
Foveated Stereo Video Compression for Visual Telepresence

by

Stanley Fok

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2002

c©Stanley Fok 2002

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis focuses on the design of a foveated stereo video compression algorithm for

visual telepresence applications. In a typical telepresence application, a user at the local

site views real-time stereo video recorded and transmitted from a robotic camera platform

located at a remote site. The robotic camera platform tracks the user’s head motion pro-

ducing the sensation of being present at the remote site.

The design of the stereo video compression algorithm revolved around a fast spatio-

temporal block-based motion estimation algorithm, with a foveated SPIHT algorithm used

to compress and foveate the independent frames and error residues. Also, the redundancy

between the left and right video streams was exploited by disparity compensation. Finally,

position feedback from the robotic camera platform was used to perform global motion

compensation, increasing the compression performance without raising computation re-

quirements.

The algorithm was analysed by introducing the above mentioned components separately.

It was found that each component increased the compression rate significantly, producing

compressed video with similar compression and quality as MPEG2. The implementation of

the algorithm did not meet the real-time requirements on the experiment computers. How-

ever, the algorithm does not contain any intrinsic delays. Therefore, given faster processors

or optimized software implementation, the design should be able to run in real-time.

iii

Acknowledgements

I would like to thank my two supervisors David Wang and George Freeman for giving

me guidance, direction and inspiration throughout my entire time here. Without their ideas

and discussions, I would still be spinning my wheels somewhere in Chapter 3.

Credit also has to be given to my entire research group for being there with me during

every weekly group meeting no matter how long it lasted.

My mom and dad have always been supportive of me. Thanks for all the help, especially

the great home cooking and power tools. For all my family and friends who each have

influenced me in many ways, thank you for what you have made me become.

Finally, I would also like to express my gratitude for the Ontario Graduate Scholarship

Program and the University of Waterloo for providing me with the very important financial

assistance during my graduate studies.

iv

Contents

1 Introduction 1

1.1 Thesis Outline . 2

2 Background 3

2.1 Human Visual System Stimulation . 3

2.2 Video Compression Motivation . 7

2.3 Image Compression and the Wavelet Transform 10

2.3.1 Early Image Compression . 10

2.3.2 The Wavelet Transform . 11

2.3.3 Wavelet-Based Image Compression Algorithms 20

2.4 Video Compression . 24

2.4.1 Monocular Video Compression . 24

2.4.2 Stereo Video Compression . 26

2.5 Foveation . 28

2.6 Summary . 30

3 Stereo Video Compression Algorithm Design 31

3.1 System Goals and Requirements . 31

3.1.1 Application . 31

v

3.1.2 Real-time Constraints . 33

3.1.3 Experiment Hardware Setup . 33

3.2 Overall Design . 34

3.3 Foveated Intraframe Compression . 40

3.4 Interframe Compression . 42

3.4.1 Block-based Motion Estimation . 42

3.4.2 Fast Motion Vector Estimation Algorithm 46

3.5 Stereo Compression . 52

3.6 Global Motion Compensation . 54

3.7 Summary . 56

4 Experimental Results 57

4.1 Test Videos and Quality Metrics . 57

4.2 An Incremental Analysis of the Stereo Video Compression Algorithm 60

4.2.1 Intraframe Compression Tests . 61

4.2.2 Interframe Compression Tests . 65

4.2.3 Auxillary Stream Compression Tests 73

4.2.4 Global Motion Compensation Tests 82

4.3 Summary . 90

5 Conclusions 91

5.1 Contributions . 93

5.2 Future Work . 93

A Foveation Sensitivity Mask Calculation 95

B Foveated Wavelet Quality Index Calculation 101

vi

Bibliography 103

vii

List of Tables

4.1 Test video descriptions . 58

4.2 Independent streams, pure I-frame compression results 61

4.3 Independent streams, interframe compression results 66

4.4 Independent streams, MPEG2 compression results 70

4.5 Stereo interframe compression results (S = 0.03 bpp) 74

4.6 Stereo interframe compression results (S = 0.045 bpp) 79

4.7 Global motion compensated stereo interframe compression results 83

4.8 Independent streams, H.264/MPEG-4 AVC compression results 86

A.1 Basis function amplitudes Aλ,θ for 9/7 biorthogonal DWT 98

A.2 Sw(λ, θ) for V = 3, N = 256, 9/7 biorthogonal DWT 99

viii

List of Figures

2.1 Monochrome and colour frame representation 5

2.2 Generic compression system . 8

2.3 Lossy compression tradeoffs . 9

2.4 WT sampling grid . 15

2.5 DWT recursive computation . 18

2.6 IDWT recursive computation . 18

2.7 1D DWT and IDWT . 19

2.8 2D DWT . 20

2.9 2D wavelet decomposition arrangement . 20

2.10 Wavelet decomposition of a real image . 21

2.11 Wavelet decomposition and tree structure relationship 23

2.12 Compressed “Army” image comparison . 29

3.1 Visual telepresence system setup . 32

3.2 Stereo video compression algorithm encoder block diagram 38

3.3 Stereo video compression algorithm decoder block diagram 39

3.4 Foveated SPIHT algorithm block diagram 40

3.5 Sample foveation wavelet sensitivity function 41

3.6 Frames divided into array of fixed-sized blocks 42

ix

3.7 Motion estimation and compensation . 44

3.8 Box rotation residue . 46

3.9 Spatio correlated motion estimation candidates 48

3.10 G1, G2, G3 spatio-temporal block candidates 49

3.11 Three-step-search algorithm . 50

3.12 Pixel reduction in SAD calculation . 52

3.13 Relationships between frames . 53

4.1 Original Lab1 left and right 60th frames . 58

4.2 Original Lab2 left and right 60th frames . 59

4.3 Original Lab3 left and right 60th frames . 59

4.4 Original Lab4 left and right 60th frames . 59

4.5 Original Lab5 left and right 60th frames . 59

4.6 PSNR results for independent streams, intraframe compression 63

4.7 FWQI results for independent streams, intraframe compression 64

4.8 Intraframe compressed 60th frames . 65

4.9 PSNR results for independent streams, interframe compression 67

4.10 FWQI results for independent streams, interframe compression 68

4.11 Interframe compressed 60th frames . 69

4.12 PSNR results for independent streams, MPEG2 compression 71

4.13 FWQI results for independent streams, MPEG2 compression 72

4.14 MPEG2 compressed 60th frames . 73

4.15 PSNR results for stereo interframe compression 75

4.16 FWQI results for stereo interframe compression 76

4.17 Stereo compressed 60th frames . 77

4.18 Example region where equipolar assumption is false 78

x

4.19 PSNR results for stereo interframe compression 80

4.20 FWQI results for stereo interframe compression 81

4.21 Comparison of horizontal global motion for Lab4 82

4.22 Comparison of horizontal global motion for Lab5 83

4.23 PSNR results for GMC stereo interframe compression 84

4.24 FWQI results for GMC stereo interframe compression 85

4.25 PSNR results for independent streams, H.264/MPEG-4 AVC compression . 87

4.26 FWQI results for independent streams, H.264/MPEG-4 AVC compression . 88

A.1 Viewing geometry . 97

xi

Chapter 1

Introduction

Manipulating hazardous materials or reaching inaccessible locations using remotely operated

robots is common in the today’s world. Many robots have cameras mounted on them to

provide visual feedback to the robot operator. Single camera systems, which present a

monoscopic view of the remote location, are adequate for many tasks. However, applications

that require more delicate handling of materials or better estimation of distances may require

greater depth perception. In this case, a pair of cameras mounted side by side at the remote

location provides a stereoscopic view for the operator.

Doubling the number of cameras on the robot means doubling the already high amount

of raw video that must be transmitted to the operator’s site. If the robot has a direct, wired

connection to the operator, there is usually sufficient bandwidth so that the raw video can

be simply transmitted. However, for wireless or Internet applications, transmitting the

entire raw stereo video would be impossible with today’s networking bandwidth. Hence, it

is necessary to compress the video before transmitting it to the operator’s site.

Stereo video compression for visual telepresence is the focus of this thesis. The work

presented here uses algorithms that attempt to remove redundancy in the spatial, tempo-

ral, and stereo domains of video. For visual telepresence systems, the end user is a human

1

CHAPTER 1. INTRODUCTION 2

operator and thus further techniques, such as foveation, can be applied to make the com-

pressed video feel perceptually similar to the raw video. Most telepresence systems allow

the operator to pan and tilt the cameras. This generally means that the orientation of the

camera platform is monitored and known. This information can also be exploited for video

compression.

1.1 Thesis Outline

This thesis is organized into four main chapters. Chapter 2 discusses background infor-

mation on how humans perceive images, motion and depth from stereo video devices. It

also examines current image and video compression algorithms and how they function and

behave.

Chapter 3 describes the design of the stereo video compression algorithm. The overall

encoder and decoder diagrams are first shown, followed by a detailed discussion of each

component and its function in the system.

Chapter 4 presents results generated from an implementation of the stereo video com-

pression algorithm. The effects of each component are systematically presented and anal-

ysed. Comparisons with other common standards are also performed.

Finally, Chapter 5 summarizes the experimental results, presents concluding remarks

and discusses suggestions for future research.

Chapter 2

Background

Before presenting the main body of research, this chapter reviews past research in the area

of image, video and stereo video compression. Properties of the Human Visual System

are examined and used to define representations for images and create stereo vision effects

for visual telepresence systems. Image and video compression algorithms are surveyed and

special focus is paid to wavelet-based algorithms. The DWT is derived and applied to real

images, and the concept of foveated imaging is introduced as a useful feature in a visual

telepresence system.

2.1 Human Visual System Stimulation

Vision or sight is the perceptual experience of seeing the surrounding environment. In a

visual telepresence system, an operator at the local site visually senses the environment

at the remote site. To accomplish this, the telepresence device at the local site stimulates

properties of the operator’s Human Visual System (HVS), generating the perceptions and

visual sensations of the remote site. This section describes some major properties of human

vision and explains how these properties can be exploited by systems to provide our eyes

3

CHAPTER 2. BACKGROUND 4

with stimuli that create sight. This thesis assumes that the system user is a human being

without any physical or psychological disabilities.

The HVS consists of the eyes and the higher order brain functions that convert light

information received by the eyes into a perceived image. How the HVS functions is still

under considerable research, but it is well established that a sequence of slowly varying static

images creates the sensation of continuous motion in a scene [1]. This property is employed

in all types of video output devices, such as film projectors, television sets and computer

displays. These devices output a sequence of images, or video frames to the viewer.

To represent a scene digitally, the recording device (typically a digital video camera)

samples the scene at a rate. This frame rate affects the quality of the video and is typically

measured in frames per second (fps). A low frame rate produces motion that is perceived

as jumpy or discontinuous, whereas a high frame rate produces smooth video that seems

continuous to the human observer. This frame rate is usually constant for most applications

like television broadcasting. However, Internet streaming video systems often vary the frame

rate depending on the speed and congestion of the network traffic [2–4].

At each sampling instant, a rectangular video frame of fixed horizontal and vertical size

is generated, and represented by a matrix of light intensity elements. Each frame element

is called a pixel. Each pixel is composed of either one or three light intensity elements,

depending on whether monochrome or colour video is desired. This is shown in Figure 2.1.

Colour video requires three components to describe each pixel because the human retina

has three types of colour photo-receptor cells, called cones [5]. Each type of cone reacts

differently to short, medium, and long wavelengths of light. Hence, a video display device

only needs to output three primary wavelengths of light at varying intensities to create

the sensation of different colours at each pixel. These three wavelengths roughly match the

three primary colours (red, green, blue) used in most video systems. This is the Red-Green-

Blue (RGB) colour model. Another popular colour model is the YIQ model. It separates

CHAPTER 2. BACKGROUND 5

the luminance, or brightness, components from the chromatic, or colour, components of

an image. It is related to the RGB colour model by an invertible linear transform [6].

Monochrome video only requires one value per pixel, because the same intensity value is

output for each of the three primary wavelengths, generating a gray pixel. The number of

bits used to represent each intensity value determines the number of gray-scales or colours

available for output. Typically each pixel intensity value is represented by at least 8 bits.

For example, an 8 bit per pixel (bpp) monochrome image is able to display 28 = 256 gray

intensities.

Monochrome
 Colour

(Green)
 (Blue)
(Gray)
 (Red)

Figure 2.1: Monochrome and colour frame representation

There are other HVS properties that arise because humans have two eyes and process a

stereo image representation of the scene. The fusion mechanism describes the combination

of the stereo retinal images into a single percept of the scene [7]. When an observer views

a scene, the retinal images in the left and right eyes are not exactly the same. Some parts

of the left image and some parts of the right image match exactly. However, there are also

other sections of the left image that do not exactly match, or are not viewable in the right

image, and vice versa. An area that is present in the one image but not the other is called

an occluded area. Despite the differences between the left and right retinal images, people

experience a single view of the scene.

Direction and disparity are two object characteristics that are usually different in the

CHAPTER 2. BACKGROUND 6

left and right retinal images, yet the perceived characteristics have only one interpretation.

Ogle [8] states that direction is fused because direction is perceived with respect to the

body, not with respect to the individual eye. Disparity, defined as the distance between

corresponding points of an object in the left and right images, is also fused by a sequence

of complex neural functions [7].

What is gained from stereo vision are the extra direction and disparity cues that aide

the HVS in estimating the depth of objects. Note that this is not an exclusive relationship

between depth and stereo vision, since the HVS simultaneously use other methods to de-

termine depth. For example, the sense of depth is also greatly influenced by the process

of motion parallax [7]. This process observes that given two objects at different distances,

the farther object seems to move (with respect to the closer object) with the motion of the

head, whereas the closer object seems to move (with respect to the farther object) opposite

to the direction of head motion. In contrast, with a stereo image pair, the relative depths

of objects are perceived because of the differences between the left and right images. Ac-

cording to Diner and Fender [7], “In order to achieve the percept of stereoscopic depth, the

visual cortex must match up the corresponding parts of the two images and measure the

binocular disparities of the matched parts of the images.” Using the disparity information,

the HVS can estimate the relative depth of objects.

Recording stereo video is accomplished using a dual camera system. Two cameras

pointing in the same direction, are aligned along the same horizontal plane and positioned

at some distance apart from each other. This distance is usually the about the same as the

distance between the left and right eyes of a human being. Historically, there have been two

main ways to display and store stereo video: a single combined left and right image stream

or two separated left and right image streams. In combined left and right image streams,

a large display device outputs the left and right video frames in an alternating manner,

while the user wears special glasses that are synchronized to only allow the left eye to see

CHAPTER 2. BACKGROUND 7

the left frames and the right eye to see the right frames. Bos [9] experimented with two

types of glasses: active and passive. Active glasses physically cover, using electro-optical

shutters, the appropriate eye in synchronization with the currently displayed video frame.

Bos also investigated passive glasses that have different polarizations in the left and right

lenses. In this case, the display device must be modified to output the left and right frames

with different polarized light. For separated left and right streams, a Helmet Mounted

Display (HMD) can be used. Kim et al [10] and Turner [11] both use dual small video

displays mounted on a helmet positioned in front of the eyes. These devices are typically

used in virtual reality research and entertainment. Recently there has been development in

autostereoscopic devices that do not require the use of any glasses or HMDs [12, 13]. The

user views the stereo video on a special holographic surface. Autostereoscopic displays use

the motion parallax effect to incite the sensation of depth, not the disparity cue method.

2.2 Video Compression Motivation

Stereo video can be recorded, stored, transmitted and displayed using devices that range

from simple polarized glasses to complex holographic displays. As with monocular video,

the vast amount of video data to be processed is usually too large for direct storage or trans-

mission by current hardware and software technology [14]. In ideal visual telepresence ap-

plications, the stereo video would be transmitted in real-time, and with zero delay, from the

remote site to the local site. However, in real world applications, there are bandwidth lim-

itations introduced by the networks that connect the two sites. Current transmission rates

in bits per second (bps) for Internet and network traffic range from 100 Mbps (100baseT

ethernet) to 56 Kbps (phone line modems). An uncompressed 320×240 resolution, 30 fps, 8

bpp (monochrome) stereo video stream would require the network to support a transmission

rate of (320×240 pixels/frame)×(30 fps)×(8 bpp)×(2 streams) ≈ 36.8 Mbps. Clearly, most

CHAPTER 2. BACKGROUND 8

current network transmission rates are unable to handle massive quantities of uncompressed

video data for real-time visual telepresence. The amount of video data must be reduced by

compressing the video stream before transmission.

Digital video compression is a specific instance of what the communications field calls

source coding. Figure 2.2 depicts a generic compression system. As with source coding,

digital video compression/coding can be classified as lossless or lossy, depending on the

amount of tolerable error [15]. Assuming perfect operation in the rest of the system, lossless

compression stipulates that the original data must be decompressed/decoded without any

error. Entropy coding algorithms such as Run-Length, Huffman, Arithmetic, and Lempel-

Ziv coding, are used for lossless data compression [15]. These coding algorithms have typical

maximum compression ratios of 1.5:1 to 3:1, depending on the entropy of the source. That

is, they can compress data to 2
3 to

1
3 of the original size. To increase the compression

ratio, the perfect reconstruction criterion is relaxed in lossy compression. Lossy schemes

can achieve significant compression ratios by allowing the data to be recovered with an

acceptable amount of error. What is deemed as acceptable depends on the application.

In video compression algorithms, typical lossy compression ratios vary but are generally

over 30:1, depending on the desired quality of the output video. Notice that only lossy

compression schemes can compress streamed video to the required bandwidth of current

networks. The remainder of this section describes lossy algorithms only.

Source

Coder

Source

Decoder

Channel

Coder

Channel

Decoder
 C

om
m

un
ic

at
io

n

C

ha
nn

el

Video In

Video Out

Figure 2.2: Generic compression system

The tradeoffs for increasing compression rates are an increased encoder and decoder

CHAPTER 2. BACKGROUND 9

complexity, and an increased coding delay [15]. Coding delay is the time it takes to encode

and decode a video source. A complex compression scheme usually implies a long coding

delay. This delay, in addition to the network transmission delay, becomes problematic

when the video should appear in real-time. For visual telepresence systems, a video delay

between the remote site and the local sight diminishes the feeling of visual “presence.” So

far there have been no proposals that can compensate for this video delay. The only viable

option at this time is to minimize the video delay by using fast software algorithms, more

powerful processors or customized hardware implementations. Some work has been done

at the University of Waterloo on compensating delayed teleoperation systems through the

use of Kalman filtering [11, 16, 17], but this work cannot directly compensate for the video

delay. For lossy compression, there is also an increased degradation in video quality as the

compression rate rises. The goal is to compress the video as much as possible, while still

providing an acceptable level of quality. These lossy compression tradeoffs are shown in

Figure 2.3.

Video

Quality

Compression

Ratio

Coding

Delay

Coding

Complexity

Figure 2.3: Lossy compression tradeoffs

CHAPTER 2. BACKGROUND 10

2.3 Image Compression and the Wavelet Transform

Since video is composed of a sequence of still images, it is logical to study image compression

first. It also makes sense to look at image compression algorithms because they are often

used within many video compression schemes where it is called intraframe coding. This

section presents a literature survey of popular image compression algorithms, specifically

discussing Wavelet compression techniques in more detail.

2.3.1 Early Image Compression

One of the simplest ways to compress an image is to subsample the image data. Only a

subset of the original data is stored or transmitted to the decoder. To recover the image,

the remaining pixels can be upsampled by duplication. This method is simple and fast, but

usually generates subjectively poor and blocky images [11]. However, in many colour image

applications, this data reduction technique is commonly used. Experiments have shown

that the human eye has a higher sensitivity to luminance than to chromatic perception [6].

Therefore, the chromatic components of video can be subsampled without being detected

by human viewers. One of the reasons why the YIQ colour model is popular is because the

chromatic components are directly available for subsampling. All standards by the Motion

Picture Experts Group (MPEG) and the International Telecommunications Union (ITU),

use the YIQ colour model to represent colour pixels. This allows the option of using colour

subsampling in their video coders/decoders (codecs) [15].

A common form of lossy image compression is transform coding, where the image pixels

are first converted into another domain by an invertible mathematical transform. The

purpose of this transform is to compact as much energy of the original image sample into

as few coefficients as possible. Then the compacted representation can be quantised and

entropy coded before it is transmitted or stored. Compression is achieved because most

CHAPTER 2. BACKGROUND 11

coefficients are small and rounded to zero by quantisation, and only the few large coefficients

are transmitted [18]. The coarseness of quantisation and which large coefficients to send

depend on how much compression is desired and how much loss in quality is tolerable. To

recover the original image sample, the inverse transform is then applied to the quantised

coefficients. If the coefficients are quantised coarsely, the original data cannot be recovered

perfectly [15].

The Discrete Cosine Transform (DCT) is the invertible transform used in most image

and video compression standards, such as the Joint Photographic Experts Group (JPEG)

standard, the ITU H.26x standards, and the various MPEG standards [19]. These algo-

rithms divide the image into small blocks usually of size 8×8 or 16×16 pixels. The two-

dimensional DCT is applied to each block and the result is quantised using a predefined

quantisation matrix [15]. The quantised results can then be coded by using entropy coding

algorithms mentioned above. The DCT is popular because its energy compacting efficiency

and computational complexity tradeoff is better than many competing transforms such as

the Discrete Hadamard Transform (DHT), the Discrete Fourier Transform (DFT), and the

Discrete Sine Transform (DST) [15].

2.3.2 The Wavelet Transform

Since the late 1980’s, DCT coding in research has been gradually replaced by Discrete

Wavelet Transform (DWT) coding [20]. The DWT has gained enormous popularity and

most recent image compression algorithms use the DWT in some aspect or another. Its

popularity arises from its many desirable properties, not only to image compression, but also

to signal processing in general. In classical signal processing, the analysed signal is trans-

formed from the time-domain (or spatial-domain for images) into the frequency-domain by

the use of a Fourier type transform, such as the DFT or DCT. In the frequency-domain

however, all sense of the signal locality in time or space is lost. The DFT of a signal only

CHAPTER 2. BACKGROUND 12

conveys that a specific frequency has occurred within the time/space bounds of the original

signal. Similarly, the original signal does not express any information about the frequency

components at a specific instant of time. This phenomenon, where the complete time signal

and its frequency transform cannot be simultaneously localized, is described quantitatively

by the Heisenberg uncertainty principle [21]. Although it is important in theoretical cal-

culations, real-world applications usually do not need every frequency component at every

time instant. In most applications, it is sufficient to decompose the signal into just a few

time and frequency components.

The analysis of music is an example of an application where some frequency and time

information might be desired simultaneously. A musical score shows a musician when to play

a specific note (frequency). The problem of generating the score from a musical performance

is much more difficult. Taking the FT of the entire performance gives all the notes that

are played. However, when each note is played cannot be determined from the FT. An

early attempt at solving this problem was the invention of the short time Fourier transform

(STFT). In this method, the FT of short bounded sections of time are computed. Although

this method supplies time and frequency information simultaneously, the precision is limited

by the size of the chosen window [22]. Addition problems arise because the same window

size is used for all frequencies. For example, very low frequencies (long periods) will not

be detected by small windows, since the chosen window may not encompass even a single

period of such a low frequency [21].

What is required is a transform that varies its window size depending on the frequency.

This is the basis of the wavelet transform (WT). Analogous to classical Fourier analysis,

where a signal is decomposed into components with different frequencies, the WT decom-

poses a signal into components with different frequency and time properties. These basis

functions are called wavelets. Where as the FT represents a function as a superposition of

sinusoids, the WT represents a function as a superposition of wavelets [23]. Decomposing

CHAPTER 2. BACKGROUND 13

a signal using the WT generates a series of sub-signals that represent signal details at dif-

ferent scales. The WT development in this subsection is restricted to one-dimensional (1D)

signals. As will be shown later, a two-dimensional (2D) WT can be easily generated from

1D WTs for transforming images.

Wavelets are time and frequency bounded functions that are generated from a single

function ψ(x), by dilations and translations [23]. ψ(x) is called the analysing wavelet

or sometimes the mother wavelet. The analysing wavelet must satisfy1 ψ(x) ∈ L2 and
∫

∞

−∞
ψ(x)dx = 0 for wavelet theory to be applicable [21, 24]. Given an analysing wavelet

ψ(x), a wavelet ψa,b(x) is mathematically expressed in the continuous domain as

ψa,b(x) = |a|
−

1

2 ψ

(

x− b

a

)

, (2.1)

where a is called the scaling parameter, b is the translation parameter, and x is the inde-

pendent continuous variable that is usually time or space (a, b, x ∈ R, a 6= 0).

The continuous wavelet transform (CWT) of a function f(x) is as

Wf(a, b) ≡ 〈f, ψa,b〉 = |a|
−

1

2

∫

∞

−∞

f(x)ψ

(

x− b

a

)

dx, (2.2)

where the bar above the ψ function represents the complex conjugate. Notice that the CWT

is the inner product of f(x) and the wavelet ψa,b(x). It is also a function of two variables (the

scale a and translation b), and therefore can be graphically shown as a three-dimensional

surface or intensity map.

In practice, calculating the CWT is computationally expensive and not necessary for

reconstruction of a finite energy signal [22]. In Fourier analysis, Shannon’s sampling theorem

allows a finite energy or bandlimited signal to be fully reconstructed from a discrete set

of sampled values. The wavelet transform also has a similar concept by sampling the

1Lp denotes the normed spaces corresponding to the norm ‖x‖p , (
∫

|x(t)|pdt)
1

p , 1 ≤ p ≤ ∞

CHAPTER 2. BACKGROUND 14

continuous transform domain variables a and b [21]. Analogous to sampling the FT at

equally spaced points along the frequency axis, a discretized WT samples the a, b plane

over a grid. To restrict a and b to discrete values, let

a = am0 , b = nb0a
m
0 , (2.3)

where m,n ∈ Z, a0 > 1 and b0 > 0 [24]. The scale and translation parameters are now

fixed to specific scale and translation levels, indexed by the m and n variables respectively.

This relationship between a and b, samples the CWT at small scales using small translation

intervals, and large scales using large translation intervals. The sampling grid is shown

in Figure 2.4. This overcomes the previously stated limitations of the STFT by essentially

adapting the translation interval size to the current scale being analysed. Substituting (2.3)

into the CWT equations (2.1) and (2.2), produces the discretized analysing wavelet and the

discrete wavelet transform (DWT) shown in (2.4) and (2.5) respectively.

ψm,n(x) = a
−
m
2

0 ψ

(

x− nb0a
m
0

am0

)

= a
−
m
2

0 ψ
(

a−m
0 x− nb0

)

. (2.4)

Wf(am0 , nb0a
m
0) ≡ 〈f(x), ψm,n(x)〉 = a

−
m
2

0

∫

∞

−∞

f(x)ψ
(

a−m
0 x− nb0

)

dx. (2.5)

Equation (2.5) is still very complex to implement in practice due to the integral, and

the freedom to choose parameter values. To simplify matters and to make a fast DWT

algorithm, a widely used approach is to simply set a0 = 2, and b0 = 1 [21]. Also, in a digital

system, the original signal is already discretized (i.e. x ∈ Z). With these two simplifications,

what is called a multiresolution analysis (MRA) can be performed on the input signal [24].

The idea of MRA is that the DWT can be quickly computed recursively, starting from the

finest scale to the coarsest scale to generate a N-level DWT, as will now be demonstrated.

The N scale levels can be considered a set of subspaces of L2 [21]. If the finest scale (original

CHAPTER 2. BACKGROUND 15

S
ca

le
 (

a
)

Translation

(
b
)

m
a
0

0
a

0
b

m
a
b
 0
0

(m = 0)

(m < 0)

(m = 1)

1

Figure 2.4: WT sampling grid

signal) is taken as the first subspace (m = 0), then the set of scale level subspaces can be

written as ... ⊂ Vm... ⊂ V2 ⊂ V1 ⊂ V0 ⊂ L2. To recursively calculate the scale subspaces

and ultimately the DWT, the auxiliary scaling function φ(x) is introduced along with its

discretized, dilated and translated versions φm,n(x). An acceptable scaling function must

satisfy2 the recursive scaling equation (2.6), where hk are coefficients uniquely defining the

scaling function [21,24]. The φm,n(x)’s, shown in (2.7), are basis functions of the Vm spaces.

Applying (2.6) to (2.7) gives a recursive equation for the φm,n(x) basis functions shown in

(2.8).

φ(x) = 2
1

2

∑

k

hkφ(2x− k). (2.6)

φm,n(x) = 2
−
m
2 φ(2−mx− n). (2.7)

2In addition, φ(x) must also satisfy φ(x) ∈ L2,
∫

φ(x)dx = 1 and
∫

φ(x)φ(x− k)dx = δ(k).

CHAPTER 2. BACKGROUND 16

φm,n(x) = 2
−
m
2 φ(2−mx− n)

= 2−(m−1)/2
∑

k

hkφ(2
−(m−1)x− 2n− k)

=
∑

k

hkφm−1,2n+k(x).

(2.8)

However, the DWT equation (2.5) requires an orthonormal basis (namely the ψm,n(x)

functions) of L2. The φm,n(x)’s cannot be used as an orthonormal basis of L
2 since any

Vm−1 includes Vm [21]. To obtain a recursive equation for the ψm,n(x) basis functions,

a new set of orthogonal subspaces (Wm | m ∈ Z,m ≥ 0) are defined. Each subspace

Wm in this new set contains the “difference” in space between Vm and Vm−1. Specifically,

Vm−1 = Vm ⊕Wm, where Vm is orthogonal to Wm (i.e. Wm is the orthogonal complement

of Vm in Vm−1) [21]. The concatenation of all the Wm subspaces is equivalent to the L
2

subspace, and therefore, finding basis functions to theWm subspaces is equivalent to finding

basis functions for L2. Because of the relationship between the Vm and Wm subspaces, each

scaling function corresponds to an analysing wavelet through (2.9), where gk are coefficients

that will be discussed later [21].

ψ(x) = 2
1

2

∑

k

gkφ(x− k). (2.9)

Applying (2.9) followed by (2.6) to (2.4) gives a recursive equation for the ψm,n(x) basis

functions of L2.

ψm,n(x) = a
−
m
2

0 ψ
(

a−m
0 x− nb0

)

= 2−(m−1)/2
∑

k

gkφ(2
−(m−1)x− 2n− k)

=
∑

k

gkφm−1,2n+k(x).

(2.10)

Before deriving the recursive equation for (2.5), let the inner product of f(x) and φm,n(x)

CHAPTER 2. BACKGROUND 17

be given by the recursive equation

am,n ≡ 〈f(x), φm,n(x)〉 =
∑

k

hk〈f(x), φm−1,2n+k(x)〉

=
∑

k

hkam−1,2n+k,

(2.11)

where3 a0,· = f(·) [21]. Applying (2.10) and (2.11) to (2.5), gives the recursive formula for

the DWT coefficients (also known as the detail coefficients).

dm,n ≡ 〈f(x), ψm,n(x)〉 =
∑

k

gk〈f(x), φm−1,2n+k(x)〉

=
∑

k

gkam−1,2n+k.

(2.12)

In summary, (2.11) and (2.12) recursively calculate the DWT at each scale level starting

from the original discrete signal f(x). This is graphically shown in Figure 2.5. There is

still the matter of the hk and gk coefficient values. By (2.6) and (2.9), these coefficients

determine the scaling function and analysing wavelet. Furthermore, these coefficients are

uniquely related to the corresponding analysing wavelet and scaling function [21,24]. After

choosing an analysing wavelet, only the corresponding hk and gk coefficients are required for

the DWT computation - the actual analysing wavelet and scaling function are not explicitly

used.

To reconstruct the original signal from its DWT coefficients, the inverse DWT (IDWT)

is performed. When performing the DWT, the transform essentially replaces the basis

φm−1,n(x) of Vm−1 with the basis φm,n(x) ∪ ψm,n(x) at every recursive step [21]. The

IDWT reverses this transformation by taking the inner product of the coefficient weighted

3The · notation represents all values of n at scale level m, since the range of n differs for each scale level
m. At the lowest scale level, the sequence a0,n is set equal to the sequence of f(x).

CHAPTER 2. BACKGROUND 18

,
0
a

,
1
a

,
2
a

,
3
a
h

g

,
1
d

,
2
d

,
3
d

h

g

h

g

Figure 2.5: DWT recursive computation

φm,n(x) ∪ ψm,n(x) basis with the φm−1,n(x) basis as shown in (2.13) and Figure 2.6.

am−1,n =

〈

∑

k

am,kφm,k(x) +
∑

k

dj,kψm,k(x) , ψm−1,n(x)

〉

=
∑

k

am,k〈φm,k(x), φm−1,n(x)〉 +
∑

k

dj,k〈ψm,k(x), φm−1,n(x)〉

=
∑

k

hn−2kam,k +
∑

k

gn−2kdj,k.

(2.13)

,
0
a

,
1
a

,
2
a

,
3
a
 h

g

,
1
d

,
2
d

,
3
d

h

g

h

g

Figure 2.6: IDWT recursive computation

Since the recursive DWT and IDWT equations are essentially convolutions, digital filters

can implement the transform [24]. A 1-level 1D DWT and IDWT are graphically shown

in Figure 2.7. The am,n and dm,n outputs are relabeled the L and H outputs respectively,

since h and g are implemented as lowpass and highpass filters [24]. The am,n coefficients are

essentially the low frequency components and the dm,n coefficients are the high frequency

components of the input signal. A higher level DWT can be computed by applying the

DWT block recursively to the L output. At each sucessive level, the H wavelet coefficients

CHAPTER 2. BACKGROUND 19

represent the next highest frequency components of the input signal. This implies that the

H coefficients in the first recursive DWT stage represent the highest frequency components,

while H coefficients at sucessive stages are lower frequency components. A similar reverse

setup calculates a N-level IDWT. To keep the overall DWT and IDWT input/output lengths

equal, the 2↓ block subsamples and the 2↑ block duplicates their inputs.

DWT

f(x)

Wavelet

Coefficients

2

2

L

H

h

g

IDWT

h

g

2

2

f(x)
~

Figure 2.7: 1D DWT and IDWT

To perform a 2D wavelet transform for images, 1D transforms are simply cascaded in

the form shown in Figure 2.8 [23]. Every row of the input image is first individually 1D

transformed. Then the output of the first stage is 1D transformed in a column wise fashion.

The 2D IDWT is performed using the same operations in reverse order. The output of the

1-level 2D DWT of Figure 2.8 is usually graphically arranged as in Figure 2.9(a). The value

at each coefficient is displayed by the gray-scale intensity of the DWT image; dark pixels

are low values and white pixels are high values. Similar to the 1D case, the image can be

decomposed to N-levels by repeatedly applying the 2D DWT to the LL subband at each

level. The recursive nature of the N-level DWT is evident by comparing Figure 2.9(a) with

the 3-level DWT format in Figure 2.9(b). A typical 3-level DWT of the “Army” image in

Figure 2.10(a), is shown in Figure 2.10(b). Note that the LH, HL and HH subbands in

Figure 2.10(b) have been artificially amplified (multiplying by a constant factor) to show

more subband detail for printing.

CHAPTER 2. BACKGROUND 20

Input

Image

Wavelet

Coefficients

2

2

2

2

2

2

Rows

(1st Stage)

Columns

(2nd Stage)

LL

LH

HL

HH

h

h

h
g

g

g

Figure 2.8: 2D DWT

LH

(Vertical)

HL

(Horizontal)

HH

(Diagonal)

LL

(a) 1-level 2D DWT graphical arrangement

HL3
LL3

HH3

HL2

LH2
 HH2

LH1

(Vertical)

HL1

(Horizontal)

HH1

(Diagonal)

LH3

(b) 3-level 2D DWT graphical arrangement

Figure 2.9: 2D wavelet decomposition arrangement

2.3.3 Wavelet-Based Image Compression Algorithms

The DWT is popular for image compression algorithms mainly because of its high energy

compaction, its ability to process the image at different scales, and its reconstruction of

images which are not blocky as in DCT coding. To compress an image, many proposals

such as in [23,25] apply a N-level DWT to an entire image, and then different subbands are

CHAPTER 2. BACKGROUND 21

(a) Original “Army” real image

(b) 3-level DWT of “Army” image

Figure 2.10: Wavelet decomposition of a real image1

1Original “Army” image courtesy The Department of National Defence.

CHAPTER 2. BACKGROUND 22

quantised differently and entropy coded. These methods work well because more bandwidth

(more bits) can be devoted to perceptually important subbands and less bandwidth to the

subbands that are not as important. These schemes are similar to methods used for DCT

coding.

Much more impressive results can be obtained using bit plane transmission algorithms.

The general concept of these algorithms is to transmit the large coefficient bits first; hence

the receiver decodes significant components of the image first. These algorithms do not

require any decoder training, pre-stored tables or codebooks, nor any prior knowledge of

the source image [26]. At the time of their invention in the mid 1990’s, these algorithms

matched or outperformed all other image compression schemes that existed and continue

to be the basis of many current algorithms.

The first major contribution to this area was Shapiro’s embedded zerotree wavelet

(EZW) algorithm presented in [26]. The EZW algorithm used a tree structure to relate

coefficients in one subband to coefficients in the next higher frequency subband. Said and

Pearlman’s set partitioning in hierarchical trees (SPIHT) algorithm is similar to EZW, but

produces better results [27]. It is also based on a tree representation of a N-level DWT.

Consider again the 3-level wavelet transform of Figure 2.9(b). The dimensions of the

subbands of every wavelet resolution level are one half of the dimensions of the previous

level. This means that 1 coefficient in LH3, corresponds to 4 coefficients in LH2. The 4

coefficients in LH2 can be considered the children of the parent coefficient in LH3. Each of

the 4 corresponding children in LH2, in turn relate to 4 coefficients in LH1. By repeating

this pattern, one can generalize this relation to any N-level wavelet decomposition. The

only exceptions to the wavelet tree structure are the coefficients in the LL subband, and the

highest frequency subbands. The coefficients in the LL subband have either no children (the

star coefficient in Figure 2.11(a)) or 4 children. The coefficients in the highest frequency

subbands (LH1, HL1, HH1, in Figure 2.9(b)) have no children. Therefore, the coefficients

CHAPTER 2. BACKGROUND 23

in the LL subband that have children are each roots of a different tree structure and the

coefficients in the highest frequency subbands correspond to the leaves of the tree structure.

The set of these trees represents the wavelet transform. Figure 2.11 shows the tree structure

relationship used in the SPIHT algorithm.

HL2

LH2
 HH2

LH1

HL1

HH1

LL2

(a) Parent-offspring relationship in SPIHT al-
gorithm

Leaf nodes in highest

frequency subbands

Nodes in HL2/LH2/HH2

subbands

Root node in LL2

subband

(b) Tree structure for one root coefficient

Figure 2.11: Wavelet decomposition and tree structure relationship

With this tree representation of the wavelet transform, no data has yet been lost. The

next step is to perform the quantisation of the tree structures. It is desirable to transmit

the most significant data first (i.e. the WT coefficients with large magnitudes.) This is

accomplished by bit-plane transmission, which traverses the trees and encodes only those

CHAPTER 2. BACKGROUND 24

coefficients that are larger than a set threshold. With this threshold value, one can now ex-

ploit the significance correlation across scale levels of the wavelet transform. This property

states that if a coefficient in one subband is insignificant with respect to the current thresh-

old, it is most probable that its children and descendants are also insignificant with respect

to that threshold [27]. Hence significant coefficients are transmitted first, and the rest of

the coefficients are not coded at this time. Due to this property of the wavelet transform,

performing the thresholding often avoids transmitting entire branches (called zerotrees by

Shapiro) of the original tree structure.

After the significant data is sent, the threshold is reduced to half its original level. Then

the same thresholding procedure is performed on the coefficients that were not found to be

significant in the previous pass. This algorithm can be repeated until the desired application

bit rate is achieved [27]. As more of the less significant data is transmitted, the decoded

image will resemble the original image more, and more closely. The algorithm is usually

terminated well before the bits of all the coefficients are sent. Bit rates of 1bpp to 0.25bpp

give very good subjective results [27]. The SPIHT generated bitstream can then be entropy

coded for further compression.

2.4 Video Compression

Video compression extends image compression to efficiently code sequences of images. This

section presents a discussion about compressing standard single camera (monocular) video

and stereo video.

2.4.1 Monocular Video Compression

To compress a sequence of images, an intraframe coding can be applied independently to

each frame. However, except for sudden scene changes, this method is inefficient since

CHAPTER 2. BACKGROUND 25

adjacent frames are highly correlated. Interframe coding takes the temporal dimension into

account and gives significant increases in compression rates [14]. Excluding hybrids, there

are three conceptually different ways to perform video compression reported in literature:

block-based motion compensation, object-based motion compensation, and 3-dimensional

(3D) transform coding.

The two motion compensation (MC) methods are performed in three steps [14]. The

first step is to estimate the motion between the current frame and the adjacent frames.

The adjacent frames can be previous frames or future frames. The second step generates

the current frame prediction using the motion estimation of the first step and the adjacent

frames. The last step is to encode the error (residue) between the predicted current frame

and the actual current frame to fix any MC artifacts.

Block-based MC divides each frame into blocks, again typically of size 16× 16 pixels to

match the DCT compression algorithm [15]. Each block in the current frame is examined

and its motion with respect to adjacent frames is estimated. To estimate the block motion,

the current block in the current frame is compared, by calculating an error metric such as the

sum of absolute differences (SAD) or the mean squared error (MSE), with candidate blocks

in the adjacent frames. The candidate block with the minimum error metric is considered the

best match and a motion difference vector is generated. The set of candidate blocks depend

on the search algorithm used. The most basic algorithm is the full-search algorithm where

every possible block in adjacent frames is considered. This method is very time consuming

and generally not used in real-time video encoders [14]. Other search algorithms, such as the

three-step-search [14], and Chen et al’s fast block matching algorithm [28] are much more

efficient, but they generally do not produce as good results as the full-search algorithm.

MC can also be performed in the wavelet-domain where the motion vectors are calculated

in different subbands. Zafar et al propose a multiresolution MC algorithm in [29,30]. This

method produces very good results, but has the drawback of requiring more motion vectors

CHAPTER 2. BACKGROUND 26

than MC in the spatial-domain.

Object-based MC is similar to block-based MC except, instead of compensating block

motion, entire objects in the scene are extracted and matched. This method is much more

complex since it requires that perceptual objects, such as a face or an automobile, be

extracted from the video scene before computing the object’s motion vector [31].

The 3D transform coding techniques do not use motion estimation. Instead, the idea

is to perform the wavelet transform on the temporal domain in addition to the two spatial

dimensions. Then coding can be performed using a SPIHT style coder extended to the

third dimension [32]. These algorithms have been reported to obtain similar compression

rates as object-based MC techniques.

2.4.2 Stereo Video Compression

The compression of stereo video streams adds another dimension to video encoding. A

simple method is to compress each video stream independently, but this is inefficient since

the two streams are highly correlated. In stereo video, the left and right frames are almost

the same except for small horizontal offsets, also known as the disparity, in different parts

of the frames [33].

All stereo image and video compression algorithms in literature code one stream indepen-

dently and then code the second auxiliary stream based on predictions from the independent

stream. Although this method has been proven by Perkins to be suboptimal in general for

a “distortion introducing encoder operating on a memoryless stereopair source,” its near

optimality and similarity to interframe coding makes this structure popular for practical

applications [34]. The same algorithms for monocular interframe coding can be applied to

estimate the disparity of the auxiliary stream. However, these disparity compensation (DC)

algorithms must be modified to take advantage of the characteristics between the two video

streams. One of the assumptions commonly used is that the left and right video streams lie

CHAPTER 2. BACKGROUND 27

on the same equipolar line [7]. This requires that the camera system be perfectly calibrated

so that the left and right video frames are aligned on the same horizontal plane, eliminating

the need for stereo matching algorithms to search vertically displaced candidate regions.

Another difference is that in stereopair disparity, every object in the left frame is displaced

with respect to the image in the right frame, whereas only a few objects in monocular video

move from frame to frame [34].

Although all stereo codecs have a similar structure, there are many variations in im-

plementation. Dinstein et al describes the typical stereo image compression setup in [35].

After coding the independent image, the auxiliary image is coded based on the indepen-

dent image using a spatial block-based DC scheme. Additionally, they also propose to take

advantage of supression property of the HVS and use a low quality image for one of the

streams. Dinstein et al found that using a low quality image for one eye has almost no loss

in perceived quality or depth perception.

Algorithms that use transform coding to compress video can also perform DC in the

transform-domain. Perkins proposes a scheme similar to [35] but performs DC in the trans-

form domain coefficients instead of in the spatial-domain [34]. Gunatilake et al propose a

similar algorithm in [33]. They introduce the idea of a worldline frame (W-frame); a frame

that is predicted from previous left and right frames. They also propose that the left and

right frame streams have offset intraframe and interframe sequences. This prevents the

reconstructed image quality of both eyes from degrading at the same time. The offset keeps

the perceived scene quality and depth perception relatively constant by pairing low quality

W-frames in one eye with higher quality independently compressed frames in the other eye.

Wavelet domain algorithms have the advantage of separating the vertical, horizontal

and diagonal components into different subbands. Moellenhoff and Maier exploit this by

only encoding the vertical channel since this is where most of the stereo information is

contained [36]. Wavelet-based algorithms can also use multiresolution DC [37], similar to

CHAPTER 2. BACKGROUND 28

interframe multiresolution MC described in [29, 30].

As in monocular video, object-based schemes and hybrid schemes can also be imple-

mented. Jiang and Edirisinghe propose an interesting object driven, block-based stereo

coding algorithm in [38]. Instead of transmitting motion vectors and shape coding informa-

tion, both the encoder and decoder execute the same algorithm to extract that information

from the previous frames. Although this increases the encoder and decoder complexity, it

eliminates the need to transmit vectors and shape information.

2.5 Foveation

Another HVS characteristic that can be exploited for image and video compression is

foveation. Foveation is the reduction of resolution at the peripheral regions of human

sight. When a person focuses on a point of interest, the objects near this foveation point

are very clear, but the bordering objects of the view are extremely blurry. An example of

compressing the “Army” image using normal and foveated coding is shown in Figure 2.12.

Compared to unfoveated compressed images, perceived quality in foveated compressed im-

ages is improved because more bits can be devoted to the foveation point, while fewer bits

are devoted to the outlying regions [39]. Foveated video is perfect for use in a telepresence

system since the end user is a human being. If implemented correctly, the human viewer

will not be able to distinquish between foveated and unfoveated video that have the same

quality at the foveation point.

The blurring effects of foveation are caused by the arrangement of photoreceptor cells

in the eye. The cell structures in the retina give rise to space-variant sampling of the scene,

causing the high-frequency information in the peripheral regions to be redundant [40]. The

set of cones, rods, and ganglion cells that make up the retina, have a non-uniform density

across it. Cones are used for daylight vision; rods are used for lowlight scenarios and can

CHAPTER 2. BACKGROUND 29

(a) Compressed “Army” image

(b) Foveated compressed “Army” image

Figure 2.12: Compressed “Army” image comparison

CHAPTER 2. BACKGROUND 30

be ignored in this analysis; ganglion cells conduct the perceived information from the cones

and rods out of the eye [40]. The fovea is the central point on the retina that has the highest

density of cones and ganglion cells. The density dramatically falls as the distance from the

fovea increases. When a human observer looks at an image, the point of focus (foveation

point) is very clear and sharp while the areas further from the foveation point are perceived

to have a much lower resolution.

Early attempts at foveated video simply subsampled or reduced the bit rate in regions of

the image that are farther away from the foveation point producing rather blocky results as

in [39,41]. More advanced algorithms used models based on psychological experiments and

wavelet approaches. Chang and Yap presented a psychological and wavelet-based foveation

method for images in [42]. This paper however does not discuss how to efficiently compress

images using wavelet foveation. This is accomplished by Wang and Bovik in their proposed

psychological based wavelet foveation algorithm in [40]. Their algorithm artificially amplifies

the foveation point coefficients in the SPIHT algorithm giving them more priority over the

peripheral regions.

2.6 Summary

This section reviewed past research in the area of image, video, stereo video and foveated

compression techniques. It was shown how properties of the HVS are used to present

video to users and how this information can be digitally represented and stored. A brief

literature survey was conducted on past image and video compression algorithms and key

contributions were highlighted, including a derivation of the DWT and how it is applied to

images. The concept of foveation was also introduced as a method that can be employed

effectively in a visual telepresence system.

Chapter 3

Stereo Video Compression

Algorithm Design

This chapter describes the design of the stereo video compression algorithm. The system’s

goals and requriements are first derived based on the target application, the real-time con-

straints and the hardware setup. The algorithm layout itself is then discussed, showing

how the system’s bitrate and real-time requirements are fulfilled using a combination of

intraframe, interframe, stereo and foveated compression techniques.

3.1 System Goals and Requirements

3.1.1 Application

The target application for the compression algorithm is a visual telepresence system. Figure

3.1 shows the telepresence system that this experiment is designed for. Through the use of

VR goggles (or some other type of stereo display), the purpose of the system is to show the

scene observed at the remote site to the local site operator. Data from sensors that monitor

the operator’s head orientation is recorded and transmitted to the remote site, allowing the

31

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 32

remote camera system to mimic the operator’s current gazing direction. Simultaneously,

the video data from the remote cameras is transmitted back to the local site for display.

In an ideal system, all the processing and transmission of data would occur without any

delay. However, in a real system the communcation channel, head orientation sensors, video

capture, display devices, and data processing cause many delays. These time delays cause

instability in the camera-head motion control system and also cause the human user to

feel negative physiological effects that reduce the sensation of being present at the remote

site [11]. Fortunately, for round-trip delays of less than approximately 100 ms, instability

in the camera-head motion control system can be compensated for by using a Kalman filter

prediction scheme as described in [11, 16].

VR

Goggles

C
om

m
un

ic
at

io
n

C
ha

nn
el

Local Site

PC
 PC

Stereo Camera

Platform

Remote Site

Figure 3.1: Visual telepresence system setup

Delay in video transmission is still an issue that degrades the performance of the telep-

resence system. It causes the user to see the scene of the remote site after it has already

occurred. To date, there have been no proposals that attempt to compensate for this delay.

The only alternative option is to minimize the overall video delay by designing the stereo

video compression algorithm so that it has a minimal amount of coding and decoding delay.

This is the strategy used for designing this stereo video compression algorithm.

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 33

3.1.2 Real-time Constraints

If the desired video frame rate is 30 fps (approximately the same as standard broadcast

television in the U.S.A. and Canada [6]), the total delay per frame from the remote cameras

to the local user display cannot exceed 1/30 ≈ 33 ms. Assuming that all the computations of

the algorithm can be performed in real-time (either via customized hardware or optimized

software), the video codec must guarantee that all inherent delays in the algorithm are

removed. This means that the algorithm must be causal and cannot rely on future video

frames for compression, a practice that is commonly used in the current MPEG and H.26x

algorithms [15]. Only past and current video frames can be considered when generating

the compressed representation of the current frame. This is the main difference between

standard video compression algorithms and algorithms that are used in real-time video

systems.

3.1.3 Experiment Hardware Setup

The stereo visualization device in our experiment setup is a pair of Interactive Imaging

Systems VFX3D VR goggles [43]. It requires that the video displayed in each eye have a

resolution of 640×240 lines in the vertical and horizontal directions respectively. Colour

video is possible on the goggles, but for this experiment only monochrome video will be

used to reduce the uncompressed video data size. The VR goggles have a maximum frame

rate of 75 fps, but this experiment will use a frame rate of 25 fps, which is the around the

maximum capture rate of the video capture cameras. Two ADS Technologies Pyro Firewire

Webcams [44] are mounted 6 cm apart on a robotic pivoting platform to provide the stereo

video streams required. Both cameras are calibrated so that they are equipolar, meaning

that the top and bottom edges of their respective captured video frames are horizontally

aligned. The camera platform is almost identical to the one used by Turner in [11], except

that the camera mounting on Turner’s system was upgraded to a more easily aligned and

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 34

rigid fixture. The platform has two degrees of freedom, allowing the stereo cameras to be

moved in the pan (left and right) and tilt (up and down) angular directions. Encoders

on the pan and tilt motors allow a computer to monitor and record the orientation of the

cameras. Using this setup, each frame of captured video can be assigned a corresponding

angular position.

Altogether, the algorithm is designed to compress two monochrome (8 bpp) video

streams that each have a resolution of 640 × 240 at 25 fps. Therefore the total uncompressed

bitrate in bits per second (bps) is (2 streams)×(640×240 pixels/frame)×(8 bpp)×(25 fps)

= 61 440 000 bps. The processors for this system are off-the-shelf Intel Pentium III 866

MHz personal computers running the Microsoft Windows 2000 operating system. In [11],

Turner designed his image compression algorithm to operate under 10 Mbps for the same

video format as this experiment uses. He states that 10 Mbps is feasible for mid-range

Internet connections. The goal of this algorithm is to significantly improve on this rate.

In Turner’s work, the stereo video streams were independently compressed by subsampling

and using coarse quantization. Also, foveation was performed by lowering the resolution in

outer image regions arbitrarily. The algorithm presented in this thesis uses more advanced

compression techniques and exploits the correlation between both video streams. The de-

sign here also foveates the video using a psychologically based method that suits the HVS

very closely.

3.2 Overall Design

The stereo video compression algorithm compresses one of the video streams (main stream)

independently of the second stream. The second stream (auxiliary stream) is compressed

based on the disparity between both streams. This design allows the video stream to be

decoded by stereo and mono stream display devices. Normal mono stream displays can

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 35

simply ignore the auxiliary stream compression data and decompress the main stream only.

Using this paradigm, there are several distinct components for the compression system; the

intraframe, interframe and disparity compression algorithms.

The overall design of the compression algorithm is heavily influenced by the method

used to compress the interframe or temporal dimension data. Given that the current frame,

previous and subsequent frames are highly correlated with each other, only changes be-

tween frames need to be transmitted. As mentioned in Chapter 2, the three main ways to

perform temporal compression are block-based motion compensation, object-based motion

compensation and 3D transform coding. Although object-based motion compensation algo-

rithms usually compress video more than block-based algorithms, they are not suitable for

real-time applications because the algorithms are generally complex and time consuming.

In the future however, these methods can be applied more widely when faster algorithms

are proposed and more powerful processors made commonly available. 3D transform cod-

ing, such as 3D-SPIHT [45], must wait until a sufficient group of frames is recorded before

performing the transform in the temporal dimension. This creates a time delay that cannot

be eliminated and therefore makes these types of coders unacceptable for visual telepres-

ence. The one remaining option is a block-based algorithm. These algorithms (also used in

the MPEG and H.26x standards) generally can compress video sufficiently and relatively

quickly without delay.

The block-based algorithm used in this experiment divides the input video sequence

into sections or groups of frames (GOF). The first frame in the GOF (I-frame) is always

compressed independently of any other frame. The remaining frames in the GOF (P-frames)

are all compressed based on previous frames. The number of frames per GOF determines

the tradeoff between video robustness and compression rate. Long GOF’s allow a higher

compression rate at the expense of lower error tolerance. In general I-frames cannot be

compressed as much as P-frames, so fewer I-frames translates to better compression [14].

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 36

However, since all the P-frames are based on previous frames in the GOF, a single error

can propagate through the entire GOF. Short GOF’s have a higher tolerance for errors,

but also require more bandwidth since I-frames are more numerous. Another advantage

of short GOF’s is better performance at sudden scene changes in the video (assuming no

dynamic scene change detection is used). When the video in a scene suddenly changes,

interframe coding becomes less efficient than intraframe coding [14]. After a scene change,

a short GOF means less time passes before an I-frame is transmitted. However, since the

application is a real-time visual telepresence system, there are no sudden scene changes and

a large GOF is acceptable. During experimentation the GOF size of 25 frames was found

to be subjectively acceptable.

An intraframe compression method must also be chosen to compress the I-frames and

error residues from the interframe motion estimation. All MPEG and H.26x standards use

block DCT coding for I-frame and residue compression [15]. This type of coding divides each

frame into fixed sized blocks. Each block is transformed using the DCT and then quantised

before transmission or storage. Block DCT coding seems logical since the interframe motion

estimation already uses a block-based algorithm. However, this experiment also hopes to

combine the benefits of foveation into the overall compression algorithm. Although fixed

sized block-based DCT coding can be modified to produce foveated results, it is not the

most natural choice since there is no mechanism to perform pixel accurate region-dependent

image quality manipulation [41]. At low bitrates, blocking artifacts become more apparent

and distracting for viewers. A more fitting and effective intraframe coder that also smoothly

foveates the reconstructed images is the foveated SPIHT algorithm presented by Wang and

Bovik in [40]. This method uses the wavelet transform and a SPIHT style coder to compress

images. The reconstructed images do not suffer from blocking artifacts at low bitrates while

at the same time performing accurate psychological foveation. The previous image in Figure

2.12(b) was obtained using the foveated SPIHT coder. All I-frames and residues will be

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 37

compressed using this method.

The compression of the auxiliary streams can be accomplished using the same block-

based motion estimation algorithm chosen for the main stream’s interframe compression.

For added efficiency, the main stream’s motion estimation algorithm needs to be modified

to only consider horizontal disparities between the left and right video streams, because it

is assumed that both cameras are pointing in the same direction and aligned on the same

plane.

The block diagrams of the stereo video compression encoder and decoder are shown in

Figures 3.2 and 3.3 respectively.

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 38

Main

Compressed

Data Out

Auxiliary

Compressed

Data Out
DWT

Auxiliary

Motion

Estimation

Foveated

SPIHT Encoder
Next Auxiliary

Frame In

Motion Vector

Encoder

Motion

Compensation

+

-

DWT

Motion

Estimation

Foveated

SPIHT Encoder

Frame

Memory

Next Main

Frame In

Foveated

SPIHT Decoder

IDWT

Motion Vector

Encoder

Motion

Compensation

+

-

Compressed

Motion Vectors

Predicted

Main Frame

Predicted

Auxiliary Frame

Main Residue / I-Frame

Auxiliary Residue

Control Signal

(I or P-Frame)

+
+

I
 P

Figure 3.2: Stereo video compression algorithm encoder block diagram

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 39

Main

Compressed

Data In

Auxiliary

Compressed

Data In

Frame

Memory

Foveated

SPIHT Decoder

IDWT

Motion

Compensation

+

Decoded Main

Frame Out

+

Foveated

SPIHT Decoder

IDWT

Motion

Compensation

+

+

Decoded Auxiliary

Frame Out

Compressed

Motion Vectors

Motion Vector

Decoder

Motion Vector

Decoder

Decoded Auxiliary Residue

Decoded Main Residue

Predicted Auxiliary Frame

Predicted Main Frame

Control Signal

(I or P-Frame)

I
 P

Figure 3.3: Stereo video compression algorithm decoder block diagram

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 40

3.3 Foveated Intraframe Compression

The foveated SPIHT algorithm proposed in [40] is used for intraframe compression. This

wavelet based algorithm weights the DWT coefficients before applying a modified SPIHT al-

gorithm. Upon decoding, inverse weighting and IDWT, the reconstructed image is foveated.

The block diagram of the foveated SPIHT algorithm is shown in Figure 3.4. As described

in Section 2.3.3 the general SPIHT algorithm takes the DWT of the input image and then

sends the coefficients out in a bit plane style manner. Thus, coefficients with a larger mag-

nitude (containing more information) are sent first. Slight changes need to be made to the

SPIHT algrorithm because the dynamic range of the coefficients have been changed by the

foveation weighting [40]. An example of an image compressed using the general SPIHT

algorithm was shown previously in Figure 2.12(a). Notice that the loss of image details is

uniform throughout the image. The foveated SPIHT algorithm instead weights the DWT

coefficients before transmitting them so that coefficients corresponding to the foveation zone

are amplified and transmitted earlier. The result is higher detail in the foveation area than

the rest of the image, as shown in Figure 2.12(b).

Foveated SPIHT Decoder

Foveated SPIHT Encoder

DWT

Input

Image

Foveated

Weighting

Modified SPIHT

Encoder

IDWT

Inverse

Weighting

Modified SPIHT

Decoder

Foveated

Output

Image

C
om

m
un

ic
at

io
n

C
ha

nn
el

Figure 3.4: Foveated SPIHT algorithm block diagram

The weighting is based on psychological experiments that measure the eye’s contrast

sensitivity (sensitivity to detail) as a function of retinal eccentricity [40]. Retinal eccentricity,

is the angular position in degrees from the centre of the retina (fovea). At 0 degrees the eye

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 41

has the highest concentration of cones and therefore detects more details of the scene. The

concentration of cones decreases exponentially as the eccentricity increases. A mathematical

model that fits the contrast sensitivity of a typical retina is described in Appendix A. The

appendix also uses that model to derive a normalised wavelet-domain weighting function

that generates foveation weighting masks as shown in Figure 3.5. The white regions in the

figure represent magnitudes near 1 and the dark regions are magnitudes near 0. Different

masks are generated depending on the parameters used in the weighting function derivation.

Figure 3.5: Sample foveation wavelet sensitivity function

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 42

3.4 Interframe Compression

3.4.1 Block-based Motion Estimation

The idea of interframe compression is to remove the redundancy between adjacent frames

and only transmit or store the difference. For simplicity the block-based algorithm uses a

fixed-sized block. As shown in Figure 3.4.1, this block-based algorithm divides the current

frame to be processed into an array composed of square blocks.

Figure 3.6: Frames divided into array of fixed-sized blocks

Given the current frame and for each block in the frame, the previous frame is searched

to find a block-sized area (candidate block) that best matches the current block being

processed (reference block). Only the immediately previous frame and not other previous

frames is searched to limit computation and because with high probability, it will resemble

the current frame the closest. Also future frames are not searched since they are not available

in a real-time application. The matching criterion used is the sum of absolute differences

(SAD) given by equation (3.1), where x is summed over all the pixels in a block. (Note

Section 3.4.2 discusses how the SAD can be modified to reduce computation time, yet still

give meaningful output values.) The SAD is used because it gives good matching results

and takes fewer computations than other matching criterions, such as the mean square error

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 43

(MSE).

SAD =
∑

x

∣

∣

∣

∣

ReferenceBlk(x)− CandidateBlk(x)

∣

∣

∣

∣

. (3.1)

The candidate block that has the smallest SAD is regarded as the best match to the

reference block. The position difference (translation) between the best candidate and ref-

erence block is calculated and called the motion vector (MV) of the reference block. In

this implementation the MV’s are measured in full pixels for simplicity. Note that in newer

MPEG and H.26x standards 1/4 and 1/8 pixel MV’s are also allowed [15]. This matching

process is also known as block motion estimation (ME) and is shown in Figure 3.7(a). Each

block in the current frame is processed in this manner until all the reference blocks have an

associated MV. The array of MV’s that is created for the current frame describes the motion

of the reference blocks with respect to the previous frame (i.e. the positions in the previous

frame that the reference blocks have moved from). In essence, each MV replaces the data

of one block. If each MV is represented by 2 bytes (one byte for each of the horizontal

and vertical spatial directions) and each block is 16×16 pixels, then for 8 bpp monochrome

video, the data for 1 block = 2048 bits is replaced by 2 bytes = 16 bits – a compression ratio

of 128:1! As with any type of data, even more compression is achieved when the MV array

is compressed using a lossless entropy coder. The MPEG and H.26x codecs use a Huffman

algorithm for the entropy compression [15], but this algorithm uses the generic Lempel-Ziv

algorithm called zlib, since the source code is freely distributed at [46]. It is necessary to

transmit the motion vectors using a lossless algorithm because even small differences in the

motion vectors will lead to incorrectly matched blocks in the decoder. Incorrectly matched

blocks may introduce very large errors depending on the content of the image.

Representing each MV direction by 1 byte means that a maximum of 28 = 256 distinct

values can be assigned. Since MV directions can be positive or negative, the actual MV range

is from -128 to +127 pixels in implementation. For comparison, most video applications find

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 44

MV

Best Matching

Candidate Block

Reference Block

Frame t
Frame t-1

(a) Motion estimation process

Copy and Paste

MV

Best Matching

Candidate Block

Reference Block

 Decoded Frame t-1
 Predicted Frame t

(b) Motion compensation process

Figure 3.7: Motion estimation and compensation

that a MV range of -31 to +31 pixels (6 bits per MV direction) is adequate [15]. However,

this experiment uses 8 bits per MV direction since it is convenient for SW implementation.

For increased compression performance, the MV’s can be converted to the smaller 6-bit

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 45

representation.

At the decoder side, the current frame is reconstructed using the MV’s and the previously

decoded image creating a predicted image. As shown in Figure 3.7(b), the predicted image

is created by setting each block equal to the block that the corresponding motion vector

points to in the previous frame. However, the current image cannot be reconstructed solely

with motion vectors since not all movement in a frame is translational. For example, Figure

3.8 shows how the rotation of a square cannot be described using the motion estimation

scheme alone. To reconstruct the original image, the predicted image must be adjusted by

adding the difference between the actual frame and the predicted image. This difference,

called the error residue image, is transmitted to the decoder using the lossy foveated SPIHT

algorithm. If the motion estimation algorithm performs accurately, the residue image will be

mostly empty with some small areas that have error information in them. Since most of this

image is approximately zero, very few bits are needed to represent this image adequately.

By using the foveated SPIHT algorithm here, the foveation area of the residue image will

be given priority and the decoded frame will be foveated.

Another criteria that affects image quality is the block size. In general, smaller block

sizes will improve the reconstructed image quality since smaller blocks can represent the

motion of objects in the video more accurately. However, a smaller block size also means

each frame is divided into many more blocks in total, increasing the number of MV’s

required to represent the motion between frames. Larger blocks have trouble representing

object motion accurately, but require fewer MV’s. Fewer MV’s bits also means that more

bits can be allocated to the error residue. This experiment uses a 16×16 block size, which

is the same as the MPEG and H.26x standards.

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 46

Frame t
Frame t-1

Residule Frame t

Figure 3.8: Box rotation residue

3.4.2 Fast Motion Vector Estimation Algorithm

The computationally intensive work in interframe coding occurs in the motion estimation

algorithm. There are many ways to carry out motion estimation. First and most straight-

forward is the brute force method, where every possible position within a search window in

the previous frame is tested for the best match. This windowed full-search algorithm is the

most accurate, but too slow for real-time applications on a PC. To increase the speed of the

matching, a fast search algorithm is performed. Some fast search algorithms are broadly

categorized in the following groups [47]:

• Heuristic Search Techniques: These algorithms reduce the number of candidate MV’s

tested in each search area.

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 47

• Fast Matching Techniques: The matching criterion (SAD) is calculated using only a

subset of the pixels in each block.

• Spatio-Temporal Correlation Techniques: Previously calculated MV’s from the previ-

ous frame and current frame are used as initial candidate MV’s and updated using a

small refinement search.

• Hierarchical and Multiresolution Techniques: A lower resolution version of the frames

are matched first and then refined until the normal resolution version of the frames is

reached.

The search algorithm adopted here is a combination of the above four techniques and is

based on the proposed algorithm by Chalidabhongse and Kuo [48]. The difference between

that algorithm and this one is that different candidate blocks and a different refinement

search are used. The basis of this algorithm is a spatio-temporal technique, which makes the

assumption that neighbouring blocks of the reference block in the current and previous frame

have similar motion vectors. Using this assumption, previously calculated neighbouring

motion vectors are used as initial estimates when searching for the motion vector of the

current reference block. A small search, or refinement pass, is then performed around the

best matching MV to generate a more accurate final MV for the reference block.

The first phase in the algorithm uses previously computed MV’s from the current and

previous frame as initial estimates for the MV of the reference block. Ignoring the temporal

dimension for now, a straightforward way to perform just spatio correlated estimation is

to use as initial estimates, the MV’s of the block neighbours that are immediately adjacent

to the reference block in the current frame. If the blocks are processed in a raster scan

(top to bottom, left to right), the SAD for the MV’s of the blocks above, left, above-left

and above right of the reference block can be calculated. This is shown in Figure 3.9(a).

The MV with the minimum SAD will be more accurately processed in the refinement pass.

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 48

This straightforward spatio correlated estimation method inceases the speed of the search

algorithm.

Current Reference

Block

Candidate Blocks

(a) Simple spatio candidates

1

3

1

3

1

3

3

2

3

2

3

2

1

3

1

3

1

3

3

2

3

2

3

2

1

3

1

3

1

3

3

2

3

2

3

2

1

3

1

3

1

3

3

2

3

2

3

2

1

3

1

3

1

3

3

2

3

2

3

2

1
 3
 1
 3
 1
 3
 1
 3
 1
 3

(b) G1, G2, G3 block classification

2

G1 Block

1

1

1
 1

1

2

1

1

1

1

1

G3 Block

G2 Block

(c) G1, G2, G3 spatio block candidates

Figure 3.9: Spatio correlated motion estimation candidates

However, a larger increase in speed is achievable if the algorithm takes advantage of

the observation that MV’s have a longer range spatial correlation than one block [48].

This means that blocks that are slightly farther away from the reference block probably

also have a similar MV. For this reason the algorithm classifies every block into one of

three groups; G1, G2 or G3. Figure 3.9(b) shows how each block is classified. First, all

G1 blocks are processed, followed by all G2 blocks, and finally by all G3 blocks. When

processing G1 blocks, only MV’s of other previously processed G1 blocks can be considered

as candidate MV’s since the G2 and G3 blocks have not yet been processed. G2 block

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 49

processing uses adjacent G1 blocks. G3 block processing uses neighbouring G1 and G2

blocks. This candidate selection, shown in Figure 3.9(c), allows G2 and G3 blocks to have

initial MV estimates coming from non-causal spatial directions, and not just from blocks

that are above and left as in the simple spatio method. A faster and more accurate search

is the result since a better set of initial estimates is used. This grouping also means that

G3 blocks have slightly better set of initial MV’s than G1 and G2 blocks, so the refinement

pass for G3 blocks does not need to be as rigorous as that of the G1 and G2 blocks [48].

The above discussion focused on spatio estimation, in other words, estimating the MV

using previously calculated MV’s in the same frame only. MV’s in the previous frame are

also highly correlated. For all reference blocks, a possible candidate MV is the MV of the

block at the same location in the previous frame. Also the MV’s from all immediately

neighbouring blocks in the previous frame can also be used. Note that temporal candidates

cannot be used for the very first P-frame of a GOF since the previous I-frame has no MV

array. Figure 3.10 shows the MV candidates for spatio-temporal MV estimation.

3

3

3

2

2

1

1
G1

Block

G3

Block

1

1

1

1

1

1

1

1

3

3

1

3

3

3

3

3

2

3

3

3

G2

Block

MV Array Frame t-1
 MV Array Frame t

Figure 3.10: G1, G2, G3 spatio-temporal block candidates

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 50

The next phase in the spatio-temporal estimation algorithm is the refinement process.

The refinement process takes the best candidate MV for each reference block and performs

a small search around the area pointed to by that MV. This makes the final MV more

accurate and is also the mechanism that introduces changes to values in the MV array. The

search algorithm in the refinement pass is a simple three-step-search heuristic technique.

The SAD is calculated for the eight MV’s surrounding the current best candidate MV. If

one of the surrounding MV’s has a smaller SAD than the current best candidate MV, the

search repeats with the new MV as the best initial MV estimate. Otherwise the search ends

and the current best MV is declared the best match. For a three-step-search, this repeats

three times, although any number of iterations can be used. The assumption that makes

the three-step-search work is that the matching error, SAD, increases monotonically as the

searching point moves away from the global minimum. This assumption is generally not

true if the initial MV estimate can be any point in the frame, but is reasonable if the initial

MV supplied by the spatio-temporal algorithm is already close to the global minimum [48].

Figure 3.11 shows the three-step-search procedure.

Step 2

Step 3

Step 1

Figure 3.11: Three-step-search algorithm

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 51

To further increase the speed of computation, the spatio-temporal algorithm can be

applied in an hierarchical technique. This technique creates lower resolution versions of

each frame and performs block motion estimation with the lower resolution frames. Each

lower resolution frame is half the size of the previous level’s dimensions. MV’s from the

lower resolution level are used as initial estimates (after scaling by a factor of 2) for the next

higher resolution level. The speed increase comes from the reduced search area and reduced

block sizes at the lower resolution levels. To start the hierarchical algorithm, the original

frame is decomposed into multiple low resolution images. This algorithm uses a simple

and fast averaging technique, where the average of four neighbouring pixels is used as the

corresponding pixel value in the next lower resolution image. Three levels of lower resolution

images per frame were found to be adequate in [48] and thus is used in this experiment.

At the lowest resolution (coarsest) level, a small windowed full-search is performed for each

block. This full-search is fast since at this resolution level each block is only 2 pixels × 2

pixels (16/23 = 2) and the window is set to constrain the search area to +/- 1 block. At the

next resolution level, the above spatio-temporal algorithm is performed using the additional

candidate MV generated by the full-search of the coarsest resolution level. This is repeated

for the next resolution level until the full resolution level is reached. Each resolution level

uses the additional candidate MV generated by the previous level. [48] shows that using a

hierarchical technique (as opposed to just the spatio-temporal technique) usually improves

the speed of the algorithm and reduces the error between the decoded frames and the

original frames.

The final improvement to the algorithm is a modification to the SAD equation. The

previous SAD equation (3.1) sums the absolute difference over all the 256 pixels in a block

at the full resolution level. However, the SAD still functions adequately if only half of the

block pixels are actually used in the calculation. Figure 3.12 shows the pattern of the pixels

that are actually used (shown in dark squares) in the SAD calculation. White squares are

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 52

ignored pixels. Even fewer pixels can be used, but as the number of pixels included in the

calculation reduces, so does the validity of the SAD calculation.

- Pixel Included in SAD Calculation

- Pixel Not Included in SAD Calculation

Figure 3.12: Pixel reduction in SAD calculation

3.5 Stereo Compression

For this experiment, the main stream is the right camera video and the auxiliary stream

is the left camera video, although the choice of which stream is the main or auxiliary does

not affect the outcome. The auxiliary stream is coded based on the main stream, and uses

almost the same spatio-temporal algorithm for disparity estimation and compensation as

inteframe coding uses for motion estimation and compensation. In the above Section 3.4,

the main stream is compressed with the spatio-temporal algorithm which computes the SAD

between blocks in the current main stream frame and the previous main stream frame. To

compress the auxiliary stream, the spatio-temporal algorithm instead computes the SAD

between blocks in the current auxiliary stream frame and the current main stream frame.

The disparity compensated auxiliary frames will be called S-frames. Figure 3.13 shows the

overall relationships between the frames in both video streams.

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 53

Left Eye Stream

(Auxillary Stream)

Right Eye Stream

(Main Stream)

Arrows point to frame used to

predict "current" frame

Increasing Time

Figure 3.13: Relationships between frames

By taking advantage of certain properties of stereo video, the spatio-temporal algorithm

is modified to make it more computationally efficient for disparity estimation. Since the

cameras mounted on the platform are assumed to be equipolar, the spatio-temporal algo-

rithm only needs to search the horizontal direction, reducing the number of computations

in the full-search and refinement passes. This also implies that the disparity estimation

only describes horizontal motion. Thus the number of MV’s required to describe the block

motion between the current main stream frame and the current auxiliary frame is half the

amount that is required to describe the block motion between main stream frames. Another

modification is based on the observation that the auxiliary stream always corresponds to

the left eye. Because of this, the full-search neighbourhood window for the right image only

needs to contain the left side of the reference block position. With respect to the image

borders, all objects in the right image are positioned, more to the left than the same objects

in the left image.

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 54

These two factors reduce the number of computations and are the reasons why the

disparity estimation and compensation algorithm will run faster than the general motion

estimation algorithm used for the main stream. The output of the disparity estimation and

compensation is a set of MV’s that describe only horizontal movement and an error residue

between the predicted current auxiliary frame and the actual current auxiliary frame. As

in the previous section, the horizontal-only MV’s can be compressed losslessly using the

Lempel-Ziv algorithm and the error residue can be lossy compressed using the foveated

SPIHT algorithm.

3.6 Global Motion Compensation

A technique that complements and enhances block-based motion estimation is global motion

estimation (GME). Motion in a video sequence can be divided into global and local motion.

Global motion describes the movement of the recording device usually in terms of pan,

tilt, rotation and zoom. Local motion is motion that is not caused by the camera’s change

in position, such as moving objects in the scene. An advantage of applying GME is an

increase in compression, since for scenes containing global motion, a few motion parameters

can be transmitted to replace the many locally estimated block motion vectors [49]. A

disadvantage is that global motion is difficult to measure from video sequences and increase

the already high processing requirements.

In this experiment however, global motion is estimated in a very simple and computa-

tionally efficient manner. Since the robotic pivoting platform has encoders attached to the

pan and tilt axes, each recorded pair of frames can be associated with a pan and tilt value.

These two values can be used to compute a global motion vector. Other simplifications are

that the ADS cameras used do not have adjustable zoom and are permanently horizontally

mounted to the fixed platform, hence no zooming or rotation is possible. The processing

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 55

needed to estimate the global motion is almost zero.

Typically a 6-parameter affined motion model, shown in equation (3.2), is used to de-

scribe global motion. The coordinates (x, y) of a pixel in the current image is related to the

coordinates (x′, y′) of the corresponding pixel in the reference image by the parameters m0,

m1, m2, m3, m4 and m5. Parameters m2 and m5 describe the pan and tilt motion while

the remaining parameters describe the rotation and zoom [50].

x′ = m0x+m1y +m2

y′ = m3x+m4y +m5

(3.2)

Since the only allowable camera motions are pan and tilt, the 6 parameter model can be

simplified to a 2 parameter motion model, shown in equation (3.3), by setting m0 = m4 = 1

and m1 = m3 = 0. To obtain the pan and tilt translation parameters, the encoder readings

can be converted to translation values using a camera model such as in [51]. However,

the camera model presented there is for an extremely high-precision camera rig used to

control motion to fractions of a pixel. The camera platform and motion vectors used in this

experiment do not have a comparable precision and thus a simpler encoder-to-translation

conversion is used. (Recall that the motion vector precision in this implementation is full

pixels.)

x′ = x+m2

y′ = y +m5

(3.3)

Two constant conversion factors are used to transform the pan and tilt encoder values

to the m2 and m5 translation parameters. The constant factors are derived from a feature

tracking experiment performed for both the pan and tilt axes. Several features in a video

scene are tracked. For each feature, the camera is panned or tilted by some amount and the

CHAPTER 3. STEREO VIDEO COMPRESSION ALGORITHM DESIGN 56

ratio of the pixel translation to the encoder counts are manually noted. The experiment

is repeated for several features at varying distances from the camera platform and also for

different start and stop positions in the frame. The feature tracking experiments showed

that overall, the ratios did not vary significantly despite the differences in distance and

position in the frame. The final conversion factors (units in pixels/count) for the pan and

tilt encoders were calculated by averaging all the experimental ratios and are 1.1 and 0.37

respectively.

3.7 Summary

This section described the goals and design of the stereo video compression algorithm. The

design includes components for intraframe, interframe and auxiliary stream compression.

The foveated SPIHT algorithm is used for compression of the I-frames and error residues.

This algorithm gives the foveated property to the stereo video. A block-based multiresolu-

tion spatio-temporal algorithm is used for motion estimation in interframe compression. It

combines multiresolution and spatio-temporal techniques with a three-step-search heuristic

and a reduced SAD calculation to give a fast algorithm. A slightly modified version of this

algorithm is used for the disparity estimation when compressing the auxiliary frames. Small

modifications are needed to take advantage of equipolar stereo video properties and make

the algorithm more computationally efficient. Global motion derived from encoder readings

is also used to increase the compression efficiency.

Chapter 4

Experimental Results

An implementation of the stereo video compression algorithm is evaluated in this chapter.

Results for video sequences with different characteristics are presented and analysed quali-

tatively and quantitatively. The effects of each component in the system is examined with

respect to the amount of compression and image quality. Comparisons with the MPEG2

and H.264/MPEG-4 AVC standards will also be performed along with perceptual observa-

tions and an analysis of the implementation’s computational performance. The complete

test videos and resulting compressed versions can be found on the CD-ROM included on

the back cover of this thesis.

4.1 Test Videos and Quality Metrics

The stereo video sequences used to test the compression algorithm are captured using the

cameras mounted on the robotic panning platform shown previously in Figure 3.1. An

application was developed to simultaneously capture stereo frames and encoder readings

while the platform orientation was adjusted manually. This allowed the recording of stereo

videos that contained different motion characteristics. It is important to test the codec with

57

CHAPTER 4. EXPERIMENTAL RESULTS 58

different types of motion so that the performance of the algorithm in different situations can

be determined. Table 4.1 lists the videos that were generated using the capture program

and their corresponding motion characteristics. Each video contains 125 pairs of 8-bit

monochrome frames at a resolution of 640×240 pixels along with the corresponding encoder

readings.1 Figures 4.1 through 4.5 show the 60th frame of each of the five videos. The 60th

frame is chosen as a reference because, in the following sections, it will not be coded as an

I-frame and will be in the middle of a GOF’s.

Table 4.1: Test video descriptions

Video Name Description

Lab1 No object motion, no camera motion. (Still video)
Lab2 Object motion though scene, no camera motion.
Lab3 Object motion at foveation point, no camera motion.
Lab4 No object motion, camera panning.
Lab5 Object motion at foveation point, camera panning. (Track-

ing moving object)

Figure 4.1: Original Lab1 left and right 60th frames

Subjective opinions and quantitative measurements will be used to evaluate the results

of the image compression algorithm. Subjective results are generally most useful, although

very difficult to quantify without significant user tests. Correlating perceived image qual-

ity with an image quality metric is a tricky problem that still does not have a generally

1The example video frames appear to be of an odd aspect ratio. This is a result of the VFX3D VR
goggles, which require this resolution for the video input. The VR goggle’s internally upsample each line to
produce video of 640×480 in the display of each eye.

CHAPTER 4. EXPERIMENTAL RESULTS 59

Figure 4.2: Original Lab2 left and right 60th frames

Figure 4.3: Original Lab3 left and right 60th frames

Figure 4.4: Original Lab4 left and right 60th frames

Figure 4.5: Original Lab5 left and right 60th frames

accepted solution [52]. The analysis in this section utilizes two image quality measures to

quantitatively evaluate each reconstructed output frame. The first measure is the com-

monly used peak signal-to-noise ratio (PSNR), shown in equation (4.1). It is measured in

units of dB’s, with a higher value representing a better match. The second measure is the

foveated wavelet quality index (FWQI), shown in equation (4.2), where S(w) is the foveated

CHAPTER 4. EXPERIMENTAL RESULTS 60

sensitivity defined in Appendix A, c(w) is the wavelet coefficient value at wavelet location

w and Q(w) is the quality index at wavelet location w.2 Appendix B derives the FWQI

in detail. The FWQI was proposed in [53] for use with foveated images, since it places

more emphasis on quality in the foveation region. The metric ranges from 0 to 1, with 1

representing a perfect match.

PSNR = 10 log10

(

(Max Pixel Magnitude)2

Mean Square Error

)

. (4.1)

FWQI =

∑

w
S(w)|c(w)|Q(w)
∑

w
S(w)|c(w)|

. (4.2)

4.2 An Incremental Analysis of the Stereo Video Compres-

sion Algorithm

This section examines the effects of adding each component in the stereo video com-

pression algorithm separately. Starting from raw video, the rate distortion performance

of the algorithm is analysed by first adding intraframe encoding, and then interframe

encoding, followed by disparity encoding, and finally global motion compensation. For

the stereo test videos of Table 4.1, each uncompressed stereo video has a raw file size

of (125 frames/stream)×(2 streams)×(640×240 pixels/frame)×(8 bpp) = 307 200 000 bits

= 38 400 000 bytes. Another representation for the video size can be used by fixing the

frame rate. If the videos run at 25 fps, the required bitrate for the raw videos will be (2

streams)×(640×240 pixels/frame)×(8 bpp)×(25 fps) = 61 440 000 bps.

2The boldface denotes a 2D position vector.

CHAPTER 4. EXPERIMENTAL RESULTS 61

4.2.1 Intraframe Compression Tests

The simplest method to compress video is to compress each frame individually using the

foveated SPIHT coder. The statistics for compressing all the videos with independent

streams and using only intraframe compression is shown in Table 4.2. The PSNR and FWQI

for each frame of the videos is shown in Figures 4.6 and 4.7 respectively. The 60th frame

for the videos are shown in Figure 4.8. These tests were based on a SPIHT bitrate of 0.15

bpp, which translates to a final pre-entropy coding size of (640×240 pixels/frame)×(0.15

bpp)×(125 frames/stream)×(2 streams) = 5 760 000 bits or a bitrate of 1 152 000 bps. How-

ever, the final file size is smaller after entropy coding as can be seen in the final file sizes of

the results. The compression ratios for all the videos are fairly constant since each frame is

independently compressed with the same SPIHT bitrate.

Table 4.2: Independent streams, pure I-frame compression results in bytes (0.15 bpp)

Test Main Aux. Total Final Final Comp. % File Size
Video Comp. Comp. Header File Bitrate Ratio Decrease Over

Size Size Size Size (Kbps) Raw Video

Lab1 329270 330438 4000 663708 1061.9 57:1 98.3%
Lab2 326895 328233 4000 659128 1054.6 58:1 98.3%
Lab3 328485 328983 4000 661468 1058.3 58:1 98.3%
Lab4 323181 323650 4000 650831 1041.3 59:1 98.3%
Lab5 325202 326120 4000 655322 1048.5 58:1 98.3%

Figures 4.6 and 4.7 seem to show that the auxiliary stream has consistently lower qual-

ity for similar compression performance. This offset should not exist if the cameras were

perfectly identical. However, although the cameras are the same model, slight differences in

the manufacturing and focus may cause one stream to be more conducive for compression

and thus create the offset. The cameras are manually subjectively focused and probably

do not have the exact same focus setting. Upon close inspection of the original videos, the

main stream does have a slightly lower contrast and blurrier image quality when compared

CHAPTER 4. EXPERIMENTAL RESULTS 62

with the auxiliary stream. This will translate into better compression performance since

intensity variance is lower and high spatial frequency details are eliminated. This was ver-

ified by swapping the video streams before encoding, and checking that the quality metric

plots also switched places. The difficulty in calibrating the camera properties is a reason

why it is recommended that higher quality cameras be used in future experiments.

It is also interesting to note that the FWQI has a flatter response overall. Its variance

over all the frames in each video is more consistent with what is subjectively observed. This

is expected since the FWQI places more emphasis on the quality of the foveation region than

the PSNR. The foveation region in the reconstructed videos has a more constant quality

because the foveated SPIHT algorithm is used to compress the I-frames and residues.

It was discovered during experimentation that applying foveation to stereo compression

increases the depth sensation in the foveation region. For low bitrate applications, the

sense of object distances in video compressed without foveation is reduced due to the low

quality of the entire image. The reduction in detail and loss of edge information in both

streams makes the scene lose many depth queues [33]. Higher detail in the foveation region

retains more depth cues, resulting in a more accurate depth sensation for objects. Also,

important details such as faces, clearly stand out, as opposed to very blocky or blurred faces

in unfoveated stereo video.

CHAPTER 4. EXPERIMENTAL RESULTS 63

0 50 100

20

22

24

26

28

Lab1 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab2 Frames
P

S
N

R
 (

dB
)

0 50 100

20

22

24

26

28

Lab3 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab4 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab5 Frames

P
S

N
R

 (
dB

)

Figure 4.6: PSNR results for intraframe compression (I = 0.15 bpp; Solid line = main
stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 64

0 50 100
0.5

0.6

0.7

0.8

Lab1 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab2 Frames
F

W
Q

I

0 50 100
0.5

0.6

0.7

0.8

Lab3 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab4 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab5 Frames

F
W

Q
I

Figure 4.7: FWQI results for intraframe compression (I = 0.15 bpp; Solid line = main
stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 65

Figure 4.8: Intraframe compressed 60th frames (I = 0.15bpp)

4.2.2 Interframe Compression Tests

Applying the fast block-based motion compensation techniques gives the results shown in

Table 4.3 and Figures 4.9 and 4.10. The 60th frame for the videos are shown in Figure

4.11. In these tests, both streams were compressed independently of each other, a block

CHAPTER 4. EXPERIMENTAL RESULTS 66

size of 16×16 was used, and the GOF size was 25 (one I-frame every second). The SPIHT

algorithm bitrates were 0.15 bpp for the I-frames and 0.03 bpp for the P-frame residues.

The search range for the motion estimation was ±15 pixels.

Table 4.3: Independent streams, interframe compression results in bytes (I = 0.15 bpp, P
= 0.03 bpp)

Test Main Aux. Total Final Final Comp. % File Size
Video Comp. Comp. Header File Bitrate Ratio Decrease Over

Size Size Size Size (Kbps) Intraframe

Lab1 47920 36295 4960 89175 142.7 430:1 86.6%
Lab2 54240 55376 4960 114576 183.3 335:1 82.6%
Lab3 61844 63823 4960 130627 209.0 293:1 80.3%
Lab4 99232 102320 4960 206512 330.4 185:1 68.3%
Lab5 110706 112648 4960 228314 365.3 168:1 65.2%

The results show that interframe compression increases the compression ratio substan-

tially while generally maintaining the video quality for all the test videos. The highest

decrease in file size over just intraframe compression was 86.6% for the Lab1 video se-

quence. Lowest decrease was 65.2% in the Lab5 sequence. The other videos had file size

decreases in between those two extreme cases. (Note that the dips occurring at every 25

frames in the PSNR and FWQI plots of Figures 4.9 and 4.10 are caused by the I-frames.)

Lab1 has the highest compression increase since it ideally should have zero motion

vectors for all blocks. This translates into very high entropy compression performance when

compressing the motion vectors. Occasionally, incorrect matches in the motion estimation

will cause motion vectors to be non-zero. These mismatches are mainly in the outer regions

of the images because the reconstructed previous frame is used to estimate the motion

vectors. Since the outer regions of the reconstructed previous frame are more distorted

than the foveation region, more incorrectly matched blocks are expected there.

Lab5 has the lowest increase in compression performance since it has the highest com-

plexity motion of all the sequences. Most of the estimated motion vectors will be non-zero,

CHAPTER 4. EXPERIMENTAL RESULTS 67

0 50 100

20

22

24

26

28

Lab1 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab2 Frames
P

S
N

R
 (

dB
)

0 50 100

20

22

24

26

28

Lab3 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab4 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab5 Frames

P
S

N
R

 (
dB

)

Figure 4.9: PSNR results for independent streams, interframe compression (I = 0.15 bpp;
P = 0.03 bpp; Solid line = main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 68

0 50 100
0.5

0.6

0.7

0.8

Lab1 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab2 Frames
F

W
Q

I

0 50 100
0.5

0.6

0.7

0.8

Lab3 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab4 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab5 Frames

F
W

Q
I

Figure 4.10: FWQI results for independent streams, interframe compression (I = 0.15 bpp;
P = 0.03 bpp; Solid line = main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 69

Figure 4.11: Interframe compressed 60th frames (I = 0.15bpp, P = 0.03 bpp)

which will not compress as much when applying entropy coding.

At this point, the compression algorithm is most similar to the MPEG2 compression

algorithm. Table 4.4 and Figures 4.12 and 4.13 show the results of compressing the test

videos using the MPEG2 reference software (TMN5) [54]. Figure 4.14 show the 60th frames

CHAPTER 4. EXPERIMENTAL RESULTS 70

compressed using MPEG2. The values in Table 4.4 are slightly different from the tables in

the rest of this section because they represent the file sizes including header information.

The interframe compression algorithm and the MPEG2 software produce similar compressed

file sizes.

Table 4.4: Independent streams, MPEG2 compression results in bytes

Test Main Aux. Total Final Comp.
Video Comp. Comp. File Bitrate Ratio

File Size File Size Size (Kbps)

Lab1 44488 45413 89901 143.8 427:1
Lab2 56964 57175 114139 182.6 336:1
Lab3 52572 54529 107101 117.4 358:1
Lab4 96992 102566 199558 319.3 192:1
Lab5 114159 115279 229438 367.1 167:1

The PNSR results suggest that the quality of the MPEG2 compressed videos are higher

than those compressed by the algorithm presented thus far. This is a false indication,

because the MPEG2 videos are not foveated. A better comparison is to instead use the

FWQI to evaluate the results. The FWQI shows that the foveated compression algorithm

presented here has a similar or better foveal quality than the MPEG2 compressed video

for a similar bitrate. Subjectively, the MPEG2 video is much blockier than the proposed

algorithm. The next sections add disparity compensation and global motion compensation

to the algorithm, causing the overall compression performance to be better than MPEG2.

CHAPTER 4. EXPERIMENTAL RESULTS 71

0 50 100

20

22

24

26

28

Lab1 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab2 Frames
P

S
N

R
 (

dB
)

0 50 100

20

22

24

26

28

Lab3 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab4 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab5 Frames

P
S

N
R

 (
dB

)

Figure 4.12: PSNR results for independent streams, MPEG2 compression (Solid line =
main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 72

0 50 100
0.5

0.6

0.7

0.8

Lab1 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab2 Frames
F

W
Q

I

0 50 100
0.5

0.6

0.7

0.8

Lab3 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab4 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab5 Frames

F
W

Q
I

Figure 4.13: FWQI results for independent streams, MPEG2 compression (Solid line =
main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 73

Figure 4.14: MPEG2 compressed 60th frames

4.2.3 Auxillary Stream Compression Tests

The effect of compressing the auxiliary stream using the disparity compensation are exam-

ined in this section. The main stream remains independently compressed using the same

settings as in the previous section, but now the auxiliary stream is reconstructed from the

CHAPTER 4. EXPERIMENTAL RESULTS 74

main stream as described in Section 3.5. The S-frame residues are compressed using the

same SPIHT bitrate of 0.03 bpp and the search range for the disparity estimation is +31

pixels. A larger search range is required since the matching feature in the main stream

frame is generally at a greater distance than if the feature was matched from the previous

auxiliary frame. Table 4.5 and Figures 4.15 and 4.16 show the results of these tests on the

five video sequences. The 60th frame for the videos are shown in Figure 4.17.

Table 4.5: Stereo interframe compression results in bytes (I = 0.15 bpp, P = 0.03 bpp, S =
0.03 bpp)

Test Main Aux. Total Final Final Comp. % File Size
Video Comp. Comp. Header File Bitrate Ratio Decrease Over

Size Size Size Size (Kbps) Interframe

Lab1 47920 23712 4980 76612 122.6 501:1 14.1%
Lab2 54240 27976 4980 87196 139.5 440:1 23.9%
Lab3 61844 30936 4980 97760 156.4 392:1 25.2%
Lab4 99232 31349 4980 135561 216.9 283:1 34.4%
Lab5 110706 44782 4980 160468 256.7 239:1 29.7%

Applying disparity compensation coding causes the auxiliary stream compressed size to

decrease. The main stream compression performance remains the same since it is coded

independently. In these tests, Lab4 had the greatest decrease in file size over interframe

compression of 34.4%. Lab1 had the lowest decrease of 14.1%. This is explained by the

fact that Lab1 already had very high compression due to its mainly zero motion vectors.

The disparity motion vectors, however, will not be zero since almost all the blocks in

the auxiliary stream will be displaced by some amount with respect to the main stream.

Lab5’s auxiliary stream compression performance increases since the disparity motion vector

variance is much lower than the original interframe motion vector variance. This results in

more efficient entropy coding. Also recall that the vertical component of the motion vectors

is not used, due to the equipolar assumption, futher reducing the auxiliary stream file size.

A problem visible subjectively and also quantitatively in Figures 4.15 and 4.16, is that

CHAPTER 4. EXPERIMENTAL RESULTS 75

0 50 100

20

22

24

26

28

Lab1 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab2 Frames
P

S
N

R
 (

dB
)

0 50 100

20

22

24

26

28

Lab3 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab4 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab5 Frames

P
S

N
R

 (
dB

)

Figure 4.15: PSNR results for stereo interframe compression (I = 0.15 bpp; P = 0.03 bpp;
S = 0.03 bpp; Solid line = main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 76

0 50 100
0.5

0.6

0.7

0.8

Lab1 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab2 Frames
F

W
Q

I

0 50 100
0.5

0.6

0.7

0.8

Lab3 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab4 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab5 Frames

F
W

Q
I

Figure 4.16: FWQI results for stereo interframe compression (I = 0.15 bpp; P = 0.03 bpp;
S = 0.03 bpp; Solid line = main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 77

Figure 4.17: Stereo compressed 60th frames (I = 0.15bpp, P = 0.03 bpp, S = 0.03 bpp)

the video quality of the auxiliary stream has substantially reduced. There are three causes

of this degradation in video quality. Disparity compensation is inherently less accurate

than interframe compensation. This is because there are more occluded regions between

corresponding main and auxiliary frames than there are between frames of the same stream.

CHAPTER 4. EXPERIMENTAL RESULTS 78

The second reason is that the ADS cameras have high lens distortion especially at

the border regions. The disparity estimation algorithm’s assumption that the frames are

equipolar is now false at the left and right sides of the frames. Figure 4.18 points out a

region where the equipolar assumption is false. This causes more incorrect block matches

at the sides of the video frames. Cameras with less lens distortion will solve this problem,

or the equipolar assumption will have to be relaxed. Allowing the disparity compensation

to have small vertical motion components will solve many mismatches caused by the lens

distortion. However, this will increase the compressed file size.

Not equipolar!

Right Side of

Left Frame

Right Side of

Right Frame

Figure 4.18: Example region where equipolar assumption is false

The final reason for the drop in PSNR and FWQI is because the original main and

auxiliary frames were recorded from different camera sources. As mentioned previously,

the cameras generate different video characteristics, such as focus, contrast, etc. At the

decoder, the auxiliary stream is reconstructed from the main stream and therefore its video

characteristics will be closer to the main stream characteristics. This causes the PSNR

and FWQI calculations to report a lower correlation with respect to the original auxiliary

CHAPTER 4. EXPERIMENTAL RESULTS 79

stream.

Of the three degradation causes, only the first two are subjectively noticeable. However,

the last cause is the main source of the drop in PSNR and FWQI since it affects whole

frames and not just a few isolated blocks. To reduce the noticeable artifacts, the S-frame

residue bitrate can be increased. Increasing the S-frame residue SPIHT bitrate to 0.045

bpp results in Table 4.6 and Figures 4.19 and 4.20. Notice that the file size for the auxiliary

stream is now much higher than when the S-frame residues were coded using 0.03 bpp.

However, subjectively and quantitatively, the increase in bitrate does not help the video

quality enough to justify the resulting file size.

Although the quality of the reconstructed auxiliary stream is poor when viewed alone,

the noticeable artifacts are less prominent when viewed stereoscopically with the main

stream. The suppression theory of binocular vision explains this phenomenon [35]. It may

be possible to reduce the quality (and increase compression) of the auxiliary stream even

more without users realizing the degradation. The exact amount of degradation in relation

to this experiment should be examined in future psychological experiments.

Table 4.6: Stereo interframe compression results in bytes (I = 0.15 bpp, P = 0.03 bpp, S =
0.045 bpp)

Test Main Aux. Total Final Final Comp. % File Size
Video Comp. Comp. Header File Bitrate Ratio Decrease Over

Size Size Size Size (Kbps) Interframe

Lab1 47920 44831 4980 97731 156.4 392:1 9.6%
Lab2 54240 49943 4980 109163 174.7 351:1 4.7%
Lab3 61844 57705 4980 124529 199.2 308:1 4.7%
Lab4 99232 53190 4980 157402 251.8 243:1 23.8%
Lab5 110706 70916 4980 186602 298.6 205:1 18.3%

CHAPTER 4. EXPERIMENTAL RESULTS 80

0 50 100

20

22

24

26

28

Lab1 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab2 Frames
P

S
N

R
 (

dB
)

0 50 100

20

22

24

26

28

Lab3 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab4 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab5 Frames

P
S

N
R

 (
dB

)

Figure 4.19: PSNR results for stereo interframe compression (I = 0.15 bpp; P = 0.03 bpp;
S = 0.045 bpp; Solid line = main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 81

0 50 100
0.5

0.6

0.7

0.8

Lab1 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab2 Frames
F

W
Q

I

0 50 100
0.5

0.6

0.7

0.8

Lab3 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab4 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab5 Frames

F
W

Q
I

Figure 4.20: FWQI results for stereo interframe compression (I = 0.15 bpp; P = 0.03 bpp;
S = 0.045 bpp; Solid line = main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 82

4.2.4 Global Motion Compensation Tests

Global motion compensation (GMC) is enabled for the tests in this section. All the settings

are the same as the first set of tests in the previous section. As verification for the simple

global motion calculation, the global motion vectors generated by the encoders are compared

to motion vectors generated by the global motion estimation algorithm in the Joint Video

Team’s (JVT) H.264/MPEG-4 AVC reference software [55]. The H.264/MPEG-4 AVC

algorithm only uses the video to estimate the global motion. Figures 4.21 and 4.22 show

the computed and estimated horizontal motion for the Lab4 and Lab5 video sequences.

Vertical motion is not shown since it is minimal in the videos and its computation almost

identical. Only the motion vectors estimated from the right eye video stream are shown

since the motion vectors estimated from the left eye are similar.

0 20 40 60 80 100 120
−1

0

1

2

3

4

5

Lab4 Frames

H
or

iz
on

ta
l M

ot
io

n
(p

ix
el

s)

Encoder generated motion
Estimated motion from right video

Figure 4.21: Comparison of horizontal global motion for Lab4

The results indicate that the encoder generated motion matches closely to the motion

estimated by the H.264/MPEG-4 AVC software. The differences are usually ±1 pixel,

except in one frame where the difference is 2 pixels. Since the encoder readings represent

the actual recorded global motion, the calculated global motion should be more accurate

than the H.264/MPEG-4 AVC estimated motion, which can explain the small differences

CHAPTER 4. EXPERIMENTAL RESULTS 83

0 20 40 60 80 100 120
−12

−10

−8

−6

−4

−2

0

Lab5 Frames

H
or

iz
on

ta
l M

ot
io

n
(p

ix
el

s)

Encoder generated motion
Estimated motion from right video

Figure 4.22: Comparison of horizontal global motion for Lab5

between the results. The close motion vector matching of the two methods, suggest that

the motion vectors generated from the simple encoder reading conversion are correct, and

can be used in place of a complex global motion estimation algorithm.

The video encoding results of applying GMC are shown in Table 4.7 and Figures 4.23

and 4.24.

Table 4.7: Global motion compensated stereo interframe compression results in bytes (I =
0.15 bpp, P = 0.03 bpp, S = 0.03 bpp)

Test Main Aux. Total Final Final Comp. % File Size
Video Comp. Comp. Header File Bitrate Ratio Decrease Over

Size Size Size Size (Kbps) Stereo Comp.

Lab1 47789 23733 5230 76752 122.8 500:1 -0.1%
Lab2 55613 28202 5230 89045 142.5 431:1 -2.1%
Lab3 61761 30840 5230 97831 156.5 392:1 -0.1%
Lab4 72525 31892 5230 109647 175.4 350:1 19.1%
Lab5 98824 44710 5230 148764 238.0 258:1 7.9%

The results show that using GMC, the Lab4 and Lab5 video sequences had, respectively,

a 19.1% and 7.9% decrease in file size over normal stereo compression while maintaining

similar quality. These are the only sequences that contained global motion and hence the

increase in compression performance additionally justifies that the simple conversion factor

CHAPTER 4. EXPERIMENTAL RESULTS 84

0 50 100

20

22

24

26

28

Lab1 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab2 Frames
P

S
N

R
 (

dB
)

0 50 100

20

22

24

26

28

Lab3 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab4 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab5 Frames

P
S

N
R

 (
dB

)

Figure 4.23: PSNR results for GMC stereo interframe compression (I = 0.15 bpp; P = 0.03
bpp; S = 0.03 bpp; Solid line = main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 85

0 50 100
0.5

0.6

0.7

0.8

Lab1 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab2 Frames
F

W
Q

I

0 50 100
0.5

0.6

0.7

0.8

Lab3 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab4 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab5 Frames

F
W

Q
I

Figure 4.24: FWQI results for GMC stereo interframe compression (I = 0.15 bpp; P = 0.03
bpp; S = 0.03 bpp; Solid line = main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 86

method used to calculate the global motion vector from the encoder readings, is adequate

for GMC. The improvement for Lab5 is not as great as for Lab4, because there is a high

amount of local motion in the lab5 sequence.

The Lab1, Lab2 and Lab3 sequences, which do not have any global motion, did not gain

additional compression but instead had slightly larger final file sizes. The increase in file

size can be traced to the additional header data that is used to transmit the global motion

vector of each frame.

The global motion compensated stereo compressed videos are now compared with videos

compressed using the H.264/MPEG-4 AVC encoder. Although this is not exactly a fair

comparison (since the H.264/MPEG-4 AVC codec contains many other features, such as

intra prediction, 1
4 -pixel motion compensation, variable-size blocks, etc. that make it su-

perior [56]), it will be interesting to see where the stereo compression algorithm stands in

relation. The H.264/MPEG-4 AVC coder is set to have a GOF of 25 and set for maximum

compression with GMC on.3 The results are shown in Table 4.8 and Figures 4.25 and 4.26.

Table 4.8: Independent streams, H.264/MPEG-4 AVC reference software compression re-
sults in bytes

Test Main Aux. Total Final Comp.
Video Comp. Comp. File Bitrate Ratio

File Size File Size Size (Kbps)

Lab1 16895 19550 36445 58.3 1053:1
Lab2 23436 25524 48960 78.3 784:1
Lab3 22717 25670 48387 77.4 793:1
Lab4 16183 19960 36143 57.8 1062:1
Lab5 40479 42281 82760 132.4 464:1

From the results, it is clear that even though the main and auxiliary streams are com-

pressed individually, the H.264/MPEG-4 AVC codec outperforms the stereo video compres-

3The H.264/MPEG-4 AVC coder does not explicity have a compression size setting. The quantisation
value (0-31) selects the quality of the reconstructed video and hence affects the compression rate. For
maximum compression a quantisation value of 31 is used. [55]

CHAPTER 4. EXPERIMENTAL RESULTS 87

0 50 100

20

22

24

26

28

Lab1 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab2 Frames
P

S
N

R
 (

dB
)

0 50 100

20

22

24

26

28

Lab3 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab4 Frames

P
S

N
R

 (
dB

)

0 50 100

20

22

24

26

28

Lab5 Frames

P
S

N
R

 (
dB

)

Figure 4.25: PSNR results for independent streams, H.264/MPEG-4 AVC compression
(Solid line = main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 88

0 50 100
0.5

0.6

0.7

0.8

Lab1 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab2 Frames
F

W
Q

I

0 50 100
0.5

0.6

0.7

0.8

Lab3 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab4 Frames

F
W

Q
I

0 50 100
0.5

0.6

0.7

0.8

Lab5 Frames

F
W

Q
I

Figure 4.26: FWQI results for independent streams, H.264/MPEG-4 AVC compression
(Solid line = main stream; Dotted line = auxiliary stream)

CHAPTER 4. EXPERIMENTAL RESULTS 89

sion algorithm in terms of compression rate and quality. However, the previous sections

have shown that all the components in the stereo compression system contribute greatly

to reducing the compressed video file size and computation time. Combining the above

techniques into the H.264/MPEG-4 AVC codec will create a faster more highly compressed

foveated stereo video algorithm. Future research should focus on implementing the stereo

video algorithm features into the H.264/MPEG-4 AVC reference software framework.

As stated in the Chapter 3, the computers used in this experiment were Intel Pentium

III 866MHz personal computers. The implementation of the algorithm was done completely

in software (C++) using no processor dependent optimisations and was programmed for

correctness instead of speed. Although the result was that the implementation did not meet

the real-time processing requirement of 25 fps stereo video, the implementation was still

considerably faster than the H.264/MPEG-4 AVC reference software. The H.264/MPEG-

4 AVC reference software encoder took on average 2500 s to encode each stereo video

sequence, in comparison to the average encoding time of 106 s that the implemented stereo

video encoder required. In other words, the implemented stereo video encoder is about 24

times faster than the H.264/MPEG-4 AVC reference software. The majority of the encoding

processing time was taken by the block-based motion estimation algorithm and the DWT

implementation. (The DWT implementation used the lifting algorithm as described in [57].)

Even though this implementation did not meet the real-time processing requirements of

25 fps stereo video, the algorithm does not contain any intrinsic delays, so given a faster

processor, dedicated hardware or more efficient software implementation, the design will be

able to run at 25 fps. It is the opinion of the author that a real-time 25 fps software only

implementation is achievable, if processor dependent optimisations, such as the Intel MMX

extensions, along with a more streamlined implementation are used.

CHAPTER 4. EXPERIMENTAL RESULTS 90

4.3 Summary

This chapter showed results of the stereo video compression algorithm in a step-by-step

manner. The results showed that each component contributed greatly to the overall com-

pression ratio. The algorithm produces compressed video that is competitive with MPEG2,

but is outperformed by H.264/MPEG-4 AVC. Incorporating aspects of this algorithm into

the H.264/MPEG-4 AVC framework should bring the compression ratio and quality to a

similar level. Perceptual observations showed that the foveation added greatly to the depth

sensation in the foveal region. The final result is a stereo video compression algorithm

for visual telepresence that incorporates foveated intraframe coding, block-based interframe

and disparity coding, and global motion compensation. Even though the algorithm could

not run in real-time on the experiment computers, the restriction was in the computa-

tion power and software implementation. Given a fast enough processor or better software

optimisation, a real-time 25 fps implementation is possible.

Chapter 5

Conclusions

The goal of this thesis was to combine foveation into the design of a stereo video com-

pression algorithm for visual telepresence applications. It was also desired that aspects of

a telepresence system, such as the camera platform’s encoders, be considered in the algo-

rithm. Because of the application, the algorithm could not have any inherent delays and a

compressed bitrate significanlty lower than 10 Mbps was the goal. The main components

in the compression system were:

• Foveated SPIHT image compression.

• Fast block-based interframe compression.

• Fast block-based disparity compression.

• Global motion compensation.

The foveated SPIHT compression algorithm was the mechanism to foveate each frame

of video. It had a high compression rate and produced images that were pixel accurate

psychologically foveated. The compressed file size is easily adjustable with this algorithm

since the bitrate can be specified explicitly.

91

CHAPTER 5. CONCLUSIONS 92

The spatio-temporal fast block-based motion estimation algorithm was used for the

interframe and disparity compression. It provided a fast algorithm that generated motion

vectors for each block in the main and auxiliary frames. The compression ratio was greatly

increased by applying this algorithm to both motion estimation components. However, the

disparity compensation produced lower quality video for the auxiliary stream. The three

causes identified were:

• Disparity compensation poorer in general.

• Camera lenses introduced image distortion.

• Difficulty adjusting cameras to same video properties.

The last two causes can be solved by using higher quality cameras, or allowing the disparity

compensation motion vectors to have small vertical motion components. This means that

the equipolar assumption would have to be relaxed.

Motion of the camera platform was recorded for each frame of video. A simple conversion

factor calculated the global motion vectors from the encoder readings. This method proved

to closely match the motion estimated by the much more complex and time consuming

H.264/MPEG-4 AVC. GMC only improved the compression of test videos that contained

global motion.

Together, these components formed the complete foveated stereo video compression al-

gorithm. Comparisons were made to the MPEG2 and H.264/MPEG-4 AVC standards. This

algorithm had better compression performance than MPEG2 because of the disparity com-

pensation and GMC, but was inferior to H.264/MPEG-4 AVC. However, the implemented

algorithm encoder was 24 times faster than the H.264/MPEG-4 AVC reference software

encoder.

CHAPTER 5. CONCLUSIONS 93

5.1 Contributions

This work was an extension of the work done by Turner in [11]. The original goal of

this algorithm was to simply exceed his compression factor while maintaining as much

video quality as possible. The results here have shown that it is possible to surpass his

compression factor by at least 10 times.

The combination of the compression algorithm components into a complete working sys-

tem is also another contribution. This thesis has shown that the foveated SPIHT algorithm

can be used as the interframe and residue coder to generate a foveated video stream.

It was also shown that a simple conversion factor can be used to accurately compute the

full-pixel global motion vectors from encoder readings. Visual telepresence systems should

always use this fact to replace time-consuming global motion estimation algorithms.

5.2 Future Work

Before any new research is performed, the cameras on the robotic platform should be

replaced with ones of much higher quality and more easily configurable. As can be seen in

the previous chapter, the lens distortion and the difference between camera properties in the

current cameras is extreme. This makes processing more difficult causing more mismatched

blocks. Higher quality stereo videos will have fewer mismatched blocks and hence would be

more compressible.

Also, serious thought needs to be put into how to mount the cameras on the platform

in a manner that allows easy equipolar alignment. The camera mounts should also have

the ability to lock down the position of the cameras once they have been calibrated.

Futher research in this area should focus on incorporating the concepts of this thesis with

advanced standards, such as H.264/MPEG-4 AVC. The many features already developed

in H.264/MPEG-4 AVC can be used to increase the performance of the current system. It

CHAPTER 5. CONCLUSIONS 94

is recommended that the actual software implementation of the stereo video compression

algorithm be abandoned, and instead, features of it be incorporated into the H.264/MPEG-4

AVC reference software [55] framework.

Other methods for foveation should be explored, especially the algorithms proposed by

Geisler and Perry in [58]. Their methods reduce the amount of original data by constructing

a multiresolution pyramid. They claim that their methods can be interfaced with other video

compression algorithms producing foveated results that are compressed 2-3 times smaller

in size.

More research needs to be performed on increasing the speed of the algorithms. Pro-

cessor dependent optimisations, dedicated hardware and other fast algorithms should be

examined for future implementations. Algorithm speed is currently the only limiting factor

to developing a true real-time stereo video compression algorithm. The foveated stereo com-

pression algorithm also needs to be incorporated into a complete working visual telepresence

system so that psychological user experiments can be performed and analysed.

Appendix A

Foveation Sensitivity Mask

Calculation

This appendix derives the normalised sensitivity function used to calculate foveation weight-

ing masks for the Foveated SPIHT algorithm. The derivation begins from a mathematical

model that fits the contrast sensitivity (sensitivity to detail), CS, of a typical retina, equa-

tion (A.1). CS(f, e) is a function of the eccentricity e and spatial frequency f [40]. Spatial

frequency, measured in cycles/degree, is the inverse of the periodicity with which the image

intensity values change. Image features that have a greatly varying intensity over a short

distance (e.g. edges) have high spatial frequency. Retinal eccentricity, measured in degrees,

is the angular position in degrees from the centre of the retina (fovea). At 0 degrees the

eye has the highest concentration of cones and therefore detects more details of the scene.

The concentration of cones decreases exponentially as the eccentricity increases.

CS(f, e) =
64

exp

(

0.106f e+2.3
2.3

) . (A.1)

Equation (A.1) is the starting point used to derive the wavelet domain error sensitivity

95

APPENDIX A. FOVEATION SENSITIVITY MASK CALCULATION 96

function, which calculates a normalised error sensitivity given the position w1 of a DWT

coefficient. The computation of the wavelet domain error sensitivity function takes two

steps. The first step is to compute a space-variant sensitivity function. The second step is

to compute the general sensitivity of each wavelet subband since the visual significance of

each subband differs [40]. Combining the two sensitivities will give the final wavelet domain

sensitivity function.

Step one is to derive the error sensitivity to spatial frequency function Sf . This function

computes a normalised sensitivity based on a given spatial frequency f and a position

x in the image. Figure A.1 shows the viewing geometry used for this derivation. For

normal im age viewing, the observer’s eye is at some distance V (measured in image widths)

perpendicular to the image plane. In the case of VR goggles, this distance will be constant

since the goggle display is always a fixed distance from the user’s eyes. From Figure A.1,

the eccentricity is given by the trigonometric relation in equation (A.2), where N is the

image width:

e(d(x)) = tan−1

(

d(x)

NV

)

(degrees). (A.2)

Using equations (A.1) and (A.2), Sf is given by

Sf (f, d(x)) =
CS(f, e(d(x)))

CS(f, 0)

= exp

(

−0.0461f · e(d(x))

)

.

(A.3)

Due to the limits of the HVS and the VR goggle display resolution, there are restrictions

to the acceptable values of Sf depending on the spatial frequency f . Using equation (A.1)

and setting CS(f, e) = 1 (the maximum possible contrast sensitivity), the cutoff frequency

fc for a given e can be derived as equation (A.4). fc is the highest spatial frequency

1The boldface denotes a 2D position vector.

APPENDIX A. FOVEATION SENSITIVITY MASK CALCULATION 97

Image Plane

Eye

Retina

Foveation Point

V
 Fovea

e

)
,
(
 2
1
 x
x

x

)
(
x
d

Figure A.1: Viewing geometry

which the human eye can detect. A similar limitation arises because the VR goggles can

only output images at a certain resolution r (calculated by equation (A.5) and measured

in pixels/degree). As shown in equation (A.6), the sampling theorem stipulates that the

maximum spatial frequency fd that can be displayed without aliasing effects is half the

display resolution.

fc =
90.24

e+ 2.3

(

cycles

degree

)

. (A.4)

r =
πNV

180 cos2(πe180)
=
πNV

180

N2V 2

d2(x) +N2V 2
≈
πNV

180

(

pixels

degree

)

. (A.5)

fd =
r

2
≈
πNV

360

(

cycles

degree

)

. (A.6)

Let fm(x) = min(fc, fd), which gives the absolute highest spatial frequency at location x

in the image that can be perceived by a human observer. Applying fm(x) to the sensitivity

APPENDIX A. FOVEATION SENSITIVITY MASK CALCULATION 98

equation (A.3) gives

Sf (f, d(x)) =











exp

(

−0.0461f · e(d(x))

)

, for f ≤ fm(x)

0 , for f > fm(x)

(A.7)

The second step is to obtain a error sensitivity rating for each wavelet subband in the

DWT. Again, psychological experiments have found a mathematical model that fits the

observations of typical human viewers [40]. Given the subband level λ ∈ 1, 2, 3... and ori-

entation θ = LL, LH, HL, HH, the visual importance of each wavelet subband is computed

using equation (A.8), where gθ is 1.501, 1, 1 and 0.534 for the LL, LH, HL and HH subbands

respectively. Aλ,θ is the wavelet basis function amplitude at a given λ and θ. For this exper-

iment the 9/7 biorthogonal wavelet function is used for the DWT since it has been widely

adopted for many wavelet-based compression algorithms [23, 27, 40]. Some basis function

amplitudes for the 9/7 biorthogonal wavelet are given in Table A.1 and the corresponding

Sw(λ, θ) values are given in Table A.2.

Sw(λ, θ) =
Aλ,θ

0.495 · 100.466(log10(2λ0.401gθ/r))2
, (A.8)

Table A.1: Basis function amplitudes Aλ,θ for 9/7 biorthogonal DWT
1

Orientation Level (λ)
(θ) 1 2 3 4 5 6

LL 0.62171 0.34537 0.18004 0.09140 0.045943 0.023013
LH 0.67234 0.41317 0.22727 0.11792 0.059758 0.030018
HL 0.67234 0.41317 0.22727 0.11792 0.059758 0.030018
HH 0.72709 0.49428 0.28688 0.15214 0.077727 0.039156

1Values reproduced from [59].

Before combining Sf and Sw to form the final wavelet domain sensitivity function, the

APPENDIX A. FOVEATION SENSITIVITY MASK CALCULATION 99

Table A.2: Sw(λ, θ) for V = 3, N = 256, 9/7 biorthogonal DWT

Orientation Level (λ)
(θ) 1 2 3 4 5 6

LL 0.3877 0.3842 0.2942 0.1806 0.0904 0.0371
LH 0.2728 0.3352 0.3035 0.2134 0.1207 0.0557
HL 0.2728 0.3352 0.3035 0.2134 0.1207 0.0557
HH 0.1333 0.2160 0.2461 0.2109 0.1433 0.0791

definition for Sf (f, d(x)) must be slightly adjusted for the wavelet domain. Previously in

equation (A.2), d(x) was the distance, in the spatial domain, from the foveation point to

the pixel at location x. However, what is desired is for the final sensitivity function to be

a function of w, so a conversion needs to be performed to obtain the spatial d(x) given a

w. Given w, the distance from the foveation centre to the corresponding x, in the spatial

domain, depends on which subband w is in. Once the subband is known, the distance is

computed by equation (A.9), where w
f
λ,θ is the foveation centre location for the wavelet

level λ and orientation θ.

dλ,θ(w) = 2
λ‖w−w

f
λ,θ‖, (A.9)

where

w
f
λ,θ =



















































(

xf1
2λ
,
xf2
2λ

)

, for θ = LL
(

xf1 +N

2λ
,
xf2
2λ

)

, for θ = LH
(

xf1
2λ
,
xf2 +N

2λ

)

, for θ = HL
(

xf1 +N

2λ
,
xf2 +N

2λ

)

, for θ = HH

The final wavelet domain error sensitivity function S(w) is derived from equations (A.7),

(A.8) and (A.9) and is shown in equation (A.10), where β1 and β2 are used to control the

magnitudes of Sw and Sf respectively. In this experiment β1 = 1 and β2 = 2.5, which are

the same values used in [40]. Figure 3.5 in Section 3.3 shows a graphical representation of

APPENDIX A. FOVEATION SENSITIVITY MASK CALCULATION 100

S(w) for V = 3 and N = 256. Dark areas are values near 0 and white areas are values at

or near 1. A scaled version of this function is then applied as the foveated weighting mask.

S(w) = [Sw(λ, θ)]
β1 · [Sf (r2

−λ, dλ,θ(w)]
β2 (A.10)

Appendix B

Foveated Wavelet Quality Index

Calculation

This appendix derives the foveated wavelet quality index (FWQI). The FWQI is given by

equation (B.1).

FWQI =

∑

w
S(w)|c(w)|Q(w)
∑

w
S(w)|c(w)|

. (B.1)

In equation (B.1), S(w) is the foveated sensitivity defined in Appendix A, c(w) is the

wavelet coefficient value at wavelet location w and Q(w) is the quality index at wavelet

location w.1 Q is calculated based on a combination of correlation, mean distortion and

variance distortion [53]. Let x = {xi| i = 1, 2, ..., N} and y = {yi| i = 1, 2, ..., N} be the

original and to-be-tested images respectively, and N be the constant number of pixels per

image. Then Q is defined as

Q =
4σxyxy

(σ2
x + σ

2
y)[x

2 + y2]
, (B.2)

1The boldface denotes a 2D position vector.

101

APPENDIX B. FOVEATED WAVELET QUALITY INDEX CALCULATION 102

where,

x =
1

N

N
∑

i=1

xi ,

y =
1

N

N
∑

i=1

yi ,

σ2
x =

1

N − 1

N
∑

i=1

(xi − x)
2 ,

σ2
y =

1

N − 1

N
∑

i=1

(yi − y)
2 ,

σxy =
1

N − 1

N
∑

i=1

(xi − x)(yi − y) .

Q is a 2D map that has values ranging between -1 and 1, with 1 representing a perfect

match between the original image and the tested image. In turn, the FWQI ranges from 0

to 1, with 1 representing a perfect match.

Bibliography

[1] E. Dubois, “Video sampling and interpolation,” in Handbook of Image & Video Pro-

cessing, A. C. Bovik, Ed. London, United Kingdom: Academic Press, 2000, ch. 7.2.

[2] C.-W. Fung and S. C. Liew, “End-to-end frame-rate adaptive streaming of video data,”

in Proc. IEEE International Conference on Multimedia Computing and Systems, 1999,

June 1999, pp. 67–71.

[3] J. Kim et al., “TCP-friendly Internet video streaming employing variable frame-rate

encoding and interpolation,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, pp.

1164–1177, Oct. 2000.

[4] E. C. Reed and F. Dufaux, “Constrained bit-rate control for very low bit-rate

streaming-video applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, pp.

882–889, July 2001.

[5] K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications.

Berlin, Germany: Springer-Verlag, 2000.

[6] A. C. Bovik, “Introduction to digital image and video processing,” in Handbook of

Image & Video Processing, A. C. Bovik, Ed. London, United Kingdom: Academic

Press, 2000, ch. 1.1.

103

BIBLIOGRAPHY 104

[7] D. B. Diner and D. H. Fender, Human Engineering in Stereoscopic Viewing Devices.

New York, New York, USA: Plenum Press, 1993.

[8] K. N. Ogle, Researches in Binocular Vision. Philadelphia, USA: W.B Saunders Com-

pany, 1950.

[9] P. J. Bos, “Performance limits of stereoscopic viewing systems using active and passive

glasses,” in Proc. IEEE Virtual Reality Annual International Symposium, 1993, Sept.

1993, pp. 371–376.

[10] K. M. Won S. Kim, Andrew Liu and L. Stark, “A helmet mounted display for teler-

obotics,” in Compcon Spring ’88. Thirty-Third IEEE Computer Society International

Conference, Digest of Papers, Feb. 1988, pp. 543–547.

[11] C. F. Turner, “Development of an internet visual telepresence system,” Master’s thesis,

University of Waterloo, Waterloo, 2002.

[12] S. P. Ken Perlin and J. S. Kollin, “An autostereoscopic display,” in Proc. ACM SIG-

GRAPH 2000 Conference Proceedings, July 2000, pp. 319–326.

[13] J. S. Cagatay Basdogan, Mitchell Lum and E. Chow, “Autostereoscopic and haptic

visualization for space exploration and mission design,” in Proc. IEEE 10th Sympo-

sium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2002.

HAPTICS 2002, Mar. 2002, pp. 271–276.

[14] B. Barnett, “Basic concepts and techniques of video coding and the H.261 standard,”

in Handbook of Image & Video Processing, A. C. Bovik, Ed. London, United Kingdom:

Academic Press, 2000, ch. 6.1.

[15] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards: Al-

BIBLIOGRAPHY 105

gorithms and Architectures–2nd ed. Norwell, Massachusetts, USA: Kluwer Academic

Publishers, 1997.

[16] J. K. Shu, “Implementation of a force-reflecting teleoperation system over the internet,”

Master’s thesis, University of Waterloo, Waterloo, 2001.

[17] C. Caradima, “Time delay compensation in teleoperation over the internet,” Master’s

thesis, University of Waterloo, Waterloo, 1999.

[18] M. A. Sid-Ahmed, Image Processing: Theory, Algorithms, & Architectures. New York,

New York, USA: McGraw-Hill, 1994.

[19] A. C. Bovik, Ed., Handbook of Image & Video Processing. London, United Kingdom:

Academic Press, 2000.

[20] Z. Xiong and K. Ramchandran, “Wavelet image compression,” in Handbook of Image

& Video Processing, A. C. Bovik, Ed. London, United Kingdom: Academic Press,

2000, ch. 5.4.

[21] C. Blatter, Wavelets: A Primer. Natick, Massachusetts, USA: A K Peters, 1998.

[22] Wavelets: A New Tool For Signal Analysis, MathWorks Inc., in MATLAB 6.0 Help.

[23] P. M. Marc Antonini, Michel Barland and I. Daubechies, “Image coding using wavelet

transform,” IEEE Trans. Image Processing, vol. 1, pp. 205–220, Apr. 1992.

[24] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, Pennsylvania, USA: Society

for Industrial and Applied Mathematics, 1992.

[25] T. Q. Nguyen, “A tutorial on filter banks and wavelets.” [Online]. Available:

citeseer.nj.nec.com/nguyen95tutorial.html

BIBLIOGRAPHY 106

[26] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,” IEEE

Trans. Signal Processing, vol. 41, pp. 3445–3462, Dec. 1993.

[27] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set

partitioning in hierarchical trees,” IEEE Trans. Circuits Syst. Video Technol., vol. 6,

pp. 243–250, Sept. 1996.

[28] Y.-P. H. Yong-Sheng Chen and C.-S. Fuh, “Fast block matching algorithm based on

the winner-update strategy,” IEEE Trans. Image Processing, vol. 10, pp. 1212–1222,

Aug. 2001.

[29] Y.-Q. Z. Sohail Zafar and B. Jabbari, “Multiscale video representation using mul-

tiresolution motion compensation and wavelet decomposition,” IEEE J. Select. Areas

Commun., vol. 11, pp. 24–35, Jan. 1993.

[30] S. Zafar and Y.-Q. Zhang, “Motion-compensated wavelet transform coding for color

video compression,” IEEE Trans. Circuits Syst. Video Technol., vol. 2, pp. 285–296,

Sept. 1992.

[31] C. Kim and J.-N. Hwang, “Fast and automatic video object segmentation and tracking

for content-based applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, pp.

122–129, Feb. 2002.

[32] S. Cho and W. A. Pearlman, “A full-featured, error-resilient, scalable wavelet video

codec based on the set partitioning in hierarchical trees (spiht) algorithm,” IEEE Trans.

Circuits Syst. Video Technol., vol. 12, pp. 157–171, Mar. 2002.

[33] S. S. M.W. Siegel, Priyan Gunatilake and A. Jordan, “Compression of stereo image

pairs and streams,” in Proc. SPIE Stereoscopic Displays and Virtual Reality Systems,

Apr. 1994, pp. 258–268.

BIBLIOGRAPHY 107

[34] M. G. Perkins, “Data compression of stereopairs,” IEEE Trans. Commun., vol. 40, pp.

684–696, Apr. 1992.

[35] J. R. I. Dinstein, G. Guy, “On stereo image coding,” in Proc. IEEE 9th International

Conference on Pattern Recognition, 1988, Nov. 1988, pp. 357–359.

[36] M. S. Moellenhoff and M. W. Maier, “Transform coding of stereo image residules,”

IEEE Trans. Image Processing, vol. 7, pp. 804–812, June 1998.

[37] Y. Zhang and G. Li, “An efficient hierarchical disparity estimation algorithm for stereo-

scopic video coding,” in Proc. IEEE Asia-Pacific Conference on Circuits and Systems

(APCCAS 2000), Dec. 2000, pp. 744–747.

[38] J. Jiang and E. A. Edirisinghe, “A hybrid scheme for low bit-rate coding of stereo

images,” IEEE Trans. Image Processing, vol. 11, pp. 123–134, Feb. 2002.

[39] P. Kortum and W. Geisler, “Implementation of a foveated image coding system for

image bandwidth reduction,” in Proc. SPIE Human Vision and Electronic Imaging,

Apr. 1996, pp. 350–360.

[40] Z. Wang and A. C. Bovik, “Embedded foveation image coding,” IEEE Trans. Image

Processing, vol. 10, pp. 1397–1410, Oct. 2001.

[41] T. H. Reeves, “Adaptive foveated video coding,” Master’s thesis, University of Water-

loo, Waterloo, 1997.

[42] E.-C. Chang and C. K. Yap, “A wavelet approach to foveating images,” in Proc. 13th

ACM Symposium on Computational Geometry, Aug. 1997, pp. 397–399.

[43] I. I. Systems. (2002) Interactive imaging systems vfx3d product page. [Online].

Available: http://www.iisvr.com/products VR vfx3d.html

BIBLIOGRAPHY 108

[44] A. Technologies. (2002) Ads technologies product page. [Online]. Available:

http://www.adstech.com/products/PYRO1394WebCam/intro/

PYRO1394WebCam.asp?pid=API-200

[45] Z. X. Beong-Jo Kim and W. A. Pearlman, “Low bit-rate scalable video coding with

3-d set partitioning in hierarchical trees (3-d spiht),” IEEE Trans. Circuits Syst. Video

Technol., vol. 10, pp. 1374–1387, Dec. 2000.

[46] J. Gailly and M. Adler. (2002) zlib home site. [Online]. Available:

http://www.gzip.org/zlib/

[47] C. F. Antonio Chimienti and D. Pau, “A complexity-bounded motion estimation algo-

rithm,” IEEE Trans. Image Processing, vol. 11, pp. 387–392, Apr. 2002.

[48] J. Chalidabhongse and C. J. Kuo, “Fast motion vector estimation using multiresolution

spatio-temporal correlations,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp.

477–488, June 1997.

[49] F. Dufaux and J. Konrad, “Efficient, robust, and fast global motion estimation for

video coding,” IEEE Trans. Image Processing, vol. 9, pp. 497–501, Mar. 2000.

[50] O. C. A. Wing Cheong Chan and M. F. Fu, “A novel predictive global motion es-

timation for video coding,” in Proc. IEEE International Symposium on Circuits and

Systems (ISCAS 2002), May 2002, pp. 5–8.

[51] W. Zheng et al., “A high-precision camera operation parameter measurement system

and its application to image motion inferring,” IEEE Trans. Broadcast., vol. 47, pp.

46–55, Mar. 2001.

[52] A. C. B. ZhouWang and L. Lu, “Why is image quality assessment so difficult?” in Proc.

BIBLIOGRAPHY 109

IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002, May

2002, pp. 3313–3316.

[53] L. L. Zhou Wang, Alan C. Bovik and J. Kouloheris, “Foveated wavelet image quality

index,” in Proc. SPIE Applications of Digital Image Processing XXIV, Dec. 2001, pp.

5–8.

[54] MpegTV. (2002) Mpeg.org - mpeg software simulation group(mss). [Online]. Available:

http://www.mpeg.org/MPEG/MSSG/

[55] P. Corporation. (2002) Index of /ftp/video-site. [Online]. Available:

http://standard.pictel.com/ftp/video-site

[56] G. Cote and L. Winger, “Recent advances in video compression standards,” IEEE

Canadian Review - Spring/Printemps 2002, pp. 21–24, 2002.

[57] W. Sweldens, “The lifting scheme: a custom-design construction of biorthogonal

wavelets,” Appl. Comput. Harmon. Anal., vol. 3, pp. 186–200, 1996.

[58] W. S. Geisler and J. S. Perry, “Real-time foveated multiresolution system for low-

bandwidth video communication,” in Proc. SPIE Human Vision and Electronic Imag-

ing III, July 1998, pp. 294–305.

[59] J. A. S. Andrea B. Watson, Gloria Y. Yang and J. Villasenor, “Visibility of wavelet

quantization noise,” IEEE Trans. Image Processing, vol. 6, pp. 1164–1175, Aug. 1997.

