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Abstract

Superconducting quantum devices have gained increasing interest over the past 15 years be-

cause of their role as promising candidates for implementing a large-scale quantum computer and

as ultra-sensitive detectors. Superconducting resonators are one type of superconducting device

which are used in a variety of applications including quantum computing and radioastronomy.

They can achieve large quality factors which are important for these applications and a variety

of others. Specific examples of these applications include the readout and coupling of supercon-

ducting qubits and also microwave kinetic inductance detector arrays for sub-mm wavelength

astronomical measurements. High quality factors also enable the study of very subtle features in

the electromagnetic response of the resonator. This feature in turn offers provides a method to

characterize loss mechanisms which affect the performance of superconducting qubits, by mea-

suring the quality factor of a resonator. Dielectric loss is an example of such a loss mechanism,

and is considered to be one of, if not the major obstacle to overcome in order to construct scal-

able quantum technologies based on superconducting devices. This type of loss arises from the

coupling of the electric field in the device to spurious degrees of freedom which arise naturally the

dielectric environment of the device. The fast-growing interest in the physics and applications of

superconducting resonators has renewed interest in an improving our fundamental understanding

of dielectric loss. This interest involves the study of a much bigger and older question in con-

densed matter physics; namely, what is the microscopic physics which governs the behaviour and

of an amorphous material at low-temperatures?

In this thesis, we present a systematic study of dielectric loss in amorphous aluminum oxide

using superconducting microwave resonators. Measurements of the intrinsic loss tangent over a

large temperature range of 40 mK to 1 K are presented and analyzed in detail. Some aspects of

the data are well understood in terms of the standard tunnelling two-level system model, while

others require a deeper analysis of the electrodynamics of the resonator and insights from more

advanced theories. We employ a consistent approach using numerical simulations of the resonator

to understand loss mechanisms arising from both an inhomogeneous electric field and multiple

dielectric layers. We measure saturation effects which provide insight into coherent properties

of two-level system ensembles and the mutual interaction between them. Excellent agreement

with the two-level system model is found for intrinsic losses, however the strong dependence on

temperature which we observe for saturation effects is not predicted in the standard form of the

model. We find that this dependence can be understood in terms of the theory of spectral diffusion
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which is consistent with a strong mutual interaction between two-level systems contributes to

broadening of their spectral linewidths.
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Chapter 1

Introduction

The discovery of superconductivity in 1911 by Heike Kammerlingh Onnes is among the most

important events in the history of physics. An explanation of the mechanism of superconductivity

was a monumental theoretical challenge, and it was not until nearly fifty years later that a

microscopic quantum mechanical theory was developed by Bardeen, Cooper and Schrieffer [6].

This time interval alone warrants perspective. Historians unanimously refer to the 20th century

as one which demonstrated rapid scientific, technological and social progress. In 1911 the Titanic

sank, telecommunications was embryonic and the Universe was thought to consist of a single

galaxy. In 1957, nuclear power was emerging, medical science was thriving, and transistors

were becoming mainstream technology. Despite the rapid global progress of humanity, the task

of understanding superconductivity proved to be simply enormous. It took the full arsenal of

quantum mechanics and the work of some of the greatest physicists of the era to explain how

electrons become attracted to each other at sufficiently low temperatures and coalesce into a state

which exhibits zero DC resistance. It is important not to exclude the contributions made towards

phenomenological descriptions from Landau [46], London [51] and others in describing some of

the macroscopic features of superconductivity, but it was clear a microscopic theory was needed

to provide a complete account of superconductivity. Once this understanding was established,

however, superconductivity started to pay dividends. This thesis is an account of one of them.
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1.1 Superconducting quantum devices

In the second half of the 20th century, superconductors were integrated into electronic devices

which harnessed their unique quantum properties. Most of the devices were implemented as sen-

sors and detectors, the most well known of which is the superconducting quantum interference

device (SQUID) [38]. The operation of a SQUID relies on the unique properties of a Josephson

junction, a discontinuity in the superconductor across which pairs of electrons may tunnel without

dissipation [41]. These properties include the interference between the phases of the supercon-

ducting wavefunction. By taking advantage of this effect, SQUID devices provided new ways

to detect very small magnetic signals and are among the most sensitive magnetic detectors ever

produced. Further studies using SQUIDs fabricated from different materials led to improvements

in our understanding of the physical mechanism which binds electrons together and produces

superconductivity. This led to advances in the field of material science, driven by the prospect of

realizing a room temperature superconductor. Over the years, the quantum properties of SQUIDs

were applied to create devices possessing distinct, addressable quantum states which can be used

as processors for quantum information. These devices, now referred to as superconducting qubits,

are at the forefront of modern quantum technologies [20].

1.1.1 Superconducting microwave resonators

Superconducting microwave resonators are popular micro-fabricated circuits which have been

used since the 1960’s and offer a wide range of applications [88]. The versatility and wide-range

of applications of these devices have refined them into reliable scientific tools for probing a variety

of physical phenomena. The most appealing feature of superconducting resonators is undoubtedly

their ability to achieve very high quality factors. They differ from normal microwave resonators

only in the sense that they are obviously made of a superconductor, and thus operate at cryogenic

temperatures. A normal metal has conduction losses which limit the quality factor to be on the

order of 102. Furthermore, the skin effect produces loss which scales with frequency as a result of

the crowding of the AC current density at the surface of the conductor. This effect is not present,

at least nearly to the same degree, in a superconductor. Due to these advantages, high quality

factors in superconducting resonators enables the study of very subtle effects in the microwave

electromagnetic response and, in turn, the governing physics. Devices which incorporate these

resonators have been used to probe the electrodynamics of thin film superconductors and to test
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predictions of BCS theory [17]. Further applications include coupling to superconducting qubits

for quantum computing applications [81], microwave kinetic inductance detectors (MKID) for

astronomical measurements [74], simulation units for many-body physics experiments [75], and

quantum limited parametric amplifiers [78].

The total quality factor of a resonator, Qr is defined as the ratio of the energy stored in the

resonator to the energy dissipated per cycle. In terms of the resonance frequency fr and the

power loss, we may generally write

Qr = 2πfr ×
Energy stored

Power loss
.

A freely oscillating resonator will lose energy internally via different and independent sources,

each quantified by a loss factor Q−1
i,n , and also by its coupling to an external circuit, Q−1

e . The

total quality factor of the resonator is given by

Q−1
r =

∑

n

Q−1
i,n +Q−1

e . (1.1)

Quality factors of Qr ∼ 1011 at large microwave power have been demonstrated [15] when par-

ticular attention to design details and fabrication is paid. In typical 2D planar geometries, with

high-quality superconducting thin films and low-loss crystalline substrates, Qi on the order of 106

or greater [54] are routinely obtained for microwave powers corresponding to a single microwave

photon. There are a variety of physical effects which contribute to the loss of a superconducting

resonator. One source of loss is non-equilibrium quasiparticles or un-paired electrons. Quasi-

particles contribute to a finite complex conductivity for frequencies below the superconducting

gap, which is ∆/! ≃ 70 GHz in aluminum [9] for example and on the order of a few hundred

GHz for niobium [79]. The origin of the quasiparticles is suspected to arise in part from stray

high-frequency radiation [7, 8]. At microwave powers corresponding a single photon the dominant

source of loss is, however, totally unrelated to superconductivity. This loss mechanism is known

as dielectric loss [73, 53] and will be introduced further in section 1.1.3.
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1.1.2 Types of superconducting microwave resonators

Coplanar waveguide resonators

The most common type of a superconducting resonator is one consisting of a transmission line

in a coplanar geometry [31] as shown in Fig. 1.1. Depending on geometry, a coplanar waveguide

will support an electromagnetic quasi-TEM wave [68] of velocity

vph =
c

√
ϵeff

=
1√
LℓCℓ

. (1.2)

In equation (1.2), c is the speed of light in vacuum, ϵeff is the effective permittivity of the waveg-

uide, and Lℓ and Cℓ are the inductance and capacitance per unit length, respectively. Since

the size of the resonator is on the order of the wavelength, the electromagnetic properties vary

along as a function of position. Because of this fact, the circuit is said to be distributed. To

describe this type of resonator, it is typically considered as a series of infinitesimal inductive and

capacitive elements. Terminating the transmission line of length ℓ at both ends with coupling

capacitors Ck, (Fig. 1.1 a) allows for a standing electromagnetic wave of wavelength λ = 2ℓ and

fundamental resonance frequency fλ/2
1 = vph (2ℓ)

−1 to be excited. The coupling capacitances

Ck must be sufficiently small to only allow transmission of microwave signals near resonance.

Another type of coplanar resonator can be realized by coupling a coplanar waveguide feed line to

a second waveguide which is open on the coupling end and grounded on the other (Fig. 1.1 b).

This yields a fundamental mode fλ/4
1 = vph (4ℓ)

−1 corresponding to a wavelength of λ = 4ℓ. In

both cases, n linear harmonics modes exist for odd values of n, given by fn → nf1.

Coplanar waveguide resonators are attractive because only a single layer metallization step

is typically necessary, making them robust and reproducible. Furthermore, high quality factors

are readily obtained when low-loss crystalline substrates are used. Half-wavelength resonators

yield transmission at the resonance frequency, therefore only a single resonator can be measured

in a 2-port microwave setup. However, their design allows for asymmetric input and output

capacitive coupling, a desirable feature for qubit measurement applications requiring improved

readout signal. On the other hand, multiple quarter-wavelength resonators can be measured

simultaneously when coupled to a single feed line, since they yield reflection at the resonance

frequency. This benefit of frequency multiplexing is significant for large detector arrays where

many different frequencies must be simultaneously read-out.
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a) �/2 coplanar waveguide resonator b) �/4 coplanar waveguide resonator

Figure 1.1: Two types of coplanar waveguide resonators coupled to an AC voltage drive Vac of
impedance Z0. a) Half-wavelength (λ/2) Resonator: A transmission line of length ℓ, and effective
permittivity ϵeff is coupled capacitively on both ends by capacitors Ck. b) Quarter-wavelength
(λ/4) Resonator: A transmission line of length ℓ is coupled to a coplanar feed line.

Lumped element LC resonators

A second type of superconducting resonator is one in which the inductor and capacitor elements

are much smaller than the wavelength of the resonant mode. In this case, the circuit elements are

said to be “lumped”. Figure 1.2 shows a lumped element resonator consisting of a meander line

inductor L and an interdigital capacitor C0. In general, the circuit is coupled to a transmission

line of inductance L1 both by a capacitance Cc, and a mutual inductance M = k
√
LL1, where

k is a geometry dependent coupling factor. Contrary to coplanar resonators, energy storage in

electric and magnetic fields is localized or “lumped” in specific circuit elements such as capacitors

and inductors. The quality factor of an uncoupled LCR resonator is given by Q = ω0RC. Similar

to quarter-wavelength resonators, lumped element resonators have the advantage of operating in

a frequency multiplexed configuration. Furthermore, they can also be miniaturized by the use

of small parallel plate capacitors with relatively large capacitance [19, 18]. This usually comes

at the price of significantly lowering quality factor by using a parallel plate dielectric capacitor

which can be very lossy depending on the material. However, this increase in the resonator loss

can be useful for studying and comparing dielectric loss with other types of resonators and also

for applications requiring resonators where loss is less critical.
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Figure 1.2: Left: Lumped element resonator consisting of an interdigital finger capacitor and
meander-line inductor. Right: circuit diagram of a lumped element LC resonator consisting
of an inductor L, capacitor C, and resistor R. The resonators has a resonance frequency of
f0 = 1/2π

√
LC and is coupled capacitively by Cc and inductively by a mutual inductance M to a

transmission line of impedance Z0 and inductance L1. The resonator is driven by an AC voltage
source Vac.

6



3D cavity resonators

Microwave resonators can also be realized in a three dimensional architecture [60, 69], where

the resonant mode is defined by the volume of the superconducting cavity. By using ultra-high

quality superconducting material and careful surface treatment during fabrication, 3D cavities

yield the highest quality factors at cryogenic temperatures and single-photon powers. The 3D

spatial profile of the resonant mode results in further reduction of the electromagnetic energy

density at the surface of the metal, and thus a lower contribution to dielectric loss. The main

limitation of 3D cavity resonators is that coupling to other circuit elements such as qubits is more

challenging due to the large spatial distribution of the electromagnetic mode. Furthermore they

are much larger in size compared to 2D planar devices.

1.1.3 Application of superconducting microwave resonators to quantum in-

formation processing

Superconducting qubits are micro-fabricated microwave circuit structures consisting of one or

more Josephson junctions. The field of quantum information processing with superconducting

quantum bits has experienced significant progress over the past fifteen years. Over this time

frame, the lifetimes of superconducting qubits have increased from nanoseconds to tens of mi-

croseconds, which has asserted their role as contenders in the race to construct scalable quantum

technologies [20]. Much of this success is attributable to improvements in device design, material

quality and reducing the effect of loss mechanisms. The Josephson junction is the key “quantum”

ingredient of the circuit as it usually provides the necessary non-linearity to implement a qubit as

a two-state system. The junction consists of two overlapping superconducting electrodes which

are separated by a thin insulating oxide barrier. Tunnelling of Cooper pairs across the barrier

is permitted and gives rise to a non-linear Josephson energy which depends on the difference

in the phase of the superconducting wavefunction across the junction [41]. Various types of su-

perconducting qubits can be realized, such as charge, flux, and phase qubits, depending on the

parameters of the circuit. The common implementation of quantum information processing with

superconducting qubits is in a circuit quantum electrodynamics (cQED) architecture [81, 12, 11]

where the qubit is coupled to a superconducting microwave resonator. (Fig. 1.3 presents a setup

similar to that implemented by our group here at the University of Waterloo.)
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Figure 1.3: a) Schematic illustration of a circuit quantum electrodynamics device with a su-
perconducting microwave resonator coupled to a flux qubit with four Josephson junctions. b)
Scanning electron microscope image of a four-junction flux qubit fabricated using electron beam
lithography.

An appropriate description of a superconducting resonator coupled to a qubit is one which

is analogous to the interaction of an atom in an optical cavity. In the rotating wave approxima-

tion [39], the famous Jaynes-Cummings Hamiltonian, in the basis spanned by the non-interacting

qubit-resonator states, reads

HJC = !ωr

(
â†â+

1

2

)
+

!ωqb

2
σ̂z + !g

(
âσ̂+ + â†σ̂−

)
, (1.3)

where â (â†), is the creation (annihilation) operator for a photon, ωr is the bare frequency of

the resonator, ωqb is the qubit frequency and g is a coupling constant describing the strength of

the cavity-qubit interaction. In such a system, the resonator can serve as a means to measure

the state of the qubit by observing the effect of the qubit on the frequency of the resonator [81,

12, 11]. Equation (1.3), however, does not completely describe the behaviour of the resonator-

qubit system. In reality there are additional dissipative terms which reflect the coupling of the

qubit-resonator system to its environment. One can generally write the total Hamiltonian as

Heff = HJC +Henv, (1.4)

8



where Henv is, in general, unknown and describes interactions with the environment. This cou-

pling to the environment will describe the losses contributing to the quality factor of the resonator

and therefore finite photon lifetime. Due to their mutual coupling, losses in the resonator will also

couple to the qubit and cause decoherence. As mentioned above, progress in the field has been

largely due to the development of a detailed understanding of the physics contributing to Henv

and minimizing its impact on the performance of the device by improved fabrication methods and

materials. As we will see in the next section, quality factor measurements of resonators provide

a convenient method to probe such sources of loss.

1.1.4 Dielectric loss due to two-level systems

Developments in the field of superconducting quantum devices have revived interest in the field of

amorphous materials [65]. It was mentioned in section 1.1.1 that the dominant source of loss in the

quantum (single-photon) regime arises due to mechanisms totally unrelated to superconductivity.

This source of loss, known as dielectric loss, arises from the fundamental behaviour of amorphous

materials at low temperatures. We will introduce the essential features here with respect to the

field of superconducting devices, and a more general discussion of the relevant physics will be

presented in the following chapter.

Superconducting devices inevitably contain amorphous dielectric materials which are well-

known to become very lossy at temperatures below 1 K [64]. These materials are not only present

in the tunnel oxide barrier of the Josephson junction [77, 53, 76], but also as thin layers on the

surfaces of the substrate and the superconductor [25, 54, 61]. In general, an amorphous material

contains low energy levels which are typically viewed as tunnelling two-level systems (TLS). A

TLS may undergo resonant transitions by absorption or emission of photons or phonons [37, 5].

The photon interaction contributes to the complex permittivity of the material defined as ϵ(ω) =

ϵ′(ω) − iϵ′′(ω). In the case of a superconducting resonator, the electric field of the resonator

couples to a TLS and drives excitations. When expressed in terms of the dielectric loss tangent,

tan δ = ϵ′′/ϵ′, the contribution to the internal loss of the resonator, in the weak electric field limit

and at frequencies for which !ωr > 2kBT , is given by

Qi = pm tan δ = pmQ−1
0 , (1.5)

where pm is the participation ratio [84, 58] or filling factor of the dielectric and Qi is the internal
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quality factor of the resonator. The participation ratio is the electric field energy stored in the

lossy amorphous material divided by the total electrical energy stored in the resonator:

pm =

∫

TLS

dr|E(r)|2ϵ(r)
/∫

Total

dr|E(r)|2ϵ(r). (1.6)

The factor Q−1
0 depends on intrinsic parameters of the material and the two-level systems and is

given by

Q−1
0 =

πp20P0

3ϵ
, (1.7)

where p0 is the effective dipole moment of the two-level systems, P0 is the density of two-level

states, and ϵ is the magnitude of the dielectric constant of the material.

Equation (1.5) describes the unsaturated regime, valid for weak electric fields when the rate

of TLS relaxation is greater than the rate of excitation. Crudely speaking, when the number

of photons is small, a TLS which absorbs a photon will have time to relax back to thermal

equilibrium through interaction with thermal phonons long before it is likely to be excited by a

second photon. As the strength of the electric field is increased, the photon flux will reach a certain

value at which the rate of TLS excitation is equal to the rate of relaxation. At this point the

tunnelling systems become saturated due to their two-level character. This saturation leads to a

decrease in Q−1
i (ω, T ) for an increasing electric field E since the TLS distribution may absorb only

a fraction of the total photons in the material. Much of the relevant physics can be analogously

understood in terms of the framework for two-state spin systems in magnetic resonance [34, 65].

This will be discussed further in the next chapter. To account for saturation and including a

temperature dependent factor, equation (1.5) acquires a non-linear field dependent factor, and is

re-cast in the following form:

Q−1
i (ω, T ) = pmQ−1

0 tanh (!ω/2kBT )
/√

1 + (|E(r)|/Ec)
2, (1.8)

where Ec is the critical saturation field. Equation (1.8) presents some unfortunate consequences

for qubits which require operation in the low-power quantum regime where !ω > 2kBT and

|E(r)| ≪ Ec. Clearly, in this regime, the loss from TLS is greatest.

Most high-quality superconducting resonators consist of a superconducting thin film patterned

onto a high-purity crystalline substrate such as silicon or sapphire. Even when great care is taken

during fabrication, the formation of amorphous oxide layers on the device is very challenging to
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avoid. Under ambient conditions native oxide layers on the metal and substrates will form with

thicknesses on the order of a few nanometers. On aluminum, for example, native AlOx forms

nearly instantaneously at atmospheric pressure with a thickness up to ∼5 nm. Similarly, NbOx,

native oxides of niobium, growth occurs over the course of a few hours. On the substrate, silicon

for example, layers of ∼2-5 nm will also naturally form [55]. Each lossy amorphous layer in

the sample contributes an amount to the loss proportional to its participation factor, pm. The

geometry of the resonator can be designed in such a way that the electric field energy density

is minimized at lossy surfaces and the coupling to two-level systems is reduced [26, 43, 70]. On

the other hand, lossy amorphous layers can be deposited or grown on the capacitor to increase

pm for the purposes of studying in detail the effects of the loss [42, 14, 52, 53]. This allows

superconducting devices to be used as tools to probe the intrinsic properties of an amorphous

material.

1.1.5 Loss in aluminum oxide

Aluminum oxide, Al2O3, or more generally AlOx in the case of unknown stoichiometry, is one

of the most important materials in microfabricated superconducting devices. This is because of

its critical role in forming the tunnel oxide barrier in superconductor-insulator-superconductor

(SIS) Josephson junctions. These films are typically amorphous and therefore contain two-level

systems, which can couple strongly to qubits containing the junctions and induce decoherence

channels. Recent research has demonstrated that TLS populations can be greatly reduced by

using epitaxial junctions [56]. This approach imposes considerable fabrication constraints and

improvements in qubit lifetimes have not been demonstrated. The performance and efficiency of

superconducting qubits relies heavily on the quality of the AlOx which forms the junction.

Qubits have been used in experiments to probe individual TLS [53, 50, 76] by bringing the

qubit into resonance with the TLS and using it to excite transitions. This has the unique benefit

of being able to characterize properties of single TLSs, but due to the small areas of typical

junctions, which are typically much less than 1 µm2, the broad character of the TLS distribution

is not apparent nor is the role of any mutual interaction between them. In this thesis, we

characterize loss in aluminum oxide grown by atomic layer deposition. This growth technique

produces a material which is similar to that used for Josephson junctions, yet has some different

properties in terms of specific stoichiometry and chemical impurity content. These differences

could yield a different distribution of TLS parameters. The technique of atomic layer deposition
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can be used to grow amorphous films of well defined thicknesses, which can be much thicker than

what is achievable with standard plasma oxidation. This allows for thick layers to be deposited

on the resonators, which allows for an accurate characterization of the loss.

1.1.6 Outline of the thesis

Chapter 2 will present the necessary physical description of an amorphous material at low tem-

peratures. Chapter 3 describes the experimental methods involved in a systematic characteriza-

tion of dielectric loss by measurements of superconducting resonators. Chapter 4 presents the

characterization of the attenuation of the input coaxial microwave lines which is an important

parameter in the accurate quantification of dielectric loss parameters. Chapter 5 addresses the

issue of measuring dielectric loss in resonators for which the electric field is spatially inhomoge-

neous. Chapter 6 employs the methods of the previous chapters in a complete analysis of the

temperature-dependent dielectric loss properties.
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Chapter 2

Amorphous dielectrics: the

tunnelling two-level system model

2.1 Historical perspective

In the early 1970’s, measurements of thermodynamic properties of amorphous materials below

10 K demonstrated striking differences compared to crystals. A large contribution to the specific

heat roughly linear in T was observed to dominate over the Debye T 3 phonon component [87]. The

thermal conductivity was found to be not only much smaller than what is measured in crystals,

but also varying as ∼ T 2 and reaching a surprising “plateau” around 1 K. In the following years,

further anomalies in the ultrasonic [28, 66] and dielectric behaviour [73] were reported. All of

the observed phenomena suggested the existence of other degrees of freedom which contribute

to the energy of the systems at low temperatures0. This fact came as a complete surprise since

the prevailing scientific wisdom at the time was that amorphous systems should behave the same

as crystals. This argument was accepted on the basis that the internal energy of the system

at low-temperatures is due to long wavelength phonons of energy on the order of kBT which

are effectively immune to disorder at a scale far less than the wavelength. Thus, it was generally

agreed upon that an amorphous material, as a crystal, could be treated as an elastic continuum. It

had been suspected, however, that the microscopic disorder would produce other modes, but the

strength with which these modes were observed to interact with phonons was unprecedented. As a

result, amorphous materials quickly became a focal point in condensed matter physics. Important
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progress was achieved throughout the 1970s and 80s, yet, there remained some questions of

genuine scientific uncertainty concerning the nature of amorphous materials at low temperature.

In 1972, Phillips [63] and, independently, Anderson, Halperin and Varma [5] developed the

tunnelling two-level system (TLS) model, which satisfactorily explained most observations. The

TLS model considers the intrinsic disorder of an amorphous material to be such that some of

the atoms (or groups of atoms) will have two metastable equilibrium configuration states. It is

further proposed that, at sufficiently low temperatures, quantum tunnelling between the states

is permitted (see Fig. 2.1). The two-level nature of the excitation is, of course, a radical simpli-

fication, but nonetheless one which provides a qualitative explanation of the measurements. The

TLS model, in its original formulation, is an adaptation of the tunnelling model [21] developed

to explain the physics related to defects in crystalline systems. The main difference lies in the

choice of the distribution function describing the two-level systems in the material. In a crystal,

the distribution is sharply peaked at a particular energy, typically unique to the tunnelling defect

itself. Experiments on amorphous materials at different energy scales have shown the existence

of “two-level systems”. From this, it is generally agreed upon that the two-level systems have a

constant density of states over typical energy scales of interest, which in turn implies that TLSs

of varying energies are equally likely to occur.

a) Crystalline Quartz (SiO2) b) Vitreous Silica (SiO
x

)

TLS-1

TLS-2

Figure 2.1: a) Diagram of crystalline Quartz. Black (white) circles represent Si (O). (adapted
from Enss and Hunklinger, Low temperature physics, Ch. 9, Springer, 2004). b) Amorphous
vitreous silica, illustrating the existence of two-level systems described by double well potentials.
The purple and green two level systems depict two different double well potentials.
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2.2 The tunnelling two-level system model

In the original TLS model, certain atoms or groups of atoms in an amorphous material have

two nearby equilibrium positions. At sufficiently low temperatures, the tunnelling of the atoms

between equilibrium positions becomes important. This can be modelled phenomenologically as

a double well potential V formed by the overlap of two single well potentials, V1 and V2, as shown

in Fig. 2.2. To calculate the energy levels, we begin with solutions to the single well problem,

using basis states in the localized representation, |φ1⟩ and |φ2⟩, which are ground states of the

Hamiltonians H1 and H2 respectively. The Hamiltonian of the double well can be written as

H = H1 + (V − V1) +H2 + (V − V2). (2.1)

The eigenvalues of the double well can be found by solving the Schrödinger equation H|ψ⟩ = E|ψ⟩
using the following state as an ansatz:

|ψ⟩ = a1|φ1⟩+ a2|φ2⟩. (2.2)

The energy eigenvalue E is thus given by [21]

E =
⟨ψ|H|ψ⟩
⟨ψ|ψ⟩ =

a21⟨φ1|H|φ1⟩+ a22⟨φ2|H|φ2⟩+ 2a2a1⟨φ1|H|φ2⟩
a21 + a22 + 2a1a2⟨φ1|φ2⟩

(2.3)

We identify the following matrix elements:

H11 = ⟨φ1|H|φ1⟩ = ⟨φ1|H1|φ1⟩+ ⟨φ1|V − V1|φ1⟩, (2.4)

H22 = ⟨φ2|H|φ2⟩ = ⟨φ2|H2|φ2⟩+ ⟨φ2|V − V2|φ2⟩, (2.5)

H12 = H21 = ⟨φ1|H|φ2⟩ (2.6)

where ⟨φ1|H1|φ1⟩ ≡ E1 and ⟨φ2|H2|φ2⟩ ≡ E2 are the eigenenergies of the isolated wells, andH12 =

⟨φ1|H|φ2⟩ is the off-diagonal exchange energy due to the overlap of the localized wavefunctions. If

extension of the individual well ground states into the barrier is small, to a good approximation,

the terms ⟨φi|V − Vi|φi⟩ terms can be neglected in comparison to Ei. As the separation of the

wells increases, H12 and ⟨φ1|φ2⟩ tend to zero. To find the different energies , we impose that

E must be minimized with respect to the coefficients a1 and a2. By differentiating (2.3) with
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respect to a1 and a2 we obtain the following characteristic equations:

∂E

∂a1
= 0 → a1 (H11 − E) + a2 (H12 − E⟨φ1|φ2⟩) = 0, (2.7)

∂E

∂a2
= 0 → a1 (H12 − E⟨φ1|φ2⟩) + a2 (H22 − E) = 0. (2.8)

By eliminating the coefficients a1 and a2, we obtain the following solution:

(H11 − E) (H22 − E)− (H12 − E⟨φ1|φ2⟩) = 0. (2.9)

We choose the zero point energy !Ω ≡ 1
2(E1 + E2) to be the average between those for the two

isolated wells. It follows that the eigenenergies of each well can be expressed as

H11 = E1 =
1

2
(!Ω+∆) , (2.10)

H22 = E2 =
1

2
(!Ω−∆) ,

where ∆ = |V1 − V2|. The terms containing ⟨φ1|φ2⟩ in equation (2.9) can be ignored in the limit

when the wavefunction overlap is weak. By combining equations (2.10) and (2.9) the eigenenergies

of the double well are found to be

E± =
1

2

(
!Ω±

√
∆2 + 4H2

12

)
, (2.11)

and the level splitting of the ground state is

E = E+ − E− =
√

∆2 +∆2
0, (2.12)

where ∆0 = −2H12 is called the tunnel splitting. ∆0 can be evaluated for specific forms of V

by applying the WKB method. Since the true form of the microscopic potential is generally

unknown, the commonly used result relating the tunneling splitting to the potential is

∆0 ≃ !Ω exp (−λ) , (2.13)

λ = d
!
√

2mV0, (2.14)

16



where m is the mass of the tunnelling system, V0 is the barrier height and d is the separation

between the wells. The quantity λ is called the tunnelling parameter. In the local basis formed

by φ1 and φ2, we can write the Hamiltonian as

Hl =
1

2

(
−∆ ∆0

∆0 ∆

)
. (2.15)

Writing in the diagonal basis formed by ψ1 and ψ2 we obtain

Hd =
1

2

(
−E 0

0 E

)
= −1

2
Eσz, (2.16)

where E is given by equation (2.12). It follows that the normalized eigenstates of the double well

TLS potential are given by

|ψ1⟩ = cos θ|φ1⟩+ sin θ|φ2⟩, (2.17)

|ψ2⟩ = sin θ|φ1⟩ − cos θ|φ2⟩, (2.18)

where the eigenenergies of |ψ1⟩ and ψ2⟩ are E and −E respectively and tan 2θ = ∆0/∆.

2.2.1 TLS dipole moment

The dipole moment of the tunnelling system can be easily calculated in the limit where the overlap

of the localized wavefunctions φi is small. It is important to note the dual nature of the dipole

moment. First, it may be considered as an electric dipole where each eigenstate of the system

represents a different configuration of charge. Secondly, it may serve as an acoustic dipole [21, 35]

where different configurations alter the mass density and local strain field in the material. This

second feature further reflects the ability of the TLS to couple electromagnetically to photons

and elastically to phonons. For the electric case, the expectation value of the dipole moment p1

for the state |ψ1⟩ is the following:

⟨p1⟩ = ⟨ψ1|qx|ψ1⟩, (2.19)
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where q is the charge of the two level system and x is the position operator. Inserting |ψ1⟩ given
by equation (2.17) we obtain

⟨p1⟩ = q

∫
dx (φ∗1 cos θ + φ∗2 sin θ)x (φ1 cos θ + φ2 sin θ) . (2.20)

Expanding equation (2.20), ignoring the overlap terms
∫
dxφ∗1φ2 and

∫
dxφ∗2φ1 and making use

of the identities 2 sin2 θ = 1− cos 2θ and 2 cos2 θ = 1 + cos 2θ, we find

p1 =
q

2

∫
dxφ∗1xφ1(1 + cos 2θ) +

q

2

∫
dxφ∗2xφ2(1− cos 2θ). (2.21)

The dipole moment of the TLS in one of the localized wells p0 is denoted as q
∫
dxφ∗1xφ1 =

−q
∫
dxφ∗2xφ2 ≡ p0. Using equation (2.12) and tan 2θ = ∆0/∆, it follows that

p1 =
p0
2

(
1 +

∆

E

)
− p0

2

(
1− ∆

E

)
= p0

∆

E
. (2.22)

Similarly, for p2 we have

p2 = −p0
∆

E
= −p1. (2.23)

The TLS dipole moment is the most physically relevant quantity in the description of dynamic

effects which arise due to the coupling to external fields. This will be discussed later in section

2.3. Next, some necessary assumptions are made to describe a distribution of TLSs, a necessary

entity for understanding measurements of bulk amorphous materials.

2.2.2 TLS distribution function

Most experiments measure bulk properties of an amorphous material, as opposed to the discrete

nature of a TLS. In order to predict the effect of many TLSs, knowledge of the distribution of

their parameters is required. In an amorphous material the existence of many nearly-identical

tunnelling systems is generally agreed upon to be unlikely. This is due to the assumption that,

contrary to defects in crystals, the random internal structure of an amorphous material likely

produces a broad distribution of both the asymmetry energy ∆ and the tunnelling parameter λ.

Moreover, it is assumed that ∆ and λ are independent microscopic parameters. Therefore, they
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b)
Localized states

TLS eigenstates

TLS schematica)

Figure 2.2: a) Schematic of a tunnelling two-level system. The overlap of two harmonic potentials
of energy E1 and E2 and ground states φ1 and φ2 forms a double well potential with an asymmetry
energy ∆ and tunnelling energy ∆0. The wells are separated by a distance x0 along the dipole
axis of the TLS which is typically on the order of < 1nm. b) The eigenstates, assuming the
overlap of φ1 and φ2 is small, are given by ψ1 = cos θφ1 + sin θφ2 and ψ2 = sin θφ1 − cos θφ2,
where tan 2θ = ∆0/∆.
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are uniformly distributed over the energy density element d∆dλ and we can write the distribution

function as [5, 21, 65]

P (∆,λ)d∆dλ = P0d∆dλ, (2.24)

where P0 is a constant. Given that ∆0 = !Ωe−λ and |d∆0
dλ | = ∆0, an equivalent distribution can

be expressed in terms of the tunnelling energy ∆0. It is written as

P (∆,∆0)d∆d∆0 = P (∆,λ)d∆
d∆0

∆0
(2.25)

=
P0

∆0
d∆d∆0. (2.26)

Another useful representation of the distribution function is one in terms of total energy E and

∆0. P (E,∆0) is determined from P (∆,λ) by a Jacobian variable transformation, and the result

is

P (E,∆0)dEd∆0 = P (∆,λ)

∣∣∣∣∣

∂λ
∂∆0

∂λ
∂E

∂∆
∂∆0

∂∆
∂E

∣∣∣∣∣ dEd∆0

= P (∆,λ)

∣∣∣∣
∂λ

∂∆0

∣∣∣∣

∣∣∣∣
∂∆

∂E

∣∣∣∣ dEd∆0 (2.27)

=
P0

∆0

E√
E2 −∆2

0

dEd∆0. (2.28)

Integration over ∆0 yields the density of states ρ(E). To avoid an unphysical divergence in the

integral, a minimum tunnelling energy ∆min
0 ̸= 0 must be introduced. The density of states is

then found to be

ρ(E) = P0

∫ E

∆min
0

E

∆0
√
E2 −∆0

d∆0 (2.29)

≃ P0 ln

(
E

∆min
0

)
. (2.30)

The physical nature of ∆min
0 is a consequence of the existence of λmax corresponding to the

maximum barrier height for which tunnelling is permitted. Equation (2.30) can then be used

to calculate the internal energy due to TLSs and subsequently the specific heat. The form of

equation (2.30) results in a linear temperature dependence in the specific heat. This provided
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the first explanation of initial experiments [87]. The logarithmic factor which depends on en-

ergy is typically very slowly varying over experimental energy scales of interest, and is therefore

commonly ignored and the density of states is treated as ρ(E) ≃ constant.

2.3 Response to a weak external field

2.3.1 Dynamics

The time dependent behaviour of the two-level system is captured by the complex amplitudes

A1(t) and A2(t) of the appropriate eigenstates ψ1 and ψ2. The general time dependent wavefunc-

tion can be written as

Ψ(t) = A1(t)ψ1(x) exp(−iE1t/!) +A2(t)ψ2(x) exp(−iE2t/!), (2.31)

where E1 and E2 are the eigenenergies. Two quantities of interest are the difference in probabilities

of finding the TLS in either of the two states A∗
2A2−A∗

1A1, and A∗
1A2, which quantifies the phase

difference between ψ1 and ψ2. These two quantities are necessary in a full dynamical description.

The average value of time-dependent dipole can now be calculated using the state given by

equation (2.31).

⟨p(t)⟩ = ⟨Ψ(t)|qx|Ψ(t)⟩ (2.32)

= p1 (A
∗
1A1 −A∗

2A2) + p12
(
A∗

1A2e
iω0t +A∗

2A1e
−iω0t

)
.

In equation (2.32) we have introduced !ω0 ≡ E2−E1 as the difference in energy of the stationary

states, and used the following static diagonal (p1 and p2) and off-diagonal (p12 and p21) dipole

moments:

p1 = q⟨ψ1|x|ψ1⟩ = −p2 = −q⟨ψ2|x|ψ2⟩, (2.33)

p12 = p21 = q⟨ψ2|x|ψ1⟩. (2.34)

A1(t) and A2(t) are determined by the time-dependent Schrödinger equation i! ∂
∂tΨ = H(t)Ψ.

When the external field is weak, the time evolution of the TLS may be treated using perturbation

theory. In this case the TLS excitation rate induced by the perturbation field is not enough to
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significantly alter the thermal equilibrium distribution of ψ1 and ψ2, and the terms describing

the phase coherence A∗
1A2 can be neglected. For strong fields, the phase coherence plays an

important role and will be addressed in section 2.2.3.

Experimental evidence confirms the significant contribution of two-level systems to the ther-

mal properties of amorphous materials. For T < 1 K, this means energies less than 20 GHz

are necessary to drive resonant transitions. For electromagnetic and elastic acoustic waves this

corresponds to wavelengths on the order of 10 mm and 100 nm or less respectively. The spatial

extent of a TLS will vary between materials, but it is generally found to be less than 1 nm.

Therefore, the magnitude of the field is roughly homogeneous from the perspective of the TLS

and the coupling can be treated as dipolar. In this regime, the dominant effect of the field is to

modulate the asymmetry energy ∆. This perturbation is therefore diagonal in the basis of the

localized states φi. Transforming to the diagonal basis formed by ψi, the interaction Hamiltonian

for the tunnelling model reads

Hint =

∣∣∣∣
∆

E
σz +

∆0

E
σx

∣∣∣∣ (p0 · ξ(t) + γ · e(t)) , (2.35)

where p0 =
(
1
2
∂∆
∂ξ ,

1
2
∂∆0
∂ξ , 0

)
is the dipole coupling of the TLS to an electric field ξ and, equiv-

alently, γ is the coupling to the tensorial strain field e. The interaction Hamiltonian includes

interactions with both electric and elastic strain fields reflecting the fact that they have the same

effect on the TLS. An important point must be made concerning equation (2.35). Clearly, the

σz terms will change the relative energies of of ψ1 and ψ2, while the σx terms will drive transi-

tions between them. There is a relationship between the diagonal and off-diagonal terms, since

they both depend on the TLS energy, E. A simpler interpretation can be made in terms of an

interaction Hamiltonian which ignores this relationship and considers independent diagonal and

off-diagonal electric dipole moments µ and µ̃ and acoustic dipole moments D and M . In this

representation, the energy difference between the two states is described completely by E alone,

and the interaction Hamiltonian for the two-level system model reads

Hint =

(
1

2
µσx + µ̃σz

)
ξ(t) +

(
1

2
Dσx +Mσz

)
e(t), (2.36)

for coupling to both electric and elastic fields.
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2.3.2 TLS relaxation

A TLS in an amorphous material will interact with a random strain field produced thermal

phonons. This phonon field can be treated as a superposition of different phonon modes. The

heat bath drives the TLS towards thermal equilibrium, at which point the occupation probabilities

P1 = A∗
1A1 = P eq

1 and P2 = A∗
2A2 = P eq

2 are independent of time. In this steady state regime [64]

we have

P eq
1 Ω12 = P eq

2 Ω21, (2.37)

where Ω12 and Ω21 are the transition rates from ψ1 → ψ2 (resonant absorption) and ψ2 → ψ1

(stimulated emission), respectively. Away from equilibrium, the rate equations for P1 and P2 are

given by

dP1

dt
= −P1Ω12 + P2Ω21, (2.38)

dP2

dt
= P1Ω12 − P2Ω21. (2.39)

Writing (2.38) in terms of P1 only we obtain

dP1

dt
= −P1 (Ω12 + Ω21) + Ω21. (2.40)

The relative population and rate is given simply by the Boltzmann factor

P 0
1

P 0
2

=
Ω21

Ω12
= e−E/kBT . (2.41)

Introducing a relaxation rate T−1
1 as the sum of two transition rates, we have

T−1
1 = Ω12 + Ω21 = Ω12

(
1 + eE/kBT

)
. (2.42)

The transition rate Ω12 is calculated using the Golden Rule, where the density of final states is

given by the phonon field. From this, we obtain

Ω12 =
2π

!
∑

α

|⟨ψ1|Hint,α|ψ2⟩|2 g(E)fB(E), (2.43)
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where g(E) is the Debye density of phonon states which define thermal equilibrium, fB(E) is the

Bose-Einstein distribution, and the sum is over phonon polarizations α. Thermal equilibrium is

achieved through interaction with the phonon strain field e. The amplitude of an acoustic phonon

wave 2e0 cosωt can be written as
√
!/2ρω (ω/vα), where vα is the phonon wave-speed and ω is

the angular phonon frequency. Applying this to Hint,α given by (2.35), the matrix element in

(2.43) becomes

⟨ψ1|Hint,α|ψ2⟩ = γα

√
!ω
2ρv2α

(
∆

E

∫
dxψ∗

1σzψ2 +
∆0

E

∫
dxψ∗

1σxψ2

)
. (2.44)

We note that ψ1 and ψ2 are eigenstates of σz and that σxψ2 = ψ1. Therefore, the first term in

(2.44) vanishes and we obtain

⟨ψ1|Hint,α|ψ2⟩ = γα

√
!ω
2ρv2α

∆0

E
, (2.45)

and the transition rate Ω12 becomes

Ω12 =
∑

α

γ2α
v5α

∆2
0E

2πρ!4
1

eE/kBT − 1
, (2.46)

where we have used the phonon energy E ≡ !ω. The relaxation rate T−1
1 is then given by

T−1
1 =

∑

α

γ2α
v5α

∆2
0E

2πρ!4 coth(E/2kBT ). (2.47)

Equation (2.49) is the relaxation rate for a tunnelling system which depends on both the total

energy E and the tunnelling energy ∆0. The equivalent expression for the two-level system,

according to Hint,α given instead by (2.36), is obtained by setting ∆0 → E. In this case, the

existence of many different relaxation rates for all allowed values of ∆0 is ignored. It is also

important to note that since the relaxation time for the two-level case occurs for E = ∆0, ∆ = 0.

This defines a minimum relaxation time T1,m, so T1 for the tunnelling case can be conveniently

expressed as

T1(E,∆0) =
E2

∆2
0

T1,m(E). (2.48)
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By differentiating with respect to ∆0 we obtain

d∆0

∆0
= −1

2

dT1∆2
0

T1,m(E)E2
= −1

2

dT1

T1
(2.49)

Using (2.48) and (2.49), (2.28) can be alternatively written in terms of E and T1 as the follow-

ing [37],

P (E,∆0)dEd∆0 → P (E, T1)dEdT1 =
P0dEdT1

2T1

√
1− T1,m(E)/T1

. (2.50)

Equation (2.50) describes the range of T1 allowed by the distribution of ∆0 (eq. 2.26). The

nature of (2.50) presents measurable consequences depending on the experimental timescale. For

example, measurements of specific heat demonstrated a time dependence which can be understood

in terms of an effective density of states ρeff including only states which relax within the duration

of the experiment, texp, calculated as

ρeff(E) =

∫ texp

T1,m

P (E, T1)dT1 =
P0

2
ln

(
4texp
T1,m

)
. (2.51)

2.3.3 Weak fields

The interaction of phonons or photons with two-level systems is the dominant source of scattering

below 1 K. In the weak field limit, a rate equation approach similar to that used in the calculation

of T−1
1 can be applied to determine the lifetime of the phonon or photon. In the case of an electric

field, by taking into account the detailed balance between the energy lost by a photon and the

energy absorbed by a TLS, the scattering or absorption rate can be written as

τ−1
ph =

2π

! |⟨ψ1|Hint|ψ2⟩|2 tanh(E/2kBT ), (2.52)

where the tanh(E/2kBT ) factor is the difference in TLS state population in thermal equilib-

rium [65, 37]. In next section, we will see how this result is obtained in the weak field limit.

It can be seen that if the thermal distribution of TLSs is one in which mostly the lower energy

states are populated, absorption by TLSs will be maximal. To calculate τ−1
ph for a photon, we

used the amplitude of the electric field
√

!ω/2ϵ, and the matrix element in equation (2.52) is

⟨ψ1|Hint|ψ2⟩ = p0

√
!ω
2ϵ

∆0

E
. (2.53)
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It follows that the absorption rate becomes

τ−1
ph (ω) =

πp20ω

ϵ

∆2
0

E2
tanh(E/2kBT ). (2.54)

The total scattering at an energy E = !ω is given by

T−1
ph (E = !ω) =

∫ +∞

−∞
d∆

∫ E=!ω

∆min
0

P0

∆0
d∆0τ

−1
ph (2.55)

=
πp20ω

ϵ
P0 tanh(!ω/2kBT ),

where we have considered both positive and negative values of the asymmetry energy ∆, and

∆min
0 can be set to zero since the integrand does not diverge. The inverse mean free path of the

photon and the dimensionless Q-factor are defined as

l−1(ω) =
T−1
ph

c
=
ω

c
Q−1

TLS. (2.56)

From this definiton we recover equation (1.2)

Q−1
TLS (ω, T ) = Q−1

0 tanh(!ω/2kBT ) (2.57)

where Q−1
0 = πp20P0/3ϵ is the intrinsic dielectric loss tangent tan δ0. The factor of 3 arises from

averaging over all possible dipole orientations in an isotropic material.

2.4 Strong fields: The Bloch equations

The dynamics of a TLS in strong fields depends on the coherence between the two eigenfunctions

ψ1 and ψ2. The time evolution of the occupation coefficients deduced from the time-dependent

Schrödinger equation are

Ȧ1(t) =
1

i!
[
⟨ψ1|Hint(t)|ψ1⟩A1 + ⟨ψ1|Hint(t)|ψ2⟩A2e

−iω0t
]
, (2.58)

Ȧ2(t) =
1

i!
[
⟨ψ2|Hint(t)|ψ2⟩A2 + ⟨ψ2|Hint(t)|ψ1⟩A1e

iω0t
]
. (2.59)
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The dynamics can be naturally understood by recalling the spin-12 analogy for a TLS [24]. The

full Hamiltonian reads

H =
1

2
Eσz +

∣∣∣∣
∆

E
σz +

∆0

E
σx

∣∣∣∣p0 · ξ(t). (2.60)

By setting 1
2σ → S, and for the purpose of illustrating the analogy of a spin-12 in a magnetic

field B, we write the Hamiltonian as

H = −!ηB · S = −!ηB0 · S − !ηB(t) · S, (2.61)

where B0 and B(t) are the static and oscillating components. Writing them explicitly in terms

of the unperturbed TLS paramters and the components of the perturbing electric field gives

− !ηB0 = (0, 0, E) , (2.62)

−!ηB(t) = 2

(
∆0

E
p0 · ξ(t), 0,

∆

E
p0 · ξ(t)

)
= (px, 0,pz) · ξ(t). (2.63)

The time evolution, ignoring relaxation and decoherence, is that of free spin precession,

d

dt
S(t) = ηS(t)×B. (2.64)

In a physical ensemble there will be processes which give rise to longitudinal (T1) and transverse

(T2) relaxation times. Accounting for this, we have the following set of coupled equations for the

ensemble average of ⟨S(t)⟩

d

dt
⟨Sx⟩ = η (Bz⟨Sy⟩ −By⟨Sz⟩)−

⟨Sx⟩
T2

, (2.65)

d

dt
⟨Sy⟩ = η (Bx⟨Sz⟩ −Bz⟨Sx⟩)−

⟨Sy⟩
T2

,

d

dt
⟨Sz⟩ = η (By⟨Sx⟩ −Bx⟨Sy⟩)−

⟨Sz⟩ − ⟨Seq
z ⟩

T1
.

These are the Bloch Equations of nuclear magnetic resonance [13]. In steady state, where varia-

tions in the field are slow compared to transitions rates, Seq
z , the instantaneous equilibrium of a

TLS, and is given by

Seq
z (Bz(t)) =

1

2
tanh(!ηBz(t)/2kBT ). (2.66)
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Equation (2.66) reflects the effect of the field Bz on the thermal equilibrium distribution of the

TLSs. Writing the static and time dependent fields together, we have

B = B0 + 2B′ cos(ωt) = B0ẑ + (Bxx̂+Bzẑ)
(
eiωt + e−iωt

)
. (2.67)

In the previous section, the field was sufficiently weak such that the TLS effectively remained in

its unperturbed thermal equilibrium state. The steady state solutions ( d
dtS = 0) to (2.65) reflect

the new thermal equilibrium of the ensemble under continuous driving due to B. The Bloch

equations can be solved analytically by assuming small departures from thermal equilibrium, i.e,

linearizing (2.66), and using the Fourier series expansion solution

⟨S(t)⟩ =
∞∑

m=−∞
Smeiωmt, (2.68)

where ωm = mω. It can be shown that only m = −1, 0, 1 are required [34] to describe the

behaviour near resonance. The system of equations is solved by introducing It is then found that

the two components of the Fourier series needed to describe the system are

Sx(ω) = −S0
z

2!

(
1

ω0 − ω + iT−1
2

+
1

ω0 + ω − iT−1
2

)
!ηBx ≡ χx(ω)!ηBx, (2.69)

Sz(ω) =
dS0

z

d (!ηB0)

1− iωT1

1 + ω2T 2
1

!ηBx ≡ χz(ω)!ηBz, (2.70)

and

S0
z (ω) =

1 + (ω0 − ω)2T 2
2

1 + (ηBx)2T1T2 + (ω0 − ω)2T 2
2

Seq
z (B0), (2.71)

where we have defined the frequency-dependent susceptibility components χx and χz, and ω0 =

ηB0. Equations (2.69) - (2.71) can mapped to our problem by applying the relation of (2.62) and

(2.63). The response of a TLS to an external field is reflected in the dielectric susceptibility ¯̄χ,

which has tensorial character in general. According to χx and χz, this happens in two ways. χx

describes a resonant process which dominates in the regime where ωT1 ≫ 1, and χz describes

a relaxation process which only contributes for ωT1 ≤ 1. We can define the components of ¯̄χ

in terms of their contributions to the permanent and transition dipole moments from (2.63),

pz and px. As a result of the electric field ξ, the average dipole moments are given by the
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following [24, 34]:

⟨px⟩ = ¯̄χx(ω) · ξ, (2.72)

⟨pz⟩ = ¯̄χz(ω) · ξ, (2.73)

where ¯̄χx and ¯̄χx are found from (2.69) - (2.71) to be

¯̄χx(ω) = −σ
0
z

!

(
1

ω0 − ω + iT−1
2

+
1

ω0 + ω − iT−1
2

)
pxpx, (2.74)

¯̄χz(ω) = −dσ0z
dE

(
1− iωT1

1 + ω2T 2
1

)
pzpz, (2.75)

where

σ0z(E) =
1 + (ω0 − ω)2T 2

2

1 + Ω2
RT1T2 + (ω0 − ω)2T 2

2

σeqz (E),with (2.76)

σeqz (E) = − tanh(E/2kBT ). (2.77)

We have introduced the ΩR = 2px · ξ/! as the Rabi frequency of the TLS. In terms of the Bloch

model, T1 and T2 are typically taken as phenomenological relaxation times. In our case, T1 is the

same as that discussed in section 2.2.2, and is due to coupling to the phonon bath. The origin

of T2 is more complicated as it depends on the mutual interaction between TLSs, and will be

discussed in a later section.

2.4.1 Complex dielectric permitivitty

When considering measurements of dielectric loss using superconducting resonators, frequencies

on the order of 109 GHz and temperatures T < 1 K are typical. In this regime, the effect of

the TLS on the dielectric constant is entirely due to resonant absorption, ¯̄χx(ω). The relaxation

regime, where ω < T−1
1 presents interesting physics [37], but the analytical treatment is beyond

the context of this thesis and need not be considered to understand our measurements (see chapter

6). The contribution to the complex dielectric constant due to ¯̄χx(ω) is found by integrating over

the TLS parameters. We have [24, 62]

ϵTLS(ω) = ϵ′(ω)− iϵ′′(ω) =

∫∫∫
d∆d∆0dp̂

P0

∆0
p̂ · ¯̄χx(ω) · p̂, (2.78)
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where
∫
dp̂ is over dipole orientations. This expression can be simplified by making the variable

substitution x = ∆0/E where E2 = ∆2 +∆2
0. It follows that [24]

∫ ∆max

0

∫ ∆0,max

∆0,min

P0

∆0
d∆0d∆ → P0

∫ Emax

0

∫ 1

xmin

x√
1− x2

dxdE. (2.79)

Including the angular component of the dipole orientation, the integral becomes

ϵTLS(ω) = P0p
2
0

∫ Emax

0
dE

∫ 1

xmin

x√
1− x2

dx

∫ π/2

0
cos2 θ sin θdθ (2.80)

×
[
tanh

(
E

2kBT

)
1 + (E/!− ω)2T 2

2

1 + Ω2
RT1T2 + (E/!− ω)2T 2

2

G(E)

]
(2.81)

By observing that

Ω2
RT1 =

(
2p0|ξ| cos θ

!
∆0

E

)2

× T1,m

(
E

∆0

)2

= 4p20|ξ|2 cos2 θT1,m/!2, (2.82)

has a dependence on θ but not x, the integral over x is approximately
∫ 1
xmin

x√
1−x2dx ≃ 1. The in-

tegral over θ is of the form
∫ 1
0

z2

a2z2+1dz = a−arctan(a)
a3 ∼ 1

3
1

a2/3+1 , where a = !−22p20ξ
2T1,m(E)/(1+

(E/!− ω)2T 2
2 ). Using these results the integral over E is

ϵTLS(ω) =
P0p20
3

∫ Emax

0
dE tanh(E/2kBT )L(E, Ω̃R(ξ))G(E), (2.83)

where

L(E, Ω̃R(ξ)) =
σ0z(E, Ω̃R(ξ))

σeqz (E)
=

1 + (E/!− ω)2T 2
2

1 + Ω̃2
R(ξ)T1T2 + (E/!− ω)2T 2

2

, (2.84)

G(E) = G−(E) + G+(E) =
1

E/!− ω + jT−1
2

+
1

E/!+ ω − jT−1
2

. (2.85)

Above, Ω̃R is the effective Rabi frequency given by

Ω̃R(ξ) =
2p0ξ√
3!

∆0

E
, (2.86)
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where the factor of
√
3 arises from the integral over dipole configurations. In the weak field limit,

L(E, Ω̃R(ξ → 0)) → 1, the dielectric constant as a function of temperature is given by: [65]

ϵTLS(ω) = −2P0p20
3

(
D

(
1

2
− !ω − j!T−1

2

2πjkBT

)
− ln

(
Emax

2πkBT

))
, (2.87)

where D is the complex digamma function. Furthermore, it follows in a similar manner that the

relative shift in the dielectric constant as a function of temperature is

Re
ϵTLS(T )

ϵTLS(T0)
= 1 +

2πP0p20
3ϵ

(
ReD

(
1

2
− !ω

2πjkBT

)
− ln

(
!ω

2πkBT

))
, (2.88)

where ϵTLS(T0) is a reference value at temperature T0. The loss tangent can be found by noting

that the main contribution to the imaginary part of the integral in (2.81) is due to the resonant

absorption from TLS. Therefore the second term in G(E) can be ignored and the loss tangent

becomes

Im[ϵTLS(ω)]

ϵ
=

P0p20
3ϵ

∫ Emax

0
dE tanh(E/2kBT )Im[G−(E)] (2.89)

=
P0p20
3ϵ

∫ Emax

0
dE tanh(E/2kBT )

−T−1
2

(E/!− ω)2 +
(
T−1
2

)2

≃ −P0p20
3ϵ

∫ Emax

0
dE tanh(E/2kBT )πδ(E − !ω)

where we have assumed the linewidth of the Lorenztian to be sharply peaked at E/!. This is

generally believed to be valid in the resonant regime since ω ≫ T−1
2 . It then follows that we

recover equation (2.57)

Q−1
TLS (ω, T ) = Q−1

0 tanh(!ω/2kBT ). (2.90)

For the case of a strong electric field, again we can neglect G+(E) in the integral, since it describes

a relaxation-like process the contribution from which is small. The imaginary part of ϵ takes the
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form

Im[ϵTLS(ω)]

ϵ
=

P0p20
3ϵ

∫ Emax

0
dE tanh(E/2kBT )L(E, Ω̃R(ξ))Im[G−(E)], (2.91)

=
P0p20
3ϵ

∫ Emax

0
dE tanh(E/2kBT )

−T−1
2

(E/!− ω)2 +

(
T−1
2

√
1 + Ω̃2

R(ξ)T1T2

)2 ,

which is similar to (2.89) but now the width of the Lorentzian is T−1
2

√
1 + Ω̃2

R(ξ)T1T2 and the

integral is, to a good approximation, given by

Im[ϵTLS(ω)]

ϵ
≃ −πP0p20

3ϵ

tanh(!ω/2kBT )√
1 + Ω̃2

R(ξ)T1T2

. (2.92)

This is one of the central results of the TLS model. It reflects the non-linear dependence of the

loss tangent on the strength of the applied electric field ξ. Expressing in terms of the inverse

Q-factor, we have

Q−1
TLS (ω, T, ξ) = Q−1

0
tanh(!ω/2kBT )√

1 + (ξ/ξc)
2

, (2.93)

where ξc is the critical saturation field given by

ξc =

√
3!

2p0

∆0

!ω
1√
T1T2

=

√
3!

2p0
√

T1,mT2
. (2.94)

The effect of saturation was one of the first indications of the existence of two-level sys-

tems [36]. It was observed both in acoustic and electric cases but was difficult to probe reliably

over large temperature ranges and required very small fields to detect. Measuring the critical

saturation field over a large temperature range would provide an indirect measure of the ensemble

T1 and T2. Many experiments [29, 30, 66] were conducted in the 1970’s and 80’s using acoustic

pulses to measure T1 and T2. In many cases the steady state solutions to the Bloch equations

were are not valid since the duration of the pulse was less than T1 and T2. Experimental evidence

strongly supports the assumption that T1 is due primarily to phonon relaxation [65], as outlined

in section 2.2.2. T2, however, was found to be much less than T1. Therefore, T
−1
2 was not limited

by relaxation and suggested the existence of other sources of dephasing [40, 10] . In general, T2
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can be written as [65]

T−1
2 = 1

2T
−1
1 + T−1

φ , (2.95)

where T−1
φ is due to contributions from sources of pure dephasing.

2.4.2 TLS-TLS interactions

The small value of T2 is a result of broadening of the TLS spectral line width [10, 33, 45]. Recalling

the spin-12 picture [34], the Hamiltonian of the non-interacting TLS ensemble is

H = −
∑

i

EiS
i
z −

∑

i

(
µiξiS

i
x + µ̃iξiS

i
z +DieiS

i
x +BieiS

i
z

)
, (2.96)

where a TLS of energy Ei =
√

∆2
i +∆2

0,i experiences an electric field ξi and a strain field ei. The

prefactors µ̃i, µi, Di and Bi are coupling constants. The interaction between TLSs is a difficult

problem to address since in an amorphous material there is no simple relationship between the

axes of phase space (Si
x, S

i
z) and real space. One can write down a Hamiltonian which takes a

form analogous to a spin-spin Hamiltonian. It is given by

HTLS-TLS =
∑

i>j

JijS
i
zS

j
z , (2.97)

Jij =
Cij

r3ij

∆i

Ei

∆j

Ej
, (2.98)

where Cij is a coupling tensor. Forms of Cij can be worked out for the case of an isotropic

material [10, 40]. The effect of the mutual interaction can be illustrated in the following way [10]:

Consider a subset of the TLS ensemble which is resonant with the applied field (r-TLS), and also

a subset which is undergoing random thermal transitions as a result of the interaction with the

phonon field (t-TLS). The effect of the random transitions of a t-TLS will be to cause fluctuations

in the phonon field, which are in turn felt by the r-TLS. This effect leads to broadening of the

spectral profile of the r-TLS. The theory of spectral diffusion predicts a temperature dependence

of T−1
φ which varies as ∼ T 2, and explains much of the experimental data. It is unclear to

what extent spectral diffusion plays a role in the steady-state regime and at higher temperatures

towards 1 K as it lacks experimental support. The general belief is that the relaxation rate due

to phonons grows quickly and dominates over processes which contribute to T−1
φ , but this has

33



not been clearly observed in experiments.

2.5 Limitations of the TLS model

The tunnelling two-level system model provides an adequate description of the experimental

data on the low temperature properties of amorphous dielectrics. The assumptions concerning

the distribution of TLSs and their energy level structure are necessary insofar as they yield a

relatively straightforward set of predictions. Despite the success of the model, there remain some

open problems. The obvious first problem is specifically the nature of the microscopic entity which

assumes the role of the TLS. There are clear instances where the microscopic TLS is known, but in

general it remains a phenomenological construct. Moreover, given the broad range of materials to

which the model is applied, from basic amorphous oxides to complex polymer solutions, a clear

microscopic picture remains ambiguous. This ties into the second main issue with the model.

There is a striking universality in the acoustic version of the intrinsic inverse Q-factor, Q−1
0 =

πγ20P0/2ρv2. Q−1
0 reflects the ratio of the phonon wavelength λ to its mean free path l, as seen

in equation (2.56). This dimensionless number tends towards a value of ∼ 3× 10−4 in nearly all

amorphous dielectrics, and is very difficult to explain within the framework of the TLS model. It is

possible that the factors in the definition ofQ−1
0 can be such that this number is obtained, however,

they are believed to be independent of each other and unique to a particular material. Thus, it

is very difficult to account for this universality in terms of the TLS model without the invocation

of a truly extraordinary degree of coincidence. In the case of an electric field, such a universality

in Q−1
0 for a photon has not been observed. This could be due to the different propagation

characteristics of electromagnetic waves compared to ultrasonic waves. Electromagnetic waves at

GHz frequencies have wavelengths on the order of mm, but for an ultrasonic wave this is only

∼ 100 nm. Many have suggested that the nature of the universality can only arise from long

range interactions which scale as r−3. The theory of spectral diffusion explains qualitatively the

temperature dependence of the coherent properties of TLSs, but a complete treatment of the

mutual interaction remains an open problem. Some works have considered a particular type of

mutual interaction in terms of virtual phonon exchange [80, 40] induced by the driving field itself.

This is quite challenging and depends on both wavelength and the convergence of a many-body

Hamiltonian normalization procedure. Therefore, a first principle theory concerning amorphous

solids that remains general at the microscopic level, remains unconquered ground in condensed
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matter physics.

It has been suggested [48] that a “smoking-gun” validation of the TLS model lies in an ex-

tensive measurement of the temperature dependence of the intrinsic loss tangent Q−1
i (ω, T ) =

Q−1
0 tanh(!ω/2kBT ) which explores its full functional range. Furthermore, ensemble measure-

ments of relaxation and dephasing over a large temperature range using electric fields have not

been performed using superconducting resonators. The first measurement probes the TLS den-

sity of states and specifically its two-level character in thermal equilibrium. The second measures

coherent effects of the TLS, namely, phonon relaxation and dephasing mechanisms induced by

mutually interacting TLSs, the origin of which is not well understood as T → 1 K.
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Chapter 3

Experimental methods

3.1 Circuit model of a lumped element resonator

The remainder of the work presented in this section is a summary of the work in reference [18].

Extraction of the internal Q-factor of a superconducting resonator depends on the details of how

it is coupled to microwave signals. A resonator will lose energy both by internal losses, Q−1
i , and

its coupling to an external circuit, described by the quality factor Q−1
e . The inverse of the total

Q-factor is given generally by

Q−1 = Q−1
i +Q−1

e . (3.1)

The internal quality factor, Q−1
i , is the quantity of interest in terms of dielectric loss, and this

chapter will outline a robust method for the extraction of Q−1
i from transmission measurements

of a lumped element resonator [18]. Lumped element resonators were the focus of this work

because their parameters can be easily varied to achieve different device designs, all of which can

be understood in terms of our model.

In our devices, the resonator is formed by a capacitor C0 and an inductor L, as illustrated in

Fig. 3.1a). The resonator is coupled to a coplanar waveguide of characteristic impedance Z0 by a

mutual inductance M and a capacitance Cc. The mutual inductance is M = k
√
LL1 where L1 is

the inductance of the line which coupled to the resonator and k is a coupling factor which can be

no greater than unity. A resistance R is necessary for the definition of the internal Q-factor for

a lumped element resonator, Qi = ω0RC0 [68], where ω0 is the resonance frequency. Figure 3.1
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b) shows an equivalent network circuit for the case where we have perfect impedance matching

(Z = 50 Ω) between the coaxial lines coming from the voltage source and the coplanar waveguide

on the device.

a) b)

Lumped element resonator

Z0

Vac

Z0

C0 RL

L1

M Cc

f0 =
1

2⇡
p
LC0

V +
in V +

out

Lumped element resonator

Z0

Vac

Z0

C0 RL

L1

M Cc

f0 =
1

2⇡
p
LC0

Vg

V
out

Figure 3.1: a) Lumped element circuit model for a resonator of inductance L and capacitance C0

coupled to a transmission line of impedance Z0. The input voltage from the experimental setup
is V +

in and the measured output voltage is V +
out b) An equivalent network model for the circuit in

a) where Vg = 2V +
in , Vout = V +

out and V is the voltage on the capacitor.

The microwave response function of the resonator S21(ω) = V +
out/V

+
in is the central quantity of

interest. It is also known as a scattering parameter for a 2-port microwave network. By applying

Kirchoff’s laws to the circuit in Fig. 3.1, we obtain

S21(ω) =
2 + V

V +
in

(
jωCcZ

+
in +M/L

)

1 + Z ′
in/Z0 + jωCcZ ′

in

, (3.2)

where V/V +
in , a quantity which will be of interest later when interpreting electric field dependent

quantities, is given by

V

V +
in

= −2
M/L− jωCcZ ′

out

Z ′
out + Z ′

in

/(
1

jωL
+

1

ZC
+

jωCc

jωCcZ0 + 1
+

(M/L− jωCcZ ′
out)

2

Z ′
out + Z ′

in

)
. (3.3)

In equations (3.2) and (3.3) we have simplified the expression by using the following impedance
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definitions:

Z ′
in = Z0 + jωL1 − jωM2/L, (3.4)

Z ′
out =

Z0

1 + jωCcZ0
, (3.5)

ZC =
1

jωC0 + 1/R
. (3.6)

The response function, S21(ω) is a complicated complex expression which depends on all compo-

nents of the circuit. Generally, we can assume the response is of the form

R(ω) = R0

∏n−1
i=0 (ω − zi)∏m−1
j=0 (ω − pj)

=
N(ω)

D(ω)
, (3.7)

where R0 is a constant factor and N(ω) and D(ω) are polynomial functions of order n and m with

zeroes zi and poles pj respectively which depend on the details of the circuit. We are interested

in the behaviour of S21 in the vicinity of the resonance ω′
0, where it will be approximately given

by a Lorentzian, whose profile and asymmetry is governed primarily by the closest poles p0 and

zeroes z0 from equation (3.7). We have

R(ω) ≃ Ñ(ω)

D̃(ω)

ω − z0
ω − p0

, (3.8)

where Ñ(ω) and D̃(ω) are polynomial functions with zeroes and poles pj ̸=0 and zi ̸=0 respectively.

The closest pole p0 and zero z0 of the response function define the resonance, ω′
0. For a high-

Q superconducting resonator, in the vicinity of resonance, ω′
0 − δω ≤ ω′

0 ≤ ω′
0 + δω, where

δω = ω′
0/Q, Ñ(ω) and D̃(ω) are well approximated by their on-resonance values. Therefore we

can write the effective response function as

R̃(ω) ≃ Ñ(ω′
0)

D̃(ω′
0)

ω − z0
ω − p0

. (3.9)

3.1.1 Reduction of transmission amplitude to linear fractional form

To connect the response function to a transmission measurement which is to be fit by a simple

expression, we must approximate equation (3.2) in the form of equation (3.9). To aid this process,
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it is natural and useful to define the following set of dimensionless parameters:

α = M/L, β = L1/L, γ = Cc/C0, ξ =
√

LC0/Z0, (3.10)

q = Q−1
i = 1/ω′

0RC0, x = 2ω′
0RC0 =

2
q

(
ω
ω′
0
− 1
)
.

In equation (3.10), we have chosen ω′
0 = 1/

√
LC0 as the resonant frequency of the uncoupled

resonator. Straightforward factorization yields

S21 =
f(qx)

g(qx)
=

∑
n=0 an(qx)

n

∑
n=0 bn(qx)

n
. (3.11)

The choice of q in (3.10) ensures that qx is much smaller than the other dimensionless parameters

and the coefficients an and bn. Thus, to a very good approximation the reduced S21 response

function is given by terms up to first order in qx

S̃21 =
f̃(qx)

g̃(qx)
=

a0 + a1qx

b0 + b1qx
, (3.12)

where the coefficients a0, a1, b0 and b1 depend on the dimensionless circuit parameters and are

independent of qx. This allows equation (3.12) to be rearranged and written as

S̃21 = |A0|ejφ
a+ jx

b+ jx
= |A0|ejφ

A+ jBq + jx

C + D
q + j

(
E + F

q

)
+ jx

, (3.13)

where a = ja0
qa1

, b = jb0
qb1

, |A0|ejφ = a1
b1

and we use the imaginary unit j =
√
−1 which is conventional

in electrical engineering. The factor |A0|ejφ is of order unity and doesn’t affect the profile of S̃21

other than by scaling its magnitude. This factor can be viewed as a magnitude factor which would

be difficult to distinguish from attenuation and amplification factors in the experimental setup.

Based on this, and the fact that we do not lose useful parameters, it is reasonable to ignore this

term. Furthermore, based on the expansions of A,B,C,D,E and F in terms of the parameters

in equation (3.10), it can be shown that the reduced S̃21 expression is very well approximated by

S̃21 =
1 + jBq + jx

1 + D
q + j Fq + jx

. (3.14)
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The actual resonance frequency, ω0, is different than ω′
0 of the uncoupled resonator due to the

coupling to the external circuit. The true resonance, ω0, is found by minimizing equation (3.14).

It is easily found that ω0 = ω′
0(1−B/2), with B given by

B =
γ(1− α)

1 + γ − αγ
. (3.15)

From the definition of the internal quality factor, it follows that

Qi = ω0RC0 = ω′
0 (1−B/2)RC0. (3.16)

For completeness we include the approximate expressions for D and F . Their respective series

expansions are given by

D =
2 + βξ2 + β2ξ2

ξ (4 + β2ξ2)
γ2 +

2ξ

4 + β2ξ2
(
α2 − βαγ

)
+ . . . (3.17)

F = γ +
−8 + 2β − ξβ2ξ2

2 (4 + β2ξ2)
γ − 4γα+ βξ2α2

4 + β2ξ2
+ . . . (3.18)

Re-writing equation (3.14) explicitly as a function of frequency in terms of the true resonance

and internal quality factor yields

S̃21(ω) =
1 + 2jQi

ω−ω0
ω0

1 + Qi
Qe

+ j Qi
Qα

+ 2jQi
ω−ω0
ω0

. (3.19)

Equation (3.17) takes the form of a modified Lorentzian, where Qe is a free parameter and

Qα is a parameter which partially describes the asymmetry of the response as a result of the

coupling. They are given by

Qe =
1−B/2

D
(3.20)

and

Qα =
1−B/2

F −B
. (3.21)

In the limit where Qα is very large compared to Qi and Qe, the width of S̃21(ω) is equal to
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ω0(Q
−1
i +Q−1

e ) where Qe is the external quality factor.

3.1.2 Determination of the AC capacitor voltage in dielectric loss measure-

ments

The expression given by equation (3.3) is also a function of the form given by equation (3.7).

Therefore, we can make a similar systematic approximation of the function by expanding in terms

of qx and the reduced dimensionless parameters from (3.10). We introduce the reduced voltage

function

ṽ =
f̃v
g̃v

=
V

V +
in

= ζ
K
q + j Jq + jx

H + N
q + j

(
O + P

q

)
+ jx

. (3.22)

Conveniently, the parameters in equation (3.22) are related to those in equation (3.13). We have

H = C,N = D,O = E and P = F , which, in turn, allows for equation (3.22) to be expressed

in terms of the parameters in equation (3.19), Qi, Qe, Qα and ω0. Since these parameters are

extracted from the behaviour of the response near resonance, we can therefore determine the

voltage at resonance by evaluating v(ω0). This yields the following expression

ṽ(ω0) ≃
λ

Q−1
i +Q−1

e + jQ−1
α

, (3.23)

where

λ = ζ
K + j(J −B)

1−B/2
. (3.24)

By performing a series expansion of λ, equation (3.24) can expressed in terms of the physical

circuit parameters approximately as

λ ≃ −M

Z0
ω0 + j

Cc

C0
. (3.25)

The circuit parameters in equation (3.25) must be estimated in order to complete the analysis. Z0

is typically designed to be 50 Ω and ω0 is determined directly from measurements. The remaining

parameters M,C0 and Cc must be estimated using numerical simulations. Estimation of these

parameters will be discussed in section 3.2.1. The ability to reliably determine the capacitor

voltage is important for the analysis of dielectric loss. As described in chapter 2, the loss depends

on the strength of the electric field, and therefore also the capacitor voltage of the resonator.
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Equation (3.23) reflects the fact that V , the capacitor voltage, depends on the input voltage, V +
in ,

and Q−1
i (V ), which is itself dependent on V . This means there’s a non-linear dependence of V on

V +
in and Q−1

i . This presents a complication in the interpretation of voltage dependent dielectric

loss measurements. This complication is illustrated by recalling the form of equation (2.93). For

a homogeneous electric field in a simple parallel plate capacitor, the voltage dependence of the

loss at a constant temperature in the TLS model is given by

Q−1
TLS(V ) = Q−1

i (ω, T )
/√

1 + (V/Vc)
2, (3.26)

where Vc is now the critical voltage. A typical experiment will involve measurements of the

resonator at various microwave powers. At each excitation voltage, the amplitude and phase of

the microwave response is fit to equation (3.19) and the result will yield a data set (Qi, V
+
in ).

Equations (3.23) and (3.25) are then used in the transformation (Qi, V
+
in ) → (Qi, V ). This

transformation yields a data set for which a one-to-one comparison with equation (3.26) can be

made. Specifically, this “correction” to loss as a function of voltage V transforms the data set

to one for which the TLS model predicts exactly equation (3.26). Therefore, any disagreement

would be suggestive of behaviour not predicted by the model. In the over-coupled limit, Qe ≪ Qi

and the scaling between V +
in and V is linear and the transformation doesn’t significantly affect

the quality of the fits. It is also important to note that this transformation ensures that the fit

parameter Vc and, equivalently, the critical field Ec, is physically more meaningful with respect

to its predicted behaviour according to the TLS model.

In Fig. 3.2, we show data from measurements of an interdigital resonator with a resonance

frequency at 5.9545 GHz as an example to illustrate the voltage transformation and also the

fitting of the microwave response. The device is fabricated from Aluminum and has 100 nm of

ALD Al2O3 oxide deposited on the surface of the resonator. The mutual inductance for this

resonator was computed to be ∼ 12 pH.
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Figure 3.2: a) S21 magnitude and phase (b) of microwave response data acquired from a VNA at
various powers illustrating the change in the internal quality factor as a function of power and
the quality of the fits to equation (3.19). c) Example of microwave dielectric loss measurement at
various input powers: Plot of loss versus input and capacitor voltage for an aluminum interdigital
resonator with a resonance frequency of 5.9545 GHz. The blue data points are plotted as a
function of the input voltage at the device, and the red points represent the transformed loss
data as a function of the voltage on the capacitor.
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3.2 Microwave simulation of a superconducting resonator

Prior to fabrication and measurement, prospective designs of the resonators are simulated using

microwave simulation software packages. This step is important as it provides a reliable estimate

of the resonance frequency and other circuit parameters which are needed in a complete analysis.

Furthermore, it provides a reference when measuring a real device, and aids in the troubleshoot-

ing of faulty samples. A typical design of a superconducting resonator device involves the making

of a technical CAD drawing which is to be used as a template during microfabrication. However,

before converging on a design for fabrication, relevant circuit and microwave parameters need to

be estimated and refined to meet the specific needs of the experiment. This steps involves making

CAD designs which are simulated numerically to estimate the resonance frequency, external qual-

ity factor and specific circuit parameters. For the lumped element resonators measured in our

experiments, the frequency was varied by changing the geometry of the inductive and capacitive

circuit elements accordingly. In case of distributed half-wavelength or quarter-wavelength trans-

mission line resonators, the frequency is adjusted simply by varying the length of the transmssion

line, and the external quality factor is tuned by adjusting the length of the coupling arm which

is coupled to the microwave feed line.

The software primarily used for microwave simulation is HFSS [2] from Ansys Electromag-

netics. HFSS stands for high frequency structure simulator and it is a fully 3-dimensional finite

element method (FEM) simulator that computes the solutions to Maxwell’s equations subject

to a set of boundary conditions. The solution is determined a points in space corresponding to

a mesh, which consists of many tetrahedra elements. At each apex and edge of the tetrahedra,

HFSS will solve for the electromagnetic quantities and also their gradients. From theses solutions,

it computes the terminal S-matrix parameters for an n-port network in addition to many other

useful quantities. A basic model design in HFSS will consist of boundaries and excitation ports to

which the structure of interest is connected. The ports are necessary to compute the S-parameters

which are equivalent to a VNA network measurement in a real experiment. The metal can be

simply defined as a perfect electrical conductor, in which the conductivity is assigned the high-

est possible numerical allowed by the HFSS solver (∼ 1030 siemens). A more complete picture

is one which takes into account the complex nature of the conductivity of a superconductor at

microwave frequencies. This subtle feature will affect the microwave properties, the electric field

distribution and also the frequency of the resonator.
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3.2.1 The surface impedance of a superconductor

At non-zero frequencies, a superconductor will develop a complex conductivity σ(ω) = σ1(ω) −
jσ2(ω) which is explained qualitatively by the Mattis-Bardeen theory [88]. For microwave signals,

this feature is best understood in terms of a complex surface impedance Zs given by

Zs = Rs + jXs, (3.27)

where Rs is resistance and Xs is the admittance. Equation (3.27) is related to σ(ω) by the

following

Zs =

√
jωµ0

σ(ω)
, (3.28)

where µ0 is the permeability of free space. The origin of equation (3.28) is because of the kinetic

inductance of Cooper pairs. London [51] predicted that a superconductor will demonstrate a

small amount of dissipation for frequencies up to the superconducting gap resulting from “broken”

Cooper pairs, or “quasi-particles”, which contribute to a finite admittance Xs. For a semi-infinite

superconductor Xs is given by

Xs = µ0ωλL(T ) (3.29)

where λL(T ) = λ(0)/
√

1− (T/Tc)4 is the effective penetration depth of the superconductor at

temperature T where Tc is the transition temperature. Typically, Xs is much greater than Rs

and can be considered as the dominant contributor to Zs. For thin film devices, equation (3.28)

is recast in the following form [86]

Ztf
s = Zs coth

(√
jωµ0σ · d

)
, (3.30)

where d is the thickness of the film. It can be shown that (3.28) then becomes

Xtf
s = µ0ωλL(T ) coth(d/λL). (3.31)

For completeness, we include the result for the resistance Rs [86], given by

Rtf
s =

1

2
σnµ

2
0ω

2λ3L(T )

(
T

Tc

)4(
coth(d/λL) +

d

λL
csch2(d/λL)

)
, (3.32)
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where σn is the normal state conductivity. The surface impedance of the superconducting material

is input numerically into HFSS as an intrinsic property of the material.

3.2.2 HFSS simulation environment

The basic elements of an HFSS model are excitation ports and boundaries. These elements

connect and assign conditions to the structure which is to be simulated. There are many different

types of boundaries that can be defined in HFSS to account for conduction and propagation

characteristics of the system. The relevant types will be discussed here.

Boundary conditions

A perfect electrical boundary is a type boundary definition for perfect electrical conductors and

outer boundaries where convergence of the solution requires vanishing of the electric field. By

default, the perfect electrical boundaries assume the electric field is normal to the surface and the

conductivity is infinite. An impedance boundary is used to model surfaces of known impedance

Zs, such as the surface impedance of a superconductor. This condition imposes the following

relation on the tangential components of the electric field E and magnetic field H:

Etan = Zs (n̂×Htan) . (3.33)

Wave ports

The outer perfect electric boundary defines an interface between the 3D objects in the model

and the background through which no electromagnetic energy may enter or exit. A wave port

defines a window on this interface which couples the 3D model to external microwave signals.

A wave port is assumed to be a semi-infinite waveguide which is defined by the cross-sectional

geometry at the surface of the port. HFSS assumes the device under simulation is excited by the

modes associated with the 2D cross-sectional geometry of the waveguide. The definition of the

port relies on specifying reference structures which are grounded and those through which the

signal is excited. Figure 3.3 shows a 3D CAD model of the simulated device and also plots of the

electric field profile at the wave ports.
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Figure 3.3: a) HFSS 3D model of a superconducting interdigital resonator on a silicon substrate
connected to two microwave ports and an outer perfect electrical boundary. b) Electric field profile
at the wave port. The 2D geometry of the port serves as an aperture for a rectangular waveguide
of the same cross section. Electromagnetic waves supported by the rectangular geometry of the
wave port are used to stimulate the device at different frequencies when performing a frequency
sweep. c) Zoom of electric field profile on the wave port demonstrating the profile of the even
TEM mode for a coplanar waveguide structure.

Modelling losses

Dielectric losses can be accounted for by simply defining the dielectric loss tangent to be non-zero.

In typical high quality substrates used for superconducting microwave devices, such as Silicon or
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Sapphire, the loss tangent is typically on the order of 10−6 or less, corresponding to an internal

Q-factor on the order of 106. The loss due to thin, presumably amorphous, dielectric layers can

be treated in two ways. The first is simply by including them geometrically in the 3D model.

However, this makes the system much more complex to solve in computational terms, since now

the 3D volume of the thin layer must be meshed and resolved in the solution. For a typical

microwave structure, meshing at lengths scales of tens of microns is sufficient to yield accurate

microwave parameters. With an additional layer on the order of 10 nm thick, HFSS will try to

construct a mesh on the order of this length scale leading to the consumption of a large amount

of computational resources. The second, more efficient, way to account for dielectric layers is by

using a layered impedance boundary. Like the surface impedance boundary, this type of condition

will modify the impedance over the length scale of the thickness and in turn the microwave and

electromagnetic properties. HFSS calculates the impedance of the kth layer, Zinput,k, in a multi-

layer structure recursively using the formulation from transmission line theory [58, 2]

Zinput,k = Zw,k
Zinput,k+1 coth(γkdk) + Zw,k sinh(γkdk)

Zinput,k+1 sinh(γkdk) + Zw,k coth(γkdk)
, (3.34)

where Zw,k =
√

µ0µr,k

ϵ0ϵr,k
is the impedance of layer k, γk = ω

√
ϵ0ϵr,kµ0µr,k is the propagation

coefficient, dk is the thickness of the layer, and ϵr,k and µr,k are the relative permittivity and

permeability respectively. The permittivities and permeabilities are parameters specified by the

user according to the following definitions

ϵr,k = ϵr,k − j

(
σk
ωϵ0

+ ϵr,k tan δϵr,k

)
, (3.35)

µr,k = µr,k − j
(
µr,k tan δµr,k

)
, (3.36)

where σk is the conductivity, ω is the angular frequency and δϵr,k and δµr,k and the dielectric and

magnetic loss tangents respectively.

3.2.3 Simulation results for an interdigital resonator

Figure 3.4 shows a simulated transmission curve near resonance of the superconducting resonator

shown in Fig. 3.3 a).
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Figure 3.4: Transmission response of an interdigital resonator on silicon (tan δ = 5 × 10−6 to
model baseline losses in the simulation). The thickness of the superconductor is 100 nm and no
additional dielectric layers were incorporated.

The resonance frequency for this particular device was found to be within 10 MHz of the

measured device. This deviation is partially due to imperfections in the fabricated device and

also the presence of a dielectric layer.

3.2.4 Estimation of coupling factors

The mutual inductance M and coupling capacitance Cc are determined by fitting the simulated

S21 from Fig. 3.4 to equation (3.19). This fitting procedure directly provides Qe which is then

equated to equation (3.20). This yields an equation in terms of the capacitance Cc, inductance L

and mutual inductance M which can be solved numerically for these parameters. Furthermore,

the definition of the resonance frequency (equation (3.16)) can be combined with its value to yield

an approximate relationship between the geometric inductance and capacitance of the resonator.

For the resonators considered in this work, it is found that only the first term, that containing

M , in the expression for λ given by equation (3.25) is significant.
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3.2.5 Calculation of dielectric participation ratios

As mentioned in the introduction, losses in the resonator are additive and are normalized with

respect to the total energy stored in the device on resonance. Mathematically the total dielectric

loss tangent is given as

WE tan δ =
∑

n

WEn tan δn, (3.37)

where WE is the total electric field energy of the resonator and WEn is the energy contained in

the nth dielectric layer. The total electrical energy is found by integrating the energy density over

the volume of interest,

WE =
1

2

∫

V
ϵ(r)|E(r)|2dr. (3.38)

The measured loss, or inverse internal Q-factor, is then

tan δ = Q−1
i =

∑

n

pn tan δn (3.39)

where pn is the participation ratio of the nth dielectric layer and describes its relative weight.

Mathematically it is simply

pn =

∫

Vn

ϵ(r)|E(r)|2dr
/∫

V
ϵ(r)|E(r)|2dr. (3.40)

The participation ratios for a given dielectric thickness can be determined from both HFSS [2]

simulations at microwave frequencies and quasi-static electric field simulations using COMSOL

Multiphysics [3] . The important requirement in obtaining a reliable estimate of pn is to have a

fine solution for the electric field in the region of the oxide layer. This is generally much easier

to achieve in the quasi-static case since a 2D geometry need only be simulated and, as a result,

a much finer mesh can be achieved than for the case of a full 3D model. The quasi-static case in

COMSOL is valid since the characteristic geometry of the capacitor is on the scale of ∼ 10 um,

much less than the wavelength of the microwave signal used in experiments. Therefore, the quasi-

static description of the field is equal to the time averaged AC field. This claim will be discussed

further in chapter 5 when the effect of an inhomogeneous electric field is considered.
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3.3 Device fabrication

Fabrication of samples was carried out in a class 1000 cleanroom facility. The samples must

be kept as clean and contaminant free as possible throughout the fabrication process. Any for-

eign residues from photo-resists and moisture can unpredictably affect the quality of the device

and the reliability of the experimental results. Devices are fabricated using standard lithogra-

phy techniques on high-quality, high-resistivity crystalline Silicon substrates. Devices using both

aluminum and niobium as the superconducting material were fabricated for experimental char-

acterization. The aluminum films are deposited using an electron beam evaporat0or and the

niobium films are grown using an RF-sputtering system. Both metals develop native oxides upon

exposure to atmospheric conditions. Once the resonator is fabricated, an additional thick layer of

Al2O3 is deposited on the surface of the device using atomic layer deposition (ALD). This layer

is the material of interest in terms of understanding loss mechanisms in Aluminum oxide.

3.3.1 Fabrication of devices with aluminum resonators

Fabrication of aluminum based devices involves optical lithography followed by evaporation and

lift-off of aluminum to define the resonator structures. The fabrication process used in this work

is presented here and an image of the finished resonator is provided in Fig. 3.5.

1. Pre-cleaning of Si substrate

a) Cleaning in PRS-3000 solvent

b) Cleaning in acetone followed by isopropanol and de-ionized water

2. Surface treatment prior to photoresist application

a) Dehydration bake followed by adhesion primer

3. Optical lithography

a) Application of Ma-N 1400 negative tone photoresist followed by hotplate baking

b) UV exposure

ii) Exposure in constant power mode using Karl Suss mask aligner
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4. Resist development

a) Bath 1: Ma-N developer

b) Bath 2: Ma-N developer

c) Bath 1: DI water

d) Bath 2: DI water

e) Descum in YES pr-stripper

5. Evaporation of Aluminum

a) Single layer 100nm evaporation of aluminum

6. Aluminum lift-off

a) Bath 1: PRS-3000

b) Bath 2: PG remover

c) Bath 3: Acetone

d) Bath 4: Isopropanol

3.3.2 Fabrication of Niobium devices

Niobium devices are fabricated using a positive optical lithography followed by reactive ion etching

to define the resonator structures. A photograph of a completed resonator is provided in Fig.

3.6.

1. Pre-cleaning of Si substrate

a) Cleaning in PRS-3000 solvent

b) Cleaning in acetone followed by isopropanol and de-ionized water

2. Niobium sputtering of 100nm film using RF plasma

3. Optical Lithography

a) Application of S1811 positive tone resist followed by baking on hotplate

b) UV exposure

i) Exposure in constant intensity mode using Karl Suss Mask aligner

52



Coplanar waveguide signal line

Capacitor

Inductor

Aluminum interdigital resonator

Al

50µm

Figure 3.5: Photograph of Aluminum based interdigital resonator fabricated on Si by lift-off.
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4. Resist development

a) Bath 1: MF-319 developer

b) Bath 2: MF-319 developer

c) Bath 1: DI water

d) Bath 2: DI water

5. Reactive Ion Etching using fluorine ions

6. Cleaning

a) Cleaning in PRS-3000 solvent

b) Cleaning in acetone

c) Cleaning in isopropanol

3.3.3 Atomic layer deposition of Al2O3

The material which is the focus of this thesis was Al2O3 grown by ALD. ALD is a novel growth

technique which offers precise thickness control and conformal high-quality films [27]. This depo-

sition technique relies on a sequence of self limiting surface reactions. A highly reactive precursor,

tri-methyl aluminum (TMA) in the case of Al2O3, is injected into the deposition chamber at a

pressure of < 10−6 Torr. TMA undergoes chemisorption at the surface of the substrate with

active OH− groups bound to the substrate and the metal surfaces. One of the methyl functional

groups is replaced by an OH− as the TMA bonds to the surface. After the chemisorption is

saturated, the chamber is purged, removing excess precursor. An O2 plasma source is then used

to remove the remaining methyl groups and bind Al2OH−. This completes one cycle and results

in a layer 1
◦
A in thickness. A diagram of the process is shown above in Fig. 3.7. This process

is repeated as necessary to achieve the desired thickness. For many cycles the stoichiometry of

the resulting oxide film is Al2O3.05. Using O2 plasma as the oxidizing agent eliminates the need

for H2O, which results in lower deposition temperatures and impurity content. Furthermore, O2

plasma serves as a way to clean the sample in-situ prior to deposition. We note that this will

inevitably oxidize the surface, but only by forming a thin layer of either AlOx or NbOx on the

metal and SiOx on the substrate, which would have been present anyway in the form of a native
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Figure 3.6: Photograph of Niobium based interdigital resonator fabricated on Si by reactive ion
etching.
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Figure 3.7: a) Schematic illustration of the ALD deposition chamber adapted from [1]. The b)
Diagram of ALD deposition steps for the growth of Al2O3.
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oxide. The merit is that this plasma cleaning step will remove any resist residues which may have

been left over from earlier fabrication steps, which can be detrimental on device performance.

3.3.4 Electron beam lithography of multilayer capacitor structures

Some resonator designs feature a parallel plate capacitor structure, where the oxide layer is sand-

wiched between the plates. The fabrication of these devices involves a second layer lithography

and metallization step. Patterning of the top metal plates is achieved by electron beam lithogra-

phy. This process involves a double layer resist profile which results in an undercut profile of the

resist after exposure and development. The undercut profile aids the lift-off process and yields

clean metal structures. This process is the same as that used for Josephson junction fabrication.

A photograph of the device is provided in Fig. 3.8.

1. Resist application

a) Layer 1: PMGI SF7 followed by hotplate baking

b) Layer 2: PMMA A3 followed by hotplate baking

2. E-beam exposure at 25 kV

3. Resist development

a) PMMA development

i) Bath 1: MIBK:Isopropanol 1:3

ii) Bath 2: Isopropanol

b) PMGI development

i) Bath 1: MicroDev concentrate

ii) Bath 2: DI water

4. Aluminum evaporation

a) Double angle evaporation of Aluminum, total thickness of 100nm

5. Aluminum lift-off

a) Bath 1: PRS-3000
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b) Bath 2: Acetone

d) Bath 3: Isopropanol

Niobium/Aluminum parallel plate capacitor resonator

Nb
Al

Inductor

Capacitor

50µm

Figure 3.8: Photograph of Niobium/Aluminum device where the top capacitor plate is patterned
by electron beam lithography.

3.3.5 Sample dicing

Fabrication of samples is done in large quantities to give a good sample yield. 4” Silicon wafers

consisting of twenty 17 mm × 17 mm chips are fabricated in bulk. Each chip contains ten devices

3 mm × 7 mm in size. A typical wafer is diced using a diamond saw which has resolution on

the order of 100 µm. Prior to dicing, samples are coated with a thick layer of protective resist

which helps reduce dust and debris produced by the saw. Following dicing, samples are cleaned

thoroughly and can then be packaged for low-temperature characterization.
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3.4 Low-temperature setup

3.4.1 Dilution refrigeration

Measurements are performed in a 3He/4He dilution refrigerator. Dilution refrigeration [21] is the

only method to achieve continuous cooling below 300 mK. This remarkable scientific tool works

according to the special low temperature properties of liquid helium mixtures. The mechanism

is very closely related to the idea of evaporative cooling, and relies on a natural phase separation

occurring at sufficiently low temperatures. 3He, the natural isotope of more common 4He, is more

strongly bound to 4He because 4He has larger mass and therefore a lower zero-point energy. 3He

obeys Fermi statistics and therefore the kinetic energy increases with increasing number density.

At a 3He concentration of 6.5% in a 3He/4He mixture, the effective binding energy becomes 0 as

T → 0, and therefore no more 3He atoms may be dissolved into 4He. At this point, it becomes

energetically more favourable for two different liquid phases to exist. One phase, the light phase,

is 3He rich and a second, the heavy phase, is a superfluid of mostly 4He. 3He atoms in the light

phase have lower entropy than those in the heavy phase. This difference allows for a cooling

process to be driven by transferring 3He atoms from the rich phase to the dilute heavy phase.

The analogy with evaporative cooling is that 3He atoms are “evaporated” into a “quasi-vacuum”

of 4He. For continuous operation, one must remove 3He from the dilute phase and then feed it

back into the rich phase.

The dilution circuit which supports the circulation of the helium mixture, consists of the

mixing chamber, the still and heat exchangers between them as illustrated in Fig. 3.9. Circulation

is driven by pumping on the still usually with large turbo molecular pumps, which offer high

pumping speeds. As a result of its higher vapour pressure, 3He is predominantly evaporated from

the dilute phase in the still. This volume of 3He is circulated outside the cryostat, cleaned using

traps immersed in liquid nitrogen, and fed back into the cryostat where it re-condenses at the

mixing chamber. This condensation relies on the concentration of 3He gas to be sufficiently high.

The return line of the circuit starts below the phase boundary immersed in the 4He rich superfluid

phase. As it returns to the still, the cold mixture pre-cools the incoming 3He. Pumping the still

results in a 3He concentration gradient in the dilute phase and, in turn, an osmotic pressure

which promotes the flow of 3He to the mixing chamber. The cooling process overall relies on the

ability of 3He atoms to cross the phase boundary. The rate at which they can cross determines

the cooling power of the system. Temperatures as low as 1.5 mK [16] have been obtained in
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continuous operation using dilution refrigerators.

DILUTION CIRCUIT

To pump

>90% 3He

<1% 3He

STILL ~700 mK

Heat flow

3He from 
condensing lines

~100% 3He

6.5% 3He
Phase boundary

Dilute phase

Concentrated 
phase

Mixing chamber 
~10 mK

Thermal 
exchangers

Heater

Vapour

Dilute phase

Figure 3.9: Schematic of the dilution circuit, adapted from Enss and Hunklinger, Low temperature
physics, Ch. 11, Springer (2004) [21].

3.4.2 Sample packaging

Devices are wire-bound with Aluminum wire to a custom made microwave printed circuit board

(PCB). The PCB is made from a RogersTM TMM 10i panel and gold plated in a non-magnetic

process with a thickness of 1 µm. The sample fits into a window cut-out in the center of the

circular PCB and fastened to a bottom copper plate with cryogenic varnish. The PCB is fastened

to the copper plate. A photograph of the sample mounted to the PCB is provided in Fig. 3.10.

The PCB has coplanar traces with a 500 µm center trace width and a 250 µm gap and has a

characteristic impedance of 50 Ω. The traces are soldered to SMP connectors which mate with

SMP bullets embedded the top copper package. The complete package is then mounted to an
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insertable probe which will be discussed next.

SAMPLE

COPPER PACKAGE

SMP CONNECTOR

BOTTOM

SAMPLE PCB

40mm

COPLANAR
WAVEGUIDE

Figure 3.10: Photograph of sample PCB mounted to the bottom copper plate of the microwave
package. The sample is wire-bonded to the gold-plated PCB consisting of coplanar signal traces
connected to microwave SMP connectors.

3.4.3 Insertable RF-probe

A convenient feature of our experimental setup is the short turn-around time of the experiments.

This is made possible by the use of an insertable RF probe, previously developed by our group

in collaboration with Leiden Cryogenics [57]. The sample package is fastened to the probe in a

manner which is depicted in Fig. 3.11.
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Figure 3.11: Schematic of insertable RF probe (adapted from reference [57]). a) Cross-sectional
view of the microwave connection mechanism between the sample box attached to the probe
and the coaxial lines leading to the mixing chamber stage from the experimental setup. b) 3D
CAD of the sample box, its attachment to the insertable probe and the SMP plate at the mixing
chamber stage. c) Illustration of complete probe inserted into the dilution fridge. The probe
passes through a 50mm clearance hole extending from room temperature flange to the mixing
chamber stage. The load lock allows for the insertion and retraction of the probe while keeping
the system cold and under vacuum. When fully inserted, the probe is “tightened” by twisting
the knob at the top to extend the contact pads and establish thermal contact with the thermal
plates inside the dilution refrigerator.

The probe is mounted at the top of the dilution refrigerator using a load-lock vacuum chamber

which is coupled to the inner vacuum chamber (IVC) by a gate valve. At the top of the load-lock

there is a sliding seal which allows for the insertion downwards into the IVC. As the probe is

lowered, it passes through a 50 mm clear shot opening from the room temperature 300 K flange to

the mixing chamber stage. When fully inserted, the SMP connectors on the microwave package

make contact with the connectors permanently anchored to the main insert of the fridge. The

SMP bullets and connectors have minimal disengagement force for when the probe is lifted out

of the fridge. Once this connection is made the sample is connected to the microwave coaxial
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lines of the experimental setup. At each thermal stage of the fridge, there are corresponding

thermal contact pads which are tightened mechanically and press against the fridge to achieve

thermal contact. Typical base temperature on the probe is 20 mK, which is made possible by

careful thermal anchoring and radiation shielding inside the dilution refrigerator. The probe also

is equipped with DC leads for thermometry and coils for experiments requiring small magnetic

fields.

3.4.4 Microwave measurement setup

Quality factor measurements of the resonator are made using an Agilent E-series vector network

analyser (VNA) as illustrated schematically in Fig. 3.12. Port 1 of the VNA is connected to

the input line of the device. The input line is strongly attenuated to achieve very low microwave

powers at the sample. The attenuation of the input line from 300 K to the mixing chamber

has a total attenuation of ∼ 50 dB which was determined by a room temperature transmission

measurement. This factor, A, is taken into account when the VNA excitation power P+
in is

converted to the RMS input voltage V +
in at the level of the device. This conversion is made using

the following formula [68].

(
V +
in

)
RMS

[V] =

√
Z0[Ω]

103[mW/W]
10

P+
in[dBm]+A[dB]

10 , (3.41)

where the Z0 is 50 Ω. This factor is very important in the analysis of dielectric loss and will be

characterized in further detail in the following chapter.

3.4.5 Temperature control

In this work, the temperature dependent properties of dielectric loss were of particular interest.

As a result, care was taken in making reliable measurements of the temperature on the probe at

the level of the sample. Measurements ranging from a base temperature of 40 mK up to 1 K were

performed by heating the mixing chamber of the dilution refrigerator. This was performed by

applying some heat to the mixing chamber which affects the properties of the Helium mixture.

The temperature was measured using two low-temperature resistance thermometers. One was

a Speer carbon resistor thermometer and the other a Ruthenium oxide (RuO) thermometer. A

photograph of the probe showing the thermometers is presented below in Fig. 3.14.
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Microwave measurement setup

Figure 3.12: Schematic of the microwave setup used for dielectric loss measurements. The outer
diameter of all coaxial cables is 219mm and they are semi-rigid “SC” cables. The specific ca-
bles are specified by the conductive materials used by the abbreviation:“outer conductor - inner
conductor”. C: copper, B: beryllium, SSS: high grade stainless steel, SS: medium grade stainless
steel, NbTi: niobium-titanium
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Measure

Figure 3.13: Plot of temperature vs time for a set of temperature dependence measurements.
Measurements are performed after the system stabilizes at a given temperature when current is
applied to the mixing chamber. The plot shows the measured temperatures of the two sensors at
the mixing chamber level (RuO TT and Speer S0805) and also another which is mounted at the
cold plate (50 mK plate) above the mixing chamber.
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Figure 3.14: Photograph of the insertable probe showing the thermometry setup.

The thermometers are measured using an impedance bridge in a 4-point measurement con-

figuration. The RuO thermometer was installed using OFHC copper anchoring rods at both the

50 mK and mixing chamber stages. The DC leads used were 50 cm Phosphor-bronze AWG 36

with a polymide insulation. The wires were made into two twisted pair sets and attached to the

anchoring rods using stycast 2850 epoxy.
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Figure 3.13 shows the behaviour of the mixing chamber temperatures when heating is applied.

The system responds by increasing its temperature and eventually stabilizes at a new higher

temperature. The stability of the temperature is excellent, rarely deviating by more than ∼ 2 mK

during one of the measurement plateaus below 300 mK. Measurements at higher temperatures,

must be done by removing 3He from the mixture and putting it in the dumps in the gas handling

system of the fridge. This effectively reduces the cooling power and stable temperature plateaus

can also be achieved similar to what is presented in Fig. 3.13, but at temperatures greater than

300 mK. The behaviour of the mixing chamber at these higher temperatures is shown in Fig.

3.15.

Figure 3.15: Plot of temperature vs time for a set of temperature dependence measurements above
300 mK. The plot shows the measured temperature of the two sensors at the mixing chamber
level (RuO TT and Speer S0805) and also another which is mounted at the “50 mK” plate above
the mixing chamber.

One of the sensors was also directly attached to the sample package during some of the
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experiments to ensure that the sample was at the same temperature as the mixing chamber. A

photograph of this is shown below in Fig. 3.16. It was found that there was no significant change

in the measured temperature in this configuration.

RuO thermometer

Sample package

Figure 3.16: Image of RuO thermometer mounted directly to microwave sample package for
temperature dependence experiments.

There is a difference in the measured temperatures between the two sensors which can be

seen in Fig. 3.13 and Fig. 3.15. Despite this difference, the interpretation of the dielectric

loss measurement data is not affected insofar as the agreement with the TLS model is altered.

Therefore, we use the average values of the two measured temperatures in the analysis of the

experimental data which will be presented in chapter 6.
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Chapter 4

Characterization of the frequency

dependence of the input line

attenuation

The experimental setup used in this work was designed to be heavily attenuated (∼50 dB) in

order to achieve low-power signals (single photon level) for experiments involving measurements

of quantum bits. One of the key physical quantities of interest in this work is the behaviour of the

critical electric field, which depends on the coherence properties of two-level systems according to

equation (2.94). To solidify any claims concerning measurements of the critical field, we require a

more thorough quantification of the experimental setup, in particular the frequency dependence

of the attenuation of the input coaxial microwave lines shown in Fig. 3.12. This is important

because the precise value of the critical field extracted from the measurements depends on this

attenuation factor according to equation (3.37), which is itself a frequency-dependent quantity.

In this chapter, we present a characterization of this aspect of the experimental setup. Our

first estimate of the frequency dependence is from a room temperature transmission measurement

of the input line using a VNA. Using this information we apply some estimates of the change in

attenuation which would arise at cryogenic temperatures using some values from literature. In

the second approach, Rabi oscillations are driven in a superconducting flux qubit device. The

measured Rabi frequency is directly proportional to the current felt by the qubit at the frequency

of the driving signal. Using this measurement, the calibrated value of the input power and a
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numerical simulation of the microwave transmission of the device, the frequency-dependence of

the attenuation is determined. The important feature is the relative difference in attenuation

across the frequency band of interest. The absolute value of the attenuation depends on the

parameters of the flux qubit, in particular the degree to which it couples to the coplanar waveguide

resonator.

4.1 Estimate of attenuation factor

4.1.1 Room temperature measurement

The coaxial lines in the experimental setup are made from beryllium and stainless steel materials

each of which demonstrate different frequency dependent attenuation characteristics. Figure 4.1

shows a measurement of the attenuation of the input microwave line at room temperature. At

“zero” frequency, the value of −40 dB is due to cryogenic attenuators which are installed inside

the dilution refrigerator at various thermal stages.

4.1.2 Frequency dependence of stainless steel coaxial cables at cryogenic tem-

peratures

In general, both the frequency and temperature dependence of the attenuation depends rather

sensitively on the specific properties of the alloys from which the cables are manufactured. Fur-

thermore, it is also difficult to characterize because the profile of the temperature gradient over

the length of the cables of interest is unknown in many experimental configurations. In general

the attenuation will decrease and become less frequency dependent as the cables are cooled. Fig-

ure 4.2 below uses data from reference [83] and shows the behaviour of the attenuation per unit

length at various temperatures. (Note that the 4 K curve is an estimate from the behaviour of

the other 3 curves).
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Figure 4.1: Room temperature measurement of the input line attenuation using a vector network
analyzer. The red line is a linear fit to the data.
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Figure 4.2: Estimate attenuation per unit length in SS-SS stainless steel coaxial cables at various
temperatures. Plots are adapted from data presented in [83].

From this plot, and using the approximate lengths of the coaxial cables we can estimate the

attenuation of the input line at a given frequency.

4.2 Characterization of input line attenuation using a flux qubit

The device used in this analysis was a flux qubit in a circuit quantum electrodynamics setup

as shown schematically in Fig. 1.3. The resonator is a coplanar waveguide resonator with a

resonance frequency of 6.641 GHz. The qubit frequency is tuned by threading external magnetic

flux through the loop which forms the qubit. The qubit frequency is tuned from 3 − 9 GHz

and pulsed with resonant microwave tones through the input of the resonator to induce Rabi

oscillations which are then measured using homodyne voltage quadratures via the output of the

resonator.
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4.2.1 Physical description

We consider a quantum bit with a time-independent Hamiltonian given by H0 subject to a

time-dependent drive V (t) [47, 71]. It is useful to use the transformation between states in the

Schrödinger picture, |ΨS⟩ to states the interaction picture, |ΨI⟩, given by

|ΨI(t)⟩ = eiH0t/!|ΨS(t)⟩. (4.1)

The Schrödinger equation in the interaction picture is given by

i! ∂
∂t

|ΨI(t)⟩ = Ṽ (t)|ΨI(t)⟩, (4.2)

where Ṽ (t) = e−iH0t/!V (t)e−iH0t/! is the time-dependent drive in the interaction picture. At

t = 0 the initial state of the system in the Schrödinger picture is

|ΨS(t = 0)⟩ =
∑

n=1,2

an(0)|n⟩, (4.3)

where |n⟩ are the eigenstates of H0 and an(0) specifies the initial state probabilities. When the

time-dependent driving field is turned on, for t > 0 the state evolves according to the following

|ΨS(t)⟩ =
∑

n=1,2

an(t)e
−iEnt/!|n⟩. (4.4)

In the interaction picture, the evolution becomes

|ΨI(t)⟩ =
∑

n=1,2

an(t)|n⟩. (4.5)

Inserting equation (4.5) into the Schrödinger equation in the interaction picture, we obtain the

following coupled equations:

ȧn(t) =
1

i!
∑

m

Vnm(t)eiωnmtam(t), (4.6)

where Vnm(t) = ⟨n|V (t)|m⟩ and we have introduced ωnm = (En − Em)/!, where En and En are

the eigenenergies of H0. We now consider the simple case of transverse driving of the qubit at a

73



frequency ω such that V12 = Aeiωt, V21 = V ∗
12 and V11 = V22 = 0. The amplitude of the driving

field A is taken to be real. The system of coupled equations given in (4.6) is reduced to

ȧ1 =
1

i!Aei∆ta2, (4.7)

ȧ2 =
1

i!Ae−i∆ta1, (4.8)

where ∆ = ω − ω21 is the detuning from resonance. Differentiating (4.7) and then substituting

(4.8) yields

ä1 =
A

i!

(
i∆a2 +

A

i!e
−i∆ta1

)
ei∆t = i∆ȧ1 −

A2

!2 a1. (4.9)

The roots of the characteristic polynomial for this second order differential equation are given by

γ1,2 = i

(
∆

2
±
√

∆2

4
+

A2

!2

)
= i

(
∆

2
± ΩR

)
. (4.10)

where ΩR is the Rabi frequency. Using (4.10), the general solution to a1(t) is given by

a1(t) = ei∆t/2
(
AeiΩRt +Be−iΩRt

)
, (4.11)

where A and B are arbitrary coefficients. The solution for a2(t) is found by differentiating (4.11)

which allows (4.7) to be expressed as

a2(t) =
!
A
e−i∆t/2

(
A

(
−ΩR − ∆

2

)
eiΩRt +B

(
ΩR − ∆

2

)
e−iΩRt

)
. (4.12)

Applying the initial conditions we find that

A =
1

2

(
1− ∆

2ΩR

)
, (4.13)

B =
1

2

(
1 +

∆

2ΩR

)
. (4.14)

For driving on-resonance (∆ = 0), we obtain the simple results:

a1(t) = cos(ΩRt), (4.15)

a2(t) = sin(ΩRt), (4.16)
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which demonstrates the oscillation between eigenstates of the system as a result of the driving.

For a flux qubit, the Rabi frequency for on-resonance driving at the frequency of the qubit

νqb in terms of the qubit parameters, is given by [23]

ΩR =
MIpδ

hνqb
Iqb, (4.17)

where M is the mutual inductance of the qubit loop, Ip is the persistent current of the qubit and

δ is the qubit gap energy. All of these parameters are intrinsic parameters of the qubit design.

The coupling scales proportionally to the current which couples to the qubit, Iqb. This quantity

is of interest to us in particular as it depends on the transmission of the cavity at a particular

frequency. For the qubit used in this analysis, δ/! = 2.23 GHz, Ip = 690 nA and M = 18 pH.

4.2.2 A simple transmission model

The quantity of interest is the magnitude of the transmission between the external setup which

outputs a known voltage V +
out and the input of the device which will have some attenuated voltage

V +
cav. The S21 transmission function is the ratio of these voltages,

S21(f) =
cavity input

setup output
=

V +
cav

V +
out

. (4.18)

V +
cav can be determined by measuring the Rabi frequency of the qubit, and using a simulated model

of resonator to which the qubit is coupled. In the simulation, carried out in SONNETTM [4],

the qubit-resonator device is simulated at various frequencies with a constant input voltage of

V +
in = 1 V. The value of the current at the position of the qubit is extracted from a map of the

current density, Jxy, and the following function is determined for all frequencies of interest,

vi(f) =
V +
in

Iqb(f)
. (4.19)

Using this relation, which holds at any voltage of interest, the transmission becomes

S21(f) =
V +
cav

V +
out

=
ΩR(f)× h

Ip
× νqb

δ × vi(f)
M

V +
out

. (4.20)
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An example of the current density generated in the resonator at 5 GHz near the qubit is shown

in Fig. 4.3 below. The resolution of the simulation is sufficient for our aims, since the simulated

device was modelled to have the same losses and resonant frequency as the measured device. The

frequency of the resonator is 6.641 GHz, with a total quality factor of ∼ 3× 104. In Fig. 4.4, the

current density along a line which intersects the qubit is shown. The current profile similar to

that shown in Fig. 4.3 is integrated numerically at all relevant frequencies to obtain the value of

the current as a function of frequency, as shown in Fig. 4.5.

Figure 4.3: Sonnet simulation of current density in the vicinity of the qubit at 5 GHz

As can be seen in Fig. 4.3, the simulation includes the “fastline” which is used for control

in other experiments. The coplanar waveguide resonator features the tapered profile where the

qubit would be positioned in the real device. The detailed geometry of the qubit is omitted since

it makes the simulation more tedious computationally.
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Figure 4.4: Simulated current density at 6.64 GHz along a line intersecting the coplanar waveguide
resonator at the position of the qubit.
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Figure 4.5: Computed current at the qubit position as a function of frequency for 1 V input
port voltage. Values are determined by integrating the current density obtained from numerical
simulations at various frequencies.

Figure 4.5 shows the expected result of a Lorentzian peaked at the frequency of the coplanar

waveguide resonator. The resonator behaves as a microwave filter and correspondingly most of

the signal, and therefore current, is transmitted near resonance. Conversely, away from resonance

most of the incident microwaves are reflected at the input and do not enter the cavity.

4.2.3 Rabi Oscillations

In Fig. 4.6, we present measurements of Rabi oscillations at four different frequencies as an

example of the measurements. Depending on the frequency of the qubit relative to the resonance

of the cavity, the power delivered from the experimental setup must be adjusted accordingly such

that oscillations may be detected. For this analysis, only the value of the Rabi frequency and the

calibrated power from the output of the setup must be known to determine the attenuation of
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Figure 4.6: Measurements of Rabi oscillations at 4, 5.5, 7.5 and 8 GHz. At each frequency, at least
two different output voltages were used. The Rabi frequency obtained from fitting to equation
(4.21) is proportional to the current in the resonator at the qubit location.
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the input line. The experimental data is fit to the following expression,

y = y0 +A exp (−t/t0) cos (2π(ΩRt+ φ)) , (4.21)

where y0 is an arbitrary voltage of the amplified signal, t0 is the decay time of oscillation envelope

and φ is an arbitrary phase factor. Using equation (4.17) and the qubit parameters given in section

4.2.1, the S21(f) transmission function of the input line may be calculated for all frequencies at

which Rabi oscillations were measured. This is shown in Fig. 4.7. It is important to mention

that the qubit frequency spectrum is actually an approximation, and in fact the real spectrum is

a dressed-strate of the coupled qubit-resonator system, and the deviations observed in Fig. 4.7

are a result of this.
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Figure 4.7: Calculated input line attenuation using measured Rabi frequencies and simulation of
device transmission. Linear fit is in good agreement with the estimate from the room temperature
attenuation measurement.

The data in Fig. 4.7 describes the attenuation of the input line used in all previous experiments
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of dielectric loss. The data was fit to a linear expression which was in turn used to calculate values

of the critical field at the frequencies of interest. Below we present a comparison of the critical

field data for both our estimated attenuation and calibrated attenuation for the case of one

device, W79-E4a, 4 interdigital aluminum resonators with 100 nm of ALD Aluminum oxide. The

difference between the two data sets is not significant, but this step was a crucial verification for

the critical field measurements.
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Figure 4.8: Comparison of extracted critical field values using an estimate from a room temper-
ature measurement for the input line attenuation and also the measured attenuation from Rabi
oscillations and device simulation.

To conclude this chapter, we have quantified the frequency dependence of the attenuation

for the input microwave line in the experimental setup using a superconducting flux qubit. We

find the attenuation factor decreased by 7 dB from 3 to 9 GHz, which is roughly consistent

with estimates from the room-temperature measurement. Using this result we may more reliably

account for measurements made at different frequencies and any frequency-dependent properties
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of dielectric loss measurements can be claimed more assertively.
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Chapter 5

Effect of an inhomogeneous electric

field

In section 2.3, it was shown that an electric field couples to a TLS by a photon absorption

excitation. When the excitation rate exceeds the relaxation rate due to phonon emission, TLSs

start to become saturated, and the TLS density of states is suppressed. The assumption of a

spatially homogeneous field implies that TLS saturation characteristics are identical throughout

the volume of the host material. When the electric field is inhomogeneous, its strength, and

therefore the TLS excitation rates, vary in space. In several types of superconducting resonators,

the electric field of the superconducting resonator is inhomogeneous. This is certainly the case

for half and quarter-wavelength coplanar waveguide resonators, and also for lumped element

devices depending on the geometry of the capacitor. It is very important to take into account

the inhomogeneity of the electric field in the resonator, for the purpose of reliably identifying the

underlying behaviour of the TLSs. Many experiments on dielectric loss have been performed and

interpreted by fitting the loss as a function of voltage at a constant temperature to the following

“adjusted” formula

Q−1(V ) = Q−1
0 (ω, T )

/√
1 + (V/Vc)

2−δ, (5.1)

where δ is a free fitting parameter and Vc is the critical voltage. As mentioned at the beginning

of chapter 3, δ = 0 is predicted by the TLS model for the case of a homogeneous electric field.

Intuitively, one may see how a value of δ can arise in the case of an inhomogeneous electric
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field. For a particular value of the capacitor voltage V , there will be a spatial distribution of the

electric field across the oxide region. In the vicinity of TLS saturation, there will be a particular

voltage value at which TLS start becoming saturated, and, as the voltage increases, eventually

all TLS in the oxide region will be saturated. To quantify this effect, we investigate resonators

with interdigital capacitors which have a lossy dielectric layer deposited on the surface. This

type of capacitor is formed by an array of interlocking “fingers” as shown in Fig. 5.1. The

capacitor fingers have a width w and the gap between them is g. The pitch between the centres

of adjacent fingers is kept constant at 10 µm. The effect of the inhomogeneous electric field may

be accounted for by simulating the electric field and constructing a probability distribution by

sampling values of the field in the region defined by a given dielectric layer. Some experiments

have attributed non-zero delta to arise from both other sources of loss and the geometry of the

resonator [43, 26, 52, 70, 59, 7]. Others have also explicitly considered the profile of the field for

the purpose of calculating the expected value of δ [82, 72]. In this chapter we pursue this further

in a systematic study of the effect of geometry. We establish that the functional form of equation

(4.1) involving δ arises from the inhomogeneity. Furthermore, this method consistently allows for

the extraction of the critical electric field for resonators of different geometries.

100um 
w 

g 

10um 

Figure 5.1: Image of a lumped element superconducting resonator consisting of an interdigital
capacitor and meander inductor. Light grey regions are aluminum and the dark grey is the silicon
substrate. The capacitor fingers have a width w, gap g and a constant pitch of 10 µm.
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The physical resonator structure is 3D, but there is translational symmetry in the field profile

along the direction of fingers, so we need only consider a 2D cross-section. We recall that the

spatial profile of the electric field inside the lossy regions of the oxide layer is of interest. It is

useful to construct a spatial grid where the spacing between points is much less than the thickness

of the oxide layer and the metal film. In most devices, the thickness of the amorphous dielectric is

30-100 nm and the superconducting thin film is deposited with a thickness of 100 nm. The value

of the electric field Ej at each point j of the 2D grid is extracted from numerical simulations and

organized into a normalized histogram. A schematic of this scenario is illustrated in Fig. 5.2.

Si

Al Al Al AlAl2O3

Ej

Figure 5.2: Diagram of capacitor cross section (not to scale). Values of the electric field Ej in
the oxide layer are extracted from numerical simulations of the capacitor from a 2D spatial.

The histogram provides the probability Pj(Ej) of finding a particular value of the field Ej in

the oxide region. The values are simulated for a specific voltage which is assigned to the capacitor.

The magnitude of the electric field scales proportionally to the voltage on the capacitor. In terms

of the electric field in the resonator, the loss can be expressed as a sum over bins in the histogram:

Q−1 = p0Q
−1
0

∑

j

Pj(Ej)
/√

1 + (Ej/Ec)
2, (5.2)

where p0 is the participation ratio of the layer. This can be viewed as simply a sum of TLS-like
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terms for each different value of the electric field throughout the material, weighted appropriately

by Pj(Ej). This form is not very convenient for experiments since voltage is naturally measured

by a VNA, not the electric field. Equation (5.2) can be modified by introducing a factor which

scales the value of the electric field determined from simulations to that which would be generated

from a given capacitor voltage V . We have,

Q−1(V ) = p0Q
−1
0

∑

j

Pj(Ej)

/√

1 +

(
V

Vsim

Ej

Ec

)2

, (5.3)

where Vsim is the voltage value used in simulations and Ej is the corresponding electric field.

5.1 Simulations of electric field in the capacitor

The geometry of the capacitor was simulated by two different methods. First, the electrostatic

case was performed using COMSOL multiphysics AC/DC module where boundary conditions are

specified and the electric field is computed by solving Poisson’s equation. Second, a full microwave

simulation was carried out using HFSS. In this case, the cross-sectional area of the capacitor was

constrained to have a fine mesh in order to yield a smooth electric field profile at the level of a few

10s of nanometers. Imposing this resolution in 3D in HFSS results in a colossal amount of memory

consumption, and is therefore not feasible given the resources at hand. The surface impedance

boundary condition was also applied in HFSS to verify if it has any drastic effect on the field and

the probability histograms. This condition did not yield a significant difference versus the case

of a perfect electrical conductor. Furthermore, we find consistent agreement between COMSOL

and HFSS for the various geometric variations considered in this work. Below we will present

some examples for the relevant cases.
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5.1.1 COMSOL simulations of the electric field distribution

V = +1V

V = +1VV = �1V V = �1V

Si

Al2O3

Vacuum

a)

b)

|E|
(V/m)

100nm

100nm

5µm 5µm

Figure 5.3: a) 2D plot of the electric field magnitude generated from a COMSOL simulation of
the interdigital capacitor cross-section. b) Zoom of the region highlighted in a) illustrating the
dielectric layer of Al2O3 and the spatial character of the field.
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Figure 5.3 above shows the profile of the field for a capacitor with a 5 µm finger width and 5 µm

gap. The field scales with the value of the voltage assigned to the capacitor finger. Figure 5.4

shows the normalized 1000-bin histograms for various capacitor geometries computed by sampling

the value of the electric field over a 2 nm by 2 nm grid within the lossy oxide region.
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 8 um
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 2 um

E-field histograms for various capacitor geometries

Finger width

Figure 5.4: 1000-bin probability histograms of the electric field value for various capacitor ge-
ometries from COMSOL electrostatic simulations.
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5.1.2 HFSS Results

3D microwave simulations are carried out in HFSS by constructing a capacitor with the same 2D

geometric profile as that from the resonator. For the resonators considered, we only require a

simulation of the field produced by a capacitor of the same characteristic geometry in 2D since

we have assumed symmetry along the direction of the fingers. It is possible to simulate the full

resonator, as discussed in chapter 3, however the resolution of the field at the level of the capacitor

fingers ends up being rather coarse, due to the size of the model and limited computational

resources. By simulating a smaller capacitor, it is possible to constrain the meshing to be fine

near the surface of the capacitor as seen in Fig. 5.5.

g =8µmw =2µm

Figure 5.5: 3D view of HFSS capacitor model in which a 2-dimensional surface plot of the
simulated electric field is shown. Also shown is a zoom of the highlighted region showing the fine
surface mesh on the capacitor cross section to yield a smooth electric field profile over the regions
of interest.

In HFSS, the oxide is also defined as a layered impedance boundary (see section 3.2) and is

conformal to the metal and substrate surfaces. The field is then extracted from the 2D spatial grid

and organized into a probability histogram. The electric field histograms for the HFSS results

are presented below in Fig. 5.6 for various capacitor geometries and also with and without a

superconducting surface impedance condition. By increasing the number of bins in the histogram,

the resolution of the electric field probability improved, but creates more terms in equation 4.3

making the fitting procedure more tedious.
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Figure 5.6: Plots of probability histograms from fields simulated in HFSS. a) 1000-bin histograms
for 5 µm capacitor geometry comparing the case of a perfect electrical conductor with and without
a surface impedance condition. b) Comparison of 104-bin histograms for different capacitor
geometries.

5.1.3 Comparison between COMSOL and HFSS

To have confidence in the numerical results we compare the results for COMSOL and HFSS over

a fixed bin range (upper and lower bounds of E). We find good agreement between the two types

of simulations as seen in Fig. 5.7. Based on this COMSOL simulations results were used in the

majority of the data analysis because model variations in geometry and oxide thickness are easier

to implement than in HFSS. Also, when considering the effect of thin oxide layers, such as native

oxides, meshing at the level of 1 nm is feasible in COMSOL. This will be discussed further in

section 5.3.
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Histogram comparison over fixed electric field range
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Figure 5.7: Comparison of COMSOL and HFSS 1000-bin histograms.

In order to obtain a good fit of equation (5.3) to experimental data, electric field histograms

with at least 1000 bins were required. This made the fitting procedure tedious and the fitting

parameters less accurate. This problem could be solved by requiring that the bins in the histogram

each have equal probability. This means that all the terms in equation (5.3) would have equal

weighting and the probability scales (# of bins)−1. This makes the fitting routine carried out

in Mathematica [85] converge quicker for a smaller histogram. This slight modification does not

change systematically the extracted values of Q−1
0 and Ec, and yields a better fit and reduces the

standard error.
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5.2 Dependence of dielectric loss on capacitor geometry

In this section, we apply the inhomogeneous field model to analyze loss measurements in ALD

Al2O3. The oxide layer is 100 nm thick and was deposited on the surface of the device.

5.2.1 Measurements of W79-E4a

In this section, measurements and analysis of dielectric loss from device W79-E4a are presented.

This device features four resonators, each with a geometric variation of the design given in Fig.

5.1. The superconducting material is aluminum and is 100 nm in thickness. By design, the

variation in the capacitor geometry results in both a different total capacitance and resonance

frequency, which allows for multiple resonators to be measured in our 2-port microwave setup.

The coupling parameter λ is calculated using the approach presented in section 3.2.4. The circuit

parameters are presented below in Table 5.1.

Resonator ω0 (GHz) L (nH) C (pF) Cc (fF) M (pH) λ Input Attenuation (dB)

LC1 5.955 1.25 0.57 2.4 10 0.0135 -76
LC2 7.154 1.25 0.45 2.4 10 0.0162 -78
LC3 7.967 1.25 0.32 2.4 10 0.0180 -81
LC4 9.009 1.25 0.25 2.4 10 0.0204 -84

Table 5.1: Design parameters for W79-E4a device: The four resonators LC1, LC2, LC3 and LC4
have a resonance frequency ω0, geometric inductance L, intrinsic and coupling capacitances C
and Cc respectively, mutual inductance M and coupling parameter λ. (see section 3.2.4) The
input attenuation was determined experimentally for the setup at each frequency.

In the experimental setup, the input line attenuation is frequency dependent due to the

material of the coaxial cables. Calculation of input line attenuation factor was presented in

chapter 4 and the values in Table 5.1 are those determined therein. We now compare fitting

the data with the two approaches outlined in this chapter. In the first, method 1, the data is

fit to equation (5.1) where δ is a free fit parameter. In method 2, The electric field histograms

from COMSOL simulations are used in conjunction with equation (5.3) to fit the data. The

data is fit with a high-power loss factor Q−1
hp which is due to non-equilibrium quasi-particles as

discussed in chapter 3. Figure 5.8 shows the fits for method 2. We find the quality of the fits

to be excellent, and furthermore, no additional fitting parameters are needed, which strengthens
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the agreement with the TLS model. The values of the critical electric field Ec extracted from

method 2 show a strong frequency dependence, which will be discussed in chapter 6 in context

with measurements from other devices and its physical origin in terms of the TLS model. The

product of the participation ratio and the intrinsic loss, pmQ−1
0 , shows a slight dependence on

frequency. This is a result of the variations in the capacitor geometry affecting the value of the

participation ratio for the oxide layer. Once this factor is taken into account, Q−1
0 is found to be

independent of frequency and given numerically by ∼ 2.0× 10−3 for ALD Al2O3.
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Figure 5.8: Loss (Q−1 = p0Q
−1
0 ) versus capacitor voltage for four resonators in device W79-E4a

with contains 100 nm of aluminum oxide grown by atomic layer depositions. The intrinsic loss
factor and the critical saturation field are extracted from the data by fitting with method 2
(equation (5.3)).

5.2.2 Comparison of fitting parameters

Here we present a complete comparison of the fitting parameters extracted from both methods.

Analysis of the data using method 1 shows that δ depends on the geometry of the capacitor.

We should not exclude the possibility that δ could depend on frequency, however this feature is
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not a prediction of the TLS model. At the beginning of the chapter, it was established that a

complete understanding of dielectric loss in a superconducting resonator must involve an account

of the spatial profile of the field. By showing this for a set of similar resonators, we eliminated

the need for δ, as can be seen by the quality of the fits in Fig. 5.8. This result demonstrates,

unambiguously, strong agreement with the TLS model and, in turn, provides a sound method

by which to determine the value of the critical field Ec. The high-power loss factor, Q−1
hp , is also

a free fitting parameter. For aluminum we find this factor to be constant for temperatures less

than 300 mK, and quickly increasing at higher temperatures, characteristic of non-equilibrium

quasiparticles [8].

Resonator ω0 (GHz) w (µm) g (µm) δ pmQ−1
0 Q−1

hp

LC1 5.955 8 2 0.10 1.27×10−4 5.66×10−7

LC2 7.154 5 5 0.18 1.21×10−4 9.02×10−7

LC3 7.967 3.5 6.5 0.35 1.10×10−4 5.05×10−6

LC4 9.009 2 8 0.44 1.12×10−4 1.79×10−6

Table 5.2: Fitting parameters from method 1 (equation (5.1)) as discussed in the text. The
resonance frequency is ω0, the capacitor has a finger width w and spacing g, δ is the free parameter
from equation 4.1, pm is the participation ratio of the oxide layer with intrinsic loss Q−1

0 and Q−1
hp

is the high-power loss factor due to non-equilibrium quasiparticles.

Resonator ω0 (GHz) w (µm) g (µm) Ec (V/m) pmQ−1
0 Q−1

hp

LC1 5.955 8 2 1.29 1.30×10−4 5.85×10−7

LC2 7.154 5 5 4.14 1.20×10−4 8.68×10−7

LC3 7.967 3.5 6.5 4.85 1.10×10−4 4.86×10−6

LC4 9.009 2 8 11.40 1.14×10−4 1.65×10−6

Table 5.3: Fitting parameters from method 2 (equation (5.3)) as discussed in the text. The
resonance frequency is ω0, the capacitor has a finger width w and spacing g, Ec is the critical
electric field from equation 4.3, pm is the participation ratio of the oxide layer with intrinsic loss
Q−1

0 and Q−1
hp is the high-power loss factor due to non-equilibrium quasiparticles.
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5.3 Subtraction of baseline losses in niobium devices

Our consistent account of the inhomogeneous electric field profile may be applied to any type

of resonator containing one or more dielectric layers, provided that the thickness and dielectric

constant are known. For the purposes of measuring the temperature dependence of dielectric

loss in ALD Al2O3 over a large temperature range, niobium based devices were used because

of their larger transition temperature (Tc ≃ 9 K). Because of the larger value of Tc, dielectric

losses in niobium devices remain the dominant source of loss for temperatures up to 1K. In the

case of aluminum (Tc ≃ 1.2 K), however, superconducting loss begins to dominate around 300

mK, and the extraction of dielectric loss behaviour becomes less reliable. The difficulty with

Niobium, in terms of dielectric losses, is that the films grown by sputtering are slightly lower in

quality and the native oxide (usually Nb2O5) is thicker and perhaps lossier than native AlOx.

Also, it is much different chemically than our material of interest ALD Al2O3. Therefore, this

native oxide will presumably have both a different intrinsic loss Q−1
0 and critical saturation field

Ec. Since the measured internal quality factor includes contributions from all sources of loss,

weighted appropriately by their participation factors, the loss due to a particular layer can only

be quantified if the loss properties of the other layers are known. Therefore, to better understand

the behaviour of dielectric loss in ALD Al2O3 layers deposited on niobium, we first measure the

baseline losses due to native niobium oxide and analyze the results in terms of the inhomogeneous

field model. This data is then used in the analysis of devices with ALD layers as a “baseline loss”

factor.

5.3.1 Native oxide at the surface of niobium and silicon

Some assumptions must inevitably be made regarding the nature of the native oxides present

on the device. In practice it is very challenging to measure the actual thickness, due to its very

small value. It is important to have a good estimate, since the thickness will define the region

over which the electric field probability will be considered. Literature [32] suggests that native

niobium oxide will saturate at a thickness of ∼5 nm and native silicon will have a thickness of

2-5 nm [55]. We can assume both native niobium oxide and silicon oxide will be present on the

device prior to deposition of any additional oxide which is to be characterized. It is also reasonable

to assume each material is amorphous and will therefore host a distribution of two-level systems.

It follows that we can model the loss in the resonator due to two different materials and consider
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the electric field distributions for each. We can then write equation (5.3) for each material and

fit the experimental data to

Q−1(V ) =
∑

k=Nb2O5,
SiO2

pkQ
−1
0,k

∑

j

Pj(Ej,k)

/√

1 +

(
V

Vsim

Ej,k

Ec,k

)2

, (5.4)

where Q−1
0,k and Ec,k are the loss factor and critical field for the kth material. The histograms

are generated from the simulation of the capacitor cross section shown below in Fig. 5.10. The

electric field histograms are shown in Fig. 5.9 below.
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Figure 5.9: Electric field probability histograms for native oxides present in niobium based su-
perconducting resonators. See figure 5.10 for simulation setup. The distributions are used in
equation (5.4) to fit power dependent loss of baseline resonators.
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100nm
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Figure 5.10: COMSOL native oxide simulation setup. Model includes over-etching into Si sub-
strate resulting from reactive ion etching during fabrication. Silicon and niobium surfaces are
assumed to have 5nm of SiO2 and Nb2O5 respectively.

5.3.2 Voltage dependent loss in a baseline Nb resonator

The voltage dependent loss is fit to equation (5.4) with a high-power loss factor for the resonators

of interest. It is worth mentioning that the data could not be fit to the TLS model by assuming

only one native oxide. The weaker power dependence of the loss which was observed in the baseline

devices is assumed to arise from the fact that the critical field of SiO2 is quite large compared
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to other oxides which have been characterized. This effectively weakens the power dependence

because TLS present in SiO2 are saturated at much higher fields than those in Nb2O5. The fitting

of the data is presented below in Fig. 5.11.

Loss vs. Voltage in baseline Nb resonator (5.5 GHz)

7⇥ 10�6

5⇥ 10�6

3⇥ 10�6

1 10 102 103 104

V (µV)

Q�1

Figure 5.11: Loss versus resonator voltage in a bare 5.5 GHz Niobium resonator. Fitting model
assumes two dielectric materials, Nb2O5 and SiO2, each of which has their own TLS loss param-
eters.

The fitting parameters are presented below in Table 5.4. The values are those extracted from

the best fit. We can see that the fit is by no means perfect, but it is sufficient for our purposes

since it accounts for both the magnitude of the loss and the weak voltage dependence of the

measurement to be understood in terms of two-level system loss. We note that, without the

assumption of two different oxide materials, the inhomogeneous field model does not yield a good

fit with the data.

The losses from devices which have additional thick amorphous layers are typically 1-2 orders

of magnitude greater than that which is measured in the baseline line resonators. (Q−1 ∼ 10−4

for a device with a thick layer and Q−1 ∼ 10−6 for the device with no ALD layer.) Nonetheless,

the small correction which is made by accounting for these native oxide surfaces affects the
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extraction of the intrinsic loss and critical field in ALD Al2O3. This correction is significant for

thin layers (∼30 nm) and small for thick layers (∼100 nm). We modestly point out that our

COMSOL model is, of course, a simplification. In reality we do not know exactly the thickness,

chemical composition and surface-morphological nature of the lossy surfaces. There could be some

interfacial species between Nb and Si produced during the sputtering process which contributes to

the loss. We assume that the O2 plasma cleaning step in the ALD reactor produces thin, nearly

uniform oxide layers on the surface which are similar chemically to the native oxides. What

matters for the purpose of this work, is to account for the magnitude of the loss in a consistent

manner.

Table 5.4: Fitting parameters for W60-C4d-LC1 (5.5 GHz)

Fit parameter Nb2O5 SiO2

Q−1
0 3.34×10−6 2.50×10−6

Ec (V/m) 0.30 753
Q−1

hp 1.93×10−6 –

5.3.3 Corrected extraction of loss due to an additional thick oxide layer

The procedure for extracting loss in devices with additional thick oxide layers proceeds in the

following way: For a given resonator design, the baseline loss is fit with equation (5.4) and the

extracted fit parameters, pkQ
−1
0 and Ec,k, are then taken as fixed quantities when fitting the

data of a resonator containing an additional thick layer. Mathematically, we fit the data to the

following expression

Q−1(V ) =

pkQ
−1
0 and Ec,k fixed from baseline resonator fitting

︷ ︸︸ ︷
∑

k=Nb2O5,
SiO2

pkQ
−1
0,k

∑

j

Pj(Ej,k)

/√

1 +

(
V

Vsim

Ej,k

Ec,k

)2

+ . . . (5.5)

+ p0Q
−1
0

∑

j

Pj(Ej)

/√

1 +

(
V

Vsim

Ej

Ec

)2

︸ ︷︷ ︸
fitting expression for Al2O3 loss

.
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The first term is the correction factor which accounts for native oxide layers, and the second term

pertains to loss in the additional layer. As an example, Fig. 5.12 shows the fitting of loss vs.

voltage data for a resonator which includes 60 nm of ALD Al2O3. The Pj(Ej)’s are given by

the histogram below in Fig. 5.13. The resonator is identical in design to the baseline resonator

discussed earlier and is therefore very close in frequency. It is important to note that, without

including the native oxide surfaces in the baseline loss model, the inhomogeneous field model fails

to provide a good fit of the data. Therefore, convincing agreement with the TLS model cannot be

so easily claimed. In other words, the presence of these lossy layers in addition to the thick layer

of interest imposes additional inhomogeneity in the electric field, and therefore affects the voltage

dependent loss. The high-power loss factor Q−1
hp is always treated as a free fitting parameter for

a given resonator.

ALD-Al2O360nm
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1 10 102 103 104

Loss vs. voltage at 5.45 GHz with 60nm Al2O3
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a) b)

Figure 5.12: a) electric field profile from COMSOL simulations. Model includes native oxide
surfaces and also 60 nm of ALD Al2O3. b) Voltage dependent loss in a 5.45 GHz resonator fit
using equation 5.5 with fixed baseline parameters and free Al2O3 parameters given in 5.5.
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Table 5.5: Fitting parameters for W60-C4f-LC1 (5.45 GHz)

Fit parameter Al2O3

p0Q
−1
0 6.00×10−5

Ec (V/m) 0.87
Q−1

hp 1.01×10−5

Figure 5.13: electric field probability distribution determined from COMSOL simulations.
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Chapter 6

Temperature dependence

measurements of dielectric loss in

ALD aluminum oxide

6.1 Introduction

In this chapter, we present an extensive set of measurements of dielectric loss in aluminum oxide

grown by atomic layer deposition. Aluminum oxide is currently one of if not the most impor-

tant material used in superconducting circuits as it forms the tunnel oxide barrier of the most

extensively used type of Josephson junction, namely, a superconductor-insulator-superconductor

(SIS) junction, consisting of an Al/AlOx/Al tri-layer. This type of junction is commonly used

because it can be fabricated using a double-angle evaporation recipe with an intermediate in-situ

oxidation step. This recipe allows for the sample to remain under vacuum during the deposition

and oxidation which in turn yields a high-quality oxide barrier and large critical current, key

parameters in the fabrication of superconducting qubits. Therefore, knowledge of the proper-

ties of this amorphous oxide is of great interest both in terms of improving device designs and

fabrication methods. The measurements are performed over the temperature range of tens of

mK to 1 K, thus providing a large domain over which the central predictions of the TLS model

are tested. The richest features of the TLS model reside in the behaviour of the low-power

loss tangent and the critical electric field, which reflect specifically the two-level character of the
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tunnelling systems and the environmental mechanisms contributing to decoherence, respectively.

The second property in particular, for the case of aluminum oxide, has not been characterized

over an extensive temperature range.

The study is based on many resonators, varying in design, dielectric oxide layer thickness

and resonance frequency. For this reason, it was essential to have a consistent analysis method

which allowed for reliable extraction of the relevant loss parameters for resonators with varying

characteristics and microwave properties. In chapter 3, a systematic analysis method for fitting

the microwave response of an arbitrary lumped element resonator was presented. The method

provided a way to determine the capacitor voltage on resonance, by combining estimates of the

coupling to the transmission line with parameters obtained directly from fitting the microwave

transmission data acquired from a vector network analyzer. Using this estimate of the capacitor

voltage, the model presented in chapter 5 is applied to analyze the dielectric loss measurements

and determine the value of the critical electric field.

Two different types of resonators were studied in this work. Interdigital resonators, which were

discussed at length in the previous chapter, and also resonators consisting of an overlap parallel

plate capacitor. Interdigital resonators can easily be fabricated completely out of niobium, which

is ideal for measurements at higher temperatures. Furthermore, due to the geometry of the

capacitor and the small participation ratio of the amorphous oxide layers, loss measurements are

faster to conduct in terms of total measurement time. This is due to the fact that the high internal

quality factors result in an improved signal-to-noise ratio (SNR) for microwave measurements.

This feature allows for fewer averages per measurement and is essential for experiments above

300 mK. This is because the temperature may be easily kept constant over the duration of a

measurement (∼12 minutes) in which a VNA trace is acquired at each microwave power. However,

the low participation ratio makes the effect of dielectric loss smaller, and therefore more difficult

to distinguish from other sources of loss such as loss due to quasiparticles.

On a typical device, 3 or 4 resonators of varying geometry and resonance frequency are

coupled to the signal line, which allows loss at various frequencies to be compared. The second

type of resonator, the “overlap” type, consists of a simple parallel-plate capacitor where the

aluminum oxide layer has been deposited between the plates. These resonators were studied

because the capacitor produces a homogeneous electric field, and also the participation ratio of

the dielectric is very close to 1, thus ensuring a reliable loss measurement. The large dielectric

participation factor of the oxide yields a lower internal quality factor and in turn a lower SNR
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which increases the duration of a measurement. Due to limitations in fabrication, the top plate

of the capacitor needed to be made of aluminum, by metal evaporation and lift-off steps in the

fabrication process. Therefore, loss measurements with overlap resonators were limited to lower

temperatures to reduce the impact of superconducting loss in aluminum.

Table 6.1 shows a summary of the different devices which were measured in this work. Ex-

tensive measurements using different types of resonators are important both in verifying the

reproducibility of our results and also ruling out systematic features of the measurements. In

section 6.2, we will outline in detail the analysis procedure for a set of resonators in a single de-

vice, emphasizing the relevant methods, physics and results of interest. In section 6.3 a summary

of the results from other devices will be presented to illustrate the reproducibility of the results.

In section 6.4, we will discuss the results in full and present a unique characterization of the

intrinsic loss factor and critical saturation field due to two-level systems in amorphous dielectrics.

We will compare our results for ALD aluminum oxide with those for another type of aluminum

oxide grown by plasma oxidation. Based on the data for the critical field, we analyze the intrinsic

properties of TLS coherence in comparison with other measurements made using quantum bits.

Table 6.1: Measurement summary for dielectric loss in Al2O3 grown by atomic layer deposition

Device # Resonators Type Al2O3 thickness (nm) Metal Temperatures (mK)

W60-C4d 3 Interdigital none Nb 40 - 925
W60-C4h 3 Interdigital 30 Nb 40 - 800
W60-C4f 3 Interdigital 60 Nb 46 - 990
W60-C5b 3 Interdigital 100 Nb 50 - 820
W79-E4a 4 Interdigital 100 Al 40 - 280
W60-A2d 3 Overlap 30 Al/Nb 50 - 590
W60-B2h 3 Overlap 60 Al/Nb 47 - 180
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6.2 Characterization of dielectric loss in 100 nm ALD Al2O3

In this section we present a detailed analysis of device W60-C5b for the purpose of demonstrating

the analysis method which was used for all devices considered in this work. The oxide layer is

100 nm in thickness and the superconducting material is niobium with a thickness of 100 nm.

The device consists of three interdigital resonators which have frequencies at 5.47, 6.01 and 7.14

GHz.

6.2.1 Voltage dependent loss measurements

The internal quality factor is extracted from fitting the traces acquired using a VNA with equa-

tion 3.19. Figure 6.1 shows an example of the amplitude and phase of the microwave response

measurement at low and high-power to illustrate the quality of the fits to equation 3.19. At

each power, the microwave response is fit and the internal Q-factor is determined. The inverse

internal Q-factor is equal to the intrinsic loss tangent for the aluminum oxide times the partic-

ipation ratio, p0Q
−1
0 which is plotted as a function of capacitor voltage for various temperature

in Fig. 6.2. Figure 6.2 illustrates a typical set of temperature dependence measurements of the

internal quality factor of a superconducting resonator in a dielectric loss experiment. At each

temperature, the resonator is measured at 14−17 different microwave powers corresponding to a

capacitor voltage range of 1 µV to 4×104 µV determined using the method presented in section

3.1.2.

6.2.2 Subtraction of baseline losses

In section 5.3, we addressed the issue that, for most planar superconducting resonators, there

are additional dielectric layers in the form of native oxides at the surface of the substrate and

superconducting material. In this device consisting of niobium on a silicon substrate, there are

NbOx and SiOx layers contributing to the total loss in the resonator. To account for these

sources of loss, we measure the temperature dependence of the loss for a device which has no

additional aluminum oxide layer (device: W60-C4d, see Table 6.1). At each temperature, the
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Figure 6.1: Amplitude (top) and phase (bottom) of a microwave transmission measurement of
a superconducting resonator at high (right) and low (left) powers. The data is acquired using a
2-port vector network analyzer and fit to equation 3.19. a) Amplitude and phase of the microwave
response at -85 dBm. b) Amplitude and phase of the microwave response at -130 dBm.
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Figure 6.2: Dielectric loss vs capacitor voltage at various temperatures in a 5.47 GHz interdigital
resonator with 100 nm of ALD Al2O3. Inset: microwave response at a fixed low power (-120dBm)
at various temperatures illustrating the temperature dependence of the internal-Q and resonance
frequency.
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voltage dependent loss data is fit to the following expression

Q−1(V, T ) =
∑

k=Nb2O5,
SiO2

pkQ
−1
i,k (ω, T )

∑

j

Pj(Ej,k)

/√

1 +

(
V

Vsim

Ej,k

Ec,k(T )

)2

+Q−1
hp , (6.1)

where Q−1
i,k is the intrinsic loss, pk is the dielectric participation ratio, Pj(Ej,k) is the probability

for the value of the electric field Ej,k to be found in the volume of the kth material, Vsim is

the reference voltage value from numerical simulations, Ec,k is the critical electric field and Q−1
hp

is a high-power constant loss term. From fitting the internal loss versus voltage data for the

corresponding resonator to the model, we obtain values for the loss tangents and critical fields

over a broad temperature range shown in Fig. 6.3. The behaviour of the loss tangents were

analyzed by fitting to the prediction from the TLS model

Q−1
i,k (ω, T ) = pkQ

−1
0,k tanh(!ω/2kBT ), (6.2)

where ω = 2πf is the angular frequency. We find good agreement with this temperature depen-

dent form of the loss. In our analysis, we also consider an alternative model [80] for a disordered

solid which predicts a temperature dependence for the intrinsic loss given by

Q−1
i,k (ω, T ) = pkQ

−1
0,k (1− exp(−!ω/kBT )) . (6.3)

This model was developed by Vural and Leggett to explain the universal behaviour of the acoustic

version of Q−1
0 which has been observed in many materials [67]. The model makes no explicit

assumption about the “two-level” nature of the tunnelling system. Vural and Leggett modestly

assume that the “extra” degrees of freedom in an amorphous material are described by a generic

many-body density of states, and that elastic phonons mediate a mutual interaction between

tunnelling systems.

Table 6.2: Fitting parameters for baseline losses in W60-C4d at T = 40 mK

Resonator fr (GHz) pNb2O5Q
−1
0,Nb2O5

pSiO2Q
−1
0,SiO2

LC1 5.58 3.25× 10−6 2.53× 10−6

LC2 7.26 3.31× 10−6 2.68× 10−6
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Figure 6.3: Critical electric field data (left) and intrinsic losses (right) from native Nb2O5 (top)
and SiO2 (bottom) layers at 5.58 GHz. Values are extracted using the inhomogeneous field model
assuming 5 nm Nb2O5 on metal surfaces and 5 nm SiO2 on substrate surfaces. On the right side
of the figure, the solid line which matches the colour of the data points is the fit to the TLS model
(equation (6.2)) and the blue solid line is the fit to the disordered solid model (equation (6.3)).
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The relevant loss parameters are presented in Table 6.2. We find good agreement in the

numerical values of the extracted fitting parameters between the two resonators at different

frequencies. It is important to note that, since we do not know precisely the participation ratio

of the niobium oxide and silicon oxide layers, we can only determine the magnitude of the loss,

i.e, the products pNb2O5Q
−1
0,Nb2O5

and pSiO2Q
−1
0,SiO2

respectively. This is sufficient since we only

need to know the magnitude of these losses, not their intrinsic loss tangents for each material, so

that they may be accounted for in a measurement involving additional thicker layers.

The set of values for the losses and critical fields at each temperature are interpolated to give

approximate functions of temperature. This is important because in different experiments involv-

ing temperature dependence measurements, it is difficult to achieve the same set of temperatures.

By using interpolated functions for the losses and critical fields, we can approximately determine

the correct values for any temperature at which a later measurement is performed to determine

the loss due to an additional layer of aluminum oxide.

6.2.3 Extraction of loss due to aluminum oxide

Using the data presented in the previous section describing the loss from native oxides, we are

equipped to determine the intrinsic loss in aluminum oxide by following the procedure presented

in section 5.3.3. We fit the loss data presented in Fig. 6.2 to the following equation

Q−1(V, T ) =
∑

k=Nb2O5,
SiO2

pkQ
−1
i,k (ω, T )

∑

j

Pj(Ej,k)

/√

1 +

(
V

Vsim

Ej,k

Ec,k(T )

)2

+ . . . (6.4)

+ p0Q
−1
i (ω, T )

∑

j

Pj(Ej)

/√

1 +

(
V

Vsim

Ej

Ec(T )

)2

+Q−1
hp ,

where the first term accounts for losses from native oxides and the second term describes the

loss from the aluminum oxide layer. The terms pkQ
−1
i,k (ω, T )) and Ec,k(T ) are specified by the

interpolated values determined from the native oxide losses of the baseline resonator.
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Figure 6.4: Intrinsic low power loss in Al2O3 grown by atomic layer deposition determined using
a niobium interdigital resonator with a resonance frequency of f = 5.47 GHz. The solid line
represents the fit to the TLS model prediction.
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6.2.4 Low-power loss

Figure 6.4 shows the temperature dependence of the low-power intrinsic loss. The data is ob-

tained from fitting the voltage dependent data to equation (6.4), extracting p0Q
−1
i and fitting

the expression to equation (6.2). Table 6.3 shows the values of the intrinsic loss Q−1
0 determined

using two different resonators. The agreement we find with the TLS model is outstanding. Other

works have conducted loss measurements in aluminum oxide [52] and silicon oxide [49] over a

similar temperature range. However, their measurements were for thin oxide layers for which

they do not calculate the participation ratio and therefore do not determine the intrinsic loss

tangent. Furthermore, they address neither the effect of an inhomogeneous electric field nor the

losses from native oxide surfaces. Measurements of dielectric loss in ALD aluminum oxide have

been made [42], but no data on the temperature dependence is presented.

Table 6.3: Fitting parameters for loss and critical field in 100nm Al2O3

Resonator fr (GHz) Q−1
0

LC1 5.47 2.12×10−3

LC2 7.14 2.05×10−3

6.2.5 Frequency shift

Another way to extract the intrinsic loss factor is by measuring the shift in the resonance frequency

as a function of temperature (see section 2.4). Data for the resonance frequency as a function of

temperature is presented below in Fig. 6.5 and the relevant fit parameters in Table 6.4. We find

excellent agreement with the TLS model over the temperature range which was characterized.

The frequency as a function of temperature is fit to the following equation derived from section

2.4

fr(T )

fr(T = 0)
= 1 + 2

(
∑

k

pkQ
−1
0,k + p0Q

−1
0

)(
ReD

(
1

2
− !ω

2πikBT

)
− ln

(
!ω

2πkBT

))
, (6.5)

where D is the complex digamma function and fr(T = 0) is a fitting parameter corresponding

to the expected frequency at zero temperature. The values for pkQ
−1
0,k are those determined from

the baseline devices with losses due to niobium oxide and silicon oxide. The inclusion of these
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factors gives rise to a small change in the value of Q−1
0 , since its participation ratio is much larger.

The fits are in excellent agreement with the TLS model prediction, over a significant temperature

range.

Table 6.4: Fitting parameters for temperature dependent frequency shift in W60-C5b

Resonator fr(T = 0) (GHz) Q−1
0

LC1 5.47030 2.73×10−3

LC2 7.13785 2.65×10−3
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Figure 6.5: Resonance frequency versus temperature for two niobium interdigital resonators with
100 nm of ALD aluminum oxide at frequencies of 5.47 anf 7.14 GHz. The data points are fit to
the prediction of the TLS model given by equation (6.5).

By averaging the results for the loss obtained from both methods, we find a loss tangent of

Q−1
0 = 2.39 ± 0.35 × 10−3 for Al2O3 grown by atomic layer deposition. A further discussion of

this value will be conducted in section 6.4 when all measurements are considered.

6.2.6 Analysis of the critical electric field

The analysis of the voltage dependent loss using equation (6.4) provides the temperature depen-

dent behaviour of Ec, the critical electric field in aluminum oxide. To understand the behaviour
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of the critical field, we recall the form of equation (2.94) given by the TLS model

Ec(T ) =

√
3!

2qd0
√

T1,m(T )T2(T )
, (6.6)

where T1,m is the mininum TLS lifetime limited by single phonon emission, and T2 is the TLS

dephasing time. Both T1,m and T2 are assumed to depend upon temperature. Using T−1
1 =

Γ1, T
−1
2 = Γ2 =

1
2Γ1 + Γφ we have

Ec =

√
3!

2qd0

√
Γ1,mΓ2 =

√
3!

2qd0

√

Γ1,m

(
1

2
Γ1,m + Γφ

)
, (6.7)

where qd0 is the average dipole moment of the TLS. We assume q = e and d0 = 0.1 nm, and

that Γ1 is given by the expression for single phonon relaxation process (equation (2.49)). The

behaviour of Γφ reflects the dephasing of the TLS, and is believed to arise as a result of TLS-TLS

interactions [65]. The temperature dependent behaviour of Γφ has not been characterized for an

ensemble of TLSs using measurements of the critical field determined using a superconducting

resonator. We may assume Γφ has a general temperature dependent form given by Γφ = aTµ.

Equation (6.7) then reads

Ec(T ) =

√
3!

2qd0

√

Γ0
1,m(ω) coth

(
!ω

2kBT

)(
1

2
Γ0
1,m(ω) coth

(
!ω

2kBT

)
+ aTµ

)
, (6.8)

where Γ0
1,m(ω) is the maximum relaxation rate at T = 0. It is given by

Γ0
1,m(ω) =

⎛

⎝
∑

α=ℓ,t

γ2α
v5α

⎞

⎠ ω3

2πρ! , (6.9)

where γα is the TLS-phonon coupling energy, vα is phonon velocity and the sum over α = ℓ, t

accounts for relaxation via both longitudinal (ℓ) and transverse (t) phonons. In Fig. 6.6 we

fit the critical field data in Al2O3 obtained for the two resonators considered in this device.

From the fitting, we determined the fitting parameters which are tabulated in Table 6.5. The

critical field data provides a way to indirectly measure the coherence properties of two-level

systems in amorphous materials. By fitting the temperature dependent data, one infers the

ensemble averaged coherence properties of the two-level systems. This provides an important
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fr (GHz) Γ0
1,m (kHz) a (MHz/Kµ) µ

5.47 45.3 6.86 2.68
7.14 81.1 17.5 2.15

Table 6.5: Fitting parameters for the critical field in 100 nm Al2O3 for two different resonators
with resonance frequency fr. Γ0

1,m is the intrinsic “zero-temperature” maximum relaxation rate,
a is the coefficient of the temperature dependent form for a pure dephasing process given by
Γφ = aTµ.

comparison to experiments conducted on single two-level systems using qubits [76, 50]. Following

the presentation of the full experimental data set from all devices, the details of the TLS coherence

properties will be discussed.

Figure 6.6: Critical electric field versus temperature in 100nm of aluminum oxide grown by atomic
layer deposition determined by measurements of niobium interdigital resonators with resonance
frequencies of 5.47 and 7.14 GHz. Values of the critical field are extracted by fitting voltage
dependent loss data to equation (6.4), and fit to equation (6.8).
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6.3 Results from all measured resonators

Here we summarize the results from all measured devices by presenting the results obtained by

the methods outlined in the previous section.

6.3.1 Device W60-C4h: 30nm Al2O3

These measurements were made using niobium interdigital resonators at 5.42 and 7.08 GHz which

have an ALD Al2O3 dielectric layer 30 nm in thickness.
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Figure 6.7: Measurements of Intrinsic loss (top) and critical field (bottom) in 30 nm ALD alu-
minum oxide using niobium interdigital resonators with frequencies of 5.42 and 7.08 GHz. The
intrinsic loss is fit to equation (6.2) and the critical field is fit to equation (6.8).
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Figure 6.7 shows the intrinsic loss measured in the two resonators and the temperature de-

pendence of the critical field. The relevant fitting parameters are tabulated below in Table 6.6.

We find good agreement with the TLS model and with the form of Ec given by equation (6.4).

Table 6.6: Fitting parameters for loss and critical field in 30nm Al2O3

fr (GHz) Q−1
0,Al2O3

Γ0
1,m (kHz) a (MHz/Kµ) µ

5.42 2.25×10−3 24.7 3.74 1.93
7.08 1.98×10−3 128 5.25 2.51

117



6.3.2 Device W60-C4f: 60nm Al2O3

These measurements were made using niobium interdigital resonators at 5.37 and 7.01 GHz which

have an ALD Al2O3 dielectric layer 60 nm in thickness.
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Figure 6.8: Measurements of Intrinsic loss (top) and critical field (bottom) in 60 nm ALD alu-
minum oxide using niobium interdigital resonators with frequencies of 5.37 and 7.01 GHz. The
intrinsic loss is fit to equation (6.2) and the critical field is fit to equation (6.8).

Table 6.7: Fitting parameters for loss and critical field in 60nm Al2O3

fr (GHz) Q−1
0,Al2O3

Γ0
1,m (kHz) a (MHz/Kµ) µ

5.37 2.27×10−3 20.1 5.33 1.86
7.01 2.24×10−3 106 15.2 2.32
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Figure 6.8 shows the intrinsic loss for measured in the two resonators and the temperature

dependence of the critical field. The relevant fitting parameters are tabulated in Table 6.7. Again,

we find good agreement with the TLS model and with the form of Ec given by equation (6.4).

Data for the resonance frequency as a function of temperature is presented below in Fig. 6.9

and the relevant fit parameters in Table 6.8. We find excellent agreement with the TLS model

over the temperature range which was characterized.

Out[4226]=

0 1 2 3 4 5 6

5.36760

5.36765

5.36770

5.36775

��

kB T

f r
(G
H
z)

Resonance frequency vs. temperature

Out[4221]=

0 2 4 6 8

7.00855

7.00860

7.00865

7.00870

��

kB T

f r
(G
H
z)

Resonance frequency vs. temperature

Figure 6.9: Resonance frequency versus temperature for two niobium interdigital resonators with
60 nm of ALD aluminum oxide at frequencies of 5.37 anf 7.01 GHz. The data points are fit to
the prediction of the TLS model given by equation (6.5).

Table 6.8: Fitting parameters for temperature dependent frequency shift

Resonator fr(T = 0) (GHz) Q−1
0

LC1 5.36783 2.68×10−3

LC2 7.00885 2.25×10−3
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6.3.3 Device W79-E4a: 100 nm Al2O3

The superconducting material of this device is aluminum. There are four resonators at 5.96, 7.15,

7.97 and 9.01 GHz with 100 nm of Al2O3.
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Figure 6.10: Plot of the intrinsic dielectric loss as a function of !ω/kBT obtained by fitting the
loss vs voltage data to equation (5.4). The plots scale by the participation ratio, p0, which in this
case is slightly different for each resonator due to geometric variations in the capacitor. Taking
this into account we find that Q−1

0,Al2O3
= 2.15± 0.17× 10−3.
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The loss parameters obtained from fitting are given in Table 6.9. The critical field data

determined from the voltage dependent loss is provided in Fig. 6.11 and the fitting parameters

are presented in Table 6.10. The data of the temperature dependent frequency shift is given in

Fig. 6.12.

Table 6.9: Fitting parameters for W79-E4a

Resonator fr(T = 0) (GHz) Q−1
0

LC1 5.95842 1.68×10−3

LC2 7.15205 1.93×10−3

LC3 7.96841 2.79×10−3

LC4 9.02131 1.43×10−3
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Figure 6.11: Critical electric field data in four aluminum interdigital resonators with various
resonant frequencies. The superconducting material is aluminum so to reduce the effect of super-
conducting loss mechanisms data points for the critical field for T < 200 mK are fit to the model
for Ec given by equation (6.8) where Γφ = aTµ.

121



Table 6.10: Fitting parameters for the critical field in W79-E4a

Resonator fr (GHz) Γ0
1,m (kHz) a (MHz/Kµ) µ

LC1 5.955 34 ± 3 ± 2.5 3.68 ± 2.08 2.36
LC2 7.152 104 ± 10 ± 0.9 15.1 ± 8.06 2.67
LC3 7.968 125 ± 11 ± 0.1 9.60 ± 3.96 2.12
LC4 9.021 261 ± 16 7.81 ± 3.77 1.95

TLS prediction

Figure 6.12: Plots of the frequency shift due to two-level systems as a function of temperature
averaged at low microwave powers. The data is fit to equation (6.5) for temperatures > 200 mK
because superconducting loss results in an increase in the kinetic inductance and causes the
resonance frequency to decrease contrary to the TLS prediction. The error in the data points is
the standard deviation in points which are averaged at low-power.

Measurements of the intrinsic loss tangent determined from the frequency shift in various
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resonators do not show any systematic dependence on frequency. By averaging the extracted

values of the intrinsic loss determined from the frequency shift we find that Q−1
0,Al2O3

= 1.96 ±
0.59× 10−3, in good agreement with the loss determined from direct low-power measurements of

the unsaturated internal Q-factor.

6.3.4 Overlap Al/Nb resonators

We now present measurements of resonators which feature an overlap parallel plate capacitor

where the dielectric material of interest is sandwiched between the plates. This makes the par-

ticipation ratio of the loss tangent very close to unity since the electric field is totally confined

within the lossy oxide between the capacitor plates, rather than distributed over other regions

such as the substrate and free space. Despite the parallel plate geometry, the electric field inside

the capacitor still experiences some inhomogeneity which is reflected in the voltage dependent loss

measurements. This arises from the fact that the bottom metal layer of the device is niobium and

therefore has some native oxide on its surface which formed during the fabrication process. The

dielectric constant of niobium oxide (Nb2O5, the most abundant form of niobium oxide known

to form under ambient conditions) is ϵr ∼30 compared to Al2O3 (ϵr ∼8), so the magnitude of

the electric field in the resonator varies accordingly between these two volumes according to the

continuity equation of electrodynamics. The top plate is necessarily made of aluminum, since a

lift-off fabrication process for niobium had not been developed, but is possible in principle. In

Fig. 6.13, we present data for two overlap capacitor resonators, with frequencies of 5.14 and

9.53 GHz. We find excellent agreement in the temperature dependence of the intrinsic loss with

the prediction from TLS theory. Furthermore we find a strong temperature dependence in the

critical electric field in agreement with measurements from other resonators. Table 6.11 below

summarizes the fitting parameters and relevant physical quantities extracted for these resonators.

Table 6.11: Loss and critical field in 30nm Al2O3 extracted using overlap resonators

fr(T = 0) (GHz) Q−1
0,Al2O3

Γ0
1,m (kHz) a (MHz/Kµ) µ

5.144 2.49×10−3 59.4 3.81 2.31
9.530 3.10×10−3 324 22.4 2.00
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Figure 6.13: Temperature dependence of the intrinsic loss tangent (left), resonance frequency
(middle) and critical field (right) for two superconducting resonators consisting of an overlap
capacitor. The intrinsic loss and frequency shift are fit to the predictions of the TLS model
given by equations (6.2) and (6.5) respectively, and the critical field is fit to equation (6.8) a)
Temperature dependent data for a 5.14 GHz resonator. b) Temperature dependent data for 9.53
GHz resonator.
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6.4 Discussion

We have presented an extensive set of measurements of temperature dependent dielectric loss in

Al2O3 using superconducting microwave resonators. Here we discuss the results in a more general

context by comparing our measurements with those from another type of aluminum oxide grown

by plasma oxidation. We then discuss the measurements of the critical electric field which reflects

the coherence of two-level system ensembles in the amorphous material. These measurements

provide an important comparison to measurements which have measured coherence properties of

a single two-level system using superconducting qubits [76, 50].

6.4.1 Intrinsic dielectric loss tangent

Table 6.12 shows the value of the loss tangent determined from each device by averaging the

values determined from each resonator on a device. Using the average value of the intrinsic loss

Table 6.12: Summary of intrinsic dielectric loss tangent in Al2O3 grown by atomic layer deposition

Device Type Al2O3 thickness (nm) Metal Temperatures (mK) Q−1
0 (×10−3)

W60-C4h Interdigital 30 Nb 40 - 800 2.12 ±0.19
W60-C4f Interdigital 60 Nb 46 - 990 2.46 ±0.24
W60-C5b Interdigital 100 Nb 50 - 820 2.39 ±0.35
W79-E4a Interdigital 100 Al 40 - 280 1.96 ±0.51
W60-A2d Overlap 30 Al/Nb 50 - 590 2.80 ±0.43
W60-B2h Overlap 60 Al/Nb 47 - 180 2.45 ±0.25

tangent Q−1
0 and its definition according to the TLS model (see section 2.3)

Q−1
0 =

π(qd0)2P0

3ϵ0ϵr
, (6.10)

where qd0 is the average TLS dipole moment, P0 is the density of states per unit energy and

volume, and ϵr = 8.5 for ALD aluminum oxide, the number of TLS per unit volume at a given

frequency can be calculated. Complementary experiments [53, 76, 44] on TLSs using single qubits

have extracted a dipole size of d0 ≃ 0.1 nm and a coupling energy of 1 eV, which is found to be

consistent with an electron tunnelling roughly the distance of an atomic bond length in aluminum

oxide. Using these results we assume the tunnelling of a single electron, over a distance of 0.1 nm,
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and we calculate P0 = 6.6 × 1038 J−1cm−3. Evaluating at an energy of 6 GHz gives 2.2 × 1015

TLS × cm−3 or about 2200 per µm3. This number is consistent with other work on aluminum

oxide [42, 52, 19, 62].

6.4.2 Comparison with plasma AlOx

We compare the behaviour of dielectric loss in ALD Al2O3 with another form of aluminum oxide

grown by high-power plasma oxidation (PO) of aluminum [19]. This method is done in-situ

following evaporation of aluminum and yields a thin layer of aluminum oxide approximately

5 nm thick. This type of oxide layer is very similar to the aluminum oxide layer in SIS Josephson

junctions, as it is grown in a nearly identical manner. The temperature dependence of the loss is

shown in Fig. 6.14. For this device, the intrinsic loss factor was determined to beQ−1
0 = 2.0×10−3,

very similar to the value obtained for ALD aluminum oxide. However, in PO aluminum oxide,

we find that the value of the critical field is roughly an order of magnitude larger (EPO
c ≃

40 V/m). While both materials are forms of aluminum oxide, spectroscopy measurements using

X-ray photoelectron spectroscopy (XPS) revealed differences in the proportion of chemical species

present in each material. XPS measurements revealed an Al-O ratio of 1.52 in the ALD film, while

for the PO film it was found to be 1.69. Further measurements also indicated that each material

has carbon impurity defects. When bound to oxygen, the O-C ratio is 1.39 for the ALD film and

1.45 for the PO film. It is very interesting that differences in both stoichiometry and impurity

content do not significantly affect the properties of the loss, yet, the saturation characteristics of

the two-level systems are clearly different. This would suggest that the chemical differences play

a role in mediating relaxation and dephasing mechanisms of TLSs in amorphous solids, but not

necessarily in defining their intrinsic density of states. Further experiments which systematically

address chemical differences between different types of films would provide further insight into

this result.

Some have attributed the origin of two-level systems in amorphous aluminum oxide as hy-

drogen tunnelling defects [42], however we do not find the presence of OH (hydroxide) to be

abundant in our samples. From this comparison and chemical analysis, it is difficult to correlate

two-level systems with a particular type of chemical defect in the material. It is more plausible

to view their existence as a natural consequence of microscopic disorder, which chemical defects

may contribute to.
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Figure 6.14: Temperature dependent loss data from reference [19]. Resonator is fabricated entirely
from aluminum and is measured from 54 mK to 300 mK. The solid lines are the fits to the TLS
model. a) Intrinsic loss tangent determined from direct measurements of the internal quality
factor of an overlap capacitor resonator containing a 5 nm AlOx film grown by plasma oxidation.
b) Temperature dependence of the resonance frequency.
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6.4.3 Temperature dependence of the critical saturation field

The measurements presented for the critical saturation field, Ec, demonstrate a strong temper-

ature dependence in all measured devices (see Fig. 6.15). In particular we find that, in order

to account for this, the coherence of the TLS cannot be limited by relaxation, i.e., T2 ̸= 2T1,

which has been reported in some cases for experiments on single TLSs using phase qubits [76, 50].

Our measurements differ from these fundamentally since they pertain to an ensemble averaged

quantity of TLSs which are resonant with the microwave field in the resonator. They also have

the added merit that a temperature range much larger than that which is accessible for qubit

may be characterized. The theory of spectral diffusion [10, 45, 33], suggests that a temperature

dependence of T−1
φ ∝ T 2 arises from energy fluctuations of thermal two-level systems undergoing

random transitions induced by their interaction with thermal phonons. The fluctuations of the

thermal TLSs produce small energy changes in the local strain field which have the effect of shift-

ing the energy of the TLS which are resonant with the microwave field. Over time, the energy

uncertainty of the resonant two-level systems will increase as a result of the induced dephasing.

In general, dephasing could be the result of other processes, but no evidence in literature has

suggested mechanisms which arise independently of a mutual interaction.

We find consistently that both T1 and T2 are larger than the values measured using qubits. We

find T1 ranges from 3 to 40 µs and Tφ varies from 3 to 30 µs at the lowest measured temperatures.

In the qubit experiments, the TLSs in the Josephson junctions are found to have 10 ns< T1 < 6 µs,

T2 ∼ 100 ns and 100 ns < Tφ < 3 µs [76, 50]. This difference between qubit measurements is

quite intriguing. Despite the fact that both materials are aluminum oxide, the environment of

the TLS could be quite different because of the small size and thickness of the oxide layer in the

junctions. The discrete nature of the TLSs measured in qubit experiments makes the role of the

mutual interaction more difficult to intepret. Certain TLSs could be subject a different degrees of

relaxation and dephasing processes depending on their specific positions inside the junction [76].

In our experiments, we see less of a spread in the TLS properties as a result of measuring the

ensemble. Among the different oxide thicknesses which were considered in this work, we find no

systematic dependence on thickness which has been proposed recently [22].
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Figure 6.16: Summary of the zero-temperature intrinsic relaxation rate Γ0
1,m as a function of

resonator frequency obtained from fitting the temperature dependence of the critical electric
field. Data is fit to the prediction for the TLS model given by equation (6.9).

6.4.4 Frequency dependence of the intrinsic relaxation rate

The TLS model predicts that the maximum intrinsic relaxation rate of the TLS via phonons is

given by equation (6.9). We find good agreement with this prediction and our results are the first

to demonstrate this using superconducting resonators. Measurements across a larger frequency

band and at lower temperatures would provide a better test of this prediction. By fitting the

critical field data as a function of temperature to equation (6.8), we extract the value of Γ0
1,m,

the average intrinsic relaxation rate of the TLSs.
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By using the results from resonators at different frequencies we plot the value of Γ0
1,m as a

function of frequency in Fig. 6.16. We find that the data can be fit to a Γ0
1,m = a × f3 without

a constant offset term in agreement with equation (6.9). This re-affirms our agreement with the

TLS model and is further evidence that T1 is due to phonon relaxation.

6.4.5 Conclusions

In this chapter, we have presented detailed measurements of dielectric loss in aluminum oxide

grown by atomic layer deposition. The intrinsic loss tangent, extracted directly from measure-

ments of the internal quality factor and shift in resonance frequency, shows excellent agreement

with the two-level system model over a large temperature range. We find the intrinsic loss tan-

gent to be Q−1
0 = 2.3 × 10−3. This value is very similar to that obtained for aluminum oxide

grown by plasma oxidation, which has different stoichiometry and chemical impurity content.

This similarity suggests that TLS arise microscopically due to the amorphous structure at low

temperatures and their density of states is not strongly affected by chemical defects.

Using a robust analysis method for a resonator with an inhomogeneous electric field, we pre-

sented measurements of the critical saturation field. These measurements provide information

on the coherence properties of the TLS ensembles in an amorphous material over a tempera-

ture which is not achievable with single-TLS measurements using qubits. We characterized the

temperature dependence of the critical electric field in amorphous Al2O3 using different types

of superconducting resonators with frequencies in the range of 5-10 GHz. We find consistently

that the data requires a strongly temperature dependent dephasing term Γφ(∼ T 2) where the

exponent agrees roughly with the prediction from the theory of spectral diffusion. Our ensem-

ble average measurements are therefore suggestive of a strong temperature-dependent dephasing

process experienced by the TLSs which supports the presence of a mutual interaction between

two-level systems in the amorphous material. Figure 6.15 shows the critical electric field data in

all the interdigital resonators considered in this study. We find the frequency dependence of the

intrinsic phonon relaxation to be in good agreement with the prediction of the TLS model. Our

measurements indicate that the two-level systems experience a strong temperature dependent de-

phasing process which is suggestive of a strong mutual interaction. The temperature dependence

can be accounted for by the theory of spectral diffusion in glasses, and our experimental results

present the first evidence for this obtained from an ensemble measurement.
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