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Abstract 

Induction motors (IMs) are commonly used in both industrial applications and household appliances. 

An IM online condition monitoring system is very useful to identify the IM fault at its initial stage, in 

order to prevent machinery malfunction, decreased productivity and even catastrophic failures. 

Although a series of research efforts have been conducted over decades for IM fault diagnosis using 

various approaches, it still remains a challenging task to accurately diagnose the IM fault due to the 

complex signal transmission path and environmental noise. The objective of this thesis is to develop a 

novel intelligent system for more reliable IM health condition monitoring. The developed intelligent 

monitor consists of two stages: feature extraction and decision-making. In feature extraction, a 

spectrum synch technique is proposed to extract representative features from collected stator current 

signals for fault detection in IM systems. The local bands related to IM health conditions are 

synchronized to enhance fault characteristic features; a central kurtosis method is suggested to extract 

representative information from the resulting spectrum and to formulate an index for fault diagnosis. 

In diagnostic pattern classification, an innovative selective boosting technique is proposed to 

effectively classify representative features into different IM health condition categories. On the other 

hand, IM health conditions can also be predicted by applying appropriate prognostic schemes. In 

system state forecasting, two forecasting techniques, a model-based pBoost predictor and a data-

driven evolving fuzzy neural predictor, are proposed to forecast future states of the fault indices, 

which can be employed to further improve the accuracy of IM health condition monitoring. A novel 

fuzzy inference system is developed to integrate information from both the classifier and the predictor 

for IM health condition monitoring. The effectiveness of the proposed techniques and integrated 

monitor is verified through simulations and experimental tests corresponding to different IM states 

such as IMs with broken rotor bars and with the bearing outer race defect.  

   The developed techniques, the selective boosting classifier, pBoost predictor and evolving fuzzy 

neural predictor, are effective tools that can be employed in a much wider range of applications. In 

order to select the most reliable technique in each processing module so as to provide a more positive 

assessment of IM health conditions, some more techniques are also proposed for each processing 

purpose. A conjugate Levebnerg-Marquardt method and a Laplace particle swarm technique are 

proposed for model parameter training, whereas a mutated particle filter technique is developed for 
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system state prediction. These strong tools developed in this work could also be applied to fault 

diagnosis and other applications.  
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Chapter 1 

Introduction 

1.1 Overview 

Electric motors are machines that convert electrical energy into mechanical energy. They can be 

classified into three categories: direct current (DC) motors, alternating current (AC) motors, and 

special motors. There are two types of AC motors: induction motors (IMs) and synchronous motors. 

IMs employ electromagnetic induction to provide torque for driven machines.    

IMs are the workhorse of many industries such as manufacturing, and mining; and more 

importantly, they consume up to 50% of the generated electrical energy in the world [1]. Due to these 

facts, a series of R&D activities have been directed, for decades, to improve the performance and 

efficiency of IMs. For example, in industrial applications, an effective and reliable condition 

monitoring system is valuable in the detection of an IM fault at its earliest stage in order to prevent 

performance reduction and malfunction of the driven machinery. It could also be utilized to schedule 

predictive maintenance operations. Maintenance costs can be further reduced (especially for large 

expensive motors) by quickly identifying the faulty component(s) without inspecting all components 

in the IM. 

Figure 1.1 shows an example of IM structure, consisting of a stator, a rotor, a shaft, rolling element 

bearings, and the related supplementary components. IM components could be damaged during 

operations due to impacts, fatigue, insufficient lubrication, aging, and so on. The IM faults can be 

classified as mechanical defects and electrical faults. Mechanical faults consist of bearing faults, shaft 

unbalance and so on. Electrical faults contain broken rotor bars, stator winding defects, phase 

imperfection and so on. Investigations have revealed that bearing faults are the major IM defects, 

which account for approximately 75% of small-sized and medium-sized motor defects and 41% of 

large motor imperfections in domestic and industrial applications [2]. The broken rotor bars account 

for 10% of IM faults.   
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Figure 1.1. View of an induction motor, reproduced from [3].  
 

The traditional IM fault diagnostic method, which is still widely practiced by maintenance crews in 

industry, relies on human diagnosticians for periodic inspections based on warning signs such as 

smell, temperature increase, excessive vibration, and increased acoustic noise level. It is difficult, 

however, for a diagnostician to handle multiple features from different signal processing techniques 

and explore their inner relationship especially when the signals are contaminated with noise. The 

alternative is for automated (online) IM condition monitoring with the use of computered-aided 

diagnosis expert systems, which could quickly predict IM health conditions from various features. IM 

online condition monitoring consists of several modules, as illustrated in Figure 1.2. The function of 

each module is described as follows: 

a) Data acquisition: is to measure IM signals using appropriate sensors, pre-process the data and 

send them to a computer for further processing. 

b) Feature extraction: is to extract representative features from collected signals by the use of 

appropriate fault detection techniques.  

c) Classification: is to categorize the extracted representative features from several fault detection 

techniques for automatic fault diagnosis of IMs.  
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Figure 1.2. A flow chart of IM online condition monitoring system.  
 

1.2 Literature Review 

The proposed IM intelligent monitoring system involves processes (modules) of fault detection, 

pattern classification and system state prediction, which will be elaborated on in Subsection 1.3. Thus 

technologies in each of these three modules are reviewed in this subsection. Through this literature 

review, the related work on each module is summarized and discussed. Furthermore, the motivation 

of the proposed research in this thesis will be explicitly explained. 

1.2.1 IM Fault Detection 

Fault detection is a process to extract representative features from the collected signals. Traditional 

machinery fault detection is based on thermal signals [4], acoustic signals [5], and vibration signals 

[6-9]. The local or bulk temperature can be used to diagnose IM defects, however the heat 

accumulation and progression are slow, which may not be suitable for incipient fault detection. The 

acoustic noise can indicate IM faults, especially for severe and distributed defects; however the 

acoustic signal is prone to contamination by background noise such as noise from other machines in 

the vicinity. The acquisition of vibration signals requires the related vibration sensors mounted in the 

vicinity of the IM components to be monitored. Although vibration signals have relatively high 

signal-to-noise ratio, the pieasoelectric accerometers are expensive and their installation requirements 

are high; in addition, it is difficult to use vibration signals to detect IM electrical defects such as 
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broken rotor bars. The alternative is to use the stator current signal for analysis, which is non-invasive 

to the IM structure [10], and could also be used to detect IM electrical faults. Thus the proposed 

research in this work will focus on IM fault diagnosis using stator current signals.  

Several motor current signature analysis techniques have been proposed in the literature for fault 

detection in IMs, mainly for rotors and bearings, which are briefly summarized next:  

1) Fault detection of IM rotors 

Broken rotor bars are common rotor defects that will render asymmetries of an IM rotor. The rotor 

bar failures can be caused by several factors [11-12], such as:  

(a) overheating due to frequent starts under loading,  

(b) unbalanced thermal load due to air gap eccentricity, 

(c) manufacturing defects, and 

(d) corrosion of rotor material caused by chemicals or moisture. 

Because of the aforementioned reasons, the rotor bar(s) may be fully or partially damaged, which 

will cause the rotor cage asymmetry and result in asymmetrical distribution of the rotor currents. 

When a crack forms in a rotor bar, the cracked bar will overheat and tend to break. Then the adjacent 

bars have to carry higher currents and consequently they become prone to damage, leading to 

multiple bar fractures [12]. Moreover, the broken parts from the faulty bars may hit the end winding 

of the motor and cause serious mechanical damage to the IM [13].  

The Fast Fourier Transform (FFT) spectral analysis is a commonly used method for rotor bar 

breakage detection, by examining the characteristic frequency components in the spectrum. For 

example, Elkasabgy et al. [14] used spectral analysis of IM current signals to detect rotor bar 

breakage. It has been reported that the IM current signal becomes non-stationary if rotor bars are 

damaged. However, the FFT is useful for stationary signal analysis only, which lacks the capability of 

capturing the transitory characteristics such as drifts, abrupt changes and frequency trends in non-

stationary signals. To solve the problem, time-frequency methods, such as short time Fourier 

transform (STFT), can be used to process small segments of non-stationary signals for broken rotor 

bar defect detection. For example, Arabaci et al. [15] applied the STFT to detect IM rotor bar faults. 

However, the STFT cannot provide the information corresponding to different time resolutions and 

frequency resolutions due to its fixed length windowing functions [16]. To solve this problem, the 

wavelet transform (WT) can be employed to explore the information associated with different 
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frequency resolutions. For example, Daviu et al. [17] and Mehala et al. [21] used discrete WT to 

detect IM broken rotor bars fault. The wavelet packet decomposition (WPD) was used to explore the 

whole frequency range with high resolution. For example, Sadeghian et al. [18] used WPD to extract 

features and applied neural networks to diagnose IM rotor bar breakage. Pineda-Sanchez et al. [19] 

employed polynomial-phase transform to diagnose broken rotor bar fault in time-varying condition. 

Riera-Guasp et al. [20] extracted broken rotor bar fault features from transient state of IM using 

Gabor analysis. Although the WPD can explore details of the signal for some advanced signal 

analysis, it is usually difficult to recognize the real representative features from the map with 

redundant and misleading information. Akin et al. [22] performed real-time fault detection using the 

reference frame theory. Soualhi et al. [23] diagnosed broken rotor bar fault through the classification 

of selected fault features using the improved artificial ant clustering method. Günal et al. [123] 

conducted IM broken rotor bar fault diagnosis by using fault indices in the time domain. Nevertheless, 

the aforementioned techniques only focus on limited fault information, thus their performance may be 

degraded.  

2) Fault detection of IM bearings 

Rolling element bearings are commonly used in rotating mechanical/electromechanical equipment. 

As illustrated in Figure 1.3, a rolling element bearing is a system consisting of an outer ring (usually 

the fixed ring), an inner ring (usually the rotating ring), a number of rolling elements, and a cage.  

 

Figure 1.3. The geometry of a rolling element bearing. d = diameter of the rolling element; θ  = angle of contact; 

D = pitch diameter.  
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Since bearing materials are subjected to dynamic loading, fatigue pitting is the most common 

defect in bearing components. The bearing defects can occur on the outer race, inner race, and rolling 

elements. Under normal operating conditions, after the load cycles exceed some threshold, fatigue 

(usually pitting) may occur on the fixed ring race first, and then on the rotating race and rolling 

elements. Pitting defects do not only deteriorate transmission accuracy, but also generate excessive 

vibration and noise. Other bearing defects, such as scoring and severe wear, can be generated by 

several external causes such as [11]: 

(a) Impacts, overloading and overheating 

(b) Inadequate lubrication; 

(c) Contamination and corrosion from abrasive particles or acid; 

(d) Improper installation of a bearing, which will introduce excessive misalignment errors. 

When a bearing component is damaged, the corresponding characteristic vibration frequencies 

depend on the bearing geometry, rotation speed and defect location, as illustrated in Figure 1.3. 

Suppose the outer race of a bearing is fixed and the inner race rotates with the shaft, which is 

common in most applications. The outer race defect characteristic frequency fobr, inner race defect 

characteristic frequency fibr, cage defect characteristic frequency fcbr, and rolling element defect 

characteristic frequency frbr are given by 
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where fi is the inner race rotating speed or shaft speed; d is the ball diameter; D is the pitch diameter; 
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θ  is the contact angle. Derivation of these rolling element bearing defect characteristic frequencies is 

provided in Appendix A. 

   When bearing defects occur, these bearing characteristic vibration frequencies fv (i.e., fobr , fibr,  fcbr 

and  frbr) will be modulated with the power supply frequency fp in the spectrum of stator current 

signals, because of the air gap eccentricity and load torque variations. Thus the characteristic stator 

current frequencies fc in terms of characteristic vibration frequencies fv will be calculated by  

 

                                                       vpc mfff ±= ,  m = 1, 2, 3, …                                                (1.5) 

 

The details of derivation of Equation (1.5) can found in [25]. 

For IM bearing fault detection, the characteristic stator current frequency components can be used 

as frequency domain indicators in spectrum analysis [26]. Several techniques have been proposed in 

the literature for IM bearing fault detection using stator current signals. For example, Benbouzid et al. 

[27] and Devaney et al. [28] applied IM stator current spectrum analysis for bearing defect detection. 

FFT can be used to conduct spectrum analysis, so as to detect IM bearing faults under deterministic 

motor conditions. Similar to the previous discussion regarding broken rotor bar analysis, the WT can 

be used to catch the transitory characteristics of the signal for IM bearing fault detection. For example, 

Konar et al. [29] employed discrete WT to detect IM bearing faults. The WPD can also be employed 

to explore transient fault information for IM bearing fault detection [30-32]. Nevertheless, the WPD 

generates massive non-fault-related information that may mask the fault features in the map, and 

increase the difficulties in fault detection. Frosini and Bassi [33] used features from stator current 

signals and IM efficiency for bearing fault detection. Zhou et al. [34] utilized the Wiener filter for 

noise reduction, so as to detect IM bearing defect. Romero-Troncoso et al. [35] conducted online IM 

fault detection using information entropy and fuzzy inference. Pineda-Sanchez et al. [36] employed 

Teager-Kaiser energy operator to enhance fault features to detect IM bearing defect. Nevertheless, 

these available techniques conduct IM bearing fault detection based on limited fault information 

rather than comprehensively explore fault features from the time domain, the frequency domain and 

the time-frequency domain simutaneouly. Therefore their performance may be degraded. 



 

  

 

8 

1.2.2 Automatic IM Fault Diagnostics  

IM health condition diagnosis is a process to classify the representative features obtained by using 

appropriate signal processing techniques into different IM health condition categories. The classical 

automatic diagnostics is mainly performed by model-based approaches such as Bayes decision rule 

[37, 38], which minimizes the average possibility of errors by examining the posterior probabilities 

and the penalties associated with each decision. Nevertheless, the prior density functions of different 

classes are not known in most practical situations, therefore posterior probabilities cannot be properly 

determined [39]. Another well-accepted model-based classifier is the linear discriminant analysis [40, 

41], which aims to minimize the variance in each group and maximize the variance between groups. 

But its application is limited to the measurements in which each group is normally distributed and all 

the groups have the same co-variance structure [42].  

The alternative is the use of knowledge-based soft-computing tools such as neural networks (NNs) 

[43-45] and fuzzy systems for diagnostic pattern classification. The fuzzy systems conduct inference 

to mimic human IF-THEN reasoning rules, however the fuzzy model parameters are usually difficult 

to optimize. NNs can update the parameters using training algorithms, but their reasoning structures 

are opaque to users and the reasoning mechanism is difficult to interpret. The neuro-fuzzy (NF) 

systems employ the fuzzy inference and the NN-based training to improve the pattern classification 

performance. These knowledge-based intelligent tools are universal approximators [46] and, in theory, 

they can closely approximate any arbitrary function. Furthermore, they make no assumptions of prior 

density functions or distributions of measurements in each group. To optimize the parameters of the 

NNs and NF systems, several training algorithms have been proposed in the literature. For example, 

the classical gradient descent (GD) method searches optimal solutions in the steepest descent 

direction [47]. The weighted least square estimate (WLSE) minimizes the least square error with 

penalties associated with each input pattern [48, 49]. The conjugate gradient (CG) method employs a 

search direction at each iterative step that conjugates to all previous descent directions to improve 

training convergence [50, 51]. The Levenberg-Marquardt (LM) method adaptively optimizes the 

search direction between Newton’s direction and steepest descent direction to enhance convergence 

[52, 53].  

An evolving system is a data-driven scheme that can adaptively update its inference model 

structure and parameters based on the input data. Some evolving systems have been presented 
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recently to dynamically establish modeling structure based on characteristics of the input data [54, 55]. 

The model structure formation of evolving systems is dependent on the sequence in which the data 

are fed to the system [56].  

AdaBoost, short for Adaptive Boosting, is a machine learning algorithm, which aims to combine 

the strength of many weak learners to form a strong learner. It updates the model structure by 

incorporating a new base learner into the ensemble at each step, which is insensitive to the sequence 

that data are input to the system. The classical AdaBoost has merits such as solid theoretical basis and 

ease of implementation [57]. Although the classical AdaBoost techniques have been used in many 

applications such as medical diagnoses [58, 59], object detection [60, 61] and network intrusion 

detection [62], they have some limitations such as being sensitive to noisy samples and the overfitting 

problem [63, 64].  

Many research efforts have been made in literature to improve the AdaBoost [65-67]. For example, 

a Real AdaBoost algorithm was proposed in [57] to calculate the probability and confidence limits to 

estimate the degree to which a sample belongs to a specific class so as to speed up convergence. A 

LogitBoost method [68] employed an additive logistic regression model as a cost function to improve 

the convergence. These methods aim to correctly classify hard-to-learn samples at each step, which 

may mitigate the classification accuracy of easy-to-learn samples, and result in overfitting [63]. To 

reduce the overfitting problem, Ratsch et al. [69] proposed a boosting technique with soft margins to 

deal with noisy samples by computing the aggregated weights of each sample and reducing the 

penalties for hard-to-learn samples; however some hard-to-learn samples may be clean, but not be 

noise-affected, and therefore their penalty should not be reduced. Cao et al. [70] applied a noise 

detection method to identify noisy samples in the training data, and then assigned a different class 

label to each noise sample in the binary classification problem. Nevertheless, noise samples may not 

belong to a different class, and this approach may reduce classification accuracy. Gao et al. [71] 

applied a weighted K-nearest-neighbor algorithm in a transformed space to identify and discard 

suspicious noisy samples, but some of these discarded samples may be clean and useful for 

classification operations. 

1.2.3 IM System State Prediction 

IM health condition monitoring can also be performed from a different perspective; via system 

state prediction. System state prediction is a process to forecast future states of a system based on the 
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previous and current system states. Several prediction techniques have been applied in the literature 

for IM health condition monitoring. The classical system state prediction approaches are based 

mainly on stochastic models such as autoregressive (AR) model, autoregressive moving average 

(ARMA) model [72-74] and grey models [75,76]. These techniques have been employed in some 

applications for system state prediction. Nevertheless, the fixed structure of these techniques may 

limit the prediction accuracy for complex dynamic systems, like IMs, especially under variable 

machinery operating conditions. 

An alternative is the use of knowledge-based soft-computing tools such as NNs [77-80], fuzzy 

systems [81-84], NF systems [85-91] and evolutionary computation [92-95]. However, as discussed 

in the previous subsection, a NN predictor has an opaque reasoning structure, which makes it difficult 

to explain the resulting prediction reasoning (i.e., knowledge extraction). NF schemes are superior to 

NNs in mimicking human reasoning processes and extracting knowledge as interpretable IF-THEN 

rules. Both NF systems and NNs, however, suffer from an inefficient training process and suboptimal 

network structures [96]. Evolutionary computation methods, such as genetic algorithm, particle 

swarm optimization, and simulated annealing, are usually time-consuming in reasoning and cannot be 

used for real time IM system state prognostic applications.  

In system state prognosis, the prediction accuracy can be improved by using hybrid modeling: 

linear models (e.g., AR and ARMA) can be used to mainly characterize linear properties of data sets 

and nonlinear models (e.g., NNs and NF schemes) can be utilized to characterize nonlinear properties 

of data sets. For example, Medeiros et al. [97] proposed a neural coefficient smooth transition 

autoregressive model for system state prediction. Khashei et al. [98] integrated the NNs and ARMA 

models to conduct time series prediction. One remarkable merit of using the hybrid modeling strategy 

lies in its capacity for dealing with non-stationary data sets. The linear non-stationary components 

could be modeled by using a linear modeling method, and nonlinear components can be characterized 

by some nonlinear modeling method [99-102]. However, these available approaches cannot make 

their reasoning mechanism adapt to new system conditions in real time (online), and consequently 

their model structures may still be suboptimal.  

In recent years, more work has focused on the use of evolving NF paradigms that can adaptively 

adjust their network structures in response to new system conditions (i.e., data sets). For example, 

Kasabov et al. proposed evolving fuzzy NN models (EFuNN) [103-105] and dynamic evolving NF 
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inference system (DENFIS) techniques [106] for different applications such as learning, knowledge 

acquisition, and system state prediction. These evolving paradigms employ clustering algorithms to 

adaptively tune model structure and parameters as new data become available. However, the 

established clusters (or rules) in these evolving systems are usually massive in order to capture all 

details of the data (i.e., both linear properties and nonlinear properties of the data), which increases 

the computational burden and reduces training efficiency, especially for real-time applications. 

1.3 Objective and Strategy  

To tackle the limitations of reviewed techniques in each aforementioned aspect (e.g., fault detection, 

pattern classification, and system state prediction), the main goal of this work is to develop new 

techniques and an intelligent system for IM health condition monitoring. The detailed objectives 

include: 

a) Propose a new signal processing technique to extract representative features from the stator 

current signals for fault detection in IMs. This work will focus on broken rotor bar fault and bearing 

fault detection. The proposed technique should be robust; be sensitive to IM faults, while at the same 

time insensitive to environmental noise. 

b) Propose a pattern classification technique to effectively categorize the representative features 

from the selected technique(s) to provide a more accurate assessment of IM health condition.  

c) Develop a model-based predictor and a knowledge-based data-driven predictor to forecast future 

states of the IM conditions. The forecast information from one of them will be properly fed into fault 

diagnosis to further improve the reliability of IM condition monitoring.  

d) Propose a new diagnostic scheme to effectively integrate the diagnostic and prognostic 

information for IM health condition monitoring, and to conduct automatic diagnostic decision-making. 

e) A side objective is to develop other model parameter training techniques and system state 

estimation tools that could be employed for fault diagnosis. The purpose is to provide more options in 

each module so as to choose the best technique for each process in order to provide a more accurate 

assessment of IM health conditions.  

The strategy of this research is to use the most robust and efficient techniques in each processing 

module in order to provide a more reliable IM condition monitoring system. With the assistance of 
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the condition monitoring information, preventative maintenance can be effectively scheduled to avoid 

unexpected equipment downtime, and to enhance productivity levels of the related machines. The 

proposed methods for IM fault detection, pattern classification and system state prediction, can also 

be applied to other related signal processing, pattern classification, and modeling applications. 

1.4 Thesis Outline 

In Chapter 2, a novel signal processing technique, the spectrum synch technique, is proposed to 

extract representative features from the stator current signals for IM fault detection. The proposed 

technique can synchronize fault-related local bands in the IM stator current spectrum, to generate a 

more reliable fault indicator. The effectiveness will be verified through experimental testing.  

   In Chapter 3, a new selective boosting classifier is proposed to categorize the IM health conditions. 

The proposed classifier can adaptively mitigate the penalties of hard-to-learn samples based on their 

level of noise, in order to reduce overfitting and improve the classification accuracy.  

   In Chapter 4, a model-based pBoost predictor is developed to conduct dynamic system state 

forecasting. It combines the strength of many AR predictors using boosting methods in order to 

improve prediction accuracy. Each AR predictor is employed as a base learner. A novel sample 

weight regulation method is proposed to reduce the overfitting problem. The effectiveness of the 

proposed pBoost predictor is examined by using simulations and real applications.  

   In Chapter 5, a data-driven fuzzy NN predictor is developed to capture both linear and nonlinear 

characteristics of data sets using different modeling strategies. An innovative cumulative clustering 

algorithm is proposed to establish fuzzy reasoning rules for nonlinear modeling. 

   The classification and prediction techniques proposed in Chapters 3-5 were evaluated using 

benchmark data from the literature and subjected to rigorous testing methods that are common in the 

fields of data classification and forecasting. These proposed techniques can also be used for general 

classification and prediction applications. 

In Chapter 6, a new fuzzy inference system is developed to integrate information from both the 

selective boosting classifier and the pBoost predictor, in order to conduct a more accurate fault 

diagnosis in IMs.  

Concluding remarks and ideas for future research are given in Chapter 7. 
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Other related techniques for model parameter training and system state estimation, which are 

developed to achieve the objective of (e) in Subsection 1.3, are listed in Appendices B-D.  
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Chapter 2 

A Spectrum Synch Technique for IM Fault Detection 

2.1 Problem Definition 

Typically, the onset of IM faults begins with small imperfections, and advances to a severe stage as 

the operation progresses. The severe IM faults will cause machinery malfunction, and even 

catastrophic failures. Therefore, the detection of IM faults at their earliest stage is of great importance 

in IM condition monitoring. The IM fault features from stator current signals would be associated 

with fault size, motor type, supply frequency, load condition and so on. To date, fault feature 

extraction from IM current signals, especially associated with bearing defects, still remains a 

challenging task due to the complex transmission path from the damaged bearing vibration symptom 

to the stator current signal. In this chapter, a spectrum synch technique is proposed to gather fault-

related information and generate representative features of IM faults, such as broken rotor bar fault 

and outer race defect in a bearing [107]. 

2.2 Theory of Spectrum Synch Analysis 

The proposed spectrum synch (SS) technique is composed of two procedures: local band synch and 

central kurtosis analysis. The local band synch is used to form the fault information spectrum (FIS) 

and accentuate fault features. The central kurtosis is suggested to generate fault indices for IM health 

condition monitoring.  

2.2.1 Local Band Synch 

The IM fault characteristic frequency components are distributed over the spectrum, which, 

however, are usually difficult to recognize due to their low amplitude. To highlight fault features in 

the spectrum, the FIS is used to enhance the local peakedness of the fault frequency components. 

Firstly, to lessen the noise effect in the IM current signal, the spectrum averaging of J data sets jφ , j 

= 1, 2, …, J, is applied to improve the signal-to-noise ratio (SNR), computed by 
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where Φ  is the averaged spectrum over J spectra; )( jP φ  represents the nonparametric power spectral 

density (PSD) estimate of the data set [108], given by 
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where Fj is the spectrum of jφ  using the Fourier transform (FT); N is the length of jφ ; and fs is the 

sampling frequency.  

   The fault features are related to fault characteristic frequencies, most of which are masked over the 

local bands by some other higher level frequency components considered as noise. To tackle this 

problem, some representative local bands containing the fault characteristic frequencies are selected 

and synchronized to reduce the noise effect and protrude the fault frequency components. In each 

selected local band, the fault frequency component cf  is located in the center of the window, and the 

width of the local band is selected to properly reveal the peakedness of cf . 

To synchronize the corresponding bands at different locations (frequencies) of the spectrum, the 

spectrum is transformed from frequency domain )( fΦ  to discrete point representation )(dΦ . Each 

frequency f can be represented by its nearest discrete point d. Then, fault characteristic frequency 

cf (k) is transformed into a discrete point, dc(k), whose corresponding frequency is the one closest 

to cf , where k = 1, 2, …, K, and K is the total number of fault characteristic frequencies considered. 

Thus K local bands will be used for this synch operation. The widths of local bands are identical in 

this work to facilitate the synch operation. Given the bandwidth in frequency fw , the length of the 

local band in discrete point representation, dw, will be  
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where fs is the sampling frequency in Hz, Ds is the discrete point representing fs, and R 〈 • 〉  represents 

round-off operation. The k
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 local band kψ  in the discrete point representation can be determined by 
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   The i
th
 discrete point in the k

th
 local band kψ  is denoted as ki,ψ , i = 1, 2, …, dw+1; k = 1, 2, …, K. 

The i
th
 discrete points over K local bands { ki,ψ } are sorted in a descending order in terms of their 

values to generate ki,π , k = 1, 2, …, K; the synchronized band FIS will be 
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where ξ {•} represents the computation of median value. The top 50% high amplitude center 

frequency components in local bands are averaged in Equation (2.5) to enhance the fault feature. The 

median value calculation in Equation (2.6) will suppress other frequency components in local bands 

and reduce the amplitude of outliers. The processing procedures of the proposed FIS formation are 

illustrated in Figure 2.1, where the frequency resolution ∆f = 0.5Hz.  
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Figure 2.1. The formulation of FIS. (a) is the original spectrum; (b) – (e) are respective extracted local bands 

corresponding to the four circled fault frequency components (red, green, pink and black); (f) is the formulated 

FIS. The dotted lines in graph (a) represent the boundaries of the local bands; the dashed rectangular boxes 

represent outliers in the local bands.  
 

2.2.2 Central Kurtosis Analysis 

The classic kurtosis is a measure of the peakedness of a signal, computed as 
4
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4µ  are the standard deviation and the fourth moment of the signal distribution, respectively. The 
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classic kurtosis measures all peaked frequency components of the FIS, which may not properly reveal 

the fault information. In this work, the fault detection aims to evaluate the peakedness of the center 

frequency component in the FIS. Therefore, a central kurtosis indicator is proposed to facilitate fault 

detection. Given the FIS g(i); i = 1, 2, …, dw+1, the relative amplitude of the center frequency 

components can be determined by 
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where gs = 12/}{ += w diig  is the center discrete point in the FIS. The amplitude of fault frequency 

component over synchronized local bands (i.e., FIS), rather than the entire spectrum as in the classical 

methods, is used to examine fault information.      

The variation of the FIS excluding center frequency component gs can be evaluated by 
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where E{•} represents the expectation function, and g~ = }122/2/2 1{ ++= wwwi , ..., d, d, ..., d,,ig . 

Then the peakedness of the fault frequency component in the FIS can be measured by the central 

kurtosis, determined by  
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2.2.3 Implementation of Spectrum Synch Technique 

To recapitulate, the proposed SS technique is implemented for IM defect detection in the following 

steps: 

1) Collect J stator current data sets jφ , j = 1, 2, …, J, with the same time delay.  
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2) Determine the spectrum average Φ  over J spectra. Then extract characteristic local bands using 

Equation (2.4). Synchronize the local bands to form the FIS using Equations (2.5) and (2.6), in order 

to reduce the noise effect and highlight fault features. 

3) Compute the center frequency representative feature using Equation (2.7), and the variation of 

the FIS using Equation (2.8). The fault diagnosis can be performed by analyzing the central kurtosis 

computed from Equation (2.9). 

2.3 Performance Evaluation 

To evaluate the effectiveness of the proposed SS technique for IM fault detection, a series of tests 

have been conducted for the two common types of IM defects, IM broken rotor bar fault and IM 

bearing defect, using stator current signals. In rolling element bearings, defect occurs on the race of 

the fixed ring first since fixed ring material over the load zone experiences more cycles of fatigue 

loading than other bearing components (i.e., the rotating ring and rolling elements). Correspondingly, 

this test focuses on incipient bearing defect, or fault on the outer race (fixed ring in this case). The 

tests are conducted for two power supply frequencies fp: fp = 35Hz and 50Hz.  

2.3.1 Experimental Setup  

Figure 2.2 shows the experimental setup employed in the current work. The speed of the tested IM 

is controlled by a VFD-B AC speed controller (from Delta Electronics) with output frequency 

0.1~400Hz. A magnetic particle clutch (PHC-50 from Placid Industries) is used as a dynamometer for 

external loading. Its torque range is from 1 to 30 lb·ft (1.356-40.675 N·m). The motor used for this 

research is made by Marathon Electric, and its specifications are summarized in Table 2.1. The 

gearbox (Boston Gear 800) is used to adjust the speed ratio of the dynamometer. The current sensors 

(102-1052-ND) are used to measure different phase currents. A rotary encoder (NSN-1024) is used to 

measure the shaft speed with the resolution of 1024 pulses per revolution. Stator current signals are 

collected using a Quanser Q4 data acquisition board, which are then fed to a computer for further 

processing. 
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Figure 2.2. The motor experiment setup: (1) the tested IM, (2) the speed controller, (3) the gearbox, (4) the load 

system, (5) current sensors, (6) the data acquisition system, (7) the computer.  
 

Table 2.1. Motor specifications. 

 

 

2.3.2 Broken Rotor Bar Fault Detection 

The fault detection of IM broken rotor bar defect is generally based on spectral analysis by 

inspecting fault-related sideband components in the spectrum: 

  

                                                              ( ) pbl fksf 21−=                                                              (2.10) 

                                                              ( ) pbr fksf 21+=                                                             (2.11) 
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where fbl and fbr are the respective left sideband and right sideband of the IM broken rotor bar fault, k 

= 1, 2, … ; fp is the power supply frequency of the IM; %100×
−

=
s

as

n

nn
s  is the slip of the IM. ns 

(rpm) is the speed of rotating magnetic field, and na (rpm) is the shaft rotating speed. In the following 

tests, an IM containing three broken rotor bars is used to evaluate the proposed SS technique. 

To examine the effectiveness of the proposed SS technique, the PSD based fault detection and the 

envelope analysis based fault detection are used for comparison. The PSD explores the energy 

distribution of the data over the spectrum; the envelope analysis performs amplitude demodulation to 

reveal fault features. In the PSD-based fault detection, the fault index can be represented as, 
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The fault index of envelope analysis is given as 
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where pν  and eν  represent the averages of top 50% high amplitude fault frequency components from 

PSD and envelope analysis respectively;  pσ  and eσ  represent the standard deviations of the entire 

spectrum band of interests from PSD and envelope analysis respectively; pχ  and eχ  are the 

respective fault indices from PSD and envelope analysis. Therefore, these two techniques can be used 

to compare the local band synch method in the proposed SS technique, and the corresponding central 

kurtosis index. 

 

  1) 35Hz Supply Frequency:  The first test aims to detect the IM with three adjacent broken rotor 

bars, 35Hz power supply frequency and medium-load condition (50% of rated power). To reduce the 

noise effect in the spectrum, twenty data sets are collected for spectrum averaging (i.e., J = 20). Other 
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settings are fs = 65,536 Hz and fw = 10Hz. Since 1,024 low-to-high voltage transitions represent one 

shaft revolution in the encoder signal, the high sampling frequency fs is chosen to properly capture the 

encoder signal, so as to accurately estimate shaft speed (i.e., rotor speed). The frequency band [25Hz 

45Hz] is used to detect broken rotor fault, because the amplitudes of high order (i.e., k in Equations 

(2.10) and (2.11)) characteristic frequencies are not prominent in the spectrum. Figure 2.3 illustrates 

the PSD of a healthy IM (Figure 2.3a), the PSD of an IM with broken rotor bars (Figure 2.3b), the 

envelope analysis of a healthy IM (Figure 2.3c), and the envelope analysis of an IM with broken rotor 

bars (Figure 2.3d), respectively. From Figures 2.3(b) and 2.3(d), it is seen that the broken rotor bar 

fault frequency components, although visible, do not prominently protrude in the spectrum. Therefore, 

a better fault detection technique is needed to extract useful information from multiple characteristic 

frequency components in the spectrum to generate a more reliable fault index. 

The FIS, corresponding to a healthy IM (Figure 2.3a) and a broken rotor bar faulted IM (Figure 

2.3b), are given in Figures 2.4(a) and 2.4(b), respectively. The unit of amplitude of the FIS is dB 

because the local bands are extracted from the PSD logarithmic spectrum. It is seen from Figure 2.4 

that the center frequency component marked by the red dashed line (i.e., synchronized broken rotor 

bar fault frequency components) in Figure 2.4(b) has higher relative amplitude than that in Figure 

2.4(a), which is evaluated by the index sν  in the proposed SS technique. Figure 2.4(b) has similar 

spectrum variation as in Figure 2.4(a), which is examined by the value sσ  in the SS technique. 

Therefore the fault information in the FIS can be characterized by the index sχ  using the proposed 

SS technique. 
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Figure 2.3. The spectrum average Φ  corresponding to (a) a healthy IM using PSD; (b) an IM with broken rotor 

bar fault using PSD; (c) a healthy IM using envelope analysis; and (d) an IM with broken rotor bar fault using 

envelope analysis, at 35Hz supply frequency and medium-load condition. The red solid rectangular boxes in (b) 

and (d) highlight fault frequency components. 
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Figure 2.4. The FIS generated by the SS technique at 35Hz and medium-load condition (a) from a healthy IM, (b) 

from an IM with broken rotor bar fault. 
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The values of IM speed fr (Hz) and indices corresponding to PSD, envelope analysis and the 

proposed SS are summarized in Table 2.2. From Table 2.2, it is seen that it is difficult to differentiate 

the IM broken rotor bar faulted condition from the IM healthy condition using envelope analysis, 

because the values of eχ  corresponding to these two IM conditions are similar. The PSD has a 

relatively large difference of pχ  of different IM conditions in this case; however the PSD suffers 

from interference of non-fault-related high amplitude frequency components and its pχ  values are 

too small to be relied on. The IM with broken rotor bar defect has considerably larger value of sχ  

than that of the healthy IM using the proposed SS technique. Consequently, the proposed SS 

technique associated with its index sχ  can be used as a fault index for IM broken rotor bar fault 

detection in the stator current spectrum. 

 

Table 2.2. Comparisons of central kurtosis indices for IM broken rotor bar fault detection. 
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; ;
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; ;
 

 

2) 50Hz Supply Frequency:  The proposed SS technique is then used for IM broken rotor bar fault 

detection with 50Hz supply frequency and medium-load condition (50% of rated power). Other 

settings remain the same as in the previous tests. The spectrum of frequency band [35Hz 65Hz] is 

used for fault diagnosis. The selected band is shown in Figure 2.5 using PSD in Figure 2.5(a) and the 

envelope analysis in Figure 2.5(b), respectively. It is seen from Figure 2.5 that most of the fault 

frequency components are masked by noise, which cannot be used effectively for reliable fault 

diagnosis.     
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The FIS, corresponding to a healthy IM and an IM with broken rotor bar fault are given in Figures 

2.6(a) and 2.6(b), respectively. The related IM condition indices are summarized in Table 2.3. It is 

seen that the relative amplitude of fault frequency component in Figure 2.6(b) is greater than that in 

Figure 2.6(a). From Table 2.3, the IM with broken rotor bar fault has a larger value of sχ  than that of 

a healthy IM, which indicates a broken rotor bar fault. The IM health condition with broken rotor bars 

cannot be differentiated from healthy condition using envelope analysis, associated with its fault 

index eχ . Although the PSD index pχ  has a relatively large difference corresponding to different IM 

conditions, the performance of PSD may be degraded by the interference of non-fault-related high 

amplitude frequency components and its pχ  values are too small to be relied on. Hence, the proposed 

SS technique associated with its fault index sχ  can accurately discern the health condition of IMs 

with broken rotor bar fault under different supply frequencies, when compared to the related two 

classical methods. 
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Figure 2.5. The spectrum Φ  for an IM with broken rotor bar fault, 50Hz supply frequency and medium-load 

condition, using (a) PSD; and (b) envelope analysis. The red solid rectangular boxes highlight fault frequency 

components. 
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Figure 2.6. The FIS generated by the SS technique at 50Hz supply frequency and medium-load level (a) from a 

healthy IM; (b) from an IM with broken rotor bars.  
 

Table 2.3. Comparisons of central kurtosis indices for IM broken rotor bar fault detection. 
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2.3.3   Incipient Bearing Defect Detection 

As mentioned earlier, bearing defects are the most common faults in IMs [2], which also represent 

the most challenging task in IM health condition monitoring, especially when using stator current 

signals [109]. A small dent of diameter approximately 1/16-inch was introduced on the outer race of 

(a) 
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the bearing to simulate fatigue pitting defect. Whenever a rolling element rolls over the damaged 

region, impulses are generated, which then excite the resonance frequencies of the IM structures. The 

vibration-related outer race bearing defect characteristic frequency vf is given in Equation (1.7). The 

corresponding characteristic current frequency fc can be calculated using Equation (1.13).  

 

  1) 35Hz Supply Frequency:  The proposed SS technique is first tested with stator current signals 

collected from an IM with the outer race defect, 35Hz power supply frequency, and light-load 

condition (20% of rated power). The settings for the proposed SS technique are selected as J = 20, fs = 

65,536Hz, fw = 10Hz, and rv ff 066.3= . The high sampling frequency is used to accurately estimate 

the IM shaft speed. To obtain representative fault features, the frequency band [1000Hz, 2000Hz] is 

selected for bearing fault detection.  

To have a clear view of fault frequency components, the frequency band [1090Hz 1360Hz] from an 

IM with outer race bearing defect is shown in Figure 2.7 using PSD (Figure 2.7a) and envelope 

analysis (Figure 2.7b). It is seen that the bearing fault frequency components are difficult to recognize 

due to the modulation of the signals with other IM frequency components.  
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Figure 2.7. The spectrum average Φ  for an IM with outer race bearing defects, 35Hz supply frequency, and 

light-load condition, using (a) PSD; and (b) envelope analysis. The rectangular boxes indicate bearing fault 

frequency components. 
 

The FIS, corresponding to a healthy IM and an IM with the outer race defect, are given in Figures 

2.8(a) and 2.8(b), respectively. The values of indices corresponding to these three fault detection 

techniques are summarized in Table 2.4. It is seen from Figure 2.8 that the fault frequency component 

in Figure 2.8(b) protrudes more significantly than that in Figure 2.8(a). In Table 2.4, the fault index 

sχ  of the IM with faulty bearing is greater than that of a healthy IM using the proposed SS technique, 

whereas the envelope analysis, associated with its index eχ , cannot recognize different IM health 

conditions. The PSD index pχ  generates small values that cannot be relied on. Therefore, the SS 

technique can be used effectively for IM outer race bearing fault detection in this case, when 

compared to PSD and envelope analysis. 
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Figure 2.8. The FIS generated by the SS technique at 35Hz supply frequency and light-load condition (a) from a 

healthy IM; (b) from an IM with outer race bearing defect. 
 

Table 2.4.  Comparisons of central kurtosis indices for IM outer race bearing fault detection. 
 

 

 

 

  2) 50Hz Supply Frequency:  In this test, the IM supply frequency is set as 50Hz. The other 

settings remain the same as in previous test. The frequency band [1000Hz 2000Hz] of an IM with an 

outer race bearing defect is used for testing. The band [1400Hz 1750Hz] is shown in Figure 2.9, using 

PSD (Figure 2.9a) and envelope analysis (Figure 2.9b), respectively. From Figure 2.9, the bearing 

fault frequency components in the spectrum are masked by higher amplitude frequency components 

unrelated to the bearings, which will degrade the fault detection reliability.   
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The FIS of a healthy IM and an IM with outer race bearing defect are shown in Figure 2.10. The 

values of the shaft speed fr and indices of the PSD, the envelope analysis and the proposed SS 

technique are listed in Table 2.5. It is seen that peaked center frequency component can be 

highlighted in Figure 2.10(b) than in Figure 2.10(a). From Table 2.5, it is seen that the values of sχ  

in the proposed SS technique are much greater than that from a healthy IM. Thus the SS technique 

and its index sχ  can be used for IM outer race bearing defect detection at different supply 

frequencies. 
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Figure 2.9. The spectrum average Φ  for an IM with outer race bearing defects, 50Hz supply frequency, and 

light-load condition, using (a) PSD; and (b) envelope analysis.  
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Figure 2.10. The FIS generated by the SS technique at 50Hz supply frequency and light-load condition (a) from a 

healthy IM; (b) from an IM with an outer race bearing defect. 
  

Table 2.5.  Comparisons of central kurtosis indices for IM outer race bearing fault detection. 
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2.4 Summary 

A spectrum synch (SS) technique has been proposed in this work for IM fault detection using stator 

current signals. It could handle IM fault detection when the change in speed and/or load is not 

dramatic. This research focuses on broken rotor bar fault and incipient bearing fault detection. The 

local band synch technique is employed to synthesize bearing fault related features, so as to enhance 
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IM defect-related features. A central kurtosis analysis method is proposed to extract representative 

features from the FIS, which are then used to formulate fault indices. The effectiveness of the 

proposed IM fault detection technique is verified experimentally using IMs with the bearing defect 

and IM with the broken rotor bars, under different operating conditions. Test results have showed that 

the proposed SS technique and the related central kurtosis indices can recognize IM defect features 

effectively and reliably and can thus provide more relaible IM health condition monitoring 

information. For each IM fault, the proposed SS technique can be used for fault detection over certain 

load range. The fault detection in a broader load range will be discussed in Chapter 6. 

The presented SS technique in this chapter is to achieve the first research objective in Section 1.3: 

1) Propose a new signal processing technique to extract representative features from the stator 

current signals for fault detection in IMs. 
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Chapter 3 

Selective Boosting Classifier 

In this chapter, a novel selective boosting (sBoost) classifier is developed to effectively categorize the 

representative features extracted from selected signal processing techniques, in order to achieve a 

more accurate assessment of the IM health condition [110]. The proposed sBoost classifier will be 

presented, and subsequently verified by simulation tests. Its implementation for IM fault diagnosis 

will be presented in Chapter 6. 

3.1 Classical AdaBoost Algorithm 

Consider a binary classification problem with training data samples (x1, y1), (x2, y2), … , (xN , yN), 

where the class label is { }1 ,1 +−∈iy  and N is the number of samples in the training data set. If T is 

the maximum number of weak learners, the AdaBoost algorithm takes the following processes: 

(a) Initialize the distribution of training data set NiL /1)(1 = , i = 1, 2, …, N. 

FOR t = 1 : T 

(b) Train the weak learner { }1 ,1 +−∈th  using training data set with distribution Lt . 

(c) Compute the sum of weights of misclassified samples [ ]])([)(
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N
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     (f) Normalize the weights of weak learner ht, 
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Theorem 1 (Schapire et al. [111]): Given the weighted training error ]])([[)(
1 iit

N

i tt yxhiL ≠=∑ =
φ , 

for any δ , the probability that δρ ≤)(ˆ
it x  can be given as, 
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When 0=δ , ]0)(ˆ[ ≤it xρP  represents the probability that a sample is misclassified, which should be 

minimized.  

3.2 Selective Boosting Analysis 

3.2.1   Sample Weight Regulator 

The AdaBoost techniques conduct greedy learning of hard-to-learn samples, which may reduce the 

classification of easy-to-learn samples. As a result, the overfitting problem occurs. The accumulated 

weight of a sample is an effective indicator, which can determine the degree this sample contributes 

to potential overfitting. Thus it can be used to properly adjust the penalty of this sample so as to 

reduce overfitting.  

Let  tβ  be the weight of the weak learner ht in sBoost, the margin can be defined in the same 
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manner as that in Equation (3.1) 
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The accumulated weights of samples can be computed as 
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Since some noisy samples may induce overfitting, they need to be processed properly in the 

training process. In the proposed sample weight regulator, the k-nearest-neighbor method is adopted 

to identify noisy samples and evaluate their noise level. Given K nearest samples of a target sample in 

the training data set, if p samples of these K samples have the same class label as this target sample 

( Kp ≤≤0 ), the level of noise of this sample will be estimated by  

 

           
K

p
i −= 1θ                                                             (3.7)  

 

where the noise level is independent of time step t.  

The proposed sample weight regulator is given by 
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It can be proven that tt i βϖ ≤≤ )(0 . Accordingly, the update of the ith sample weight at step t can 

be formulated as:  
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where Jt’ is the cost function of sBoost. 

 By using the sample weight regulator )(itϖ , the noisy samples will be processed according to 

their noise level. For each sample, the maximum penalty reduction is determined by its accumulated 

weight, which will be lessened by the sample’s noise level. Consequently, the less noisy samples will 

not have over-reduced penalties to decrease their chance of being correctly classified, and the 

penalties of noisy samples can be adjusted to reduce overfitting.           

Given ( ) 1)(exp0 ≤−< itϖ , the cost function associated with the sample weight regulator is 

suggested as: 
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where ( )
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Equations (3.9) and (3.10). 

Taking derivative of Equation (3.10) with respect to tβ  and letting it equal zero, the optimal 

weights of weak classifier ht will be 
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Inserting Equation (3.11) into Equation (3.10), we get 
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Since ]0)([ ≤it xρP  represents the probability that a sample is misclassified, the minimization of 
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]0)([ ≤it xρP  is equivalent to  
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the ensemble (or the larger the T is), the lower the probability in which a sample is misclassified (or 

the smaller the ]0)([ ≤it xρP  becomes).  

The ensemble classifier is formulated as  
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The confidence rate is given by 
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3.2.2   Error Correction Method 

The sample weight regulator is used in the proposed sBoost to alleviate the penalties of noisy hard-

to-classify samples, in order to reduce overfitting. However, the overfitting problem may still occur 

due to the inconsistency of training data and test data. To address this problem, an error correction 

method is suggested in the proposed sBoost to detect potential clean samples in the test data, and 

correctly classify them. To implement the proposed error correction method, each dimension of the 

training data )(ix  is normalized over [0, 1]. Let x̂  denote the original data; dU  and 
d

L  are the 

respective maximum and minimum value of the original training data at dimension d, then 
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where N is the number of training data, and d is the index of dimension. Each test sample )(ix′  is also 

processed using the same way as the training data.  

 

                                              
dd

dd
jd

j
LU

Lx
x

−

−′
=′

ˆ
,   j = 1, 2, …, Nt                                                      (3.22) 

 

where Nt is the number of test data. 

The proposed error correction method can be represented as  
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where }1 ,1{−∈iy  is the class label of the training data. Sj represents a set that contains q samples in 

the training data that are nearest neighbors to the test sample yj’. It is seen that 1)( ≤jK t . The error 

correction method is implemented with the following rules: 

(I) If Kt (j) = 1, the test sample xj’ is considered as a clean sample with class label y j’ =1. 
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(II) If Kt (j) = -1, the test sample x j’ is considered as a clean sample with class label y j’ = -1. 

(III) If 1)( <jK t , the class label of the test sample x j’ is determined by boosting using the sample 

weight regulator. 

 Potential clean samples (i.e., 1)( =jK t ) in the test data set are detected using Equation (3.23) and 

assigned predicted class label according to (I) and (II). Other test samples are classified using 

boosting with the sample weight regulator. By using this error correction method, the potential clean 

samples will not be misclassified by the classifier with the potential overfitting problem. Hence the 

overfitting can be further reduced to improve the classification accuracy. 

3.2.3   Implementation of sBoost Technique 

The developed sBoost technique includes the boosting and the error correction processes. The 

proposed boosting strategy with sample weight regulator will be implemented in the following steps: 

(a) Initialize the distribution of training data set NiL /1)(1 = , i = 1, 2, …, N. 

(b) Train the weak learner { }1 ,1 +−∈th  using training data set with distribution Lt . 

(c) Calculate ( )
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(d) If 10 <<< tt ετ  is not satisfied, NiLt /1)(1 =+ ; otherwise, update the weights of the training 

samples, ( ) ( )( )

t

tiittt
t

J

iyxhiL
iL

′

−−
=+

)(exp)(
1

ϖβ
, where ( )∑ =

−−=′
N

i tittitt ixhyiLJ
1

)()(exp)( ϖβ , i = 

1, 2, …, N. 

(e) Repeat steps (b) to (d) with t = 1 : T.  

(f) Formulate the ensemble classifier as [ ])()(
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normalized the weights of weak learner ht. 
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After boosting using the sample weight regulator, the errors are further corrected to improve the 

classification accuracy. Given a test sample xj’, the error correction is undertaken using the following 

steps: 

(a) Determine if xj’ is a potential clean sample using Equation (3.23). If it is, its class label is 

predicted using rules (I) - (II). 

(b) If 1)( <jK t , apply rule (III). Predict the class label of xj’ by [ ])()(
1 j

T

t ttj xhsignxH ′′=′ ∑ =
β  . 

3.3 Performance Evaluation 

The effectiveness of the proposed sBoost technique is verified in this section by simulation tests using 

12 benchmark data sets from KEEL database [112]. The dataset information is summarized in Table 

3.1. These data sets range in size from 106 to 19,020, as well as in dimension (features) from 5 to 60. 

To make a comparison, the classical AdaBoost algorithm, AB in short, the weight decay AdaBoost 

algorithm, WAB in short [69], the noise detection based AdaBoost algorithm, ND in short [70], and 

sBoost without error correction mechanism, sBoost-1,  are employed. The sBoost using the proposed 

error correction method is denoted sBoost-2. The AB, WAB, and ND are used to compare the effect 

of proposed sample weight regulator in sBoost; whereas the sBoost-1 is used to evaluate the 

effectiveness of the suggested error correction mechanism.   
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Table 3.1. Data set information. 
 

 

 

In each test, the maximum number of weak learners is fixed at 200 for the five classifiers: AB, 

WAB, ND, sBoost-1 and sBoost-2. The decision tree C4.5 is used as the weak learner. Artificial noise 

is added to each of the benchmark data sets. Noise level E% (e.g., 0% - 10%) in a data set is realized 

by randomly selecting E% of total samples in the training data set and changing their class labels 

[113]. The 2-fold cross-validation approach is conducted 5 times (i.e., 5×2 cross-validations) for each 

benchmark data set. In each 2-fold cross-validation, the data are randomly split into two data sets for 

two runs: one set is used for training, and the other set for testing in the first run. The two data sets are 

then switched for training and testing in the second run. The parameters of the sBoost technique are 

selected as K = 5 and q = 5 by trial and error. 

To examine the effectiveness of the proposed sBoost technique over these classical classifiers, the 

differences between successful classification rates (SRs) of ND, sBoost-1 and sBoost-2 and SR of 

WAB, that is, SR(ND) – SR(WAB), SR(sBoost-1) – SR(WAB) and SR(sBoost-2) – SR(WAB) for 

these 11 benchmark data sets are demonstrated in Figures 3.1 to 3.3. The SR of the WAB is the 

minuend of the subtraction. The indices 1 ~ 11 in the horizontal axes represent the data sets of 

{Phoneme, Appendicitis, Pima, Breast, Magic, Heart, Australian, German, Twonorm, Wdbc, Sonar}, 
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respectively. Since the values of SR(sBoost-2) – SR(WAB) of the Tic-tac-toe data set fall within the 

range of [0.023, 0.038], much larger than those in other cases, they are not shown in Figures 3.1 to 

3.3 for proper view scales. The difference values of SR(AB) with respect to other classifiers (i.e., 

WAB, ND, sBoost-1 and sBoost-2) are also much larger than those in other cases, for example, 

SR(sBoost-2) – SR(AB) ∈[0.047,0.127]; correspondingly these values are not shown in Figures 3.1 

to 3.3.  

From Figures 3.1 to 3.3, it is seen that sBoost-1 and sBoost-2 outperform WAB and ND in overall 

performance of these 11 data sets. Their superior performance over WAB is clear as more weak 

learners are incorporated into the ensemble, because the sample weight regulator in sBoost-1 and 

sBoost-2 can effectively adjust noisy sample weights to reduce overfitting. The sBoost-1 and sBoost-

2 outperform ND due to their efficient noise-level-based adaptive weight regulation. On the other 

hand, the sBoost-2 outperforms sBoost-1 in most test scenarios, which can detect and process clean 

samples more effectively (i.e., labeled).  

It can be realized from Figure 3.1(c) that the WAB performs better than the proposed sBoost 

techniques in the fifth, eighth, and ninth data sets, whereas ND can provide superior performance in 

the third and sixth data sets. The sBoost techniques reduce the penalty of noisy samples, in order to 

improve their generalization capability. This may result in misclassification of some noisy samples, 

and in turn lead to poor classification performance in the premature stage (e.g., with 50 weak learners 

in this case). Nevertheless, the proposed sBoost techniques surpass both WAB and ND as more weak 

learners are incorporated into the ensemble as demonstrated in Figure 3.3(c) (e.g., with 200 weak 

learners in this case), because the sBoost technique provides better generalization capability than 

WAB and ND. 
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Figure 3.1. The differences of SR using 50 weak learners with different noise levels: (a) 0%; (b) 5%; and (c) 10%. 

The blue-circle-solid line represents SR(WAB) – SR(WAB); the green-square-solid line represents SR(ND) – 

SR(WAB); the black-triangle-dashed line represents SR(sBoost-1) – SR(WAB); the red-diamond-dotted line 

represents SR(sBoost-2) – SR(WAB).   
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Figure 3.2. The differences of SR using 100 weak learners with different noise levels: (a) 0%; (b) 5%; and (c) 

10%. The blue-circle-solid line represents SR(WAB) – SR(WAB); the green-square-solid line represents SR(ND) 

– SR(WAB); the black-triangle-dashed line represents SR(sBoost-1) – SR(WAB); the red-diamond-dotted line 

represents SR(sBoost-2) – SR(WAB).  
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Figure 3.3. The differences of SR using 200 weak learners with different noise levels: (a) 0%; (b) 5%; and (c) 

10%. The blue-circle-solid line represents SR(WAB) – SR(WAB); the green-square-solid line represents SR(ND) 

– SR(WAB); the black-triangle-dashed line represents SR(sBoost-1) – SR(WAB); the red-diamond-dotted line 

represents SR(sBoost-2) – SR(WAB).  
 

Figure 3.4 shows the averaged test errors of the real-world breast cancer data set using these five 

boosting techniques. It is seen that both WAB and ND generate lower average test errors than AB as 

the number of weak learner increases, because of their capacity for addressing the overfitting problem 

(i.e., the test error increases as the number of weak learner increases). Nevertheless, their averaged 

test errors still increase somewhat because overfitting is not sufficiently reduced. The sBoost 

techniques outperform both WAB and ND, without clear overfitting, because their sample weight 
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regulator can effectively reduce the overfitting problem and improve the classification accuracy. The 

sBoost-2 overtakes sBoost-1 because the potential clean samples can be correctly classified. 
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Figure 3.4. The averaged test errors of breast cancer data with different noise levels: (a) 0%; (b) 5%; and (c) 

10%. The blue-solid line represents AB; the black-dashed line represents WAB; the green-dash-dotted line 

represents ND; the magenta-dotted line represents sBoost-1; the red-square-dotted line represents sBoost-2.  
 

Table 3.2 summarizes the averaged test errors of the related techniques over 12 data sets. It is seen 

that the WAB and ND generate better results than AB because of their strategy to process hard-to-

learn samples. sBoost-1 outperforms AB, WAB and ND at all three noise levels, because it can 

effectively detect noisy samples and reduce their effect on data distributions. The error correction 
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method in sBoost-2 can further improve classification accuracy compared to sBoost-1, because it can 

correct some misclassified clean samples due to the overfitting problem. 

 

Table 3.2. Averaged test errors of AB, WAB, ND, sBoost-1, and sBoost-2 using 5×2 cross-validation and 200 

weak learners.  
 

 

Note: sB1 represents sBoost-1, and sB2 represents sBoost-2.  

 

The statistical tools, Wilconxon signed-rank test [114] and sign test [115], were also employed to 

evaluate the pairwise statistical significant differences among these five classifiers, AB, WAB, ND, 

sBoost-1 and sBoost-2. The comparison results are summarized in Tables 3.3-3.5 as a matrix of the 

pairwise statistical tests. The numbers of wins, ties and loses are represented as w/t/l. ps is the p-value 

of the sign test and pw denotes the p-value of Wilcoxon signed-rank test. Symbol ‘√’ is used to 

indicate that the two classifiers are significantly different at 95% confidence level; whereas ‘ӿ’ 

indicates that the two classifiers are significantly different at 90% confidence level.  

It is clear from Tables 3.3 to 3.5 that WAB, ND, sBoost-1 and sBoost-2 outperform AB at the three 

noise levels. Although sBoost-1 has no clear difference over WAB at 0% noise level, its performance 

is much better than WAB as the noise level increases, which can be attributed to its efficient noise 

manipulation mechanism. The ND performs better than WAB at 5% and 10% noise level, however, 
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sBoost techniques outperform ND at all three noise levels because of their enhanced noisy sample 

processing strategy. On the other hand, the sBoost-2 outperforms the sBoost-1 at all three noise levels 

due to its effective clean sample correction approach.  

 

Table 3.3. Statistical significant comparisons of five boosting techniques with 0% noise over 12 data sets. 
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Table 3.4. Statistical significant comparisons of five boosting techniques with 5% noise over 12 data sets. 
 

 

Table 3.5. Statistical significant comparisons of five boosting techniques with 10% noise over 12 data sets. 
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3.4 Summary 

A selective boosting technique, sBoost, has been developed in this chapter for more efficient pattern 

classification. The sBoost can adaptively adjust the effect of noisy samples on the data distribution 

using the proposed sample weight regulator, in order to reduce the overfitting problem. An error 

correction method is suggested in sBoost to detect and process potential clean samples in the test data 

to further improve the classification accuracy. The effectiveness of the developed sBoost classifier 

was verified by simulation tests using a series of benchmark data sets that are commonly used in this 

research field. Test results showed that the developed sBoost was an efficient classification tool. It 

can effectively conduct pattern classification for different applications. 

   The work presented in this chapter is to achieve the research objective in Section 1.3: Develop a 

pattern classification technique to effectively categorize the representative features from the selected 

technique(s) to provide a more positive assessment of IM health condition. 
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Chapter 4 

A Model-Based pBoost Predictor 

In this chapter, a novel model-based boosting technique, pBoost, is developed to forecast future states 

of the IM health condition, in order to further enhance the diagnostic reliability [116]. The 

effectiveness of the proposed pBoost technique will be examined by using simulation tests and real 

applications. 

4.1 The pBoost Predictor 

The idea in pBoost technique is to incorporate many AR predictors in the ensemble, each of which is 

assigned an appropriate weight; correspondingly, the ensemble predictor can outperform each base 

predictor and become a stronger predictor. The development of the technique is detailed below. 

4.1.1   Sample Regulation 

Consider the training data sets z(k); k = 1, 2, …, K, where K is the number of samples in the 

training date set. For s-step-ahead prediction, the training date set can be re-arranged to have the input 

vector x(i) = [z(i), z(i + 1), …, z(i + d - 1)], and the output y(i) = z(i + d + s - 1), where i = 1, 2, …, N,  

and N = (K - d - s + 1), and d is the dimension of the input vector x(i).  

In the ensemble of the pBoost, the base predictor ht incorporated at step t aims to classify the 

training data with distribution Lt. Given the distribution Lt, the update of the distribution at step t+1 

will be performed by 
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where yd are the desired values, and pt are the predicted values at step t using the base predictor ht ; tβ  
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In Equation (4.1), the larger the error )()( ipiy td − , the smaller the sample penalty. The proposed 

pBoost method focuses on easy-to-learn samples, and gradually learns more difficult samples through 

AR model training. Thus the overfitting caused by hard-to-learn samples can be reduced. 

 By setting the initial distribution
N

iL
1

)(1 = , i = 1, 2, …, N, the update of the distribution can also 

be carried out by 

 

                                                    
( )

∏
∑

=

=
+

−−
=

T

t t

T

t tdt

t

ZN

ipiy
iL

1

1
1

)()(exp
)(

β
                                        (4.2) 

  

The weight tβ of the base predictor ht will be 
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where )()()(
1

ipiyiL td

N

i tt −=∑ =
λ ; )()(sup ipiyM tdt −= is the maximum value of )()( ipiy td − . 

It can be proven that 0≥tλ , 0≥tβ . The detailed derivation of tβ  will be discussed in the 

Subsection 4.1.2. 

The final ensemble predictor is derived as  
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β
β  is the normalized weight of base predictors. The processing diagram of pBoost 

is illustrated in Figure 4.1. 
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Figure 4.1.   Processing diagram of the pBoost. 
 

4.1.2   Derivation of Mean Absolute Error  

Given 0≥tλ , 0≥′
tβ , 0≥tβ , 1

1
=′∑ =

T

t tβ , 1)(
1 1 =∑ = +

N

i T iL , and the final ensemble prediction 
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T

t tt ipiP
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)()( β , the mean absolute error (MAE) of the training data can be determined by 
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To satisfy inequality (4.9), tt ββ ≤′  or 1
1

≥∑ =

T

t tβ  should be satisfied. If T is sufficiently large, 

then 1
1

≥∑ =

T

t tβ . The inequality in Equation (4.10) can be simplified as  

 

                                                             )exp( xx −≤                                                                       (4.14) 

 

where ( ) ∑∑ ==
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T
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T

t tdt ipiyipiyx
11

)()()()( ββ .  

To satisfy Equation (4.14), x can be constrained within the range [0, 0.567] as demonstrated in 

Figure 4.2. 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

y

0.567 

 

Figure 4.2.   Plot of y = x (blue solid line) and y = e-x (red dashed line). 
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Then ∑ =
−=
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t tdt ipiyx
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)()(β should lie within the range [0, 0.567], which can be achieved by 

properly scaling the training data. Therefore, the minimization of the prediction MAE is equivalent to 

minimizing∏ =

T

t tZ
1

, or minimizing Zt at each step t. Given the initialization distribution
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    The following two constraints need to be satisfied, 
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Constraint (4.15) can be achieved by scaling )()( ipiy td − . tβ is immune to scaling of 

)()( ipiy td − , which will be shown in the following subsection. Thus constraints (4.15) and (4.16) 

can be satisfied simultaneously.  

4.1.3   MAE Convergence 
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Substituting Equation (4.18) into Equation (4.17), the minimum upper bound of Zt can be derived 

as 
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. The upper bound of MAE of the training data can be 

derived as 
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Therefore, the more base predictors ht that are included in the ensemble predictor (or the larger the 

T), the lower the upper bound of the training MAE will be. 

4.1.4   AR Model as Base Predictor 

The AR models will be used as base predictors in the proposed pBoost technique because of their 

simple modeling mechanism, high training efficiency, and ease of implementation. To associate the 

distribution of training data with the base predictors (i.e., the AR models), these models are trained 

with the WLSE. The AR model has the form of 
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where { }iθ are linear parameters; i = 1, 2, …, r - 1. Equation (4.21) can also be written in the 

following matrix form, 
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where Nt is the number of system state z. The linear parameters θ  of AR models can be trained using 

the WLSE method [46]: 
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The weight matrix W is represented as 
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where 1+−−= srNN t , and  q is a strength factor to characterize the degree of influence to which 

the distribution )(iLt has on each training sample.   

By adding more AR base predictors to the ensemble, the upper bound of training MAE as well as 

the training MAE decrease as demonstrated in Equation (4.20). Consequently, the prediction accuracy 

can be improved by using the ensemble of AR models. 

In the boosting algorithms such as the Adaboost method, large penalties are imposed on hard-to-

learn samples to ensure that these samples can be learned with more effort. Nevertheless, this will 

sacrifice the learning accuracy of low weight samples, resulting in the overfitting problem. The 

overfitting problem easily occurs when relatively strong base learners rather than weak base learners 

are used in the ensemble. In the proposed pBoost as shown in Equation (4.1), the larger the error is, 

the lesser the penalty will be assigned to the sample. The proposed pBoost will emphasize easy-to-

learn samples, and gradually learn harder-to-learn samples as the capability of the ensemble learner 

becomes stronger, or as more base learners are incorporated in the ensemble. This sample regulation 

method can reduce the overfitting problem, especially when relatively strong base learners (i.e., AR 

models) are used in the ensemble. 

4.1.5   Implementation of pBoost Technique 

The implementation procedure of the pBoost predictor is summarized as follows: 

1) Scale the data within a proper range (e.g., [0, 1]), so that constraints in subsection 4.1.2 can be 

satisfied. 

2) Initialize the distribution of the training data set 
N

iL
1

)(1 = ; i = 1, 2, …, N. 

3) Train a base predictor ht (i.e., AR model trained by the WLSE) using training data set with the 

distribution Lt . 
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4) Compute the sum of weighted absolute error )()()(
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λ , where yd are the 

desired values, and pt are the predicted values at step t using the base predictor ht . 
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6) Update the distribution of the training samples, 
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7) Repeat steps 3) to 6) as t = 1, 2, …, T.  

8) Formulate the final ensemble predictor ∑ =
′=

T

t tt pP
1
β , where 

∑ =

=′
T

t t

t
t

1
β

β
β  are normalized 

weights of base predictors, t = 1, 2, …, T. 

4.2 Performance Evaluation and Application 

To verify the effectiveness of the proposed pBoost predictor, simulation tests are conducted to 

evaluate its accuracy. Two related predictors are used for comparison: the AdaBoost.R2 predictor 

[117], and the AdaBoost.RT predictor [118]. The three boosting techniques, AdaBoost.R2, 

AdaBoost.RT, and pBoost, will use 50 base predictors (AR models in this case). All the AR base 

predictors are trained by the WLSE. The evaluations are conducted by comparing the error 

convergence and prediction accuracy of the three boosting techniques. To satisfy constraint 

conditions as stated in Subsection 4.1.2, the data sets used in this section are scaled to be within the 

range of [0, 1] in computation. Test results, however, are still shown in their original scale.  

4.2.1   Mackey-Glass Data Forecasting 

The Mackey-Glass data set [119] is commonly used in the forecasting research field to compare the 

performance of predictors, due to its specific properties such as chaotic, non-periodic and non-

convergence; it is given by: 
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In this simulation test, a data set is obtained from Equation (4.28) with the initial conditions of τ = 

30, x(0) = 1.2, dt = 1 and 0)( =tx
 
for 0<t . 500 samples are selected for training, 250 samples for 

validation, and 250 samples for testing. q = 0.7 and r = 15 are selected in pBoost using cross 

validation by fixing T = 50. Five-step-ahead prediction is conducted in this Mackey-Glass data tests. 

The MAE and root mean square error (RMSE) of these three predictors with respect to the different 

number of base predictors, are shown in Figures 4.3 and 4.4, respectively. The validation errors and 

test errors using 50 base predictors are summarized in Table 4.1.  It is seen from Figures 4.3 and 4.4 

that all three predictors have the same MAE and RMSE error when only one base predictor is used, 

which is used as the reference of comparison. However, the pBoost outperforms both AdaBoost.R2 

and AdaBoost.RT as more base predictors are incorporated in the ensemble. The errors of 

AdaBoost.R2 and AdaBoost.RT increase as shown in Figures 4.3 and 4.4, because of their ineffective 

ensemble construction with base predictors. It can be observed that the errors of AdaBoost.R2 remain 

constant when the number of base predictors is larger than 4; this is due to the fact that the updated 

data distribution formulated by AdaBoost.R2 has insignificant impact on the AR model training. 

Since AdaBoost.R2 selects the weighted median as output of the ensemble, the ensemble output will 

remain unchanged if it always selects those AR models with close predictions. The AdaBoost.RT 

formulates its ensemble output as the weighted average of base predictors’ outputs, and consequently 

the error of AdaBoost.RT grows slightly as more predictors are involved, because its ensemble 

learning mechanism cannot effectively process AR models as base predictors. Thus, both 

AdaBoost.R2 and AdaBoost.RT cannot benefit from increasing the number of AR predictors.  The 

pBoost, on the other hand, is able to reduce both the MAE and RMSE as more AR base predictors are 

incorporated in the ensemble.  
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Figure 4.3. The convergence comparison using a Mackey-Glass data for five-step-ahead prediction: (a) 

validation MAE; (b) test MAE. The blue-circle-solid line represents errors of the AdaBoost.R2; the green-triangle-

dashed line represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents the errors of the 

pBoost.  
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Figure 4.4. The convergence comparison using a Mackey-Glass data for five-step-ahead prediction: (a) 

validation RMSE; (b) test RMSE. The blue-circle-solid line represents errors of the AdaBoost.R2; the green-

triangle-dashed line represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents the errors 

of the pBoost.  

 

Table 4.1. The five-step-ahead prediction performance of three predictors using 50 base predictors in terms of 

Mackey-Glass data.  
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To get some insight into the effect of the order of AR, r, and the strength factor q, on the 

performance of pBoost, simulation tests are also conducted using the Mackey-Glass data. Figure 4.5 

shows MAEs of the validation data prediction, with respect to the order of AR models r, the number 

of base predictors T, and the factor q. The maximum number of base predictors T is set at 100. It is 

seen from Figure 4.5 that the MAE decreases as the number of base predictors increases. For the same 

order r of the AR model, the test MAE converges faster with a greater q. The pBoost with AR(15) as 

base predictor generates lower MAE when compared to AR(10) and AR(20). 

Figure 4.6 illustrates the corresponding RMSE of validation data prediction under the same 

conditions as those in Figure 4.5.  With the exception of q = 0.1, regardless of r, RMSE decreases 

first as the number of predictors increases, and then increases. q is the rate of error changes (decrease 

and increase): the higher the q factor is, the faster the change will occur. In this test, minimum RMSE 

could be achieved with q = 0.7, r = 15 when T = 50, as shown in Figure 4.6(b).  
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Figure 4.5. MAE of the five-step-ahead Mackey-Glass data prediction using pBoost predictor with respect to (a) 

AR(10); (b) AR(15); (c) AR(20), with  q = 0.1 (blue-circle-solid lines), q = 0.7 (green-triangle-dashed lines), and q 

= 2 (red-diamond-dotted lines).   
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Figure 4.6. RMSE of the five-step-ahead prediction of Mackey-Glass data using pBoost predictor with respect to 

(a) AR(10); (b) AR(15); (c) AR(20), with  q = 0.1 (blue-circle-solid lines), q = 0.7 (green-triangle-dashed lines), 

and q = 2 (red-diamond-dotted lines).   
 

4.2.2   Sunspot Data Forecasting 

Sunspot activity record is another benchmark data set that is commonly used to evaluate predictors 

in the field of forecasting research and development. 265 data sets are used for testing in this case. 

The first 200 sunspot data (from years 1749 to 1948) are used for training, 30 data for validation 

(from years 1949 to 1978) and 35 data (from years 1979 to 2013) for testing. Two-step-ahead 

prediction is performed for sunspot data forecasting.  
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Figures 4.7 and 4.8 show the respective MAE and RMSE of the three predictors with T = 50, r = 14 

and q = 4, where r and q are selected using cross validation by fixing T = 50. Table 4.2 lists the 

validation errors and test errors of the predictors, when 50 base predictors are used. From Figure 4.7 

and Figure 4.8, it can be seen that the pBoost and AdaBoost.RT can decrease the errors; however, the 

pBoost outperforms the AdaBoost.RT due to its more effective boosting approach using the AR base 

predictors.   
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Figure 4.7. The convergence comparison using sun spot data for two-step-ahead prediction: (a) validation MAE; 

(b) test MAE. The blue-circle-solid line represents errors of the AdaBoost.R2; the green-triangle-dashed line 

represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents the errors of the pBoost.  
 

(a) 

(b) 



 

  

 

69 

0 10 20 30 40 50

18

20

22

24

Number of base predictors

R
M
S
E

0 10 20 30 40 50

20

25

30

R
M
S
E

 

Figure 4.8. The convergence comparison using sunspot data for two-step-ahead prediction: (a) validation RMSE; 

(b) test RMSE. The blue-circle-solid line represents errors of the AdaBoost.R2; the green-triangle-dashed line 

represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents the errors of the pBoost.  

 

Table 4.2 The two-step-ahead prediction performance of three predictors using 50 base predictors in terms of 

Sunspot data.  
 

 

(a) 

(b) 



 

  

 

70 

4.2.3   Material Fatigue Prognosis 

The proposed pBoost predictor is implemented in this work for material fatigue prognosis. Since 

material fatigue testing is usually time-consuming, an efficient predictor is extremely helpful to 

estimate the material’s dynamic characteristics without undertaking full-scale fatigue testing. For 

illustration, an aluminum specimen with a thickness of 3 mm was tested using the experimental setup 

shown in Figure 4.9. Both ends of the specimen were clamped to the testing machine. A small hole 

was made in the middle of the specimen to facilitate crack propagation. The crack dimension was 

measured directly by calipers and indirectly using relative voltage measurement. The measurement 

was taken every 3000 load cycles. The test presented here is based on an indirect measurement. 

 

 

 

 

 

 

 

 

 

Figure 4.9.  The experimental setup for material fatigue testing. 
 

In material fatigue testing, experiments were conducted under four different testing conditions 

corresponding to initial crack dimensions. Under each testing condition, the experiment was repeated 

6 times to yield six data sets. One data set was randomly selected from these generated data sets. The 

first 825 data samples of the data set were used for training, 425 data samples for validation, and 400 

data samples for testing. Twenty-step-ahead prediction was conducted for material property 

forecasting, which was also used to compare the performance of the related predictors.  

The MAE and RMSE of the predictors against the number of base predictors are shown in Figures 

4.10 and 4.11 respectively, with T = 50, r = 20, and q = 7; q and r are selected using cross validation 

by fixing T = 50. The corresponding validation errors and test errors of the three predictors using 50 
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base predictors are summarized in Table 4.3. It is seen from Figures 4.10 and 4.11 that both 

AdaBoost.R2 and AdaBoost.RT cannot reduce the MAE and RMSE when additional base predictors 

(i.e., AR models) are used. This deficiency exists due to ineffective ensemble construction with the 

base predictors. The pBoost, on the other hand, can improve its performance (i.e., decreasing the 

errors) by incorporating more AR models in the ensemble. Figure 4.12 demonstrates the prognosis 

performance of these three predictors with 50 base predictors. The test results are listed in Table 4.3. 

It is seen that the pBoost outperforms the other two predictors, and has the ability to track the 

dynamics of the material fatigue property more accurately. 
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Figure 4.10. The convergence comparison of the related predictors for material fatigue twenty-step-ahead 

prognosis: (a) validation MAE; (b) test MAE. The blue-circle-solid line represents errors of the AdaBoost.R2; the 

green-triangle-dashed line represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents the 

errors of the pBoost. 
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Figure 4.11. The convergence comparison of the related predictors for material fatigue twenty-step-ahead 

prognosis: (a) validation RMSE; (b) test RMSE. The blue-circle-solid line represents errors of the AdaBoost.R2; 

the green-triangle-dashed line represents the errors of the AdaBoost.RT; the red-diamond-dotted line represents 

the errors of the pBoost. 
 

Table 4.3. The twenty-step-ahead prediction performance of three predictors using 50 base predictors in terms of 

material fatigue data.  
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Figure 4.12. The twenty-step-ahead prediction performance of (a) the AdaBoost.R2; (b) AdaBoost.RT; and (c) 

the pBoost for material fatigue prognosis. The blue solid line represents the real data and the red dotted line 

represents the predicted values.   
 

4.3 Summary 

A new boosting technique, pBoost, has been developed in this chapter for system state prediction. 

The pBoost can aggregate many base predictors such as AR models, to improve forecasting 

performance. Different base predictors address the training data with different distributions, and the 

distribution of training data at each step reflects the prediction performance of the ensemble predictor 

consisting of all previous base predictors. The effectiveness of the proposed pBoost predictor was 

(a) 

(b) 

(c) 
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verified using simulations of two benchmark data sets. The pBoost predictor was also implemented 

for material fatigue prognosis. Test results showed that the pBoost predictor can effectively formulate 

the ensemble of base predictors to improve forecasting accuracy. It is able to capture the dynamic 

behavior of the tested system effectively and track its future states accurately. The verification of the 

proposed pBoost predictor for IM fault indices prediction will be discussed in Chapter 6. 

   The work presented in this chapter is to achieve the research in Section 1.3: Develop a model-based 

predictor to forecast future states of the IM conditions. The forecast information can be used to 

further improve the reliability of IM condition monitoring. 
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Chapter 5 

A Data-Driven Fuzzy Neural Network Predictor 

As an alternative solution to the model-based pBoost predictor discussed in Chapter 4, a knowledge-

based data-driven predictor, using a new evolving fuzzy neural network, eFNN, is developed in this 

chapter [120]. The effectiveness of the proposed eFNN technique will be verified by using simulation 

tests and real applications. 

5.1 The Evolving Fuzzy Neural Predictor 

The developed eFNN predictor applies both linear and nonlinear modeling strategies to characterize 

properties of multi-dimensional data sets. A novel cumulative clustering algorithm is proposed to 

evolve fuzzy reasoning rules for nonlinear modeling. The development of the technique is detailed 

below. 

5.1.1   Architecture of the eFNN Predictor 

Figure 5.1 describes the network architecture of the proposed eFNN predictor. It is a six-layer feed-

forward network. Layer 1 is the input layer. Each input [ ]sptistiti xxx )1( ,, , ,...,, −−−  represents a vector 

from the i
th
 data set with time lags 0 to p-1; s is the time-step; p is the dimension of the input data 

vector; i = 1, 2,…, m; and m is the dimension of the multiple data sets or the number of inputs to the 

eFNN predictor.  
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Figure 5.1. Architecture of the eFNN predictor. 
 

In most forecasting applications, there exist both linear and nonlinear correlations between the 

target data sets and these available data sets. Layer 2 performs VARMA (vector autoregressive-

moving-average) filtering to model the linear correlations among the data sets in each dimension. The 

classic VARMA model generates an output vector which contains m entries; the i
th
 entry corresponds 

to the predicted value of the i
th
 dimensional data set, i = 1, 2, …, m. In terms of the i

th
 entry in the 

output vector, the VARMA filter can be expressed as: 
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where [ ]mkkkk  ,2 ,1 , θθθ L=Θ  are the linear AR parameters, k = 1, 2, …, p, 

and [ ]mllll  ,2 ,1 , λλλ L=Λ are the linear MA parameters; l = 1, 2, …, q. LY  is the predicted value 

of the i
th
 dimensional data set using VARMA.  
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The linear filtering output LY  is forwarded to the output node in Layer 6. ji ,ϕ is the linear filtering 

error of the i
th
 dimensional data set at time instance j. To conduct an s-step-ahead forecasting, ji ,ϕ can 

be determined as LDji YY −=,ϕ , where DY   and YL are the desired and estimated values of the 

VARMA filter in the i
th
 dimensional data set at time instant j, respectively. 

To simplify representation, the linear estimation (or filtering) errors { }tmtt ,,2,1 ,,, ϕϕϕ L are 

represented as { }mϕϕϕ ,,, 21 L , which are the inputs in Layer 3.  

Layer 4 is the fuzzy rule layer. Gaussian functions are selected as membership functions (MFs), Bj,i, 

to formulate the fuzzy operation. Given the input [ ]mϕϕϕ ,,, 21 L=Φ , the firing strengths jη  can be 

derived by using the fuzzy product T-norm: 
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where [ ]mjjjj ,2,1, ,...,, µµµ=µ  is the center of the jth cluster, which will be derived using a clustering 

algorithm, as discussed in Subsection 5.1.2. ij,µ  (j = 1, 2,…, n, and i = 1, 2,…, m) and jσ  are the 

respective center and spread of the Gaussian MF ijB , . n is the number of nodes for each input iϕ .     

Layer 5 is the rule layer. Each node in this layer is formulated by 
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where Lj denotes a first order TS model, in which aj,i ( j = 1, 2, …, n; i = 1, 2, …, m) are the linear 

parameters, and bj is the bias in Lj.  

Layer 6 is the output layer. The eFNN output Y is formulated as,  
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The fuzzy rules in Layers 4 and 5 are generated by the use of an evolving clustering paradigm that 

will be discussed in Subsection 5.1.2. 

5.1.2   The Adaptive Clustering Algorithm 

A cumulative evolving clustering (CEC) algorithm is proposed in this work, to adaptively evolve 

the fuzzy reasoning rules (clusters) represented in Layers 4 and 5 in Figure 5.1. The inputs to the 

evolving fuzzy (EF) network are the linear estimation error vectors [ ]mϕϕϕ ,,, 21 L=Φ , and the j
th 

fuzzy rule can be formulated as 

 

Rj : IF ( 1ϕ  is Bj,1) and ( 2ϕ  is Bj,2) and, …, and ( mϕ  is Bj,m), THEN (Z is Lh)                (5.6) 

                                                                  

where j = 1, 2,…, n; n is the number of fuzzy rules generated; Z is the clustering index; h = 1, 2,…, r; 

and r is the number of first order TS models ( nr ≤ ). The generated jth cluster is an m-dimensional 

cluster with center [ ]j,mj,j,j CCC ,,, 21 L=C , and radius Rj.  

Figure 5.2 schematically illustrates the clustering process of the CEC algorithm. The normalized 

Euclidean distance between the new input Φ and the center of the jth cluster, jC , is defined as  
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jR′  is the intermediate spread with j
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1
, where M is the total number of input 

values for clustering, and Nj is the number of input values in cluster j. 

 

 
 

Figure 5.2. Schematic representation of a cluster j. Cj is the center and Rj is the radius of the jth cluster. jR′  and 

jR ′′  are intermediate and extended radii of the jth cluster, respectively. A, B, D and E represent different states of 

clustering.  
 

The CEC clustering process is summarized as follows: 

Step 1: Initialization: When the first input Φ  (i.e., linear estimation error vector) is formulated 

after VARMA filtering, it becomes the center of the first cluster, C1. The initial radius of this cluster 

is set as R0 (R0 = 0.01, in this case). The upper boundary of the radius is denoted by UR . If UR is small, 

more clusters will be generated, and vice versa.    

Step 2: Cluster formulation: If a new input Φ  falls in more than one cluster, only the center and 

radius of the closest cluster will be updated using the following rules:  
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a) If jj Rd ′≤  (e.g., state A in Figure 5.2), the center of the cluster is updated as: 

 

                                                      ( ) )1/(__ ++×= jjoldjnewj NN ΦCC                                        (5.8) 

 

where Nj is the number of input values in cluster j.  

b) If jjj RdR ≤<′  (e.g., state B in Figure 5.2), the center and radius of this cluster remain 

unchanged. 

c) Otherwise, if ( )jUjj RRdR ′−≤< 22  (e.g., state D in Figure 5.2), the center of the cluster remains 

unchanged, but the radius Rj is updated as RdRR jjj
′+=′′=

2

1
.  

d) If ( ) jjUj dRRR <′−≤ 22  (e.g., state E in Figure 5.2), a new cluster is created. The new input 

value Φ  becomes the center of the new cluster and the radius is initialized as R0.  

e) If ( ) jjjU dRRR <<′− 22 , a new cluster is created with the same setting as in d). 

In general, the data with jj Rd ′≤  will have higher MF degree, and will be used to determine the 

cluster center. The data with ( )jUjj RRdR ′−≤< 22  represent the potential spread of the cluster, and 

will be used to update the radius Rj of the cluster. If the input data satisfies jjj RdR ≤<′ , the 

parameters of the cluster remain unchanged.   

Step 3: Structure recognition: The center of the j
th cluster jC  will be the center of the j

th firing 

strength (i.e., jµ  in Equation (5.2)). Assume that the center Cj corresponds to the MF degree 100% 

(i.e., 1=jη ), and the input values RΦ with dj = Rj  are assigned a MF degree of 1% (i.e., 01.0=jη ). 

Substituting 01.0=jη  in Equation (5.2) yields    
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 Then inserting Equation (5.7) into Equation (5.9) gives the following equation: 
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 The spread jσ  can be derived by rearranging Equation (5.10): 
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When an input value with jj Rd ≤ , its MF degree can be derived as  
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When jd  takes the extremely small value (i.e., 0=jd ), the MF degree 1=jη . Therefore the MF 

degree jη  will be within the range of [0.01, 1]. 
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When projecting the m-dimensional cluster onto each dimension, the corresponding MF center and 

radius will be center ij,µ  and spread jσ of ijB ,  in Equation (5.3), respectively. The proposed CEC 

technique is a constrained evolving algorithm, which is dependent on two factors: the input Φ , and 

the upper boundary UR . If UR remains constant (a general case), the clusters will be evolved based 

only on input informationΦ .  

The proposed CEC updates the center of a cluster by considering the information of both previous 

cluster center position (i.e., Equation (5.8)) and the newest input sample. Thus the updated cluster 

center of the CEC is less sensitive to outliers. The CEC adjusts the cluster center using an evolving 

mechanism, j

j

j R
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
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 −
+=′

22

1
. Those new clusters (containing only a few samples) will have 

more opportunities to update their centers using new accommodated samples, so as to optimize 

cluster center position. The centers of the clusters with many samples will be less sensitive to new 

accommodated samples, especially those new samples which belong to this cluster, but are far away 

from the cluster center. Therefore the cluster center can be less affected by outliers. 

5.1.3  Training Strategy 

The parameters of the developed eFNN predictor will be optimized by appropriate training as 

illustrated in Figure 5.3. To catch linear correlations of the m-dimensional data sets, the parameters in 

the VARMA filter are optimized online by the use of the recursive least square estimate (RLSE). 

 

 
 

Figure 5.3. Flowchart of the hybrid training process of the developed eFNN predictor. 
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A hybrid training strategy will be used to optimize parameters in the EF network (Layers 3-5 in 

Figure 5.1). The GD algorithm is employed to update the nonlinear parameters in nodes Bj,i in Layer 4, 

whereas the RLSE is utilized to adaptively tune the linear parameters in Lj in Equation (5.4). 

According to our previous research in system training [86], a hybrid training strategy can reduce the 

search dimension in comparison with a single training method (e.g., the GD), reduce trapping in local 

optima, and improve convergence of the training process.  

Specific training processes are summarized as follows:  

   1) The initial values of parameters in nodes Lj, (j = 1, 2,…, n) are initialized over the interval [0, 

1].  

  2) The parameters ik ,θ  and il ,λ  (k = 1, 2, ..., p; l = 1, 2, ..., q;  i = 1, 2, …, m) in the VARMA 

filter are optimized online by using the RLSE. 

  3) After training of the VARMA filter parameters, the nonlinear parameters in nodes Bj,i, (j = 1, 

2,…, n; i = 1, 2, …, m) are optimized by using a GD algorithm, and linear parameters in Lj are 

updated by RLSE adaptively. 

In the training process, only one training epoch is needed to update the VARMA filter parameters. 

After the linear correlation information is filtered out, the estimation error data set { }mϕϕϕ ,...,2,1  will 

retain less regulated information. This means that fewer clusters can be formulated, which can 

simplify the eFNN predictor structure and speed up training convergence, as will be discussed in 

Subsection 5.2. 

5.2 Performance Evaluation 

The effectiveness of the proposed eFNN predictor is verified in this section using a forecasting 

simulation example of a multi-dimensional financial data set. Next, it is implemented and tested for 

IM system state prognosis. To simplify the discussion, the developed eFNN predictor using the 

proposed CEC algorithm is designated as eFNN-CEC. 

   To make a comparison, the related predictors based on an enhanced fuzzy filtered neural network 

(EFFNN) [86], an evolving neuro-fuzzy (eNF) scheme [121], and the dynamic evolving neural-fuzzy 

inference system (DENFIS) [106] are employed for testing. The EFFNN predictor is a four-layer 

feed-forward NN with the same number of nodes from Layer 1 to Layer 3 (i.e., 20-20-20-1). The eNF 
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predictor is an evolving NN with three input nodes. The DENFIS is a data-driven NN using a 

clustering technique. 

   To evaluate the effectiveness of the proposed evolving CEC algorithm in the eFNN predictor, an 

evolving clustering method (ECM) suggested in [103] is implemented in the eFNN predictor to 

replace the CEC algorithm, designated here as eFNN-ECM in short. That is, the only difference 

between the eFNN-CEC and the eFNN-ECM is associated with evolving clustering algorithms. The 

maximum number of training epochs of the predictors (i.e., EFFNN, eNF, eFNN-ECM, and eFNN-

CEC) is set at 1000. 

5.2.1   Exchange Rate Forecasting 

In this test, a six-dimensional currency exchange rate data set is used to examine the performance 

of the proposed eFNN-CEC predictor. The data set consists of daily exchange rates of the Canadian 

dollar versus the US dollar (the first dimensional data set), the European euro versus the US dollar 

(the second dimensional data set), the British pound versus the US dollar (the third dimensional data 

set), the Australian dollar versus the US dollar (the fourth dimensional data set), the Hong Kong 

dollar versus the US dollar (the fifth dimensional data set) and the New Zealand dollar versus the US 

dollar (the sixth dimensional data set). All were collected simultaneously over the period between 

January 1, 2010 and May 31, 2012 [122]. The tests were performed on each dimensional data set. The 

first one third of the data set in each dimension was used for training, and the remainder was used for 

testing. 

Figures 5.4 to 5.9 illustrate the three-step-ahead forecasting performance of these six data sets 

using the related predictors, and the related results are summarized in Tables 5.1 to 5.6. It is seen that 

the eNF predictor is superior to the EFFNN predictor in terms of both forecasting accuracy and the 

running time, because of its evolving reasoning mechanism. The DENFIS achieves less prediction 

error than the eNF as indicated in Tables 5.1, 5.3, 5.4 and 5.6, respectively, but it generates more 

clusters and hence requires more running time. It is seen from Tables 5.2 and 5.5 that the eNF 

outperforms the DENFIS in terms of number clusters generated, prediction errors and running time, 

because of its more advanced evolving mechanism. The eFNN related predictors (i.e., eFNN-CEC 

and eFNN-ECM) yield less forecasting error than those based on the DENFIS, the eNF and the 

EFFNN, because eFNN undertakes more efficient linear and nonlinear correlation modeling (e.g., 

eFNN-ECM generates 75% and 67% smaller errors than the eNF and the DENFIS, respectively, as 
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demonstrated in Table 5.1). The error in percentage is calculated as ( )
B

AB

E

EE
E

−
×=100%  , where 

EA and EB are the mean square errors of predictor A and predictor B, respectively. The developed CEC 

evolving method in eFNN-CEC is more efficient than the classical ECM in eFNN-ECM (e.g., eFNN-

CEC generates 42% smaller error than eFNN-ECM in Table 5.4).  

On the other hand, eFNN-CEC generates the fewest clusters in these tests because of its linear 

filtering operation and effective clustering algorithms, which takes the least running time 

correspondingly. The eFNN-CEC predictor outperforms other predictors in capturing and tracking the 

dynamic behaviors of the underlying systems in this test. 
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Figure 5.4. Comparison of three-step-ahead forecasting results of daily Canadian dollar/US dollar exchange rate 

data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using different 

predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC.  
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Table 5.1. Forecasting results (three-step-ahead) of Canadian dollar/US dollar exchange rate. 
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Figure 5.5. Comparison of three-step-ahead forecasting results of daily European euro/US dollar exchange rate 

data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using different 

predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC. 
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Table 5.2.  Forecasting results (three-step-ahead) of European euro/US dollar exchange rate. 
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Figure 5.6. Comparison of three-step-ahead forecasting results of daily British pound/US dollar exchange rate 

data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using different 

predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC.  
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Table 5.3. Forecasting results (three-step-ahead) of British pound/US dollar exchange rate. 
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Figure 5.7. Comparison of three-step-ahead forecasting results of daily Australian dollar/US dollar exchange rate 

data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using different 

predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC. 
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Table 5.4. Forecasting results (three-step-ahead) of Australian dollar/US dollar exchange rate. 
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Figure 5.8. Comparison of three-step-ahead forecasting results of daily Hong Kong dollar/US dollar exchange 

rate data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using 

different predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC. 
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Table 5.5. Forecasting results (three-step-ahead) of Hong Kong dollar/US dollar exchange rate. 
 

 

0 50 100 150 200 250 300 350 400

0.7

0.75

0.8

0.85

0.9

0.95

E
x
c
h
a
n
g
e
 R
a
te

0 50 100 150 200 250 300 350 400

0.7

0.75

0.8

0.85

0.9

0.95

E
x
c
h
a
n
g
e
 R
a
te

0 50 100 150 200 250 300 350 400

0.7

0.75

0.8

0.85

0.9

0.95

E
x
c
h
a
n
g
e
 R
a
te

 

 

Figure 5.9. Comparison of three-step-ahead forecasting results of daily New Zealand dollar/US dollar exchange 

rate data. The blue solid line is the real data to estimate; the red dotted line is the forecasting results using 

different predictors: (a) EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC. 
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Table 5.6. Forecasting results (three-step-ahead) of New Zealand dollar/US dollar exchange rate. 
 

 
 

5.2.2   Induction Motor System State Prognosis 

The developed eFNN-CEC predictor was implemented for IM system state prognosis. An efficient 

predictor is helpful in modeling IM dynamic characteristics, predicting its future system states, and 

improving its performance. The experimental setup used in this test was given in Subsection 2.3.1. 

   This test is to forecast future states of stator current signals that will be used for IM health condition 

monitoring. During the test, stator current signals were collected at a sampling frequency of 10 kHz. 

Two stator current signals were used to form a two-dimensional data set for IM system state 

forecasting. The first dimensional data set is a stator current residual signal from phase 1 by filtering 

out supply frequency components, and the second dimensional data set is a stator current signal from 

phase 2. The first 300 data were used for training, and the remaining 600 data were used for testing.  

   Figures 5.10 and 5.11 demonstrate the respective four-step-ahead forecasting results of the signal 

residual and the stator current signal using the related predictors, whereas the results are summarized 

in Tables 5.7 and 5.8. The unit of the stator current signal is in Amperes (A). After calculating the 

mean square error of the predicted values, the unit becomes A2 as being used in Tables 5.7 and 5.8. It 

can be seen that the eNF outperforms the EFFNN, with 29% smaller error in Table 5.7. The DENFIS 

generates more clusters and would take longer running time than the eNF, but the DENFIS is more 

accurate than eNF because more fuzzy rules are used to model the data characteristics. The eFNN 

predictors outperform predictors based on the EFFNN, the eNF and the DENFIS because the eFNN 

can employ both linear and nonlinear modeling mechanisms. Moreover, the eFNN-CEC predictor 
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creates the fewest clusters (only three in this case) compared to eFNN-ECM (four to five clusters), 

eNF (six to eight clusters) and DENFIS (twelve to thirteen clusters). It is seen from Tables 5.7 and 5.8 

that the proposed eFNN-CEC predictor provides the highest forecasting accuracy in comparison with 

eFNN-ECM, eNF, DENFIS and EFFNN predictors. In addition, it can be seen from Tables 5.8 that 

the eFNN-CEC generates 43% smaller error than the second best predictor, eFNN-ECM. The eFNN-

CEC predictor can catch the dynamic behavior of the tested IM system quickly and accurately.  
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Figure 5.10. Comparison of four-step-ahead forecasting results of the signal residual of an IM. The blue solid line 

is the real data to estimate; the red dotted line is the forecasting results using different predictors: (a) EFFNN; (b) 

eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC. 
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Table 5.7. Forecasting results (four-step-ahead) of the signal residual of an IM (from phase 1). 
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Figure 5.11. Comparison of four-step-ahead forecasting results of the stator current signal of an IM. The blue 

solid line is the real data to estimate; the red dotted line is the forecasting results using different predictors: (a) 

EFFNN; (b) eNF; (c) DENFIS; (d) eFNN-ECM; (e) eFNN-CEC. 
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Table 5.8. Forecasting results (four-step-ahead) of the stator current signal of an IM (from phase 2). 
 

 
 

  The IM data is a two dimensional data set. If the proposed eFNN-CEC technique is used, the 

residual IM data after VARMA filtering can be represented as [ ]21 ,ϕϕ=Φ  in Equation (5.2), which 

is then fed to EF network for nonlinear modeling. The proposed CEC technique is used to generate 

clusters from the input patterns Φ , so as to adaptively construct the structure of EF network as well 

as Gaussian MFs Bj,i in Equation (5.3). The distributions of input patterns Φ , and the corresponding 

trained Gaussian MFs are shown in Figures 5.12 and 5.13, respectively. The parameters 1,jµ , 2,jµ  

and jσ  of the Gaussian MFs in Equation (5.3) corresponding to Figures 5.12 and 5.13, are given in 

Tables 5.9 and 5.10, respectively. From Figures 5.12 and 5.13, it is seen that the derived three 

Gaussian MFs can capture the distribution of the input patterns effectively. Compared to other 

predictors with more generated clusters (i.e., Gaussian MFs), the proposed eFNN-CEC can conduct 

accurate prediction with less running time as illustrated in Tables 5.7 and 5.8. 
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          ϕ  

Figure 5.12. The distribution of (a) input patterns 1ϕ ; and (b) input patterns 2ϕ , associated with the 

corresponding Gaussian MFs, for the signal residual of an IM. The blue solid line represents the distribution of 

the input patterns; the red dotted line represents the Gaussian MFs. 

 

Table 5.9. The parameters of the trained Gaussian MFs for the signal residual of an IM.  
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Figure 5.13. The distribution of (a) input patterns 1ϕ ; and (b) input patterns 2ϕ , associated with the 

corresponding Gaussian MFs, for the stator current signal of an IM. The blue solid line represents the distribution 

of the input patterns; the red dotted line represents the Gaussian MFs. 
 

Table 5.10. The parameters of the trained Gaussian MFs for the stator current signal of an IM. 
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5.3 Summary 

An evolving fuzzy neural network, eFNN, technique has been developed in this work for multi-

dimensional system state forecasting. It can integrate the strength of both the VARMA filter and 
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nonlinear network modeling in dealing with multi-dimensional data sets. A novel evolving clustering 

algorithm, CEC, is proposed to adaptively generate fuzzy reasoning clusters and adjust the eFNN 

network structure. The effectiveness of the proposed eFNN predictor and the new clustering 

algorithm was verified by simulation test using a multi-dimensional financial data set. The new 

predictor was also implemented for the induction motor, IM, system state prognosis. Test results 

showed that the developed eFNN predictor is an accurate forecasting tool, and can capture the 

dynamic behavior of the tested system quickly and accurately. The CEC is also an effective evolving 

technique for network structure formulation. 

   The work presented in this chapter is to achieve the research in Section 1.3: Develop a 

knowledge-based data-driven predictor to forecast future states of the IM conditions. The forecast 

information can be used to further improve the reliability of IM condition monitoring. 
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Chapter 6 

An Integrated Monitoring System for IM Health Condition 

Monitoring 

In this chapter an integrated fuzzy diagnostic (IFD) system is developed to effectively integrate the 

diagnostic information and the prognostic information in order to achieve a more accurate assessment 

of the IM health conditions. Its effectiveness is verified based on a series of testing corresponding to 

most common IM defects: broken rotor bar(s) and pitting of the bearing.  

6.1 Decision-Making Process 

The proposed integrated monitoring system consists of two modules: feature extraction and decision-

making, as illustrated in Figure 6.1. In feature extraction, appropriate signal processing techniques are 

used to extract representative features from collected stator current signals and generate fault 

indicators (or indices). Since different IM defects require different fault detection techniques for 

analysis, the related index formulation will be discussed in the following subsections corresponding 

to each defect detection condition.  

   The decision-making module is to process these representative features for IM health condition 

monitoring. As discussed in the Chapter 5, the eFNN predictor is sensitive to the sequence of input 

data; it usually generates a more complex reasoning structure compared with pBoost predictor. 

Correspondingly, its error convergence will be slower, which may result in degraded training 

accuracy in online IM monitoring operations, since online monitoring operations require prompt data 

processing in a short time period. Although the accuracy of the pBoost predictor may be a little lower 

than the eFNN due to its predefined model of the predictor, it has a compact structure and faster error 

convergence. Therefore, the pBoost predictor is used in this case to estimate future states of IM fault 

indices.  

   The diagnostics is performed component-by-component in the IM. The decision-making module is 

composed of sBoost classifier, pBoost predictor and IFD system. The sBoost classifier aims to map 

the fault indices extracted from the related signal processing techniques into different IM health 

condition categories. The pBoost predictors are used to forecast the future states of each of the IM 

fault indices. The predicted fault indices indicate the future trends of these indices. If the current fault 
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indices are contaminated by noise caused by factors such as sudden load disturbances or transient 

interference from other machines, the trends of these fault indices may provide a different perspective 

associated with historical (previous) records, which can provide useful information to enhance the 

reliability of the IM health condition monitoring. This decision-making process is performed by the 

proposed IFD scheme with a novel confidence-rate-based fuzzy reasoning mechanism as revealed in 

the following section.  

 

Signal Processing

Knowledge Base

sBoost Classifier pBoost Predictor

IFD System

Feature Extraction

Decision-

Making

Collected Signals

 

Figure 6.1. The diagram of the proposed integrated monitoring system. 
 

6.2 IM Broken Rotor Bar Fault Diagnosis 

6.2.1   Monitoring Indices for IM Rotor Bar Fault Detection 

In IM rotor bar condition monitoring, a fault detection technique (an index) from a different 

information domain could provide a different perspective of the IM health condition. In this work, 
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fault indices from three information domains: the time domain, the frequency domain, and the time-

frequency domain, will be employed for advanced processing in order to improve diagnostic accuracy.  

Consider three well-accepted time domain statistics: energy, skewness and kurtosis, as defined in 

Equations (6.1), (6.2) and (6.3) respectively: 
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where xi are the data samples in a data set, i = 1, 2, 3, …, N; and N  is the size of a data set; Ex  is the 

mean, and xϑ is the standard deviation of the data set. The "-3" in Equation (6.3) is used to make the 

kurtosis of the normal distribution equal to zero. 

 A series of tests were conducted using these time-domain techniques (i.e., energy, skewness, and 

kurtosis) for IM broken rotor bar fault diagnosis. The results are summarized in Table 6.1, and the test 

data are described in the following subsection. It is seen from Table 6.1 that the skewness of the 

notch-filtered stator current signal can provide the highest accuracy among these three techniques, 

which will be selected as the time domain index in this case. The elliptic notch filter is applied to 

suppress the supply frequency component in each data set and reduce its interference in fault 

diagnosis [123]. Given a stator current signal, xi, i = 1, 2, 3, …, N, with length of N. The selected 

skewness index will be:  
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where Ex  is the mean, and xϑ is the standard deviation of the stator current signal. 

 

Table 6.1. Comparison of the related time domain indices for IM broken rotor bar fault diagnosis. 
 

 

 

 Among the techniques in frequency domain analysis, the proposed spectrum synch technique in 

Chapter 2 was shown to outperform other related techniques, and thus will be used as the fault index 

in the frequency domain in this work. The two first-order fault harmonics of IM broken rotor bar fault 

in Equations (2.10) and (2.11) with k = 1 are synchronized to generate the fault index. In IM broken 

rotor bar fault related harmonics, these two first-order fault harmonics usually have a more 

pronounced peak than higher harmonics. Correspondingly, the fault index in the frequency domain 

will be  

 

                    sz χ=2                                                                (6.5) 

 

where sχ  is derived from Equation (2.9). 

   Among the IM rotor bar fault detection techniques in the time-frequency domain, as discussed in 

Chapter 1, short time Fourier analysis employs the window function with a fixed length; consequently 

the signal can only be examined with a fixed time resolution and frequency resolution. The Wigner-

Ville distribution generates cross terms that may mask the fault features. Although the wavelet packet 

analysis can generate more detailed decomposition for some advanced signal analysis, it is usually 

difficult to recognize the real representative features from the map with redundant and misleading 

information, for fault detection in complex IM systems. The wavelet transform (WT) decomposes the 

signal into different time and frequency resolutions, without cross terms. Although the resolution of 

the WT is lower than the wavelet packet analysis in terms of the decomposition at the detail end, it 
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applies compact filter bank implementation and the resulting features are relatively easy to explain. 

Correspondingly, the discrete WT will be used as the time-frequency domain technique in this case. 

The fundamental frequency component in the stator current signal is suppressed by using an elliptic 

notch filter [123]. Then the discrete WT is employed to extract fault related sub-bands [21]. The two 

sub-bands containing fbl1 and fbr1 are selected, and the root-mean-square (RMS) value of their 

corresponding decomposed signals is used as a fault index, where fbl1 and fbr1 are the fault frequency 

components in Equations (2.10) and (2.11) with k = 1. Correspondingly, the fault index in the time-

frequency domain will be: 
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where Sbl and Sbr represent the decomposed signals corresponding to the sub-band containing fbl1 and 

the sub-band containing fbr1 respectively. Lbl and Lbr denote the length of Sbl and the length of Sbr 

respectively.  

6.2.2 Data Preparation  

To test the performance of the proposed integrated monitor for IM broken rotor bar fault 

diagnostics, the stator current data were collected using the experimental setup as described in 

Subsection 2.3.1. The supply frequency was set at 50 Hz and the sampling frequency fs = 10 kHz.  

For IM broken rotor bar fault diagnosis, one hundred data sets were collected from a healthy IM 

corresponding to each of the load conditions: light-load condition (approximately 10% of rated 

power), medium-load condition (approximately 50% of the rated power) and heavy-load condition 

(approximately 100% of rated power). One hundred data sets were collected from an IM with broken 

rotor bar fault corresponding to each of these three load conditions. In total, 600 data sets were 

collected, whereby half were used for training, and the remaining for testing.      

6.2.3   Fault Indices Prediction 

The forecasting of fault indices could explore the time series properties of each fault index, and 

synthesize the corresponding prognostic information into fault diagnosis, in order to further improve 
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the diagnostic accuracy and reliablity. If z1’, z2’, and z3’ are the predicted values of the fault indices of 

z1, z2, and z3, respectively, the implementation of pBoost predictor for fault index prediction takes the 

following steps: 

1) Generate a series of a fault index (i.e., z1, z2, or z3) to construct the training data set with size Nt. 

2) Initialize the distribution of the training data set 
tN

iL
1

)(1 = ; i = 1, 2, …, Nt. 

3) Train an AR model ht with the training data set and the distribution Lt at step t as discussed in 

Subsection 4.1.4. 

4) Compute the sum of weighted absolute error )()()(
1

ipiyiL td

N

i tt

t
−=∑ =

λ , where yd are the 

desired values, and pt are the predicted values at step t using the AR predictor ht . 

5) Calculate the weight of the AR predictor ht using Equation (4.3).  

6) Update the distribution of the training samples using Equation (4.1).  

7) Repeat steps 3) to 6) as t = 1, 2, …, T.  

8) The predicted fault index (i.e., z1’, z2’, or z3’) is calculated using Equation (4.4). 

6.2.4   Performance Evaluation 

To verify the proposed integrated monitoring system for IM broken rotor bar fault detection, six 

methods were employed for comparisons: 

Method #1: The fault diagnosis based on time-domain fault index z1 only.  

Method #2: The fault diagnosis based on frequency-domain fault index z2 only.  

Method #3: The fault diagnosis based on time-frequency-domain fault index z3 only.  

Method #4: The fault diagnosis only based on the sBoost classifier using fault indices z1, z2, and z3. 

Method #5: The fault diagnosis only based on the sBoost classifier using fault indices z1’, z2’, and 

z3’ that are predicted by pBoost predictors.  

Method #6: The fault diagnosis based on the proposed integrated monitoring system using z1, z2, z3, 

z1’, z2’, and z3’. 
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Figure 6.2 demonstrates the training error convergence and test error convergence of Method #4. 

The convergences of both training error and test error of Method #5 are illustrated in Figure 6.3. It is 

seen that the training errors can converge to zero effectively in the training process. The test error also 

converges as the number of base learners increases. 
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Figure 6.2. The (a) training error and (b) test error using Method #4 in IM broken rotor bar fault diagnosis.  
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Figure 6.3. The (a) training error and (b) test error using Method #5 in IM broken rotor bar fault diagnosis.   
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Method #6 employs the proposed IFD system to conduct fuzzy inference based on the diagnostic 

results from Method #4 and Method #5. Let M1 and M2 represent healthy state and damaged state of 

the IM component (rotor bar in this case), respectively. Given the fault index vector z = {z1, z2, z3}, 

and the predicted fault index vector z’= {z1’, z2’, z3’}, the fuzzy reasoning mechanism is given as 

follows:  

 

R1: IF (z ⊂  M1) AND (z’ ⊂  M1) THEN (IM component is healthy)  

R2: IF (z ⊂  M2) AND (z’ ⊂  M2) THEN (IM component is damaged) 

R3: OTHERWISE (IM component is possibly damaged)  

 

If the IM is damaged (R2), an alarm signal is triggered for repair operations. If the IM is possibly 

damaged (R3), the following two rules should be performed:  

 

R4: IF (R3 is satisfied) AND 0
2

)()()()(
<

′′+ zCzHzCzH
 THEN (IM component is healthy) 

R5: IF (R3 is satisfied) AND 0
2

)()()()(
≥

′′+ zCzHzCzH
 THEN (IM component is damaged) 

 

where H(·) { }1 ,1−∈  indicates a fault index vector that belongs to one of the health condition 

categories (damaged or healthy) of the IM component, which can be calculated using Equation (3.19). 

H(·) = 1 indicates the damaged IM state; H(·) = -1 represents the healthy IM state. C(·)∈[0, 1]is the 

confidence rate, which can be calculated using Equation (3.20). It indicates to what extent a fault 

index vector belongs to a health condition category. The larger the C(·) is, the higher the probability 

that a fault index vector will belong to a specific health condition category. For 

example, 0)()( ≥zCzH  indicates the IM component is damaged based on the index vector z with 

confident rate )(zC .  

Rules R4 and R5 are used to trigger the integrated monitor for intense processing actions. To make 

a clear decision, the monitoring interval becomes much shorter than that in the general monitoring 
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operations. Data sets will be collected in the following steps and the corresponding fault indices are 

computed. When R1 is satisfied in the following steps, then IM component is healthy. When R2 is 

satisfied in the following steps, then IM component is damaged. Otherwise, the similar monitoring 

process rolls over until R1 or R2 is satisfied. 

Each signal processing technique (e.g. the proposed SS technique) may handle IM fault detection at 

certain load range, and an intelligent system is needed to improve the accuracy of fault detection in a 

broader load range. Table 6.2 summaries the test results using these six methods. It is seen that 

Methods #4 and #5 can diagnose IM broken rotor bar fault more accurately than Methods #1, #2 and 

#3, because Methods #1, #2 (the proposed SS technique) and #3 only extract fault indices from the 

respective time domain, the frequency domain, and the time-frequency domain with certain 

limitations such as load range, and cannot provide robust description of the IM fault states. The 

utilization of fault indices from three domains can assess IM health conditions more accurately 

because the proposed sBoost classifier can adaptively resolve decision conflicts (i.e., noisy samples) 

caused by fault indices from different domains using the proposed sample weight regulator. The fuzzy 

rules R1, R2, R4, and R5 construct the IFD system, which is used in Method #6 to conduct primary 

fault diagnosis. Method #6 outperforms Method #4 and Method #5, because IFD system can 

effectively integrate the information from both the classifier and predictor by using the confident-rate-

based fuzzy inference system. 

 

Table 6.2. Diagnostic testing results of IM broken rotor fault using different methods.  
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6.3 IM Bearing Outer Race Fault Diagnosis 

6.3.1   Monitoring Indices for IM Bearing Fault Detection  

Similar to the analysis of IM rotor bar condition monitoring in the previous subsection, three fault 

detection techniques (or indices) from different information domains: the time domain, the frequency 

domain, or the time-frequency domain, are selected to improve the robustness of bearing fault 

diagnosis.  

In time domain analysis, the technique will be selected from three time domain methods: energy, 

skewness, and kurtosis, as defined in Equations (6.1), (6.2) and (6.3), respectively. A series of tests 

were conducted using these techniques, and the test results of these techniques for IM bearing fault 

diagnosis are summarized in Table 6.3. It is seen that the skewness of the notch-filtered stator current 

signal is the most accurate, and will therefore be utilized as the fault index in this case. The supply 

frequency component is suppressed by using an elliptic notch filter [123]. Let xi  in Equation (6.2) 

denote the stator current signal, i = 1, 2, 3, …, N,  with length of N. The skewness index will be:  
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where Ex  is the mean, and xϑ is the standard deviation of the stator current signal. 

 

Table 6.3. Comparison of the related time domain indices for IM bearing fault diagnosis. 
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The spectrum synch technique that was proposed in Chapter 2 will be used as the fault index in the 

frequency domain. The local bands containing 7th to 14th IM bearing fault harmonics (i.e., m = 7, 8, …, 

14 in Equation (1.5)) are synchronized to generate the fault index z2 in the frequency domain, which 

has the same representation as Equation (6.5). These fault harmonics are selected because they are 

less affected by the supply frequency component (50Hz) and have relatively higher peak magnitudes. 

   To derive the fault index in the time-frequency domain, the fundamental frequency component in 

stator current signal is suppressed by using an elliptic notch filter [123]. Based on the analysis in 

Subsection 6.2.1, the discrete WT is employed to extract fault related sub-bands from the stator 

current signal [21]. The sub-bands containing fcl1 and fcr1 respectively are selected and the RMS value 

of their corresponding decomposed signatures is used for computation; vpcl fff −=1  and 

vpcl fff +=1  are two of the first-order fault harmonics given in Equation (1.5) with m = 1. 

Correspondingly, the fault index in the time-frequency domain will be given as:  

 

                  ( )22
5

1
crcl

crcl

SS
LL

z +
+

=                                                     (6.8) 

 

where Scl and Scr represent the decomposed signals corresponding to sub-bands containing fcl1 and fcr1 

respectively. Lcl and Lcr are the lengths of Scl and of Scr, respectively. 

6.3.2 Performance Evaluation   

To test the performance of the proposed integrated monitor for IM bearing defect diagnosis, the 

stator current data were collected with the sampling frequency fs = 10 kHz, and the supply frequency 

was fixed at 50 Hz. One hundred data sets were collected from a healthy IM corresponding to each of 

the load conditions: light-load condition, medium-load condition and heavy-load condition. One 

hundred data sets were collected from an IM with bearing defect corresponding to each load test 

condition. In total, 600 data sets were collected, whereby half were used for training, and the 

remaining for testing.    
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To verify the proposed integrated monitoring system for IM bearing fault detection, six methods 

were employed for comparisons. The predicted fault indices z4’, z2’, and z5’ were generated in the 

same procedure as discussed in Subsection 6.2.3. 

Method #1: The fault diagnosis based on time-domain fault index z4 only.  

Method #2: The fault diagnosis based on frequency-domain fault index z2 only.  

Method #3: The fault diagnosis based on time-frequency-domain fault index z5 only.  

Method #4: The fault diagnosis only based on the sBoost classifier using fault indices z4, z2, and z5. 

Method #5: The fault diagnosis only based on the sBoost classifier using fault indices z4’, z2’, and 

z5’ that are predicted by pBoost predictors. 

Method #6: The fault diagnosis using the proposed integrated monitoring system using z4, z2, z5, z4’, 

z2’, and z5’. 

Figure 6.4 illustrates the training error convergence and test error convergence of Method #4. The 

convergence of both training error and test error of Method #5 is illustrated in Figure 6.5. It is seen 

that the training error can effectively converge to zero; the test error converges as the number of base 

learners increases.  
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Figure 6.4. The (a) training error; and (b) test error using Method #4 in IM outer race bearing defect diagnosis. 
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Figure 6.5. The (a) training error; and (b) test error using Method #5 in IM outer race bearing defect diagnosis. 
 

The test results using these six methods are summarized in Table 6.4. It is seen that Method #4 and 

Method #5 can diagnose IM bearing defect more accurately than Methods #1 to #3, because the 

integrated information can help capture the IM health states more accurately. The sample weight 

regulator in the proposed sBoost classifier can adaptively resolve decision conflicts (i.e., noise 

samples) caused by fault indices in different domains and improve diagnostic accuracy. Method #6 

employs IFD system composed of fuzzy rules R1, R2, R4, and R5 to conduct primary IM fault 

diagnosis. It outperforms Methods #4 and #5 due to its effective integration of the information from 

both the classifier and the predictor by using the confident-rate-based fuzzy inference system. 
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Table 6.4. Diagnostic testing results of IM bearing defect using different methods. 
 

 

 

6.4 Summary 

An intelligent monitoring system is proposed in this chapter for IM health condition monitoring, 

especially for IM broken rotor bar fault and bearing outer race defect. The proposed integrated 

monitor is composed of two modules: feature extraction and decision-making. The proposed IFD 

scheme integrates diagnostic information from sBoost classifier and prognostic information from 

pBoost predictor to improve monitoring accuracy of IM health conditions. 

The work presented in Chapters 6 is to achieve the research goal in Section 1.3: Propose a new 

diagnostic scheme to effectively integrate the diagnostic and prognostic information for IM health 

condition monitoring, and conduct automatic diagnostic decision-making. 
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Chapter 7 

Conclusions and Future Work  

7.1 Conclusions 

The IMs are commonly used in various industrial facilities, and a reliable condition monitoring 

system can be used to diagnose the IM fault at its early stage, so as to prevent malfunction of the 

driven machinery, and to improve productivity. Several IM fault detection techniques have been 

proposed in the literature for IM health condition monitoring, but each has its own merits and 

limitations. It still remains a challenging task to accurately recognize the IM fault due to reasons such 

as insignificant fault features under some load conditions. An intelligent monitoring system was 

developed in the thesis to provide more reliable IM fault diagnostics. The developed intelligent 

monitor consists of two modules: feature extraction and decision-making. Feature extraction is a 

process to extract fault-related representative features from stator current signals. The decision-

making module consists of pattern classification, system state prediction and the fuzzy inference 

system. The diagnostic information is retrieved by mapping fault features to IM health condition 

categories using the pattern classification technique. The prognostic information is provided by 

estimating the future states of fault features (indices) using the system state prediction technique. 

Finally, the fuzzy inference system is utilized to integrate the diagnostic information and prognostic 

information, in order to provide a more accurate assessment of the IM health conditions.  

A novel fault detection technique, the spectrum synch technique, was proposed in Chapter 2 to 

extract representative features associated with the early IM defects from the IM stator current 

spectrum. The local bands of the IM fault frequency components are synchronized to form a fault 

information spectrum, in which the fault features are enhanced and the unrelated high amplitude 

frequency components are mitigated. A central kurtosis method is proposed to effectively extract 

useful information from the fault information spectrum to generate an IM fault index. The 

effectiveness of the proposed spectrum synch technique was demonstrated through experimental tests 

on IM with broken rotor bars and IM with pitted bearing outer race. The experiments were conducted 

under different operating conditions (i.e., different supply frequencies and different load conditions). 

Test results showed the superiority of the proposed spectrum synch technique over the commonly 

used techniques in the frequency domain, the power spectral density, and the envelope analysis. 
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A new pattern classification technique, the selective boosting classifier, was developed in Chapter 

3 to categorize the fault indices from selected fault detection techniques in order to diagnose the IM 

fault. The traditional boosting techniques suffer from the overfitting problem, which can degrade the 

classification accuracy. The proposed selective boosting, sBoost, classifier can adaptively process 

noisy data based on the noise level of each sample, so as to enhance the classification performance. 

An error correction mechanism was also employed to further improve the classification accuracy by 

examining the class label distribution in the neighborhood of each sample. The effectiveness of the 

sBoost classifier was verified by using 12 benchmark examples from the literature. Test results 

showed the proposed sBoost classifier to be an effective classification tool. It could categorize the 

patterns with different characteristics effectively and accurately.  

A novel system state prediction technique, pBoost predictor, was proposed in Chapter 4 to forecast 

the future states of the IM health conditions. A base learner is adaptively incorporated into the 

ensemble at each step to improve the performance of the ensemble predictor, and the resultant 

ensemble predictor outperforms all the base learners. Each base learner addresses a particular data 

distribution, which is updated based on the performance of the ensemble at the previous step. If the 

base learner is relatively strong or has relatively good performance (e.g., AR predictor), the ensemble 

predictor is prone to suffering from the overfitting problem. An advanced sample weight regulation 

mechanism was suggested to reduce the overfitting problem. The effectiveness of the proposed 

pBoost predictor was verified by simulation tests and a real-world application. The test results 

showed that the pBoost predictor was an effective tool to conduct system state prediction. The 

prognostic information can be used to further improve the reliability of the IM health condition 

monitoring.  

A knowledge-based evolving fuzzy neural network (i.e., eFNN) predictor was developed in 

Chapter 5 to predict future state of the system. In the proposed eFNN, the linear properties of the data 

are modeled by a vector autoregressive-moving-average (i.e., VARMA) system and the nonlinear 

properties of the data are characterized by evolving NN system. A novel clustering technique was 

proposed to adjust the structure of evolving NN system, in order to capture the characteristics of the 

input data more accurately. Since the linear properties of the data are filtered out by VARMA, less 

structured information exists in the remaining data. Thus, fewer clusters are generated by the evolving 
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NN system, and the simplified structure of the predictor can further facilitate reasoning and training 

operations. 

An integrated monitoring system was developed in Chapter 6 to synthesize the information from 

both sBoost classifier and pBoost predictor for IM health condition monitoring. In the proposed 

integrated monitor, a confidence-rate-based reasoning mechanism is proposed to address uncertain 

IM fault diagnostic decisions, in order to improve the accuracy of fault diagnosis. The effectiveness 

of the developed integrated monitor was verified by experimental tests corresponding to the common 

IM faults (e.g., IM broken rotor bar fault and IM bearing outer race defects) under different load 

conditions (i.e., light-load, medium-load and heavy-load). The test results demonstrated that the 

proposed integrated monitoring system is a reliable IM fault diagnosis tool, and it can provide a more 

accurate assessment of IM health conditions. 

7.2 Ideas for Future Work 

Future research would be needed to cover the following topics: 

1) The experiments on IM in this work were limited to broken bars and defects on the outer race of 

the bearing. The motor manufacture was responsible to induce these faults, and in the 

manufacturer’s assessment, those were the common faults and they represented what would be 

considered early failure. In future research, more fault types and of varying severity could be 

examined under a wider range of operating conditions. 

2) Only the stator current signals were utilized in the current work. It would be tempting to test the 

developed system with signals coming from different sensors, specifically, the current sensors and 

the vibration sensors. 

3) The developed sBoost, pBoost, eFNN techniques were demonstrated successfully in this work 

that these techniques can be extended to a wider range of machinery diagnostics. As a matter of 

fact in the course of this work, other techniques were also developed, see Appendices B-D, that 

would be more appropriate for other applications rather than the narrow field of IM health 

condition monitoring. 

4) Test the developed system on IM in industrial environment. 
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Appendix A 

Characteristic Frequencies of Rolling Element Bearings  

To derive the rolling element bearing characteristic frequencies, the outer race of a bearing is 

considered fixed and the inner race rotates with the shaft, which is common in most applications. 

Thus the linear speed of outer race Vo is zero and the rotating frequency of the inner race, fi, equals to 

the shaft rotating speed. 

Considering there is no sliding between the rotating parts, the cage linear speed Vc can be given by, 
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where Vi, iω  and ri are the linear speed, angular speed and radius of the inner race respectively. From 

Figure 1.3, the following can be derived 
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where d is the ball diameter, D is the pitch diameter, and θ  is the contact angle. 

From Equations (A.1) and (A.2), the cage angular speed can be given by 
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Provided cc fπω 2= , the cage rotating frequency can be expressed in Hz as, 
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where if  is the inner race rotating frequency or shaft speed. 

The outer race defect frequency obrf  can be calculated from the relative angular speed between the 

cage and outer race.  
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where N is number of rolling elements. 

The inner race defect frequency ibrf  can be evaluated from the relative angular speed between the 

cage and inner race: 
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The rolling element defect frequency rbrf  can be defined as the rolling element frequency rotation 

around its own center. The ball angular speed corresponding to its own center is given as follows, 
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The rolling element defect frequency rbrf  can then be calculated from, 
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Appendix B 

The Conjugate Levenberg - Marquardt Training Technique 

A new training technique, a Conjugate Levenberg-Marquardt (CLM) method, was proposed to 

improve forecasting accuracy, which was published in [86]: “D. Li, W. Wang, and F. Ismail, 

Enhanced fuzzy-filtered neural network for material fatigue prognosis, Applied Soft Computing, vol. 

13, no. 1, pp. 283-291, 2013”. Although this technique is not used for this IM fault diagnosis, it is fast 

in convergence, which is especially useful for nonlinear parameter optimization.  

   The classical conjugate gradient (CG) methods are iterative algorithms that aim to generate a search 

direction that conjugates to all previous descent directions based on the current steepest descent 

direction. However they only focus on deriving a descent direction from the combination of the last 

descent direction and current steepest descent direction. As a result, it is possible that the steepest 

descent direction is not able to provide satisfactory search efficiency no matter what formulation is 

applied to manipulate the last descent direction and current steepest descent direction. To address this 

issue, the proposed CLM applies Levenberg-Marquardt (LM) direction instead of the commonly used 

steepest descent direction to improve training convergence and efficiency.  

   It is known that the LM direction is an efficient search direction that varies between Newton’s 

direction and steepest descent direction. It is more efficient than the first-order steepest descent 

algorithm. However the second-order search ability of LM method may be mitigated when LM 

direction deviates from Newton’s direction. Meanwhile its specific formulation with only one 

adjustable parameter λ  as demonstrated in Equation (B.2) will restrict its ability in exploring better 

descent directions. This may result in slow convergence. By integrating second-order CG formulation 

and LM direction, the proposed CLM technique can enhance the second-order search power of LM 

while a broader space ( λ  in Equation (B.7) and step length of the derived CLM direction) can be 

further exploited for optimal search directions. Thus CLM is expected to outperform LM method in 

training efficiency.  

   Given a symmetric matrix Q nn×⊂ , and two n-dimensional vectors dj and dk that are mutually 

conjugate with respect to Q, a new direction, dk, that conjugates to all previous descent directions dj 

(j<k) with respect to Q will be  
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In CG, the uk is a set of negative steepest descent directions -gk, but they may not be optimal. The 

CLM technique will employ the direction lk to replace -gk: 

 

                                                                    ( ) kkk gIHl λ+=                                                     (B.2) 

 

where gk is the gradient; I is an identity matrix; Hk is the Hessian matrix in the kth iteration; and λ  is a 

positive quantity used to determine the direction of lk . When λ  approaches zero, lk can be considered 

as a Newton’s direction. When λ  is close to positive infinity, lk approximates the steepest descent 

direction. Substituting uk= lk in Equation (B.1) yields 
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Reorganizing Equation (B.3), we get 
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 1d −k  can be derived from Equation (B.3) by switching k to k-1,  
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Substituting Equation (B.6) into Equation (B.5) yields 
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Once kβ  is obtained from (B.7), the new CLM direction can be derived from Equation (B.4). By 

using Equation (B.2) instead of -gk , the search efficiency can be improved. The verification of the 

proposed CLM method is provided in [86]. 
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Appendix C 

The Laplace Particle Swarm Training Technique 

A novel Laplace Particle Swarm (LPS) technique is proposed for global optimization, which is 

published in [91]: “D. Li, W. Wang, and F. Ismail, Fuzzy neural network technique for system state 

forecasting, IEEE Transactions on Cybernetics, vol. 43, no. 5, pp. 1481-1494, 2013”. Although 

efficiency of the proposed LPS for global optimization is verified in [91], it is time-consuming and is 

not suitable for this real-time IM condition monitoring application.  

1. The Classical Particle Swarm Method 

Before the discussion of the proposed LPS technique, a brief description will be given to the classical 

particle swarm (PS) method. 

   The classical PS method optimizes the objective function by simultaneously maintaining several 

candidate solutions in the search space. The accuracy of each candidate solution is represented by a 

fitness grade. The higher the fitness grade is, the better the candidate solution will be in optimizing 

the objective function.  A particle starts with one candidate solution that is further evolved following 

certain update rules at each time step. It also records the highest fitness grade to which this particle 

has achieved thus far. The candidate solution corresponding to this highest fitness grade is referred to 

as the local best candidate solution. Among all of the local best candidate solutions, the one with the 

highest fitness is called the global best candidate solution [143]. In each iteration, the increment of the 

candidate solution in particle i is updated by 

 

                                  )]()(ˆ[)]()(~[)()1( 2211 txtxtxtxtt iiiii −+−+=+ γβγβαυυ                               (C.1)  

 

where )(tiυ  is the velocity of particle i at time t and )(txi is the position of particle i (candidate 

solution) at time t. α , 1β and 2β  are user-defined parameters { 2.10 ≤≤ α , 00 1 ≤≤ β , 20 2 ≤≤ β }. 

1γ and 2γ are random parameters over [0, 1]. )(~ txi is the local best candidate solution of particle i at 

time t, and )(ˆ tx  is the global best candidate solution at time t. Consequently each particle will be 

optimized by 
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)1()()1( ++=+ ttxtx iii υ                                                   (C.2) 

 

A lower and upper boundaries of the particle, xmin and xmax, are set to prevent a particle from moving 

beyond the search space. If the particle is beyond the boundaries, the velocity will be updated by 

 

)()( tt ii τυυ =                                                                 (C.3) 

 

where ]1,0[∈τ  is a coefficient used to adjust velocity [143].  

   To conduct the PS, the fitness of each particle will be evaluated first, and then local best candidate 

solutions and the global best candidate solution are updated. Finally, the velocity and position of each 

particle are updated using Equations (C.1) and (C.2), respectively [143]. 

   Although the classical PS has some merits such as low computation complexity and easy 

programming [144,145], it has several limitations. For instance, it cannot search the parameter space 

comprehensively because the search direction of the i
th particle only depends on the local best 

candidate solution )(~ txi  and the global best candidate solution )(ˆ tx , but that direction may not cover 

other search directions. 

2. The Proposed Laplace Particle Swarm Technique 

To overcome the aforementioned problems in the classical PS methods, the proposed LPS will 

diversify search directions so as to improve training efficiency. In order to cover the entire search 

space, the search direction of the i
th particle will be directed by the particle’s local best candidate 

solution )(~ txi , the global best candidate solution )(ˆ tx  and a random local best candidate solution 

)(~ tx j , where ji ≠ . The search step length is adaptively determined by a random number over the 

following Laplace distribution: 
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where η and ω  denote the center and slope of the Laplace cumulative distribution function, 

respectively.  

   Let u be a uniformly distributed random number over [0, 1] and η = 0. The random 

number λ derived from Laplace distribution will be 
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To guarantee convergence of the algorithm, a constraint function ξ  is introduced to mitigate the 

impact of Laplace coefficient λ ,  
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where Ic and It are the indices of the current iteration and total number of iterations, respectively; 

]5,5.0[∈b  is the strength factor. 

   Given a particle )(txi  and a randomly selected local best candidate solution )(~ tx j ， ji ≠ , the 

update expression of the velocity in the LPS will be  
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where )(txi  can be updated using Equation (C.2). The verification of the proposed LPS technique is 

provided in [91]. 
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Appendix D 

A Mutated Particle Filter Technique for System State Estimation  

The mutated particle filtering (MPF) technique is proposed for system state estimation, which is 

published in [135]: “D. Li, W. Wang, and F. Ismail, A mutated particle filter technique for system 

state estimation and battery life prediction, IEEE Transactions on Instrumentation and 

Measurement, vol. 63, no. 8, pp. 2034-2043, 2014”. Although the proposed MPF can accurately 

estimate the system states, it is relatively time-consuming and is not used for this online IM health 

condition monitoring application. 

1. Overview 

In system state estimation/prognosis, the system’s internal states are usually inaccessible to sensors, 

and the state estimation has to be inferred from noisy measurements. To make inferences about the 

characteristics of the measured system, a dynamic state space model is required, which usually 

consists of a transition model and a measurement (sensor) model. The transition model performs 

system state prediction, and the measurement model links the predicted states to noisy measurements. 

To carry out system state estimation, a posterior probability density function (pdf) has to be 

formulated based on system models and noisy measurements. The Kalman filter can be applied for 

state estimation of linear Gaussian systems; however, it lacks the capacity to address systems with 

nonlinear/non-Gaussian properties [124].  Although some advanced Kalman filter techniques can be 

used to model nonlinear systems, they apply a suboptimal implementation of the sequential Bayesian 

estimation framework for Gaussian random variables [125]. On the other hand, although the grid-

based filter can approximate optimal Bayesian recursion by using a uniform grid to explore the entire 

state space, its computational complexity limits its practical applications [126]. 

   Particle filters (PFs) can be used to model systems with nonlinear and non-Gaussian characteristics, 

which have been utilized in system state tracking [127,128] and prediction applications [129,130]. A 

PF is a recursive Monte Carlo-based method that constructs pdf using a set of random particles with 

associated weights. Among these available PF techniques, Sampling Importance Resampling PF 

(SIR-PF) is the fundamental PF technique, in which resampling is used to avoid the situation that 

most particles’ weights are close to zero. However, SIR-PF conducts system state estimation without 

considering current measurement, which may degrade its performance. Although Auxiliary PF (APF) 
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can generate a new state estimate conditioned on current measurement with the use of some statistical 

indicators to characterize transition density, it suffers from the loss of diversity among particles after 

resampling because resampled particles are generated based on a discrete distribution, rather than a 

continuous one [124]. Regularized PF (RPF) can draw particles from continuous distribution to 

improve particle diversity [131], however its estimated continuous distribution may not be accurate if 

there are insufficient particles locating at high likelihood area of the distribution. Regularized 

auxiliary PF (RAPF) can diversify the particles drawn by sampling particles from a continuous 

distribution to improve system state estimation [132]; however, the high likelihood area of its 

posterior pdf may not be fully represented by particles after certain filtering iterations since some 

gaps could exist in the high likelihood area of the estimated posterior pdf. These gaps lack particles to 

represent them, and the information of the particles over these gaps cannot be delivered to the 

following iterations, which, in turn, would degrade inaccurate system state estimation. The unscented 

PF applies an unscented Kalman filter to generate an importance proposal distribution to improve 

estimation accuracy [133]; however it may still suffer from inaccurate distribution representation 

caused by insufficient high-weight particles. The Rao-blackwellished PF can marginalize some 

system states and conducts particle filtering only to remaining system states, so as to improve 

computation efficiency [134]; although it could speed up the filtering process, its distribution 

representation is not accurate. 

   To tackle the aforementioned problems, the MPF technique is proposed in this work to explore both 

the extended area of the prior distribution and the entire distribution of the posterior pdf to improve 

state estimation of dynamic systems [135]. In the proposed MPF, a novel mutation approach is 

proposed to diversify the particles and exploit the entire posterior pdf space, and a new particle 

selection mechanism is suggested to search the high likelihood area of the posterior pdf. The 

proposed MPF technique is implemented for battery remaining useful life (RUL) prediction. 

2. The Mutated Particle Filter Technique 

To properly introduce the proposed MPF technique, a brief introduction of the related RAPF 

technique is given first in Subsection D.2.1, and then the proposed mutation method and particle 

selection scheme in the MPF technique are discussed in Subsection D.2.2. 
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2.1. Regularized Auxiliary Particle Filter 

To formulate a RAPF, a state space model with system states xt and observations yt is considered. 

Given an initial density p(x0), the states xt evolve over time as a partially-observed first-order Markov 

process based on probability transition density ( )1−tt xxf , where t = 1, 2, …, T, and T is the number 

of observations. The measurements ty  are conditionally independent, and are obtained through 

conditional probability density ( )tt xyf . Once the density ( )1 : 11 −− tt yxf  at time (t–1) is projected 

forward in time, the prior density of the state at time instant t can be estimated as 

 

                                                 ( ) ( ) ( )∫ −−−−− = 11 : 1111 : 1 ttttttt dxyxfxxfyxf                                        (D.1)   

 

Applying the Bayesian rule, the updated posterior density can be derived as 

 

                                                      ( ) ( ) ( )
( )1 : 1

1 : 1
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where the normalizing factor is given by 

 

                                                      ( ) ( ) ( ) ttttttt dxyxfxyfyyf 1 : 11 : 1 −− ∫=                                           (D.3) 

 

   Equation (D.2) provides an optimal recursive solution to system state estimation. If the related 

system is linear Gaussian, Kalman filter techniques can provide formal recursion for the density 

function of the system. However, nonlinear non-Gaussian systems do not have closed-form solutions, 

because the multi-dimensional integrals in Equations (D.1) and (D.3) are usually intractable. Hence, 

the pdf, ( )tt yxf  : 1 , can be evaluated using some suboptimal filters such as the RAPF method. 

   In the RAPF [132], the first stage posterior density ( )tt yxf  : 11−  is characterized by a set of particles 

(i.e., random support points) i
tx 1−  and their associated weights i

t 1−π ; i = 1, 2, …, N, where N is the 
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number of particles. The posterior density ( )tt yxf 1−  can be estimated with the following expression 

[135] 
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1 1π                                (D.4) 

 

where i
tµ  can be the mean, the mode, or a random draw associated with the density ( )1−tt xxf .  )(⋅lR  

is the re-scaled kernel function given by 

 

                                                               ( ) ( )lxRlxR n
l /−=                                                               (D.5) 

 

where l > 0 is the scalar kernel bandwidth and n is the dimension of the state vector x.  

   The kernel )(⋅lR  and bandwidth l are chosen to minimize the mean integrated square error between 

the true posterior density and the corresponding regularized empirical representation in Equation 

(D.4). When all the samples have the same weight [131], the optimal kernel would be the 

Epanechnikov kernel 
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where cn is the volume of the n-dimensional unit hypersphere given by 
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   According to the density estimation theory as stated in [136, 137], when the underlying density is 

Gaussian with a unit covariance matrix, the optimal bandwidth ∗l  can be determined as [131] 
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where N is the number of particles. 

   In dealing with an arbitrary underlying density, it is necessary to assume that the density is 

Gaussian. Then its covariance matrix can be replaced by the empirical covariance matrix D. If M is 

the square root matrix of the empirical covariance matrix D such that MM
T = D, the kernel function in 

Equation (D.5) can be rewritten as  

 

                                                      ( ) ( ) ( )lxMRlMxR n
l /det 11 −−−

=                                                   (D.9) 

 

where det(M) is the determinant of matrix M. 

   Once j
tx 1−  are derived using Equation (D.4), the second stage particles j

tx  can be evaluated 

through ( )1−tt xxf ; the second stage weights are formulated as 

 

                                                              
( )
( )j

tt

j
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t
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xyf

µ
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where ( )j
tt

j
t xxE 1−=µ . In this scenario, the superscript { }Nj  ,...  ,2 ,1∈  represents the index of particles 

after resampling, while the superscript { }Ni  ,...  ,2 ,1∈  in Equation (D.4) denotes the index of particles 

before resampling. 
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2.2. The Proposed Mutation Particle Filter Technique 

The RAPF in [132] employs a single statistic value i
tµ  (e.g., the mean value) to 

characterize ( )1−tt xxf  in the APF. However, the approximation of ( )1−tt xxf  may not be accurate 

when the process noise is large, which would lead to inaccurate estimation [124]. The large process 

noise problem could be tackled by using more particles to characterize ( )1−tt xxf  rather than a single 

statistic value. The classical PF techniques, as well as the RAPF, only evaluate ( )1−tt xxf  based on 

prior particles from the last iteration. If these particles cannot represent the prior distribution 

accurately or the prior distribution deviates from the posterior distribution after passing through 

system state models, most generated posterior particles may have very low weights, which will result 

in sample impoverishment. To tackle this problem, the proposed MPF technique employs the mutated 

particles derived from prior particles to explore a wider range of the prior distribution, rather than the 

range constrained by some prior particles. Its purpose is to approximate the mapping between prior 

pdf and posterior pdf more accurately, and exploit the posterior pdf space more comprehensively. A 

particle selection mechanism is suggested next to make posterior particles carry high weights.  

   Figure D.1(a) illustrates a typical posterior distribution with sample impoverishment. It can be seen 

that almost half of the generated posterior particles (blue crosses) have very low weights, and part of 

the high likelihood area lacks sufficient particles. Figure D.1(b) will be described in subsection D.2.2. 
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Figure D.1. Illustration of the posterior distribution of a system state: (a) without using the mutation method; blue 

crosses represent those posterior particles with low weight factors. (b) Using the mutation method; high weight 

posterior particles (red solid circles) are generated from those prior particles corresponding to low weight 

posterior particles. 
 

1) The Mutation Mechanism: 

  The proposed mutation method is described as follows: 

Given the particles at time instance t, { N
ttt xxx ,,, 21

L }, the respective upper and lower boundaries of 

these particles can be computed by 

 

                                                     ( ) ( ) t
N
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i
t xxxmaxxU λ+= ,,, 21

L                                                    (D.11) 

                                                     ( ) ( ) t
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i
t xxxminxL λ−= ,,, 21

L                                                      (D.12) 

 

where tλ  is a positive constant, which defines the extended searching space of the prior distribution 

to accommodate mutated particles at time instant t.   

(a) 
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  For each particle in the particle set { }N
ttt xxx ,,, 21

L , a mutated particle will be derived as: 
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                                                 ULi
t γγφ +−= )1(                                                                            (D.15) 

 

where i
tφ  is the auxiliary position around i

tx , and r∈  [0, 1] is a random number. 

  Equations (D.13)-(D.15) represent a mutation mechanism [138] that generates a random number i
tφ  

over the feasible range of the particle set { }N
ttt xxx ,,, 21

L  with an approximate uniform distribution. To 

enable the mutated particle to deviate from the neighborhood of the original particle i
tx , a mutated 

particle will be generated as 

 

                                                           ( )i
t

i
t

i
t

i
t xxLUx −−−+= φηˆ                                                     (D.16) 

 

where ]1,0[∈η  is a random number, i
tx̂  is the mutated particle, and [ ]1 ,5.0∈b  is a strength factor 

that estimates the variance of the location of the mutated particles. The larger the factor b is, the wider 

the area in which the mutated particles may appear.  

   Randomly generate 104 possible data of the auxiliary particles i
tφ  and their corresponding 104 data 

of mutated particles i
tx̂ , from a fixed value of original particle i

tx ∈  [0, 1] ( 2.0=i
tx  and 0.8 in Figure 

D.2). The distributions of i
tφ  and i

tx̂  can be estimated using kernel density estimation as shown in 

Figure D.2. It can be seen from Figure D.2 that the auxiliary particle i
tφ  has an approximately 
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uniform distribution, irrespective of the value of the original particle i
tx ; on the other hand, the 

mutated particle i
tx̂  has higher probability, located in the remote area from the original particle i

tx . 
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Figure D.2. The distribution of auxiliary particles i
tφ  and mutated particles i

tx̂ , with the original particle (a) 

2.0=i
tx , and (b) 8.0=i

tx . The blue solid line represents the distribution of i
tφ , and the red dotted line 

represents the distribution of i
tx̂ . 

 

  In using the proposed mutation approach, if one particle i
tx  lies in a low-value area of particle space, 

its mutated counterpart will be located in the high value region in a probabilistic form, and vice versa. 

The mutated particles { }N
ttt xxx ˆ,,ˆ,ˆ 21

L  with associated weights i
tπ̂  can be used to enrich the 

representation of the high likelihood area of the density function ( )tt yxf :1 , so as to enhance the 

posterior pdf and improve the system state estimation. 

2) The Selection Scheme: 

When posterior particles are generated, those particles with very low weights usually have less 

contribution to the system state estimation, while the particles with high weight may not be sufficient 

to represent the posterior pdf accurately. To enhance the posterior pdf representation, a threshold ξ  is 

introduced to characterize the contribution of different particles. After the weights of all posterior 

particles are normalized, the particles with weights larger than (or equal to) ξ will be accepted, while 

those with weights less than ξ  will be replaced by their mutated particles. The threshold ξ  is usually 

a constant, which can be selected based on particular applications (e.g., ξ = 0.01 in this case). If a 

(a) (b) 
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mutated prior particle generates posterior particles with weights less thanξ , the above process will be 

repeated until the weight factor of the resulting new particle becomes greater than (or equal to) ξ .  

   By using the proposed mutation method and particle selection mechanism, the prior particles 

corresponding to those posterior particles with low weights can be replaced by their mutated 

counterparts. Consequently, the representation of the high likelihood area in the posterior distribution 

can be improved as demonstrated in Figure D.1(b). 

3) Implementation of the MPF Technique: 

   In the implementation, N prior particles and their mutated N particles are used to explore the 

posterior pdf. By testing the derived posterior particles using the proposed selection scheme, each 

posterior particle with a weight less than the threshold ξ  will be replaced by a posterior particle with 

higher weight by using the mutation mechanism. The following summarizes the implementation 

procedure of the proposed MPF technique:  

 (a) draw samples i
tx  from ( )i

tt xxf 1− ; i = 1, 2, …, N;  

 (b) compute the mutated particles of i
tx , i

tx̂ ; i = 1, 2, …, N, using Equations (D.11) – (D.16); 

 (c) calculate weights ( )i
tt

i
t xyf∝π  of these 2N particles (i.e., i

tx  and i
tx̂ ) and conduct normalization: 

∑
=

=
N

i

i
t

2

1

1π ;  

 (d) apply the selection scheme to the weights i
tπ . If ξπ <i

t , a new mutated particle i
tx̂  will be 

generated from its corresponding prior particle i
tx ; this process is repeated until the weight of the 

generated posterior particle ξπ ≥i
t . 

 (e) calculate the empirical covariance matrix Dt of { } N

j

i
t

i
tx

2

1
,

=
π  and the root-square matrix Mt using 

Cholesky decomposition t
T
tt DMM = ; 

 (f) carry out resampling by using appropriate resampling algorithms (e.g., multinomial resampling 

[139]); 
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 (g) draw ε  from Epanechnikov kernel and calculate ∗l  using Equation (D.8). Then compute new 

particles [132]: εt
i
t

i
t MlxX ∗+= .  

   The mutation method at steps (b) and (d) aims to explore an extended range of prior distribution so 

as to improve posterior distribution approximation. The selection scheme at step (d) will replace those 

posterior particles with very low weights by appropriate posterior particles. Consequently, these 

particles will explore the high likelihood area of the posterior pdf more thoroughly. 

3. Performance Evaluation 

The effectiveness of the proposed MPF technique will be evaluated in this section by simulation tests 

based on a benchmark model. Then it will be implemented for battery RUL prediction. The related 

SIR-PF and RAPF techniques will be used for comparison. 

3.1. Testing Using a Benchmark Model 

The following is a benchmark model that is commonly used in PF testing because of its specific 

properties such as nonlinear and non-Gaussian [140]: 
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kkk xy υ+= 2

20

1
                                                               (D.18) 

 

where kω  and kυ  are Gaussian white noise signals with zero means. The following conditions are 

used in this testing: the number of time steps k = 50, the variance of the measurement noise kυ = 1, the 

variance of the process noise kω  = 10, and the initial state x0 = 0.1. Fifty particles (i.e., N = 50) will be 

used in the related PFs (i.e., SIR-PF, RAPF and MPF). In the proposed MPF, tλ  is selected as the 

value of standard deviation of the data; the threshold ξ  is selected based on application requirements 

(ξ  = 0.01 in this case); the strength factor b is determined by a trail and error process (b = 0.8 in this 

case).  
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   To examine the parameter sensitivity of these three PFs, three different particle numbers of 50, 100 

and 150, are used for simulation tests with the variance of the process noise kω  = 1 and strength factor 

b = 0.8. In general, the more particles used, the higher the estimation accuracy of the PFs (but, of 

course, the longer time they will consume in modeling). It is seen from the simulation results listed in 

Table D.1 that the averaged mean of the root mean squares error (RMSE) becomes smaller as the 

number of particles increases in all three PFs; however the proposed MPF gives the least averaged 

variance when particle numbers N = 50. On the other hand, Table D.2 summarizes the simulation 

results of the proposed MPF with different values of strength factor b, when the process noise kω  = 1 

and the particle number N = 50. It is seen that the proposed MPF gives the best performance when b = 

0.8 compared to b = 0.7 and 0.9, respectively. 

 

Table D.1. The averaged mean and standard deviation of RMSE with different particle numbers. 
 

 

 

Table D.2. The averaged mean and standard deviation of RMSE with different strength factor using the proposed 

MPF. 
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  Figure D.3 illustrates the test results of 30 random runs using the same observation data set, as the 

multinomial resampling is implemented at each time step. It can be seen that the RAPF generates less 

variance of the estimation error than the SIR-PF, because of its more effective particle-diversifying 

mechanism. However, the proposed MPF provides more accurate estimation (i.e., with less variance 

of the estimation error) than the RAPF, because its mutation mechanism can enrich the particle 

species and capture the distribution more comprehensively and accurately. 

 

0 10 20 30 40 50
-30

-20

-10

0

10

20

30

Time step k

S
y
s
te
m
 s
ta
te
 x

0 10 20 30 40 50
-30

-20

-10

0

10

20

30

S
y
s
te
m
 s
ta
te
 x

0 10 20 30 40 50
-30

-20

-10

0

10

20

30

S
y
s
te
m
 s
ta
te
 x

 

Figure D.3. Performance comparison of the related PF techniques over 30 runs by: (a) SIR-PF; (b) RAPF; (c) 

MPF. The red solid line represents the true states; the blue dotted lines represent the estimated states at 

different runs. 
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   To further verify the effectiveness of the proposed MPF, three test scenarios corresponding to 

different variances kω = 1, 4, and 10, are tested. In each scenario, 100 data sets in total are randomly 

generated using Equations (D.17) and (D.18). For each data set, these three PF techniques (i.e., SIR-

PF, RAPF and MPF) are tested over 100 runs. The RMSE between the true states and the estimated 

states are computed for each run. For comparison, the mean and standard deviation of the RMSE over 

100 runs in each data set are calculated and illustrated in Figures D.4-D.6. The results summarized in 

Table D.3; it can be seen that the averaged mean and standard deviation of RMSE become larger as 

the process noise increases in all three PF estimation scenarios. The RAPF provides lower averaged 

mean and standard deviation of the RMSE than those of the SIR-PF, because of its diversified particle 

representation. The proposed MPF, however, provides the best estimation accuracy (i.e., with the 

lowest mean and the smallest variance) compared with both SIR-PF and RAPF. This is because the 

MPF can approximate the distribution more accurately, and explore the distribution more thoroughly. 
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Figure D.4. Test results of three PFs when the variance of the process noise is 1: (a) mean of RMSE, (b) 

standard deviation of RMSE. The pink dashed line represents the results of SIR-PF; the red dash dotted line 

represents the results of RAPF; the blue solid line represents the results of the proposed MPF. The black solid 

line denotes the mean of the data. 
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Figure D.5. Test results of three PFs when the variance of the process noise is 4: (a) mean of RMSE, (b) 

standard deviation of RMSE. The pink dashed line represents the results of SIR-PF; the red dash dotted line 

represents the results of RAPF; the blue solid line represents the results of the proposed MPF. The black solid 

line denotes the mean of the data. 
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Figure D.6. Test results of three PFs when the variance of the process noise is 10: (a) mean of RMSE, (b) 

standard deviation of RMSE. The pink dashed line represents the results of SIR-PF; the red dash dotted line 

represents the results of RAPF; the blue solid line represents the results of the proposed MPF. The black solid 

line denotes the mean of the data. 
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Table D.3. The averaged mean and standard deviation of RMSE over 100 data sets. 
 

 

 

   It should also be realized that, after several iterations of implementing PF, gaps may develop in the 

high likelihood area of the estimated posterior pdf, which is an indication of information loss. These 

gaps may degrade the estimation accuracy in the current iteration, which can, in turn, propagate to the 

subsequent iterations and continue to degrade estimation accuracy. By using the proposed mutation 

method, the pdf can be explored more thoroughly, especially in the pdf gaps, and consequently the 

estimation accuracy can be improved. 

3.2. Battery Remaining Useful Life Prediction 

Lithium-ion batteries are widely used in industrial and domestic applications. An effective prognostic 

tool is very useful to predict the future state of the battery, so as to diagnose the battery’s health 

condition, and estimate its RUL information. Reliable RUL information is critically needed in many 

applications, such as electric vehicles and aircraft, to schedule battery recharging operations and 

prevent malfunction of the related equipment.  

   To test the proposed MPF technique for battery RUL prediction, the data sets of battery #6 and 

battery #18 from the NASA Prognostics Center of Excellence are employed [141]. Figure D.7, 

adopted from [142], schematically illustrates the battery prognostics tests. The load bank and 

environmental chamber were used to adjust load and environmental conditions of the battery cells, 

respectively. The electrochemical impedance spectroscopy (EIS) measurement was conducted in the 

battery health monitoring module (BHM), which was used to measure battery impedance. The three 

states of batteries (i.e., charge, discharge, and impedance) were controlled by a switching circuitry. 

The sensors’ signals were collected by a data acquisition (DAQ) system. The aim of the experiments 
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was to identify different health states of battery cells with similar terminal voltages, and then to 

predict the RUL of the cells.  

   To generate these data sets, a lithium-ion battery was run through three different operational 

profiles: charge, discharge, and impedance, at room temperature. The charge process was conducted 

by feeding a 1.5A constant current to the battery until its voltage reached 4.2V, then the charge 

process continued in a constant voltage mode, until the charge current dropped to 20mA. The 

discharge process was carried out at a constant current mode (2A) until the battery voltage dropped to 

2.5V. The aging process of batteries can be accelerated by repeatedly charging and discharging the 

batteries. The experiments were stopped when the battery reached end-of-life criterion, which was set 

at 30% fade in rated capacity.  

 

 

 

Figure D.7. Schematic illustration of the battery prognostics tests, adopted from [142]. BHM is the battery health 

monitoring modules and DAQ is the data acquisition system. 
 

   Figure D.8 shows the lumped-parameter model, where RE and RCT represent the electrolyte 

resistance and charge transfer resistance, respectively; RW is the Warburg impedance, and CDL is the 

dual layer capacitance. Although the battery capacity is usually inaccessible for measurement, RE + 

RCT is inversely proportional to the capacity C/1, and can be used to predict battery capacity drop 

[135]. RE and RCT can be estimated from EIS tests. The battery model can be formulated as 
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                                                   kkk v+Γ=Γ −1                                                                            (D.19) 

                                                   ( ) kkkk wk +ΓΨ=Ψ − exp1                                                           (D.20) 

                                                   kkk ρ+Ψ= −1Y                                                                          (D.21) 

 

where kΨ  is the state vector (i.e., RE or RCT) at time step k, kΓ  is the exponential growth model 

parameter, and Yk is the measurement vector containing battery parameters inferred from measured 

data. The state vector 1Ψ  at the first time step takes the initial value of RE or RCT. The exponent 1Γ  can 

be calculated from training data using least square estimate. kv , kw  and kρ  are Gaussian noise 

signals. The data sets of RE, RCT and C in battery #6 and battery #18 are smoothed to improve the 

RUL prediction using the battery model represented by Equations (D.19)-(D.21). The approximate 

linear relationship between RE + RCT and C/1 in battery #6 is shown in Figure D.9. 

CDL

RCT RW
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Figure D.8. Lumped-parameter model of a Lithium-ion battery. RE and RCT represent the respective electrolyte 

resistance and charge transfer resistance; RW is the Warburg impedance and CDL is the dual layer capacitance. 
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Figure D.9. The relationship between RE+RCT and C/1 in battery #6. The red circles represent measured RE+RCT 

versus C/1; the blue solid line is a linear fit.  
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The SIR-PF, RAPF and the proposed MPF techniques were implemented for battery state 

estimation and RUL prediction. The first part of the trajectory (i.e., RE or RCT) was employed to 

estimate the battery model parameters. Then the identified model for each technique was applied to 

predict the remaining part of the trajectory. In each iteration, 1000 particles were used to estimate the 

posterior pdf. The time to trigger the prediction depends on application requirements. Figure D.10 

shows both the state tracking and the future state prediction of data RE and RCT, with the prognosis 

starting at cycle 30. In Figure D.10, the system model is identified in the estimation period; multiple-

steps-ahead forecast is conducted in the prediction period; that is, the n
th estimated data in the 

prediction period is the n-steps-ahead forecast using the identified model. It is seen that RAPF 

outperforms SIR-PF in both RE and RCT predictions, while the MPF provides even better prediction 

performance than the RAPF in these two prediction scenarios (RE and RCT). By a linear transformation, 

the tracking of the capacity C/1 is shown in Figure D.11; it is seen that RAPF generates less RUL 

prediction error (15.69 cycles) than SIR-PF (17.39 cycles) because of its diversified resampled 

particles. The MPF yields the minimum RUL prediction error (10.01 cycles) compared with SIR-PF 

and RAPF techniques, because it can explore the entire distribution with the help of the mutated 

particles. 
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Figure D.10. State tracking and future state prediction at cycle 30 for the battery parameters (a) RE and (b) RCT 

using three PFs: SIR-PF (○ - black line), RAPF (□ - blue line) and MPF ( ∇ -red line). The green solid line is the 

true states of RE and RCT. 
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Figure D.11. Battery RUL prediction at cycle 30 using three different PFs: SIR-PF (○ - black line), RAPF (□ - blue 

line) and MPF ( ∇ -red line). The green solid line is the real measurement of C/1. 
 

(a) 

 

 

 

 

 

(b) 



 

  

 

144 

   Figure D.12 shows the prognostics results of the battery parameters RE and RCT when the prediction 

is triggered at cycle 54. To clarify the forecasting distinction, only the estimation period from cycle 

40 to cycle 54 and prediction period from cycle 55 to cycle 69 are shown in Figure D.12. The 

prediction performances of these three PFs (i.e., SIR-PF, RAPF and MPF) become more accurate in 

this case, because more data are used for model parameter estimation. It can be seen from Figure 

D.12 that the proposed MPF can predict the trend of RE and RCT  more accurately than both RAPF and 

SIR-PF, thanks to its advanced mutation mechanism. Figure D.13 shows the prediction of the 

corresponding capacity C/1; it can be seen that the MPF yields the minimum RUL prediction error 

(0.58 cycles). On the other hand, at the end of the prediction, RAPF and SIR-PF cannot reach end-of-

life threshold, and generate large errors of 0.008Ahr and 0.026Ahr, respectively, at the last cycle. The 

MPF outperforms both RAPF and SIR-PF because of its efficient mutation mechanism to diversify 

the particles and to enhance model parameter identification.  
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Figure D.12. State tracking and future state prediction at cycle 54 for the battery parameters (a) RE and (b) RCT 

using three PFs: SIR-PF (○ - black line), RAPF (□ - blue line) and MPF ( ∇ -red line). The green solid line is the 

true states of RE and RCT. 
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Figure D.13. Battery RUL prediction at cycle 54 using three different PFs: SIR-PF (○ - black line), RAPF (□ - blue 

line) and MPF ( ∇ -red line). The green solid line is the real measurement of C/1. 
 

   The uncertainty of the classical PF algorithms can be represented by the pdf of the estimated system 

states [139]. The pdfs of the estimated state (i.e., capacity) using SIR-PF, RAPF and MPF are 

demonstrated in Figure D.14, where their mean values are all set as zero to compare their spread (or 

uncertainty). Figure D.14a shows the pdfs of these three PFs at the cycle when their mean values just 

reach failure threshold as illustrated in Figure D.11. Figure D.14b illustrates the pdfs of three PFs at 

the cycle when their mean values just reach failure threshold (i.e., MPF) or the end of prediction cycle 

(i.e., SIR-PF and RAPF) as illustrated in Figure D.13. It is seen that the MPF outperforms both SIR-

PF and RAPF with least uncertainty because of its capability to fully explore high likelihood area and 

prevent the possible deviations by low weight particles. 
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Figure D.14. Uncertainty representation of Battery RUL estimation corresponding to (a) prediction at cycle 30 

and (b) prediction at cycle 54, corresponding to pdf of the SIR-PF (blue solid line), the RAPF (black dashed line), 

and the MPF (red dotted line). 
 

   The approximate linear relationship between RE + RCT and C/1 in battery #18 is illustrated in Figure 

D.15. Figure D.16 shows the prognosis of the battery parameters RE and RCT when the prediction is 

triggered at cycle 5. It is seen from Figure D.16 that the proposed the MPF outperforms both the 

RAPF and the SIR-PF in predicting RE and RCT because of its effective posterior pdf estimation using 

the proposed mutation. Figure D.17 demonstrates the prediction of the corresponding capacity C/1; it 

is seen that the MPF yields less RUL prediction error (0.34 cycles) than that of RAPF (1.21 cycles) 

and SIR-PF (1.78 cycles), when they reach the end-of-life criterion. The MPF outperforms both the 

RAPF and the SIR-PF, because its effective mutation can improve posterior pdf estimation so as to 

enhance model identification.  
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Figure D.15. The relationship between RE+RCT and C/1 in battery #18. The red circles represent measured 

RE+RCT versus C/1; the blue solid line is a linear fit. 
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Figure D.16. State tracking and future state prediction at cycle 5 for the battery parameters (a) RE and (b) RCT 

using three PFs: SIR-PF (○ - black line), RAPF (□ - blue line) and MPF ( ∇ -red line). The green solid line is the 

true states of RE and RCT. 
 

(a) 

 

 

 

 

 

(b) 



 

  

 

148 

2 4 6 8 10 12
1.2

1.25

1.3

1.35

1.4

1.45

1.5

Cycles

C
/1
 (
A
h
r)

Estimation Prediction

 

Figure D.17. Battery RUL prediction at cycle 5 using three different PFs: SIR-PF (○ - black line), RAPF (□ - blue 

line) and MPF ( ∇ -red line). The green solid line is the real measurement of C/1. 
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