially important for numerically computing the action of seperable channels [; ].
Note that for a positive semidefinite operator, the left and right singular vectors are equal,
such that if Λ is completely positive, Bi = Ai.

A final useful representation is the χ-matrix, which we obtain by expanding the ac-
tion of Λ in an operator basis such as the Pauli basis {σi} or the Heisenberg-Weyl basis
. In particular, let {Bα : α ∈ {1, dim2H}} be a basis for L(H). Then, we decompose the
superoperator ˆ̂SΛ in two copies of this basis to obtain that []

ˆ̂SΛ |ρy = ∑
α,β

χα,βBβ ⊗ Bα |ρy (.a)

= ∑
α,β

∣∣∣χα,βBαρB�
β{ , (.b)

such that

Λ[ρ] = ∑
α,β

χα,βBαρB�
β. (.c)

This then defines the χ-matrix,

χ := ∑
α,β
|α⟩ ⟨β| χα,β. (.)

The χ matrix can be estimated from tomographic data using standard linear algebra
methods [].

Because the χ-matrix is a change of basis from the Choi matrix [], χ ≥ 0 if and
only if Λ is completely positive, and Tr(χ) = dimH if and only if Λ is trace-preserving.
The χ-matrix formalism is particularly nice, however, for considering the special class
of mixed-unitary channels wherein each unitary is a Pauli operator. Such channels are
called Pauli channels, and are diagonal in the χ-matrix representation,

Λ[ρ] = ∑
α

pασα • ρ = ∑
α,β

pαδα,βσαρσ�
β. (.)

That is, we immediately identify χα,β = dimH · pαδα,β in this important special case.
One Pauli channel we will frequently consider in this work is the completely depolarizing

In practice, one has to renormalize the Pauli or Heisenberg-Weyl operators in order to obtain an or-
thonormal basis, since Tr(σ�

i σi) = Tr(1) = dimH.
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channel
Ω[ρ] :=

1

dimH =
1

dim2H ∑
P∈Pn

P • ρ. (.)

The χ-matrix for Ω is simply the identity, up to a normalization, representing that Ω acts
each Pauli operator on a state with equal probability. Having defined the completely de-
polarizing channel, we can now define a broader class of depolarizing channels by mix-
ing the identity channel with a probability p of acting Ω, thus defining the depolarizing
strength.

The Liouville, Choi, χ-matrix and Kraus representations are all straightforward to
compute using libraries such as QuTiP.

Listing .: Computation of different superoperator representations.
>>> from qutip import *
>>> S = rand_super(2)
>>> print S

 Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = [4, 4],
type = super, isherm = False

Qobj data =
[[ 0.57867425 +0.00000000e+00j -0.00564534 +7.74610990e-02j

-0.00564534 -7.74610990e-02j 0.42132575 +0.00000000e+00j]
 [ 0.00564534 +7.74610239e-02j 0.27849449 +4.23704191e-19j

0.02802420 -4.10660463e-03j -0.00564534 -7.74610239e-02j]
[ 0.00564534 -7.74610239e-02j 0.02802420 +4.10660463e-03j
0.27849449 -1.50538581e-19j -0.00564534 +7.74610239e-02j]

[ 0.42132575 +0.00000000e+00j 0.00564534 -7.74610990e-02j
 0.00564534 +7.74610990e-02j 0.57867425 +0.00000000e+00j]]
>>> print S.iscptp
True
>>> print to_choi(S)
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = [4, 4],

 type = super, isherm = True, superrep = choi
Qobj data =
[[ 0.57867425 +0.00000000e+00j 0.00564534 -7.74610239e-02j

-0.00564534 -7.74610990e-02j 0.27849449 -1.50538581e-19j]
[ 0.00564534 +7.74610239e-02j 0.42132575 +0.00000000e+00j

 0.02802420 -4.10660463e-03j 0.00564534 +7.74610990e-02j]
[-0.00564534 +7.74610990e-02j 0.02802420 +4.10660463e-03j
0.42132575 +0.00000000e+00j -0.00564534 +7.74610239e-02j]

[ 0.27849449 +4.23704191e-19j 0.00564534 -7.74610990e-02j
-0.00564534 -7.74610239e-02j 0.57867425 +0.00000000e+00j]]

 >>> print to_chi(S)
Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = [4, 4],





type = super, isherm = True, superrep = chi
Qobj data =
[[ 1.71433748e+00 +0.00000000e+00j 1.66212807e-01 -1.66212807e-01j

 -1.43631438e-01 -1.43631438e-01j 0.00000000e+00 +0.00000000e+00j]
[ 1.66212807e-01 +1.66212807e-01j 8.50864707e-01 +0.00000000e+00j

0.00000000e+00 -5.60483947e-02j 6.96647132e-08 -6.96647139e-08j]
[ -1.43631438e-01 +1.43631438e-01j 0.00000000e+00 +5.60483947e-02j

8.34438288e-01 +0.00000000e+00j -8.06172221e-08 -8.06172226e-08j]
 [ 0.00000000e+00 +0.00000000e+00j 6.96647132e-08 +6.96647139e-08j

-8.06172221e-08 +8.06172226e-08j 6.00359521e-01 +0.00000000e+00j]]
>>> Ks = to_kraus(S)
>>> for K in Ks:
... print K

 ...
Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = False
Qobj data =
[[ 0.63894814 +5.68855226e-17j -0.01568380 +2.15201149e-01j]
[ 0.01568380 +2.15201149e-01j 0.63894814 -1.08834735e-17j]]

 Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = True
Qobj data =
[[ 3.87414352e-01 -1.99652267e-17j 2.28563063e-08 -3.13616727e-07j]
[ 2.28563064e-08 +3.13616728e-07j -3.87414352e-01 -4.20678116e-17j]]

Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = False
 Qobj data =
[[-0.01036386 +1.42204905e-01j 0.41775541 +6.12169650e-02j]
[ 0.42221689 -1.13419246e-17j -0.01036386 +1.42204905e-01j]]

Quantum object: dims = [[2], [2]], shape = [2, 2], type = oper, isherm = False
Qobj data =

 [[ -2.61524781e-08 -3.58844275e-07j 4.43284481e-01 -3.13067175e-17j]
[ -4.38600388e-01 +6.42715423e-02j 2.61524808e-08 +3.58844308e-07j]]

1.5.3.3 Liouvillians and Lindbladians

With the vectorspace structure of L(H) in mind, we revisit the von Neumann equation
(.), noting that it expresses the derivative d/dt as a superoperator ˆ̂L,

d
dt
|ρy = |−i[H, ρ]y = −i (|Hρy− |ρHy) = −i

(
H ⊗ 1− 1⊗ HT

)
|ρy =: −i ˆ̂L |ρy .

(.)
This superoperator is often called the Liouvillian of the system, and generates dynamics
for |ρy in the same manner that a Hamiltonian H generates dynamics for |ψ⟩,

|ρ(t)y = e−i ˆ̂Lt |ρ(0)y . (.)
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Unlike Hamiltonians, however, Liouvillians can incorporate dissipative, or open quan-
tum system, dynamics. In particular, we can represent open dynamics by

|ρ(t)y = e
ˆ̂Gt |ρ(0)y , (.)

where ˆ̂G := −i ˆ̂L+ ˆ̂D, and where ˆ̂D is a superoperator represents the non-unitary portion
of the evolution, and is called a dissipator.

Here, we derive a simple example of a dissipator in Lindblad form [] for general
amplitude damping, in which the environment interacts with a system such that a qubit
state ρ decays to an equilibrium state ρeq := p |0⟩ ⟨0|+ (1− p) |1⟩ ⟨1|. We shall assume
that this decay happens with a characteristic time T1 such that over a time interval ∆t,
the environment acts by a map with Kraus decomposition []

A0 =
√

p
(
1− δt

2T1
E− + O(∆t2)

)
(.a)

A1 =
√

p

(√
∆t
T1

σ+

)
(.b)

A2 =
√

1− p
(
1− δt

2T1
E+ + O(∆t2)

)
(.c)

A3 =
√

1− p

(√
∆t
T1

σ−

)
, (.d)

where E+ = |0⟩ ⟨0| and E− = |1⟩ ⟨1| are the elementary matrices along the diagonal,
and where σ± = (σx ± iσy)/2. Taking the limit as ∆t → 0, we can write this map as a
derivative operator,

∂tρ(t) = lim
∆t→0

1
∆t

(ρ(t + δt)− ρ(t))

=
p
T1

[
σ+ρσ− −

1
2
{E−, ρ}

]
+

1− p
T1

[
σ−ρσ+ −

1
2
{E+, ρ}

]
,

(.)

where {A, B} := AB + BA is the anti-commutator.

Finally, vectorizing |∂tρy gives the dissipator superoperator ˆ̂D such that ˆ̂D |ρy =
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|∂tρy. In the column-stacking convention,

ˆ̂D =
p
T1

(
σT
− ⊗ σ+ −

1
2
(1⊗ E− + ET

− ⊗ 1)

)
+

1− p
T1

(
σT
+ ⊗ σ− −

1
2
(1⊗ E+ + ET

+ ⊗ 1)

)
.

(.)

Thus, the evolution of ρ under this process alone has the solution |ρ(t)y = e ˆ̂Dt |ρ(0)y.
This form is generic for single-parameter families of superoperators ˆ̂S(t) such that ˆ̂S(t +
s) = ˆ̂S(t) ˆ̂S(s) [], known as quantum dynamical semigroups. Below, we consider the
cumulant expansion, which incorporates both dynamical generators for dissipative pro-
cesses and stochastic Hamiltonian evolution to find effective superoperators.

1.5.3.4 Magnus, Floquet and Cumulant Expansions

Often, we will want to consider not just time-independent Hamiltonians and Liouvil-
lians, but also the effects on a quantum system due to time-dependence such as is intro-
duced by stochastic processes or by control pulses. We can do this by using the Magnus
expansion [; ; ] to find an effective generator Heff or ˆ̂Leff. In particular, consider
H = H(t), such that the unitary evolution is generated by a time-ordered exponential

U(T) = T exp
(
−i
∫ T

0
H(t) dt

)
. (.)

We can then find an operator Heff that generates U(T) by an ordinary matrix exponential

U(T) = exp (−iTHeff) . (.)

In particular, the Magnus expansion gives that if
∫ T

0 ∥H(t)∥2 dt < π [], then

Heff = H(0) + H(1) + · · · (.a)

H(0) =
1
t

∫ T

0
H(t)dt (.b)

H(1) =
1
2t

∫ T

0

∫ t1

0
[H(t1), H(t2)]dt2 dt1 (.c)

H(2) =
1
6t

∫ T

0

∫ t1

0

∫ t2

0
([H(t1), [H(t2), H(t3)]] + [H(t3), [H(t2), H(t1)]]) dt3 dt2 dt1.

(.d)
...
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This expansion is especially useful in considering the effective Hamiltonian at strobo-
scopic intervals of a rotating or toggling interaction frame, owing to Floquet's theorem
[], which states that if H(t) = H(t + T) for some period T, then

U(t + nT) = U(t)U(T)n (.)

for n ∈ N. Thus, at stroboscopic intervals of T, the evolution is given by the effective
Hamiltonian obtained from taking the Magnus expansion over a single period. In this
limit, we can use the formalism of Floquet space [] to explicitly find the stroboscopic
Hamiltonian in terms of a Fourier decomposition of H(t),

H(t) = ∑
j

eijωtHj (.)

for a set of linear operators {Hj} such that Hj = H�
−j. Leskes et al [] then give that

using this decomposition, the stroboscopic Hamiltonian Heff is given by

Heff = H(0)
eff + H(1)

eff + H(2)
eff + · · · (.a)

H(0)
eff = H0 (.b)

H(1)
eff = −1

2 ∑
n ̸=0

[H−n, Hn]

nω
(.c)

H(2)
eff = −1

3 ∑
n ̸=0
n′ ̸=0
n ̸=n′

[[Hn−n′ , Hn′ ], H−n]

nn′ω2 − 1
2 ∑

n ̸=0

[[H0, Hn], H−n]

n2ω2 . (.d)

...

Since in many experiments, the Fourier representation of H(t) has a small number of
modes for convenient choices of rotating frames, this gives us a very convienent expres-
sion for finding effective Hamiltonians in terms of a small number of finite sums.

By the same arguments, we can readily find effective Liouvillian operators ˆ̂Leff under
the same stroboscopic conditions. We are often interested, however, in the ensemble
average action

ˆ̂S(t) =
⟨

T exp
(∫ t

0
( ˆ̂G(t))dt

)⟩
, (.)

where ˆ̂G(t) = i ˆ̂L(t) + ˆ̂D(t) is drawn from a stochastic process. Deterministic evolution
can be considered as well by letting ˆ̂G(t) be defined in the interaction frame of the de-
terministic unitary and dissipative dynamics. The cumulant expansion [], which has
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previously been used to analyze decoherence in quantum systems [], then expands
the Magnus expansion to include this case, giving that

ˆ̂S = exp( ˆ̂K(t)) (.a)

ˆ̂K =
∞

∑
n=1

(−it)n

n!
ˆ̂Kn = −it ˆ̂K1 −

t2

2
ˆ̂K2 (.b)

ˆ̂K1 =
1
t

∫ t1

0

⟨
ˆ̂G(t1)

⟩
dt1 (.c)

ˆ̂K2 =
1
t2 T

∫ t1

0

∫ t2

0

⟨
ˆ̂G(t1) ˆ̂G(t2)

⟩
dt2 dt1 − ˆ̂K2

1. (.d)

Numerical integration of this expansion can then be used to evaluate the performance
of a gate, for instance, given reasonable models of the physics of a system [].

1.5.4 Error Correction and Stabilizer Codes

We close the introduction by introducing one more broad area of quantum information,
namely the theory of quantum error correction. Naïvely, applying an error correction code
to a quantum state may seem impossible on the face of it, since we cannot simply repeat
a quantum state |ψ⟩ to make an encoded state |ψ⟩ = |ψ⟩ |ψ⟩ · · · |ψ⟩ without violating
the no-cloning theorem. Instead, we choose an encoding of a state such that the location
and kind of errors that occur can be revealed by measurements that do not at all depend
on which state we have encoded.

This is formalized by the Knill-Laflamme conditions []. In particular, let |i⟩ be a
codeword representing a computational basis state |i⟩. Then, a set of error operators {Aa}
is recoverable if and only if for all basis states |i⟩ and |j⟩ and for all errors Aa and Ab,

⟨i|A�
a Ab|j⟩ = δijca,b, (.)

where ca,b does not depend on i and j. If these conditions are met, then we immediately
have that for any states ψ and ϕ in the code spaceH := span{|i⟩},

⟨ϕ|A�
a Ab|ψ⟩ = ⟨ϕ|ψ⟩ ca,b, (.)

such that action of the error operators {Aa} preserves the structure of the codespace.
The Knill-Laflamme conditions also immediately imply by linearity that if {Aa} is

a set of recoverable errors for a given set of codewords, then so is span{Aa}. Since
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L(C2) = span{1, X, Y, Z}, if we can correct any single-qubit Pauli operator, we can
therefore correct any single-qubit operator at all. This insight then motivates using the
unique structure of the Pauli group to construct and reason about quantum error cor-
rection codes.

For instance, consider a bit flip code

|0⟩ := |000⟩ (.a)
|1⟩ := |111⟩ = XXX |0⟩ . (.b)

This code then satisfies (.) for the error set A0 = 1, Aa = Xa for a ∈ {1, 2, 3}, as
can be verified by noting that A�

a Ab = 1 if and only if a = b, such that A�
a Ab maps the

codewords |i⟩ into orthogonal copies of the codespace for each a and b. By measuring
which such codespace a state is in, the error can thus be corrected without measuring
the state itself.

To derive the measurement we should use for this recovery, it is helpful to rely on
the stabilizer formalism [], which makes precise the way in which the structure of the
Pauli group relates to the Knill-Laflamme conditions. In the example of the bit flip code,
we note that S = ⟨ZZ1,1ZZ⟩ = stab{|0⟩ , |1⟩} such that we can reason instead about the
group S. Then, we note that Xa for a ∈ {1, 2, 3} anticommutes with at least one element
of S. As a consequence, for all |ψ⟩ and |ϕ⟩ stabilized by S, there exists an Si for each Xa
such that

⟨ϕ|Xa|ψ⟩ = ⟨ϕ|XaSi|ψ⟩ = − ⟨ϕ|SiXa|ψ⟩ = − ⟨ϕ|Xa|ψ⟩ . (.)

From this, we conclude that ⟨ϕ|Xa|ψ⟩ = 0. Similarly, if a ̸= b, ⟨ϕ|X�
aXb|ψ⟩ = 0 since

the set of stabilizer group generators with which each Xa anticommutes is distinct. That
is, by interpreting the group generators as a sequence of measurements, we obtain a
syndrome that uniquely distinguishes an error from our correctable set. A code with this
property is said to be non-degenerate. The last thing we must check to verify that (.)
holds is that ⟨ϕ|X�

aXa|ψ⟩ = ⟨ϕ|ψ⟩; this, however, is immediate from the fact that each Xa
in our recoverable set is unitary.

Generalizing, the set of states stabilized by an Abelian subgroup S of the Pauli group
is a stabilizer code with recoverable operators given by those operators which are either
in S or anticommute with at least one element of S. Those elements which commute
with all elements of S but that do not necessarily stabilize the codespace are called the
normalizer N(S) of S, such that the unrecoverable errors are N(S) \ S. For the bit flip
code above, our notation for (.) already suggests the normalizer for that code must
include ⟨XXX⟩, since XXX maps |0⟩ to |1⟩, but commutes with both generators of S. We
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complete the normalizer by noting that any single-qubit Z error is unrecoverable, such
that N(S)/S = ⟨XXX, Z11⟩, where we have used a factor group to indicate that any
product of a stabilizer element and an unrecoverable error is also unrecoverable.

Note that N(S)/S has the same structure as the Pauli group on a single qubit, as
X = XXX and Z = Z11 have the same multiplication relations as X and Z, up to
multiplication by an element of S. Moreover, the elements of N(S)/S act as we would
expect Pauli operators to act on the codespace,

X |0⟩ = |1⟩ , X |1⟩ = |0⟩ (.a)
Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ . (.b)

We thus refer to N(S)/S as the logical Pauli group for the codespace.
In particular, we will write that a code S is an Jn, k, dK stabilizer code, where n is the

number of physical qubits in which states are encoded, k is the number of logical qubits
and where d is the minimum weight of an element of N(S)/S, called the distance. Since
the bit flip code cannot correct phase flips, it has a distance of , such that the bit flip
code is a J3, 1, 1K code.

A code that can correct a single arbitrary error must have distance at least , such
that two different single-qubit errors are distinguishable. The smallest code with this
property is the J5, 1, 3K perfect code [],

S =

⟨XZ ZX1

1XZ ZX
X1XZ Z
ZX1XZ

⟩
. (.)

Here, N(S)/S = ⟨XXXXX, ZZZZZ⟩. Using QuaEC [], we can readily verify that
the perfect code has a distance of  by explicit enumeration over all elements of the
normalizer group excluding those elements in perfect code S itself.

Listing .: Explicit enumeration of N(S)/S for the five-qubit perfect code.
>>> import qecc as q
>>> stab = q.StabilizerCode.perfect_5q_code()
>>> print stab
5-qubit perfect code

 S = <i^0 XZZXI, i^0 IXZZX, i^0 XIXZZ, i^0 ZXIXZ>
Xbars = PauliList(i^0 XXXXX)
Zbars = PauliList(i^0 ZZZZZ)
>>> S = list(stab.stabilizer_group())
>>> print min([
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 ... P.wt for P in stab.normalizer_group()
... if P.mul_phase(-P.ph) not in S
... ])
3
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2 Characterization with Classical
Resources

In the course of developing useful quantum devices, we encounter a variety of different
learning problems, in which we characterize some aspect of a quantum system. For in-
stance, to design control using simulation-based optimal control theory [] (Chapter )
with high fidelity, we require accurate knowledge of the control dynamics for our quan-
tum system. As an alternative, we can use closed-loop algorithms to modify control
designs based on a characterization of the performance of an initial design [; ; ]
(Section ..).

As we will explore in further detail in Chapter  and Section ., certification of quan-
tum dynamics can be expressed as a characterization problem, allowing us to determine
whether the predictions made by a quantum simulator can be trusted. This problem is
especially timely since quantum simulation experiments are approaching a complexity
where classical computers are unable to simulate their evolution [; ; ]. Traditional
solutions to this problem, such as tomographic methods [; ; ; ; ; ; ], work
well in small systems but are often impractical for learning parameters for large quantum
systems, as well as for learning parameters such as decoherence times (T2). These prob-
lems motivate the exploration of new Hamiltonian learning algorithms that can push
past the limits of tomographic methods.

We approch this challenge and render the Hamiltonian learning process tractable by
utilizing information about a system, rather than starting from worst-case assumptions
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such as those made in traditional quantum process and state tomography. In practice,
as we will discuss in Section .., we often have knowledge about the dynamics that
describe the evolution of a system of interest, and wish to refine that knowledge by es-
timating specific parameters of a model. Thus, practical Hamiltonian learning can often
be achieved via a suitable parameterization of the Hamiltonian, H(x1, . . . , xd), reducing
the problem to estimating the vector of parameters x = (x1, . . . , xd).

We also seek to characterize our uncertainty about estimation errors by providing a
region estimate for the Hamiltonian parameters that encloses some fixed volume of pa-
rameter space in which the mean or the variance of the Hamiltonian parameters are
expected to be found with high-probability. We generalize this concept to incorporate
learning hyperparameters, which describe the distribution of the Hamiltonian parame-
ters in cases where the parameters randomly drift between experiments, thus relaxing
the assumption that an experiment is described by a single static Hamiltonian.

Here, we present a framework for learning Hamiltonian parameters, based on Bayes'
rule. We demonstrate Bayesian analysis in an analytically tractable special case and dis-
cuss the sequential Monte Carlo (SMC) algorithm for more general cases. We then provide
several examples of SMC in practice and discuss its robustness to common experimental
concerns. In Section ., we show how this algorithm can be extended to employ quan-
tum resources, and thus to verify the correct operation of large quantum simulators.

2.1 Bayesian Inference for Quantum Applications
To learn Hamiltonian dynamics, we adopt a methodology based on Bayes' rule, which
provides a means of calculating the probability Pr(hypothesis|data) of a hypothesis be-
ing true, given experimental observations. In particular,

Pr(hypothesis|data) = Pr(data|hypothesis)
Pr(data) Pr(hypothesis), (.)

where Pr(data|hypothesis) is the likelihood function for an experiment. The likelihood
is a complete description of an experiment, as it specifies the probability for any mea-
surement outcome (data) to occur, given a particular hypothesis. In the context of quan-
tum mechanics, Born's rule (.) acts as a likelihood function if we interpret the prepa-
ration |ψ⟩ as a hypothesis about the state of a system.

The posterior probability distribution Pr(hypothesis|data) represents what we know
about a set of hypotheses from having performed measurements on a system. For in-
stance, the mean over this distribution provides an estimator for which hypothesis is
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most parsimonious with the data, as we will discuss in Section ... One advantage
of employing a Bayesian approach is that the posterior distribution also characterizes
the uncertianty in the estimates one obtains. This can be used, for instance, to derive
region estimates that include the true model with high probability, as we will explore in
Section ..

From equation (.), we see that simulation according to the likelihood function is in-
timately connected to our ability to draw samples from the posterior, and hence provides
a means of learning. For those quantum systems we can efficiently simulate classically,
this provides us with a very valuable resource, as we can sample from the posterior by
simulating according to a hypothesis about our system. On the other hand, for large
quantum systems, Bayesian methods are not as obviously applicable--- indeed, the con-
jectured intractability of simulating quantum dynamics would naively seem to preclude
using simulation-based approaches to learning. In Chapter , we will show that this ap-
parant drawback becomes an advantage when we also include quantum simulation as
a resource. For now, however, we will limit our examples to those that admit efficient
classical simulations, including small systems and examples in which our experimental
protocol results in a simpler effective description.

Bayesian methods have been widely used in quantum information to discriminate
[] or estimate states [; ], to incorporate models of noisy measurements [], to
characterize drifting frequencies [], and to estimate Hamiltonians [; ; ; ;
; ; ].

2.1.1 Prior Information

An important advantage to Bayesian methods is the natural incorporation of prior infor-
mation. In particular, the prior distribution Pr(hypothesis) as in (.) represents what is
known before any data is collected.

It is important to note, however, that if the prior is not chosen to be an accurate rep-
resentation of the experimenter's initial knowledge, then this advantage can become a
disadvantage, in that the prior may then support misleading or incorrect hypotheses.
Though in some important examples, a bad prior may be overcome (such as in Sec-
tion ..), this is at the cost of additional data, and can thus deny a Bayesian experi-
mentalist the computational and data collection advantages that they might otherwise
enjoy. In practice, this concern can be largely mitigated by choosing conservative priors,
and by using model selection to ensure that a reasonable conclusion is being reached
(Chapter ). Moreover, that we work with models at all implies that this concern is not
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unique to Bayesian methods []. In particular, our choices of models and parameteri-
zations are informed by prior information, such that we preclude observations that are
not supported by any assignment of model parameters.

2.1.1.1 Parameter Reduction

In many cases, physical or operational arguments allow for prior samples to be expressed
using a smaller number of parameters. For instance, by assuming that the dynamical
generator of a system admits only completely-positive and trace-preserving (CPTP) dy-
namics, Boulant et al [] dramatically reduce the parameter count that they require in or-
der to estimate dynamical generators. Their approach still requires exponentially many
parameters, however, such that it is desirable to incorporate more information.

For instance, if a system is known to admit only Ising interactions, then it is not nec-
essary to consider all Hermitian operators, as one can instead write down a list of cou-
plings,

H(x) = ∑
⟨i,j⟩

xijσ
(i)
z σ

(j)
z . (.)

Thus, inference can be carried out on the model parameters x instead of in a space that
grows exponentially in the number of qubits. Parameter reduction can be achieved in
a more general context by, for instance, assuming that the Hamiltonian of a system is
k-local for some k, or has a subgraph of the complete graph for its interactions. We
shall see later, in Chapter , that we can also treat a reduced parameter model as an
approximation to a higher-dimensional model, and then learn the parameters included
by the approximate model. By reducing parameters in any of these ways, we remove a
critical impediment to the application of inference in large quantum systems: even if we
could somehow learn a parameter with constant effort, if there are exponentially many
parameters that we must learn, then there is little that we can do.

In the context of learning quantum states, there is something deeper that can be said:
explaining the data that we can obtain in the lab is a much less demanding problem
than learning a complete description of a state, as the effective dimension for probably
approximately correct (PAC) learning is substantially less than exponential in the num-
ber of qubits []. Put differently, as long as we do not take exponentially many mea-
surements, our data is supported by a subexponential description. Similar arguments
have been advanced for continuous-time dynamics, showing that those states reachable
by physically-realizable Hamiltonians explore only a very small submanifold of Hilbert
space [].
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2.1.2 Decision Theory

Before showing how to apply Bayesian inference in quantum information, it is helpful
to first take a brief diversion into how we assess the quality of a learning algorithm, and
the ultimate bounds on how well any algorithm can perform.

2.1.2.1 Loss and Risk

In order to assess the performance of a learning procedure, we define a loss function
between an estimate and the true value of a model []. Throughout this work, we
will focus on the quadratic loss, which generalizes the mean-squared error for multiple
parameters.

Definition  (Quadratic Loss) Given a true model x and an estimate x̂(D), the quadratic loss
of that estimate is

LQ(x, x̂(D)) := (x− x̂(D))TQ(x− x̂(D)),

where Q is a positive semidefinite matrix that defines the relative scale between the different pa-
rameters. Unless otherwise noted, we shall take Q = 1.

One can also consider other loss functions, depending on the application. For ex-
ample, the Kullback-Leibler divergence is a commonly-used loss function with a well-
motivated operational interpretation []. Within quantum information, the fidelity
between two states may be more directly useful instead. We focus on the quadratic loss
in this work, as it is generally applicable to a wide range of scenarios, can be easily cal-
culated and admits useful bounds, as we shall see in Section ....

Once we have defined a loss function that is appropriate for our experiment, then we
can reason about the average performance of an estimator.

Definition  (Risk) Given a true model x, an estimator x̂(·), and a loss function L, the risk is
given by

R(x, x̂(·); L) := ED[L(x, x̂(D))].

For some important cases, such as that in Section .., we are able to analytically find
approximations to the risk incurred by a particular estimator, such that heuristics can be
designed that minimize the risk. In many cases of interest, however, this is not feasible.
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Instead, in order to determine the risk incurred by an estimator, one approach that we
can take is to repeatedly pick ``true'' models, generate simulated data from them, and
compare to the loss incurred by the estimator given that simulated data. That is, we can
perform a Monte Carlo sampling of the expectation value in Definition .

Definition  still leaves the assumption, however, that we have the true model to com-
pare against. While this is the case when we are benchmarking a learning algorithm by
repeatedly drawing data from a simulator with a true model that is hidden from the
inference algorithm, we are often interested in how well we expect to learn without as-
suming a particular hypothesis. The Bayes risk, then, is the expectation value of the risk,
taken over some prior.

Definition  (Bayes Risk) Given a prior distribution π(x), an estimator x̂(·), and a loss func-
tion L, the Bayes risk is given by

r(π, x̂(·); L) := Ex∼π[R(x, x̂; L)].

This definition then tells us what losses we should expect to incur a priori, given a
particular estimation strategy and given our initial state of knowledge about x. We are
thus interested in estimators and experiment design strategies that minimize this quan-
tity, as they provide techniques that give the smallest loss, averaged over the hypotheses
that we are trying to learn.

For many commonly-used loss functions, the best estimator according to the Bayes
risk is given by an expectation value over the posterior [; ],

x̂(D) = E[x|D]. (.)

2.1.2.2 Fisher Information and Cramér-Rao Bound

Having thus defined the loss function that we will use in evaluating our estimates, and
hence the risk on estimators, we then wish to determine how small we can possibly make
the risk and the Bayes risk for a given set of experimental designs. In the extreme case
that the data set doesn't depend on the model parameters at all, we clearly cannot do
better than to simply guess from the prior, illustrating that to at least some degree, the
answer to this question depends on how strongly the likelihood is a function of the pa-
rameters of interest. This is made formal by considering the Fisher score q of a likelihood
function,

q := ∇x ln Pr(D|x). (.)
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The Cramér-Rao bound [] lower-bounds the covariance of any unbiased estimator
of x in terms of the Fisher information I := CovD

(
q
)

,

CovD(x̂(D)) ≥ I−1, (.)

where A ≥ B is the partial ordering defined by the condition that A − B is a positive
semidefinite matrix. Since the covariance of an unbiased estimator is equal to its risk
under the quadratic loss function with Q = 1, the Cramér-Rao bound thus tells us how
well we can hope to estimate x given a distribution for D.

In Section .., we will use the Cramér-Rao Bound to achieve a nearly-optimal strat-
egy for estimation in an important special case.

2.1.2.3 Bayesian Cramér-Rao Bound and Adaptive Experiment Design

In general, the Bayesian mean estimator x(D) := E[x|D] may be biased, since the mean
over the prior need not agree with the true value. Moreover, the derivative in the defi-
nition of the Fisher score q is taken about a hypothetical value x, such that given only a
prior, we will want to marginalize over that hypothesis. Doing so results in the Bayesian
information matrix (BIM)

J(π; e) := Ex∼π(x)[I; e]. (.)

Similar to the Cramér-Rao bound, the Bayesian information matrix provides a similar
inequality known as the Bayesian Cramér-Rao bound (BCRB) or the van Trees inequality
[; ],

r(x, π) ≥ J(π), (.)

assuming the risk is defined in terms of the quadratic loss function with Q = 1.

This inequality bounds the Bayes risk directly in terms of quantities that we can, in
principle, compute a priori given a particular likelihood. Moreover, the BCRB holds for
the case in which experiments are designed adaptively, such that ei+1 = ei+1(d1, . . . , di).
Here, we exploit that the BCRB can be computed iteratively [], as has been applied
in the case of state-space models []. In particular, let JN(π) := J(π; e1, . . . , eN) be the
BIM derived from taking the expectation value in the defintion of I over the outcomes
of the first N experiments. Then,

JN+1(π) = J(π; eN+1) + JN(π), (.)
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where the base case is given by the information of the prior,

J0 := Ex∼π[∇x ln π · ∇T
x ln π] (.)

Adaptivity can now be expressed by integrating over the posterior at each step, rather
than over the initial prior, such that we obtain the adaptive BIM Jad,N

Jad,N+1(d1, . . . , dN) = J(Pr(x|d1, . . . , dN); eN+1) + Jad,N(π). (.)

This definition explicitly allows for experiment design protocols to depend on the best
information available at each step; this is known to be necessary [] and sufficient []
to obtain exponential improvements in some estimation contexts.

2.1.3 Sampling Periodic Distributions

In some important cases, Bayesian methods for learning Hamiltonians can be imple-
mented analytically [; ]. For instance, consider a single qubit prepared in the initial
state |ψ⟩ = |+⟩ := (|0⟩+ |1⟩)/

√
2, and allow the qubit to evolve under H(ω) = ωσz/2

for a time t before measuring in the eigenbasis of σx. Then, letting d = 0 represent the
case where the state returns to the +1 eigenstate of σx, we can obtain a likelihood func-
tion from Born's rule,

Pr(d|ω; t) = cos2(ωt/2). (.a)

If the qubit is subject to dephasing with time constant T2 < ∞, then the likelihood be-
comes

Pr(d|ω; t) = e−t/T2 cos2(ωt/2) +
1− e−t/T2

2
. (.b)

This model describes Larmor precession of a spin-1/2 particle about a static field B0 along
the ẑ-axis []. The frequency of this precession is then ω = γB0, where γ is the gy-
romagnetic ratio of the spin undergoing precession. We identify the Larmor model as
having a single model parameter x = (ω), and the evolution time as an experimental
control e = (t).

If we assume that after a number of ``warm-up'' measurements, the posterior over x
conditioned on those measurements is approximately normal, then we can characterize
the state of our knowledge by the mean and variance of the current posterior, µ and
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σ, respectively. If the true model is supported by the prior, then as warm-up data is
collected, the posterior will be dominated by the likelihood, such that the central limit
theorem gives us that the posterior approaches a normal distribution. Then, a Bayes
update with a new datum d ∈ {0, 1} will produce a new posterior with mean µ′ and
variance σ′ related to the previous moments by []

µ′ =
2
(
(2d− 1)e−

1
2 σ2t2 (

σ2t sin(µt)− µ cos(µt)
)
+ µ

)
2− (2d− 1) (1 + e2iµt) e−

1
2 t(σ2t+2iµ)

σ′ = µ2 + σ2 −
2
(
(2d− 1)e−

1
2 σ2t2 (

σ2t sin(µt)− µ cos(µt)
)
+ µ

)
2− (2d− 1) (1 + e2iµt) e−

1
2 t(σ2t+2iµ)

−
2(2d− 1)σ2teiµt (σ2t cos(µt) + 2µ sin(µt)

)
(2d− 1) (1 + e2iµt)− 2e

1
2 t(σ2t+2iµ)

.

(.)

Importantly, this allows us to adaptively design new experiments t. Taking an expec-
tation value of (.) over d gives

Ed[Vω∼N(µ,σ)[ω|d; t]] = Ed[Eω∼N(µ,σ)[(ω− ω̂)2]], (.)

which we recognize as the Bayes risk. We can again analytically perform the expectation
over data to obtain that []

r(ω̂, N(µ, σ)) = σ2

(
1 +

t2σ2 sin2(µt)
cos2(µt)− et2σ2

)
. (.)

This function, plotted for two examples in Figure ., admits an envelope

E(µ, σ2) = σ2
(

1− t2σ2e−t2σ2
)
≤ r(ω̂, N(µ, σ)). (.)

The quality of the approximation r(ω̂, N(µ, σ2)) ≈ E(µ, σ2) improves as more data is
collected, such that the oscillations in r become more dense. Thus, a reasonable adaptive
protocol is to choose the next measurement time tk+1 = arg min E(µk, σ2

k ) = 1/σk.

To complete the specification of the protocol, we then update µk, σ2
k 7→ µk+1, σ2

k+1 by
analytically solving for the expectation and variance of the Bayes update

Pr(ω|d, µk, σ2
k ) =

Pr(d|µk, σ2
k ; t)Pr(ω|µk, σ2

k )

Pr(d|t) .





0 10 20 30 40 50

t

Π

0.0002

0.0004

0.0006

0.0008

0.0010

Risk

0 20 40 60 80

t

Π

0.00001

0.00002

0.00003

0.00004

0.00005

Risk

Figure .: Bayes risk and envelope for Larmor precession model, assuming normal prior
ω ∼ N(µ, σ2), with µ = 0.4. (left) σ2 = 10−3, (right) σ = 5× 10−5.

Using a computer algebra system such as Mathematica, we can quickly find that

E[ω|d, µk, σ2
k ] = µk +

π(2d− 1)(−1)lσ2
k (2l − 1) exp

(
−π2σ2

k (1−2l)2

8µ2
k

)
2µ

(.a)

V[ω|d, µk, σ2
k ] = σ2

k −
π2(2d− 1)2σ4

k (2l − 1)2 exp
(
−π2σ2

k (1−2l)2

4µ2
k

)
4µ2 , (.b)

where l = round[ µk
πσk

+ 1
2 ] describes the intersections of the risk r and the envelope E. In

the asymptotic case k→ ∞,

r(ω̂, N(µk, σ2
k ))

σ2
k

→ 1− e−1 ≈ 0.632, (.)

and is achieved by

tk ∼
1

σ0(1− e−1)k/2 ≈
1.26k

σ0
. (.)

Thus, the risk decays exponentially, better than any nonadaptive protocol []. We note
that this is near the best possible scaling, since each bit of experimental data can reveal
at most one bit of ω. This precise scaling is only valid in the asymtotic limit, but the mo-
ments of the Bayes updated posterior (.) hold for finite numbers of samples, insofar
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as the assumption of a normal prior approximately holds, as will be the case following
the ``warm-up'' measurements.

The Cramér-Rao bound for this model can also be calculated explicitly, giving that

I(ω|t1, . . . , tk) = ∑
i

t2
i . (.)

Notice that I is independent of ω, such that the expectation over ω leaves I invariant.
Thus, the Bayesian and frequentist CR bounds agree in this case, and give an ultimate
scaling based on how long one evolves for. This shows that the generally-applied strat-
egy of sampling repeatedly at each of several Nyquist times tk,Nyq = k/(2ωmax) is quite
suboptimal given the guarantee of a single mode in the likelihood, as it yields the CRB

rNyq(k) ≥
1

4nω2
max ∑i t2

i
∈ O(k−3), (.)

where n is the number of samples collected at each time. While it may seem surprising
that our protocol dramatically outperforms Nyquist-Shannon sampling, it is worth not-
ing that we are not subject to the preconditions of the Sampling Theorem [] in two
important ways. First, we are not interested in a complete reconstruction of an arbitrary
likelihood supported over a window in Fourier domain, but are interested in learning a
single parameter. Second, we are not directly sampling a function, but a family of prob-
ability distributions related by that function. Because of this, intuition developed from
the case described by Nyquist-Shannon need not apply to our problem, especially in
light of adaptive protocols [].

If we do not have perfect measurement, but instead measure the final outcome with
some finite visibilty η ∈ [0, 1], then the visibility simply factors out of the CR bound,
giving I = η2 ∑i t2

i . Thus, we do not lose anything of interest to the inference procedure
by focusing on the case η = 1.

In general, ∑i t2
i is an upper bound for the Fisher information that can be extracted

from measuring after evolving under a Hamiltonian for times {t1, . . . , ti} []. Thus,
the advantage we derive in this case comes not only from adaptive experiment design
and Bayesian approaches to data processing, but also from our ability to evolve for long
times. Our approach thus gives the most obvious advantage in systems where the reset
time is compararable to evolution times, or is even long by comparison. In particular,
our approach is useful for examples such as NV centers (Section ..), which have long
decoherence times and significant reset times, and can be processed on a shot-by-shot
basis. The case in which T2 < ∞ is considered in depth in [].
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This approach to sampling Larmor precessions has recently been employed to signifi-
cantly reduce data collection costs in quantum dots [], giving much better performance
with relation to the bounds given by T2.

2.2 Sequential Monte Carlo

Having thus established the utility of a Bayesian approach to Hamiltonian learning in
an important special case that admits analytic solutions, we are interested in general-
izing and applying Bayesian approaches to other examples as well. To do so, we turn
to the sequential Monte Carlo algorithm [], which uses a novel approximation of the
posterior distribution to reduce inference to repeated calls to a black-box simulator.

In this way, we build on the insight that we have developed in Section ..: in par-
ticular, that access to a likelihood function is a critical resource for learning, as it gives
us access to the posterior distribution.

2.2.1 Overview of Algorithm

2.2.1.1 Particle Approximation

The sequential Monte Carlo (SMC) algorithm [], also known as a particle filter, accom-
plishes reduces learning to simulation by representing distributions as weighted sums
of δ-distributions,

Pr(x) ≈
n

∑
i=1

wiδ(x− xi), (.)

where {wi}n
i=1 ⊂ R are the weights of particles located at {xi}n

i=1 ⊂ Rd. Initially, all of the
weights are set to be uniform, wi = 1/n. Updating this distribution given a new datum
d then can be represented as an operation on the weights,

wi 7→ wi × Pr(d|xi)/N , (.)

whereN is a normalization constant such that the updated weights obey ∑i wi = 1. The
update can thus be performed using n calls to the likelihood function. Moreover, the
SMC approximation is closed under Bayes updates for all likelihoods, such that the cur-
rent state of the algorithm is represented by recording the particle weights and locations.
This is summarized in Figure . and is illustrated in Figure ..
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Figure .: Flow of data and hypotheses in the SMC algorithm. An initial prior π(x)
is sampled to produce the initial SMC approximation {xi} ∼ π, which is then used
to adaptively or heuristically design experiments. The results of experiments are used
to update this approximation, and resampling is applied if necessary to preserve the
effective sample size ness. At each iteration, the current best estimate is reported. Each
step of this process is explained in more detail throughout Section ..
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Figure .: Flow of data through the SMC algorithm for a periodic likelihood. The
gray bands indicate likelihood evaluations, while the horizontal lines indicate particles;
lighter particles are less parsimonious with the observations D = {d1, d2, d3}. Particles
are effectively filtered by the likelihood evaluations to form posterior approximations.

Thus, sequential Monte Carlo is an iterative algorithm, and can be readily used either
online or in postprocessing. The memory requirements of SMC thus do not grow as data
is collected, such that SMC can be usefully applied even to very large datasets. Moreover,
the parallel nature of the Bayes update step (.) means that SMC can be accelerated
with the use of parallel computing techniques such as symmetric multiprocessing, GPU-
based computing or FPGAs []. Indeed, both GPUs [; ] and FPGAs [] have
been useful in simulating quantum systems, such that an advantage may reasonably be
expected to extend to sequential Monte Carlo implementations as well, offering the ad-
ditional benefit of integrating with newly-developed techniques in experimental control
[].

In particular, we note that there is no explicit dependence between Pr(d|xi; e) and
Pr(d|xj; e) for distinct i and j, such that model parameter vectors can be readily dis-
tributed to evaluate the likelihood function for each SMC particle. Given that in typical
applications, this cost dominates all others, parallelization at this step is effective in mit-
igating the limit on bandwidth that the computational cost of SMC would impose in a
purely serial context.

Because of these advantages, sequential Monte Carlo has recently been applied in
a wide variety of classical contexts [; ; ], as well as in quantum information
[; ; ]. To implement SMC in quantum information, we have developed QInfer,
an open-source Python-based implementation of SMC []. Our library is documented
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in Appendix D, and we will give examples through the rest of this Section.

2.2.1.2 Expectation Values and Covariances

As a distribution is updated, estimates can be found online by taking expectation val-
ues over the current posterior. Because the SMC approximation uses a mixture of δ-
distributions, this expectation takes the form of a finite sum,

x̂ := E[x|D] = ∑
i

wixi. (.)

Similarly, the covariance of the current posterior can be found by taking finite sums,

Cov(x|D) = E[xxT|D]−E[x]E[xT|D] = ∑
i

wixixT
i − x̂x̂T. (.)

Note, however, that in analogy to the argument made in Section .., Cov(x|D) can be
equivalently defined as the expected loss of the Bayesian mean estimator,

Cov(x|D) = E
[
(x−E[x|D])(x−E[x|D])T | D

]
= E

[
(x− x̂(D))(x− x̂(D))T | D

]
= E[L1(x, x̂(D))].

(.)

In several different examples, explored in Section .. and Section .., we will see
that given enough particles, the estimated loss tracks the actual loss quite well, giving
a convienent means to quickly assess the performance of the algorithm. Moreover, in
Section ., we will use the covariance matrix for x to form a credible region estimator,
such that the covariance can be seen as a characterization of the estimation errors.

The particle approximation also allows for the expedient computation of marginal
distributions over some subset of the model parameters. For instance, if dim x = nmp >
1, then the marginal over the first parameter is given by the observation that

δ(x− xi) =
nmp

∏
j=1

δ(xj − xi;j),

and thus that

Ex1 [δ(x− xi)] =
∫

X1

nmp

∏
j=1

δ(xj − xi;j)dx1 =
nmp

∏
j=2

δ(xj − xi;j),
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Figure .: Two different representations of the multinormal distribution N(0,1), using
particle density (left) and particle weights (right).

where X1 is the range of valid values for x1, the first element of x. That is, by slicing
the model parameter vectors, marginals can be efficiently computed. This in turn is
useful for implementing plotting functionality, as for anything but quite small models,
visualizing posterior distributions is quite difficult.

2.2.1.3 Numerical Stability and Impoverishment

A particular distribution may be represented in SMC using particles of uniform weight,
storing information in the particle density, or by using the weights to carry information.
These two extremes are shown in Figure .. Storing information in particle weights
results in some of the particles having much less of an impact on expectation values
than others, such that the effective number of particles is reduced. This is made formal
by defining the effective sample size ness, [; ]

ness :=
1

∑i w2
i

. (.)

Since Bayes updates map the particle weights to new weights that are more strongly
peaked, as more experiments are performed, ness → 0, such that an additional step is
needed to recover numerical stability.
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2.2.2 Resampling

To move information from particle weights into particle locations, we can resample the
current posterior, drawing new samples from a resampling distribution and assigning
uniform weights to the new samples. In this way, we guarantee that ness = n after
resampling.

The Liu and West resampling algorithm [] does this by drawing the new samples
from a kernel density estimate adaptively chosen from the covariance of the current pos-
terior []. In particular, each new sample x′ is distributed according to

Pr(x′) = ∑
i

wi
1√

(2π)d|Σ|
exp

(
−1

2
(x′ − µi)

TΣ−1(x′ − µi)

)
(.a)

µi = axi + (1− a)E[x] (.b)
Σ = h Cov(x), (.c)

where d = dim x, and where a and h are parameters that can be set to modify the be-
havior of the resampler. Setting a2 + h2 = 1 ensures that Cov(x′) = Cov(x), preserv-
ing the uncertainty in the posterior distribution. Pseudocode for an implementation
of the Liu and West algorithm is provided in Algorithm . Performing a resampling
step when ness/n ≤ 0.5 is often sufficient to preserve numerical stability. Checking this
condition immediately following each Bayes update gives the update step described in
Algorithm .

Algorithm  Sequential Monte Carlo update algorithm.
Input: Particle weights wi(D), i ∈ {1, . . . , n}, Particle locations xi, i ∈ {1, . . . , n}, New

datum dj+1, obtained from an experiment with control cj+1.
Output: Updated weights wi(D ∪ dj+1).

function U({wi(D)}, {xi}, dj+1, cj+1)
for i ∈ 1→ n do

w̃i ← wi(D)Pr(dj+1|xi, cj+1)
end for
return {w̃j/ ∑i w̃i} ◃ We must normalize the updated weights before returning.

end function

Effectively, choosing a < 1 mixes the current posterior with a Gaussian distribution
such that the new particles are located near old particles, each perturbed by a normal
random variate. This allows the posterior distribution to explore the space of model
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parameters with a finite number of samples. Liu and West recommend a = 0.98, while
in some applications, the resampler can be made significantly more aggressive about
mixing with a normal distribution; in [; ], a = 0.9 was found to be effective at
reducing the number of particles required, owing to the approximate normality in the
model considered.

Using a < 1 can fail, however, for multimodal distributions, in that the Liu and West
resampler may then move particles away from high density regions in the true posterior.
In Figure ., we demonstrate this using the likelihood (.) with the prior π(ω) = 1/2
for ω ∈ [−1, 1]. Because cos2(ωt) is an even function of ω, this is a manifestly bimodal
problem, violating the assumptions of the Liu-West algorithm when a2 + h2 = 1. For
both subfigures, tk = (9/8)k and  data points are collected, as shown in Listing C..

This failure modality can be mitigated in the limit that a → 1. In particular, a = 1
and h = 0, yields the bootstrap filter [], similar to that used in some computer vision
algorithms []. The boostrap filter is effective in state-space models [], in which
parameters vary in time, but is less effective for parameter estimation, as multiplicity
of the new particles does not result in further exploration of the parameter space. This
in turn can be mitigated by adding additional variance to the resampling distribution,
thus emulating state-space methods. In particular, we let a = 1 and h > 0, such that
the additional variance is proportional to the current variance of the posterior []. We
demonstrate this approach in Figure . by setting a = 1 and h = 0.005.

Algorithm  Liu and West resampling algorithm.
Input: Particle weights wi, i ∈ {1, . . . , n}, Particle locations xi, i ∈ {1, . . . , n}, Resam-

pling parameters a, h ∈ [0, 1].
Output: Updated weights w′i and locations x′i.

function R({wi}, {xi}, a, h)
µ←M({wi}, {xi}), Σ← h2 C({wi}, {xi})
for i ∈ 1→ n do

draw j with probability wj ◃ Choose a particle j to perturb.
µi ← axj + (1− a)µ ◃ Find the mean for the new particle location.
draw x′i from N (µi, Σ) ◃ Draw a perturbed particle location.
w′i ← 1/n ◃ Reset the weights to uniform.

end for
return {w′i}, {x′i}

end function

In practice, when implementing resampling, we must also postselect on valid models.
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Figure .: Failure of Liu-West mode (a2 + h2 = 1) for bimodal posterior, constrasted
with a = 1, h > 0 modification.

For example, if one of the parameters in a model represents a probability, then resam-
pled particles that lie outside of [0, 1] must be rejected. This postselection is performed
by QInfer, based on the validity constraints defined by the user. In cases where the
same model is identified by more than one model parameter vector, we can also canon-
icalize model parameter vectors to prevent resampling problems arising from exactly-
degenerate models. In either postselection or canonicalization, however, we explicitly
violate that the mean and variance of the pre- and post-resampling distributions are
identical, as is guaranteed by the Liu-West algorithm. Thus, care must be taken with
distributions that lie close to postselection or canonicalization boundaries.

2.2.3 Adaptive Experiment Design

With access to particle-approximated distributions over the model parameters, SMC also
enables reasoning about the Bayes risk for future experiments in an online fashion. As
illustrated in Figure ., after each Bayes update, the resultant posterior can be used to
guide the next decision, such that new experiments can be chosen that minimize the
Bayes risk.

Doing so requires performing hypothetical Bayes updates for each possible outcome
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Figure .: Decision process for adaptive experiment design. As random outcomes are
observed (open circles), the posterior distribution is updated using Bayes' rule (filled
squares), and a decision as to the next experiment is made (filled circles). Each such
decision then results in a new random outcome, which is used in turn to update the
posterior.

of a proposed measurement, then taking the expectation value over the unobserved da-
tum; this is a computationally-expensive task, as it requires performing an SMC update
for each hypothetical outcome and for each experiment design candidate, but may of-
fer advantages when the experiment itself is expensive. Moreover, approximation tech-
niques exist that use lower-quality approximations of the current posterior for designing
experiments [].

As noted in Section ..., the Bayesian Cramér-Rao bound in this case can be com-
puted online, such that adaptive performance can also be bounded. For likelihood mod-
els which define a Model.score method, QInfer will do this automatically, and will com-
pare the adaptive and non-adaptive strategies. The ScoreMixin class will provide this
functionality by numerically estimating gradients, such that a specification of the likeli-
hood function is sufficient to find Cramér-Rao bounds for low-dimensional models.

Additionally, some of the simulation cost may be mitigated by choosing a subset of
the full particle set to use in optimization [], or by performing Monte Carlo sampling
over the possible outcomes as well as over model parameters.

Contributed to QInfer by Ian Hincks.
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2.2.4 Hyperparameters and State-Space Methods

Thus far, we have assumed that the model parameters x have some true, constant value
x0 that is randomly sampled from a prior distribution. This need not be the case in gen-
eral, however. The model parameters could, for instance, be sampled from a distribution
with each distinct experiment, or could follow a stochastic process.

In the former case, we can model this by positing the existence of another set of pa-
rameters y, known as hyperparameters, such that x is sampled from a distribution pa-
rameterized by y,

x ∼ Pr(x|y).
We then run SMC not on the model parameters, but directly on the hyperparameters,
such that our new likelihood function is a marginalization over the unknown sample x,

Pr(d|y; e) = Ex∼y[Pr(d|x; e)]. (.)

Note that we have assumed in this derivation that d is conditionally independent of the
hyperparameters y given the model parameter vector x (d ⊥ y | x); that is, that if we
know the model parameters x precisely for some experiment, then the hyperparameters
have no further effect on the outcome of that experiment. In this way, the hyperparam-
eters' only role is to determine the distribution over x.

In some cases, we can perform the marginalization in (.) analytically to obtain a
likelihood for y. For the Larmor precession model given by (.), for instance, we can
allow ω ∼ N(µ, σ2) to obtain a new likelihood function with y = (µ, σ2),

Pr(0|y; e) =
1
2

(
1 + e−2σ2t2

cos(2µt)
)

. (.)

Assuming ω is instead drawn from a Cauchy distribution with location ω0 and scale γ
gives

Pr(0|y; e) =
1
2
(
1 + e−tγ cos(tω0)

)
. (.)

Identifying γ = T−1
2 , we see that the Cauchy hyperparameter model is equivalent to

an unknown-T2 model. We note that no such identification can be easily made for the
Gaussian hyperparameter model, as the t2 dependence prevents writing that model as
the result of evolving under a Lindblad master equation. We will see later, in Section .,
that hyperparameters can be connected to region estimation, such that we can reason
about which portion of the variance in x can be explained by sampling according to y,
and which portion can be explained by a lack of knowledge about y.





0.0 0.2 0.4 0.6 0.8 1.0
ω

10-3

10-2

10-1

100

101

102

103

104

S
(ω

)

Figure .: Spectral density function used to generate realizations for state-space track-
ing example.

We can also consider the case where there are no explicit hyperparameters, but where
x is not constant in time. Indeed, in many cases of interest, the parameters being learned
drift as experiments are performed [], such that failing to incorporate this into the
model can cause the inference procedure to assign false certainty to an estimate. This
will be the case, for instance, in our study of nitrogen-vacancy centers (Section ..),
wherein the visibility is a dynamic parameter that follows a random walk. One way of
incorporating drift or diffusion in model parameters is to, in addition to Bayes updating
particle weights, performing a diffusive update [; ]

x(tk+1) ∼ Pr(x(tk+1)|x(tk)). (.)

If no parameters of x are left constant by this diffusive update, then the bootstrap filter
(a = 1, h = 0) discussed in Section .. no longer fails to increase the effective sample
size, as the multiplicity of particles is broken by sampling the diffusive rule.

We demonstrate state-space tracking by sampling a ``true'' trajectory for ω from the
Lorentz spectral density function

S(ω) =
2A2

τc
· 1
(ω−ω0)2 + (1/τc)2 , (.)

using the method of [], where A = 150, τc = 20 and ω0 = 0.1 are chosen to represent a
``slow'' drift. The spectral density and an example trajectory are shown in Figure .. We
then track the slow drift using a normal distribution ω(tk+1) | ω(tk) ∼ N(ω(tk), (tk+1−
tk)σ

2) as the diffusive update rule for a model parameter vector x = (ω, σ2). The QInfer
model for this experiment is shown in Listing C.. The results for an SMC estimate of the
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Figure .: Tracking of a stochastic process, using a diffusive update in SMC. (Left) True
and SMC-estimated trajectories. (Right) Error in SMC-estimated trajectory.

trajectory are shown in Figure .. Each experiment is chosen according to the heuristic
tk = π min(k, 50 + w)/16, where w is a random integer mod . This heuristic warms
up to the maximum value, then selects random times near that maximum so as to break
accidental patterns from repeated sampling at the same interval.

Note that we include σ2 as a model parameter, even though the Larmor precession
likelihood does not depend directly on the value of σ2. Instead, we rely on coevolu-
tion between the drift variance parameter σ2 and the frequency parameter ω to inform
about the rate at which ω drifts. That is, the diffusive step in the SMC algorithm ef-
fectively couples σ2 and ω, such that the Bayes update will provide information about
σ2 through this corrleation. We will see a similar effect later, when we consider using
evolutionary strategies to couple optimization parameters to pulses in a control design
algorithm (Section ..).

2.3 Examples of SMC

2.3.1 Robust Hamiltonian Learning

The primary application of SMC that we will be interested in is its ability to directly
estimate parameters of unknown Hamiltonians H(x). In this section, we show several
examples of this application with data drawn from simulated and experimental models.
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Algorithm  Complete adaptive Bayesian experiment design algorithm, using sequen-
tial Monte Carlo approximations.
Input: A number of particles n to be used, A prior distribution π over models, A num-

ber of experiments N to perform, A resampling parameter a ∈ [0, 1], A threshold
resample_threshold ∈ [0, 1] specifying how often to resample, A local optimiza-
tion algorithm LO, A heuristic GE for choosing experiment
controls, and a number nguesses of potential experiments to consider in each iteration.

Output: An estimate x̂ of the true model x0.

function EA(n, π, N, a, resample_threshold, approx_ratio, O-
, nguesses, GE)

wi ← 1/n ◃ Start by initializing the SMC variables.
draw each xi independently from π

for iexp ∈ 1→ N do ◃ We now iterate through each experiment.
◃ Heuristicly choose potential experiments, and optimize each independently.
for iguess ∈ 1→ nguesses do

ciguess ← GE(iexp)
ĉiguess , Uiguess ← LO(U, ciguess , {wi}, {xi})

end for

ibest ← argmaxiguess
Uiguess ◃ Pick the controls that maximize the optimized utility.

ĉ← ĉibest
diexp ← the result of performing Ĉ ◃ Perform the best experiment.
{wi}, {xi} ← U({wi}, {xi}, D, C) ◃ Find the new posterior distribution.

if ∑i w2
i < N · resample_threshold then ◃ Resample if ness is too small.

{wi}, {xi} ← R({wi}, {xi}, a, h)
end if

end for

◃ After all experiments have been performed, return the mean as an estimate.
return x̂←M({wi}, {xi})

end function
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Figure .: Left to right: the mean-squared error, as a function of the number of mea-
surements N, of the sequential Monte Carlo algorithm for nmp = 100, 1 000, and 10 000
particles. Samples are drawn from the likelihood (.) with T2 = 100π.
The dashed lines indicate data taken without optimization, while the solid lines indicate
trials in which initial guesses were optimized using the NCG method. For each data set,
the corresponding thick line indicates the Bayesian Cramer-Rao bound. The red regions
include the performance of % of the trials.

2.3.1.1 Larmor Model, Known and Unknown T2

The first example that we consider is that of Section .., so that we can compare the
performance of SMC to the known optimal solutions for sampling a Larmor precession
model. The implementation of this model in QInfer is provided in Listing C..

In all the examples in this section, we use the likelihood model of (.) with the units
chosen such that π(ω) = Uni(0, 1). We first consider the case in which T2 = 100π is
known. This choice of T2 demonstrates both the exponential learning rate in the tk ≪ T2

regime and the 1/
√

k learning rate for tk ≈ T2, as predicted (.). We then vary over the
number of particles, comparing to the optimum given by the CRB and to the posterior
variance. From Figure ., we see that only , particles are needed to obtain near-
optimal error scaling in the case where the tk = (9/8)k heuristic is used.

We also show in Figure . the performance that we obtain when we optimize the
Bayes risk as estimated by SMC, using the Newton Conjugate-Gradient method as im-
plemented by SciPy [] to perform the minimization. In this case, we see that more
particles are needed to optimize the choice of experiment than are needed to simply
process data offline.

In Figure ., we plot the mean-squared error loss not against the number of ex-
periments performed, but against the number of simulator calls nlike that we must for





10 100 1000 104 105

nlike

nparticles

1 ´ 10-5

5 ´ 10-5

1 ´ 10-4

5 ´ 10-4

0.001

0.005

0.010

Q0.84HLL
Loss vs. Likelihood Calls per Particle

30 guesses, no optimization

1 guess, no optimization

30 guesses, NCG, approx_ratio 0.1

1 guess, NCG, approx_ratio 0.1

30 guesses, NCG, approx_ratio 1.0

1 guess, NCG., approx_ratio 1.0

Figure .: Comparison of mean-squared error as a function of the number of likeli-
hood calls per particle, drawing from the Larmor model (.) with known T2 = 100π
and with 5, 000 particles. The parameter approx_ratio controls the proportion of the
posterior particles used in optimizing, as described in []. The expected loss incurred
by each optimization strategy is shown in terms of the 84th percentile Q0.84 of the loss,
such that no more than 16% of trials incur loss greater than the shown percentile.

each particle make to obtain that loss. This shows that even though local optimization of
the Bayes risk about some number of initial guesses can be useful, it is computationally
expensive such that if experiments are relatively inexpensive, less informative experi-
ments may be preferable to the cost of finding good experiments. In some cases, such
as considered in Section .. and Chapter , this can be mitigated by heuristics that do
not depend on likelihood calls.

Having thus compared to the case where we can analytically derive good adaptive
strategies, we now expand our model to include unknown T2. In including T2, it is con-
vienent to choose a parameterization with the same units as ω, such that the model
parameters are x = (ω, T−1

2 ).
Even as small a change as this breaks the strategies outlined in Section .., as the

Fisher information for each datum is a singular matrix and cannot be inverted to find a
Cramer-Rao bound. Instead, we must consider longer data records, or must integrate
over a prior. Both of these are difficult to do analytically, such that SMC can provide an
advantage.
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In Figure ., we show the performance of SMC for the unknown-T2 Larmor model,
demonstrating that significant gains can be made in learning T2, These results also are
consistent with the observation that because T2 manifests as an effective visibility in
(.), that the parameter is exponentially more difficult to learn than a frequency pa-
rameter, such that we will see a ``corner'' in the learning rate once T2 dominates the
quadratic loss over ω.

2.3.1.2 Correlated Model

We can also apply SMC for higher-dimensional models, such as for a coupling between
two spin-1/2 particles, using a correlation spectroscopy (COSY) experiment []. In the
Jeener COSY experiment, a nonselective pulse is used to induce a transfer of coherence,
such that a measurement of the two spins becomes correlated. Using a two-dimensional
Fourier transform, the presence or absence of an off- diagonal peak then provides evi-
dence of a coupling between the two spins, such as a dipolar or scalar coupling [].
Multi-dimensional nuclear magnetic resonance experiments such as COSY have moti-
vated the use of exponentially-sparse design heuristics and maximum- entropy recon-
struction in the case of [; ]. Here, we will show that similar sampling strategies can
be applied to a model with projective measurement by using SMC instead of maximum-
entropy methods.

In particular, we consider a simplified three-parameter correlated model derived
from the Hamiltonian

H(J, ω1, ω2) =
ω1

2
σ
(1)
z +

ω2

2
σ
(2)
z + Jσ

(1)
z σ

(2)
z . (.)

We then prepare an initial state |+⟩ ⊗ |+⟩ and evolve first under H(0, ω1, 0) for a time
t1, under H(0, 0, ω2) for t2, then under H(J, 0, 0) for t1 + t2. An example sequence im-
plementing this evolution is given in Figure .. Finally, we measure against the initial
state |+⟩ ⊗ |+⟩. This gives a likelihood for our model which correlates the three model
parameters,

Pr(0|J, ω1, ω2; t1, t2) = |cos(J(t1 + t2)) cos(t1ω1/2) cos(t2ω2/2) +

i sin(J(t1 + t2)) sin(t1ω1/2) sin(t2ω2/2)|2
(.)

This model serves to demonstrate how a strongly correlated model behaves when ana-
lyzed with SMC. In particular, this model allows us to decide whether the resonances at
ω1 and ω2 are connected.
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Figure .: The estimated, actual and optimal performance of SMC draw-
ing N measurements from the Larmor precession model (.) with unknown T2.
The mean-squared error is shown for each parameter individually, along with the
quadratic loss for Q = diag(1, 100). The prior is taken to be π(ω, T−1

2 ) ∼
N([0.5, 0.001], diag(0.0025, 0.000252)). For the optimization,  initial guesses are drawn
from an exponential distribution with mean , and then improved using NCG.
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Figure .: Gates implementing correlated model of (.). Each of the two qubits is
shown as a line, with σx gates drawn as pulses. The lengths of each evolution time are
shown between the gates.

As an experiment design heuristic, we choose an exponentially-sparse sampling strat-
egy

t1,k, t2,k = cos(θk)τk, sin(θk)τk (.)

where θk ∼ Uni(0, π/2) and τk = (65/64)k. This base is chosen to be much more con-
servative than the (9/8)k heuristic used in Section .., such that we will tend to avoid
multimodality. The results of applying SMC to this model without any optimization are
shown in Figure ..

2.3.1.3 Rabi Model with Referencing

The third example of a simple Hamiltonian that we consider is that of a Rabi experiment
on a spin-1/2 particle, with our model parameters including an unknown Rabi frequency
ωR, and an off-resonance term δω. For this example, we will consider a simple model
for optically-detected magnetic resonance []. In particular, we shall suppose that a
photon is emitted whenever the measurement result is  (that is, when we return to the
initial state |ψ⟩ = |0⟩), such that

Pr(emit|x; e) = |⟨0|e−iH(x)t|0⟩|2, (.)

where
H(x) = ωRσx + δωσz. (.)
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Figure .: Mean quadratic loss and % confidence interval for the correlated preces-
sion model of (.) over  trials, versus the number of experiments N performed.

Moreover, in order to lay the groundwork for experiments such as those discussed in
Section .., we include referencing according to a simple model for photodetection

α := Pr(click|emit)
β := Pr(click|¬emit),

(.)

where α and β are the two parameters describing bright and dark counts, respectively.
Effectively, this referencing model modifies another model, in the sense that it uses a

likelihood function of the form Pr(emit|x; e) to define a new likelihood function

Pr(click|x; e) =


(α− β)Pr(emit|x; e) + β mode = experiment
α mode = bright reference
β mode = dark reference

, (.)

where α and β are taken to be elements of x, and where mode is an element of e. The
model is implemented by Listing C..

In Figure ., we show the results of applying this model to data obtained from
an experiment in nitrogen vacancy centers []. We consider this application in more
detail in Section ... These results show that sequential Monte Carlo can be used in
practice to learn Hamiltionian parameters from experimental data.
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Figure .: Experimental demonstration of referenced Rabi model (.). (Top left and
top middle) Mean and standard deviation of posterior for ωR and δω, respectively. (Top
right) Covariance of final posterior, shown as a Hinton diagram. White squares indicate
correlation, black squares indicate anticorrelation; the size of each square indicates mag-
nitude. (Bottom) Referenced experimental data, shown with signals simulated using the
SMC posterior. The shaded region indicates a % credible region on the mean of the
referenced signal.
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2.3.2 Randomized Benchmarking

In many cases, we are not interested in a full characterization of a quantum gate, but
wish only to know its fidelity, perhaps averaged over some distribution. For instance,
this is the target functional in many common control theory optimizations, such as those
explored in Chapter , such that a means of evaluating the fidelity of a gate or gateset will
give a means of confirming the successful optimization and implementation of a pulse
sequence. As shown by the Ad-HOC and ACRONYM algorithms [; ], evaluating
the fidelity of a candidate pulse in-place is also useful in refining or finding new pulses.

Randomized benchmarking [; ; ] gives a means of evaluating the fidelity of
a gate or gateset without characterizing a gate explicity by using twirling to reduce that
gateset to one that can be simulated efficiently on a classical computer, and that has the
same fidelity as the original gate or gateset. In particular, as illustrated in Figure ., in
randomized benchmarking experiments we choose random sequences of Clifford group
elements, each of which is implemented by a word of one or more generating gates [;
]. For example, the Clifford group C1 acting on a single qubit can be written as

C1/P1 = ⟨H, S⟩/P1 = {1, HSH, HSHS, S, H, HS}/P1. (.)

That is, each such Clifford operator can be written as the product of up to four gates
from {H, S} and either zero or one Pauli operators.

The Clifford group then forms a -design; that is, for any polynomial p(U) of degree
at most , the integral over the Haar measure of p(U) is given by uniformly sampling
over the Clifford group []. In particular,∫

p(U)dU =
1
Cn

∑
C∈Cn

p(Ci). (.)

Thus, sampling from the Clifford group implements the twirling superchannel W, which
produces a depolarizing channel with the same probability of returning the initial state
to itself []. Figure . sketches the proof given by [] that choosing sequences in
this way implements twirling, even for imperfect implemented gates. Thus, this proce-
dure results in an analytically tractable survival probability. Within this framework, the
final gate is chosen by Gottesman-Knill simulation [] to be the inverse of the preceed-
ing elements, such that the measurement being performed always has probability  of
succeeding when implmeneted with ideal gates. Random sequences can be generated
by choosing random Clifford group elements [], decomposing them into gates from
the gateset [], and then applying each prescribed gate.
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Figure .: Overview of randomized benchmarking. Twirling is performed by sam-
pling from the expectation value over all Clifford sequences (upper-left), producing a de-
polarizing channel of equivalent fidelity (upper-right). To implement each sequence, the
Clfford unitaries are decomposed into words over a presentation of the Clifford group
(bottom).

Figure .: Sketch of Magesan et al derivation of zeroth-order model []. (a) Se-
quence of length m = 3 Clifford operations. (b) Change of variables to Vi, factoring
out previous gates Ui−1. The V gates then form a -design. (c) Expectation value over
random gates in (a) and (b), giving the twirling superchannel W acting on Λ.
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Recent experiments have demonstrated the applicability of randomized benchmark-
ing techniques across a wide variety of systems [; ; ; ; ; ; ; ].
Moreover, benchmarking has been extended to address a wide range of related prob-
lems, such as crosstalk characterization [], identifying distortions [] and spectral
filtering of noise sources []. Thus, improvements to the robustness and costs of cur-
rent randomized benchmarking techniques offer advantages to many different experi-
mental goals.

In this Section, we will interpret the zeroth-order model for randomized benchmark-
ing as a likelihood function, and will apply sequential Monte Carlo to learn the average
fidelity of the gateset with less experimental resources than are required with previous
methods. This will be especially useful in cases where we want to draw accurate conclu-
sions from small amounts of data. This is the case when randomized benchmarking is
in the inner loop of a larger protocol, such as in the Ad-HOC or ACRONYM algorithms
[; ].

The source code for all of the results in this Section is available online in the supple-
mentary materials for [], and is based on the QInfer [] and QuaEC [] libraries.

2.3.2.1 Sampling Variance and Derivation of Marginalized Likelihood

In this derivation, we will focus on the zeroth-order model of Magesan et al [], which
gives that the average fidelity Fg(m) over all sequences of length m is given by

Fg(m) = A0pm + B0 (.)

for constants A0 and B0 describing the state preparation and measurement (SPAM) er-
rors, where 1 − p is the depolarizing strength of W[EC∼Cn [

ˆ̂SC]], and where W is the
superchannel [] that maps every channel to a depolarizing channel with the same av-
erage gate fidelity.

We are interested in the single-shot limit, where each measurement consists of first
selecting a sequence, then measuring once the survival probability for that sequence.
Since this protocol makes no use of the sequence other than its length, we can describe
the protocol by marginalizing over the choice of sequence, giving a probability distribu-
tion of the form Pr(survival|m), where m is a sequence length.

To derive this, we first pick a length m, and then consider the choice of sequence i out
of all length-m sequences to be a random variate. Thus, there exist probabilities

pm,i := Pr(survival|i, m) = Tr(Eψ
ˆ̂Si[ρψ]) (.)
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for each individual sequence that we could have chosen, such that marginalizing over
results in

Pr(survival|m) = Ei[Pr(survival|i, m)]. (.)
If each sequence is drawn with uniform probability, then

Pr(survival|m) =
1
|Cn|m ∑

is.t. len i=m
pm,i. (.)

We recognize this as being the average sequence fidelity Fg(m) modeled by Magesan,
Pr(survival|m) = Fg(m) = A0pm + B0. (.)

To interpret Fg(m) as a likelihood directly, note that we had to consider the Bernoulli
trial (single-shot) limit; had we instead taken K distinct sequences and measured each
N > 1 times, we would have arrived at a quite different quantity

F̂g(m) =
K

∑
k=1

F̂(m, ik), (.)

where F̂(m, ik) is the estimate of the sequence fidelity for the particular sequence ik.
The difference is made clear by considering an example with fixed sequence length

m, and the variance for a datum d ∼ Pr(survival|m) (labeling ``survival'' as  and the
complementary event as ),

Vd[d|m] = Vi[Ed[d|i, m]] + Ei[Vd[d|i, m]]. (.)
The second term corresponds to the mean variance over each fixed sequence im, and
governs how well we can estimate each F(m, i) individually. The first term, however,
is more interesting, in that it measures the variance over sequences of the per-sequence
survival probability pm,i = Ed[d|i, m]. By the argument of Wallman and Flammia [],
this is small when the fidelity being estimated is close to ; that is, when the gates being
benchmarked are very good. For gates that are farther from the ideal Clifford operators,
however, or for applications such as tomography via benchmarking [], this term is
not negligible, mandating that many different sequences must be taken for F̂g(m) to be
a useful estimate of Fg(m).

By demanding that each individual shot be drawn from an independently chosen
sequence, our approach avoids this and samples from d | m directly. In this way, we see
a similar effect as in Section ... It is not advantageous to concentrate one's sampling
on one point, but to spread samples out and gain experimental variety. Here, the one
shot per sequence limit plays the role of the one sample per time-point limit in the earlier
discussion.





2.3.2.2 Fisher Information and Optimal Sequence Lengths

We can also consider the Fisher information for the likelihood model (.) in order to
find the optimal sequence length that one should draw sequences from. Given p, A0 and
B0, the score vector of (.) is given by

q =
(−1)d

Pr(d|p, A0, B0; m)

(
A0mpm−1, pm, 1

)
, (.)

where d ∈ {0, 1} is a label for whether the initial state survived or not. To find Fisher in-
formations in QInfer then consists of providing a Model.score method for the
RandomizedBenchmarkingModel class, as demonstrated in Listing C.. With this imple-
mentation, it is then easy to find the Cramér-Rao bound for different protocols. For in-
stance, if our experimental procedure is to pick K sequences each of length
m ∈ {1, 2, . . . , mmax} and then measure each sequence once, the Fisher information for
this protocol is just the sum of the Fisher information matrices for a binomial over the K
Bernoulli trials at each different m. This calculation is shown in Listing ..

Listing .: Calculation of achievable risk in a zeroth-order randomized benchmarking
experiment.
def achievable_non_interleaved(m_max, K, p, A, B):

ms = np.arange(m_max)
model = DifferentiableBinomialModel(RandomizedBenchmarkingModel())

 expparams = np.empty(ms.shape, dtype=model.expparams_dtype)
expparams['m'] = ms
expparams['n_meas'] = K

true_model = np.array([[p, A, B]])


fi = np.sum(
model.fisher_information(true_model, expparams),
axis=-1

)[:, :, 0]


return np.linalg.sqrtm(np.linalg.inv(fi))[0, 0]

2.3.2.3 Interleaved Randomized Benchmarking

If we are interested not in the performance over a gateset, but in the fidelity of a particular
gate, then we can use a similar protocol to that described above by interleaving the gate
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of interest with other gates randomly chosen from our gateset []. In the interleaved
protocol, random sequences of Clifford group elements are chosen to form a reference, in
addition to sequences in which every even-index gate is chosen to be the gate of interest
U. Here, we shall assume that U ∈ Cn, such that the final gate can be designed to perform
the desired measurement.

We call by pref the depolarizing parameter for sequences of random Cliffords, while
p̃ is the depolarizing parameter for W[U]. The likelihood function for this protocol now
depends on whether we are drawing a reference or interleaved sequence, such that

Pr(survival|m, mode; A0, B0, pref, p̃) =

{
A0pref

m + B0 mode is reference
A0(pref p̃)m + B0 mode is interleaved

.

(.)
Note that in this definition, we have defined the length m of a sequence to be the number
of random Clifford elements that we include, such that an interleaved sequence of length
m has 2m + 1 Clifford group elements, of which every even one is taken to be U.

One advantage of analyzing this model with SMC rather than least-squares fitting is
that by doing so, we can explicitly demand that p̃ ∈ [0, 1], while with naïve implemen-
tations of LSF, p̃ is estimated by p̂interleaved/ p̂ref, which is intrinsically unstable and does
not guarantee that only valid probabilities are estimated.

In the same manner as in Section ..., we can also consider the Fisher informa-
tion of this model in order to find experiments that produce maximal information as a
function of the ``true'' model parameters. In Listing ., we show this calculation for the
interleaved case, producing the results shown in Figure ..

Listing .: Calculation of m with optimal Fisher information for interleaved randomized
benchmarking.
from scipy.optimize import minimize
def best_m(p_tilde, p_ref, A, B):

objective = lambda m: (
 A**2 *m**2 *p_tilde**(-2 + 2*m)*p_ref**(2*m))/

((-1 + B + A* p_tilde**m *p_ref**m)* (B + A*p_tilde**m *p_ref**m)
)
result = minimize(objective,

100, method='nelder-mead'
 )

return result.x
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Figure .: Optimal sequence length m according to the Fisher information as a func-
tion of zeroth-order randomized benchmarking parameters. The depolarizing parame-
ters used correspond to the reference fidelity Fref = 0.9994, and the fidelity of interest
F = 0.9989. (Left) Varying over A, taking B = 0.5. (Right) Varying over B, taking
A = 0.25. (Bottom) Limiting case for large systems, A → 1, B → 0, plotted versus
infidelity of interest 1− F.
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2.3.2.4 Results with Zeroth-Order Model

In order to test our implementation of SMC-accelerated randomized benchmarking, we
draw many different ``true'' models from a prior π(x), and then estimate each using
SMC, such that we are sampling from the Bayes risk r(π, x̂SMC) and thus obtain obtain a
Monte Carlo estimate of the true Bayes risk. In particular, we use as our prior a multivari-
ate normal distribution x = (pref, p̃, A, B) ∼ N((0.95, 0.95, 0.3, 0.5), 0.012

1), truncated to
lie within the region of valid models. The least-squares fit estimator is seeded with an
initial guess drawn from this prior, so as to fairly compare the estimators. We then vary
over the amount of data that SMC is allowed to use in estimating x, then compare to
the known-optimal Bayes risk given by the BCRB, the online-estimated risk given by the
posterior trace-covariance, and to the performance of least-squares fitting.

The risk that we obtain from this procedure is shown in Figure ., demonstrating
that SMC-accelerated randomized benchmarking gives marked advantage in the limit
of small amounts of data, offering useful conclusions with as little as  bits drawn
from the experiment. As the amount of data increases, such that the fidelity estimate
at each individual sequence length m is approximately normal, we enter the regime in
which least-squares fitting is more suited, such that it begins to catch up with the SMC-
accelerated Bayes risk. Moreover, in all cases, the performance of SMC-accelerated RB
cannot be practically distinguished from the optimal performance given by the BCRB.
This indicates that by relaxing the demand made by least-squares fitting that each indi-
vidual point in the randomized benchmarking signals be well-estimated, we can obtain
a very significant advantage, in analogy to that gained by relaxing the same requirement
in Section ...

2.3.2.5 Results with Physical Gates

Thus far in the analysis, we have used as a simulator the same zeroth-order model as
is used to process and interpret the data. To demonstrate the utility of our approach in
comparison with traditional LSF-based benchmarking, we now simulate gates according
to a cumulant expansion (Section ...), with physically realistic models.

In particular, we use the superconducting model of [] together with optimal con-
trol theory [] (Chapter ) to generate a set of gates implementing the target unitaries
{1, X, Y, Z, H, P}, where H is the Hadamard gate, and where P = |0⟩⟨0|+ i |1⟩⟨1| is the
phase gate. We then use the superoperators ˆ̂SU for implementing each target unitary
U obtained from a cumulant simulation [; ] to sample from the likelihood function
(.).
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Figure .: Bayes risk of SMC-acclerated randomized benchmarking, compared to the
Bayeisan Cramér-Rao bound, the posterior covariance and Bayes risk incurred by least-
squares fitting. (Top) The Bayes risk is shown versus the number of shots K per sequence
length. Data is collected from reference sequences of length mref ∈ {1, . . . , 100} and
interleaved sequences of length minterleaved ∈ {1, . . . , 50}. (Bottom) The Bayes risk is
shown versus the maximum sequence length mmax used, with sequences drawn from
lengths m ∈ {1, 11, . . . , mmax} for both the reference and interleaved cases, and with
K = 1000 shots drawn from each length.
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Figure .: (Left) Comparison of prior distribution, SMC-approximated posterior, true
value and LSF-estimate for p̃ for a single run with K = 1000 shots at each of mref ∈
{1, 11, . . . , 191} and mC ∈ {2, 12, . . . , 192}. An intentionally inaccurate prior is used,
such that the true value is approximately . standard deviations from the mean of the
prior. As shown in Table ., SMC does well by comparison to LSF, even with the poorly-
chosen prior. (Right) Data gathered from simulation with physical-model gates.
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Figure .: (Left) Comparison of prior distribution, SMC-approximated posterior, true
value and LSF-estimate for p̃ for a single run with K = 100 shots at each of mref ∈
{1, 11, . . . , 91} and mC ∈ {2, 12, . . . , 192}.
(Right) Data gathered from simulation with physical-model gates.
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Table .: Results of using SMC and least-squares fitting to estimate the fidelity of U =
X, simulated using the superconducting qubit gate set. (Left) Bad prior from Figure .,
(right) accurate prior from Figure ..

Bad Prior (40× 103 bits) Good Prior (3× 103 bits)
p̃ pref A0 B0 p̃ pref A0 B0

True . . . . . . . .
SMC Estimate . . . . . . . .
LSF Estimate . . . . . . . .
SMC Error . . . . . . . .
LSF Error . . . . . . . .

To process these samples, we then use the zeroth-order likelihood function (.)
both as a model for sequential Monte Carlo and as a trial function for least-squares fit-
ting. Since the actual implemented gates are known, we can compute the true parame-
ters for comparison. In Table ., we show the true parameters, the result obtained using
SMC, and the result obtained using least-squares fitting. The most important thing to
note is that correct parameters are a distance . σ from the prior (meaning the true
parameters are outside of the .% credible ellipse). This shows that even in the
case when the prior information fails to accurately capture the uncertainty in the true
model, SMC still does well, providing evidence that our accelerated methods may also
be robust, even when used to measure the fidelities of sets of gates with errors that are
correlated between distinct gate types, or that include non-trivial unitary components .
We show this in more detail in Figure ., comparing the posterior and prior distribu-
tions over p̃ to the true and LSF-estimated values.

Finally, in Figure ., we demonstrate the advantage of our method in the presence
of physical gates together with a more reasonable prior, and using approximately -
fold less data than in Figure .. Taken with other evidence of the robustness of SMC
methods [; ], these results thus show that our method is useful and provides ad-
vantages in data collection costs in experimentally-reasonable conditions.

Note that SMC did not act in a robust manner in all cases observed, but in those cases where SMC did
not do well by comparison to LSF, the QInfer package was often able to warn by using the effective sample
size criterion described in [], such that the data processing could then be repeated if necessary, or such
that a more appropriate prior could be chosen. Model selection (Section .) offers a more formal way of
ensuring protection against a bad prior.
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2.3.2.6 QInfer Implementation

In Listing ., we show an example of how experimental data might be processed, using
the SMC acceleration for randomized benchmarking built into QInfer [].

Listing .: Processing randomized benchmarking data with QInfer.
import numpy as np

from qinfer.rb import BinomialModel, RandomizedBenchmarkingModel
from qinfer.distributions import (

 MultivariateNormalDistribution, PostselectedDistribution
)
from qinfer.smc import SMCUpdater

# Initialize a zeroth-order benchmarking model, using a bionomial
 # to count over repetitions of each sequence.
model = BinomialModel(RandomizedBenchmarkingModel())

# Set the prior to be a multivariate normal,
# postselected such that only valid samples are used.

 prior = PostselectedDistribution(MultivariateNormalDistribution(
mean=np.array([0.99, 0.99, 0.3, 0.5]),
cov=np.diag([0.01, 0.01, 0.01, 0.01])**2

), model)

 # Make an updater with 10000 particles using this prior and model.
updater = SMCUpdater(model, 10000, prior)

# As data arrives...
n_shots_per_seq = 20

 for (datum, seq_length) in data:
expparams = np.array(

[(seq_length, n_shots_per_seq)],
dtype=model.expparams_dtype

)
 updater.update(datum, m)

2.3.3 Nitrogen Vacancy Centers

SMC is particularly useful in the case of nitrogen-vacancy (NV) centers addressed using
optically-detected magnetic resonance (ODMR), where a carbon atom in a diamond lat-
tice is replaced by a nitrogen and an adjacent vacancy, as illustrated in Figure .. NV
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Figure .: Nitrogen vacancy in a diamond lattice. A nitrogen defect (green) adjacent
to a vacancy (pearl) is located within a carbon lattice (red). By convention, the ẑ-axis is
taken to be parallel to the NV axis connecting the nitrogen and vacancy lattice sites.

centers have been proposed as a modality for quantum information processing [; ].
Nitrogen vacancy centers have also been used for metrology, and in particular have been
used as scalar [; ], time-resolved [], and vector magnetometers [].

Owing to the wide range of applications for nitrogen vacancy centers, we are inter-
ested in developing better coherent control in diamond by improving our knowledge of
the NV Hamiltonian. Moreover, because quantities such as the magnetic field are mani-
fested in the Hamiltonian, improvements in Hamiltonian learning directly translate into
metrological advances.

With our experimental setup, we collect either zero or one photons from each experi-
ment with very high probability, such that we extract one bit of data from each measure-
ment, putting us well into the regime where SMC is most useful. Following the insights
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developed in Section .. and Section .., we expect to derive significant advantage
by taking less data at each distinct experiment, in exchange for a wider variety of ex-
periments. In Section ..., we will demonstrate this by using an exponentially-sparse
sampling heuristic together with SMC to calibrate the amplifier used in our experiments.

The nitrogen vacancy center NV− in diamond admits a spin- degree of freedom,
ms ∈ {0,±1}, in the ground state of its electronic configuration. This spin degree of
freedom has a large zero-field splitting ∆zfs ≈ 2.87GHz between the ms = 0 and ms = ±1
states. The ms = ±1 states are then further split by a Zeeman interaction, giving a qutrit
that can be manipulated using microwave pulses at carrier frequencies near the zero-
field splitting. Measurement is implemented by applying a pumping laser, and counting
the photons emitted due to state-dependent spontaneous emission rates [; ], as
illustrated in Figure ..

We use a confocal microscope to excite and polarize the center, and to collect light
emitted from the center []. This gives us a small visibility that we include in our
description by referencing data in a similar fashion as described in Section ....

2.3.3.1 NV Center Hamiltonian and Floquet Theory

In the lab frame, the Hamiltonian of an NV center with electronic spin S coupled to a
single carbon with spin I is

H = (∆zfs + δ∆zfs)S2
z + γe(B + δB) · S + γeB1(t) · Sx + γn(B + δB) · I + S · A · I, (.)

where ∆zfs is the zero-field splitting in the ground-state manifold, B is the static mag-
netic field, B1 is a Rabi drive along the x-axis, γe and γn are the gyromagnetic ratios of
the electronic and nuclear spins, respectively, A is the hyperfine tensor between the elec-
tron and nuclear spins, and where δ∆zfs and δB are the uncertainties in the respective
parameters.

We must include the uncertianties in ∆zfs and B in order to accurately simulate the
data that we obtain from experiments. The zero-field splitting depends on strain of the
crystal, and thus may not be known precisely, while the static field is generated, for
example, by a permanent magnet that we position with finite accuracy.

Once we have the Hamiltonian in the lab frame, we enter the rotating frame of the
microwave pulses, and obtain a Floquet-Magnus stroboscopic Hamiltonian as described
in Section .... For example, using the NVSim` package [] to perform this calcula-
tion, we find that the average Hamiltonian for the case when drive Hamiltonian is on
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Figure .: Schematic of the energy levels of a nitrogen vacancy center, showing pump-
ing laser and state-dependent spontaneous emissions between the ground state |g⟩ and
excited |e⟩manifolds. The zero-field ∆zfsS2

z and Zeeman γeBzSz splittings are illustrated
in the ground-state manifold.
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resonance with the zero-field splitting is given to zeroth-order by

H = AxzSz Ix + AzzSz Iz + (Bz + δBz)γeSz +
1
2

γn(B + δB) · I) (.)

where

A =

Axx 0 Axz
0 Ayy 0

Axz 0 Azz

 . (.)

Note that we can write A in this form by an appropriate choice of the coordinate system,
such that the representation of B depends implicitly on the assumed form of A.

In practice, when we need to consider higher orders, we will perform simulations by
directly implementing the Leskes formulas on the Fourier components of the rotating-
frame Hamiltonian H̃(t) = e+iHrott • H − Hrot. Python code implementing the second-
order Floquet-Magnus stroboscopic Hamiltonian in the off-resonant case is shown in
Listing C..

To include decoherence, we represent the Hamiltonian evolution H by a Liouvillian
ˆ̂L and add to it a Lindblad-form dissipator ˆ̂D with a single operator Sz. This gives the
generator

ˆ̂G = −i ˆ̂L +
1
T2

[
ST

z ⊗ Sz −
1
2
(S2

z)
T ⊗ 1− 1

2
1⊗ S2

z

]
. (.)

Finally, we must also add to (.) the hyperfine coupling to the spin- degree of
freedom of the nitrogen adjacent to the vacancy. Since we cannot generally directly pulse
on the nitrogen, it is convienent to represent this interaction as an effective field AN
along the NV axis ẑ. Moreover, at room temperature, and at the static fields that we are
interested in working at, the nitrogen starts in a thermal state that we can approximate
by the maximally mixed state ρN = 1/3. Thus, we can include the effect of this coupling
by marginalizing the signal over the three basis states of the nitrogen spin, a ∈ {−1, 0, 1}.
For instance, evolving under the internal Hamiltonian with no microwave pulses gives

Pr(1|x; t) = Ea

[tρ0| e−i ˆ̂L(x,a)tp+ ˆ̂D(x)t |ρ0y
]

. (.)

2.3.3.2 Power Calibration with Rabi Experiments

As a straightfoward example of learning Hamiltonians in nitrogen vacancy centers, we
revisit the Rabi experiment of Section ..., replacing the likelihood function with an
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explicit evaluation of the effective Hamiltonian

H = ∆ωcS2
z + (ωe + aAN)Sz + ΩSx, (.)

where ∆ωc = (ωc−∆zfs) is the difference in the center frequency between the Rabi drive
and the zero-field splitting, where ωe is the Zeeman coupling, a ∈ {−1, 0,+1} is the state
of the nitrogen, AN is the nitrogen hyperfine coupling strength, and Ω is the Rabi power.
As in the previous section, we consider a dissipative generator and an incoherent sum
over the nitrogen spin state, giving a likelihood function before referencing of

Pr(1|Ω, ωe, ∆ωc, AN, T−1
2 ; tp) = Ea

[tρ0| e−i ˆ̂Ltp+ ˆ̂Dtp |ρ0y
]

, (.)

where tp is the length of the Rabi pulse, ρ0 = |0⟩ ⟨0|, ˆ̂L = 1⊗ H − HT ⊗ 1 and ˆ̂D is the
disspator for the Lindblad operator T−1

2 Sz.

Taking as our model parameters x = (Ω, ωe, ∆ωc, AN, T−1
2 ), we can now find the

Rabi power Ω with few assumptions, and with a small number of measurements. In
particular, we will use the sampling heuristic

tp =

{
10 ns + k× 12 ns k ≤ 30
1.13k × 450 ns k > 30

, (.)

for the kth datum. At each sample, , shots are collected, and the process is repeated
 times for a total of ,, shots, taking approximately  minutes of experimental
time.

The Rabi power, however, is controllable by varying the output level of the digital-to-
analog converter (DAC) that generates pulses for the NV center experiment. The output
of the DAC is passed into an amplifier, such that for an imperfectly calibrated amplifer,
Ω is an unknown function of the DAC output level. By using that estimating with SMC
is able to estimate Ω significantly more efficiently than traditional methods, we can more
easily vary input powers and phases to learn the unknown calibration function. In Fig-
ure ., we show an example of learning the Rabi power as a function of both output
phase and amplitude, along with a % credible interval for the estimated powers.

2.3.3.3 Hyperfine Estimation

We can also apply Bayesian inference with SMC to learn other properties of the nitrogen
vacancy center Hamiltonian, such as hyperfine couplings. Here, we consider the cou-
pling AN between the electronic degree of freedom of the center itself, and the nuclear
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Figure .: Estimated Rabi power curves as a function of normalized DAC output
amplitude and phase, along with a % credible interval on each estimate.

spin of the nitrogen. In doing so, we will select an NV center with no nearby carbon-
nuclei, such that A = 0. We then identify as our model x = (δB, δ∆zfs, AN, T−1

2,e , δωRabi),
where δ∆zfs is our uncertainty in the zero-field splitting, δωRabi is our uncertainty in
the Rabi frequency and where T−1

2,e is the dephasing time for the electronic degree of
freedom.

In this experiment, for each average, we performed , shots at each of  Ram-
sey points and  Rabi points. In total,  such averages were performed, for approx-
imately  million measurements. The SMC estimator is calculated from a subset of
one-sixth of the total data collected ( million shots), chosen at random. We show the
results of this experiment in Figure ., including a comparison of the actual data, and
the signal simulated from the SMC estimate.
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3 Verification of Quantum
Systems

In addition to characterizing and controlling quantum systems, in producing useful
quantum devices, we must be able to assert that the device under consideration is cor-
rectly implemented. This is, for instance, an existential problem in the field of quantum
simulation []. Owing to the classical intractability of quantum simulation problems,
no a priori answer can be used as a point of comparison.

Here, we address quantum verification by using classical simulation together with
the sequential Monte Carlo algorithm, laying the groundwork for the inclusion of quan-
tum resources in Chapter . Because the SMC algorithm gives us an approximation of
the complete posterior, we can leverage this information for many different aspects of
verification, as we detail here.

In Chapter , we will consider the problem of verification in a different guise by using
honest approximations to reason about error correction and fault-tolerance.

3.1 Region Estimation

In the course of verifying quantum systems, we are commonly interested not just in a
single estimate of the characterization of a system, but in learning some range in which
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the true parameterization of the system is probably located. For instance, in Section ..,
we will show how to design control sequences that are effective over a range--- starting
with a range that contains the true system with high probability thus allows us to control
a system in a way that accounts for uncertainty in characterization.

Perhaps more importantly, however, is that by learning a region for the system, we
have a probabilistic bound on how far the dynamics of a quantum system are from the
claimed or nominal dynamics of the system, conditioned on the correctness of some
model. Combined with model selection (Section .) or model averaged estimation [],
this then gives us a way to verify the dynamics of a quantum system, and to assert that
with some probability, a proposed model is correct.

3.1.1 Confidence and Credible Regions

There are two primary approaches to region estimation, confidence [] and credible
regions [], respectively corresponding roughly to frequentist and Bayesian perspec-
tives. Under the confidence region approach, a region X̂α(D) is sought such that

∀x0 : Pr(x0 ∈ X̂α(D)|x = x0) ≥ α; (.)
that is, such that for any hypothetical model x0, the confidence region estimator Xα(·)
includes x0 with probability no less than α, over all data we could obtain according to
that hypothesis. Importantly, this does not state that given a specific dataset D, X̂α(D)
contains the true model with some probability, nor does it make any statement about
a particular confidence region estimate. Rather, confidence regions are concerned with
developing procedures which will, for a percentange of experimental runs, find a correct
estimate. For a specific data record and a specific region estimate, no statement can be
made without inverting the conditional on the true model x0. The confidence region
definition can be a very useful statement, and provides quite strong guarantees, but it is
not always the statement we wish to have. In particular, confidence regions do not give
us the verification argument that we wish to formulate here. Indeed, confidence regions
can be subtle to interpret, and can offer the same potential for misunderstanding as is
seen with p-value hypothesis testing [; ; ; ]. In particular, neither confidence
regions nor p-values inform as to the probability of a given hypothesis being correct,
but instead describe how consistently a hypothesis will produce similar data when an
experiment is repeated many times.

As an alternative, we consider the Bayesian approach of credible regions. By contrast
with confidence regions, a region X̂α is α-credible if

Pr(x ∈ X̂α(D)|D) ≥ α. (.)
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This definition is directly concerned with what we know given a particular dataset D,
and thus can be interpreted as bounding below the probability that the true model can
be found within X̂α(D). Importantly, credible regions can be formulated by using the
posterior distribution to demand that∫

X̂α(D)
d Pr(x|D) ≥ α. (.)

3.1.2 Region Estimation with SMC

Within the SMC approximation, this is easy to meet by choosing particles {i1, i2, . . . , iK}
such that ∑K

k=1 wik ≥ α, but this is not a particularly nice or useful region, as it is a union
of individual points within the model parameter space. Rather, we would like to find
regions which contain these particles, but have other desirable properties. In particular,
we would like for our credible regions to be of high density, and to admit short descrip-
tions. Here, we develop the approach of using normal approximations and covariance
ellipses to provide these features, but other approaches can be employed as well. Recent
work by Ferrie [] extends this development to use convex hulls and minimum-volume
enclosing ellipses of SMC posteriors to offer short-description high-density credible re-
gions for more general distributions.

For approximately normal posteriors, we can use covariance ellipses to find region
estimates that have short descriptions ((dim x)2 parameters), and that approximately
satisfy (.). In particular, for a multivariate normal distribution N(0, Σ), the ellipse
given by the matrix Σ−1 contains approximately 0.682dim x of the posterior mass. More
generally, if x is normally distributed, then the covariance ellipse

X̂α(D) =
{

x | (x−E[x|D])T Cov−1(x|D)(x−E[x|D]) ≤ Z2
}

(.)

contains the true model with probability α(Z) = erf(Z/
√

2)dim x [].
In Figure ., we show the true probability mass m̃ of a covariance estimator for

the Larmor precession model (.), compared with the corresponding probability mass
mnormal that we would expect for a normal distribution.

This follows immediately from the CDF of the multivariate normal distribution, Σ−1 describes a co-
variance ellipsoid transformed from the multivariate standard normal, with z-score of  along each ran-
dom variable.
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Figure .: Probability mass (credibility) approximated by a covariance ellipse of the
SMC posterior for the known-T2 Larmor precession model, compared to the credibility
for a true normal distribution, mnormal ≈ 0.9973. The credibility is averaged over ,
trials, each of which is performed using  guesses around the tk = (9/8)k heuristic,
local optimization using the Newton Conjugate-Gradient solver and , SMC particles.
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3.1.3 Hyperparameter Region Estimation

In Section .., we showed how hyperparameters can be used to enable estimation of a
model whose parameters are themselves sampled from a distribution with each experi-
ment. Taking the approach of the previous section directly in this case is not especially
useful, however, in that a region on hyperparameter space is almost certainly not what
we are most interested in, so much as finding a region such that the underlying model
parameters are contained at some credibility α, including contributions both from un-
certainty about the hyperparameters y and the covariance of the model parameters x
conditioned on a hypothesis about y.

In the context of covariance ellipse credible regions such as (.), this can be readily
accomplished by using the chain rule for variance,

Covx,y(x) = Ey[Cov(x|y)] + Covy(Ex[x|y]). (.)

The first term, Ey[Cov(x|y)], describes the uncertainty we expect to be inherent to the
hyperparameter model under consideration, while the second term, Covy(Ex[x|y]) de-
scribes the uncertainty added to x because of uncertainty about y. Both can be readily
calculated for special cases of interest, such as x|y being a multivariate normal. More
generally, Monte Carlo sampling can be used.

Once we have the covariance over x without conditioning on a particular hypothesis,
we can apply the same argument as in Section .. to treat it as an ellipsoidal region
estimate. In particular, we can condition (.) on the data we've obtained, using that
x ⊥ D | y to remove extraneous conditionals. Doing so, we obtain that

Covx,y(x|D) = Ey[Cov(x|y)|D] + Covy(Ex[x|y]|D). (.)

A very desirable property for region estimators derived from hyperparameter pos-
terior covariance ellipses would be for the covariance of x to be an overestimate of the
covariance of x conditioned on the true model. In the single parameter case, this is easy
to express as the demand that V[x] ≥ V[x|y = y0]. In Figure ., we plot the excess
covariance in x, V[x]−V[x|y = y0] for the hypernormal Larmor model (.) and show
that, over a large number of runs, it remains positive, indicating an honest region esti-
mate.
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3.2 Model Selection

Thus far, we have assumed that a model for our system is known, such that the true
behavior of our system is described by a parameterization x0 of that model. In many
cases, however, we may not know a model that contains the true behavior, or may wish
to diagnose whether our model is rich enough to describe our system.

One way to do so is to use model selection methods to compare our model to other
models, such that we can learn the validity of our model, rather than demand that it be
assumed. For example, Blume-Kohout and van Enk have argued that model selection
can be used to detect violations of the assumptions made by state tomography [].

3.2.1 AIC, BIC and Bayes Factors

In order to choose a model that best predicts future data, we must first have a means
to assess the ability of a model to do so. The Akaike information criterion (AIC) []
is a commonly-used approach to choose a model that minimizes the risk incurred ac-
cording to the Kulback-Leibler divergence loss function. In particular, the model M that
maximizes

AIC(M) = max
x

log Pr(D|x)− k, (.)

is taken to be correct, where k = dim x is the number of parameters for the model M.
That is, the AIC states that model parameters must be justified by an exponential im-
provement in the maximum likelihood. In this way, the AIC penalizes overfitting, in
which the current dataset is precisely explained at the cost of predictive power. Thus, the
AIC gives a formal way of finding models which have enough parameters to explain the
data, without also inadvertantly fitting to statistical fluctuations. In the context of quan-
tum information, the AIC has been used, for example, to discriminate between classes
of states [], and in particular, to characterize the sources of entanglement [].

From a Bayesian context, we can instead approximate the posterior as one that decays
exponentially about its maximum to obtain the Bayesian information criterion [; ]

BIC(M) = max
x

log Pr(D|x)− k ln |D| ≈ ln Pr(M|D), (.)

where |D| is the number of samples that have been collected. Maximizing the BIC then
gives the model with the largest posterior probability Pr(M|D). Note that even though
the BIC involves the value of the likelihood at the maximum likelihood estimator, it does
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not assume that we report the MLE as our estimate. The extra logarithmic factor between
the BIC and the AIC can be interpreted as conservatism on the part of Bayesian inference,
in that additional parameters much justify themselves much more strongly for the BIC
than the AIC.

If one has access to the posterior directly, however, the BIC is not actually necessary,
but rather approximates the logarithm of the Bayes factor

BF(MA, MB) :=
Pr(MA|D)

Pr(MB|D)
=

Pr(D|MA)Pr(MA)

Pr(D|MB)Pr(MB)
. (.)

In the special case of a uniform prior over models, this reduces to the likelihood ratio
test [].

The AIC, BIC and Bayes factors all provide, in addition to model selection, a way of
deciding whether our models are useful at all. By using a model that is more general
than the model of interest, we can reason about whether our chosen model can explain
the data that we have observed. This technique has been used, for instance, to assess
whether a given error model is correct, such that appropriate error-correction codes can
be designed and applied []. This will be especially important when applying charac-
terization to verify the correct performance of Hamiltonian evolution in Chapter .

3.2.2 Bayes Factors with SMC

In the SMC update step (.), the normalization variable N = ∑ wi Pr(d|xi) is com-
puted implicitly by summing over the unnormalized weights. As presented thus far,
the variable N is then discarded, along with any information that it carries about the
inference procedure. We note, however, that N is in fact the SMC approximation of
Ex[Pr(d|x)] = Pr(d), the total likelihood of a datum d. If we interpret this as being con-
ditioned on the particular class MA of models that x parameterizes, we thus gain approx-
imations of Pr(d|MA) at each SMC update. As seen in Section .., this quantity can be
used to compare A to other models by considering the Bayes factor Pr(d|MA)/ Pr(d|MB)
for that datum.

Thus, model selection is implicitly carried out by running parallel instances of SMC
on the same data set, as the weight over the total posterior cloud encodes the relative
likelihood of that model. By the same argument, we can also consider the model av-
eraged estimate (MAE), that is, the expectation value over models of those parameters
shared between the models being considered []. An immediate consequence of the
model averaged estimate approach is that MAE results in an SMC posterior over shared
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Figure .: Schematic of a three-blade neutron interferometer with a controllable phase
flag and a sample inserted in one arm. Detectors are placed at the ends of the two inter-
ferometric paths, and are called the ``O-beam'' and the ``H-beam'' by convention.

parameters, such that the arguments we have already developed for region estimation
(Section .), state-space tracking (Section ..) and experiment design (Section ...)
with SMC proceed accordingly. For instance, we can formulate MAE-credible regions
over shared parameters that account for uncertainty about models.

Later, in Section ..., we shall use Bayes factors as produced by QInfer to decide
the validity of a truncated model.

3.2.3 Applications to State-Space Models

Model selection can also be combined with hyperparameter and state-space models (Sec-
tion ..) to reason about how a stochastic system evolves in time. Here, we consider
two distinct examples, in neutron interferometry and in nitrogen vacancy centers.

3.2.3.1 State-Space Neutron Interferometry

In neutron interferometry, an incoming beam of neutrons is split by Bragg scattering, and
then later recombined to form a Mach-Zehnder interferometer [; ], as illustrated in
Figure .. By rotating a block of material such that the path length difference between
the two arms is changed, the count statistics at the final detectors trace out a sinusoid
that depends on the constant path-length difference between the two arms (Figure .).
Repeating this procedure both with and without a sample placed in one of the arms
allows for a measurement of the path length through that sample.
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Figure .: Example data collected from a three-blade neutron interferometer, shown
with an SMC fit to the static model (.). Note that there is a slight phase difference
between the static fit and the average data, due to the static model not accounting for
stochasticity in the interferometer configuration.

This measurement procedure depends, however, on the path-length difference be-
tween the arms being constant throughout the experiment. Here, we apply model selec-
tion between a pure parameter-estimation model and a state-space model of the same
neutron interferometer to decide whether this assumption holds, and to probe the de-
gree to which the phase difference drifts with time. Similar techniques have been used
to reason about the drift of measurement operators in a tomographic setting [].

In particular, we will model neutron interferometry by a Bernoulli trial over which
detector clicks, conditioned on a click happening at either detector. For the constant-
parameter model, we consider a phenomenological likelihood function corresponding
to the most general sinusoid that always yields a probability,

Pr(O-beam|A, b, α, ϕ; θ, click) = A
2

cos(αθ + ϕ) +
1 + b

2
, (.)

where A and b represent the amplitude and the bias of the measurement, α the depen-
dence of the phase difference on the setting θ of the controllable phase flag, and where
ϕ represents the phase difference of interest.

For the case in which ϕ = ϕ(t) is a stochastic function of time, we use the same
likelihood function, but add a model parameter σϕ such that

ϕ(tk+1) | ϕ(tk) ∼ N(ϕ(tk), σ2
ϕ(tk+1 − tk)

2). (.)
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Figure .: Logarithm of the Bayes factor between the static and stochastic models for
the three-blade neutron interferometer. Negative values correspond to rejection of the
static model in favor of the stochastic model.

In Figure ., we show the results of estimating ϕ with each of these models in turn, using
about  data points consisting of approximately  neutrons each. In Figure ., the
Bayes factors between the two models is shown, illustrating that the stochastic model is
to be preferred by a factor of approximately e2400.

This application provides strong evidence that the data is not best explained by a con-
stant phase difference, but by one that depends on time in a stochastic fashion. Future
work will explore if a model of the relevant physics will allow predicting this stochastic-
ity from measurements of secondary variables, such as the temperature. Using model
selection in this way will allow us to decide the validity of any proposed physical model,
and thus to recover measurements of the phase difference.

3.2.3.2 Data Referencing for Nitrogen Vacancy Centers

In Section .., we discussed that data is referenced by secondary experiments that mea-
sure the visibility and dark counts before each primary experimental measurement. The
bright and dark references, however, follow a random walk such that a state-space model
can not only estimate references but predict them, in analogy to the use of state-space
SMC in computer vision [].
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Let α = α(t) = Pr(detect|emit; t) be the bright referencing parameter and let β =
β(t) = Pr(detect|¬emit; t) be the dark referencing parameter. Then, using the state-
space model

α(tk+1)/α(tk) ∼ N(µα, σ2
α) (.a)

β(tk+1)/β(tk) ∼ N(µβ, σ2
β), (.b)

we can effectively predict references, as shown in Figure .. This comes at the cost,
however, of introducing four additional model parameters. In practice, α and β are not
independent, such that we introduce the possibility of over-fitting. That is, the model of
(.) is effectively a free model for the state-space diffusion of α and β.

As an alternative model, we consider a five-parameter model that explicitly ties α and
β using a dark-count parameter δ,

α(tk+1)− δ

α(tk)− δ
∼ N(µ, σ2) (.a)

β(tk+1)− δ

β(tk)− δ
∼ N(µ, σ2). (.b)

Importantly, in order for (.) to be a better model than the free-drift model (.), it
must not only outperform the free model at predicting the references, but also at learning
parameters from experiments following those references.

To evaluate this, we revisit the analysis of Section ..., using in parallel both state-
space models as well as the pure parameter-estimation model discussed there. An ex-
ample of estimating a single trajectory using each model is shown in Figure .. We
then compare the Bayes factors for each of the three, as shown in Figure ., to conclude
that the dark count drift model is a better model not only for the reference data, but also
improves the model for the underlying Hamiltonian. In particular, the dark count drift
model is to be preferred over the maximum-likelihood estimator for the reference tra-
jectories by approximately five orders of magnitude. This is especially important in the
example of hyperfine estimation, as some model parameters are primarily exposed as
effective visibilities, such that uncertainty in the visibility becomes correlated with that
in the parameters of interest.

In this way, we can not only verify the quantum dynamics of our systems, but also the
assumptions that are made about classical experimental models through which we view
our quantum systems. Taken in combination with techniques for controlling systems by
using models of classical distortions (Section .), verification via model selection and
model-averaged estimation thus provide us with a powerful tool for quantum control.
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Figure .: Example of reference trajectories as estimated by parameter-space
maximum-likelihood estimator and the state-space models of (.) and (.).
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Figure .: Total likelihoods for the nitrogen-hyperfine coupling experiments described
in Section ..., using each of several different referencing models and the same phys-
ical model, compared to the total likelihood for the free model. Using the dark count
model is thus preferred to the free model, while the traditional (``exact'') reference model
is dispreferred.
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4 Honest Approximation

When evaluating candidate quantum information processing systems, a critical question
is how well they will perform in the context of a proposed fault-tolerance and quantum
error correction protocol. If a quantum system cannot be used fault-tolerantly, then that
precludes using the system in a scalable fashion.

In order to answer this, we must either have an adversarial and analytically-proven
threshold [; ], or we must be able to simulate a numerical threshold using many
copies of the characterized system. The latter, owing to the large sizes of the quantum
systems used by proposed fault-tolerant protocols, cannot be evaluated using classical
resources alone if one demands simulating using the full Hilbert space description of
the proposed fault-tolerance. Instead, efficiently simulatable subtheories of quantum
mechanics are often used to carry out the fault-tolerance evaluation. For instance, nu-
merical thresholds can be estimated for planar and surface codes using randomly drawn
Pauli channels to represent errors, and then propagating these errors using improved
Gottesman-Knill simulation [; ].

Unlike in the case of adversarial thresholds, however, we have no reason to a priori
expect that the numerical estimation of a threshold for Pauli channels should inform us
of a threshold for more general channels. Thus, in order to evaluate the performance
of a generic device as used in a proposed fault-tolerant context, we must have a way of
approximately reducing a description of the action of that device to an efficiently simu-
latable channel. Moreover, we shall demand that this approximation be honest, in the
sense that errors are not underestimated [].
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It is important to note here that an approximation or estimate which is not honest
is not necessarily useless, but rather that care must be taken in its application. For in-
stance, randomized benchmarking (Section ..) finds the fidelity of an approximate
chnnel which is, by the following definition, not an honest representation of the gate or
gateset of interest. In particular, randomized benchmarking estimates the strength of a
depolarizing channel having the same fidelity with the identity as the actual channel.
As such, randomized benchmarking alone does not honestly capture the worst-case er-
rors that a channel could incur. This distinction can be of particular importance when
evaluating error correcting codes, as we shall see in Section ..

Despite this, the transformed channel measured by randomized benchmarking ex-
plicitly preserves the fidelity. Thus, if the fidelity is the quantity of interest, we should
not be bothered by the fact that randomized benchmarking is not honest according to
the definition below. Moreover, in the case of randomized benchmarking, the worst-
case scenarios can be bounded [; ], such that we can have confidence in our use
of fidelity, even in absentia a guarantee of an exactly honest representation of errors.
Indeed, for these reasons, the fidelity can be useful as an optimization functional, as we
will discuss in Chapter .

Formally, for a channel Λ representing an imperfect implementation of a unitary U,
and for a set of efficiently simulatable channels S, we wish to find Λ̃ according to the
optimization program [; ; ]

min ∥Λ− Λ̃∥⋄
subject to ∀ pure states ρ : ∥Λ[ρ]−U • ρ∥1 ≤ ∥Λ̃[ρ]−U • ρ∥1

Λ̃ ∈ S,

(.)

where U • ρ := UρU�, ∥ · ∥1 is the Schatten -norm on states and where ∥ · ∥⋄ is the
diamond norm on channels [].

In order to explicitly reason about worst-case performance, we we choose to express
the concept of honesty in terms of the Schatten -norm. Informally, if an approximation
preserves or increases the -norm distance between a true channel and its ideal action,
then we will say that it is honest, as it has not neglected the worst-case performance of
the unapproximated channel.

The -norm offers an operational interpretation as the unregularized (that is, single-
shot) distinguishability between two states []. That is, given a single copy of either
U • ρ or Λ[ρ], we can distinguish them with probability of error

Pr(error) = 1
2
− 1

4
∥U • ρ−Λ[ρ]∥1, (.)
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assuming a uniform prior over the two possibilities []. In the special case that U = 1,
the -norm then defines the input-output distinguishability

dIO(Λ, ρ) := ∥Λ(ρ)− ρ∥1. (.)
The honesty condition then becomes the partial ordering

Λ ≼ Λ̃⇐⇒ ∀pure states ρ : dIO(Λ, ρ) ≤ dIO(Λ̃, ρ), (.)
giving

min ∥Λ− Λ̃∥⋄
subject to Λ ≼ Λ̃ and Λ̃ ∈ S

(.)

as the optimization program.
As an implementation note, the diamond norm can be computed by means of a

semidefinite program in the Stinespring dilation []; the QuantumUtils library for
MATLAB [] implements this program with CVX [], allowing us to quickly com-
pute ∥Λ− Λ̃∥⋄ for channels Λ and Λ̃ acting on small systems.

4.1 Stabilizer Formalism as an Efficiently Simulatable
Subtheory

Thus far, we have left unspecified our choice of efficiently simulatable set S. There are
several different subtheories of quantum mechanics which are classically simulatable
[; ; ; ; ]. Here, however, we shall focus on the stabilizer formalism (Sec-
tion ..), such that we want to design honest approximations using mixed unitary chan-
nels over the Pauli group Pn and the Clifford group Cn. Such mixed channels are known
as Pauli channels and Clifford channels, respectively. These channels are important to
the study of error correction and fault-tolerance, as they can be classically simulated in
poly(n) time using Gottesman-Knill simulation [; ; ] together with Monte Carlo
sampling (GK-MC) [].

4.2 Implementation of Honesty Approximation
The honesty constraint on the optimization program (.) is difficult to evaluate in its
given form, as it requires checking that a condition holds for all pure states. An alter-
native expression in terms of quadratic forms has been given by Puzzuoli [; ; ],





however, that is manifestly independent of the state. In particular, if Λ acts on Bloch
vectors as Λ : r 7→ MΛr + t for a matrix MΛ and a vector t, and if Λ̃ : r 7→ MΛ̃r, then
Λ ≺ Λ̃ if and only if

∥r−MΛ̃r∥2 ≥ ∥r− (MΛr + t)∥2. (.)

This is in turn true if and only if A ≥ B, where

A := (1−MΛ̃)
T(1−MΛ̃) (.a)

B := (1−MΛ)
T(1−MΛ) + (∥t∥2 + 2∥(1−MΛ)

Tt∥2)1. (.b)

For any given channel Λ̃ in our approximation set, we can thus check for the positivity
of A − B to determine if Λ̃ is feasible for (.). In particular, we can implement this
procedure using QuantumUtils for MATLAB [] to express the feasibility as a nonlinear
constraint function as expected by MATLAB's MultiStart global optimizer.

4.3 Application to Error Correction

Having developed a method for honestly approximating channels by channels drawn
from an efficiently simulatable set, it remains to be shown that this approximation re-
mains honest in a scenario of interest. Thus, we consider an implementation of the five-
qubit perfect code [] and syndrome readout, and the effects on this procedure of hon-
estly approximating each gate in the gateset used to in the implementation.

More precisely, we wish to consider a round of error correction as a channel Λgadget
that acts on the logical space of an error correcting code. To extract a representation of
this channel from a simulation of the channel Λgadget acting on the physical qubits, we
surround Λgadget with an ideal encoder and decoder, as shown in Figure ., thus ex-
ploiting the Choi-Jamiołkowski isomorphism []. In this way, we can obtain a descrip-
tion of the logical channel Λgadget on an Jn, k, dK code with a full and explicit simulation
on 2n qubits. Since the gates that we consider each act nontrivially on at most  qubits at
a time, we can use the subsystem application method of Criger . Using this technique,
we can readily simulate the  qubits necessary to analyze honest approximations sub-
stituted into a five-qubit perfect code, with one logical qubit and four ancilla qubits.

An implementation and description of the Criger subsystem application method can be found in the
subsystem_apply function of QuTiP [], available at https://github.com/qutip/qutip/blob/
master/qutip/subsystem_apply.py


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Figure .: Circuit layout for extracting behavior of error-correction round Λgadget.

•
•
•
•

|0〉 Z

Figure .: Fowler schedule for applying  gates to measure XXXX syndromes in
a surface or lattice code.

The circuit that we use for syndrome readout is given as Figure ., along with the
calls to QuaEC used to derive the circuit. This circuit was chosen as it is not explicitly
fault-tolerant, and resembles the Fowler schedule for  measurements [], as illus-
trated in Figure ..

For each gate set, we then simulate the circuit in Figure . using the original gate set,
the Pauli-twirl of each gate, and the Pauli and Clifford channel honest approximations to
find J(Λgadget) for each combination of gate set and approximation method. For brevity,
we let Λ = Λgadget. We then tabulate several statistics on the relative error-correction
gadget channels:

χ00 Average gate fidelity of Λgadget with the identity channel.

∥Λ−Λideal∥⋄ Distinguishability of the logical and ideal channels.

∥Λ−Λoriginal∥⋄ Distinguishability of the logical channels obtained from the original
and approximated gate sets.
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h Average hedging/honesty parameter defined by

h :=
∫

dψ h(Λ, Λoriginal, |ψ⟩ ⟨ψ|)

=
∫

dψ
[
dIO(Λ, |ψ⟩ ⟨ψ|)− dIO(Λoriginal, |ψ⟩ ⟨ψ|)

]
.

(.)

pviol Probability over pure states ρ that the honesty condition is violated for ρ. (An ap-
proximation is honest if and only if pviol)

To approximate the integrals in the calculations of h and pviol using Monte Carlo
sampling, we propagate a large number of pure states through the logical channel. The
results of this analyisis are shown in Table . for each of three gate sets GS, GS and
GS, each obtained from the cumulant expansion applied to a physical model []. GS
describes a prototypical double quantum dot system, while GS and GS are simulated
from a physical model of superconducting qubits using different parameters. In GS,
the gates are built from an XY sequence, while in GS and GS, no refocusing is used.

We note that Pauli twirling of GS results in a gate set that violates the honesty cri-
terion for every pure state sampled. By contrast, GS demonstrates a good regime for
Pauli twirling, as explored in depth by Puzzuoli [].
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(b) Circuit with simplifications and with explicit wait locations.

Source for figure (b).
>>> import qecc as q
>>> stab = q.StabilizerCode.perfect_5q_code()
>>> print (
... stab.syndrome_meas_circuit()

 ... .cancel_selfinv_gates()
... .pad_with_waits()
... .as_qcircuit(0.2, 0.2)
... )

Figure .: Syndrome measurement with and without explicit wait locations.
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Table .: Statistics for Λgadget using N = 106 randomly sampled pure states.

Set/Statistics Original Pauli twirled Pauli Clifford

GS

χ00 0.999964 0.999964 0.985820 0.989930
∥Λ−Λideal∥⋄ 4.76× 10−3 7.28× 10−5 2.84× 10−2 2.04× 10−2

∥Λ−Λoriginal∥⋄ 4.76× 10−3 2.87× 10−2 2.01× 10−2

h −3.69× 10−3 1.85× 10−2 1.23× 10−2

pviol 1. 0. 0.

GS

χ00 0.991372 0.991372 0.991355 0.991367
∥Λ−Λideal∥⋄ 1.73× 10−2 1.73× 10−2 1.73× 10−2 1.73× 10−2

∥Λ−Λoriginal∥⋄ 2.45× 10−5 4.29× 10−5 1.14× 10−5

h −1.63× 10−8 2.24× 10−5 7.66× 10−6

pviol 0.55566 0. 0.

GS

χ00 0.992495 0.987594 0.969499 0.969499
∥Λ−Λideal∥⋄ 1.51× 10−2 2.48× 10−2 6.10× 10−2 6.10× 10−2

∥Λ−Λoriginal∥⋄ 1.03× 10−2 4.60× 10−2 4.60× 10−2

h 6.36× 10−3 3.04× 10−2 3.04× 10−2

pviol 0. 0. 0.
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5 Control Design and
Optimization

The development of high-fidelity quantum control sequences is critical to producing
useful quantum information processors. Indeed, fault-tolerance requires reaching de-
manding thresholds [; ], such that high-fidelity control is essential to protect quan-
tum information during a computation. One approach that is often used in developing
such control is that of optimal control theory (OCT), in which a performance functional of
a control sequence, such as the fidelity, is treated as an objective function, and is maxi-
mized over a set of feasible sequences. OCT has been used in a wide range of applica-
tions, including the development of robustness to variations in Hamiltonian dynamics
[], universal control through actuators [], the preparation of highly polarized nu-
clear spin systems [], for the development of novel quantum metrology experiments
[; ].

As with many optimization problems, gradient information can be used to aid in
maximizing the fidelity of control pulses. In particular, the well-known gradient ascent
pulse engineering (GRAPE) algorithm [] has been widely applied [; ; ; ]
to control design problems in quantum information processing. In this Chapter, we
start by introducing GRAPE algorithm and showing how it may be extended to include
descriptions of classical control electronics and augmented with heuristics for efficient
energy removal [; ; ]. Then, we show how OCT-designed pulses can be used in
composite sequences to implement useful quantum computing architectures that natu-
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rally map onto proposed quantum error correction geometries. Finally, we note the in-
herent limitations of gradient methods and discuss novel methods for mitigating these
limitations using memetic algorithms--- that is, genetic algorithms that improve individ-
uals between selection steps. This will then pave the way for the inclusion of quantum
simulation resources in Chapter .

5.1 GRAPE and Conjugate-Gradient Methods

In order to affect the highest-fidelity control possible, we want to use an accurate model
of the system when designing control pulses. That is, we require that we can find a pulse
that operates correctly in experimentally-reasonable conditions, using classical electron-
ics models that exhibit finite bandwidths, power limitations, and even nonlinear circuit
elements. This latter requirement is especially important with the development of novel
superconducting resonator designs [; ; ] that admit strong nonlinear induc-
tances.

To develop a procedure to design pulses for such nonlinear systems, we first start
with the ideal case wherein, given a unitary target Utarg, our task is to find p for the
optimization program,

given Utarg

max o(p) := Φ(Utarg, U[p])],
(.)

where

U[p; x] =
1

∏
n=lenp

exp (−i[tn − tn−1][Hint + pnHc]) . (.)

We can also consider multiple control fields, in which case p is replaced by a matrix
p = [pn,k] whose first index is a timestep and whose second index is a control field.

In order to solve the optimization program (.) using a classical computer, we must
simulate U[p; x] for a large number of candidate pulses p. Since the control field is de-
fined to be piecewise constant, this involves calculating each of the unitary timesteps in
(.). Khaneja et al [] showed that this information can be used to extract not only the
objective function o evaluated at p, but also the gradient ∇po. In particular, let Ui :=
exp(−i[tn− tn−1][Hint + pn ·Hc) for a control Hamiltonian vector Hc := (Hc,1, . . . , Hc,K),
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such that U[p; x] = ∏1
n=len p Un. Then,

Φ(Utarg, U[p; x]) :=
∣∣∣tUtarg|U[p; x]y∣∣∣2 (.a)

∂Φ
∂pn,k

= −2 Re [tPn|i(tn − tn−1)Hc,kXny tXn|Pny] , (.b)

where

Xn :=
1

∏
i=n

Ui and Pn :=

 len p

∏
i=n+1

U�
i

Utarg (.c)

are the parts of UU�
targ arising from evolution before and after the timestep n, respec-

tively. Importantly, this expansion of ∇po requires calculating only a few more matrix
products than calculating o(p) itself, such that it does not contribute to the dominant
simulation cost incurred by evaluating the objective function.

The use of gradient information is immensely helpful in many different contexts; in
our case, we can integrate∇po into our optimization to dramatically reduce the number
of simulation calls we will need to make, using a straightforward conjugate gradient as-
cent method detailed in Algorithm , known as the gradient ascent pulse engineering
(GRAPE) algorithm []. Implementations are available in several software libraries,
including DYNAMO [] and QuTiP []. Here, we are concerned with the implemen-
tation provided by QuantumUtils for Mathematica [].

In addition to stopping when the target fidelity is reached, several different criteria
can be used to detect a lack of improvement, such that a new initial guess can be tried.
Such criteria include a maximum number of iterations or conjugate-gradient direction
resets, or minimum allowable step size []. In the examples in this chapter, we perform
line searches by minimizing a quadratic fit to the objective function evaluated at three
points along the conjugate-gradient search direction.

5.2 Optimal Control with Realistic Circuit Models

5.2.1 Distortions

In practice, we do not actually have the ability to apply arbitrary pulses p. Rather, quan-
tum systems are controlled by classical systems with finite power per bandwidth and
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Algorithm  GRAPE: Conjugate Gradient optimization with Khaneja gradient calcula-
tion.

Choose initial pulse p.
β← 0, s← 0. ◃ Initialize conjugate direction calculations.
s′ ← 0, ∆′p← 0. ◃ Remember directions from the prev. step.
i← 0. ◃ Count the number of iterations.
while utility goal for o(p) is not yet met do

Calculate o(p) and ∆p← ∇po using (.).

β← max
(

0, ∆p ·
(

∆p− ∆′p
)

/∆′p · ∆′p
)

.
s← βs− ∆p.
α← LS(λα.o(p + αs)).
p← p + αs

∆′p← ∆p, s′ ← s. ◃ Save the directions from this step.
i ++ ◃ Increment the iteration count.

end while
return p

noise figures, and thus introduce noise and distortion into our controls. Here, we are
concerned mainly with the latter case, in which our controls are distorted by a determin-
istic operator g : RN×K → RM×L. At this point, we assume only that g can be simulated.
In Figure ., we show an example of a pulse distorted by a simple convolution operator

g⋆[p; x] := p ⋆ x, (.)

where x is taken to be an exponentially-decaying kernel discretizing

k(t) =

{
1
tc

e−t/tc t ≥ 0
0 t < 0

(.)

for a time constant tc. An exponential kernel of this form captures finite rise and ring-
down times described by finite quality factors Q, and have previously been included into
GRAPE to find pulses for high-Q systems [].

For more general convolution kernels, such as those measured by the use of a pick-up
or spy coil, we have that g⋆ can be written as contraction with a four-index tensor k∼nk,ml





0.000 0.002 0.004 0.006 0.008 0.010
t (us)

40

20

0

20

40

60

80

100
~p

~q

Figure .: Example of an exponential convolution kernel g⋆[p] = e−t/tc /tc ⋆ p = q
applied as a distortion operator, where tc = 500 ps.

of the nk indices, where

k∼nk,ml
:=
∫ tn

tn−1

kl,k

(
τm + τm−1

2
− s
)

ds. (.)

Here, {tn} are the time points at which p is sampled, while {τm} are the time points at
which q is sampled.

More generally, we can also consider distortion operators that act in a more com-
plicated manner than the linear kernels considered thus far. If we are able to com-
pute g[p; x] and the Jacobian Jp(g)[p; x] of g with respect to the input for an arbitrary
pulse, then we can include g into gradient-based OCT algorithms by replacing u with
ug := u ◦ g. The gradient of ug is then given by

∇pug = ∇qu[q] · Jp(g)[p; x]. (.)

In the special case of a linear map, such as is formed by multiplying p by the right-
hand indices of an operator k∼, g⋆[p] = k∼ ·· p, the Jacobian is simply k∼ itself. More
generally, we can approximate the Jacobian by taking a perturbative approach, as we
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will do in Section ... Once we have a distorted objective and gradient-objective, we
can then substitute each into Algorithm  to find pulses that affect the desired action in
the presence of this distortion.

5.2.2 Modeling Nonlinear Circuits

We are particularly interested in modeling the effect on pulses that is introduced by
transmission through a superconducting resonator such as that detailed in [; ].
Superconducting resonators do not respond linearly when driven strongly, as the induc-
tance and resistance of superconducting circuits can, in general, depend on the incident
power due to surface resistance and kinetic inductance [; ]. In particular,

L(I) = L0

(
1 + αL|I|2

)
(.a)

R(I) = R0 (1 + αR|I|η) , (.b)

where αL, αR and η are constants describing the nonlinear behavior of the circuit, and
are often found by fitting the output of test pulses. If αL|I|2, αR|I|η ≪ 1, then the device
can be well-approximated by a linear resonator. This limits us to using much smaller
powers, however. Instead, we would like to explicitly include the nonlinear behavior as
a distortion, such that gradient-based optimization methods will find pulses that affect
the desired action, even well away from the linear regime.

We model nonlinear resonators by a one-port effective circuit of the form shown in
Figure ., where L and R are functions of the current IL through the inductor, as given
by (.). The voltage source Vs(t) represents the driving of the circuit by an external
signal generator, such as an FPGA with a DAC daughterboard []. The Hamiltonian
that spins sitting in the field of the inductor are subject to is then given by H(t) = γκϕ(t),
where ϕ(t) is the flux through the inductor, found by applying the constitutive law for
the current-dependent inductance, and where κ is a geometric conversion factor that relates
the flux to the field at the spins. Thus, if we know the current IL(t) through the inductor
for a given driving function Vs(t), we can simulate the action of that pulse on the spin
ensemble.

Because the inductance and resistance are no longer constant, the resonance fre-
quency ω0 and quality factor Q are dynamic functions of the incident power, the tuning
of the circuit is also dynamic, such that we must explicitly include the matching capac-
itance Cm in order to model the loss of coupling that occurs as the power is increased.
In Figure ., we show the result of a square x-axis pulse distorted by such a nonlinear
circuit, demonstrating the phase shift, change in resonance and loss of coupling.
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Figure .: Parallel one-port RLC circuit with non-linear inductance and resistance and
matching capacitance.

We note that a resonator of this kind can no longer be simulated by convolution of
the driving function with some kernel, as convolution distortion operators are explic-
itly linear. Rather, we must integrate the system of differential equations describing the
state variables for the circuit []. More efficient approximation techniques, such as har-
monic balance [], can be used to obtain information about the steady-state response,
but as we are interested in the transient behavior, we use full time-domain integration.
In particular, the state equations for the one-port model shown in Figure . are given
by

d
dt

 IL
VCm

VCt

 =

−
R
L 0 1

L
0 −1

RLCm
1

RLCm
−1
Ct

−1
RLCt

1
RLCt


 IL

VCm

VCt

+

 0
Vs(t)
RLCm
Vs(t)
RLCt

 , (.)

where L and R are given by (.). The solution to this system of differential equations for
a given driving function Vs(t), together with the map from inductor currents to fields,

B(t) = κϕ(t) = κ IL(t)L(IL(t)), (.)

gives us the distortion operator g : Vs → B.
Since this distortion operator responds to driving pulses in a nonlinear fashion, such

as in Figure ., we must include its effects into our gradient calculations. In particular,
we approximate Jg by expanding about the zero pulse Vs(t) = 0,

∂gm,l

∂pn,k

∣∣∣∣
p
≈ ∂gm,l

∂pn,k

∣∣∣∣
0
≈
[

g(ϵen,k)

ϵ

]
m,l

, (.)
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Figure .: Example of a  ns,  V square pulse along x after being transmitted
through a nonlinear resonator with αI = 0.0006/A2 and αR = 0.

where ϵ is a small step size used in computing the gradient. While this is a very coarse
approximation of the gradient, it captures enough dynamics for the gradient-based al-
gorithms to pick a direction that is still uphill, and offers the advantage that we can
precompute Jg using this approximation. That is, we can compute a good direction with
no additional circuit simulation calls. In cases where the distortion computation is inex-
pensive compared to simulating the quantum evolution, a more sophisticated approx-
imation may be used here to trade off between circuit and quantum system simulation
calls.

Having thus implemented both g[p] and Jg(p) for the distortion operator g : Vs → B
representing the nonlinear resonator, we can now include the resonator into our GRAPE
implementation. We will consider internal and control Hamiltonians for a single qubit,

Hint = 2πδωσz (.a)
Hc = (1 + γ)2π[ωxσx + ωyσy], (.b)

where δω is the static field offset, γ is the control field inhomogenity, and where ωx and
ωy are the control fields produced by the distortion of a given pulse.

In Figure ., we show an example of finding a .% fidelity π/2)x pulse for the
nonlinear resonator described by the parameters in Table ., and for the Hamiltonian
above, taking γ = δω = 0. In the design of this pulse, we have included the ringdown
compensation heuristic of Section ...
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Table .: Values of parameters as defined by (.) for designing example pulses.

L = 100 pH (1 + αL|IL|2)
R = 0.01W (1 + αR|IL|ηR)

RL = 50W
Ct = 2.49821 pF

Cm = .58224 fF
αL = 0.05 A−2

αR = 0.001 A−2

ηR = 0.7

ω0 = 10.0622 GHz

2. ×10-9 4. ×10-9 6. ×10-9 8. ×10-9 1. ×10-8 1.2 ×10-8 1.4 ×10-8
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Figure .: Example pulse implementing π/4)x for a nonlinear resonator. The driving
pulse is shown in red, while the output pulse is shown in blue. The ringdown compen-
sation steps are shown as dashed.
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5.2.3 Robustness to Distributions

Importantly, we want to make pulses that not only account for classical control hardware,
but that do so in a way that is robust to uncertainty either in the Hamiltonians that govern
the system being controlled, or in the distortions that act on control sequences. Such
uncertainty can arise either from a finite error in an earlier characterization procedure
(Chapter ), or due to an intrinsic property of the system being controlled. For instance,
static and control field inhomogeneities in ensemble systems imply that each member of
an ensemble experiences a different unitary in response to the same control sequence. In
either case, we consider that the map U(p) from control sequences to unitary operators
is conditioned on a hypothesis, represented as a vector x of model parameters. This
is in direct analogy to the representation of posterior distributions that we adopted in
considering the sequential Monte Carlo algorithm (Section .).

In order to account for uncertainty in this hypothesis vector, we replace the objective
function by the expectation of the conditional objective over the uncertainty in x,

o(p) = Ex[o(p|x)] = Ex[Φ(Utarg, U[p; x])]. (.)

As the expectation is a linear operator, we can thus evaluate the new definition of the
marginalized objective o(p) be computed by repeated evaluations of Φ for various hy-
potheses x.

This technique has previously been used to find pulses that are robust to wide distri-
butions arising from control and static field inhomogeneities [; ; ]. Considering
the marginalized objective is especially convenient for use with gradient methods such
as GRAPE, as the gradient and expectation operators commute, such that gradients can
similarly be computed by Monte Carlo expectations over the uncertainty being consid-
ered.

In Figure ., we show an example of a pulse designed to be robust across a range
of values of the inhomogenity parameters δω and γ. In designing the pulse, we started
with a δ-distribution at δω = γ = 0 and then iteratively broadened the distribution in
five steps, using the previous solution as an initial guess to each later iteration. Doing
so, we obtain a pulse that is broad across % control inhomogenity and  kHz static
inhomogenity.

We note, however, that there are fundamental limits to the applicability of marginal-
ized objectives []. In practice, as the distributions being considered are made more
broad, more initial guesses must be made as to pulse solutions, such that the computa-
tional cost of implementing marginalized-objective OCT methods increases accordingly.
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Figure .: Example of a robust pulse for the nonlinear resonator. (Left and middle)
Shape of the pulse, with input shown in red, ringdown compensation shown in red
dashes and the distorted pulse shown in blue. (Right) Average fidelity contours over
δω/MHz and γ.

In Section .., we will use a genetic algorithm approach to formalize the use of many
initial guesses into a population.

5.2.4 Heuristics for Pulse Desiderata

Using GRAPE, we can also account for additional heuristics within each iteration, such
that further properties can be demanded of solution pulses. As an example of such
heuristics, we consider the problem of ensuring that after driving a resonator with a
large quality factor Q ≫ 1, the energy stored in the resonator is effectively removed.
That is, we want to compensate for the effect of ringdown seen in examples such as
Figure .. Explicit optimization for ringdown compensation can be included as a sec-
ondary search within each GRAPE iteration if circuit simulation is relatively inexpensive
[], but here, we provide an explicit heuristic that iteratively and approximately solves
ringdown compensation using significantly fewer circuit simulation calls.

In the case of a linear distortion g = aget/τc⋆ acting independently on each control
knob, it is straightforward to compensate for ringdown by appending a new time step
K + 1 of width δt and amplitude

pn,K+1 = −ag

g[p]n

eδt/τc − 1
. (.)

This is frustrated, however, when g is nonlinear, as this implies that ag and τc are no
longer constant. Instead, we can generalize by demanding not that the compensation
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step takes the distorted pulse amplitude to zero, but to some fraction r of its initial value.
In this way, during each individual compensation step, treating the ringdown parame-
ters as constant serves as a better approximation.

Using the example of the nonlinear resonator discussed in Section .., we wish to
derive for a single iteration of ringdown compensation the complex-valued pulse am-
plitude p̃rd that we should append to reduce the magnitude of the distorted pulse by a
factor of r ∈ [0, 1]. Note that since we have been considering real-valued controls, this is
effectively a two-control problem.

Formally, we write (.) as a matrix equation in the state parameters y = (IL, VCm , VCt),

ẏ = A(y)y + αb, (.)

where α = α(t) is a control proportional to Vs(t), and where A and b are defined by
(.). Then, finding y0 immediately before a ringdown compensation step from the full
numerical integration of this differential equation, we can find the compensation pulse
explicitly. In the limit τc ≫ δt, this objective is minimized by [],

p̃rd =
⟨v, w⟩
⟨v, v⟩ , where (.a)

v = P(etA − r1)y0 (.b)

w = −PA−1(etA − r1)b, (.c)

where P ≥ 0 weights the importances of minimizing each state variable being consid-
ered.

5.3 CompositeControlDesign forNode-BasedArchitec-
tures

Many different proposals have been advanced for partitioning quantum information
processing devices into distinct nodes, for example, [; ; ; ; ; ; ; ].
An architecture of this form allows for many distinct advantages, most notably when
couplings between nodes can be turned on and off either directly, or by the application
of decoupling sequences [] such as CPMG [] or WAHUHA []. In this case, the
predominance of control can be designed in a Hilbert space limited to the size of a single
note, then applied in parallel across nodes.
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Figure .: Geometry for layered lattice or sublattice codes, using node-based geome-
tries. The intranodal index runs vertically, addressing the indivdual parts of each node,
while the lattice is over the two spatial coordinates. The elements corresponding to a
fixed index within each node form a single lattice or sublattice code, and transversal
gates across ``layers'' can be implemented via parallel operations within each node.
A composite pulse sequence affecting the interactions on the right for the electron/nu-
clear example is given in Section ...

Node-based architectures are thus especially appealing for fault-tolerant schemes
where the geometry of the error correction code applied admits a redundant structure.
For instance, error correction codes based on lattice surgery [; ] can then be im-
plemented between nodes, rather than between spins, such that many copies of the code
may be implemented at once []. Moreover, because sublattice surface codes such as
those employed by lattice surgery admit a transversal  gate, these independent sub-
lattice codes can then be acted upon as the concatenation of a topological and a block
code.

With this in mind, we are thus interested in finding unitary operations that act transver-
sally between nodes, such that we can build the error-correction primitives for sublattice
codes in a way that easily parallelizes over the logical index (that is, an index that ad-
dresses individual components of a node). Our approach will be to assume that each
computation element of a node couples strongly to an actuator, such that only the ac-
tuators couple between different nodes. Here, an actuator is taken to be a component
of a quantum system that couples both to the quantum register of interest and to the
environment, such that control on the register can be implemented with control on the
actuator alone []. Figure . illustrates this for the example where the actuator for
each node is an electron spin, and where each computational element is a nuclear spin;





the nuclear spins are each coupled to the neighboring electrons by a hyperfine coupling,
while the different electrons are coupled by a dipolar coupling.

Our goal is thus twofold: first, we must engineer couplings directly between the cor-
responding computational elements. Second, we must then use these couplings to en-
gineer couplings in parallel between the registers attached to each node. In the context
of the example given in Figure ., we thus want to engineer -body couplings that act
between n1,i and n2,i for each i ∈ {1, 2, 3}. To mitigate the costs of design in large Hilbert
spaces, we will build these engineered couplings using composite pulses of gates that each
act in a smaller space.

5.3.1 Wide Quantum Channels

As a motivating example, we will focus on the system demonstrated in Figure ., where
the Hamiltonian is given by

H = He-e
D + He-n

hf , (.a)

and where

He-e
D = ωD

(
2σe1

z σe2
z − σe1

x σe2
y − σe1

x σe2
y
)

(.b)

He-n
hf =

K

∑
k=1

Ak · (σe1σn1,k + σe2σn2,k) , (.c)

where each electron is assumed to address K nuclear spins by distinct hyperfine vectors
Ak.

Note that in our model, we have only kept the secular part of the electron-electron
dipolar Hamiltonian, under the assumption of a large Zeeman interaction on each elec-
tron. This model admits universal control over the nuclear spins by pulses on the elec-
tron spins, provided each hyperfine vector Ak is spectroscopically resolvable, anisotropic
[] and is well-characterized (Section ..).

The electron/nuclear example is an ideal prototype for more general actuator-based
nodal architectures, as it admits a hierarchy between the strong intranodal couplings, the
weaker internodal actuator couplings, and the negligible couplings between internodal
computational elements.

In particular, since we have universal control via the argument of Hodges [], an
effective nuclear-nuclear coupling must exist in the Lie algebra of the controllable Hamil-
tonian terms. This then implies that we can find a commutator sequence that implements





Figure .: Example of two nodes in an e/n node-based architecture.

the desired interactions without explicitly storing quantum information in the state of
the electron spins. Explicit algorithms have been provided that can simulate exponen-
tials of arbitrary commutators, and with arbitrary orders of error cancellation [], such
that finding the commutator that produces the desired interaction is itself constructive
for providing a composite pulse sequence. Though the aforementioned algorithm is op-
timal in the asymptotic sense, we will show a decomposition for our commutator that
admits a better constant factor in this case.

As a guide to finding a commutator that produces the desired interaction, we con-
sider the path through Hilbert space that an effective nuclear-nuclear interaction must
take. The state manifold for this system in the example of a single nuclear spin per node
is shown in Figure .. Whereas the hyperfine states are coupled by the electron dipolar,
we can affect a useful operation in the electron zero-quantum manifold by a combination
of the hyperfine and dipolar couplings. We can also think of the desired zero-quantum
manifold interaction as a continuous-time limit of an explicit swap protocol, such that
we expect to find it at second order in He-n

hf and first order in He-e
D .

Using this intuition, we look at second-order in the adjoint of He-n
hf , ad(He-n

hf ) =
[He-n

hf , ·] for the desired interaction. We find that

[[He-e
D , He-n

hf ] , He-n
hf ] ∝ ωD

(
σe1
+ σe2
− + σe1

+ σe2
−
)
⊗ Hn-n

D , (.)

where Hn-n
D is a dipolar interaction on all edges of the complete (K, K)-bipartite graph,

affected by the electron-electron interaction. We can then generate this Hamiltonian as
the effective Hamiltonian for a composite sequence by recursively applying that eXeY =
exp(X + Y + 1

2 [X, Y] + 1
12 [X, [X, Y]] + · · · ) to obtain the identity

eXeYe−Xe−Ye−XeYeXe−Y = e[X,[X,Y]]+···. (.)
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Figure .: (Left) Labeling of electron (↑/↓) and nuclear (0/1) spin states, shifted by
hyperfine couplings. (Right) Mixing of hyperfine levels in the electron zero-quantum
manifold span(|↑↓⟩ , |↓, ↑⟩) by dipolar coupling.

Letting X = −iHe-n
hf δt and Y = −iHe-e

D δt, we identify this sequence as that which pro-
duces the wide quantum channel Hamiltonian (.) for the electron-nuclear node-based
architecture. Here, the truncation is to lowest-order; generalizations for arbitrary order
in δt and ad are given by [], such that more elaborate wide quantum channel Hamil-
tonians can be implemented.

To isolate the internodal couplings between correspondingly labeled nuclear spins,
instead of the complete-bipartite graph, we require one more interaction frame in our
composite pulse sequence. As illustrated in Figure ., we want to suppress couplings
between n1,k and n2,k′ for k ̸= k′, to affect control useful for such applications as transver-
sal gates between layers of a lattice code. This is achieved by using an interaction frame
defined by the Hadamard-Walsh basis [], such that the sign of Ak is orthogonal to Ak′

unless k = k′. The Hadamard-Walsh basis, illustrated in Figure ., is a common digi-
tal signal processing technique that has been previously used to characterize temporal
profiles of magnetic fields in quantum systems [].

Our technique thus provides a way of affecting useful transversal intermodal cou-
plings in parallel, in turn enabling novel new architectures to be explored. By explicitly
providing a set of composite pulse sequences that realizes these interactions, we also
enable the design of control in smaller Hilbert spaces, namely that each gate operates
either in parallel across nodes, or acts locally within each node.

In combination with optimal control methods for designing control in each of these
smaller Hilbert spaces, the wide quantum channel construction thus provides a very im-
portant step towards developing control in large systems. In particular, these techniques
together are especially useful in node-based actuator-controlled architectures, providing
a natural path to implementing quantum error correction using lattice codes in parallel
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Figure .: Walsh-Hadamard functions on  dimensions, ranked in increasing ``se-
quency'' order. Source code provided in Listing C.. Interpreted as an interaction frame
for wide quantum channel internodal decoupling, these sequences eliminate crosstalk
between mismatched nuclear labels at zeroth-order in Magnus for up to eight nuclear
spins.
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Figure .: Suppression of cross couplings in a wide quantum channel.

across intranodal labels.
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6 Quantum Coprocessors and
Semiquantum Algorithms

Many of the approaches discussed thus far require simulating the dynamics of quantum
systems. Though we have proposed doing so using classical resources, this places a se-
vere constraint on the dimensionality of the systems that we can study using simulation-
based techniques such as the SMC algorithm (Section .) or optimal control theory
(Chapter ) unless long-standing conjectures about the difficulty of quantum systems
are shown to be false. In order to build our way towards large quantum systems, then,
we must do something different, and introduce a resource other than classical comput-
ing alone. Due to the difficulty of implementing quantum algorithms using existing
devices and those proposed for the near future, however, we turn our attention instead
to augmenting classical computing with access to quantum coprocessors; that is, small
quantum systems capable of simulating the behavior of other quantum systems. This
can proceed either by using quantum simulation algorithms [; ], or by engineer-
ing a system to emulate the behavior of another quantum system [; ; ; ; ].
Here, we shall suppose no more capability than the latter, namely that we can prepare
copies of a state |ψ⟩, evolve under a Hamiltonian H(x) drawn from an accessible family,
and then measure in some basis that includes |ψ⟩.

We shall consider this additional resource in two primary contexts, first in the design
of quantum control, then in the characterization of quantum systems. In the case of char-
acterization, we then show how information locality can be used to extend our methods
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to the analysis of quantum systems that are strictly larger than our quantum coproces-
sors. This capability in turn allows us to calibrate the controls needed to produce larger
coprocessors and bootstrap our way to useful quantum information processing devices.

6.1 Control Design with Quantum Coprocessors

6.1.1 In-Place and Parallel Control Optimization Models

As an alternative to using classical resources to design quantum control sequences, we
can also consider using quantum coprocessors as simulators to design control. Several
methods have been introduced over the past several years that address this idea in dif-
ferent ways, mostly by designing control in-place using the ORBIT [], Ad-HOC [] or
ACRONYM [] algorithms. That is, a quantum device is used as a high-fidelity sim-
ulator for itself, such that pulses can be designed for a device of interest by observing
the output of characterization experiments on that device. This provides not only the
advantage of being applicable in higher-dimensional systems beyond the range of al-
gorithms such as GRAPE (Section .), but can also mitigate at least some of the need
to characterize systems before designing control, such that the exact control distortions
need not be known in order to design and apply control.

Conceptually, in-place OCT is similar to quantum feedback schemes [], in which
control is dynamically recalibrated to account for changes in an experimental system.
In-place quantum pulse design differs, however, in that the characterization steps are
treated as an oracle that is called between or before experiments of interest. In this way,
existing algorithms sit somewhere between open-loop classical OCT and closed-loop
control feedback, allowing for OCT to be carried out with minimal quantum space re-
quirements.

Each of these algorithms treats evaluation of the objective function as an oracle, that
is, a subroutine that can be called to query the fidelity objective for a given pulse. In
all three of these algorithms, the objective oracle is implemented by means of random-
ized benchmarking [] (Section ..), such that the costs grow quadratically with the
infidelity of initial guesses []. The quadratic growth of the uncertainty in the objec-
tive presents an obstacle to using existing approaches in the case where no good initial
guesses can be drawn without the use of quantum resources.

Finally, by restricting ourselves to in-place design algorithms, we preclude the use of
parallel quantum resources. That is, once we take the leap to designing control sequences
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Figure .: Use of parallel quantum coprocessors to evaluate pulse fidelities. A pulse
p is prepared by a classical host, and then sent through a classical control system that
introduces a distortion g. A monitor (such as a spy coil) is used to measure the output of
this distortion, giving g[p], producing a pulse g[p] + ϵ for some noise ϵ. The measured
pulse is then pre-distorted by the inverse distortion h−1 for a well-characterized array of
quantum coprocessors, and is simulated for each of a variety of hypotheses xi. Using
accelerated randomized benchmarking to evaluate fidelities, we then get an estimate of
the fidelity vector Φ̂ for the original pulse.

using quantum resources that are external to the system of interest, this immediately
suggests the use of many small quantum coprocessors, each communicating classically
with a single classical host. This configuration is illustrated for evaluating a single pulse
across an ensemble of hypothesis in Figure ..

In light of these challenges, we therefore seek an algorithm that utilizes small quan-
tum coprocessors in parallel to design robust pulses in a manner that is insensitive to
errors introduced by finite sampling of randomized benchmarking oracles and that does
not require simulation in order to design initial guesses.
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6.1.2 Robustness and Multi-Objective Optimization

Before we develop our algorithm, however, we first consider the challenge posed to
quantum coprocessor-assisted control optimization by the geometry of the optimal con-
trol theory problem. For a control pulse p to be robust, we demand that it admits a high
fidelity for each hypothesis x about the quantum system of interest. We can model this
by considering the fidelity as a vector-valued objective function

o(p) : i 7→ Φ(Utarg, U[p; xi]) (.)

that specifies the fidelities at each individual hypothesis. Similar approaches have been
used to extend optimal control theory for quantum states to the multiobservable case
[; ], and to quantum system discrimination []. By contrast, we are concerned
here with the multihypothesis case for designing quantum operations. In considering
the objective function as vector-valued, we are making a different demand than a scalar-
valued objective function formed by taking an expectation over hypotheses, as we used
in Section ...

It is not now immediately clear what it means for a given feasible solution to be opti-
mal, as a tradeoff between the different components of o cannot be made unambiguously.
Instead of maximizing according to the total ordering≥, then, in the multiobjective case,
it is common to use instead the partial ordering given by Pareto optimality []. In par-
ticular, we say that p dominates q if oi(p) ≥ oi(q) for all i. Having thus defined the
domination relation, we can now define a Pareto optimal pulse to be one that is not
dominated by any other pulse, such that it is extremal according to the partial ordering
given by domination. Intuitively, a pulse is non- dominated if it cannot be improved in
any component except at the cost of another component. Writing q I p to mean q dom-
inates p, our optimal control theory problem can now be restated in the multi-objective
case as

given Utarg

find p

s.t. @q : q I p, ∀i : oi(p) ≥ otarg,
(.)

where oi(p) are the components of the vector objective o(p).

We can consider the surface of Pareto optimal solutions in the space of objective func-
tion values. For instance, an octant of the -sphere is the Pareto surface for a trivial
objective function on vectors in R3, o(r) = r, under the constraint that ∥r∥ ≤ 1. We can
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Figure .: Projection onto the plane of the Pareto optimal solutions to the trivial objec-
tive o(r) = r under the constraint ∥r∥ ≤ 1.

clearly not improve on r = (0, 0, 1) except by trading off the z component for gains in x
and y. Importantly, if we project this Pareto surface onto two dimensions, we obtain so-
lutions that appear to be interior, as they offer advantages in components not considered
in that projection. This is illustrated in Figure ..

Pareto optimality is a more demanding condition than that considered in Section ..,
where o := Ex[Φ]. In particular, as we broaden the distribution over x in this definition,
we will in general introduce cusps into the control landscape, such that Pareto optimal
solutions cannot be found by expectation values alone []. This limitation can arise
from nonconvexity in the Pareto optimal surface, such that expectation values alone will
miss Pareto optimal solutions. In order to explore the set of nondominated solutions, we
must therefore move to a multi-objective control design algorithm that directly solves
(.).

Importantly, however, we cannot naïvely use a subgradient descent method (SGD)
for this problem, as o is not convex in the case of the fidelity objective o = Φ. Algo-
rithms such as the goal-attainment method can solve this by reducing a multiobjective
problem to a single objective problem with a minimization over a slack variable [].
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Moreover, generalizations of SGD methods for nonconvex, nondifferentiable functions
such as omin := mini oi have been demonstrated [], allowing the direct use of gra-
dient information. Here, however, we take a different approach by instead focusing on
multi-objective evolutionary algorithms (MOEAs).

6.1.3 Multi-Objective Memetic Algorithms

Genetic and evolutionary algorithms offer a promising paradigm for solving the prob-
lems that we have considered thus far for several reasons. First, by using tournaments
that randomly select between components of a multiobjective fitness, evolutionary al-
gorithms (EAs) can be made manifestly multiobjective []. That is, we can design
multi-objective EAs (MOEAs) by selecting individuals for reproduction that are non-
dominated []. Second, EAs need not include explicit gradient information, relying
instead on parallel evaluation of the fitness vectors for each member of a large popula-
tion. Our approach thus does not break when considering a nonconvex objective vector
such as o. Third, we can readily extend EAs to include local improvement, forming multi-
objective memetic algorithms (MOMAs) instead []. Here, we use the SPSA algorithm
[] employed by ACRONYM [] to perform local improvements on individual com-
ponents of randomly selected individuals [], such that we require gradient estimation
only of a single- objective function of the underlying multi-objective fidelity function.
The use of a local improvement step allows us to rapidly expand the set of pulses that
are not dominated by any other pulse yet discovered, known as the Pareto front. In partic-
ular, by focusing on those components that restrict the Pareto front, local improvement
can dramatically reduce the number of generations required to find solutions that are
approximately Pareto optimal.

Putting these together, we form our memtic optimal quantum-accelerated control al-
gorithm (MOQCA) for QCP-assisted pulse design. In this Section, we describe MOQCA,
detail an implementation in Python based on the DEAP library [], and then show a
simple example of applying MOQCA to design pulses that account for ringdown and
static field inhomogeneities. The inclusion of randomized benchmarking sampling er-
rors is left to future work.

6.1.3.1 Genetic Algorithm Definitions

In formulating and specifying MOQCA, it is helpful to first build some terminology
connecting our problem of interest to that used in genetic algorithms. In the interest
of generality, we do not give specific values for any parameters defined in this Section,
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but instead lay out how MOQCA can be tuned and configured. We will later present an
example, using the specific values given in Table ..

Firstly, we define an individual to be a sequence of pulse attributes together with a
strategy. Each such attribute (∆tk, pk) specifies the width of a pulse timestep and the
values of each control field at that timestep. The strategy s = (σp, a, b, s, t) encodes the
pulse amplitude mutation strength σp and the SPSA parameters a, b, s, t described in
Algorithm , such that the strategy can coevolve with the pulses.

Algorithm  SPSA algorithm for local improvement.
Input: Pulse p, fitness function f , key function k, real parameters a, b, s, t, number of

iterations n.
Output: Optimized pulse q.

function SPSAI(p, f , k, a, b, s, t, n)
for i ∈ 1→ n do

α← a/(i + 1)s

β← b/(i + 1)t

∆← random matrix of ±1 entries, same size as p
g← [k( f (g + β∆)− k( f (g− β∆)]/2β

q← p + αg∆
if q is worse than p under k ◦ f then

return p
else

p← q
end if

end for
return p

end function

Individuals are each assigned a fitness vector f by interpreting the fidelity objective
vector o(p) as an evolutionary fitness. The fitness of each individual is evaluated by
performing interleaved randomized benchmarking with the pulse associated with each
individual, and for each of a list of hypotheses about the system of interest. This in-
troduces a sampling error described either as in Section .., for strong measurement,
or as by Wallman and Flammia [] for ensemble measurement. Here, we do not in-
clude this error explicitly, leaving this to future work. In evaluating each pulse, we also
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apply distortions as discussed in Section .., with additional Gaussian noise added
at each timestep to represent imperfect measurement of the pulse produced. Notably,
simulation-free heuristics such as ringdown compensation (see Section ..) can be in-
cluded as distortions, such that MOQCA need not directly integrate knowledge of how
energy in a resonator is removed at the end of a pulse.

At the start of each iteration, a random subset of individuals is chosen for memetic
improvement using SPSA. Since SPSA is a single-objective algorithm, for each individ-
ual undergoing improvement, we first select a scalar function k( f (I)) of the individ-
ual fitness vectors f (I) to be improved. Here, we consider three such key functions,
kmin( f ) = min f , kE( f ) = ∑ f / dim f and ki( f ) = fi for a random component i. For each
individual, we draw k from {kE, k1, . . . , kdim f } and perform a predetermined number of
SPSA iterations, using the parameters given by the individual's strategy. The probabil-
ities of each key function are varied as a function of how many generations have been
performed so far, such that more aggressive improvement can be used later in the algo-
rithm's execution.

Following improvement, another random subset of individuals is chosen for muta-
tion. Once chosen, a random subset of an individual's attributes are then chosen to be
perturbed by a normal random variate drawn with zero mean and standard deviation
given by the strategy parameter σp. With small probabilities, an individual undergoing
mutation may have a new attribute inserted at a random index, or may have an attribute
removed. Finally, each strategy parameter is redrawn from a log-normal distribution
centered on the original value, and with scale given by the learning rate σ = 1/

√
dim p.

The SPSA a and b parameters are then restricted to lie within predetermined bounds.
Once improvement and mutation have been completed, individuals are selected for

reproduction by a sequence of tournaments. In each tournament, three individuals are
chosen at random, of which one is added to the mating pool. A number of tournaments
equal to the previous population size is performed, such that the number of individuals
remains constant. Selection is always performed using kmin, such that the population at
the next generation will consist of those pulses whose worst-case performance is best.

Reproduction proceeds by selecting pairs from the mating pool and performing a
crossover of their respective attributes with a given probability. In MOQCA, we use
the two-point crossover illustrated in Figure ., padding the shorter pulse by zeros if
needed. After crossover, the resulting pulses form the new population that proceeds
into the next iteration.

At this point, the fidelities of the new generation are evaluated and compared to
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Figure .: Two-point crossover operator between two distinct pulse individuals, with
randomly chosen cut points tcx,1 and tcx,2. All pulse steps between the cut points are
swapped between the two individuals.

previously recorded fidelities to form an online estimate of the Pareto front. Previous
members of the Pareto front are checked to see if the any members of the new population
now dominate them, and if so, are removed from the Pareto front. Once the new gen-
eration has been evaluated, no further simulation is needed to compare to the recorded
Pareto front. Thus, examination of the current non-dominated individuals can be used
as a stopping criterion.

6.1.4 Single-Qubit Example of MOQCA

In this Section, we detail an example of applying MOQCA to design a single-qubit gate
for a linear resonator with a significant quality factor. As discussed above, we do not
assume that the distortion g acting on each individual is accurately measured, but rather
that we incur additional white noise, such that the objective estimates are ô(p) = Φ̂(g[p]+
ϵ) for some noise ϵ. Our implementation is thus severely hampered in an experimentally-
relevant way; though the ideal case is straightforward for existing algorithms, we show
here that MOQCA continues to learn good pulses even with significant additive white
noise. Additionally, we consider five different hypothesis about the static field inhomo-
geneity of the internal Hamiltonian, such that we obtain a five-dimensional objective
space.

Using the parameters in Table ., we optimized a population of  individuals.
At each step, we simulated objectives without any additional error to compare the es-
timated performance of the algorithm to what would be observed in practice. In par-
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Table .: Parameters used in single-qubit MOQCA demonstration.

Parameter Value
Target Utarg = σx

Internal Hamiltonian H0(δω) = δωσz, δω ∈ {0,±50kHz,±100kHz}
Control Hamiltonians Hc = (σx, σy)

Control Distortion Exponential kernel w/ time constant τ = 2ns,
control rotation by π/12

Pulse Measurement Error Gaussian white noise, amplitude 2π · 100kHz per step
Ringdown Compensation One step,  ns

Pulse Step Width  ns
Initial Pulse Lengths  to  ns

Allowable Control Range [−7,+7]× 2π · 10MHz
Generations 

Population Size 
Crossover Probability %
Mutation Probability %

Attribute Mutation % probability each attribute, std. dev. σp
Attribute Creation .% probability
Attribute Deletion .% probability

Improvement Probability %
SPSA Iteration Count  iterations / improvement

Improvement Criterion Probabilities
r2 + 10%(1 − r2) random compo-
nent,
90%(1− r2) worst fidelity

Ringdown Compensation  ns
Initial Strategy σp = 2π · 100kHz, a = 1, b = 0.05, s = 0.602, t = 0.101

Strategy Parameter Bounds a ∈ (0, 2], b ∈ (0, 1]
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Figure .: Example pulse generated MOCQA with  generations, a population of
 pulses each no more than  ns in length, and using the MOQCA parameters in
Table ..

ticular, we used estimated (noisily-evaluated) objectives to build a hall of fame (HOF) of
non-dominated individuals at each step, then exactly analyzed the performance of the
HOF to gather performance statistics. An example pulse from the final hall of fame, fed
through the noiselessly-observed distortion, is shown in Figure .. In Figure ., we
show the size of the HOF at each generation; drops in the number of nondominated
individuals correspond to the discovery of newly dominating individuals, such that ex-
isting individuals are purged from the HOF.

In Figure ., we track Epop[ô], the mean over the population of the estimated infi-
delities, with a % goal shown for comparison. We show in Figure . that at the end
of the  MOQCA generations, we are left with a HOF whose true infidielities are well
below the goal, such that randomly sampling a nondominated individual from the final
Pareto front is highly likely to give an acceptable solution.

Finally, in Figure ., we consider the shape of the final Pareto front by projecting the
-dimensional objective space into  different two-dimensional subspaces, each cor-
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Figure .: Number of non-dominated individuals found by the MOQCA algorithm as
a function of generations.

responding to a pair of hypotheses about the static field inhomogeneity. These plots
are similar in style to those used by [] to visualize -dimensional objective space.
Notably, because of the geometry of the Pareto front in the full -dimensional objec-
tive space, extremal points can appear to be interior when projected onto -dimensional
subspaces. Those Pareto front individuals meeting the % goal are highlighted. For
comparison, the estimated infidelities of the final population are superimposed.

In total, this example required approximately , calls to the fidelity oracle to
reach the % goal across the ensemble of hypotheses. Though this is obviously not yet
practical, we discuss improvements in Section .. that can address this gap.

6.1.5 Future Improvements

In this Section, we have introduced a new memetic algorithm, MOQCA, for the design
of quantum control sequences using quantum simulation resources in parallel to eval-
uate objectives. Our algorithm addresses the limits of single-objective optimization by
using multi-objective tournaments to find Pareto optimal pulse sequences. This effort
currently suffers, however, from being expensive in terms of the quantum simulation
calls required. Here, we address a few ways that future work can improve upon the al-
gorithm as we have implemented it thus far, and in doing so render it more manifestly
practical.
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Figure .: Histogram of -norm infidelities across the Pareto front after  MOQCA
generations.

First and foremost, we did not account here for lazy evaluation of individual pulse
fidelities; oracle calls are only actually required when comparing to Pareto optimality,
in selection tournaments and in improvement steps. The former is the only one of these
steps that requires fully evaluating the objective vector, and thus can be treated as a
bottleneck of the algorithm. By contrast, selection tournaments and improvement steps
comparing random components can be readily implemented without feeding through
all other components. Similarly, expected performances can be calculated directly, us-
ing each hypothesis in turn in a randomized benchmarking experiment. In this way,
MOQCA can be readily extended with low-level optimizations that intelligently reuse
and defer fidelity evaluations.

Second, in the randomized benchmarking implementations of fidelity oracles, the
prior can be made very tight around by considering the history of an individual, together
with well-known bounds on how much a mutation or SPSA step can affect the fidelity.
By using an inference scheme that robustly includes prior information (Section ..),
the randomized benchmarking oracle can depend on this bound to dramatically reduce
the number of sequences that must be implemented.

Third and finally, we note that our current MOQCA implementation uses a naïve
genetic algorithm at its core. By using a more sophisticated GA after all memetic steps,
MOQCA can possibly be extended to better use the geometry of the current popula-
tion's objective vectors. Techniques such as domination ranking and crowing avoidance,
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projection is the ideal target pulse.
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for instance, can possibly better distribute the genetic diversity of the MOQCA popula-
tion across the Pareto front such that improvement steps in distinct individuals are less
redundant with each other.

6.2 Hamiltonian Learning with Quantum Resources

In the previous Chapters, we have reduced the problems of characterization (Chapter )
and verification (Chapter ) to classical algorithms whose cost is dominated by the sim-
ulation of quantum systems. Since this is in general difficult under the assumption that
BQP * P, these algorithms cannot thus scale with classical resources alone. On the
other hand, since these classical algorithms essentially treat the quantum system being
characterized, verified or controlled as a ``black box,'' they can be accelerated by the
introduction of quantum resources.

As we have seen via the MOQCA algorithm (Section ..), this strategy is useful for
addressing optimal control of quantum systems. In this Section, show how this advan-
tage can be leveraged in the case of characterization as well, to help enable the develop-
ment and verification of useful quantum information processing devices. In particular,
we will show in Section . that we can characterize and identify control distortions in
quantum systems as large as  qubits using strictly smaller quantum devices as a re-
source, thus enabling a bootstrapping procedure from small quantum resources to larger
devices. As quantum devices increase in scale, we therefore have a critically enabling
tool for pushing to larger scales still.

Our strategy in introducing quantum resources into characterization algorithms will
be to again focus on the sequential Monte Carlo algorithm (Section .), building fur-
ther on the insight that Bayes' rule connects simulation to learning. Since SMC already
treats simulation as a black box, the algorithm is ideal for augmentation with quantum
simulation.

More formally, in our description of the sequential Monte Carlo algorithm thus far,
we have reduced characterization to the classical simulation of quantum systems. SMC
takes as input a description of the quantum system under study, represented as a function
Pr(d|x; e), where x are the parameters of the Hamiltonian H = H(x) we would like to
learn, and where e is a description of the experiment to be performed. No demand is
placed by SMC on how evaluations of this function are implemented, aside from that we
must be able to pass in a list of different hypotheses {xi}. Quantum simulation does
not in general give us the ability to precisely calculate the likelihood function at a given
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hypothesis, but rather gives us the ability to sample measurements according to that
likelihood. As a result, we must generalize SMC to utilize weak simulation, in which
we instead have access to samples drawn from the same distribution as for a particular
hypothesis. We show such a generalization in Appendix A, and show how this can be
applied in the Hamiltonian learning case in Section ...

Throughout, we use QInfer [] to demonstrate Hamiltonian learning. In particular,
to demonstrate learning in Ising models, we implement likelihood evaluations classically
using the FPY and fht libraries [; ].

6.2.1 Design of Quantum Hamiltonian Learning Experiments

Using a variation of sequential Monte Carlo based only on samples from a simulator
rather than full simulations of a likelihood function (described in detail in Appendix A),
we can substitute in quantum resources for classical simulators. It thus remains to de-
sign an experiment that can well-utilize this algorithm to learn Hamiltonians. We will
suppose that we are interested in learning H = H(x); later, we shall consider the ex-
ample of a specific family of Hamiltonians, but at this stage we consider Hamiltonian
families generically. Below, we consider two distinct experimental designs for learning
x.

6.2.1.1 Classical and Quantum Likelihood Evaluation

In the first experimental design that we consider, we make no additional use of quantum
resources beyond performing the simulation required to compute the Bayes update. In
this way, the experiment design is very similar to that considered throughout most of
Chapter : we pick an initial state |ψ⟩, evolve under the true Hamiltonian H(x0) and
measure in a basis that includes |ψ⟩, such that we look for a return to the initial state.
This experiment, shown in Figure . (left), is generic for a wide range of Hamiltonian
families.

We encounter a challenge, however, in that the Loschmidt echo famously shows that
in complex quantum systems, two nearly identical Hamiltonians will typically generate
evolutions that diverge exponentially after a short time, before saturating at an exponen-
tially small overlap []. For example, if a Hamiltonian Hb ∈ Herm(H) differs from
a Hamiltonian Ha by an amount that is large compared to the characteristic scale of its
eigenvalue gaps and Ha has complexity that is characteristic of canonical random matrix
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Figure .: Flow chart for quantum Hamiltonian learning with interactive likelihood
evaluation and particle guess heuristic.

ensembles then there exists times t1 and teq such that [; ]

| ⟨ψ| eiHate−iHbt |ψ⟩ |2 ∼


1−O(t2) if t < t1

e−O(t) if t ∈ [t1, teq]

1/ dimH for most t ≥ teq

(.)

Hence, the simulated evolution and actual evolutions will vary substantially in typical
QLE experiments if t is not short. This frustrates learning in two distinct ways. First,
experiments with small t are uninformative as the Fisher information for any QLE ex-
periment scales as O(t2∥H∥2) [; ], rendering short-time experiments uninformative.
Second, the exponentially small likelihoods that occur for t > teq cannot be efficiently
estimated from frequencies on a trusted simulator, as this would require exponentially
many samples to be drawn for each hypothesis.

We thus need to consider a more informative set of experiment designs in order to
probe the long evolution times necessary for maintaining exponential scaling in the de-
cay of errors.

6.2.1.2 Interactive Quantum Likelihood Evaluation

We resolve the challenges discussed in the previous section by using the trusted quan-
tum device not just to simulate the observed data, but also to invert the evolution on the
untrusted device by a hypothesis. This procedure, interactive quantum likelihood eval-
uation (IQLE), is reminiscent of the Hahn echo experiments commonly used in magnetic
resonance and experimental quantum information processing []. As detailed in Fig-
ure ., an IQLE experiment uses a  gate to transfer a state e−iH(x0) |ψ⟩ from the un-
trusted device to the simulator, which then inverts to obtain the final state eiH(x−)e−iH(x0) |ψ⟩
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Figure .: Experiment and simulator design for non-interactive and interactive quan-
tum likelihood evaluation.

for a hypothesis x− about the true evolution. We assume that the measurement is in an
orthonormal basis including |ψ⟩, such that IQLE is seen to effectively detect the Loschmidt
echo back to the original input. That is, while the Loschmidt echo may also seem to be
problematic for IQLE experiments, we can take advantage of this echo to find highly
informative experiments.

6.2.1.3 Particle Guess Heuristic

To design experiments for interactive quantum likelihood evaluation that take advantage
of the Loschmidt echo, we use the ``particle guess heuristic'' (PGH), a simulation-free
heuristic for selecting inversion hypotheses []. In particular, we choose the inversion
Hamiltonian H− := H(x−) by sampling x− from the prior Pr(x), which describes our
current knowledge of the Hamiltonian parameters. The corresponding evolution time t
is chosen by drawing a second particle x′− ̸= x− and setting t = 1/∥H(x′−)− H(x−)∥2.
For many models of interest, ∥H(x′−)− H(x−)∥ ∝ ∥x′− − x−∥, such that the PGH can
be evaluated without explicitly considering large matrices. As the uncertainty in the
estimated parameter shrinks, the PGH will tend to pick longer times to ensure that in-
formative experiments continue to be chosen as certainty about the unknown parame-
ters increases. In practice, this means that t grows as 1/ϵ similar to phase estimation.
The Loschmidt echo therefore guarantees that if H− ̸≈ H then Pr(ψ|x) is small, but
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if H− ≈ H then Pr(ψ|x) ≈ 1. This provides a sensitive test for distinguishing between
good and poor hypotheses that works extremely well in practice and is provably optimal
in certain cases [].

6.2.2 Ideal Performance and Scaling with Dimension

We now consider the costs incurred by our procedure by breaking the cost down into
two components,

Cost(δ) := Nupdates(δ)×Cost(update; ϵ) (.)
Formally, the cost of each Bayes update performed scales as []

Cost(update; ϵ) ∝
n
ϵ2

(
ED|x

[
maxi Pr(D|xi)(1− Pr(D|xi))

Pr2(D)

])
, (.)

where n is the number of SMC particles, ϵ is the adaptive likelihood estimation tolerance,
and where D is the data record used in estimating x. This is efficient only if we require no
more than a polynomial number of particles in the number of qubits, and if the likelihood
function is not too ``flat''. The former condition has been addressed for SMC algorithms
more generally by Beskos et al [], who showed that the number of particles required
grows subexponentially in dim x. In practice, dim x will often grow slowly with the
dimension of the Hilbert space, such that we will require a small number of particles for
a range of interesting applications. For example, the number of free parameters in any
-local Hamiltonian model, such as the Ising model, grows at most quadratically with
the number of sites being considered.

For the other condition, we can ensure that the likelihood functions are sufficiently
far from flat by using the particle guess heuristic (Section ...). In particular, if at a
given step, the posterior is approximately unimodal and has a mean that is within a fixed
distance of the true parameter vector x, then the PGH ensures that

Ex− [⟨ψ|eiH(x−)te−iH(xt)|ψ⟩] ∈ Θ(1), (.)

since t ∈ Θ(∥H(x)− H(x−)∥−1) []. Thus, the total cost of interactive quantum likeli-
hood evaluation is reduced superpolynomially by comparison with classical evaluation
if the model dimension and the effective number of outcomes ∑j Pr(d = j|xk)

−2 are each
modestly sized (x ∈ O(polylog dimH)).

Having thus analytically established the potential improvement offered by IQLE, we
now consider a numerical example for a specific class of Hamiltonians. In order to enable
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Figure .: The median quadratic loss plotted as a function of the number of (left) non-
interactive and (right) interactive QLE experiments, learning Ising models on the line
graph for each of several numbers of qubits n. The shaded areas show a 50% confidence
interval for the quadratic loss. 10 000, 10 000 and 20 000 particles were used in the n = 4,
n = 8 and n = 12 cases respectively.

simulating the entire protocol on a classical computer, we will restrict our focus here to
the Ising model

H(x) = ∑
(i,j)∈E(G)

xi,jσ
(i)
z σ

(j)
z (.)

for the edges E(G) of an interaction graph G. Unless otherwise specified, we will take the
the prior and true distributions for each xi,j to be the uniform distribution Uni(−1/2, 1/2),
and will take the initial state to be |ψ⟩ = |+⟩⊗n. The Ising model is of immediate
relevance to current and recent experiments [; ], and allows us a model that is
tractable to classical simulation such that we can numerically analyze performance. We
need not coarse-grain in this case, as IQLE and the PGH together concentrate the mea-
surement outcomes to a small number of effective outcomes.

The data for the linear and complete graphs (Figure . and Figure ., respectively)
show that the quadratic loss shrinks exponentially with the number of experiments per-
formed, matching the observations made thus far in Hamiltonian learning. However,
the rate at which the error decreases slows as the number of qubits n increases. This
is expected, as dim x = n(n − 1)/2 for the case of a complete interaction graph, such
that as the number of qubits increases, the same information is spread over more model
parameters.

As we will discuss in Section ..., IQLE performs comparatively better when we in-
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Figure .: The median quadratic loss plotted as a function of the number of interac-
tive QLE experiments, learning Ising models on the complete graph for each of several
numbers of qubits n. The shaded areas show a 50% confidence interval for the quadratic
loss.

clude the effects of finite sampling. In the linear case shown here, that we do not include
sampling effects means that QLE can extract information effectively from a large number
of outcomes. This is not feasible in practice, however, such that QLE demands more of
our simulators than does IQLE. It is worth noting that only a few hundred IQLE exper-
iments are needed to learn the Hamiltonian within a quadratic loss of 10−2 or smaller
for even a nine-qubit system.

Critically, we note that the scaling parameter for quantum Hamiltonian learning is
not the dimensionality of the Hamiltonian being learned, but rather, the dimensionality
of the model parameter vector describing the Hamiltonian. In Figure ., we illustrate
this by considering the case where a single parameter in the prior starts off much less
certain than the others, such that the error decay rate dynamically changes based on the
dimensionality of the problem.

This observation allows us to reason about the scaling of our algorithm with respect
to the number of unknown parameters directly. In particular, in Figure ., we fit each
of a large number of trials to e−γN, where N is the number of experiments performed,
and where γ is the rate at which errors decay. We then plot the median decay for each
of a number of different parameters in the linear and complete graphs, showing that
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Figure .: Scaling for four-qubit (red) and six-qubit (blue) spin chain models, where
each model admits a single parameter that is much less certain than the others. The black
lines illustrate that the exponential rate at which errors decay is dramatically different
once the uncertain parameter ``catches up,'' such that the scaling switches to the n = 4
and n = 6 rates.

the falloff with the dimensionality of the model of the rate at which errors decay is not
exponential. This in turn suggests that we can continue to learn exponentially quickly
in larger and larger systems by exploiting prior information such as model reduction.

6.2.3 Robustness of QHL

In order to be a useful method for characterizing quantum systems, quantum Hamil-
tonian learning must be robust to realistic sources of error and noise. Here, we argue
that QHL admits this robustness, using a combination of numerical results and analytic
bounds. In particular, we will show that QHL continues to learn at an exponential rate in
the presence of three distinct sources of error: that introduced by finite count statistics of
measurements on the trusted simulator, noise introduced by imperfect implementations
of the  gate used to couple the two devices, and errors introduced by approxima-
tions in the Hamiltonian model under consideration.
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Figure .: The median decay exponent for the quadratic loss as a function of the
number of parameters in the Ising model d, and for each of the complete and linear
interaction graphs.

6.2.3.1 Sampling Error

As disussed in Section B., we can analytically bound the performance of quantum Hamit-
lonian learning under pessimistic assumptions, complementing known results on the
stability of classical sequential Monte Carlo []. This bound above is overly pessimistic,
however, as we have seen considerably better performance from our explorations of
more simple likelihood-free models (Appendix A). Thus, we also consider sampling er-
ror numerically, using the PoisonedModel QInfer model to simulate finite adaptive like-
lihood estimation (ALE) tolerances. Doing so for a nine-qubit spin-chain Ising model,
we observe in Figure . that median performance of our algorithm still provides expo-
nential decreases in uncertainty with the number of experimental data points collected,
but that the slope of the exponential decay is reduced.

Moreover, if we tighten the ALE tolerance to with the number of qubits to represent
the demand that the noise per qubit is held constant, then we obtain qualitatively similar
results. in Figure ., we show that if the ALE tolerance is set to ϵ = 0.4/n where n is
the number of qubits, then the median of the decay parameter γ obtained by fitting the
loss for each trial to Ae−γN scales in a manner comparable to the ideal case.
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Figure .: The median quadratic loss for a 9 qubit Ising model on the line for the IQLE
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algorithm in all cases.
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Figure .: Median value of the error decay rate γ computed for IQLE experiments in
which the interaction graph is a line, and where n ranges from 1 to 12 with ALE tolerance
ϵ = 0.4/n. For each experiment, learning was performed using   SMC particles.
For comparison, the infinite-sampling limit ϵ = 0 is also plotted.
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6.2.3.2 Depolarizing Noise and Realistic SWAP Gates

Thus far, we have assumed that the  gates coupling the trusted and untrusted de-
vices are perfect, such that the state on the untrusted device is faithfully transfered to the
trusted simulator. In practice, any implementation of  will introduce decoherence
into the system, such that QHL must be robust to this noise in order to successfully learn
in practice. As such decoherence effectively reduces the visibility of measurements by
a constant factor, by the argument given in Section .., we expect that if the noise is
correctly modeled, then the exponential scalings observed thus far will be preserved,
albeit at a slower rate.

In particular, we consider the disturbance to the prior introduced by a Bayes update
conditioned on datum d drawn from a depolarized model with finite depolarizing prob-
ability pdepol. Let pideal := Pr(d|x; pdepol = 0) be the ideal measurement probability,
assuming no depolarizing noise, such that under depolarizing noise,

Pr(d|x) = pideal(1− pdepol) +
pdepol
dimH . (.)

Moreover, let pideal,j := Pr(d|xj; pdepol = 0) represent the same for each individual hy-
pothesis. Then, if we assume that minj(1 − pideal,j) ≫ pdepol/(1 − pdepol), we obtain
that as the dimension of the Hamiltonian increases the disturbance Ed [Pr(x|d)/ Pr(x)]
in the posterior asymptotically scales as [],

(
1− pdepol

) ( p2
ideal

∑j pideal,j Pr(xj)
+

(1− pideal)
2

∑j(1− pideal,j Pr(xj))

)
. (.)

That is, the disturbance is reduced by the depolarizing strength to an effective learning
rate 1− pdepol. As a particular consequence, the effect of depolarizing noise in the un-
trusted and trusted devices should not be expected to destabilize the estimates produced
by QHL.

Here, we verify this numerically in two distinct ways: by simulating IQLE experi-
ments with a depolarizing channel following the  and by simulating IQLE using
physically-realistic gates similar to those used in Section .. and Chapter . For the
first case, we let pideal be the strength of the depolarizing channel, and simulate the
performance of IQLE on a four-qubit spin chain for varying N . The results of this are
shown in Figure ., in which we consider the median quadratic loss for a line-graph
Ising model with varying settings of pdepol. Using depolarizing noise, we can also ex-
plicitly check the (1− pdepol) scaling by considering the scaling of γ/(1− pdepol) versus


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Figure .: The median quadratic loss, plotting for  IQLE experiments with a line-
graph Ising Hamiltonian on four qubits, and with varying levels of depolarizing noise
pdepol.

model dimension, instead of γ versus dim x, as was considered in Figure .. Using
two different values of pdepol for each dimension, we show in Figure . evidence that
the asymptotic scaling of (.) is a good approximation in cases of interest.

Generalizing from depolarizing noise, we again consider the action of cumulant-
simulated  gates in place of the ideal  gate in Figure .. We consider a quan-
tum dots gate along with four gates of varying fidelity simulated using the supercon-
ducting qubit model. For each gate, a simulation using the method of [] provides a
superoperator description ˆ̂S. We then simulate quantum Hamiltonian learning on a
two-qubit Ising model with each such gate. As shown in Figure ., we are able to learn
the J-coupling quite well, even in the presence of realistic noise models.

These two simulations thus show that quantum Hamiltonian learning can continue to
operate well, even in the presence of realistic couplings to the trusted quantum resources.
We require only that the coupling is well-characterized, such that the trusted simulator
can include the effects of a realistic gate. This requirement is addressed by the classical
methods of Chapter , however, such that we have a practical method for performing
quantum Hamiltonian learning in experimentally-feasible scenarios.
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6.2.3.3 Approximate and Truncated Models

Finally, we set the stage for the next algorithmic development by noting that quantum
Hamiltonian learning can work with simulators implementing approximate models.
That is, we relax the assumption that the family of Hamiltonians H(x) accessible to the
trusted device is not equal to the family of Hamiltonians H̃ under which the device
under study evolves. Though we consider the example of a truncated model here, the
derivation holds for approximately-inverted Hamiltonians more generally [].

As an example, we shall consider the case in which a large number of small terms in
a Hamiltonian are neglected in implementing our trusted device. In particular, let H̃ be
an Ising model on the complete graph

H̃ =
n−1

∑
i=1

aiσ
(i)
z σ

(i+1)
z +

n

∑
i=1

n

∑
j=i+2

bi,jσ
(i)
z σ

(j)
z , (.)

where we assume that ai ∼ Uni(−1/2, 1/2) and bi,j ∼ N(0, (10−4)2). We then consider
inversion by a trusted simulator that only has access to the nearest-neighbor terms

H(x) =
n−1

∑
i=1

xiσ
(i)
z σ

(i+1)
z . (.)

The standard deviation of 10−4 was chosen to illustrate a regime in which the truncated
terms are small by comparison to the included terms, as will be critical in our develop-
ment of quantum bootstrapping (Section .).

Using well-known bounds [], we derive that the difference ∆ Pr(d|x) in the true
likelihood for QHL experiments in this scenario and the likelihood function reconstructed
using the trusted resources obeys []

∆ Pr(d|x) ≤ ∥H(x)− H̃∥2t2. (.)

The use of a truncated model is thus not problematic if the error in truncation is small
compared to the difference in the forward and backwards evolution chosen by the PGH,

∥H(x)− H̃(x)∥ ≪ ∥H(x)− H(x−)∥. (.)

For truncation, ∥H(x) − H̃(x)∥ ≤ R maxk ∥H̃k∥, where H̃k are the Hamiltonian terms
included in H but not H̃.
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Figure .: The performance of QHL for the case where the trusted simulator uses an
Ising model on the line given that the true Hamiltonian is an Ising model on the complete
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interactions on the order of 0.5.
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Figure .: The logarithm of the posterior odds ratio of the true model to the re-
duced model, as analyzed by interactive quantum Hamiltonian learning. The shaded
regions include all trials. (Left) The reduced model is a Hamiltonian with only nearest-
-neighbor couplings on a line while the true Hamiltonian contains small non--nearest
neighbor couplings (order 10−4). (Right) The true model contains only nearest-neighbor
couplings, such that the complete model overfits.

In Figure ., we show this numerically for H̃ following (.), and for each of four,
six and eight qubits. As predicted, interactive QHL continues to learn well until the
excluded couplings are comparable to the uncertainty in the posterior. In particular, the
plateaus in learning are reached at approximately 10−8 × R for R = (n

2)− n, confirming
(.).

Importantly, we can also use model selection (Section .) to decide the validity of
a truncated model by comparison to a more complete alternative. Comparing the pos-
terior odds ratios for learning parameters of the complete- and line-graph Ising models
from the same data record, for instance, provides evidence as to which model more ac-
curately describes that data. In Figure ., we show the results of this comparison for
four-, six- and eight-qubit instances of each model. In all trials considered, we favor the
correct model exponentially with the amount of data collected, further demonstrating
that model selection is a powerful tool for deciding on the validity of an approximate
model.
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6.3 QuantumHamiltonianLearningwithTruncatedSim-
ulation

A major limitation of the quantum Hamiltonian learning algorithm as advanced thus
far is that we have assumed that the quantum simulation resources used are of the same
Hilbert space dimension as the system of interest. While this is useful in verification and
validation procedures, and in using a quantum device to reduce the cost of producing
further such devices, QHL is thus not immediately applicable to building a large quan-
tum device in the first place. Here, we rectify this gap by using small quantum simulators
to characterize and calibrate larger quantum devices.

We develop our algorithm by introducing epistemic information locality, whereby the
causal support of observables is effectively reduced through repeated inversion by a
hypothesis. This approach builds on the information- locality arguments of Da Silva et
al [], while avoiding the limitation of short-time evolutions. In particular, we show that
information propagation in a quantum system can be effectively slowed down by using
knowledge about the dynamics of that system, such that the particle guess heuristic can
continue to explore long evolution times, even in a truncated simulation.

In this Section, we use epistemic information locality together with a novel extension
to the sequential Monte Carlo algorithm to produce a characterization algorithm that
can use quantum resources to characterize a larger quantum device. We formally bound
the errors introduced by the compressed simulation steps, and then provide numerical
examples of learning a -qubit Ising model with an -qubit Ising simulator.

6.3.1 Epistemic Information Locality

Lieb-Robinson bounds provide a formal analog of special relativity for local systems
evolving under Hamiltonians that have rapidly decaying interactions [; ; ; ;
]. This analogy gives an effective ``light cone'' around observables, as illustrated in
Figure . for an observable A propagating inside the untrusted device before being
inverted on the trusted simulator. Specifically, Lieb-Robinson bounds imply that A(t)
provides at most an exponentially small amount of information about systems that are
farther than st away from the initial support of A, where s is the Lieb-Robinson velocity
for the system. Thus, s plays the role of the speed of light in special relativity, providing
a bound on the speed at which information can propagate within a system. The actual
value of s depends only on the strength and geometry of interactions in the system. Thus,
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Figure .: Light cones for A(t) for a single step of an r step protocol. The green region
is the light cone after the evolution in the untrusted device, and the blue region is after
inversion in the trusted device. The dashed lines show the spread of A(t) due to inexact
inversion in the trusted simulator.

if st is bounded above by a constant and A has only small support, then measurements
of A can be efficiently simulated.

We extend this using ideas from quantum Hamiltonian learning by transferring the
state of a subregister of the larger system that we would like to characterize into a trusted
quantum simulator, and then inverting the evolution by a hypothesis to reduce the norm
of the effective Hamiltonian under which A evolves. Critically, this also reduces the ef-
fective Lieb-Robinson velocity describing the propagation of information from A, such
that we use our hypothesis about the true evolution of the untrusted device to causally
isolate A within the trusted simulator. That is, the light cone about A represents an ``epis-
temic'' speed of light in the coupled systems that arises from the speed of information propagation
depending more strongly on the uncertainty in the Hamiltonian than the Hamiltonian itself [].

In particular, by using the particle guess heuristic (PGH), our inversion hypothesis
H− approaches the true dynamics HA of the restricted subregister we can access with
our trusted device. The effective Hamiltonian HA − H− thus approaches zero as the al-
gorithm proceeds. Since the Lieb-Robinson velocity is linear in the norm of the largest





term in this effective Hamiltonian [], under reasonable assumptions, the product s|t|
of the Lieb-Robinson velocity and the evolution time is approximately constant. There-
fore, epistemic information locality allows us to use long evolution times, removing the
major restriction of the Da Silva et al algorithm [].

By the results of the previous Section, we know that quantum Hamiltonian learning
is robust to approximations in the model used to estimate parameters. Here, we extend
these results, using epistemic information locality to show that for systems with expo-
nentially decaying interactions, compressed QHL incurs simulation errors that can be
made negligibly small at costs that are small in both space and experimental data. We
then show that the entire algorithm is efficient for such interactions, provided that each
experiment yields a fraction of a bit of information about H.

In particular, we show in Section B. that for non-commuting Hamiltonians that ex-
hibit exponentially-decaying interactions, the error we incur scales based on our uncer-
tainty in the true evolution of the system under study within the subregister that couples
to our trusted simulator. This point critically forms the basis of our epistemic informa-
tion locality argument, in that it shows that the Lieb-Robinson velocity for the truncated
IQLE experiment is dependent only on the difference between the internal dynamics and
the choice of inversion hypothesis. Using the particle guess heuristic to select our inver-
sion hypotheses, we see Lieb-Robinson velocities decrease with our knowledge of the
true truncated dynamics. In particular, in the limit of a well-characterized subregister,
the Lieb-Robinson velocity vanishes entirely.

In the rest of this Section, we consider the important special case where all terms in
the Hamiltonian under study mutually commute, such as in the case of Ising models
without transverse fields. We then detail the modifications that we make to sequen-
tial Monte Carlo to enable reasoning about likelihood functions in which a small subset
of parameters affect each individual datum. Finally, we demonstrate numerical exam-
ples in commuting-Hamiltonian case, using classical computation to simulate the per-
formance of our algorithm when learning a -qubit Ising model with an -qubit trusted
device.

6.3.2 Learning Commuting Hamiltonians

We first detail the operation of compressed quantum Hamiltonian learning in the impor-
tant special case that all terms in the Hamiltonian under study are local and commute
with each other. This is true, for instance, in the Ising models that we have studied thus
far. In this special case, compressed QHL is particularly simple to analyze.





Figure .: Separation of Hint = Hint
∩

A + Hint\A where Hint
∩

A are interactions
with qubits in the support of A (red solid box) and Hint\A interacts with qubits that
are swapped into the trusted simulator but are outside A (blue dashed box).

Let an observable A be supported on a sites of an interaction graph. Then, we par-
tition the Hamiltonian into terms based on their relation to the boundary of the trusted
simulator and the support of A. As shown in Figure ., we let

H = Hint + Hin + Hout

= Hint
∩

A + Hint\A + Hin + Hout,
(.)

where Hout represents all terms that do not interact with the subsystems in the trusted
simulator, Hint = Hint

∩
A + Hint\A is the sum of all interactions between these subsys-

tems and the simulated subsystems, and where Hin represents the internal dynamics
common to both the simulator and the larger system.

If we work in the Heisenberg picture then it is easy to see from the assumption that
the Hamiltonian terms commute with each other  that [Hint\A + Hout, A(t)] = 0. This
implies that

A(t) = eiHinteiHint
∩

At Ae−iHinte−iHint
∩

At (.a)
Ã(t) = eiHint Ae−iHint, (.b)

where Ã(t) is the simulated observable within the trusted simulator.
Using Hadamard's Lemma and the triangle inequality to bound the truncation error

∥Ã(t)− A(t)∥, we obtain that

∥Ã(t)− A(t)∥ ≤ ∥A∥(e2∥Hint
∩

A∥t − 1) (.)
But not necessarily with A; in fact, we require that [A, H] ̸= 0 in order for the observable to carry

information about H.
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Thus, if we can tolerate an error of δ in the simulation then it suffices to choose experi-
ments with evolution time at most

t ≤ ln
(

δ

∥A∥ + 1
) (

2∥Hint
∩

A∥
)−1 . (.)

If the sum of the magnitudes of the interaction terms that are neglected in the simulation
is a constant then (.) shows that t scales at most linearly in δ as δ → 0. This is poten-
tially problematic as short experiments can provide much less information than longer
experiments. Thus, it may be desirable to increase the size of the trusted simulator as δ
shrinks to reduce the experimental time needed to bootstrap the system. QHL is robust
to δ [; ] (Section ...), such that δ ≈ 0.01 often suffices for the inference procedure
to proceed without noticeable degradation.

Note that if Hint
∩

A = 0 then infinite-time simulations are possible because literally
no truncation error is incurred. Non-trivial cases for bootstrapping therefore only occur
in commuting models with long range interactions.

As a particular example, we assume that the Hamiltonian is an Ising model on a line
of length ℓ with exponentially-decaying interactions, such that non- nearest-neighbor
couplings between sites i and j are at most be−α|i−j|. We then take A to be supported on
a sites, and that the trusted simulator can simulate w sites. Then,

∥Hint
∩

A∥−1 ≥ (1− e−α)e⌊
w−a

2 ⌋/ab. (.)

It therefore suffices to take w− a logarithmic in t to guarantee error of δ for any fixed t.
Similarly, if we assume the interaction strength between sites i and j is at most b/|i− j|α
for α > 1 then

∥Hint
∩

A∥−1 ≥
(
⌊w−a

2

⌋
+ 1)α(α− 1)
abα

. (.)

Picking w − a ∈ O(t1/α) guarantees fixed error δ for experimental time t []. Using
insight from epistemic information locality, we show in Section B. that by the intro-
duction of additional  gates, we can explore longer evolution times, even with fixed
w− a.

6.3.3 Scanning and Global SMC Clouds

In order for experimental data drawn from truncated interactive QLE experiments to
depend on the entire untrusted register, we must scan the observable A across the un-
trusted device, such that the trusted simulator interacts with a sequence of different
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Scan 1

Scan 2

Scan 4

Figure .: Scanning procedure for 7 qubits, a 4 qubit simulator and a 2 qubit observ-
able. Blue (dashed) box is support of simulator, red (solid) box is support of A.

subregisters as the experiment proceeds. For example, in Figure ., we show a -qubit
trusted simulator scanning a -qubit observable across a -qubit spin chain.

This scanning procedure poses a difficulty to analysis with the sequential Monte
Carlo algorithm, however, in that each datum depends only on a small subset of the full
model parameter vector. Here, we address this limitation by extending SMC to use two
sets of hypothesis particles, called the local and global clouds. The local cloud is formed
by copying out a subset of the global cloud model parameters, which we then update
according to a subset of the entire data record, using conventional SMC. Upon finishing
these updates, we use resampling to reintroduce information from the local cloud back
into the global cloud before proceeding to the next batch of data.

More formally, let s be a set of indices {s(1), . . . , s(k)}, and let x[s] be a vector of
dimension k such that (x[s])i = xs(i). That is, let s be a slice of x that selects a subset of
its elements. Then, suppose that the experimental data is partitioned as D = {di,j} such
that for some set of slices {si}, di,j ⊥ x | x[si]. If each si is the smallest slice for which this
holds, then we have effectively partitioned the data and model parameters such that a
subset of the model parameters are enough to learn properties of each batch of data, even
if the full model parameter set is needed to learn from the entire data set. Given such a
partitioning of the data and model parameters, the modified SMC algorithm proceeds
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Table .: Error in compressed QHL for -qubit Ising model with an -qubit simula-
tor, for each of several choices of observable size a. Reported values are of the -norm
distance ∥x̂− x∥2 after  experiments / scan.

a 75th percentile Median 25th percentile
2 . . .
4 . . .
6 . . .

as follows:

. Prepare a global cloud {xi} ∼ π for a global prior π(x).

. For each batch Bj = {dj,k : j} with matching model slice sj:

(a) Prepare a local cloud {zi} by slicing each global particle with sj, zi = xi[sj].
(b) Process Bj using Algorithm , with the local cloud as a prior.
(c) If, after the last datum in Bj, the local posterior has not been resampled, re-

sample it to ensure that all particle weights are uniform.
(d) Modify each global particle xi by overwriting xi[sj] with zi from the final local

posterior.

Since resampling does not preserve particle correspondence, and will in general shuf-
fle the order of particles, this algorithm makes as an approximation that Pr(x|Bj) =

Pr(x[sj]|Bj)Pr(x[s⊥j ]|Bj) where s⊥j is the complement of sj. That is, any correlations be-
tween global and local model parameters are lost after each reset of the global particles
by the local particles. If learning proceeds well within each batch, this is a good approx-
imation provided that |Bj| is sufficiently large.

To demonstrate the performance of compressed QHL with modified SMC, we con-
sider the case of a -qubit Ising model and an -qubit trusted simulator. The interac-
tion graph is taken to be a complete graph, exponentially decaying with distance on a
D chain. That is, the Hamiltonian is taken to be of the form

H(x) = ∑
i ̸=j

xi,jσ
(i)
z σ

(j)
z , (.)
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Figure .: Error in compressed QHL for a = 4 with varying Nexp per scan. Data
consistent with e−0.006Nexp scaling.

where the parameters xi,j are distributed according to xi,j ∼ Uni(0, 1)10−2(|i−j|−1). The
observable is taken to be A = (|+⟩ ⟨+|)⊗a for a ∈ {2, 4, 6}.

In Table ., we show the error incurred by this procedure versus the size a of the
observable used. Based on these observations, we choose a = 4, and then consider the
number of experiments in each scan. In Figure ., we show that the error continues to
decay exponentially with the amount of data collected.

6.4 Quantum Bootstrapping

Having demonstrated compressed quantum Hamiltonian learning using epistemic in-
formation locality, we are now equipped to apply it towards a long-standing problem
in quantum information: how can we apply quantum resources to not only characterize
larger quantum devices, but control them? Put differently, we want to bootstrap our way
to large quantum simulators [].
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6.4.1 Control Characterization and Tuneup

Here, we address this challenge by using compressed QHL (cQHL) to calibrate controls
for a larger but untrusted quantum simulator, producing the settings required to use it
to characterize a still larger system in turn. As a model, we consider that an uncalibrated
simulator has a Hamiltonian that is an affine function of a control vector c,

H(c) = H0 + Hc · c. (.)

Calibration then consists of finding control vectors ci that produce each of a list of Hamil-
tonian controls {Hi} needed to perform simulations at the next bootstrapping iteration.

This model addresses the problem of crosstalk in quantum systems, previously ad-
dressed by the use of randomized benchmarking [] and the CODA algorithm [].
Crosstalk is also a special case of the distortion models that can be compensated for by
quantum-accelerated optimal control algorithms [; ; ] (Section ..). Quantum
bootstrapping with cQHL builds on both of these lines of research by using quantum
resources not to design an individual pulse, but to produce full calibration information
needed to simulate a wide range of Hamiltonians.

In particular, we proceed by first learning H0 = H(0) using cQHL, and then learn-
ing H0 + Hc,i = H(ei) for each control knob i. We then report as our estimates Ĥc,i
the difference between our estimates of H(ei) and H(0). Having learned the action of
the control function for each knob, we can finish the calibration procedure by using the
Moore-Penrose pseudoinverse to find ci that implements the desired Hamiltonian Hi.

To implement the simulation of H′ ∈ span({Hi}) at the next iteration, we can use
the Moore-Penrose pseudoinverse again for H′ directly, but this requires applying the
pseudoinverse for each Hamiltonian we wish to implement. As an alternative, we can
implement desired Hamiltonians using Trotter-Suzuki sequences [] of the calibrated
control terms. This approach also illustrates that since we can synthesize commutator
sequences of calibrated control terms, we need not characterize as many control knobs as
in the trusted device, or as in the desired set of interactions. In particular, next-nearest-
neighbor terms can be accurately synthesized from nearest-neighbor terms using se-
quences such as

e−2iZ⊗1⊗Z ∆t2 |ϕ⟩+ O(∆t3) = e−iZ⊗X⊗1∆te−i1⊗Y⊗Z ∆teiZ⊗X⊗1∆tei1⊗Y⊗Z ∆t, (.)

assuming that the middle qubit is prepared in |0⟩. Higher-order and parallel methods
for engineering interactions from local control terms are given by the wide quantum
channel [] (Section ..) and by the Childs-Wiebe algorithm [].
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6.4.2 Numerical Examples

We have demonstrated quantum bootstrapping by again using a numerical example of
an -qubit Ising model simulator to characterize a -qubit Ising model with exponen-
tially decaying interactions along a linear spin chain, again using the Hamiltonian of
(.). Here, our goal is to produce each nearest-neighbor term in isolation, allowing
for crosstalk within the -qubit system. The model for this problem thus consists of
49× (50

2 ) ≈ 61× 103 parameters, as we must learn the Hamiltonian produced by each of
the  individual controls. In Figure ., we present histograms over the model param-
eters of the error in each calibrated Hamiltonian term for examples using ,  and
 compressed interactive QLE experiments per scan. We note that with only  ex-
periments per scan, most of the Hamiltonians are calibrated to within 10−2 error relative
to the initial distribution.

Quantum bootstrapping therefore provides a valuable tool for characterizing and
calibrating large quantum devices using small quantum resources together with novel
insights into physics and statistical inference algorithms.
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Experiments/scan ∥G− Gapprox∥2 ∥G− Gprior∥2

100 0.3430 2.5625
200 0.0518 1.2689
300 0.0323 1.2872

Errors in couplings before and after bootstrapping

Experiments/scan Before After

100 0.21± 0.01 (6.0± 4.0)× 10−3

200 0.21± 0.01 (2.0± 0.4)× 10−3

300 0.21± 0.02 (1.5± 0.3)× 10−3

Figure .: Distribution of errors for each of the 49 Hamiltonian terms in the boot-
strapped Hamiltonian for a 50 qubit Ising model using (left) 100 (right) 200 and (bottom
left) 300 IQLE experiments per scan.
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7 Conclusions: Infrastructure for
Large Quantum Devices

In this work, we have presented a number of results establishing methods for the char-
acterization, verification and control of quantum systems. In doing so, we have taken an
algorithmic focus, such that our methods are applicable in a wide range of contexts, from
nitrogen-vacancy centers and electronic spin resonance to neutron interferometry.

The algorithms presented here, including sequential Monte Carlo, honest approxi-
mation and nonlinear optimal control, all use classical resources to solve concerns that
cut across modalities for quantum information processing. That is, we have significantly
advanced the infrastructure for characterizing and controlling quantum devices. This in-
frastructure is implemented using readily-available tools that build on existing software
tools for experimental practice. Moreover, this infrastructure is robust, as the algorithms
we present here characterize their own performance and can be adapted accordingly.

By the inclusion of quantum resources, we extend our infrastructure significantly. In
characterization, we demonstrated that using quantum simulation to perform statistical
inference, we could mitigate one of the most pressing limitations preventing us from
learning the Hamiltonian dynamics of quantum systems. Moreover, we showed that our
quantum Hamiltonian learning algorithm remains robust to a wide range of practical
considerations.

In control, the use of quantum resources was developed further by showing that
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evolutionary algorithms can be used to apply quantum coprocessors to the problem of
finding optimal pulses. Here as well, we enjoy robustness to experimental concerns, such
as effects of the noise figure when monitoring the output of pulse distortions. By using
a population-based algorithm, we avoid depending too strongly on any single objective
function evaluation. Moreover, by formulating the optimal control problem as a multi-
objective optimization, we can build in a demand that we remain robust over a range of
hypotheses.

We have also shown a very striking feature of our inference procedures: Hamilto-
nian learning remains robust even when we use a model that does not accurately and
fully reflect the underlying physics of a device. In particular, excluded couplings do
not necessarily cause Hamiltonian learning to fail until those couplings dominate over
the uncertainty in the couplings that we are attempting to learn. We are therefore free
to employ useful approximations to the dynamics of quantum systems that we wish to
study. This is especially useful when combined with novel approximations that build
on the structure of quantum Hamiltonian learning problems to dramatically reduce the
resources required to perform the required simulations. Thus, by drawing on new in-
sights into epistemic information locality, we can adaptively use our current knowledge
about a quantum system to apply Hamiltonian learning even in quite large systems, and
can also be extended to calibrate for control distortions such as crosstalk.

Taken on the whole, we have developed and demonstrated the efficacy of an infras-
tructure for the control, characterization and verification of quantum systems across a
range of modalities and scales. In doing so, we make significant process towards the
realization of quantum resources beyond the classical scale.
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A Likelihood-Free SMC

A.1 Weak and Strong Simulation

As a step towards integrating quantum simulation resources into SMC, remove the ex-
plicit dependence of SMC on strong simulation of likelihood functions, producing a
likelihood-free method. Such methods have been used in a variety of classical contexts
to mitigate simulation costs [; ]. Likelihood-free methods have also been used in
quantum information to perform system identification based on quantum trajectories
[].

As illustrated in Figure A., a strong simulator produces the exact probability Pr(d|x)
of obtaining d from a hypothesis x, given a possible datum d and a particular hypothesis.
By contrast, weak simulation produces samples according to a hypothetical distribution.
Our approach to generalizing SMC to a likelihood-free method, then, is to reconstruct
approximate likelihoods from repeated sampling of weak simulators. In particular, we
will treat the likelihood that would be produced by a strong simulator as a parameter
to be estimated in a secondary estimation problem; this reduces to estimating the bias
of a coin or die, which has been previously been solved as a toy model for tomography
[]. As an additional advantage, this approach allows us to deal with weak simulators
that produce samples from a distribution related to the true likelihood added to a noisy
channel.

More formally, we treat learning the likelihood function evaluated for a specific hy-
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Figure A.: Inputs and outputs for weak and strong simulations of the same likelihood
function.

pothesis xi and observation d, ℓi := Pr(d|xi), as a secondary estimation problem. In the
limit that we estimate ℓi with very high accuracy, we approximately recover strong sim-
ulation, but to do so using strong measurement or ensemble measurement with small
polarization can be prohibitively expensive. Instead, we are interested in using a smaller
number of samples and asessing the impact on learning performance.

To learn each likelihood evaluation ℓi, we collect a dataset D′i ∼ Bin(m, ℓi) from our
weak simulator consisting of m samples per hypothesis under evaluation. We can then
let ℓ̂i = |{d′ ∈ D′i : d = d′}| be an estimate of the likelihood, based on the frequency with
which the weak simulator agrees with the experimental observations. The approximate
Bayes update used by SMC is then given by

wi 7→ wi × ℓ̂i = wi × (ℓi + ϵi), (A.)

for some error term ϵi introduced by the finite sampling of the weak simulator.
This presents a hazard, though, if D′i never agrees with d, as this would lead to ℓ̂i = 0

for that hypothesis, which in turn would completely eliminate a particle from the SMC
approximation, reducing numerical stability as described in Section .... To avoid
this, we use the result of [], in which we add hedging to our data, giving the add-β rule
for a hedged binomial estimator,

ℓ̂i =
β + k

βno + m
, (A.)

where no is the number of possible outcomes, k = |{d′ ∈ D′i : d = d′}|, m = |D′i |, and
where β > 0 is a hedging parameter whose optimal value depends on no and the ex-
pected noise in the weak simulator. Implicitly, this reduces the model to a two-outcome


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Figure A.: Comparison of different extremes of likelihood-free sampling strategies,
m→ ∞ (a) and m = 1 (b).

(Bernoulli) trial, where the weak simulator either agrees with the experiment or does
not; we label the former case as a ``success'', and then reconstruct the likelihood by esti-
mating the success probability from the success frequency. The hedging used here can
be thought of as reducing slightly the amount that we update our hypotheses based on
any one datum to represent our finite confidence about the results of estimating likeli-
hood evaluations. Indeed, the hedging has a much more pronounced effect as we take
fewer samples per hypothesis.

Since the variance of hedged binomial estimators is a well-known function of the
true success probability, we need not choose m a priori, but can draw samples until
the estimated variance falls below an acceptable level. This procedure is called adap-
tive likelihood estimation (ALE) [], and can then be substituted into SMC to produce
likelihood-free parameter estimation.

As an alternative, we can also explore the extreme case of m = 1, using a single weak
simulation for each particle, and without hedging, thus completely removing support
for a large number of particles with each evaluation. For very large numbers of particles,
this can be effective, as we gain in a variety of hypothesis what we lose in the accuracy
with which we evaluate each, in analogy to the one-bit limits explored in Section ..
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and Section ... The dichotomy between these strategies is illustrated in Figure A.. In
the next section, we shall explore the robustness of likelihood-free SMC in terms of the
total number of weak simulations to address this tradeoff.

A.2 Robustness to Finite Sampling

In order to study the robustness of likelihood-free SMC without reference to the com-
plexities of a particular model, we shall assume a very simple likelihood function as a
stand-in for a more useful one. Thus, we study the effect of finite sampling itself. The
particular model that we consider is that of a photodetector with known bright and dark
references α and β, respectively, monitoring a source that emits a photon with probabil-
ity p. Thus, the likelihood is given by

Pr(click|p) = p(1− β) + (1− p)(1− α). (A.)

In practice, p = p(x) for some more interesting model parameters x, as in the examples
given by Section ... and Section ...

The Fisher information for this model is simple to find, and yields the Cramér-Rao
bound []

L( p̂, p) ≥ 1
6(α− β)2N

, (A.)

where N is the number of measurements made. Since this is independent of the true
emission probability p, we need not consider the BCRB in this case.

In Figure A., we show that for a fixed number of particles, likelihood-free SMC
approaches this bound as m → ∞, and that there is a regime for finite m that well-
approximates this bound. Finally, in Figure A., we show that for adaptive likelihood
estimation (ALE), we also reach the optimal bound as ϵ→ 0.
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Figure A.: Risk incurred by likelihood-free SMC for the noisy-coin photodector model
versus the number of weak simulations m per particle.
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Figure A.: Risk incurred by likelihood-free SMC for the noisy-coin photodetector
model versus adaptive likelihood estimation tolerance ϵ.
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B Bounds for Quantum Hamilto-
nian Learning

In this Appendix, we consider several different bounds on the performance of quantum
Hamiltonian learning and quantum bootstrapping, as introduced in Chapter .

B.1 Sampling Error

We first consider the robustness of sequential Monte Carlo with either non-interactive or
interactive quantum likelihood evaluation to errors introduced by finite sampling of the
trusted device. In particular, we will consider that the estimated likelihood ℓ̂i is related
to the true likelihood function ℓi := Pr(d|H(xi)) for a single datum d by an additive
error,

ℓ̂i = ℓi + ηi. (B.)

We shall also assume that the prior distribution carries a finite error η′i , such that wi =
Pr(xi) + η′i . Finally, we shall assume that the effective error

η := ∑
i

[
Pr(d|xi)|η′i |+ Pr(xi)|ηi|+ |ηiη

′
i |
]

(B.)
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is small compared to the true SMC estimate of the total likelihood, such that

η ≤ 1
2

Pr(d) =
1
2 ∑

i
Pr(d|xi)Pr(xi). (B.)

Using the triangle inequality together with Taylor expansion, we then find [] that the
error

ϵi :=

∣∣∣∣∣ Pr(d|xi)Pr(xi)

∑j Pr(d|xj)Pr(xj)
−

(Pr(d|xi) + ηi)(Pr(xi) + η′i)

∑j(Pr(d|xj) + ηj)(Pr(xj) + η′j)

∣∣∣∣∣ (B.)

in the posterior particle weights is bounded above by

ϵ ≤
3
(√

∑k Pr2(d|xk)∥η′∥2 +
√

∑k Pr2(xk)∥η∥
)

∑k Pr(d|xk)Pr(xk)
+ O(η2), (B.)

where η is a vector of the likelihood errors, η′ is a vector of the prior errors, and where
ϵ := ∑i |ϵi| is the -norm of the posterior weight errors. Moreover, the errors introduced
are small enough to provide asymptotic stability against surprising data if we ensure
that []

∥η∥2 ≪
∑k Pr(d|xk)Pr(xk)√

∑k Pr2(xk)
=
√

ness

(
∑
k

Pr(d|xk)Pr(xk)

)
. (B.)

This condition is very useful, as it gives that resampling is a resource for stabilizing our
distributions against outlying estimates of likelihoods. Thus, our results complement
those showing asymptotic stability of sequential Monte Carlo in high dimensions []
to demonstrate a robust solution to Hamiltonian learning.

B.2 CompressedHamiltonianLearningwithNon-commuting
Hamiltonians

In practice, when considering compressed quantum Hamiltonian learning, we are inter-
ested in the more general case where we no longer assume that terms in the Hamiltonian
under study mutually commute. When we relax this assumption, the factorization used
to prove (.) no longer holds, such that we must use a more sophisticated approach.
Moreover, because the dynamics arising at the cut between the simulated and truncated
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Figure B.: Schematic of repeated ing between untrusted device and trusted sim-
ulator, showing regions of support W, X and Y for the simulator, observable and com-
plement of the simulator, respectively. Boxes indicate Hamiltonian evolution under H
or H− for the untrusted and trusted devices.

registers no longer commute with the dynamics internal to trusted simulator, there can
be a significant causal influence on evolution of the observable.

We address these concerns by using multiple inversion steps, generalizing interactive
quantum likelihood evaluation. As shown in Figure B., we use r rounds of  gates
between the trusted and untrusted system, such that for large r, the total evolution is
described by the Trotter formula as(

eiH−t/re−iHt/r
)r
≈ e−i(H−H−)t = e−i(Hout+Hin+Λ)t, (B.)

where Λ := Hin − H−.
Introducing additional rounds of interactivity in this way effectively reduces the de-

gree to which the noncommutivity of H and H− affect the dynamics of the observable.
In particular, the interactions at the cut are less able to affect A(t).

This intuition is made precise by recursively bounding the dynamics for each itera-
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tion of the IQLE protocol. We first define two observables,

A(n) := e−iHt/re−iH−t/r A(n−1)eiH−t/re−iHt/r (B.a)
Ã(n) := eiΛt/r Ã(n−1)e−iΛt/r, (B.b)

respectively representing evolution of the initial observable A(0) = Ã(0) = A(0) under
r rounds of the actual IQLE protocol and the simulation of this protocol in the trusted
system alone. Then, the norm between these observables after all r rounds is bounded
by []

∥A(r) − Ã(r)∥/∥A∥ ≤ (|[Hin, Λ]∥+ ∥[Hint, Hin]∥)
t2

r
+ 2∥Hint

∩
A∥t +

2∥Hint\A∥| sup A| teµ dist(A,Hout)[e2s|t| − 1]e2∥Hout+Hint\A∥t/r,
(B.)

where sup A is the number of sites on which the observable A is supported, dist(A, Hout)
is the width of ``buffer'' between the observable and the truncated terms, and where s
and µ are constants that depend only on Λ [].

This leaves that, in the limit of many inversion steps and good characterization of the
internal dynamics, that the linear term ∥Hint

∩
A∥t is the limiting term in the achievable

accuracy. For exponentially decaying interactions, we can suppress this term exponen-
tially, however, by widening the buffer between the observable and untrusted devices
such that this imposes at most a modest cost.
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C Source Code

Listing C.: Source code for Figure ..
## IMPORTS ##

import numpy as np
import matplotlib

 try:
import mpltools.style
mpltools.style.use('ggplot')

except ImportError:
pass



# We want to make the plot text large enough to
# read in a printed paper.
matplotlib.rcParams['axes.titlesize'] = 'x-large'
matplotlib.rcParams['axes.labelsize'] = 'large'

 import matplotlib.pyplot as plt

# Import things from QInfer.
from qinfer.distributions import UniformDistribution
from qinfer.test_models import SimplePrecessionModel

 from qinfer.resamplers import LiuWestResampler
from qinfer.smc import SMCUpdater

## SETUP ##
# Set a prior ω ∼ Uni(−1, 1).

 prior = UniformDistribution([[-1, 1]])





# Set the likelihood to be that of (2.11).
model = SimplePrecessionModel()
# Choose a particular true value for ω extreme enough to illustrate the problem.
true_model = np.array([[0.65]])



# Make a new figure large enough to hold both subfigures.
plt.figure(figsize=(12,6))

# Update and plot for a2 + h2 = 1.
 plt.subplot(1, 2, 1)
updater = SMCUpdater(

model, 1000, prior,
resampler=LiuWestResampler(0.98, postselect=False)

)
 for idx_datum in xrange(35):

t_k = (9.0/8)**(idx_datum+1)
expparams = np.array([t_k], dtype=model.expparams_dtype)
datum = model.simulate_experiment(true_model, expparams)
updater.update(datum, expparams)

 updater.plot_posterior_marginal()
plt.xlabel(r'ω')
plt.ylabel(r'Pr(ω|D)')
plt.title(r'a = 0.98, h =

√
1− 0.982')

plt.xlim(-1, 1)


# Update and plot for a2 + h2 > 1.
plt.subplot(1, 2, 2)
updater = SMCUpdater(model, 1000, prior,

resampler=LiuWestResampler(1, h=0.005, postselect=False)
 )
for idx_datum in xrange(35):

t_k = (9.0/8)**(idx_datum+1)
expparams = np.array([t_k], dtype=model.expparams_dtype)
datum = model.simulate_experiment(true_model, expparams)

 updater.update(datum, expparams)
updater.plot_posterior_marginal()
plt.xlabel(r'ω')
plt.xlim(-1, 1)
plt.title(r'a = 1, h = 0.005')



plt.show()

Listing C.: QInfer implementation of simple precession model of (.), with full meta-
data and Fisher score calculation.





#!/usr/bin/python
# -*- coding: utf-8 -*-
##

 # test_models.py: Simple models for testing inference engines.
##
# © 2012 Chris Ferrie (csferrie@gmail.com) and
# Christopher E. Granade (cgranade@gmail.com)
#

 # This file is a part of the Qinfer project.
# Licensed under the AGPL version 3.
##
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by

 # the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of

 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.

 ##

## FEATURES ##################################################################

from __future__ import division # Ensures that a/b is always a float.


## EXPORTS ###################################################################

__all__ = [
'SimpleInversionModel',

 'SimplePrecessionModel',
'NoisyCoinModel',
'NDieModel'

]

 ## IMPORTS ###################################################################

import numpy as np

from utils import binomial_pdf


from abstract_model import Model, DifferentiableModel





## CLASSES ###################################################################

 class SimpleInversionModel(DifferentiableModel):
r"""
Describes the free evolution of a single qubit prepared in the
|+⟩ state under a Hamiltonian H = ωσz/2,
using the interactive QLE model proposed by [WGFC13a]_.



:param float min_freq: Minimum value for ω to accept as valid.
This is used for testing techniques that mitigate the effects of
degenerate models; there is no "good" reason to ever set this other
than zero, other than to test with an explicitly broken model.

 """

## INITIALIZER ##

def __init__(self, min_freq=0):
 super(SimpleInversionModel, self).__init__()

self._min_freq = min_freq

## PROPERTIES ##

 @property
def n_modelparams(self):

return 1

@property
 def modelparam_names(self):

return [r'\omega']

@property
def expparams_dtype(self):

 return [('t', 'float'), ('w_', 'float')]

@property
def is_n_outcomes_constant(self):

"""
 Returns ``True`` if and only if the number of outcomes for each

experiment is independent of the experiment being performed.

This property is assumed by inference engines to be constant for
the lifetime of a Model instance.

 """
return True





## METHODS ##

 def are_models_valid(self, modelparams):
return np.all(modelparams > self._min_freq, axis=1)

def n_outcomes(self, expparams):
"""

 Returns an array of dtype ``uint`` describing the number of outcomes
for each experiment specified by ``expparams``.

:param numpy.ndarray expparams: Array of experimental parameters. This
array must be of dtype agreeing with the ``expparams_dtype``

 property.
"""
return 2

def likelihood(self, outcomes, modelparams, expparams):
 # By calling the superclass implementation, we can consolidate

# call counting there.
super(SimpleInversionModel, self).likelihood(

outcomes, modelparams, expparams
)



# Possibly add a second axis to modelparams.
if len(modelparams.shape) == 1:

modelparams = modelparams[..., np.newaxis]

Listing C.: Source code for Figure ..
from __future__ import division

 import numpy as np
import qinfer as qi

class DriftingCosineModel(qi.Model):

 step_dist = qi.NormalDistribution(0, 1)

@property
def n_modelparams(self):

return 2
 @property

def is_n_outcomes_constant(self):
return True

def n_outcomes(self, expparams):





return 2
 def are_models_valid(self, modelparams):

return np.all(np.logical_and(
modelparams > 0, modelparams <= 1

), axis=1)
@property

 def expparams_dtype(self):
return [('t', 'float')]

def update_timestep(self, modelparams, expparams):
# Note that the timestep update is presumed to be independent of the

 # experiment.

steps = (
self.step_dist.sample(n=modelparams.shape[0] * expparams.shape[0])
* np.sqrt(modelparams[:, 1, np.newaxis] * expparams['t'])

 )[:, :]

new_modelparams = modelparams.copy()[:, :, np.newaxis]
new_modelparams = np.repeat(new_modelparams, expparams.shape[0], -1)

 new_modelparams[:, 0, :] += steps
np.clip(new_modelparams, 0, 1, out=new_modelparams)

return new_modelparams

 def likelihood(self, outcomes, modelparams, expparams):
pr0 = np.zeros((modelparams.shape[0], expparams.shape[0]))

pr0[:, :] = np.cos(modelparams[:, 0, np.newaxis] * expparams['t'])**2

 return qi.Model.pr0_to_likelihood_array(outcomes, pr0)

Listing C.: QInfer implementation of Fisher score for the randomized benchmarking
model (.).

lastlinelastline
 n_e = expparams.shape[0]

n_o = outcomes.shape[0]
n_p = self.n_modelparams

m = expparams['m'].reshape((1, 1, 1, n_e))


L = self.likelihood(outcomes, modelparams, expparams)[na, ...]
outcomes = outcomes.reshape((1, n_o, 1, 1))





if not self._il:


p, A, B = modelparams.T[:, :, np.newaxis]
p = p.reshape((1, 1, n_m, 1))
A = A.reshape((1, 1, n_m, 1))
B = B.reshape((1, 1, n_m, 1))



q = (-1)**(1-outcomes) * np.concatenate(np.broadcast_arrays(
A * m * (p ** (m-1)), p**m, np.ones_like(p),

), axis=0) / L

 else:

p_tilde, p_ref, A, B = modelparams.T[:, :, np.newaxis]
p_C = p_tilde * p_ref

 mode = expparams['reference'][np.newaxis, :]

p = np.where(mode, p_ref, p_C)

p = p.reshape((1, 1, n_m, n_e))
 A = A.reshape((1, 1, n_m, 1))

B = B.reshape((1, 1, n_m, 1))

q = (-1)**(1-outcomes) * np.concatenate(np.broadcast_arrays(
np.where(mode, 0, A * m * (p_tilde ** (m - 1)) * (p_ref ** m)),

 np.where(mode,
A * m * (p_ref ** (m - 1)),
A * m * (p_ref ** (m - 1)) * (p_tilde ** m)

),
p**m, np.ones_like(p)

 ), axis=0) / L

if return_L:
# Need to strip off the extra axis we added for broadcasting to q.
return q, L[0, ...]

 else:
return q

Listing C.: Example of a Rabi model with bright/dark referencing.
# -*- coding: utf-8 -*-

 ##
# rabi_demo.py: Demonstrates the use of QInfer for Rabi models.
##





#
##



## FEATURES ##################################################################

from __future__ import division

 ## IMPORTS ###################################################################

import numpy as np
import scipy.linalg as la
import scipy.io as sio



import qinfer as qi

import matplotlib.pyplot as plt
from matplotlib import ticker, rcParams

 import mpltools as mpl
import mpltools.style
mpltools.style.use('ggplot')

rcParams['axes.labelsize'] = 'xx-large'
 rcParams['xtick.labelsize'] = 'large'
rcParams['ytick.labelsize'] = 'large'
rcParams['figure.autolayout'] = True

## CONSTANTS #################################################################


two_pi = np.pi * 2

## FUNCTIONS #################################################################

 def mhz_tick_formatter(x, p):
return "{} MHz".format(x / 1e6)

def us_tick_formatter(x, p):
return r"{} µs".format(x * 1e6)



## CLASSES ###################################################################

class RabiModel(qi.Model):
r"""

 Model of a single shot in a Rabi flopping experiment.

Model parameters:





0. :math:`\omega_R`, on-resonance Rabi frequency [Hz].
1. :math:`\Delta\omega`, detuning magnitude [Hz].

 2. :math:`1 / T_2`, decoherence strength [Hz].
3. :math:`\alpha`, probability of at least one photon in bright ref.
4. :math:`\beta`, probability of at least one photon in dark ref.

Experiment parameters:
 mode: Specifies whether a reference or signal count is being performed.

t: Pulse width :math:`\tau`.
"""

REF_DARK = 0
 REF_BRIGHT = 1

SIGNAL = 2

@property
def n_modelparams(self):

 return len(self.modelparam_names)

@property
def modelparam_names(self):

return [
 r'\omega_R',

r'\Delta \omega',
r'T_2^{-1}',
r'\alpha', r'\beta'

]


@property
def expparams_dtype(self):

return [('t', 'float'), ('mode', 'int')]

 @property
def is_n_outcomes_constant(self):

return True

@staticmethod
 def are_models_valid(modelparams):

# modelparams has indices [idx_model, idx_model_parameter],
# such that :math:`\vec{x}_i` corresponds to `modelparams[i, :]`.
#
# Our constraints are on each different model parameter

 # (second index), and so we build up a list of constraints,
# then use np.all to demand all are met at once.
#





# For example, modelparams[:, 0] >= 0 demands that the
# :math:`\omega_R` parameter is non-negative for all models.

 return np.all(
[

# Require that all frequencies be positive.
modelparams[:, 0] >= 0,
modelparams[:, 1] >= 0,

 modelparams[:, 2] >= 0,

# Require that alpha and beta are probabilities.
modelparams[:, 3] >= 0,
modelparams[:, 3] <= 1,

 modelparams[:, 4] >= 0,
modelparams[:, 4] <= 1,

],
axis=0 # Axis 0 is the outermost, corresponding to that

# we have made a list of constraints.
 )

def canonicalize(self, modelparams):
idx_swap = np.nonzero(

modelparams[:, 4] <= modelparams[:, 3]
 )

temp = modelparams[idx_swap, 3].copy()
modelparams[idx_swap, 3] = modelparams[idx_swap, 4]
modelparams[idx_swap, 4] = temp

 return modelparams

def n_outcomes(self, expparams):
return 2

 def likelihood(self, outcomes, modelparams, expparams):
"""
Returns the likelihood of a *success*, that is, a bin with at least
one photon. A success is described by the outcome label `1`, while
a bin without photons is given the label `0`.

 """

# Here, it's more convienent to express the probability of 1 than of 0.
pr1 = np.zeros((modelparams.shape[0], expparams.shape[0]))

 # Give names to each parameter.
omega_R = modelparams[:, 0] * two_pi
d_omega = modelparams[:, 1] * two_pi





T2inv = modelparams[:, 2]
alpha = modelparams[:, 3]

 beta = modelparams[:, 4]

for idx_experiment in xrange(expparams.shape[0]):
t = expparams[idx_experiment]['t']
mode = expparams[idx_experiment]['mode']



# If we're doing a reference, just return the reference probability.
if mode == self.REF_DARK:

pr1[:, idx_experiment] = beta
elif mode == self.REF_BRIGHT:

 pr1[:, idx_experiment] = alpha
else:

# For the actual signal, we need to do some more calculations.
# Start off by computing the visibility due to T_2.
eta = np.exp(- t * T2inv)

 # The effective field term sqrt{\Delta \omega^2 + \omega_R^2}
# appears a lot, so precalculate it.
w_eff2 = (d_omega**2 + omega_R**2)
# Now find the signal before photon statistics.
sig = (

 (1 - eta) * (1 / 2) +
eta * (

(2 * (d_omega ** 2) + omega_R**2 * (1 + np.cos(t * np.sqrt(w_eff2)))) /
(2 * w_eff2)

)
 )

# Finally, compute the probability from the signal by
# incoporating photon statistics.
pr1[:, idx_experiment] = sig * (alpha - beta) + beta

 return qi.Model.pr0_to_likelihood_array(outcomes, 1 - pr1)

if __name__ == "__main__":

# First, we define our priors.
 # The prior on alpha and beta doesn't matter,

# as we'll set it to precisely the measured
# value each time.
ab_prior = qi.UniformDistribution([

[0, 0.01],
 [0, 0.01]

])
prior = qi.ProductDistribution(





qi.UniformDistribution([
[0, 3e7],

 [0, 5e6],
[0, 5e6],

]),
ab_prior

)


n_shots = 20000

m = qi.BinomialModel(RabiModel())
u = qi.smc.SMCUpdater(m, int(5e4), prior)



data = sio.loadmat('../data/rabi-data.mat')

# Record the estimates and std deviations as we go.
estimate_hist = []

 err_hist = []

for idx_exp in xrange(data['times'].shape[1]):
# Extract the bright and dark references, as well as the signal.
rb, rd, s = n_shots * data['data'][:, idx_exp]



if idx_exp % 10 == 0:
print idx_exp

# Pack everything into an expparams array.
 exp = np.array([

(data['times'][0, idx_exp], RabiModel.REF_BRIGHT, n_shots)
], dtype=m.expparams_dtype)

# Remove everything we know about alpha and beta
 u.particle_locations[:, 3:5] = data['data'][:2, idx_exp]

# Update with the actual data.
exp['mode'] = RabiModel.SIGNAL
u.update(int(s), exp)



# Report the mean so far.
mu = u.est_mean()
estimate_hist.append(mu)

 err_hist.append(
np.diag(la.sqrtm(u.est_covariance_mtx()))

)





w_eff = np.sqrt(np.sum(mu[0:2]**2))
vis = mu[3] / 3

 print u.est_mean(), "{:.2} MHz".format(w_eff/1e6), "{:.2}".format(vis)

estimate_hist = np.array(estimate_hist)
err_hist = np.array(err_hist)

 for idx_modelparam in xrange(3):
fig = plt.figure()
mpl.special.errorfill(

n_shots * np.arange(data['times'].shape[1]),
estimate_hist[:, idx_modelparam],

 yerr=err_hist[:, idx_modelparam]
)
plt.xlabel("Number of shots")
plt.ylabel("".format(m.modelparam_names[idx_modelparam]))
plt.gca().get_yaxis().set_major_formatter(

 ticker.FuncFormatter(mhz_tick_formatter)
)
plt.xlim(0, plt.xlim()[1])
plt.savefig('../latex/figures/rabi-demo-hist-{}.pdf'.format(

idx_modelparam
 ))

plt.figure()
u.plot_covariance(corr=False, param_slice=np.s_[:3])
plt.title(r'Cov(ω̂R, ˆ∆ω, T−1

2 )', y=1.08)
 plt.savefig('../latex/figures/rabi-demo-cov.pdf')

plt.figure()
rb, rd, sig = data['data']
if not u.just_resampled:

 u.resample()
final_models = u.particle_locations.copy()
# Set perfect referencing.
final_models[:, 3:5] = [1, 0]
ts = data['times'][0, :]

 experiments = np.empty(
ts.shape,
dtype=m.underlying_model.expparams_dtype

)
experiments['mode'] = RabiModel.SIGNAL

 experiments['t'] = data['times'][0, :]
L = m.underlying_model.likelihood(np.array([1]),

final_models,





experiments
)[0, :, :]

 mean_L = np.mean(L, axis=0)
lower_ci_L = mean_L - np.percentile(L, 0.025, axis=0)
upper_ci_L = mean_L - np.percentile(L, 0.975, axis=0)
plt.plot(ts, (sig - rd) / (rb - rd), '-', label='Referenced Data')
mpl.special.errorfill(

 ts,
mean_L,
yerr=[lower_ci_L, upper_ci_L],
ls=':', lw=3,
label='Mean Simulated Signal',

 label_fill='95% Credible Region'
)
plt.xlabel('Time')
plt.ylabel('Referenced Counts')
plt.gca().get_xaxis().set_major_formatter(

 ticker.FuncFormatter(us_tick_formatter)
)
plt.legend()
plt.savefig('../latex/figures/rabi-demo-referenced-data.pdf')

 plt.show()

Listing C.: Implementation of Floquet-Leskes expansion of the stroboscopic Hamilto-
nian for a nitrogen vacancy center coupled to a carbon nucleus via a hyperfine interac-
tion.
# Zero field spitting and gyromagnetic ratios (all in MHz)
ZFS = 2.87e3

 ge = 2.8025
gc = 1070.5e-6

Si = np.eye(3)
Sx = np.array([[0,1,0],[1,0,1],[0,1,0]])/np.sqrt(2)

 Sy = np.array([[0,-1j,0],[1j,0,-1j],[0,1j,0]])/np.sqrt(2)
Sz = np.array([[1,0,0],[0,0,0],[0,0,-1]])

Ii = np.eye(2)
Ix = np.array([[0,1],[1,0]])/2.

 Iy = np.array([[0,-1j],[1j,0]])/2.
Iz = np.array([[1,0],[0,-1]])/2.

# Also make some common products of matrices, to avoid having to recalculate
# every time.





 Sz2Ii = np.kron(np.dot(Sz, Sz), Ii)
SxIx = np.kron(Sx, Ix)
SyIy = np.kron(Sy, Iy)
SzIz = np.kron(Sz, Iz)
SIcross = (np.kron(Sz, Ix) + np.kron(Sx, Iz))



def lab_ham(Bx,By,Bz,zfs,Axx,Ayy,Azz,Azx):
"""
Returns the lab frame hamiltonian of spin-1 electron + carbon 13
"""

 # ZFS + Zeeman + Hyperfine
return two_pi*(

zfs * Sz2Ii
+ ge * np.kron(Bx*Sx + By*Sy + Bz*Sz, Ii)
+ gc * np.kron(Si, Bx*Ix + By*Iy + Bz*Iz)

 + (Axx * SxIx + Ayy * SyIy + Azz * SzIz + Azx * SIcross)
)

def eff_ham(Bx,By,Bz,zfs,Axx,Ayy,Azz,Azx,woff):
"""

 Returns the effective 2nd order average hamiltonian rotating at D-woff. All
inputs should be MHz, output is radians/micro-second

:units Bx: Gauss
"""

 labH = lab_ham(Bx,By,Bz,zfs,Axx,Ayy,Azz,Azx)
w = 2*np.pi*(zfs-woff)
z = np.zeros((2,2))

wIi = w * Ii


A = labH[0:2,0:2] - wIi
B = labH[2:4,2:4]
C = labH[4:6,4:6] - wIi
D = labH[0:2,2:4]

 E = labH[0:2,4:6]
F = labH[2:4,4:6]

# Construct the fourier coefficients as block matrices
H0 = np.bmat([[A,z,E],[z,B,z],[E.conj().transpose(),z,C]])

 Hm = np.bmat([[z,z,z],[D.conj().transpose(),z,F],[z,z,z]])
Hp = Hm.conj().transpose()

# Compute a few of the commutators that appear more often.
H0p = com(H0, Hp)





 H0m = -H0p.conj().transpose() # [A, B]� = [B�, A�]
Hmp = com(Hm, Hp)

# Use the Leskes formulas for average Hamiltonians
H1 = (H0p - H0m - Hmp) / w

 H2 = (
(com(Hm, H0p) + com(Hp, H0m)) / 2.

- (com(H0, H0p) + com(H0, H0m))
+ (com(Hp, -H0p) - com(Hm, H0m) + com(Hp, H0m) + com(Hm, H0p)) / 2.
+ (com(Hp, Hmp) - com(Hm, Hmp))

 ) / (w**2)

return H0 + H1 + H2

def eff_super(Bx,By,Bz,zfs,Axx,Ayy,Azz,Azx,woff,T2c,T2e):
 """

Returns the effective 2nd order average supergenerator rotating at ZFS-woff
All inputs should be in MHz or microseconds.
"""
H = eff_ham(Bx,By,Bz,zfs,Axx,Ayy,Azz,Azx,woff)

 I = np.eye(6)

# Hamiltonian super generator
SH = 1j * (np.kron(H.T, I) - np.kron(I, H))

 # Lindblad supergenerator
Le = np.sqrt(two_pi/T2e) * np.kron(Sz, Ii)
LLe = np.dot(Le, Le) # note that Le is real-symmetric
Lc = np.sqrt(two_pi/T2c) * np.kron(Si, Iz)
LLc = np.dot(Lc, Lc) # note that Lc is real-symmetric

 SL = np.kron(Le.conj(), Le) - (np.kron(LLe.T, I) + np.kron(I, LLe)) / 2. \
+np.kron(Lc.conj(), Lc) - (np.kron(LLc.T, I) + np.kron(I, LLc)) / 2.

return SH + SL

Listing C.: Generation of Walsh-Hadamard basis in sequency order.
from __future__ import division

import numpy as np
 import scipy.linalg as la

import matplotlib.pyplot as plt
try:

import mpltools.style
 mpltools.style.use('ggplot')
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except:
pass

# Start by definining the *sequency* of a row
 # as the number of zero crossings. For a ±1 matrix
# such as the Hadamard matrices, this takes on a very nice
# form.
def sequency(H):

return np.sum((1 - (H[:, :-1] * H[:, 1:])) / 2, axis=1)


# Next, we define the Walsh basis by taking the sequency order
# of a Hadamard matrix.
def walsh_basis(n):

dim = 2 ** n
 H = la.hadamard(dim)

return H[:, np.argsort(sequency(H))]

# Finally, we plot a nice example.
if __name__ == "__main__":

 n = 3
dim = 2 ** n
wb = walsh_basis(n)[::, :]

fig, subplots = plt.subplots(dim, 1, sharex=True)


for idx_dim, subplot in enumerate(subplots):
plt.sca(subplot)
plt.plot(np.concatenate([[0], wb[idx_dim, :]]), drawstyle='steps')
plt.ylabel('{}'.format(idx_dim))

 plt.ylim(-1.2, 1.2)
subplot.get_yaxis().set_ticks([])

plt.subplots_adjust(bottom=0.15)
fig.text(0.5, 0.075, 'Time', ha='center', va='center')

 fig.text(0.06, 0.5, 'Sequency', ha='center', va='center', rotation='vertical')
plt.show()
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D QInfer: Implementation of SMC

QInfer [] is an open-source library for prototyping and implementing sequential Monte
Carlo with minimal effort, developed in collaboration with Chris Ferrie, and with kind
contributions and testing from Ian Hincks, Nathan Wiebe, Yuval Sanders and Rahul
Deshpande. Because of its generality, QInfer enables the rapid application of Bayesian
methods such as those described in Chapter  to new experimental contexts.

QInfer is provided open-source, and was used to generate most of the results de-
scribed in this work, aiding in reproducibility as well as documenting the concrete im-
plementation details needed for efficient implementation of SMC. Extensive documen-
tation is available online at http://python-qinfer.readthedocs.org.

D.1 Design Considerations

QInfer was designed so as to provide an efficient, generic and easy-to-use tool that can
be used either to implement sequential Monte Carlo directly, or to prototype implemen-
tations for eventual use in an FPGA or other more ``bare-metal'' application. Therefore,
we required that QInfer be developed in a modular enough fashion that it is practical to
experiment with resampling algorithms and parameters, experiment design heuristics
and SMC quality parameters. In light of these design concerns, we chose to implement
QInfer in Python, as this language offers a wide range of programming paradigms with



http://python-qinfer.readthedocs.org


which code can be efficiently reused and modularized, while not requiring users to sub-
mit to arduous licensing requirements that can come along with other scientific comput-
ing platforms. An additional advantage of basing QInfer on Python is that it is therefore
easy to build off of the rich community of other Python libraries, such as the IPython
stack [], QuaEC and QuTiP for quantum information [; ], DEAP and SciKit-Learn
for evolutionary computing and machine learning [; ], and InstrumentKit for in-
strument control [].

Importantly, in order to be effective as an implementation of SMC, QInfer must be
performant, so that as little overhead is introduced as possible, leaving the main cost as
the calls to a user-provided likelihood function. To accomplish this in Python, we make
heavy use of vectorization, such that nearly every numerical object considered by QInfer
is a tensor of real numbers. For instance, a class implementing a likelihood function
Pr(d|x; e) is expected to return a rank-three tensor

Lijk := Pr(di|xj; ek), (D.)

given d = (d1, . . . , dnd), X = (x1, . . . , xnp) and e = (e1, . . . , ene) as inputs. As a side
benefit, information that is shared between different models with the same experiment,
or between different experiments with the same model, can now be used efficiently by
user-implemented likelihood classes.

Once a likelihood call is represented as a rank-three tensor, the different steps in SMC
can be expressed as tensor manipulations and contractions. For example, the Larmor
precession model (.) can be written using the outer product of a model and experi-
ment vector,

Pr(d = 0|ω; t) = cos2(ωtT). (D.)
Note that this is a two-index tensor, as QInfer will optionally promote rank-two tensors
to rank-three tensors for two-outcome models, where this can be done unambiguously.
This design is in particular useful for adaptive experiment design wherein SMC updates
must be performed on a range of hypothetical data and conditioned on a list of candidate
experiments. The benefits of vectorized likelihood functions can be readily extended to
Fisher score vectors and information matrices, as well as to Bayesian information matri-
ces,

qijkl := ∇xi log Pr(dj|xk; el) (D.a)
Iijkl := ∑

k′
Lk′klqik′klqjk′kl (D.b)

Jijl := ∑
k

wk Iijkl. (D.c)





D.2 Performance Testing

Given the importance of having an efficient SMC implementation, here we discuss the
performance of QInfer, demonstrating that the library introduces minimal overhead on
top of simulation calls. That is, we show that all other computational tasks, including
resampling, are subdominant even for modest likelihood models. We additionally show
that, when used with platforms such as multicore architectures or GPUs, QInfer can
offer significant improvements to performance without increasing estimation errors.

Our strategy, then, is to test simple models such as the Larmor precession model
(.), for various numbers of particles and for various implementations. We do so us-
ing the qinfer.perf_testing module, which automates the process of benchmarking
the speed and incurred loss of an SMC inference procedure. This module also sup-
ports parallelization using IPython []. Here, we test the serial CPU-only model,
SimplePrecessionModel, against the GPU-only model implemented by
AcceleratedPrecessionModel and the parallel CPU-only model implemented by
DirectViewParallelizedModel. We run each of the three models for  trials of 
measurements each, chosen from the exponentially-sparse sampling heuristic
ExpSparseHeuristic. We then vary the particles from 26 to 218 and consider the elapsed
time per particle on a test system with a quad-core Intel Core i-K processor,  GB
of RAM and an NVidia GeForce  Ti on Ubuntu ., using the latest development
version of QInfer with Python ., NumPy .. and IPython ... For particle num-
bers at least , the Bayes risk achieved by all three models were indistinguishable. The
timing results are shown in Figure D..

These results show that for a fast model such as the Larmor precession model, no
advantage is provided by parallelization. Past approximately  particles, the GPU-
only model offers an advantage for a small range before other costs begin to dominate.
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Figure D.: Performance testing of serial and parallel CPU-only implementations versus
GPU-only implementation of the Larmor precession model (.). The perfomance is
measured as total elapsed time in seconds, normalized by the number of likelihood calls
required.
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