
Measuring and Predicting Computer
Software Performance: Tools and

Approaches

by

Augusto Oliveira

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Augusto Oliveira 2015



This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Measurement-based software performance evaluation is essential to computer science
and industry alike, yet despite its widespread adoption, the current level of statistical
rigor is inadequate, putting published results into question: for example, the majority of
publications fail to report any dispersion metric at all. To foster widespread adoption
of statistically rigorous performance evaluation, the first part of this thesis proposes the
use of formal experiment design and non-parametric analysis techniques, and presents a
distributed infrastructure that lowers the cost of rigorous experimentation by automating
the experiment design and execution process, while minimizing the variability in com-
puter performance response metrics. Then, to address cases where rigorous performance
experimentation is infeasible, either due to infrastructure costs or unavailability of target
platforms, the second part of this thesis builds on the previously discussed techniques and
infrastructure to introduce two performance prediction techniques: one to predict when
code changes will cause performance changes during software development, and another
to predict performance metrics on unavailable platforms using benchmark-based statistical
models.
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Chapter 1

Introduction

Computer performance evaluation is a combination of the measurement, interpretation,
and communication of a computer system’s speed or capacity [59]. In general terms, the
process of computer performance evaluation consists of the following steps: selecting a
performance metric, designing an experiment, analyzing the resulting data, and, finally,
reporting the results [44].

Performance evaluation is essential in computer research and industry alike. Re-
searchers use performance evaluation to measure the speed of hardware and software,
and to compare alternative approaches to a problem. In industry, performance evaluation
guides the purchase of hardware and software systems, and performance metrics are usually
among the main indicators of quality in engineering projects. Google has reported a 20%
traffic decrease due to a 500ms delay in page rendering [87], and Amazon has reported a
1% decrease in sales due to a 100ms delay in page rendering [87].

Experimenters can perform performance evaluation through three fundamental tech-
niques: analytical modeling, simulation, and measurement-based statistical inference [44].
In analytical modeling, the computing platforms (i.e., hardware and supporting software,
such as the operating system) and the computing workloads are represented through math-
ematical models, constructed with manufacturer specifications, analysis tools, and expert
knowledge. These models tend to abstract away as much detail as possible while still
providing a reasonable approximation of the real system performance. In simulation, a
functional model of the computing platform is used to execute the real workload, or step
through a trace of aspects of the workload. The precision of both of these approaches
depends on the quality of the models created. While analytical models and simulation are
undoubtedly useful and can be cost-effective, they depend on the construction of a model
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of each platform where performance is to be analyzed.

Measurement-based performance evaluation, the remaining approach, is generally the
most accurate, since simplifying assumptions about the platform and the workload are
unnecessary [59]. A desirable property of this approach is that experimenters can readily
execute workloads on a variety of environments, if they aim to argue that their results
(e.g., an algorithm optimization) apply in general, whereas in the other approaches this
would require modeling of all target platforms individually. The application of this method,
however, requires a working prototype of both the platform and the workload. Nevertheless,
measurement-based evaluation is one the cornerstones of empirical computer science, and
experimental results are widely used to compare hardware and software objects of study
in scientific venues.

Due to the complexity of modern computer systems, many performance metrics can no
longer be treated as deterministic, even if the result of the computations are. A general-
purpose, multi-processor system, with multiple layers of memory – from registers, to multi-
ple caches, to DRAM – and a full-featured operating system will very rarely take the exact
same amount of cycles, or incur the exact same number of cache misses, or correctly predict
the same number of branches, when executing the same computation twice. Even hard-
ware performance counters for metrics such as the number of retired instructions, which
could conceivably be deterministic, show variations between identical runs in modern pro-
cessors [100]. This type of performance non-determinism is now well known, but generally
ignored given its relatively small effect.

Unfortunately, as the complexity of platforms and workloads increases, more hidden
sources of performance variability appear, and ignoring their worst-case effects can lead
to wrong conclusions. Many research efforts [69, 70, 38, 49, 34, 29] have demonstrated
that seemingly innocuous experimental setup details have surprisingly significant effects
on performance, ranging from 3% to as much as 45% in the worst case. These performance
changes can be caused by unexpected sources, such as changes to the binary link order,
changes to symbol names in the binary, changes to the user name used during experimen-
tation, or switching between similar versions of the Linux kernel.

Researchers and developers can turn to statistical tools to isolate these unwanted
sources of variability from the effects they are truly interested in measuring. For sim-
ple comparisons between two competing approaches – e.g., bzip2 vs. XZ, two compression
algorithms, applied to the same input – statistical tests such as Student’s t-test [67] or
overlapping confidence intervals for the mean can indicate whether the mean of two popu-
lations, as represented by samples from those populations, are equal. These tests do incur
the added overhead of repeated measurements (to allow for an estimation of variance) and
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specific properties about the distribution of the data, but they can take the variability in
the data into account to “filter out” the noise from the information of interest.

Low (-) High (+)
Compressor (x1) bzip2 XZ
Opt. Flag (x2) -O2 -Os
Input Size (x3) 10MB 100MB

Table 1.1: Experiment design.

Compressor

In
pu

t S
iz

e

+

+

-

-

Opt F
lag. +

-

Figure 1.1: Graphical representation.

These simple statistical tools generalize to more complex experiments, where multiple
factors are investigated together. For example, consider an extension of the previous ex-
ample: the evaluation of multiple compression algorithms, but now with multiple GCC
compiler optimization levels (-Os, optimizing for size, and -O2, optimizing for speed), and
applied to multiple inputs, as listed in Table 1.1. Each of those three factors can vary
independently from the others. Figure 1.1 represents this experiment design as a cube
in three-dimensional space, each vertex denoting a measurement point: bzip2 at -O2 and
10MB input at the bottom left, XZ at -Os and 100MB input at the top right, and all other
combinations at the other vertexes.

The most efficient way to carry out a factorial experiment design such as this example
is to vary the factors at the same time, as opposed to individually and in isolation [67].
To calculate internal variability in the data, developers should repeat performance mea-
surements a number of times (i.e., collect replicates) for each combination of factor levels
(the cube’s vertexes). Table 1.2 shows a synthetic data set to serve as an example; each
combination of factors (x1, x2 and x3 for compressor, optimization flag and input size,
respectively) contains three replicates, totaling 2× 2× 2× 3 = 24 individual observations.
Their results are shown in seconds, in the yi columns; note that the experimental conditions
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in each row are the same, yet the execution times are different, to represent the variability
discussed above.

Compressor (x1) Opt. Flag (x2) Input Size (x3) y1 y2 y3
bzip2 (-) -O2 (-) 10 (-) 31.139 24.726 25.295
bzip2 (-) -O2 (-) 100 (+) 45.153 46.096 56.602
bzip2 (-) -Os (+) 10 (-) 43.440 33.648 31.000
bzip2 (-) -Os (+) 100 (+) 51.720 54.905 54.666
XZ (+) -O2 (-) 10 (-) 20.801 21.575 16.429
XZ (+) -O2 (-) 100 (+) 41.198 47.056 42.211
XZ (+) -Os (+) 10 (-) 5.932 14.376 15.075
XZ (+) -Os (+) 100 (+) 30.286 23.144 27.570

Table 1.2: Example data set for factorial experiment.

Data analysis of two-level factorial designs such as this example usually consists of
creating a model that relates the response variable to the factors using least-squares linear
regression, a statistical method to calculate the best fitting linear function to a given data
set, assuming the resulting model’s errors are normally and independently distributed (i.e.,
the occurrence of one error value does not affect the probability of the others), and have
constant variance. The resulting model, which estimates the mean for a given combination
of factor levels, will be of the form:

y = β0 + β1x1 + β2x2 + . . .+ βkxk + . . .+ β12x1x2 + . . .+ βikxixk + . . .+ ε (1.1)

where y is the response variable, which is related to k factors, each with a level xi
and a coefficient βi, where i = 1, . . . , k. Terms of the form β12x1x2 allow the modeling of
interactions between factors. Higher-level interactions (between three or more factors) can
also be included in the model. The ε term is a random error component that incorporates
other sources of variability (uncontrolled factors and measurement error). This model
describes a hyperplane in the k-dimensional space of the k factors, and β0 is the intercept
for the plane, i.e., where the plane crosses the response variable dimension when all xi = 0.

In the case of our compression example from Table 1.1, let x1 represent the compression
algorithm factor. We attribute indicator values to its levels: -1 for low (bzip2) and +1 for
high (XZ). The compression algorithm effect β1 will then be half the expected change in
the mean response variable when the scheduler factor is modified and all other factors are
unchanged. In other words, the low indicator value x1 = −1, will subtract the value of
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β1 from the response variable, the high indicator value x1 = +1, will add it; hence β1
is half the total expected change in the response value when x1 changes from −1 to +1.
A positive βi signifies positive feedback on the response variable with an increasing value
of xi; a negative βi signifies a negative feedback under the same conditions. Interaction
terms for each combination of factors, e.g., β12 for the interaction between compressor and
optimization flag, will quantify the synergy between factors: its value will denote if one of
the compression algorithms benefits from -Os to a greater extent than the other does.

The resulting linear model for the data set in Table 1.2 is:

ŷ = 33.502− 8.031x1 + 9.882x3 − 4.719x1x2 (1.2)

This model suggests that XZ is faster than bzip2 (β1 = −8.031), changing the input
size from 10MB to 100MB adds approximately 19.76s to execution time on average (β3 =
9.882), and that XZ exclusively benefits from the -Os optimization flag (β12 = −4.719).
The missing coefficients (e.g., β2) belong to statistically insignificant factors in this case,
and were omitted here for simplicity; we discuss them in more depth shortly.

Analysis of variance [67] (ANOVA) can partition the total amount of variability in our
data set between an explained portion – the variability created by the controlled factors
– and the unexplained portion – the variability created by measurement error or the un-
controlled factors – making it clear to developers how susceptible to hidden factors their
experiment is. The total variability in the data set is called the total sum of squares (SST),
the unexplained variability is the error sum of squares (SSE), and the explained variability
is the regression sum of squares (SSR). These are formally defined by:

SST =
n∑

i=1

(yi − ȳ)2 (1.3a)

SSE =
n∑

i=1

(yi − ŷi)2 (1.3b)

SSR = SST − SSE (1.3c)

where n is the number of observations, yi is the ith observed value, ȳ is the mean over all
observations, and ŷi is the model’s estimated value for observation yi. Intuitively, the total
sum of squares is the sum of distances between each observation and the overall mean, i.e.,

5



the total variability in the data. The error sum of squares is the sum of distances between
the observed values and the model’s estimates for that value, i.e., the error incurred by the
model. Finally, the regression sum of squares is the remaining variability after the error is
removed, or the explained variability. The regression sum of squares can be further divided
into each factor, as we will demonstrate shortly.

Factor Effect (s) Sum Sq. p-valueLow High
95% Estimate 95%

x1 -9.938343 -8.0307 -6.1230735 1547.81 < 0.01
x2 -3.262593 -1.3550 0.5526765 44.06 > 0.01
x3 7.974490 9.8821 11.7897598 2343.75 < 0.01

x1:x2 -6.626593 -4.7190 -2.8113235 534.45 < 0.01
x1:x3 -2.016676 -0.1090 1.7985932 0.29 > 0.01
x2:x3 -3.554760 -1.6471 0.2605098 65.11 > 0.01

x1:x2:x3 -2.430760 -0.5231 1.3845098 6.57 > 0.01

Error 310.95

Table 1.3: ANOVA results for the example experiment.

Table 1.3 shows the results of analysis of variance for this example experiment. The
factor column lists the source factor for the variability. The effect column lists the values of
βi calculated by linear regression, and the boundaries of their 95% confidence interval. The
sum of squares column shows the portion of the total sum of squares attributable to each
factor (i.e., the higher the sum of squares attributed to each factor, the more variability
was introduced by that factor). The total regression sum of squares can be calculated by
adding together each factors’ sum of squares. The p-value column shows the statistical
significance of each factor’s effect. For example, a significance level below 0.01 means that
a factor is significant (i.e., has a non-zero effect) at the 99% confidence level. The statistical
significance of an effect does not indicate its magnitude, which is captured by the βi model
coefficients (c.f., the effects column).

The error sum of squares is shown in the last row. Its value, 310.95, is an upper
bound on the variability attributable to the sum of all uncontrolled factors. This value
is small in comparison to the compressor and input size factors (x1 and x3, respectively),
but comparable to the compressor-to-optimization-flag interaction (x1 : x2). Therefore, for
this experiment, it may be useful to try and improve measurement techniques to reduce
variability in the data set.

This relationship between the explained and unexplained variability can be used to
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calculate the fraction of explained variability, or the R2 statistic of a model:

R2 = 1− SSE

SST
(1.4a)

In our example, R2 = 0.936. This means that, out of the total variability observed
in the data set (total sum of squares) 93.6% is attributable to one of the factors or a
combination thereof, and the remaining 6.4% is attributable to error (error sum of squares).
This indicates that there is a strong correlation between the factors investigated and the
response variables, and (assuming the assumptions required by linear regression hold) the
choice of linear regression was a correct one.

The advantages of using factorial designs and creating statistical performance models
are clear: quantification of independent factors and their interactions, an upper bound on
the unexplained variability in a data set, and optimal number of observations required –
minimizing evaluation cost – all while allowing formal statistical methods for hypothesis
testing, accounting for any natural variability in the data. Assuming linearity around the
experimental conditions, our model of compressor performance (Equation 1.2), can even
predict performance for input sizes near the levels explored (e.g., 50MB, 125MB) by varying
the value of x3, giving confidence intervals around each predicted value.

Despite these clear and numerous advantages, computer research and computer engi-
neering still trail other fields in the adoption of even the simplest statistical tools. This has
been recently brought to the attention of the community by several researchers [98, 93, 23,
6], and, in an effort to improve the status quo, some conferences such as PLDI [79] have
started rewarding authors that publish experiment code and raw result data. However,
the publication of experimental data and artifacts is still optional, and only exercised by
a minority of authors.

To further illustrate the state of experimental methodology in computer science, we con-
ducted a survey of the recent published papers in SOSP 2011, ASPLOS 2012, OSDI 2012,
ATC 2012, EuroSys 2011, and PLDI 2012. The results are shown in Table 1.4. The
columns, in order, show the total number of papers, the fraction that contains empirical
performance evaluation, the fraction that describes their hardware platforms and software
versions, the fraction that contains a comparison (either with a baseline or a competi-
tor), the fraction of those that contain a formal statistical test for that comparison, the
fraction that performs the experiment under different conditions as a sanity check, the frac-
tion that contains a dispersion metric (standard deviations, confidence intervals, empirical
CDFs, etc.), the fraction that published the software being evaluated, the fraction that
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uses a publicly available workload (established benchmarks, input files, etc.), and, finally,
the fraction that published their resulting data.

Conference No. Perf.
Eval

HW
Desc.

SW.
Desc.

A/B
Test

Formal
Test

Sanity
Check

Disper.Public
SW

Public
Load

Public
Data

SOSP’11 27 93% 92% 60% 91% 0% 24% 44% 4% 68% 0%
ASPLOS’11 36 61% 100% 55% 54% 0% 5% 31% 4% 82% 4%

OSDI’10 30 93% 71% 61% 54% 0% 0% 32% 7% 39% 0%
ATC’12 40 95% 87% 58% 68% 0% 3% 32% 8% 26% 0%

EuroSys’11 22 86% 95% 74% 84% 12% 42% 47% 21% 58% 0%
PLDI’12 45 64% 90% 79% 93% 0% 37% 10% 24% 72% 0%

Table 1.4: Illustration of experimental rigor in recent scientific publications.

While many papers include an empirical performance evaluation, many papers do not
list the versions of the software used for these experiments. Worse, many publications
do not contain an empirical comparison to a baseline or a competing approach, listing
only absolute performance numbers for reader interpretation. Out of those papers that
do include a comparison with a baseline or competitor, only a vanishingly small fraction
formally tests that their performance figures are different from the baseline. Although the
benefits for using dispersion metrics, as described above, have been pointed out by many
researchers [93, 24, 94] in the past, a number of papers that do a performance evaluation
do not use any measure of dispersion in their performance evaluation.

The lack of rigorous performance evaluation is often blamed on the fact that experimen-
tation is difficult, costly, and will slow innovation [93], but the alternative to statistically
rigorous evaluation is the risk of coming to incorrect conclusions. Any publication report-
ing a performance effect within the range of the hidden factors described above may be
simply relying on noise as if it were a true effect, invalidating results and possibly misguid-
ing follow-up research. Table 1.4 also shows that only a small minority of authors make
their experiment implementation and results publicly available, which precludes other re-
searchers from reproducing their results or re-analyzing their data, making it even more
difficult for rigorous evaluation to take hold.

The current overhead of robust performance evaluation is clearly more than what the
community is willing to incur. We believe, therefore, that the solution to these problems
must be centered around making it easy for researchers to perform rigorous empirical
performance evaluation. The first part of this thesis presents tools and approaches to lower
the cost and effort required for statistically rigorous computer performance evaluation.
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Chapter 3 demonstrates the danger of ad-hoc computer performance experimentation,
and presents a case for the adoption of factorial experiment design and formal statisti-
cal analysis through the reproduction of a previous experiment: the comparison between
two Linux CPU schedulers, an experiment originally conducted by Linux kernel develop-
ers themselves. Our results show that while we were able to repeat prior unstructured
experiments for these schedulers, we were unable to reproduce conclusions based on the
experimental results. After conducting a series of experiments, we were not only unable
to reach a decisive conclusion, but also unable to determine when enough experimentation
would had been done. To conduct a statistically rigorous, reproducible experiment, we ap-
plied the textbook factorial experimental design and analysis techniques described above,
and we found that while factorial design successfully produced the data set required for
analysis, linear regression was effective for only some of our metrics, but was inapplica-
ble for others because they failed to satisfy the necessary assumptions of that technique.
Finally, we applied a recently developed statistical technique to our experiment: quantile
regression [53], which allows researchers to analyze data in greater detail than simple linear
regression, without requiring the data to satisfy specific statistical properties. While linear
regression focuses on the mean, quantile regression allows the quantification of factor effects
on any given quantile (e.g., the median, or the 99th percentile) of the metric of interest.
Our factorial experiments with quantile regression led to correct and reproducible results
even in the presence of non-normal computer performance data.

Chapter 4 presents DataMill, a distributed infrastructure for computer performance
experimentation which aims to allow scientists and researchers to easily produce robust,
replicable, and reproducible computer performance experiments at low cost. To do so,
DataMill executes the experiments on real hardware (with no virtualization layer) and
incorporates the results from Chapter 3 on how to set up factorial designs to arrive at
reproducible results, and previous research on hidden factors. The infrastructure auto-
matically varies a selection of hardware and software factors, reducing the effort required
by the user to set up the experiment while simultaneously increasing the robustness and
applicability of the experimental results to a wide range of factors. The user need not know
the details of the underlying mechanisms required to vary these factors and may simply
take advantage of the DataMill infrastructure. Besides making it easy and low cost to the
user, DataMill also aims to alleviate the problem of data availability and the reproduc-
tion of experimental setups. Based on our own experience, in addition to not publishing
results alongside their publications, few researchers respond to inquiries for experiment
setup details and requests for code or raw data. In DataMill, all experiment setup pa-
rameters and their experiment files remain stored in the infrastructure. Users can choose
to make their experiments public facilitating the replication and reproduction of the their
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experimental configurations and results. We believe DataMill has the potential to raise the
bar of performance evaluation experiments by making the data publicly and consistently
available.

Then, to reduce uncontrolled performance variability on DataMill, Chapter 5 presents
an extensive empirical evaluation of hidden memory-layout-based performance effects.
This exploration determines (1) how frequently these effects appear, (2) the magnitude
of their effect on mean performance, and (3) how much variability they add to perfor-
mance. The experiment explored five methods of varying the memory layout of an appli-
cation: POSIX environment size, Linux’s address space layout randomization feature, the
position-independent executable compiler option, experiment warm-up phases, and reboots
between individual runs. By exploring these factors in factorial designs, we quantify not
only the average effect (i.e., by how much do they displace mean performance) of several
layout-affecting factors and factor interactions, but also their impact on an experiment’s
variance. Finally, we present our findings as to what combination of factors leads to the
most deterministic (i.e., lowest variance) performance results, so that researchers may use
this methodology to achieve the most repeatable results.

The approaches and tools described in Chapters 3 through 5 reduce the cost of rigorous,
repeatable computer performance experiments, but there are still cases where empirical
performance testing is justifiably impractical or even impossible. Part II of this thesis
presents performance prediction techniques that build on the measurement approaches and
tools presented in Part I to reduce or replace direct performance measurement whenever
necessary.

The first such case is when the volume of performance testing is impractical. For ex-
ample, if developers of the the HotSpot Java Virtual Machine [72] were to execute each
benchmark in the SPECjvm2008 [86] and DaCapo [5] suites once a day, it would take over
three hours on a modern quad-core 3.60GHz Core i7 CPU. Since there are on average five
daily commits for HotSpot, running every benchmark multiple times – a requirement for
variance estimation and robust statistical analysis, as discussed above – on every com-
mit can require multiple days of computation per day of development. Keeping up with
this computation demand requires a dedicated cluster of machines, which many software
projects cannot spare for this purpose alone. Even if that is an option, each change would
require hours of testing before being committed, limiting the throughput of commits for
the project. The compromise developers currently employ is periodic testing (e.g., weekly,
or before every public release), which also detects performance regressions, but has the
following problems. First, it requires further effort on the part of the developers, who need
to “bisect” the commit history in order to find the offending change (or changes) in case of
regression. Second, it not only delays the detection of regressions, but also increases the
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chance that a problem is ingrained in the design of the software and not easily solved once
found. Third, if one commit causes a performance regression and another causes a perfor-
mance improvement between benchmark runs, these performance changes may go entirely
unnoticed by the developer, who could otherwise fix the regression from one change while
keeping the speedup from the other.

To enable minimal performance regression detection delays without requiring costly
performance evaluation infrastructure, Chapter 6 introduces Perphecy. Perphecy (a port-
manteau of performance and prophecy), is a general, lightweight, effective, and reliable
performance-change prediction strategy. Perphecy is general, because it is programming
language, operating system, and processor architecture independent; lightweight, because
it does not require long-running analysis to emit a prediction; effective, because it greatly
reduces the amount of performance test runs; and, finally, reliable, because it detects the
majority of performance-affecting code changes. If developers can predict which com-
mits will cause performance regressions on which benchmarks, they can complement their
traditional periodic performance tests with frequent pin-point partial testing, which does
not significantly increase performance testing time, yet dramatically reduces performance
regression detection delay. By executing only benchmarks that are likely to incur perfor-
mance changes on a subset of commits, they avoid wasting computing time and power,
and still detect performance regressions immediately.

The second case where direct performance measurement is infeasible is when the tar-
get platform is unavailable, either due to cost – developers cannot afford to acquire all
candidate targets for empirical comparisons – or manufacturing lead-times – vendors have
designed and prototyped the platform, but have not yet made them available on the market.
If a timing-accurate emulator of the target platform is available, developers can execute
their code on the emulated platform and collect performance metrics. Alternatively, de-
velopers can correlate their application’s performance to platform properties (e.g., CPU
architecture, clock rate, memory quantity and bandwidth), and use the resulting model
to make predictions. Finally, developers can use a standard benchmark suite to compare
their current platforms with a new target, making the assumption that their application’s
performance will correlate with the performance of the benchmark suite.

Relying on benchmarks is often the most cost-effective option, given the difficulty of sim-
ulating or modeling performance accurately, cheaply, and quickly. Platform manufacturers
can publish standard benchmark results, and developers can then predict the performance
of their applications using those numbers. The effectiveness of this strategy is evidenced
by the number and variety of benchmark suites available, and the widespread use of bench-
mark scores in promotional material for both hardware and software. However, while a
benchmark suite can suggest what the performance difference between two platforms will
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be for the average application, benchmark suites are not guaranteed to represent any single
application accurately. For example, the SPEC CPU 2006 documentation explicitly states
that “when you are doing vendor or product selection, SPEC does not claim that any stan-
dardized benchmark can replace benchmarking your own actual application” [85]. Despite
this disclaimer, SPEC does not otherwise indicate how the benchmark suite should be used
by developers in comparing platforms. Nonetheless, developers use benchmarks to estimate
how their application’s performance will transfer between machines, either implicitly as-
suming their application’s performance will scale at a similar rate as that of the benchmark
suite, or by constructing a case based on performance-relevant similarities between their
application and a benchmark (i.e., instruction mix, memory access patterns, memory hi-
erarchy pressure, etc.). Both of these approaches are error prone, as the benchmark suite
may not represent the developer’s specific application, and analysis of performance-relevant
features is difficult and may overlook important aspects of either the application or the
target architecture.

To enable performance prediction when the target platform is unavailable, Chapter 7
introduces performance fingerprinting, a statistical approach to create models of applica-
tion performance based on standard benchmark performance, using benchmark scores to
represent platforms in lieu of their hardware characteristics. Developers create a perfor-
mance fingerprint of their application by measuring the performance of their application
and a benchmark suite on DataMill. By combining that performance fingerprint with
the performance of the benchmark suite on the target machine (provided by the target
machine vendor) developers can accurately predict the application’s performance on the
target platform, without making any implicit assumptions about the relationship between
their application and the benchmark suite.

This thesis makes the following contributions:

• Chapter 3 [19]:

– A demonstration of the pitfalls of unstructured computer performance experi-
mentation;

– A demonstration of the use of factorial design in conducting reproducible com-
puter performance experiments;

– A demonstration of the shortcomings of linear regression in analyzing computer
performance data;

– A demonstration of the application of quantile regression to successfully analyze
non-normal computer performance data.
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• Chapter 4 [22]:

– An infrastructure that:

1. Automates factorial experimentation;
2. Provides controlled hardware and software heterogeneity;
3. Fosters reproducibility and sharing of experiments.

– A large-scale reproduction of previously published hidden factor effects.

• Chapter 5 [21]:

– A large-scale experimental evaluation of memory-layout-related performance ef-
fects;

– An experimentation methodology that minimizes performance variability on
DataMill.

• Chapter 6:

– An abstract model of commit-to-commit performance-change predictors;

– A number of lightweight indicators of performance changes;

– A heuristic to convert indicator values into usable performance change predic-
tions;

– An extensive evaluation of predictors that demonstrates their effectiveness on a
wide range of production software.

• Chapter 7:

– The use of standard benchmark scores as predictors in linear models;

– The use of DataMill and regression-model selection techniques to create predic-
tive models of application performance;

– An extensive evaluation of predictive models that demonstrates their effective-
ness and sensitivity to various parameters.
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Chapter 2

Related Work

In this chapter we present previous work in computer performance evaluation and com-
puter performance prediction which are relevant to the research presented in this thesis.
We present these related publications in two sections, each relevant to one of the parts of
this thesis: Section 2.1 presents the state of the art in empirical computer performance
evaluation, while Section 2.2 presents the state of the art in computer performance predic-
tion.

2.1 Measuring Computer Performance

There has recently been growing focus on the application of statistical methods on empir-
ical computer performance evaluation, and the adoption of such methods by the scientific
community, in addition to extensive findings into the danger of hidden factors in perfor-
mance evaluation. Additionally, there are several efforts to design and build computer
performance evaluation infrastructures, aiming to lower the cost of robust performance
evaluation.

2.1.1 Statistics in Computer Science

Tichy [93] argues that the state of empirical experimentation must improve, despite many
arguments to the contrary (e.g., experimentation is too expensive, there is too much noise,
technology changes too quickly). Similarly, Denning [23], former president of the ACM,
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points out that the state of experimentation in our field lowers its credibility as a sci-
ence. Blackburn et al. [6] raise the concern that the current standard of experimentation
methodology is a particularly significant problem in managed languages, and that it often
produces bad results or no result at all.

The Evaluate Collaboratory [13] is a hub of researchers, from academia and industry
alike, that are concerned with the state of empirical computer science. The collaboratory
maintains a list of relevant publications and evaluation anti-patterns, with the goal of
improving the state of experimentation. Vitek and Kalibera [98] report that in PLDI’11,
a selective (23.3% acceptance rate) conference where experimental results are commonly
published, 39 of the 42 papers that published experimental results did not report a measure
of dispersion in their data, a requirement for hypothesis testing.

Georges et al. [28] argue for the use of statistically rigorous analysis methods, however,
they only go so far as linear regression, which we demonstrate in Chapter 3 to be insufficient
in some cases, and propose the use of quantile regression in its stead. Due to its relatively
recent development, quantile regression is also gaining acceptance in other fields. Cade and
Noon [8] present the method to ecologists, and Koenker and Hallock [54] demonstrate the
method to economists. Similarly, Kalibera and Jones [50] present a random effects model
tailored to computer experiments, and also note that current textbook approaches may be
insufficient in the field.

In another work, Kalibera and Jones [51] address the problem of balancing accuracy
with benchmark execution time. Given a platform and benchmark, their approach can
be used to determine the number of repetitions necessary to achieve a given confidence
interval. Their study shows that while often around 5 to 10 executions are needed, some
less deterministic benchmarks can require dozens (and some extreme benchmarks, like
lusearch or xalan from the DaCapo suite [5], may require hundreds) of executions to reach
95% confidence intervals that are tight (i.e., have a half-width within 1% of the mean).

We share these authors’ concerns; as we have shown in Chapter 1, this lack of rigor
is still widespread, and more work is required before the standard of empirical computer
performance evaluation is equivalent to that of other sciences.

2.1.2 Hidden Factors in Computer Performance

Mytkowicz et al [70] show that even presumably innocuous factors, such as link order of
a program or the Unix environment size can significantly affect performance measurement
results. Their recommendation is to randomly vary those factors, however, this further
multiplies the number of required benchmark runs.
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Kalibera et al. [49] demonstrate that the random initial state of the machine had
a significant impact on the results of 6 different benchmarks. Kalibera concluded that
benchmarks were likely to be influenced by their random initial state. Four of the bench-
marks tested were Fast Fourier Transforms, it is possible that there is a greater incidence
of sensitivity to memory layout in computation-heavy benchmarks.

Chen et al. [12] recently reported observing small, within 2%, variations in perfor-
mance from different link-orders and POSIX environment sizes in their study of iterative
optimization, a process highly dependent on reliable, reproducible and consistent results.

Curtsinger et al. [16] developed a tool for randomizing the memory layout of code, stack
and data memory regions of a program at runtime, allowing a researcher to control the
effects of memory layout. The tool forces memory-layout effects to approximate a Gaussian
distribution, permitting the use of traditional statistical analysis techniques. Curtsinger
also reports performance regressions of up to 57% as a result of manipulating link-order.

Harji et al. [38] show that the Linux kernel has had a series of performance-affecting
issues, and that papers that present data measured on Linux could contain incorrect results.
For example, the authors observe performance regressions of as much as 45% between two
subsequent versions of the kernel. Gu et al. [34] show that simply changing the names
of symbols in Java code can significantly affect the performance of applications. In some
cases, these factors caused as much as 20% variation in cache miss count. Georges et
al. [29] show that non-determinism in just-in-time compilation and garbage collection cause
significant variability of as much as 6.2% in Java benchmarks. Gil et al. [30] report that
simply restarting a virtual machine can cause as much as 3% performance variations in
benchmarks.

Kalibera et al. [48] discuss how non-determinism in modern systems complicates the
reliable detection of performance regressions. Blackburn et al. [5] describe how software
relying on garbage collection may exhibit significantly different performance with different
heap sizes and garbage collection policies.

The abundance of these hidden effects and the reported lack of experimental rigor
discussed above are a dangerous combination. Even if these worst-case effects are rare,
researchers must explicitly quantify unexplained variability in their data in order to avoid
publishing incorrect conclusions. However, as we discussed in Chapter 1, a vanishingly
small minority of researchers explicitly conduct “sanity checks” in their experiments, mean-
ing either that those researchers ignore the risk of hidden factors, or that the cost of rigorous
evaluation is still too high to bear.
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2.1.3 Performance Evaluation Infrastructures

Desprez et al. [24] surveys numerous large-scale computing installations that follow a similar
objective to ours; to lower the cost of reproducible and extensible experiments. The authors
provide a survey of experimental methodologies and survey a selection of experimental
testbeds. In general, the testbeds surveyed are comprised of homogeneous nodes and
do not exhibit significant variation in the hardware used, and therefore do not lead to
results that generalize over varied hardware platforms. While the computing resources
available are vast and the installations provide support for complex experiments (e.g.,
distributed systems), the experimental setup process is described as manual and arduous
despite exposing high-level interfaces.

Most notable among the surveyed computing installations is OpenCirrus [9]. In addi-
tion to virtualized environments they also provide access to the physical machines. The
lowest-level service consists of a physical resource set (PRS). A PRS comprises a set of
VLAN-isolated compute, storage and network resources. PRSs are dynamically allocated
and managed through a PRS service. Through the PRS paradigm different levels of ab-
stractions can be configured that suit research applications reaching from low level systems
research (e.g., the evaluation of OS kernel parameters) to complex distributed systems
(e.g., several virtual machines that run a distributed middleware). OpenCirrus [9] supports
access to low-level hardware features, those features expose little variability compared to
the applications we are targeting.

PlanetLab [76, 73] provides planetary-scale data services and is used by the research
community to deploy, evaluate and access planetary-scale network services. Planetlab pro-
vides “slivers” to users, consisting of distributed networked virtual machines (VMs). The
VMs are hosted on physical machines that are maintained in a communal fashion. In or-
der to become a user of PlanetLab, one has to dedicate servers to PlanetLab. PlanetLab
exposes the application interface for provisioning the slivers and has facilities to isolate the
network of the individual slivers. PlanetLab is used predominantly to evaluate and deploy
distributed system [78], including content-distribution networks, name services, location
services, file-streaming services, fault-tolerant scalable services, peer-to-peer networks, dis-
tributed anomaly detection, distributed research allocation, routing overlays, and resource
discovery. Because the experimental environment exposed to the user is a virtualized ma-
chine, PlanetLab is not an optimal choice for computer performance experiments that seek
to evaluate the impact of varying hardware and software environment factors.

Various other experimentation infrastructures have been proposed with similar proper-
ties to PlanetLab. Jaffe et al. [43] describe a production platform with similar features to
PlanetLab. The project links various large data centers in an effort to provide an experi-
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mental platform for distributed systems. Unfortunately, the hardware chosen for the data
centers is very homogeneous and does not aid in the exploration of a large factor space.

HTCondor [89] is a distributed job scheduler designed for computation-intensive dis-
tributed workloads. HTCondor allows users to prepare packages and to submit them for
execution, supporting a wide range of experiments, but, since it is geared toward maxi-
mizing a cluster’s computing throughput, it is not well suited for clean-room performance
evaluation.

Netbed/EmuLab [102] is a testbed that provides a mix of simulation, emulation, and
live networks to distributed systems researchers. To use the infrastructure, researchers
define experiments in a domain-specific language, which a master node parses and then
realizes on the machines. Experimenters receive administrator-level access to machines,
which are multiplexed between users through FreeBSD’s Jail functionality.

Sharcnet [82] is a Canadian network of high-performance computers that researchers
can use to execute long-running experiments. The computing power and memory available
on Sharcnet make it a very useful platform for researchers that aim to solve complex, but
parallelizable, problems. Researchers are restricted to user-level access to the computing
platforms, and multiple jobs are frequently scheduled concurrently, making Sharcnet a poor
platform for performance evaluation.

The OpenBenchmarking.org [63] initiative, based on the Phoronix Test Suite [64] is
a Linux benchmark results database, where users submit their results of standard tests.
Data collection is done through the Phoronix Test Suite, which contains a wide array of
benchmarks, and a user’s datasets can be published and compared through a web interface.

BEEN [52], a general infrastructure for automated regression benchmarking in a het-
erogeneous distributed environment. BEEN compiles software and benchmarks, takes care
of deployment, runs benchmarks, and collects, evaluates, and visualizes results.

These infrastructures generally serve two experiment categories: high performance,
distributed computing, or local performance testing. Neither category serves developers or
researchers in need of hardware or software heterogeneity, nor do they explicitly explore
non-functional factors (such as the “hidden” factors discussed above), both of which are
necessary features for generality and reproducibility of results. We believe that to promote
widespread adoption of robust statistics, an infrastructure or framework must simplify
experiment designs, provide heterogeneity on a larger scale than individual researchers or
developers can achieve, and support automated exploration of hidden factors.
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2.2 Predicting Computer Performance

There is a smaller amount of related work in the area of computer performance prediction,
relative to empirical performance evaluation. Since our ultimate goal with performance
prediction is effectively avoiding direct performance evaluation, we start by reviewing cur-
rent developer’s efforts to cope with excessive performance testing costs. Then, we briefly
review test selection techniques, which relate to our goal in that they predict which func-
tional tests will not fail due to a change in the code, avoiding their execution. Finally, we
present the state of the art in direct prediction of computer performance metrics.

2.2.1 Managing Performance Testing Overhead

Many projects implement their own performance regression testing infrastructures. For
example, the Jikes RVM [2] project used to run performance benchmarks every 12 hours,
by checking out the most recent version of their VM, building it, and running a suite
of benchmarks including DaCapo. They visualized the resulting evolution of benchmark
performance on a public web page [18]. The Jikes RVM project did not run performance
benchmarks after every commit. On days without commits, this constituted a waste of
resources. On days with many commits, it meant a loss of coverage.

Mozilla’s Talos performance regression detection system [88] runs performance tests
“every time a change is pushed to the Firefox source repository” [7], and detects a perfor-
mance regression if the performance changed significantly from before to after that push.
They provide an online visualization of all the collected performance test results [68]. Talos
uses performance tests, not necessarily full-fledged benchmarks. Running such tests can
cost much less time than running complete representative workloads, however it also means
that developers have to write a specific performance test for every relevant aspect of the
application.

The Linux Kernel Performance project [60] runs and reviews performance regression
tests on a weekly basis, and for each major kernel release [11]. They reformat the disk,
reboot the system, and run a warm-up load before each benchmark run. To minimize
measurement variation they use long benchmark running times and multiple repetitions,
which drives up the cost. Despite the significant size of their test suite, they find that
their tests only cover a portion of performance regressions, and they call for volunteers to
contribute additional resources to enable more extensive benchmarking.

End user applications also can collect performance data in the field, and send that data
back to the developers, allowing them to determine performance issues in the environments
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in which they are actually used [1, 46, 36]. Open source developers like the Mozilla Founda-
tion even provide publicly accessible dashboards showing the aggregate performance data
as measured in deployed instances of their applications (e.g., for Firefox [90]). The advan-
tage of such approaches is that performance is measured where it actually matters, i.e., in
the users’ context. The disadvantage is that performance problems are only detected after
they have affected a user.

Continuous integration systems perform fully automated builds and regression tests of
a software, whenever a commit occurs. Traditional systems focus on correctness tests,
which are either run at regular intervals or are triggered by individual commits. Systems
like Jenkins [45] provide plug-ins to also support performance testing and reporting of
performance numbers. Continuous integration is now also offered as cloud-based services,
such as drone.io [25], Travis CI [95], or Coveralls [14].

These efforts involve a large financial and time investment in infrastructure, or provide
imperfect coverage, while ignoring the robust statistical techniques and hidden factors
described above. Often tests are made on one, or a small number of different hardware
platforms, and performance regressions are taken to apply to all possible target platforms.
While this may often be a correct assumption, it is a dangerous simplification due to
the reverse: a performance regression may be undetected on the benchmarking platform,
yet manifest in other platforms after deployment. Achieving the experimental rigor we
advocate is often prohibitively costly on this scale, so we believe that predictive models
based on rigorous experiments are the best way to reduce the cost of experimentation with
minimal accuracy loss in these cases.

2.2.2 Test Selection

Yoo and Harman [105] present a survey of traditional regression-test selection techniques
that focus on correctness tests. These tests have a significantly different goal than perfor-
mance regression tests, but the same motivations apply. By predicting which functional
tests are not affected by a code change, they can significantly reduce the cost of testing.
Even though performance tests are of a different nature than functional ones – seemingly
innocuous changes can cause significant performance regressions – some of the techniques
for functional test selection (e.g., choosing tests according to code coverage) can conceivably
apply to performance test selection as well.

Huang et al. [42] address performance test selection for cases where it is impractical
to run the complete suite of performance tests for every commit. They use a “white-box”
approach that requires whole-program static analysis to determine the run-time cost and

20



the execution frequency of the code affected by a commit. Their analysis requires inter-
procedural control and data dependence information, which can be difficult to determine
with adequate precision. This is especially problematic for modern languages where pro-
grams are dominated by heap data and polymorphic calls. The approach they evaluate
does not take dynamic information (e.g., traces from previous executions) into considera-
tion, so their run-time cost and execution-frequency measurements depend on the ability
of their static analysis to precisely estimate loop bounds and recursion depths. Finally,
they do not predict which tests to run, only whether or not to run all tests, even if some
are not affected by the change at all.

We believe that test selection techniques are ideal for the case where the target plat-
forms are available, yet the volume of testing is infeasible or requires too large an invest-
ment. Performance test selection can function as a screening step, detecting which code
changes can cause a regression on which tests, and then executing only those change-test
pairs on the benchmarking platform. However, we believe that such a solution should be
lightweight, so that it can be quickly executed by developers at every code change, precise,
so that the majority of the performance regressions are detected while the majority of
performance-neutral changes are dismissed, and general, so it can be readily applied to as
many programming languages and application domains as possible.

2.2.3 Computer Performance Prediction

Computer performance prediction approaches differ from test selection in that they aim to
predict the actual metric of interest (e.g., run time in seconds, throughput in packets per
second, etc.), as opposed to which tests will reveal a change in performance. The existing
approaches generally combine statistical methods with domain-specific knowledge such as
relative performance between machines, or application information such as memory access
patterns and instruction mix.

Huang et al. [41] present an approach to model the performance of an application
based on its inputs. The approach involves automatically instrumenting code to measure
performance-related “features” such as loop counts, branch counts, and variable values with
as little execution as possible. The full execution time is then extrapolated from the values
of these features using regression, and the authors achieve errors of less than 7%. This
approach requires analysis of application code and executing the application on the target
platform.

Lee et al. [56] propose using simulated traces of SPECjbb and SPECint on simulated
hardware to model the effect of architectural properties such as register count, cache size
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and memory latency on performance and power consumption. They reduce the design
space from tens of billions of unique processors to a few thousand by using uniformly
random sampling. The approach is able to predict performance with a median error of
10.9%. This approach is useful for processor architects, but does not predict application
performance of production platforms with full operating systems.

Gustafson and Todi [35] look for correlations between benchmarks, and determine which
sets are most capable of correlating to application performance, but do not address predic-
tion errors. Hoste et al. [40] propose actual prediction of machine ranks, based on picking
the benchmark that best represents the application based on a series of expert-designed
program characteristics such as instruction mix and working set size.

Performance modeling and prediction has seen much attention in high-performance
computing venues. Correctly predicting performance for long-running scientific applica-
tions is very useful, and the predictable nature of these applications and systems makes
modeling their performance easier than the general case.

Similarly, Sharkawi et al. [83] present an approach that relies on standard benchmarks,
performance counters, and a genetic programming tool to project performance from a base
HPC machine to arbitrary targets. The authors achieve mean errors between 7.2% and
10.5% of the mean performance.

Yang et al. [104] present an approach that uses the partial execution of long-running
HPC applications to predict their full execution time. The approach is able to predict
performance across platforms by using a relative performance metric, derived from the
partial execution of the application on both the target platform and a reference platform,
where full execution data is available. The approach achieves predictions within 2% of
the target for the same inputs, and the same number of nodes is used. When the number
of nodes of the target platform is allowed to vary, however, estimate errors increase to as
much as 25.8%.

Lee et al. [57] use statistical modeling and neural networks to predict how the per-
formance of two HPC applications scale as the number of processors and the working set
size per processor change. The authors avoid sampling the entire design space (of 200+
million points) by using uniform at random sampling. The authors achieve median er-
ror rates of 16.2% or less for 75% of predictions by modeling 600 samples. These last
two approaches require executing the application on the target platform, and exploit the
steady-state processing that HPC applications reach during their run time to extrapolate
how their performance will scale as the machine itself scales.

Snavely et al. [84] present an approach for performance prediction based on application
and machine profiles. Since the approach is targeted for HPC applications, the models focus
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on modeling memory and interconnect availability (for machine signatures) and utilization
(for application profiles). The authors achieve average errors of 23%. This approach is
targeted at HPC applications, and requires a detailed model of the target system.

Marin and Mellor-Crummey [62] present a toolkit to construct an architecture-neutral
model of the static and dynamic properties of an application, then apply this model to an
architecture description to predict execution times. The application models use computer-
specific information such as memory access patterns and control-flow graph traversal pat-
terns. The authors achieve an accuracy of approximately 20% depending on the applica-
tion. This approach requires a detailed model of the both the application and the target
system.

These approaches, while appropriate for their domains, have very significant barriers to
entry: the creation of precise analytical models, or access to the target platform. They also
lack generality, since they target only a specific type of application or platform. More work
is needed, therefore, to predict performance for arbitrary applications, where experimenters
have no direct access to the target platforms.
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Part I

Measuring Computer Software
Performance
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“He had a suspicion of plausible answers; they were so often wrong.”

— Arthur C. Clarke, Rendezvous with Rama
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Chapter 3

Designing and Analyzing Reproducible
Experiments

In this chapter, we demonstrate the dangers of ignoring robust statistical experiment design
and analysis, the usefulness of factorial experiment design, the shortcomings of linear
regression when applied to non-normal data (common in empirical computer performance
evaluation), and finally, propose the use of quantile regression to replace linear regression
in those cases.

Our running example is the comparison between two Linux processor schedulers: the
Completely Fair Scheduler (CFS), and the Brain F. Scheduler (BFS). The Linux scheduler
is important, because it potentially affects the performance of platforms ranging from cell-
phones to large data centers. The CFS [65], Linux’s official scheduler since 2007, aims to be
a unified solution for all target platforms, scaling to a large processor count. The BFS [55]
was created in 2009 to minimize scheduling latency, trying to yield better performance in
interactive systems.

The release of the BFS led several developers on the Linux Kernel Mailing List to con-
duct independent experiments to measure the performance of both schedulers [33]. BFS
proponents argue that its focus on lowering scheduling latency yields better interactiv-
ity and responsiveness on commodity hardware; a claim that experimenters could verify
through scheduling latency benchmarks. Furthermore, CPU and mixed-load benchmarks
can measure scheduler overhead, predicting applications’ throughput under the BFS.

Initial attempts to verify the effectiveness of the BFS were inconclusive, and after some
discussion, a kernel developer released the Latt [3] benchmark. Latt measures scheduling
latency while generating CPU load; this ensures the scheduler treats the benchmark process
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as it would a typical interactive application. Section 3.1.1 describes Latt. Even with the
acceptance of Latt by both sides of the discussion, all experimentation conducted was
unstructured and unscientific; unsurprisingly, the kernel developers did not come to a
consensus, and the BFS and the CFS are both under concurrent development. We use
Latt for all experiments, since it adequately measures scheduling latency, and is already
accepted and used by kernel developers, precluding the need for re-validating it. Using
Latt is also important because of our goal of reproducing the unstructured experiments
that the kernel developers conducted.

3.1 Experimental Setup

Through a series of experiments, we attempt to determine how the BFS and the CFS
compare in terms of two metrics: latency and throughput.

3.1.1 Latt

Latt is composed of a server thread and a set of one or more client threads. Figure 3.1
shows the control flow of Latt. At the start of execution, the server thread spawns the
client threads, and opens a pipe (a stream for interprocess communication found in UNIX-
like systems) to each of them. The client threads then block trying to read from the pipe.
At random intervals, the server thread then writes a wakeup request timestamp to each of
the pipes, freeing the client threads. As soon as the clients finish reading that timestamp,
they collect a woken up timestamp. The difference between the woken up and the wakeup
request timestamps is the time during which the client thread was ready to execute but
did not receive the processor, i.e., the scheduling latency.

As soon as each client collects the woken up timestamp, they perform a compression
task. This is to avoid scheduler heuristics that may prioritize client threads for consistently
releasing the processor before using their full share of CPU time. Latt registers the time
to complete these compression operations, and depending on the load of the system, these
measurements serve as a surrogate for throughput1. The user can configure the number
of clients and the size of the data to compress. There must be at least one client (so that
latency measurements are collected), but the compression size may be zero, meaning that
the client threads perform no work, and Latt only collects latency information.

1This approach is problematic, and Section 3.5 discusses its shortcomings.
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2: Send Wakeup Timestamp

6: Return Timestamps

3: Collect Woken Up Timestamp

4: Start Compression

5: Collect Compression Timestamp

1: Collect Wakeup Timestamp

7: Bounded Random Wait

8: Return to Step 1

Server Client

Figure 3.1: Control flow of the Latt benchmark.

Latt thus collects two metrics, scheduling latency (in microseconds) and client through-
put (in bytes compressed per microsecond). The lower the latency measurement, the more
responsive an interactive system will be. The higher the client throughput, the faster a
user would expect a CPU-bound task to complete.

Measuring latency and client throughput in isolation is unrealistic; to solve that, Latt
permits defining arbitrary background loads, by taking an arbitrary program as a parame-
ter. Latt collects measurements for as long as that background load executes. For example,
if sleep 30 is passed as a parameter, Latt will collect latency and client throughput data
for 30 seconds, resulting in multiple measurements per execution. The background load
parameter guarantees that data collection happens only while the load executes (the loads
used in our experiments are described in the next section).

By default, Latt outputs only aggregate statistics (such as the mean and standard
deviation) of its latency and client throughput measurements. To enable in-depth data
analysis, we modified Latt to output each individual latency and client throughput mea-
surement. Our implementation of this feature allocates a large buffer in the beginning
of execution and only writes the data to disk once the background load completes, thus
minimizing interference on the metrics of interest. Furthermore, in addition to latency
and client throughput data, we collected end-to-end execution-time measurements for each
execution, to analyze the effect of each scheduler on the background load execution time.

3.1.2 Background Load Configurations

We used three different load configurations: idle, compile, and encode. To differentiate the
schedulers under a wide range of conditions, we chose loads that represented the spectrum
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from an idle system to one executing a multi-threaded, CPU-bound load. As described
earlier, Latt receives each of these loads as a command-line parameter.

The idle load blocks on a timer for a set amount of time, using no CPU time. This
load serves to establish a baseline for the metrics on an idle system. The command passed
to Latt for this load is sleep 30.

The compile load consists of compiling the xz v5.0.3 [92] open-source compression
utility using GCC 4.6.3. It is a single threaded load, consisting of a mix of CPU and I/O
operations. The command passed to Latt is ./configure; make.

The encode load is based on x264 v0.120.x [96], an open-source H.264 video encoder.
It is a multi-threaded, CPU-bound load. The command passed to Latt is x264 -B 2000
soccer_4cif.y4m -threads 4. The input file to the encoder is a freely-distributable test
sequence [103].

3.1.3 Experimental Platforms

We used two different computers for the experiments. A Core 2 machine, consisting of a
2.4GHz Intel Core 2 Quad Q6600 with 3GB of RAM, and a P4 machine, consisting of a
2.0GHz Intel Pentium 4 with 512MB of RAM. The P4 machine was chosen to measure
latency behavior on a slower processor, on which the scheduler choice may prove more
significant. Both machines executed version 3.2.7 of the Linux kernel, with BFS version
416. The distribution used was Arch Linux, and only essential software executed during
data collection (most notably, no graphical interface was used during benchmarks). Since
these machines required remote access, their network connection was active throughout
benchmarking. The relatively long running time of the benchmarks and the fact that the
machine rejected connections except on the remote terminal port minimize any network
interference on the metrics of interest.

3.2 Repeating Prior Experiments

Our first experiments started in an attempt to replicate experiments described in the Linux
Kernel Mailing list. The goal of all experiments in this section is to determine how the
schedulers compare in terms of latency and end-to-end performance. The initial intuition
(according to the developers involved in the discussion) is that the BFS yields better
latency, but the CFS yields better end-to-end times. We will now test this intuition with
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a sequence of experiments, using information gained along the way to determine the next
step.
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Figure 3.2: Results of the sequential experiments.

All results presented in this section were collected on the Core 2 machine. For each
experiment, the machine boots into the kernel with the appropriate scheduler, executes the
benchmark, and offloads the data to a network server. Figures 3.2a and 3.2b show box plots
of the latency and end-to-end times under both schedulers for all experiments described
in this section. The data set for each experiment consists of ten separate executions of
Latt, each of which yields several latency samples and one end-to-end sample. The three
horizontal lines in each box represent the upper quartile, the median, and the lower quartile.
The lower and upper whiskers extend to the last value within 1.5 times the interquartile
range of the lower and upper quartile, respectively. Dots represent outliers that are outside
this range. The cross (×) represents the mean value of each distribution. Note that the
y-axis on Figure 3.2a is in a logarithmic scale.
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3.2.1 Experiment 1: Idle

The first experiment was conducted on an idle system. Latt executed a single client thread,
which performed no compression, and we used the idle load. The goal of this experiment
was to ascertain if there was a significant performance difference between the schedulers
in a system with no load. This experiment also serves to establish that the method used
by Latt provides reliable data, that is, the experiment is repeatable.

The plot for Experiment 1 in Figure 3.2a confirms the intuition that the point estimate
of mean latency under the BFS is lower than that of the CFS. Nevertheless, even the
worst case under CFS is below 30µs (much lower than the human-perceptible 100ms [10]).
The standard deviation under both schedulers is very low (under 3µs for both schedulers),
which suggests Latt’s method for measuring latency is robust, at least in an idle system.

This experiment confirms the expectations of the developer of the BFS, but the latency
behavior measured with this unrealistic load may not be observed in real applications.
Therefore, investigating how the schedulers behave under load is still necessary.

3.2.2 Experiment 2: Compile

The goal of this experiment is to evaluate the different schedulers under more realistic con-
ditions than in Experiment 1. This experiment has all the same conditions of Experiment
1, except for the use of the compile load instead of the idle load.

The plot for Experiment 2 in Figure 3.2a shows that, under these conditions, the
BFS has a higher mean latency point estimate and higher variance than the CFS. These
results contradict the previous experiment and the initial claim. However, this could be a
scheduling artifact: the lack of work in the Latt client threads may be causing the CFS to
prioritize them over all others, since it queues threads by spent processor time. This, in
turn, leads to artificially low latency measurements. Adding load to the Latt clients could
confirm this hypothesis.

3.2.3 Experiment 3: Compile with Compression

The goal of this experiment is to check whether increasing load in the Latt client threads
will affect latency measurements. To accomplish this, we changed two parameters from the
last experiment: we increased the number of clients in Latt from 1 to 8, and each client
compressed 64kb of data. In a real application, latency-sensitive threads also perform
work, which is approximated by the compression functions in Latt.
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The plot for Experiment 3 in Figure 3.2a shows that the increase in the number of client
threads and the addition of compression to their work cycles causes a reversal in the results
from the previous experiment, and now confirm the initial claim once again. In contrast
to the previous experiment, now the BFS has better average latency and better worst-case
latency than the CFS. The CFS’ highest latency measurement approaches 60ms, which
is significantly closer to the human perceptible threshold than the BFS’ worst observed
case. If latencies of 60ms are observed in these relatively powerful desktop systems, the
perceptible threshold of 100ms will likely be surpassed on slower processors, such as those
found on mobile systems.

While the conditions of this experiment represent a more realistic environment than the
previous experiments, the CPU may not have been fully utilized (due to I/O operations
in the background load, and the fact that Latt contains sleep cycles). Therefore, the
behavior of the two schedulers under full CPU load requires further investigation. Since
interactive systems intermittently go through temporary periods of full utilization, making
a conclusion at this point could be premature.

3.2.4 Experiment 4: Encode

The goal of this experiment is to compare the schedulers under full CPU load. To ac-
complish this, we modified the parameters of the last experiment by using the encode
background load instead of the compile load. Preliminary experiments showed this multi-
threaded background load to fully utilize the CPU on the Core 2 machine.

Figure 3.2b shows end-to-end execution times for all experiments. The BFS has a lower
execution time than the CFS for this experiment, contradicting yet again the initial claim
and the previous two experiments. Figure 3.2a shows that latency was also lower for the
BFS than for the CFS.

With these additional results, there is still insufficient evidence to choose a scheduler
based on either metric. To attempt to explain the reversal in end-to-end time performance,
we decided to collect idleness data; if the BFS is utilizing the CPU at the same rate as the
CFS, then overhead associated with scheduling may be causing the observed discrepancy in
end-to-end time. Since the encode load requires fewer scheduling decisions, this overhead
would not be as pronounced.
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3.2.5 Experiment 5: Compile with Idleness Data

The goal of this experiment is to revisit Experiment 3, with the addition of the idleness
data collection. We added calls to the VMStat Linux utility to Latt, so that every time Latt
collected a latency sample, it used VMStat to collect an idleness value. We instrumented
Latt to buffer idleness data in memory, along with latency and client throughput data.

The last plot on Figure 3.2a shows that, while the overall conclusion is the same from
Experiment 3 — the BFS has better average and worst-case latency — the worst-case
latency for the CFS decreased by nearly 50%, from 53,370µs to 28,530µs. The latency
behavior of the BFS, on the other hand, remained the same. This change in behavior was
later revealed to be caused by a probe effect specific to the CFS, caused by a scheduling
policy introduced in late 2010 (the CONFIG_SCHED_AUTOGROUP kernel option). Section 3.5
includes details on this effect.

3.2.6 Discussion

The unstructured experiments demonstrated that several factors affect both the latency
and the end-to-end time behavior of both schedulers: the background load, the Latt client
load, and the presence of VMStat calls in Latt. Unfortunately, they also led to a series of
contradictions, and no clear conclusion as to which scheduler has better latency or end-to-
end performance. Worst of all, there is no indication of when these sequential experiments
would converge to a conclusion.

There was, however, a significant difference between schedulers on all experiments,
and the changes in experimental conditions affected both metrics on both schedulers. We
used Kruskal-Wallis tests [67]2 to analyze the data in two ways: first, we verified that the
latency and end-to-end time distributions differed between schedulers for all experiments
(P < 0.01), second, we verified that latency and end-to-end time distributions for each
scheduler differed between experiments (P < 0.01). Since the schedulers differ, there must
be a correct scheduler choice under each operating condition.

An important question to answer is “when have you experimented enough to draw con-
clusions?” To answer this question, we realized we needed to more systematically explore
the factors affecting our metrics. Using traditional design and analysis of experiments, we

2The Kruskal-Wallis test is a non-parametric test used to verify if two or more samples belong to the
same distribution. Here, it serves approximately the same function as a t-test, without making assumptions
about the distribution of the data.
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can delimit our experimental space and, if analysis is successful, draw conclusions about
the performance of each scheduler.

3.3 Factorial Design

We now employ factorial experiment design and linear regression, the statistical methods
introduced in Chapter 1 to try to successfully compare the performance of the two sched-
ulers. Our goal is to isolate the effect of our factors on our response variables: latency,
client throughput, and end-to-end times. In this section we will demonstrate how linear
regression can be insightful when used correctly, but can also produce misleading results
when used incorrectly.

Factor Low Lvl. High Lvl.
Scheduler BFS CFS
Machine Core 2 P4
VMStat off on

Load compile encode

Table 3.1: Factors and their levels.

We used a two-level full factorial design for our experiments. Table 3.1 shows the
factors and levels explored in this design. All of the factors listed here measurably affected
the worst-case latency in the experiments described in Section 3.2, and the machine factor
was added to ensure results were not exclusive to the Core 2 machine used in the previous
experiments. We fixed the Latt client number at eight and the compression size at 64kb,
since those were the only conditions under which realistic latency measurements were
collected. We omitted the sleep load for the same reason. Measuring latency in an idle
system would lead to unrealistic results as demonstrated in Section 3.2.1.

For this full factorial design, experiments will consist of executing every combination
of factor levels (a total of 16 combinations) five separate, non-consecutive times. This
number of runs provided us with enough data for a robust analysis, since all effects were
measured with a high significance level; if this were not the case, we would collect more
data to improve the statistical power of the test (i.e., reduce the odds of a false negative).
To ensure that the measurement error is distributed uniformly across all factor levels, we
randomized the order of the execution of the trials.

Table 3.2 shows how the last three experiments from the previous section consist of a six
trial subset of the full-factorial design. By simultaneously varying all factors in a series of
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Exp. Scheduler Machine VMStat Load

3 CFS Core 2 off compile
BFS Core 2 off compile

4 CFS Core 2 off encode
BFS Core 2 off encode

5 CFS Core 2 on compile
BFS Core 2 on compile

Table 3.2: Factors and their levels for the sequential experiments.

automated experiments, the full-factorial design will allow us to reach general conclusions
without having to sequentially explore the experimental space one factor at a time.

The analysis of the results will produce a model of the form:

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + (3.1)
β12x1x2 + β13x1x3 + β14x1x4 + β23x2x3 + . . .+ ε (3.2)

Where x1 is the scheduler factor, x2 is the machine factor, x3 is the VMStat factor, and
x4 is the Load factor. Since these are all discrete factors, we attribute indicator values to
each factor’s levels: -1 for low and +1 for high. Interaction effect terms of the form βij are
used for all permutations of two factors.

As briefly alluded to in Chapter 1, there are a number of pre-requisites that the un-
derlying distribution of the data must meet for linear regression modeling to be successful,
namely that (1) the error is normally distributed, (2) the error is independently distributed,
i.e., one observation does not affect the probability of any other, and (3) the error has mean
zero and constant variance. If a linear model adequately approximates the data set, it will
allow us not only to quantify the impact of the factor on the response variable, but also
to quantify unexplained variation. This is particularly useful in the presence of the hidden
factors discussed in Chapter 2, since a large aggregated effect by those hidden factors may
indicate the need for further experimentation. If these assumptions are broken, the true
significance level (i.e., the probability of a false positive) of any statistical tests performed
with the model (e.g., testing the statistical significance of a factor) will differ from what
the calculations report, generally with a loss of statistical power (i.e., the chance of a false
negative increases).

Any factors that affect the response variables but were not controlled (i.e., do not appear
in Table 3.1) will cause variability that is not attributable to any factor or factor interaction.
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In linear regression, this variability will be indistinguishable from any other source of error
(such as random measurement error). Experimenters should strive to minimize the amount
of error, so that as much variability as possible is adequately explained. The smaller the
error, the smaller the effects that will be detectable.

3.3.1 End-to-End Times
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Figure 3.3: Residual plot for the linear model of end-to-end time response variable, showing
no error patterns.

We first apply linear regression to the end-to-end time data from our experiment. We
start by verifying that the requisite assumptions of linear regression are not violated, by
checking whether the individual residuals — the distance, or error, by which each individual
observation differs from what the model estimates it should be — are normal, and do
not present a pattern or heterogeneous variance. Residual plots verify these properties,
by relating the response variable values predicted by the model (plotted on the x-axis)
with their distance from the actual, measured values that compose our data set (y-axis).
Residual plots should show no discernible pattern when there is no systematic error (e.g.,
from faulty experimentation or analysis). Figure 3.3 shows that the residuals for this data
have no discernible pattern or widely heterogeneous variances. A normal probability plot
of the residuals showed that the normality assumption held. Therefore, linear regression
produced a model with a good fit, and we can be confident in the conclusions drawn from
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it. The more pronounced residual (with a value higher than 6) did not adversely affect the
model.3

Factor Effect (s) Sum Sq. p-valueLow High
95% Estimate 95%

machine 77.9 78.6 79.2 493,851 < 0.01
load 11.4 12.0 12.6 11,497 < 0.01

sched 2.5 3.1 3.7 764 < 0.01
vmstat 2.4 3.0 3.6 725 < 0.01

machine:load 19.1 19.7 20.3 31,004 < 0.01
machine:sched 2.4 3.1 3.7 750 < 0.01

machine:vmstat 2.3 3.0 3.6 708 < 0.01
load:sched 1.4 2.0 2.7 333 < 0.01

load:vmstat 1.0 1.7 2.3 219 < 0.01
sched:vmstat -0.1 0.5 1.1 19 > 0.05

Error 545

Table 3.3: ANOVA results for end-to-end times.

Table 3.3 shows the ANOVA results for end-to-end times. The error sum of squares of
545 is negligible in comparison to the machine factor (with a sum of squares of 493,851,
three orders of magnitude greater). Therefore, for this experiment, in this design space,
the effect of controlling for any further factors will be negligible and we can conclude that
enough experimentation has been conducted. The R2 for this experiment is of 99.8%,
confirming a good correlation between predictors and response variable.

The effect estimate for the machine factor (78.6s) clearly shows that it is the defining
factor for end-to-end times, with a main effect estimate far larger than that of any other
main factor. The estimate of the interaction between the machine and load (19.7s) can
be interpreted as follows: depending on the machine, the load factor affects end-to-end
times at a different rate. In other words, changing the load type incurs a larger increase
in end-to-end time on the slower machine than on the faster one. Several other factors
and interactions are statistically significant at the 99% confidence level (i.e., have p-values
lower than 0.01) but have comparatively negligible effects.

Most notably, these results show that the scheduler factor, despite being statistically
significant, had a negligible impact on the execution time of the benchmark. This means

3We used Cook’s distance, a metric designed to quantify the influence of outliers on a model, to verify
this [67].
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that (1) if end-to-end time is the user’s only concern, then the scheduler choice will be
inconsequential and (2) end-to-end time does not differentiate these two schedulers. Thus,
end-to-end time is a poor metric to benchmark these two schedulers’ performance, unlike
it has been discussed in the Linux community.

3.3.2 Latency
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Figure 3.4: Example of non-normal latency behavior on the Core 2 machine, under the
CFS, with no VMStat and the compile load.

Although linear regression works well for end-to-end time measurements, our main
interest is the worst-case of the latency response variable. We now apply linear regression to
latency, and again, must verify if the method applies. Figure 3.4 shows a latency histogram
for the following combination of factor levels: CFS scheduler, the Core 2 machine, no
VMStat, and the compile load. This distribution is highly non-normal, which, in turn, can
cause residuals to also be non-normal; this is the first indication that linear regression is
not applicable.

Figure 3.5a shows the residuals plotted against the fitted values. In contrast to Fig-
ure 3.3, we see a clear pattern of increasing variability as the latency values themselves
increase. While this problem can be mitigated by transforming the data into a form
with constant variance and then applying linear regression to the transformed data, these
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(a) Residual plot, showing heterogeneous error
variance.
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(b) Normal residual plot, showing non-normal er-
rors.

Figure 3.5: Residual plots for the linear model of the latency response variable.

residuals are also not normally distributed. Figure 3.5b, a normal probability plot of the
residuals, demonstrates this; if the residuals were normal, they would lie alongside the
solid, horizontal line — which indicates a perfectly normal distribution — following no
discernible pattern. Non-normality of residuals causes errors in the significance of the esti-
mated coefficients, and is difficult to resolve through data manipulation. The application
of linear regression on the latency data resulted in a poorly fitting model, with an R2 of
12.19%.

If we were to ignore these warning signs and attempt to choose a scheduler using
this analysis, we would be basing our decision on a problematic model. The effect for
the scheduler factor (i.e., the βi value corresponding to the scheduler choice) given by
this poorly fitting model is of 796µs (±69 at a 95% confidence level). Consider, then,
the plot for Experiments 4 in Figure 3.2a, where the difference in mean latency between
the CFS and the BFS is of 5453µs; Experiments 3 and 5 show similar differences. The
conditions of Experiments 3 through 5 are in this experimental space, so the results of
those experiments should be approximated by this model. However, the model suggests
that, on average, a change in mean latency of approximately 1600µs would be observed
by a change of scheduler. That is a severe underestimation, and might lead to incorrect
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conclusions.

Most important of all, however, is the fact that the worst-case latency is of special
importance for latency-critical applications. This means that using linear regression, a
method to model means, would not allow the analysis of the effects on the higher per-
centiles of the response variable distribution, providing instead an incomplete picture con-
taining only the mean latency value. As we will show in Section 3.4, the scheduler effect
discussed before will be even more conservative, if the worst-case is of any interest. Since
the non-normal data seen here is common in computer experiments [37, 74, 15], a different
analysis method is needed. We now apply quantile regression to analyze this same data
set, determining each factors’ effects on worst-case behavior, with the added bonus of not
requiring normally distributed data.

3.4 Quantile Regression

Quantile regression [53], like linear regression, is a method to model the effect of factors
on a response variable. The main difference between the two methods is that, while linear
regression models effects on the mean of the response variable, quantile regression can
model the effect of factors on any given quantile, such as the median or the 99th percentile.
By performing multiple quantile regressions on different quantiles of a data set, a researcher
can quantify the effect of a factor all along the response variable’s probability distribution,
and get a more detailed idea of how it is affected by the factors of interest.

Although the probability distribution of a performance metric will depend on many
factors (such as processor speed), the effect of factors on this distribution can be more
complex than a simple change in its mean. Indeed, factors may affect only part of the overall
distribution. Consider a hypothetical CPU-bound benchmark. The best case performance
of this benchmark occurs when it is entirely in cache at the beginning of measurements;
in this case, memory latency is irrelevant to performance. In other executions, it may be
partially cached or entirely out of the cache; in these scenarios, memory latency will affect
performance to different extents. Applying linear regression in this scenario (investigating
memory latency as a factor) would lead to a model of the mean behavior, overlooking the
fact that memory latency affects different quantiles of the response variable at different
rates. Quantile regression, on the other hand, is able to capture these details.

Linear quantile regression models are very similar to the linear models described in
Chapter 1. They take the form:
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Qy(τ |X) = β0(τ) + β1(τ)x1 + β2(τ)x2 + . . .+ βk(τ)xk +

. . .+ β12(τ)x1x2 + . . .+ βik(τ)xixk (3.3)

where τ ∈ [0, 1] is the quantile of interest4 of the response variable y, X is the combi-
nation of factor levels, and Qy(τ |X) is the τ th conditional quantile of the response variable
y (i.e., the τ th quantile of y given factor levels X). As with the linear model, the βi co-
efficients represent the expected change in the conditional quantile as the corresponding
factor levels change.

Quantile regression also differs from linear regression in that it is non-parametric, that
is, it does not assume anything about the distribution of the error component. This is
because parameter estimates are only affected by the local behavior of the response variable
near each quantile of interest. While the application of linear regression on our non-normal
latency data yielded an incorrect model because the data failed to meet requirements, we
now demonstrate that quantile regression can successfully analyse the same data set.

To quantify the effect of each factor at different points on the latency probability
distribution, we apply ten quantile regressions to the dataset: nine from the 10th percentile
through the 90th percentile at equal intervals, then one at the 99th percentile. Coefficients
were estimated for all factors and interactions up to the four-factor interaction. Figure 3.6
shows all main factors, the scheduler by machine interaction, and the intercept. The
intercept, or the β0(τ) coefficient, does not depend on factors that affect the response
variable; it can be thought of as the baseline latency at each of those quantiles before factor
effects are applied. The x-axis shows the quantiles of the latency probability distribution,
and the y-axis shows the magnitude of effects at each of those quantiles. A black line
is plotted through the estimated effects, and the gray band denotes the 95% confidence
interval for the effects. For example, consider the machine factor subplot in the figure.
This factor has no effect at the 10th percentile (0.1 on the x-axis). Towards the right of
the plot, the effect of this factor starts to grow, ultimately reaching 5,594.5µs at the 99th
percentile. This means that, all else being equal, a change from the Core 2 machine to the
P4 will increase the value of the 99th percentile of the response variable by approximately
11,189µs (as with linear regression in Section 3.3, the net increase is doubled due to the
coding used for factor levels). Similarly, a negative effect like the scheduler by machine
interaction will cause a quantile to decrease in value.

4The τ th quantile of a distribution y is the smallest observed value in y such that the probability of
obtaining smaller values of y is τ .
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Figure 3.6: Quantile regression effects for the most relevant factors for the latency response
variable.

The first observation of note is the significant effect of the scheduler on latency. The
scheduler subplot in Figure 3.6 shows that this factor has no effect below the 40th percentile,
but then its effect gradually increases with each percentile, eventually reaching 2,244.1µs
at the 99th percentile. The difference between the BFS and the CFS near the worst-case
latency will therefore be of approximately 4,488.2µs. While this latency may seem to be
low, it accounts for more than 10% of the single worst-case latency observed in all our
factorial design trials, which was of 41,164µs. A 10% improvement in worst-case latency
would make a significant interactivity impact in a mobile system that operates near the
100ms threshold.

Table 3.4 provides a list of all effects on the 99th percentile, the highest percentile shown
in Figure 3.6. Similarly to Table 3.3, which presented the ANOVA results for the end-to-
end time, the effects column lists the expected change in the 99th conditional percentile
when each factor level changes and all else remains equal, accompanied by the high and
low boundaries of their 95% confidence interval. The statistical significance of each effect
is shown in the p-value column. At this extreme percentile, the machine has the largest
effect, closely followed by the scheduler by machine interaction, and then the scheduler
main effect. We can conclude that, if the user is concerned about the worst-case latency,
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Factor Effect (µs) p-valueLow 95% Estimate High 95%
machine 5,199.7 5,594.5 5,989.3 0.000

sched 1,849.3 2,244.1 2,639.0 0.000
vmstat -947.9 -553.0 -158.2 0.021

load -342.0 52.9 447.7 0.825
sched:machine -5,087.5 -4,692.6 -4,297.8 0.000
sched:vmstat -940.7 -545.9 -151.0 0.022

machine:vmstat 68.7 463.5 858.3 0.053
load:vmstat -101.0 293.9 688.7 0.220

machine:load -114.0 280.9 675.7 0.241
sched:load -668.6 -273.8 121.1 0.254

sched:machine:vmstat 215.5 610.4 1,005.2 0.011
sched:machine:load 82.7 477.5 872.3 0.046

machine:load:vmstat -636.5 -241.6 153.2 0.314
sched:load:vmstat -232.6 162.3 557.1 0.499

sched:machine:load:vmstat -602.827 -208.000 186.828 0.386

Table 3.4: Quantile regression coefficients for the 99th percentile.

then the BFS will provide better performance.

Figure 3.6 and Table 3.4 permit further conclusions. Latency, for most quantiles, is
independent of the load factor; Figure 3.2a also shows this, where the difference between
the latency measured in Experiment 3 (compile load) and 4 (encode load) was minimal.
The difference between the two experiments is concentrated in the lower quantiles, where
most of the load factor’s effect is located. We can also observe that the VMStat factor,
while largely indistinguishable from zero, becomes more pronounced after the 90th per-
centile. Table 3.4 shows that interactions with the VMStat factor are also significant at
that quantile. Figure 3.2a for Experiment 5 already indicated this, where adding VMStat
significantly decreased the worst-case latency of the CFS.

To summarize, quantile regression (1) allowed us to analyze a data set that linear
regression failed to model correctly, and (2) provides a higher level of detail than linear
regression. The first point is important because non-normality is common in computer
science experimental data; linear regression yielded a poor model because of the non-
normality and different variances in the latency data, while quantile regression provided
insight into the data despite these properties. The second point is important because
when researchers have more than a model of mean response (or indeed, simply a test of
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whether samples originate from the same distribution), they can gain more insight from
their experiments. For example, the fact that the scheduler has an increasingly larger effect
as latency values increase — making it very important for worst-case latency analysis —
would be impossible to detect through linear regression or any form of analysis that focuses
on the response mean.

3.5 Discussion

While we conducted the experiments for this chapter, several experimentation pitfalls be-
came obvious. This section discusses those pitfalls and their proposed solutions.

Autogroup as a Hidden Factor The experiment described in Section 3.2.5 demon-
strated how a small, seemingly innocuous change of experimental conditions can signifi-
cantly affect results. In that case, the addition of VMStat calls to Latt caused a significant
change in latency behavior. This was caused by the autogroup option in the Linux kernel
(named CONFIG_SCHED_AUTOGROUP in the configuration options), which causes the CFS to
schedule processes in the same virtual terminal (or TTY) as a group.
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Figure 3.7: Effect of autogroup on the ab benchmark.

We confirmed this hidden factor with Apache’s ab benchmark. The ab benchmark is
an automated webserver client that measures how many requests per second Apache can
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serve. To demonstrate this hidden effect, we executed Apache and ab in two configurations:
(1) in the same TTY, and (2) in different TTYs. Figure 3.7 shows that, while there was
no evidence of a change in the mean execution time (verified with a t-test, P > 0.05),
executing ab in the same TTY as Apache caused the best observed execution time under
the CFS to decrease by 1.37s, and the worse case to increase by 0.33s, that is, the spread
of measured values seemed to increase. This was verified through an F-test, which showed
that the ratio between the variances of the two CFS distributions was approximately 0.2.
In other words, autogroup made the execution time variance measurably larger for the
CFS. On the other hand, this does not hold for the BFS (P > 0.05 for both t and F-tests),
as it ignores the autogroup kernel option. It is reasonable to assume that some server
administrators are unknowingly measuring unrealistic performance because of this hidden
scheduling artifact.

Incorrect Surrogate Metrics During our experiments, Latt’s client throughput metric
proved to be a poor surrogate for application throughput. We found that an execution of
Latt could have a lower mean client throughput, but a higher end-to-end time than another
execution, which can be easily interpreted as a fault in Latt. The surprising result is due to
the fact that Latt does not tally time spent in the server thread, and therefore, the client
throughput metric only captured a part of the total execution time of the benchmark. After
discovering this, we started using the end-to-end time of a useful computation (compilation
or video encoding) to provide a reliable metric of throughput.

Choice of Background Load “Clean room” experimentation may lead to incorrect or
misleading results, as shown by the latency measurements for Experiments 1 and 2 in
Section 3.2. By keeping the processor largely idle, the idle load yielded latency data that
did not distinguish the two schedulers. Similarly, having a single Latt client perform no
work failed to yield realistic latency data. Because of this, we encourage the exploration
of the experimental space with a focus on determining not only what factors affect the
response variable, but also how the response variable behaves at the different levels of
those factors.
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Chapter 4

Lowering the Cost of Reproducible
Experiments

In Chapter 3, we demonstrated how to design and analyze a multi-dimensional experiment
using rigorous statistics, even when facing highly non-normal computer performance data.
Given the effort, expertise, and documentation that was required, it is unsurprising that
this level of rigor is rare in computer science publications.

To lower the cost of statistically rigorous, reproducible computer performance experi-
ments to a level acceptable by the community, this chapter presents DataMill, a distributed
performance evaluation infrastructure. DataMill automates the factorial experiment design
process demonstrated in Chapter 3, trivializes the exploration of hidden factors such as
those discussed in Chapter 2, and provides hardware and software heterogeneity far beyond
what is normally available to developers and researchers, leading to more reproducible and
general results.

DataMill is a public infrastructure to which researchers gain access by contributing
their own machines. This fosters the community-driven aspect of the infrastructure while
improving the heterogeneity of the platforms available. Finally, DataMill also has built-in
functionality for sharing experiment code and results data, allowing the original experiment
submitter to re-run their own experiments on new platforms, and other researchers to “fork”
experiments for result verification or comparison purposes.
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4.1 DataMill: The User Experience

We first describe DataMill as seen by a user, and later describe the inner workings of
DataMill in Section 4.2. The user experience starts with packaging the experiment for
DataMill to execute, then defining a factorial experiment design from an array of hardware
and software factors, and, finally, collecting and analyzing the resulting data.

4.1.1 Packages

Each experiment contains one or more packages. A single package experiment can quantify
performance over a wide range of setups, while experiments with more packages allow
performance comparisons over those setups.

Each package contains: (1) the source code and any input data for the experiment, and
(2) auxiliary DataMill-specific scripts to set up, execute, and collect the results from the
experiment. All package components are encapsulated in a compressed TAR file.

There is no restriction on experiment code, and users have administrator-level access
to the machines that will execute the experiment – the workers – during experimentation.
Users can generate free-form results data using arbitrary metrics, and then collect them
via compressed packages. These features allow evaluating the performance of a wide range
of software, ranging from user-space applications to kernel modules. Security concerns are
minimal at this point, because participating users must contribute to the infrastructure
and, therefore, are well known and trusted.

There are only two scripts that every DataMill package must contain: run.sh and
collect.sh. These are the scripts that execute and collect data from the experiment,
respectively. If the package requires a setup procedure (such as decompression, compilation,
dependency installation, etc.), it may also contain a setup.sh script, which will be executed
before run.sh. Finally, if there is the need for environment variables during execution, an
env file may be included in the package. The contents of this environment file will be
added to the experiment’s environment before each execution.

To exemplify the construction of a DataMill package, consider the Dhrystone [101]
benchmark. It consists of a single source file, dry.c, which compiles itself, and runs the
benchmark. To execute it, one must first set its executable flag, which is done in the setup
script shown in Listing 4.1. The script assumes the source file is located in the /dry/
directory.
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1#!/ bin /sh
2

3 cd /dry/
4 chmod +x dry . c

Listing 4.1: Setup Script

Listing 4.2 shows the run.sh script that executes Dhrystone, capturing its output
(standard out and error) to the /dry/results file. The output is appended to the end of
the file, allowing multiple executions before collection.

1#!/ bin /sh
2

3 cd /dry/
4 . / dry . c >> results 2>&1

Listing 4.2: Run Script

Finally, Listing 4.3 shows the script that packages the results file for collection. It simply
compresses the result file using a unique name, and echoes the final archive’s file name.
This file will then be downloadable by the user once the experiment finishes executing.

1#!/ bin /sh
2

3 results=/dhrystone−‘date +%Y%m%d_%H%M ‘ . tar . gz
4 tar czf $results /dry/results > /dev/null 2>&1
5 echo $results

Listing 4.3: Collect Script

The user must package the experiment source code and DataMill scripts in a GZipped
TAR file. All DataMill scripts should be in the root directory of this archive. For the
Dhrystone package, the file structure of the package would be as shown in Figure 4.1.

To facilitate package creation, we provide users with a virtual machine image that
mimics a DataMill worker. Users can develop, test, and debug their packages in a local
environment until they are sure their packages are ready for production, at which point
they can submit it for execution via our experiment creation interface.
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setup.sh
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dry/
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Figure 4.1: Dhrystone package directory structure.

4.1.2 Experiment Creation

Once the packages are ready, the user submits them for execution through a file upload
interface. Users must then define an experiment for DataMill to execute. Experiment
definition has three steps:

1. Package selection

2. Constraint definition

3. Experiment design definition

Package selection consists of choosing which packages will be executed; one or more pack-
ages may be selected. In the constraint definition step, users inform DataMill of any
limitations to their experiment code. For example, if the experiment can only execute
on the ARM9 architecture and requires at least 2GB of RAM, the user expresses these
constraints through an intuitive web interface.

Finally, in the experiment design definition step, users select how many factors they
wish to explore, and how many replicates to collect. The interface presents each dimension
of a factorial experiment design, divided into hardware and software categories, using a
unified percentage-scale. Non-zero percentages cause the addition of that dimension to
the experiment space, and the percentage value represents what fraction of all available
options should be covered, determining indirectly how many levels for that dimension the
experiment will have. For example, users can define that their experiment must contain
100% of CPU available architectures and that 75% of GCC optimization flags be tested.
This will cause DataMill to select machines such that every architecture in the infrastruc-
ture is represented (i.e., creating five levels for the “architecture” factor) and to compile
the experiment with a randomly selected 75% of optimization flags (i.e., three levels to the
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“optimization flag” factor). Setting any dimension to 0% results in the random selection of
a single level for that dimension, effectively removing it from the factorial design. Finally,
the number of replicates defines how many repeated measurements should be taken for
each design point, in order to calculate variance, enabling linear or quantile regression.

After machines are selected according to the hardware dimension settings, all software
dimensions selected are combined to generate each individual job. For example, if the user
chose to explore three GCC optimization flags, on five machines, with five replicates, there
would be five jobs generated per optimization-flag and machine pair, totaling 75. If, in
conjunction with the optimization flags, both settings of the address randomization fea-
ture of Linux (on or off) should be tested, then the number of jobs grows to 150 (three
flags times two address randomization settings times five machines times five replicates).
Therefore, the number of jobs (displayed before experiment submission) for each experi-
ment scales with the experiment design defined by the user, and care must be taken to
avoid combinatorial explosion and an experiment with an excessive number of jobs.

4.1.3 Experiment Results

After the user designs the experiment and DataMill creates jobs, it will distribute the
experiment’s packages for execution, then collect the individual result files. The web inter-
face dynamically updates experiment information as data arrives, allowing users to monitor
their experiment’s progress. In addition to the data collected by the collect script, DataMill
collects additional metrics with minimal overhead [97], such as total execution time, and
the number of page faults and cache misses. This data is also made available to the user.

Finally, once all jobs associated with an experiment are finished, users can download
the full experiment results file, which contains the result file from every job. Examples of
how to analyse large datasets generated by DataMill are provided in Section 4.3.

4.2 DataMill: The Infrastructure

Making the user experience described in Section 4.1 a reality requires considerable engi-
neering effort. The DataMill infrastructure is composed of a master node, responsible for
the distribution of experiment trials and the collection of results, and several worker nodes,
which execute the experiment packages provided by the users. This section describes how
DataMill was implemented and how its different parts interact.
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Figure 4.2: The DataMill infrastructure.

The responsibilities of the master node are split between four different daemons: the
web front-end, the backend, the dispatcher, and the collector. The user interacts with
DataMill through a web front-end. Creation of experiment configurations is based on
the users’ choices (e.g., experiment factors, experiment package, and desired platforms).
The backend, which can consist of one or more instances, processes these experiment
configurations and schedules individual instances of an experiment, which we refer to as
jobs, on the workers. The dispatcher submits scheduled jobs to the workers. The collector
accumulates results from individual jobs once they are completed on the associated worker.
The web-interface provides access to these results as they arrive. In the following sections,
we describe the individual components of the management layer in detail. Each of these
daemons acts as a simple state-machine as shown in Figure 4.2. To ensure consistency of
the state of the infrastructure, we use a database for central configuration management
tasks.

TheWeb Front-End The web front-end is the interface through which the user interacts
with DataMill. User submission of experiments triggers the backend daemon process,
which processes package information and configurations and subsequently schedules jobs
for worker nodes.

The web front-end also houses an XML-RPC [17] service. The service provides an API
that workers call to inform the master node about state changes of the individual jobs.
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Workers use the same API to register with the infrastructure. To separate control and data
flows, this XML-RPC interface is only used to notify the master node of state changes.
The dispatcher and collector handle the transfer of experiment data such as packages and
results.

Backend The backend daemon, shown in Figure 4.2, is responsible for transforming the
user-supplied specifications for a particular experiment into a set of specific trial configu-
rations to run on the worker nodes. The creation of these configurations and the selection
of the appropriate worker node to execute them is handled by an optimization solver.

The problem is then to select the minimum number of workers necessary to provide
the desired factor coverage. For this, we specified an optimization problem, which the
backend solves with the GNU Linear Programming Kit [27] (GLPK) for each submitted
experiment. The optimization problem is of the form:

wc = min
∑
xi∈W

xi (4.1a)

s. to:
∑
xi∈Pj

xi ≥ lj, lj ∈ L (4.1b)

lj ≥ xi, lj ∈ L, xi ∈ Pj (4.1c)∑
lj∈Fk

lj ≥ Bk, k = 1..f (4.1d)

xi ∈ {0, 1}, xi ∈ W (4.1e)
lj ∈ {0, 1}, lj ∈ L (4.1f)

Where W is the set of workers, L is the set of factor levels, and Pm is the set of
machines that provide level m. Fk is the set of factor levels for factor k (a subset of L),
Bk is the user-requested minimum coverage for factor k. Equation (4.1b) ensures picking
a factor level means at least one machine with that factor level is added to the solution,
while, conversely, Equation (4.1c) ensures that selecting a machine adds all factor levels
it provides to the tally, which is checked in Equation (4.1d) for every factor. This last
equation guarantees that all user-provided constraints are met. After a solution is found,
each worker is individually selected by their respective xi variable.

Dispatcher The dispatcher daemon in Figure 4.2 is responsible for transmission and
triggering of the execution of the packages and configurations on the appropriate worker
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as defined by the solution generated by the backend daemon. The dispatcher finds jobs
whose associated worker is idle and transmits and calls for the execution of the associated
package via secure shell.

Collector The collector daemon in Figure 4.2 is responsible for the collecting of the
experiment results from the worker nodes which have completed their current job. Once
the results have been collected from any particular worker the worker is marked as idle so
that it may receive further jobs.

4.2.2 Worker Node

Each worker node is a separate machine running Gentoo Linux [91] with kernel version
3.3.8, and GCC 4.5.3. Gentoo Linux was chosen since it is a source-based distribution
and thus supports a wide variety of architectures. Having the same distribution and tool-
chain on all the machines keeps their base software homogeneous, allowing for controlled
variations when requested.

Controller Benchmark

Bo
ot

Reboot to run

Reboot to report

Figure 4.3: The worker node disk partitions.

The partition structure of a worker node is shown in Figure 4.3. The worker com-
prises two partitions, one with a minimal Gentoo installation, referred to as the controller
partition, which is responsible for communication with the master, and one with a more
complete software environment, referred to as the benchmark partition on which experi-
ments will run. The state machines for each worker partition are shown in Figure 4.2, with
the controller and benchmark portions of the state diagram separated by reboots.

The master node communicates with workers through secure shell. Communication is
kept to a one-way push architecture, from master node to worker node, where possible.
The workers do not have the ability to run code on the master barring the limited XML
remote procedure calls that are provided to them. In this way, the communication between
the master node and the worker nodes is strictly limited.
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When a worker has been set up for the first time, it must notify the master of its
existence. Upon its first boot, the worker collects information about itself and sends it,
along with a registration request, to the master node. Once it is registered, it is marked
as idle in the database and awaits further instruction.

When a worker receives a job from the dispatcher, the dispatcher executes a script on
the worker via secure shell. The script reformats the benchmark partition, transfers the
received package to it, and prepares the package for execution. The machine subsequently
reboots into the benchmark partition. The benchmark partition’s init process has three
tasks to perform: changing the default boot partition, executing the received package, and
finally rebooting to the controller partition.

Due to the size of DataMill, worker nodes are expected to fail. The master node
detects such occurrences through communication timeouts, incorrect state machine pro-
gression, and faulty result files. The master node purposefully inserts redundancies in the
job scheduling to minimize the impact of worker failures.

The DataMill infrastructure supports remote worker nodes to allow easy user contri-
butions. Already included in the DataMill cluster are machines from Purdue University,
the University of Pennsylvania, the University of Lugano, McMaster University, and the
Federal University of Santa Catarina.

4.2.3 Factor Variation

DataMill facilitates execution of user supplied experiments using a wide variety of exper-
imental setups. Knowledge of the factors affecting performance and the details of the
mechanics required to vary them are not necessary to leverage the infrastructure. Never-
theless it is important to discuss some details of DataMill’s factor manipulation.

To apply software-controlled factors — compilation flags, library versions, link orders,
etc. — the worker node unpacks the configuration file sent by the dispatcher, applying
each configuration individually before the setup or execution. Current supported factors
include various GCC flags, C and C++ object link orders, the use of address space layout
randomization (ASLR) in the Linux kernel, the addition of padding bytes to the POSIX
environment, reboot behavior, dropping page, inode and dentry caches before execution,
CPU frequency scaling, Linux’s Autogroup function (as described in Chapter 3, the use of
a swap partition, the root filesystem of the benchmarking partition, and the system clock.

While most factors can be easily applied (i.e., interacting with the proc filesystem to
affect kernel options) some factors require more effort. For example, to support modifica-
tions to benchmark link order, we implemented a custom wrapper that intercepts calls to
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GCC and the linker. This wrapper calculates the new order of objects according to the
configuration received from the master (i.e., alphabetical, or reverse alphabetical according
to object file names), and then forwards the call to GCC, using the new object file order.

This method of applying software factors enables making extensive modifications to
experiment code without requiring users to implement these modifications themselves or
to upload a series of different packages with pre-applied modifications. The list of supported
factors is currently growing quickly, and we aim to support user-contributed factors in the
future.

4.3 Case Studies

This section presents two case studies: we first perform a compression algorithm perfor-
mance comparison to demonstrate how easy it is to conduct a performance experiment on
DataMill, then we replicate the results from Mytkowicz et al. [70], the experiment that
first revealed performance artifacts related to the link order of a binary (see Chapter 2
for details). This second experiment demonstrates the utility of DataMill for the scientific
investigation of computer performance.

4.3.1 XZ vs. bzip2: Best Bang for Your Buck?

XZ [92] and bzip2 [47] are widely-used compression utilities for UNIX-like operating sys-
tems. While XZ uses the LZMA2 compression algorithm, bzip2 uses the Burrows-Wheeler
algorithm. These two compressors will serve as stand-ins for a “baseline-vs.-proposed-
approach” performance comparison, found in the majority of computer science papers that
contain empirical performance evaluations. As bzip2 is the older of the two compressors,
we will treat it as the baseline.

As described in Section 4.1, the only preparation step required for this experiment is
the creation of two DataMill packages, one for XZ 5.0.4 and another for bzip2 1.0.6. The
scripts themselves are omitted for brevity, but their contents are very similar to the ones
for Dhrystone and comprise a total of 32 lines. We use the system-wide emerge command –
Gentoo’s package manager – to install both XZ and bzip2 in order to simplify installation,
precluding the need to include their source code in each package.

In addition to the DataMill scripts, the packages contain the data to be compressed.
For this experiment, we used the Maximum Compression [99] testset. This testset includes
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Algo. Size (kB) Reduction (kB) %
None 51,900 0 100.000
bzip2 13,232 38,668 25.496
XZ 12,120 39,780 23.353

Table 4.1: Compression rates for each algorithm.

various kinds of files (text, executable, graphics, etc.) and has been used to compare
compression algorithms since 2003.

The metrics, which the collect.sh script collects, were execution time and com-
pressed file size. Since each compression algorithm leads to a different archive size, the
metric used for the comparison is the byte-per-second compression rate, calculated as
bytes reduced/execution time. Table 4.1 shows the uncompressed data size, the resulting
archive size under each compressor, the absolute reduction in size, and the resulting archive
size as a percentage of the original file size. Note that both compression algorithms use
deterministic algorithms, so the resulting compressed files are identical between runs and
machines. Machine C, an ARMv7 which uses the ext3 filesystem, reports file sizes 20kB
larger than the ones reported by all other machines, which use ext4. This small 0.1%
discrepancy was ignored.

If absolute compression is the only metric of interest, then XZ is clearly the winner, due
to its resulting archives’ smaller size; however, if execution time or the rate of compression
are of interest, then experimentation is necessary. By using DataMill, we can easily compare
the two compressors, and measure their susceptibility to different factors. The DataMill
experiment design was configured to include all machines, all link orders, all optimization
flags, and address randomization on and off. The number of replications was set to 15 to
allow the measurement of dispersion. This led to the generation of 6300 jobs, distributed
between seven machines.1 This experiment took approximately five days to complete on
the slowest machine, a 600MHz ARMv7 Beagleboard xM. All other machines completed
it in less time, and were free to continue with other experiments.

Figure 4.4 shows an overview of the data set resulting from this experiment. This
facet plot is divided by optimization flag (top header) and machine (right-hand header).
Machines are indexed with a capital letter, followed by their clock speed and CPU model.
Each subplot contains boxplots for each of the compressors, bzip2 and XZ, with the same
visual syntax as the ones from Chapter 3.

1Data for the “alphabetical” link order in the XZ was not generated, as that object order did not link
successfully.
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Factor Mean Sq. p-value
Compressor 1.617e+12 <2e-16
Opt. Flag 1.258e+11 <2e-16
Link Order 7.397e+05 0.5807

Addr. Rand. 2.572e+04 0.8907
Compressor:Opt. Flag 1.883e+11 <2e-16
Compressor:Link Order 1.924e+06 0.2347

Compressor:Addr. Rand. 1.511e+06 0.2922
Opt. Flag:Link Order 1.312e+06 0.4624

Opt. Flag:Addr. Rand. 3.791e+06 0.0257
Link Order:Addr. Rand. 2.738e+05 0.8177

Residuals 1.360e+06

Table 4.2: Reduced ANOVA table for XZ execution time on machine F.

The first conclusion is that bzip2 has a better compression rate for all machines under all
link orders and all optimization flags tested. This would suggest that, for users interested
in compression speed, bzip2 is the better alternative. Also of interest is the fact that bzip2
is unaffected by the optimization flag, which suggests it is entirely I/O-bound. XZ, on the
other hand, has a marked performance increase from -O0 to -O1, but negligible differences
in performance after that. The omitted experimental dimensions — link order and address
randomization — did not significantly affect performance, which is demonstrated by the
narrow grouping of all samples in the boxplots of Figure 4.4 (which contain data from
multiple levels in the omitted dimensions).

We apply linear regression to analyze the data in more detail. Table 4.2 shows the
ANOVA table for this experiment, fitting a model with up to two-factor interactions on
the execution time data for machine F, a 3.4GHz Core i7. The Mean Sq. column shows
the variability attributable to each factor, while the p-value column shows the statistical
significance of each factor in respect to execution time. The model was a good fit, with
R2 > 0.99, meaning the model can be confidently used to analyze the data. The table
shows that the compressor and optimization flags are significant in isolation (P < 0.01),
but link order and address randomization are not (P > 0.05). Most interestingly, we can
demonstrate the interaction between the compressor and optimization flag through their
interaction term, which is also significant (P < 0.01), which confirms that only XZ, the
more CPU-bound of the two algorithms, benefits from higher optimization levels.

Figure 4.5 shows the effect of GCC optimization flags on XZ’s execution time, with
the x-axis ordering the different optimization flags. While optimization flags are not a
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continuous dimension, this ordering facilitates the visualization of the data and represents
the activation of various individual GCC optimization options going from one optimization
level to the next. According to GCC’s manual, the -Os flag is located between -O1 and -O2
because it activates all options from -O2 that do not increase binary size, being, therefore,
a middle point between the two. Data from each worker is plotted along an individual
line, with 95% confidence intervals shown in light gray behind each curve. The plot shows
a marked and general improvement in performance going from -O0 to -O1 (as shown in
Figure 4.4).

This performance comparison demonstrates the utility of DataMill for users interested
in evaluating performance: with just 32 lines of code, 6300 jobs were executed in under a
week, exercising several dimensions that would normally be ignored, and leading to insight
that would be unattainable through manual, one-factor-at-a-time experimentation.

4.3.2 Perlbench: Link Order Effect

We now demonstrate the use of DataMill for users interested in the science of computer
performance evaluation. Mytkowitz et al. [71] report that the link order of a binary can
be correlated with runtime performance, and that the optimal link order varies from host
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to host. This is generally understood to be a consequence of different memory and cache
layouts leading to different cache and page miss ratios. The authors showed that the
performance of Perlbench — part of SPEC CPU 2006 [39] — can vary by more than 8%
by simply modifying the link order.

Trying to reproduce their results, we created an experiment on DataMill to explore the
effect of link order and address randomization on Perlbench performance. We encapsulated
Perlbench and SPEC’s “train” data set in a DataMill package, with scripts and environment
files totaling 33 lines. Three link orders were explored (default, alphabetical and reverse
alphabetical), with Linux address randomization on and off. If address randomization is on,
one would expect that the affect of link order would be neutralized, since the memory layout
will be randomized. In other words, the link order and the address randomization factors
should be highly correlated. We chose a number of 15 replications of each configuration
to calculate dispersion, generating a total of 630 jobs over 7 machines. DataMill took
approximately 27 hours to finish the full experiment.

Figure 4.6 shows results for the different metrics for this experiment. These facet plots
are divided by address randomization (top header) and host (right header). Each subplot
contains three boxplots, one for each link order explored. The plots do not show the
zero origin to demonstrate the small differences in results between experimental setups.
Figure 4.6a shows execution time, and shows that there is indeed a small, but statistically
significant change in execution time between the different link orders on most cases (P <
0.05). An exception to this rule is machine I, a 1.6GHz Pentium 4, where this effect is not
statistically significant.

It is also clear that the link order effect does not depend on the address randomization
feature of Linux being turned off; most machines show different execution times between
link orders even when address randomization is turned on. However, machine K (shown
in the bottom of Figure 4.6a) shows a link order effect only when address randomization
is turned off, contrary to the other machines.

To help understand this effect, Figure 4.6b shows the cache misses for the experiment2.
This plot shows that there appears to be a correlation between link order and cache misses
for most machines, but they do not necessarily mirror the execution time effect seen in
Figure 4.6a.

Finally, Figure 4.6c shows that the correlation between page faults and link order is
statistically significant, yet practically negligible; even in the case of the Nano X2 and the

2Data is missing for the Nano X2 due to the lack of hardware performance counter support, needed for
measuring cache misses.
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Xeon machines (top two subplots): less than 1%. A possible explanation for this is that
the sum of code and data for the benchmark is small enough to fit within a page, no matter
the order the object files are linked in.

Mach. Factor Mean Sq. p-value

A

Link Order 135.77 <2e-16
Addr. Rand. 0.07 0.0301

Link Order:Addr. Rand. 0.04 0.0687
Residuals 0.01

K

Link Order 1856.5 <2e-16
Addr. Rand. 1234.6 <2e-16

Link Order:Addr. Rand. 1864.9 <2e-16
Residuals 3.3

Table 4.3: Reduced ANOVA table for Perlbench execution time on machines A and K.

Table 4.3 shows the reduced ANOVA table for machines A (R2 = 0.977) and K (R2 =
0.855). This table shows that the link order effect is significant for both of these machines
(P < 0.01), but only in machine K do the address randomization factor (P < 0.01) and the
interaction between address randomization and link order factors (P < 0.01) play a part.
In machine A, both of these are not statistically significant at the 99% confidence level (P
> 0.01 in both cases). This suggests that the effect of address randomization, which is
present in machine K but not in others, is highly dependent on the machine.

Therefore, since neither cache misses or page faults correlate with the varying execution
time, the correlation between link order and execution time still merits more investigation.
DataMill is a powerful tool for researchers in performance evaluation, since it allows the
systematic variation of correlated factors, such as link order and address randomization,
and the simultaneous collection of multiple relevant metrics, such as cache misses and page
faults.

4.4 Discussion

The implementation of the infrastructure and the execution of the case-study experiments
raised several interesting questions.

Package Testing Debugging packages took considerably longer than expected, espe-
cially in the case of Perlbench. This was mainly due to the non-standard build system
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distributed by SPEC, which requires manual configuration of target architecture param-
eters. Our experience with it led us to create a virtual worker image on which users can
debug their packages. We are currently also investigating a special “debug” experiment type
which would execute packages once on each available architecture to ensure it behaves as
expected.

Firewalled Workers The addition of remote nodes (located in remote universities) was
a challenge, mainly because of firewalls. Our current implementation uses two-way commu-
nication, which requires special treatment for firewalls that reject all incoming connections.
In the near future we plan to move to a one-way communication design where the master
node is entirely passive (i.e., all communication is inbound), sidestepping this issue and
minimizing the effort needed to integrate new workers.

Worker Processing Power Even though small embedded targets can run Gentoo, their
performance, particularly in compile phases, is prohibitively low for large experiment design
spaces. In some instances of the compression experiment, we noticed that the compile
time exceeded the execution time of the experiment by several orders of magnitude. In the
future, we plan to investigate providing remote compilation support for experiments.
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Chapter 5

Minimizing Performance Variability

Chapter 4 introduced DataMill, an infrastructure that dramatically lowers the cost of sta-
tistically rigorous computer performance evaluation. While DataMill provides researchers
with tools to automatically explore hidden factors, using all factors in the same design
can quickly lead to combinatorial explosion and to an excessive number of jobs. There-
fore, researchers should know the extent to which hidden factors are likely to affect their
performance metric.

In this chapter, we quantify the expected effect of hidden effects related to memory
layout on the mean performance and on the variability of experiments, so that developers
and experiment designers can prioritize what factors to explore. In case they do not have
the time or ability to vary these factors and quantify their effects, they can choose sane
defaults that minimize the variance in their metric of interest.

5.1 Experimental Setup

We leverage DataMill to quantify the effect of memory-layout-related factors on the exe-
cution time of a wide range of benchmarks, on a wide range of machines. The benchmarks
chosen represent a large subset (27 out of 31) of the SPEC CPU 2006 benchmark suite [39],
shown in Table 5.1a, selected because they are CPU-bound.

We are interested both in increases and decreases in execution time, the benchmarks’
native metric. Table 5.1b shows the machines used. This large set of heterogeneous ma-
chines and benchmarks will provide a greater sample size of the machine population than
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Figure 5.1: ASLR and environment padding effects on Bzip2 on machine 128.

previous research, painting a more comprehensive picture of memory-layout’s inter-machine
effects.

We control memory layout via five factors: Address Space Layout Randomization
(ASLR), POSIX environment size, position-independent executables (the -fPIE compiler
flag), performing warm-up runs before measuring performance, and, finally, rebooting each
machine before collecting performance data. We describe each of these factors and how
they affect performance in Sections 5.2 through 5.4. Note that we do not use all machines
and all benchmarks for all experiments, due to technical issues: machine failures between
experiments, and limited computing time. The figure headers in each section list which
machines and benchmarks were used in each experiment.

Unless specifically stated, trials are conducted using the default DataMill strategy:
random order, with reboots before every single trial. When any of our five factors is not
the focus of an experiment, it is fixed to its “natural default”, i.e., what the majority of
Linux systems are deployed with: Address Space Layout Randomization (ASLR) = on,
environment padding = 0, -fPIE = off, and warmups = none.

5.1.1 Data Analysis

In this chapter, we will graphically represent the results of ANOVA for each experiment, for
easier comprehension of the large volume of data that we present. As an example, Figure 5.1
shows the effect size (i.e., the βi coefficients) for the ASLR and POSIX environment size
factors and their interaction on Bzip2 when executed exclusively on machine 128. The
x-axis shows the source of variability, and the y-axis shows the size of the effect as a
percentage of the mean performance, with error bars showing one standard error around
the effect estimate. We normalize effect sizes to the mean so that effects from different
benchmarks and machines can be directly compared to each other.
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Benchmark Area
Astar Path-finding

Bwaves Fluid Dynamics
Bzip2 Data Compression

CactusADM Physics
Calculix Structural Mechanics

GCC Compiler
GemsFDTD Electromagnetics

GobMK A.I.
Gromacs Molecular Dynamics

H264 Video Comp.
hmmer Gene-Sequence Searching

Lbm Fluid Dynamics
Leslie3d Fluid Dynamics

Libquantum Physics
mcf Combinatorial Optimization
Milc Physics

namd Molecular Dynamics
Omnetpp Simulation
Perlbench Perl Programming Language

Povray Ray-tracing
sjeng Artificial Intelligence

Soplex Optimization
sphinx3 Speech Recognition
Tonto Chemistry
Wrf Weather

xalancbmk XML to HTML Translation
Zeus Physics

(a) Benchmark Set.

ID Processor RAM
73 VIA Nano X2 1.6GHz 1.7GB
75 Pentium 4 3.20GHz 900MB
80 Core i7-2600K 3.40GHz 8GB
81 Opteron 8378 2.4GHz 32GB
84 Pentium 4 1.80GHz 1GB
88 Pentium M 1.70GHz 1GB
90 Pentium 4 3.20GHz 1GB
91 Pentium 4 2.40GHz 1GB
93 Pentium 4 3.40GHz 900MB
94 Pentium 4 1600MHz 500MB
96 Pentium 4 3.20GHz 2GB
97 Pentium 4 3.00GHz 900MB
98 Pentium 4 3.00GHz 900MB
99 Pentium 4 2.80GHz 900MB
101 Pentium 4 1.60GHz 900MB
104 Pentium 4 1.80GHz 500MB
105 Pentium 4 3.20GHz 900MB
106 Pentium 4 3.20GHz 500MB
125 Core i5-2500 3.30GHz 8GB
128 Pentium D 3.00GHz 2GB
129 Atom N270 1.60GHz 200MB
130 Pentium 4 3.20GHz 900MB
131 Celeron 131MHz 200MB
132 Athlon Processor 757MHz 700MB
135 Athlon 64 Processor 3500+ 2GB
143 Xeon 5160 3.00GHz 2.5GB

(b) Machine Set.

Table 5.1: Experimental setup.
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Figure 5.1 indicates that the effect size of environment padding and ASLR and their in-
teraction is less than one tenth of one percent of the mean. Only address randomization has
a statistically significant impact on performance with P < 0.01 (the environment padding
effect and the interaction between the two effects are not statistically significant). However,
significance only indicates that an effect may be distinguishable from noise. Pragmatically,
an effect must also be large enough to be of importance; for example, a statistically sig-
nificant effect of 0.1% of the mean is small enough to be negligible for the majority of
applications.

In this chapter we use Kruskal-Wallis tests to compare the distribution of coefficients of
variation between factors. For example, we execute several benchmarks on several different
machines with ASLR = on and ASLR = off, and calculate the coefficient of variation for
each machine-benchmark pair, giving us a sample of coefficients of variation for both levels
of ASLR. We then perform the Kruskal-Wallis test between these two samples to test if
ASLR affects the coefficients of variations in this general (all benchmarks, all machines)
case. If the test confirms a statistically significant difference between the distributions of
coefficients, we can say that a factor adds or reduces non-determinism to the experiments at
hand, which is important for i) developers that wish to ensure their software’s performance
is as consistent as possible and ii) researchers that wish to maximize the power of their
statistical tests.

5.2 Experiment 1: ASLR vs. Environment Padding

Our first experiment executes benchmarks under different memory layouts by varying two
factors: POSIX environment padding and Linux’s ASLR feature. The environment size of a
process affects the memory layout of that process since Linux places environment variables
at the beginning of the process virtual address space. The larger the environment, the
farther out in the address space the code section will be, and depending on the increments
of this offset, cache or paging-related performance effects may occur. Similarly, Linux’s
ASLR feature may cause these effects to appear due to the heap, stack, and libraries of a
process being mapped at different addresses.

The experiment follows a two-level full-factorial design [67], where both factors have two
levels (or settings) and are explored concurrently (i.e., all possible combinations of factors
are explored). The environment paddings used are zero bytes or 10 928 bytes (chosen
because it does not divide evenly into pages), and ASLR is set to “on” or “off”. Each
factor combination is executed three times on each machine to allow for a measure of
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variance, leading to a total of twelve (2× 2× 3) jobs per machine, per benchmark, totaling
2244 individual jobs.

5.2.1 Results

Astar Bzip2 Calculix GCC Gobmk H264 Lbm Milc Tonto Wrf Zeusmp
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Figure 5.2: ASLR and environment padding effects by benchmark.

Figure 5.2 shows the relative effect sizes for environment padding (EP), ASLR (AR),
and their interaction (Int), for each benchmark, with data from all machines grouped in a
single box plot, following the same visual syntax as those in Chapter 3. If a benchmark
had a systematic sensitivity to either factor or their interaction, one of these plots would
show a significant deviation from zero. As the plots show, however, the most significant
deviation is still well under 3%.
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Figure 5.3: ASLR and environment padding effects by machine.

Figure 5.3 shows the relative effect sizes for each factor and their interaction for each
machine, with data from all benchmarks grouped in a single box plot. Similarly to Fig-
ure 5.2, this plot would reveal a machine’s systematic sensitivity to either factor or their
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interaction (e.g., one machine would have all positive effects, another all negative ones),
but, again, no such significant sensitivity exists.
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Figure 5.4: Worst case ASLR effect on astar on machine 81.

The previous figures show that, from a bird’s eye view, the memory-layout-related
effects that we have tested appear negligible. Figure 5.4 shows the absolute worst case
observed in our experiments, Astar on machine 81. The x-axis shows the factor name, and
the y-axis shows the absolute magnitude of the effect. On this machine-benchmark pair,
the ASLR factor had an effect estimate of -22.06s, while the mean execution time of that
benchmark on that machine was 787.3s (a relative effect of -2.8%). Note that the error
bars straddle the zero axis, and therefore these effects are not statistically significant. Most
importantly, even if we were to ignore statistical significance (running the risk of treating
noise as a real effect), this effect is not practically significant, and therefore, not even our
worst single observed case is cause for concern.

We now investigate the effect of these two factors on the variability of the experiments’
metric. Figure 5.5 shows the coefficient of variation – a normalized measure of dispersion
calculated by dividing the variance by the mean of the measurements – on the logarithmic
x-axis, by machine on the y-axis. Each dot represents the coefficient of variation for a
single point in the experiment design (e.g., ASLR on, Env. Padding 0, on machine X,
benchmark Y). The figure shows that there is no discernible pattern of increased variation
caused by the environment padding factor, and therefore controlling this factor does not
lead to more deterministic experiments. There might be, however, a slight increase in
coefficient of variation between ASLR on and off, seen by comparing the left-hand subplots
with the right-hand ones. We test this with a Kruskal-Wallis test between the samples
with ASLR on and off, and fail to reject the null hypothesis (P = 0.49), i.e., ASLR does
not cause a statistically significant increase in variability.
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Figure 5.5: Coefficient of variation for Experiment 1, by machine.

5.3 Experiment 2: ASLR vs. Position-Independent Ex-
ecutables

Our second experiment forces benchmarks to execute under different memory layouts by
varying two factors: ASLR, used in the same way as in the previous experiment, and GCC’s
Position Independent Executable flag, or -fPIE. By using -fPIE, ASLR will affect not only
the heap, stack, and dynamically linked libraries, but also the main executable section.
This could reveal an effect on performance due to the positioning of executable code, such
as loops’ positions relating to cache or page boundaries. The implementation of -fPIE
requires an additional register to maintain the base address of the executable, possibly
causing run-time overhead. We are particularly interested in the interaction between these
two factors, since -fPIE will only affect the base address of the binary if ASLR is on. This
experiment’s full-factorial design consists of both ASLR and -fPIE being set to “on” or
“off”.
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5.3.1 Results

Figures 5.6a and 5.6b show the effect sizes for -fPIE (PI), ASLR (AR), and their interaction
(Int), by machines and by benchmarks, respectively. Contrary to expectation, -fPIE in
isolation had effect estimates very tightly packed around zero, meaning that the overhead
added by the flag is very low in the benchmarks and machines we used. As for ASLR and
the interaction effect, more variability in the effect estimates is observed, but all still fall
within 3% of the mean. These results confirm the “performance neutrality” of ASLR in
isolation, a result also found in Experiment 1,
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Figure 5.6: ASLR and -fPIE effects.

Figure 5.7 shows that, again, variability is unaffected by -fPIE, but there appears to be
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Figure 5.7: Coefficient of variation for Experiment 2.

a minor increase in overall variability going from ASLR off to on. We test this variability
for statistical significance using the Kruskal-Wallis test, and again find that this change is
not statistically significant (P = 0.491).

5.4 Experiment 3: Warm-ups and Reboots

Our third experiment investigates the effect of warm-up runs and reboots on the perfor-
mance of three of the benchmarks: Calculix, GCC, and Wrf, chosen due to their “high”,
“medium”, and “low” susceptibility to the factors in Experiment 1. Note that none of the
effects were statistically significant in Experiment 1, so “high” susceptibility here simply
means the one with the largest observed effect estimate interval.

Warm-up runs (i.e., executing each benchmark a number of times before collecting
performance measurements) aim to lower variability of the benchmark by ensuring that any
caching mechanisms (from file-system caches up to main memory caches in the processors)
are pre-populated with relevant data. In our warm-up tests, we executed each benchmark
three times in immediate succession but only noted the execution time of the last execution.

Rebooting between replicates, DataMill’s default policy, also aims to reduce variance
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Figure 5.8: Reboot and warm-up effects.

by ensuring that the system is in a “clean” state, i.e., previous runs of other benchmarks
(or any other processes) cannot interfere with performance. For reboot trials, the machine
is rebooted immediately before the trial is conducted. For no reboot trials, all trials are
collected in a single boot. These two factors were studied together in a full factorial
design, allowing us to measure the effect of the interaction between warm-ups and reboots
on performance.

5.4.1 Results

Figures 5.8a and 5.8b show the effect sizes for reboots (R) and warm-ups (W) and their
interaction (Int), by machines and by benchmarks, respectively. Similar to Experiments 1
and 2, most effects are not statistically significant (P > 0.05 for 78% of effect estimates) and
not practically significant, since all fall within 3% of the mean. Despite the small effects,
Figure 5.8a has two stand-out cases, with effect sizes that do not straddle the zero axis:
reboots on machine 125, and the interaction factor on machine 81. This suggests the need
to experiment on as many heterogeneous machines as possible, in order to avoid incorrectly
assuming such effects are general; a researcher with only those machines could assume such
effect applied on every machine. Also of note is how narrowly concentrated around zero
warm-up effect estimate is, this suggests that it had no effect on mean performance. In
general, these results show that neither rebooting or warm-ups, in isolation or together,
had a significant or substantial effect on the mean execution time of these benchmarks.
On very short running benchmarks, warm-ups may be more beneficial due to time spent
loading code and input data from disk being a larger part of overall running time; these
benchmarks have more to gain from those files being preloaded in RAM. The same is
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Figure 5.9: Coefficient of variation for Experiment 3.

true for some managed languages: if dynamic compilation is done in the warm-up phase,
performance of the measurement runs will be improved, and possibly more deterministic.

Figure 5.9 shows the coefficient of variation for each benchmark on the y-axis, plotted
by each machine on the x-axis, split by our factors of interest. Again, in general, there
appears to be no pattern of increased or decreased coefficients as the factor levels change,
leading us to believe that, in the general case, neither reboots or warm-ups contribute to
lowering overall non-determinism. One exception is reboot vs. no reboot on machine 81
when no warm-up is conducted. In this case, rebooting leads to significantly less variation
across all three experiments. Since this is a machine-specific effect, we suspect it may be
caused by idiosyncrasies of the hardware or low-level software. Since the cost of automating
the rebooting between trials is low, we feel this is evidence enough to endorse it as a way
to reduce performance variance. Note that we made no effort to cause “artificial” non-
determinism by running random processes before the “no reboot” trials.
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Original Reproduction
Mean Env. Pad. 0.000032% 0.000045%
Max. Env. Pad. 0.00035% 0.00031%

Mean Addr. Rand. 0.23% 0.42%
Max. Addr. Rand. 2.8% 5.94%

Machines 17 13
Applications 11 9

Table 5.2: Reproduction summary.

5.5 Experiment 1 Revisited

While the goal of statistical methods such as factorial experiment design and linear re-
gression is to ensure reproducible results, we have repeated the experiment described in
Section 5.2 one week later to evaluate how reliable those measurements were, and how
easily the results from a DataMill experiment could be repeated at a later date.

Table 5.2 presents a comparison between the original experiment and the reproduction
experiment. The numbers presented for mean and maximum effects are based on the abso-
lute values of the effects, such that negative effects do not cancel out positive ones. Due to
a string of hardware malfunctions related to a building-wide power failure, only 13 of the
original 17 machines were available for the repeated experiment, and only 9 of the original
11 applications ran to completion for the full duration of the experiment. As seen in the
table, the mean estimates of the repeated experiment were similar to the original experi-
ment (that is to say, effects were negligible), but the single worst case effect of the address
randomization factor grew significantly. However, much like the 2.8% worst case effect of
the original experiment, the 5.94% effect of the repeated experiment is also statistically in-
significant, and therefore indistinguishable from noise. The equivalent plots to Figures 5.2
and 5.3 are suppressed due to space constraints, but are largely indistinguishable from the
original plots.

Although precisely the same conditions were not recreated as a result of a power failure
that led to hardware failures, we were able to reach the result from the first experiment.
This is due to the built-in reproducibility of results on a wide array of machines and
benchmarks. This broader strategy of reproduction is more desirable than simply re-
running experiments on a single platform, since results derived from it are more likely to
be reproducible by other researchers on other platforms.
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5.6 Average Case Variability

Given the breadth of machines and benchmarks explored here, we feel confident in saying
that memory effects, as controlled by ASLR, two levels of environment padding, -fPIE,
warm-ups and reboots, are not significant enough to warrant widespread concern for
DataMill users. Exceptional cases, where these effects are more pronounced, or where
a sub-3% performance difference is crucial, may require closer attention, but for the ma-
jority of computer performance researchers these effects appear negligible.

This also means that, at least on DataMill, these factors are not particularly useful for
the reduction of non-determinism. Given the low variability we observed (coefficients of
variation ranging from 10−5 to 10−1 on the vast majority of cases), there was not much
improvement to be made. Therefore, we believe that the strategy of using a clean, ded-
icated system, with reboots between trials, is sufficient to collect reliable performance
measurements.

While our results point to a lack of sensitivity to memory layout performance effects in
the general case, and we are confident that the average developer should not be worried,
the fact remains that a given experiment could be susceptible to them. How can we
determine whether or not memory layout effects will be a concern for a given benchmark-
machine pair? Currently, there is no simple answer other than to perform exploratory
experimentation.

DataMill can provide this functionality, by varying known nuisance factors in a small
number of screening trials. If developers find no evidence that their experiment is suscep-
tible to a hidden factor, they can drop the additional dimensions from their experiment
design and continue exploring the factors they are directly interested in.

5.7 Discussion

While we conducted the experiments for this chapter, we learned a few lessons concerning
the repetition of experiments on DataMill. This section discusses those observations.

Reproduction of Data vs. Reproduction of Results Given the fast pace of com-
puter technology, measuring performance on a single platform only goes so far. By re-
producing an experiment on various platforms and under various operating conditions,
researchers improve the generality of their results. The fact that our hidden factor worst
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case results differ from those found by others in the literature confirms that we must use
more than one experimental condition.

In [71], Mytkowicz et al. find that link-order and POSIX environment size have a
significant effect on performance, and that they can cause very dramatic regressions or
speedups in performance (57% and 300% worst cases respectively). The paper concludes
saying that we must be careful not to run experiments against only a small set of conditions,
and that we need to be cautious of the impact of small variations in our experimental
environment, as they can be deceptively influential.

Although our results point towards much lower worst case memory layout effects —
2.8% and 5.94% worst case effects for Experiment 1 and its reproduction respectively
— this does not contradict data found by other researchers, nor does it contradict their
results. Instead, our data improves our understanding of memory layout performance ef-
fects, specially regarding how widespread they are. We observe negligible effects in different
benchmarks, and on different hardware configurations.

The process of reproducing the data from an experiment allows researchers to ensure
that the experiment is calibrated appropriately, and to work out issues in the experimental
setup. Once the experiment yields the data previously observed in the original study,
performing sanity checks by varying additional, unrelated factors can shed light into how
dependent on the original setup the results are.

Reliability of Systems In our attempt to repeat our own results at a later date, we
found that several of the machines used in the previous experiments had ceased to function
as the result of a power failure. Experiences like this highlight the importance of repro-
ducible results as opposed to reproducible data. Although we were unable to replicate the
precise conditions of the experiment due to our machine losses, we were able to reproduce
our previous results. This would be impossible without robust statistical methods.

Interaction Between Memory-Layout Factors Since we did not investigate all fac-
tors together (due to combinatorial explosion), there could conceivably be some interaction
effect we failed to detect. For example, the performance effect of -fPIE may be amplified
by padding the POSIX environment, but since these factors were not investigated together,
their interaction is not measurable in our data. Given their negligible effect in isolation, it
is unlikely that such an interaction will be significant, but more exploration is warranted
nonetheless.
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Part II

Predicting Computer Software
Performance
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“Essentially, all models are wrong, but some are useful.”

— George E. P. Box
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Chapter 6

Predicting Performance Changes
During Software Development

The approaches in Part I of this thesis constitute a foundation for low cost, low variance,
statistically rigorous empirical computer performance evaluation. However, as discussed in
Chapter 1, there are cases where direct performance measurement is justifiably infeasible,
even using dedicated performance evaluation infrastructures such as DataMill. One such
case is performance regression testing in software projects with high development rates.

Ideally, every single code change in a software project would be put through a per-
formance test suite before being admitted to revision control, so that developers would
know immediately, if and when a performance regression was introduced. However, exe-
cuting a statistically rigorous experiment for every single commit is infeasible due to the
turn-around time of a properly designed experiment, and the excessive cost of dedicated
infrastructure.

In this chapter we present Perphecy, a lightweight performance-change prediction ap-
proach that builds on the low-variance experimentation methods presented in Chapter 5.
Perphecy maintains near-zero performance regression detection latency while adding lim-
ited testing overhead by predicting which code changes will cause performance regressions
for which performance tests.
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Figure 6.1: Graph of a period in the development of the HotSpot JVM, with performance
data from the DaCapo avrora benchmark.

6.1 Problem Definition

Software development consists of a series of code changes, or commits, through one or
more development branches, that ultimately converge into a production-ready version of
the software. As development progresses, developers execute a performance test or bench-
mark suite to detect any performance regressions. Figure 6.1 shows a small set of commits
in the development history of the HotSpot JVM. The ellipses represent individual commits,
and contain the commit identifier, the author, the time of the commit and, where available,
the performance of avrora, one of the benchmarks in the DaCapo suite. The arrows repre-
sent parent-child relationships between commits, dashed arrows connect to/from commits
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outside the figure. A commit with multiple arrows leaving it is a branch in development,
while a commit with multiple inbound arrows is a merging of two branches. The figure
divides commits in two sets: those for which performance of avrora (one of the HotSpot
benchmarks) has been measured, and those for which it is has not.

If HotSpot developers wish to avoid executing every benchmark at every commit, while
still detecting performance changes as they are introduced, they must somehow predict
which commits will cause a performance change for which benchmarks. This question
is posed on per-benchmark, per-commit-pair basis, such as Prediction 1 in Figure 6.1.
This prediction will be true if the performance of avrora (the benchmark) is expected to
change between commits 480d934f62a8 and 7a5aec879506 (the commit pair), and false
otherwise. To make this prediction, developers can use static data about the commits (i.e.,
code differences) and also dynamic data – profiling data – from the previous commit (i.e.,
code that avrora reaches).

If Prediction 1 returns false, developers will skip that particular benchmark and con-
tinue development assuming their change did not affect the performance of avrora. When
they make a new commit, 6d88a566d369, they will make new predictions about the perfor-
mance effect of the new change. Since performance results are unknown for 7a5aec879506,
the predictor must be able to “skip” it, rooting its prediction on a commit for which dy-
namic data from a run of avrora is available, 480d934f62a8, to make Prediction 2. This
process continues along with development, with new performance data being added as
benchmarks execute.

We now formalize the problem of predicting which commits will affect the performance
of a given benchmark. We first define what performance changes are of interest:

Performance Change: A statistically significant difference in mean execution time (or
other performance response metric) of a given benchmark between two versions of the same
software that differ in execution flow.

The predictor is concerned only with performance changes that are repeatable, i.e.,
statistically significant, and come about due to differences in the code that is executed.
We do not consider performance differences that arise from unreachable code changes,
such as memory layout effects [70]. Furthermore, this performance change can be either
a speedup or a slowdown, since developers are interested in both cases. Developers may
prefer to consider only performance changes above a certain threshold, but we consider
changes of any magnitude, for generality. We define the task of a predictor as follows:
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Problem Statement: Given a set A = {ai : 1 ≤ i ≤ n} of software versions for which
dynamic and static data are available, and one version au for which only static data are
available, predict which benchmarks in a benchmark set W = {wj : 1 ≤ j ≤ m} will incur
a performance change from each ai to au.

This definition does not restrict the relationship between the versions of the software
being investigated; they need not have a direct parent-child relationship in version control,
they need only to be able to run the same benchmarks. This allows developers to avoid
running benchmarks for a commit, yet keep making predictions about its descendants in
relation to the latest known version an.

While our problem statement allows using dynamic information from prior versions
(which is available in a repository) it does not allow us to use dynamic information from
au, since that is exactly what we are looking to avoid. We refer to the set A as the set
of known versions, since profiling data and execution times are available for all ai, and
version au is the unknown version, for which a predictor will estimate if there will be a
performance change. The prediction set consists of the set of benchmarks Wp ⊆ W whose
performance is expected to change from a given ai to au, or:

Prediction: A boolean value for a given (ai, au, wj) tuple, where true means that the
performance of wj is expected to be different on ai and au, false otherwise.

Predictors may have additional outputs such as the confidence in such a change or a
prediction of the magnitude of the change, but we focus on binary predictions (run w1, do
not run w2, etc.) since, despite their simplicity, they suffice for the developer to decide
which benchmarks to run on au.

6.2 Anatomy of a Predictor

Figure 6.2 shows a general, abstract model of a performance predictor, based on the prob-
lem statement defined above. Boxes denote artifacts, ellipses denote processes, and arrows
denote input/output relationships.

A static analyzer stat(A, au) takes the set A of known versions and the unknown version
au. The static analyzer extracts a set of static data Ds from these inputs without executing
them and stores them in a repository to be recalled when predictions are made. Examples
of static data of interest include: source code and binary deltas between each ai and
au, the differences in number of static floating point instructions between ai and au, or

83



Known Versions
A = {ai : 0 < i < n}

Unknown Version
au

Static Analyzer
stat(A, au)

Dynamic Analyzer
dyn(A, W)

Static Data
Ds

Dynamic Data
Dd

Predictor

Indicators
S

Prediction
Wp ⊆ W

Data Processor
dataproc(Ds, Dd)

Prediction Model
pred(S)

Workloads
W = {wj : 0 < j < m}

Figure 6.2: Abstract model of a performance change predictor.

the differences between compiler parameters. The static analyzer, as the only component
with access to both known and unknown versions, generates all information regarding the
difference between them.

Optionally, a dynamic analyzer dyn(A,W ) can store performance data from the set
of benchmarks W on the set A of known versions, in a repository of dynamic data Dd.
Examples of dynamic data are a list of functions reached by each benchmark, the total
number of cycles spent in each function, and the full call graph. Analyzers can collect this
data as the new versions are selected for benchmarking, and then recall it as needed when
making predictions.

The predictor is composed of two processes, a data processor and the predictor engine.
The data processor dataproc(Ds, Dd) combines static and dynamic data into a set S of
indicators. We define indicators as:

Indicator: A scalar value derived from Ds and Dd, where high values are expected to
correlate with a performance change in a benchmark wj between an ai and au.

For example, the indicator “number of functions changed in source” is derived from the
static data alone, and the expectation is that higher values are more likely to correlate
with overall performance changes1. For naturally boolean indicators such as “the compiler
parameters have changed”, values of 1.0 and 0.0 can represent true and false, respectively.

Finally, the predictor takes the processed indicators S as input to a prediction engine
pred(S) and emits a boolean prediction for each (ai, au, wj) of interest. Possible imple-
mentations of such a predictor include an expert system, a machine learning system, and
a statistical model.

1We will empirically confirm or refute these expectations in Section 6.4.2.
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Expert systems [80] follow strict rules as to when predictions should be true or false,
e.g., “return true if the number of changed functions is greater than 10”. Such predictors
are effective for problems that can be exhaustively enumerated, but may not generalize
well. Statistical regression models [67] relate the value of indicators to the value of the
performance metric, and its coefficients are calculated by a fitting process that takes a set
of training data. A fitted model can then make predictions as to the magnitude of a change,
and, if the predicted change is different from zero with the desired statistical confidence, a
value of true is returned. Statistical models perform well when the relationship between
the indicators and the performance metric is simple (linear, or low-order polynomial), but
those cases are rare in unnatural systems such as computer software [20]. Finally, there are a
multitude of machine learning [81] techniques ranging from decision trees to neural networks
that can transform indicator values into a prediction. Each of the techniques discussed
above have their own strengths and weaknesses, but given the nature of indicator data and
the complex relationship between indicators and their correlation with overall performance
changes, we believe the most successful approaches will involve machine learning. Thus,
we pursue a simple machine learning approach throughout the rest of the paper.

6.3 Case Studies

Software Description Commits Tests |W | |A| Sig.
Git Version control system,

short-running
11.78/day init, add, commit,

diff, clone
5 201 13

glibc C library, pervasive, OS-
facing

4.94/day libc-bench suite 6 98 0

HotSpot Java virtual machine, vari-
able running lengths, gen-
erates dynamically com-
piled code

4.99/day DaCapo suite 14 50 10

MongoDB Database management sys-
tem, daemon

10.18/day insert, insert then
select

2 80 27

Table 6.1: Software projects used in experiments.

Before designing a predictor, we must determine that the potential for reducing wasted
work actually exists, and establish a data set on which to evaluate our predictor design. We
chose the software projects described in Table 6.1 for being performance-sensitive, actively
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developed by multiple programmers, open source, and, most importantly, widely varied
in their functionality. The commits chosen were a continuous string going back from the
start of April 2013. The table shows the name and description for each software project,
the average number of daily commits for the year 2013, the benchmark sets we executed
on each of them, the number |W | of individual benchmarks in each set, the number |A| of
commits compiled and benchmarked, and, finally, “Sig.”, the number of (ai, au, wj) tuples,
where au is a direct child of ai, with a performance change, the ground truth that our
predictor will try to match.

Git [31] is a version control system widely used in industry and the open-source commu-
nity alike (users of Git include Google, Facebook, and Twitter). Our custom benchmarks
consist of five operations frequently used by developers, on a relatively large data set: “init”
is the initialization of an empty repository, “add” is the addition of the entire Linux ker-
nel v3.15 source code into the staging area of an empty repository, “commit” records the
addition of the Linux source code to a clean repository, making a snapshot of the working
tree, “diff” consists of the generation of the code delta between a Linux commit from May
4th, 2011 to a commit in June 10th, 2014, and “clone” consists of cloning a local copy of
the Linux repository to another directory.

The GNU C Library [32] (glibc) implements the user-space portion of system calls (e.g.,
fork(), read()) and other basic functions (e.g., strlen()) for the C language. Given its
widespread use (the majority of Linux systems), its performance is extremely important.
We used the libc-bench suite [58], a pre-existing benchmark suite that exercises memory,
string, thread, and I/O functions in the library.

HotSpot [72] is a Java virtual machine implementation maintained by Oracle, and it
is the most popular JVM available today [26]. We use the DaCapo benchmark suite [5],
a suite of fourteen Java benchmarks designed by a collaboration of academic communities
to improve on SPEC Java benchmarks.

MongoDB [66] is a NoSQL DB, built for “scalability, high performance and high avail-
ability”, so its performance is highly important for its developers. The custom benchmarks
used are “insert”, which makes one million insertions, and “insert and select”, which makes
one million insertions and then retrieves them. The load generator executes on the same
machine as MongoDB itself.

We compiled a number |A| of commits for each of software project, then executed five or
more replicates of each benchmark on each commit, to estimate variance and then perform
formal statistical tests. The metric for each benchmark was its externally measured total
execution time for all cases except DaCapo, which reports its own internal execution time.
Two machines executed all experiments, each with a four-core 3.60GHz Core i7-3820 CPU,
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one with 24GB of RAM and the other with 32GB of RAM. To minimize variability in the
data, we applied the methodology described in Chapter 4: rebooting the machines after
each individual replicate, in addition to randomizing the order in which the benchmarks
and commits were executed.

The first notable result is that the number of significant performance changes, shown in
the Sig. column of Table 6.1, is low. In the case of the HotSpot dataset, by comparing the
results of 10 benchmarks on 57 parent-child version pairs (even though we only evaluated 50
versions, 57 parent-child pairs exist due to branches and merges in the development tree),
we found only 10 out of 570 (ai, au, wj) tuples to have a performance change. This means
that the opportunity to reduce wasted work is large: 98.2% in this case. Unfortunately,
this also means that missing a single performance change would represent missing 10% of
all significant changes.

Also note that for all the glibc commits investigated, none incurred a performance
change on any of the benchmarks. Over all 285 individual (ai, au, wj) tuples investigated,
only two reachable binary functions ever changed, __init_cpu_features and _IO_file_open,
and neither code change caused a significant performance effect on the benchmarks. Since
glibc is by far the oldest software project investigated here – its initial release was in 1987
– it is to be expected that its user-facing, performance-sensitive functions (i.e., the ones
exercised by our benchmark suite) will not change frequently, but this will pose a challenge
to our prediction strategy.

Given the rarity of performance changes, we will proceed conservatively, favoring the
detection of all performance changes over reduction in wasted work whenever a choice must
be made. The rationale for this is that a false negative is a larger disruption to development
(e.g., a performance regression goes unnoticed until the next periodic all-test run, becoming
more expensive to fix), while a false positive incurs the overhead of on execution of one
benchmark.

6.4 Perphecy

Implementing a concrete version of the predictor described in Section 6.2 involves decid-
ing what static and dynamic analyses to perform, what indicators to derive, and finally,
how to combine the available indicators in a prediction. This is a non-trivial task, given
the practically infinite possible combinations of data and processes. In this section we
present the approach used to design Perphecy, a general, lightweight, effective, and reliable
performance change prediction strategy.
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6.4.1 Static and Dynamic Analyses

During the development process, the static and dynamic analyzers perform their data
collection, storing information that will be later used to make predictions. Given the
effectively infinite amount of data that developers can collect, we restricted ourselves to
what we can collect and process through lightweight processes.

The static analyzer collects the raw source and binary code for all versions investigated.
From this data, we can later derive source code deltas, binary code deltas, tool-chain
parameter changes (e.g., compiler or linker options), and more. Collecting all source and
binary code is computationally trivial, and ensures any changes made by the developers
can be detected, since all other aspects of the system (e.g., benchmarks, auxiliary libraries,
hardware) will be held constant. By collecting compiled binaries, we are able to detect
changes that are not reflected in the source code itself, such as the in-lining of a function.

The dynamic analyzer executes two types of profiling runs, one with Pin [61], and
another with Perf [75]. The Pin profiling runs collect per-function call and instruction
counts, while the Perf runs collect per-function cache misses, branch counts and cycle
counts. We used Pin for Git, glibc and HotSpot, and perf for MongoDB. We decided against
collecting more complex dynamic data such as full call graphs or instruction-level traces due
to the cost of collection and the large amount of data these would generate. The dynamic
dataset allows us to calculate what parts of the code are reachable by each benchmark,
and which functions are “hot” or relatively long-running. Note that this information is only
available for the known versions, so there is an implicit assumption that this information
will still be useful in the unknown version (i.e., not all functions will behave completely
differently or have vanished altogether). Section 6.4.2 shows that this is the case for the
projects we investigate.

6.4.2 Predictor: Data Processor

The data processor must “boil down” the data collected by the analyzers into indicators.
This process reduces unformatted, uncorrelated data (e.g., source code changes, list of
reached functions for each wj) to a scalar related to the difference between a known and an
unknown version of software (e.g., how many reachable functions have changed). Without
expert knowledge about the software projects being studied and the benchmarks being
executed, we proceed using our intuition as to what indicators could correlate with per-
formance changes in general, and then evaluate the indicators to confirm or refute their
usefulness.
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Indicator Description Rationale Source Data
New functions Returns the number of func-

tions in au that are not in ai
A large number of new func-
tions can indicate significant
refactoring, which can lead to
overall performance changes

Ds

Functions deleted Returns the number of func-
tions in ai that are not in au

Same as above Ds

Reached func.
deleted

Returns the number of func-
tions wj reached in ai that
are not in au

Same as above Ds + Dd

Top changed func-
tion by instruction
length

Functions are ranked from 0
to 100 by the number of dy-
namic instructions they ex-
ecute over a whole run of
the benchmark. Returns
the maximum rank between
changed functions.

Changes in the longest-
running functions are more
likely to correlate with over-
all performance changes, due
to Ahmdahl’s Law

Ds + Dd

Top changed func-
tion by call count

Functions are ranked from
0 to 100 by the number of
times they are called. Re-
turns the maximum rank be-
tween changed functions.

Performance-affecting
changes in a function are
multiplied by the number of
times that function is called

Ds + Dd

Top changed func-
tion w/ ≥10% in-
str. delta by call
count

Same as above, but functions’
instruction length must have
changed by 10% or more

Same as above Ds + Dd

Top function length
change

Returns the largest instruc-
tion length change between
functions in %

Large changes to functions
are more likely to affect per-
formance than small ones

Ds

Top reached func-
tion length change

Same as above, restricted to
functions reached by wj

Same as above with the addi-
tional likelihood of reachabil-
ity

Ds + Dd

Top changed
function by perfor-
mance counter

Functions are ranked from 0
to 100 by the count of a hard-
ware performance counter
event. Returns the maximum
rank between changed func-
tions.

A change in a function with
high value for performance
counters may correlate with
overall performance changes

Ds + Dd

Table 6.2: Indicators investigated.
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Table 6.2 lists the indicators derived at the data processor, the rationale as to why
they would correlate with performance changes, and if they are derived from static data
alone or from a mix of static and dynamic data. All of the indicators listed are derived
from lightweight operations on the binary static data alone, or a mix of binary static data
with dynamic data. The reason behind this is twofold: it ensures that our predictor is as
general as possible (detecting which functions changed at source level requires programming
language knowledge, for example), and it allows us to easily connect run-time information
with static information without having to translate binary symbol names back into their
original source counterparts.

Since these indicators return values in widely different ranges, we reduce them to
boolean values in order to evaluate them uniformly. For example, the “functions deleted”
indicator value can range from zero to the number of functions in ai (i.e., all were deleted).
This indicator function can be reduced to a boolean indicator of the form “x or more
functions were deleted”, where x is a threshold parameter (discussed later).

Once we determine what the boolean versions for each indicator are, we determine
their values at several different thresholds, and evaluate these indicators with respect to
two metrics: hit rate and dismiss rate. Let H be the set of (ai, au, wj) tuples with a
confirmed performance change, and Hs the set of (ai, au, wj) for which a indicator returns
true. An indicator’s hit rate is defined as follows:

Indicator Hit Rate: |Hs ∩H|/|H|

Intuitively, the hit rate is a value between 0.0 and 1.0 that indicates the fraction of
performance changes the indicator correctly detected, therefore higher values are better.2
An indicator that simply returns a true value independent of input will, by definition,
have a perfect hit rate of 1.0. A hit is, therefore, a (ai, au, wj) tuple that an indicator
correctly detects as having a performance change. We also say an indicator covers a hit if
it correctly detects it.

Let D be the set of (ai, au, wj) tuples with no measurable performance change, and Ds

the set of (ai, au, wj) for which an indicator returns false. Dismiss rate, the competing
metric to hit rate, is defined as:

Indicator Dismiss Rate: |Ds ∩D|/|D|
2This is equivalent to the recall metric in pattern recognition.
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The dismiss rate is a the fraction between 0.0 and 1.0 of performance changes the
indicator correctly dismissed3, again, a higher value is better. An indicator that always
returns false will have a perfect dismiss rate of 1.0. An optimal indicator will have both
a hit rate and a dismiss rate of 1.0, but such an indicator will be difficult to create for any
software project. An effective indicator will incur the smallest amount of false positives
(i.e., highest dismiss rates) for covering hits, allowing a predictor to have both a high hit
and dismiss rate once indicators are composed.

Figure 6.3a shows the hit rate (solid lines) and dismiss rate (dashed lines) of these
indicators for the HotSpot dataset. As expected, as thresholds increase, so do dismiss
rates, and hit rate decreases and dismiss rate increases. The figure also shows that each
indicator has its own hit and dismiss rate curves, meaning that some indicators are more
effective at detecting certain types of hits than others.

The individual indicator that has the highest dismiss rate at 1.0 hit rate (i.e., the cheap-
est way to detect all commit pairs with performance changes) for HotSpot is “Top changed
function by instruction length” (“Top Chg by Instr” in Figure 6.3a) with its threshold set at
65, and a dismiss rate of 0.57 (i.e., only 43% of commits would be sent for benchmarking
by this indicator). “Top reached function length change”, a less effective indicator indi-
vidually, has an immediate drop-off in hits as the threshold increases. It is not without
value, however, since at a low enough threshold, the “cost” for its hits – the number of false
positives incurred per true positive – is low. If enough indicators like this are combined,
they can add up to a predictor that has a high hit rate with a low cost per hit, i.e., a high
dismiss rate.

Figure 6.3b shows the hit and dismiss rates of the same signals for Git. The metrics
for each indicator are very different from the HotSpot results, which suggests that differ-
ent software projects will require different predictors. Also of note is the “Reached func.
deleted” indicator, which has a hit rate of 0.0 as soon as its threshold is raised from zero
to one (thresholds for this indicator can only be integers), making it either true for all
changes or false for all changes, and, therefore, effectively useless for Git. This suggests
that not all indicators will be useful for all software projects.

6.4.3 Predictor: Predictor Engine

The job of the predictor engine is to mix indicators, targeting a hit rate of 1.0 while
maximizing dismiss rate, so that the minimal performance testing needs to be done while

3We chose dismiss rate over precision (|Hs∩H|/|Hs|) due to precision’s non-monotonicity as |Hs| varies.
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Figure 6.3: Indicator performance at various thresholds for HotSpot and Git.
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retaining zero performance bug detection delays. The simplest way to connect indicators
is to first fix their thresholds (as we did for their evaluation in isolation) and then perform
a logical OR operation of their boolean values. An example of such a predictor is “Top
changed function by instruction length > 85 OR Top changed functions by call count > 85”.
We can then apply the same metrics used to evaluate indicators – hit and dismiss rate –
to evaluate predictors as a whole.

Mixing indicators with logical ORs can improve dismiss rates of individual indicators
because mixed indicators can “divide” the hit set among themselves. Each indicator’s
threshold can be higher (raising their dismiss rates, and allowing their hit rates to drop
below 1.0), as long as the misses incurred by one indicator are covered by another. If
the indicators are sufficiently dissimilar, i.e., they cover hits in different orders, the raised
thresholds will cause the aggregate dismiss rate to be higher than that of any of the in-
dicators individually, while maintaining the hit rate at 1.0. The problem then becomes
selecting thresholds for each indicator in a way that maximizes aggregate dismiss rate
without lowering the aggregate hit rate.

Algorithm 1 is a greedy heuristic solution to the problem of setting thresholds for a
set of nind indicators given a set H of hits that must be “covered” while minimizing the
“cost”, or false positives. Given a software project, developers can determine thresholds to
use for indicators using this algorithm on a training set, i.e., a set of known versions, and
then apply the resulting predictor – the logical ORing of those indicators at the thresholds
returned by the algorithm – as development continues. The key assumption is that the
causes of the performance changes seen in the training set will continue to cause changes
in future development, and that new causes will be covered by the current thresholds. In
Section 6.5, we show that this assumption generally holds for the projects we investigate.

The algorithm executes in polynomial time (O(|H|nind + |H|2)), and requires four aux-
iliary functions: perfdiff(version a, version b), which returns true if there is a per-
formance change between the two versions, maxthresh(hit h, indicator s), which re-
turns the maximum threshold for indicator s that still covers hit h, falsepos(indicator
s, threshold t), which returns the number of false positives incurred by indicator s
at threshold t, and allhits(indicator s, threshold t), which returns the set of hits
covered by indicator s at threshold t. The algorithm begins by calculating the minimum
number of false positives (or price) required to cover each hit (lines 3-14), storing the
“cheapest” available indicators and thresholds in the “min_price” structures. Then, until
no hits are left uncovered, it finds the hit with the highest minimum price (lines 20-26),
fixates the associated indicator’s threshold to its highest possible value (line 27), and re-
moves all hits covered by that indicator at that threshold from the hit set (line 28). Since
a single indicator at a given threshold may cover multiple hits, the hit set often decreases
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Data: H = {(ai, au) : perfdiff(ai, au) == true}, S = {sj : 1 ≤ j ≤ nind}
Result: T = {(sk, tk) : 1 ≤ k ≤ nind}

1 T = ∅;
2 for h ∈ H do
3 min_price[h] = ∞;
4 min_price_ind[h] = null;
5 min_price_thresh[h] = null;
6 for s ∈ S do
7 thresh_for_hs = maxthresh(h, s);
8 price_for_hs = falsepos(s, thresh_for_hs);
9 if price_for_hs < min_price[h] then

10 min_price[h] = price_for_hs;
11 min_price_ind[h] = s;
12 min_price_thresh[h] = thresh_for_hs;
13 end
14 end
15 end
16 while H 6= ∅ do
17 max_min_price = 0;
18 target_ind = null;
19 target_thresh = null;
20 for h ∈ H do
21 if min_price[h] > max_min_price then
22 max_min_price = min_price[h];
23 target_ind = min_price_ind[h];
24 target_thresh = min_price_thresh[h];
25 end
26 end
27 T = T ∪ {(target_ind, target_thresh)};
28 H = H \ {allhits(target_ind, target_thresh)};
29 end

Algorithm 1: Threshold selection for a hit and indicator set.
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by more than one hit at a time.
This algorithm covers all hits in the training set (its hit rate will be 1.0), but it is not

guaranteed to maximize dismiss rate (it does not arrive at an optimal solution). Since
developers will use the resulting predictor for making predictions on a different input
set, optimality of the solution regarding the training set is not essential, and an optimal
one may indeed be overfit to the training data. The sub-optimal predictors generated
by Algorithm 1 will have lower (i.e., sub-optimal) dismiss rates than the absolute optimal
predictors would, but conversely may cover more hits in the unknown data than the optimal
predictor, due to their thresholds not being fitted as tightly as possible to the hits in the
training set. For example, a threshold for the “new functions” indicator may be set at 5
when 10 would suffice for the training set, but when making predictions this difference
would cause a performance-changing commit pair with 6 new functions to be a hit, when
an optimally fitted predictor would miss it.

This algorithm depends on a non-empty set of hits to operate correctly. If H = ∅, such
as in the glibc data introduced in Section 6.3, the resulting predictor will be trivial: the
thresholds for each of its indicators will be at their maximum possible value, such that its
dismiss rate equals 1.0 over the training set, and no matter what code change the predictor
is used on, it will return false. It is essential, therefore, that developers ensure their
training sets include as many hits as possible to avoid such overfitting.

6.5 Evaluation

For Perphecy to be useful for developers, they need to be able to trust it to predict the
majority of the hits, while saving them time by dismissing the majority of the performance-
neutral changes. To evaluate Perphecy’s ability to dismiss performance neutral commits
given perfect information, we measure the dismiss rate given the full input data. Then, to
evaluate its predictive abilities, we train it on a portion of the data, and make predictions on
the rest. We also determine if a predictor should be trained on a per-benchmark basis, per
software-project basis, or if there exists a one-size-fits-all predictor. To inform developers
as to how large their training sets should be and how often they should add new data to it,
we investigate the effect of the training set size and “age” on the quality of the predictions.
Finally, we investigate the effectiveness of generating artificial training data by synthesizing
commits out of arbitrary version pairs in a repository.

Algorithm Effectiveness: The first evaluation we performed is of the threshold selec-
tion algorithm, determining how high a dismiss rate it achieves when given the full |A| as
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Full Per Test All Tests
Software Hit Dism. Hit Dism. Hit Dism.

Git 1.0 0.83 0.77 0.84 0.85 0.83
glibc n/a 1.00 n/a 1.00 n/a 1.00

HotSpot 1.0 0.89 0.40 0.88 0.70 0.47
MongoDB 1.0 0.46 0.74 0.46 1.0 0.46

Table 6.3: Performance of the algorithm in isolation, and K-fold cross validation.

input. The columns under the “Full” heading in Table 6.3 show the average hit and dismiss
rates achieved by the algorithm when applied to each benchmark. For Git, HotSpot and
MongoDB, the hit rate is 1.0 by construction (since the algorithm covers all hits). The
dismiss rate column shows that, for Git and HotSpot, the algorithm is able to dismiss more
than 80% of the performance-neutral commits, while the predictor for MongoDB, which
relies on performance-counter-based indicators, has a comparatively low dismiss rate of
46%. Since the glibc training set contains no hits, the resulting trivial predictor has a
dismiss rate of 1.0.

Predictor Effectiveness: We now measure the effectiveness of the strategy in actually
predicting performance changes by using k-fold cross-validation [67]. The method of k-fold
cross-validation divides a data set into k randomly constructed subsets, uses the union of
k − 1 of those subsets as training data, then makes predictions for the unused kth subset,
or “unknown”, data set. We calculate the hit rate and dismiss rate for those predictions
in the same way we did for indicators in Section 6.4.2, and repeat the process using each
of the k subsets as “unknown” data. This validation strategy demonstrates the validity of
the approach because, if satisfactory predictors are generated no matter what the training
set, then the strategy will most likely generalize to other unknown data.

The hit and dismiss rate columns under the “Per Test” heading in Table 6.3 show the
results of k-fold cross validation, where k = 10 (i.e., train on 90% of data, predict remaining
10%), where one predictor is generated for each individual benchmark, i.e., each predictor’s
H contains only the hits for the benchmark it is designed to cover. The results show that
the predictors are not perfect – hit rates range from 0.77 to 0.4 – but they do still dismiss
between 46 and 80% of performance-neutral commits.

The hit and dismiss rate columns under the “All Tests” heading in Table 6.3 show pre-
dictors generated from all benchmarks at once, i.e., hits from all benchmarks are included
in H, and a single predictor is created for each software project. These predictors have uni-
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versally lower dismiss rates than their per-benchmark counterparts, yet their hit rates are
improved. Note that these predictors still make predictions on a per-benchmark basis, and
are not restricted to simple “run every benchmark” or “run no benchmark” predictions. For
HotSpot, the aggregated predictor correctly dismisses 47% of performance-neutral com-
mits, while covering 70% of significant commits, a marked improvement from the 40%
achieved by per-benchmark predictors. The consequence of creating one predictor for all
benchmarks, as opposed to one predictor per benchmark, is that the single predictor must
be less aggressive (indicator thresholds must be lower) to cover the aggregate set of hits.
While this may also lower dismiss rates, we suggest that developers use this strategy to
train predictors for real-world use due to the improved hit rates.
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Figure 6.4: Predictor hit and dismiss rates by size of training dataset.

Training Set Size: To determine the size of training set needed to generate a good
predictor, we use k-fold cross-validation once again. Since the size of the training set grows
as the value of k grows, we can investigate the effect of the training set size on the quality
of the predictors. Figure 6.4 shows smoothed curves for the hit and dismiss rates for each
project by k, where 2 ≤ k ≤ 10. When k = 2, the training sets are 50% of the data, and
predictions are made for the other 50%, and when k = 10, the training sets are 90% of
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the data and predictions are made for the remaining 10%. The figure shows that, as the
training set grows, there is a marked improvement on the hit rate, accompanied by a minor
decrease in the dismiss rate. In the case of Git, the improvement to the hit rate levels off
at k = 8, or approximately 175 commits, suggesting that number as ideal for a training
set size.

Cross-Project Prediction: To evaluate if a single predictor can be used effectively
for all software projects, we test the transferability of predictors between the projects
(MongoDB is excluded due to its indicators being incompatible with the other projects,
and glibc is excluded due to its data set not containing any hits). The hit rate and dismiss of
the predictor trained on Git data has a hit rate of 1.0 and a dismiss rate of 0.34 on HotSpot
data, a conservative predictor, while the reciprocal predictor, trained on HotSpot, has a
0.0 hit rate and a dismiss rate of 0.88, a very aggressive predictor that covers none of the
hits. These results show that using a predictor trained on one software project to make
predictions about another is ineffective at best.
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Figure 6.5: Predictor hit and dismiss rates by hops between known and unknown commit,
for Git.

Distance to Last Known Commit: As development continues, if the predictor in-
dicates that that none of the incoming code changes will incur a performance change,
developers may make multiple subsequent commits without running a benchmark. In such
a scenario, the last commit with a known performance change has a continuously growing
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distance from the latest commit with unknown performance. To determine the effect of
this distance on predictor performance, Figure 6.5 shows the hit and dismiss rates of a
predictor trained on the 25% oldest (by time stamp) commits of the Git dataset, making a
series of predictions (ai, au, wj) where ai is the latest commit in the training set, to each au
in the 75% of commits not used in the training step. The figure shows that, for this data
set, there is a correlation between hop distance and dismiss rate. Between one and three
hops, all commits are correctly dismissed (hit and dismiss rates equal 1.0), but after that
the dismiss rate decreases nearly monotonically with hops until reaching 0.16 at 15 hops.
This happens because the longer the distance between ai and au, the larger the difference
between the resulting binaries (all changes in the intervening commits are accumulated),
and the more indicators will have their thresholds surpassed. No such effect is observed
for hit rate, which varies between 0.5 and 1.0 with no pattern relating to hop distance.
This result suggests that there may be a natural effect limiting the length of a string of
commits for which the predictor will return false. This effect is desirable for developers,
because it bounds the amount of hops a missed performance change will go unnoticed.
In the scenario shown in Figure 6.5, the predictor starts returning true as soon as four
hops from ai, which would have “reset” the latest known commit, updating the developers’
knowledge about their application’s performance.

Software Hit Dism.
Git 1.00 0.08

HotSpot 0.99 0.03
glibc 1.00 0.29

Table 6.4: K-fold cross validation for synthetic training sets.

Synthetic Training Sets: Since there is no restriction on the relationship between
versions ai and au involved in a prediction, we can generate “synthetic commits” to achieve
a larger training set. We test this by exhaustively combining commits in A, creating a
delta from one to the other: from |A| known versions, we create

(|A|
2

)
version pairs, greatly

expanding the inputs to the predictor generation algorithm. Table 6.4 presents the results
for k-fold cross validation (k = 10) on this exhaustive set of commit pairs for Git, HotSpot
and glibc. The data shows that the predictors trained on such synthetic training inputs
are conservative, with perfect or nearly perfect hit rates, and dismiss rates of less than
0.3. Since these artificial training sets include even the most distant commit pairs (in all
metrics of distance: hops, commit date, and code delta size), the frequency and nature
of hits they contain is different from what occurs in regular development. As the hit set
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grows, the threshold selection algorithm can only make the predictor more conservative,
which suggests developers should limit the size of their training set once their dismiss rate
levels off (as in Figure 6.4) or starts decreasing. Interestingly, the artificially generated
training set for glibc included 398 hits in 14259 prediction tuples, allowing a non-trivial
predictor to be derived. The generation of synthetic commits can be, therefore, a viable
option for augmenting training sets with an insufficient amount of hits, such as glibc’s.

This section showed that, for Git, Perphecy can predict as much as 85% of the performance-
changing commits while avoiding executing 83% of benchmarks. In the case of HotSpot,
which complicates analysis by generating dynamic binary code during runtime, the predic-
tor detects 70% of performance-changing commits, and dismisses nearly half of performance-
neutral code changes. These predictors are based on very lightweight processes: language
and architecture independent static analysis of binary code, and lightweight profiling of
benchmarking runs, that collects nothing but (1) the number of times each function is
called, and (2) how many instructions are executed in each function. In the case of Git,
for example, all static processing operations needed to make a prediction (which are what
developers would carry out at every commit) executed in under 350ms. The predictor for
MongoDB, which used a different set of indicators based on hardware performance coun-
ters, detected 100% of performance-affecting changes, while dismissing 46% of performance
neutral changes, suggesting that these indicators are effective in conservative predictors.

6.6 Discussion

While we designed and evaluated Perphecy, we noted some observations, possible pitfalls,
and lessons learned. This section discusses those points.

The Data Dependency Problem Imagine a software project with a global boolean
variable called do_sanity_check, set to false in development, that determines if an ex-
pensive sanity checking procedure is to execute or not. If a commit changes that value to
true (or makes an auxiliary set-up function set it to true), only the data section of the
resulting binary (or a short-running function that is only called once) will change. None
of the indicators described in Table 6.2 are well suited to detect performance regressions
caused by this type of data dependency, which, while not common in our case studies,
could be frequent in other software projects. Indicators designed to detect this type of
change would involve measuring the differences in the data sections of the binaries, and
possibly some more complex form of static analysis.
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Applying Perphecy Retroactively If developers detect a performance regression in
the very last commit before deployment, they will need to bisect the development tree
to find the commit that introduced the regression. Since Perphecy does not require au
to be a descendant of ai in a prediction, developers can use that last commit, for which
performance information is available, as ai, and walk the commit graph backwards using
each previous commit as the unknown commit au, predicting which commit introduced the
change retroactively. This can be useful if executing any performance tests at all during
development is infeasible or otherwise undesirable.

Perphecy on DataMill Given the need for months-long, exclusive dedication of the
platforms involved in the experiments presented in this chapter, we chose to use machines
outside of DataMill for these measurements. Once a developer has a trained predictor for
their project, however, performance testing should be done on an infrastructure such as
DataMill to ensure maximum platform heterogeneity.

Each Test is Unique Commits that affect performance of one benchmark are not guar-
anteed to affect all others. In fact, we observed a strong separation between benchmarks,
i.e., the majority of commits affected the performance of exactly zero, one, or two bench-
marks in our suites. This suggests that predicting that a commit causes a performance
change in the general case (i.e., all benchmarks) will most often be incorrect, and pre-
dictions should be made on a per-benchmark basis. There are two corollaries to this
observation: one is that making predictions on the basis of static data alone will miss the
differences between benchmarks (i.e., code reachability, function call counts), and the other
is that the components of a benchmark suite should have as little overlap as possible in the
code they exercise, so they can be effectively selected depending on what code is changed.
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Chapter 7

Predicting Application Performance on
Unavailable Platforms

Chapter 6 presented a solution for performance-change prediction in cases where the target
platform is available, yet the volume of performance evaluation is impractical or impossible.
We now address cases where the target platforms are inaccessible, such as developers
comparing various candidate target platforms, which they cannot acquire due to cost or
consumer availability.

This chapter presents performance fingerprinting, a statistical performance modeling
approach that allows developers to directly predict their performance metrics of interest
on platforms that they do not have direct access to. Performance fingerprinting leverages
DataMill to detect correlations between application and benchmark performance over a
wide range of heterogeneous machines, then constructs predictive statistical models based
on these correlations.

7.1 Problem Definition

Benchmark suites generally attempt to contain the most diverse set of individual appli-
cations possible, in order to represent as many production applications as possible. For
example, the SPEC CPU 2006 [39], DaCapo [5], and PARSEC [4] suites all claim to rep-
resent a wide range of possible applications by containing several individual benchmarks
with different performance-related properties. While this is a valid approach to creat-
ing a benchmark suite that represents as many applications as possible at once, it may
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Benchmark Area
Astar Path-finding

Bwaves Fluid Dynamics
Bzip2 Data Compression

CactusADM Physics
Calculix Structural Mechanics

GCC Compiler
GemsFDTD Electromagnetics

GobMK A.I.
Gromacs Molecular Dynamics

H264 Video Comp.
hmmer Gene-Sequence Searching

Lbm Fluid Dynamics
Leslie3d Fluid Dynamics

Libquantum Physics
(a)

Benchmark Area
mcf Combinatorial Optimization
Milc Physics

namd Molecular Dynamics
Omnetpp Simulation
Perlbench Perl Programming Language

Povray Ray-tracing
sjeng Artificial Intelligence

Soplex Optimization
sphinx3 Speech Recognition
Tonto Chemistry
Wrf Weather

xalancbmk XML to HTML Translation
Zeus Physics

(b)

Table 7.1: Benchmarks.

be counter-productive if the user has a specific application whose performance they are
interested in predicting.

To illustrate this problem, Figure 7.1 shows the mean performance of each SPEC CPU
2006 benchmark listed in Table 7.1, executed five times, on each machine listed on Table 7.2.
The y-axis shows the execution time in seconds (as reported by SPEC’s run scripts), and
the x-axis shows each machine, positioned according to the geometric mean of its execution
time of all of the benchmarks. The x-axis is organized this way to order machines by overall
SPEC performance, which is the metric a developer would use to compare possible target
platforms. The black line represents the geometric mean performance of SPEC over all
machines, drawn here as a perfect log curve due to the special ordering of the x-axis and
the log scale of the y-axis. Intuitively, each machine occupies one “column” on the plot,
e.g., all data from machine 80 is located at x = 358.96. For legibility, the figure highlights
only three of the benchmarks.

To demonstrate the danger of using the mean performance of a benchmark set as in-
dicator of performance, imagine cactusADM is the application whose performance we are
interested in predicting. Figure 7.1 shows that it follows the general trend of the SPEC ge-
ometric mean, which agrees with intuition. What is of interest, however, are the individual
cases where it does not track the overall mean from machine to machine. CactusADM’s
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ID Processor Clock (GHz) RAM (MB) SPEC Mean (s)
101 Pentium 4 1.60 900 2782.29
73 VIA Nano X2 1.60 1700 1911.51
147 Pentium M 1.70 881 1742.53
99 Pentium 4 2.80 900 1572.36
98 Pentium 4 3.00 900 1526.78
105 Pentium 4 3.20 900 1470.72
90 Pentium 4 3.20 1000 1432.64
75 Pentium 4 3.20 900 1425.74
97 Pentium 4 3.00 900 1326.82
130 Pentium 4 3.20 900 1308.20
128 Pentium D 3.00 2000 1300.57
81 Opteron 8378 2.40 3200 920.57
143 Xeon 5160 3.00 2500 794.92
125 Core i5-2500 3.30 8000 403.64
80 Core i7-2600K 3.40 8000 358.96

Table 7.2: Machines.

performance line correlates with (i.e., has an approximately linear relationship to) the ge-
ometric mean from machine 80 to machine 105, but from that machine to the next (98),
its execution time has a severe increase, which is maintained through to machine 99, and
then decreases again for machine 147, contrary to what one would expect from the suite’s
geometric mean. In this case, and all others cases where the derivative of the performance
line is negative from machine to machine, using the overall performance of SPEC would
cause the developer to make an incorrect decision: in this example, he would pick machine
99 over machine 147 and experience surprisingly inferior performance.

How, then, can developers use a benchmark suite to predict their application’s per-
formance? In the case of CactusADM, the application’s performance is not sufficiently
correlated to the mean performance of the suite, or to any individual benchmark in the
suite. In cases where a one-to-one correlation does not exist, a predictive solution must
involve data from multiple benchmarks in the suite. These cases appear to be the norm;
in Figure 7.1, only gromacs and namd rank machines by performance in exactly the same
order, albeit with varying relative performance ratios between machines.

The problem, then, is defined as follows: given performance results of an application
and a benchmark suite on a set of machines, predict the performance of the application
on a machine for which only the benchmark suite’s performance results are available, or
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safely fail when accurate prediction is impossible.

7.2 Using Benchmark Performance as Statistical Pre-
dictors

In this section we propose performance fingerprinting, a statistical performance predic-
tion approach that models application performance using benchmark performance. Per-
formance fingerprinting uses benchmark scores as predictors in linear models, completely
abstracting away hardware characteristics (e.g., architecture, CPU clock rate, memory
bandwidth, etc.), and allowing precise performance predictions on platforms for which
only standard benchmark performance results are available.
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Figure 7.2: Models of sjeng execution time.
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To exemplify the approach, Figure 7.2 shows three single-factor linear regression models
of sjeng execution time, trained over the machines in Table 7.2, whose IDs appear in black,
predicting the performance for machine 143, whose ID appears in light blue. Both the
target application – sjeng – and the target machine – 143 – were selected at random. In
each of these plots, the y-axis shows execution time in seconds (the y in our model), while
the x-axis shows the predictor variable for the model (the x in our model), and dots denote
the mean performance for the sjeng in each machine, whose number is denoted next to the
dot. A blue line shows the model curve, which can be interpreted as the “best guess” of the
y-axis value each model would make for each x-axis value. Finally, the resulting model’s
equation and fit metrics appear above the plot itself. These three models have the same
goal: map a characteristic of the machines to the performance of a particular application,
sjeng. To use any of these models for prediction, developers would “plug in” the relevant
characteristic of the machine they are targeting as the x value, coming up with an estimate
of the execution time of their application as the y value. To directly compare these models,
we will use the root mean square error (RMSE), a measure of the distance between model
estimates and the observed data. The RMSE is calculated as follows:

MSE =
SSE

n
(7.1a)

RMSE =
√
MSE (7.1b)

where n is the number of observations, the mean square error (MSE) is the error sum of
squares (Equation 1.3b) averaged over all individual observations, and finally, the RMSE
is the MSE expressed in the metric’s own units. The residual RMSE is calculated over
the data used to fit the model (the black dots in Figure 7.2), and the prediction RMSE
is calculated over the “unknown” data (the blue dots). The lower the residual RMSE, the
better the fit of the model to the data. The lower the prediction RMSE, the better the
predictions made by the model. Note that the prediction RMSE can only be calculated
a posteriori, once the model has been fitted and performance on the target platforms is
known.

Figure 7.2a shows a (purposefully naïve) model of sjeng execution time by CPU clock
rate in MHz. Despite the correlation between a processor’s clock rate’s and processing
performance (as demonstrated by the blue line generally following the dot pattern) it is
not the only relevant factor; details such as cache size and memory hierarchy bandwidth
are also major components of performance. Since this model ignores many relevant factors,
it does not have a good fit to the dataset, with a residual RMSE of 417.742s. Figure 7.2b
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shows a model of sjeng based on the geometric mean of the execution time of all SPEC
(excluding sjeng itself). The figure shows that modeling the performance of an application
on the full benchmark suite is a significant improvement over the CPU MHz model, with
a 56% reduction in the prediction RMSE.

Finally, Figure 7.2c shows a model created with the best single benchmark predic-
tor, gobmk, exemplifying the goal of performance fingerprinting: finding the subset of
the benchmark suite that best represents the application. This model, with a predictive
RMSE of 43.852, shows an improvement of 74% over the model based on the SPEC geo-
metric mean, demonstrating that while the suite represents average behavior, individual
benchmarks can drastically improve prediction performance of individual applications.

It is clear that performance fingerprinting — statistical modeling of application per-
formance using components of a benchmark suite — can yield very accurate predictive
models, a large number of training machines are available and the application has repre-
sentative predictors in the benchmark. Next, we address potential pitfalls concerning the
number and relative performance heterogeneity of machines used in fingerprinting, and, in
Section 7.4, we introduce techniques to select which benchmarks to use as predictors for
an application.

7.3 Potential Pitfalls
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Figure 7.3: sjeng by gobmk, small data set.

The quality of the predictive model depends on the number of machines used in its
fitting, and the relation between those machines and the target platforms. Figure 7.3 shows
a different model of sjeng by gobmk fitted only on data from machines 147, 98, and 97,
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chosen for having relatively similar sjeng execution times, and therefore poorly representing
the wide spectrum of machines in Table 7.2. Although gobmk is fundamentally a good
predictor of sjeng performance – as evidenced by Figure 7.2c – attempting to fit the exact
same model on those three machines yields a prediction RMSE of 394.705, much worse than
the 213.518 and 43.852 from the models from Figures 7.2c and 7.2b, and only somewhat
better than 572.061, from using CPU MHz alone as a predictor. This makes it clear that
the number and heterogeneity of the machines used during model-fitting is vital to produce
good predictive models, making DataMill ideal for collecting training data.
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Figure 7.4: Example of overfitting.

Even when the machines available for fingerprinting are representative of the target
machines, selecting which benchmarks to use as predictors is a non-trivial problem. The
27 individual benchmarks in SPEC alone allow the creation of 272 = 729 different pre-
dictor combinations, only one of which developers will use for fitting and, subsequently,
performance prediction. Simply picking the model with the least residual RMSE between
all alternatives may lead to overfitting, a problem demonstrated in Figure 7.4. Figure 7.4a
shows a model of sjeng by gobmk fitted on data from machines 125, 81, and 90, yielding a
well-fitting model with comparable residual and prediction RMSEs to that of Figure 7.2c.
This model has a much better prediction RMSE than the one in Figure 7.3 due to the
performance “spacing” between machines: its prediction targets are always in the vicinity
of one of the machines used in fitting the model. Figure 7.4b shows a model of sjeng by
gobmk and namd, fitted on the same machines, which has a significantly lower residual
RMSE, yet a significantly higher prediction RMSE: the blue line significantly deviates
from the blue dots. This is a traditional case of overfitting, where the increase in model
complexity (i.e., the added predictor) allows for the fitting process to further minimize
residual RMSE, at the expense of predictive power. Indeed, a property of least-squares
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model fitting is that the addition of predictors will always reduce the residual RMSE [67],
yet, as shown, this does not necessarily lead to better prediction RMSE.

Using benchmark performance as a predictor for application performance in linear sta-
tistical models is a promising approach, but two problems remain: choosing the best model
for prediction purposes, and selecting machines that best represent the target.

7.4 Model Selection

In this section, we discuss three strategies for selecting a predictive model given a set of
machines, while avoiding the overfitting problem: using the geometric mean as the sole
predictor (i.e., the baseline approach), using correlation clustering techniques to subset the
benchmark suite, and regression subsetting.

Suite Geometric Mean: Using the mean performance of a benchmark suite as the sole
predictor (as in Figure 7.2b) avoids overfitting by limiting the number the predictors to
one. It does, as shown in Figure 7.2, lead to sub-optimal models, since it is possible that
a subset of the same benchmark suite better represents the application. If the prediction
RMSE of models fitted with this strategy is acceptable, however, it may be a sufficiently
accurate option.

Cluster-Based Subsetting: If two or more predictors have a strong linear correlation
to each other, all but one can be dropped from the model with little loss of explanatory
power [67]. If such correlations exist in the benchmark set (i.e., the performance of two
or more benchmarks correlate with each other as the machine varies), dropping correlated
predictors can aid in avoiding overfitting. Such correlations are expected – indeed, this
chapter’s approach depends on the existence of correlations between the performance of
applications and benchmarks – and, in the case of SPEC CPU 2006, have been reported
by Phansalkar et al. [77].

Figure 7.5 shows a complete-linkage clustering dendrogram of the benchmarks in Ta-
ble 7.1, grouped by correlation in performance, which can guide subsetting of the bench-
mark set. Clusters of linearly correlated performance are identified by “cutting” the tree
at any height in the diagram, and then one representative of each cluster will be used as a
predictor. The further down the tree the cut is made, the higher the number of predictors
will be, increasing the risk of overfitting.
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Figure 7.5: Clustering of SPEC CPU 2006 benchmark performance.

Regression Subsetting: This statistical method attempts to subset a large set of can-
didate predictors by either starting with the full set of predictors and removing them one
at a time as long as a model’s quality does not degrade (backward selection), starting with
an empty model and adding predictors as long as the model’s quality improves (forward
selection), or exhaustively searching the model space. Despite the combinatorial explosion
on the number of predictors mentioned in Section 7.2, exhaustive selection is possible in
modern computers using branch-and-bound algorithms.

Since developers will apply the resulting model to make predictions, model selection
must avoid overfitting by favoring small predictor sets. In regression subsetting, this entails
replacing residual RMSE as a measure of model quality with an alternative metric that
does not automatically increase with the number of predictors; otherwise, the model with
the maximum number of predictors would always be selected. There are multiple such
metrics in statistics, two of which we utilize here due to effectiveness and simplicity: R2

adj

– adjusted R2 – and Mallow’s Cp.

R2
adj is a modified version of the regular R2 (Equation 1.4a), ranging from 0.0 to 1.0,

calculated by dividing the unexplained variability by the total variability, while taking into
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account the number of predictors in the model:

R2
adj = 1− SSE/n− 1

SST/n− p− 1
(7.2a)

where SSE is the error sum of squares (Equation 1.3b), SST is the total sum of squares
(Equation 1.3a), n is the number of observations, and p is the number of predictors in the
model. R2

adj takes into account the number of predictor variables, and its value will only
increase with the addition of a predictor if the increase in explained variability is higher
than what is expected by chance [67].

Mallow’s Cp is an estimator of what the average mean squared prediction error will
be, and is based on a model’s residual sum of squares, the variability in the data, and the
number of predictors:

Cp =
SSE

MSEf

− n+ 2p (7.3a)

whereMSEf is the mean square error (Equation 7.1a) for the model with all predictors,
n is the number of observations, and p is the number of predictors. As with R2

adj, it does
not automatically improve with the addition of predictors.

7.5 Evaluation

To assess the quality of the model selection strategies described in Section 7.4, we apply
them to the data set in Figure 7.1. One by one, we select a benchmark from Table 7.1
to represent the target “application” by first removing it from the suite, and then creating
predictive models for the machines in Table 7.2. To ensure unbiased machine selection,
we exhaustively explore all machine combinations for a given training set size (e.g., three
machines out of 15 in the training set generates

(
15
3

)
= 36855 models). We report each

model’s RMSE in percent of the mean execution time, similar to the normalization to the
mean in Chapter 5, to make models for benchmarks with widely varying absolute execution
times comparable with each other.
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Figure 7.6: Predictive model error by training set size.

Sensitivity to Machine Number: First we investigate the relationship between the
quality of the models and the number of machines used in fingerprinting. Figure 7.6 shows
all models’ normalized RMSE in boxplots on the logarithmic y-axis, by the number of
machines used in fitting the model on the x-axis. Each strategy is identified by a different
color. The models generated by the regression subsetting strategies had no restriction on
how many predictors they could use. For the cluster subsetting strategy, five clusters were
represented, by tonto, lbm, namd, cactusADM, and astar. Each model’s fit quality was not
measured before using them for predictions. We address limiting the number of predictors
and checking models for error later in this section.

There is a clear decrease in error as the number of fitted machines increases, which is
expected for two reasons: the model fitting strategies have improved performance when
given more information, and the likelihood of a training machine being similar to a pre-
dicted machine is higher, avoiding the kind of error exemplified in Figure 7.3. It is not
until the training set contains 6 machines that the majority of models is below the 25%
error mark for all strategies, as demonstrated by the median line on the boxplots. Only
at 14 machines does the upper quartile fall below that same 25% mark. The worst case
errors are worrying even at 14 machines, reaching nearly 100% of the observed mean for
all strategies. This indicates that creating a single model to predict performance across
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machines of such disparate configurations, and ignoring all internal fit indicators (e.g., the
R2

adj of each model) is not a safe strategy for real-world use.

Also of note is the performance of the Suite Geometric Mean strategy, which performed
better than at least one other strategy on both median and worst-case error until 10
machines were in the training set. This suggests that its “natural” avoidance of overfitting
makes it the best candidate for very small training sets (although its worst-case performance
is still unacceptable for most cases), although it becomes significantly worse on average
than all other strategies as soon as seven machines are available.
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Figure 7.7: Model performance, mid-range machines only.

Machine Selection: We now investigate the effect of constraining training machines to
those similar to the target machine. Figure 7.7a shows normalized error by training set size,
with a training set limited to the following mid-range machines: 128, 90, 75, 98, 105, 130,
99, 97, with mean SPEC performance ranging from 1300.57s to 1572.35s. These machines
were chosen due to their similar mean SPEC performance, and, since they belong to the
same or subsequent generations of the x86 family, share architectural features. Limiting
targets to machines similar to the training set significantly improves both the median and
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worst-case errors. For the Cp strategy with 7 machines, the 75th percentile of error is now
4.64%, the 95th percentile is 9.89%, and the absolutely worst case is 41.69%.

Figure 7.7b shows the mean normalized prediction RMSE by training set size, with
whiskers extending to the 95% confidence interval around the mean. At seven training
machines, the mean error for all strategies is below 5%. These results show that training
models on machines that are similar to the target has a large impact on both the average
and worst cases.
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Figure 7.8: Model performance, mid-range machines only.

Discarding Ill-Fitting Models Previous analysis considered all models, regardless of
their fit. Developers may wish to discard ill-fitting models – those with high residual
error, an indication that the application is not well represented by the benchmark set –
to avoid making poor predictions. To evaluate this approach, we discard 7-worker models
from Figure 7.7a with an R2

adj below a set of thresholds, and measure the 100th (worst
case), 99th, and 95th percentiles of error for the remaining models. Figure 7.8 shows these
different percentiles and the percentage of remaining models (i.e., approximately the odds
that a model can found for a given application), shown on the y-axis, with a range of
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R2
adj thresholds, shown in the x-axis, for the Cp and Suite Geometric Mean model selection

strategies. Figure 7.8a shows that applying a threshold is an effective way to reduce the
worst case error, but the trade-off is that a number of models with low predictive error
are also discarded. At a threshold (x-axis value) of 0.958, the 100% percentile, or absolute
worst case error, is reduced to 10.39%, but only 31.94% of the models remain. The 95th
percentile of error hovers around the 8.5% mark independent of the threshold.

Figure 7.8b shows that applying these thresholds to the Suite Geometric Mean strategy
is not as effective; at a threshold of 0.65, 32% of the models remain, but worst case error is
still a relatively high 18.87%. This is because this strategy is limited to a single predictor,
and even its best models have a significantly lower R2

adj than the other strategies due to
their “coarser” nature. A similar effect was observed for the cluster subsetting strategy.
The worst-case error of the R2

adj strategy cannot benefit from a R2
adj cutoff threshold, as

all models generated by it have maximum or near-maximum R2
adj.

Sensitivity to Number of Predictors: To further minimize the chance of overfitting,
developers can artificially limit the number of predictors available to the model selection
strategies. For the cluster subsetting strategy, this entails “cutting” the dendrogram at
height r, where r is the number of desired predictors, and picking one benchmark to
represent each cluster. For the Cp and R2

adj strategies, this entails limiting the exhaustively-
explored model space to include only models with r predictors or less. The Suite Geometric
Mean strategy cannot benefit from this, as it already uses only a single predictor.

Figure 7.9 shows the normalized error for models created by all strategies on the y-axis
by the maximum number of predictors in the x-axis. Each subplot in the figure represents
different training set sizes, ranging from three to seven machines. Again, only the mid-
range machines first shown in Figure 7.7a are used here, and the residual error of the
models is not checked before predictions are made. Between one and six workers in the
training set, the worst and median cases are generally improved by limiting the number of
predictors. A notable exception is the cluster subsetting strategy with six training workers,
whose median performance improves as predictors are added from one to four, and then
degrades with the fifth. When seven training machines are used, limiting the predictor
count has a less pronounced effect on worst-case error, and actually has a negative effect
in various cases. This shows that imposing a hard limit on predictor count is effective in
reducing median and worst-case error for smaller training sets, but as more information is
available to the model selection strategies, there is less risk of overfitting and more complex
models are more successful.
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Figure 7.9: Predictive model error by predictor number limit.

Insight Into Worst Cases: There are two main causes for bad predictive models: either
the application is not well represented by the benchmark set, or the target machine is
not well represented by the training machines. To investigate which of these causes of
prediction error is more prevalent, we analyze the worst models, between those fitted by
Cp, with seven training workers, in the mid-range machine data set (i.e., the rightmost
Cp data from Figure 7.7a). We chose this data-set for having the lowest worst-case error
before the application of R2

adj thresholds, with a view to improving it further.

Tables 7.3a and 7.3b show the incidence of target machines and target benchmarks.
respectively, in the top decile of models by normalized RMSE (i.e., the worst 22 models).
The models’ error ranges from 7.66% to 41.69%. All eight machines appear in Table 7.3a,
each being the target of at least one model, meaning that they all share the “blame” for
the worst models. While it may be the case that machines that appear four times are
harder to predict for than ones that appear only once due to their higher appearance
among the worst models, this disparity is minor and does not seem to indicate a trend.
However, a different scenario is true for the benchmarks, shown in Table 7.3b: only eight
of the 27 possible benchmarks appear, only two of which are responsible for over half of
the worst models (all unlisted benchmarks had no models in these 22 worst cases). This
indicates that these benchmarks are specially poorly represented by the other members
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Machine Models
105 4
128 4
99 4
97 4
130 2
98 2
75 1
90 1

(a) Target Machine

Benchmark Models
bwaves 8

cactusADM 5
calculix 2

mcf 2
milc 2

hmmer 1
lbm 1

zeusmp 1
(b) Target Benchmark

Table 7.3: Details of worst decile of models.

of the benchmark set. In fact, by discarding models of bwaves, cactusADM, calculix,
mcf, and milc (i.e, the benchmarks with more than one model in the worst decile, and
only 5 out of 27 benchmarks), the absolute worst case error is reduced from 41.69% to
9.59%. This indicates that a large and varied benchmark set is essential to ensure good
predictive models for applications, while the machine selection, once constrained around
the prediction target, plays a much smaller role.

7.6 Discussion

During the design and evaluation of the performance fingerprinting approach, we noted
interesting properties of the approach. This section discusses those points.

Toward Representative Benchmark Suites As discussed in [35], effective perfor-
mance fingerprinting requires applications to be represented by the benchmark set. If
they are not, there might be no well-fitting model available, or worse, model selection
may produce a well-fitting model that makes poor predictions. Luckily, the problem of
creating a general benchmark suite appears tractable, since even SPEC CPU 2006, which
was created with variety in mind, has several internal redundancies. This is exemplified
by the effectiveness of the cluster subsetting strategy, which uses only five of the suite’s
benchmarks to model all others. Since none of the model selection strategies presented
in Section 7.4 degrades as the benchmark suite grows, we believe that there should be an
iterative effort in creating a generally representative benchmark suite: as developers find
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applications that are poorly represented by a suite, a benchmark version of that application
should be added to the suite. As more unique benchmarks are added, more applications
will be represented. It is still important to limit the size of the benchmark suite as much
as possible, to keep benchmark running time for each new platform from becoming exces-
sive. Benchmark suite maintainers can implement internal redundancy checks (such as the
correlation tests described in [77]) to limit benchmark suite sizes.

Leveraging DataMill for Performance Fingerprinting Section 7.5 shows that all of
the model selection strategies benefit from (i) a large amount of training machines and (ii)
training machines that are similar to target machines. It is already impractical for small
developers to fingerprint their application on more than a handful of machines; restricting
training machines to those similar to the target machine can make fingerprinting infeasible.
Since DataMill already contains a wide variety of machines of multiple architectures for
which performance results of several benchmark suites is already available, we believe
that DataMill can provide developers with an effective performance fingerprinting service.
As long as new machines are added to the service as technology evolves, updating an
application’s fingerprint is as simple as executing it on new machines as they come online
in the infrastructure.
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Chapter 8

Conclusion and Future Work

Empirical performance evaluation is a cornerstone of computer science and industry. De-
spite its importance, it has become evident in recent years that the status quo of perfor-
mance evaluation is unsustainable: the lack of statistical rigor and experiment reproducibil-
ity puts into question our conclusions. As former president of the ACM Peter Denning
notes, “[t]he science paradigm has not been part of the mainstream perception of computer
science.” This has prompted several papers bringing the issue to the attention of the com-
munity, and several efforts by publications to raise the bar in empirical computer science,
but current practice still trails many other scientific disciplines.

It is clear from the current state of empirical experimentation in the field that the cost
of statistically rigorous performance evaluation is more than what the community is willing
to incur. The first part of this thesis presents our efforts in justifying and lowering the cost
of statistically rigorous performance evaluation.

Chapter 3 demonstrates the dangers of ignoring statistical design and analysis tools
in computer performance evaluation, using a Linux processor scheduler comparison as an
example. We applied quantile regression to answer questions such as “what is the effect
of the interaction between the choice of processor scheduler and system load on the 95th

percentile of scheduling latency?”, which are far beyond the reach of simple t-tests and even
linear regression, with the added benefit of not imposing restrictions on the distribution of
the data set.

Chapter 4 presents DataMill, a public performance evaluation infrastructure designed
with statistical rigor and ease of use in mind. DataMill automates the process of facto-
rial experiment design and provides hardware and software heterogeneity that is generally
beyond the reach of any one researcher, while incurring the small overhead of packaging
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the experiment for execution. We shows that with only 32 lines of shell code and a few
clicks on a web interface, DataMill produced 6300 data points spanning seven machines,
five compiler optimizations, three link orders, and both ASLR settings, exhaustively com-
bining dimensions in a factorial design, and with plentiful replicates for rigorous statistical
analysis, all in under a week.

Chapter 5 shows that the clean-room policy employed by DataMill minimizes perfor-
mance variability caused by memory layout effects to a point where they are not worrisome
in practice. Exploration of five memory layout factors, on 27 benchmarks, on up to 26 ma-
chines – a process trivialized by DataMill – shows that our current policy of restarting
machines between every individual performance sample is sufficient to reduce memory-
layout-related performance effects to negligible, sub-3% levels on average, and the absolute
single worst case below 6% of the mean.

These three chapters aim to present a starting point in enabling widespread adoption
of rigorous performance evaluation. The tools and approaches presents can be expanded to
further reduce the complexity of empirical performance evaluation. Some of the foreseeable
improvements and future work in this area follows:

1. Automatic Factor Screening: DataMill still requires some expert knowledge and user
involvement in determining which hidden factors affect or do not affect the results of
an experiment. We believe this process should eventually be fully automated;

2. User-Contributed Factors: Currently, the DataMill team develops and integrates
each individual factor, but since factors can be the focus of a scientific experiment as
often as the applications or benchmarks themselves (such as in Chapter 5), support
for user-submitted factors could increase the target audience of DataMill significantly;

3. Scheduling According to Desired Statistical Power: Currently, data analysis is left to
the user after all observations are collected. By prompting the user for the goal of
the experiment during the experiment submission step (e.g., “the hypothesis is that
approach A has mean run time at least 10% shorter than approach B, and I wish to
prove that with a 95% confidence level”), DataMill itself could scale the number of
replicates to the minimum number until the hypothesis can be satisfactorily proven;

4. Integration with Research Publication Venues: Community adoption of rigorous per-
formance evaluation depends, to some extent, on incentives given by their target
publications. Since DataMill already provides a result publication mechanism, and
easy “cloning” functionality, we envision direct integration with journals and confer-
ences as a milestone in the future of performance evaluation infrastructures.
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In the second part of this thesis, we addressed cases where the ideal robust evaluation
we advocate earlier is not a feasible option, either because the volume of experimentation
is infeasible – as in high commit-rate software projects, requiring hundreds of independent
experiments a day – or because the target platform is unavailable – as in cases where
developers must choose between various prospective target platforms but cannot acquire
them due to cost or availability.

Chapter 6 presents Perphecy, a tool that reduces performance regression detection la-
tency to nearly zero while incurring small performance testing overhead, by predicting
which code changes will affect the performance of which tests during development. Per-
phecy is based on robust performance evaluation techniques, lightweight static analysis
and simple machine learning, and is fast enough to run at every commit, complementing
periodic executions of the full performance test suite. In the case of Git, a widely-used,
performance-sensitive software revision system, Perphecy predicted 85% of all performance-
changing commits, while avoiding 83% of full performance testing.

Chapter 7 presents performance fingerprinting, a DataMill-based method of formally
correlating application performance with that of standard benchmarks, generating statis-
tical performance models that are accurate enough to predict the user’s response metric
on computers that they do not have access to. Performance fingerprinting removes any
implied assumption from the use of standardized benchmarks, while fit metrics alert the
user in case their application is not well represented by the benchmarks available. By
constraining the prediction targets to machines similar to those in the training set, we
achieved mean prediction error of under 2% of the mean for the components of SPEC CPU
2006, with a 95th error percentile below 10% of the mean.

These two approaches demonstrate the utility of the concept of performance prediction
in a production setting. We envision that they can be further improved through the
following future work:

• Perphecy:

1. Other Machine Learning Approaches: Perphecy uses a simple heuristic to com-
bine simplified indicators into a prediction. We applied this due to its simplicity,
effectiveness, and the easy comprehensibility of complete predictors by users.
Now that the indicator concept is demonstrated and the simple predictor has
been shown to work, we believe that more general machine learning techniques
can further improve the accuracy of predictors, specially because indicators
would not need to be simplified down to thresholded boolean values.
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2. Historical Indicators: While the performance of Perphecy for the HotSpot JVM
was satisfactory (70% of changes predicted for 53% of full testing), managed lan-
guages are still a potential challenge to the strategy. “History-aware” indicators
could predict performance changes caused by modified JIT or garbage-collector
code after they have been linked to past performance changes, even though those
features are responsible for only a small fraction of total run time.

• Performance Fingerprinting:

1. Statistically Sound Benchmark Suites: Some benchmark developers such as
DaCapo [5] quantify the self-similarity in their benchmark suites in order to
demonstrate their effort in eliminating redundancy. Performance fingerprinting
also demonstrates that the “design space” of performance profiles should be uni-
formly covered so that as many applications are represented as possible. We
believe that future research effort should be directed toward designing bench-
mark suites that not only avoid redundancies, but also strive to exhaustively
represent performance-relevant features of software.

2. I/O-bound and Mixed Loads: The evaluation of performance fingerprinting fo-
cuses on SPEC CPU 2006, and, therefore, exclusively CPU-bound loads. While
this suffices to demonstrate the concept for CPU-bound loads, real-world ap-
plications can also be I/O-bound or mixed. In order to support these loads,
the benchmark suite must include I/O-bound benchmarks as well, so that the
speed of each machine’s storage subsystem is represented in the training data
set. We believe that the performance of mixed-loads can be accurately mod-
eled by a model with both CPU- and I/O-bound benchmarks as predictors, but
demonstrating this remains as future work at this point.
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Appendix A

Statement of Contributions

The following is the list of publications I have co-authored and made use of in this thesis.
For each publication, I present here a list of my contributions.

• Augusto Born de Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias Hauswirth,
and Peter F. Sweeney. 2013. Why you should care about quantile regression. In Pro-
ceedings of the eighteenth international conference on Architectural support for pro-
gramming languages and operating systems (ASPLOS ’13). ACM, New York, NY,
USA, 207-218.

– Defined the case study;

– Designed and conducted the experiment;

– Analyzed the data;

– Wrote the paper with feedback from co-authors.

• Augusto Born de Oliveira, Jean-Christophe Petkovich, Thomas Reidemeister, and
Sebastian Fischmeister. 2013. DataMill: rigorous performance evaluation made
easy. In Proceedings of the 4th ACM/SPEC International Conference on Performance
Engineering (ICPE ’13), Seetharami Seelam (Ed.). ACM, New York, NY, USA,

– Co-designed DataMill;

– Designed and implemented the optimization-based job scheduler;

– Implemented the worker-side job running script;
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– Designed, packaged, and conducted the case studies, with co-author assistance;

– Analyzed the data;

– Wrote portions of the paper.

• Augusto Born de Oliveira, Jean-Christophe Petkovich, and Sebastian Fischmeister.
2014. How Much Does Memory Layout Impact Performance? A Wide Study. In
Proceedings of the International Workshop on Reproducible Research Methodologies
(REPRODUCE), Orlando, USA, 23-28.

– Designed the experiments;

– Conducted the majority of experiments;

– Analyzed the data;

– Wrote the majority of the paper.

• Augusto Born de Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias Hauswirth,
and Peter F. Sweeney. 2015. Perphecy: Predicting Code Commit Performance Ef-
fects Without Running Performance Tests. Under submission.

– Designed and implemented the approach;

– Designed and conducted the case studies;

– Analyzed the data;

– Wrote the paper with feedback from co-authors.

• Augusto Born de Oliveira, and Sebastian Fischmeister, Performance Fingerprints:
Using Benchmarks to Accurately Predict Application Performance Across Machines.
Under submission.

– Designed and implemented the approach;

– Designed and conducted the case studies;

– Analyzed the data;

– Wrote the paper with feedback from co-author.
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