An Intelligent System for Induction Motor
Health Condition Monitoring

Dezhi Li

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Mechanical Engineering

Waterloo, Ontario, Canada, 2015

©Dezhi Li 2015



AUTHOR'S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

i



Abstract

Induction motors (IMs) are commonly used in both industrial applications and household appliances.
An IM online condition monitoring system is very useful to identify the IM fault at its initial stage, in
order to prevent machinery malfunction, decreased productivity and even catastrophic failures.
Although a series of research efforts have been conducted over decades for IM fault diagnosis using
various approaches, it still remains a challenging task to accurately diagnose the IM fault due to the
complex signal transmission path and environmental noise. The objective of this thesis is to develop a
novel intelligent system for more reliable IM health condition monitoring. The developed intelligent
monitor consists of two stages: feature extraction and decision-making. In feature extraction, a
spectrum synch technique is proposed to extract representative features from collected stator current
signals for fault detection in IM systems. The local bands related to IM health conditions are
synchronized to enhance fault characteristic features; a central kurtosis method is suggested to extract
representative information from the resulting spectrum and to formulate an index for fault diagnosis.
In diagnostic pattern classification, an innovative selective boosting technique is proposed to
effectively classify representative features into different IM health condition categories. On the other
hand, IM health conditions can also be predicted by applying appropriate prognostic schemes. In
system state forecasting, two forecasting techniques, a model-based pBoost predictor and a data-
driven evolving fuzzy neural predictor, are proposed to forecast future states of the fault indices,
which can be employed to further improve the accuracy of IM health condition monitoring. A novel
fuzzy inference system is developed to integrate information from both the classifier and the predictor
for IM health condition monitoring. The effectiveness of the proposed techniques and integrated
monitor is verified through simulations and experimental tests corresponding to different IM states

such as IMs with broken rotor bars and with the bearing outer race defect.

The developed techniques, the selective boosting classifier, pBoost predictor and evolving fuzzy
neural predictor, are effective tools that can be employed in a much wider range of applications. In
order to select the most reliable technique in each processing module so as to provide a more positive
assessment of IM health conditions, some more techniques are also proposed for each processing
purpose. A conjugate Levebnerg-Marquardt method and a Laplace particle swarm technique are

proposed for model parameter training, whereas a mutated particle filter technique is developed for

il



system state prediction. These strong tools developed in this work could also be applied to fault

diagnosis and other applications.
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Chapter 1

Introduction

1.1 Overview

Electric motors are machines that convert electrical energy into mechanical energy. They can be
classified into three categories: direct current (DC) motors, alternating current (AC) motors, and
special motors. There are two types of AC motors: induction motors (IMs) and synchronous motors.

IMs employ electromagnetic induction to provide torque for driven machines.

IMs are the workhorse of many industries such as manufacturing, and mining; and more
importantly, they consume up to 50% of the generated electrical energy in the world [1]. Due to these
facts, a series of R&D activities have been directed, for decades, to improve the performance and
efficiency of IMs. For example, in industrial applications, an effective and reliable condition
monitoring system is valuable in the detection of an IM fault at its earliest stage in order to prevent
performance reduction and malfunction of the driven machinery. It could also be utilized to schedule
predictive maintenance operations. Maintenance costs can be further reduced (especially for large
expensive motors) by quickly identifying the faulty component(s) without inspecting all components

in the IM.

Figure 1.1 shows an example of IM structure, consisting of a stator, a rotor, a shaft, rolling element
bearings, and the related supplementary components. IM components could be damaged during
operations due to impacts, fatigue, insufficient lubrication, aging, and so on. The IM faults can be
classified as mechanical defects and electrical faults. Mechanical faults consist of bearing faults, shaft
unbalance and so on. Electrical faults contain broken rotor bars, stator winding defects, phase
imperfection and so on. Investigations have revealed that bearing faults are the major IM defects,
which account for approximately 75% of small-sized and medium-sized motor defects and 41% of
large motor imperfections in domestic and industrial applications [2]. The broken rotor bars account

for 10% of IM faults.
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Figure 1.1. View of an induction motor, reproduced from [3].

The traditional IM fault diagnostic method, which is still widely practiced by maintenance crews in
industry, relies on human diagnosticians for periodic inspections based on warning signs such as
smell, temperature increase, excessive vibration, and increased acoustic noise level. It is difficult,
however, for a diagnostician to handle multiple features from different signal processing techniques
and explore their inner relationship especially when the signals are contaminated with noise. The
alternative is for automated (online) IM condition monitoring with the use of computered-aided
diagnosis expert systems, which could quickly predict IM health conditions from various features. IM
online condition monitoring consists of several modules, as illustrated in Figure 1.2. The function of

each module is described as follows:

a) Data acquisition: is to measure IM signals using appropriate sensors, pre-process the data and

send them to a computer for further processing.

b) Feature extraction: is to extract representative features from collected signals by the use of

appropriate fault detection techniques.

¢) Classification: is to categorize the extracted representative features from several fault detection

techniques for automatic fault diagnosis of IMs.
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Figure 1.2. A flow chart of IM online condition monitoring system.

1.2 Literature Review

The proposed IM intelligent monitoring system involves processes (modules) of fault detection,
pattern classification and system state prediction, which will be elaborated on in Subsection 1.3. Thus
technologies in each of these three modules are reviewed in this subsection. Through this literature
review, the related work on each module is summarized and discussed. Furthermore, the motivation

of the proposed research in this thesis will be explicitly explained.

1.2.1 IM Fault Detection

Fault detection is a process to extract representative features from the collected signals. Traditional
machinery fault detection is based on thermal signals [4], acoustic signals [5], and vibration signals
[6-9]. The local or bulk temperature can be used to diagnose IM defects, however the heat
accumulation and progression are slow, which may not be suitable for incipient fault detection. The
acoustic noise can indicate IM faults, especially for severe and distributed defects; however the
acoustic signal is prone to contamination by background noise such as noise from other machines in
the vicinity. The acquisition of vibration signals requires the related vibration sensors mounted in the
vicinity of the IM components to be monitored. Although vibration signals have relatively high
signal-to-noise ratio, the pieasoelectric accerometers are expensive and their installation requirements

are high; in addition, it is difficult to use vibration signals to detect IM electrical defects such as



broken rotor bars. The alternative is to use the stator current signal for analysis, which is non-invasive
to the IM structure [10], and could also be used to detect IM electrical faults. Thus the proposed

research in this work will focus on IM fault diagnosis using stator current signals.

Several motor current signature analysis techniques have been proposed in the literature for fault

detection in IMs, mainly for rotors and bearings, which are briefly summarized next:
1) Fault detection of IM rotors

Broken rotor bars are common rotor defects that will render asymmetries of an IM rotor. The rotor
bar failures can be caused by several factors [11-12], such as:

(a) overheating due to frequent starts under loading,

(b) unbalanced thermal load due to air gap eccentricity,

(c) manufacturing defects, and

(d) corrosion of rotor material caused by chemicals or moisture.

Because of the aforementioned reasons, the rotor bar(s) may be fully or partially damaged, which
will cause the rotor cage asymmetry and result in asymmetrical distribution of the rotor currents.
When a crack forms in a rotor bar, the cracked bar will overheat and tend to break. Then the adjacent
bars have to carry higher currents and consequently they become prone to damage, leading to
multiple bar fractures [12]. Moreover, the broken parts from the faulty bars may hit the end winding

of the motor and cause serious mechanical damage to the IM [13].

The Fast Fourier Transform (FFT) spectral analysis is a commonly used method for rotor bar
breakage detection, by examining the characteristic frequency components in the spectrum. For
example, Elkasabgy et al. [14] used spectral analysis of IM current signals to detect rotor bar
breakage. It has been reported that the IM current signal becomes non-stationary if rotor bars are
damaged. However, the FFT is useful for stationary signal analysis only, which lacks the capability of
capturing the transitory characteristics such as drifts, abrupt changes and frequency trends in non-
stationary signals. To solve the problem, time-frequency methods, such as short time Fourier
transform (STFT), can be used to process small segments of non-stationary signals for broken rotor
bar defect detection. For example, Arabaci et al. [15] applied the STFT to detect IM rotor bar faults.
However, the STFT cannot provide the information corresponding to different time resolutions and
frequency resolutions due to its fixed length windowing functions [16]. To solve this problem, the

wavelet transform (WT) can be employed to explore the information associated with different



frequency resolutions. For example, Daviu et al. [17] and Mehala et al. [21] used discrete WT to
detect IM broken rotor bars fault. The wavelet packet decomposition (WPD) was used to explore the
whole frequency range with high resolution. For example, Sadeghian et al. [18] used WPD to extract
features and applied neural networks to diagnose IM rotor bar breakage. Pineda-Sanchez et al. [19]
employed polynomial-phase transform to diagnose broken rotor bar fault in time-varying condition.
Riera-Guasp et al. [20] extracted broken rotor bar fault features from transient state of IM using
Gabor analysis. Although the WPD can explore details of the signal for some advanced signal
analysis, it is usually difficult to recognize the real representative features from the map with
redundant and misleading information. Akin ef al. [22] performed real-time fault detection using the
reference frame theory. Soualhi ef al. [23] diagnosed broken rotor bar fault through the classification
of selected fault features using the improved artificial ant clustering method. Giinal et al [123]
conducted IM broken rotor bar fault diagnosis by using fault indices in the time domain. Nevertheless,
the aforementioned techniques only focus on limited fault information, thus their performance may be

degraded.
2) Fault detection of IM bearings

Rolling element bearings are commonly used in rotating mechanical/electromechanical equipment.
As illustrated in Figure 1.3, a rolling element bearing is a system consisting of an outer ring (usually

the fixed ring), an inner ring (usually the rotating ring), a number of rolling elements, and a cage.

e

Y
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77

Figure 1.3. The geometry of a rolling element bearing. d = diameter of the rolling element; & = angle of contact;
D = pitch diameter.



Since bearing materials are subjected to dynamic loading, fatigue pitting is the most common
defect in bearing components. The bearing defects can occur on the outer race, inner race, and rolling
elements. Under normal operating conditions, after the load cycles exceed some threshold, fatigue
(usually pitting) may occur on the fixed ring race first, and then on the rotating race and rolling
elements. Pitting defects do not only deteriorate transmission accuracy, but also generate excessive
vibration and noise. Other bearing defects, such as scoring and severe wear, can be generated by

several external causes such as [11]:
(a) Impacts, overloading and overheating
(b) Inadequate lubrication;
(c) Contamination and corrosion from abrasive particles or acid;
(d) Improper installation of a bearing, which will introduce excessive misalignment errors.

When a bearing component is damaged, the corresponding characteristic vibration frequencies
depend on the bearing geometry, rotation speed and defect location, as illustrated in Figure 1.3.
Suppose the outer race of a bearing is fixed and the inner race rotates with the shaft, which is
common in most applications. The outer race defect characteristic frequency f,,., inner race defect
characteristic frequency f;,, cage defect characteristic frequency f.,, and rolling element defect

characteristic frequency f,;- are given by

Fon %Ml—@ﬂ (1.1
S %Ml +@ﬂ (12)
S %{ﬁ (1—@}} (13)
Lo =%ﬁ{1—[0’°§9ﬂ (1.4)

where f; is the inner race rotating speed or shaft speed; d is the ball diameter; D is the pitch diameter;



@ is the contact angle. Derivation of these rolling element bearing defect characteristic frequencies is

provided in Appendix A.

When bearing defects occur, these bearing characteristic vibration frequencies £, (i.e., fop-» fivrs fobr
and f;) will be modulated with the power supply frequency f, in the spectrum of stator current
signals, because of the air gap eccentricity and load torque variations. Thus the characteristic stator

current frequencies f; in terms of characteristic vibration frequencies f, will be calculated by

fc=\fpimv, m=1,2,3, ... (1.5)

The details of derivation of Equation (1.5) can found in [25].

For IM bearing fault detection, the characteristic stator current frequency components can be used
as frequency domain indicators in spectrum analysis [26]. Several techniques have been proposed in
the literature for IM bearing fault detection using stator current signals. For example, Benbouzid et al.
[27] and Devaney et al. [28] applied IM stator current spectrum analysis for bearing defect detection.
FFT can be used to conduct spectrum analysis, so as to detect IM bearing faults under deterministic
motor conditions. Similar to the previous discussion regarding broken rotor bar analysis, the WT can
be used to catch the transitory characteristics of the signal for IM bearing fault detection. For example,
Konar et al. [29] employed discrete WT to detect IM bearing faults. The WPD can also be employed
to explore transient fault information for IM bearing fault detection [30-32]. Nevertheless, the WPD
generates massive non-fault-related information that may mask the fault features in the map, and
increase the difficulties in fault detection. Frosini and Bassi [33] used features from stator current
signals and IM efficiency for bearing fault detection. Zhou et al. [34] utilized the Wiener filter for
noise reduction, so as to detect IM bearing defect. Romero-Troncoso ef al. [35] conducted online IM
fault detection using information entropy and fuzzy inference. Pineda-Sanchez et al. [36] employed
Teager-Kaiser energy operator to enhance fault features to detect IM bearing defect. Nevertheless,
these available techniques conduct IM bearing fault detection based on limited fault information
rather than comprehensively explore fault features from the time domain, the frequency domain and

the time-frequency domain simutaneouly. Therefore their performance may be degraded.



1.2.2 Automatic IM Fault Diagnostics

IM health condition diagnosis is a process to classify the representative features obtained by using
appropriate signal processing techniques into different IM health condition categories. The classical
automatic diagnostics is mainly performed by model-based approaches such as Bayes decision rule
[37, 38], which minimizes the average possibility of errors by examining the posterior probabilities
and the penalties associated with each decision. Nevertheless, the prior density functions of different
classes are not known in most practical situations, therefore posterior probabilities cannot be properly
determined [39]. Another well-accepted model-based classifier is the linear discriminant analysis [40,
41], which aims to minimize the variance in each group and maximize the variance between groups.
But its application is limited to the measurements in which each group is normally distributed and all

the groups have the same co-variance structure [42].

The alternative is the use of knowledge-based soft-computing tools such as neural networks (NNs)
[43-45] and fuzzy systems for diagnostic pattern classification. The fuzzy systems conduct inference
to mimic human IF-THEN reasoning rules, however the fuzzy model parameters are usually difficult
to optimize. NNs can update the parameters using training algorithms, but their reasoning structures
are opaque to users and the reasoning mechanism is difficult to interpret. The neuro-fuzzy (NF)
systems employ the fuzzy inference and the NN-based training to improve the pattern classification
performance. These knowledge-based intelligent tools are universal approximators [46] and, in theory,
they can closely approximate any arbitrary function. Furthermore, they make no assumptions of prior
density functions or distributions of measurements in each group. To optimize the parameters of the
NNs and NF systems, several training algorithms have been proposed in the literature. For example,
the classical gradient descent (GD) method searches optimal solutions in the steepest descent
direction [47]. The weighted least square estimate (WLSE) minimizes the least square error with
penalties associated with each input pattern [48, 49]. The conjugate gradient (CG) method employs a
search direction at each iterative step that conjugates to all previous descent directions to improve
training convergence [50, 51]. The Levenberg-Marquardt (LM) method adaptively optimizes the
search direction between Newton’s direction and steepest descent direction to enhance convergence

[52, 53].

An evolving system is a data-driven scheme that can adaptively update its inference model

structure and parameters based on the input data. Some evolving systems have been presented



recently to dynamically establish modeling structure based on characteristics of the input data [54, 55].
The model structure formation of evolving systems is dependent on the sequence in which the data

are fed to the system [56].

AdaBoost, short for Adaptive Boosting, is a machine learning algorithm, which aims to combine
the strength of many weak learners to form a strong learner. It updates the model structure by
incorporating a new base learner into the ensemble at each step, which is insensitive to the sequence
that data are input to the system. The classical AdaBoost has merits such as solid theoretical basis and
ease of implementation [57]. Although the classical AdaBoost techniques have been used in many
applications such as medical diagnoses [58, 59], object detection [60, 61] and network intrusion
detection [62], they have some limitations such as being sensitive to noisy samples and the overfitting

problem [63, 64].

Many research efforts have been made in literature to improve the AdaBoost [65-67]. For example,
a Real AdaBoost algorithm was proposed in [57] to calculate the probability and confidence limits to
estimate the degree to which a sample belongs to a specific class so as to speed up convergence. A
LogitBoost method [68] employed an additive logistic regression model as a cost function to improve
the convergence. These methods aim to correctly classify hard-to-learn samples at each step, which
may mitigate the classification accuracy of easy-to-learn samples, and result in overfitting [63]. To
reduce the overfitting problem, Ratsch et al. [69] proposed a boosting technique with soft margins to
deal with noisy samples by computing the aggregated weights of each sample and reducing the
penalties for hard-to-learn samples; however some hard-to-learn samples may be clean, but not be
noise-affected, and therefore their penalty should not be reduced. Cao et al. [70] applied a noise
detection method to identify noisy samples in the training data, and then assigned a different class
label to each noise sample in the binary classification problem. Nevertheless, noise samples may not
belong to a different class, and this approach may reduce classification accuracy. Gao et al. [71]
applied a weighted K-nearest-neighbor algorithm in a transformed space to identify and discard
suspicious noisy samples, but some of these discarded samples may be clean and useful for

classification operations.

1.2.3 IM System State Prediction

IM health condition monitoring can also be performed from a different perspective; via system

state prediction. System state prediction is a process to forecast future states of a system based on the



previous and current system states. Several prediction techniques have been applied in the literature
for IM health condition monitoring. The classical system state prediction approaches are based
mainly on stochastic models such as autoregressive (AR) model, autoregressive moving average
(ARMA) model [72-74] and grey models [75,76]. These techniques have been employed in some
applications for system state prediction. Nevertheless, the fixed structure of these techniques may
limit the prediction accuracy for complex dynamic systems, like IMs, especially under variable

machinery operating conditions.

An alternative is the use of knowledge-based soft-computing tools such as NNs [77-80], fuzzy
systems [81-84], NF systems [85-91] and evolutionary computation [92-95]. However, as discussed
in the previous subsection, a NN predictor has an opaque reasoning structure, which makes it difficult
to explain the resulting prediction reasoning (i.e., knowledge extraction). NF schemes are superior to
NNs in mimicking human reasoning processes and extracting knowledge as interpretable IF-THEN
rules. Both NF systems and NNs, however, suffer from an inefficient training process and suboptimal
network structures [96]. Evolutionary computation methods, such as genetic algorithm, particle
swarm optimization, and simulated annealing, are usually time-consuming in reasoning and cannot be

used for real time IM system state prognostic applications.

In system state prognosis, the prediction accuracy can be improved by using hybrid modeling:
linear models (e.g., AR and ARMA) can be used to mainly characterize linear properties of data sets
and nonlinear models (e.g., NNs and NF schemes) can be utilized to characterize nonlinear properties
of data sets. For example, Medeiros et al. [97] proposed a neural coefficient smooth transition
autoregressive model for system state prediction. Khashei et al. [98] integrated the NNs and ARMA
models to conduct time series prediction. One remarkable merit of using the hybrid modeling strategy
lies in its capacity for dealing with non-stationary data sets. The linear non-stationary components
could be modeled by using a linear modeling method, and nonlinear components can be characterized
by some nonlinear modeling method [99-102]. However, these available approaches cannot make
their reasoning mechanism adapt to new system conditions in real time (online), and consequently

their model structures may still be suboptimal.

In recent years, more work has focused on the use of evolving NF paradigms that can adaptively
adjust their network structures in response to new system conditions (i.e., data sets). For example,

Kasabov et al. proposed evolving fuzzy NN models (EFuNN) [103-105] and dynamic evolving NF
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inference system (DENFIS) techniques [106] for different applications such as learning, knowledge
acquisition, and system state prediction. These evolving paradigms employ clustering algorithms to
adaptively tune model structure and parameters as new data become available. However, the
established clusters (or rules) in these evolving systems are usually massive in order to capture all
details of the data (i.e., both linear properties and nonlinear properties of the data), which increases

the computational burden and reduces training efficiency, especially for real-time applications.

1.3 Objective and Strategy

To tackle the limitations of reviewed techniques in each aforementioned aspect (e.g., fault detection,
pattern classification, and system state prediction), the main goal of this work is to develop new
techniques and an intelligent system for IM health condition monitoring. The detailed objectives

include:

a) Propose a new signal processing technique to extract representative features from the stator
current signals for fault detection in IMs. This work will focus on broken rotor bar fault and bearing
fault detection. The proposed technique should be robust; be sensitive to IM faults, while at the same

time insensitive to environmental noise.

b) Propose a pattern classification technique to effectively categorize the representative features

from the selected technique(s) to provide a more accurate assessment of IM health condition.

c¢) Develop a model-based predictor and a knowledge-based data-driven predictor to forecast future
states of the IM conditions. The forecast information from one of them will be properly fed into fault

diagnosis to further improve the reliability of IM condition monitoring.

d) Propose a new diagnostic scheme to effectively integrate the diagnostic and prognostic

information for IM health condition monitoring, and to conduct automatic diagnostic decision-making.

e) A side objective is to develop other model parameter training techniques and system state
estimation tools that could be employed for fault diagnosis. The purpose is to provide more options in
each module so as to choose the best technique for each process in order to provide a more accurate

assessment of IM health conditions.

The strategy of this research is to use the most robust and efficient techniques in each processing

module in order to provide a more reliable IM condition monitoring system. With the assistance of
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the condition monitoring information, preventative maintenance can be effectively scheduled to avoid
unexpected equipment downtime, and to enhance productivity levels of the related machines. The
proposed methods for IM fault detection, pattern classification and system state prediction, can also

be applied to other related signal processing, pattern classification, and modeling applications.

1.4 Thesis Outline

In Chapter 2, a novel signal processing technique, the spectrum synch technique, is proposed to
extract representative features from the stator current signals for IM fault detection. The proposed
technique can synchronize fault-related local bands in the IM stator current spectrum, to generate a

more reliable fault indicator. The effectiveness will be verified through experimental testing.

In Chapter 3, a new selective boosting classifier is proposed to categorize the IM health conditions.
The proposed classifier can adaptively mitigate the penalties of hard-to-learn samples based on their

level of noise, in order to reduce overfitting and improve the classification accuracy.

In Chapter 4, a model-based pBoost predictor is developed to conduct dynamic system state
forecasting. It combines the strength of many AR predictors using boosting methods in order to
improve prediction accuracy. Each AR predictor is employed as a base learner. A novel sample
weight regulation method is proposed to reduce the overfitting problem. The effectiveness of the

proposed pBoost predictor is examined by using simulations and real applications.

In Chapter 5, a data-driven fuzzy NN predictor is developed to capture both linear and nonlinear
characteristics of data sets using different modeling strategies. An innovative cumulative clustering

algorithm is proposed to establish fuzzy reasoning rules for nonlinear modeling.

The classification and prediction techniques proposed in Chapters 3-5 were evaluated using
benchmark data from the literature and subjected to rigorous testing methods that are common in the
fields of data classification and forecasting. These proposed techniques can also be used for general

classification and prediction applications.

In Chapter 6, a new fuzzy inference system is developed to integrate information from both the
selective boosting classifier and the pBoost predictor, in order to conduct a more accurate fault

diagnosis in IMs.

Concluding remarks and ideas for future research are given in Chapter 7.
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Other related techniques for model parameter training and system state estimation, which are

developed to achieve the objective of (e) in Subsection 1.3, are listed in Appendices B-D.
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Chapter 2
A Spectrum Synch Technique for IM Fault Detection

2.1 Problem Definition

Typically, the onset of IM faults begins with small imperfections, and advances to a severe stage as
the operation progresses. The severe IM faults will cause machinery malfunction, and even
catastrophic failures. Therefore, the detection of IM faults at their earliest stage is of great importance
in IM condition monitoring. The IM fault features from stator current signals would be associated
with fault size, motor type, supply frequency, load condition and so on. To date, fault feature
extraction from IM current signals, especially associated with bearing defects, still remains a
challenging task due to the complex transmission path from the damaged bearing vibration symptom
to the stator current signal. In this chapter, a spectrum synch technique is proposed to gather fault-
related information and generate representative features of IM faults, such as broken rotor bar fault

and outer race defect in a bearing [107].

2.2 Theory of Spectrum Synch Analysis

The proposed spectrum synch (SS) technique is composed of two procedures: local band synch and
central kurtosis analysis. The local band synch is used to form the fault information spectrum (FIS)
and accentuate fault features. The central kurtosis is suggested to generate fault indices for IM health

condition monitoring.

2.2.1 Local Band Synch

The IM fault characteristic frequency components are distributed over the spectrum, which,
however, are usually difficult to recognize due to their low amplitude. To highlight fault features in
the spectrum, the FIS is used to enhance the local peakedness of the fault frequency components.

Firstly, to lessen the noise effect in the IM current signal, the spectrum averaging of J data sets ¢, , j

=1,2,...,J, is applied to improve the signal-to-noise ratio (SNR), computed by

o==3" loglP@)) @
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where @ is the averaged spectrum over J spectra; P(¢;) represents the nonparametric power spectral

density (PSD) estimate of the data set [108], given by

N/2+1
2

2
PO)=75 Z |, ) 2.2)

where £ is the spectrum of ¢; using the Fourier transform (FT); N is the length of ¢, ; and f; is the
sampling frequency.

The fault features are related to fault characteristic frequencies, most of which are masked over the
local bands by some other higher level frequency components considered as noise. To tackle this
problem, some representative local bands containing the fault characteristic frequencies are selected
and synchronized to reduce the noise effect and protrude the fault frequency components. In each

selected local band, the fault frequency component £, is located in the center of the window, and the

width of the local band is selected to properly reveal the peakedness of 1. .

To synchronize the corresponding bands at different locations (frequencies) of the spectrum, the
spectrum is transformed from frequency domain ®(f) to discrete point representation ®(d). Each
frequency f can be represented by its nearest discrete point d. Then, fault characteristic frequency
f. (k) is transformed into a discrete point, d.(k), whose corresponding frequency is the one closest
to f., where k=1, 2, ..., K, and K is the total number of fault characteristic frequencies considered.
Thus K local bands will be used for this synch operation. The widths of local bands are identical in
this work to facilitate the synch operation. Given the bandwidth in frequency f,,, the length of the

local band in discrete point representation, d,,, will be

d, =2R<l =t > (2.3)

where f; is the sampling frequency in Hz, D, is the discrete point representing f;, and R (*) represents

round-off operation. The A™ local band v, in the discrete point representation can be determined by
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=P 1L - AP ) (2.4
Vi {@@)} = () vl (D) 4Tl Zi:dc(k)— %dw () )

The i" discrete point in the £ local band w, is denoted as Vi i=12,..,d+lk=1,2,.. K
The " discrete points over K local bands {y., } are sorted in a descending order in terms of their

values to generate 7, , , k=1, 2, ..., K; the synchronized band FIS will be

5 (K2
T Z”i»j Kis odd .
g, = < , i= —d, +1 (2.5)
2 , 2
— Z”i»j K is even
K=
g=8w b, ri=12. %dw, %dw+2, od, 1 (2.6)

where & {} represents the computation of median value. The top 50% high amplitude center

frequency components in local bands are averaged in Equation (2.5) to enhance the fault feature. The
median value calculation in Equation (2.6) will suppress other frequency components in local bands
and reduce the amplitude of outliers. The processing procedures of the proposed FIS formation are

illustrated in Figure 2.1, where the frequency resolution Af'= 0.5Hz.
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Figure 2.1. The formulation of FIS. (a) is the original spectrum; (b) — (e) are respective extracted local bands
corresponding to the four circled fault frequency components (red, green, pink and black); (f) is the formulated
FIS. The dotted lines in graph (a) represent the boundaries of the local bands; the dashed rectangular boxes
represent outliers in the local bands.

2.2.2 Central Kurtosis Analysis

The classic kurtosis is a measure of the peakedness of a signal, computed as ¥ :'u—j , where o and
o

u, are the standard deviation and the fourth moment of the signal distribution, respectively. The
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classic kurtosis measures all peaked frequency components of the FIS, which may not properly reveal
the fault information. In this work, the fault detection aims to evaluate the peakedness of the center
frequency component in the FIS. Therefore, a central kurtosis indicator is proposed to facilitate fault
detection. Given the FIS g(i); i = 1, 2, ..., d,*1, the relative amplitude of the center frequency

components can be determined by
v, =g, -¢{e} 2.7)

where g, = {g;},_4 o, Is the center discrete point in the FIS. The amplitude of fault frequency

component over synchronized local bands (i.e., FIS), rather than the entire spectrum as in the classical

methods, 1s used to examine fault information.
The variation of the FIS excluding center frequency component g; can be evaluated by

L

o, =E{z - g}y ) 2.8)

where E{*} represents the expectation function, and g ={g,i=1,2,..,d,/2,d /2+2,..,d, +1}.

Then the peakedness of the fault frequency component in the FIS can be measured by the central

kurtosis, determined by

vt ifv,>0

N N

X = 2.9)
0 ifv.<0

2.2.3 Implementation of Spectrum Synch Technique

To recapitulate, the proposed SS technique is implemented for IM defect detection in the following

steps:

1) Collect J stator current data sets ¢j ,j=1,2,...,J, with the same time delay.
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2) Determine the spectrum average ® over J spectra. Then extract characteristic local bands using
Equation (2.4). Synchronize the local bands to form the FIS using Equations (2.5) and (2.6), in order
to reduce the noise effect and highlight fault features.

3) Compute the center frequency representative feature using Equation (2.7), and the variation of
the FIS using Equation (2.8). The fault diagnosis can be performed by analyzing the central kurtosis
computed from Equation (2.9).

2.3 Performance Evaluation

To evaluate the effectiveness of the proposed SS technique for IM fault detection, a series of tests
have been conducted for the two common types of IM defects, IM broken rotor bar fault and IM
bearing defect, using stator current signals. In rolling element bearings, defect occurs on the race of
the fixed ring first since fixed ring material over the load zone experiences more cycles of fatigue
loading than other bearing components (i.e., the rotating ring and rolling elements). Correspondingly,
this test focuses on incipient bearing defect, or fault on the outer race (fixed ring in this case). The

tests are conducted for two power supply frequencies f,: f, = 35Hz and 50Hz.

2.3.1 Experimental Setup

Figure 2.2 shows the experimental setup employed in the current work. The speed of the tested IM
is controlled by a VFD-B AC speed controller (from Delta Electronics) with output frequency
0.1~400Hz. A magnetic particle clutch (PHC-50 from Placid Industries) is used as a dynamometer for
external loading. Its torque range is from 1 to 30 Ib-ft (1.356-40.675 N-m). The motor used for this
research is made by Marathon Electric, and its specifications are summarized in Table 2.1. The
gearbox (Boston Gear 800) is used to adjust the speed ratio of the dynamometer. The current sensors
(102-1052-ND) are used to measure different phase currents. A rotary encoder (NSN-1024) is used to
measure the shaft speed with the resolution of 1024 pulses per revolution. Stator current signals are
collected using a Quanser Q4 data acquisition board, which are then fed to a computer for further

processing.

19



Figure 2.2. The motor experiment setup: (1) the tested IM, (2) the speed controller, (3) the gearbox, (4) the load

system, (5) current sensors, (6) the data acquisition system, (7) the computer.

Table 2.1. Motor specifications.

Phase 3 Connection Y
Poles 2 RPM 2850
HP 1/3 Rotor Bars 34
HZ 50 Stator Slots 24

2.3.2 Broken Rotor Bar Fault Detection

The fault detection of IM broken rotor bar defect is generally based on spectral analysis by

inspecting fault-related sideband components in the spectrum:

y = (1—2ks)f, (2.10)

Sy =(1+2ks)f, (2.11)
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where f;; and f,, are the respective left sideband and right sideband of the IM broken rotor bar fault, £

nS B nﬂ

=1, 2, ... ; f, is the power supply frequency of the IM; s = %x100% is the slip of the IM. n;

n

(rpm) is the speed of rotating magnetic field, and n, (rpm) is the shaft rotating speed. In the following

tests, an IM containing three broken rotor bars is used to evaluate the proposed SS technique.

To examine the effectiveness of the proposed SS technique, the PSD based fault detection and the
envelope analysis based fault detection are used for comparison. The PSD explores the energy
distribution of the data over the spectrum; the envelope analysis performs amplitude demodulation to

reveal fault features. In the PSD-based fault detection, the fault index can be represented as,

4 4 .
v, /o if v,>0
X, = poop 1V, (2.12)
0 ifv,<0
The fault index of envelope analysis is given as
4, 4 .
7. = v, /o, if v,>0 2.13)
0 if v,<0

where v, andv, represent the averages of top 50% high amplitude fault frequency components from

PSD and envelope analysis respectively; o, and o, represent the standard deviations of the entire

P
spectrum band of interests from PSD and envelope analysis respectively;, x, and y, are the
respective fault indices from PSD and envelope analysis. Therefore, these two techniques can be used

to compare the local band synch method in the proposed SS technique, and the corresponding central

kurtosis index.

1) 35Hz Supply Frequency: The first test aims to detect the IM with three adjacent broken rotor
bars, 35Hz power supply frequency and medium-load condition (50% of rated power). To reduce the

noise effect in the spectrum, twenty data sets are collected for spectrum averaging (i.e., J = 20). Other
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settings are f; = 65,536 Hz and f,, = 10Hz. Since 1,024 low-to-high voltage transitions represent one
shaft revolution in the encoder signal, the high sampling frequency f; is chosen to properly capture the
encoder signal, so as to accurately estimate shaft speed (i.e., rotor speed). The frequency band [25Hz
45Hz] is used to detect broken rotor fault, because the amplitudes of high order (i.e., £ in Equations
(2.10) and (2.11)) characteristic frequencies are not prominent in the spectrum. Figure 2.3 illustrates
the PSD of a healthy IM (Figure 2.3a), the PSD of an IM with broken rotor bars (Figure 2.3b), the
envelope analysis of a healthy IM (Figure 2.3c), and the envelope analysis of an IM with broken rotor
bars (Figure 2.3d), respectively. From Figures 2.3(b) and 2.3(d), it is seen that the broken rotor bar
fault frequency components, although visible, do not prominently protrude in the spectrum. Therefore,
a better fault detection technique is needed to extract useful information from multiple characteristic

frequency components in the spectrum to generate a more reliable fault index.

The FIS, corresponding to a healthy IM (Figure 2.3a) and a broken rotor bar faulted IM (Figure
2.3b), are given in Figures 2.4(a) and 2.4(b), respectively. The unit of amplitude of the FIS is dB
because the local bands are extracted from the PSD logarithmic spectrum. It is seen from Figure 2.4
that the center frequency component marked by the red dashed line (i.e., synchronized broken rotor
bar fault frequency components) in Figure 2.4(b) has higher relative amplitude than that in Figure
2.4(a), which is evaluated by the index v, in the proposed SS technique. Figure 2.4(b) has similar
spectrum variation as in Figure 2.4(a), which is examined by the value o, in the SS technique.

Therefore the fault information in the FIS can be characterized by the index y, using the proposed

SS technique.
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Figure 2.3. The spectrum average & corresponding to (a) a healthy IM using PSD; (b) an IM with broken rotor
bar fault using PSD; (c) a healthy IM using envelope analysis; and (d) an IM with broken rotor bar fault using
envelope analysis, at 35Hz supply frequency and medium-load condition. The red solid rectangular boxes in (b)

and (d) highlight fault frequency components.
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Figure 2.4. The FIS generated by the SS technique at 35Hz and medium-load condition (a) from a healthy IM, (b)

from an IM with broken rotor bar fault.
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The values of IM speed f, (Hz) and indices corresponding to PSD, envelope analysis and the
proposed SS are summarized in Table 2.2. From Table 2.2, it is seen that it is difficult to differentiate
the IM broken rotor bar faulted condition from the IM healthy condition using envelope analysis,

because the values of y, corresponding to these two IM conditions are similar. The PSD has a
relatively large difference of y, of different IM conditions in this case; however the PSD suffers
from interference of non-fault-related high amplitude frequency components and its y, values are

too small to be relied on. The IM with broken rotor bar defect has considerably larger value of y,

than that of the healthy IM using the proposed SS technique. Consequently, the proposed SS

technique associated with its index y, can be used as a fault index for IM broken rotor bar fault

detection in the stator current spectrum.

Table 2.2. Comparisons of central kurtosis indices for IM broken rotor bar fault detection.

Methods PSD Envelope analysis SS

Conditions Healthy Faulty Healthy Faulty Healthy Faulty

A 34.333 34.343 34.333 34.343 34.333 34.343

VpiVe Vs 0.012 0.289 0.132 0.159  0.048 0.472

0,,0.,0; 0.751 0.764 0.176 0.161 0.122  0.098

Ap XX 6.519e-8 0.021  0.316  0.951 0.024 538

2) 50Hz Supply Frequency: The proposed SS technique is then used for IM broken rotor bar fault
detection with 50Hz supply frequency and medium-load condition (50% of rated power). Other
settings remain the same as in the previous tests. The spectrum of frequency band [35Hz 65Hz] is
used for fault diagnosis. The selected band is shown in Figure 2.5 using PSD in Figure 2.5(a) and the
envelope analysis in Figure 2.5(b), respectively. It is seen from Figure 2.5 that most of the fault
frequency components are masked by noise, which cannot be used effectively for reliable fault

diagnosis.
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The FIS, corresponding to a healthy IM and an IM with broken rotor bar fault are given in Figures
2.6(a) and 2.6(b), respectively. The related IM condition indices are summarized in Table 2.3. It is
seen that the relative amplitude of fault frequency component in Figure 2.6(b) is greater than that in
Figure 2.6(a). From Table 2.3, the IM with broken rotor bar fault has a larger value of y_ than that of
a healthy IM, which indicates a broken rotor bar fault. The IM health condition with broken rotor bars
cannot be differentiated from healthy condition using envelope analysis, associated with its fault

index y,. Although the PSD index y, has a relatively large difference corresponding to different IM
conditions, the performance of PSD may be degraded by the interference of non-fault-related high
amplitude frequency components and its ¥, values are too small to be relied on. Hence, the proposed
SS technique associated with its fault index y, can accurately discern the health condition of IMs

with broken rotor bar fault under different supply frequencies, when compared to the related two

classical methods.
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Figure 2.5. The spectrum & for an IM with broken rotor bar fault, 50Hz supply frequency and medium-load
condition, using (a) PSD; and (b) envelope analysis. The red solid rectangular boxes highlight fault frequency

components.
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Figure 2.6. The FIS generated by the SS technique at 50Hz supply frequency and medium-load level (a) from a
healthy IM; (b) from an IM with broken rotor bars.

Table 2.3. Comparisons of central kurtosis indices for IM broken rotor bar fault detection.

Methods PSD Envelope analysis SS

Conditions Healthy Faulty Healthy Faulty Healthy Faulty

A 49.180 49.089 49.180 49.089 49.180 49.089

VpiVeiVs 0103 0.195 0.083  0.119 0.092  0.325

0,050, 0634 0653 0.149 0.146 0.098 0.068

ApiXeiXs 6.966e-4 0.008 0.096 0441  0.777 522

2.3.3 Incipient Bearing Defect Detection

As mentioned earlier, bearing defects are the most common faults in IMs [2], which also represent
the most challenging task in IM health condition monitoring, especially when using stator current

signals [109]. A small dent of diameter approximately 1/16-inch was introduced on the outer race of
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the bearing to simulate fatigue pitting defect. Whenever a rolling element rolls over the damaged
region, impulses are generated, which then excite the resonance frequencies of the IM structures. The

vibration-related outer race bearing defect characteristic frequency f, is given in Equation (1.7). The

corresponding characteristic current frequency f. can be calculated using Equation (1.13).

1) 35Hz Supply Frequency: The proposed SS technique is first tested with stator current signals
collected from an IM with the outer race defect, 35Hz power supply frequency, and light-load
condition (20% of rated power). The settings for the proposed SS technique are selected as J = 20, f; =
65,536Hz, f,, = 10Hz, and f, = 3.066 f,. The high sampling frequency is used to accurately estimate

the IM shaft speed. To obtain representative fault features, the frequency band [1000Hz, 2000Hz] is

selected for bearing fault detection.

To have a clear view of fault frequency components, the frequency band [1090Hz 1360Hz] from an
IM with outer race bearing defect is shown in Figure 2.7 using PSD (Figure 2.7a) and envelope
analysis (Figure 2.7b). It is seen that the bearing fault frequency components are difficult to recognize

due to the modulation of the signals with other IM frequency components.
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Figure 2.7. The spectrum average & for an IM with outer race bearing defects, 35Hz supply frequency, and
light-load condition, using (a) PSD; and (b) envelope analysis. The rectangular boxes indicate bearing fault

frequency components.

The FIS, corresponding to a healthy IM and an IM with the outer race defect, are given in Figures
2.8(a) and 2.8(b), respectively. The values of indices corresponding to these three fault detection
techniques are summarized in Table 2.4. It is seen from Figure 2.8 that the fault frequency component
in Figure 2.8(b) protrudes more significantly than that in Figure 2.8(a). In Table 2.4, the fault index
7, of the IM with faulty bearing is greater than that of a healthy IM using the proposed SS technique,
whereas the envelope analysis, associated with its index y,, cannot recognize different IM health

conditions. The PSD index y, generates small values that cannot be relied on. Therefore, the SS

technique can be used effectively for IM outer race bearing fault detection in this case, when

compared to PSD and envelope analysis.
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Figure 2.8. The FIS generated by the SS technique at 35Hz supply frequency and light-load condition (a) from a

healthy IM; (b) from an IM with outer race bearing defect.

Table 2.4. Comparisons of central kurtosis indices for IM outer race bearing fault detection.

Methods PSD Envelope analysis SS

Conditions Healthy Faulty Healthy Faulty Healthy Faulty

f; 34746 34.716 34.746 34.716 34.746 34.716
VpiVesVs 0 0.006 0 0 0.023  0.107
0,00 0.203  0.161 0.102 0.081 0.029  0.029

XpiKeiXs 0 1.929e-6 0 0 0.396 185

2) 50Hz Supply Frequency: In this test, the IM supply frequency is set as S0Hz. The other
settings remain the same as in previous test. The frequency band [1000Hz 2000Hz] of an IM with an
outer race bearing defect is used for testing. The band [1400Hz 1750Hz] is shown in Figure 2.9, using
PSD (Figure 2.9a) and envelope analysis (Figure 2.9b), respectively. From Figure 2.9, the bearing
fault frequency components in the spectrum are masked by higher amplitude frequency components

unrelated to the bearings, which will degrade the fault detection reliability.
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The FIS of a healthy IM and an IM with outer race bearing defect are shown in Figure 2.10. The
values of the shaft speed f, and indices of the PSD, the envelope analysis and the proposed SS
technique are listed in Table 2.5. It is seen that peaked center frequency component can be

highlighted in Figure 2.10(b) than in Figure 2.10(a). From Table 2.5, it is seen that the values of y,

in the proposed SS technique are much greater than that from a healthy IM. Thus the SS technique
and its index y, can be used for IM outer race bearing defect detection at different supply

frequencies.
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Figure 2.9. The spectrum average ® for an IM with outer race bearing defects, 50Hz supply frequency, and

light-load condition, using (a) PSD; and (b) envelope analysis.
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Figure 2.10. The FIS generated by the SS technique at 50Hz supply frequency and light-load condition (a) from a

healthy IM; (b) from an IM with an outer race bearing defect.

Table 2.5. Comparisons of central kurtosis indices for IM outer race bearing fault detection.

Methods PSD Envelope analysis SS

Conditions Healthy Faulty Healthy Faulty Healthy Faulty

f, 49.757 49.705 49.757 49.705 49.757 49.705
VyiVeiVs 0 0.041  0.005 0.007 0.090 0.196
0,,0,0, 0176 0.173 0.087 0.086 0.055 0.052
XpiXeiXs 0 0.003 1.091e-5 4.38%-5 7.170 202
2.4 Summary

A spectrum synch (SS) technique has been proposed in this work for IM fault detection using stator
current signals. It could handle IM fault detection when the change in speed and/or load is not
dramatic. This research focuses on broken rotor bar fault and incipient bearing fault detection. The

local band synch technique is employed to synthesize bearing fault related features, so as to enhance

31



IM defect-related features. A central kurtosis analysis method is proposed to extract representative
features from the FIS, which are then used to formulate fault indices. The effectiveness of the
proposed IM fault detection technique is verified experimentally using IMs with the bearing defect
and IM with the broken rotor bars, under different operating conditions. Test results have showed that
the proposed SS technique and the related central kurtosis indices can recognize IM defect features
effectively and reliably and can thus provide more relaible IM health condition monitoring
information. For each IM fault, the proposed SS technique can be used for fault detection over certain

load range. The fault detection in a broader load range will be discussed in Chapter 6.

The presented SS technique in this chapter is to achieve the first research objective in Section 1.3:
1) Propose a new signal processing technique to extract representative features from the stator

current signals for fault detection in IMs.
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Chapter 3

Selective Boosting Classifier

In this chapter, a novel selective boosting (sBoost) classifier is developed to effectively categorize the
representative features extracted from selected signal processing techniques, in order to achieve a
more accurate assessment of the IM health condition [110]. The proposed sBoost classifier will be
presented, and subsequently verified by simulation tests. Its implementation for IM fault diagnosis

will be presented in Chapter 6.

3.1 Classical AdaBoost Algorithm

Consider a binary classification problem with training data samples (x;, y1), (x2, 12), ..., (Xv, Yn),

where the class label is y, e {~1,+1} and N is the number of samples in the training data set. If T is

the maximum number of weak learners, the AdaBoost algorithm takes the following processes:
(a) Initialize the distribution of training data set L,(i)=1/N,i=1,2, ..., N.
FOR¢=1:T

(b) Train the weak learner %, € {~1,+1} using training data set with distribution Z, .

(c) Compute the sum of weights of misclassified samples ¢, = ZLLI (i)[[ht (x,)#y; ]]. The logic

1 T'#0

operator is defined as [T']] = {0 oo

(d) Calculate the weight of the weak learner #,, &, = %ln[ﬂJ .

t

(e) Update the weights of the training samples, L, (i)= L@exp (_Jatht (x)1) , where
t

J, =Y Lexpl- yah(x,)).

END
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(f) Normalize the weights of weak learner %, a, =

If f (xi)zz;a;ht(xi), and H(x,)=sign|[f(x,)] is the predicted class label, the margin of a

sample (x;, ;) will be
pilx,)=— T —— 3.1)

Theorem 1 (Schapire e al. [111]): Given the weighted training error ¢, :ZZILt @A, (x) = y,11,

for any o, the probability that p,(x;) < J can be given as,
. 5
PLp,(x)<8]1<2 [ To 2 (1-¢,)" (3.2)
t=1

When =0, P[p,(x;)<0] represents the probability that a sample is misclassified, which should be

minimized.
3.2 Selective Boosting Analysis

3.2.1 Sample Weight Regulator

The AdaBoost techniques conduct greedy learning of hard-to-learn samples, which may reduce the
classification of easy-to-learn samples. As a result, the overfitting problem occurs. The accumulated
weight of a sample is an effective indicator, which can determine the degree this sample contributes
to potential overfitting. Thus it can be used to properly adjust the penalty of this sample so as to

reduce overfitting.

Let p, be the weight of the weak learner %, in sBoost, the margin can be defined in the same
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manner as that in Equation (3.1)

inﬁtht(xi)
D8,

pt(xi)z

The accumulated weights of samples can be computed as

iy e0le )

3 explp, x,)

&O=Y (x0)

)
Vil = &)

(3.3)

(3.4)

(3.5)

(3.6)

Since some noisy samples may induce overfitting, they need to be processed properly in the

training process. In the proposed sample weight regulator, the k-nearest-neighbor method is adopted

to identify noisy samples and evaluate their noise level. Given K nearest samples of a target sample in

the training data set, if p samples of these K samples have the same class label as this target sample

(0< p<K), the level of noise of this sample will be estimated by

where the noise level is independent of time step ¢.

The proposed sample weight regulator is given by
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__ &)

@,(i) =y, (D0, = (& ()] B,6; (3.8)

It can be proven that 0 <@, (i) < S, . Accordingly, the update of the i" sample weight at step ¢ can

be formulated as:

L, (i) exp(— B.h, ('xi )yi -, (1))
7

t

Ly (i ) =

) exp{ Z[yﬁ, +w(z)]}

(3.9)

=]~
~

where J,’ is the cost function of sBoost.

By using the sample weight regulator @, (i), the noisy samples will be processed according to

their noise level. For each sample, the maximum penalty reduction is determined by its accumulated
weight, which will be lessened by the sample’s noise level. Consequently, the less noisy samples will
not have over-reduced penalties to decrease their chance of being correctly classified, and the

penalties of noisy samples can be adjusted to reduce overfitting.

Given 0 <exp(-@,(i))<1, the cost function associated with the sample weight regulator is

suggested as:

J =" Lexp(- v, Bk (x,)-@,0))

( RIS mo)}xp( 5) ( > 1ol af(z))Jexp(ﬁ,)
yih 1 vil, (x;)=—1

=¢& exp(— :Bt )+ 7, exp(ﬂ,) (310)
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where £, = Y L ()exp(-@,(i)) and 7,= > L (i)exp(-a,(7)).

ylhf(xl):l )’,hr(x,):’I

N
It can be seen that 0<¢, <1, and 0<7, <1. In addition, ZL,+1 (x,)=1 can be derived from
i=l

Equations (3.9) and (3.10).

Taking derivative of Equation (3.10) with respect to g, and letting it equal zero, the optimal

weights of weak classifier /, will be

B, =—ln[ﬂJ G.11)
2
Inserting Equation (3.11) into Equation (3.10), we get

Jt, =¢, exp(— /Bt)+ 7, exp(ﬂt)

1, (& 1, (&
=&, exp —Eln Py + 7, exp Eln Py
t t

=2,&71, (3.12)

Let

Z [Vi:Btht (x;) + @, (1)]
pt,(xi): = T
S

inﬂtht(xi) Z@-z(i)
__ =l =

)Y ADY;

(3.13)

Since P[p,(x;)<0] represents the probability that a sample is misclassified, the minimization of
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P[p,(x;)<0] is equivalent to

>@,0)
Plp,(x;,)<0]=P p;(xi)sl:lT— SP[,O;(xi)S 7]

>4

where

T
2.@,(0)
y=sup| =——

i Zﬁt

The probability of p;(x,) < y can be derived by

S BhG)+a,O]<yd B

exp[}/z B, - Z [yiﬁtht (x)+@, (l)]J 21

t=1

P[p'(x)<y]< E{eXP[VZﬂ, Z[V Bih (x;) + @, (Z)]H

i=1

=%6Xp[7Z@JZeXp[—Z[V,ﬂ,h, (x,) +@, (i)]J

[@a}[ﬁa}ﬁaﬂ(xi)

g ]
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=2Tf[ [i—J er, (3.18)

> @)

Since the condition 0 <@, (i) < B, is satisfied, it can be derived that 0 < =——<1,and 0< y <1.

t=1

From Equation (3.18), it is seen that 0 < (ﬁJ g7, <1,when 0<¢, <7, <1. The larger the T'is, the
Tl

r

£,7, | becomes. From Equations (3.14) and (3.18), it is easy to derive

™

t

T
smaller the value H [
t=1

SN

T r
& . .
that P[p,(x,)<0]<2" H —’J £,7, |. Consequently, the more weak learners are incorporated into

t=1 t

the ensemble (or the larger the 7 is), the lower the probability in which a sample is misclassified (or

the smaller the P[p,(x;) <0] becomes).

The ensemble classifier is formulated as
. T, }
H(x,)=sign)y. Bih(x,) (3.19)
The confidence rate is given by

C) =3, B (x) (3.20)
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3.2.2 Error Correction Method

The sample weight regulator is used in the proposed sBoost to alleviate the penalties of noisy hard-
to-classify samples, in order to reduce overfitting. However, the overfitting problem may still occur
due to the inconsistency of training data and test data. To address this problem, an error correction
method is suggested in the proposed sBoost to detect potential clean samples in the test data, and
correctly classify them. To implement the proposed error correction method, each dimension of the

training data x(i) is normalized over [0, 1]. Let & denote the original data; U¢ and L? are the

respective maximum and minimum value of the original training data at dimension d, then

~d d
d_
xﬁ:ﬁ, i=1,2,..,N (3.21)

where N is the number of training data, and d is the index of dimension. Each test sample x’(7) is also

processed using the same way as the training data.

~rd d
d X -L .
Xj =m, J= 1,2, ,]Vl (322)

where N, is the number of test data.

The proposed error correction method can be represented as

K(N=2'lq), j=1,2,...N (3.23)

ieS;

where y, € {—1,1} is the class label of the training data. S; represents a set that contains g samples in
the training data that are nearest neighbors to the test sample ;. It is seen that |Kl ( j)| <1. The error

correction method is implemented with the following rules:

(I) If K, (j) = 1, the test sample x;” is considered as a clean sample with class label y ;" =1.
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(ID If K, (j) = -1, the test sample x ;" is considered as a clean sample with class label y;" = -1.

(1) If |Kl ( j)| <1, the class label of the test sample x ;” is determined by boosting using the sample

weight regulator.

Potential clean samples (i.e., |Kl ( j)| =1) in the test data set are detected using Equation (3.23) and

assigned predicted class label according to (I) and (II). Other test samples are classified using
boosting with the sample weight regulator. By using this error correction method, the potential clean
samples will not be misclassified by the classifier with the potential overfitting problem. Hence the

overfitting can be further reduced to improve the classification accuracy.

3.2.3 Implementation of sBoost Technique

The developed sBoost technique includes the boosting and the error correction processes. The

proposed boosting strategy with sample weight regulator will be implemented in the following steps:
(a) Initialize the distribution of training data set L,(i)=1/N,i=1,2, ..., N.

(b) Train the weak learner #, € {~1,+ 1} using training data set with distribution L, .

(c) Calculate &, = ZLI @) exp(— o, (i)); T, = ZLI @) exp(— o, (i)); and the weight of the weak

yihr(xi)zl yihy (xi)=_1

7

learner 4;, 3, =%ln[i}

(d) If 0<7, <g, <1 is not satisfied, L, (i) =1/ N ; otherwise, update the weights of the training

samples, LH_I (l): Lz (l) eXP(_ ﬂz};z/(xi )yl -, (1)) , where Jl’ — ZZILI (i)exp(— yiﬂzhz (xi) -@, (l)), i =

t

1,2, ...,N.

(e) Repeat steps (b) to (d) withz=1:T.

T

2.5

(f) Formulate the ensemble classifier as H (xi)=sign|_z:j=1 Bh, (xi)J, where [ = P is the

normalized the weights of weak learner 4,.
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After boosting using the sample weight regulator, the errors are further corrected to improve the
classification accuracy. Given a test sample x;’, the error correction is undertaken using the following

steps:

(a) Determine if x;’ is a potential clean sample using Equation (3.23). If it is, its class label is

predicted using rules (I) - (II).

(b) If |KI (j)| <1, apply rule (III). Predict the class label of x;” by H(x_'j) = signlz;ﬂ;hl (x_'j )J .

3.3 Performance Evaluation

The effectiveness of the proposed sBoost technique is verified in this section by simulation tests using
12 benchmark data sets from KEEL database [112]. The dataset information is summarized in Table
3.1. These data sets range in size from 106 to 19,020, as well as in dimension (features) from 5 to 60.
To make a comparison, the classical AdaBoost algorithm, AB in short, the weight decay AdaBoost
algorithm, WAB in short [69], the noise detection based AdaBoost algorithm, ND in short [70], and
sBoost without error correction mechanism, sBoost-1, are employed. The sBoost using the proposed
error correction method is denoted sBoost-2. The AB, WAB, and ND are used to compare the effect
of proposed sample weight regulator in sBoost; whereas the sBoost-1 is used to evaluate the

effectiveness of the suggested error correction mechanism.
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Table 3.1. Data set information.

Data Name No. of Samples No. of Features
Phoneme 5404 5
Appendicitis 106 7
Pima 768 8
Breast 277 9
Tic-tac-toe 958 9
Magic 19020 10
Heart 270 13
Australian 690 14
German 1000 20
Twonorm 7400 20
Wdbc 569 30
Sonar 208 60

In each test, the maximum number of weak learners is fixed at 200 for the five classifiers: AB,
WAB, ND, sBoost-1 and sBoost-2. The decision tree C4.5 is used as the weak learner. Artificial noise
is added to each of the benchmark data sets. Noise level £% (e.g., 0% - 10%) in a data set is realized
by randomly selecting £% of total samples in the training data set and changing their class labels
[113]. The 2-fold cross-validation approach is conducted 5 times (i.e., 5X2 cross-validations) for each
benchmark data set. In each 2-fold cross-validation, the data are randomly split into two data sets for
two runs: one set is used for training, and the other set for testing in the first run. The two data sets are
then switched for training and testing in the second run. The parameters of the sBoost technique are

selected as K = 5 and ¢ = 5 by trial and error.

To examine the effectiveness of the proposed sBoost technique over these classical classifiers, the
differences between successful classification rates (SRs) of ND, sBoost-1 and sBoost-2 and SR of
WAB, that is, SR(ND) — SR(WAB), SR(sBoost-1) — SR(WAB) and SR(sBoost-2) — SR(WAB) for
these 11 benchmark data sets are demonstrated in Figures 3.1 to 3.3. The SR of the WAB is the
minuend of the subtraction. The indices 1 ~ 11 in the horizontal axes represent the data sets of

{Phoneme, Appendicitis, Pima, Breast, Magic, Heart, Australian, German, Twonorm, Wdbc, Sonar},
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respectively. Since the values of SR(sBoost-2) — SR(WAB) of the Tic-tac-toe data set fall within the
range of [0.023, 0.038], much larger than those in other cases, they are not shown in Figures 3.1 to
3.3 for proper view scales. The difference values of SR(AB) with respect to other classifiers (i.e.,
WAB, ND, sBoost-1 and sBoost-2) are also much larger than those in other cases, for example,
SR(sBoost-2) — SR(AB) €[0.047,0.127]; correspondingly these values are not shown in Figures 3.1
to 3.3.

From Figures 3.1 to 3.3, it is seen that sBoost-1 and sBoost-2 outperform WAB and ND in overall
performance of these 11 data sets. Their superior performance over WAB is clear as more weak
learners are incorporated into the ensemble, because the sample weight regulator in sBoost-1 and
sBoost-2 can effectively adjust noisy sample weights to reduce overfitting. The sBoost-1 and sBoost-
2 outperform ND due to their efficient noise-level-based adaptive weight regulation. On the other
hand, the sBoost-2 outperforms sBoost-1 in most test scenarios, which can detect and process clean

samples more effectively (i.e., labeled).

It can be realized from Figure 3.1(c) that the WAB performs better than the proposed sBoost
techniques in the fifth, eighth, and ninth data sets, whereas ND can provide superior performance in
the third and sixth data sets. The sBoost techniques reduce the penalty of noisy samples, in order to
improve their generalization capability. This may result in misclassification of some noisy samples,
and in turn lead to poor classification performance in the premature stage (e.g., with 50 weak learners
in this case). Nevertheless, the proposed sBoost techniques surpass both WAB and ND as more weak
learners are incorporated into the ensemble as demonstrated in Figure 3.3(c) (e.g., with 200 weak
learners in this case), because the sBoost technique provides better generalization capability than

WAB and ND.
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Figure 3.1. The differences of SR using 50 weak learners with different noise levels: (a) 0%; (b) 5%; and (c) 10%.
The blue-circle-solid line represents SR(WAB) — SR(WAB); the green-square-solid line represents SR(ND) —
SR(WAB); the black-triangle-dashed line represents SR(sBoost-1) — SR(WAB); the red-diamond-dotted line

represents SR(sBoost-2) — SR(WAB).
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Figure 3.2. The differences of SR using 100 weak learners with different noise levels: (a) 0%; (b) 5%; and (c)

10%. The blue-circle-solid line represents SR(WAB) — SR(WAB); the green-square-solid line represents SR(ND)

— SR(WAB); the black-triangle-dashed line represents SR(sBoost-1) — SR(WAB); the red-diamond-dotted line

represents SR(sBoost-2) — SR(WAB).
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Figure 3.3. The differences of SR using 200 weak learners with different noise levels: (a) 0%; (b) 5%; and (c)
10%. The blue-circle-solid line represents SR(WAB) — SR(WAB); the green-square-solid line represents SR(ND)
— SR(WAB); the black-triangle-dashed line represents SR(sBoost-1) — SR(WAB); the red-diamond-dotted line

represents SR(sBoost-2) — SR(WAB).

Figure 3.4 shows the averaged test errors of the real-world breast cancer data set using these five
boosting techniques. It is seen that both WAB and ND generate lower average test errors than AB as
the number of weak learner increases, because of their capacity for addressing the overfitting problem
(i.e., the test error increases as the number of weak learner increases). Nevertheless, their averaged
test errors still increase somewhat because overfitting is not sufficiently reduced. The sBoost

techniques outperform both WAB and ND, without clear overfitting, because their sample weight
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regulator can effectively reduce the overfitting problem and improve the classification accuracy. The

sBoost-2 overtakes sBoost-1 because the potential clean samples can be correctly classified.
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Figure 3.4. The averaged test errors of breast cancer data with different noise levels: (a) 0%; (b) 5%; and (c)
10%. The blue-solid line represents AB; the black-dashed line represents WAB; the green-dash-dotted line

represents ND; the magenta-dotted line represents sBoost-1; the red-square-dotted line represents sBoost-2.

Table 3.2 summarizes the averaged test errors of the related techniques over 12 data sets. It is seen
that the WAB and ND generate better results than AB because of their strategy to process hard-to-
learn samples. sBoost-1 outperforms AB, WAB and ND at all three noise levels, because it can

effectively detect noisy samples and reduce their effect on data distributions. The error correction
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method in sBoost-2 can further improve classification accuracy compared to sBoost-1, because it can

correct some misclassified clean samples due to the overfitting problem.

Table 3.2. Averaged test errors of AB, WAB, ND, sBoost-1, and sBoost-2 using 5%X2 cross-validation and 200

weak learners.

Noise 0% 5% 10%

DataName AB WAB ND sB1 sB2 AB WAB ND sB1 sB2 AB WAB ND sB1 sB2

Phoneme 193 192 220 188 179 .220 .215 243 214 212 260 .253 .271 .253 .251
Appendicitis 192 .189 .184 .188 .181 .245 232 214 211 211 .294 292 .289 .283 .283

Pima 258 249 232 245 243 295 286 .280 .282 .282 .320 .310 .284 .302 .299
Breast 299 292 285 280 .272 .330 .320 .293 293 .288 .347 .344 .338 .325 320
Tic-tac-toe 245 166 278 .192 191 269 221 252 222 191 .304 .242 .325 258 .257
Magic 172 165 172 169 167 211 206 216 .214 213 .245 242 243 240 .239
Heart 207 199 178 .183 176 .276 .259 .231 .234 227 .324 307 296 .304 .299
Australian 163 149 152 143 .143 .206 .195 .185 .188 .184 .239 225 211 .211 .210
German 260 254 275 254 250 293 281 .288 .285 .284 .312 .308 .310 .308 .306
Twonorm .032 .031 .033 .031 .030 .109 .101 .088 .092 .085 .160 .150 .148 .150 .140
Wdbc .050 .034 .043 .033 .031 .116 .112 .094 .094 .090 .172 .161 .146 .144 .140
Sonar 208 .204 246 204 .195 .269 .253 .297 255 .253 .317 .313 .340 .311 305

Note: sB1 represents sBoost-1, and sB2 represents sBoost-2.

The statistical tools, Wilconxon signed-rank test [114] and sign test [115], were also employed to
evaluate the pairwise statistical significant differences among these five classifiers, AB, WAB, ND,
sBoost-1 and sBoost-2. The comparison results are summarized in Tables 3.3-3.5 as a matrix of the
pairwise statistical tests. The numbers of wins, ties and loses are represented as w/t/l. p; is the p-value
of the sign test and p,, denotes the p-value of Wilcoxon signed-rank test. Symbol ‘ v is used to
indicate that the two classifiers are significantly different at 95% confidence level; whereas ‘%’

indicates that the two classifiers are significantly different at 90% confidence level.

It is clear from Tables 3.3 to 3.5 that WAB, ND, sBoost-1 and sBoost-2 outperform AB at the three
noise levels. Although sBoost-1 has no clear difference over WAB at 0% noise level, its performance
is much better than WAB as the noise level increases, which can be attributed to its efficient noise

manipulation mechanism. The ND performs better than WAB at 5% and 10% noise level, however,
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sBoost techniques outperform ND at all three noise levels because of their enhanced noisy sample
processing strategy. On the other hand, the sBoost-2 outperforms the sBoost-1 at all three noise levels

due to its effective clean sample correction approach.

Table 3.3. Statistical significant comparisons of five boosting techniques with 0% noise over 12 data sets.

Methods AB WAB ND sBoost-1 sBoost-2
Mean 0.1899  0.1770 0.1915 0.1758 0.1715
w/t/l 12/0/0 7/0/5 12/0/0 12/0/0
AB Ds 0.0005V  0.7744 0.0005V  0.0005
Pw 0.0005v  0.9248 0.0005+  0.0005
w/t/l 4/0/8 71312 10/0/2
WAB Ps 0.3877 0.1797 0.0386
Dw 0.2407 0.2852 0.0503 x
w/t/l 9/0/3 11/0/1
ND Ps 0.1460 0.0063
Pw 0.0664 x  0.0063
w/t/l 11/1/0
sBoost-1 Ps 0.0010
Pw 0.0010
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Table 3.4. Statistical significant comparisons of five boosting techniques with 5% noise over 12 data sets.

Methods AB WAB ND sBoost-1 sBoost-2
Mean 0.2366 0.2234 0.2235 0.2153 0.2100
w/t/l 12/0/0 9/0/3 11/0/1 11/0/1
AB Ds 0.0005V  0.1460 0.0063V  0.0063+
Pw 0.0005v  0.1294 0.0010  0.0010+
w/t/l 7/0/5 8/0/4 9/1/2
WAB Ds 0.7744 0.3877 0.0654 x
Dw 0.9268 0.0732x  0.0107+
w/t/l 6/2/4 11/0/1
ND Ds 0.7539 0.0063 v
Pw 0.3359 0.0015+
w/t/l 10/2/0
sBoost-1 Ps 0.0020
D 0.0020

Table 3.5. Statistical significant comparisons of five boosting techniques with 10% noise over 12 data sets.

Methods AB WAB ND sBoost-1 sBoost-2
Mean 0.2745  0.2622 0.2668 0.2574 0.2541
w/t/l 12/0/0 9/0/3 12/0/0 12/0/0
AB Ds 0.0005V  0.1460 0.0005V  0.0005
Pw 0.0005v  0.1455 0.0005+  0.0005
w/t/l 7/0/5 8/3/1 11/0/1
WAB Ds 0.7744 0.0391v  0.0063
D 0.8057 0.0703x  0.0176+
w/t/l 8/1/3 10/0/2
ND Ds 0.2266 0.0386
Pw 0.1533 0.0210 v
w/t/l 11/1/0
sBoost-1 Ps 0.0010
Pw 0.0010
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3.4 Summary

A selective boosting technique, sBoost, has been developed in this chapter for more efficient pattern
classification. The sBoost can adaptively adjust the effect of noisy samples on the data distribution
using the proposed sample weight regulator, in order to reduce the overfitting problem. An error
correction method is suggested in sBoost to detect and process potential clean samples in the test data
to further improve the classification accuracy. The effectiveness of the developed sBoost classifier
was verified by simulation tests using a series of benchmark data sets that are commonly used in this
research field. Test results showed that the developed sBoost was an efficient classification tool. It

can effectively conduct pattern classification for different applications.

The work presented in this chapter is to achieve the research objective in Section 1.3: Develop a
pattern classification technique to effectively categorize the representative features from the selected

technique(s) to provide a more positive assessment of IM health condition.
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Chapter 4
A Model-Based pBoost Predictor

In this chapter, a novel model-based boosting technique, pBoost, is developed to forecast future states
of the IM health condition, in order to further enhance the diagnostic reliability [116]. The
effectiveness of the proposed pBoost technique will be examined by using simulation tests and real

applications.

4.1 The pBoost Predictor

The idea in pBoost technique is to incorporate many AR predictors in the ensemble, each of which is
assigned an appropriate weight; correspondingly, the ensemble predictor can outperform each base

predictor and become a stronger predictor. The development of the technique is detailed below.

4.1.1 Sample Regulation

Consider the training data sets z(k); £ = 1, 2, ..., K, where K is the number of samples in the
training date set. For s-step-ahead prediction, the training date set can be re-arranged to have the input
vector x(i) = [z(i), z(i + 1), ..., z(i + d - 1)], and the output y(i) =z(i + d+s - 1), wherei =1, 2, ..., N,
and N = (K -d-s+ 1), and d is the dimension of the input vector x(i).

In the ensemble of the pBoost, the base predictor /4, incorporated at step ¢ aims to classify the
training data with distribution L,. Given the distribution L,, the update of the distribution at step 7+1
will be performed by

L,G)exp(= By, () - p,G))
A

L,()= (4.1)

t

where y, are the desired values, and p, are the predicted values at step ¢ using the base predictor 4,; £,

is the weight of the base predictor 4, Z, = Zl]il L, (i) exp(— B, | v, (@) - p, (i)|) is a normalization factor.
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In Equation (4.1), the larger the error | v, ()= p, @)

, the smaller the sample penalty. The proposed

pBoost method focuses on easy-to-learn samples, and gradually learns more difficult samples through

AR model training. Thus the overfitting caused by hard-to-learn samples can be reduced.

By setting the initial distribution L, (i) =—, i =1, 2, ..., N, the update of the distribution can also

r
N

be carried out by

exp(— Z; Bly.-p, (i)|)

Lt+l (l) = T (42)
N Z,
t=1
The weight f, of the base predictor 4, will be
=L | Mith (4.3)
oM, \ M, -4

where 4, =Y L,(D)]y, ()= p, (i)

It can be proven that 4, 20, B,>0. The detailed derivation of S, will be discussed in the

M, = sup|yd(i)—pt(i)| is the maximum value of |yd(i)—pl(i)|.

Subsection 4.1.2.

The final ensemble predictor is derived as
T o
P=>" Bp, (4.4)

where ] = 'f—’ is the normalized weight of base predictors. The processing diagram of pBoost

Zt:l 'B’

is illustrated in Figure 4.1.
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Figure 4.1. Processing diagram of the pBoost.

4.1.2 Derivation of Mean Absolute Error

Given 4, 20, />0, 5,20, Z;ﬂ; =1, ZLLTH (7)=1, and the final ensemble prediction

P@) = Z; B, p, (i), the mean absolute error (MAE) of the training data can be determined by

MAE Z%ZZJ o (D)= P(0)

SO INGED W AA

1 N
= ﬁ Zi:l

DI ANOEIA)

< %ZZIZ; AVHORIAG)

< %ZZIZITZJﬁI (yd (l) — D (l)l
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%ZZI expl- 7 16,040~ p,))) 4.10)

=%Z§Lexp(— 7 Bl p,0)) @.11)
=3 L (l')I_LT=1 Z, (4.12)
-TT.z (4.13)

To satisfy inequality (4.9), B < B, or Z; B, 21 should be satisfied. If 7 is sufficiently large,

then Z; B, 21. The inequality in Equation (4.10) can be simplified as

x < exp(—x) (4.14)

where x= > |B,(v, ()= p, ) =D B v, - p, ().

To satisfy Equation (4.14), x can be constrained within the range [0, 0.567] as demonstrated in

Figure 4.2.

1 e
0.567 — 35»<7
> 05’ Rt S
0 '
0 02 04 06 08 1
X

Figure 4.2. Plot of y= x (blue solid line) and y= e*(red dashed line).
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Then x = Z; B, | v, (@) - p, (i)| should lie within the range [0, 0.567], which can be achieved by

properly scaling the training data. Therefore, the minimization of the prediction MAE is equivalent to

minimizing lel Z, , or minimizing Z, at each step 7. Given the initialization distribution L, (7) = v’

Z, = ZZI L, (i) exp(— B, |yd @) - p, (i)|) will remain positive.

The following two constraints need to be satisfied,

> B2l (4.15)

Z;ﬂzlyd (i)— p, (i) € [0,0.567]. (4.16)

Constraint (4.15) can be achieved by scaling |yd(i)— pl(i)|. B, is immune to scaling of

, which will be shown in the following subsection. Thus constraints (4.15) and (4.16)

ya ()= p, (@)

can be satisfied simultaneously.

4.1.3 MAE Convergence

Let u, = |yd @ - p, (i)| with u, € [0,M,], then 4, = Z;Lt (Du, (i) . The upper bound of Z, can be

derived as
Zl = Z,]il Lz (l) eXp(_ ﬂzuz (Z))

t t

M, +u,(i M, —u,
<1 (i)[%’(o exp(—p M)+ D exp >J

:%exp(_ﬁzMz)'i' 2?;[ exp(_ﬁth)—l'%eXp(ﬁzMz)_ 2;}4[ eXP(,B;M;) (417)
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1 A 1 A .
Let U:Eexp(—,b’lMl)+ 21\’4 exp(—ﬁlMl)+Eexp(ﬁlMl)—2A’4 exp(f,M,) ; the minimization of

t t

. . . d . d
the upper bound U with respect to S, can be achieved by setting % = 0. By re-arranging a—U =0,

t t

- 1n[Mf+’1[J (4.18)

Substituting Equation (4.18) into Equation (4.17), the minimum upper bound of Z, can be derived

as

Z, < 1—(%J2 (4.19)

2
Since M, 24, 20, then ,|1- (% j <1. The upper bound of MAE of the training data can be
t

derived as

2
MAE <[]z <] 1- (% j (4.20)

Therefore, the more base predictors #, that are included in the ensemble predictor (or the larger the

T), the lower the upper bound of the training MAE will be.

4.1.4 AR Model as Base Predictor

The AR models will be used as base predictors in the proposed pBoost technique because of their
simple modeling mechanism, high training efficiency, and ease of implementation. To associate the
distribution of training data with the base predictors (i.e., the AR models), these models are trained

with the WLSE. The AR model has the form of

58



p,)=0zi-1D)+6,z(i—2)+..+0,_z(i—r+1)

where {Bi}are linear parameters; i = 1, 2, ..., r - 1. Equation (4.21) can also be

following matrix form,

Y =X6
where
z(1) z(2)

¥ Z(:2) Z(:3)

zZ(N,—r—s+1) z(N,-r—s+2)

6(1)
5 9(:2)

O(r—1)

z(r+s)
z(r+s+1)

z(N,)

z(r—1)
z(r)

Z(N, —s—1)

(4.21)

written in the

(4.22)

(4.23)

(4.24)

(4.25)

where », is the number of system state z. The linear parameters 8 of AR models can be trained using

the WLSE method [46]:

0=X"wx)"'x"wy

The weight matrix W is represented as
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(4.27)

0 0 - L(N)

where N =N, —-r—s+1, and g is a strength factor to characterize the degree of influence to which

the distribution L, (7) has on each training sample.

By adding more AR base predictors to the ensemble, the upper bound of training MAE as well as
the training MAE decrease as demonstrated in Equation (4.20). Consequently, the prediction accuracy

can be improved by using the ensemble of AR models.

In the boosting algorithms such as the Adaboost method, large penalties are imposed on hard-to-
learn samples to ensure that these samples can be learned with more effort. Nevertheless, this will
sacrifice the learning accuracy of low weight samples, resulting in the overfitting problem. The
overfitting problem easily occurs when relatively strong base learners rather than weak base learners
are used in the ensemble. In the proposed pBoost as shown in Equation (4.1), the larger the error is,
the lesser the penalty will be assigned to the sample. The proposed pBoost will emphasize easy-to-
learn samples, and gradually learn harder-to-learn samples as the capability of the ensemble learner
becomes stronger, or as more base learners are incorporated in the ensemble. This sample regulation
method can reduce the overfitting problem, especially when relatively strong base learners (i.e., AR

models) are used in the ensemble.

4.1.5 Implementation of pBoost Technique

The implementation procedure of the pBoost predictor is summarized as follows:

1) Scale the data within a proper range (e.g., [0, 1]), so that constraints in subsection 4.1.2 can be

satisfied.
2) Initialize the distribution of the training data set L, (i) = ﬁ ;i=1,2,...,N.

3) Train a base predictor #, (i.e., AR model trained by the WLSE) using training data set with the
distribution L; .
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4) Compute the sum of weighted absolute error 4, =ZN L (i)|yd @) - p, @)

i=1" 1

, where y, are the

desired values, and p;, are the predicted values at step ¢ using the base predictor #,.

5) Calculate the weight of the base predictor 4, 3, = ! ln[M’ +4
t

, Where M, is the maximum
oM, M, -2,

value of |yd @ - p, (i)|.

L,(yexpl= B, |y ()~ p, ()

6) Update the distribution of the training samples, L, (i)= , where

Zl
Z, = Zil L, (i) exp(— B, | v, (@) - p, (i)|) is a normalization factor.
7) Repeat steps 3)to 6)as =1, 2, ..., T.
8) Formulate the final ensemble predictor P = Z; B/p, , where B = P are normalized

Zthl'Bf

weights of base predictors, r=1,2, ..., T.

4.2 Performance Evaluation and Application

To verify the effectiveness of the proposed pBoost predictor, simulation tests are conducted to
evaluate its accuracy. Two related predictors are used for comparison: the AdaBoost.R2 predictor
[117], and the AdaBoost.RT predictor [118]. The three boosting techniques, AdaBoost.R2,
AdaBoost.RT, and pBoost, will use 50 base predictors (AR models in this case). All the AR base
predictors are trained by the WLSE. The evaluations are conducted by comparing the error
convergence and prediction accuracy of the three boosting techniques. To satisfy constraint
conditions as stated in Subsection 4.1.2, the data sets used in this section are scaled to be within the

range of [0, 1] in computation. Test results, however, are still shown in their original scale.

4.2.1 Mackey-Glass Data Forecasting

The Mackey-Glass data set [119] is commonly used in the forecasting research field to compare the
performance of predictors, due to its specific properties such as chaotic, non-periodic and non-

convergence; it is given by:
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dx(t) _ 02x(t—1)
dt 1+x°(t—1)

—0.1x(¢) (4.28)

In this simulation test, a data set is obtained from Equation (4.28) with the initial conditions of 7 =

30, x(0) = 1.2, dt = 1 and x(¢#)=0 for ¢t <0. 500 samples are selected for training, 250 samples for

validation, and 250 samples for testing. ¢ = 0.7 and » = 15 are selected in pBoost using cross

validation by fixing T = 50. Five-step-ahead prediction is conducted in this Mackey-Glass data tests.

The MAE and root mean square error (RMSE) of these three predictors with respect to the different
number of base predictors, are shown in Figures 4.3 and 4.4, respectively. The validation errors and
test errors using 50 base predictors are summarized in Table 4.1. It is seen from Figures 4.3 and 4.4
that all three predictors have the same MAE and RMSE error when only one base predictor is used,
which is used as the reference of comparison. However, the pBoost outperforms both AdaBoost.R2
and AdaBoost.RT as more base predictors are incorporated in the ensemble. The errors of
AdaBoost.R2 and AdaBoost.RT increase as shown in Figures 4.3 and 4.4, because of their ineffective
ensemble construction with base predictors. It can be observed that the errors of AdaBoost.R2 remain
constant when the number of base predictors is larger than 4; this is due to the fact that the updated
data distribution formulated by AdaBoost.R2 has insignificant impact on the AR model training.
Since AdaBoost.R2 selects the weighted median as output of the ensemble, the ensemble output will
remain unchanged if it always selects those AR models with close predictions. The AdaBoost.RT
formulates its ensemble output as the weighted average of base predictors’ outputs, and consequently
the error of AdaBoost.RT grows slightly as more predictors are involved, because its ensemble
learning mechanism cannot effectively process AR models as base predictors. Thus, both
AdaBoost.R2 and AdaBoost.RT cannot benefit from increasing the number of AR predictors. The
pBoost, on the other hand, is able to reduce both the MAE and RMSE as more AR base predictors are

incorporated in the ensemble.
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Figure 4.3. The convergence comparison using a Mackey-Glass data for five-step-ahead prediction: (a)
validation MAE; (b) test MAE. The blue-circle-solid line represents errors of the AdaBoost.R2; the green-triangle-
dashed line represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents the errors of the

pBoost.
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Figure 4.4. The convergence comparison using a Mackey-Glass data for five-step-ahead prediction: (a)

validation RMSE; (b) test RMSE. The blue-circle-solid line represents errors of the AdaBoost.R2; the green-

triangle-dashed line represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents the errors

of the pBoost.

Table 4.1. The five-step-ahead prediction performance of three predictors using 50 base predictors in terms of

Mackey-Glass data.

Predictors AdaBoost R2  AdaBoost.RT  pBoost
(102 (102 (10%)
Validation MAE 1.703 1.562 1.457
Validation RMSE 2.202 2.080 2.018
Test MAE 1.686 1.536 1.421
Test RMSE 2.229 2.111 2.072
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To get some insight into the effect of the order of AR, r, and the strength factor ¢, on the
performance of pBoost, simulation tests are also conducted using the Mackey-Glass data. Figure 4.5
shows MAEs of the validation data prediction, with respect to the order of AR models 7, the number
of base predictors 7, and the factor g. The maximum number of base predictors 7 is set at 100. It is
seen from Figure 4.5 that the MAE decreases as the number of base predictors increases. For the same
order » of the AR model, the test MAE converges faster with a greater g. The pBoost with AR(15) as
base predictor generates lower MAE when compared to AR(10) and AR(20).

Figure 4.6 illustrates the corresponding RMSE of validation data prediction under the same
conditions as those in Figure 4.5. With the exception of ¢ = 0.1, regardless of », RMSE decreases
first as the number of predictors increases, and then increases. ¢ is the rate of error changes (decrease
and increase): the higher the ¢ factor is, the faster the change will occur. In this test, minimum RMSE

could be achieved with ¢ = 0.7, = 15 when 7 = 50, as shown in Figure 4.6(b).
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Figure 4.5. MAE of the five-step-ahead Mackey-Glass data prediction using pBoost predictor with respect to (a)
AR(10); (b) AR(15); (c) AR(20), with g = 0.1 (blue-circle-solid lines), g = 0.7 (green-triangle-dashed lines), and ¢

= 2 (red-diamond-dotted lines).
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Figure 4.6. RMSE of the five-step-ahead prediction of Mackey-Glass data using pBoost predictor with respect to
(a) AR(10); (b) AR(15); (c) AR(20), with g = 0.1 (blue-circle-solid lines), g = 0.7 (green-triangle-dashed lines),

and g = 2 (red-diamond-dotted lines).

4.2.2 Sunspot Data Forecasting

Sunspot activity record is another benchmark data set that is commonly used to evaluate predictors
in the field of forecasting research and development. 265 data sets are used for testing in this case.
The first 200 sunspot data (from years 1749 to 1948) are used for training, 30 data for validation
(from years 1949 to 1978) and 35 data (from years 1979 to 2013) for testing. Two-step-ahead

prediction is performed for sunspot data forecasting.
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Figures 4.7 and 4.8 show the respective MAE and RMSE of the three predictors with 7= 50, » = 14
and g = 4, where r and ¢ are selected using cross validation by fixing 7 = 50. Table 4.2 lists the
validation errors and test errors of the predictors, when 50 base predictors are used. From Figure 4.7
and Figure 4.8, it can be seen that the pBoost and AdaBoost.RT can decrease the errors; however, the
pBoost outperforms the AdaBoost.RT due to its more effective boosting approach using the AR base

predictors.
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Figure 4.7. The convergence comparison using sun spot data for two-step-ahead prediction: (a) validation MAE;
(b) test MAE. The blue-circle-solid line represents errors of the AdaBoost.R2; the green-triangle-dashed line

represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents the errors of the pBoost.
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Figure 4.8. The convergence comparison using sunspot data for two-step-ahead prediction: (a) validation RMSE;
(b) test RMSE. The blue-circle-solid line represents errors of the AdaBoost.R2; the green-triangle-dashed line

represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents the errors of the pBoost.

Table 4.2 The two-step-ahead prediction performance of three predictors using 50 base predictors in terms of

Sunspot data.

Predictors AdaBoostR2  AdaBoost.RT pBoost
Validation MAE 25.634 20.260 16.775
Validation RMSE 30.742 23.364 20.073
Test MAE 18.422 14.834 13.696
Test RMSE 24.091 19.894 18.296
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4.2.3 Material Fatigue Prognosis

The proposed pBoost predictor is implemented in this work for material fatigue prognosis. Since
material fatigue testing is usually time-consuming, an efficient predictor is extremely helpful to
estimate the material’s dynamic characteristics without undertaking full-scale fatigue testing. For
illustration, an aluminum specimen with a thickness of 3 mm was tested using the experimental setup
shown in Figure 4.9. Both ends of the specimen were clamped to the testing machine. A small hole
was made in the middle of the specimen to facilitate crack propagation. The crack dimension was
measured directly by calipers and indirectly using relative voltage measurement. The measurement

was taken every 3000 load cycles. The test presented here is based on an indirect measurement.

Figure 4.9. The experimental setup for material fatigue testing.

In material fatigue testing, experiments were conducted under four different testing conditions
corresponding to initial crack dimensions. Under each testing condition, the experiment was repeated
6 times to yield six data sets. One data set was randomly selected from these generated data sets. The
first 825 data samples of the data set were used for training, 425 data samples for validation, and 400
data samples for testing. Twenty-step-ahead prediction was conducted for material property

forecasting, which was also used to compare the performance of the related predictors.

The MAE and RMSE of the predictors against the number of base predictors are shown in Figures
4.10 and 4.11 respectively, with 7= 50, » = 20, and g = 7; ¢ and r are selected using cross validation

by fixing 7' = 50. The corresponding validation errors and test errors of the three predictors using 50
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base predictors are summarized in Table 4.3. It is seen from Figures 4.10 and 4.11 that both
AdaBoost.R2 and AdaBoost.RT cannot reduce the MAE and RMSE when additional base predictors
(i.e., AR models) are used. This deficiency exists due to ineffective ensemble construction with the
base predictors. The pBoost, on the other hand, can improve its performance (i.e., decreasing the
errors) by incorporating more AR models in the ensemble. Figure 4.12 demonstrates the prognosis
performance of these three predictors with 50 base predictors. The test results are listed in Table 4.3.
It is seen that the pBoost outperforms the other two predictors, and has the ability to track the

dynamics of the material fatigue property more accurately.
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Figure 4.10. The convergence comparison of the related predictors for material fatigue twenty-step-ahead
prognosis: (a) validation MAE; (b) test MAE. The blue-circle-solid line represents errors of the AdaBoost.R2; the
green-triangle-dashed line represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents the

errors of the pBoost.
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Figure 4.11. The convergence comparison of the related predictors for material fatigue twenty-step-ahead
prognosis: (a) validation RMSE; (b) test RMSE. The blue-circle-solid line represents errors of the AdaBoost.R2;

the green-triangle-dashed line represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents

the errors of the pBoost.

Table 4.3. The twenty-step-ahead prediction performance of three predictors using 50 base predictors in terms of

material fatigue data.

Predictors AdaBoostR2  AdaBoostRT  pBoost
Validation MAE 15.819 15.219 13.619
Validation RMSE 21.188 20.231 18.250
Test MAE 15.370 14.552 11.806
Test RMSE 19.315 18.162 15.033

72



(0]
(@] i
8
=)
> —
(a) o
© i
[0]
14
0 100 200 300 400
(0]
(@] i
8
(@]
> |
() E
s ,
[0]
14
0 100 200 300 400
(0]
(@] i
S
=)
> —
(c) o
© ,
[0]
14
0 100 200 300 400
Measurements

Figure 4.12. The twenty-step-ahead prediction performance of (a) the AdaBoost.R2; (b) AdaBoost.RT; and (c)
the pBoost for material fatigue prognosis. The blue solid line represents the real data and the red dotted line

represents the predicted values.

4.3 Summary

A new boosting technique, pBoost, has been developed in this chapter for system state prediction.
The pBoost can aggregate many base predictors such as AR models, to improve forecasting
performance. Different base predictors address the training data with different distributions, and the
distribution of training data at each step reflects the prediction performance of the ensemble predictor

consisting of all previous base predictors. The effectiveness of the proposed pBoost predictor was
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verified using simulations of two benchmark data sets. The pBoost predictor was also implemented
for material fatigue prognosis. Test results showed that the pBoost predictor can effectively formulate
the ensemble of base predictors to improve forecasting accuracy. It is able to capture the dynamic
behavior of the tested system effectively and track its future states accurately. The verification of the

proposed pBoost predictor for IM fault indices prediction will be discussed in Chapter 6.

The work presented in this chapter is to achieve the research in Section 1.3: Develop a model-based
predictor to forecast future states of the IM conditions. The forecast information can be used to

further improve the reliability of IM condition monitoring.
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Chapter 5

A Data-Driven Fuzzy Neural Network Predictor

As an alternative solution to the model-based pBoost predictor discussed in Chapter 4, a knowledge-
based data-driven predictor, using a new evolving fuzzy neural network, eFNN, is developed in this
chapter [120]. The effectiveness of the proposed eFNN technique will be verified by using simulation

tests and real applications.

5.1 The Evolving Fuzzy Neural Predictor

The developed eFNN predictor applies both linear and nonlinear modeling strategies to characterize
properties of multi-dimensional data sets. A novel cumulative clustering algorithm is proposed to
evolve fuzzy reasoning rules for nonlinear modeling. The development of the technique is detailed

below.

5.1.1 Architecture of the eFNN Predictor

Figure 5.1 describes the network architecture of the proposed eFNN predictor. It is a six-layer feed-

forward network. Layer 1 is the input layer. Each input [xi, 19X g oeees Xi 1 p—l)sJ represents a vector

from the /™ data set with time lags 0 to p-1; s is the time-step; p is the dimension of the input data
vector; i = 1, 2,..., m; and m is the dimension of the multiple data sets or the number of inputs to the

eFNN predictor.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

[)ﬁ,f’ X1,t-s,---, X1,t—(p-1)s]

Yo

[XZ,t, X2,t-s,---, )(Z,f—(p-1)3]
4>©_> VARMA

[Xm,t, X, £sreens Xm,t—(p-1)s]

Figure 5.1. Architecture of the eFNN predictor.

In most forecasting applications, there exist both linear and nonlinear correlations between the
target data sets and these available data sets. Layer 2 performs VARMA (vector autoregressive-
moving-average) filtering to model the linear correlations among the data sets in each dimension. The
classic VARMA model generates an output vector which contains m entries; the i entry corresponds
to the predicted value of the i™ dimensional data set, i = 1, 2, ..., m. In terms of the i entry in the

output vector, the VARMA filter can be expressed as:

X1 4 X1, s X1, t—(p=1)s @, D i—s D1t (g-1)s
X X2, 1 X2, 1=(p-1)s o @), 1 s, t-(g-1)s
Y, =0, 240, T k@, | T A TR A TR e A | T (5D
‘xm,t ‘xm, t—s ‘xm,tf(pfl)s ¢m,t ¢m, t—s ¢m,t7(q71)s
where O, = l@k,l O, 6’,{,,”J are the linear AR parameters, £ = 1, 2, ..., p,
and A, = lﬁ,,l Ay oo ﬂ,,,mJare the linear MA parameters; / =1, 2, ..., g. Y, is the predicted value

of the /™ dimensional data set using VARMA.
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The linear filtering output Y, is forwarded to the output node in Layer 6. ¢, ;is the linear filtering
error of the i dimensional data set at time instance j. To conduct an s-step-ahead forecasting, @, ;can
be determined as ¢, , =Y, —Y;, where Y, and Y, are the desired and estimated values of the
VARMA filter in the i dimensional data set at time instant j, respectively.

To simplify representation, the linear estimation (or filtering) errors {(/)l,l,(pz,lg . o,(pm,l} are
represented as {@,,¢,,---,@, }, which are the inputs in Layer 3.

Layer 4 is the fuzzy rule layer. Gaussian functions are selected as membership functions (MFs), B;;,
to formulate the fuzzy operation. Given the input @ = [¢,, ,,---,9, ], the firing strengths n, can be

derived by using the fuzzy product 7-norm:

tlo-w [

2
2 o

7 = ©Xp| —

2 o

2 m
_ exp[_ 1o - P+l - o f + (0 - 1) J: [T5.0) G2
i=1

and

(5.3)

where p; = [,uj,l, Hjoseens ,uj,mJ is the center of the j cluster, which will be derived using a clustering
algorithm, as discussed in Subsection 5.1.2. K G=1,2,...,nandi =1, 2,..., m) and o, are the

respective center and spread of the Gaussian MF B ;. n is the number of nodes for each input ¢, .

Layer 5 is the rule layer. Each node in this layer is formulated by

Li=a;1x)+a;,%, +...+a;,X, +b; 5.4)
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where L; denotes a first order TS model, in which a;; (j =1, 2, ..., n;i=1, 2, ..., m) are the linear

parameters, and b; is the bias in L.

Layer 6 is the output layer. The eFNN output Y is formulated as,

anl‘j
=l

Y=Y, +- (5.5)

n

27

J=1

The fuzzy rules in Layers 4 and 5 are generated by the use of an evolving clustering paradigm that

will be discussed in Subsection 5.1.2.

5.1.2 The Adaptive Clustering Algorithm

A cumulative evolving clustering (CEC) algorithm is proposed in this work, to adaptively evolve
the fuzzy reasoning rules (clusters) represented in Layers 4 and 5 in Figure 5.1. The inputs to the

evolving fuzzy (EF) network are the linear estimation error vectors ® =[¢,,@,,---,@, |, and the J

fuzzy rule can be formulated as
R;:1F (¢, 1s B;;) and (@, is Bj,) and, ..., and (¢,, is B;,,), THEN (Zis L) (5.6)

where j =1, 2,..., n; n is the number of fuzzy rules generated; Z is the clustering index; 4 =1, 2,..., r;
and r is the number of first order TS models (< ). The generated ; cluster is an m-dimensional

cluster with center C,=1C;1,Cjss s C_/,mJ, and radius R;.

J

Figure 5.2 schematically illustrates the clustering process of the CEC algorithm. The normalized

Euclidean distance between the new input ® and the center of the jth cluster, C,, 1s defined as

\m—cﬂ (5.7)

d, :ﬁ‘

78



M~-N;
R} is the intermediate spread with R’ = (%+TJR/ , where M is the total number of input

values for clustering, and N; is the number of input values in cluster ;.

Figure 5.2. Schematic representation of a cluster j G is the center and R} is the radius of the th cluster. R} and
R_;f are intermediate and extended radii of the th cluster, respectively. A, B, Dand E represent different states of

clustering.

The CEC clustering process is summarized as follows:

Step 1: Initialization: When the first input ® (i.e., linear estimation error vector) is formulated
after VARMA filtering, it becomes the center of the first cluster, C;. The initial radius of this cluster

is set as Ry (R = 0.01, in this case). The upper boundary of the radius is denoted by R, . If R, is small,

more clusters will be generated, and vice versa.

Step 2: Cluster formulation: If a new input ® falls in more than one cluster, only the center and

radius of the closest cluster will be updated using the following rules:
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a)lf d; < R_; (e.g., state 4 in Figure 5.2), the center of the cluster is updated as:

C, o =(C, XN, +®)I(N, +1) (5.8)

Jj_new

where N; is the number of input values in cluster ;.

b) If R_; <d;<R; (eg., state B in Figure 5.2), the center and radius of this cluster remain

unchanged.

¢) Otherwise, if R, <d; < (2RU - 2R_;) (e.g., state D in Figure 5.2), the center of the cluster remains

unchanged, but the radius R; is updated as R, =R = % d;+R.

dIf R, < (2RU —2R;)< d; (e.g., state £ in Figure 5.2), a new cluster is created. The new input

value @ becomes the center of the new cluster and the radius is initialized as R,,.

e) If (2RU -2R, )< R; <d;, anew cluster is created with the same setting as in d).

In general, the data with d; < R_; will have higher MF degree, and will be used to determine the
cluster center. The data with R; <d; < (2RU —2R_;) represent the potential spread of the cluster, and
will be used to update the radius R; of the cluster. If the input data satisfies R; <d; <R, the
parameters of the cluster remain unchanged.

Step 3: Structure recognition: The center of the j* cluster C, will be the center of the ;" firing
strength (i.e.,p; in Equation (5.2)). Assume that the center C; corresponds to the MF degree 100%

1.e., 7, =1), and the input values ® , with d;= R; are assigned a MF degree of 1% (i.e., 77, =0.01).
(ie., n; ), p R JAREAY g gr (ie., n; )

Substituting 7, =0.01 in Equation (5.2) yields

fer-w
o)

exp. 0.01 5.9
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Then inserting Equation (5.7) into Equation (5.9) gives the following equation:

ex [—lmR-’z}—o 01 5.10
p 2 - Y. ( )
2 o

J

The spread o ; can be derived by rearranging Equation (5.10):

Jm xR,

o = (5.11)

77 [~ 2In(0.01)

When an input value with d; <R, , its MF degree can be derived as

2
) ol 110701
R
o 1ma;
= eXp| 5 o'?
J
o
=exp [—/J In(0.01) (5.12)
R./

J J

2 2
d. d.
Since [R—’J <land In(0.01) is a negative value, the MF degree 77, =exp [R—’J In(0.01) {>0.01.

When d; takes the extremely small value (ie., d; =0), the MF degree 7, =1. Therefore the MF

degree 77, will be within the range of [0.01, 1].
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When projecting the m-dimensional cluster onto each dimension, the corresponding MF center and

radius will be center 4;, and spread o, of B,; in Equation (5.3), respectively. The proposed CEC

technique is a constrained evolving algorithm, which is dependent on two factors: the input @, and
the upper boundary R,. If R, remains constant (a general case), the clusters will be evolved based

only on input information ® .

The proposed CEC updates the center of a cluster by considering the information of both previous
cluster center position (i.e., Equation (5.8)) and the newest input sample. Thus the updated cluster

center of the CEC is less sensitive to outliers. The CEC adjusts the cluster center using an evolving

mechanism, R; =(%+#JR/. Those new clusters (containing only a few samples) will have

more opportunities to update their centers using new accommodated samples, so as to optimize
cluster center position. The centers of the clusters with many samples will be less sensitive to new
accommodated samples, especially those new samples which belong to this cluster, but are far away

from the cluster center. Therefore the cluster center can be less affected by outliers.

5.1.3 Training Strategy

The parameters of the developed eFNN predictor will be optimized by appropriate training as
illustrated in Figure 5.3. To catch linear correlations of the m-dimensional data sets, the parameters in

the VARMA filter are optimized online by the use of the recursive least square estimate (RLSE).

Initialization

VARMA filter
parameters

v

EF network
parameters

v

Stop

RLSE >

GD & RLSE —»

Figure 5.3. Flowchart of the hybrid training process of the developed eFNN predictor.
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A hybrid training strategy will be used to optimize parameters in the EF network (Layers 3-5 in
Figure 5.1). The GD algorithm is employed to update the nonlinear parameters in nodes B;; in Layer 4,
whereas the RLSE is utilized to adaptively tune the linear parameters in L; in Equation (5.4).
According to our previous research in system training [86], a hybrid training strategy can reduce the
search dimension in comparison with a single training method (e.g., the GD), reduce trapping in local

optima, and improve convergence of the training process.
Specific training processes are summarized as follows:

1) The initial values of parameters in nodes L; (j = 1, 2,..., n) are initialized over the interval [0,

2) The parameters Hk,i and l,,i k=12 .,p0l=12,..,q; i=1,2, ..., m)in the VARMA
filter are optimized online by using the RLSE.

3) After training of the VARMA filter parameters, the nonlinear parameters in nodes B;; (j = 1,
2,...,n;i=1,2, ..., m) are optimized by using a GD algorithm, and linear parameters in L; are

updated by RLSE adaptively.

In the training process, only one training epoch is needed to update the VARMA filter parameters.

After the linear correlation information is filtered out, the estimation error data set {(/)1,(/)2,..., (pm} will

retain less regulated information. This means that fewer clusters can be formulated, which can
simplify the eFNN predictor structure and speed up training convergence, as will be discussed in

Subsection 5.2.

5.2 Performance Evaluation

The effectiveness of the proposed eFNN predictor is verified in this section using a forecasting
simulation example of a multi-dimensional financial data set. Next, it is implemented and tested for
IM system state prognosis. To simplify the discussion, the developed eFNN predictor using the
proposed CEC algorithm is designated as eFNN-CEC.

To make a comparison, the related predictors based on an enhanced fuzzy filtered neural network
(EFFNN) [86], an evolving neuro-fuzzy (eNF) scheme [121], and the dynamic evolving neural-fuzzy
inference system (DENFIS) [106] are employed for testing. The EFFNN predictor is a four-layer
feed-forward NN with the same number of nodes from Layer 1 to Layer 3 (i.e., 20-20-20-1). The eNF
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predictor is an evolving NN with three input nodes. The DENFIS is a data-driven NN using a

clustering technique.

To evaluate the effectiveness of the proposed evolving CEC algorithm in the eFNN predictor, an
evolving clustering method (ECM) suggested in [103] is implemented in the eFNN predictor to
replace the CEC algorithm, designated here as eFNN-ECM in short. That is, the only difference
between the eFNN-CEC and the eFNN-ECM is associated with evolving clustering algorithms. The
maximum number of training epochs of the predictors (i.e., EFFNN, eNF, eFNN-ECM, and eFNN-
CECQ) is set at 1000.

5.2.1 Exchange Rate Forecasting

In this test, a six-dimensional currency exchange rate data set is used to examine the performance
of the proposed eFNN-CEC predictor. The data set consists of daily exchange rates of the Canadian
dollar versus the US dollar (the first dimensional data set), the European euro versus the US dollar
(the second dimensional data set), the British pound versus the US dollar (the third dimensional data
set), the Australian dollar versus the US dollar (the fourth dimensional data set), the Hong Kong
dollar versus the US dollar (the fifth dimensional data set) and the New Zealand dollar versus the US
dollar (the sixth dimensional data set). All were collected simultaneously over the period between
January 1, 2010 and May 31, 2012 [122]. The tests were performed on each dimensional data set. The
first one third of the data set in each dimension was used for training, and the remainder was used for

testing,

Figures 5.4 to 5.9 illustrate the three-step-ahead forecasting performance of these six data sets
using the related predictors, and the related results are summarized in Tables 5.1 to 5.6. It is seen that
the eNF predictor is superior to the EFFNN predictor in terms of both forecasting accuracy and the
running time, because of its evolving reasoning mechanism. The DENFIS achieves less prediction
error than the eNF as indicated in Tables 5.1, 5.3, 5.4 and 5.6, respectively, but it generates more
clusters and hence requires more running time. It is seen from Tables 5.2 and 5.5 that the eNF
outperforms the DENFIS in terms of number clusters generated, prediction errors and running time,
because of its more advanced evolving mechanism. The eFNN related predictors (i.e., eFNN-CEC
and eFNN-ECM) yield less forecasting error than those based on the DENFIS, the eNF and the
EFFNN, because eFNN undertakes more efficient linear and nonlinear correlation modeling (e.g.,

eFNN-ECM generates 75% and 67% smaller errors than the eNF and the DENFIS, respectively, as
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E,-FE
demonstrated in Table 5.1). The error in percentage is calculated as E(%)=100x —2—4

B

, Where

E, and Ej are the mean square errors of predictor 4 and predictor B, respectively. The developed CEC
evolving method in eFNN-CEC is more efficient than the classical ECM in eFNN-ECM (e.g., eFNN-
CEC generates 42% smaller error than eFNN-ECM in Table 5.4).

On the other hand, eFNN-CEC generates the fewest clusters in these tests because of its linear
filtering operation and effective clustering algorithms, which takes the least running time
correspondingly. The eFNN-CEC predictor outperforms other predictors in capturing and tracking the

dynamic behaviors of the underlying systems in this test.
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Figure 5.4. Comparison of three-step-ahead forecasting results of daily Canadian dollar/US dollar exchange rate
data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using different

predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC.
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Exchange Rate Exchange Rate

Exchange Rate

Table 5.1. Forecasting results (three-step-ahead) of Canadian dollar/US dollar exchange rate.

Forecasting

No. of

Schemes Clusters MSE (104 Running Time (s)
EFFNN 20 6.072 27.211
eNF 6 3.723 22.524
DENFIS 10 2.797 25.979
eFNN-ECM 3 0.918 17.872
eFNN-CEC 2 0.421 16.013
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Figure 5.5. Comparison of three-step-ahead forecasting results of daily European euro/US dollar exchange rate

data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using different

predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC.
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Table 5.2. Forecasting results (three-step-ahead) of European euro/US dollar exchange rate.

Forecasting No. of 4 . .
Schemes Clusters MSE (10-4) Running Time (s)
EFFNN 20 15.000 27.422
eNF 8 4.836 25.835
DENFIS 10 8.843 26.634
eFNN-ECM 4 3.990 21.261
eFNN-CEC 3 2.689 18.813
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Figure 5.6. Comparison of three-step-ahead forecasting results of daily British pound/US dollar exchange rate
data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using different

predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC.
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Table 5.3. Forecasting results (three-step-ahead) of British pound/US dollar exchange rate.

gg;zcrizt;”g ’C\l)%s?;rs MSE (104) Running Time (s)
EFFNN 20 9.281 26.113
eNF 8 4,579 22.492
DENFIS 12 3.656 24.956
eFNN-ECM 3 3.382 17.319
eFNN-CEC 2 3.141 16.593
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Figure 5.7. Comparison of three-step-ahead forecasting results of daily Australian dollar/US dollar exchange rate

data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using different

predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC.

88



Table 5.4. Forecasting results (three-step-ahead) of Australian dollar/US dollar exchange rate.

Forecasting No. of 4 . .
Schemes Clusters MSE (10™) Running Time (s)
EFFNN 20 14.000 26.362
eNF 7 6.448 24.804
DENFIS 10 3.502 25.462
eFNN-ECM 3 2.201 16.973
eFNN-CEC 2 1.279 16.109
o 01295 (a) 101295
© o120 0.129
(0]
(@]
S 0.1285 10.1285
S
o o0.128} 0.128}
0.1275 - 0.1275 . " . . . . .
0 0 50 100 150 200 250 300 350 400
o 0.1295} 10.1295}
© "
O 0.129t 0.129f
(0]
o :
S 0.1285 10.1285}
S
Qi 0.128f 0.128+
0.1275 - - - - - - . = 01275 . : . : . : . .
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
o 01295 (c) Day
©
O 0.129}
(0]
(®)]
S 0.1285
c
g
W 0.128}

0.1275
0

Figure 5.8. Comparison of three-step-ahead forecasting results of daily Hong Kong dollar/US dollar exchange

rate data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using

different predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC.
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Table 5.5. Forecasting results (three-step-ahead) of Hong Kong dollar/US dollar exchange rate.

gg;zcrizt;”g ’C\l)%s?;rs MSE (10%) Running Time (s)
EFFNN 20 4.436 27.594
eNF 8 0.926 25.481
DENFIS 10 2.321 26.687
eFNN-ECM 4 0.883 17.521
eFNN-CEC 2 0.738 15.596

0.95

o
©

0.85r

Exchange Rate

o
e g 2
N g ®

0 50 100 150 200

250

300

350

0.95¢
0.9¢
0.85¢
0.8} .

Exchange Rate

0.75
0.7¢

0 50 100 150 200

300

350

0.95¢
0.9r
0.85¢
0.8r

Exchange Rate

0.75 s\
0.7}

0 50 100 150 200

Day

250

300

350

0.95
0.9¢
0.85¢
0.8f

(d)

0.75 b ¥y

07}

0.95
0.9r
0.85r

100 150

200 250 300 350 400

100 150

200 250 300 350 400

Day

Figure 5.9. Comparison of three-step-ahead forecasting results of daily New Zealand dollar/US dollar exchange

rate data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using

different predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC.
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Table 5.6. Forecasting results (three-step-ahead) of New Zealand dollar/US dollar exchange rate.

gg;zcrizt;”g ’C\l)%s?;rs MSE (104) Running Time (s)
EFFNN 20 8.463 26.524
eNF 7 3.951 24.479
DENFIS 8 3.332 24.941
eFNN-ECM 4 1.411 17.893
eFNN-CEC 2 1.141 16.416

5.2.2 Induction Motor System State Prognosis

The developed eFNN-CEC predictor was implemented for IM system state prognosis. An efficient
predictor is helpful in modeling IM dynamic characteristics, predicting its future system states, and

improving its performance. The experimental setup used in this test was given in Subsection 2.3.1.

This test is to forecast future states of stator current signals that will be used for IM health condition
monitoring. During the test, stator current signals were collected at a sampling frequency of 10 kHz.
Two stator current signals were used to form a two-dimensional data set for IM system state
forecasting. The first dimensional data set is a stator current residual signal from phase 1 by filtering
out supply frequency components, and the second dimensional data set is a stator current signal from

phase 2. The first 300 data were used for training, and the remaining 600 data were used for testing.

Figures 5.10 and 5.11 demonstrate the respective four-step-ahead forecasting results of the signal
residual and the stator current signal using the related predictors, whereas the results are summarized
in Tables 5.7 and 5.8. The unit of the stator current signal is in Amperes (A). After calculating the
mean square error of the predicted values, the unit becomes A as being used in Tables 5.7 and 5.8. It
can be seen that the eNF outperforms the EFFNN, with 29% smaller error in Table 5.7. The DENFIS
generates more clusters and would take longer running time than the eNF, but the DENFIS is more
accurate than eNF because more fuzzy rules are used to model the data characteristics. The eFNN
predictors outperform predictors based on the EFFNN, the eNF and the DENFIS because the eFNN

can employ both linear and nonlinear modeling mechanisms. Moreover, the eFNN-CEC predictor
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creates the fewest clusters (only three in this case) compared to eFNN-ECM (four to five clusters),
eNF (six to eight clusters) and DENFIS (twelve to thirteen clusters). It is seen from Tables 5.7 and 5.8
that the proposed eFNN-CEC predictor provides the highest forecasting accuracy in comparison with
eFNN-ECM, eNF, DENFIS and EFFNN predictors. In addition, it can be seen from Tables 5.8 that
the eFNN-CEC generates 43% smaller error than the second best predictor, eFNN-ECM. The eFNN-

CEC predictor can catch the dynamic behavior of the tested IM system quickly and accurately.

IM Current
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Figure 5.10. Comparison of four-step-ahead forecasting results of the signal residual of an IM. The blue solid line
is the real data to estimate; the red dotted line is the forecasting results using different predictors: (a) EFFNN; (b)

eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC.
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Table 5.7. Forecasting results (four-step-ahead) of the signal residual of an IM (from phase 1).

IM Current IM Current

IM Current

gg[}ic;ztsmg 'C\‘:ﬁj'sct’;s MSE (A2 Running Time (s)
EFFNN 20 0.021 41,593
eNF 8 0.015 38.988
DENFIS 13 0.011 40.124
eFNN-ECM 5 0.008 25553
eFNN-CEC 3 0.002 20.704
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Figure 5.11. Comparison of four-step-ahead forecasting results of the stator current signal of an IM. The blue

solid line is the real data to estimate; the red dotted line is the forecasting results using different predictors: (a)

EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC.
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Table 5.8. Forecasting results (four-step-ahead) of the stator current signal of an IM (from phase 2).

gg[}?ﬁ;ﬂ"g Q&S‘t’;s MSE (A2) Running Time (s)
EFFNN 20 0.018 39.051
eNF 6 0.017 34.129
DENFIS 12 0.008 37.478
eFNN-ECM 4 0.007 20.732
eFNN-CEC 3 0.004 16.046

The IM data is a two dimensional data set. If the proposed eFNN-CEC technique is used, the
residual IM data after VARMA filtering can be represented as @ = [¢,, ¢, | in Equation (5.2), which
is then fed to EF network for nonlinear modeling. The proposed CEC technique is used to generate
clusters from the input patterns @, so as to adaptively construct the structure of EF network as well
as Gaussian MFs B;; in Equation (5.3). The distributions of input patterns @ , and the corresponding

trained Gaussian MFs are shown in Figures 5.12 and 5.13, respectively. The parameters u;,, i, ,
and o, of the Gaussian MFs in Equation (5.3) corresponding to Figures 5.12 and 5.13, are given in

Tables 5.9 and 5.10, respectively. From Figures 5.12 and 5.13, it is seen that the derived three
Gaussian MFs can capture the distribution of the input patterns effectively. Compared to other
predictors with more generated clusters (i.e., Gaussian MFs), the proposed eFNN-CEC can conduct

accurate prediction with less running time as illustrated in Tables 5.7 and 5.8.
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Figure 5.12. The distribution of (a) input patterns ¢, ; and (b) input patterns ¢, , associated with the
corresponding Gaussian MFs, for the signal residual of an IM. The blue solid line represents the distribution of

the input patterns; the red dotted line represents the Gaussian MFs.

Table 5.9. The parameters of the trained Gaussian MFs for the signal residual of an IM.

Parameters H;, (Fig. 13a) 4, (Fig. 13b) (o)

Cluster 1 (j=1) 0.254 -0.048 0.124
Cluster 2 (/= 2) 0.734 0.082 0.139
Cluster 3 (/= 3) -0.303 -0.016 0.197
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Figure 5.13. The distribution of (a) input patterns ¢, ; and (b) input patterns ¢, , associated with the
corresponding Gaussian MFs, for the stator current signal of an IM. The blue solid line represents the distribution

of the input patterns; the red dotted line represents the Gaussian MFs.

Table 5.10. The parameters of the trained Gaussian MFs for the stator current signal of an IM.

Parameters HM;, (Fig. 14a) M (Fig. 14b) o

Cluster 1 (j=1) 0.288 -0.028 0.107
Cluster 2 (j= 2) -0.333 -0.001 0.111
Cluster 3 (j= 3) -0.077 0.211 0.117

5.3 Summary

An evolving fuzzy neural network, eFNN, technique has been developed in this work for multi-

dimensional system state forecasting. It can integrate the strength of both the VARMA filter and
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nonlinear network modeling in dealing with multi-dimensional data sets. A novel evolving clustering
algorithm, CEC, is proposed to adaptively generate fuzzy reasoning clusters and adjust the eFNN
network structure. The effectiveness of the proposed eFNN predictor and the new clustering
algorithm was verified by simulation test using a multi-dimensional financial data set. The new
predictor was also implemented for the induction motor, IM, system state prognosis. Test results
showed that the developed eFNN predictor is an accurate forecasting tool, and can capture the
dynamic behavior of the tested system quickly and accurately. The CEC is also an effective evolving

technique for network structure formulation.

The work presented in this chapter is to achieve the research in Section 1.3: Develop a
knowledge-based data-driven predictor to forecast future states of the IM conditions. The forecast

information can be used to further improve the reliability of IM condition monitoring.

97



Chapter 6
An Integrated Monitoring System for IM Health Condition

Monitoring

In this chapter an integrated fuzzy diagnostic (IFD) system is developed to effectively integrate the
diagnostic information and the prognostic information in order to achieve a more accurate assessment
of the IM health conditions. Its effectiveness is verified based on a series of testing corresponding to

most common IM defects: broken rotor bar(s) and pitting of the bearing.

6.1 Decision-Making Process

The proposed integrated monitoring system consists of two modules: feature extraction and decision-
making, as illustrated in Figure 6.1. In feature extraction, appropriate signal processing techniques are
used to extract representative features from collected stator current signals and generate fault
indicators (or indices). Since different IM defects require different fault detection techniques for
analysis, the related index formulation will be discussed in the following subsections corresponding

to each defect detection condition.

The decision-making module is to process these representative features for IM health condition
monitoring. As discussed in the Chapter 5, the eFNN predictor is sensitive to the sequence of input
data; it usually generates a more complex reasoning structure compared with pBoost predictor.
Correspondingly, its error convergence will be slower, which may result in degraded training
accuracy in online IM monitoring operations, since online monitoring operations require prompt data
processing in a short time period. Although the accuracy of the pBoost predictor may be a little lower
than the eFNN due to its predefined model of the predictor, it has a compact structure and faster error
convergence. Therefore, the pBoost predictor is used in this case to estimate future states of IM fault

indices.

The diagnostics is performed component-by-component in the IM. The decision-making module is
composed of sBoost classifier, pBoost predictor and IFD system. The sBoost classifier aims to map
the fault indices extracted from the related signal processing techniques into different IM health
condition categories. The pBoost predictors are used to forecast the future states of each of the IM

fault indices. The predicted fault indices indicate the future trends of these indices. If the current fault
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indices are contaminated by noise caused by factors such as sudden load disturbances or transient
interference from other machines, the trends of these fault indices may provide a different perspective
associated with historical (previous) records, which can provide useful information to enhance the
reliability of the IM health condition monitoring. This decision-making process is performed by the
proposed IFD scheme with a novel confidence-rate-based fuzzy reasoning mechanism as revealed in

the following section.
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Figure 6.1. The diagram of the proposed integrated monitoring system.

6.2 IM Broken Rotor Bar Fault Diagnosis

6.2.1 Monitoring Indices for IM Rotor Bar Fault Detection

In IM rotor bar condition monitoring, a fault detection technique (an index) from a different

information domain could provide a different perspective of the IM health condition. In this work,
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fault indices from three information domains: the time domain, the frequency domain, and the time-

frequency domain, will be employed for advanced processing in order to improve diagnostic accuracy.

Consider three well-accepted time domain statistics: energy, skewness and kurtosis, as defined in

Equations (6.1), (6.2) and (6.3) respectively:

N
Energy: z x} 6.1

i=1

Skewness: 6.2
(N=1)% ©2)
ZN (‘xi - Ex )4
Kurtosis: =~————-3 (6.3)
(N -1

where x; are the data samples in a data set, i =1, 2, 3, ..., NV; and N is the size of a data set; E, is the

mean, and ¢, is the standard deviation of the data set. The "-3" in Equation (6.3) is used to make the

kurtosis of the normal distribution equal to zero.

A series of tests were conducted using these time-domain techniques (i.e., energy, skewness, and
kurtosis) for IM broken rotor bar fault diagnosis. The results are summarized in Table 6.1, and the test
data are described in the following subsection. It is seen from Table 6.1 that the skewness of the
notch-filtered stator current signal can provide the highest accuracy among these three techniques,
which will be selected as the time domain index in this case. The elliptic notch filter is applied to
suppress the supply frequency component in each data set and reduce its interference in fault
diagnosis [123]. Given a stator current signal, x;, i = 1, 2, 3, ..., N, with length of N. The selected

skewness index will be:

(6.4)

Zl:
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where E, is the mean, and ¢, is the standard deviation of the stator current signal.

Table 6.1. Comparison of the related time domain indices for IM broken rotor bar fault diagnosis.

Diagnostic Indices False Alarms Missed Alarms Overall Accuracy
Energy 52 51 65.7%
Skewness 28 34 79.3%
Kurtosis 33 45 74.0%

Among the techniques in frequency domain analysis, the proposed spectrum synch technique in
Chapter 2 was shown to outperform other related techniques, and thus will be used as the fault index
in the frequency domain in this work. The two first-order fault harmonics of IM broken rotor bar fault
in Equations (2.10) and (2.11) with k& = 1 are synchronized to generate the fault index. In IM broken
rotor bar fault related harmonics, these two first-order fault harmonics usually have a more
pronounced peak than higher harmonics. Correspondingly, the fault index in the frequency domain

will be

22 = Is (65)

where y, is derived from Equation (2.9).

Among the IM rotor bar fault detection techniques in the time-frequency domain, as discussed in
Chapter 1, short time Fourier analysis employs the window function with a fixed length; consequently
the signal can only be examined with a fixed time resolution and frequency resolution. The Wigner-
Ville distribution generates cross terms that may mask the fault features. Although the wavelet packet
analysis can generate more detailed decomposition for some advanced signal analysis, it is usually
difficult to recognize the real representative features from the map with redundant and misleading
information, for fault detection in complex IM systems. The wavelet transform (WT) decomposes the
signal into different time and frequency resolutions, without cross terms. Although the resolution of

the WT is lower than the wavelet packet analysis in terms of the decomposition at the detail end, it
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applies compact filter bank implementation and the resulting features are relatively easy to explain.

Correspondingly, the discrete WT will be used as the time-frequency domain technique in this case.

The fundamental frequency component in the stator current signal is suppressed by using an elliptic
notch filter [123]. Then the discrete WT is employed to extract fault related sub-bands [21]. The two
sub-bands containing f;; and f,, are selected, and the root-mean-square (RMS) value of their
corresponding decomposed signals is used as a fault index, where f,; and f;,; are the fault frequency
components in Equations (2.10) and (2.11) with £ = 1. Correspondingly, the fault index in the time-

frequency domain will be:

1

= |—\S5+5S, 6.6
L Si+si) (6.6)

Z3

where S, and S, represent the decomposed signals corresponding to the sub-band containing f;;; and
the sub-band containing f,; respectively. Ly and Lp, denote the length of S, and the length of S,

respectively.

6.2.2 Data Preparation

To test the performance of the proposed integrated monitor for IM broken rotor bar fault
diagnostics, the stator current data were collected using the experimental setup as described in

Subsection 2.3.1. The supply frequency was set at 50 Hz and the sampling frequency f; = 10 kHz.

For IM broken rotor bar fault diagnosis, one hundred data sets were collected from a healthy IM
corresponding to each of the load conditions: light-load condition (approximately 10% of rated
power), medium-load condition (approximately 50% of the rated power) and heavy-load condition
(approximately 100% of rated power). One hundred data sets were collected from an IM with broken
rotor bar fault corresponding to each of these three load conditions. In total, 600 data sets were

collected, whereby half were used for training, and the remaining for testing.

6.2.3 Fault Indices Prediction

The forecasting of fault indices could explore the time series properties of each fault index, and

synthesize the corresponding prognostic information into fault diagnosis, in order to further improve
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the diagnostic accuracy and reliablity. If z,’, z,’, and z3 are the predicted values of the fault indices of
z1, 22, and z3, respectively, the implementation of pBoost predictor for fault index prediction takes the

following steps:

1) Generate a series of a fault index (i.e., z, z5, or z3) to construct the training data set with size N,

2) Initialize the distribution of the training data set L,(i)=—;i=1,2, ..., N,.

1
N,
3) Train an AR model /, with the training data set and the distribution L, at step ¢ as discussed in

Subsection 4.1.4.

4) Compute the sum of weighted absolute error A, zzlz'l L, (i)| v, (@)= p,(@@)|, where y, are the

desired values, and p, are the predicted values at step ¢ using the AR predictor 4.
5) Calculate the weight of the AR predictor /, using Equation (4.3).
6) Update the distribution of the training samples using Equation (4.1).
7) Repeat steps 3)to 6)as =1, 2, ..., T.

8) The predicted fault index (i.e., z,’, z;’, or z3’) is calculated using Equation (4.4).

6.2.4 Performance Evaluation

To verify the proposed integrated monitoring system for IM broken rotor bar fault detection, six

methods were employed for comparisons:
Method #1: The fault diagnosis based on time-domain fault index z; only.
Method #2: The fault diagnosis based on frequency-domain fault index z; only.
Method #3: The fault diagnosis based on time-frequency-domain fault index z; only.
Method #4: The fault diagnosis only based on the sBoost classifier using fault indices z, z,, and z;.

Method #5: The fault diagnosis only based on the sBoost classifier using fault indices z,’, z,’, and

z3’ that are predicted by pBoost predictors.

Method #6: The fault diagnosis based on the proposed integrated monitoring system using z,, z», zs,

z1’, zo’, and z3’.
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Figure 6.2 demonstrates the training error convergence and test error convergence of Method #4.
The convergences of both training error and test error of Method #5 are illustrated in Figure 6.3. It is
seen that the training errors can converge to zero effectively in the training process. The test error also

converges as the number of base learners increases.
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Figure 6.2. The (a) training error and (b) test error using Methiod#4 in IM broken rotor bar fault diagnosis.
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Figure 6.3. The (a) training error and (b) test error using Method#5 in IM broken rotor bar fault diagnosis.
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Method #6 employs the proposed IFD system to conduct fuzzy inference based on the diagnostic
results from Method #4 and Method #5. Let M, and M, represent healthy state and damaged state of
the IM component (rotor bar in this case), respectively. Given the fault index vector z = {z), z, z3},
and the predicted fault index vector z’= {z,’, z,’, z3’}, the fuzzy reasoning mechanism is given as

follows:

Ri:IF (z € M) AND (z' < M,;) THEN (IM component is healthy)
Ry IF (z € M) AND (z' < M) THEN (IM component is damaged)

R;3: OTHERWISE (IM component is possibly damaged)

If the IM is damaged (RR>), an alarm signal is triggered for repair operations. If the IM is possibly
damaged (R5), the following two rules should be performed:

H(z)C(z)+ H(z)C(2)
2

R IF (Rs 1s satisfied) AND <0 THEN (IM component is healthy)

H(z)C(z)+ H(z)C(Z)

Rs: IF (R; is satisfied) AND 5

>0 THEN (IM component is damaged)

where H(-)e {~1,1} indicates a fault index vector that belongs to one of the health condition
categories (damaged or healthy) of the IM component, which can be calculated using Equation (3.19).
H(-) = 1 indicates the damaged IM state; H(-) = -1 represents the healthy IM state. C(-)e [0, 1]is the
confidence rate, which can be calculated using Equation (3.20). It indicates to what extent a fault
index vector belongs to a health condition category. The larger the C(-) is, the higher the probability
that a fault index vector will belong to a specific health condition category. For
example, H(z)C(z) 20 indicates the IM component is damaged based on the index vector z with

confident rate C(z).

Rules R4 and Rs are used to trigger the integrated monitor for intense processing actions. To make

a clear decision, the monitoring interval becomes much shorter than that in the general monitoring
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operations. Data sets will be collected in the following steps and the corresponding fault indices are
computed. When R, is satisfied in the following steps, then IM component is healthy. When R, is
satisfied in the following steps, then IM component is damaged. Otherwise, the similar monitoring

process rolls over until R, or R, is satisfied.

Each signal processing technique (e.g. the proposed SS technique) may handle IM fault detection at
certain load range, and an intelligent system is needed to improve the accuracy of fault detection in a
broader load range. Table 6.2 summaries the test results using these six methods. It is seen that
Methods #4 and #5 can diagnose IM broken rotor bar fault more accurately than Methods #1, #2 and
#3, because Methods #1, #2 (the proposed SS technique) and #3 only extract fault indices from the
respective time domain, the frequency domain, and the time-frequency domain with certain
limitations such as load range, and cannot provide robust description of the IM fault states. The
utilization of fault indices from three domains can assess IM health conditions more accurately
because the proposed sBoost classifier can adaptively resolve decision conflicts (i.e., noisy samples)
caused by fault indices from different domains using the proposed sample weight regulator. The fuzzy
rules R, Ry, R4, and Rs construct the [FD system, which is used in Method #6 to conduct primary
fault diagnosis. Method #6 outperforms Method #4 and Method #5, because IFD system can
effectively integrate the information from both the classifier and predictor by using the confident-rate-

based fuzzy inference system.

Table 6.2. Diagnostic testing results of IM broken rotor fault using different methods.

Déi%'::ﬁgc False Alarms Missed Alarms Overall Accuracy
Method #1 28 34 79.3%
Method #2 12 35 84.3%
Method #3 21 35 81.3%
Method #4 8 17 91.7%
Method #5 12 20 89.3%
Method #6 0 3 99.0%
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6.3 IM Bearing Outer Race Fault Diagnosis

6.3.1 Monitoring Indices for IM Bearing Fault Detection

Similar to the analysis of IM rotor bar condition monitoring in the previous subsection, three fault
detection techniques (or indices) from different information domains: the time domain, the frequency
domain, or the time-frequency domain, are selected to improve the robustness of bearing fault

diagnosis.

In time domain analysis, the technique will be selected from three time domain methods: energy,
skewness, and kurtosis, as defined in Equations (6.1), (6.2) and (6.3), respectively. A series of tests
were conducted using these techniques, and the test results of these techniques for IM bearing fault
diagnosis are summarized in Table 6.3. It is seen that the skewness of the notch-filtered stator current
signal is the most accurate, and will therefore be utilized as the fault index in this case. The supply
frequency component is suppressed by using an elliptic notch filter [123]. Let x; in Equation (6.2)

denote the stator current signal, i =1, 2, 3, ..., N, with length of N. The skewness index will be:

_ zljil (xi -E, )3
Zy —W (67)

where E, is the mean, and ¢, is the standard deviation of the stator current signal.

Table 6.3. Comparison of the related time domain indices for IM bearing fault diagnosis.

Diagnostic Indices False Alarms Missed Alarms Overall Accuracy
Energy 48 63 63.0%
Skewness 51 19 76.7%
Kurtosis 49 50 67.0%
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The spectrum synch technique that was proposed in Chapter 2 will be used as the fault index in the
frequency domain. The local bands containing 70 t0 14" M bearing fault harmonics (i.e., m=7,8, ...,
14 in Equation (1.5)) are synchronized to generate the fault index z, in the frequency domain, which
has the same representation as Equation (6.5). These fault harmonics are selected because they are

less affected by the supply frequency component (S0Hz) and have relatively higher peak magnitudes.

To derive the fault index in the time-frequency domain, the fundamental frequency component in
stator current signal is suppressed by using an elliptic notch filter [123]. Based on the analysis in
Subsection 6.2.1, the discrete WT is employed to extract fault related sub-bands from the stator

current signal [21]. The sub-bands containing f;;; and f;,; respectively are selected and the RMS value

and

of their corresponding decomposed signatures is used for computation; f,, z‘ fo =1

Sen :‘fp+fv

Correspondingly, the fault index in the time-frequency domain will be given as:

are two of the first-order fault harmonics given in Equation (1.5) with m = 1.

Z5 = ﬁ(&i +Sfr) (6.8)

cl cr

where S.; and S, represent the decomposed signals corresponding to sub-bands containing f;;; and f;,1

respectively. L., and L., are the lengths of S,; and of S,,, respectively.

6.3.2 Performance Evaluation

To test the performance of the proposed integrated monitor for IM bearing defect diagnosis, the
stator current data were collected with the sampling frequency f; = 10 kHz, and the supply frequency
was fixed at 50 Hz. One hundred data sets were collected from a healthy IM corresponding to each of
the load conditions: light-load condition, medium-load condition and heavy-load condition. One
hundred data sets were collected from an IM with bearing defect corresponding to each load test
condition. In total, 600 data sets were collected, whereby half were used for training, and the

remaining for testing.
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To verify the proposed integrated monitoring system for IM bearing fault detection, six methods
were employed for comparisons. The predicted fault indices z4’, z,°, and zs’ were generated in the

same procedure as discussed in Subsection 6.2.3.
Method #1: The fault diagnosis based on time-domain fault index z, only.
Method #2: The fault diagnosis based on frequency-domain fault index z; only.
Method #3: The fault diagnosis based on time-frequency-domain fault index zs only.
Method #4: The fault diagnosis only based on the sBoost classifier using fault indices zy, z,, and zs.

Method #5: The fault diagnosis only based on the sBoost classifier using fault indices z,’, z,’, and

zs’ that are predicted by pBoost predictors.

Method #6: The fault diagnosis using the proposed integrated monitoring system using za, z, zs, z4’,

z,’, and z5’.

Figure 6.4 illustrates the training error convergence and test error convergence of Method #4. The
convergence of both training error and test error of Method #5 is illustrated in Figure 6.5. It is seen
that the training error can effectively converge to zero; the test error converges as the number of base

learners increases.

5 04— Ao Ao T
i | | |
2 | | |

(@ £ 02
© | | |
- | | |
ol | | |

50 100 150 200

_04f---oooo- e —— S R —
S | | |
L | | |

® 5 0.2 - g
liD | | |
[ : : :
O I I I

50 100 150 200

Number of Base Learners

Figure 6.4. The (a) training error; and (b) test error using Method #4 in IM outer race bearing defect diagnosis.
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Figure 6.5. The (a) training error; and (b) test error using Method #5 in IM outer race bearing defect diagnosis.

The test results using these six methods are summarized in Table 6.4. It is seen that Method #4 and
Method #5 can diagnose IM bearing defect more accurately than Methods #1 to #3, because the
integrated information can help capture the IM health states more accurately. The sample weight
regulator in the proposed sBoost classifier can adaptively resolve decision conflicts (i.e., noise
samples) caused by fault indices in different domains and improve diagnostic accuracy. Method #6
employs IFD system composed of fuzzy rules R, R,, R4, and Rs to conduct primary IM fault
diagnosis. It outperforms Methods #4 and #5 due to its effective integration of the information from

both the classifier and the predictor by using the confident-rate-based fuzzy inference system.
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Table 6.4. Diagnostic testing results of IM bearing defect using different methods.

Déi%'::ﬁzc False Alarms Missed Alarms Overall Accuracy
Method #1 51 19 76.7%
Method #2 25 24 83.7%
Method #3 32 29 79.7%
Method #4 15 6 93.0%
Method #5 7 3 96.7%
Method #6 0 0 100%

6.4 Summary

An intelligent monitoring system is proposed in this chapter for IM health condition monitoring,
especially for IM broken rotor bar fault and bearing outer race defect. The proposed integrated
monitor is composed of two modules: feature extraction and decision-making. The proposed IFD
scheme integrates diagnostic information from sBoost classifier and prognostic information from

pBoost predictor to improve monitoring accuracy of IM health conditions.

The work presented in Chapters 6 is to achieve the research goal in Section 1.3: Propose a new
diagnostic scheme to effectively integrate the diagnostic and prognostic information for IM health

condition monitoring, and conduct automatic diagnostic decision-making.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The IMs are commonly used in various industrial facilities, and a reliable condition monitoring
system can be used to diagnose the IM fault at its early stage, so as to prevent malfunction of the
driven machinery, and to improve productivity. Several IM fault detection techniques have been
proposed in the literature for IM health condition monitoring, but each has its own merits and
limitations. It still remains a challenging task to accurately recognize the IM fault due to reasons such
as insignificant fault features under some load conditions. An intelligent monitoring system was
developed in the thesis to provide more reliable IM fault diagnostics. The developed intelligent
monitor consists of two modules: feature extraction and decision-making. Feature extraction is a
process to extract fault-related representative features from stator current signals. The decision-
making module consists of pattern classification, system state prediction and the fuzzy inference
system. The diagnostic information is retrieved by mapping fault features to IM health condition
categories using the pattern classification technique. The prognostic information is provided by
estimating the future states of fault features (indices) using the system state prediction technique.
Finally, the fuzzy inference system is utilized to integrate the diagnostic information and prognostic

information, in order to provide a more accurate assessment of the IM health conditions.

A novel fault detection technique, the spectrum synch technique, was proposed in Chapter 2 to
extract representative features associated with the early IM defects from the IM stator current
spectrum. The local bands of the IM fault frequency components are synchronized to form a fault
information spectrum, in which the fault features are enhanced and the unrelated high amplitude
frequency components are mitigated. A central kurtosis method is proposed to effectively extract
useful information from the fault information spectrum to generate an IM fault index. The
effectiveness of the proposed spectrum synch technique was demonstrated through experimental tests
on IM with broken rotor bars and IM with pitted bearing outer race. The experiments were conducted
under different operating conditions (i.e., different supply frequencies and different load conditions).
Test results showed the superiority of the proposed spectrum synch technique over the commonly

used techniques in the frequency domain, the power spectral density, and the envelope analysis.
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A new pattern classification technique, the selective boosting classifier, was developed in Chapter
3 to categorize the fault indices from selected fault detection techniques in order to diagnose the IM
fault. The traditional boosting techniques suffer from the overfitting problem, which can degrade the
classification accuracy. The proposed selective boosting, sBoost, classifier can adaptively process
noisy data based on the noise level of each sample, so as to enhance the classification performance.
An error correction mechanism was also employed to further improve the classification accuracy by
examining the class label distribution in the neighborhood of each sample. The effectiveness of the
sBoost classifier was verified by using 12 benchmark examples from the literature. Test results
showed the proposed sBoost classifier to be an effective classification tool. It could categorize the

patterns with different characteristics effectively and accurately.

A novel system state prediction technique, pBoost predictor, was proposed in Chapter 4 to forecast
the future states of the IM health conditions. A base learner is adaptively incorporated into the
ensemble at each step to improve the performance of the ensemble predictor, and the resultant
ensemble predictor outperforms all the base learners. Each base learner addresses a particular data
distribution, which is updated based on the performance of the ensemble at the previous step. If the
base learner is relatively strong or has relatively good performance (e.g., AR predictor), the ensemble
predictor is prone to suffering from the overfitting problem. An advanced sample weight regulation
mechanism was suggested to reduce the overfitting problem. The effectiveness of the proposed
pBoost predictor was verified by simulation tests and a real-world application. The test results
showed that the pBoost predictor was an effective tool to conduct system state prediction. The
prognostic information can be used to further improve the reliability of the IM health condition

monitoring.

A knowledge-based evolving fuzzy neural network (i.e., eFNN) predictor was developed in
Chapter 5 to predict future state of the system. In the proposed eFNN, the linear properties of the data
are modeled by a vector autoregressive-moving-average (i.e., VARMA) system and the nonlinear
properties of the data are characterized by evolving NN system. A novel clustering technique was
proposed to adjust the structure of evolving NN system, in order to capture the characteristics of the
input data more accurately. Since the linear properties of the data are filtered out by VARMA, less

structured information exists in the remaining data. Thus, fewer clusters are generated by the evolving
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NN system, and the simplified structure of the predictor can further facilitate reasoning and training

operations.

An integrated monitoring system was developed in Chapter 6 to synthesize the information from
both sBoost classifier and pBoost predictor for IM health condition monitoring. In the proposed
integrated monitor, a confidence-rate-based reasoning mechanism is proposed to address uncertain
IM fault diagnostic decisions, in order to improve the accuracy of fault diagnosis. The effectiveness
of the developed integrated monitor was verified by experimental tests corresponding to the common
IM faults (e.g., IM broken rotor bar fault and IM bearing outer race defects) under different load
conditions (i.e., light-load, medium-load and heavy-load). The test results demonstrated that the
proposed integrated monitoring system is a reliable IM fault diagnosis tool, and it can provide a more

accurate assessment of IM health conditions.

7.2 ldeas for Future Work

Future research would be needed to cover the following topics:

1) The experiments on IM in this work were limited to broken bars and defects on the outer race of
the bearing. The motor manufacture was responsible to induce these faults, and in the
manufacturer’s assessment, those were the common faults and they represented what would be
considered early failure. In future research, more fault types and of varying severity could be

examined under a wider range of operating conditions.

2) Only the stator current signals were utilized in the current work. It would be tempting to test the
developed system with signals coming from different sensors, specifically, the current sensors and

the vibration sensors.

3) The developed sBoost, pBoost, eFNN techniques were demonstrated successfully in this work
that these techniques can be extended to a wider range of machinery diagnostics. As a matter of
fact in the course of this work, other techniques were also developed, see Appendices B-D, that
would be more appropriate for other applications rather than the narrow field of IM health

condition monitoring.

4) Test the developed system on IM in industrial environment.
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Appendix A

Characteristic Frequencies of Rolling Element Bearings

To derive the rolling element bearing characteristic frequencies, the outer race of a bearing is
considered fixed and the inner race rotates with the shaft, which is common in most applications.
Thus the linear speed of outer race V, is zero and the rotating frequency of the inner race, f;, equals to

the shaft rotating speed.

Considering there is no sliding between the rotating parts, the cage linear speed V. can be given by,

V. :
V = =—L=_11 A.l
5 (A1)

where V;, w, and r; are the linear speed, angular speed and radius of the inner race respectively. From

Figure 1.3, the following can be derived

D, _D deos@®). _D deos®) _d

re=—"5 "1 > o I (A2)
2 2 2 2 2 2
where d is the ball diameter, D is the pitch diameter, and @ is the contact angle.
From Equations (A.1) and (A.2), the cage angular speed can be given by
1
we =—{w,~ [1-42© °°S(‘9)ﬂ (A3)
2 D
Provided @, =27f,, the cage rotating frequency can be expressed in Hz as,
1 d cos(6)
== fil l-—= A4
fcbl 7 |:J(1 ( D Ji| ( )
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where f; is the inner race rotating frequency or shaft speed.

The outer race defect frequency f,,. can be calculated from the relative angular speed between the
cage and outer race.

fobr ZN(wc_wo)

=Now

c

_N _ dcos(8)
s

where N is number of rolling elements.
The inner race defect frequency f;, can be evaluated from the relative angular speed between the

cage and inner race:

jfihr ZN(O)i—O)C)

=N{f,~ —%{f,{l‘@m

5 = (A.6)

The rolling element defect frequency f,,. can be defined as the rolling element frequency rotation

around its own center. The ball angular speed corresponding to its own center is given as follows,

W, = A (A7)
r}"
Vr = (wi - wc )I"

,- (A8)
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. =% i (A.9)

The rolling element defect frequency f,,, can then be calculated from,

D dcosé@ ?
frbr—gf{l—( 5 ” (A.10)
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Appendix B

The Conjugate Levenberg - Marquardt Training Technique

A new training technique, a Conjugate Levenberg-Marquardt (CLM) method, was proposed to
improve forecasting accuracy, which was published in [86]: “D. Li, W. Wang, and F. Ismail,
Enhanced fuzzy-filtered neural network for material fatigue prognosis, Applied Soft Computing, vol.
13, no. 1, pp. 283-291, 2013”. Although this technique is not used for this IM fault diagnosis, it is fast

in convergence, which is especially useful for nonlinear parameter optimization.

The classical conjugate gradient (CG) methods are iterative algorithms that aim to generate a search
direction that conjugates to all previous descent directions based on the current steepest descent
direction. However they only focus on deriving a descent direction from the combination of the last
descent direction and current steepest descent direction. As a result, it is possible that the steepest
descent direction is not able to provide satisfactory search efficiency no matter what formulation is
applied to manipulate the last descent direction and current steepest descent direction. To address this
issue, the proposed CLM applies Levenberg-Marquardt (LM) direction instead of the commonly used

steepest descent direction to improve training convergence and efficiency.

It is known that the LM direction is an efficient search direction that varies between Newton’s
direction and steepest descent direction. It is more efficient than the first-order steepest descent
algorithm. However the second-order search ability of LM method may be mitigated when LM
direction deviates from Newton’s direction. Meanwhile its specific formulation with only one
adjustable parameter A as demonstrated in Equation (B.2) will restrict its ability in exploring better
descent directions. This may result in slow convergence. By integrating second-order CG formulation
and LM direction, the proposed CLM technique can enhance the second-order search power of LM
while a broader space (A in Equation (B.7) and step length of the derived CLM direction) can be
further exploited for optimal search directions. Thus CLM is expected to outperform LM method in

training efficiency.

Given a symmetric matrix QC nXn, and two n-dimensional vectors d; and d that are mutually
conjugate with respect to O, a new direction, dj, that conjugates to all previous descent directions d;

(j<k) with respect to QO will be
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k-1 djTQuk
dy=w-2 Tod d
] ]

(B.1)

In CG, the u is a set of negative steepest descent directions -g, but they may not be optimal. The

CLM technique will employ the direction /; to replace -g;:

I, = (Hk + /“)gk

(B.2)

where g; is the gradient; / is an identity matrix; H; is the Hessian matrix in the k™ iteration; and A is a

positive quantity used to determine the direction of /, . When A approaches zero, /; can be considered

as a Newton’s direction. When A is close to positive infinity, /; approximates the steepest descent

direction. Substituting u;= I in Equation (B.1) yields

1 d}Ql,
d,=1,-> ——=d,
~djQd,

Reorganizing Equation (B.3), we get

d, =L+ p,d,,
= (Hk+/“)gk+ﬂk dyy

where

B _L(gi—ge)
k _dT ( _
i1 (8 —8i)

d,_, can be derived from Equation (B.3) by switching & to &-1,

dhQl
_ _ k=24 k-1
diy =1 ijo d;de j
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Substituting Equation (B.6) into Equation (B.5) yields

B _IE(gk_gk—l)
k™ T
Zr-18k-1

_ gE (Hk + M)(gk —811)
gE—lgk—l

(B.7)

Once f, is obtained from (B.7), the new CLM direction can be derived from Equation (B.4). By

using Equation (B.2) instead of -g; , the search efficiency can be improved. The verification of the

proposed CLM method is provided in [86].
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Appendix C

The Laplace Particle Swarm Training Technique

A novel Laplace Particle Swarm (LPS) technique is proposed for global optimization, which is
published in [91]: “D. Li, W. Wang, and F. Ismail, Fuzzy neural network technique for system state
forecasting, IEEE Transactions on Cybernetics, vol. 43, no. 5, pp. 1481-1494, 2013”. Although
efficiency of the proposed LPS for global optimization is verified in [91], it is time-consuming and is

not suitable for this real-time IM condition monitoring application.

1. The Classical Particle Swarm Method

Before the discussion of the proposed LPS technique, a brief description will be given to the classical

particle swarm (PS) method.

The classical PS method optimizes the objective function by simultaneously maintaining several
candidate solutions in the search space. The accuracy of each candidate solution is represented by a
fitness grade. The higher the fitness grade is, the better the candidate solution will be in optimizing
the objective function. A particle starts with one candidate solution that is further evolved following
certain update rules at each time step. It also records the highest fitness grade to which this particle
has achieved thus far. The candidate solution corresponding to this highest fitness grade is referred to
as the local best candidate solution. Among all of the local best candidate solutions, the one with the
highest fitness is called the global best candidate solution [143]. In each iteration, the increment of the

candidate solution in particle i is updated by

v, (1+1) = av; () + Bn[x; (1) = x, (O] + By 7, [5(1) = x; (1)] (C.I)

where v,(¢) is the velocity of particle i at time ¢ and x,(¢) is the position of particle i (candidate
solution) at time . &, S, and f, are user-defined parameters {0<a <1.2, 0< 5, <0, 0<5,<2}.
7,and y, are random parameters over [0, 1]. X,(¢) is the local best candidate solution of particle i at
time ¢, and x(¢) is the global best candidate solution at time ¢. Consequently each particle will be

optimized by
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x;(t+D)=x;,()+v,(t+1) (C.2)

A lower and upper boundaries of the particle, x,,;, and x,,,, are set to prevent a particle from moving

beyond the search space. If the particle is beyond the boundaries, the velocity will be updated by

v, (1) =70, (1) (C.3)

where 7€ [0,1] is a coefficient used to adjust velocity [143].

To conduct the PS, the fitness of each particle will be evaluated first, and then local best candidate
solutions and the global best candidate solution are updated. Finally, the velocity and position of each

particle are updated using Equations (C.1) and (C.2), respectively [143].

Although the classical PS has some merits such as low computation complexity and easy
programming [144,145], it has several limitations. For instance, it cannot search the parameter space
comprehensively because the search direction of the i™ particle only depends on the local best

candidate solution Xx,(#) and the global best candidate solution x(z) , but that direction may not cover

other search directions.

2. The Proposed Laplace Particle Swarm Technique

To overcome the aforementioned problems in the classical PS methods, the proposed LPS will
diversify search directions so as to improve training efficiency. In order to cover the entire search
space, the search direction of the i particle will be directed by the particle’s local best candidate

solution x,(#) , the global best candidate solution x(#) and a random local best candidate solution
X;(t), where i # j . The search step length is adaptively determined by a random number over the

following Laplace distribution:

lexp(x_ﬂJ if x<o
2 w
n—x

F(x)= 1
1——exp( J if x>0
2 @

(C.4)
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where 77 and @ denote the center and slope of the Laplace cumulative distribution function,

respectively.

Let u be a uniformly distributed random number over [0, 1] and 7 = 0. The random

number A derived from Laplace distribution will be

(C.5)

3 wln(2u;) if u<0.5
C—win@-2u,) ifu=05

To guarantee convergence of the algorithm, a constraint function ¢ is introduced to mitigate the

impact of Laplace coefficient A,

LY
4

where /. and /, are the indices of the current iteration and total number of iterations, respectively;

be[0.5,5] is the strength factor.

Given a particle x;(¢) and a randomly selected local best candidate solution x;(z) , i#j, the

update expression of the velocity in the LPS will be
v (t+1) = AG[X, () = x; (O] + By %, (0 — x,(D]+ By, [X(0) — x;(1)] (C.7)

where x;(z) can be updated using Equation (C.2). The verification of the proposed LPS technique is

provided in [91].
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Appendix D

A Mutated Particle Filter Technique for System State Estimation

The mutated particle filtering (MPF) technique is proposed for system state estimation, which is
published in [135]: “D. Li, W. Wang, and F. Ismail, A mutated particle filter technique for system
state estimation and battery life prediction, IEEE Transactions on Instrumentation and
Measurement, vol. 63, no. 8, pp. 2034-2043, 2014”. Although the proposed MPF can accurately
estimate the system states, it is relatively time-consuming and is not used for this online IM health

condition monitoring application.

1. Overview

In system state estimation/prognosis, the system’s internal states are usually inaccessible to sensors,
and the state estimation has to be inferred from noisy measurements. To make inferences about the
characteristics of the measured system, a dynamic state space model is required, which usually
consists of a transition model and a measurement (sensor) model. The transition model performs
system state prediction, and the measurement model links the predicted states to noisy measurements.
To carry out system state estimation, a posterior probability density function (pdf) has to be
formulated based on system models and noisy measurements. The Kalman filter can be applied for
state estimation of linear Gaussian systems; however, it lacks the capacity to address systems with
nonlinear/non-Gaussian properties [124]. Although some advanced Kalman filter techniques can be
used to model nonlinear systems, they apply a suboptimal implementation of the sequential Bayesian
estimation framework for Gaussian random variables [125]. On the other hand, although the grid-
based filter can approximate optimal Bayesian recursion by using a uniform grid to explore the entire

state space, its computational complexity limits its practical applications [126].

Particle filters (PFs) can be used to model systems with nonlinear and non-Gaussian characteristics,
which have been utilized in system state tracking [127,128] and prediction applications [129,130]. A
PF is a recursive Monte Carlo-based method that constructs pdf using a set of random particles with
associated weights. Among these available PF techniques, Sampling Importance Resampling PF
(SIR-PF) is the fundamental PF technique, in which resampling is used to avoid the situation that
most particles’ weights are close to zero. However, SIR-PF conducts system state estimation without

considering current measurement, which may degrade its performance. Although Auxiliary PF (APF)
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can generate a new state estimate conditioned on current measurement with the use of some statistical
indicators to characterize transition density, it suffers from the loss of diversity among particles after
resampling because resampled particles are generated based on a discrete distribution, rather than a
continuous one [124]. Regularized PF (RPF) can draw particles from continuous distribution to
improve particle diversity [131], however its estimated continuous distribution may not be accurate if
there are insufficient particles locating at high likelihood area of the distribution. Regularized
auxiliary PF (RAPF) can diversify the particles drawn by sampling particles from a continuous
distribution to improve system state estimation [132]; however, the high likelihood area of its
posterior pdf may not be fully represented by particles after certain filtering iterations since some
gaps could exist in the high likelihood area of the estimated posterior pdf. These gaps lack particles to
represent them, and the information of the particles over these gaps cannot be delivered to the
following iterations, which, in turn, would degrade inaccurate system state estimation. The unscented
PF applies an unscented Kalman filter to generate an importance proposal distribution to improve
estimation accuracy [133]; however it may still suffer from inaccurate distribution representation
caused by insufficient high-weight particles. The Rao-blackwellished PF can marginalize some
system states and conducts particle filtering only to remaining system states, so as to improve
computation efficiency [134]; although it could speed up the filtering process, its distribution

representation is not accurate.

To tackle the aforementioned problems, the MPF technique is proposed in this work to explore both
the extended area of the prior distribution and the entire distribution of the posterior pdf to improve
state estimation of dynamic systems [135]. In the proposed MPF, a novel mutation approach is
proposed to diversify the particles and exploit the entire posterior pdf space, and a new particle
selection mechanism is suggested to search the high likelihood area of the posterior pdf. The

proposed MPF technique is implemented for battery remaining useful life (RUL) prediction.

2. The Mutated Particle Filter Technique

To properly introduce the proposed MPF technique, a brief introduction of the related RAPF
technique is given first in Subsection D.2.1, and then the proposed mutation method and particle

selection scheme in the MPF technique are discussed in Subsection D.2.2.
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2.1. Regularized Auxiliary Particle Filter

To formulate a RAPF, a state space model with system states x, and observations y, is considered.

Given an initial density p(xo), the states x, evolve over time as a partially-observed first-order Markov

process based on probability transition density f (x,|x,_1 ), where t =1, 2, ..., T, and T is the number
of observations. The measurements y, are conditionally independent, and are obtained through
conditional probability density f (y,|x,). Once the density f (x,_1|y1:,_1) at time (+~1) is projected

forward in time, the prior density of the state at time instant ¢ can be estimated as
f(x, |y1:z—1):If(xz|xz—1 )f(xz—1|y1:z—1 )dxt—l (D.1)

Applying the Bayesian rule, the updated posterior density can be derived as

ie% |x, )/ (x,lylz,_l )
)= D.2
f(Xt|y ' ) f(y,|y1;,_1) (B2

where the normalizing factor is given by
f(yz |y1:z—1):If(yz |xz )f(x, |y1:z—1 )dx, (D.3)

Equation (D.2) provides an optimal recursive solution to system state estimation. If the related
system is linear Gaussian, Kalman filter techniques can provide formal recursion for the density
function of the system. However, nonlinear non-Gaussian systems do not have closed-form solutions,

because the multi-dimensional integrals in Equations (D.1) and (D.3) are usually intractable. Hence,

the pdf, f (x,| Vit ), can be evaluated using some suboptimal filters such as the RAPF method.

In the RAPF [132], the first stage posterior density f (x,_1| . ,) is characterized by a set of particles

(i.e., random support points) xf_l and their associated weights 7rf_1 ;i=1,2, ..., N, where N is the
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number of particles. The posterior density f (x,_l | y,) can be estimated with the following expression

[135]

N . . . N .
f(xz—1|J’z )z 27[;—1f(% |,Uzl )Rl (xt—l _le—l) and 27[;—1 =1 (D.4)
i=l

i=1

where ! can be the mean, the mode, or a random draw associated with the density f (x,|x,_1 ) R, ()

is the re-scaled kernel function given by

R(x)=1"R(x/1) (D.5)

where [ > 0 1s the scalar kernel bandwidth and #» is the dimension of the state vector x.

The kernel R,(-) and bandwidth / are chosen to minimize the mean integrated square error between

the true posterior density and the corresponding regularized empirical representation in Equation
(D.4). When all the samples have the same weight [131], the optimal kernel would be the

Epanechnikov kernel

n+2 2 .
. 1—|x if x| <1
g =iz 0D itk (D.6)
0 otherwise
where ¢, is the volume of the n-dimensional unit hypersphere given by
2 n=1
/4 n=2
¢, =1, : (D.7)
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According to the density estimation theory as stated in [136, 137], when the underlying density is

Gaussian with a unit covariance matrix, the optimal bandwidth /* can be determined as [131]
" 1/(n+4)
I = [8@;1 (n+4)evz) } NV ) D.8)

where N is the number of particles.

In dealing with an arbitrary underlying density, it is necessary to assume that the density is
Gaussian. Then its covariance matrix can be replaced by the empirical covariance matrix D. If M is
the square root matrix of the empirical covariance matrix D such that MM’ = D, the kernel function in

Equation (D.5) can be rewritten as
R,(x)=(detM )" 17" R(M'x/1) (D.9)

where det(}) is the determinant of matrix M.

Once x/, are derived using Equation (D.4), the second stage particles x/ can be evaluated

through f (x,|x,_1 ); the second stage weights are formulated as

it (/)
S (,;,|ﬂ/ )

(D.10)

where i/ =E (x, |xf_ . ) In this scenario, the superscript j € {1, 2, ..., N} represents the index of particles
after resampling, while the superscript i€ {l,2, ..., N} in Equation (D.4) denotes the index of particles

before resampling.
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2.2. The Proposed Mutation Particle Filter Technique

The RAPF in [132] employs a single statistic value ' (e.g, the mean value) to
characterize f (x,|x,_1) in the APF. However, the approximation of f (x,|x,_1) may not be accurate

when the process noise is large, which would lead to inaccurate estimation [124]. The large process

noise problem could be tackled by using more particles to characterize f (x,|x,_1) rather than a single

statistic value. The classical PF techniques, as well as the RAPF, only evaluate f (x,|x,_1) based on

prior particles from the last iteration. If these particles cannot represent the prior distribution
accurately or the prior distribution deviates from the posterior distribution after passing through
system state models, most generated posterior particles may have very low weights, which will result
in sample impoverishment. To tackle this problem, the proposed MPF technique employs the mutated
particles derived from prior particles to explore a wider range of the prior distribution, rather than the
range constrained by some prior particles. Its purpose is to approximate the mapping between prior
pdf and posterior pdf more accurately, and exploit the posterior pdf space more comprehensively. A

particle selection mechanism is suggested next to make posterior particles carry high weights.

Figure D.1(a) illustrates a typical posterior distribution with sample impoverishment. It can be seen
that almost half of the generated posterior particles (blue crosses) have very low weights, and part of

the high likelihood area lacks sufficient particles. Figure D.1(b) will be described in subsection D.2.2.
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Figure D.1. lllustration of the posterior distribution of a system state: (a) without using the mutation method; blue
crosses represent those posterior particles with low weight factors. (b) Using the mutation method; high weight
posterior particles (red solid circles) are generated from those prior particles corresponding to low weight

posterior particles.

1) The Mutation Mechanism:

The proposed mutation method is described as follows:

Given the particles at time instance ¢, {x,,x’,---,x]" }, the respective upper and lower boundaries of

these particles can be computed by

U(xf)=max(x,l,x,2,--',va)+/1, (D.11)

L(x,’)=min(x,1,x,2,~-',va)—/1, (D.12)

where A, is a positive constant, which defines the extended searching space of the prior distribution

to accommodate mutated particles at time instant ¢.

130



For each particle in the particle set {x}, X7, }, a mutated particle will be derived as:

q=U-x)/(x; - L) (D.13)
b
q—q(l—ﬁJ >
q =7
y= (D.14)
N (1_ 14 b otherwise

q A1,

#=(1-pL+W (D.15)

where ¢/ is the auxiliary position around x', and r€ [0, 1] is a random number.

Equations (D.13)-(D.15) represent a mutation mechanism [138] that generates a random number ¢/

2

over the feasible range of the particle set {x,l, X7, xN } with an approximate uniform distribution. To

enable the mutated particle to deviate from the neighborhood of the original particle x!, a mutated

particle will be generated as
#=U+L-x —nlg/ —x) (D.16)

where 7€[0,1] is a random number, %' is the mutated particle, and be [0.5,1] is a strength factor

that estimates the variance of the location of the mutated particles. The larger the factor b is, the wider

the area in which the mutated particles may appear.

Randomly generate 10° possible data of the auxiliary particles ¢ and their corresponding 10* data
of mutated particles %', from a fixed value of original particle x' € [0, 1] (x/ =0.2 and 0.8 in Figure
D.2). The distributions of ¢ and % can be estimated using kernel density estimation as shown in

Figure D.2. It can be seen from Figure D.2 that the auxiliary particle ¢’ has an approximately
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uniform distribution, irrespective of the value of the original particle x'; on the other hand, the

mutated particle & has higher probability, located in the remote area from the original particle x'.

N W A
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“\ 137
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Figure D.2. The distribution of auxiliary particles ¢f and mutated particles fc,’ with the original particle (a)
xf =0.2, and (b) xf =0.8. The blue solid line represents the distribution of ¢f, and the red dotted line

represents the distribution of /.

In using the proposed mutation approach, if one particle x! lies in a low-value area of particle space,
its mutated counterpart will be located in the high value region in a probabilistic form, and vice versa.

N } with associated weights £/ can be used to enrich the

The mutated particles {)%,1,)%,2,---,)%
representation of the high likelihood area of the density function f (x,| Vi ), so as to enhance the

posterior pdf and improve the system state estimation.
2) The Selection Scheme:

When posterior particles are generated, those particles with very low weights usually have less
contribution to the system state estimation, while the particles with high weight may not be sufficient

to represent the posterior pdf accurately. To enhance the posterior pdf representation, a threshold & is

introduced to characterize the contribution of different particles. After the weights of all posterior

particles are normalized, the particles with weights larger than (or equal to) & will be accepted, while
those with weights less than & will be replaced by their mutated particles. The threshold & is usually

a constant, which can be selected based on particular applications (e.g., £= 0.01 in this case). If a
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mutated prior particle generates posterior particles with weights less than £, the above process will be

repeated until the weight factor of the resulting new particle becomes greater than (or equal to) &.

By using the proposed mutation method and particle selection mechanism, the prior particles
corresponding to those posterior particles with low weights can be replaced by their mutated
counterparts. Consequently, the representation of the high likelihood area in the posterior distribution

can be improved as demonstrated in Figure D.1(b).
3) Implementation of the MPF Technique:

In the implementation, N prior particles and their mutated N particles are used to explore the
posterior pdf. By testing the derived posterior particles using the proposed selection scheme, each

posterior particle with a weight less than the threshold & will be replaced by a posterior particle with

higher weight by using the mutation mechanism. The following summarizes the implementation

procedure of the proposed MPF technique:
(a) draw samples x! from f(x,|xf_1); i=12,...,N;
(b) compute the mutated particles of x!, X/;i=1, 2, ..., N, using Equations (D.11) — (D.16);

(c) calculate weights 7/ =< f (y,|x,’) of these 2N particles (i.e., x/ and %) and conduct normalization:

(d) apply the selection scheme to the weights 7). If 7/ <&, a new mutated particle & will be
generated from its corresponding prior particle x!; this process is repeated until the weight of the

generated posterior particle 7, > &.

.. . . a2\ . .
(e) calculate the empirical covariance matrix D, of {x,’,?[,’ }/:1 and the root-square matrix M, using
.. T .
Cholesky decomposition M ,M, =D,;

(f) carry out resampling by using appropriate resampling algorithms (e.g., multinomial resampling

[139]);
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(g) draw & from Epanechnikov kernel and calculate /* using Equation (D.8). Then compute new
particles [132]: X! =x! +1"M €.

The mutation method at steps (b) and (d) aims to explore an extended range of prior distribution so
as to improve posterior distribution approximation. The selection scheme at step (d) will replace those

posterior particles with very low weights by appropriate posterior particles. Consequently, these

particles will explore the high likelihood area of the posterior pdf more thoroughly.

3. Performance Evaluation

The effectiveness of the proposed MPF technique will be evaluated in this section by simulation tests
based on a benchmark model. Then it will be implemented for battery RUL prediction. The related
SIR-PF and RAPF techniques will be used for comparison.

3.1. Testing Using a Benchmark Model

The following is a benchmark model that is commonly used in PF testing because of its specific

properties such as nonlinear and non-Gaussian [140]:

1 25x,

X ==X +——L 4 8cos[l.2(k — 1)+ @, (D.17)
2 I+x,.,
1,
Vi :2—O)Ck + U, (D.18)

where w, and v, are Gaussian white noise signals with zero means. The following conditions are
used in this testing: the number of time steps k£ = 50, the variance of the measurement noise v, = 1, the
variance of the process noise @, = 10, and the initial state x, = 0.1. Fifty particles (i.e., N = 50) will be
used in the related PFs (i.e., SIR-PF, RAPF and MPF). In the proposed MPF, 4, is selected as the
value of standard deviation of the data; the threshold & is selected based on application requirements
(£ =0.01 in this case); the strength factor b is determined by a trail and error process (b = 0.8 in this

case).
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To examine the parameter sensitivity of these three PFs, three different particle numbers of 50, 100

and 150, are used for simulation tests with the variance of the process noise @, = 1 and strength factor

b = 0.8. In general, the more particles used, the higher the estimation accuracy of the PFs (but, of
course, the longer time they will consume in modeling). It is seen from the simulation results listed in
Table D.1 that the averaged mean of the root mean squares error (RMSE) becomes smaller as the
number of particles increases in all three PFs; however the proposed MPF gives the least averaged
variance when particle numbers N = 50. On the other hand, Table D.2 summarizes the simulation

results of the proposed MPF with different values of strength factor b, when the process noise @, =1

and the particle number N = 50. It is seen that the proposed MPF gives the best performance when b =

0.8 compared to b = 0.7 and 0.9, respectively.

Table D.1. The averaged mean and standard deviation of RMSE with different particle numbers.

Averaged mean

Averaged standard

Particle of RMSE deviation of RMSE

N
umbers SIR-PF RAPF  MPF SIR-PF RAPF  MPF
50 43906 3.9788 3.6303 11448 0.8020 0.6062
100 35109 32854 3.1531 09641 0.7854 0.7611
150 33006 32785 3.1393 1.6458  0.9979 0.6110

Table D.2. The averaged mean and standard deviation of RMSE with different strength factor using the proposed

MPF.

Averaged mean Averaged standard

Strength factor b

of RMSE deviation of RMSE
0.7 3.7514 0.6361
0.8 3.6303 0.6062
0.9 3.7190 0.6919
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Figure D.3 illustrates the test results of 30 random runs using the same observation data set, as the
multinomial resampling is implemented at each time step. It can be seen that the RAPF generates less
variance of the estimation error than the SIR-PF, because of its more effective particle-diversifying
mechanism. However, the proposed MPF provides more accurate estimation (i.e., with less variance
of the estimation error) than the RAPF, because its mutation mechanism can enrich the particle

species and capture the distribution more comprehensively and accurately.

(2)

System state x

(b)

System state x

(©

System state x

0 10 20 30 40 50
Time step k

Figure D.3. Performance comparison of the related PF techniques over 30 runs by: (a) SIR-PF; (b) RAPF; (c)
MPF. The red solid line represents the true states; the blue dotted lines represent the estimated states at

different runs.
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To further verify the effectiveness of the proposed MPF, three test scenarios corresponding to

different variances @, = 1, 4, and 10, are tested. In each scenario, 100 data sets in total are randomly

generated using Equations (D.17) and (D.18). For each data set, these three PF techniques (i.e., SIR-
PF, RAPF and MPF) are tested over 100 runs. The RMSE between the true states and the estimated
states are computed for each run. For comparison, the mean and standard deviation of the RMSE over
100 runs in each data set are calculated and illustrated in Figures D.4-D.6. The results summarized in
Table D.3; it can be seen that the averaged mean and standard deviation of RMSE become larger as
the process noise increases in all three PF estimation scenarios. The RAPF provides lower averaged
mean and standard deviation of the RMSE than those of the SIR-PF, because of its diversified particle
representation. The proposed MPF, however, provides the best estimation accuracy (i.e., with the
lowest mean and the smallest variance) compared with both SIR-PF and RAPF. This is because the

MPF can approximate the distribution more accurately, and explore the distribution more thoroughly.

Mean

Standard deviation
N

0 100;0 100;0 100 0 100;0 100;0 100
Testing cases Testing cases

@) (b)

Figure D.4. Test results of three PFs when the variance of the process noise is 1: (a) mean of RMSE, (b)
standard deviation of RMSE. The pink dashed line represents the results of SIR-PF; the red dash dotted line
represents the results of RAPF; the blue solid line represents the results of the proposed MPF. The black solid

line denotes the mean of the data.
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Mean

Standard deviation
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(@) (b)
Figure D.5. Test results of three PFs when the variance of the process noise is 4: (a) mean of RMSE, (b)
standard deviation of RMSE. The pink dashed line represents the results of SIR-PF; the red dash dotted line
represents the results of RAPF; the blue solid line represents the results of the proposed MPF. The black solid

line denotes the mean of the data.
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Figure D.6. Test results of three PFs when the variance of the process noise is 10: (a) mean of RMSE, (b)
standard deviation of RMSE. The pink dashed line represents the results of SIR-PF; the red dash dotted line
represents the results of RAPF; the blue solid line represents the results of the proposed MPF. The black solid

line denotes the mean of the data.
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Table D.3. The averaged mean and standard deviation of RMSE over 100 data sets.

Averaged mean Averaged standard
Variance of of RMSE deviation of RMSE
processnolse g pp RAPF MPF  SIR-PF RAPF  MPF
1 43906 39788 3.6303 1.1448 0.8020 0.6062
4 47744 435208 4.1420 1.2614 1.0315 0.7452
10 6.0968 5.6914 4.9356 14144 1.1583 0.7971

It should also be realized that, after several iterations of implementing PF, gaps may develop in the
high likelihood area of the estimated posterior pdf, which is an indication of information loss. These
gaps may degrade the estimation accuracy in the current iteration, which can, in turn, propagate to the
subsequent iterations and continue to degrade estimation accuracy. By using the proposed mutation
method, the pdf can be explored more thoroughly, especially in the pdf gaps, and consequently the

estimation accuracy can be improved.

3.2. Battery Remaining Useful Life Prediction

Lithium-ion batteries are widely used in industrial and domestic applications. An effective prognostic
tool is very useful to predict the future state of the battery, so as to diagnose the battery’s health
condition, and estimate its RUL information. Reliable RUL information is critically needed in many
applications, such as electric vehicles and aircraft, to schedule battery recharging operations and

prevent malfunction of the related equipment.

To test the proposed MPF technique for battery RUL prediction, the data sets of battery #6 and
battery #18 from the NASA Prognostics Center of Excellence are employed [141]. Figure D.7,
adopted from [142], schematically illustrates the battery prognostics tests. The load bank and
environmental chamber were used to adjust load and environmental conditions of the battery cells,
respectively. The electrochemical impedance spectroscopy (EIS) measurement was conducted in the
battery health monitoring module (BHM), which was used to measure battery impedance. The three
states of batteries (i.e., charge, discharge, and impedance) were controlled by a switching circuitry.

The sensors’ signals were collected by a data acquisition (DAQ) system. The aim of the experiments
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was to identify different health states of battery cells with similar terminal voltages, and then to
predict the RUL of the cells.

To generate these data sets, a lithium-ion battery was run through three different operational
profiles: charge, discharge, and impedance, at room temperature. The charge process was conducted
by feeding a 1.5A constant current to the battery until its voltage reached 4.2V, then the charge
process continued in a constant voltage mode, until the charge current dropped to 20mA. The
discharge process was carried out at a constant current mode (2A) until the battery voltage dropped to
2.5V. The aging process of batteries can be accelerated by repeatedly charging and discharging the
batteries. The experiments were stopped when the battery reached end-of-life criterion, which was set

at 30% fade in rated capacity.

—» Current

————p Data
---------------- » Control
Switching/
Chargers ———» DAQ ——» Load Bank
A
P
i
BHM f(---—-—- » Computer [ =777 ®1  Cells

Figure D.7. Schematic illustration of the battery prognostics tests, adopted from [142]. BHM is the battery health

monitoring modules and DAQ is the data acquisition system.

Figure D.8 shows the lumped-parameter model, where Ry and Rcr represent the electrolyte
resistance and charge transfer resistance, respectively; Ry is the Warburg impedance, and Cp, is the
dual layer capacitance. Although the battery capacity is usually inaccessible for measurement, Ry +
Rer is inversely proportional to the capacity C/1, and can be used to predict battery capacity drop
[135]. Rr and R¢r can be estimated from EIS tests. The battery model can be formulated as
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[,=0_, +v (D.19)
¥, =¥, exp(Tk)+w, (D.20)

Y =¥, +px (D.21)

where W, is the state vector (i.e., Rg or Rer) at time step k, I', is the exponential growth model
parameter, and Y, is the measurement vector containing battery parameters inferred from measured
data. The state vector ¥, at the first time step takes the initial value of R or R¢r. The exponent I} can
be calculated from training data using least square estimate. v, , w, and p, are Gaussian noise

signals. The data sets of Rz, Rcr and C in battery #6 and battery #18 are smoothed to improve the
RUL prediction using the battery model represented by Equations (D.19)-(D.21). The approximate
linear relationship between Rg + Rcr and C/1 in battery #6 is shown in Figure D.9.

I Ry

o— —/\/\/\—

Figure D.8. Lumped-parameter model of a Lithium-ion battery. R= and Rcr represent the respective electrolyte

resistance and charge transfer resistance; Rw is the Warburg impedance and Cp: is the dual layer capacitance.
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Figure D.9. The relationship between Re+Rcrand (1 in battery #6. The red circles represent measured Re+Rcr

versus (1; the blue solid line is a linear fit.
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The SIR-PF, RAPF and the proposed MPF techniques were implemented for battery state
estimation and RUL prediction. The first part of the trajectory (i.e., Rz or Rcr) was employed to
estimate the battery model parameters. Then the identified model for each technique was applied to
predict the remaining part of the trajectory. In each iteration, 1000 particles were used to estimate the
posterior pdf. The time to trigger the prediction depends on application requirements. Figure D.10
shows both the state tracking and the future state prediction of data Ry and Rcr with the prognosis
starting at cycle 30. In Figure D.10, the system model is identified in the estimation period; multiple-

h estimated data in the

steps-ahead forecast is conducted in the prediction period; that is, the n'
prediction period is the n-steps-ahead forecast using the identified model._It is seen that RAPF
outperforms SIR-PF in both R; and R¢r predictions, while the MPF provides even better prediction
performance than the RAPF in these two prediction scenarios (Rg and Rcy). By a linear transformation,
the tracking of the capacity C/1 is shown in Figure D.11; it is seen that RAPF generates less RUL
prediction error (15.69 cycles) than SIR-PF (17.39 cycles) because of its diversified resampled
particles. The MPF yields the minimum RUL prediction error (10.01 cycles) compared with SIR-PF
and RAPF techniques, because it can explore the entire distribution with the help of the mutated

particles.
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Figure D.10. State tracking and future state prediction at cycle 30 for the battery parameters (a) Re and (b) Rer

using three PFs: SIR-PF (o - black line), RAPF (2 - blue line) and MPF (V -red line). The green solid line is the

true states of Reand Rcr.
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Figure D.11. Battery RUL prediction at cycle 30 using three different PFs: SIR-PF (o - black line), RAPF (o - blue

line) and MPF (V -red line). The green solid line is the real measurement of (/1.
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Figure D.12 shows the prognostics results of the battery parameters Rz and Ry when the prediction
is triggered at cycle 54. To clarify the forecasting distinction, only the estimation period from cycle
40 to cycle 54 and prediction period from cycle 55 to cycle 69 are shown in Figure D.12. The
prediction performances of these three PFs (i.e., SIR-PF, RAPF and MPF) become more accurate in
this case, because more data are used for model parameter estimation. It can be seen from Figure
D.12 that the proposed MPF can predict the trend of R and Rcr more accurately than both RAPF and
SIR-PF, thanks to its advanced mutation mechanism. Figure D.13 shows the prediction of the
corresponding capacity C/1; it can be seen that the MPF yields the minimum RUL prediction error
(0.58 cycles). On the other hand, at the end of the prediction, RAPF and SIR-PF cannot reach end-of-
life threshold, and generate large errors of 0.008Ahr and 0.026Ahr, respectively, at the last cycle. The
MPF outperforms both RAPF and SIR-PF because of its efficient mutation mechanism to diversify

the particles and to enhance model parameter identification.
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Figure D.12. State tracking and future state prediction at cycle 54 for the battery parameters (a) Re and (b) Rer
using three PFs: SIR-PF (o - black line), RAPF (2 - blue line) and MPF (V -red line). The green solid line is the

true states of Reand Rcr.
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The uncertainty of the classical PF algorithms can be represented by the pdf of the estimated system
states [139]. The pdfs of the estimated state (i.e., capacity) using SIR-PF, RAPF and MPF are

demonstrated in Figure D.14, where their mean values are all set as zero to compare their spread (or

uncertainty). Figure D.14a shows the pdfs of these three PFs at the cycle when their mean values just

reach failure threshold as illustrated in Figure D.11. Figure D.14b illustrates the pdfs of three PFs at

the cycle when their mean values just reach failure threshold (i.e., MPF) or the end of prediction cycle

(i.e., SIR-PF and RAPF) as illustrated in Figure D.13. It is seen that the MPF outperforms both SIR-

PF and RAPF with least uncertainty because of its capability to fully explore high likelihood area and

prevent the possible deviations by low weight particles.
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Figure D.14. Uncertainty representation of Battery RUL estimation corresponding to (a) prediction at cycle 30
and (b) prediction at cycle 54, corresponding to pdf of the SIR-PF (blue solid line), the RAPF (black dashed line),
and the MPF (red dotted line).

The approximate linear relationship between Rz + Rcr and C/1 in battery #18 is illustrated in Figure
D.15. Figure D.16 shows the prognosis of the battery parameters Rr and Rcr when the prediction is
triggered at cycle 5. It is seen from Figure D.16 that the proposed the MPF outperforms both the
RAPF and the SIR-PF in predicting Rz and Rcrbecause of its effective posterior pdf estimation using
the proposed mutation. Figure D.17 demonstrates the prediction of the corresponding capacity C/1; it
is seen that the MPF yields less RUL prediction error (0.34 cycles) than that of RAPF (1.21 cycles)
and SIR-PF (1.78 cycles), when they reach the end-of-life criterion. The MPF outperforms both the
RAPF and the SIR-PF, because its effective mutation can improve posterior pdf estimation so as to

enhance model identification.
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