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Abstract

Fingerprinting codes were introduced by Boneh and Shaw in 1998 as a method of
copyright control. The desired properties of a good fingerprinting code has been found to
have deep connections to combinatorial structures such as error-correcting codes and cover-
free families. The particular property that motivated our research is called “frameproof”.
This has been studied extensively when the alphabet size ¢ is at least as large as the
colluder size w. Much less is known about the case ¢ < w, and we prove several interesting
properties about the binary case ¢ = 2 in this thesis.

When the length of the code N is relatively small, we have shown that the number of
codewords n cannot exceed N, which is a tight bound since the n = NN case can be satisfied a
trivial construction using permutation matrices. Furthermore, the only possible candidates
are equivalent to this trivial construction. Generalization to a restricted parameter set of
separating hash families is also given.

As a consequence, the above result motivates the question of when a non-trivial con-
struction can be found, and we give some definitive answers by considering combinatorial
designs. In particular, we give a necessary and sufficient condition for a symmetric design
to be a binary 3-frameproof code, and provide example classes of symmetric designs that
satisfy or fail this condition. Finally, we apply our results to a problem of constructing
short binary frameproof codes.
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Chapter 1

Introduction

The idea of using a fingerprinting code is not new. Back when logarithm tables were widely
used, publishers would protect the copyright integrity of their tables by modifying the least
significant digits of several random entries. This process generates numerous unique copies
of the original table, one per customer. If an illegal copy is obtained, the publisher could
match the table with their record and trace back to the customer that made the copy.

A modern formulation of this technique was given by Boneh and Shaw in 1998 [0].
Their formulation applies to digital content rather than log tables, but the fundamental idea
remains the same — a secret code is embedded in the digital document, giving information to
the content distributor regarding the illegal copy’s original owner. More precisely, consider
a digital document D, viewed as a vector of finite length from a finite alphabet. A secret
codeword x is interlaced with D at fixed positions, forming a copy of D that is unique per
customer.

If an illegal copy is confiscated, the content distributor could example the fixed positions
that contain the secret codeword and use it to determine the pirate entity. However, if two
copies were obtained, their owners could collude and determine parts of the codeword and
remove or modify these parts, nullifying the code’s detection property. Under this attack
model, the goal of content distributors is to construct useful codes that perform well even
under this collusion attack.

One weakened notion of resilience to the colluding attack is called frameproof. This
property specifies that instead of attempting to trace to a pirate entity when given an
illegal copy with modified codeword, we are content with tracing only unmodified codes
under the guarantee that no innocent user is harmed by the scheme. In other words, we



require that no distributed codeword can be constructed from the colluding party’s copies
unless they possess the codeword itself. This notion will be the focus of our thesis.

The problem of constructing optimal frameproof codes has received much attention from
research. It is apparent that we want the length of such codes to be small and the number
of codes to be large. There have been several methods of deriving frameproof codes from
existing combinatorial structures [3] [27], as well as upper bounds on the number of codes to
close the gap [2] [21] [28] [32], but few tight bounds have been found so far . Furthermore,
many good upper bounds require the alphabet size to be large, which motivates the question
of whether a large alphabet set is required. Our thesis complements known results by
proving some interesting properties about frameproof codes over the binary alphabet.

1.1 Basic Definitions

In this section, we give a mathematical formulation of the frameproof property and the
closely related separating hash family.

Definition 1.1.1. Let @ be an alphabet of size g. We often take the set Q@ = {0,1,...,q¢—
1} as the canonical alphabet of size q. A set C C Q" of size n is called an (N, n, q)-code,
or simply a code for short. The elements of C are called codewords.

Definition 1.1.2. For an element x € Q" we refer to the i-th entry of = by x(i) whenever
the notation is unambiguous. Given a code C and P C C, we define the descendent code
of P to be

desc(P) = {y € Q" : for each i, y(i) = z(i) for some z € P}.

For positive integer w, we say that a code C is a w-frameproof code if for every P C C with
|P| = w, we have that desc(P)NC = P.

Definition 1.1.2 relates to the intuitive notion of frameproof in the following sense. We
make the assumption that for a colluding party P, only parts of the codeword that differ
for at least two members of the party can be detected, and the colluders may change
that part of the codeword to only entries in their possession. This is called the marking
assumption in literature. Hence the set of possible modified codewords that may result
from P is desc(P), and we require that this set does not include any legitimate codeword
from any user not in P.



Example 1.1.1. Let Q = {0,1,2}, C = {011,020, 100, 121,200}, where we denote the
3-tuple (a,b,c) by abc. Then N =3 and n = 5. For P = {011,020}, the descendent code
is

desc(P) = {011,020,010, 021}.

There are variations to the marking assumption. For example, one model [21] allows all
alphabet elements for detected positions in the codewords, instead of restricting selection
to only alphabet elements in the colluding party’s possession. Formally, the descendent set
is

desc(P) = {y € Q" : for each i, y(i) = z(i) if 2(i) = 2/(i) for all 2,2’ € P}
where Qp(i) = {z(i) : © € P}. For binary frameproof codes the two models coincide.
Another model [0] for general fingerprinting codes allows erasing of detected symbols in
the codeword, i.e.

desc(P) = {y € Q" : y(i) € Qp(i) U {7}}

where the symbol 7 represents an erased position. The definition of frameproof does not
apply here since codewords modified erasures cannot be used for framing.

Note that if C is a w-frameproof code, then increasing the code length by appending
arbitrary entries or removing elements from C do not affect the w-frameproof property.
Hence for fixed ¢ and w, the problem of constructing optimal codes can be formulated as
either maximizing n given N or minimizing N given n.

Here is a basic construction of a w-frameproof code for every w, which gives a code of
sizen = (¢ —1)N.

Construction 1 ([1]). C={z;;} for j=1,...,Nand k=1,...,¢— 1 where

) k ifi=9
xik(1) = { /

0 otherwise

One useful representation for codes is the matriz representation.

Definition 1.1.3. Given an (NN, n,q)-code C, construct an N X n matrix A with entries
from @ = {0,1,...,q — 1} by designating each column of A to be a different codeword
from C. A is said to be the representation matriz of C.

In the binary case, Construction 1 in matrix form is a permutation matrix, which we
will see in Chapter 2 to be the only possible candidates when N is small.



We now introduce a related combinatorial structure known as separating hash families.
These structures can be shown to be related to many other structures such as perfect hash
families [20] and secure frameproof codes [20], and thus it is meaningful for us to discuss
frameproof codes in this framework.

Definition 1.1.4. Let X,Y be finite sets with |X| =n and |Y| = ¢. Let F be a family of
functions from X to Y with |F| = N. For positive integers wy, ws, ..., w;, we say that F
is a {wy,wo, ..., w}-separating hash family, denoted SHF(N;n, q, {wy,ws, ..., w}), if for
pairwise disjoint subsets Xi,..., X; € X with |X;| = w; for i = 1,... ¢, there exists at
least one f € F such that the sets f(X),..., f(X;) C Y are also pairwise disjoint. Such
f is said to separate the sets Xi,..., X;.

Note the parameter set {wq,ws,...,w;} is a multiset. The order of the w;’s do not
matter, but the number of repetitions in the multiset is important.

We may also define the matriz representation for families of functions.
Definition 1.1.5. Let X,Y be finite sets with |X| = n and |Y| = ¢. Given a family of
functions F from X to Y with |F| = N, construct a matrix A by listing the functions

f € F on different rows and elements z € X on different columns, with f(z) being the
matrix entry at row f and column z. A is said to be the representation matriz of F.

Separating hash families are related to frameproof codes in the following manner.

Theorem 1.1.1 ([20]). Let A be an N x n matriz with entries from {0,1,...,q—1}. The
following are equivalent:

(i) A is the representation matriz of an (N,n,q) w-frameproof code.

(ii) A is the representation matriz of an SHF(N;n,q,{1,w}).

Proof. The frameproof property requires that for any choice of column set pairs ({c}, P)
with |P| = w and ¢ ¢ P, we have that ¢ ¢ desc(P). This is equivalent to the existence
of a row r such that A(r,c) # A(r,c) for all ¢ € P. The latter is the requirement for an
SHF(N;n,q,{1,w}). H

Due to this equivalence, we will often discuss frameproof codes in terms of separating
hash families.



Example 1.1.2. Let @Q = {0, 1,2}. Construction 1 gives the code
C = {100, 200, 010, 020,001, 002}

for N =3 and n = 6. The equivalent separating hash family is F = {f1, f2, f3} where the
functions f; written in vector form (i.e. ith entry is the value at element i of Y) are

fl - (1727()’ 07070)

f2 = (0707 17 27070)

f3 = (07 Oa Oa 07 17 2)

The representation matrix for the two equivalent structures is

120000
A=1001 200
000O0T1 2

Here are some basic properties of separating hash families. First note that some pa-
rameter choices are not interesting to consider. For positive integers wy, ws, ..., wy, if
n < Y, w; then any (N,n, g)-code is an SHF(N;n, g, {wy, ws, ..., w}). Also, if ¢ <t then
no (N,n,q)-code is an SHF(N;n, q, {wy, wa, ..., w}).

Theorem 1.1.2 ([28], [9]). Let F be an SHF(N;n, q, {wy, wo, ..., w}) with Y. w; < n and
q=t.

(i) If w; < wy then F is also an SHF(N;n, ¢, {w], wa, ... w}).
(i1) Let w| = wy + we. Then F is also an SHF(N;n, q, {w}, ws,...,w}).
(iii) For any integer ¢ > 2, there exists an SHF([X];n, %, {w1,wa, ..., w,}).
(iv) If there exists an SHF(M;q,q',{wy,wa, ..., w}) then there exists an SHF(MN;n,q,

{wy, we, ..., w}).

Proof. (i) Let X1, Xs,...,X; C X be such that | X|| = w] and |X;| = w; fori=2,...,t.
Let Z C X\ (X]UX,U...UX;) be such that |Z| = w; —w]. Taking X; = X{UZ, we
have that some f € F separates X1,..., Xy, so it must also separate X, Xo, ..., X;.

(i) Let X|, X3,...,X; C X be such that | X|| = w] and | X;| = w; for i = 3,...,t. Let
X1, X5 be such that X{ = X; U X5 and | X;| = wy, | X3 = wy. We have that some
f € F separates X1, ..., Xy, so it must also separate X7, X3, ..., X;.

5



(iii) For simplicity, we assume that N is a multiple of ¢, but the proof extends to the
general case. Suppose N = cM, and let F = {f;;} fori=1,..., Mandj=1,...,c
For each i, consider a new function f; : X — Y defined as

fil@) = (fia(@), fia(@), ..., ficl2)).
The new family G = {f;} is an SHF([X];n, ¢¢, {wi, ws, ..., w.}).

(iv) Let G be an SHF(M; q, ¢, {wy,ws, ..., w;}) and define H = {go f: f € F,g€ G}. H
is an SHF(M N;n, ¢, {wy,ws, ..., w}).

]

Parts (iii) and (iv) of Theorem 1.1.2 are often used for recursive constructions and/or
bounds of separating hash families [28] [29].

It is worth noting that under a different attack model, frameproof codes can be shown
to have anti-collusion traitor tracing properties. Trappe et al. [30] proposed a different
embedding technique for fingerprinting codes that works well with multimedia content, e.g.
sound, picture, video. The property they require for traceability under a collusion attack
is weaker than the frameproof property [3], hence frameproof codes can be used in this
manner for anti-collusion traitor tracing.

1.2 Organization of Thesis

Our thesis is organized as follows. Chapter 2 presents some old and new results regarding
binary frameproof codes. Chapter 3 will focus on the relationship between combinatorial
designs and frameproof codes, featuring some known connections and new results. Chapter
4 will describe some future directions suggested by this thesis.



Chapter 2

Frameproof Codes and Separating
Hash Families

A large portion of this chapter will appear in [15], which is accepted for publication.

In this chapter, we prove a tight upper bound on the number of codewords in a frame-
proof code. More precisely, for an (N, n,2) w-frameproof code with N < 3w, we have that
n < N, and the representation matrix of an (N, N, 2) w-frameproof code with N < 3w is
equivalent to a permutation matrix. Finally, we prove a tight upper bound of a similar
nature for separating hash families.

2.1 Known Results

We first present some known results on frameproof codes. The following is a general upper
bound for the number of codewords n in terms of N, ¢ and w.

Theorem 2.1.1 ([24]). In an (N,n,q) w-frameproof code, the following bound holds:

n < w(q%1 —1).

If we let N = w, the above bound is tight due to Construction 1. The following stronger
bound applies for restricted alphabet size.
Theorem 2.1.2 ([!]). Let N,n,q,w,d be positive integers such that N = wd + 1 and
q>w > 2. Then for any (N,n,q) w-frameproof code, we have n < ¢! + O(q?).

7



A notable improvement over Theorem 2.1.2 has been proven by van Trung [32].

Theorem 2.1.3 ([32]). Let N,n,q,w,d be positive integers such that N = wd + 1 and
q>w > 2. Then for any (N,n,q) w-frameproof code, we have n < ¢**.

It is worth mentioning that the bound is tight when ¢ is a prime power with ¢ > wd
via a construction using orthogonal arrays [32]. We will give a definition for orthogonal
arrays in Section 3.3.

We also present some known results about general separating hash families.

Theorem 2.1.4 ([5]). If there exists an SHF(N;n,q,{w:,...,w}) with wi,wy < w; for
1=3,...,t then
N
n < yqleT]
where uw =Y w; and v = (w1wy + © — w1 — Wa).
Theorem 2.1.5 ([2]). If there exists an SHF(N;n,q,{ws, ..., w;}) then

N

n < (u—1)¢w]
where w =Y. w;.

Theorem 2.1.6 ([3]). If there exists an SHF(N;n,q,{wy,...,w}) with t > 3 and v =

>, w; >4 then
n < (u— 1)q[%1 +2-2¢/3¢+ ] 41,

2.2 New Result

We will be discussing a new result regarding binary frameproof codes in this section. The
matrix representation for separating hash families will be used extensively as it makes the
analysis more clear. Since the alphabet is binary, the representation matrix will contain
only the entries 0 and 1.

Here is a useful observation about binomial coefficients that we will often employ.

Lemma 2.2.1. Let w, n be positive integers such that w+1 < n. Then fori=1,2,... ,n—
w—1, we have i("") > (i+1)("7") if and only if (i +1)(w+1) > n+ 1. In particular,
we have

(n;l) >2(n;2) >3(n;3) >...>j(n;j>' o)

for 3 < n —w whenever n < 2w.



Proof.

Z_(n;z’)>(i+1)<n—i—1)@( in—il __ (i+1)(n—i-1)

w n—i—w)l-w  (n—i—w-1)" w!
=)
(n—i—w)

Sni—i?>ni+n—i*—i—iw—w
Sitw+w>n
S (i+1D)(w+1)>n+1.

Note that Equation 2.1 holds if and only if (" *) > (i + 1)("7"") holds for i = 1, which

w

corresponds to 2(w + 1) > n + 1 or equivalently n < 2w. O

Definition 2.2.1. Let A be the representation matrix of an SHF(N;n,2,{1,w}). A row
r of A is said to be of weight ¢ if r contains exactly i entries equal to 1. Two rows r; and
ro of A are said to be overlapped if they share a column in which both rows have an entry
equal to 1. If r; and 75 are not overlapped, we say that they are disjoint.

Definition 2.2.2. The representation matrix A of an SHF(N;n,2,{1,w}) is said to be in
standard form if every row contains at most 7 entries equal to 1.

For an arbitrary SHF(N;n,2,{1,w}) A, it is clear that both 0 and 1 have to occur in
each row of A, otherwise that row would not contribute to the separation of any column
set pair (C1,Cy). Hence we may assume that A contains no row of weight 0 in standard
form, by simply removing any such row and replacing it with an arbitrary row of weight 1.

The following observation will be used throughout this paper.

Lemma 2.2.2. Let A be an SHF(N;n,2,{1,w}). Suppose rowr of A is of weight i < n/2.
If i < w, then row r separates exactly z(”;) column set pairs (Cy,Cy) where |C| = 1
and |Co| = w. If i > w, then row r separates exactly z(";) + (;) (n — 1) column set pairs

(Cy,Cy) where |C1] =1 and |Cy| = w.

We will now prove a bound for binary frameproof codes.

Theorem 2.2.3. Let w, N be positive integers such that w > 3 and w+1 < N < 2w+ 1.
Suppose there exists an SHF(N;n,2,{1,w}). Then n < N.



Proof. Suppose, by contradiction, that there exists an SHF(N;n,2,{1,w}) withn = N+1.
Let A be its N x (N + 1) matrix representation over the alphabet {0,1}. Let 7" be the
total number of pairs of disjoint column sets (C4, Cs) of A with |Cy| = 1 and |Cy| = w that
need to be separated. Then we have T'= (") (n — w) = n("_").

w

Consider the following three cases regarding the number of columns of A.

(i)

(i)

n=N+1<2w (ie. N <2w-1).

Using Lemma 2.2.1 we see that

(n;l) >2(”;2) >3<”;3> >...>(w_1)("_(z_1)).

The term j (";j ) in these inequalities corresponds to the number of column set pairs
(C1, Cy) separated by a row of weight j. Hence a row of weight 1 separates the largest
number of column set pairs (C}, Cy), namely (";1) = (]u\f ) Moreover, since A has N
rows, the maximal number of column set pairs (C7,Cs) that can be separated by

all the rows of A is therefore N(Y) = (n —1)("_"). This is a contradiction, since
n—1)("" <T

n=N+1=2w+1 (ie. N =2uw).

Observe that we have

(2)-()-()C )2

in this case. This observation together with Lemma 2.2.1 give rise to the following
inequalities about the number of column set pairs (C;,Cy) separated by a row of
weight j, where 7 =1,..., w:

()2 e
(w—1)(”_(;‘j_1)) >w<n;w)+n—w.

The last inequality can be easily checked, while all other inequalities follow from
Lemma 2.2.1 Note that the last term of the inequalities corresponds to the case of a

row of weight w. Again, this implies that a row of A can separate at most (”;1) = (g )

and

column set pairs (C, C). Thus all N rows of A can separate at most N(g) = 2w ()
column set pairs (C1, Cy), whereas the total number of column set pairs (Cy, Cy) that
need to be separated is T = (V') (N + 1 —w) = (2w + 1)(*"), a contradiction.

w

10



(ili) n=N+1=2w+2 (ie. N=2w+1).

In this case we have the following inequalities

()= () o) e ()

(w—l)(w+3) >w<w$2) +(w+2) > 2w+ 1)2

w

and

The last two inequalities can be easily checked, while the other inequalities follow
from Lemma 2.2.1. Here the first term of the inequalities corresponds to a row of
weight 2; the second term to a row of weight 1; the third term to a row of weight 3,
etc., the last term corresponds to a row of weight |n/2| = (w + 1).

Recall that the total number of column set pairs (C1,Cs) is T = (0)(n — w) =
(wa”) (w+2). We show that if each row of A separates a maximal number of column
set pairs (C1, Cy), then all the N = 2w + 1 rows of A fail to separate all T column set
pairs (C1,Cy). In fact, this corresponds to the first term of the above inequalities.
This is the case for which each row of A is of weight 2. So each row will separate

2(2;”) column set pairs (Cp,Cs). Hence all N = 2w + 1 rows of A will separate at
most 5
Z:2(2w+1)( w)
w

column set pairs (C7, Cs) of A. Now using the equality ( ) = #(”;1), we see that

n
m

- (2w+2>(w+2): (2w+2)(2w+1)(w+2)(2w) :2(2w+1)(2w) .,

w (w+2) (w+1) w w

However, if each row of A is of weight 2, then there must exist two overlapped rows,
say r1 and ro. These rows r; and ro will then separate (wafl) common column set
pairs (C4, Cy). This leads to a contradiction, since all the rows of A will separate less
than 7" column set pairs (Cy, Cy). This completes the proof.

O

Recall that a binary N x N matrix A is called a permutation matriz of degree N if A has
precisely one entry equal to 1 in each row and each column, and Os elsewhere. Construction
1 in matrix representation gives every permutation matrix of degree N depending on the

11



ordering of codewords, hence any permutation matrix of degree N is the representation
matrix of an SHF(N; N, 2, {1, w}) for any N > w+ 1. Thus the bound of Theorem 2.2.3 is
tight. In the following, we prove a stronger result which states that permutation matrices
are the only solutions for an SHF(N; N,2, {1, w}) with w+ 1 < N <2w + 1 and w > 3.

Theorem 2.2.4. Let w, N be positive integers such that w > 3 and w+1 < N < 2w+ 1.
Suppose there ezists an SHF(N;n,2,{1,w}) with n = N. Then its representation matriz
in standard form is a permutation matriz of degree N.

Proof. Let A be the representation matrix of an SHF(N; N,2,{1,w}) in standard form
with w +1 < N < 2w+ 1 and w > 3. Consider two cases.

(i)

n=N <2w.

Recall that the total number of column set pairs (C7, Cs) of A that need to be sepa-
rated is 7 = ()(V —w). By Lemma 2.2.1 each row of A can separate at most (" )
column set pairs (Cy, Cy), and this case occurs when each row is of weight 1. Thus
the largest number of separated column set pairs (C7, Cs) obtained by N rows of A
is N (NJI) = (g )(N —w). This number is achieved if and only if the unique entries 1
of the rows belong to the different columns, i.e., A is a permutation matrix of degree

N.

n=N=2w+ 1.

In this case we have T = (*“*')(w + 1). A row r of A can separate at most (*")
column set pairs (C7,Cy). This number corresponds to r being of either weight 1
or weight 2. Further, the maximum number of possible separated column set pairs
(C1, Cs) which may be achieved by all the rows of A is (2w + 1)(*"). To achieve the

maximum number (2w + 1) (212”) of separated column set pairs, any two rows of A

have to separate disjoint sets of column set pairs (C7, Cs). This implies that any two
rows of A are disjoint. This is equivalent to saying that each column of A contains
exactly one entry 1, otherwise if two rows r; and ry are overlapped, then these two
rows separate a common non-empty subset of column set pairs (C1, Cy), which is a
contradiction. Therefore, A is a permutation matrix of degree 2w + 1.

O

The following theorem provides a useful tool for relating Theorem 2.2.3 and Theorem

2.24.

12



Theorem 2.2.5. Let w > 3, N > w + 1 and suppose that all SHF(N; N,2,{1,w}) in
standard form are permutation matrices. If SHF(N;n,2,{1,w}) exists, then n < N.

Proof. Suppose not, then there exists some SHF(N; N + 1,2, {1,w}), say A. Let B be the
submatrix formed by the first N columns of A. We may assume without loss of generality
that B is in standard form (we may need to permute Os and 1s in each row of A to achieve
this). Then B is a permutation matrix. Thus each row of A has at most two entries of 1.

Since N > w4+ 1 > 4, we have that N/2 > 2. Let C be the submatrix formed by the
last N columns of A. Each row of C has at most two entries of 1 as well, so C is in standard
form, and hence it is a permutation matrix. This implies the first and last columns of A
are identical, which is a contradiction since ({1}, {/N + 1}) cannot be separated. O

We may use Theorem 2.2.5 to give a second proof of Theorem 2.2.3 using Theorem 2.2.4.
In light of this result, it is also important to consider the question “when are permutation
matrices the only representatives of SHF(N; N, 2, {1,w}) in standard form?” We give an
affirmative answer for w > 4 and N < 3w through a series of lemmas below.

Lemma 2.2.6. Letw > 3 and let A be the representation matriz of an SHFE(N; N, 2, {1, w}).
Suppose that all SHF(N — 1; N — 1,2, {1,w}) in standard form are permutation matrices.
If A contains a row of weight 1, then A is a permutation matriz.

Proof. We can write A in the form

Let B be the (N —1) x (N —1) matrix obtained from A by removing the first row and the
first column of A. Then B is the representation matrix of an SHF(N — 1; N — 1,2, {1, w}).
We may assume without loss of generality that B is in standard form, and hence it is a
permutation matrix.

By permuting the columns of A, if necessary, we may assume that B is the identity
matrix. Consider column set pairs (C;, = {z},C1,. = {l,y,2}) with z,y,z = {2,..., N}
and x # y # z # x. Since B is the identity matrix, a row that separates (C,, C1, ) must
have entry 0 in columns 1,y, 2 and entry 1 in column z. Thus row z is the unique row
separating (Cy, C1 ). It follows that A is a permutation matrix. O
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Lemma 2.2.7. Let w > 4, N < 3w, and let A be the representation matriz of an
SHF(N; N,2,{1,w}). Suppose the first row of A is of weight ig < w with A(1,1) = 1.
Let B be the submatriz obtained by deleting the first row and first column of A. Then B is
an SHF(N — 1; N — 1,2, {1, w}).

Proof. 1f A contains a row of weight 1 then Lemma 2.2.6 applies. For the remainder of this
proof, we assume that A contains no row of weight 1.

Suppose B is not an SHF(N — 1; N — 1,2, {1,w}). Then there exists some column set
pair (C; = {z},Cy) with |C3| = w that cannot be separated by B. If z corresponds to a
column of A that has an entry of 0 in the first row then C5 contains a column of A that has
an entry of 0 in the first row since ip — 1 < w. But then A also cannot separate (C4, Cs);
a contradiction. Thus = contains a 1 in the first row, and all columns of C5 correspond to
columns of A with 0’s in the first row (otherwise A still cannot separate (Cy, Cy)).

Permute the columns of A so that z corresponds to column 2 and columns in Cy
correspond to columns 3, ..., w + 2. The matrix A is now

110 - 0]

A—

For 1 <i<w,let C; ={3,...,w+2}\ {¢ + 2}. The column set pair ({2}, C; U {1})
must be separated by A. By permuting 0’s and 1’s if necessary, there is some row r; # 1
with entry 1 in column 2 and entry 0 in columns of C;. Since C; UC; = {3,...,w + 2}
for i # j and B does not separate ({2},{3,...,w + 2}), we have that r; # r; for i # j.
Moreover, entry i of r; must also be a 1. Let Ry = {ry,...,7r,}, and by permuting the
rows of A we have

1 0 0 0
01100 0
0 1 10 0
A= 0 0
k ok ok ok ok k
ko k ok ok k

14



Next, consider C] = {2,...,w + 2} \ {i + 2} for i = 1,...,w. The column set pair
({i + 2}, C!) must be separated by A with some row r, # 1 and r, ¢ R;. By permuting
the 0’s and 1’s if necessary, 7} has entry 1 in column (¢ + 2) and entry 0 in columns in C/.
Moreover, r; # 15 for i # j. Now let Ry = {r},...,7,}, and by permuting the rows of A
we have

11000 0
01100 0
01010 0
1000 - 1
0100 0

A= 0010 0
* 0
ok ok ES *

We now do the following addition of rows in steps, starting with Rz = (:

Step 1
Let a be the column 1 entry of r}. If a = 1, consider the column pair ({3},{1,...,w+
1}\ {3}), which must be separated by some row 7} # 1 of A. Note that r{ ¢ Ry and
rl ¢ Ry. Add 77 to Rs.

If @ = 0, consider the column pairs ({3}, CY; = {2,4,5,w+j+2}) forj=1,...,N—
w — 2. Since w > 4, we have that A separates ({3}, CY ;). If 7] separates every such
pair then 7] is a weight 1 row; a contradiction to A having no weight 1 rows. Thus
there is some j such that another row of A, call it again 7, that separates ({3}, CY ;).
Note that r{ # 1, 7/ ¢ Ry and r) ¢ Ry. Add r{ to Rs.

Step 2
Let a be the column 1 entry of 5. If @ = 1, consider the column set pair ({4}, {1,...,
w+1}\{4}), which must be separated by some row 4 # 1 of A. Note that r) ¢ RiUR;
and ry # r{. Add r] to Rs.
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If @ = 0, consider the column pairs ({4}, Cy; = {2,3,5,w+j+2}) forj=1,... , N~
w — 2. Similar to Step 1, there exists some j for which another row of A, call it again
ry, that separates ({4}, Cy ;). Again ry ¢ Ry U Ry and 75 # r{. Add 4 to Rs.

Steps i =3,...,w—1
Let a be the column 1 entry of r.. If a = 1, consider the column set pair ({i +
24, {1,...,w+1}\ {i +2}), which must be separated by some row r # 1 of A. Note
that T;/ ¢ Rl U RQ @) Rg. Add T;/ to R3.

If @ = 0, consider the column pairs ({7 + 2},C}; = {2,3,...,i + 1L,w + j + 2}) for
j=1,...,N—w—2. Since |C};| = i+1 < w, some row of A separates ({i+2},C},).
Similar to Step 1, there exists some j for which another row of A, call it again 77,
that separates ({7 +2},C7;). Again r{ ¢ Ry U Ry U R3. Add r{ to Rj.

Step w
Consider the column set pair ({1},{2,...,w+ 1}), which must be separated by some
row r of A. Clearly r ¢ Ry U Ry U R3. Add r to Rs.

At the end of Step w, we have added w distinct rows to Rs, so A has at least |R; U
RoURs|+1=w+w+w+1=3w-+1rows. This contradicts N < 3w, so Lemma 2.2.7
holds. O

Lemma 2.2.8. Let w > 4, w+1 < N < 3w, and let A be the representation matriz
of an SHF(N; N,2,{1,w}). Suppose that some row of A is of weight at most w and all
SHE(N — ;N — 1,2,{1,w}) in standard form are permutation matrices. Then A is a
permutation matriz.

Proof. If A contains a row of weight 1, we can use Lemma 2.2.6 to show that A is a
permutation matrix. For the remainder of this proof, we may assume that A contains no
row of weight 1. Assume without loss of generality that the first row of A is of weight i
where 2 < g < w.

Suppose to the contrary that A is not a permutation matrix. By permuting the columns
of A if necessary, we may assume that row 1 is 100V, Let B be the (N — 1) x (N — 1)
submatrix of A obtained by deleting the first row and first column of A.

By Lemma 2.2.7, we have that B is an SHF(NV — 1; N — 1,2, {1, w}), and hence it is a
permutation matrix. For row x of A, x = 2,..., N, let ¢, be the unique column of A that
contains a 1 in row z. Consider the column set pair (C, = {c,}, C, = C” U{1}) where C”
is some set of w — 1 columns not containing ¢, whose entries on row 1 contains at least one
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0. This is possible since N > w + 2 > ig + 2. The only row that can separate this column
set pair is row x, which forces its first entry to be a 0. Thus we have shown that

The column set pair (C; = {1}, Cy = {2,3}) cannot be separated by A; this is a contradic-
tion. [

Theorem 2.2.9. Let w, N be positive integers such that w > 4 and 2w + 2 < N < 3w.
Suppose there exists an SHF(N; N, 2,{1,w}). Then its representation matriz in standard
form is a permutation matriz of degree N.

Proof. The proof is by induction on N = 2w + 1,...,3w. The base case N = 2w + 1 is
given by Theorem 2.2.4. Suppose that N > 2w + 1 and all SHF(N — I; N — 1,2, {1, w})
in standard form are permutation matrices. By Lemma 2.2.8, we only need to show that
some row of weight at most w exists.

Let A be an SHF(N; N, 2, {1, w}) in standard form. Fix some ¢ where w+1 <1i < N/2.
The average number of column set pairs separated by a row is

(N —w)(2) ()

“= N w

Let B; be the number of column set pairs separated by a row of weight i. Then

() e ofl) ()
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Since i > w + 1, we have

()
w(N—l)(N—2)~~(N—w) (N—w—l)

(N—w—1)(N—-w—2)--- (N —2w) w
(N —1)(N —2)-- (N —w) (N—i)

(N — w—l)(N w—2)(N—=2w)\ w

> ( =) ()
N—-—w-1 w
3w+1-1 YN —i
(3w+1— —1) ( w )
—1

-(2) ()
For w > 8, one can check that (%)w > 3w > N, so a > ;. It is straightforward to compute
a and §; for 4 < w < 7 and confirm that a > ; for all relevant values of 7. Since o > j;

for every i > w + 1 and A contains no row of weight N/2 + 1 or higher, there must exist
some row of weight at most w. O]

Finally, we give a bound similar to Theorem 2.2.3.

Theorem 2.2.10. Let w, N be positive integers such that w > 4 and 2w + 2 < N < 3w.
Suppose there exists an SHF(N;n,2,{1,w}). Then n < N.

Proof. By Theorem 2.2.9, all SHF(N; N,2,{1,w}) in standard form are permutation ma-
trices, hence the proof follows from Theorem 2.2.5. O

Theorems 2.2.9 and 2.2.10 can be extended to the case w > 3 via a tedious case analysis,
which we exclude here. The analysis can be found in [15]. Gathering the results proven so
far, we have the following main theorem.

Theorem 2.2.11. Let w, N be positive integers such that w > 3 and w+ 1 < N < 3w.
Suppose there exists an SHF(N;n,2,{1,w}). Thenn < N. Furthermore, its representation
matriz in standard form is a permutation matriz of degree N.

For completeness, we include a discussion regarding the w = 2 case.
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Theorem 2.2.12. For every N > 3, there exists an SHF(N; N + 1,2, {1,2}).

Proof. Take the N x N identity matrix and append to it a column of 1s; call this matrix
A. We will show that A is an SHF(N; N + 1,2, {1,2}).

Let (Cy = {z},Cy = {y,z}) be a column set pair. First consider 1 < z < N. If
1 < y,z < N then (C1,Cs) is clearly separated by A. Suppose w.l.o.g. that z = N + 1,
then row y has entry 1 in columns y,z and entry 0 in column z, so (Cy,Cy) is again
separated.

Finally, consider z = N+1,s01 <y, 2 < N. Since N > 3, there is some row w ¢ {y, 2},
so row w has entry 0 in columns ¥, z and entry 1 in column z, so (Cy, Cy) is separated. [

Theorem 2.2.12 above shows that Theorem 2.2.3 does not hold when w = 2. We will
also demonstrate that Theorem 2.2.4 and Theorem 2.2.5 do not hold when w = 2.

Theorem 2.2.13. The matriz

>

Il
O = O
O~~~ O
_ o O O

O O ==

is an SHF(4;4,2,{1,2}).

The result in Theorem 2.2.13 can be extended to N > 4 by constructing the matrix

A 0
B= ( 0 Iy >
where A is from Theorem 2.2.13 and [ is the k x k identity matrix for £k = N — 4.
Observe that for every column z,y € {1,2,3}, there exist rows r,,r, such that r,(z) = 1,
r.(y) = 0 and ry(z) = 0, r,(y) = 1. It is straightforward to verify that B is indeed an
SHF(N; N,2,{1,2}). Theorem 2.2.14 below covers the last case N = 3, and shows that
Theorem 2.2.5 does hold when w = 2.

Theorem 2.2.14. The representation matriz of an SHF(3;3,2,{1,2}) in standard form is
a permutation matrix.

Proof. In standard form, every row is of weight 1. Two distinct rows must not overlap, so
each column also has one 1. O
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A recent arXiv preprint [23] has improved our results. They proved that if w > 3 and
w+1 <N < (wgl) — 1 and if there exists an SHF(N;n, 2, {1,w}) then n = N; furthermore,
its representation matrix in standard form is a permutation matrix of degree N. Their
bound is strictly better than that of Theorem 2.2.11 if w > 6.

Here is an interesting problem that is suggested by our work: For a given w, find the
smallest N such that there exists an SHF(N;n,2, {1, w}) with n > N. Shangguan et al.
have shown that this quantity is at most (1 + o(1))w? [23]. A closely related problem is
to find the smallest NV such that there exists an SHF(N; N, 2, {1,w}) whose representation
matrix is not a permutation matrix. We will discuss these two problems in Section 3.4.4.

2.3 Generalization

In this section, we give an extension of Theorem 2.2.3 to separating hash families of a larger
type. More precisely, our result proves a tight lower bound on N for an SHF(V;n, ¢, {wijil,
wy}) where w? ' denotes the multiset consisting of ¢ — 1 copies of w;. The idea is to
generalize the proof of Theorem 2.2.3 by counting the total number of column g-tuples
separated versus the number of column ¢-tuples separated by a single row. Assuming the
best case of non-overlap, we can then give a bound on the number of rows needed to achieve

the total. We first define the generalized notion of weight.
Definition 2.3.1. Let x € Q™ with @ = {0,1,...,¢ — 1}. We say that z is of weight

(1,12, . ..,14—1) if the number of entries of k in x is exactly iy for every k =1,...,¢ — 1.
The number of entries equal to 0 is thus 49 = 7 — Y.7_} i

The next definition gives a simplified notation for counting the number of column set
g-tuples separated by a row of weight (i1, da,...,7,-1).

Definition 2.3.2. Let w;, w, be positive integers with w; < w,. For integers i, 41, . .., %41
with 49 > ws, i, > wy fork=1,...,g—1and n > Zi;éik, define

T(q,l) i )= 11 12 o lg—1 n k=1 Yk .
wl,wz,n(h? 1 Uq 1) wy wy wy Wo

Lemma 2.3.1. Let wy, wy be positive integers with wy; < wq. For integers ig,t1,...,%4-1
with 1o > we, wy < i < ws fork=1,...,q—1 andn > Zf:_& ik, the number of column
set q-tuples separated by a row of weight (i1, ...,14-1) is

J = (q — 1)' : T(qil) (ila s 72-61*1)'

w1,w2,n
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Proof. Since wy < i < wq for k=1,...,¢—1, it is clear that a row of weight (i1,...,7,-1)
only separates column set g-tuples of the form (C1, ..., C,) with |Cy| = w, fork =1,...,¢—
1 and |C,| = wq. The (¢ — 1)! term comes from the number of permutations of the sets
Chy...,Cy. O

The following lemma is a generalization of Lemma 2.2.1.

Lemma 2.3.2. Let wy,wy be positive integers such that wy < we, and let q,n be positive
integers with ¢ > 2 and

w
w2+(q—1)w1§n§w2+(q—1)w1—l—w—2—1.
1

Then for every k =1,...,q— 1, we have

Tlg‘iw;n(zl, ey lger) > ngql,wg,n(zlv ce ety G L ik, e Bgo)-
In particular, TZE,%;Q,” obtains its global maximum at (wy, ..., wy).

Proof.

T iy, igo1) > TSN (i, ooy, g+ 1k, ooy igo1)

wi,w2,n w1, w2,n

. -1 . . -1 .
<:>(z;g)(n— lek) . (Zk—l—l)(n— lek—l)
w1 %) w1 w2

. -1 .

Zk—w1+1 n—zzzlzk—wg
. —1 .
wt1 n= 3 i1 ik

Letting I = ZZ; 1, and rearranging the inequality gives

(g +1—w)n—1)>(n—1—w)(ix +1)
& —wi(n—1) > —ws(ix + 1)

w1 . w1
Sn—<ip+1+—1
w2 W2

w w
sn<ip—+1+—=
w1 w1
where the last inequality holds by the assumption n < ws + (¢ — 1)w; + :z—f since wy < g
and (¢ — 1w, < I. O
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Lemma 2.3.3. Let q,w be positive integers with ¢ > 3, w > 2, and let n = 2w + q — 2.
Then
(q—1)- 70D, 1) > 2 —2)! - T VA, 1, w).

. 1,w,n

Proof. Expanding the desired inequality gives

a-0(y) () e () (5)(0)
< (¢—1) (wa_ 1) > 2w.

One can check that (27“”_1) > w for w > 2, and the proof follows since ¢ — 1 > 2. n

w

We are now ready to prove our generalization of Theorem 2.2.3.

Theorem 2.3.4. Let wy,ws be positive integers with wy < wq, and let q,n be positive
integers with ¢ > 2 and

w
wg—i—(q—l)wl§n§w2+(q—1)w1+w—2—l.
1

If there exists an SHF(N;n, q, {w? ", wy}) then

()0

Proof. Let A be the representation matrix of an SHF(N;n,q,{w,...,w;,wy}). For any
row r of A and k € {0,1,...,q — 1}, let i, be the number of occurrences of symbol k on
row r. By permuting the alphabet on row r if necessary, we may assume without loss of
generality that ¢y < iy < ... <441 < ig. Furthermore, we may assume that 7; > w; and
ip > wo, since otherwise row r cannot separate any column set g-tuple (Cp, C,...,Cy1)
with |Cy| = w; for 1 <k < ¢ —1 and |Cy| = ws.

Observe that
q—2

lg—1 =N — 1 — E (7%

k=1
<n—wy—(q¢—2)w

w
<w +-—-1
w1y

< wy + (wy —wy)

= Wa3.
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Equality holds if and only if wy = 1, 4 = 1 for k = 1,...,9g — 2, ig = we and n =
wy + (¢ — Dwy + g—f — 1 =2wy + q — 2. We consider the following two cases.

(i) 441 = wo: Let w = wy. We only need to consider the case ¢ > 3 since ¢ = 2
is covered by Theorem 2.2.3. The number of column set g-tuples separated by r is
exactly 2(¢ — 2)! - Tl(g;,ll)(l, ..., 1,w), which is less than the number of column set

g-tuples separated by a row of weight (wq,...,w;) = (1,...,1) by Lemma 2.3.1 and
Lemma 2.3.3.

(i) 4,—1 < wy: By Lemma 2.3.1, the number of column set g-tuples separated by r is

Z=(q—1 TV (i1, iy ).

w1,w2,n

The number of column set g-tuples separated by a row of weight (wq,...,w;) is

(g—1)! -Téz,_ug,n(wl, ...,wi), which by Lemma 2.3.2 is greater than Z unless iy, = w,
fork=1,...,q—1.

In either case, the number of column set g-tuples separated by r is maximal only when

the row is of weight (wy,...,w;). The total number of column set g-tuples that need to be
separated is
()0
w1 w1 Wa
Thus
N > I

(g — DT ) awn, . wy)

U - )] <£> (n ;1w1> (n ! <qu Ml)'

Similar to Theorem 2.2.3, the bound in Theorem 2.3.4 is also tight due to the following
construction.

]

Construction 2. Fix positive integers n, ¢, wy, wy with w; < wy and wy + (¢ — 1wy < n.
Let

S:{(Sl,...,Sq,l):Sig{l,...,n} with ]SZ]:wl for all 7 and Szﬂsjzwlfz%]},
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and let
T ={(S1,...,5-1) €S :51 <s3<...<s,1 where s; is the smallest element of S;}.

Now for (S1,...,S4-1) € T, let 7(s,,..s,_,) be the vector

.....

‘ g ifie Sj
T(Sy,.., Sq—l)(z) = 0 otherwise |

77777

every (S1,...,5-1)€T.
Example 2.3.1. Let ¢ = 4, w; = 2 and ws = 4. Suppose there exists an SHF(N; 11,4, {2, 2,

2,4}). Then
N> é@) (2) (;) _ 1—12(55)(36)(21) — 6929

by Theorem 2.3.4. In order words, for N < 6928, we have that n < 10.

The bound for n in Theorems 2.1.4, 2.1.5 and 2.1.6 all contain a term of the form q[%]
where u = (¢ — 1)w; + wy = 10. For the value of N = 6928, this term is 477° which is
vastly larger than the bound from Theorem 2.3.4.

Table 2.1 lists various parameter choices for ¢, wq, wo and compares the bound in The-
orem 2.3.4 to some known general bounds. The symbol {2 means the computed bound is
above the Java double maximum value (2 — 27°2) . 21023,

Theorem 2.3.4 is particularly useful for studying the combinatorial objects known as
strong separating hash families (denoted SSHF'), introduced by Sarkar et al. [22], which
are equivalent to SHF(N;n, ¢, {1",#,}). We can give a strong bound for the code length
of SSHFs as a corollary of Theorem 2.3.4.

Corollary 2.3.5. Let n,ti,ty be positive integers with t1 > q¢ — 1 and t;1 + 1t < n <
2(t1 4+ t2) — q. Suppose there exists an SHF(N;n,q, {1 t2}). Then

Nz(qﬁl)

Proof. By Theorem 1.1.2, an SHF(N;n, ¢, {1,t,}) is also an SHF(N;n, q, {1971 5+t —
g+ 1}). Applying Theorem 2.3.4 gives that for t; +to < n < 2(t; +t2) — g, we have

N > nn—1)---(n—q+2),

(¢ 1!
as desired. ]
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q | wi | ws N < implies n <

Theorem 2.3.4 ‘ Theorem 2.1.4 ‘ Theorem 2.1.5 ‘ Theorem 2.1.6
371 2 9 4 243 243 213
31 11 3 20 6 2916 2016 2824
3111 4 35 8 32805 32805 32526
31115 54 10 354294 354294 353454
31 116 77 12 3720087 3720087 3717563
31 2] 3 104 6 3.09 x10° 2.32 x10° 2.32 x10°
31 21 4 377 8 5.81 x10%0 4.07 x10% 4.07 x10%°
31215 629 9 5.91 x1038 3.94 x1038 3.94 x1038
31 216 1484 11 7.43 x107° 4.77 x107 477 x10™
31 31 4 2099 9 6.64 x10112 3.98 x10112 3.98 x1012
31315 4619 10 4.84 x10%2T 2.69 x10%21 2.69 x10%21
31 316 17159 12 ¢} Q Q
41171 2 19 5 4096 4096 3987
41 1] 3 54 7 2.09 x107 2.09 x107 2.09 x107
411 ] 4 118 9 6.59 x10™2 6.59 x 1012 6.59 x 1012
41 1 5 219 11 1.29 x10%° 1.29 x10%° 1.29 x10%°
41116 362 13 3.96 x10%8 3.96 x10%8 3.96 x10%8
41 2 3 1259 8 1.33 x10% 1.06 x10%° 1.06 x10%
41 2 | 4 6929 10 Q Q Q
412 [ 5 13859 11 ¢} Q0 0
41 21 6 45044 13 Q Q Q
413 [ 4 200199 12 ¢} Q Q0
41 3 ] 5 560559 13 Q Q Q
41316 3203199 15 Q0 Q ¢}
501 ] 2 33 6 390625 390625 389658
50111 3 125 8 2.86 x101° 2.86 x101° 2.86 x101°
5111 4 329 10 2.48 x10%* 2.48 x10%* 2.48 x103%
50115 714 12 6.46 x 10093 6.46 x 1093 6.46 x 10093
50 1] 6 1364 14 1.57 x10107 1.57 x10107 1.57 x 10197
5121 3 17324 10 Q0 Q Q
51 2| 4 135134 12 ¢} Q Q
51215 315314 13 Q Q Q
51216 1351349 15 Q Q 0
51 3 | 4 | 28027999 15 Q Q Q
51 3 | 5 | 95295198 16 0 Q Q
51 3 | 6 | 775975199 18 Q Q Q

Table 2.1: Comparison of Bounds for SHF(NV;n, q, {w'f_l, ws})
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Note that if we set ¢ = 2, t; = 1 and t, = w for some positive integer w, we obtain
part of the result of Theorem 2.2.3.

Example 2.3.2. Let ¢ = 3, t; = 4 and ¢ = 3. Suppose there exists an SHF(N; 11,3, {1, 1, 1,
1,3}) (Corollary 2.3.5 applies to n = 7,8,9,10 as well). Then N > (121) = 55 from Corol-
lary 2.3.5. In order words, for N < 54, we have that n < 10.

Compare this with the known results: Theorem 2.1.4 and Theorem 2.1.5 both give the
bound n < 6(3?) = 118098 for N = 54; Theorem 2.1.6 gives the bound

n < 6(3%) +2—2y/3-(39) +1 < 118023

for N = 54.
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Chapter 3

Combinatorial Designs

A large portion of this chapter will appear in [16], which is accepted for publication.

The subject of combinatorial designs has a rich history. The basic problem is to con-
struct a family of subsets of a finite set such that it achieves certain balance properties.
One of the most classic examples of a combinatorial design is the Fano plane (see Figure
3.1). We will restrict our attention to a class of designs known as balanced incomplete block
designs (BIBDs). Many definitions and basic results from this chapter are from [25].

The main result of this chapter gives a necessary and sufficient condition for when the
incidence matrix of an SBIBD is also the representation matrix of a frameproof code. We
show that certain families of SBIBDs satisfy or fail this condition.

3.1 Preliminaries

In this section we recall several known results and definitions from design theory. The
common theme of study in combinatorial designs is the object called design, defined as
follows.

Definition 3.1.1. Let X be a finite set of elements (called points), and let A be a collection
of non-empty subsets of X (called blocks). The pair (X,.A) is called a design.

Definition 3.1.2. Let v, k, A be positive integers with v > k > 2. A (v, k, \)-balanced
incomplete block design (denoted (v, k, A\)-BIBD) is a design (X, .A) satisfying

(i) |X[ =,
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(ii) |A| =k for every A € A, and

(iii) for every =,y € X, there are exactly A blocks A € A such that x,y € A.

3 5 6

Figure 3.1: Fano plane

Example 3.1.1. A (7,3,1)-BIBD (X,.A) where
X ={1,2,3,4,5,6,7} and

A = {123, 145,167,246, 257,347,356}

The blocks in A are abbreviated; i.e., 123 denotes the subset {1,2,3}. The Fano plane
represents this BIBD in the following sense: the lines (and the circle) are the blocks; the
points of intersection are points of X; every two points is connected by exactly one line.

There are two missing parameters from the notation (v, k, A): the number of blocks
b and the number of blocks r each point appears in. The notation (v,b,r, k, A)-BIBD is
sometimes used to record all these values. However, it turns out that b and r can be
determined completely as follows.

Theorem 3.1.1. Let (X, A) be a (v,b,r,k, \)-BIBD. Then
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. Av—1
(i) r= 59—1)

.. vr )\UZ—U
(ii) b= = 22_k)

When studying BIBDs, the usual convention is to consider only ones with k& < ¢, due
to the following theorem.

Theorem 3.1.2. (Block Complementation) Let (X, A) be a (v,b,r,k,\)-BIBD with
k<v—2 Let B={X\A:Aec A}. Then (X,B) is a v,b,b—r,v —k,b—2r + X\)-BIBD.

One particular special case of BIBDs is the symmetric BIBD.

Definition 3.1.3. A (v,b,7, k, \)-BIBD is called a symmetric BIBD (or SBIBD) if v = b.

An equivalent definition is to require that r = k, and the two definitions are equivalent
via a direct application of Theorem 3.1.1. The (7,3,1)-BIBD is an example of a symmetric
BIBD.

Definition 3.1.4. Let (X, .A) be a (v,b,r,k, A\)-BIBD with X = {x,...,2,} and A =
{Ay,..., Ay}. Define the matrix M by

1,7) = R
J 0 otherwise

M is called the point-block incidence matriz of (X, A), and M is called the block-point
incidence matriz of (X, A).

There are several interesting implications of the symmetric requirement. It is clear that
the point-block incidence matrix of an SBIBD is a square matrix, but is not necessarily
symmetric as the name suggests. However, there is a notion of symmetry in the term.

Theorem 3.1.3. Let M be the point-block incidence matriz of a (v,k, \)-SBIBD. Then M
is the block-point incidence matriz of a (v, k, \)-SBIBD.

This crucial property of SBIBDs will be exploited in Section 3.4 to prove new results.
More specifically, we will see that the point-block incidence matrix of certain SBIBDs is
the representation matrix of frameproof codes.
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3.2 Constructions

There are many known constructions for BIBDs. Most constructions utilize results from
finite field theory and are algebraic in nature. We will give several well-known constructions
below.

Construction 3. Let ¢ be a prime power, and let [F, be the finite field of order ¢. For a
fixed integer d > 2, let V = F¢™! be the (d + 1)-dimensional vector space over F,. Let 0
denote the zero element in V.

Let V; be the set of all one-dimensional subspaces of V', and let V; be the set of all
d-dimensional subspaces of V. For any W € V,, let
Aw ={U €V, : U is a subspace of W}

and let A= {Ay : W € V;}.

qd+171 qdfl
g—1 7 ¢—-1°7

The d-dimensional projective geometry of order q, denoted PGy(q), is the (
qdfl_l)—SBIBD (V1,.A), which can be shown as follows:

q—1

(i) For every U € V; we have |U| = ¢ and 0 € U. Also, if Uy, Uy € V; with U; = U, then
Uy NUy = {0}. Thus the set V' \ {0} is partitioned by the collection

{U\{0}: U eV},

which gives
‘Vl—l _qd+1_1
-1 ¢—1

V1| =

(ii) For every W € V; we have |W| = ¢% and 0 € W. If Uy, U, are subspaces of W with
Uy # Us then Uy NUy = {0}. Thus the set W\ {0} is partitioned by the collection

{U\ {0} : U is a subspace of W} = {U\ {0} : U € Ay},
which gives

wl-1 ¢'—1

Aw| = = .
| Aw| =1 -1

iii) If Uy, Uy € V; with U; # U, then there are qdf_l_l d-dimensional subspace W of V' that
q—1

contains both U; and U, as subspaces, i.e. there exist qdq__ll_ L block in A containing
both U; and Us.
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The special case of d = 2 in Construction 3 has a special name, called the projective
plane of order q, which is a (¢> + ¢ + 1,¢ + 1,1)-BIBD. The (7,3,1)-SBIBD in Example
3.1.1 can be viewed as a projective plane of order 2. For any positive integer n, an (n? +
n+ 1,n + 1,1)-BIBD is called a projective plane of order n. One of the most important
open problems in design theory is the question of whether there exists a projective plane
of non-prime power order. No such design has been found to date, and there are infinitely
many n for which an impossibility result has not been given.

One important method for constructing SBIBDs is the difference set method.

Definition 3.2.1. Let (G,+) be an additive finite group of order v with the additive
identity element 0. Let k, A be positive integers such that v > k > 2. A (v, k, \)-difference
set in (G,+) is a subset D C G with |D| = k such that every element in G \ {0} can be
written as the difference of two distinct elements in D in A ways.

Example 3.2.1. G = Zy; and D = {1,3,4,5,9}. It can be checked that each non-zero
element in Zy; can be written as x — y for z,y € D in two ways, eg. 3=4—1=1-09,
5=9—-4=3-09.

We will present a class of difference sets known as Paley difference sets.
Construction 4. Let ¢ a prime power and let I, be the finite field of order ¢. Let
QR(q) = {2* : x € F,\ {0}},

called the quadratic residue of IF,. Suppose ¢ =3 mod 4. It can be shown that QR(g) is
a (g, q;21, q%f)—difference set, called the Paley difference set (or quadratic residue difference
set).

Example 3.2.1 is a Paley difference set where D = QR(11) = {1, 3,4, 5,9}.

Definition 3.2.2. Let D be a (v, k, A)-difference set in (G,+). The development of D,
denoted Dev(D), is the collection

Dev(D)={D+g:9 € G}

where D + g ={z+ ¢ :x € D} is the usual right coset of D.

The notation (v, k, A) for difference sets is not a coincidence; it corresponds to a (v, k, \)-
SBIBD in the following sense.
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Theorem 3.2.1. Let D be a (v,k,\)-difference set of an abelian group (G,+). Then
(G,Dev(D)) is a (v, k, \)-SBIBD.

Example 3.2.2. Let D be the (11,5, 2)-difference set from Example 3.2.1. The point-block
incidence matrix of the associated design is

(@)
@)
—_

O R O OO FH O

—_ O OO, Rk PP OO

OO O R RPr PP, O, OO

OO M= = O, OO O
O P P, O, OOFKE OO
_—m) PO~ OOk OO0
_ O, OOk, OO0O o
_ O = OOk, O OO =
OR OO OO0 = =
_— OO, O OO FEO
OO OO = O

Both the projective plane construction and the difference set construction yield an
SBIBD. We now present a method for obtaining a non-symmetric BIBD from a given
symmetric BIBD.

Definition 3.2.3. Let (X, .A) be a (v, k, A\)-SBIBD. Fix A, € A. Define
Der(X, A, Ag) = (Ao, {ANAy: Ae A A# Ap}),
called a derived BIBD, and
Res(X, A, Ag) = (X \ Ag, {A\ Ag: A€ A A # Ay},
called a residual BIBD.

Theorem 3.2.2. Let (X, A) be a (v,k,\)-SBIBD. Fiz Ay € A. Then Der(X, A, Ay) is a
(k,v—1,k —1,\, A — 1)-BIBD and Res(X, A, Ag) is a (v —k,v—1,k,k — X, \)-BIBD.
Example 3.2.3. Let (X, .A) be the (11,5,2)-SBIBD from Example 3.2.2. Let A, be the

first block of A, represented by the first column of the point-block incidence matrix. The
incidence matrix of the (5,10,4, 2, 1)-derived BIBD is

001 00O011T1O0
01 001O0O0O0T1T1
Mgee=|] 1 01 0O01O0O0O0T1],
1101001000
000111010 ®O0
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formed by removing the first column and all rows containing a 1 in the first column. The
incidence matrix of the (6,10, 5, 3, 2)-residual BIBD is

0100011101
1001000111
M _| 1110100100
==10111010010 ]|’
0011101001
10001110710

formed by removing the first column and all rows containing a 0 in the first column.

The residual designs of a projective plane of order ¢ has a special name, called an affine
plane, which is a (¢%,¢* + ¢,q + 1,¢q,1)-BIBD.

3.3 Known Connections to Binary Frameproof Codes

The paper [27] gave several constructions of binary frameproof codes from t-designs and
t-packing designs. We first define the two combinatorial structures.

Definition 3.3.1. Let t,v, k, A be positive integers with v > k > ¢. A t-(v, k, \) design is
a design (X, .A) satisfying

(1) [X]=wv,
(ii) |A| =k for every A € A, and

(iii) for every subset T' C X with |T| = t, there are exactly A blocks A € A such that
T C A.

Note that this definition generalizes Definition 3.1.2 in the sense that a (v, k, A)-BIBD
is a 2-(v, k, \) design, and the latter notation is sometimes used instead.

Definition 3.3.2. Let t,v,k, A be positive integers with v > k > t. A t-(v,k, \) packing
design is a design (X, .A) satisfying

(i) [X]= v,
(ii) |A| =k for every A € A, and
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(iii) for every subset T C X with |T| = ¢, there are at most A blocks A € A such that
T CA.

An obvious implication of Definition 3.3.2 is that every t-(v, k, \) design is a t-(v, k, \)
packing design.

The incidence matrices for t-designs and t-packing designs can be defined similar to

that of BIBDs. We have the following theorem stating that these two objects give rise to
frameproof codes.

Theorem 3.3.1 ([27]). Let (X, A) be a t-(v,k,\) packing design. Then the point-block
incidence matriz of (X,.A) is an SHF(v;b,2,{1,w}) where b = (:)/(';) is the number of
blocks and w = [ ¥ |.

The projective plane and affine planes of prime power order g together with Theorem
3.3.1 gives the following corollary.

Corollary 3.3.2 ([27]). Let q be a prime power.

(i) The point-block incidence matriz of the projective plane of order q is the representation
matriz of an SHF(¢> + ¢+ 1;¢* + ¢+ 1,2,{1,4}).

(ii) The point-block incidence matriz of the affine plane of order q is the representation
matriz of an SHF(¢*; ¢* +q,2,{1,q — 1}).

Packing designs can be obtained from orthogonal arrays, defined as follows.

Definition 3.3.3. Let t, v, k, A be positive integers with k >t > 2. A t-(v, k, \) orthogonal
array, denoted t-(v, k, A\)-OA, is a k X A\¢' matrix A with entries from Q = {0,...,q¢ — 1}
such that within any ¢ rows of A, the set Q! is repeated exactly A times among the columns

of A.

Construction 5. Let ¢ be a prime power and let ¢ be a positive integer with ¢ > ¢t > 2.
Let Py, ..., Py be pairwise distinct polynomials of degree at most ¢ — 1 over the finite field
F,. Let F =TF, U {oco}, where oo is an extra point. Define a (¢ 4+ 1) x ¢' matrix A by

, Pi(x) fxelF
A, j) = D) e Fy
a1 ifz=o00and Pj(x) =) ,_,ax

1=

Then A is a t-(¢,q + 1, 1)-OA.
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Construction 5 is equivalent to a class of error-correcting codes called Reed-Solomon
codes.

Example 3.3.1. Below is a 2-(3,4, 1)-OA constructed via Construction 5.

012012201 2
A 0121220201
0122011220
000111222

Theorem 3.3.3 ([27]). Let A be a t-(v,k,1)-OA. Define
X={(z,y):0<z<k—-1,0<y<wv-—1}
and for every column ¢ = (Yo, y1,---,yr_1)" in A, define

BC = {(07y0)7 (17 91)7 ceey (k - 17 yk—l)}~
Let B={B. : cis a column of A}. Then (X,B) is a t-(vk, k,1) packing design containing
vt blocks.

Combining Construction 5 and Theorem 3.3.3 we get the following corollary.

Corollary 3.3.4 ([27]). Let q be a prime power. There exists a t-(¢> + q+ 1,q + 1,1)
packing design with ¢t blocks.

We get another construction for frameproof codes by Theorem 3.3.1 and Corollary 3.3.4.

Corollary 3.3.5 ([27]). Let q be a prime power. There exists an SHF(¢* + ¢; ¢*,2, {1, w})
where w = | 5| for any positive integer t such that ¢ >t > 2.

3.4 New Result

In this section, we give a characterization of SHF(v;v,2,{1,3}) for all symmetric (v, k, \)-
BIBDs. For simplicity, we sometimes use the notation {1, w}-SHF when the size parameters
are implied.

Theorem 3.4.1. Let (X,B) be a symmetric (v,k,\)-BIBD and let A be its block-point
incidence matriz. If k > 3X+1 orif k — X is odd then A is an SHF(v;v,2,{1,3}).
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Proof. Suppose that A is not an SHF(v;v,2, {1,3}), then there exists some column set pair
({x}, {u,v,w}) that cannot be separated. For each Z C {u,v,w}, partition B into subsets
Az where Ay = {B € B: BN{u,v,w} = Z}, and let az = |Az|. We obtain the following
set of equations from (X, B) being a symmetric (v, k, A)-BIBD:

ag + ay + ay + Ay + Ay + Gy + A F+ Quuw = U (3.1)
Ay + Ay + Quw + apw = K (3.2)

ay + Ay + Aoy + QGuw = k (3.3)

Aw + Quw + Gy + QG = k (3.4)

Qyy + Quw = A (3.5)

Ayw + Quw = A (3.6)

Auw + Quyw = A (3.7)

Letting a = ayyw, we get that

auv:CLVW:CLUW:)\_a
ay=ay,=ay=k—2A—a) —«a
=k+a-—2\

Next, define By = {B € Az : x € B} and let by = |Bz|. We obtain another set of
equations:

by + by + by + bu + by + b + b + b = & (3.8)
by + buy + b + s = A (3.9)
by + buy + bow + buvw = A (3.10)
bur + b + b + b = A (3.11)

Note that for every Z, we get 0 < by < ay. It is clear that the column set pair
({x},{u,v,w}) cannot be separated if and only if by = 0 and b, = . Thus equations
(3.8) — (3.11) simplify to

by + by + by + buy + by + buw =k — (3.12)
by + by + by + 2(buy + buw + buw) = 3(A — ) (3.13)

Subtracting (3.12) from (3.13) gives
buv + bow + buw = 3N — k — 20 (3.14)
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Since byy + byw + buw > 0, (3.14) implies that
0<3\—k—2a. (3.15)

Now, since a > 0, we see from (3.15) that £ < 3A. Therefore A is an SHF(v;v,2,{1,3}) if
kE>3X+1.

Next, we multiply (3.12) by 2 and subtract (3.13), giving
by + b, + by = a+ 2k — 3. (3.16)

Then we have
3(k+a—2\) =a,+a,+ay >b,+b, +by, =a+2k—3\ (3.17)
Therefore, from (3.17), we have
3\ — k — 2a < 0. (3.18)

Now, (3.15) and (3.18) together show that 3\ — k = 2a. This implies that 3\ — k is even,
and therefore k — X is also even. Therefore A is an SHF(v;v,2,{1,3}) if k — A is odd. O

Corollary 3.4.2. Let (X,B) be a symmetric (v, k,\)-BIBD and let A be its block-point
incidence matriz. If k < 3\ and k — X is even then A is an SHF(v;v,2,{1,3}) if and only
if there does not exist four points u,v,w,x such that

1. a= % blocks contain all four points u,v,w, X,
2. no block contains exactly one or three points from {u,v,w,x}, and

3. for any subset of two points from {u,v,w,x}, there are exactly A — « blocks that
contain these two points.

Proof. Tt is clear that A is not a SHF(v;v, 2, {1,3}) if the specified four-point substructure
exists. So we just need to prove the converse, namely, that the four-point substructure
exists if A is not a SHF(v; v, 2,{1,3}). We use the same notation as in the proof of Theorem
3.4.1. The proof of that theorem established that o = (3\ — k)/2.

For each T' C {u,v,w,x}, we will compute ¢y, which denotes the number of blocks B
such than B N {u,v,w,x} = T. First, we note two relevant facts:

e The inequality in (3.17) must be an inequality, so b, = ay, b, = a, and b,, = a,,. Now
ay=ay =ay =k +a—2\=\— a, so we obtain b, = b, = b, = X — a.

37



T cr T Cr
{x} by =0 {u} ay,—b, =0
{v} ay—b,=0 {w} a,—b,=0
{U,X} by =\—« {U,V} A — by = ayy = A — «
{v,x} bh=A—a | {uw} [aw—bw=aw=A—a
{w,x}  |by=A—a| {v,w} |aw—bw=0aw=\A—«
{u,v,x} bow =0 | {u,w,x} buw =0
{v,w,x} bow =0 {u,v,w} | ayw —bow = —a =0
{u,v,w,x} | byw =«

Table 3.1: Block intersections with {u,v,w,x}

e From (3.14), we see that by, + byw + buw = 0, 80 by, = byw = byw = 0.

It is now straightforward to compute the values c¢r using these facts. This is done in Table
3.1. m

The following is an immediate corollary of Theorem 3.4.1. This result is in fact equiv-
alent to a result of Kimura [18, Proposition 2.1].

Corollary 3.4.3. The incidence matriz of a (4n—1,2n—1,n—1)-SBIBD is an SHF(4n —
I;4n —1,2,{1,3}) if n > 1 is odd.

3.4.1 Hadamard Designs

Theorem 3.4.1 has some interesting connections to Hadamard matrices. We first give some
background information.

Definition 3.4.1. Let H be an n x n matrix with entries from {+1}. We say that H is a
Hadamard matriz of order n if HHT = nl,, where I, is the n x n identity matrix.

If a Hadamard matrix has a first row and first column consisting entirely of entries
equal to 1, then we say that the matrix is standardized. Any Hadamard matrix can be
transformed into a standardized Hadamard matrix by multiplying certain rows and columns
by —1.
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Example 3.4.1. The following is a standardized Hadamard matrix of order 4:

1 1 1
-1 1 -1
1 -1 -1
-1 -1 1

—_ = =

Clearly both (1) and (—1) are Hadamard matrices of order 1. It is not difficult to find
a Hadamard matrix of order 2. The following well-known theorem says the order n of a
Hadamard matrix must be divisible by 4 if n > 2.

Theorem 3.4.4. Let H be a Hadamard matrixz of order n. If n > 2 then n =0 mod 4.

An important open problem regarding Hadamard matrices is to determine whether or
not a Hadamard matrix of order 4m exists for every positive integer m. It is known that
if n is a power of 2 then a Hadamard matrix of order n exists. The smallest n such that a
Hadamard matrix of order n = 4m is not known to exist is 668.

One of the reasons why Hadamard matrices are of great importance to design theory
is the following equivalence theorem.

Theorem 3.4.5. Let m > 1 be an integer. The following are true:

(i) LetH be a standardized Hadamard matriz of order 4m. Let M be the (4m—1)x (4m—1)
binary matriz formed by removing the first row and column of H and replacing all
entries of —1 with 0. Then M is the point-block incidence matriz of a (4m — 1,2m —

1,m — 1)-SBIBD.

(ii) Let M be the point-block incidence matriz of a (4m —1,2m —1,m —1)-SBIBD. Let H
be the 4m x 4m matriz with entries from {£1} formed by replacing all entries of 0 in
M with —1 and the appending a row and column of 1s as the first row and column.
Then H is a standardized Hadamard matriz of order 4m.

As a result, we have the following definition for SBIBDs satisfying part (ii) of Theorem
3.4.5.

Definition 3.4.2. A (4m — 1,2m — 1,m — 1)-SBIBD is also called a Hadamard design.
There is a useful classification of Hadamard matrices in terms of substructures involving

four columns; see, for example, [17]. The notion of a type of a Hadamard matrix is defined
in [17] as follows.
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Definition 3.4.3. Let H be a Hadamard matrix of order 4n. For any non-negative integer
m, let j,, denote the all 1’s column vector of length m. By permuting and/or and negating
rows and columns, any four columns of H may be transformed uniquely to the following
form:

Ja Ja Ja  Ja

Jo b Jb —Jb
Jo v —Jb b

ja ja _ja _ja
Jo —Jv  Jb b

ja _ja ja _ja
ja _ja _ja ja

Jb —Jb —Jv —Jb
where a +b =n and 0 < b < |n/2]|. A set of four columns which is transformed to the
above form is said to be of type b. Any permutation and negation of rows and/or columns
leaves the type unchanged. A Hadamard matrix is of type b (0 < b < |n/2]) if it has a set
of four columns of type b and no set of four columns of type less than b.

Lemma 3.4.6. Suppose we construct an incidence matriz of a (4n—1,2n—1,n—1)-SBIBD
from a standardized Hadamard matriz of order 4n > 4 by deleting the first row and column
and replacing all occurrences of —1’s by 0’s. Then this incidence matrix is a 3-frameproof
code if and only if the Hadamard matrixz is not of type 0.

Proof. First, suppose that the Hadamard is of type 0. Then it is obvious in the incidence
matrix of the associated design that the first of the four given columns cannot be separated
from the other three given columns.

Conversely, suppose that we have an incidence matrix A (of a (4n —1,2n — 1,n — 1)-
SBIBD) that is not a 3-frameproof code. From Corollary 3.4.3, n must be even for this to
occur. By permuting columns of A, we can assume that column 1 cannot be separated from
columns 2, 3, and 4. Now we apply Corollary 3.4.2. Looking at the first four columns of A,
there must be n/2 — 1 occurrences of 1111 and n/2 occurrences of each of the other seven
patterns containing an even number of 1’'s. When we convert A to a Hadamard matrix H of
order 4n, we change all 0’s to —1’s and we add an additional row of 1’s. Now we multiply
all rows of H that corresponded to patterns 0000, 0011, 0101 and 0110 in A by —1. We
then see that these four columns in H are of type 0. m

Kimura’s result (Corollary 3.4.3) is in fact a proof that a Hadamard matrix of order
congruent to 4 modulo 8 is not of type 0.
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Order |4 8 12 16 20 24 28
0[1 1.0 5 0 5 0
Typel|0 0 1 0 3 1 486
2/0 0 0 0 0 1 1

Table 3.2: Number of inequivalent Hadamard matrices of different types

A classification, according to type, of (inequivalent) Hadamard matrices of small orders
is given in [17]. Table 3.2 is from [17]:

We now give a family of Hadamard BIBDs that contain the forbidden substructure
from Corollary 3.4.2. Hence, these designs are not {1, 3}-SHFs.

Theorem 3.4.7. For n > 4, let H,, be a standardized Hadamard matrixz of order n. Let

H, H,
()

and let A be the (2n—1) x (2n—1) submatriz of H by removing the first column and first row
and replacing all —1’s by 0’s. Then A is the incidence matriz of a (2n—1,n—1, "7_2)-SBIBD
which is not an SHF(2n — 1;2n — 1,2, {1, 3}).

Proof. A is a Hadamard design by construction. Let n = 4m, m > 1. Since H, is a
standard Hadamard matrix of order 4m, deleting the first column gives a 2-(2,4m — 1, m)
orthogonal array. Hence columns 2 and 3 of H,, contain each of the pairs 00, 01, 10, 11 m
times. Thus columns 2, 3,4m + 2,4m + 3 of H contain each of the quadruples 0000, 0101,
1010, 1111 m times in rows 1,...,4m of H. Similarly, columns 2,3,4m + 2,4m + 3 of H
contain each of the quadruples 0011, 0110, 1001, 1100 m times in rows 4m + 1,...,8m of
H.

Recall that the first column of H is deleted to form A. Since the first row of H consists
of only 1’s, we have that columns 1,2,4m + 1,4m + 2 of A contain each of the quadruples
0000, 0101, 1010, 0011, 0110, 1001, 1100 m times and contains 1111 m — 1 times. Together,
the eight quadruples occupy all 8m —1 rows of A. In particular, columns 1,2,4m+1,4m+2
of A do not contain the quadruple 1000 and 0111, so ({1}, {2,4m + 1,4m + 2}) cannot be
separated by A. O

Recall from Construction 4 that for a prime power ¢ = 3 mod 4, the Paley difference

set construction yields a (g, ‘1;—1, (Z—B)—SBIBD, and hence is a Hadamard design by Theorem
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3.4.5. When ¢ > 11 is prime, we will show that the incidence matrices of these designs are
{1,3}-SHFs. The proof is similar to the main theorem in [11]; it is based on a character-
theoretic bound proven by Burgess [7].

Theorem 3.4.8. For all primes ¢ = 3 mod 4, ¢ > 11, there is a (g, q;21, q%f)—SBIBD whose
block-point incidence matriz is a {1,3}-SHF.

Proof. Let x : Z;" — {1, —1} be the quadratic character, defined as follows:

0 ifex=20
x(z)=4¢1 ifz € QR(q).

—1 otherwise

Let a1, aq, a3, as € Z, be distinct. Define

S = Z X(x —a1)x(x — ag)x(z — a3z)x(z — aq). (3.19)

T€Lq

By [7, Lemma 1], it immediately follows that S < 2,/g-+1. For any integer ¢ > 11, it is easy
to see that 2,/g+1 < g—4. Therefore, S < g—4. Clearly the sum in (3.19) contains exactly
four terms equal to 0. The remaining ¢ — 4 terms in this sum are all equal to £1. Since
S < q— 4, there must be a term in the sum equal to —1. That is, there exists x € Z, such
that exactly one or three of the four (non-zero) values x(x—ay), x(x—as2), x(x—a3), x(x—ay4)
are equal to 1. In the associated design, we have a block that contains an odd number of
points from {ay, as, ag,as}. Applying Corollary 3.4.2; it follows that the incidence matrix
of the design is a {1, 3}-SHF. O

For all primes ¢ = 3 mod 4, ¢ > 1024, it is noted in Colbourn and Kéri [11] that Paley
difference sets yield covering arrays of strength four, which immediately implies that they
are {1,3}-SHFs. This follows from a similar character-theoretic argument.

3.4.2 The Case k = 3\

The case k = 3\ is especially interesting because this corresponds to & = 0 in Theorem
3.4.2. In this situation, the four-point substructure is an oval, using the terminology of
Assmus and van Lint [1] (the paper [1] is a general study of ovals in symmetric BIBDs).
Specializing Corollary 3.4.2 to this case, we obtain the following.
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Corollary 3.4.9. Let (X, A) be a symmetric (v,k, \)-BIBD with k = 3X. Then (X,.A) is
not an SHF(v;v,2,{1,3}) if and only if (X,.A) contains an oval (of cardinalty 4).

We next present some examples to show how Corollary 3.4.9 can be used to determine
if a specific parameter set gives rise to {1, 3}-SHFs.

Example 3.4.2. There is a unique (7,3,1)-SBIBD up to isomorphism. As is observed
in [1], the complement of any block is an oval. Therefore the (7,3,1)-SBIBD is not a
{1,3}-SHF.

Example 3.4.3. There are precisely three non isomorphic (16, 6,2)-SBIBDs. It is observed
in [1] that all three of these designs contain ovals. Therefore, no (16, 6,2)-SBIBD is a {1, 3}-
SHF.

Example 3.4.4. It is observed in [1] that there is a (25,9, 3)-SBIBD that contains an oval.
Therefore this SBIBD is not a {1,3}-SHF. In fact, Denniston later showed in [13] that
all 78 non isomorphic (25,9, 3)-SBIBDs contain an oval, so there are no (25,9, 3)-SBIBDs
whose incidence matrices are {1, 3}-SHFs.

Finally, we present an infinite family of symmetric BIBDs with & = 3\ whose incidence
matrices are not {1,3}-SHFs.

Theorem 3.4.10. For all integers h > 2, there is a (3" — 2,3" 3"1)-SBIBD whose
incidence matriz is not a {1,3}-SHF.

Proof. Tt is shown by Tran in [31] that the Mitchell-Rajkundlia designs with the above
parameters all contain ovals. (Actually, Tran showed that the Mitchell-Rajkundlia designs
constructed from the Desarguesian affine planes of order 2™ all contain maximal 2™ -arcs for
1 < m < n. For the specific Mitchell-Rajkundlia designs with the indicated parameters,
we have m = 1, and the maximal 2-arcs are in fact ovals.) ]

3.4.3 Further Discussion

We have a simple result which shows that certain symmetric BIBDs are {1, w}-SHF.

Theorem 3.4.11. Suppose there exists a symmetric (v, k, \)-BIBD where k > w\. Then
the block-point incidence matriz of this SBIBD is a {1, w}-SHF.
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Proof. Let A be the block-point incidence matrix of the hypothesized design. Let ¢ be one
column of A and let jy,..., j, be w additional columns of A . For 1 < ¢ < w, define

Ry ={r:A(r,i) = A(r, jo) = 1}.
Clearly |Ry| = A for all ¢, so
U Re| <w.

(=1

There are k rows of A having a 1 in column 7. Since k > w, there exists at least one row
of A having a 1 in column ¢ and 0’s in columns ji, ..., ju. [

In the case w = 3, Theorem 3.4.11 provides a simple proof of the first part of Theorem
3.4.1.

Table 3.3 lists parameters for ‘small’ symmetric BIBDs and constructions that give rise
to {1,3}-SHFs (or not). The case of A\ = 1 for k > 4 is characterized by Theorem 3.3.1 and
so these parameters are omitted from the table. All other valid triples (v, k, \) with & < %
for which the existence of a (v, k, A)-SBIBD is known are presented in order of increasing
k. The following theorem fills in an additional entry in Table 3.3.

Theorem 3.4.12. There is a (39,19,9)-SBIBD whose incidence matriz is a {1,3}-SHF.

Proof. The website [19] includes 22 (known to date) skew Hadamard matrices of order 40.
We derived Hadamard designs (i.e., (39, 19,9)-SBIBDs) from all of them by standardizing
with respect to a given row and column and then deleting the given row and column. Then
we checked the resulting (39,19,9)-SBIBDs by computer to see if they are {1,3}-SHF. Tt
turned out that eight of these matrices, namely numbers 1, 5, 7, 10, 11, 13, 17 and 20, give
rise to (39, 19,9)-SBIBDs which are {1,3}-SHF. Moreover, the transposes of the incidence
matrices of these 22 (39, 19, 9)-SBIBDs give rise to eight additional (39, 19,9)-SBIBDs which
are {1,3}-SHF, namely numbers 2, 3, 8, 12, 14, 16, 18 and 21. It did not matter which
row/column we chose for the standardization process. O

Define F,, to be the set of all parameter triples (v, k, ) such that there exists a sym-
metric (v, k, A\)-BIBD whose incidence matrix is a {1, w}-SHF, and define F,, to be the set
of all parameter triples (v, k, A) such that there exists a symmetric (v, k, \)-BIBD whose
incidence matrix is not a {1, w}-SHF.

Definition 3.4.4. A parameter triple (v, k, \) will be called a Hadamard triple if it has
the form (4t 4 3,2t + 1,¢) for a positive integer ¢, and a non-Hadamard triple otherwise.
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Legend

Description

T Guaranteed to be {1,3}-SHFs by Theorem 3.4.1 from k > 3\ + 1
T Guaranteed to be {1,3}-SHFs by Theorem 3.4.1 from k& — X odd

H Construction from Theorem 3.4.7
QR(q) Quadratic residue difference set (Theorem 3.4.8)
v [k A {1,3}-SHF | not {1,3}-SHF | Comment
7 3|1 None All Example 3.4.2
11 5 2 All None To
16 | 6 | 2 None All Example 3.4.3
15 713 None All Table 3.2
37 9 2 All None T
25 19| 3 None All Example 3.4.4
19 9 4 All None Ty
31 |10 ] 3 All None T,
56 | 11 | 2 All None T
23 [ 11| 5 QR(23) H
45 [ 12| 3 All None T
79 | 13| 2 All None T
40 |13 | 4 All None T
27 | 13| 6 All None Ts
71 | 15| 3 All None T,
36 |15 ] 6 All None T,
31 |15 7 QR(31) H
61 |16 | 4 All None T
49 |16 | 5 All None T,
41 | 16 | 6 (10, §IL.6.9] ? computer verified
69 |17 | 4 All None T
35 | 17| 8 All None To
39 | 19| 9 | Theorem 3.4.12 H
96 | 20 | 4 All None T
8 | 21| 5 All None T
71 | 21| 6 All None T
43 | 21 | 10 All None T,
78 1221 6 All None T,
47 |23 | 11 QR(47) H
70 | 24 | 8 [10, §11.6.9] ? computer verified
121 125 | 5 All None T
101 | 25| 6 All None T
61 | 25 | 10 All None To
51 | 25 | 12 All None Ty

Table 3.3: Small Symmetric BIBDs and {1, 3}-SHF
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There are several parameter triples in Table 3.3 that are in F3 N F3. However, all of
these examples are Hadamard triples. We now provide an example of a non-Hadamard
triple in F3 N F3, namely (64, 28,12).

Theorem 3.4.13. There exists a (64,28,12)-SBIBD whose incidence matriz is a {1,3}-
SHF, as well as a (64,28,12)-SBIBD whose incidence matriz is not a {1,3}-SHF.

Proof. We have verified by computer that the incidence matrix of the design Dy in [12, p.
113] is a {1, 3}-SHF. Furthermore, the incidence matrix of the design constructed from the
difference set in Z4 X Zj¢ (see [10, p. 428]) is not a {1, 3}-SHF. O

3.4.4 Two Problems on Binary Frameproof Codes

In Section 2.2 we mentioned two open problems suggested by our work. Namely, given a
positive integer w,

(i) find the smallest N such that there exists an SHF(N; N, 2, {1, w}) whose representa-
tion matrix in standard form is not a permutation matrix, and

(ii) find the smallest N such that there exists an SHF(N;n,2,{1,w}) with n > N.

Using Theorem 2.2.11, Theorem 3.4.1 and Example 3.2.2, we have limited the range of
possibilities for problem (ii) for w = 3 to N = 10 or 11. For the general case, Corollary
3.3.2 provides an upper bound to both problems.

Part (i) of Corollary 3.3.2 gives an upper bound for problem (i). More specifically, for
any integer w > 3, let ¢ be the smallest prime power such that ¢ > w. An upper bound for
the smallest NV such that there exists an SHF(N; NV, 2, {1, w}) whose representation matrix
in standard form is not a permutation is ¢> + ¢ + 1, since the point-block incidence matrix
of the projective plane of order ¢ is not a permutation matrix.

Part (ii) of Corollary 3.3.2 gives an upper bound for problem (ii). That is, for any
integer w > 3, let ¢ be the smallest prime power such that ¢ > w. An upper bound for the
smallest N such that there exists an SHF(N;n,2, {1,w}) with n > N is ¢*.
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Chapter 4

Future Work

We propose several interesting research problems along the line of work presented in this
thesis.

1.

Improve the range of applicable N for the lower bound of Theorem 2.2.11. The
current best result by Shangguan et al. [23] applies to w + 1 < N < (wgl) —1. Any
success would establish a tighter lower bound for problems (i) and (ii) in Section
3.4.4.

Can we give a result similar to Theorem 2.2.11 for non-binary SHFs? Construction 1
serves as the analogous canonical construction, giving a lower bound of n > (¢—1)N.
Can we prove a matching upper bound and show that any SHF(V;n, ¢, {1, w}) with
g <wand n = (q—1)N is equivalent to Construction 17

Theorem 2.3.4 applies only to SHFs of type {w?™' w,}, which seems more restric-
tive than what the result applies to. Could a similar result be shown for general
{wy,ws, ..., w,}-SHFs?

It would also be interesting to see a characterization of non-symmetric BIBDs similar
to Theorem 3.4.1. For the problem of constructing large binary frameproof codes,
SBIBDs do not offer much more than permutation matrices.

. In Section 3.4.3 we defined F,, to be the set of all parameter triples (v, k, A) for which

there exists a symmetric (v, k, A\)-BIBD whose incidence matrix is a {1, w}-SHF, and
F. to be the set of all parameter triples (v, k, A) for which there exists a symmetric
(v, k, A)-BIBD whose incidence matrix is not a {1,w}-SHF. Results in Chapter 3
show that both F; and F5 are infinite. Is F3 N F5 also infinite?
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6. Theorem 3.4.11 can be viewed as a partial generalization of Theorem 3.4.1 in the
sense that it gives a sufficient condition for the block-point incidence matrix of a
(v, k, A)-SBIBD to also be the representation matrix of a {1, w}-SHF. However, we
did not find a counterpart to Corollary 3.4.2. Proving such a counterpart could allow
us to establish a tighter upper bound for problems (i) and (ii) in Section 3.4.4.

7. In Table 3.3, we listed several triples (v, k, A) for which a (v, k, \)-SBIBD is also a
{1,3}-SHF without satisfying either the &k > 3A\ 4+ 1 or kK — A odd requirement of
Theorem 3.4.1. We know that there are infinitely many such Hadamard triples by
Theorem 3.4.8, while the two triples from [10, §11.6.9] are non-Hadamard. Is there an
infinite number of non-Hadamard triples in F3 that do not satisfy either requirement
of Theorem 3.4.17
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