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Abstract

Improving road safety and traffic efficiency has been a long-term endeavor for not only

government but also automobile industry and academia. After the U.S. Federal Communi-

cation Commission (FCC) allocated a 75 MHz spectrum at 5.9 GHz for vehicular commu-

nications, the vehicular ad hoc network (VANET), as an instantiation of the mobile ad hoc

network (MANET) with much higher node mobility, opens a new door to combat the road

fatalities. In VANETs, a variety of applications ranging from safety related (e.g. emergency

report, collision warning) to non-safety-related (e.g. infotainment and entertainment) can be

enabled by vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications. How-

ever, the flourish of VANET still hinges fully understanding and managing the challenges

that the public concerns, for example, capacity and connectivity issues due to the high mo-

bility of vehicles.

In this thesis, we investigate how vehicle mobility can impact the performance in three

important VANET-involved systems, i.e., pure VANET, VANET-enhanced intelligent trans-

portation systems (ITS), and fast electric vehicle (EV) charging systems. First, in pure

VANET, our work shows that the network data-traffic can be balanced and the network

throughput can be improved with the help of the vehicle mobility differentiation. Further-

more, leveraging vehicular communications of VANETs, the mobility-aware real-time path

planning can be designed to smooth the vehicle traffic in an ITS, through which the traffic

congestion in urban scenarios can be effectively relieved. In addition, with the consideration

of the range anxiety caused by mobility, coordinated charging can provide efficient charging

plans for electric vehicles (EVs) to improve the overall energy utilization while preventing

an electric power system from overloading. To this end, we try to answer the following ques-

tions:

Q1) How to utilize mobility characteristics of vehicles to derive the achievable asymptotic

throughput capacity in pure VANETs?

Q2) How to design path planning for mobile vehicles to maximize spatial utility based on

mobility differentiation, in order to approach vehicle-traffic capacity in a VANET-enhanced
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ITS?

Q3) How to develop the charging strategies based on mobility of electric vehicles to improve

the electricity utility, in order to approach load capacities of charging stations in VANET-

enhanced smart grid?

To achieve the first objective, we consider the unique features of VANETs and derive the

scaling law of VANETs throughput capacity in the data uploading scenario. We show that

in both free-space propagation and non-free-space propagation environments, the achievable

throughput capacity of individual vehicle scales as Θ( 1
logn

)1 with n denoting the population

of a set of homogenous vehicles in the network. To achieve the second objective, we first

establish a VANET-enhanced ITS, which incorporates VANETs to enable real-time commu-

nications among vehicles, road side units (RSUs), and a vehicle-traffic server in an efficient

way. Then, we propose a real-time path planning algorithm, which not only improves the

overall spatial utilization of a road network but also reduces average vehicle travel cost for

avoiding vehicles from getting stuck in congestion. To achieve the third objective, we in-

vestigate a smart grid involved EV fast charging system, with enhanced communication

capabilities, i.e., a VANET-enhanced smart grid. It exploits VANETs to support real-time

communications among RSUs and highly mobile EVs for real-time vehicle mobility infor-

mation collection or charging decision dispatch. Then, we propose a mobility-aware coordi-

nated charging strategy for EVs, which not only improves the overall energy utilization while

avoiding power system overloading, but also addresses the range anxieties of individual EVs

by reducing the average travel cost.

In summary, the analysis developed and the scaling law derived in Q1 of this thesis is

practical and fundamental to reveal the relationship between the mobility of vehicles and the

network performance in VANETs. And the strategies proposed in Q2 and Q3 of the thesis

are meaningful in exploiting/leveraging the vehicle mobility differentiation to improve the

system performance in order to approach the corresponding capacities.

1Note that we define two functions f(x) ≥ 0 and g(x) ≥ 0: f(x) = o(g(x)) means limx→∞f(x)/g(x) =
0; f(x) = O(g(x)) means lim supx→∞f(x)/g(x) = c < ∞; f(x) = o(g(x)) means g(x) = ω(f(x));
f(x) = O(g(x)) means g(x) = Ω(f(x)); f(x) = Θ(g(x)) means f(x) = O(g(x)) and g(x) = O(f(x)).
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Chapter 1

Introduction

Vehicular ad hoc networks (VANETs) have recently emerged as a promising technology for

providing revolutionized broadband services to vehicles. By deploying wireless gateways

(e.g., road side units (RSUs)) along highways/sidewalks and equipping vehicles with on-

board communication facilities (e.g., on-board units (OBUs)), two communication modes

are enabled for vehicles on the move: vehicle-to-RSU (V2R) communications and vehicle-

to-vehicle (V2V) communications, alternatively known as vehicle-to-infrastructure commu-

nications and inter-vehicle communications, respectively. In this framework, some applica-

tions can be supported, e.g., road safety applications (e.g., incident warning, traffic alerts),

the traffic monitoring/management, and infotainment delivery (e.g., video streaming, online

gaming) [1] [2].

For the exclusive use of automotive applications for VANETs, the program, Vehicle-

Infrastructure Integration (VII) [3], alternatively called IntelliDrive by the U.S. Federal Com-

munications Commission (FCC), has dedicated a 75 MHz spectrum in the 5.9 GHz band.

This spectrum became known as Direct Short-Range Communications (DSRC)1 [1]. The

permissible power levels give DSRC signals a range of 1 km with data rates from 6 to 27

Mbps. The community also sets the accordingly developing DSRC standards, including the

1DSRC protocol supports both RSU-to-vehicle/vehicle-to-RSU (R2V/V2R) and vehicle-to-vehicle (V2V)
communication.
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1. Introduction

PHY and MAC layers and the communication architecture. The architecture envisaged ad

hoc communications among OBUs in vehicles and RSUs. The RSUs would function as data

repositories or repeaters. Specifically, through VANETs, safety applications can be obtained

based on DSRC to alert drivers about potentially conflicting situations based on information

obtained from neighboring vehicles and the roadside units.

Due to the big potentials of VANETs in safety applications, on February 3rd, 2014, the

U.S. Department of Transportation’s (DOT) National Highway Traffic Safety Administration

(NHTSA) announced that it will begin taking steps to enable V2V for vehicles to talk to each

other and ultimately avoid crashes altogether by exchanging basic safety data [4]. In addition,

motivated by the significant commercial potentials, prominent industrial corporations have

also launched multiple projects to promote vehicular communications. For example, “Toyota

Friend” builds a private social network for the owners of Toyota cars [5].

1.1 Vehicular Ad Hoc Networks

The vehicular environment creates unique opportunities, challenges, and requirements. For

instance, new challenges can be created by high vehicle speeds and highly dynamic operating

environments. However, based on the highly mobile environments, an entirely new paradigm

for vehicle safety applications can be created, and even other non-safety applications can

greatly enhance road and vehicle efficiency.

1.1.1 Applications of VANETs

Generally, VANET applications can be divided into two major categories: 1) safety related

applications that increase vehicle safety on the roads ; 2) non-safety related applications that

provide value-added services, for example, traffic navigation or path planning in vehicular

networks.

At the most basic level, the goal of inter-vehicular wireless communications for safety

application is to alert the danger on the move, by sharing current vehicular positions, veloc-

2



1.1. Vehicular Ad Hoc Networks

ities, and accelerations. Since most retail vehicles are now outfitted with sensors to measure

velocities and accelerations and with transceivers to support the wireless communications

among vehicles and infrastructure, this vehicular safety application can come true in reality.

Another kind of application is non-safety related application, e.g., for comfortable driv-

ing. In this type of application, information is cooperatively collected and shared within a

large area, i.e., in a highway network or the road network of a city. For example, the VANET-

based sensing data-sharing systems provide the distributed sensing information about the

traffic situation in an entire city, which can be utilized to smooth the vehicle traffic and

reduce the individual travel time of vehicles in the whole network.

1.1.2 Characteristics of VANETs

VANETs are the special cases of mobile ad hoc networks (MANETs), where the highly

mobile vehicles equipped with OBU communication devices can communicate with other

vehicles or the deployed infrastructure (e.g., RSUs) as shown in Fig. 1.1. Then, VANETs

have the unique characteristics.

Road Side 
Unit (RSU)

Vehicle equipped with 
OnBoard Unit (OBU)

V-2-I

V-2-V

Server (traffic 
monitoring, location 
based service)

Figure 1.1. Architecture of VANETs

1. Rapid change in topology: Since vehicles are moving with high speeds, the topology

of VANETs is prone to frequent and rapid changes, and the movements of vehicles

usually follows the geometric topology of freeways or streets in real world.

3



1. Introduction

2. No power constraint: Since the batteries of the vehicles for the communication are

self-charged, vehicular communications in VANETs do not suffer from the conven-

tional power constraints of the hand-held devices in MANETs.

3. Large scale: VANETs are composed of a large scale number of vehicles, where the

order of the number of vehicles is in the range of 107 in reality [6].

4. Variable network density: The number of vehicles in one area of the road is both

temporally and spatially changing, e.g., roads in the rush hours nearby downtown are

more congested than other places at the other times of a day.

5. High predictable mobility: The velocity of vehicles in cities ranges from 0 to 60 km/h,

and the average velocity can reach up to 100 km/h on a highway. The road geometric

topology regulates the mobility of vehicles.

1.1.3 Challenges of VANETs

Most of VANET applications, such as the Internet-based VANET applications (i.e., email,

vehicular video conference, and traffic monitoring, etc.), rely on the connections to RSUs

to communicate with the remote servers. The communication link relies on the multihop

inter-vehicle relays, i.e., the V2V communications, and V2R communications. While hav-

ing a bright future ahead, enabling efficient vehicular communications faces fundamental

challenges.

The first key challenge that VANET applications face is the connectivity of the network,

due to the high mobility of vehicles. In general, most VANET applications (e.g., vehicular

video conferencing and traffic monitoring) rely on connections to remote Internet servers

through RSUs, to extend the limited communication range of V2R communications. Thus,

inter-vehicle relaying is typically depending on V2V communications. For example, consid-

ering the uplink scenario of VANETs2, vehicles help each other to relay data towards RSUs,

2In VANETs, many basic applications are supported in uplink scenario, such as data uploading, email
transmission, road traffic reporting, and environment monitoring.

4



1.2. Mobility in VANETs

which then forward received data to the remote server via wired networks [7]. However,

due to the fast mobility of vehicles and dynamic topologies, the transient and intermittent

connections among vehicles make inter-vehicle transmission performance highly unreliable.

The second challenge comes from the large scale of the vehicular network. As the quality

of applications keenly relies on the number of vehicles contending for transmissions and the

availability of RSUs, the investigation on how nodal throughput scales with the number of

vehicles and the availability of RSUs in VANETs (i.e., asymptotic network throughput capac-

ity) is crucial in adopting the appropriate network mechanisms (e.g., signaling exchanging)

and guiding the real-world network planning (e.g., RSU deployment).

As discussed above, VANETs have met technical challenges, due to the specific features

of vehicles, for example, mobility and the large scale. However, Grossglauser and Tse have

shown in [30] that mobility can in reverse improve the achievable throughput capacity as a

benefit in MANETs. To this end, we propose the questions: 1) how mobility impacts the

capacity of a large scale vehicular network? and 2) how to use the mobility to improve the

network performance in a large scale vehicular network? In this thesis, we will discuss these

issues in three scenarios, i.e., pure VANETs, VANET-enhanced transportation systems and

VANET-enhance smart grid, respectively.

1.2 Mobility in VANETs

Almost since the advent of one prominent symbol of the 20th century, the automobile, scien-

tists and engineers have been trying to understand and reproduce vehicular mobility patterns.

This effort has been made more critical with the popularization of the personal automobile

and the outbreak of the first traffic congestions. In the middle of the 20th century, a new

research domain called traffic theory comes up with the objective of understanding the link

between the traffic speed, flow, and density for an efficient dimensioning of the transport

infrastructures and to help resolve traffic problems. With the miniaturization of processors

and the appearance of mobile sources of energy, mobility quickly attract increasing attention.

5



1. Introduction

Mobility indeed shows to be the source of similar issues, and its modeling and understanding

a justification to reach the same objectives, as traffic theory: to improve the dimensioning

of data transport infrastructures and solve data traffic problems. With the appearance of

VANET, in which vehicles communicate with other vehicles or with road infrastructures, the

study of vehicular mobility is motivated for networking research .

In order to produce realistic mobility patterns, in literature, the models are considered in

five categories as function of their scopes and characteristics:

1) Random models: Vehicular mobility is considered random and the mobility parame-

ters, such as speed, heading, and destination are sampled from random processes. A very

limited interaction between vehicles is considered in this category.

2) Flow models: Following the classification described in flow theory, single and multi-

lane mobility models based on flow theory are considered from a microscopic, mesoscopic,

or macroscopic point of view.

3) Traffic models: Trip and path models are described in this category,where either each

car has an individual trip or a path, or a flow of cars is assigned to trips or paths. Moreover,

the impact of time on these models is also described.

4) Behavioral models: They are not based on predefined rules but instead dynamically

adapt to a particular situation by mimicking human behaviors, such as social aspects, dy-

namic learning.

5) Trace-based models: Mobility traces may also be used in order to extract motion pat-

terns and either create or calibrate mobility models. Another source of mobility information

also comes from surveys of human behaviors.

1.3 Motivations

From the above lists of applications and economic aspects, VANETs can therefore be seen

as a vital part of intelligent transportation systems (ITS) in the future. To our interested in

the thesis, we will answer the aforementioned questions (i.e., 1) how mobility impacts the

6



1.3. Motivations

capacity of a large scale vehicular network? and 2) how to use the mobility to improve the

network performance in a large scale vehicular network?) in three scenarios as follows.

1.3.1 Throughput capacity analysis in pure VANETs

As aforesaid, in contrast to the potential benefits, most existing works [1,2], however, fail to

offer sufficient insights on the fundamental mobility analysis and the throughput scaling of

the multihop vehicular communications. With a large number of mobile vehicles contending

for transmissions and the quality of on-top applications keenly relying on the overall per-

formance of multihop inter-vehicle relays, to evaluate the achievable nodal throughput and

network-side performance of the VANET communications are crucial in adopting the appro-

priate network designs, such as the message relay controls, and key to guide the real-world

deployment, such as the RSU deployment. To this end in particular, with this motivation, in

the first scenario of thesis [8,9], i.e., pure VANETs, we address the following critical issues:

(Q1): What is the asymptotic throughput capacity of VANETs for uplink scenario3, and how

to optimally determine the scalability of RSUs to achieve the throughput capacity?

(Q2): How to improve the throughput performance by exploiting the mobility of vehicles for

approaching the throughput capacity?

To improve the network throughput in the vehicular network, we propose a mobility-aware

forwarding scheme, in which we select appropriate relays based on mobility differentiation

and the vehicle density around to yield diversity gain. Because this multi-relay diversity is

especially based on the mobility differentiation, so we call this diversity as mobility diversity.

Further, the mobility differentiation is justified based on the defined mobility characteristics.

3In VANETs, the uplink scenario supports the basic applications, i.e., data uploading, email transmissions,
road traffic reporting, and environment monitoring.
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1.3.2 Path planning for mobile vehicles in the transportation system

Traffic congestion, as an important societal problem, has received considerable attention.

The 2007 Urban Mobility Report [10] stated that traffic congestion causes nearly 4.2 bil-

lion hours of extra travel every year in US; the extra travel almost accounts for 2.9 billion

extra gallons of gasoline. Although many existing advanced Personal Navigation Devices

(PNDs) have functionalities of providing an optimal end-to-end path [11] [12], traffic con-

gestion problems in intelligent transportation systems (ITS) have not been fully resolved;

on the contrary, conventional approaches still face a number of technical challenges. For

example, Google Maps involve existing networks (e.g., Global Position System, Wi-Fi, cel-

lular networks, etc) for individual path planning to avoid the traffic congestion. However, the

provided services are very costly, and more importantly, they cannot make quick response to

an emergency caused by an accident/incident. The essential reason for this imperfection lies

in lack of real-time traffic information. Thus, to enhance the adaptability of path planning,

it is indispensable to study how to efficiently collect and further exploit the real-time traffic

information for path planning and traffic congestion avoidance.

In the thesis, we propose a real-time global path planning algorithm which exploits

VANET communication capabilities to avoid vehicles from congestion in an urban envi-

ronment [13]. Both the network spatial utilization and vehicle travel cost are considered to

optimally balance the overall network smoothness and the drivers’ preferences. To this end,

in the second scenario of thesis, i.e., VANET-enhanced intelligent transportation systems,

three critical issues are addressed:

(Q1): How to exploit VANETs in the intelligent transportation system, and how to design

the transmission mechanism to collect the real-time vehicle-traffic information?

(Q2): How to measure the vehicle-traffic throughput in the transportation system and how to

determine the vehicle-traffic capacity in the transportation system?

(Q3): How to improve the vehicle-traffic throughput performance approaching the vehicle-

traffic capacity by exploiting vehicle mobility?
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Specifically, to collect the real-time traffic information, VANETs can provide an ITS system

with enhanced communication capabilities for cost-effective and real-time traffic-information

delivery. Both V2V and V2R communications are supported in VANETs to efficiently col-

lect/report traffic updates from/to vehicles as well as RSUs. As a result, the collected real-

time traffic information can be utilized for traffic-flow managements , individualized vehicle

path planning, and vehicle localization.

1.3.3 Mobility-aware coordinated EV charging in VANET-enhanced s-

mart grid

Electric vehicles (EVs), as a promising component of sustainable and eco-friendly trans-

portation systems, have received considerable attention in many countries across the world

[14]. Refueled by electricity instead of gasoline, these vehicles have the potential to save

thousands of dollars for customers over the vehicle lifetime. For instance, a TESLA Model

S (a pioneer retail battery EV produced by TESLA Motors) costs $3, 492 per 100 kilo-miles,

while a traditional gasoline-fueled premium sedan costs $17, 727 [15]. Besides, the adoption

of EVs into the transport sector can reduce the consumption of conventional energy sources

(e.g., gasoline) and the pollution of environments (e.g., greenhouse gas emissions). As re-

ported in [16], battery EVs, which completely depend on rechargeable batteries and thus

produce no emissions, can cut down the overall emissions from the transport sector by 70%.

Due to the above advantages, EVs have been accounting for higher market share in the trans-

port sector. According to the report of Electric Power Research Institute (EPRI) [17], the EV

penetration level can reach 35%, 51%, and 62% by 2020, 2030, and 2050, respectively.

However, the widespread adoption of EVs in the transportation system will lead to charg-

ing problems of mobile EVs that are fully reliant on rechargeable batteries. EV charging,

which is very likely to coincide concentratively with the peak demand time of the power

system, can incur overloading of a distribution feeder, resulting in the system instability and

the reduction in energy utilization [18] [19], especially for fast EV charging as it requires
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much higher power than the regular charging. Thus, to avoid power system overload dur-

ing the peak time and improve energy utilization without additional deployment cost, load

management strategies are indispensable to distribute the EV charging load both temporally

and spatially in a coordinated fashion. At the same time, for fast EV charging, the assigned

charging stations must be within the range of individual mobile EVs given current locations

and battery energy levels, due to the tension between the current battery energy levels and

the travel cost to reach charging stations, i.e., range anxiety.

There has been abundant literature [20–26] concerning the coordinated EV charging s-

trategy design for EVs. But most of the works so far solve problems only in the power

system aspect. That is, the coordinated charging is performed for a group of EVs that are

assumed to be ready for charging within an area (e.g., parking lots or residence areas). Little

research has considered vehicle-specific features, i.e. the vehicle mobility, into the charging

strategy when fast-charging is considered. In fact, as EVs may need charging when moving

on the road, the energy consumption on the road to reach the charging station, referred to

as the travel cost, should be considered. Otherwise, the charging station assigned by the

existing strategies may be too far to reach given the EV’s current location and battery energy

level. Due to this range anxiety, drivers prefer to charge at locations with less travel cost.

Therefore, new charging strategies are required to take the range anxieties and vehicle mo-

bility into consideration to reduce the EV travel cost. In order to track the vehicle mobility,

real-time information of EVs (e.g., locations and battery energy levels) should be collected

to assist charging strategy design.

To this end, in the third scenario of the thesis, i.e., VANET-enhanced smart grid, we

focus on leveraging the real-time mobile vehicle information to help designing an efficient

coordinated EV charging strategy [27, 28]. The objective is to improve the overall energy

utilization, reduce the average EV travel cost, and prevent the overload of the power system.

To properly design the strategy, three underlying key problems should be deliberated:

(Q1): How to efficiently and reliably obtain the real-time information of mobile vehicles

required by the EV charging strategy?
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(Q2): How to decide the load capacity of each charging station?

(Q3): Based on the collected information, how to perform mobility-aware coordinated EV

charging to improve energy utilization and reduce EV travel cost while avoiding power

system overload?

Thanks to VANETs, the first problem can have a promising resolution. Exclusively designed

for information exchange among highly mobile vehicles and RSUs in a multi-hop fashion.

Therefore, VANETs can be integrated into a smart grid to collect the real-time information of

mobile EVs and disseminate the charging decisions. To cope with the second and third prob-

lems, based on the VANET-enhanced smart grid, we will design a mobility-aware charging

strategy for EVs with considering of vehicle mobility to improve the network power utility,

approaching the load capacities of charging stations.

1.4 Definitions of Capacity in Different Scenarios

In this thesis, we will consider both throughput and capacity analysis in the aforementioned

three scenarios. In each specific scenario, we define the considered capacity, respectively.

1.4.1 Data-traffic capacity of pure VANETs

First, we consider the general data-traffic throughput capacity in VANETs. The fundamental

throughput capacity of wireless networks is first investigated by Gupta and Kumar in [29],

and they prove that the per-node throughput capacity along multihop relays vanishes to zero

as Θ( 1√
n
) where n is the population of nodes. Grossglauser and Tse extend the results by con-

sidering the extreme mobility and report in [30] that constant throughput capacity is achiev-

able. However, the constant per-node throughput capacity is at the cost of enlarged delay. To

address this issue, in [31] Neely and Modiano unveil the tradeoff between the throughput ca-

pacity and delay for a cell-partitioned ad hoc network. The asymptotic throughput capacity

is shown under the different scheduling policies. It is reported that although the scheduling
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policies applied with packet redundancy can help to reduce delay, redundancy packets reduce

the throughput capacity.

Hence, to define asymptotic throughput capacity in our framework, let π(n) denote the

scheduling and relaying policy for all vehicles in the network. Time is partitioned into equal

intervals, each interval being referred to as a time slot. During T time slots, Mπ(n)
j (t) is

denoted as the number of packets received by RSUs from vehicle j at time slot t, t ∈ (0, T ]

and j ∈ V. With the random trajectories of vehicles on the streets, a long-term throughput

capacity λ(n) (packet/s) under a policy π(n) is defined as

λ(n) = min
j
{ lim
T→∞

inf
1

T

T∑
t=1

M
π(n)
j (t)}. (1.1)

Specifically, when the vehicles in the network are homogenous, all the vehicles are with the

same long-term average throughput performance, and thus the long-term average throughput

capacity of λ(n) is equal to the average throughput capacity of each vehicle over a long time,

i.e.,

λ(n)= lim
T→∞,n→∞

inf 1
nT

n∑
j=1

T∑
t=1

M
π(n)
j (t)

= lim
T→∞

inf 1
T

T∑
t=1

M
π(n)
j (t),∀j ∈ V.

(1.2)

1.4.2 Vehicle-traffic capacity in transportation system

To understand a vehicle-traffic flow more clearly, we model vehicle traffic as an “inflow/outflow”

system [32]. Each vehicle is expected to follow a planned path from its starting point towards

its destination, Here, the planned path can be referred to as a path preset in a Global Position

System (GPS) device, according to the driver’s preferences and based on the locations of the

starting and ending points. The driver will keep following the preset path until the vehicle

receives any information on congestion or accident. When an accident or congestion occurs,

by running the path planning algorithm, the vehicle-traffic server will be in charge of finding

an optimal alternative path or routing for the vehicles of interest. Specifically, we refer to the
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Figure 1.2. Illustration of traffic flow model.

road segments in which one vehicle’s starting point and destination are located as s and d,

respectively.

Let Ji denote the set of neighboring crossings of intersection i. Define the inflow rate

of road segment (i, j), λij(t), as the upstream-vehicle arrival rate from neighboring road

segments in time slot t, where j ∈ Ji, as shown in Fig. 4.2. Let λdij(t) (j ∈ Ji) denote

the traffic flow rate on road segment (i, j) with the same destination d in time slot t, and

λij(t) =
∑
d∈Γ

λdij(t). We consider each sample time duration (denoted as ∆ and including a

series of time slots) as a time unit, which is defined by sampling theorem to avoid information

loss in the compressive sensing for traffic estimation. Within the T th sample time duration,

based on the traffic flow rates of the involved time slots collected by RSUs, the average

inflow rate of road segment (i, j) of the T th sample time duration is denoted as λij(T ) and

expressed as

λij(T ) =
1

∆

T∆∑
t=(T−1)∆

λij(t). (1.3)

Similarly, the outflow rate µij(T ) of road segment (i,j) is the average departure rate of ve-

hicles moving to neighboring road segments in the T th sample time. Note that all variables

for the opposite directed road segment of (i, j), namely road segment (j, i), can be defined

correspondingly, e.g., λji(T ) and µji(T ).

Let cij(T ) denote the maximum number of outflow vehicles of road segment (i, j) in T th
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sample time, i.e., road capacity, which is determined by the road conditions, the number of

lanes, the length of the road, and traffic congestion, etc. Due to fluctuating road conditions

and traffic flow conditions, the road capacity can fluctuate with time, but is considered to

remain constant within one sample time unit.

Basically, there are two kinds of traffic congestion: recurrent congestion and non-recurrent

congestion [33]. The recurrent congestion is due to the tension between the current traffic

flow situation (e.g., the traffic inflow λij(T )) and the road conditions (e.g., the road capacity

cij(T )), which is non-incident related. The non-recurrent congestion is caused by an accident

or incident which can reduce the road capacity (to be introduced in Section 4.4). We define a

congestion indicator of a warning message, δ(Iij)(∈ [0, 1]), to represent how the congestion

type I happening on road segment (i, j) impacts on the road capacity, where δ(Iij) = 1

means recurrent congestion and δ(Iij) ∈ [0, 1) implies non-recurrent congestion.

1.4.3 Power load capacity of a smart grid

Consider a smart grid in which the power system can be abstracted as a one-line diagram

with multiple buses. For further illustration, an example of a 12-bus system is depicted in

Fig. 1.3(a). And Fig. 1.3(b) is the equivalent power system model of Fig. 1.3(a). Let N de-

note the set of buses in the system, with the population of 12 in this example. The generation

buses are defined as the buses injecting power to the system, i.e., Bus1 in Fig.1.3(a), while

the others which only have load are denoted as the load buses, i.e., Bus3, Bus6, etc. The

power system is supplied through the substation at the generation bus, i.e., Bus1. EV charg-

ing stations are located in the network at load buses, e.g., Bus3, Bus6, Bus9 and Bus12,

respectively. Consider that each charging station is connected to the grid via a standard

single-phase Alternating-Current (AC) connection.

Based on historic remote terminal unit (RTU) readings of each distribution system bus,

the voltage at each charging station in a period can be obtained [34]. Due to the thermal

limit of service cable or current rating of fuse, an EV charging station at Busj is subject
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Figure 1.3. The power system model.

to a load-capacity constraint P j
total [35], which is defined as the maximal power that can be

supplied by each charging station (i.e., the load-capacity of a charging station).

1.5 Organization and Contributions

The remainder of the proposal is organized as follows: Section 2 presents the preliminar-

ies and related work. In Section 3, we introduce the the asymptotic throughput capacity of

VANETs exploiting mobility diversity in pure VANETs. Section 4 presents the mobility-

aware vehicle-traffic throughput analysis in VANET-enhanced intelligent transportation sys-

tem. In Section 5, the mobility-aware coordinated charging for EVs in VANET-enhanced

smart grid is shown. Finally, Section 6 concludes the thesis and demonstrate the future

work.
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Chapter 2

Preliminaries and Related Work

In this chapter, we will discuss the related works, including the mobility models, throughput

capacity analysis, vehicle path planning and EV charging strategy design.

2.1 Mobility Description in VANETs

In terms of different vehicle-density, the vehicle-traffic flow conditions are divided into:

uncongested, near-capacity, and congested [36]. For the first uncongested case, the vehicle-

density is 0-26 vehicle/km; in the near-capacity case, the vehicle density follows 26-42 ve-

hicle/km; while when the vehicle-density is larger than 42 vehicle/km, the vehicle-traffic

flow condition is named as congested case. In addition, the uncongested, near-capacity, and

congested vehicle-traffic flow conditions corresponds to low, intermediate, and high vehicle

densities, respectively.

In the literature, most of the analytical mobility descriptions of vehicles are focusing on

the cases of low and intermediate vehicle densities. For these two conditions, based on an

average sense to model the vehicle traffic, the vehicle traffic follows a Poisson distribution

which is non-dependent and memoryless [37–39]. In these cases, this mobility model is

accurate enough for performance analysis. Over a short time of interest, it is reasonable to

assume that vehicles move at constant velocities and do not interact with each other. Specif-
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ically, as a good approximation, the headway distance between two neighboring vehicles

follows the exponential distribution, and vehicles move independently at the speed [37]. For

example, the mobility of each vehicle can be characterized by random variables (S, λ), to

describe the realistic driving behaviors of people, i.e., a driver drives at a velocity for a pe-

riod and then changes to a higher/lower velocity based on his/her will, road conditions, or

the headway distance between the vehicle and the one in front. The vehicle velocity in this

model is represented by S, which takes n possible values. When n = 2, S has two states:

a lower velocity SL and a higher velocity SH and the velocity transition is modeled as a

two-state continuous Markov chain with state transition rates, λLH or λHL, respectively.

In a high density scenario, e.g., the highway scenario nearby the exit point at peak time,

the mobility between vehicles is dependent. In this case, a car following model [40,41] and a

Markov Spacing model [36,42] can be used to describe the dependence of vehicle’s mobility.

In our thesis, we aim to evaluate the impacts of vehicle mobility on the average network

throughput performance in low and medium density cases. In other words, we consider that

the headway distance between two neighboring vehicles follows the exponential distribu-

tion, and vehicles move independently. And this headway distance distribution will be also

evaluated in our simulation results in the following chapters.

2.2 Capacity Analysis for VANETs

The fundamental throughput capacity of wireless networks is first investigated by Gupta

and Kumar in [29], and they prove that the per-node throughput capacity along multihop

relays vanishes to zero as Θ( 1√
n
) where n is the population of nodes. Grossglauser and

Tse extend the results by considering the extreme mobility and report in [30] that constant

throughput capacity is achievable. However, the constant per-node throughput capacity is

at the cost of enlarged delay. To address this issue, in [31] Neely and Modiano unveil the

tradeoff between the throughput capacity and delay for a cell-partitioned ad hoc network.

The asymptotic throughput capacity is shown under the different scheduling policies. It is
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reported that although the scheduling policies applied with packet redundancy can help to

reduce delay, redundancy packets reduce the throughput capacity. In [43], by employing

a more practical restricted random mobility model, Li et al. achieve the smooth tradeoff

between the throughput capacity and delay by controlling node mobility. In [44], Garetto et

al. provide a general framework on the analysis of the throughput capacity scaling properties

in MANETs with heterogeneous nodes and spatial inhomogeneities. Furthermore, in [45]

Garetto and Leonardi show that when the mobile nodes are heterogenous with a restricted

random mobility model in the network, the per-node throughput capacity can be a constant

and the delay also becomes a constant. In [46] , Ozgur et al. consider intelligent node

cooperation and distributed multiple-input multiple-output communications to achieve the

optimal scaling of throughput capacity. In [47], Wang et al. study the achievable rates and

the scaling law by proposing relaying scheme corresponding to the power allocation policies.

However, most of works above are studied in MANETs.

Although VANETs present to be a special category of MANETs, they distinct features

in terms of the network architecture, user mobility patterns, a large number of vehicles, and

real-life application scenario. Without taking those features into considerations, the afore-

mentioned research results derived in the general MANETs cannot be accurate enough to

represent VANETs. As heterogeneous applications in diverse communication patterns co-

exist in VANETs, current study on the throughput capacity of VANETs is mainly application

(or scenario)-driven [48]; a comprehensive analysis on the general VANETs model is how-

ever still unavailable which motivates our work. In [37], Abdrabou and Zhuang derive the

effective throughput capacity of the V2R communications to evaluate the end-to-end delay

performance between a vehicle and the nearest RSU. In [38, 49, 50], Nik et al. study the

distance-limited capacity in which a vehicle follows its front vehicle with the same velocity

and moving direction. In [51], considering a vehicle restricted mobility network, Lu et al.

show that it is possible to achieve constant throughput capacity and constant delay based on

a variant two-hop forwarding scheme. Most of these works are based on the specific mobil-

ity limitations in space. As the demand of a more general mobile scenario, the first topic of
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this thesis is devoted to characterizing the achievable throughput capacity in a general hybrid

VANET which will be defined as follows and then proposing the relay selection scheme to

approach the throughput capacity.

2.3 Path Planning and Route Navigation for Vehicles

Most existing route navigation in conventional ITS usually rely on cellular systems or loop

detectors, to collect time-varying traffic-condition information. In [52–55], cellphones or

mobile sensors with cellular access have been investigated to collect real-time traffic infor-

mation for traffic forecast or reconstruction in experimental research. In [56], authors intro-

duce a traffic management system with loop detectors for continuous traffic measurement

and monitoring along arterials. However, inevitable drawbacks cast a shadow on the appli-

cation of cellular systems and loop detectors. For cellular systems, as they are not dedicated

for traffic data collection, the collection services can be highly costly; the high volume of

traffic data may also cause congestion for other cellular services. For the loop detectors, the

deployment expense can also be very high. Besides, the inaccuracy of position measurement

becomes a problem for short-distance transmissions especially in dense networks, which will

degrade the performance of path planning [57, 58].

Thanks to VANETs, V2V and V2R communications can make real-time message de-

livery much quicker, cheaper and more efficient than the existing systems even for short-

distance transmissions in dense networks [59] [60]. More importantly, RSUs in VANETs

can greatly enhance the timeliness of data collection and dissemination [61], which makes it

possible to perform coordinated path planning for a group of vehicles. To improve the qual-

ity of experience (QoE), a point-to-point based vehicular network can be utilized to support

the application of multimedia delivery [62] [63], which however may still experience large

transmission delay. A distributed path planning method to avoid congestion is put forward

in [64] using real-time traffic data collected from VANETs, with the increased traffic flow.

Aiming to save gasoline for individual vehicle, a navigation system is designed in [65] to
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avoid congestion. However, the individual-user-optimal schemes may introduce additional

traffic congestion due to human uncoordinated selfish behaviors. Thus, the paths of different

vehicles should be jointly planned to balance the network traffic. The works [66] and [67]

consider multi-vehicle path planning, but the average travel cost or the drivers’ preference is

not considered. Besides, how communications in VANETs can impact on the path planning

algorithm is still not clear.

Therefore, in the second topic of this thesis, a globally optimal path planning algorithm

is proposed for vehicles to avoid traffic congestion (including those caused by accidents) in

a suburban scenario. With the real-time traffic information collection and decision delivery

enabled by a hybrid VANET-enhanced network, the road network resources are fully utilized

and the average travel cost of vehicles is significantly reduced. In addition, the impacts of

VANETs on the path planning algorithm is further discussed.

2.4 Electric Vehicle Charging Strategy Design

Up to now, many studies have shown that the power system can be significantly affected by

high penetration levels of EV charging [23] [24]. To avoid power system overloading during

the peak time, load management strategies are indispensable to distribute the EV charging

load both temporally and spatially [25]. In [26] [35], to avoid power system overloading,

the peak load is shifted to off-peak periods to improve the load factor of the entire grid.

In [68] [69], it is shown that global EV charging strategies that coordinate the charging

duration and rates of multiple EVs based on global load information have better performance

than the local strategy. In [70] [71], the spatial diversity of EV charging is modeled and

evaluated to further help regulate the charging profile. However, most of the existing EV

charging strategies consider EVs to be stationary when they need to be charged; few works

take the vehicle mobility into consideration, which can not be overlooked as it is the most

important feature of a vehicle, especially for fast-charging. Due to vehicle mobility, range

anxiety, i.e., the tension between the travel cost and the EV battery energy level, is key to
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the viability of charging decisions. Therefore, new efficient EV charging strategies must be

designed to take care of real-time vehicle information to solve the range anxiety problem.

To obtain the real-time vehicular information, most existing works rely on cellular or

Wi-Fi systems [52,53,72]. However, inevitable drawbacks of these systems limit their prac-

ticability in the collection of vehicle information. First, for dense vehicular networks, the

inaccuracy of the location measurement in both systems [57] may considerably degrade the

charging performance. Second, as cellular systems are not dedicated for vehicular data col-

lection, the collection services can be highly costly, and the high volume of vehicular data

may cause congestion for other cellular services especially when the vehicle density is high;

for the Wi-Fi systems, the coverage is very limited which can cause large delay in informa-

tion delivery, and the high mobility of vehicles may dramatically reduce the delivery ratio.

Thanks to VANETs, the delivery of the real-time message can be much quicker, cheaper

and more efficient than the above systems, especially for dense and highly mobile vehicular

networks [73]. Exclusively designed for information exchange among highly mobile vehi-

cles and RSUs, the supported short-range V2V and V2R communication effectively expands

the transmission range of vehicles in a multi-hop manner with higher data rates. As a result

of the RSU sharing and multiple V2V relaying mechanisms, a higher throughput and deliv-

ery ratio as well as lower delay can be achieved for the large-volume vehicle information

exchange [74] [75], making it possible to perform coordinated charging strategy for a group

of vehicles. Hence, we exploit VANETs in a smart grid to support the real-time information

exchange among mobile vehicles. Then, the range anxiety which describes the tension be-

tween the travel cost and the current energy level can be introduced as a viability of charging

decisions for mobile vehicles.

Therefore, with real-time vehicle information collection and decision dissemination vi-

a VANETs, our objective in the third scenario of this thesis is to design a mobility-aware

coordinated predictive charging strategy for mobile EVs. This strategy improves the ener-

gy utilization of the power system and reduces the average EV travel cost while avoiding

overload in the power system.
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Chapter 3

Throughput Capacity Analysis

Exploiting Mobility Diversity in Pure

VANETs

In this chapter, we exploit mobility characteristics of vehicle to address the achievable asymp-

totic throughput capacity in pure VANETs.

3.1 Introduction

VANETs have recently emerged as a promising technology for providing revolutionized

broadband services to vehicles. In general, most VANET applications (e.g., vehicular video

conferencing and traffic monitoring) rely on connections to remote Internet servers through

RSUs. To extend the limited communication range of vehicle-to-RSU communications, thus

inter-vehicle relaying is typically used with V2V communications. For example, considering

the uplink scenario of VANETs, vehicles help each other to relay data towards RSUs, which

then forward received data to the remote server via wired networks [7]. However, due to

the fast mobility of vehicles and dynamic topologies, the transient and intermittent connec-

tions among vehicles make inter-vehicle transmission performance highly unreliable. As a
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result, enabling quality-of-service (QoS) guaranteed transmission from vehicle to an RSU

and further to Internet servers for different applications becomes a challenging task.

On the other hand, as the quality of applications keenly relies on the number of vehicles

contending for transmissions and the availability of RSUs, the investigation on how nodal

throughput scales with the number of vehicles and the availability of RSUs in VANETs

(i.e., asymptotic network throughput capacity) is crucial in adopting the appropriate network

mechanisms (e.g., signaling exchanging) and guiding the real-world network planning (e.g.,

RSU deployment). The studies on the capacity scaling law of VANETs can date back to the

extensively investigated context of MANETs [29, 30]. However, different from MANETs,

VANETs typically involves a great network population and high nodal mobility conformed to

street layout, and network connectivity can be enhanced by stationary infrastructure (RSUs).

Therefore, the existing works on MANETs cannot be directly applied to evaluate the capacity

scaling of VANETs.

The asymptotic throughput capacity of VANETs has been studied in a collections of

research works [38, 50, 51], however, with certain spatial limitations on vehicle’s mobility.

For example, in [38,50], each vehicle moves on a single road section. In [51], vehicles move

on multiple roads but within the predefined Manhattan grid with restricted mobility, i.e.,

vehicles are mobile around their own center spots with power-law distribution. Therefore,

by considering a more general scenario, in which vehicles can move across the whole area

along roads without above spatial mobility restriction, our work is devoted to characterizing

a more generic scaling law of achievable throughput capacity with the RSU deployment in

the network. In addition, referred to the recent works on RSU deployment in the urban area,

most of the existing works, e.g., [72], focus on selecting the optimal locations for either

RSUs or Access Points, based on a given candidate location set. However, the asymptotic

bound on the number of RSUs in the network, i.e., the scaling law of RSU deployment, and

its performance on the throughput capacity have rarely been studied before.

To address above issues, in this chapter, we develop a generic analytical framework to

characterize the capacity scaling law of pure VANET. In particular, we address the following
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3. Throughput Capacity Analysis Exploiting Mobility Diversity in Pure VANETs

three issues:

(Q1): What is the asymptotic throughput capacity of VANETs in uplink scenario?

(Q2): How to optimally determine the scalability of RSUs to achieve the asymptotic through-

put capacity?

(Q3): How to improve throughput performance in reality to approach the theoretical through-

put capacity?

Specifically, considering the unique dynamic features of VANETs, Q1 is first addressed

to derive the scaling law of throughput capacity in the uplink scenario of VANETs. Our

results show that in both free-space propagation and non-free-space propagation environ-

ments, the achievable throughput capacity per vehicle can scale as Θ( 1
logn

) where n denotes

the population of a homogenous set of vehicles in the network1.

Second, for a large number of vehicles in urban areas, the heavy data traffic makes it

necessary to deploy sufficient RSUs in the network to provide guaranteed throughput per-

formance to users. However, overly deployed RSUs will incur high implementation and

maintainable cost. Thereby RSU deployment should be carefully designed to effectively

solve this tradeoff. By answering Q2 we show that, to attain the asymptotic throughput ca-

pacity Θ( 1
logn

), the number of effective RSUs should scale as Θ( n
logn

). This result can serve

as the valuable benchmark for the real-world RSU deployment and service provisioning.

Finally, to address Q3, we develop a novel packet forwarding scheme to approach the

asymptotic throughput capacity in VANETs. Since the data traffic generated by vehicles can

be highly unbalanced in real-world2, the RSUs cannot be evenly and fully used (i.e., some R-

SUs are overloaded whereas others are light-loaded without much traffic to deliver), resulting

1We consider two functions f(x) ≥ 0 and g(x) ≥ 0. The relationship between f(x) and g(x) is defined
as f(x) = O(g(x)) or g(x) = Ω(f(x)) if limx→∞ supf(x)/g(x) = c < ∞. f(x) = Θ(g(x)) means
f(x) = O(g(x)) and g(x) = O(f(x)).

2For example, the shuttle bus with many passengers on board may generate much more data traffic than
sedans; the data generated in the parking lot of a shopping mall are more intensive than that generated in
nearby residential areas.
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in poor network throughput performance. The proposed scheme makes full use of the mobil-

ity diversity of vehicles, to realize load-balanced utilization of RSUs and therefore enhance

network throughput. In specific, the source vehicle selects the nearby vehicles whose mobil-

ity metrics (in moving direction and velocity) are significantly different from the source’s as

the relays for inter-vehicle transmissions. The more salient difference that the mobility met-

rics of two vehicles have, the higher probability that these two vehicles can exploit different

RSUs will be. As a result, the data traffic can be balanced throughout the network, and more

concurrent uploading opportunities from vehicles to different RSUs can be created, which

leads to the improved throughput of uploading sessions in the system-wide.

3.2 Problem Formulation and Definitions

We consider a general urban topology where the streets/roads are arbitrarily distributed

across the city with random lengths and directions [76]. The considered topology is nor-

malized to a unit (1 × 1) square area with the left lower corner denoted as the origin with

the coordinate (0, 0) and the right upper corner with the coordinate (1, 1). Let V denote the

homogenous set of vehicles/nodes moving over the network, with the population of vehicles

n. The vehicles are uniformly distributed in the network. Thus ρ(n) = Θ(n) is the density

of vehicles. A set of Q(n) RSUs is deployed in a grid pattern on the topology as depicted in

Fig. 3.1, where Q(n) ≤ n. In such VANETs, efficient multihop communications to the R-

SUs are the basis of many applications, such as data uploading, email transmission and road

traffic reporting. Data are generated at some source vehicles and are destined to the Internet

through RSUs. Each vehicle can come to be a source vehicle with a predefined probability.

A transmission (either V2V or V2R) is successful if the received signal-to-noise-and-

interference ratio (SINR) is no less than a threshold β, i.e.,

SINR =
GijPi

N0 +
∑

u ̸=iGujPu
≥ β, (3.1)
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where Gij = dij
−α is the path loss between nodes i and j with dij denoting the distance

between the two nodes and α denoting the path loss exponent. N0 is the Gaussian noise. Pi

is the transmit power of node i. In this proposal, Pi is set to be a unit transmit power for

all the vehicles. As the interference power is usually much larger than the noise power in a

network of moderate/high density [77], to simplify the analysis, we neglect the noise effect.

3.3 Asymptotic Analysis of Throughput Capacity

In this section, we present an analytical model to evaluate the asymptotic throughput capacity

of the VANETs. With the transmission model defined in pervious section, a transmission is

successful when the SINR is no less than the threshold. In other words, one receiver receives

a packet successfully when it suffers from limited interference. In data uploading scenario,

an RSU as a receiver is associated with a guaranteed zone area in which there is no other

RSUs deployed and no concurrent V2R transmissions can be scheduled at the same time slot.

A vehicle within the guaranteed zone of RSUs can upload data directly to the Internet. Let

R(n) denote the maximal available radius of one RSU’s guaranteed zone, h the hop number

of an end-to-end upload from a source vehicle to the RSU, and h = Θ(1) as aforesaid, and

N the average number of vehicles served by an RSU, which is given by

N = ρ(n) · π ·R2(n), (3.2)

where ρ(n) is the density of vehicles as aforementioned.

The distance between two adjacent RSUs and the average distance between two neigh-

boring vehicles are denoted by D and 2d, respectively. Since n vehicles are uniformly dis-

tributed in a unit area, we have d = Θ( 1√
n
). Thus, the disjoint region in topology for each

vehicle is approximately with the area of πd2, and the distance between two neighboring

RSUs is of the same order as 2R(n). With our RSU deployment rule, the number of neigh-

boring guaranteed zones for a central RSU is four (see Fig. 3.1). Connecting the points of
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Figure 3.1. Grid RSUs deployment when k = 2R(n).

the RSUs in these neighboring guaranteed zones, we have a square area of 2D2. Then, the

average number of vehicles in a guaranteed zone can be approximated by

N =
2D2

πd2
· 1
2
· 1

c1
=

1

c2
· D

2

d2
=
k2

c2
, k ∈ (0,

√
c2n], (3.3)

where k = D/d is the distance between two neighboring RSUs normalized by the aver-

age distance between two adjacent vehicles, c1(> 1) is a constant to compensate the area

when padding the square area with the guaranteed zones, and c2 is a constant to simplify the

derivation.

The throughput capacity of the network equals to the number of concurrent V2R trans-

missions in the network. One successful V2R transmission suffers from the interference

caused by other V2R and V2V transmissions. If a receiver (i.e., the receiving RSU) is at the

boundary of the network, the interference is relatively small, compared to the interference

when the receiver is at the center. Further, the receiving RSU in the center of the network

faces at most four times the amount of interference that the RSU at the corner is exposed

to [78]. Thus the interference of a receiving RSU at the network center has the same order

as the interference when the RSU is at the corner. By considering that the receiving RSU

27



3. Throughput Capacity Analysis Exploiting Mobility Diversity in Pure VANETs

of interest is at the left lower corner (0,0) (e.g., the position of RSU1 in Fig. 3.1), the upper

bound of the interference (I) that the RSU1 suffers from is given by

I = IV 2R + IV 2V , (3.4)

where IV 2R is the interference to RSU1 due to other V2R concurrent transmissions, and let

IV 2V denote the interference to RSU1 generated by other V2V concurrent transmissions.

We first study IV 2R. In Fig. 3.1, for RSU1 let the set S1= {RSU2,RSU4,RSU5} be the

first tier of its neighboring RSU guaranteed zones, and S2= {RSU3,RSU6,RSU7,RSU8,RSU9}

is for the second tier. Generally, we use Si, satisfying |Si| = 2i+1, to represent the set of ith

tier of its neighboring zone. For a grid RSU deployment, i should be less than
√
Q(n), thus

being less than
√
n as well. For zone tier i, the normalized distance between RSU1 and a

vehicle that is in transmission with its connected RSU is at least (k · i− r), where r (< k
2
) is

the normalized radius of a vehicle’s coverage area. According to (1), λ(n) is the throughput

capacity achieved by every node, and thus λ(n) should be obtained under the interference

upper bound. Therefore, accumulating the interference from every zone tier, we have

IV 2R ≤

√
Q(n)∑
i=1

2i+ 1

(ki− r)α
, (3.5)

where α is the path loss exponent. We can further derive the IV 2R as follows

IV 2R ≤

√
Q(n)∑
i=1

2i+1
(ki−r)α ≤

√
n∑

i=1

2i+1
(ki−r)α≤

3
kα

√
n∑

i=1

1
(i− r

k
)α−1 , (3.6)

where
√
n∑

i=1

1
(i− r

k
)α−1 <

1
(1− r

k
)α−1 +

√
n−1∑
i=1

1
iα−1 , and

√
n−1∑
i=1

1
iα−1 is an (α− 1)-series. If α = 2, the

(α− 1)-series follows the diverging harmonic series:
√
n−1∑
i=1

1
i
= ln(

√
n−1)+ 1

2(
√
n−1)

+Υ,

where Υ is the Euler-Mascheroni constant; if α > 2, the (α− 1)-series converge to the
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Riemann zeta function: ξ(α− 1) [78]. Then, (3.7) can be further simplified as follows

IV 2R <


3
k2
[ 1
1− r

k
+ ln(

√
n− 1) + 1

2(
√
n−1)

+Υ], if α = 2

3
kα
[ 1
(1− r

k
)α−1 + ξ(α− 1)], if α > 2.

(3.7)

Note that ( 1
2(
√
n−1)

+Υ+ 1
1− r

k
) has no impact on the scaling law. Then,

IV 2R <


3

2k2
[lnn+ o(lnn)], if α = 2

3
kα
[ 1
(1− r

k
)α−1 + ξ(α− 1)], if α > 2.

(3.8)

On the other hand, the interference whichRSU1 suffers from is contributed by other V2V

concurrent transmissions. Similar to [29], we consider that each receiving vehicle has a guar-

anteed zone, and the guaranteed zones for the receivers are disjoint. The transmission from

vehicle i to vehicle j is successful only when the following condition holds: duj ≥ (1+∆)r,

where duj is the Euclidean distance between other transmitting vehicle u and the receiver

j; ∆ > 0 is the guard factor. Let the set Xi be composed of the available V2V-concurrent-

transmission guaranteed zones around V 2R0 at the ith tier, where V 2Vj(j = 1, 2, 3, ...)

represents the jth V2V-concurrent-transmission guaranteed zone. As depicted in Fig. 3.2,

the network can be divided into n small disjoint guaranteed zones, and there is only one

vehicle in each zone. For each guaranteed zone of a receiver, several V 2V -concurrent-

transmission guaranteed zones are around it, as depicted in Fig. 3.2. Let Xmax
i and Xmin

i re-

spectively be the largest and the smallest sets of possible V2V-concurrent-transmission guar-

anteed zones at the ith tier. For instance, considering an interested V 2R transmission (e.g.,

V 2R0 in Fig. 3.2), the set Xmax
1 is the largest neighboring V2V-concurrent-transmission

guaranteed zone set at the first tier, and obviously there are at most six V2V-concurrent-

transmission guaranteed zones around, Xmax
1 = {V 2V1, V 2V2, V 2V3, V 2V4, V 2V5, V 2V6}.

Similarly, the largest set of V2V-concurrent-transmission guaranteed zones at the second tier

is Xmax
2 = {V 2V7, V 2V8, ..., V 2V17, V 2V18}. Moreover, |Xmax

i | = 6i. The smallest set

Xmin
i is shown as the shadow part in Fig. 3.2. The normalized distance between the V2V
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Figure 3.2. A V2R transmission(V 2R0) with other possible concurrent transmissions.

concurrent transmission in the ith tier and V 2R0 is no less than
√
3
2
li(l ∈ (0,

√
n]), where

l = c3B
d

is the normalized distance between two adjacent V2V-concurrent-transmission guar-

anteed zones. Here, c3 is a constant and B is the average distance between the receivers of

two concurrent V2V transmissions (the distance between the centers of two vehicle guaran-

teed zones). Then, we have

IV 2V ≤
√
n∑

i=1

6i

(
√

3
2
li−r)

α < 6

(
√

3
2
l)
α [ 1

(1− r
l
)α−1 +

√
n−1∑
i=1

1
iα−1 ]. (3.9)

Similar to (3.7), we can derive

IV 2V ≤


4
l2
[lnn+ o(lnn)], if α = 2

6

(
√

3
2
l)
α [ 1

(1− r
l
)α−1 + ξ(α− 1)], if α > 2.

(3.10)
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Therefore, from (3.5), (3.9) and (3.11), we have the following interference upper bound,

I <


3

2k2
[lnn+ o(lnn)] + 4

l2
[lnn+ o(lnn)], if α = 2

3
kα
[ 1
(1− r

k
)α−1 + ξ(α− 1)] + 6

(
√
3
2
l)
α [ 1

(1− r
l
)α−1 + ξ(α− 1)], if α > 2.

(3.11)

Since a transmission is successful only when the SINR exceeds the threshold β, to guar-

antee a successful transmission, the upper bound of the interference at a receiver should be

bounded. In other words, both lnn
k2

and lnn
l2

should be finite, leading to

k =

 Ω(
√
lnn), if α = 2

Ω((ξ(α− 1))
1
α ), if α > 2,

l =

 Ω(
√
lnn), if α = 2

Ω((ξ(α− 1))
1
α ), if α > 2.

(3.12)

Further, from (3.3), (3.4) and (3.13), we have

N =

 Ω(lnn), if α = 2

Ω((ξ(α− 1))
2
α ), if α > 2,

R(n) =

 Ω(
√

lnn
n
), if α = 2

Ω( (ξ(α−1))
1
α√

n
), if α > 2.

(3.13)

Lemma 1 Within the network as aforementioned, we have

i). For a free-space propagation environment (i.e., α = 2), when the number of RSUs

Q(n) scales as Θ( n
logn

), the throughput capacity λ(n) can scale as O( 1
logn

);

ii). For a non-free-space propagation environment (i.e., α > 2), when the number of RSUs

Q(n) scales as Θ( n

(ξ(α−1))
2
α
), the throughput capacity λ(n) may scale as O( 1

(ξ(α−1))
2
α
)

where ξ(α− 1) is the Riemann zeta function at point (α− 1).

Proof. The throughput capacity, λ(n), determined by the total number of concurrent trans-

missions, should satisfy the inequality as follows,

n · λ(n) · h ≤
n∑
j=1

M
π(n)
j · h ≤ Q(n) ≤ n

N
, (3.14)
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where h is the hop number for an end-to-end uploading from a source vehicle to an RSU,

and it equals to 2 if a two-hop forward scheme is applied. Then,

Q(n) =

 O( n
lnn

), if α = 2

O( n

(ξ(α−1))
2
α
), if α > 2,

λ(n) =

 O( 1
lnn

), if α = 2

O( 1

(ξ(α−1))
2
α
), if α > 2.

(3.15)

For a free-space propagation environment, when the number of RSUs scales as Q(n) =

Θ( n
lnn

), the throughput capacity is λ(n) = O( 1
lnn

). By definition, this throughput capacity

should be the lower bound. Furthermore, for uploading applications, the number of concur-

rent transmissions is at most the number of RSUs. Thus when the number of RSUs scales

as Q(n) = Θ( n
lnn

), λ(n) = Θ( 1
lnn

) is the upper bound of throughput capacity as well. Sim-

ilarly, for a non-free-space propagation environment, when the number of deployed RSUs

Q(n) scales as Θ( n

(ξ(α−1))
2
α
), the throughput capacity λ(n) can scale as O( 1

(ξ(α−1))
2
α
). Note

that either (ξ(α− 1))
2
α or lnn is a small value compared to n. For any environment, Q(n) is

a large number. Therefore, with law of large numbers, we can use n instead of Q(n) in (3.7)

and (3.10). Note that lnn and log n have the same scaling. 2

In what follows, we derive the achievable throughput capacity in different fading scenar-

ios characterized by the path loss exponent α.

3.3.1 Free-Space Propagation Environment (for α = 2)

Corollary 1 Within the network as aforementioned, there is at most one transmission (both

V2R and V2V transmissions) in the guaranteed zone of one RSU.

Proof. Within a normalized area, when the number of RSUs scales as Θ( n
logn

), it can be

deduced from the previous discussion that, the distance between any two neighboring con-

current V2R transmissions D scales as Θ(
√

logn
n

), and the distance between the receivers

of the two concurrent V2V transmissions should satisfy B = Θ(
√

logn
n

). Therefore, there

could be only one V2R or V2V transmission scheduled in one RSU guaranteed zone, due to

the constraint of the finite interference. 2
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Let f(n) denote the possible number of concurrent V2R transmissions in one RSU guar-

anteed area. We have the following Lemma.

Lemma 2 Consider that n vehicles are uniformly distributed in a normalized area. If the

number of RSUs scales as Θ( n
logn

), with law of large numbers f(n) converges in probability

towards a no-less-than-one value for every RSU when n goes to infinity, i.e.,

lim
n→∞

Pr (f(n) ≥ 1))= 1, for ∀ RSU.

Proof. Let the probability that a vehicle is a source vehicle be ω0. With the two-hop forward-

ing scheme, the probability that one vehicle has data to transmit is ω. Here, ω0 ≤ ω. Because

of the nodal uniform distribution in the network, the probability of one vehicle having data

to deliver in an RSU guaranteed zone is w · π·R
2(n)
12

. The probability (denoted by P ) that at

least one vehicle with data to transmit in the RSU’s guaranteed zone is

P = 1− (1− w · π ·R2(n)

12
)n. (3.16)

Then,

lim
n→∞

[1− (1− w · π·R
2(n)
12

)
n
]= 1− lim

n→∞
(1− w · π·R

2(n)
12

)
n
. (3.17)

Moreover, with (3.14) we have,

lim
n→∞

(1− w · π ·R2(n)

12
)n = lim

n→∞
((1− w ·

π · a1 · lnn
n

12
)
(− n·12

ωπa1 lnn
)
)(−

ωπa1 lnn

12
), (3.18)

where a1 > 0 is a positive constant, and lim
n→∞

(1− w · π·a1·
lnn
n

12
)
(− n·12

ωπa1 lnn
)
= e. Therefore,

lim
n→∞

[1− (1− w · π ·R2(n)

12
)n] = 1. (3.19)

Let event Am denote that there is at least one vehicle with data in the guaranteed zone of

RSUm where m = 1, 2, ..., Q(n). By definition, P is the probability that at least one vehicle
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with data is in an RSU guaranteed zone, that is, P (Am) = 1 − P (Am) = P . PQ(n) is the

probability that for any RSU at least one vehicle with data is in the RSU’s guaranteed zone,

and Q(n) scales as Θ( n
lnn

). Therefore, with law of large numbers, based on the union bound

we have

PQ(n) = P (A1 ∩ A2 ∩ ... ∩ AQ(n)) = 1− P (A1 ∪ A2 ∪ ... ∪ AQ(n)) ≥ 1−
Q(n)∑
m=1

P (Am) .

(3.20)

Further, for each RSU the probability that at least one vehicle with data to transmit in the

RSU’s guaranteed zone is denoted by P , namely P (Am) = P . Then,

PQ(n) ≥ 1−Q(n) · (1− P ), (3.21)

where lim
n→∞

Q(n) ·(1−P ) = lim
n→∞

a2 · n
lnn

·(1− w · π·R
2(n)
12

)n = 0, with a2 a positive constant.

Therefore,

lim
n→∞

PQ(n) = 1. (3.22)

2

Thus, from Lemma 1, Corollary 1 and Lemma 2, we have Theorem 1:

Theorem 1 For a free-space propagation environment with n vehicles uniformly distributed

in a normalized area, when the number of RSUs scales as Θ( n
logn

) deployed in a grid pattern,

with law of large numbers f(n) converges in probability towards one for every RSU, i.e.,

lim
n→∞

Prob(| f(n)− 1| > ε) = 0, ∀ ε > 0, for ∀ RSU.

The achievable throughput capacity scales as Θ( 1
logn

).

The free-space propagation model can be used to study a sparsely populated network

when the vehicle traffic is spare on the road, and not many buildings exist. In what follows,

we derive the achievable throughput capacity in a more general fading scenario with the path

loss exponent α > 2.
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3.3.2 Non-Free-Space Propagation Environment (for α > 2)

In the non-free-space propagation environment, when the number of RSUs scales as Θ( n

(ξ(α−1))
2
α
),

the throughput capacity should be λ(n) = O( 1

(ξ(α−1))
2
α
), which however, is not achievable.

This is because (ξ(α− 1))
2
α ) is smaller than lnn, and thus the number of RSUs for α > 2

is larger than the case for α = 2. However, constrained by the topologies of vehicles and

RSUs, it cannot be guaranteed that there are at least one vehicle with data to transmit in the

RSU’s guaranteed zone with the number of RSUs increasing. In what follows, we show the

necessary condition of RSU deployment to make the throughput capacity achievable.

Theorem 2 For a non-free-space propagation environment, with the population of vehicles

n in a normalized area, when the number of RSUs scales as O( n

(ξ(α−1))
2
α
) and the condition

Q(n) = o(e
n·ωπ
Q(n) ) holds, the throughput capacity Θ(Q(n)

n
) can be achievable. More specif-

ically, when Q(n) = Θ( n
logn

) deployed in a grid pattern, with law of large numbers f(n)

converges in probability towards a no-less-than-one value for every RSU, i.e.,

lim
n→∞

Prob( f(n) ≥ 1) = 1, for ∀ RSU.

The achievable throughput capacity scales as Θ( 1
logn

).

Proof. We consider P is the probability that at least one vehicle with data is in an RSU

guaranteed zone. PQ(n) is the probability that for any RSU at least one vehicle with data is in

the RSU’s guaranteed zone. WhenQ(n) = Θ( n
N
), combining (3.3) we getQ(n) = Θ( 1

R2(n)
).

Similarly to (3.22), we have

PQ(n) ≥ 1−Q(n) · (1− ω · π

Q(n)
)n, (3.23)

where lim
n→∞

Q(n) · (1− ω · π
Q(n)

)n = lim
n→∞

Q(n) · (1− ω · π
Q(n)

)(−
Q(n)
ωπ

)·(− nωπ
Q(n)

). Therefore,

when the condition: Q(n) = o(e
n·ωπ
Q(n) ) holds, we can attain lim

n→∞
PQ(n) = 1. In other words,

when the number of RSUs scales as O( n

(ξ(α−1))
2
α
) and the condition Q(n) = o(e

n·ωπ
Q(n) ) holds,
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Figure 3.3. Using Log Function to approximate Lambert W Function.

the throughput capacity Θ(Q(n)
n

) can be achievable.

Further, the solution of the equation Q(n) = e
n

Q(n) , is Q(n) = n
W (n)

, where W (n) is

the Lambert W Function [79], and more specifically W (n) = lnn− lnW (n) as depicted

in Fig. 3.3. If we use the Logarithm Function to approximate the Lambert W Function, we

characterize the condition of RSU deployment: Q(n) = Θ( n
lnn

) for achieving the scaling

law accordingly. In other words, for α > 2, to obtain one achievable throughput capacity,

the number of RSUs Q(n) can be scale as Θ( n
lnn

) and therefore the throughput capacity

scales as Θ(Q(n)
n

).

This result is the same as the one for the free-space environment. It comes from the

limitation of topology that to guarantee at least one vehicle with data in an RSU’s guaranteed

zone, the scaling of the distance between two adjacent RSUs must be no less than the scaling

of
√

lnn
n

.

2

In Theorem 2 we have used the Logarithm Function to approximate the Lambert W

Function. This results in an error ln(W (n)) which is negligible even with very large n as

shown in Fig. 3.3. Based on Theorem 1 and Theorem 2, we conclude that for either envi-
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3.3. Asymptotic Analysis of Throughput Capacity

ronment the achievable throughput capacity scales as λ(n) = Θ( 1
logn

). First, our throughput

capacity λ(n) = Θ( 1
logn

) is lower than the throughput capacity scaling law Θ(1) in [30] in

which nodes are extremely mobile in the network. Grossglauser and Tse consider that in any

time slot, one node is either a source node or a destination node. Thus, there are n
2

concurrent

transmissions in one time slot. Note that the throughput capacity per node λ(n) is as

n× λ(n)× h ≤ CT, (3.24)

where h is the number of hops in an end-to-end path, CT is the number of possible Concur-

rent Transmissions. In [30], the number of hops h = Θ(1), and the number of the concurrent

transmissions CT = Θ(n). Therefore, the throughput capacity can reach λ(n) = Θ(1).

On the other hand, when all the nodes are fixed in the network, Gupta and Kumar show the

throughput capacity λ(n) = Θ( 1√
n
) in [29]. The transmissions in [29] only happen between

the nearest neighboring nodes, and the multihop forwarding scheme is allowed with the num-

ber of hops h = Θ(
√
n). The number of concurrent transmissions scales as Θ(n), and thus

the throughput capacity scales as λ(n) = Θ( 1√
n
). We can conclude that our throughput ca-

pacity is higher than Θ( 1√
n
) in [29] due to the node mobility and the store-carry-forwarding

scheme. Nevertheless, the throughput capacity is limited by the RSUs’ deployment, and

therefore the throughput capacity is lower than the results Θ(1) in [30]. The throughput ca-

pacity bottleneck in our scenario is the number of RSUs when the number of vehicles having

data to transmit is huge. Furthermore, when the number of RSUs isQ(n) (Q(n) = O( n
logn

)),

the throughput capacity scales as Θ(Q(n)
n

). This can be the benchmark for the RSUs deploy-

ment. This leads to the conclusion that for free-space propagation environment in a data

uploading scenario the number of RSUs impacts on the throughput capacity as:

λ(n) =

 Θ( 1
logn

), if Q(n) = Θ( n
logn

)

Θ(Q(n)
n

), if Q(n) = O( n
logn

).
(3.25)
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Therefore, we reach the conclusion that with n vehicles in the network, at most Θ( n
logn

)

RSUs are efficiently deployed as a grid in the network. The optimal available radius of an

RSU guaranteed zone(served area in topology) should scale as Θ(
√

logn
n

).

3.4 Mobility Diversity-Based Data Forwarding Scheme

By exploring node mobility, more concurrent transmissions can be enabled to improve the

throughput performance and decrease transmission delay. In this section, we propose a novel

mobility diversity based data forwarding scheme to attain this goal.

The path of one vehicle may not be a straight line connecting the starting point and the

destination, since the moving direction could be changed at the intersections according to

the street pattern. A vehicle j (j ∈ V) moves away from the starting point S along the

path with an initial velocity v0j (∈ [0, vmax]) and a given initial moving direction φ0j = ϑ0j ,

towards its destination D, as depicted in Fig. 3.4. The starting point S and the destination

D for each vehicle are known, and thus ψSD can be determined by the locations of S and

D. Let M denote the set of intersections in the network, where m(∈ M) represents the

mth intersection (m = 1, 2, 3, ...). For vehicle j, if the moving direction deviation at the

mth crossroad from its current moving direction (φ(m−1)j) is represented by ϑmj (∈ [−π, π])

(see Fig. 3.4), the moving direction after the mth crossroad (φmj) depending on the former

turning decisions satisfies φmj = φ0j +
m∑

i=1,i∈M
ϑij , where ϑij has a positive (negative) value

if the vehicle turns anticlockwise (clockwise). The variable φmj should depend on the street

pattern and be biased to the destination. That is, the smallest difference between φmj and

ψ(m−1)D should be guaranteed, where ψ(m−1)D is the angle between the two lines: the one

connecting the (m− 1)th intersection and the destination D and the horizontal line.

As aforementioned, define the traveling interval of one vehicle between two crossroads

as a time step, which depends on the current velocity and the length of street due to street

patterns. We use the moving direction and current velocity to represent the mobility charac-

teristic of a vehicle in a time step. Let B denote the set of mobility characteristics of vehicles
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Figure 3.4. The moving path of vehicle j moving from its starting point to the destination.
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Figure 3.5. To measure the relative distance between S and R.

where each element bmj (m ∈ M, j ∈ V), represents the mobility characteristic of vehicle j

in its mth time step along the path. The characteristic bmj includes the vehicle’s moving di-

rection φmj and current velocity vmj , i.e., bmj = (φmj, vmj). The mobility characteristic has

no change for each vehicle within a time step. For the turning options at each intersection,

there are at most four scenarios: straight, right, left, and U-turn.
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3. Throughput Capacity Analysis Exploiting Mobility Diversity in Pure VANETs

We consider that the city map is known which can be acquired by GPS equipment, then

the moving direction deviation at any intersection can be predicted based on the destina-

tion. That is, since the vehicle is moving towards the destination, to estimate the vehicle’s

moving direction deviation at mth intersection (ϑmj ), ϑmj should lead to the smallest dif-

ference between φmj and ψ(m−1)D. Note that the turning decision may be impacted by the

human actions and other objective factors. When this vehicle j is moving in its mth time

step, the predicted turning decision at its (m + 1)th intersection is chosen, and so on. For

instance, as depicted in Fig. 3.5, at time t0 the source vehicle S is in the (m − 1)th time

step with the position (xs1, ys1), and it can communicate with one neighbor R which is in

its (n− 1)th time step with the position (xr1, yr1). The source vehicle S is moving with the

mobility characteristic b(m−1)s = (φ(m−1)s, v(m−1)s), while the neighbor vehicle R moves

with b(n−1)r = (φ(n−1)r, v(n−1)r). After time t1, S reaches the mth intersection on the po-

sition (xs2, ys2) = (xs1 + v(m−1)s · t1 · cosφ(m−1)s, ys1 + v(m−1)s · t1 · sinφ(m−1)s) , while

R reaches its nth intersection after time t2 on the position of (xr2, yr2) = (xr1 + v(n−1)r ·

t2 · cosφ(n−1)r, yr1 + v(n−1)r · t2 · sinφ(n−1)r). Note that t1 and t2 can be calculated based

on current velocities and the street length. And the turning decisions of both vehicles can be

estimated with aforesaid approach. At a certain time t0 + ∆t, the positions for the vehicles

along their own paths could be obtained, and therefore the relative distance between the ve-

hicles can be attained. Here, ∆t is denoted as the prediction time. The source node and the

neighbors move with their own mobility characteristics, and the positions of vehicle S and

vehicle R at the time t0 + ∆t are (xs3, ys3) and (xr3, yr3). The relative distance dsr at the

time t0 +∆t between this pair of vehicles is as

dsr =

√
(xs3 − xr3)

2 + (ys3 − yr3)
2. (3.26)

During the prediction time, if the vehicle encounters several intersections, the most possible

route should be chosen based on a series of turning options at the intersections being passed

by. With this relative distance after a certain prediction time, we can describe the spatial
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differentiation among the vehicles. When the source vehicle receives the neighbor vehicles’

predicted locations, it only transmits the data to the neighbors whose relative distance af-

ter a certain prediction time is far enough from its own, by more than the threshold (e.g.,

2R(n)), to achieve mobility differentiation. Note that there are a number of neighbors, and

we can select appropriate relays whose mobility characteristics are different from the source

vehicle’s to yield diversity gain. Because this multi-relay diversity is based on the mobility

differentiation, so we call this diversity as mobility diversity. The central philosophy behind

this forwarding scheme is that by exploring the mobility diversity, multiple cooperative ve-

hicles are used to reallocate the unbalanced data traffic and further allowed to concurrently

transmit data packets which are generated by the same source vehicle to different RSUs.

Therefore, concurrent transmissions can be scheduled to balance the RSUs’ load, improv-

ing the throughput performance. Note that if the number of vehicles with data is huge, the

efficiency of this forwarding scheme is not obvious any more.

In the scheme, we track the vehicles’ mobility differentiation with two parameters: the

velocity and the moving direction. In the urban area, the velocity of one vehicle is around

the limited speed with little deviation from other vehicles, while the moving directions vary

much from other vehicles. Thus the mobility differentiation can be reflected on the nodal

variation of the moving directions. On the other hand, in the highway scenario, the moving

direction deviation is limited by the highway pattern, while the velocity of a vehicle changes

frequently and may vary much from others. That is, the mobility differentiation in a highway

scenario is mainly caused by the velocity difference.

3.5 Performance Evaluation

3.5.1 Simulation Settings

We evaluate the efficiency of proposed forwarding scheme with a discrete-event simulator

developed by C++ language. The simulation is performed based on the real-world trace

41



3. Throughput Capacity Analysis Exploiting Mobility Diversity in Pure VANETs

collected from the trajectory information of 4000 taxis in Shanghai on Feb. 20, 2010 [39].

In each experiment, we select the densely populated downtown area (with 20 × 10 km2) in

Shanghai where RSUs are deployed in a grid pattern as in Fig. 3.1. The transmission range

of a vehicle is set to be 350 meters.

To investigate the impacts of vehicle mobility on the throughput performance of VANET-

s, we deploy two different kinds of mobility patterns as follows. In the first mobility pattern,

all vehicles in the network move all the time without stopping throughout the simulation run.

In the second mobility pattern, vehicles may stay still on the road without any movements

for a long period, e.g., a taxi may be waiting for customers outside the hotels or shopping

malls. Comparing the two patterns, the mobility diversity is greater in the first pattern. In

addition, different values of prediction time TP in Fig. 3.6 are tested to find its impact on the

performance of the proposed mobility diversity based scheme.

3.5.2 Simulation Results

Fig. 3.6 shows the throughput performance of the proposed scheme with two different mo-

bility patterns. ω0 is set to be 0.1 such that a vehicle may transmit as a data source with

probability 0.1. As we can see in Fig. 3.6, with different mobility patterns applied and other

network configurations kept same, the throughput achieved in the first mobility pattern is

greater than that achieved in the second mobility pattern. This indicates that with greater

mobility diversity, more throughput can be achieved. In addition, it can be seen that the pro-

posed mobility diversity based data forwarding scheme can outperform the legacy two-hop

forwarding scheme. This also unveils that impacts of the mobility diversity on the through-

put performance and validates the effectiveness of our proposed scheme. Moreover, Fig. 3.6

shows that the achieved throughput performance of the proposed scheme is closely related

to the prediction time TP . As can be seen in Fig. 3.6, the throughput achieved when TP is

300 is greater than that when TP is 30 and 700, respectively. This is because that when TP

is small, the mobility pattern of vehicles will not change much in the interval of mobility
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prediction. As such, it is difficult for the source to explore good relays with the satisfactory

mobility diversity. An overly long prediction time, however, decreases the throughput capac-

ity as enabling many non-necessary competing. In Fig. 3.6, it can be seen that all the curves

increase when the network size increases. This is because that with ω0 remaining the same,

the the number of source vehicles increases with the network size and therefore more data

traffic is generated for transmissions in the network.

Fig. 3.7 shows the throughput performance of the proposed scheme and the legacy two-

hop relay scheme when the network size increases and ω0 = 0.8. Different from Fig. 3.6, the

throughput of both schemes in this scenario reduce when the network size increases. This

is because that with a large value of ω0, the traffic volume generated in the network increas-

es dramatically when increasing the network size. As such, RSUs are likely to be heavily

loaded or overloaded. In this case, exploring the mobility diversity to balance the traffic

transmissions can no longer increase the concurrent transmissions of data uploading, and is

therefore not helpful to increase the throughput capacity. However, in the real-world deploy-

ment, the overloaded use of RSUs should be avoided and RSUs should be over provisioned

to guarantee the quality of service to users.

Fig. 3.8 shows the impacts of source vehicles on the throughput performance when the

number of RSUs is fixed (e.g., 90 RSUs). In this experiment, vehicles follow the second

mobility pattern and the prediction time is set to be 300s. The throughput capacity is plotted

as well for comparison. With more source vehicles, more relay vehicles can help forwarding

data and thus the throughput is enhanced. From Fig. 3.8, it can be observed that the curve

of simulated throughput first increases due to the increasing number of efficient relays in the

network which can enable more concurrent transmissions. More concurrent transmissions

however also result in more interference, and then the large density of vehicles will reduce

the throughput performance in the network. Thus, to obtain better throughput performance,

there exists a tradeoff between the number of concurrent transmissions and the accumulated

interference resulting from the concurrent transmissions.
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Figure 3.6. Throughput performance comparison with different schemes.
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Figure 3.7. Efficiency of the proposed scheme when ω0 = 0.8.
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3.6 Summary

We have analyzed the throughput capacity of VANETs for the content uploading applications

in the urban area. In both the free-space propagation and non-free-space propagation envi-

ronments, the achievable throughput capacity of VANETs scales as Θ( 1
logn

) decreasing with

the population of vehicles n, with the number of RSUs scaling as Θ( n
logn

). This result can

be used as the benchmark of the RSU deployment for telecommunication company in real-

istic. Furthermore, a mobility-diversity based forwarding scheme is designed to improve the

network throughput approaching the network capacity. The central philosophy of our pro-

posed forwarding scheme is that by exploring the mobility differentiation among vehicles,

data-traffic can be balanced to increase the concurrent transmissions leading to the increased

network throughput.
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Chapter 4

Path Planning for Mobile Vehicle in

Hybrid-VANET Transportation System

In this chapter, we establish a hybrid intelligent transportation system (ITS), i.e., a hybrid-

VANET-enhanced ITS, which utilizes both VANETs and cellular systems of the public trans-

portation system to enable real-time communications among vehicles, RSUs, and a vehicle-

traffic server in an efficient way. Then, we propose a real-time path planning algorithm,

which not only improves the overall spatial utilization of a road network but also reduces

average vehicle travel cost for avoiding vehicles from getting stuck in congestion.

4.1 Introduction

Traffic congestion, as an important societal problem, has received considerable attention.

The 2007 Urban Mobility Report [10] stated that traffic congestion causes nearly 4.2 billion

hours of extra travel every year in US; the extra travel almost accounts for 2.9 billion extra

gallons of gasoline. Although many existing advanced Personal Navigation Devices (PND-

s) have functionalities of providing an optimal end-to-end path [11] [12], traffic congestion

problems in an ITS have not been fully resolved; on the contrary, conventional approach-

es still face a number of technical challenges. For example, Google Maps involve existing
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networks (e.g., Global Position System, Wi-Fi, cellular networks, etc) for individual path

planning to avoid the traffic congestion. However, the provided services are very costly,

and more importantly, they cannot make quick response to an emergency caused by an ac-

cident/incident. The essential reason for this imperfection lies in lack of real-time traffic

information. Thus, to enhance the adaptability of path planning, it is indispensable to s-

tudy how to efficiently collect and further exploit the real-time traffic information for path

planning and traffic congestion avoidance.

First, to collect the real-time traffic information, the emerging VANETs can provide

an ITS system with enhanced communication capabilities for cost-effective and real-time

traffic-information delivery. Both V2V and V2R communications are supported in VANETs

to efficiently collect/report traffic updates from/to vehicles as well as RSUs. As a result, the

collected real-time traffic information can be utilized for freeway-traffic-flow managements,

individualized vehicle path planning, and vehicle localization [56]. However, most of the

related works assume that the incorporated VANETs have sufficiently small delivery delay

for real-time information collection. Actually, as VANETs rely on short-range multi-hop

communications, the end-to-end transmission delay can be non-neglectable in some scenar-

ios. Therefore, evaluations should be conducted to study how the end-to-end transmission

performance of vehicular communications impacts on the performance of path planning in

different scenarios and how to design the transmission mechanisms to reduce the delay when

delay is not neglectable.

Second, to exploit the obtained real-time traffic information, many algorithms are de-

signed to discover optimal paths for individual vehicles [64] [65]. But individual path plan-

ning may lead to new congestion if performed uncoordinatedly. To smooth the overall net-

work flow, many works plan optimal paths from a global perspective for a group of vehicles

simultaneously [67] [66]. However, most existing globally optimal path planning algorithm-

s focus on the network-side performance improvement and neglect the drivers’ preferences

(e.g., shorter travel length or time). Since the replanning decisions are made to avoid conges-

tion and balance the traffic rather than discover optimal paths for individuals, some vehicles
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may pay additional cost (e.g., a longer traveling length). Therefore, algorithms should be

designed to jointly consider the balance of the network traffic and the reduction of average

vehicle travel cost.

To this end, we propose a real-time global path planning algorithm which exploits VANET

communication capabilities to avoid vehicles from congestion in an urban environment. Both

the network spatial utilization and vehicle travel cost are considered to optimally balance the

overall network smoothness and the drivers’ preferences. Specifically, the contributions of

this chapter are threefold:

• First, to facilitate the application of real-time path planning, we propose a hybrid-

VANET-enhanced ITS framework, exploiting both the VANETs and the public trans-

portation system. Based on the proposed hybrid ITS framework, a multi-hop message

forwarding mechanism is designed to collect the real-time traffic information or the

emergent warning messages, which usually have strict delay bounds. A theoretical

analysis on the end-to-end transmission delay performance of the mechanism is pre-

sented as well;

• Second, we design a real-time global path planning algorithm to not only improve

network spatial utilization but also reduce average vehicle travel cost per trip. A low-

complexity algorithm is developed based on Lyapunov optimization to make real-time

path planning decisions. With the proposed path planning algorithm, the tradeoff be-

tween the overall network spatial utilization and drivers’ preferences can be well bal-

anced; and

• Finally, the transmission performance of the hybrid-VANETs is first evaluated un-

der different vehicle densities via VISSIM, and then extensive simulations validate

the effectiveness and efficiency of the proposed path planning algorithm. The result-

s confirm that our proposed path planning algorithm is able to find alternative paths

for vehicles to bypass congestion areas while reducing the average travel cost in an

efficient, timely and coordinated way.
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4.2 Definitions and System Models

Aiming at providing real-time planned paths for vehicles from a global perspective, we first

introduce the following network architecture. The traffic flow model is then elaborated,

followed by the vehicle categorization and mobility model.

4.2.1 Hybrid-VANET-Enhanced Transportation System

Fig. 4.1 shows the architecture of the considered hybrid-VANET-enhanced transportation

system, consisting of vehicles, RSUs, cellular base stations (BSs) and a vehicle-traffic server.

Vehicles are equipped with OBUs which enable multi-hop V2V communication used

in delivering the periodic vehicle information (e.g., vehicle velocity, density and location).

When vehicles sense accident-related congestion, the warning message can be generated

to alert the emergent accident information, and then be shared not only among vehicles

but also with the nearest RSU via V2R communications. Besides pure VANETs, cellular

communications, e.g., a global system for mobile communications (GSM) system which is

set up for the functions such as mobile telemonitoring and management systems for inter-city

public transportation [80], are also involved. Hence, the taxis or buses can directly upload

the received warning message to the nearest cellular BS and the BS will deliver the message

to the vehicle-traffic server.

RSUs deployed along the roads are assumed to be able to obtain vehicle-traffic statis-

tical information (e.g., the vehicle arrival/departure rate on each road). We consider that

taxis and buses are perfectly connected to the cellular system, and RSUs are well connected

with each other through wireline. If RSUs are deployed at intersections, the traffic infor-

mation can be detected by the equipped cameras or traffic flowmeters connected to RSUs

directly [81]. Otherwise, the traffic flow can be predicted by the nearest RSUs based on the

obtained vehicle information (e.g, periodically obtained vehicle density and velocity) from

the VANETs [82]. An RSU can share its own collected information with other RSUs and the

vehicle-traffic server. When an accident happens, based on all the collected information, the
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Figure 4.1. Real-time path planning in VANET-enhanced hybrid networks.

vehicle-traffic server is capable of performing real-time path planning to provide globally

optimized travel paths for vehicles of interest.

We further define a road network into four main components (i.e., intersections, roads,

vehicles, and RSUs) as ς = (I,Γ,V,R). The set of all intersections is denoted as I. Let

Γ be the set of all the roads in the network. Each road between two adjacent intersections

is assumed bi-directional, possibly with multiple lanes in one direction. We refer to each

of those lanes with the same direction in a road as a road segment, i.e., one normal bi-

direction road between two adjacent intersections i and j has two different road segments

with opposite directions, i.e., road segment (i, j) and road segment (j, i). The set of vehicles

and that of RSUs are defined as V and R, respectively.

4.2.2 Traffic Flow Model

To understand a vehicle-traffic flow more clearly, we model vehicle traffic as an “inflow/outflow”

system [32]. Each vehicle is expected to follow a planned path from its starting point towards

its destination, Here, the planned path can be referred to as a path preset in a GPS, according

to the driver’s preferences and based on the locations of the starting and ending points. The

driver will keep following the preset path until the vehicle receives any information on con-

gestion or accident. When an accident or congestion occurs, by running the path planning
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Figure 4.2. Illustration of traffic flow model.

algorithm, the vehicle-traffic server will be in charge of finding an optimal alternative path

or routing for the vehicles of interest. Specifically, we refer to the road segments in which

one vehicle’s starting point and destination are located as s (∈ Γ) and d (∈ Γ), respectively.

Let Ji denote the set of neighboring crossings of intersection i. Define the inflow rate

of road segment (i, j), λij(t), as the upstream-vehicle arrival rate from neighboring road

segments in time slot t, where j ∈ Ji, as shown in Fig. 4.2. Let λdij(t) (j ∈ Ji) denote

the traffic flow rate on road segment (i, j) with the same destination d in time slot t, and

λij(t) =
∑
d∈Γ

λdij(t). We consider each sample time duration (denoted as ∆ and including a

series of time slots) as a time unit, which is defined by sampling theorem to avoid information

loss in the compressive sensing for traffic estimation in [39]. Within the T th sample time

duration, based on the traffic flow rates of the involved time slots collected by RSUs, the

average inflow rate of road segment (i, j) of the T th sample time duration is denoted as

λij(T ) and expressed as

λij(T ) =
1

∆

T∆∑
t=(T−1)∆

λij(t). (4.1)

Similarly, the outflow rate µij(T ) of road segment (i,j) is the average departure rate of ve-

hicles moving to neighboring road segments in the T th sample time. Note that all variables

for the opposite directed road segment of (i, j), namely road segment (j, i), can be defined

correspondingly, e.g., λji(T ) and µji(T ).

Let cij(T ) denote the maximum number of outflow vehicles of road segment (i, j) in T th
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sample time, i.e., road capacity, which is determined by the road conditions, the number of

lanes, the length of the road, and traffic congestion, etc. Due to fluctuating road conditions

and traffic flow conditions, the road capacity can fluctuate with time, but is considered to

remain constant within one sample time unit.

Basically, there are two kinds of traffic congestion: recurrent congestion and non-recurrent

congestion [33]. The recurrent congestion is due to the tension between the current traffic

flow situation (e.g., the traffic inflow λij(T )) and the road conditions (e.g., the road capacity

cij(T )), which is non-incident related. The non-recurrent congestion is caused by an accident

or incident which can reduce the road capacity (to be introduced in Section 4.4). We define a

congestion indicator of a warning message, δ(Iij)(∈ [0, 1]), to represent how the congestion

type I happening on road segment (i, j) impacts on the road capacity, where δ(Iij) = 1

means recurrent congestion and δ(Iij) ∈ [0, 1) implies non-recurrent congestion.

Each vehicle traveling from one intersection to the next is called routing. For each in-

tersection (say intersection i), consider that the RSU nearest to the intersection maintains a

virtual queue of length Qd
i (T ), representing the number of the buffered vehicles at this inter-

section specifically destined to destination d (∈ Γ) in sample time T . Then, the total length

of all virtual queues of intersection i for all destinations is Qi(T ) =
∑
d∈Γ

Qd
i (T ), where

Qd
i (T ) = max{Qd

i (T − 1)−
∑

j∈Jiµ
d
ij(T − 1), 0}+

∑
u∈Jiλ

d
ui(T − 1) (4.2)

with µdij(T−1) being the outflow rate of road segment (i, j) with destination d in the (T−1)th

sample time, satisfying µij(T − 1) =
∑

d∈Γ µ
d
ij(T − 1). Similarly, for road segment (i, j),

we define the leftover number of vehicles in sample time T as Qij(T ) = max{Qij(T − 1)−

µij(T − 1), 0}+ λij(T − 1).

4.2.3 Vehicle Categorization and Mobility Model

Three types of vehicles are considered in this work, namely private cars, taxis, and buses.

GPS devices are supposed to be deployed on all vehicles, and GPS devices have ordered the
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service of providing shortest paths. Compared with changeable paths of taxis or private cars,

scheduled paths of buses are usually fixed. Let wm ∈ {0, 1}(m ∈ V) denote the capability of

flexible turning for the vehiclemwhen the vehicle receives any information about congestion

or accident, and take the value 1 if vehicle m is a taxi or a private car and 0 otherwise, since

taxis or private cars can change their paths while buses have to wait until the traffic trap is

cleaned up.

Furthermore, we refer to taxis and buses as super-nodes, connected to a control center

through GSM systems. With a specially designed message transmission mechanism (to be

introduced in Section 4.3), warning messages can be delivered to the vehicle-traffic server as

efficiently as possible to facilitate real-time path planning.

The mobility of each vehicle can be characterized by two random variables (V,D) [83].

Here, V represents the vehicle velocity which takes two possible values (i.e., a lower velocity

vL and a higher velocity vH). The velocity transition is modeled as a two-state continuous

time Markov chain (TCMC) with state transition rate 1
D

. Under this model, a vehicle initially

chooses vL (or vH), and after an exponentially distributed time interval with the mean of D,

the velocity changes to vH (or vL). The model can be exploited to describe the realistic driv-

ing behaviors, i.e., a driver usually drives at a constant velocity for a period and then changes

to a higher/lower velocity based on his/her will and/or road conditions. Besides, when the

vehicle density is low or medium (e.g, no larger than 30 vehicle/km/lane), vehicles can be

considered to move independently [84] and the headway distance1 follows the exponential

distribution with rate ζ [85].

4.3 Transmission Mechanism and Performance Analysis

Since the incident-related warning message is pivotal to the viability of a real-time path

planning algorithm, we propose the following rapid message transmission mechanism and

give corresponding analytical results on the end-to-end transmission performance.

1The headway distance is defined as the distance between two neighboring vehicles in the same lane.
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4.3.1 Outline of Transmission Mechanism

After sensing the congestion, vehicles in the vicinity of the congestion will generate and

forward the warning message to other vehicles via multi-hop V2V relaying. If a super-node

receives a warning message, it will upload the message to the nearest cellular BS through

cellular communication of the public transportation system; otherwise, the message will be

transmitted all the way to one RSU via V2V and V2R transmissions. To reduce the redun-

dancy of multi-hop relaying, the following relay node selection is adopted. If there is one

bus/taxi within the transmission range of a vehicle, the bus/taxi will be the next-hop receiv-

er; otherwise, the farthest vehicle ahead in the same lane within the transmission range will

be selected as the next relay [83]. Besides, we assume that a vehicle deletes the warning

message once it has been transmitted. On the other hand, a global message lifetime TL is

preset for each warning message, at the end of which all the transmissions of the correspond-

ing message will be terminated, thus to further control the redundancy in message delivery.

Once an RSU or cellular BS receives a warning message, it forwards the message to the

vehicle-traffic server via wireline. Upon receiving the warning message, the traffic server

will operate the path planning algorithm based on the collected timely road-traffic infor-

mation. By leveraging this transmission mechanism, emergent messages (e.g., congestion

indicators) are promising to be disseminated more efficiently as compared with only utiliz-

ing VANETs or the cellular communication capabilities of the public transportation system.

Finally, after the vehicle-traffic server finishing path planning, replanned paths are fed back

to vehicles demanding path planning via a downlink transmission (i.e., the traffic server - an

RSU/vehicle relay - the vehicle in need of path planning).

As shown in Fig. 4.1, the overall communications in the proposed VANET-enhanced ITS

can be divided into three layers: V2V and V2R communications in VANETs, wireless com-

munication between super-nodes and BSs via a cellular system, and wired communication

between RSUs (or BSs) and the vehicle-traffic server. Thus, the main issues affecting the

efficiency of the end-to-end message transmission comes to transmission delay in VANET-

54



4.3. Transmission Mechanism and Performance Analysis

s. By considering the following ideal medium access control (MAC) for V2V and V2R

communications, we will analyze the transmission delay in VANETs in the next subsection.

Specifically, for analytical simplicity, we assume that once a vehicle moves into the coverage

range of an RSU or another vehicle, time slots can be scheduled with neglectable delay for

the corresponding V2R or V2V transmissions. Besides, the link rate of a V2V or V2R trans-

mission is assumed to be constant, and the contact duration between each transmission pair

is considered long enough to accomplish at least one packet delivery, which can be achieved

by appropriately setting the packet size [74].

In general, the transmission delay in VANETs can be discussed under two cases: 1) when

the vehicle density is very high (e.g., more than 56 vehicles/mile), the connections among

vehicles can be found with high probability, considering that the transmission range of a

vehicle (e.g., more than 100m as shown in DSRC) is way more than the average headway

distance. In this case, for a given connection path for example from a vehicle to an RSU,

we consider neglectable transmission delay because of the assumption of the ideal MAC and

small-size packet delivery; 2) for the medium or sparse vehicle density case, due to the in-

termittency of vehicle communications caused by high-speed mobility and/or node sparsity,

the inter-contact time, namely, the waiting time of each hop for the receiver (vehicle or RSU)

to fall into the transmission range of the transmitter dominates the end-to-end transmission

delay. Notice that congestion may cause an unbalanced vehicle distribution on neighboring

roads, and the traffic information report on a road of low node density can be the bottleneck

of the VANET-assisted information collection. As such, in the following we analyze the im-

pact of vehicle density on the inter-contact time of one-hop V2V or V2R transmission and

further on the end-to-end transmission delay along the transmission path.

4.3.2 End-to-End Delay Analysis

In the following, we analyze the inter-contact time for the aforementioned transmission

mechanism. The end-to-end delay analysis begins from the transmissions in pure VANETs,
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and then involves the public transportation system.

End-to-End Delay in Pure VANETs

First, consider an uplink with no taxis or buses, i.e., all the hops are based on V2V and V2R

communications. We evaluate the transmission delay for the last hop of the V2R transmis-

sion. The transmission delay here is mainly due to the inter-contact time between a vehicle

and an RSU. Similar to [83], we define the last hop as an “on-off” model, where a vehicle

either directly connects to an RSU (i.e., during the “on” state) or is the only vehicle approach-

ing the RSU and there is no other vehicle in the transmission range of the RSU (i.e., during

the “off” state). According to the transmission model, the transmission delay of a packet

during the “on” state should be way smaller than that during the “off” state. Therefore, the

transmission delay of the last V2R hop is mainly due to the “off” period.

Denote the “on” period and the “off” period of a vehicle as Ton and Toff , respectively.

Accordingly, the travel distances within the two periods are defined as Uon and Uoff , respec-

tively, with Ton = Uon

V
and Toff =

Uoff

V
, where V is the average velocity for a vehicle based

on the “on-off” mobility model (see Section 5.2.4). Similar to [83], the event that a vehicle

moves a distance of at least u during Ton before being scheduled to communicate with an

RSU should satisfy: 1) there is no other vehicle within the distance u from the end of the

RSU coverage ahead of the vehicle, and 2) there is at least one vehicle within the distance

2R − u, which results in this vehicle moving at least u distance to avoid the collision, with

R representing the transmission range of an RSU or a vehicle. Then, we have

Pr(Uon > u) = (e−ζ·u)
bγ−1

[1−(e−ζ·(2R−u))
bγ−1

]

1−(e−ζ·2R)bγ
(4.3)

where b is the summation of all road lengths, and γ is the average vehicle density on the

roads. Since the vehicle headway distance follows an exponential distribution as mentioned

in Section 5.2.4, the probability that a headway distance is larger than u is e−ζ·u. Based on
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(4.3), we can obtain

E[Uon] =
∫ 2R
0 Pr(Uon > u)du. (4.4)

Similarly, the event that a vehicle moves a distance of at least u during Toff should

satisfy: 1) there is no vehicle within a distance of 2R + u from the end of the coverage

range of the nearest RSU ahead of the vehicle, and 2) there is at least one vehicle within the

distance L− (u+ 2R), where L is the distance between the adjacent RSUs. Then, we have

Pr(Uoff > u) = (e−ζ·(2R+u))
bγ−1

[1−(e−ζ·(L−(2R+u)))
bγ−1

]

(e−ζ·2R)bγ [1−(e−ζ·(L−2R))
bγ

]
(4.5)

E[Uoff ] =
∫ L−2R
0 Pr(Uoff > u)du. (4.6)

In addition, the previous hops between vehicles within a transmission path except the last

hop can be characterized with the vehicle mobility model. The process of the relative velocity

between two vehicles can be represented by a CTMC with a state space H = {h0, h1, h2}.

Here, h0 represents a negative relative velocity when the vehicle in front moves with vL while

the vehicle behind moves with vH ; h1 models a zero relative velocity (i.e., both vehicles move

with the same velocity); h2 represents a positive relative velocity. If each vehicle keeps the

same velocity for an exponential time with an average of D, the transition rate between any

two states of the Markov process is equal to 2/D. Thus, from [83], the average number

of hops M of an end-to-end transmission path from a message source to an RSU in pure

VANETs can be approximated as

M =
6(L−E[Uon]−E[Uoff ])

D(vL+vH) . (4.7)

Then, based on the average number of hops, the transmission delay of such a transmission

path can be shown as

ψ = (M − 1)E[TV 2V ] + E[Toff ] (4.8)

where E[TV 2V ] =
1

1−e−ζR is the average transmission delay for a V2V hop, since the head-
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way distance follows an exponential distribution. E[Toff ] is the average duration of the “off”

period as defined before. If we consider the downloading as a similar process with upload-

ing, the total transmission delay can be approximated by 2ψ 2. Note that this transmission

delay is related to the parameters including vehicle mobility parameters (V and D), vehicle

density (γ), and RSU related parameters (the transmission range R and the average distance

between RSUs L). Then, the probability of a M -hop transmission path with all V2V and

V2R communications equals the probability that there is neither taxi nor bus in any hop

within the M -hop transmission path, i.e., (1−PT −PB)M , where PT (PB) is the percentage

of taxis (buses) in the traffic stream.

End-to-End Delay in Hybrid-VANET-enhanced Network

If the public transportation system is involved in delivering messages as aforementioned, the

probability of a given number of hops from a private car to the nearest bus/taxi follows a

geometric distribution. The average number of hops in the hybrid VANET-enhanced ITS,

M ′, is as

M ′ =M · (1− PB − PT )
M +

M∑
i=1

(i− 1) · (1− PB − PT )
i−1 · (PB + PT ). (4.9)

Then, if we consider that the public transportation system are perfectly connected with no

delay, the average transmission delay is dominated by the transmission delay in VANETs.

Based on the probability of a given number of hops from a private car to the nearest bus/taxi,

the transmission delay in a multihop message transmission path is rewritten as

ψ′ = ψ · (1− PB − PT )
M +

M∑
i=1

(i− 1) · (1− PB − PT )
i−1 · (PB + PT ) · E[TV 2V ]. (4.10)

From (4.10), the end-to-end transmission delay in hybrid ITS is related to 1) vehicle mobility

parameters (i.e., V and D), 2) vehicle density and super-node percentage (i.e., γ, PB, and

2The approximation is valid if the end-to-end transmission delay can be well controlled to a small value in
which the network topology changes little or the source vehicle only moves a relatively small distance.
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PT ), and 3) RSU deployment in the network (e.g., the transmission range R and the average

distance between RSUs L).

4.4 Problem Formulation

In this section, based on the traffic flow model defined in Section 4.2.2, the traffic flow

balance constraint of each intersection is first identified. The road capacity and congestion

indicator are then discussed under different traffic conditions. Subsequently, considering the

drivers’ travel-cost preferences in the path planning, the cost metric of path planning for

individual vehicle is defined. In addition, the network stability constraint is shown. Finally,

the real-time path planning problem is formulated to not only avoid the congestion but also

reduce the average travel cost caused by path planning.

4.4.1 Intersection Flow Balance Constraint

For an intersection i (∈ I), the following flow balance equation should be satisfied to guar-

antee that the aggregate vehicle arrival rate is equal to the aggregate vehicle departure rate

∑
j∈Ji

µji(T ) =
∑
u∈Ji

λiu(T ), ∀i ∈ I, (4.11)

where the left and right side of the equation are respectively referred to as the aggregate

vehicle arrival and departure rates.

4.4.2 Road Capacity and Congestion Indicator

For road segment (i, j), the vehicle inflow rate for sample time T is λij(T ). The average

outflow rate changes with the inflow rate, but with some time delay (denoted as Λ second-

s which is the travel time for a vehicle moving from intersection i to intersection j), i.e.,

µij(T ) = λij(T − Λ), until reaching the outflow rate limit, i.e., road capacity cij(T ). Here,

59



4. Path Planning for Mobile Vehicle in Hybrid-VANET Transportation System

Λ is decided by the tension between the traffic inflow and road capacity. Once an inciden-

t/accident occurs, the outflow rate drops dramatically on one road segment. To illustrate

the road capacity under different traffic conditions, we discuss the road capacity in two cas-

es: 1) no incident-related congestion (i.e., recurrent congestion), and 2) the incident-related

congestion (i.e., non-recurrent congestion). The road capacities under two cases will be

illustrated respectively as follows.

1) When there is no incident-related congestion on (i, j), according to [33], we have

cij(T ) = cNij = Nij · cpij · FPH · 1

(1 + EB · PB) · A
(4.12)

where cNij is the road capacity under no incident-related congestion case. Nij is denoted as

the number of lanes in road segment (i, j). The ideal capacity per lane is cpij . FPH is the

peak-hour factor, i.e., the ratio of the peak 15-min flow rate in vehicles per hour (vph) to

the average hourly flow rate (vph). EB is the bus equivalent3 to private cars or taxis. PB is

the percentage of buses in the traffic stream. A is an adjustment factor to account for other

factors with impact on road capacity. Under this case,

µij(T ) = min{λij(T − Λr), cij(T )} (4.13)

with Λr called recurrent delay [33] and satisfying

Λr = T 0
ij +Dq

ij + 0.25T [(
λij(T )

cij(T )
− 1)+√

(
λij(T )

cij(T )
− 1)

2
+

16Jij ·L2
ij ·λij(T )

N2
ij ·T 2·cij(T )

].
(4.14)

Here, T 0
ij = Lij/V0 is the segment travel time measured at free flow speed V0, with Lij being

the length of road segment (i, j). Jij =
(T c

ij−T 0
ij)

2

L2
ij

is a calibration parameter, with T cij being

the segment travel time measured when the traffic demand equals road capacity. Dq
ij is the

3The bus equivalent is the number of buses displaced by a single taxi or private car in a suburban area [86].
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delay due to leftover queue from the prior sample time, i.e.,

Dq
ij =

Qij(T )

2 · cij(T ) · T
·min{T, Qij(T )

cij(T ) · [1−min(1,
λij(T )

cij(T )
)]
}.

2) When there is an incident Iij on road segment (i, j), we still hold

µij(T ) = min{λij(T − Λnr), cij(T )} (4.15)

where Λnr is called non-recurrent delay and can also be calculated based on (4.14). However,

in this case,

cij(T ) = cIij = cNij · δ(Iij),∀δ(Iij) ∈ [0, 1) (4.16)

where δ(Iij) is the percentage of remaining road capacity during incident type I on road

segment (i, j), i.e., congestion indicator. The value of δ(Iij) depends on the incident type I

and is considered to be sensed by witness/victim vehicles and delivered to the nearest RSU

or BS. cIij is thus the road capacity under the incident I . Take the case that a road segment

has one lane in each direction as an example. When an accident I happens, we may consider

that δ(Iij) = 0 and µij(T ) = cIij = 0, since no vehicle-traffic flow will pass. On the other

hand, in a case that a road segment has multiple lanes in each direction, the traffic flow will

not be zero, but might still drop dramatically.

Furthermore, if there is no incident-related congestion on road (i, j), δ(Iij) = 1. Then,

we can extend the following relationship between the indicator and road capacity:

cij(T ) = cNij · δ(Iij),∀δ(Iij) ∈ [0, 1] (4.17)

which implies that the road capacity drops once an accident happens on a certain segment un-

til the accident is cleaned up. The outflow rate should be always no more than the according

road capacity, i.e.,

µij(T ) ≤ cij(T ). (4.18)
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4.4.3 Path Planning Cost Metric

The path planning algorithm is to avoid the congestion on the road, with considering the

preference of drivers, e.g., the shortest path or the most familiar path. Here, we consider the

path length as the driver’s first-order preference. Let Lmd
rij

denote the changed path for vehicle

m (with destination d) at intersection i, where rij means that, according to the newly planned

path, vehicle m changes its path by going through road segment (i, j) towards destination

d, satisfying j ∈ Ji. Compared to current path length Lmd
Si

, the increased path length is

|Lmd
rij

| − |Lmd
Si

|, where Si is the path choice before being replanned. Obviously, it is possible

that the changed path leads to more travel time and more consumed fuel energy. Let pmd
rij

denote the cost of vehicle m for a certain turning decision rij towards destination d, given

Si ̸= rij . If intersection i is not in the current path of md, pmd
rij

is zero; otherwise, it is

modeled with respect to the increased path length as follows

pmd
rij

= ρ(|Lmd
rij

| − |Lmd
Si

|) (4.19)

where ρ(.) is a non-negative increasing function to measure impacts of the increase of path

length (|Lmd
rij

| − |Lmd
Si

|) [87]. Then, the average cost of vehicles taking turning rij on road

segment (i, j) can be calculated as

pij(T ) =


1∑

m∈V
wm

∑
m∈V,d∈D

wm · pmd
rij
, if

∑
m∈V

wm ̸= 0;

∞, otherwise.

(4.20)

For an intersection (say intersection i), since there may be several neighboring intersection-

s as the candidates of the coming intersections, the average cost of vehicles belonging to

intersection i is defined as

piJi(T ) =


1∑

j∈Ji

αij(T )

∑
j∈Ji

αij(T )pij(T ), if
∑
j∈Ji

αij(T ) ̸= 0;

0, otherwise

(4.21)
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where αij(T ) is set as 1 in the first case of Eq. (4.20) (i.e., when
∑
m∈V

wm ̸= 0); otherwise 0.

4.4.4 Network Stability

The definition of Queue and Network Stability [88] is used to represent traffic congestion

avoidance in our path planning optimization problem4. For intersection i, Qi(T ) is strongly

stable if and only if

lim
T0→∞

sup
1

T0

T0∑
T=0

E[Qi(T )] <∞. (4.22)

The information on Qi(T ) is required to identify whether an intersection is stable or not. If

the traffic inflow and outflow information is detected by the cameras or traffic flowmeters

connected to RSUs, Qi(T ) is expected to be calculated directly. If the traffic information is

relayed in VANETs as there is no RSU at the intersection, the relayed information is utilized

in the vehicle-traffic server to predict the traffic flow information with a certain transmission

delay. According to (4.10), this uploading transmission delay can be estimated as ψ′

∆
, which

here is mainly caused by the intermittent connections in VANETs. With this transmission

delay, the proposed algorithm can utilize a more accurate virtual queue information for path

planning in each sample time, i.e., Qi(T −
⌈
ψ′

∆

⌉
). Note that if and only if all queues in the

network are strongly stable, vehicle traffic in the whole road network is strongly stable.

4.4.5 Utilization-Minus-Cost Maximization Problem

Taking account of both the traffic flows of the network and the path planning cost of vehicles,

the objective of the path planning algorithm is considered to maximize the overall spatial-

utilization-minus-planning-cost at the same time with the network congestion avoidance.

This objective indicates that the total traffic flow improvement and the path planning cost

reduction should be jointly considered and carefully balanced. Specifically, once the traffic

4The definition of Queue and Network Stability is also used for example in [89] and [90] for the stability
and utility optimization to make online control decisions.
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server receives the traffic flow and accident warning messages collected from both RSUs

and vehicles via VANETs (or cellular netowrks), a path planning algorithm is calculated

to update and determine λij(T ) according to the optimization problem, i.e., the number of

vehicles dispatched over road segment (i, j) in the T th sample time.

max
∑

i∈I
∑

j∈Jiλij(T )−
∑

i∈IpiJi(T )

s.t. (4.11), (4.18), (4.22)
(4.23)

This objective is to maximize the spatial utility while minimizing travel cost, under the con-

straints: 1) the flow balance of each intersection; 2) the limitation of outflow rate on each

road segment; and 3) the congestion avoidance of each intersection. We exploit Lyapunov

optimization process [91] to solve this problem (to be introduced in Section 4.5). Then, in

the sample time T , based on the path planning algorithm, a vehicle with destination d can

be dispatched from one intersection to another (say from intersection i to intersection j with

contribution λij(T )), in order to improve the spatial utility as well as to reduce travel cost.

And this updated path will deliver to the GPS device to navigate the required vehicle. In

other words, a turning decision, rij , for a taxi or a private car at intersection i, can be decided

based on the corresponding λij(T ) and piJi(T ), and furthermore the replanned path can be

calculated based on this turning decision. Note that if the traffic flow information is collect-

ed by VANETs (or cellular networks), the transmission delay in VANETs, i.e., ψ
′

∆
, should be

considered in the third constraint as discussed in Section 4.4.4.

4.5 Mobility-aware Real-time Optimal Path Planning in the

Vehicular Networks

In this section, the path panning algorithm is first proposed to help vehicles to bypass con-

gestion and balance traffic evenly in the whole network. Then, the convergence and the

computation complexity of the proposed algorithm are discussed.
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4.5.1 Path Planning Algorithm Design

The optimization problem (4.23) can be solved by applying the drift-plus-penalty frame-

work in Lyapunov optimization process [91]. By following dynamic algorithm at each sam-

ple time, we derive vehicles’ turning decisions for maximizing the lower bound of network

throughput. According to the Lyapunov optimization process, let WiJi(T ) denote the weight

of intersection i in sample time T ,

WiJi(T ) =
∑

j∈Jiαij(T )min{cij(T ),
∑
d∈D

{Qd
i (T )−Qd

j (T )}}

−KpiJi(T )
(4.24)

where K is a non-negative constant defined by vehicle traffic server used for all vehicles,

with the same order of the reciprocal of travel cost (i.e., piJi(T )) [91]. Equation (4.24) im-

plies that the weight of an intersection (say intersection i) is realted to i) the differential

queue backlog between intersection i and its neighboring intersections; ii) average intersec-

tion travel cost. Vehicles at intersection with the largest weight are replanned first. Vehi-

cles with destination d stored at intersection i, should be dispatched to queue Qd
j∗d
(T ) of

intersection j∗d , where j∗d = argmax
j∈Ji

{Qd
i (T ) − Qd

j (T )}, according to the largest differential

queue backlog. The number of the vehicles with destination d replanned to intersection j∗d is

min{Qd
i (T )−Qd

j∗d
(T ), cij∗d (T )}. Then queues at all the remaining intersections are updated

correspondingly. The same process continues until all intersections related are processed.

The implication of path planning is to prioritize those vehicles in such an intersection with

larger differential queue backlogs and shorter increased path lengths under new turning de-

cisions (i.e., lower average travel cost).

4.5.2 Analysis of Algorithm Performance

For the network stability of the proposed path planning algorithm, we have the following

Lemma 1.
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Lemma 3 With the proposed path planning algorithm, network stability can be guaranteed.

Proof.To prove network stability, according to [91], we need to show that the summation

of the average square of queue sizes of those intersections’ virtual queues does not increase

with time. Consider the inter-flow exchange between any two intersections (say i and j).

Let Qi(T ) (Qi(T + 1)) and Qj(T ) (Qj(T + 1)) respectively denote the queue lengths of

intersections i and j in sample time T (T + 1). In specific, based on our path planning al-

gorithm, between two neighboring intersections, vehicles are always dispatched from a long

queue to a short queue. Assume that the change of the queue length of the two intersection

is because qdj (T ) vehicles, where d ∈ Γ, are dispatched from intersection i to intersection j,

i.e., Qd
i (T +1) = Qd

i (T )− qdj (T ) and Qd
j (T +1) = Qd

j (T ) + qdj (T ). Then, the consequence

of qdj (T ) dispatched vehicles is,

E{([Qi(T + 1)]2 + [Qj(T + 1)]2)− ([Qi(T )]
2 + [Qj(T )]

2)}

= 2E{(
∑
d

qdj (T )−Qi(T ) +Qj(T )) ·
∑
d

qdj (T )},
(4.25)

where
∑
d

qdj (T ) is the total number of vehicles, which are dispatched from intersection i

to intersection j at time T . As we have qdj (T ) = min{Qd
i (T ) − Qd

j (T ), cij(T )}, Qi(T ) =∑
d

Qd
i (T ) and Qj(T ) =

∑
d

Qd
j (T ), the following inequality holds

∑
d

qdj (T ) +Qj(T )−Qi(T ) ≤ 0. (4.26)

Thus, the right side of (4.25) is no more than zero. Then, the summation of average squares

of queue size is satisfied as,

E{[Qi(T + 1)]2}+ E{[Qj(T + 1)]2} ≤ E{[Qi(T )]
2}+ E{[Qj(T )]

2}. (4.27)

That is, the summation of average square of queue size of those intersections’ virtual queues

does not increase with time. Under the cases with all destinations and multiple intersections,

the similar results still hold, which implies the stability of network and the avoidance of
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traffic congestion in a network as discussed in [91]. 2

Furthermore, the computational complexity of the proposed algorithm is given as follow-

ing Lemma 2.

Lemma 4 The total computational complexity is proportional to the square of the number of

intersections in the map times the upper bound of the number of neighboring intersections.

Proof.We first calculate the weight of each intersection, thus the complexity of this step is

O(|I|). Second, we schedule each intersection in Ic. For each intersection to be scheduled,

we need to find the right neighboring intersection j∗d for each destination d. Therefore, the

complexity of the second step is O(|Ic|((1 + |Ic|)/2 + |Γ|U)), where U is the upper bound

of the number of neighboring intersections of one intersection. As the |Ic| and |I| are in the

same order, the overall complexity is given by

O(|I|) +O(
|I|+ |I|2

2
+ |I||Γ|U). (4.28)

Furthermore, as the number of roads |Γ| and that of intersections |I| have the relationship

2Γ/U ≤ |I|, the complexity can be further simplified as

O(|I|) +O(
|I|+ |I|2

2
+

|I|2U2

2
) = O(|I|2U2). (4.29)

Thus, the total computational complexity is proportional to the square of the number of

intersections in the map times the upper bound of the number of neighboring intersections.

2

The proposed path planning algorithm can perform better than the conventional path

planning, because (1) the proposed path planning algorithm is updated based on real-time and

accurate messages received from V2V/V2R communication, by which, for instance, a warn-

ing message of traffic jam can be delivered and impact timely on decisions of path planning;

(2) furthermore, in hybrid VANET-enhanced networks, public transportation system can help

to deliver the messages, leading to the reduced transmission delay for delay-sensitive real-
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Figure 4.3. The simulation scenario of University of Waterloo region in VISSIM.

time path planning; (3) the proposed path planning is designed to reduce traveling cost in

a coordinated manner to avoid particular parts of the road network overloaded; and 4) the

relatively low computational complexity of the proposed algorithm makes the path planning

algorithm achieve better performance in a reasonable and realistic way.

4.6 Performance Evaluation

In this section, we consider a realistic suburban scenario as shown in Fig. 5.4(a), which is the

region around the campus of University of Waterloo (Waterloo, ON, Canada). To emulate the

timeliness of the proposed communication framework, a highly realistic microscopic vehicle

traffic simulator, VISSIM [92], is employed to generate vehicle trace files for recording the

vehicle mobility characteristics, based on which the effectiveness of the hybrid communica-

tion in supporting real-time path planning is studied. However, since the pathes of vehicles

cannot be changed or controlled by the external algorithm in VISSIM, we further develop a

Java-based platform to investigate the performance of the proposed path planning algorithm.

Specifically, average moving delay (AMD), defined as the average travel time per trip, is

used as a metric in the evaluation.
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4.6.1 Simulation Setup

Simulation settings in VISSIM

To simulate a VANET with VISSIM in Kitchener-Waterloo (K-W) downtown region, vehi-

cles are pushed into the region of 6000m ∗ 2800m, as shown in Fig. 5.4(a). At the beginning

of the simulation, vehicles are set to enter the region from the preset entries (e.g., 9 entries at

the ends of main roads), following a Poisson process at a rate 2500 vehicle/hour/entry. The

proportion of a bus or a taxi in the traffic flow is set as 5%. After the duration of the first 240s,

the vehicle pushing-in stops to reach an equivalent average density 30 vehicle/km/lane which

represents a medium density scenario. Similarly, if the first duration is set to be 480s, the

scenario becomes a high density one. In the VISSIM, vehicle information (e.g., location and

velocity, etc) is recorded every 0.2s. The total simulation time lasts for 3600s. In addition,

the velocity distribution for all vehicles follows the velocity model described in Subsection

5.2.4 with parameters vL = 30km/hour, vH = 60km/hour, and D = 600s. The reduced

speed areas can be set at any time during the simulation in VISSIM, to simulate different

kind of incidents/accidents in the suburban scenarios.

Simulation settings in Java

To evaluate the performance of the path planning algorithm in Java, with the same region,

500 vehicular nodes with transmission radius of 150 meters are first randomly deployed to

cover K-W downtown region, as shown in Fig. 5.4(a). In addition, 12 intersections are

chosen as candidates for RSU deployment in the region. Further, each vehicle moves to its

destination with a velocity of 60 km/h (or 30 km/h). The path planning can be performed at

the beginning of a sample time, e.g., 10s. The lifetime of a warning message, TL, is set as

300s. The duration for each simulation is set to be three hours, and the results are averaged

over 100 runs. To illustrate the effect of different kinds of accidents on path planning, big

accidents are set to last for 20 mins, while small accidents are set to last for only 10mins.
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4.6.2 Evaluation of Transmissions in VISSIM

We first evaluate the transmission performance of VANETs in a high density scenario. The

evaluated metrics are the connection probability of a vehicle to an RSU and the end-to-end

transmission delay. As shown in Fig. 4.4(a), in a high density scenario, the connection

probability is high even without the support of cellular network. For instance, when the

vehicle transmission range is 120m (which is very easy to be reached as discussed in [1] and

way larger than the average headway distance), the connection probability can be 80%. As

the transmission range of vehicle increases, the connection probability increases, since the

increased the transmission range supplies more chances to connect with other vehicles or

RSUs. Furthermore, as shown in Fig. 4.4(a), in the high density case, the transmission delay

is only around 5.5s, which is less than a sample time 10s. Notice that a short end-to-end

transmission delay facilitates the implementation of real-time path planning, which needs

traffic information update as timely and accurate as possible.

The inter-contact time is evaluated through the vehicle headway distance (i.e., V2V dis-

tance) and the last-hop V2R distance. Based on the trace files from VISSIM, Fig. 5.5(a)

shows the probability density function (PDF) of vehicle headway distance. It is shown that

the PDF of the headway distance matches well with an exponential distribution as shown in

Fig. 5.5(a), which validates the premise in Subsection 5.2.4. Based on the resultant headway-

distance distribution, the average V2V inter-contact time, E[Tv2v], can be obtained, as shown

in Section 4.3.2.

Besides, the PDF of the distance from the last-hop vehicle to the nearest RSU for one

delivery is given in Fig. 5.5(b). The simulated PDF matches well with the theoretical PDF,

which is calculated with the parameters in the simulation setup based on Eq. (5.18). Ac-

cording to Fig. 5.5(b), the average distance from a last-hop vehicle to its neatest RSU can

be further calculated to be around 180m. Then the transmission delay incurred by the inter-

contact time of the last-hop V2R transmission can be calculated as discussed in Section 4.3.2,

i.e., E[Toff ] = E[Uoff ]/V = E[Last− hop V 2R distance−R]/V .
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Figure 4.4. The performance of the proposed transmission mechanism.

We then investigate the end-to-end transmission performance in terms of the connection

probability and transmission delay in the medium density scenario. Based on the proposed

transmission mechanism, a hybrid VANET is utilized to reduce the transmission delay, mak-

ing the path planning more efficient and timely. As shown in Fig. 4.4(d), via pure VANETs,

the average end-to-end transmission delay decreases as the transmission range increases, s-

ince the increased transmission range gives higher possibilities for a transmitting vehicle to

find an end-to-end path to an RSU (given neglectable transmission delay when two vehicles

are within the transmission range of each other). Moreover, in hybrid VANETs, when the

public transportation system is utilized, the increased transmission range can significantly
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create more chances to meet a bus or a taxi, thus leading to a smaller transmission delay. No-

tice that once any bus or taxi nodes receive the messages, they can help deliver the messages

to the vehicle-traffic server directly via the cellular network, and the intermittent connections

of the multi-hop VANET can be efficiently reduced. Especially, as the transmission range of

vehicles becomes smaller (i.e., the problem of intermittent connections in VANETs is sev-

erer), the delay reduction comes to be bigger if the hybrid VANET-enhanced transportation

system is involved. The reason is that with a smaller transmission range, an end-to-end trans-

mission path is more difficult to be guaranteed by pure VANETs, leading to a larger delay

gap compared to the one that utilizes the hybrid VANET-enhanced transportation system.

In addition, the simulated results of transmission delay match well to the theoretical ones

shown in Eq. (4.10). Hence, based on the proposed transmission mechanism, an efficient

and timely message transmission for path planning can be achieved, which makes it possible

to perform global real-time path planning.

4.6.3 Simulation of the Proposed Path Planning in Java

Fig. 4.5(a) shows the average moving delay with and without implementing the proposed

path planning algorithm. We can observe that the AMD with the proposed path planning is

much lower than that without path planning. For example, when accident number is two,

AMD is reduced by 35%. Furthermore, with more accidents, AMD becomes longer; how-

ever, the ones utilizing the proposed path planning algorithm increase more slowly. The cost

of path planning in terms of the increased path length is also shown in Fig. 4.5(a). When

a vehicle wants to change its previous shortest path due to a sensed accident ahead, a novel

smooth path is generated with less AMD at the cost of the increased path length. It shows

that the average cost for users is still admissible when traffic environments are in terrible

conditions.

In addition, Fig. 4.5(b) shows the AMD comparison between our proposed path planning

algorithm and a distributed path planning algorithm proposed in [93]. In the distributed path
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planning, each individual vehicle re-searches a new path based on the known information

of accidents when it receives any information on congestion or accidents, but neither with

coordination among vehicles nor considering the individual cost of path planning. As shown

in Fig. 4.5(b), AMD under our proposed path planning is reduced on average by 27% as

compared with that of the distributed algorithm. Because each individual vehicle plans path

only on its own interest, it is very possible that a number of vehicles swarm into the same

road segment based on the same warning message information. Then new traffic jam can

happen with high probability and result in the increased AMD. Fig. 4.5(b) shows a good

adaptability of the proposed path planning algorithm to avoid introducing other traffic jam.

Fig. 4.6(a) illustrates the effect of different kinds of accidents on AMD. It is shown

that when a big accident continues for a long duration (i.e., 20 minutes), AMD increases,

compared to a small accident (i.e., lasting 10 minutes only). This is because that some

vehicles have no capabilities to change their current paths (e.g., buses), AMD increases

due to their longer trapped time in congestion. Similarly, when the number of accidents

increases, AMD becomes longer, but not much. Thus, it implies that our proposed path

planning algorithm is with a good adaptability to different accident durations. Besides, if

the number of slow-speed vehicles increases, more vehicles slowed down to 30 km/h will

introduce larger AMD as shown in Fig. 4.6(b). Since more slow vehicles on one road can

result in a high vehicle density, Fig. 4.6(b) shows a good adaptability to vehicle densities.

Furthermore, comparing this performance with the one in Fig. 4.5(a), AMD is a little longer

than the case under few slow vehicles, since network vehicle-traffic throughput is diminished

due to more vehicles with slow speed stranded on one road.

The sensitivity analyses in terms of both the vehicle number and the number of accidents

on average moving delay (AMD) are discussed in Fig. 4.7. Here, we considerer that the

accidents are big ones, lasting for 20 mins. First, we can see that the AMD increases with

the increased number of vehicles under our algorithm in Fig. 4.7. The reason for this AMD

increment is that more vehicles may result in a higher probability of introducing another

traffic jam at crossings. However, taking the case with three accidents as an example, even
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Figure 4.5. AMD reduction by path planning.

when the number of vehicles increases to 800, AMD is relatively small, around 375s as

shown in Fig. 4.7. This result shows a good adaptability of the proposed path planning

algorithm to the total vehicle number. In addition, Fig. 4.7 shows that the AMD increases

with the increased number of accidents with the similar trend as aforementioned.

4.7 Summary

In this chapter, considering the mobility of vehicles, with the help of vehicular communica-

tions, real-time path planning has been designed to smooth the vehicle traffic in an ITS, to
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Figure 4.6. AMD versus specified accidents.

efficiently relieve traffic congestion in urban scenarios. This strategy can be used to smooth

the vehicle traffic of an urban scenario in realistic, to avoid the vehicle-traffic congestion.

The central philosophy of our proposed path planning is that based on the real-time collected

vehicular information, the traffic-server can balance the vehicle traffic of the whole network

by utilizing the mobility of vehicles, to increase vehicle-traffic throughput with approaching

the vehicle-traffic capacity.
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Chapter 5

Mobility-Aware Coordinated EV

Charging in VANET-Enhanced Smart

Grid

In this chapter, we investigate a special smart grid with enhanced communication capabil-

ities, i.e., a VANET-enhanced smart grid. It exploits VANETs to support real-time com-

munications among RSUs and highly mobile EVs for collecting real-time vehicle mobility

information or dispatching charging decisions. Then, we propose a mobility-aware coordi-

nated charging strategy for EVs, which not only improves the overall energy utilization while

avoiding power system overloading, but also addresses the range anxieties of individual EVs

by reducing the average travel cost.

5.1 Introduction

EVs, as a promising component of sustainable and eco-friendly transportation systems, have

received considerable attention in many countries across the world [27] [14]. Refueled by

electricity instead of gasoline, these vehicles have the potential to save thousands of dollars

for customers over the vehicle lifetime. Besides, the adoption of EVs into the transport sector
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can reduce the consumption of conventional energy sources (e.g., gasoline) and the pollution

of environments (e.g., greenhouse gas emissions). As reported in [16], battery EVs, which

completely depend on rechargeable batteries and thus produce no emissions, can cut down

the overall emissions from the transport sector by 70%. Due to the above advantages, EVs

have been accounting for higher market share in the transport sector. According to the report

of Electric Power Research Institute (EPRI) [17], the EV penetration level can reach 35%,

51%, and 62% by 2020, 2030, and 2050, respectively.

However, the widespread adoption of EVs in the transportation system will lead to charg-

ing problems of mobile EVs that are fully reliant on rechargeable batteries. EV charging,

which is very likely to coincide concentratively with the peak demand time of the power sys-

tem, can incur overloading of a distribution feeder, resulting in the system instability and the

reduction in energy utilization [18] [19], especially for fast EV charging as it requires much

higher power than the regular charging. Some works use energy storage systems to mitigate

the impact of fast EV charging on the power system, but at an additional cost of deploying

the energy storage devices [14]. Thus, to avoid power system overload during the peak time

and improve energy utilization without additional deployment cost, load management strate-

gies are indispensable to distribute the EV charging load both temporally and spatially in a

coordinated fashion. At the same time, for fast EV charging, the assigned charging stations

must be within the range of individual mobile EVs given current locations and battery ener-

gy levels, due to the tension between the current battery energy levels and the travel cost to

reach charging stations, i.e., range anxiety.

There has been abundant literature [20–26, 35, 68–71] concerning the coordinated EV

charging strategy design for EVs. But most of the works so far solve problems only in the

power system aspect. That is, the coordinated charging is performed for a group of EVs

that are assumed to be ready for charging within an area (e.g., parking lots or residence

areas). Little research has considered vehicle-specific features, i.e. the vehicle mobility, into

the charging strategy when fast-charging is considered. In fact, as EVs may need charging

when moving on the road, the energy consumption on the road to reach the charging station,
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referred to as the travel cost in this chapter, should be considered. Otherwise, the charging

station assigned by the existing strategies may be too far to reach given the EV’s current

location and battery energy level. Due to this range anxiety, drivers prefer to charge at

locations with less travel cost. Therefore, new charging strategies are required to take the

range anxieties and vehicle mobility into consideration to reduce the EV travel cost. In order

to track the vehicle mobility, real-time information of EVs (e.g., locations and battery energy

levels) should be collected to assist charging strategy design.

To this end, in this chapter, we focus on leveraging the real-time mobile vehicle infor-

mation to help designing an efficient coordinated EV charging strategy. The objective is to

improve the overall energy utilization, reduce the average EV travel cost, and prevent the

overload of the power system. To properly design the strategy, two underlying key problems

should be deliberated: 1) how to efficiently and reliably obtain the real-time information of

mobile vehicles required by the EV charging strategy; and 2) based on the collected informa-

tion, how to perform mobility-aware coordinated EV charging to improve energy utilization

and reduce EV travel cost while avoiding power system overload.

Thanks to VANETs, the first problem can have a promising resolution. Exclusively de-

signed for information exchange among highly mobile vehicles and road-side units (i.e.,

RSUs) in a multi-hop fashion, VANETs can deliver the required real-time information effi-

ciently via short-range V2V and V2R communication, making large-volume vehicle infor-

mation collection cheaper and faster compared to the other networks (e.g., cellular networks

and Wi-Fis) [59]. More importantly, RSUs in VANETs can greatly enhance the timeliness of

data collection and dissemination, which makes it possible to perform coordinated charging

strategies for a group of moving vehicles [61]. Therefore, in this work, VANETs are inte-

grated into a smart grid to collect the real-time information of mobile EVs and disseminate

the charging decisions. Moreover, as the running EVs still consume energy when waiting

for the charging decision, the transmission delay for information exchange in VANETs may

cause additional travel cost for EVs. Thus in this chapter, the transmission delay is analyzed

based on the RSU deployment and vehicle densities.
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To cope with the second problem, in this work, based on the VANET-enhanced smart

grid, the range anxieties are considered based on vehicle mobility in the charging strategy

design. Specifically, we propose a mobility-aware coordinated EV charging strategy to make

charging decisions based on the collected real-time vehicle information and the historic re-

mote terminal unit (RTU) readings of the power grid. With all the collected information, the

following questions are answered in a coordinated fashion: 1) should a vehicle be charged

in the next period based on current battery energy level; 2) which charging station should

this vehicle go to with the consideration of the range anxiety based on its current location;

and 3) how much energy should be charged for this vehicle to improve the energy utilization

and guarantee the power system stability. The optimal charging problem is formulated as

a time-coupled mixed-integer linear programming (MILP) problem, which is difficult to be

solved. However, by unveiling the linear relationship among EV charging loads of feeders,

we decouple the MILP problem into a series of sub-MILPs through Lagrange duality [91].

Each sub-MILP can be further solved by the branch-and-cut-based outer approximation al-

gorithm [101].

In summary, to deal with the range anxieties of EVs, we incorporate VANETs into the

smart grid to collect real-time vehicle information for tracking the vehicle mobility (e.g.,

locations) and battery energy levels. A predictive mobility-aware coordinated EV charging

strategy is proposed to improve the power utilization and reduce average EV travel cost

while preventing overload of the power system for the following charging period. The main

contributions of the chapter are listed as fourfold.

• First, we propose the system architecture of the VANET-enhanced smart grid, in which

VANETs enable efficient communication among mobile vehicles and RSUs to collect

useful information and dispatch the decisions of the EV charging strategy in a real-

time manner; a traffic server is in charge of processing the collected information and

performing the predictive coordinated EV charging strategy for EVs;

• Second, considering the range anxieties of EVs, we design a mobility-aware coor-
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dinated EV charging strategy to improve the overall energy utilization of the power

system and reduce the average EV travel cost while avoiding the overload of the pow-

er system. Particularly, we discover that the EV charging loads of charging stations

present a linear relation, which is critical for the load assignment; furthermore, the

travel cost is defined and formulated to reveal the impact of vehicle mobility on the

charging strategy design;

• Third, the globally optimal charging problem is formulated as a time-coupled MILP

problem which is decoupled into a series of sub-MILPs through Lagrange duality.

Each sub-MILP is further solved by the branch-and-cut-based outer approximation

algorithm; and

• Finally, we carry out extensive simulations to validate the effectiveness and efficien-

cy of our proposed EV charging strategy. The simulation traces are extracted from

VISSIM [92], by which a highly realistic suburban scenario is built. And the trans-

mission delay induced by VANETs is fully evaluated. Then, the proposed strategy is

demonstrated to considerably outperform the traditional autonomous charging strategy

(without VANETs) on the metrics of the energy utilization and the average EV travel

cost.

5.2 System Model

Aiming at providing a predictive coordinated mobility-aware charging strategy for EVs

based on the real-time vehicle information, we first introduce a VANET-enhanced smart grid

architecture to efficiently operate the coordinated EV-charging strategy. Then, the power

flow equations are elaborated in the corresponding power system. Furthermore, the mobility

model, charging model and transmission model of EVs are discussed.
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Figure 5.1. The VANET-enhanced smart grid architecture.

5.2.1 VANET-Enhanced Smart Grid

Fig. 5.1 shows the components of the proposed VANET-enhanced smart grid architecture,

consisting of a power distribution system, charging stations (e.g., at parking lots), a traffic

server, EVs and access points (i.e., RSUs) along road sides. The power distribution sys-

tem supplies energy to the whole network through power feeders (i.e., buses). Besides, the

charging stations provide fast-charging for all the EVs.

Based on historic RTU readings of each distribution system bus, the voltage at each

charging station in the following period can be obtained [34]. The maximal power that

can be supplied by each charging station (i.e., the load-capacity of each charging station)

is preknown. In the following context, we denote the load-capacity of Busj as P j
total. The

historic readings are delivered to the traffic server via wireline. A traffic server is capable of

performing predictive charging strategy to provide globally optimized charging decisions for

EVs, according to the real-time EV information collected through VANETs and the historic

RTU readings. The operation is conducted period by period. Specifically, the charging

decisions include the charging load/rate of EV v at Busj in period k (denoted as Pchv,j,k)

and the charging indicator of vehicle v indicating whether EV v will be charged at station j

in period k, which is denoted as xv,j,k. And xv,j,k is set to 1 when EV v is charged at Busj

in period k, and 0 otherwise.
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In VANETs, consider a set of EVs, denoted as V, moving around in the network region

following map-based paths. EVs may need to be charged while moving on their ways. The

real-time EV information can be exchanged among the OBUs installed in vehicles, through

multi-hop V2V relaying, based on DSRC protocol [1], with a transmission rangeR. Besides,

GPS devices, which offer the service of shortest-path navigation, are also equipped in EVs

and keep wired connection with the OBU. Furthermore, a set of RSUs, denoted as R, are

uniformly deployed along roads and capable to collect the vehicle information (e.g., locations

and battery energy levels) of EVs through V2R transmissions, based on DSRC protocol,

with the transmission range R. Wiredly connected to the traffic server, RSUs can relay

the collected vehicle information to the traffic server for calculating the globally optimized

charging strategies for EVs. Thereafter, if RSUs obtain the EV charging decisions from

the traffic server, they can relay the charging decisions to the EVs through R2V and V2V

transmissions.

In summary, the VANET-enhanced smart grid system operates as follows.

• Information collection and delivery to the traffic server: The requested information are

two-fold, i.e., the historic RTU readings of each bus in the power system and the real-

time vehicle information. The former is delivered to the traffic server through wireline,

based on which the charging load constraints of charging stations can be predicted; the

latter is collected through multi-hop V2V relaying and V2R transmission;

• Decision making of the predictive coordinated EV charging: The traffic server then

fuses all the collected information and calculates the optimal EV charging strategy to

improve the power utilization of the grid and reduce the average EV travel cost while

avoiding power system overloading;

• Decision dissemination: As soon as the OBU of an EV receives its own charging

decision from either the neighboring EVs or an RSU, it will deliver the decision to the

GPS, and the GPS will navigate that EV to the designated charging station.
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5.2.2 Power System Model

In order to implement charging control for EVs in the VANET-enhanced smart grid, the

power flow on the feeders should be considered. In the following, a power system model is

described, where the relationship between bus voltages and loads are given to help derive the

relation among EV charging loads of feeders.

Consider a smart grid based on the system model as shown in Fig. 5.1. The power

system can be abstracted as a one-line diagram with multiple buses. For further illustration,

an example of a 12-bus system is depicted in Fig. 5.2(a). And Fig. 5.2(b) is the equivalent

power system model of Fig. 5.2(a). Let N denote the set of buses in the system, with the

population of 12 in this example. The generation buses are defined as the buses injecting

power to the system, i.e., Bus1 in Fig.5.2(a), while the others which only have load are

denoted as the load buses, i.e., Bus3, Bus6, etc. The power system is supplied through

the substation at the generation bus, i.e., Bus1. EV charging stations are located in the

network at load buses, e.g., Bus3, Bus6, Bus9 and Bus12, respectively. Consider that each

charging station is connected to the grid via a standard single-phase Alternating-Current

(AC) connection. Due to the thermal limit of service cable or current rating of fuse, an EV

charging station at Busj is subject to a load-capacity constraint P j
total [35]. Although the

concept of vehicle-to-grid for a local system exists [20], bi-directional flow of electricity or

the directional flow from an EV battery is not considered in this work.

The voltages of two neighboring buses in period k, e.g., Vi,k and Vj,k as depicted in

Fig. 5.3, can be approximated as [34]

Vi,k − Vj,k =
Pij,k·rij+Qij,k·xij

Vj,k
(5.1)

where Pij,k and Qij,k are the active and reactive power flow from Busi to Busj in period

k, respectively, while rij + jxij is the impedance of the feeder line i-j. In per unit, (5.1) is
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usually approximated as

Vi,k − Vj,k = Pij,k · rij +Qij,k · xij . (5.2)

Note that all the voltages of buses should be within a certain range which is the main con-

straint of distribution system operation [34]. Specifically, the voltage magnitude at Busj

in period k is bounded by the upper and lower limits V min
j,k and V max

j,k , respectively, i.e.,

V min
j,k ≤ Vj,k ≤ V max

j,k . As proved in [34], the minimum voltage point can occur only at the

end of the feeder, since only one generation bus is located at the beginning of the distribution

system1. The minimum voltage VN,k can be calculated as

VN,k = V1,k −
N−1∑
i=1

[Pi(i+1),k · ri(i+1) +Qi(i+1),k · xi(i+1)]. (5.3)

1Note that if the distributed generation is adopted in the distribution system, the overloading problem should
also be considered.
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5.2.3 EV Mobility and Charging Model

Consider that EVs move along the roads in the studied area. The mobility of each EV

can be characterized by two random variables (V,D) [83]. Here, V represents the vehicle

velocity which takes two possible values (i.e., a lower velocity vL and a higher velocity

vH). The velocity transition is modeled as a two-state continuous Markov chain with state

transition rate 1
D

. Under this model, a vehicle initially chooses vL (or vH), and after a time

interval which is exponentially distributed with the mean of D, the velocity changes to vH

(or vL). The model can be exploited to describe the realistic driving behaviors of people, i.e.,

a driver usually drives at a constant velocity for a period and then changes to a higher/lower

velocity based on his/her will or road conditions. Besides, when the vehicle density is low or

medium (e.g, when the vehicle density is no larger than 30 vehicle/km/lane), vehicles can be

considered to move independently [84] and the headway distance2 follows the exponential

distribution with rate ζ [85].

When a mobile EV needs to be charged, the charging load of EV v (∈ V) at Busj in

period k, i.e., Pchv,j,k, should be within a certain range, i.e.,

0 ≤ Pchv,j,k ≤ Pchmax
v,j,k

(5.4)

where Pchmax
v,j,k is the predefined charging load bound of Pchv,j,k [94]. If EV v is not planned

to be charged in period k, i.e., xv,j,k = 0, the charging load of EV v in period k should be 0,

i.e.,
Pchv,j,k
Pchmax

v,j,k
≤ xv,j,k (5.5)

Also, xv,j,k should satisfy

∑
j∈H

xv,j,k ≤ 1 and xv,j,k ∈ X = [0, 1] ∩ Z∑
k

∑
j∈H

xv,j,k ≤ Xmax

(5.6)

2The headway distance is defined as the distance between two neighboring vehicles in the same lane.
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whereXmax is the upper bound of the total charging times for an EV within all the considered

periods, since the frequently charging is not necessary for EVs and may result in battery

damages [95]. For example, if each EV has at most three chances to be charged within all

the considered periods, Xmax = 3. During a charging period, the charging energy of each

EV should be limited by its battery-capacity Cmax
battery, and the battery should not be depleted

on the way and failed to be charged, i.e.,

0 ≤ P initv,k + (
∑
j∈H

a · Pchv,j,k − P v,kcost − P kcons · (1−
∑
j∈H

xv,j,k)) ≤ Cmax
battery (5.7)

where P init
v,k is the initial energy stored in EV v in period k obtained via VANETs, and P v,k

cost

is the travel cost for charging in period k for EV v. Let P k
cons be the average non-charging

energy cost of each EV for moving on the road if the EV is not charged in period k. The

duration of each period is a hours. For instance, if we consider a 30-minutes duration for

each period, we have a = 0.5. Then, for an EV charging station at Busj , the total EV load

Pchj,k in period k is

Pchj,k =
∑
v∈V

Pchv,j ,k. (5.8)

5.2.4 Transmission Model in VANETs

To support the V2V and V2R communication in VANETs, the draft standard IEEE 802.11p

[96] (DSRC) is adopted, which is designed particularly for short-range and intermitten-

t vehicle-based communications among vehicles and RSUs. For analytical simplicity, in

the link layer, we consider ideal medium access control (MAC) protocol. Under ideal MAC,

the interference among V2V transmissions can be avoided, and once one vehicle moves into

the coverage range of an RSU, the RSU is capable to schedule time slots of V2R transmission

for the vehicle with no collisions. Besides, the link data rate of a V2V or V2R transmission

is considered to be constant, and the contact duration between each transmission pair (e.g.,

V2V or V2R) is considered long enough to accomplish one packet delivery, which can be

achieved by appropriately setting the packet size [73–75]. Moreover, due to the intermitten-
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cy of vehicle communications caused by high-speed mobility, the waiting time for obtaining

a transmission opportunity is dominant in the transmission delay compared to the queueing

delay and the random backoff time due to the channel contention. Therefore, only the former

is considered.

5.3 Problem Formulation

In this section, charging load constraints are first calculated for the buses with EV charg-

ing stations. And the relationship among the EV charging loads of buses are discovered.

Then, considering the mobility of EVs, the EV’s travel cost is formulated to represent the

range anxieties of EVs, which particularly involves the cost induced by the transmission

delay in VANETs. Finally, the mobility-aware coordinated EV charging problem is formu-

lated to maximize the overall charging-energy-minus-travel-cost with power system over-

loading avoidance. This objective indicates that the total charging energy improvement and

the charging travel cost reduction should be jointly considered and carefully balanced.

5.3.1 Charging Load Constraints

The charging station at Busj is subject to a load-capacity constraint P j
total. Combining the

load-capacity constraint with the total EV load at Busj in period k of (5.8), we have

Pchj,k ≤ P jtotal. (5.9)

Moreover, subject to the additional load of EVs, the voltage of one bus will decrease with

the increased load [34]. If a voltage sags out of the threshold at a bus, the reactive power

cannot be correctly and efficiently injected. To keep the voltage within the certain range, it

is indispensible to reduce the load. Therefore, there should exist a tradeoff between voltages

and loads. In the following, we give the inherent relationship among the EV charging loads

of buses in Theorem 1, and the proof is given based on power flow analysis in the power
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system.

Theorem 3 (Linear relation among EV charging loads of buses) Given the total supplied

power of the feeder and the power demand of non-EV charging load, the total power supply

to all EV charging stations can be calculated; and the power supplied to an individual

charging station has a linear relation with those to the other charging stations.

Proof. For all the buses, the voltages should be no less than the minimal required voltage,

for example, 0.9 per unit voltage [35]. From (5.3), the lowest voltage is VN,k ofBusN . Then,

VN,k = V1,k −
N−1∑
i=1

[Pi(i+1),k · ri(i+1) +Qi(i+1),k · xi(i+1)]

≥ Vmin

(5.10)

where Vmin is the minimal required voltage. Rearranging equation (5.10), we have

N−1∑
i=1

[Pi(i+1),k · ri(i+1) +Qi(i+1),k · xi(i+1)] ≤ V1,k − Vmin. (5.11)

Let w be the sorted index of the bus without EV charging load and W be the set of these

buses w ∈ W (⊂ N); let j be the sorted index of the bus with EV charging load and H be

the set of these buses j ∈ H(⊂ N). Then, (5.11) can be represented by

∑
w∈W

(Pw(w+1),k · rw(w+1) +Qw(w+1),k · xw(w+1))

+
∑
j∈H

j · (Pj,k · rj +Qj,k · xj) ≤ V1,k − Vmin
(5.12)

where Pj,k and Qj,k are the active and reactive power load on Busj in period k, and rj =

1
j

j−1∑
h=1

rh(h+1) and xj = 1
j

j−1∑
h=1

xh(h+1) represent the average impedance of the feeder line a-

mong Bus1 and Busj . Since the loads of the buses without EV loading are constant based
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on the forecast [97] [98], we have

∑
j∈H

j(Pj,k · rj +Qj,k · xj) ≤ V1,k − Vmin

−
∑
w∈W

(Pw(w+1),k · rw(w+1) +Qw(w+1),k · xw(w+1)).
(5.13)

Since each charging station is connected to the grid via a single-phase AC connection and

EV charging only draws active power, we have Pj,k = Pchj,k and Qj,k = 0. Therefore,

(5.13) can be rewritten as ∑
j∈H

jPchj,k · rj ≤ Ξ (5.14)

where Ξ is a constant representing the RHS of inequality (5.13). The inequality (5.14) im-

plies that the total power supply to EV charging stations is related to the locations of charging

stations and the total number of the charging stations. If the total power supply to EV charg-

ing stations, i.e., Ξ, is given, the total EV load of the charging station at Busj , Pchj,k, in

period k, presents a linear relation with the others. 2

5.3.2 Travel Cost for EV Charging

With the mobility model defined in Subsection 5.2.3, the travel cost P v,k
cost for EV v to be

charged in period k should consist of two parts. On one hand, moving EVs may have differ-

ent locations and battery energy levels at different periods. Due to the range anxiety, drivers

prefer closer charging stations with less travel distance. Thus the travel distance from EV v’s

current position to a charging station in period k, denoted as pv,k, should be considered. On

the other hand, the vehicle mobility will result in intermittent V2V and R2V connections,

which can introduce a transmission delay and thus involve an additional travel distance until

EV v receives the charging decision from the RSUs. Thus the travel cost caused by the trans-

mission delay for EV v to receive a charging decision via VANETs, denoted as cv,k, should

also be considered.

1) Travel cost due to the EV travel distance to a charging station: If the charging strategy
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guides EV v to be charged in the next period k, then
∑
j∈H

xv,j,k = 1. The traveling path for EV

v to the charging station j in period k is calculated by the deployed GPS based on the shortest

path algorithm [99], whose path length is denoted as S(xv,j,k). Thus, the travel distance of

EV v in period k for charging is defined as

pv,k =
∑
j∈H

S(xv,j,k)·xv,j,k. (5.15)

Based on pv,k, the travel cost for EV v in period k in terms of energy is denoted as PC(pv,k),

where PC(·) is a linear non-decreasing function to measure the impacts of travel distance

on the travel cost [20].

2) Travel cost due to the transmission delay in VANETs: The other part of the travel cost

comes from the transmission delay for an EV to send (receive) the charging request (deci-

sion) to (from) the nearest RSU, due to the vehicle intermittent connections in the vehicular

network.

First, we evaluate the transmission delay for the last hop of an uplink (i.e., the last V2R

hop); the transmission delay is mainly due to the inter-contact time between a vehicle and an

RSU. Define the last hop as an “on-off” model [83] where the vehicle either directly connects

to an RSU (i.e., during the “on” state) or is the only vehicle approaching the RSU and there

is no other vehicles in the transmission range of the RSU (i.e., during the “off” state). Since

during the “on” state, the transmission delay for a message-packet is way smaller than the

delay in the “off” state, the transmission delay is mainly due to the “off” period. Note that

the period here is a random variable and is different from the charging period.

Denote the “on” period and the “off” period of a vehicle as Ton and Toff , respectively.

Accordingly, the travel distances within the periods are defined as Uon and Uoff respectively,

with Ton = Uon

V
and Toff =

Uoff

V
. Here, V is the average velocity for a vehicle based on the

“on-off” mobility model as defined in Section 5.2.3. Similar to [83], the event that a vehicle

moves a distance of at least u during Ton before being scheduled to communicate with RSU

should satisfy that 1) there are no other vehicles within the distance u, and 2) there is at
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least one vehicle within the distance 2R − u which results in this vehicle moving at least

u distance to avoid the collision, where R is the transmission range of both an RSU and a

vehicle. Then, we have

Pr(Uon > u) = (e−ζ·u)
bΓ−1

[1−(e−ζ·(2R−u))
bΓ−1

]

1−(e−ζ·2R)bΓ
(5.16)

where b is the total length of roads, while Γ is the vehicle density on the roads. Since the

vehicle headway distance follows an exponential distribution as mentioned in Section 5.2.3,

the probability that a headway distance is larger than u is e−ζ·u. And

E(Uon) =
∫ 2R
0 Pr(Uon > u)du. (5.17)

Similarly, the event that a vehicle moves a distance of at least u during Toff should satisfy

that 1) there are no vehicles within a distance of 2R + u from the end of the coverage range

of the nearest RSU ahead the vehicle, and 2) there is at least one vehicle within the distance

L− (u+ 2R), where L is the distance between the adjacent RSUs. Then, we have

Pr(Uoff > u) = (e−ζ·(2R+u))
bΓ−1

[1−(e−ζ·(L−(2R+u)))
bΓ−1

]

(e−ζ·2R)bΓ[1−(e−ζ·(L−2R))
bΓ

]
(5.18)

E(Uoff ) =
∫ L−2R
0 Pr(Uoff > u)du. (5.19)

In addition, the previous hops within a communication link except the last hop are based

on V2V communications which can be characterized with the mobility model of vehicles.

The process of the relative velocity between two vehicles can be represented by a continuous

time Markov chain (CTMC) with a state space H = {h0, h1, h2}. Here, h0 represents a

negative relative velocity when the vehicle in front moves with vL while the vehicle behind

moves with vH ; h1 models a zero relative velocity (i.e., both vehicles move with the same

velocity); h2 represents a positive relative velocity. If each vehicle keeps the same velocity

for an exponential time with an average time of D, the transition rate between any two states
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of the Markov process equals to 2/D. Thus, from [83], the average number of hopsM within

a communication link can be approximated as

M =
6(L−E[Uon]−E[Uoff ])

D(vL+vH) . (5.20)

Then, based on the average number of hops, the transmission delay of a uplink can be

shown as

ψ = (M − 1)E[TV 2V ] + E[Toff ] (5.21)

where E[TV 2V ] is the average transmission delay for a V2V hop. And E[TV 2V ] =
1

1−eζR

with the vehicle transmission range R, since the headway distance follows exponential dis-

tribution. If we consider the downloading as a similar process with uploading, the total

transmission delay should be 2ψ. Note that this transmission delay is related to the param-

eters in the network, e.g., vehicle mobility parameters (i.e., vL, vH , ζ and D), the vehicle

density (i.e., Γ), and the RSU deployment in the network (i.e., the transmission range R and

the average distance between RSUs L).

Therefore, the average travel distance, cv,k, during which EV v is moving and waiting for

the charging decision in period k, can be calculated as

cv,k = E[Ov] ·
∑
j∈H

xv,j,k (5.22)

where Ov = V · 2ψ(vL, vH , D, ζ,Γ, R, L) is defined as the travel distance for EV v due to

the transmission delay. Similarly, the travel cost due to the transmission delay is denoted as a

linear non-decreasing function PC(cv,k) to measure the energy cost for EV v to wait for re-

ceiving the decision in period k. With the defined PC(pv,k) and PC(cv,k), the current stored

energy, P init
v,k , should be no less than the summation of PC(pv,k) and PC(cv,k); otherwise,

the battery will be depleted before the EV reaching the destination,

P v,kcost = PC(pv,k) + PC(cv,k) ≤ P initv,k . (5.23)
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Note that P init
v,k can be real-time collected by RSUs based on V2V and V2R communications.

5.3.3 Mobility-Aware EV Charging Optimization Problem

Taking account of both the EV charging load relationship among charging stations and the

travel cost for EVs, the objective of the charging strategy is to maximize the overall charging-

energy-minus-travel-cost with power system overloading avoidance [91]. This objective in-

dicates that the total charging energy improvement and the charging travel cost reduction

should be jointly considered and carefully balanced. Specifically, once the traffic server re-

ceives 1) the historic information from the RTUs located at the buses, and 2) the vehicle

information via VANETs, a charging strategy is calculated to determine Pchv,j,k and xv,j,k,

according to the optimization problem shown as follows.

max
∑
k

∑
v∈V

∑
j∈H

a · Pchv,j,k −
∑
k

∑
v∈V

(PC(pv,k) + PC(cv,k))

s.t.

0 ≤ Pchv,j,k ≤ Pchmax
v,j,k, ∀v ∈ V, ∀j ∈ H, and ∀k

Pchj,k =
∑

v∈V Pchv,j,k ≤ P jtotal, ∀k, ∀j ∈ H∑
j∈H

jPchj,k · rj ≤ Ξ, ∀k

0 ≤ P initv,k + (
∑
j∈H

a · Pchv,j,k − PC(pv,k)− PC(cv,k)

− P kcons · (1−
∑
j∈H

xv,j,k)) ≤ Cmax
battery, ∀v ∈ V, ∀k

Pchv,j,k
Pchmax

v,j,k
≤ xv,j,k, ∀v ∈ V, ∀j ∈ H, and ∀k∑

j∈H
xv,j,k ≤ 1 and xv,j,k ∈ X = [0, 1] ∩ Z, ∀v ∈ V, ∀j ∈ H, and∀k

PC(pv,k) + PC(cv,k) ≤ P initv,k , ∀v ∈ V, ∀k∑
k

∑
j∈H

xv,j,k ≤ Xmax, ∀v ∈ V

(5.24)

The constraints are according to (5.4)-(5.9), (5.14) and (5.23), respectively. And the trans-

mission delay in VANETs is integrated in the constraint of (5.23).
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5.4 The Coordinated Predictive EV Charging Strategy

In this section, we derive the solution of problem (5.24) to obtain the coordinated predic-

tive EV charging strategy. The original problem (5.24) is a time-coupled mixed-integer

linear programming (MILP) problem and thus very complicated to solve, however, having

observed that the last constraint of (5.24) is the only time-coupled constraint, the original

time-coupled MILP problem can be first time-decoupled into a series of sub-MILPs through

Lagrange duality [91]. The optimal solutions of all the sub-MILPs can form a ϵ-optimal

solution to the original problem [100]. In other words, with Lagrange duality, only solv-

ing the decoupled sub-MILP problem in each period can lead to an ϵ-optimal solution for

the whole periods. Each sub-MILP can be further solved by the branch-and-cut-based outer

approximation (BCBOA) algorithm [101]. The optimality of BCBOA is also proved.

5.4.1 Optimization Decoupling Based on Lagrange Duality

First, we decouple the original optimization problem (5.24) into a series of sub-problems

with respect to period k by applying the Lagrange duality [91]. The basic idea is to add the

time-coupled constraints of (5.24) into the objective function by augmenting the objective

function with a weighted sum of the time-coupled constraint functions. In this way, the o-

riginal problem can be time-decoupled into a series of sub-problems, each corresponding to

a period k with only parameters and decision variables of that period. The intrinsic philoso-

phy behind the ϵ-optimal solution to the original MILP after decoupling, is that the objective

function is linear; and all the inequality constrains are linear [100]. We define the Lagrangian

L(.) associated with the problem (5.24) as

L(Pchv,j,k, xv,j,k) =
∑
k

{
∑
v∈V

∑
j∈H

a · Pchv,j,k −
∑
v∈V

(PC(pv,k)

+PC(cv,k))} −
∑
v∈V

ιv[
∑
k

∑
j∈H

xv,j,k −Xmax]
(5.25)
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where ιv is the Lagrange multipliers associated with the vth inequality constraint

∑
k

∑
j∈H

xv,j,k ≤ Xmax. (5.26)

The vector set {ιv} is called the dual variables or Lagrange multiplier vector. Rearranging

Eq. (5.25), we can obtain

L(Pchv,j,k, xv,j,k) =
∑
k

{(
∑
v∈V

∑
j∈H

a · Pchv,j,k )−
∑
v∈V

(PC(pv,k)

+PC(cv,k))−
∑
v∈V

ιv[
∑
j∈H

xv,j,k]}+
∑
v∈V

ιvXmax.
(5.27)

We further decouple the problem into a series of uncoupled sub-problems corresponding to

each period k by means of dual decomposition [91], and let Dk(ιv) denote the maximum

value of Lagrangian L(.) over Pchv,j,k and xv,j,k in period k, i.e.,

Dk(ιv) = max
Pchv,j,k,xv,j,k

{(
∑
v∈V

∑
j∈H

a · Pchv,j,k )

−
∑
v∈V

(PC(pv,k) + PC(cv,k))−
∑
v∈V

ιv[
∑
j∈H

xv,j,k]}.
(5.28)

Then, let Lagrangian dual functionD(ιv) be the maximum value of Lagrangian L(.) over

Pchv,j,k and xv,j,k, then

D(ιv) =
∑
k

Dk(ιv) +
∑
v∈V

ιvXmax. (5.29)

By minimizing the Lagrangian dual function over dual variable, ιv, we can get the ϵ-

optimal solution of (5.24).
min
ιv

D(ιv)

s.t.ιv ≥ 0.
(5.30)

As shown in [100], for a given ιv, if the solution Pchv,j,k and xv,j,k is optimal in Eq. (5.28)

and satisfies the time-coupled constraint of Eq. (5.26), the solution are the ϵ-optimal solution

to the original problem, with ϵ = −
∑
v∈V

ιv[
∑
k

∑
j∈H

xv,j,k −Xmax].
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5.4.2 Solving the Sub-MILP Problem Based on BCBOA Algorithm

From the observation of (5.28), the sub-optimization problem, P , is

P



max
Pchv,j,k,xv,j,k

{(
∑
v∈V

∑
j∈H

a · Pchv,j,k )−
∑
v∈V

(PC(pv,k)

+PC(cv,k))−
∑
v∈V

ιv[
∑
j∈H

xv,j,k]}

s.t.

fj,1(x, Pch) = Pchj,k =
∑

v∈V Pchv,j,k − P j
total ≤ 0,

∀j ∈ H

f2(x, Pch) =
∑
j∈H

Pchj,k · jrj − Ξ ≤ 0

fv,3(x, Pch) = P init
v,k + (

∑
j∈H

a · Pchv,j,k − PC(pv,k)

−PC(cv,k)− P k
cons(1−

∑
j

xv,j,k))− Cmax
battery ≤ 0, ∀v ∈ V

fv,4(x, Pch) = −[P init
v,k + (

∑
j∈H

a · Pchv,j,k − PC(pv,k)

−PC(cv,k)− P k
cons(1−

∑
j

xv,j,k))] ≤ 0, ∀v ∈ V

fv,j,5(x, Pch) =
Pchv,j,k

Pchmax
v,j,k

− xv,j,k ≤ 0,∀v ∈ V, ∀j ∈ H

fv,6(x, Pch) =
∑
j∈H

xv,j,k − 1 ≤ 0, ∀v ∈ V

fv,7(x, Pch) = PC(pv,k) + PC(cv,k)− P init
v,k ≤ 0, ∀v ∈ V

0 ≤ Pchv,j,k ≤ Pchmax
v,j,k, xv,j,k ∈ {0, 1}, ∀v ∈ V, ∀j ∈ H

(5.31)

where x and Pch are the set of all xv,j,k and Pchv,j,k, respectively.

Since the sub-optimization problem (5.31) is an MILP, it can be solved by the BCBOA

Algorithm [101]. The BCBOA algorithm is an iterative procedure that solves the original

MILP by solving an alternating sequence of relaxed MILPs and linear programs (LPs). The

relaxed MILP is obtained from the original problem P by replacing the original constraints

with linear functions by polyhedral outer approximations (OAs). The OA is to provide poly-

hedral representation of the feasible space of P . Such a representation will render linearly in

the continuous variable, and enable to reduce the complexity of the original problem. Giv-

en any set of possible solutions T = {(x1, P ch1), ..., (xt, P cht), ...}, the MILP is given as
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follows,

POA(T )



maxϖ

s.t.

∇G(x, Pch)T|(xt,Pcht)

 x− xt

Pch− Pcht


+G(xt, P cht) ≥ ϖ

∇F (x, Pch)T|(xt,Pcht)

 x− xt

Pch− Pcht


+F (xt, P cht) ≤ 0

∀(xt, P cht) ∈ T, x ∈ X ∩ Zn,

0 ≤ Pchv,j,k ≤ Pchmax
v,j,k, ϖ ∈ R

(5.32)

where

G(x, Pch) = {(
∑
v∈V

∑
j∈H

a · Pchv,j,k )−
∑
v∈V

(PC(pv,k) + PC(cv,k)) −
∑
v∈V

ιv[
∑
j∈H

xv,j,k]},

F = {fj,1, f2, fv,3, fv,4, fv,j,5, fv,6, fv,7}, ∀v ∈ V, ∀j ∈ H

and ϖ is an auxiliary variable. Here, ∇G(·)T denotes the transpose of the gradient of G.

The LP is obtained from the original problem P with x fixed to x̄, where x̄ is the optimal

solution of x in MILP (5.32). In summary, the OA algorithm utilizes the gradients of the ob-

jective and constraint functions at different points to build a MILP relaxation of the problem.

It should be noted that since all the functions in problem P were linear, the relaxed MILP at

the first iteration would be identical to the original problem, and hence the BCBOA would

terminate in at most two iterations. The following theorem shows that if 1) the solution set,

T, contains suitable points; 2) KKT conditions are satisfied at these points, the problems

POA(T ) and P are equivalent.

Theorem 4 Consider that P has a finite set of optimal solutions. For all x̄ ∈ X ∩ Zn, if the
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problem

Px̄



maxG(x, Pch)

s.t.

fj,1 =
∑

v∈V Pchv,j,k − P jtotal ≤ 0, ∀j ∈ H

f2 =
∑
j∈H

(Pchj,k · jrj) =
∑
j∈H

(
∑
v∈V

Pchv,j,k · jrj)− Ξ ≤ 0

fv,3 = P initv,k + (
∑
j∈H

a · Pchv,j,k − PC(pv,k)− PC(cv,k)

−P kcons(1−
∑
j
xv,j,k))− Cmax

battery ≤ 0,∀v ∈ V

fv,4 = −[P initv,k + (
∑
j∈H

a · Pchv,j,k − PC(pv,k)− PC(cv,k)

−P kcons(1−
∑
j
xv,j,k))] ≤ 0, ∀v ∈ V

fv,j,5 =
Pchv,j,k
Pchmax

v,j,k
− xv,j,k ≤ 0, ∀j ∈ H, ∀v ∈ V

0 ≤ Pchv,j,k ≤ Pchmax
v,j,k

(5.33)

is feasible, there exists Pch to be its optimal solution. Otherwise, if Px̄ is not feasible, Pch

is as the optimal solution to the following problem

P F
x̄



min
|H|+1+2|V|+|H||V|∑

jj=1
ujj

s.t. fj,1 − ujj ≤ 0, jj = {1, · · · , |H|}, j ∈ H

f2 − u|H|+1 ≤ 0

fv,3 − ujj ≤ 0, jj = {|H|+ 2, · · · , |H|+ 1 + |V|}, v ∈ V

fv,4 − ujj ≤ 0,

jj = {|H|+ 2 + |V|, · · · , |H|+ 1 + 2|V|}, v ∈ V

fv,j,5 − ujj ≤ 0, jj = {|H|+ 2 + 2|V|, · · · ,

|H|+ 1 + 2|V |+ |V||H|}, v ∈ V, j ∈ H

0 ≤ Pchv,j,k ≤ Pchmax
v,j,k

(5.34)

where each ujj has one-to-one match with each linear constraint (i.e., fj,1,f2,fv,3,fv,4, and

fv,j,5) and there are totally |H| + 1 + 2|V| + |H||V| constraints except the constraint 0 ≤

Pchv,j,k ≤ Pchmax
v,j,k. Let T̄ be the set of all such solutions (x̄, P ch). If the KKT conditions

are satisfied at every point of Px̄, then P and POA(T̄) have the same optimal value.
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Proof. Similar to [102], we denote XF be the set of feasible x ∈ X ∩ Zn in the problem Px̄

and XI be the complement of XF in X ∩ Zn. And XF ̸= ∅.

When x̄ ∈ XI , the problem Px̄ is infeasible and therefore T̄ should contain the point (x̄,

Pch) with an optimal solution of P F
x̄ . Therefore, POA(T̄) contains the constraint

∇F (x, Pch)T|(x,Pch)

 x− x̄

P ch− Pch

+ F (x, Pch) ≤ 0

where F = {fj,1, f2, fv,3, fv,4, fv,j,5, fv,6, fv,7}, ∀v ∈ V, ∀j ∈ H

(5.35)

In addition since Pch is an optimal solution of P F
x̄ and the KKT conditions are satisfied,

there exists µ ∈ R
2∗[|H|+1+2|V|+|H||V||]
+ such that the first |H|+ 1 + 2|V|+ |V| · |H| elements

in µ has one-to-one match with each constraint in F and

|H|+1+2|V|+|H||V|∑
jj=1

µjj∇Pch[fjj(x, Pch)] = 0,

∀fjj ∈ F = {fj,1, f2, fv,3, fv,4, fv,j,5}, ∀v ∈ V, ∀j ∈ H.

(5.36)

1− µjj − µ|H|+1+2|V|+|V|·|H|+jj = 0,

jj = 1, ..., |H|+ 1 + 2|V|+ |V| · |H|
(5.37)

µjj [fjj(x, Pch)− ūjj ] = 0,

jj = 1, ..., |H|+ 1 + 2|V|+ |V||H|
(5.38)

µ|H|+1+2|V|+|V||H|+jjujj = 0,

jj = 1, ..., |H|+ 1 + 2|V|+ |V||H|.
(5.39)

Based on (5.35), we further have

∇Pch[fjj(x, Pch)]
T
(
Pch− Pch

)
+ fjj(x, Pch) ≤ 0,

jj = 1, · · · , |H|+ 1 + 2|V|+ |H||V|, ∀fjj ∈ F.
(5.40)

Adding |H| + 1 + 2|V| + |H||V| inequalities in (5.40) with the nonnegative multipliers
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µ1,...,µ|H|+1+2|V|+|H|·|V|, after rearranging, we obtain

|H|+1+2|V|+|H||V|∑
j=1

µjj∇Pch[fjj(x, Pch)]
T (Pch− Pch)

≤ −
|H|+1+2|V|+|H||V|∑

j=1
µjjfjj(x, Pch), ∀fjj ∈ F.

(5.41)

Based on (5.36), the left hand side of (5.41) equals to zero. While based on (5.38), the right

hand side of (5.41) equals to −
|H|+1+2|V|+|H||V|∑

jj=1

µjjūjj . From (5.39), µjj+|H|+1+2|V|+|V||H| = 0

if ujj > 0, ∀jj ∈ {1, ..., |H|+1+ 2|V|+ |V||H|}. Then, combining (5.37), we get µjj = 1

for ∀jj ∈ {1, ..., |H|+ 1 + 2|V|+ |V||H|} that satisfies ujj > 0. This implies that the RHS

of (5.41), i.e., −
|H|+1+2|V|+|V||H|∑

jj=1

ūjj , is strictly negative otherwise Px̄ would be feasible.

Therefore, the inequality (5.41) has no solution. This implies that the maximum value of

POA(T̄) is to be found as the maximum value over all x ∈ XF .

Furthermore, let Pch be an optimal solution to Px̄. (G(x̄, P ch), x̄, Pch) is a feasible

solution of POA
x̄ (T̄). Therefore, G(x̄, P ch) is a lower bound on the optimal value ϖ of

POA
x̄ (T̄). Next this value G(x̄, P ch) will be proved to be also an upper bound, i.e., ϖ ≤

G(x̄, P ch). When Pch is an optimal solution of Px̄ and satisfies the KKT conditions. There

exists µ ∈ R|H|+1+2|V|+|V||H|
+ such that

−∇PchG(x̄, P ch) +
|H|+1+2|V|+|V||H|∑

jj=1
µjj∇Pch[fjj(x, Pch)] = 0, ∀fjj ∈ F (5.42)

µjjfjj(x, Pch) = 0, jj = 1, ..., |H|+ 1 + 2|V|+ |V||H|. (5.43)

By outer-approximation programming, any solution of POA
x̄ (T̄) should satisfy

−∇PchG(x̄, P ch)
T
(
Pch− Pch

)
−G(x̄, P ch) ≤ −ϖ

∇Pch[fjj(x, Pch)]
T (Pch− Pch) + fjj(x, Pch) ≤ 0,

jj = 1, · · · , |H|+ 1 + 2|V|+ |V||H|

(5.44)

Multiplying the second inequality set in (5.44) by the Lagrange multipliers (i.e., µjj ≥ 0)
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and then adding to the first inequality in (5.44), we rearrange the left hand side and obtain

{−∇PchG(x̄, P ch) +
|H|+1+2|V|+|V||H|∑

j=1
µjj∇Pchfjj(x, Pch)}T

·
(
Pch− Pch

)
+

|H|+1+2|V|+|V||H|∑
j=1

µjjfjj(x, Pch)−G(x̄, P ch)

= −G(x̄, P ch) ≤ −ϖ.

(5.45)

From (5.42) and (5.43), the left hand side of (5.45) is equivalent to −G(x, Pch). Therefore,

we get G(x, Pch) ≥ ϖ. In other words, for any x̄ ∈ XF , the problem POA
x̄ (T̄) and Px̄ have

the same objective value. 2

Therefore, the optimality of BCBOA is proved. In summary, the proposed charging

strategy can be obtained by first time-decoupling the original problem into a series of sub-

MILPs through Lagrange duality, and then solving the sub-MILPs based on the branch-and-

cut-based outer approximation (BCBOA) algorithm. The charging decisions in terms of

Pchv,j,k and xv,j,k are dispatched to each EV via VANETs.

5.5 Performance Evaluation

We consider a realistic suburban scenario as shown in Fig. 5.4, which is the region around the

campus of University of Waterloo (Waterloo, ON, Canada). RSUs are uniformly deployed

along roads, and two charging stations are deployed as marked in Fig. 5.4(a). The parameters

of the 12-bus distribution system (only load buses) in [34] are considered, with the load

enlarged to MW level. Two charging stations are connected toBus2 andBus11, respectively.

Loads connected at each bus at 21:00 is given in Table 5.1. The input voltage is set to 1.0pu,

and the minimum allowable voltage is 0.9pu, with the impedance of any line section being

0.005 + j0.0046. The normalized power over the power at 21:00 for all the buses without

EV charging load is shown in Table II, according to the trend in [103]. Vehicles move in this

region following the aforementioned mobility model in Section 5.2.3. To model the vehicle

traffic, a highly-realistic microscopic vehicle traffic simulator, VISSIM [92], is employed
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(a) A snap shot of the simulation region with signing the simulated
roads in blue.

(b) The 3D vehicle traffic illustrations of two intersections highlighted in red on the up-
side.

Figure 5.4. The simulation scenario of University of Waterloo region in VISSIM.

Table 5.1 An example of active and reactive power value at each bus of the system

Hour Bus Number 2 3 4 5 6 7 8 9 10 11 12
21:00 P(MW) TBD 4.0 5.5 - 6.0 5.5 4.5 - 3.5 TBD 3.0

Q(MVar) - 3.0 5.5 - 1.5 5.5 4.5 - 3.0 - 1.5

to generate vehicle trace files for recording the vehicle mobility characteristics. Based on

the trace files, we first evaluate the average transmission delay incurred by VANETs for an

EV to receive a charging decision. Then, combining the power system data, we investigate

the performance of our proposed EV charging strategy, using a custom simulator built in

Matlab. The proposed strategy is compared to an existing coordinated charging strategy

without considering the EV mobility and the travel cost [35]. The compared performance

metrics include the total EV charging energy (TECE), the average EV travel cost (AETC),

and the percentage of EVs that succeed or fail in charging.
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Table 5.2 Normalized power over the power at 21:00 without EV charging load during a day

Hour 1:00 2:00 3:00 4:00 5:00 6:00
Normalized Power 0.5 0.5 0.5 0.5 0.7 0.9

Hour 7:00 8:00 9:00 10:00 11:00 12:00
Normalized Power 1.3 1.5 2.1 2.3 2.5 2.5

Hour 13:00 14:00 15:00 16:00 17:00 18:00
Normalized Power 2.5 2.3 2.1 1.8 1.5 1.4

Hour 19:00 20:00 21:00 22:00 23:00 24:00
Normalized Power 1.3 1.2 1.0 0.7 0.7 0.7

5.5.1 Simulation Setup

To simulate a VANET with VISSIM, vehicles are pushed into the region of 6000m ∗ 2800m,

as shown in Fig. 5.4(a). At the beginning of the simulation, vehicles enter the region from

the preseted entries (e.g., 9 entries at the ends of main roads), following a Poisson process at

a rate ζ (e.g., ζ = 2500 vehicle/hour/entry). After a certain duration tζ (e.g., 240s), the vehicle

pushing-in stops to reach the density 30 vehicle/km/lane. The information (e.g., locations,

velocities, etc) of vehicles can be recorded at the end of every simulation step (e.g., 0.2s) in

the recorded trace files. In addition, a set of RSUs (e.g., 25 RSUs) is deployed uniformly

along roads in the region, with the transmission range of R (e.g., 150m). And the total

simulation time is 3000s.

The car following model, Wiedemann 74 model [104], is utilized for modeling the traffic;

the vehicle acceleration is a function of the vehicle velocity, the characteristics of the driver

(or the vehicle), and the difference in distance and velocity between the subject vehicle and

the vehicle in front [104]. At an intersection, the vehicle traffic is controlled either by a traffic

light or a stop sign based on the reality, as shown in Fig. 5.4(b). The velocity distribution

for all vehicles follows the velocity model described in Subsection 5.2.3 with parameters

V = {vL, vH} and D (e.g., taking vL = 30km/hour, vH = 60km/hour, D = 60s as a case

study).

Besides, in the EV charging simulations, we set the EV battery capacity to 85KWh ac-

cording to the TESLA Model S [15]. The charging period is set as 30min as a case study,

with the maximum charging energy of 30KWh. If an EV is not scheduled for charging in a
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period, the energy cost for running on the road in that period is set to be uniformly distribut-

ed within [0,10]KWh. And the maximal charging times for EVs i.e., Xmax, is set as 3. To

better illustrate the performance of the proposed charging strategy, the centralized charging

strategy in [35] is compared where the optimization objective is to only maximize the total

amount of EV charging energy.

5.5.2 Simulation Results of VANETs

Based on the trace files obtained from VISSIM, Fig. 5.5(a) shows the probability density

function (PDF) of vehicle headway distance under the above simulation settings when ζ =

2500 vehicles/hour/entry. It is shown that the PDF of the headway distance matches well with

an exponential distribution, which validates the premise in Subsection 5.2.3 that the headway

distance follows an exponential distribution when the vehicle density is low or medium.

Besides, from the exponential distribution in Fig. 5.5(a), the average headway distance is

about 30m, which is very close to that calculated from the predefined vehicle density in the

simulation setting, i.e., 30 vehicles/km/lane. In addition, the theoretical PDF of the distance

from the last hop vehicle to the nearest RSU for one delivery (through Eq. (5.18)) is further

verified by Fig. 5.5(b). With 25 RSUs deployed in the network, the theoretical PDF is

calculated with the parameters in the simulation setting based on Eq. (5.18). The simulated

PDF is obtained from the real trace files of VISSIM. In Fig. 5.5(b), it can be seen that the

simulated PDF matches well with the theoretical one, which validates the effectiveness of

the theoretical analysis in Eq. (5.18). Also, according to the simulation, the average distance

from the last hop vehicle to its neatest RSU is around 200m.

When the vehicle density is reduced, e.g., ζ = 1800 vehicle/hour/entry, the PDF of the

headway distance is shown in Fig. 5.5(c), approximately following an exponential distribu-

tion as well. And the average distance is increased to 46m. Furthermore, the PDF of the

last-hop V2R distance is illustrated in Fig. 5.5(d), and the average V2R distance of the last

hop is about 215m. The average V2R distance also matches with the analytical results in Eq.
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(a) The PDF of V2V distance when ζ = 2500.
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(b) The PDF of the last hop V2R distance when ζ =
2500.
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(c) The PDF of V2V distance when ζ = 1800.
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1800.

Figure 5.5. The PDFs of both two adjacent vehicle distance and the last hop V2R distance.

(5.18). Therefore, Fig. 5.5 validates the mobility model proposed in Section 5.2.3 as well as

the analytical results of (5.18) which is derived based on the the proposed mobility model.

We then investigate the single-hop connection probability between a vehicle and its n-

earest RSU and the end-to-end multi-hop transmission delay in VANETs. The results are

shown in Fig. 5.6 and Fig. 5.7, respectively, under different RSU deployments (i.e., 25 or

8 RSUs are deployed in the network) and different vehicle densities (i.e., ζ = 2500 vehi-

cles/hour/entry or ζ = 1800). It can be observed from Fig. 5.6 that for a given number of

RSUs and ζ , the connection probability increases with larger RSU transmission range. Be-

sides, if the RSU transmission range is fixed, larger number of RSUs and larger ζ will both
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increase the single-hop connected probability but to different extents, i.e., the variation of

the number of RSUs has larger impact on the connected probability than that of ζ . This can

be explained as follows. As the collisions can be avoided according to the transmission mod-

el in Subsection 5.2.4, the increase of ζ will affect the connected probability only through

decreasing the average Uoff as given in Eq. (5.18). Since the average headway distances

under ζ = 2500 and ζ = 1800 are around 30 and 50, respectively, which are relatively small

compared to the RSU transmission range, the two headway distances can be viewed as in

the same scaling order. As a result, the average Uoff will not change much under the two

ζ values, leading to very small gaps in the connected probabilities when the number of R-

SUs is fixed. On the contrary, when ζ is fixed, different numbers of RSUs will result in big

difference in the average Uoff , leading to a much larger gap.

On the other hand, it can be seen in Fig. 5.7 that the average end-to-end transmission

delay decreases when the RSU transmission range, the number of RSUs or ζ increases.

More interestingly, different from the single-hop connected probabilities, the transmission

delay does not increase much even when the number of RSUs is largely reduced, e.g., from

25 to 8. For example, the transmission delay is around 190s with 25 RSUs and ζ = 2500,

and is around 240s with 8 RSUs and ζ = 1800. The small change compared to the big gap

of connected probability is due to the benefits of multi-hop V2V relaying. When the number

of RSU largely decreases, although the single-hop connection opportunities from a vehicle

to the RSU is largely reduced, the information can still be efficiently delivered to the RSU

through multi-hop V2V relaying at the cost of small delay increase. In other words, the

multi-hop V2V relaying increases the equivalent transmission range of a vehicle. Besides,

for the considered settings, the average transmission delay is around 200s. Thus, although

the transmission delay of VANETs is larger than the cellular systems, it is still tolerable for

the applications of vehicle information collection compared to the decision making period

(i.e., 30min). More importantly, VANETs can considerably cut down the service cost and

enhance the transmission rates, which is more important for the large-volume vehicle data

collection.
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Figure 5.6. The average connected
probability between a vehicle and an

RSU.
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5.5.3 Simulation Results of the Proposed Charging Strategy

In this subsection, we investigate the performance of the proposed charging strategy. As a

case study, the strategy is conducted every 30mins, and the simulation results are collected

every one hour. This conducted period can be set differently for different requirements, with

corresponding communication infrastructure deployment. We first study the TECE perfor-

mance under a weekday total-available-charging-energy (TACE) profile [103] (see Table II)
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EVs is 1200.

with fixed total number of EVs, as shown in Fig. 5.8. As we mainly focus on the behaviors

of charging strategies when the overload is likely to occur, we only consider the case where

the TACE is not enough to charge all the EVs in each period. It can be observed from Fig.

5.8 that for all the hours the proposed strategy can obtain larger TECE than the compared

strategy. Since the compared strategy has no real-time vehicle information, the charging de-
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cision is made without considering the EV mobility and the travel cost. As a result, some

EVs may be dispatched to a charging station that is too far to reach based on their current

battery levels, making EV batteries depleted on the way and fail to be charged. On the con-

trary, our strategy considers the travel cost based on the vehicle information from VANETs

and dispatches the EVs only to the charging stations within their reach, thus having a larg-

er TECE. Besides, TECE gain is from 15% to 30% for different TACE, and is larger with

smaller TACE. The reason is as follows. When the TACE is smaller, the number of EVs that

cannot be charged in the current period is larger. As the EVs are mobile, they will continue to

consume battery energy even if they are not charged. As a result, the average initial battery

level is lower in the next period, and the depletion probability if an EV is dispatched to a

farther station is larger under the compared strategy. As our strategy always avoids the EV

depletion situation, the gain will be larger when the TACE is smaller.

Besides, we compare the AETC under different TACE in Fig. 5.9. It can be seen that

the AETC of the proposed strategy is smaller than that of the compared strategy, and the

gain is larger with larger TACE. As the proposed strategy considers to reduce the AETC

and thus gives preference to closer charging stations, the AETC is lower than that under the

compared strategy without considering the travel cost. When the TACE is increased, each

charging station can accommodate more EVs. As a result, more EVs can be dispatched to

the closer charging stations under the proposed strategy, resulting in a lower AETC (i.e., a

larger gain) over the compared strategy.

We further compare the number of EVs that succeed and fail in charging under different

strategies, respectively, as shown in Fig. 5.10. It can be observed that compared with the

existing strategy, the proposed strategy achieves a smaller total number of involved EVs

(i.e., the number of successfully charged EVs plus the number of EVs that fail to be charged)

but a larger number of successfully charged EVs. This observation further corroborates the

explanation for Fig. 5.8. Under the proposed strategy, as the EVs tend to be assigned to

the closer stations, the load assignment is less balanced than the compared strategy. Thus

the total number of involved EVs is smaller under the proposed strategy. However, as some
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involved EVs’ batteries may be depleted on the way under the compared strategy, the EVs

that actually succeed in charging are more in the proposed strategy. Therefore, it is essential

to incorporate EV mobility into the optimal charging strategy design.

Last, with fixed TACE and increasing total number of EVs, we show the comparison of

the AETC performance as well as the number of successfully charged EVs in Fig. 5.11. It

can be observed that when TACE is fixed and the total number of EVs increases, the AETC
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of the proposed strategy decreases, and the number of successfully charged EVs increases;

while both the two items remain almost unchanged under the compared strategy. As the

proposed strategy considers to reduce the AETC, when the total number of EVs increases,

more EVs that are closer to the charging stations are selected for charging. Thus, the AETC

will decrease correspondingly. As the AETC decreases, the average battery level when the

dispatched EVs arrive at the charging stations is higher, resulting in a smaller average EV

charging energy. Thus more EVs can be dispatched and charged when the TACE is fixed.

For the compared strategy, as it does not consider the AETC, increasing the total number of

EVs has no impact on the EV selection, thus the performance remains almost unchanged.

5.6 Summary

In this chapter, considering the mobility of vehicles, with the help of vehicular commu-

nications, coordinated charging has been designed to provide efficient charging plans for

EVs. The proposed charging strategy can prevent an electric power system from overloading

and improve the overall energy utilization. The central philosophy of our proposed spatio-

temporal coordinated charging strategy is that based on the real-time collected vehicular

information, the charging requirements of the whole network can be balanced by introduc-

ing the mobility of vehicles, to increase power utilization approaching the load capacities of

charging stations.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we evaluate the impacts of mobility on the network performance in different

vehicular scenarios, i.e., pure VANETs, VANET-enhanced intelligent transportation system,

and VANET-enhanced smart grid, respectively. In these scenarios, different kinds of capac-

ities are defined, and we utilize the mobility of vehicles to improve the network throughput

performance to approach the defined network capacities.

Firstly, we have analyzed the throughput capacity of VANETs for the content upload-

ing applications in the urban area. In both the free-space propagation and non-free-space

propagation environments, the achievable throughput capacity of VANETs scales as Θ( 1
logn

)

decreasing with the population of vehicles n, with the number of RSUs scaling as Θ( n
logn

).

The results indicate that although more than Θ( n
logn

) RSUs are possible to be deployed in the

free-space propagation environment, the throughput cannot be greater than Θ( 1
logn

). Further,

in the non-free-space propagation environment this scaling law Θ( 1
logn

) is the achievable

throughput capacity as well. We have further proposed a novel two-hop forwarding scheme

considering mobility diversity, to achieve that analytical throughput capacity. The simula-

tions validate the effectiveness of the proposed scheme. The asymptotic throughput capacity

in VANETs can be used as an benchmark for the real-world RSU deployment.
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Secondly, we have developed a hybrid-VANET-enhanced real-time path planning for ve-

hicles to avoid congestion and improve the vehicle-traffic throughput in an ITS. We propose a

hybrid-VANET-enhanced ITS framework with functionalities of real-time traffic information

collection, involving both V2V and V2R communications in VANETs and cellular commu-

nications in public transportation system. Then, a globally optimal real-time path planning

algorithm is designed to improve overall spatial utilization, i.e., vehicle-traffic throughput,

(to approach vehicle-traffic capacities of roads) and reduce average vehicle travel cost, by

means of Lyapunov optimization. Extensive simulations have been conducted to demon-

strate that the proposed path planning algorithm can achieve better performance than that

without real-time path planning in terms of average moving delay as well as the adaptability

to different accident durations and traffic densities.

In the third scenario of this thesis, we have incorporated the EV mobility into the EV

charging and developed a VANET-enhanced coordinated EV charging strategy to improve

the energy utilization (to approach load capacities of charging stations) and reduce the EV

travel cost while averting the power system overloading. In specific, we first introduced a

VANET-enhanced smart grid with the functionalities of real-time vehicle information collec-

tion through VANETs. Then, a predictive mobility-aware coordinated EV charging strategy

was proposed to maximize the overall charging-energy-minus-travel-cost with power sys-

tem overloading avoidance. Extensive simulations have been conducted to evaluate the cost

incurred by the transmission delay in VANETs and demonstrate that the proposed EV charg-

ing strategy can achieve better performance than the existing strategy without considering

the EV mobility and travel cost in terms of the total EV charging power, average EV travel

cost and the number of successfully charged EVs.

6.2 Future Work

In future, in order to efficiently perform the applications for vehicles, there exist many chal-

lenging issues including selecting the transmission network, balancing the tradeoff between
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the system technical limitations and customers’ preferences, and the business revenue model

for vehicles.

Network Selection for Real-time Information Delivery

In VANETs, the vehicle mobility results in intermittent V2V and V2R connections, which

introduce a transmission delay and thus incur an additional travel distance (cost). While, us-

ing the cellular network for information delivery might incur additional monetary cost. Thus,

by integrating both cellular networks and VANETs in the heterogeneous wireless medium,

more efficient methods for message delivery can be obtained with a low-cost communication

network solution, e.g., in terms of low deployment and operation costs. In such a heteroge-

neous wireless network, the network selection mechanism should be designed to balance a

tradeoff between the travel cost due to transmission delay in VANETs and the monetary cost

mainly due to cellular networks. Thus, in the future work, the design of the future wire-

less communication network should consider balance the VANET travel cost and the cellular

network monetary cost, to make the information delivery more efficiently and economically.

Balancing the Tradeoff Between the System Technical Limitations and Preferences of

Customers

Due to the mobility of vehicles, drivers usually have their own preferences for choosing a

destination, e.g., a charging/swapping station. In this scenario, the preferred charging/swapping

station may not be able to support any additional power loads. Thus, based on the pow-

er system overload avoidance, another charging/swapping station can be assigned to EV v

charging/discharging by spatial coordination.

Since drivers prefer to maximize their preferences, there exists a tradeoff between the

optimal utilization of the system (e.g., power system) and the customers’ preferences. This

tradeoff unveils the challenging issues of 1) how to define the preferences of individual

drivers, and 2) how to balance the tradeoff between the system limitations and individual

customers’ preferences.
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Business Revenue Model for Vehicles and Extended Large-scale Simulations

The spatial and temporal coordination introduces additional challenges. The business model

established for vehicle interaction with the system should benefit both customers and system

operators. Specifically, the business model should provide an incentive for drivers to use the

applications designed.

In addition, we intend to find large-scale real-world vehicle traffic traces to further per-

form extensive simulation validations base on trace data of real-world scenarios and further

digging up the implication on network design and operation.
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