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Abstract

Effective techniques of inferring the condition of neural tracts in the brain is invaluable
for clinicians and researchers towards investigation of neurological disorders in patients. It
was not until the advent of diffusion Magnetic Resonance Imaging (dMRI), a noninvasive
imaging method used to detect the diffusion of water molecules, that scientists have been
able to assess the characteristics of cerebral diffusion in wvivo. Among different dMRI
methods, High Angular Resolution Diffusion Imaging (HARDI) is well known for striking
a balance between ability to distinguish crossing neural fibre tracts while requiring a modest
number of diffusion measurements (which is directly related to acquisition time).

HARDI data provides insight into the directional properties of water diffusion in cere-
bral matter as a function of spatial coordinates. Ideally, one would be interested in having
this information available at fine spatial resolution while minimizing the probing along
different spatial orientations (so as to minimize the acquisition time). Unfortunately,
availability of such datasets in reasonable acquisition times are hindered by limitations
in current hardware and scanner protocols. On the other hand, post processing techniques
prove promising in increasing the effective spatial resolution, allowing more detailed de-
pictions of cerebral matter, while keeping the number of diffusion measurements within a
feasible range.

In light of the preceding developments, the main purpose of this research is to look
into super resolution of HARDI data, using the modern theory of compressed sensing. The
method proposed in this thesis allows an accurate approximation of HARDI signals at a
higher spatial resolution compared to data obtained with a typical scanner. At the same
time, ideas for reducing the number of diffusion measurements in the angular domain to
improve the acquisition time are explored. Accordingly, the novel method of applying two
distinct compressed sensing approaches in both spatial and angular domain, and combining
them into a single framework for performing super resolution forms the main contribution
provided by this thesis.
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Chapter 1

Introduction

1.1 Medical Imaging

The first instance of body anatomy imaging was documented in 1895, when the German
physics professor Wilhelm Rontgen used X-rays to form an image illustrating the bone
structures within a human hand [35]. What made this discovery significant was its ability
to capture contrasts delineating between bone and tissue from within the body without the
need for surgery on living subjects or dissection in post-mortem analysis. As a result of his
revolutionary discovery, he was issued the first Nobel Prize in history [35]. Notably, this
technique proves to be extremely useful in the diagnosis stage where abnormalities could be
identified as part of preliminary analysis. From then on, the term medical imaging was used
to describe methods of obtaining information about a patient’s internal body structure for
clinical analysis. This is of a notably different philosophy from images obtained through
photography, which is clearly impractical in this context owing to the impossible placement
of the imaging device.

In the last century, advances in science have uncovered different methodologies for med-
ical imaging, each relying on varying properties of physics allowing each to retrieve unique
information in different parts of the body. For example, ultrasound deploys sound waves
above the capability of human hearing and can be used to provide real time information
on blood flow, while Magnetic Resonance Imaging (MRI) uses strong magnetic fields to
capture the spin density of water molecules which can be later used to infer anatomical
structures and pathologies. Furthermore, medical imaging is a continuously evolving field
in the sense that new breakthroughs will be reflected in improved image quality, lead-
ing to more accurate diagnosis. For this reason, research is always ongoing for ways to



improve both the acquisition procedure and post-processing methods of improving image
reconstruction. In this thesis, the focus will be on a specific variant of MRI referred to as
diffusion MRI (dMRI) and its applications towards brain imaging.

1.2 Brain Imaging

The brain is considered one of the most mysterious parts of the human body due to
its complicated micro-structure. While its understanding is still far from being complete,
considerable efforts over the past years have yielded much information that has been applied
towards the identification of different anatomical structures and their correspondence to
motor and cognitive functions, as well as the identification of mental disorders such as
depression or schizophrenia [35]. Examples of different modalities of medical imaging well
equipped to brain imaging include and are not limited to, X-ray computed tomography
(CT), positron emitted tomography (PET) and MRI. The presence of multiple modalities
suggests that each provides a different set of information. Indeed, as an example CT is used
to probe structures of the brain but cannot provide insight on the change in signal due to
functional changes. PET can overcome this shortcoming by capturing functional behaviour
in different parts of the brain, but requires the injection or inhaling of radioactive agents
to facilitate the imaging process.

With that said, MRI is an invaluable tool for brain imaging due to its ability to generate
high levels of detail, while being a non-invasive imaging modality (that is, avoiding the
use of radioactive tracers that have a low probability of inducing cancer in the subject).
Another advantage of MRI is its versatility; small changes in the imaging protocol defines
what information can be acquired from the scan. For example, functional MRI (fMRI)
is often used to interpret the change in signal arising as a consequence of neural activity,
while structural MRI is more traditional in the sense that it provides information on the
structure of underlying white matter, grey matter and cerebrospinal fluid (CSF). On the
other hand, diffusion MRI has seen a rapid growth over the previous two decades owing
to increased scanner hardware performance and its ability to sense the diffusivity of water
molecules within the subject. This leads to interesting applications such as the ability to
reconstruct the trajectories of neural fiber tracts in the human brain. Unfortunately, one
significant downfall of dMRI is its prohibitively long acquisition times. This is particularly
problematic for patients afflicted with dementia or children, since high levels of subject
motion arising from these patients causes significant imaging artifacts in the resulting
scan. This problem has been recognized and has been the subject of much research in
the dMRI community, leading to a variety of techniques and models proposed to tackle



this problem. Further compounding this problem is the need for higher spatial resolution
(e.g., a smaller voxel size) and angular sampling (e.g., number of diffusion orientations
measured) in dMRI data, the addressing of which is a main goal in this thesis.

1.3 Contributions of this thesis

To expand on the aforementioned low resolution issues, the limitations regarding spatial
and angular resolution will be elaborated. Owing to the inherent low spatial resolution of
the dMRI data, the fiber structure at a given spatial location is subject to partial voluming
effects; that is, the presence of different types of tissue within a voxel. The implications
stemming from partial voluming effect can be seen in the following example; instead of
identifying a single fiber within a 1 mm x 1 mm x 1 mm voxel, in a 2 mm X 2 mm X
2 mm voxel we must account for the presence of multiple differently oriented fibers. On
the other hand, the diffusion profile is constructed by scanning the entire Field of View
(FOV) K times, where K corresponds to the number of diffusion measurements varying
in both magnitude and direction. The ability to detect the presence of multiple oriented
fibers is highly dependent on sufficient probing in different diffusion directions. Sufficiently
accurate representation of the diffusion profile would require very dense sampling, which is
out of the question due to prohibitively long acquisition times. Fortunately, there are sam-
pling schemes in the angular domain such as High Angular Resolution Diffusion Imaging
(HARDI) that keep K at feasible levels while retaining reasonably accurate modelling of
the underlying diffusion process. That being said, the goal of the thesis is to post-process
the dMRI data to provide high angular and spatial resolution reconstructions that can
alleviate the partial voluming effect and long acquisition times. Through the introduction
of regularization constraints, the method will be posed as a convex optimization problem.
A convenient framework for solving this problem is by using an iterative variable splitting
approach. Through this method, a complicated optimization problem in multiple variables
can be reduced to a sequence of sub-problems of a single variable, each admitting simpler
closed form solutions. Moreover, the idea of variable splitting alludes to the possibility of
parallel processing, which can make it remarkably computational efficient in practice.

1.4 Organization of this thesis

The remainder of the thesis is organized as follows. Chapter 2 will talk about the basics
of MRI as well as an introduction to diffusion MRI, the primary modality of interest in



this thesis. Chapter 3 builds on dMRI by talking about different formalisms regarding how
dMRI data can be best used to model the underlying diffusion processes. Chapter 4 will
focus on the HARDI philosophy and how the techniques discussed in the previous chapter
can be adapted to work with HARDI data. The primary goal of Chapter 5 is to address the
problem of inherent low resolution of HARDI data and study different approaches in the
literature taken to address this problem. In Chapter 6, the main contribution of this thesis
will be revealed, which builds on some of the ideas developed by other dMRI researchers
to propose a framework for applying super resolution to available HARDI data. Chapter 7
tests this proposed methodology in a series of experiments ranging from computer simulated
data to in wvivo data and fiber tractography. Finally, Chapter 8 will summarize the key
ideas covered in this thesis as well as providing a conclusion and ideas that could be used
in future works.



Chapter 2

Principles of MRI

The branch of medical imaging known as MRI was made possible by the phenomenon of
Nuclear Magnetic Resonance (NMR) along with the contributions from many scientists
throughout the last several decades. Its success stems from many factors, including high
signal to noise ratio (SNR) compared to other medical imaging techniques such as ultra-
sound, and avoiding the need to introduce radiochemical tracers into the subject which,
despite the extremely low probabilities, has seen cases where cancer was induced in the
subject. Last but not least, it is also non-invasive and does not depend on the use of ion-
izing radiation. This goal of this section is to present an overview of the physics involved
in MRI as well as studying imaging techniques which can drastically reduce the acquisi-
tion time. The information will prove invaluable in providing insights to the need of such
methods as well as downfalls associated.

2.1 Physics of MRI

Ever since MRI has been discovered about half a century ago, acquisition times have
significantly improved through advances not only in technology, but equally importantly
by optimizing the acquisition process. This section will first explain the physics behind
MRI, followed by special acquisition techniques which will give insight to how spatial
resolution can be improved.

According to quantum mechanics, atoms with an odd number of protons are designated
a spin of j:%, through which they intrinsically carry an associated magnetic moment and
angular momentum. Under the presence of a strong magnetic field By, the magnetic



moments of the atoms will tend to align along the By field. The strength of the By field is
typically measured in terms of Teslas [T], with higher strengths desirable due to their ability
to align a larger proportion of protons in the sample. However, it is important to note that
having too strong of a magnetic field can potentially cause safety hazards. Common field
strengths of MRI scanners for human brain imaging are 1.5 T or 3 T, with 3 T scanners
becoming more popular in recent times due to increased hardware capability. In addition
to alignment of magnetic moments, the atoms also undergo a process known as precession
about the induced magnetic field. Precession refers to rotation about an axis that is
constantly changing; the effect can be visualized as the spinning of a top. Furthermore,
the angular frequency w of the spins and the net magnetic field B experienced by the atom
are proportional to each other as governed by the Larmor equation

w=n~yB (2.1)

where v is the gyromagnetic constant and varies between different nuclei. For hydrogen
atoms (protons), v = 2.675 x 10°rad/s - T. The application of the By field can be thought
of as an initial alignment of the magnetic moments in the sample along a direction, which
without loss of generality is commonly referred to as the longitudinal axis.

Note that the MRI scanner is unable to detect different tissue contrasts with the By,
field alone. Rather, it detects the rate at which protons return to their equilibrium state
(e.g., precession along the longitudinal axis) after an external stimuli is applied and shortly
removed thereafter. To facilitate this, an electromagnetic RF pulse is applied to the sample
for a short duration and subsequently turned off. This RF pulse is commonly known as an
excitation pulse due to its effect of providing a stimuli to the protons, and also as a 7 pulse
due to the orientation of the spins being altered by an angle of 7. This excitation pulse
effectively realigns the spins into the plane perpendicular to the longitudinal axis, which
goes by the name of the transverse plane. Upon removal of the RF pulse, the protons will
try to recover their original orientation along the longitudinal axis. This process is known
as relaxation and comes in two different flavours; longitudinal and transverse relaxation. As
their name implies, the different types of relaxation describe recovery towards equilibrium
along the longitudinal axis and the transverse plane respectively.

us

Owing to the 7 pulse pushing the spin orientation entirely into the transverse plane,
during longitudinal relaxation the magnitude of the magnetic moments along the longitu-
dinal axis is steadily increasing as the protons settle towards the equilibrium state (with
magnetization at equilibrium given by M;). The differential equation governing longitudi-
nal relaxation is given by



dM, My — M,
a T

where M, describes the projection of the magnetization vector along the longitudinal axis,
and 77 is a constant used to characterise the longitudinal relaxation times of the sample
and is typically around one second. It can be seen that (2.2) is a separable differential

(2.2)

equation with solution M, = My(1 — e_TLl). The solution agrees with the observation that
the longitudinal magnetization recovers as time goes on, eventually settling back to M, at
t = 0co. Owing to the ability of longitudinal relaxation to illustrate the differences between
certain tissues effectively, in MRI literature this is commonly referred to as T relaxation.

On the other hand, transverse relaxation refers to the recovery of spin orientation
towards equilibrium state, but this time being measured along the transversal plane. Since
the initial magnetization was entirely along the longitudinal axis and thus exhibits no
transversal component, one would expect that transversal relaxation would result in a
decrease of magnitude. Indeed, given M,, being the projection of the magnetization vector
along the transversal plane and 75 being a constant used to characterise the transversal
relaxation time of the sample, the differential equation for transversal relaxation is given

by

dM,, M,
= 2.
dt T (2:3)

from which we can see the solution is M,, = Mxy(O)e_T%, an equation describing exponen-
tial decay which agrees with our observation. However, transversal relaxation is compli-
cated by magnetic field inhomogeneity, which causes excited protons at different locations
to precess at slightly different frequencies. This translates into loss of phase coherence as
times passes. This effect is known as dephasing, and causes the net magnetization to be
attenuated in addition to transversal relaxation. Since this phase incoherence does not
have a useful physical interpretation, it is desirable to have it removed. To facilitate this,
another RF pulse is applied after a specified duration TE/2 with the goal of reversing the
phases. This RF pulse is known as the 7 pulse owing to phase reversal requiring the spin
orientations to be modulated by an angle of 7. In MRI nomenclature, it is also referred
to as the refocusing pulse due to its objective of recovering phase coherency which in turn
strengthens the measured signal. After the 7 pulse is applied, the reversal of the phases
causes dephasing to occur in the opposite direction. For the phases to resume coherency,
a symmetric duration of TE/2 must occur so that the initial dephasing can be completely
undone. At this point, dephasing has been removed from the transverse magnetization
and is ready to be captured by the MRI scanner. Altogether, this process of removing
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phase incoherence is known as the spin echo protocol. The quantity TE refers to Time
Echo which is an MRI acquisition parameter describing the time between application of
the initial RF excitation and the time at which a spin echo occurs. For experiments which
measure multiple instances of spin echoes, TE is usually measured against the spin echo
with the largest magnitude.

2.2 MRI Image Acquisition

We have discussed how protons are excited by an RF pulse and subsequently undergo
relaxation along both the longitudinal axis and the transversal plane in a typical MRI ex-
periment. However, the mechanism behind the MRI scanner’s ability to detect the changing
magnetization during relaxation has not been discussed. Recall that the Larmor equation
(2.1) states that the angular frequency of the spins is proportional to the magnetization
exerted on the proton. By virtue of Faraday’s Law, the receiver coils of the MRI scanner
are able to pick up the current induced by the magnetic field of the proton’s precessing
spins. The contrasts of the tissue captured by the MRI scanner depends on the strength
of the current induced, which will depend both on the coherence of the phases as well as
the rate of relaxation as discussed earlier.

Now that it is clear what signals are being captured by the MRI scanner, we will move
on to how the subject is captured by the scanner. The MRI scanner reads data in a 2D
manner and uses slice selection techniques to move between different slices of the subject.
Since a 3D volume can be thought of as a sequence of 2D slices stacked together, this
technique allows a 3D volume to be captured by the MRI scanner by scanning each slice
and consolidating the results into a single volume. The key to selecting parts of the sample
to be imaged lies in magnetic field gradients, which are used as temporary measures of
changing the net magnetic field. In the following developments, we use R3 to represent
the standard 3D Cartesian grid with unit vectors {X,¥,z} along each orthogonal axis.
Denoting the homogeneous magnetic field by By and the magnetic field gradient vector by
g =[G, G, G.] € R?, the net magnetic field B at spatial location r = [z y 2|7 € R® is
described by the equation

B=By+g-r (2.4)

Without loss of generality, let the unit vector Z be parallel to the By field (e.g., pointing
along the longitudinal axis). With this formulation, the z-component G, is responsible for
slice selection while G, and G, are used to image each 2D slice. In light of this development,



slice selection and how the MRI scanner captures each individual slice will be discussed
separately.

The slice select gradient causes the frequencies in the sample to change linearly along
the Z direction. By doing so, a distinct frequency can be assigned to each transversal
plane slice of the sample. Recall that an excitation RF pulse rotates the spin orientation
by 5. Aside from that purpose, slice selection can be achieved by coinciding the central
frequency of the excitation pulse with the Larmor frequency of precessing spins within the
desired slice (due to the slice selection gradient, each slice experiences a different Larmor
frequency).

Next, we will illustrate how the MRI scanner reads each transversal slice. The mag-
netic field gradient components along the  and ¢ direction together changes the effective
frequency in each spatial location along the selected transversal slice. After a duration ¢,
the accumulation of the phase # at each spatial location (z,y) can be expressed as

0 = 27 (ko (t)z + Ky (£)y) (2.5)

where the quantities k,(t) and k,(t) are related to the integral of the corresponding com-
ponent of the magnetic field gradients and are given by

t
k) =7 [ Gulryir (2.6)
0
t
v [ Gy
0
In the following discussion, the dependence on time for k,(t) and k,(t) is understood and
usually omitted for brevity in notation. Since the MRI scanner’s receiver coils senses the
current induced by the precessing spins in accordance to Faraday’s Law, the net current is
equivalent to the summed contributions of the spin density f(x,y) at each spatial location

(z,y) on the transversal plane. Accounting for the distinct phase accumulation at each
spatial location, the current s(¢) detected by the receiver coils is thus

ky (t) =

s(t)://f(x,y)eQm(kx”kyy)dxdy (2.7)

where i = v/—1, which indicates a Fourier relationship between the spin density and the
induced current. With equation (2.7), from the scanner data it is possible to recover f(z,y)
via inverse Fourier transform. In the MRI community, the k-space (k,, k,) € €y is typically
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referred to as scanner space since it refers directly to the space in which data is captured,
whereas (z,y) € I is denoted as the image space since it represents the spatial locations
within the FOV [.

2.3 Image Encoding

In the previous section we have discussed how the spins (and by extension, the magneti-
zation due to the Larmor equation) can be recovered from the scanner data. However, the
given procedure of applying gradients in the transversal plane after RF excitation and slice
selection is only able to capture one point in the k-space. By equation (2.7), it follows that
the image of the spins can be recovered only after the k-space is fully sampled. Clearly,
repeating this whole process for each location in the k-space is an extremely inefficient
endeavour, thus the motivation of this section is to present time efficient acquisition of the
k-space.

Let us first revisit the k-space. It consists of two orthogonal axes k, and k,, which in
MRI nomenclature are used to represent directions corresponding to frequency and phase
encoding respectively. The phase encoding gradient is responsible for altering the phases
of the magnetization in the protons. Through phase encoding different rows of the k-space
become out of phase with respect to another while all protons of the same row all share the
same phase perturbation. This technique allows the MRI scanner to distinguish between
different different rows in the k-space. On the other hand, the frequency encoding gradient
works in the same way but alters the precession frequency of the protons along each column
of the k-space. In this manner, we can see frequency and phase encoding in conjunction
are able to isolate a specific k-space coordinate.

The development of MRI acquisition schemes relies on the application of RF excitation
pulses along with the phase / frequency encoding gradients in an orderly manner. This
is collectively known as a pulse sequence which dictates the trajectory travelled in the
k-space. The Spin-Warp pulse sequence is a basic yet practical MRI imaging method, and
is the foundation for more complicated sequences such as Echo Planar Imaging (described
later). After the initial excitation RF pulse, a phase encoding gradient is applied for a short
duration to act as a row selector. It is subsequently turned off and the frequency encoding
gradient is then activated. Simultaneously, the MRI scanner’s receiver coils are turned on
during the duration of the frequency encoding gradient, and an entire row of the k-space is
read per RF excitation in this manner. The time between successive RF excitations on a
fixed slice is referred to as Repetition Time (TR). The number of samples made per TR is
chosen to minimize artifacts within the given FOV [13]; typically it is between 128 and 512
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samples. Due to the frequency encoding step occurring on the order of several milliseconds
whereas phase encoding entails application of a new RF excitation pulse, it is clear that a
standard MRI acquisition resolution in the phase encoding direction (k,) is limited when
compared to frequency encoding (k).

2.4 Echo Planar Imaging

Previously we have seen how an entire line of k-space can be captured during one RF ex-
citation. In this section Echo Planar Imaging (EPI) will be introduced, a scanner protocol
capable of capturing the entire k-space in one RF excitation, as shown in Figure 2.1. A
key feature is its single continuous k-space trajectory, which maximizes the uptime of the
readout gradient. It can also be seen that the frequency encoding follows a zigzag pattern.
This can be achieved by switching the sign of the frequency encoding gradient. Consequen-
tially, EPT demands high performing gradients that are able to switch rapidly (recall that
one row of frequency encoding is typically performed on the order of milliseconds). This
is quantified by the gradient’s slew rate which determines the trajectory’s acceleration.
However, any phase errors that may accumulate during scanner readout are not reset at
each phase encoding. This was not a problem with the Spin-Warp pulse sequence because
applying a new RF excitation for each phase encoding effectively meant each k-space line
undergoes a phase reset. Last but not least, EPI is constrained by the relaxation param-
eters of the subject for imaging of T2 contrasts. Recall that T2 relaxation is governed by
an exponential decaying function of the transverse relaxation starting from application of
the RF excitation pulse. Due to the long k-space trajectory of EPI, sampling of the entire
k-space must be done before this decay reaches undetectable levels. Fortunately, this can
be overcome by improved scanner hardware in the form of high magnitude gradients that
will increase the speed of the k-space trajectory.

Despite the above downfalls of EPI, the primary motivation behind using this protocol
comes from subject motion during the scanning of a slice. With slower imaging schemes,
motion artifacts can still be observed in the resultant image. On the other hand, the ability
of EPI to scan an entire slice in 40 ms [73] means subject motion will not be significant
during this small time frame. The use of EPI is practically restricted to cardiac imaging as
well as dMRI and fMRI. These applications share the need of having multiple acquisitions
of the subject in quick succession in order to minimize the misalignment introduced by
motion.

Recall that the k-space can be interpreted as the frequency representation of the magne-
tization which resembles an image of the sample, and as such it shares some characteristics
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Figure 2.1: Traversal of k-space using EPI. Acquisition occurs during frequency encoding,
a subset of which are depicted by black squares.

of natural images. Namely, the magnitude of the frequency components close to the origin
of the k-space are in general more prevalent than the high frequency components. There-
fore, the definition of TE is applied to the spin echo corresponding to the measurement at
the origin of k-space. To solidify the concepts of how the frequency and phase encoding
gradients work in conjunction in each of the aforementioned pulse sequences, it is helpful
to analyse a timing diagram describing the state of each gradient at any given time. This
is shown in Figure 2.2. Recently, more sophisticated k-space sampling techniques such as
spiral sampling [39] have shifted to denser sampling near the k-space origin in order to
improve image reconstruction quality. Implementing the spiral trajectory requires more
complicated waveforms for the phase and frequency encoding, and the k-space samples
cannot be arranged in a Cartesian grid. Unless the measurements from spiral sampling are
properly extrapolated to a Cartesian grid, the standard Fast Fourier Transform cannot be
used to reconstruct the image via (2.7).

2.5 Spatial Resolution and FOYV relationships in MRI

From equation (2.7), a Fourier relationship was discovered between the current picked up
by the MRI scanner and the resultant image consisting of the spin densities. Based on
this, we can formulate the Nyquist conditions determining the FOV encompassed by the
resultant image as follows
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Figure 2.2: Pulse sequences corresponding to a) Spin-Warp and b) EPI. The white lines in
figures b) and d) show their respective trajectory in the k-space. Note that application of
the 7 pulses have been omitted from the diagram to avoid cluttering. Credit [39]
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where Ak denotes the step size between adjacent samples in the k-space. This equation
tells us that a densely sampled k-space yields a larger area covered in a MRI scan, and is of
particular importance to MRI technologists for determining an optimal sampling density
based on the desired rendering of anatomical structures. Violation of this criterion, that
is insufficient sampling density in the k-space results in image aliasing artifacts.

Of more importance to this thesis however is the second Nyquist condition describing
limitations in spatial resolution, which refers to the minimum distance for which different
image intensities can be detected. This relation is given by

Spatial Resolution o< |kpaz| (2.9)

where the quantity |k;,q.| represents the maximum sampled frequency in the k-space. Intu-
itively, an analogy can be made to a natural image whereby higher frequency components
reveal more subtle details over close proximities. Unfortunately, high frequencies are typi-
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cally also associated with noise contamination which degrades the image quality, resulting
in a lower Signal to Noise Ratio (SNR). Thus, it can be seen that improvement of spatial
resolution comes at the cost of lower SNR, which is particularly problematic for dMRI
where the desired signal is already attenuated from the diffusion of water molecules. Fi-
nally, it should be noted that an improved spatial resolution in a fixed FOV results in
an increased number of voxels, which will increase the acquisition time of the experiment.
Therefore, the ability of EPI to acquire the whole transversal plane in a single TR is offset
by the loss in SNR and spatial resolution. Because dMRI studies typically use EPI to
obtain the full set of DWIs in a timely manner, this is why a typical spatial resolution in
dMRI is about 2 mm x 2 mm X 2 mm.

2.6 Diffusion MRI

While the MRI pulse sequences described in the previous section allows one to view the
interior structure of the brain, it is unable to map the axonal tracts within the brain which
are responsible for the transfer of information. Because the diameter of these tracts are on

the order of 20 pum [26, 28], it is very difficult to identify them even during post-mortem
analysis on the subject. To overcome this issue, researchers have formulated the myelin
hypothesis [13] which states that within these axonal tracts, diffusion of water molecules

perpendicular to the axonal length will be severely hindered by the myelin sheathes en-
closing the axon. On the other hand, water diffusion along the tracts will be relatively
unobstructed. The purpose of diffusion MRI (dMRI) is to measure and classify water
diffusion behaviour.

Before proceeding to how dMRI works, it is instructive to review the concept of self
diffusion or Brownian motion. Generally speaking, diffusion is characterised by a mass
transport process in nature, resulting in the mixing mechanism of molecules or particles
[39]. While it is well known that diffusion can describe the net flux of molecules from a
high concentration region spreading to low concentration region as given by Fick’s first law,
perpetual molecular movement can be observed even after thermodynamic equilibrium is
established in the sample. This phenomenon is referred to as self diffusion, and is unrelated
to molecular transport induced by bulk motion (e.g., convection, dispersion), where the
molecules move in a coherent manner. Instead, the self diffusion (henceforth abbreviated as
simply diffusion) of any given particle over a given time can be described as a random walk
[39]. Given this revelation, it is clearly not feasible to draw conclusions on water diffusion in
the brain by observing the random walk of each water molecule within the brain. In 1905,
Albert Einstein proposed that the three dimensional random walks exhibited by molecules
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in unrestricted environments have a mean square displacement X € R? characterized by

E[X?] = 6Dt (2.10)

where D is the diffusion coefficient of the molecule in question and ¢ corresponds to the
time duration allotted for molecules to diffuse. This equation allows one to study the
diffusion behaviour by analysing the ensemble average displacement of these random walks
as opposed to each individual molecule. With this in mind, let us see how MRI can be
adapted to measure the extent of diffusion.
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Figure 2.3: Phase alignment of water molecules in the absence of diffusion maximizes the
measured signal. Credit [51]

It turns out that measurement of diffusion can be integrated into the MRI infrastructure
fairly easily by introducing small modifications to the pulse sequence. The most popular
adaptation is known as the Pulse Gradient Spin Echo (PGSE), introduced by Stejskal and
Tanner in 1965 [65]. This can be done by introducing a pair of dephasing and rephasing
gradient pulses that has the effect of desynchronizing and resynchronizing the spins of
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water molecules respectively. To prevent confusion with the imaging gradients previously
described to encode spatial information in conventional MRI, the dephasing/rephasing
gradient pairs are sometimes collectively referred as diffusion encoded gradients, or diffusion
gradients for short. Figure 2.3 shows the effect of the dephasing and rephasing gradients on
the water molecules when no diffusion is present, as well as a simplified version of how the
diffusion gradient pulses are integrated into the pulse sequence. Prior to application of the
dephasing gradient, all water molecules are in phase as shown by the common alignment
of the arrows. This is no longer true after the dephasing gradient is applied, and the phase
misalignment persists even after the dephasing gradient is turned off. Notice how there
is no apparent activity during t3, where neither of the diffusion gradients are activated.
Assuming this is true, application of the rephasing gradient will realign the spin of the
water molecules and the measured MR signal is the same as prior to dephasing. However,
in the presence of diffusion, water molecules will be experiencing displacement during ¢,
which has the effect of permuting the order of the water molecules in Figure 2.3. As a
result, the rephasing gradient will be unable to re-align the spins of the water molecules
into a common orientation. As the spins are not oriented coherently, the signal picked up
by the MRI scanner will be attenuated, with the degree of attenuation depending on the
degree of diffusion present along the direction specified by the diffusion gradients. This
gives rise to a MR image, with noticeable areas of reduced intensity in the presence of
diffusion.

Repetition of this experiment using diffusion gradients varying in strength and direction
forms a set of images collectively referred to as Diffusion Weighted Images (DWI). Note
that signal attenuation in DWIs are not the result of water molecule diffusion alone. To
isolate the effects of diffusion, dMRI also requires a conventional T; scan without apply-
ing diffusion encoded gradients. When normalizing the DWIs by the 75 scan, the signal
attenuation due to diffusion of water molecules along the direction of the diffusion en-
coded gradients is isolated. Because the directionality of the dephasing gradient pulse
characterizes diffusion along that particular direction only, we can see the necessity of ob-
taining diffusion profiles along different directions to obtain a good understanding of water
molecule diffusion behaviour. The g¢-space €2, is commonly used to denote the space of
all possible diffusion gradients. The main focus of dMRI is to sample the g-space in an
optimal configuration such that a balance is struck between acquisition time and accurate
recovery of the diffusion profile in the subject. This will be covered in more detail in the
next chapter where different variants of dAMRI are discussed.
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Figure 2.4: Example of how scan-dependent parameters are incorporated into the PGSE
sequence. Credit [39].

2.7 Diffusion parameters and the diffusion equation

We have seen how applying the dephasing/rephasing gradient pairs allows one to measure
the extent of water diffusion in the subject. Recalling that diffusion is quantified by
parameters introduced in (2.10), one would naturally wonder how the parameters are
reflected in the PGSE pulse sequence. Unsurprisingly, it turns out that the diffusion
encoded gradients play a large role in determining the parameters; namely the magnitude
of the gradient G along with the duration ¢ for which it is applied. Recall how the
imaging gradients of the scanner cause phase perturbation proportional to the integral of
the gradient pulse (2.6). Diffusion encoded gradients behave in much the same way in the
sense that increasing G or § will cause a greater extent of initial dephasing. The remaining
parameter A depends on the time interval between the application of the dephasing and
rephasing gradients. Based on the definition of the mixing time A, we can infer that a
short A causes only fast diffusion processes to occur, while having a longer A allows more
slower diffusion processes to manifest themselves. Thus, it can be seen that increased
signal attenuation will occur when 1) greater initial spin dephasing is applied , and 2)
more spatial displacement of molecules happens due to an increased number of ongoing
diffusion processes. A rough illustration showing the diffusion parameters applied to the
PGSE pulse sequence can be seen in Figure 2.4. From the above, we see that the PGSE
pulse sequence can be tuned to measure different diffusion regimes. Specifically, it was
shown in [65] the signal attenuation due to diffusion can be expressed as

17



S _ e (2.11)
So

where S and Sj represent the diffusion weighted signal and the signal acquired without
applying diffusion gradients respectively. D here is known as the Apparent Diffusion Coeffi-
cient which is used to highlight the fact that diffusion measurements represent the observed
displacement over the mixing time; how this value is evaluated will be explained in greater
detail in the upcoming DTT section. For the sake of notational convenience, the scanner ac-
quisition parameters are typically consolidated into a single parameter b = v25?°G?*(A — g)
[7]. This was widely adopted due to the simplified representation, and also emphasizes
that these scanner based parameters typically have little bearing on subsequent analysis
s —bD

once the DWIs have been acquired. Thus, (2.11) simply becomes L =e
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Chapter 3

Fundamental dMRI models

Owing to each DWI being only capable of determining water diffusion of a given intensity
along the direction specified by the diffusion gradient, it only yields a tiny bit of the
diffusion profile. Thus, to probe different diffusion regimes occurring along various spatial
directions, the PGSE experiment needs to be repeated for a large number of diffusion
gradients. This cannot always be accomplished for practical reasons. To overcome this
barrier, dMRI researchers have came up with different models and methods allowing one
to get a good grasp on diffusion behaviour while keeping the acquisition time feasible. In
this thesis, we will cover the more common models. Before that however, we will briefly
discuss various studies conducted by dMRI researchers that have contributed to a greater
understanding of the human brain.

Although the procedure for measuring diffusion of water molecules using existing MRI
infrastructure has been shown in the previous chapter, at this point it is still unclear
what conclusions can be drawn based on these measurements. Towards that end, there
have been a multitude of studies showing how dMRI data can be used in classification of
the morphology of dendrites and axons in the human brain. Early studies observed that
water molecules in the brain have a strong propensity to diffuse along the length of an
axon as opposed to the perpendicular direction, leading to the myelin hypothesis [13, 60],
which states that the myelin sheathe enclosing neural axonal tracts is extremely effective at
hindering water diffusion across the sheathe. Empirical evidence through fiber tractography
experiments has suggested similar fiber tract modelling relative to post-mortem analysis. In
2005, Assaf et al. [3] proposed the Composite Hindered and Restricted Model of Diffusion
(CHARMED) which states that the diffusion profile in white matter can be classified as a
combination of hindered diffusion exhibiting Gaussian diffusion, and restricted diffusion for
intra-axonal volumes for which non-Gaussian diffusion behaviour is observed. While this

19



model has been positively noted by accounting for the presence of restricted and hindered
diffusion behaviour through the notion of volume fractions, its greatest limitation stems
from inability to accurately represent bending and fanning distribution of axons [31].

A more recent study by Zhang et al. [31] attempts to present a more complete depiction
of diffusion behaviour by extending the classification of brain tissue to grey matter, which
is known to contain a high degree of axonal orientation dispersion. The proposed Neurite
Orientation Dispersion and Density Imaging (NODDI) scheme argues that the observed
diffusion signal can be expressed as a sum of individual contributions from intra-cellular,
extra-cellular and CSF compartments. Specifically, the intra-cellular compartment refers
to the area enclosed by dendrites and axons, which are modelled by a series of cylinders
with zero radius to emphasize the observation of unhindered diffusion along an axonal
length as opposed to highly restricted diffusion in the perpendicular direction [$1]. On the
other hand, extra-cellular compartments referred to the area surrounding dendrites and
axons, which are represented by hindered yet unrestricted diffusion behaviour. Finally,
the diffusion within CSF compartments were characterised by unhindered and unrestricted
diffusion, modelled by a symmetric Gaussian function and generally referred to as isotropic
diffusion.

Owing to the ability of dMRI to differentiate between healthy and diseased patients by
noting discrepancies in the pattern of cerebral diffusion, it has become an invaluable tool for
clinicians and researchers towards diagnosing diseases such as Multiple Sclerosis [33]. The
continuing development of more sophisticated characterization of diffusion behaviour in
brain matter has lead to an interest of different dMRI models to more effectively illustrate
different aspects of diffusion behaviour, which is the primary focus of this chapter.

3.1 Diffusion Tensor Imaging

The preceding discussion on the characterisation of diffusion behaviour in the human brain
encompassed the notion of hindered and restricted diffusion initially proposed by Assaf [3].
Whereas restricted diffusion described a non-Gaussian displacement distribution observed
in neuronal tissues under the presence of strong diffusion gradients [53], hindered diffusion
can be modelled by a Gaussian displacement pattern. Usage of the terms hindered and
restricted suggests that the displacement probability is not equivalent in every direction.
Indeed, physical obstruction can reduce the extent of diffusion in any given direction.
When this occurs, the overall diffusion process is classified as being anisotropic. On the
other hand, isotropic diffusion behaviour refers to the case where displacement is equally
probable in all directions.

20



In the early days of dMRI where sophisticated frameworks for describing diffusion
processes in the brain did not exist, it was critical that diffusion behaviour could be inferred
from a limited number of DWIs. Towards that end, one of the first widespread techniques
for working with dMRI data was known as Diffusion Tensor Imaging (DTI). It assumes
that the diffusion displacement probability followed a Gaussian distribution, which today
we know accounts for the unhindered diffusion but is incapable of properly describing
restricted diffusion. Despite this shortcoming, DTT is still the most common protocol used
in clinical studies. As its namesake implies, DTI uses a symmetric positive definite 2nd
order tensor D, which made it possible to characterize anisotropic diffusion. Note that the
use of the tensor does not exclude the possibility of isotropic diffusion, in which D becomes
proportional to a 3x3 identity matrix.

Dzz Dzy D:ch
D= |D, D, D, (3.1)
Dzm Dzy Dzz

Each of the diagonal terms within the tensor can be interpreted as the diffusivity along
the directions aligned with standard Cartesian axes x,y, z. Given that, it is important not
to jump to the conclusion that cross terms indicate the diffusivity along the direction
containing equal weighting between two axes. For example, while D,, represents the
diffusivity along the y-axis, D,. does not correspond to diffusivity along the unit vector
\%(1, 0,1). Rather, the cross terms denote the correlation between the diffusivity along
each Cartesian axes. Consequentially, we can see that the tensor D is in fact symmetric
and has precisely 6 unknown coefficients {D,,, Dy, D, Dyz, Dy, Doy}

To account for differences in diffusion measurements between different directions in the
anisotropic case, the ADC is a scalar value describing the diffusivity along a given direction
and has units [s/ me]. Different dMRI models provide their own approach for evaluating
the ADC. In the case of DTI, the ADC is evaluated using the aforementioned diffusion
tensor D, by observing the signal attenuation due to diffusion can be extended from (2.11)
into the following equation

S bu”Du

— =e 3.2

= (32)
where u is a unit vector denoting the desired diffusion direction, and b = *62°G?(A — )
is the b-value containing the scanner parameters v, d, A as introduced prior. Since the
diffusion tensor has a total of 6 unknowns, a minimum of 6 DWIs is required to fully

solve for D. Furthermore, an additional MRI scan in the absence of diffusion encoding
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is required for normalization purposes. In practice DTI experiments use 20 to 30 evenly
distributed directions over the unit sphere [1], after which a least squares fit could be used
to minimize the effect of measurement noises. An extensive review of such methods can

be found in [12].

Although the diffusion tensor is capable of characterizing the diffusion profile in the
DTI model, by itself it does not provide an intuitive metric which would allow one to relate
the observed ADCs to the physiological properties of the underlying cerebral matter. For
this reason, researchers have instead looked at the three eigenvalues {\;}3_; of the diffusion
tensor and developed several useful metrics. These metrics include Mean Diffusivity (MD),
Fractional Anisotropy (FA) and Volume Ratio (VR) [71] which are defined as follows.

MD = § = M tAetAs )\1+)\2+)\3
A = N2+ (Ao — N2+ (A3 — N)2
FA =
\/7\/ )\2 + A3+ A3
A1A2A3
VR = e

Of particular interest to clinicians is the FA metric (FA € [0,1]) because it allows
one to infer the degree of anisotropy at a given location. Under isotropic conditions,
the eigenvalues are equivalent and the resulting FA approaches 0. Conversely, when it
is strongly anisotropic the eigenvalue corresponding to that direction will be very large
relative to the other two. In this case, the FA metric yields a value close to 1.

Unfortunately, it has been demonstrated that the DTI model is overly simplistic for
modelling neural fiber tracts due to its assumption of unrestricted diffusion, which is only
valid for locations with a single dominant fiber orientation [70, 2]. In the presence of
multiple fibers with different orientations (e.g., crossing, kissing configurations), DTT is
incapable of providing a satisfactory representation. For this reason, DTT is often used to
view fiber tracts in the corpus callosum owing to the relatively aligned fiber bundles [9]. For
other parts of the brain with complex fiber structures such as projections of callosal fibers
to the cortex [20], we must resort to different methods of classifying diffusion behaviour.
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3.2 Diffusion Spectrum Imaging

We have seen in the previous section that characterizing the diffusion behaviour with a
Gaussian distribution is valid for areas with a single dominant fiber orientation, but is
rendered inaccurate for more complicated geometries with multiple fiber orientations. One
major reason for this is the assumption of a implicit model with the mindset of simplifying
the underlying diffusion process. In this section, we will describe Diffusion Spectrum
Imaging (DSI), another perspective proposed by Wedeen in 2005 [74] on recovering water
diffusion behaviour without imposing a model on the diffusion profile. The philosophy
behind DSI is best understood by revisiting the fundamental physics surrounding diffusion.

Central to DSI is the notion of diffusion propagator P(x1,x2,A) and the wave-vector
q. The diffusion propagator describes the probability a water molecule at initial location
x; undergoes a spatial displacement to x5 during the mixing time A. As mentioned
previously it is more useful to use an aggregated measure of the diffusion behaviour as
opposed to classifying each random walk separately. Towards that end, the ensemble
average propagator (EAP) is classified as the total probability of spatial displacement
to xg from all possible initial spin densities p(x;) during a given mixing time A. The
corresponding formula is thus

P(x,A) = /R3 p(x1)P(x1,x2, A)dxy (3.3)

where x = X5 — X7 represents the displacement vector. On the other hand the wave vector
q is, similar to the aforementioned b-value, an alternate interpretation of the scanner
parameters GG, § and is given by

voGu

2m
where u is a unit vector denoting the direction of diffusion encoding gradient. A quick
warning from this simplified definition of the wave vector stems from the diffusion gradient
pulse used in PGSE, which is applied for a very short duration compared to the mixing
time (e.g., 0 << A).

q= (3.4)

Using the formalism of the EAP and wave vector, it is possible to establish a connection
between these and the normalized diffusion signal E(q). Since a phase change is induced
on the spin density during the transition from x; to xa, the resulting average spin density
can be expressed as P(x,A)e?™@*. Integrating over all possible displacement vectors to
consider all initial spatial locations, we arrive at the formula
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E(q) = /R 3 P(x, A)e*™a*dx (3.5)

from which we can deduce there exists a Fourier relationship between the normalized
diffusion signal F(q) and the EAP. Through the EAP, we would now be able to completely
classify the diffusion behaviour. Note that DSI is completely independent of a model for
the underlying diffusion process. However with this advantage comes a severe downfall for
utilizing DSI. For DSI, the g-space must be sampled very densely in order for the EAP
to be correctly reconstructed from the diffusion signal [1]. As noted in the MRI section,
acquisition time is a very practical requirement owing to patient motion for in vivo analysis.
A typical DSI experiment requires anywhere between 200 and 512 brain volume scans [75],
which renders it infeasible with the existing methodology and technology.

3.3 High Angular Resolution Diffusion Imaging

So far we have seen how DTI and DSI represent opposite ends of the spectrum in terms
of their ability to represent diffusion behaviour and acquisition times. Unfortunately this
makes neither of them a suitable candidate for clinical use. To alleviate this, Tuch [72]
proposed a new method of sampling the g-space named High Angular Resolution Diffusion
Imaging (HARDI). The main innovation of HARDI stems from its goal of capturing angular
information at the expense of magnitude. As such, the magnitude of the diffusion gradients
is kept constant for all g-space samples. Collectively, the g-space samples in HARDI take
on the appearance of a discretized sphere. To reduce the effects of correlation between
data points, a uniform distribution of g-space samples is desired. Furthermore, since the
diffusion process is assumed to be symmetric sometimes only the upper hemisphere is used.

Clearly, one would question whether capturing diffusivity within a narrow regime would
present a good understanding of diffusion behaviour. It turns out that high angular res-
olution results in the ability to resolve the orientation of fibers, whereas radial resolution
is more effective at capturing details at a very microscopic scale but is severely hindered
by its small FOV [1]. Thus, while fine radial resolution is important for inferring char-
acteristics such as axon diameter, it is less important for applications of dMRI such as
understanding the trajectory of neural fiber tracts. Moreover, provided the b-value is cho-
sen carefully such that a large variety of diffusion processes occur without sacrificing signal
to noise ratio, the acquired data provides rich diffusion information. In some cases, several
concentric spherical shells in g-space are deployed during data acquisition; this is known
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as multi-shell diffusion imaging [7%, 27] and provides some compromise to the problem of
limited radial resolution.

For the above, a large portion of the ongoing research in fiber tractography uses HARDI
data. But that is only the tip of the iceberg as HARDI simply represents the acquisition
method of using diffusion gradients spread over a spherical shell. There have been many
proposed methods of handling the data ever since Tuch introduced the concept of HARDI
to the AMRI community, some of which borrow fundamental ideas from DTI and DSI. The
next section will cover some of the more relevant approaches in greater detail.

Figure 3.1: Figure illustrating how the g-space is sampled for (a) DSI (b) DTT (¢) HARDI
(d) Multi-shell Diffusion Imaging. The g-space origin is highlighted in red. Credit [1].

In conclusion, this chapter looked at different methods of modelling diffusion MRI data.
From the simple tensor model of DTI to the EAP formalism used in DSI, the advantages
and downfalls of each has been laid out in detail. Figure 3.1 provides an illustrative view
of how the g-space is sampled; the dense rectangular lattice sampling of DSI, the 6 samples
required of DTI, and the spherical shell sampling present in HARDI. The rightmost figure
is more difficult to discern, but upon closer observation one can observe the multiple
concentric spherical shells signifying a multi-shell model.
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Chapter 4

Working with HARDI data

Over the years there have been different philosophies towards handling HARDI data. The
first type is model based, namely by modelling each voxel by a small number of individual
diffusion compartments. The other type strives to retain the EAP formalism presented by
DSI while maintaining the modest acquisition time required of HARDI data.

4.1 Gaussian Mixture Model

One of the downfalls of DTT was its inability to represent areas with more than one domi-
nant diffusion orientation. To combat this shortcoming while retaining the simplicity of a
Gaussian diffusion profile, the Gaussian Mixture Model (GMM) was initially proposed by
Tuch [70]. Its formalism relies on two key assumptions about the diffusion process which
are fairly general and adhered to in practice [70]. Firstly, heterogeneity of the diffusion com-
partments within each voxel is restricted to several distinct homogeneous regions. Secondly,
the aforementioned distinct homogeneous regions are separated by a large enough distance
guaranteeing only slow exchange happening between regions. In conjunction, these criteria
serve to minimize the dependencies between each individual diffusion compartment. Under
these assumptions about the diffusion process, every spatial location can have its diffusion
profile modelled by a linear combination of Gaussian functions, each following the tensor
model introduced in DTI and is used to represent a single diffusion compartment. Recall
that the diffusion tensor D from DTI was used to characterize Gaussian diffusion through

5 _ Dy (4.1)

So
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where as before b = 7262G?*(A — g) represents the diffusion regime of interest and u defines
the unit vector in the direction of the applied diffusion encoding gradient. Tuch’s idea
was to fit an individual tensor within each of the N diffusion compartments, giving rise
to the set of tensors {D;}¥ ;. To facilitate numerical estimation of the tensors {D;}¥ ,
Tuch proposed to parametrise them using Euler angles. Furthermore, the eigenvalues of
the tensors were predefined to avoid individual tensors from assuming oblate forms. In this
manner, the i*" diffusion compartment was modelled as v; = g~tu"Dju

Generally speaking, the contribution of each individual diffusion compartment will not
be equivalent and must be noted accordingly. Towards that end, the term volume fraction
{ £}V, was introduced to indicate the degree of presence for each compartment at the given
spatial location. Noting that these volume fractions represent the proportion of the voxel
occupied by each compartment, we have f; € [0,1], i = 1,2... N. Since the magnitude
of the diffusion signal is tightly coupled with the strength of diffusion in the sample, the
volume fractions are normalized such that > f; = 1. Through the formulation of each
distinct Gaussian function and the corresponding volume fractions, the theory of GMM
states that the diffusion signal at each voxel is formed from a linear combination of N
diffusion compartments in the following manner

N N
E(Q) = Z fivi = Z fe~tu T Diu (4.2)
i—1 =1

It should be noted that in practice, the absence of a priori information on the number
of diffusion compartments within any given voxel dictates that N must also be estimated.
While in theory the choice of N can be any natural number, Tuch’s study concluded that
[70] values of N > 2 lead to stability issues during the model fitting. The procedure
for estimating unknown parameters at each voxel required the minimizing of the error
function x between the estimated model and observed diffusion signal E(qy) for each
diffusion gradient

X=Y (Z fie D E(qk>> (4.3)

i=1
which was subsequently solved using standard methods of numerical optimization. Unfor-
tunately, it was reported that this minimization problem was plagued by the existence of
local minima, which had to be accounted for by utilizing multiple restarts. Furthermore,
it can be seen that the minimization of y is non-linear in nature.
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While the numerical issues as well as inability of modelling using a larger number of
diffusion compartments poses a severe limitation, nevertheless GMM resulted in a paradigm
shift in dMRI because it showed that DTT was ineffective at representing diffusion behaviour
at the higher b-values (b > 1000s/mm?) conducted in this study. This revelation led dMRI
researchers to build upon the theory of GMM towards the development of more advanced
models, one of which is discussed in the next section.

4.2 Diffusion Basis Functions

The main motivation of the Diffusion Basis Functions Decomposition technique proposed
by Alonso et al. [57] was to overcome the numerical issues surrounding the original GMM
approach. Towards that end, they proposed to use a linear combination of Gaussian
functions illustrating different primary diffusion orientations to represent the observed
diffusion signal. Similar to GMM, these Gaussian functions were represented using a
diffusion tensor D with pre-defined eigenvalues best describing the diffusivity of the sample
in the presence of anisotropic diffusion. In their paper this set of Gaussian functions
Y = {;}| was referred to as the set of diffusion basis functions (DBFSs).

To represent the principal orientation of each DBF 1);, the initial tensor D must be
adjusted accordingly to formulate D;. For the i DBF, this can be facilitated by applying
a rotation matrix R; to the initial tensor to construct the modified tensor D; = RyDR{.
Replacing D by Dj, it follows that the function for the i DBF can be expressed as
Yi(b,u) = e~u™Diu For the sake of notational convenience, the dependence of the DBFs
on b, u is sometimes omitted but understood to exist implicitly. Using the notion of DBF's
and the assumptions of the underlying diffusion process from GMM (slow exchange between
compartments), it was stated that the observed diffusion signal could be represented as

N
i=1

where Sy denotes the MR signal acquired without diffusion encoding and used for normal-

ization purposes. The primary innovation from DBF decomposition stems from using a

pre-computed set of N tensors, as opposed to estimating the tensors in conjunction with the

volume fractions and N as in GMM. Thus, only the volume fractions { f;}}*; corresponding

to each DBF requires estimation.

Before concluding the discussion, a note on the practical implementation of DBF de-
composition is prudent. The first concern involves the choice of orientation for each of the
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N DBFs. Under general circumstances, it is assumed that prior information about the un-
derlying diffusion process is unavailable. In that case, the set of orientations should be as
uniformly spaced out to provide optimal coverage. Different appraches such as modelling
via the Thomson problem and recursive tessellation of platonic solids have been adopted
by dMRI researchers [38, 29, 70].

4.3 Q ball Imaging

Recall the discussion of DSI in the previous chapter, which characterises self-diffusion using
the EAP formalism without reliance on the Gaussian diffusion model. It turns out that this
idea can be adapted to data acquired through HARDI. Since the primary motivation of
HARDI is to represent the diffusion profile at high angular resolution, one way of applying
this concept to the diffusion model is to look at how the diffusion profile is distributed
along different directions on the unit sphere. For example, a uniform spherical distribution
would indicate isotropic diffusion since diffusion among all directions is equally likely.
On the other hand, anisotropic diffusion could be represented by a symmetric spherical
distribution consisting of two identically shaped ellipsoids fused together at the origin. This
method of modelling the diffusion profile as a spherical probability distribution function
is known as an Orientation Distribution Function (ODF). To see how EAP can be linked
to ODF, consider how it represents the probability of spatial displacement to any given
location. In 2004, Tuch introduced the ODF #)(u) as a function of the EAP by integrating
out the radial component, effectively creating a marginal distribution as follows [69]

P(u) = %/Ooo P(ru)dr (4.5)

where u indicates an arbitrary unit vector indicating direction, and Z is simply a unit-
less normalization constant. Note this approach assumes that the EAP at different radii
are weighted equivalently. However this has been pointed out by Aganj et al. [1] that it
does not consider the fact that the differential spherical volume is greater at higher radii.
Towards that end, it has been proposed that the ODF 1)(u) is instead computed as

P(u) = /000 P(ru)ridr (4.6)

where 1 (u) is inherently normalized. In practice, it was noted by Tuch that performing
radial projection on Cartesian sampled data from DSI would inevitably lead to Cartesian
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artifacts during mapping from Cartesian coordinates to spherical coordinates [69]. Needless
to say, this problem must be solved before attempting ODF construction from dMRI data.
Tuch tackled this problem through two major contributions; firstly by introducing the
idea of collecting dMRI data over a spherical shell, thereby avoiding the aforementioned
Cartesian artifacts while at the same time being able to quantify the degree of angular
resolution of the dMRI data. Tuch’s other major contribution was by showing that the
diffusion ODF could be constructed from dMRI data collected in this manner by using the
Funk Radon Transform (FRT) [71], a mathematical tool proposed by Paul Funk in 1915
[31]. Tt is an operator R taking a spherical function as input and outputting a spherical
function in return. Let v be a unit vector representing the direction of an arbitrary diffusion
gradient in a dMRI acquisition. Then, the FRT of a spherical function defined at v, s(v),
is evaluated by taking the integral of s over all vectors orthogonal to v. Mathematically
this can be expressed as

Rls(v)] = /L " s(u)du = /€S2 s(u)d(utv)du (4.7)

where 6(-) is the well known Dirac delta function. If we assume v to be situated at the
North Pole of the sphere, it turns out that the integral over S in (4.7) is defined over
the set of vectors situated on the equator; this is also referred to as the great circle of v.
One key point regarding this implementation of the FRT is that it operates on functions
defined in the S? space. Since the diffusion gradients of g-space belongs to R? as opposed
to S2, it is not directly applicable to HARDI. Fortunately, this problem can be resolved
fairly easily by restricting the magnitude of the vectors such that a spherical shell of radius
¢’ is formed in the g-space. With this in hand, the FRT can be extended to R?® without
compromising the result in the following manner

RIf(V)] = FE)(vx)a(llx]l2 — ¢')dx (4.8)

x€R3

Assuming that HARDI data over the diffusion gradients in g-space corresponded to
a spherical function, Tuch’s proposal was to apply the FRT directly to the HARDI data
E(q) to estimate the ODF v (u) for a given diffusion gradient direction u, resulting in

V() = ZRIE(q) (1.9

where q is the wave vector as introduced in the DSI section. This method of constructing
the ODF is referred to as Q-ball Imaging or QBI, owing to the notable geometry of a spher-
ical shell present in g-space. There are several interesting points behind the deceptively
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simple equation. Firstly, that the FRT does not inherently normalize the data, however for
the ODF to be interpreted as a probability distribution function it is necessary to introduce
the normalization constant Z. Another point of interest is that (4.9) represents a mere
approximation of the true ODF. Last but not least, observe that the ODF expression on
the left is only direction dependent, whereas the wave vector q has magnitude information
as well. This notation emphasizes that the ODF is formulated such that it is independent
of magnitude. While results from HARDI data has shown that Tuch’s QBI proposal is
successful at recovering the diffusion orientation, it has been noted that the approximation
has some undesirable behaviour. Notably, Barnett [0] argues that usage of the FRT leads
in the diffusion propagator being weighted by a zeroth order Bessel Function of the 1st
kind .Jy and other terms as opposed to the desired Dirac delta function in the integration

¥(u) = 21q’ / / /i;P(r,@,z)rJO(QWq’r)drdez (4.10)

where P(r,6,z) is the cylindrical coordinate representation of the EAP, and as before ¢’
refers to the radius of the spherical shell corresponding to the HARDI data. The principal
reason behind Barnett’s argument was that xJy(x) grows in an envelope proportional to the
square root of the parameter x = 27¢'r, which obviously did not resemble the behaviour
of a Dirac Delta. Nevertheless, the success of the QBI approach for working with HARDI
data has lead dMRI researchers to pursue more computationally effective methods in this
area, which will be detailed in the next section.

4.4 QBI with Spherical Harmonics

The implementation of QBI using the FRT is subject to several problems in practice.
Notably, the FRT involves integration of the HARDI signal alongside the great circle
of the sphere. This is problematic from a computational efficiency perspective because
the g-space sampling can never be dense enough to provide a continuum of data. In
that case, spherical interpolation must be applied between the existing g-space points to
accommodate estimation of the spherical function at points where data is unavailable. To
alleviate the computational burden of computing the FRT, another approach allows an
easier method of evaluating the spherical integral of FRT. This relies on the theory of
Spherical Harmonics (SH), which will be introduced shortly.

A function F(x,y, z) in R? is defined to be harmonic if it satisfies the Laplace equation,
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which is to say
PF  O*F  O*F
AF = =0 4.11
0x? + 0y? + 072 (4.11)

Since it is more convenient to deal with spherical coordinates when working with spher-
ical functions such as the ODF, the Laplace equation can be expressed in spherical coor-
dinates with the standard change of variables

9 [ ,0 1 0 0 1o
— — — — | = 4.12
[8q (q aq> T 609 (Smeae) sin2ea¢2] 0 (4.12)

qg=\x>+y>+ 22

0 = cos™
x2 + y + 22
= tan— (E)
x
where 0 € [0, 7] and ¢ € [0,27). Since HARDI is mainly interested in the angular portion
of the data, the angular part of the solution to the above is of more practical use in this
context. With that in mind, a slight abuse of notation leads to the term spherical harmonics

referring only to the angular solution of (4.12). Letting [ € N and m € [—,],m € Z, this
definition of the spherical harmonics Y, (6, ¢) take the form

Yi(0, 6) = <—1>m\/ g P oty (4.13)

where P/™ are the associated Legendre polynomials and are given by

1 — I2)m/2 qHm

m (
FM@) = 5 quim

(2% — 1) (4.14)

When the parameter of the associated Legendre polynomial P™ is a trigonometric
function (e.g., x = cos @ in our case), it turns out that the result is a polynomial in terms
of the trigonometric function.

Since the number of g-space samples made in HARDI data directly determines the
number of coefficients we can fit for the spherical harmonics basis functions, it is imperative
that we make efficient use of them. Towards that end, several assumptions are made
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about the HARDI signal [30]. Firstly, the corresponding ODFs are symmetric on the unit
sphere, and therefore odd spherical harmonic coefficients would evaluate to zero. Secondly,
collected HARDI data are real valued. These assumptions allow us to reformulate the
spherical harmonics in HARDI y;* which uses only the real and symmetric subset of SH
functions, in the following manner [32].

SO ()M 0<m <]

V2
Y= Y0 m=0 (4.15)
(DY Y < m <0

The first few orders of the reformulated spherical harmonics are illustrated in Figure
4.1; from this it can be inferred that higher order spherical harmonics tend to exhibit many
jagged features and are not suitable for modelling ODF's which, like real life phenomena,
tend to be relatively smooth in nature. As an example, the spherical harmonic expansion
of HARDI signals at b = Z’)O()Os/mm2 truncated to | = 4 provides a reasonable balance
between angular resolution and accuracy; a more detailed analysis of the tradeoffs for
different values of [ and b can be found in here [36].
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Figure 4.1: Representation of the Real and Symmetric Spherical Harmonic basis functions
up to [ = 6. Note that they functions have been normalized such that they lie in the range
[-1,1]. Credit [4].

As noted above, the set of SH functions satisfy orthogonality, which is to say

A7
20+ 1

/ ' / "0, O (0, 9)dédd = —T (1 — 1)S(m — m) (4.16)
6=0 J ¢=0
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Since any square-integrable spherical function may be expressed as a linear combination of
the spherical harmonics, the HARDI signal s(6, ¢) can be approximated with a truncated
spherical harmonic expansion up to order L in the following manner

L !

s(O,8)~ Y. Y (0, 9) (4.17)

1=0,l€2N m=—1

where ¢]" are the coefficients of each spherical harmonic in the expansion and [ € 2N sig-
nifies that only even orders of [ are considered. Henceforth the notation [ € 2N will be
dropped for brevity in notation. Note that the expansion also has an equivalent represen-
tation as a function of the unit vector v as opposed to the angles {6, ¢}; this will be used
interchangeably to simplify the notation whenever possible. We replace the definition of
the HARDI signal in the calculation of the ODF using the FRT, which leads to

b(v) = / . 5(uTv)s(u)du (4.18)

Thus, the primary difficulty in evaluating the ODF is now reduced to evaluation of the
spherical integral on the last line of (4.18). It turns out this spherical integral can be very
elegantly simplified using the Funk-Hecke Theorem, which states a function f(t) defined
on the interval ¢t € [—1, 1] satisfies

f@TV)Y™(u)du = 27Y;"(v) /_1 f)P(t)dt (4.19)

ues?

Applying the Funk-Hecke Theorem to the above results in a trivial integral that may
be evaluated using the sifting property of the Dirac Delta Function. Thus, the resulting
ODF simply becomes a linear combination of spherical harmonics scaled by 27 F;(0),

L l

Yv) =) Y 2rR(0)e " (v) (4.20)

=0 m=—1
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In practice, it is rather unwieldy to retain the double summation when evaluating the
ODF. By observing that for a given order L, there are precisely R = W of the real
and symmetric spherical harmonic basis functions, the resulting expression can be consoli-
dated into a single summation which can be subsequently evaluated by a matrix vector mul-
tiplication (e.g., ¥(v) = Zf;o 21 P; (0)cTy(v), where {ji} = {0,2,2,2,2,2,4,4,--- } is
introduced to preserve the mapping between different the different orders of SH functions).
The usage of spherical harmonics towards evaluating the ODF via the Funk Radon Trans-

form has become very prevalent due to the speed and ease of computation.

4.5 Spherical Ridgelets

The theory of spherical ridgelets was introduced by Michailovich et al. [50] to provide
an alternative representation of HARDI signals. The primary motivation behind this de-
velopment can be attained by examining the formation of a diffusion signal from GMM
theory, which says the diffusion signal measured in any given voxel can be classified as
the summed contribution from N compartments, where the diffusion behaviour within
the " compartment consists of a primary diffusion orientation v; and is modelled by an
anisotropic Gaussian function. Since diffusion results in attenuation of the measured MR
signal, we would expect the net signal contribution of the i compartment (towards the
overall signal) to be weak along v;. On the other hand, we would see strong signal con-
tribution along directions perpendicular to v due to low degrees of diffusivity along those
directions. By summing the signals from the N departments, we can deduce the majority
of the energy from the resultant diffusion signal would be concentrated along the N great
circles. Unfortunately, the spherical harmonics proposed in the previous section do not
share this property and thus it was argued they are not optimal for representing HARDI
signals. To tackle this problem, it was suggested that the Gauss-Weierstrass Kernel K
defined at orientation v was used to generate a function of the form

= on+1
47

KV(U) =

n=0

et OPp (u-v) (4.21)

where once again P, denotes the associated Legendre polynomial of degree n, p is a scalar
controlling the bandwidth of the resulting kernel, and u is a unit vector indicating the
spherical coordinate at which K, is evaluated. At this point it should be noted that the
dependence of v and u in Ky (u) is restricted to the quantity u - v, and thus K, (u) can
consequentially be classified as a zonal function. Crucial to the development of spherical
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ridgelets is the addition theorem of the Legendre polynomials that states

Py(u-v)= ) Y"(wYy"(v) (4.22)

m=—I

Unfortunately, K, (u) is ill-equipped for representation of HARDI signals owing to
majority of its energy being concentrated along v. However, it turned out that application
of the FRT to K, provided a remedy to this problem. Towards that end, the ridgelet
generating function (RGF) ®, was constructed by integrating K, over the great circle
o(v) situated about v.

Dow) = 5 / ) el (4.23)

where 7(q) is used to denote the standard rotational invariant measure on S?. It was
previously seen that the Funk-Hecke Theorem (4.19) associated with spherical harmonics
resulted in considerable ease towards evaluation of the spherical integral. The presence
of P,(u-v) in conjunction with the addition theorem allows us to use the Funk-Hecke
Theorem, resulting in

1 S2n+1
Oy(u) = o 3 ”4: e P (0 v) (4.24)
n=0
where )\, = 2m(—1)"/22 0l Ly s even
0 ,n is odd

It was subsequently shown that with an appropriate choice of bandwidth p, RGFs
provided a good approximation of the diffusion signal within a GMM compartment owing
to the aforementioned concentration of energy around the great circles. Therefore, RGF's
presented a natural choice of generating function towards HARDI signal decomposition.
Furthermore, this was done with one single carefully tuned kernel K, as opposed to the
whole collection of Spherical Harmonic functions! Along that note however, while an ideal
value of p could be selected to represent the &t diffusion compartment, it did not necessarily
imply the same p would perform equally well for other diffusion compartments. This
observation motivated the development of applying multiresolution analysis towards the
proposed RGF's, thereby allowing reconstruction of the HARDI signal via scaled versions
of the RGF.
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Observe that the definition of the Gauss Weierstrass kernel (4.21) included the function
et " a discrete analogy of the continuous function r,(z) = e *@+1. Constructing
dilated versions of x, using j € Ny to define the scaling factor results in

k() = K,(2772), where j =0,1,2--- (4.25)

Substituting ;(n), the discretized version of x;(z), into the original definition of the
Gauss Weierstrass kernel allows one to formulate the set of scale-discrete scaling functions
in the following manner

K=Y 2”4; Lo )Pat), te[=1.1] (4.26)

where the parameter t replaces u - v from the original definition in efforts to simplify the
notation. A particular desirable characteristic of K(t) was its compliance to the discrete
approzimation identity, which states that a function F' € L?(S?) can be represented via
convolution with Kj(t) at sufficiently fine scale via

jlggo |F—K;xF||=0 VF e LS (4.27)
where (H * F)(v) = . H(v-u)F(u)dn(u)

In accordance with standard wavelet analysis, the spherical wavelet W;(t) = K44 (t) —
K;(t) was proposed to represent the difference function between two successive resolutions.
Denoting the operation of convolution by x, this allowed a function F € L%*(S?) to be
reconstructed via

F=KoxF+Y W;F (4.28)

J=0

So far, the discussion of multiresolution analysis was applied towards scaled discretized
versions of the Gauss Weierstrass kernel K. Recalling that RGFs were related to K by
means of the Funk Radon Transform, is it possible to extend this analysis towards RGFs
as well? It turns out that the answer is yes, but the rigorous proof of this is beyond the
scope of this thesis and can instead be found in the original works [50]. Proceeding under
this assertion, the base RGF @, corresponding to orientation v was defined as

Dou(w) = — 3 L o) Pau - v) (4.29)



The next step is to build the corresponding spherical ridgelet ;. as the difference
function between successive resolutions of the RGF.

Yiv() = @54 v(u) — @54 () (4.30)
1 =2n+1

= 5 2 Ml () = R )

As a side note, spherical ridgelets were given this name owing to their property of having
majority of its energy concentrated along the great circles with respect to their defined
orientation v. This is as opposed to the aforementioned spherical wavelet functions, which
instead have energy concentration around v. To illustrate these properties, the spherical
ridgelets at the first three resolution levels are presented in Figure 4.2.

o o0

j=2 IR
000000 eee©e0e®
000000000

Figure 4.2: Illustration of Spherical Ridgelets created using j = 3 resolution levels, and
bandwidth p = 2.
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It should be noted that the set of spherical ridgelets are not linearly independent, in
the sense that they form an overcomplete frame as opposed to a basis. Thus, there is
no unique representation of the HARDI signal using spherical ridgelets. Although at first
glance this may seem to be a detrimental characteristic, on the contrary it allows one
to specify regularizers based on assumptions about the behaviour of a typical HARDI
signal. For example, the notion of sparsity in spherical ridgelet coefficients was explored
in the original work [50], where it was proposed to recover the set of coefficients using the
orthogonal matching pursuit algorithm [68].

In this chapter a variety of methods of working with HARDI data have been intro-
duced. As we can see, GMM and DBF decomposition methods relies on the fundamental
assumption that the proposed model is appropriate for modelling the underlying diffusion
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behaviour. At the same time, they are advantageous in the sense that they offer robust-
ness to noise over model-free approaches due to their avoidance of physically improbable
solutions [57]. On the other hand, the representation of a HARDI signal using spherical
ridgelets hinges on the criterion that they provide a sparse representation of HARDI signals.
This representation provided a useful method of inferring primary diffusion orientations
through the notion of an ODF.
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Chapter 5

Resolution Enhancement in Spatial
and Angular Domains

Now that different approaches to dMRI have been presented, we will look at a practical
application of how they can be used to model the location and shape of neural fiber tracts
(henceforth abbreviated as fibers) in the brain. This field is also known as fiber tractog-
raphy, and has been performed in different studies across different dMRI techniques. For
example, DTI tractography was employed to explore morphology on the corpus callosum
at the mid-sagittal level [37]. Another tractography study using DSI data was conducted
by Wedeen et al. [75] in efforts to provide accurate anatomical modelling of fibers in the
centrum semiovale among others regions renowned for exhibiting complex fiber geometry.
This thesis will focus on working with HARDI data since it provides a very appealing
balance between acquisition time and angular resolution, both of which are very critical
factors in fiber tractography.

Before proceeding with the discussion on available tools and methods for resolving low
resolution dMRI data, let us first re-emphasize reasons for this shortcoming. Namely, why
are long acquisition times particularly prevalent in dMRI as opposed to other variations of
MRI such as structural MRI? Since dMRI data consists of entire brain volumes scanned K
times, where K corresponds to the number of deployed diffusion gradients, the scanning
time scales linearly with respect to K. In HARDI, these diffusion gradients are chosen
to represent diffusion behaviour along different orientations. This is as opposed to struc-
tural MRI in which one acquisition provides the necessary information required to identify
different anatomical structures as well as the presence of pathologies within a patient.

On the other hand, spatial resolution is governed by the acquisition protocol of the MRI

40



scanner. We have previously discussed how EPI acquires the entire k-space in the time
frame of one TR. For dMRI, EPI dominates the scene as the prevalent acquisition method
due to the drastically reduced scan times. At the same time, dMRI suffers from inherent
limitations of EPI, namely the reduced spatial resolution. Unfortunately, spatial resolution
is critical towards effective fiber tractography due to inevitable partial volume effects [2]
appearing at low spatial resolution. For example, if the voxel size was sufficiently large that
it encompasses tissues from both grey and white matter, resolving the fiber orientations
at that spatial location would be much more difficult than a more favourable case where
different tissues can be isolated into different voxels at sufficiently high spatial resolution.
Thus, the primary goal of this chapter will be looking towards methods that can help
alleviate the difficulties of working with low resolution dMRI data, from both spatial and
angular perspectives.

5.1 Spatial Methods

There have been many proposed methods in the literature to improve the spatial resolution
of dMRI images, and they can be loosely classified as being either post-processing or
scanner-based techniques. Scanner based techniques typically increase spatial resolution
by increasing the magnetic field, improving the performance of the gradient-switching
process or sacrificing the Field-of-View (FOV). While it has been successful in several
applications [34], improving the hardware is not always feasible as MRI scanner upgrades
tend to be very expensive. The technique involving FOV reduction has seen success in
specific applications such as imaging of the spinal cord [77], but is not suitable for fiber
tractography since it gives rise to the possibility of a fiber not being captured in its entirety.

Post-processing techniques of improving spatial resolution can be further classified as
being either single-frame or multi-frame. In multi-frame super resolution, a series of low
resolution dMRI images representing the same DWT are acquired. The images are acquired
such that each is offset by a sub-voxel with respect to one another. In theory, unique in-
formation can be collected from each low resolution image in this manner. Therefore, the
low resolution images can be fused together to reconstruct a single image at higher spatial
resolution. One such study conducted by Peled et al. can be found in [55]. Unfortunately,
multi-frame super resolution is incapable of reducing the overall acquisition time owing to
the need of performing multiple acquisitions towards the reconstruction of one high resolu-
tion image. On the other hand, single-frame super resolution hinges on the exploration of
spatial dependence between any given pair of adjacent voxels to obtain a robust estimate
of the underlying dMRI signal via sophisticated interpolation schemes. Examples of this
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include patch-based super resolution proposed by Coupe et al. [23], track-density imaging
proposed by Calamante et al. [1/] among many others. A recent study conducted by Yap
et al. [79] exploring the idea of fiber-driven spatial resolution enhancement. Specifically,
an advanced spatial interpolation framework was used to estimate the diffusion signal in
regions where a high probability of fiber connection was detected between adjacent voxels.
Compared to scanner based techniques, post-processing proved to be more versatile overall
due to independence of MRI scanner hardware requirements nor pre-specified methods of
obtaining the data.

Yet another proposal deserving mention is the multi-slice technique, which is interesting
in the sense that both scanner based and post-processing philosophies are present. Multi-
slice techniques work by acquiring multiple acquisitions of the same brain volume at low
resolutions, where each acquisition is performed orthogonally with respect to the other.
From this series of volumes, a MAP probabilistic framework [01] is used to estimate the
volume at high spatial resolutions. While not requiring expensive hardware upgrades, it
does require data being collected in a specific method that has not been widely adopted
by the dMRI community. Furthermore, similar to multi-frame techniques there is little to
no reduction of scan time due to the need of multiple low resolution acquisitions.

5.2 Angular Methods

Unlike the spatial domain where data can be brought into a higher resolution with relative
ease, it is more difficult to directly increase the angular resolution since an effective form
of spherical interpolation would be required. While it is known that data acquired through
closely oriented diffusion gradients share some correlation, it is important to remember
that dMRI measures apparent diffusion; the extent to which diffusion is hindered with
respect to the strength and direction given by the applied diffusion gradient. Therefore,
numerical spherical interpolation is susceptible to incorrect estimation in the presence of
altered tissue morphology.

In lieu of such information, it is difficult for angular resolution problems to be overcome
with hardware techniques; that is to say, having a MRI scanner acquire raw dMRI data at
increased angular resolution without any processing whatsoever. Thus, angular resolution
enhancement is typically carried out through post-processing techniques. Many such meth-
ods make use of Compressed Sensing (CS) introduced in 2006 by Donoho and Lustig [17],
and independently by Candes [17]. This technique allows incoherent sub-critically sampled
data (with respect to the Nyquist Criterion) to be suitably reconstructed at higher resolu-
tions by taking advantage of the data having a sparse representation in another domain.
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Initially, compressed sensing was applied to standard MRI data measured in the k-space,
which would correspond only to the spatial domain. Recently however, researchers have
been exploring CS applied towards dMRI data which sees acquisition in both k-space and
g-space. For dMRI, these studies are typically carried out for DSI or HARDI data. Usage
of compressed sensing requires the data to have a sparse representation with a suitable set
of basis functions. For HARDI, examples of such studies include Spherical Ridgelets [50],
Diffusion basis functions [10], and a rotationally invariant set of atoms depicting common
diffusion configurations [5]. Examples of CS applied to DSI data, on the other hand, can
be found in [48, 19, 10].

Performing sub-critical sampling with standard linear decoders is prone to noise and
aliasing artefacts due to violation of the Nyquist criterion. One way of mitigating this
effect would be to use prior information known about the image. In a similar fashion, reg-
ularization can be incorporated into the compressed sensing framework to improve results.
Examples of these approaches rely on controlling the extent of sparsity, or desired traits of
piece-wise constant images which lead to minimization of the Total Variation semi-norm
being an effective constraint for the solution. These techniques will be discussed in greater
detail later.

5.3 Super resolution via Compressed Sensing: DBF
Decomposition

Taking note that dMRI data is characterized by both angular and spatial sampling, recent
studies have approached the idea of increasing resolution in both spatial and angular do-
mains. These studies note that the k-space and g-space formalisms are independent, which
allows one to propose separate sparse representations in each domain and combine both
techniques into a single compressed sensing framework. These methods differ from each
other by their choice of bases for sparse representation, regularization and consequentially
the cost function to be minimized. In this thesis, the super resolution approach introduced
by Mani et al. [16] has been chosen as a reference benchmark, owing to proven effective-
ness in their choice of basis functions and usage of regularizers commonly depicted in the
literature. Specifically, Mani et al. [16] proposes to use the well known Diffusion Basis
Functions decomposition as a foundation for building their super resolution framework in
both spatial and angular domains. Their strategy can be roughly split into two stages;
the acquisition process and their framework for recovering the data at increased spatial
resolution via the theory of compressed sensing.
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Previously, we have discussed how MRI acquisition in the k-space is usually performed
using EPI due to the significant reduction in acquisition time through scanning a slice in one
TR. Instead of using EPI data, they have chosen a variable density spiral sampling scheme
[44] which can be achieved by having the phase encoding follow a sinusoidal trajectory with
increasing amplitude. The main motivation behind their decision to use variable spirally
sampled data is owing to the philosophy of CS, which dictates that correlation between data
points is minimized via an incoherent sampling scheme. From statistical signal processing,
minimizing the correlation between sampled data points is key to reducing the redundancy
in the sampled set, which in turn maximizes the presence of unique data. In addition
to the spiral acquisition scheme, they seek to jointly undersample the k and g-space by
arbitrarily retaining samples. Their method of jointly undersampling the combined spaces
ensures that the k-space between any pair of DWIs are sampled differently.

K-space trajectories for different diffusion directions

dirl dir2 dir3 RO - 1 5| -

11
W

{b):Uniform k-space down-sampling

dirl dir3 reweens GO dirl dir2 17 JE— dirn

(c):Uniform g-space down-sampling |d):Combined random k-q down-sampling

Figure 5.1: Different Sparse Representation of HARDI data. Credit [16].

Moving on to the actual compressed sensing framework, DBF decomposition states
that at each voxel, under certain assumptions on the underlying diffusion process such as
slow exchange (refer to GMM section for a detailed explanation) the diffusion profile can
be modelled by a linear combination of N Gaussian diffusion functions {1;}¥, aligned
towards primary diffusion orientation (also referred to as diffusion compartments), having
a mathematical equivalent of

TGP =Y sateg 6.1)
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where the goal is to recover the volume fractions {f;}¥, corresponding to the proportion
of the voxel covered by each of the NV diffusion compartments. The set of these N orien-
tations are typically chosen to represent uniform coverage on the unit sphere. Denoting
the number of diffusion gradients chosen by K (K < N), this results in K linear equa-
tions in N unknowns in the following manner. Formally, at every voxel location a matrix
A € REXN can be constructed which contains the N basis functions for each of the K
diffusion gradients,

¢1(b7 gl) e wN<b7 gl)

A= (5.2)

1/11(b;g1<) wN(l;,gK)

Before proceeding, recall that data measured by the MRI scanner in k-space and the
diffusion signal are related via the Fourier transform F. Therefore, the normalized diffusion
signal can be expressed in terms of the k-space measurements through y = F{S;/So}.
Substituting this new definition into (5.1), the relation between measurements and desired
volume fractions can be rewritten as y = Af + ¢, where € accounts for the presence of
measurement noises and f denotes concatenation of the volume fractions {f;}, into a RY
column vector.

Noting that this is an underdetermined linear system admitting an infinite number of
solutions, the next step is to establish regularizers which constrain the set of solutions
to satisfy additional requirements. In accordance with the theory of compressed sensing,
sparsity of the volume fractions {f;}¥, is enforced, which has a strong physical interpre-
tation of limiting the number of fibers present in any given voxel. This gives rise to the
minimization of the IL; norm as a regularization term ||f]|;. In addition to sparsity, the au-
thors also proposed to minimize the Total Variation semi-norm across each reconstructed
DWI, which effectively imposes piecewise continuity on the resulting normalized diffusion
signal. Historically, this method has been shown to be extremely effective in image denois-
ing algorithms. Aggregation of the above terms leads to the compressed sensing problem
being formulated as

f = argmin {|[Af - y[[; + Ail|Afllzv + AaIf]l1 }, (5-3)

with A1, Ay € R being regularization constants controlling the weighting between the terms
and which are typically experimentally determined. An important observation stems from
noticing this is a convex optimization problem. In their original work they elected to apply
the Conjugate Gradient algorithm with the IL; substituted by an iterative reweighted ILs
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norm minimization (since the gradient of the L; norm is not defined at every location).
Following the recovery of the volume fractions {f;}%,, their resulting diffusion ODF was
reconstructed using the well known analytical expression [69],

N
(b, uy) = Z D - (5.4)

where D; refers to the rotated diffusion tensor for the " diffusion compartment denoting
primary diffusion orientation and Z is an appropriate normalization constant. In their
experiments it was shown that even under 6-fold reduction of sampling, reconstruction of
the diffusion ODF was reasonably accurate under these conditions [10].

46



Chapter 6

Main Contribution

In the previous chapter, it was seen how compressed sensing can be applied towards HARDI
data; namely how the diffusion profile at any given spatial location has a sparse represen-
tation in terms of diffusion basis functions. In this chapter, the main contribution of this
thesis involving another compressed sensing framework will be discussed. This approach,
henceforth referred to as Generalized Compressed Sensing Reconstruction (GCSR), builds
upon the use of Spherical Ridgelets for representing HARDI data proposed by Michailovich
et al. [50].

6.1 Organization of HARDI datasets

Before moving on to the compressed sensing framework, an overview of the notations
and brief methodologies used to represent HARDI data is in order. Recall that single
shell HARDI data consists of a set of diffusion weighted images, each representing the
attenuation in MR signal in the presence of diffusion encoding along a given direction and
fixed strength.

We have seen earlier how the k-space €2, and the g-space €2, has been used in HARDI
to represent the domains of the scanner acquisition and diffusion gradients respectively.
This approach allows a better classification of large HARDI data. Typically each DWI is
presented as a two dimensional image of size N, x N,,, where N, N,, € N. For purposes of
data storage it is desirable to aggregate this into a single vector of length || = N, x N,
through lexicographical ordering, which can be physically viewed as separating an image
by its columns, followed by stacking individual columns to form a single column vector.

47



Consequentially, a HARDI signal S can be said to exist in the space €2, x {2, giving rise to
two different depictions of the data. Discretization of the g-space is necessary in practice,
corresponding to K points indicating diffusion gradient encoding during the acquisition
process.

$2
5= 53
T ] )] 3
- = o = » [=]
. | # . . ® .
5= 5| 53 53 54 55 55 57 5% Sg
[i+1 1) (i+1.]) (i+1 j+1)

Figure 6.1: Matrix representation of a K x |Q] HARDI dataset s, where K = 4 and
|Q%| = 9. Diffusion encodings of the center pixel is represented as sz, whereas the DWI
corresponding to diffusion encoding direction [1 1]/4/2 is depicted by s'.

Up until now, HARDI data has been exclusively referenced as a set of K images, each
under the influence of diffusion encoding and having [€2| voxels. This perspective provides
an intuitive way of explaining the image acquisition process of the MRI scanner. However,
another way of expressing HARDI data would be as a collection of || vectors, with
each vector containing K voxels depicting one single spatial location but encoded with a
different diffusion gradient. This interpretation of HARDI data is useful for interpretations
of ODFs, allowing a thorough understanding of the underlying diffusion behaviour at any
given spatial location. To provide the convenience of switching between any of the two
representations, a HARDI dataset s can be compactly stored into a single matrix such
that s € REXI®I Using this formulation, each row of s denotes a separate DWI and can
collectively be represented as {s*}X,, where K is the number of diffusion gradients in the
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HARDI data. Similarly, each column of s can be treated as a voxel sampled by the set of
K diffusion gradients and are collectively represented as {sk}‘,&l' In addition to notational
convenience, the aforementioned lexicographically ordering allows dimensional reduction
in the HARDI dataset. As opposed to a three dimensional array, a matrix representation
suffices which in practice substantially simplifies computations in numerical software such

as MATLAB.

To consolidate the preceding developments, consider a hypothetical 3 x 3 segment of 2,
depicting the (4, j)" spatial location and its 8 immediate neighbours in two dimensional
space, sampled over K = 4 diffusion gradients uniformly distributed on the unit circle. A
visual aid presenting each perspective of HARDI data in matrix form is shown in Figure
6.1. It should be noted that after lexicographical ordering, the (i, )" pixel corresponds to
the fifth column of the matrix.

6.2 Framework of GCSR

Similar to how the compressed sensing approach of Mani [1(] relied on sparsity of DBFs
at any given spatial location, the success of GCSR relies heavily on the measured signal
being sparsely represented by Spherical Ridgelets. As seen previously, in practice HARDI
signals has the majority of its energy being concentrated along the great circles. Spherical
ridgelets were formulated to satisfy this criterion, making it a natural candidate for the
problem at hand.

Consider a set of K unit vectors {u;}X, denoting the orientation of the diffusion en-
coded gradients over which a HARDI signal is sampled. For each u;, let the frame of
J spherical ridgelets {¢;(u;)}7_; be constructed. It was previously shown that spherical
ridgelets form a dense set in the space of HARDI signals. Therefore, the HARDI signal
evaluated at orientation u; given a fixed spatial location r can be expanded as

s'(ur) = Z%(ui)cj(r) (6.1)

where ¢;(r) denotes the corresponding coefficient for each spherical ridgelet (at spatial
location r) and is known to exist but has yet to be determined. Using the previously
defined notation s; to represent the HARDI signal for the k" spatial location leads to
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s(ug) Ui(ur)  tho(ur) Yy(ar) Co
_ (23 (uz) o (:112) : ':' : ':' ¢J(:u2> : (6.2)

Ui(ug) a(ug) oo oo wyug)) |

Sk(uK) Cj

or equivalently s, = ®c¢

where the K x J matrix ® was introduced as an aggregation of the spherical ridgelets for all
K diffusion gradients. Extending upon (6.2) once more to include the full HARDI signal
s"=[s1 S-S0, € REXI%[ Jeads to s = ®c’, where ¢ is a J x €, matrix containing the
full set of ridgelet coefficients for all voxels in the HARDI dataset.

The next step in this development is to recover ¢, the unknown set of spherical ridgelet
coefficients. Although the presence of a matrix equation suggests the naive approach of
matrix inversion, this should be avoided. This is because in practice, K < J which means
the system in (6.2) is underdetermined. Here is where the bold motivation of GCSR is
introduced. Namely, given HARDI data measurements s’ € R¥*I%| we attempt to recover
the set of SR coefficients ¢ € R7*I%I used to represent the HARDI data at increased
spatial resolution €. Subsequently, ¢ is used to reconstruct s = ®¢, where s € REXI®w!,
In this thesis, a preliminary study of doubling the spatial resolution was explored (e.g.,
assuming €2, has dimensions N, x N, where N, N,, € N as introduced above, {2 would have
dimensions 2N, x 2N,;). This proposal is made possible by the fact that spherical ridgelets
provide a sparse representation of HARDI data, with the underlying hypothesis being
HARDI data at low spatial resolution providing sufficient information for reconstruction via
spherical ridgelets at higher spatial resolution. This methodology suggests that additional
information is necessary to constrain the solution for c¢. Using previously explored ideas,
one possible method of recovering the optimal set of SR coefficients ¢ for representing s is
by solving a convex optimization problem of the form

1
¢* = arg min {§||D<I>c — &%+ Allells + i>(®c)} (6.3)
0 ,®ce R

where i>(®c) = {

oo ,otherwise

where the notation Rfm’“/ restricts all elements of a K x |;/| matrix to be non-negative real
numbers, and |- || p represents the Frobenius matrix norm, and D is a spatial downsampling
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operator. In this fashion, the first term controls data fidelity between measurement s’
and downsampled reconstruction D®c, the second term necessitates sparse representation
of HARDI data by means of spherical ridgelets through minimizing the LL; norm of its
coefficients, and the third term regulates that the reconstruction must yield non-negative
image intensites, as expected of HARDI data. Finally, A € R™ is a regularization constant
controlling the weighting between the first and second term.

At this point, it should be noted that the spherical ridgelet frame consists of J ridgelet
functions which in practice is much larger than K, the number of diffusion measurements
in the HARDI data. Under typical circumstances, estimating ridgelet coefficients ¢ given
K measurements in the g-space is impossible. However, the theory of compressed sensing
renders this task tractable since the HARDI signal is known to have sparse representation
in spherical ridgelets; thus sparsity of its coefficients becomes critical to the success of the
optimization framework.

While (6.3) provides a basic reconstruction framework, it can be refined by taking
advantage of additional regularization constraints in the spatial domain. Towards this
end, two independent regularizers were considered. The first method explores the original
idea of enforcing ridgelet coefficient continuity across spatially adjacent voxels. The goal
behind this development comes from observing that tissue structures should not exhibit
large changes within a local neighbourhood, thereby implicating small deviation in the
ridgelet coefficients. For a given spherical ridgelet defined along v, this can be achieved by
minimizing the directional gradient of ridgelet coefficients along v.

Suppose J spherical ridgelets are constructed by specifying [ resolution levels and a
bandwidth of p. In this manner, let c;;;) denote the spherical ridgelet coefficients at the
J resolution level (j = 1,2,---1) and i(j) be an index representing the orientation of the
ridgelet (i = 1,2,---¢g(j,p)), g is a function of j and p denoting the number of ridgelets
at resolution level j. Without loss of generality, we shall assume that j = 1 corresponds
to the coarsest level of resolution associated with the ridgelet generating functions. Col-
lecting ¢;;(;)(r) at each voxel r in the image space €2, an image of ridgelet coefficients
ity = {¢ji(j) () }req can be formed in this manner. The corresponding partial differences
Vi : R — R (d € {1,2,3}) in the spatial domain along the direction parallel to the
Cartesian axes {z,y, z} can be computed for each I;;;. Applying the aforementioned dif-
ferencing operators V to each ridgelet coefficient image I ;;), the result can be aggregated
into the matrix D[j,z‘(j) = [(Vljjﬂ'(j))T(VQIJ"Z'(]‘))T(Vg[jVZ‘(j))T]T, where D[j’i(j) e R34,
Subsequently, the partial differencing along each Cartesian direction can be extended to
partial differencing along any given direction vyj) € R* by simply computing V;I(‘j)D]j7i(j).
This leads to a convenient expression for assessing the spatial continuity of ridgelet co-
efficient image I;;(;), which can be treated equivalently as a minimization of its energy
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Vi) DLy 13-

Before wrapping up the concept of ridgelet coefficient continuity, it deserves mention
that this method was inspired by the notion of fiber continuity [58], which argues that
the directional derivative of any given fiber along v will be minimized. While effective,
this method has been shown to produce oversmoothing of the data. On the other hand,
imposing continuity on ridgelet coefficients is a less heavy-handed tactic and is more likely
to preserve a higher degree of data fidelity. Along that line of thinking, the concept
of ridgelet coefficient continuity was abstained in the coarsest resolution of the spherical
ridgelets (j = 1). Thus, the final expression of preserving continuity on the entire set of
ridgelet coefficients c is

l
lellz = >0 " Ivigy PLiao 13 (6.4)
=2

i(4)

Another approach to spatial domain regularity explores the minimization of the Total
Variation (TV) semi-norm on each DWI in the HARDI dataset. This method has been used
in many different applications of image processing with success, by exploring the image in
question exhibiting piecewise constant behaviour. Since each DWI corresponds to a brain
image with smooth regions excluding the edges separating white matter, grey matter,
and CSF, it is a reasonable assumption to classify it as a function of bounded variation.
Using this assumption we can define the TV semi-norm on each of the K DWIs in the SR
reconstruction ||®c||ry in the following manner. Adopting the partial differencing operators
from ridgelet coefficient continuity, the TV semi-norm can be mathematically expressed as

K |9 3

[Pclry =D Y 4| D IVa(@e) [k, ]2 (6.5)

k=1 i=1 d=1

where (®c)[k,i] refers to the k' reconstructed DWI evaluated at the i spatial location.
As a side note, || - |7y was classified as a semi-norm owing to an isotropic image (e.g., all
intensity values equivalent to a € R*, a # 0) yielding a value of zero while having non-zero
intensities. Incorporating both spatial regularizations into the optimization framework,
the SR coefficients ¢ can be recovered via solving the minimization problem

. 1 .
min {§||D<I>c 12 4 Alelly + lell2 + V]| @l + Zz(q)c)} . (6.6)
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Due to the presence of terms such as ||c||;, (6.6) is a non-smooth convex optimiza-
tion problem, which unfortunately rules out the use of gradient based methods barring an
approximation to those terms. An alternate approach was to explore the concept of prox-
imal gradient methods, whereby the subdifferential [59] was used in place of the gradient
for non-smooth functions. Furthermore, this optimization problem consists of the sum of
various functions and difficult to solve directly. Towards this end, we applied the theory
of proximal algorithms, which in turn builds upon the notion of proximity operators [5]
defined for function f as

prox, ) = axganin { ) + Lo ~ o3} 67)

While the rigorous discussion of how proximity algorithms work is beyond the scope
of this thesis, this technique was adopted in this thesis due to its proven effectiveness
for solving complicated optimization problems such as (6.6). In particular, Alternating
Direction Method of Multipliers (ADMM) is a specific proximity algorithm which incorpo-
rates variable splitting and iterative variable updates. In this manner, proximity operators
need only be evaluated on a single function (for which a closed form solution is typically
available) as opposed to the complicated cost function depicted in (6.6).

In what follows, we will see how variable splitting followed by the introduction of
augmented Lagrange Multipliers allows one to formulate individual subproblems bearing
resemblance to the application of proximal operators. Proceeding with variable splitting,
let us first recast this convex optimization problem in the form of a constrained optimization
problem by introduction of auxiliary variables &, n and ( as follows

.1 j
min {10 = S + Alall + 1ICIE + Vel + i>(6) |

SURIS
s.t. c = ¢,
c=m,
c=¢( (6.8)

Note that the assignment of the auxiliary variables is by no means unique; in fact it is
important to choose the assignment wisely such that each individual optimization problem
can be solved easily. In general, introducing more auxiliary variables leads to more problems
to solve and possibly slow down the process; however the individual problems will likely be
easier to solve. A standard procedure for handling these equality constrained problems is
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to introduce the augmented Lagrange multipliers for each auxiliary variable. Introducing
the Lagrange multipliers {pe, p,, pc} for each respective auxiliary variable, the cost function
C can be revised into the following form

1 .
Cle,n, €, Clpe, oy o) = 5[1DPe — S+ Allnll + plIClz + vlIglry +is(6)+ (6.9)
0, ) 0,
§§H<I>c— &+ pell” + S lle=m +pyll* + §<||C —C+pel®

where {d¢, d,,dc} are positive scalars controlling the difference between the auxiliary vari-
able and its desired value, with the algorithm having guaranteed convergence regardless
of their choice. One way to approach minimization of the above cost function, is to do so
iteratively via

(Tt et ) = arg gylinCC(c, 1, &, Cpe, Py Pc) (6.10)
pffl _ p; Fot gt
ptCH _ Pé T ey

p?-l — pz 4 q)ct—l-l . §t+1

subject to initial conditions n = ( = £ = 0, and initial values for the Lagrange Multipliers
pg = pg = pg = (0. Through the minimization of C, the set of SR coefficients ¢ are recovered
at increased spatial resolution and subsequently used to construct the estimated HARDI
signal s = ®¢. Although this concludes the framework for GCSR, minimization of the cost
function C is very difficult to tackle head on. In what follows, we outline the procedure
of how ADMM decomposes the problem into smaller subproblems, each of which admits
closed form solutions.

6.3 Solution via ADMM

The strength of ADMM lies in its ability to resolve the optimization of multiple variables
into separate optimization problems of one variable each, which makes the solution much
more tractable. Using the cost function C introduced in the GCSR framework, minimiza-
tion on the function of four variables is reformulated into four sequential minimizations of
functions over a single variable
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CtH—argmmCCn ¢ éh

(

77t-‘rl = arg mlnC(ctH,n Ct gt)
Ct-i—l = arg mlnC(Ct+1,7’]t+1 C é-t)
(

§t+1 t+1 t—l—l t+1’ é-)

= arg mmC c

where the notation C(c,n', (", £") should be interpreted as the function of ¢ evaluated at
the values from the previous iteration n', (!, £!. One has to pay particular attention to how
the later minimizations use the most recent values from the other variables as opposed to
strictly from the previous iteration (e.g., minimization of ¢ uses £ and ¢*' due to the
later having been updated in the same iteration). While this may seem to discourage
parallel processing at a first glance, it will be shown that some of the sub-problems are
indeed independent. Let us begin by examining the solution for ¢!*!. As they do not affect
the minimization of ¢, discarding all the terms independent of ¢ leads to the following
optimization problem

1 d

SID%e —|* 4+ Z|Pe — (¢~ pp)”

¢ = argmin 5 (6.11)
tgtlle = @ = p)IP + Slle = (¢ = pb)|”

Although the presented optimization problem appears at first glance to be a standard
least squares problem, it is complicated by the presence of the downsampling operator D.
It is effectively alluding to the fact that measurements s’ are only available at the original
spatial resolution, whereas the reconstruction ®c exist at increased spatial resolution. To
account for this in our solution, the data fidelity term i|[D®c — §'[|* was omitted for
locations where measurements did not exist. In what follows, the indicator function 14 (r)
is used to represent whether measurements s’ were present at spatial location r in the
following manner

1 (r) 1, §'(r) exists (6.12)
g\r) = .
0, otherwise

To simplify notations, the dependence of the indicator function on spatial location is
understood and will be omitted. Thus, the solution for ¢ can be succinctly represented as
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¢ = [(Ly +0e) @O+ (8, + 0c) 1] ' [1g "' + 6D (&' — pi) + 6, (" — 1)) +6¢(C" —pf)] (6.13)

where [ is the identity matrix of size J x J. A few notes regarding the above solution are in
order. Firstly, the solution involves the inversion of two matrices [(1y +d¢) @7 @+ (8, +6¢)I].
Fortunately, this does not pose a problem owing to its modest size J x J, where J denotes
the number of SR functions and depends on the number of resolution levels 7 as well
as the bandwidth p. In our implementation, we used 7 = 3 and p = 2 leading to J =
119. Furthermore, since the matrices are independent of the variables in the ADMM
scheme, in practice it can (and should) be pre-computed to avoid recalculation in each
iteration. Secondly, this solution of ¢ accounts for the entire set of SR coefficients required
to reconstruct the HARDI data.

The optimization problem for 7 is also commonly known as a Least Absolute Shrinkage
and Selection Operator (LASSO) problem in the literature. It is well known that LASSO
problems can be solved using the soft thresholding operator

S-(z) = max(|z| — 7,0) - sign(z) (6.14)
for a given threshold constant 7 € R. To present the problem such that it resembles the
proximity operator form, we choose a threshold value of 7 = %. Similar to the solution

for ¢, only one single application during each iteration is necessary for recovery of all SR
coefficients.

] )
o+t = angin { 2 — (@54 I+ Al

A
= max (]ctJr1 + | — 5 O) -sign (¢ 4 pl)) (6.15)
1

The solution for ¢ involves the SR continuity term and takes the form of
. ),
¢t = argunin f el + Sl - @ + 40 (6.16)
One approach involves expanding the SR continuity term. However, we note that each
of the SRs are independent, which hints at the possibility of solving each sub-problem and

reassembling the results to form iterative update for . Using this approach, each of the sub-
problems is a least square problem which can be solved using the concept of a directional
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low pass filter in the spectral domain (the implementation for this technique is detailed in
the appendix of [32]). Recalling how the RGFs are to be excluded from this process, we
define g(1, p) as the number of RGFs. Thus, for i(j) = g(1,p) + 1,9(1,p) + 2,--- , J each
problem becomes

. d¢
5t = angmin { il DI B+ Kl - €53+, P} @)

where informally the term péi(j) refers to the extraction of the i(j)" component on the
Lagrange Multiplier at the previous iteration pz. Finally, the problem for £ becomes

¢r+t = angan { €y + 16 = @ 4+ )P + i)} (6.18)

which is identical to the classic TV denoising problem from image processing, except for
the positivity constraint. Unfortunately, this additional term complicates the resulting
problem. To handle this, we follow a similar approach of applying variable splitting and
proximity algorithms towards this sub-problem. As mentioned previously, the solution
requires decomposing the above to account for each of the K DWIs within the HARDI
dataset. While there are many such implementations in the literature to solve this prob-
lem, the semi-implicit fixed-point solution proposed in [20] was adopted due to its proven
numerical stability and fast convergence. Last but not least, the augmented Lagrange
multipliers must be updated during every iteration of the ADMM algorithm.

pf]+1 — pf] 4 CtJrl o ,an*l7 (619)
pirt = pl 4 ot — ¢t (6.20)
p?rl — pé + (bct-i-l _ St-‘rl (621)

In light of the above developments, the GCSR framework can be summarized as an
algorithm over T iterations, with the output being reconstruction of the HARDI data at
increased spatial resolution. In practice, T is usually determined by convergence of the cost
function. For the GCSR algorithm, convergence was attained within 7" = 60 iterations.
Pseudo code for the entire algorithm is provided as a summary of the above developments.
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Algorithm 1 Generalized Compressed Sensing Reconstruction

1: procedure GCSR(j, p, 0, d¢, ¢, A, 1, v, {v}] 5S)
2: ¢ < SphericalRidgelets(j, p)
30 Ry [(1y + 0¢)®TD + (6, + o)1) !
4: Initial Conditions
9«0
n® < 0
0«0
5: Initialize Lagrange Multipliers
pg — 0
Py <0
P10
fort=0toT —1do
begin
e Ry[1g®Ts 4 0:DT (€8 — pE) + 0y(n' — pl)) + 6c(C" — pE)]
N1 < max <]ct+1 + | — %, 0) - sign (¢! +pf7)
10:  for i(j) =g(1,p) +1to J do

11: begin
. 6,
¢ e argming, {plVE DL + 5 Go) — (5] + o))
13: end
14: for k=1 to K do
15: begin
1)

16: £ argming, { SIS IVa@) 2 + Sl — (B +pt,) 2 + Z><sk>}
17: end
18: pt+1 — pt + ct+1 . nt-i—l

: n n

19: p‘é“ —pp A=
20: p?-l o pz Pttt gt
21: end

22: 5+ Pc
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Chapter 7

Results

The main objective of this chapter is to evaluate the feasibility of the proposed GCSR al-
gorithm through a series of experiments. This can be objectively measured by determining
the degree to which GCSR is able to recover the integrity of fiber orientations for a given
HARDI dataset. Towards this end, the testing framework used in this thesis will first be
discussed.

Given a HARDI dataset at sufficiently dense spatial and angular dataset which will be
henceforth referred to as the ground truth, we will subject it to both spatial and angular
downsampling by a factor of d, and d, respectively. The resulting dataset will be referred
to as measured data. As discussed in the previous chapter, applying the GCSR algorithm
to the measured data will result in estimated HARDI data at increased resolution, which
will be referred below as reconstructed data. This dataset will have the same spatial
resolution as the ground truth but remain at reduced angular resolution. Although the
ground truth and the reconstructed data are at different angular resolutions, the underlying
diffusion behaviour can be compared by calculating the ODF at each spatial location. In
this manner, the ODF can be inferred as consolidation of the angular profile at each voxel
into a single function. For our tests, d, = 3 and dy = 2 was chosen to balance the tradeoff
between reconstruction integrity and the advantage gained via reduced sampling burden.

Finally, a note on the method of ODF calculation is in order. One candidate was to
deploy QBI using spherical harmonnics to evaluate the Funk Radon Transform, which was
proven successful through different works in the literature. Recall however that there were
two different proposals for projection of the EAP onto the unit sphere, namely
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o(u) = %/000 P(ur)dr (7.1)
o) = /0 " Plur)rdr

where Z is a normalization constant. Both )y (original formulation proposed by Tuch
[69]) as well as 1)y (solid angle formulation accounting for increased differential volume at
higher radii [1]) were considered during preliminary testing. It was observed that ODFs
with sharper maxima were generated by using 5. Naturally, this came at a cost of noise
amplification which subsequently lead to a hefty time investment through regularization
tuning. On the other hand, vy produced smoother spherical functions which required
substantially less post-processing, and for this reason was adopted for our experiments.

Aside from our proposed GCSR algorithm, the approach to super resolution via GMM
proposed by Mani [16] was also implemented (henceforth referred to as GMM Reconstruc-
tion) to provide a reference. It should be noted at this point that their original proposal was
to minimize the associated cost function through a Conjugate Gradient approach, with the
LL; norm being approximated by an iterative reweighted L, norm. By noticing how their
formulation of the compressed sensing problem bears remarkable resemblance to GCSR
in terms of chosen regularizers, it was decided that solving it using proximal algorithms
(namely ADMM) had two major advantages. Specifically, using ADMM eliminated the
need of approximating the gradient of the IL; term. Furthermore, it allowed us to re-use
much of our existing framework towards minimizing their cost function.

7.1 Qualitative assessment with ODF's

The standard procedure for data testing involves computer simulated data for preliminary
analysis of the performance in a controlled environment, followed by real life (in vivo) data
to evaluate its feasibility in a clinical setting where more possible unexpected sources of
error are likely to surface. Towards that end, let us first look at the computer simulated
results. The data was generated using the standard test case of a three fiber GMM model.
Two straight cylindrical fibers were constructed to intersect at a 90 degree angle forming
a cross-shaped pattern. The remaining fiber resembled a torus and was positioned to
surround the aforementioned cross. In accordance with the empirical observation of water
diffusivity in highly anisotropic white matter structures [56], the diffusion tensor was set to
D = 10~%diag[1700; 300; 300] mm?/s. This method left a small amount of spatial locations
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not covered by any of the three fibers. At these locations, we elected to fit a single quasi-
isotropic tensor along a random direction with mean diffusivity of 1.052 x 1073 mm?/s
and fractional anisotropy of 0.22, in accordance to prior dMRI experiments conducted on
human grey matter [19].

////

pd

Figure 7.1: Projection of each individual fiber via ODFs onto a 2D plane. The final
computer data is the superposition of all three fibers onto the same FOV, along with grey
matter simulation in locations without fiber presence.

The simulated data was constructed at a 32 x 32 x 10 field of view. In accordance to
HARDI data which typically adopts a b-value of b € [1000,3000] s/mm” [1], a b-value of
b =2000s/ mm? was chosen. The method of generalized spiral sampling [60] was adopted
for g-space sampling, yielding a total of 162 points providing approximate uniform coverage
of the unit sphere. Since the HARDI signal is typically assumed to be symmetric, only the
points on the upper hemisphere were retained resulting in K = 81 points. Thus, the ground
truth data has a dimension of 32 x 32 x 10 x 81. Downsampling in the angular domain by
a factor of d, = 3, the resulting dimension of the measured data was 16 x 16 x 5 x 27.

The experimental results in the form of ODFs can be seen in Figure 7.2, where a central
horizontal slice of dimension 32 x 32 was chosen for the convenience of visual interpretation.
At a first glance the ODF reconstruction from both GCSR and GMM provide very accurate
results in areas where only a single fiber is present. In regions with fiber crossings however,
it is seen that the ODF's are rather smoothed out when compared to the ground truth. This
effect is exemplified in several spatial locations (one of which is enclosed in a grey box),
whereby the ground truth contained only one single fiber. However, both reconstructions
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Figure 7.2: ODFs captured from computer simulated data at a FOV of 32 x 32, where
correspondence is defined as: (Left) Ground Truth, (Middle) GCSR, (Right) GMM Re-

construction.

failed to account for this by modelling it with the prevalent fiber crossing model among its
neighbours. This corner case aside, the main fiber orientations can still be inferred from
the reconstructions which is of critical importance in practical applications.

The previous experiment did not account for the presence of noise, an ubiquitous ele-
ment seen in measured data. Thus, another computer simulation was conducted whereby
after fitting the tensors, the data was subsequently contaminated with Rician noise giving
rise to SNR of 5; while the Gaussian noise model works relatively well at low b-values
(b < 1000s/ mm2), it has been shown that the Rician noise model is more appropriate for
MRI due to the use of in-phase and quadrature receiver antennae to capture magnitude
data [76]. As opposed to choosing a central horizontal slice in the previous experiment,
an outer slice further from the middle was chosen to increase the presence of simulated
grey matter. By examining the ODFs in Figure 7.3, one can see that the quality of both
reconstructions suffered in this experiment. This effect is particularly noticeable in the
grey matter areas, where the quasi-isotropic diffusion behaviour cannot be readily rec-
ognized in reconstructed data. On the other hand, areas with presence of fibers were
represented clearly even in the presence of noise. From these experiments, it can be seen
that qualitative results from the reconstructions could not provide a perfect representation
of the ground truth. However, they provided an accurate depiction of the underlying fiber
structure, which led to the pursuit of testing with in vivo data.

The requirements for the in vivo data was much stricter for our testing purposes. This
is because HARDI data is typically acquired with a spatial resolution of 2 mm x 2 mm X
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Figure 7.3: ODFs captured from computer simulated data contaminated with Rician noise
at SNR = 5, where correspondence is defined as: (Left) Ground Truth without noise,
(Middle) GCSR, (Right) GMM Reconstruction

2 mm, which unfortunately leads to significant partial volume effects within voxels and is
not suitable for accurate fiber tractography [20, 28]. For our purposes, the optimal dataset
would contain data sampled at 1 mm x 1 mm X 1 mm spatial resolution. Measured data
obtained through our downsampling routine would effectively have 2 mm x 2 mm X 2 mm
spatial resolution, meaning our results here would closely resemble that of typical HARDI
data. With current MRI scanners it is very difficult to achieve 1 mm x 1 mm X 1 mm
resolution across an entire brain volume, since even top of the line gradient coils would
overheat and be unable to complete imaging. Fortunately, the problem of inherent low
spatial resolutions for HARDI data has been recognized in the dAMRI community. After
much collaboration between dMRI researchers, the Human Connectome Project (HCP)
consortium ! have successfully acquired HARDI data at 1.25 mm x 1.25 mm x 1.25 mm
spatial resolution.

The HCP in vivo data was obtained using a SS-EPI protocol on a modified Siemens

! In vivo data used in the preparation of this work were obtained from the MGH-USC Human Connec-
tome Project (HCP) database (https://ida.loni.usc.edu/login.jsp). The HCP project (Principal Investiga-
tors : Bruce Rosen, M.D., Ph.D., Martinos Center at Massachusetts General Hospital; Arthur W. Toga,
Ph.D., University of California, Los Angeles, Van J. Weeden, MD, Martinos Center at Massachusetts
General Hospital) is supported by the National Institute of Dental and Craniofacial Research (NIDCR),
the National Institute of Mental Health (NIMH) and the National Institute of Neurological Disorders
and Stroke (NINDS). Collectively, the HCP is the result of efforts of co-investigators from the University
of California, Los Angeles, Martinos Center for Biomedical Imaging at Massachusetts General Hospital
(MGH), Washington University, and the University of Minnesota.
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Skyra 3T scanner with TE = 89.5 ms, TR = 5520 ms, where the modification involved
customization of enhanced gradient coils noted to be beneficial towards diffusion imaging
[64]. The g-space samples were collected over three concentric spherical shells defined using
b = {1000, 2000, 3000} s/ mm?, where 270 g-space samples were distributed equally between
each of the three shells using the acquisition scheme proposed by [18] to achieve uniform
sampling over each spherical shell. Finally, 15 by images (e.g., 7o MRI images without
applying diffusion gradients) were provided for normalization purposes. For our testing
purposes only the subset of by and b = 2000/ mm?® data was used since the GCSR algorithm
was designed for single shell HARDI data. Applying GCSR to a three dimensional 32 x
32 x5 FOV near the left and right ventricles lead to the following results depicted in Figure
7.4 (results are overlaid on top of fractional anisotropy maps to highlight fiber geometries).

PLLSP
% % % % B BRGNP PP P PP PP P P

Figure 7.4: ODFs captured from HCP in wvivo data near the left and right ventricles,
where correspondence is defined as: (Left) Ground Truth, (Middle) GCSR, (Right) GMM
Reconstruction

From these results we can see that the in vivo results are fairly close to results from
the computer simulated experiments, in the sense that fiber trajectories can be inferred
accurately from observing the ODFs. It is very interesting to note that the noise present
in the ground truth is significantly attenuated in the reconstructions. The similarity be-
tween both GCSR and GMM Reconstructions results suggests that this effect is a direct
consequence of the regularization and increased spatial resolution as opposed to differences
between choice of sparse representation of HARDI signals. More in wvivo results can be
seen in Figure 7.5 where a similar phenomenon is noted. To more effectively evaluate the
discrepancies between the ground truth and reconstructed data, let us now move on to
more concrete quantitative metrics.
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Figure 7.5: ODFs captured from HCP in vivo data in regions exhibiting bending and
curving geometries. Correspondence is defined as: (Left) Ground Truth, (Middle) GCSR,
(Right) GMM Reconstruction

7.2 Quantitative metrics for HARDI data

As seen in the previous section, some minor discrepancies are observed between the ODFs
in ground truth data versus both compressed sensing approaches. However, there were
two important unanswered questions thus far, namely (1) how severe is the discrepancy
in terms of quantitative metrics and (2) to what extent does smoothing of ODFs affect
the practical application of modelling of neural fiber tracts in the brain? Unsurprisingly,
these questions have also been brought up in the literature. Among different quantitative
metrics that have been proposed, the following two are most often used in the field. They
are known as Normalized Mean Square Error (NMSE) and Average Angular Error (AAE)

65



and are designed to measure different sources of discrepancies between datasets. Let us
first discuss the more intuitive NMSE metric, which is defined as

~

L st = s()3
NMSE = v N 2 [sls (72)

where the product N,N,N, collectively describes the number of voxels in the spatial do-

~

main, s(r) and s(r) denotes the reference and estimated HARDI signal respectively for a
given vector r denoting the spatial location. To account for measurement noises causing
potential instability issues when ||s(r)||3 approaches 0, outliers in the reference data were
replaced by the median value within its minimum size local neighbourhood for NMSE
calculations.

Similar to the notion of MSE in image processing, the integrity of NMSE is heavily
compromised when the reference and estimated signals are misaligned or suffer deformation,
which would call for image registration routines to remedy this problem. Fortunately, these
problems do not arise through the frameworks used to recover these reconstructions.

Nevertheless, NMSE does not provide any means of inferring the primary directions of
water molecule displacement from diffusion, the primary motivation of HARDI. While an
ODF is very useful at providing qualitative evaluations of this feature, it would be helpful
to assess this numerically. Towards that end, the metric Average Angular Error (AAE)
was proposed to measure (in degrees) the orientation discrepancy in terms of the principal
positive angle between two diffusion profiles through

AAF — ?E[cos_l(uo )] (7.3)
where ug and G are unit vectors denoting the principal orientation of diffusion within a
voxel in reference and estimated data respectively, and E[-] denotes the expected value
operation which in practical applications is replaced by the sample mean among all the
voxels. In practice, ug and u are estimated by using the direction corresponding to ODF
maxima; this hinges on the assumption that ODF maximas denote the principal direction
of diffusion at any given voxel.

The discrepancy between the ground truth and reconstructed data from both GCSR
and GMM was measured through NMSE and AAE in the computer simulated data and in
vivo data. To provide a broader assessment of different regimes of diffusion processes (e.g.,
fast versus slow), the computer simulated data was generated for b-values (see section 2.7)
of b € {1000,2000, 3000} s/mm?. In addition, the synthesized Rician noise level was also
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varied such that the SNR lied between [5,40] to account for acquired datasets in practice
having different degrees of signal integrity. On the other hand, the in vivo metrics were
computed for the regions depicted in Figures 7.4 and 7.5 and can be found in Figure 7.7.
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Figure 7.6: NMSE (top row) and AAE metrics (bottom row) for reconstructions of com-
puter simulated data at various SNR levels and b-values.

In all of the plots of Figure 7.6, it can readily be seen that having a higher b-value
increases the error metrics. This is due to increased signal attenuation in the presence
of stronger applied diffusion gradients, and therefore the measurement noises becomes
increasingly comparable in magnitude relative to the desired signal. Also, it is observed
that GCSR yields lower measurement errors for nearly all of the experiments, with the
exception of NMSE at low SNR levels. Last but not least, as expected both error metrics
decrease in the presence of higher SNR levels.

On the other hand, the bar graphs of Figure 7.7 show that the NMSE is acceptable at
less than 4% for all regions of interest. Unsurprisingly, the region containing smooth fiber
trajectories have lowest errors and are in line with the earlier qualitative observations. It
is interesting to note that the region with bending fibers has a higher NMSE than the one
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Figure 7.7: NMSE (left) and AAE metrics (right) for reconstructions of HCP in vivo data
in various regions. Fiber geometries of smooth, bending and curving correspond to Figures
7.4, 7.5 (top) and 7.5 (bottom) respectively.

exhibiting curving fibers, but on the other hand boasts a lower AAE. The discrepancy is
most likely due to bending fibers exhibiting a sharper rate of change in orientation.

While these results show that a promising estimate is provided through applying either
of these compressed sensing frameworks, it is beneficial to assess these results through a
more practical approach of directly modelling fiber trajectories within the brain. Since such
applications would have intrinsic methods of attenuating the effects of measurement noises,
this provides an effective alternative of validating the reconstructed data. Specifically, this
field is known as Fiber Tractography and will be discussed in more detail below.

7.3 Fiber Tractography

In this section we discuss how neural tracts in the brain can be modelled by looking at
fiber tractography results. There are two distinct flavours of fiber tractography designed to
overcome the shortcomings of the other; streamline and probabilistic tractography. While
streamline tractography models the fiber trajectory directly, its weakness is its inability
to probe possible but non-primary fiber directions. Conversely, probabilistic tractography
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seeks to provide the greatest coverage of possible fiber orientations by generating connec-
tivity maps, which computes the probability that the dominant neural tract through a
pre-defined seed point passes through any given voxel. While being an immensely useful
tool in practical applications, unfortunately connectivity maps cannot quantitatively assess
the accuracy of reconstructed data. For this reason, fiber tractography experiments in this
thesis will be limited to streamline tractography:.

Figure 7.8: Various bundles of fiber tracts generated via streamline tractography using the
Camino software.

7.3.1 Streamline Tractography

In streamline tractography, a region of interest is chosen as the set of seed points from
which fiber trajectories are originated. The fiber trajectories are typically found by exam-
ining fiber orientation distribution function (fODF) maximas at each voxel location. These
fODF's are not to be confused with the previously mentioned diffusion ODFs. Whereas
diffusion ODFs classify the probability of diffusivity along a given direction, the resulting
distribution is typically too fanned out to precisely trace out a given fiber trajectory. This
is particularly problematic in the case of multiple fibers crossing at small angles, in which
the sharp peaks of fODF's are invaluable towards identifying the number of fibers and their
respective orientations. Towards that end, tractography algorithms will need to first esti-
mate the fODFs from a dMRI dataset, through techniques such as spherical deconvolution
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[67]. From this, one can see streamline tractography provides a very convenient method
of comparing reconstruction to ground truths due to the tractography output being fiber
tracts. Provided that there is a one-to-one correspondence between the fibers in ground
truth and reconstructions, we can perform quantitative analysis by directly calculating
metrics such as spatial displacement between the two fibers. An example of streamline
tractography generated with the Camino software [22] using data from HCP can be seen in
Figure 7.8, whereby different bundles of fibers can be distinguished by the colour coding.
Even within this small segment, various fiber geometries such as the bending blue fibers
or the relatively straight dark green fibers can be observed. Because tractography outputs
only the neural tracts, the results are typically overlaid on top of DTI fractional anisotropy
maps for visual guidance.

Qualitative results from fiber tractography on the HCP data can be seen in Figure 7.9,
where the enclosed region contains a multitude of bending fibers and is identical to the
one found in the first row of Figure 7.5. It can be seen that tracing ODF maximas from
Figure 7.5 yields a similar result to the generated fiber tracts of Figure 7.9. Although the
ODFs from reconstructed data were smoothed as seen in the previous experiments, this
effect is largely absent in fiber tractography results as the three fiber bundles are distinct
and can be clearly identified. Last but not least, it is interesting to note that fiber bundles
are denser in both reconstructed datasets.

Figure 7.9: Fiber tractography using HCP in vivo data (see Figure 7.5), where correspon-
dence is defined as: (Left) Ground Truth, (Middle) GCSR, (Right) GMM Reconstruction

In the dMRI community, tractography competitions are held regularly to stimulate
the development of algorithms both for fODF generation and the actual fiber tracking.
Researchers are invited to submit their tractography algorithms, which are subsequently
tested on dMRI scans of pre-established phantoms and benchmarked against one another.
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Regardless of whether the phantoms were synthetically constructed or computer made, it
provided a ground truth basis for comparison between the actual tract layout and the result
from various tractography algorithms. One such competition was the FiberCup compe-
tition (http://www.Inao.fr/spip.php?rubrique79), which not only provided a synthetically
constructed phantom illustrating different commonly encountered fiber configurations but
also presented several quantitative metrics for evaluating each algorithm. Considerable
insights from that competition were borrowed towards the experiments conducted in this
thesis. While explanation of key ideas are provided in this thesis, the reader is also en-
couraged to consult the manuscript for a deeper justification for their design decisions

[28].

7.3.2 Quantitative metrics in Streamline Tractography

The streamline tractography results from Camino can be interpreted as a list of points
indicating coordinates for which the fiber trajectory passes through. As this corresponds
to a discrete sampling of the fiber, the immediate question that comes to mind is a proper
means of interpolation between the points. The FiberCup competition elected to fit cubic
B-splines over the sampling points to model the fiber trajectory, which is appropriate
given neural tracts typically do not exhibit heavily jagged paths. For this reason (with the
exception of one pathological test case, to be discussed later), the experiments of this thesis
also use this method of interpolation. Following this, each fiber trajectory is resampled at
a higher number of points.

The next issue to be addressed is appropriate quantitative metrics for comparing two
distinct fiber trajectories. The fiber trajectories are typically given as a collection of spatial
locations through which they traverse through. An intuitive metric is to measure the aver-
age spatial displacement between the two fibers. Note that the aforementioned resampling
process ensures cach fiber contains precisely N points. Denoting the n'* point along two
fibers by (21.n, Y1, 21,n) and (T2, Y2.n, 22.n) respectively, the average spatial displacement
is simply the Euclidean Distance between each point represented as

N
1
Spatial Displacement = N Z \/(:L’g,n —Z10)2 4+ Yo — Y1)+ (220 — 210)2 (74)
n=1

However, it can be easily seen that for fibers in close proximity with one another, this
metric will yield good results but will fail to account for differences in fiber geometries.
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Since fiber tractography is performed based on fODF reconstruction at each voxel, needless
to say examining fiber geometry is critical for assessing reconstruction fidelity. Towards
that end, the tangent metric was proposed for measuring the differences in shape between
two fibers. The tangent metric computes the tangent vector to the fiber at each of the
sampled points on the fiber. Subsequently, the angle between the vectors is calculated
and averaged over all N sampling points. Defining the normalized tangent vectors at
the first fiber’s n'* point by t;, = H%—Z;H (second fiber by ty,, respectively), this can be
mathematically presented as

N
1 180
Tangent Metric = N —Jcos Mt1, tan) (7.5)
T

n=1
where once again N denotes the number of sampling points on the fiber. Whereas fibers in
parallel would have a significant spatial displacement, the tangent metric is able to identify
a large degree of similarity between parallel fibers. In tandem, these two metrics provide
a fairly deep assessment of the difference between two neural tracts.

7.3.3 Experimental results from Fiber Tractography

As seen in Figure 7.8, the presence of fibers with different geometric characteristics is
prevalent in many different parts of the human brain. It is clear that arbitrarily selecting
fibers and comparing metrics can yield vastly differing results. Therefore, it is important
to first classify available fiber geometries to avoid the trap of comparing apples to oranges.

Towards that end, five distinct test cases have been chosen based on their perceived
fiber geometry. Three of the test cases are designed to test single fiber geometries that are
dominant in areas of the brain such as the corpus callosum, while the other two test cases
deal with more complex geometries involving multiple intertwined fiber trajectories. The
selected regions of the brain as well as examples of fiber geometry are shown in 7.10. For
each of the five fiber geometries presented in Figure 7.10, results from 20 fibers exhibiting
similar geometry was averaged to reduce uncertainty.

Finally, a word on the datasets used for this experiment is in order. As with the previous
analysis of HARDI data, the super resolution method proposed by Mani [16] (henceforth
also referred to as the reference algorithm) was adopted as a benchmark for GCSR. Table
7.1 reports the spatial displacement and tangent metrics for each case.

Before comparing the performance of the GCSR and GMM reconstruction, it is helpful
to first understand Camino’s philosophy of performing streamline tractography as well as
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Figure 7.10: Selective fibers in the designated ROIs are chosen for error metrics based on
their distinctive geometries.

the proposed test cases. Firstly, tractography algorithms have a tendency to favour fiber
trajectories with low curvatures. This is due to its frequent occurrence in the human
brain and should be treated as the best case. Indeed, low curvature fibers have very
little spatial and tangential error between the reconstructions and the ground truth. This
is further reinforced by looking at the results for high curvature fibers, which exhibit
a significantly increased error in both metrics. Related to the first point is how fiber
trajectories usually do not exhibit high frequency twisting and bending behaviour. To
provide a more complete streamline tractography analysis one such test case was included
to reflect more pathological situations. Last but not least, the last two test cases look at
scenarios where two fibers are in such close proximity that the presence of both are detected
within a single voxel. As discussed previously in the dMRI section this is a critical case
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Table 7.1: Comparison of tractography metrics between GCSR and GMM Reconstructed
data

Geometry ' GCSR GMM Reconstruction
Spatial Tangent (°) | Spatial Tangent (°)
(mm) (mm)

Low Curvature | 0.033 0.014 0.048 0.016

High Curvature | 0.19 1.32 0.26 1.39

High Frequency | 0.84 1.83 0.86 1.94

Crossing 1.61 0.16 1.77 0.18

Kissing 3.15 0.29 3.39 0.35

that cannot be inferred accurately with DTIL.

With a fundamental understanding of how Camino’s tractography algorithm behaviour,
one can subsequently gain considerable insight by analysing the discrepancies between
reconstructed data and ground truth. The performance between GCSR and the Reference
algorithm are relatively similar for (1) Low Curvature and (3) High Frequency cases. This
can be attributed to tractography algorithm behaviour because they are well and badly
equipped to handle those two respective cases; thus the reconstruction fidelity becomes
masked. On the other hand, for (2) High Curvature as well as the multi fiber cases GCSR is
ahead by a clear margin. These results show that GCSR provides a superior reconstruction,
something that is difficult to assess based on visually examining the qualitative results.

7.3.4 Comparison with denoised measurements

While the ground truth data provided an invaluable reference point, a non-negligible de-
gree of measurement noise was observed in the ground truth dataset. In the following
experiment, the performance of GCSR is compared to ground truth data processed with
a suitable denoising algorithm. In the dMRI community, the Non-Local Means (NLM)
Algorithm [76] has been demonstrated by many to be effective at removing the Rician
noise contamination induced by the quadrature receiver coils in an MRI scanner. It is
interesting to note that the NLM Algorithm was initially conceived with a Gaussian noise
model, which is an acceptable approximation for high SNR data. However as discussed
earlier HARDI datasets tend to require higher b-values which in turn leads to lower SNR
due to the increased presence of noise when the base MR signal is strongly attenuated. In
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Table 7.2: Comparison of tractography metrics between GCSR and NLM filtered version
of ground truth data

Geometry GCSR NLM Filtered Ground Truth
Spatial Tangent (°) | Spatial Tangent (°)
(mm) (mm)

Low Curvature | 0.033 0.014 0.029 0.008

High Curvature | 0.19 1.32 0.14 1.27

High Frequency | 0.84 1.83 0.83 1.84

Crossing 1.61 0.16 1.33 0.15

Kissing 3.15 0.29 2.78 0.26

this experiment, the NLM algorithm was adapted from a freely available MATLAB imple-
mentation provided by Pierrick Pouper [17] and applied on the ground truth. Results can
be seen in Table 7.2. As we can see from the results of GCSR reconstructed and filtered
data in Table 7.2, the discrepancy between them is comparable with one another in all
test cases. This suggests that the error incurred during GCSR reconstruction as seen in
the previous experiments can be attributed to the noise present in measured ground truth
data.

The series of streamline tractography experiments provided another means of valida-
tion between ground truth and reconstructed data. Even though the previous experiments
with ODF's showed some discrepancy between ground truth and reconstructed datasets, the
fiber tractography experiments provides sufficient evidence that GCSR can provide data
at increased spatial resolution without affecting the ability to accurately recover the un-
derlying fiber tracts. It was also demonstrated that smaller degrees of spatial displacement
and tangent metrics resulted from GCSR as opposed to GMM Reconstruction.
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Chapter 8

Summary and Future Works

In this thesis we have started with the basic physics associated with diffusion and Nuclear
Magnetic Resonance, and saw how they can be applied to medical imaging. Studies such as
CHARMED and NODDI have showed that dMRI is a promising tool for exploring pathways
of neural tracts within the human brain. Among various dMRI models, HARDI provided a
balance between acquisition time and effectively recovering diffusion orientations through
sampling diffusion gradients over a spherical shell. The diffusion orientation profile was
consolidated into a spherical probability distribution function known as the diffusion ODF,
which was evaluated at each voxel in the spatial domain.

Revisiting the goal of dMRI to model neural fiber tracts in the brain leads to the
revelation that in practice, the typical level of spatial resolution is insufficient. This can
be seen from the partial volume effect, where different types of tissue are present within
a single voxel. A similar argument was made in the g-space, where the long acquisition
time associated with dense g-space sampling would inevitably result in motion artifacts
induced by patient movement. These concerns stimulated the research in dMRI towards
methods of increasing the spatial resolution while maintaining reasonable acquisition times.
While both hardware implementations and post-processing techniques were explored in the
literature, post-processing techniques were found to be more feasible in practice.

Of particular importance to this thesis was the theory of compressed sensing, allowing
data with a sparse representation in some basis to be accurately reconstructed from very
few samples. Using that fact that HARDI signals could be sparsely represented using
spherical ridgelets, the problem of inherently low spatial resolution in HARDI data could be
addressed by means of super resolution. The proposed GCSR algorithm used appropriate
regularization functions such as minimization of the TV semi-norm across each DWI and
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ridgelet coefficient continuity to recover SR coefficients at increased spatial resolution,
which was formulated as a convex optimization problem. Subsequently, a specific form of
proximity algorithm known as ADMM utilized the powerful technique of variable splitting
to reformulate minimization of the complicated cost function into simpler sub-problems.

Testing of our approach with computer simulated and in vivo data lead to the real-
ization that the reconstructed ODFs were comparable to the ground truth. Comparisons
using quantitative metrics reflected that reconstructed data provided a reasonable estima-
tion to the ground truth. To further assess the viability of reconstructed data in practical
applications, validation was made through fiber tractography experiments under the hy-
pothesis that the observed discrepancy was attributed to measurement noises in the ground
truth data. Streamline tractography experiments using different fiber geometries showed
that the associated discrepancy between ground truth and reconstructed data was neg-
ligible. Moreover, comparison between the reference method showed that our proposed
compressed sensing using spherical ridgelets was slightly superior. Finally, it was seen
through tractography with denoised ground truth data that the reconstruction error was
reduced, validating the previous hypothesis of measurement errors due to the presence of
noise.

That being said, there is still room for improvement in future works. For example, the
in vivo data for our experiments were acquired using EPI, which boasted fast acquisition
times but came at the expense of spatial resolution. Spiral sampling retains the advantage
of accelerated acquisition while featuring less adverse artifacts in the data, likely improving
the quality of reconstruction. Another direction would be incorporating datasets from
patients with known disorders (such as Alzheimer’s Disease) and determining whether
tract based statistics from performing fiber tractography on more localized super resolution
data would yield deeper insight towards diagnosis. Similarly, the quantitative metrics
used for assessing HARDI data could be improved by considering increased weighting in
areas of importance as opposed to uniform weighting across all voxels. Last, but not
least, other forms of regularizing the data should also be explored to improve accuracy
of the reconstructions. For example, the diffusion encoded images could have a sparse
representation in a multi-resolution transform such as framelet frames [25].
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