
A Semi-Supervised Approach for
Kernel-Based Temporal Clustering

by

Rodrigo Araujo

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Rodrigo Araujo 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Temporal clustering refers to the partitioning of a time series into multiple non-
overlapping segments that belong to k temporal clusters, in such a way that segments
in the same cluster are more similar to each other than to those in other clusters. Tempo-
ral clustering is a fundamental task in many fields, such as computer animation, computer
vision, health care, and robotics. The applications of temporal clustering in those areas
are diverse, and include human-motion imitation and recognition, emotion analysis, human
activity segmentation, automated rehabilitation exercise analysis, and human-computer in-
teraction. However, temporal clustering using a completely unsupervised method may not
produce satisfactory results. Similar to regular clustering, temporal clustering also benefits
from some expert knowledge that may be available. The type of approach that utilizes a
small amount of knowledge to “guide” the clustering process is known as “semi-supervised
clustering.”

Semi-supervised temporal clustering is a strategy in which extra knowledge, in the form
of pairwise constraints, is incorporated into the temporal data to help with the partitioning
problem. This thesis proposes a process to adapt and transform two kernel-based methods
into semi-supervised temporal clustering methods. The proposed process is exclusive to
kernel-based clustering methods, and is based on two concepts. First, it uses the idea
of instance-level constraints, in the form of must-link and cannot-link, to supervise the
clustering methods. Second, it uses a dynamic-programming method to search for the
optimal temporal clusters. The proposed process is applied to two algorithms, aligned
cluster analysis (ACA) and spectral clustering. To validate the advantages of the proposed
temporal semi-supervised clustering methods, a comparative analysis was performed, us-
ing the original versions of the algorithm and another semi-supervised temporal cluster.
This evaluation was conducted with both synthetic data and two real-world applications.
The first application includes two naturalistic audio-visual human emotion datasets, and
the second application focuses on human-motion segmentation. Results show substantial
improvements in accuracy, with minimal supervision, compared to unsupervised and other
temporal semi-supervised approaches, without compromising time performance.

iii

Acknowledgements

I would like to thank, first and foremost, my supervisor, Prof. Mohamed Kamel, for
his guidance, patience and support over these years. Without his encouragement, this
thesis would not have been possible. I am also grateful to my Ph.D. examining committee
members, Dr. Ling Guan, Dr. Fakhri Karray, Dr. Otman Basir, and Dr. William W.
Melek, for providing valuable feedback and comments to my thesis. Acknowledgement also
goes to Dr. Mohamed Cheriet and Abdelhamid Daouadji for the joint work produced and
the support during the time I spent in Montreal at ETS.

I also wish to thank many colleagues at the Centre for Pattern Analysis and Machine
Intelligence (CPAMI), especially my officemates, Yun Qian (Mike) Miao and Mehrdad
Gangeh, for the valuable discussions, insights and feedbacks about my research and life
in general. I would also like to thank Aya and Pouria for the valuable collaborative work
and discussions. A special thanks to Ahmed, Sepideh, Safaa, Yibo (Bob) Zhang, Allaa,
Bahador, Jamil, Dr. Alaa Khamis, Dr. Farook Sattar, Roy, and CPAMI secretaries, Anne
Dracopoulos and Rosalind Klein.

I would like to acknowledge Dr. George Cavalcanti for the support and inspiration
that helped me following my academic path. My deepest gratitude to the members of
the writing centre, Janne Janke and Jane Russwurm for making my writing better. Also,
thanks to Cait Glasson and Ketri Grise for the great suggestions and editing tips of my
papers and thesis.

I would like to thank all my Brazilian friends in Canada, Priscila, Plinio, Aline, Felipe,
Cibele, Cleyton, Paulinha, André, Marcela, Fábio, Chrys, Léo, Diogo, and Alline, for not
only keep my life balanced by the joy they bring, but also for the words of encouragement
and motivation that kept me on track.

Finally, I would like to thank my wife, Monica, for her unconditional support and love,
without which this work would not be possible. I also wish to thank my father João, and
my mother Ilse for providing me with the best education, my sister Raquel, and my forever
nanny Maria for the love and support.

iv

Dedication

This thesis is dedicated to my wife, Monica, who has always stood by me and dealt
with all my absences with such a positive attitude.

v

Table of Contents

List of Tables xi

List of Figures xiv

List of Abbreviations xv

1 Introduction 1

1.1 Proposed Work . 2

1.2 Summary of Contributions . 2

1.3 Thesis Organization . 3

2 Background and Literature Review 5

2.1 Time Series Representation . 5

2.2 Similarity Measures . 6

2.2.1 Dynamic Time Warping . 7

2.2.2 Dynamic Time Alignment Kernel (DTAK) 8

2.3 Time Series Tasks . 9

2.4 Time Series Segmentation . 9

2.5 Clustering . 11

2.5.1 Clustering Objective Function . 12

2.5.2 Similarity Measures . 12

vi

2.5.3 Kernel as Similarity Measure . 13

2.6 Clustering Algorithms . 14

2.6.1 Partitional Clustering . 14

2.6.2 Hierarchical Clustering . 17

2.7 Semi-Supervised Clustering . 19

2.7.1 Pairwise Constraints . 20

2.8 Temporal Clustering . 21

2.9 Related Work . 22

2.9.1 Temporal-Driven Constrained K-means 23

3 Proposed Semi-Supervised Temporal Clustering 24

3.1 The Problem of Temporal Clustering . 24

3.2 Aligned Cluster Analysis (ACA) . 25

3.2.1 Optimization of ACA . 26

3.3 Applying Semi-Supervised Framework to ACA 28

3.4 Semi-Supervised ACA (SSACA) . 29

3.4.1 Optimizing SSACA . 31

3.4.2 Complexity Analysis of SSACA . 36

3.5 Semi-Supervised Temporal Spectral Clustering 37

3.6 Exhaustive and Efficient Constraint Propagation 38

3.7 Semi-Supervised ACA with Exhaustive Propagation (SSACA+EP) 39

3.8 Semi-Supervised Temporal Spectral Clustering with EP (SSTSC+EP) . . . 39

3.9 Do Constraints Always Improve Performance? 40

3.10 Differentiating SSACA from Subsequence Time Series 42

4 Experimental Analysis of the Proposed Methods 47

4.1 Setup of the Experiments . 47

4.1.1 Evaluation Measures . 48

vii

4.2 Synthetic Dataset . 50

4.2.1 Baseline Algorithm . 50

4.2.2 Analysis of the Number of Constraints 51

4.2.3 Analysis of the Number of Clusters 54

4.2.4 Analysis of the Influence of Exhaustive Propagation 55

4.2.5 Analysis of the Influence of Constrained Initial Segmentation 57

5 Experiments on Emotion Analysis and Human Motion Segmentation 62

5.1 Emotion Analysis . 62

5.1.1 Facial Expression Analysis . 64

5.1.2 VAM Corpus . 70

5.1.3 Features . 71

5.1.4 Experimental Results and Analysis 71

5.1.5 AVEC Dataset . 72

5.1.6 Experimental Results and Analysis 73

5.2 Human Motion Segmentation . 80

5.2.1 CMU Motion Capture Dataset (MOCAP) 81

5.2.2 Experimental Results and Analysis 81

6 Conclusions and Future Work 83

6.1 Conclusions . 83

6.2 Future Work . 84

6.3 List of Publications . 85

APPENDICES 86

A Detailed Results 87

A.1 Detailed Accuracy Results of AVEC Dataset 87

A.2 Detailed Description of AVEC Dataset . 87

A.3 List of Public Available Facial Expression Datasets 87

viii

References 93

ix

List of Tables

4.1 Average accuracy results of some temporal-based k -means methods. 51

4.2 Analysis of number of clusters . 55

5.1 Average accuracy results of VAM corpus dataset. 72

5.2 Characteristics of each subject of the AVEC dataset for the Expectancy
emotional dimension. 76

5.3 Characteristics of each subject of the AVEC dataset for the Power emotional
dimension. 77

5.4 Characteristics of each subject of the AVEC dataset for the Valence emo-
tional dimension. 77

5.5 Characteristics of each subject of the AVEC dataset for the Arousal emo-
tional dimension. 77

5.6 Accuracy of 14 sequences of subject 86 from the MOCAP dataset. 82

A.1 Subject 1 average accuracy results. 88

A.2 Subject 2 average accuracy results. 88

A.3 Subject 3 average accuracy results. 88

A.4 Subject 4 average accuracy results. 89

A.5 Subject 5 average accuracy results. 89

A.6 Subject 7 average accuracy results. 89

A.7 Cluster distribution of each subject of the AVEC dataset for the Expectancy
emotional dimension. 90

x

A.8 Cluster distribution of each subject of the AVEC dataset for the Power
emotional dimension. 90

A.9 Cluster distribution of each subject of the AVEC dataset for the Valence
emotional dimension. 91

A.10 Cluster distribution of each subject of the AVEC dataset for the Arousal
emotional dimension. 91

A.11 Publicly available facial expression databases 92

xi

List of Figures

2.1 2D random points clustered by k -means algorithm.
⊗

represent the centroid
of each cluster. 11

2.2 Taxonomy of clustering algorithms. [1] . 15

2.3 Dendrogram . 17

2.4 Pairwise constraints in the form of must-link and cannot-link 21

3.1 Temporal Clustering . 25

3.2 (a) shows the frame kernel matrix K, where each entry kij defines the simi-
larity between two frames, xi and xj. (b) shows the segment kernel matrix
calculated by DTAK. (c) shows the constraint matrix W. 31

3.3 Optimization of SSACA in a 1D sample. (a) Initial segmentation of sequence
X into m subsequences s. The cannot-link constraint assists the segments
X[sj ,sj+1) and X[sj+2,sj+3). (b) Search process using forward phase and back-
ward phase applied to every step of the optimization. The table keeps track
of the head position i∗v, the label g∗v, and the J(v) with the lowest values.
(c) Converged segmentation. 34

3.4 Wall time of the proposed semi-supervised methods compared to a com-
pletely unsupervised method. 37

3.5 Sample time series T of length n, a subsequence in position m+ i, and the
first 6 subsequences extracted by a sliding window. Figure based on [2]. . . 43

3.6 Samples of the three different patterns (Cylinder, Bell, and Funnel) of the
CBF dataset. 43

3.7 Cluster centers of the CBF dataset generated by kernel k -means. The shapes
are similar to approximations of the original pattern. 44

xii

3.8 Cluster centers of the CBF dataset generated by sliding windows using kernel
k -means. The shapes of the centers look like sine waves. 44

3.9 Retrieved subsequence generated by ACA. This sample is similar to the
Funnel pattern of the CBF dataset. 45

4.1 A sample time series from the synthetic dataset. 50

4.2 A sample of a time series with one pair of constraint. 52

4.3 Constraint analysis of SSACA, SSACA+EP, SSTSC+EP. (a) Accuracy av-
erage, (b) Mean cluster variance, (c) Objective function values. 53

4.4 Comparison of SSACA, SSACA+EP, SSTSC+EP with ACA, SC, and TDCK.
. 54

4.5 Analysis of variation of the number of clusters applied to a synthetic dataset. 56

4.6 Analysis of the effect of exhaustive propagation. 56

4.7 Comparison between the accuracy of only using the initial constrained seg-
mentation and the accuracy of SSACA plus the initial constrained segmen-
tation. 58

4.8 Comparison between the accuracy of only using the initial constrained seg-
mentation and the accuracy of SSACA+EP plus the initial constrained seg-
mentation. 59

4.9 Comparison between the accuracy of only using the initial constrained seg-
mentation and the accuracy of SSTSC+EP plus the initial constrained seg-
mentation. 59

4.10 Comparison between the accuracy of only using the initial constrained seg-
mentation and the accuracy of SSACA (initial constrained segmentation +
similarity manipulations). 60

4.11 Comparison between the accuracy of only using the initial constrained seg-
mentation and the accuracy of SSACA+EP (initial constrained segmenta-
tion + similarity manipulations). 60

4.12 Comparison between the accuracy of only using the initial constrained seg-
mentation and the accuracy of SSTSC+EP (initial constrained segmentation
+ similarity manipulations). 61

5.1 The arousal-valance (A-V) space proposed by Russell with some plotted
affect words. 69

xiii

5.2 Sample images from the VAM-Corpus dataset. 70

5.3 Discretization of the arousal dimensional emotion in subject 17 of VAM-
Corpus dataset. 71

5.4 Accuracy of the analyzed methods compared to the ground truth of speaker
17 of VAM dataset. 73

5.5 Sample images of AVEC dataset. 74

5.6 Average accuracy results per subject for expectancy. 74

5.7 Average accuracy results per subject for power. 75

5.8 Average accuracy results per subject for valence. 75

5.9 Average accuracy results per subject for arousal. 76

5.10 Sample images of CMU MOCAP dataset. 81

xiv

List of Abbreviations

ACA Aligned cluster analysis
AU Action units
DP Dynamic programming
DPSearch Dynamic programming search
DTAK Dynamic time alignment kernel
DTW Dynamic time warping
EP Exhaustive propagation
FACS Facial action coding system
H Cluster alternation rate
HACA Hierarchical aligned cluster analysis
HMRF Hidden Markov random fields
LBP Local binary pattern
MCVar Mean cluster variance
MOCAP Motion capture
SC Spectral clustering
SSACA Semi-supervised aligned cluster analysis
SSACA+EP Semi-supervised aligned cluster analysis with exhaustive propagation
SSDPSearch Semi-supervised dynamic programming search
SSTSC Semi-supervised temporal spectral clustering
SSTSC+EP Semi-supervised temporal spectral clustering with exhaustive propagation
STS Subsequence time series
TC Temporal clustering
TDCK Temporal-driven constrained k-means

xv

Chapter 1

Introduction

Clustering algorithms are known for their problem-solving applications when there is little
a priori knowledge of the data being analyzed. For example, with a clustering problem,
there is no need to know the classes beforehand. These are some well-known advantages
of unsupervised methods in general. However, there are situations in which some limited
knowledge of the data or application is available, and yet, there is no mechanism allowing
the use of that knowledge in a clustering algorithm. Semi-supervised clustering is a strategy
that incorporates limited supervision to guide the clustering process. This supervision is
usually modelled by using class labels or constraints; as a result, some refer to this learning
problem as “constrained clustering.”

By incorporating supervision into the clustering process, it is possible to improve ac-
curacy and help the clustering algorithm in situations where the data is not well sep-
arated. Some popular unsupervised algorithms that have been adapted into a semi-
supervised framework are constrained k -means clustering with background knowledge [3],
semi-supervised kernel mean shift clustering [4], semi-supervised kernel k -means [5], and
Constrained spectral clustering [6]. However, none of these methods are designed to handle
temporal data.

Use of temporal data broadens the range of applications which can benefit from clus-
tering. Traditional areas that incorporate temporal data and clustering are data mining,
visualization, and segmentation. The problem of temporal clustering is the focus of this
thesis, and is particularly important in applications such as human-motion analysis, audio-
visual emotion analysis, and animal behaviour analysis. However, temporal clustering us-
ing completely unsupervised methods may not produce satisfactory results. In some cases
prior high-level knowledge may be known about the data, or some labeled data may be

1

available. This information can be used to aid the clustering algorithm. In this thesis, this
problem is referred to semi-supervised temporal clustering, which can also be described as
the combination of temporal and semi-supervised clustering.

1.1 Proposed Work

This thesis proposes an approach to creating semi-supervised methods which perform tem-
poral clustering. This approach is exclusive to kernel-based clustering methods, and it is
based on two concepts. First, it uses the idea of instance-level constraints, in the form of
must-link and cannot-link, as a way to add supervision to the clustering methods. Sec-
ond, it uses a dynamic-programming method, inspired by [7], to search for the optimal
temporal clusters. The proposed approach was applied to two methods, namely, aligned
cluster analysis (ACA) and spectral clustering (SC). To validate the advantage of the
proposed temporal semi-supervised clustering methods, they were compared with their
original versions and with another semi-supervised temporal cluster, using both synthetic
and real-world data.

1.2 Summary of Contributions

The main contributions of this thesis can be summarized as follows:

• Proposal of semi-supervised aligned cluster analysis (SSACA), an extension of the
temporal clustering method aligned cluster analysis (ACA).

• Proposal of semi-supervised temporal spectral clustering (SSTSC), an application
of the dynamic programming search optimization proposed in [8] to the problem of
constrained spectral clustering.

• Introduction of exhaustive propagation (EP) into the proposed methods to create
SSACA+EP and SSTSC+EP, helping improving accuracy.

• Application of semi-supervised temporal clustering to spontaneous continuous emo-
tion segmentation.

• Application of semi-supervised temporal clustering to human motion segmentation.

2

1.3 Thesis Organization

This thesis is organized as follows.

Chapter 2 gives an overview of the fundamentals necessary to understand the concepts
of semi-supervised temporal clustering. Sections 2.1 and 2.2 explain, respectively, some
time series representations and some similarity measures. Section 2.3 discusses some of the
main tasks in the field of time series. Section 2.4 describes time series segmentation and
explains popular methods of carrying out segmentation. Section 2.5 gives an overview of
clustering methods, and Section 2.6 explains the kernel k -means clustering algorithm and
other traditional algorithms. Section 2.7 introduces semi-supervised clustering and how
constraints are used as supervision. Finally, Section 2.8 explains temporal clustering.

Chapter 3 introduces the proposed methods and offers some considerations about the
use of constraints. Chapter 3 also provides a theoretical comparison with subsequence time
series (STS). Section 3.1 derives the problem of temporal clustering, and Section 3.2 revisits
the ACA method to give some background. Section 3.3 explains the process of adding
supervision in the form of pairwise constraints to ACA, using the semi-supervised kernel
k -means framework. Sections 3.4 and 3.5 introduce the two proposed methods, SSACA
and SSTSC, respectively. Section 3.6 explains how an exhaustive constraint propagation is
added to SSACA and SSTSC to create SSACA+EP and SSTSC+EP, which are explained
in Sections 3.7 and 3.8, respectively. Finally, Sections 3.9 and 3.10 discuss some theoretical
considerations related to the proposed methods.

Chapter 4 evaluates the performance of the proposed methods when applied to syn-
thetic data. Section 4.1 presents the setup of the experiments and some quantitative and
qualitative evaluation measures. Section 4.2 shows some comparative results of the pro-
posed methods in a synthetic dataset and a complete analysis of how different variables
can influence these methods.

Chapter 5 evaluates the performance of the proposed methods when applied to real-
world applications. Before analyzing the results, this chapter gives an overview of the
problem of emotion analysis and human motion segmentation. Section 5.1 introduces
emotion analysis in the context of the visual modality, and how facial expression relates to
emotion states. It also describes the fundamental steps required to develop an automatic
facial expression recognition system, and differentiates the two most common ways to
interpret emotion: categorical and dimensional models. Finally, Section 5.1.2 shows results
of the comparison between the proposed methods and other related methods on the VAM
Corpus dataset, and Section 5.1.5 shows results and comparisons on the AVEC emotion
dataset. Section 5.2 discusses the problem of human motion segmentation and shows the

3

results of the comparisons between the proposed methods and other related methods when
applied to a motion capture dataset.

Finally, Chapter 6 concludes the thesis, and discusses future extensions of this research,
as well as additional applications that might benefit from the proposed methods. Also
provided in this chapter is a list of publications produced by this research.

4

Chapter 2

Background and Literature Review

This chapter presents an overview of some fundamental concepts of temporal clustering
and semi-supervised methods. The overview starts with some concepts of time series.
Later, some background on clustering algorithms is discussed, with a particular emphasis
on kernel-based methods, which are the focus of this thesis. This chapter also discusses the
concept of semi-supervised clustering and how constraints can be used to aid the clustering
process. The chapter closes with a review of related work.

2.1 Time Series Representation

According to [9], a time series is a collection of chronological observations. Representation
of time series poses a fundamental problem, especially when the goal is to reduce their
dimensionality of the time series. The simplest method of representing a time series is by
sampling. Sampling involves selecting data representatives at fixed intervals, such that a
more concise representation can be obtained. However, if the sampling rate is too low,
this approach can result in distortions in the shape of the representation. An alternative
method of representation is to use the average value of the data points within fixed-sized
windows. This method is also known as piecewise aggregate approximation (PAA)[10].
Similar variations on this method have also been proposed, such as adaptive piecewise
constant approximation (APCA)[11], in which the length of the window is adaptable, and
piecewise linear representation (PLR).

Another type of time series representation involves transformation of the time series
from the time domain to a different domain. Discrete Fourier transform (DFT) is a popular

5

transformation technique, first used by [12]. Discrete wavelet transform (DWT), Haar
transform [13], and singular value decomposition (SVD) [14] offer alternative approaches
to DFT.

Another family of representation consists of transforming numeric time series into a
symbolic representations. SAX [15] is an example of this type of approach. This method
first transform the data into a PAA representation, and then symbolizes the PAA into a
discrete string. A benefit of this type of representation is its ability to produce distance
measures that lower bounds the distance measures in the original series. In other words,
SAX allows the use of various algorithms, such as clustering, classification, and anomaly
detection, in the new representation, while still obtaining the same results.

2.2 Similarity Measures

Similarity measure plays a major role in solving many time series tasks. The most com-
monly used distance measure for time series is the Euclidean distance, also known as
L2-norm. Given two time series T and Q of size n, the Euclidean distance is given by:

Dist(P,Q) =

√√√√ n∑
i=1

(pi − qi)2. (2.1)

[16] describes this family of distance as lock-step measures, which refer to all the distance
measures comparing the ith point of one time series to the ith point of another time series.
They also include the other Lp norms, such as L1-norm (city block distance); Linf -norm;
and DISSIM [17]. Another category of distance is called elastic measures, which include
distance measures that allow for comparison of either one-to-many points or one-to-none
(e.g., LCSS). Some of the distance measures which fall into this category are Longest
Common SubSequence (LCSS) [18], Edit Sequence on Real Sequence, Swale, Edit Distance
with Real Penalty (ERP) [19], and dynamic time warping (DTW) [20]. In contrast with
lock-step measures, which only compare time series of the same sizes, elastic measures have
the capability to measure time series of different sizes and handle local time shifting – i.e.,
time series that are similar, but are out of phase.

More recently, two other categories of similarity measures were proposed. The first
of these categories is threshold-based measure, and the second is pattern-based measure.
TQuEST [21] distance is an example of threshold-based distance. TQuEST transforms
the time series into threshold-crossing time intervals, wherein the points within each time

6

interval have values greater than a threshold τ . Then, each interval is treated in a two-
dimensional space, the first dimension being starting time, and the second being the ending
time. Later, the similarity is defined as the Minkowski sum of the two sequences of time
interval points. SpADe [22] is an example of pattern-based similarity measure, the second of
the recent measures. SpADe attempts to detect matching segments within the entire time
series by shifting and scaling in both temporal and amplitudinal dimensions. The similarity
is represented by the set of matching pattern with the greatest degree of likeness.

2.2.1 Dynamic Time Warping

Dynamic time warping is one of the most frequently used measures in time series. This
technique was proposed by [20] as an application for speech recognition. DTW allows for
the measurement of similarities between temporal sequences which varies in time or speed,
and can be computed by dynamic programming. Dynamic programming is a method for
solving complex problems by recursively breaking them down into simpler subproblems.
The complexity of DTW is O(n2); however, there are lower bound implementations with
amortized complexities [23].

In order to align a sequence P of length n, and a sequence Q of length m using DTW,
certain steps are necessary. The first step is to create a n-by-m matrix M , where the
(ith, jth) element of the matrix mi,j is a squared distance (Euclidean distance) d(pi, qi) =
(pi − qi)

2 corresponding with the alignment between points pi and qj. Second, in order
to find the best alignment between the two sequences, the algorithm must retrieve a path
through the matrix that minimizes the total cumulative distance. The optimal path is the
one that minimizes the warping cost

DTW (P,Q) = min

√√√√ K∑

k=1

wk

 , (2.2)

where wk is an element (i, j)k of the warping path W , which is a contiguous set of matrix
elements that defines a mapping between P and Q. Its kth element is defined as Wk(ik, jk)
and W = w1, w2, . . . , wk, . . . , wK , where max(m,n) ≤ K < m+ n− 1.

The warping path is subject to some constraint sets. The first constraint set is called
boundary condition, and it requires that the warping start and finish diagonally. The
second set of constraints is the continuity, meaning that if wk = (a, b), then wk−1 = (a′, b′),
where a−a′ ≤ 1 and b−b′ ≤ 1. The continuity constraint only allows to the warping path,

7

cells that are adjacent. The third constraint set only allows a − a′ ≥ 0 and b − b′ ≥ 0,
which forces the points in W to be monotonically spaced in time.

The optimization can be executed by dynamic programming, in order to evaluate the
following recurrence equation

γ(i, j) = d(pi, qj) +min {γ(i− 1, j − 1), γ(i− 1, j), γ(i, j − 1)} , (2.3)

where d(pi, qj) is the distance found in the current cell, and γ(i, j) is the cumulative distance
of d(i, j), and the minimum cumulative distance of the three adjacent cells. Although
DTW creates a distance-like measure between time sequences, one drawback of using it as
an approach is that it does not guarantee the triangle inequality property.

2.2.2 Dynamic Time Alignment Kernel (DTAK)

Dynamic time alignment kernel (DTAK) [24] is another technique that aligns time series,
and offers a metric for calculating distances between them. DTAK is an extension of
DTW; however, in contrast with DTW, DTAK satisfies the Cauchy-Schwartz inequality,
and can also be solved efficiently by dynamic programming. Much like DTW, when given
a sequence X = [x1, . . . , xnx] ∈ Rd×nx and a sequence Y = [y1, . . . , yny] ∈ Rd×ny , DTAK
creates a cumulative kernel matrix U ∈ Rnx×ny which can be computed recursively by

uij = max

ui−1,j + kij
ui−1,j−1 + 2kij
ui,j−1 + ki,j,

(2.4)

such that u11 = 2k11 where kij = φ(xTi)φ(yj) = exp
(
−‖xi−yj‖2

2σ2

)
, which is the frame kernel

matrix K ∈ Rnx×ny . The distance between X and Y is given by

τ(X,Y) =
unxny
nx + ny

. (2.5)

[25] points out one of the drawbacks of DTAK: it is not necessarily a strictly positive
definite kernel, and a regularization of the kernel matrix therefore needs to be performed.

8

2.3 Time Series Tasks

Time series is widely studied in the field of data mining, and includes several related
research areas, such as finding similar time series, subsequence searching in time series,
dimensionality reduction, and segmentation.

A summary list of some of the main time series tasks includes [15]:

• Indexing: Consists of finding the most similar data series in a database, given a
query time series P and a similarity measure.

• Clustering: Consists of organizing time series into similar groups, such that time
series in the same group are more similar to each other than to those in other groups,
given a similarity measure.

• Classification: Consists of assigning a given unlabelled time series P to a predefined
class.

• Summarization: Consists of creating a smaller (possibly graphical) representation
of a very large time series P , such that it retains its essential features.

• Anomaly Dectection: Consists of finding anomalies (unexpected, surprising, in-
consistent) in the sections of a given time series P , given a model of “normal”behaviour.

• Segmentation: Consists of partitioning a given time serie P into k segments that
are internally homogeneous [26].

2.4 Time Series Segmentation

A popular solution for segmentation in time series comes from solving the change detection
problem. Change-point detection consists of an analysis of changes on the distribution of
the points within a window of temporal observations, in order to locate their boundaries.
The standard solution as [9] describes consists of fixing the number of change-points, then
identifying their positions, and finally, determining functions for curve-fitting the intervals
between successive change-points. A typical strategy for triggering a change-point is when
the probability distributions of time series samples, over past and present intervals becomes
significantly different [27] [28]. However, this technique detects only local boundaries, and
does not provide a global model for temporal events.

9

Another group of methods uses non-parametric approaches, such as kernel density
estimation, which are designed with no particular parametric assumptions. However, these
estimations exhibit reduced accuracy in high-dimensional problems. According to [29], a
recently-introduced strategy estimates the ratio of the probabilities directly without going
through density estimation [30] (e.g., kernel mean matching [31], the logistic-regression
method, and the Kullback-Leibler importance estimation procedure (KLIEP)), and has
shown promising results.

Another popular way of performing time series segmentation is through a switching
linear dynamic system (SLDS). Linear dynamical systems (LDSs) are useful in describing
dynamical phenomena. However, such phenomena change over time, and as a result,
the models that represent the phenomena also change. Switching several linear dynamic
systems over time allows for description of the dynamics of the time series. The switching
states in SLDS inference provide the segmentation of an input sequence implicitly. Because
of the intractability of finding exact inferences, some approximations have been proposed:
in [32], which casts the SLDS model as a dynamic Bayesian network; in [33], which presents
a data-driven MCMC (DD-MCMC) sampling method for approximate inference in SLDSs;
and [34], which uses a nonparametric Bayesian approach for learning switching dynamical
processes by extending the HDP-HMM formulation.

Other approaches tackle segmentation from the perspective of analyzing periodicity of
cyclic events [35] [36]. However, cyclic motion analysis only extracts segments of repeti-
tive motion, which may leave some portion of the signal unsegmented and therefore not
modelled.

Segmentation in video can be done by clustering frames and grouping those that are
assigned to the same cluster to form a segment. One example of this technique is proposed
by [37], which uses an action-based distance to group actions in a video by clustering
similar frames. However, this approach performs segmentation as a later step of clustering;
consequently it lacks a mechanism by which to incorporate the dynamics of the temporal
events in the clustering process, as [38] indicates. Another method to segment time series
involves obtaining segments that are internally homogeneous, and aim to minimize the
overall cost of the segmentation. In other words, the optimal k -segmentation of time series
s using costing function CostF (s1s2 . . . sk) is minimal among all possible k -segmentations
[39] [40]. This problem can be, however, stated as a clustering problem – if, for example
the overall cost function is defined as the minimization of the distances of the centre of the
clusters.

Some methods, however, attempt to solve the problem of segmentation as a global
model for temporal events. These methods actually solve the problem by minimizing the

10

errors across various segments for each k cluster, in order to find the segments. This subset
of segmentation method relates to this thesis, and it is discussed in great detail in Section
2.8. First, however, some background on clustering algorithms must be given to further
contextualize the challenges addressed by this type of approach.

2.5 Clustering

Data clustering is the main task of unsupervised learning. Unlike supervised methods,
unlabelled data is used as the basis of learning: the data samples involved in the learning
process have no categories previously assigned. Clustering consists of grouping data points
into the same group, or “cluster,” as it is usually called, such that data points in the same
cluster are more similar to each other (internal criterion) than to those in another cluster
(external criterion). Figure 2.1 depicts an example of a cluster.

−4 −3 −2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

1

2

3

4

Cluster 1
Cluster 2
Centroids

Figure 2.1: 2D random points clustered by k -means algorithm.
⊗

represent the centroid
of each cluster.

11

2.5.1 Clustering Objective Function

Consider a set X of n elements x1, . . . , xn that needs to be clustered in k subsets C1, . . . , Ck,
where elements in the same cluster are more similar to each other than the elements in a
different cluster. In order to make this statement a well-defined problem, it is necessary
to define an objective function that measures the quality of any partition of the data [41].
The challenge subsequently becomes a matter of finding the partitions that optimize the
objective function.

One simple way of defining an objective function for clustering is to use the sum-of-
squared-error. Let ni be the number of samples in Ci, and let µi be the mean of those
samples defined by

µi =
1

ni

N∑
x∈Ci

x. (2.6)

The sum-of-squared errors is defined by

Jc =
k∑
i=1

∑
x∈Ci
‖x− µi‖2. (2.7)

For a given cluster Ci , the mean vector µi is the best representative of samples Xi,
since it minimizes the sum of the squared lengths of the error vectors x− µi in the subset
Ci. Therefore, Jc is the total squared error incurred to represent the n samples x1, . . . , xn
by the k centres µ1, . . . , µk. The optimal partition is the one that minimizes Jc, whose
value depends on how the samples are grouped into clusters and the number of clusters.
This type of clustering is called minimum variance partition.

2.5.2 Similarity Measures

The clustering problem consists of finding a natural group of data that satisfies both an
internal and external criterion. In order to define that samples in one cluster are more
similar to one another than the samples in other clusters, a similarity measure must be
defined. The most straightforward way to defining similarity or dissimilarity between two
points is to use the distance between them. The distances most often used for a numerical
data x, y ∈ Rm are based on L2, L1 and L∞ norm.

12

L2 norm is the Euclidean, distance defined by

d(x, y) = ((
m∑
i=1

|xi − yi|2)
1
2), (2.8)

L1 norm, which is also known as city block metric, and is defined by

d(x, y) = (
m∑
i=1

|xi − yi|), (2.9)

and L∞ norm or Chebyshev distance, defined by

d(x, y) = max
i

(|xi − yi|). (2.10)

A non-metric similarity function s(x, y) is another type of measurement that can be
used is to compare the angular similarity of two vectors x and y. Conventionally, this
function is symmetric and its value is large when x and y are similar in some way. The
function can, for example, be used to measure the angle between vectors x and y. In fact,
this measurement is the cosine of the angle between them.

s(x, y) =
xty

‖x‖‖y‖ (2.11)

Other types of similarity measurements are specific to categorical (nominal) data, in-
cluding Hamming distance (the number of attributes taking different values) and edit
distances. Yet, another class of similarity measures is based on kernels. Next section
discusses the use of kernel as a similarity measurement.

2.5.3 Kernel as Similarity Measure

Let us denote a set of n objects by S = (xi, . . . xn). Suppose that each object xi is an
element of a set X , and therefore, a representation φ(x) ∈ F is defined for each object. In
a classical representation the data set S is denoted as φ(S) = (φ(x1, . . . , φ(nn)). All the
methods explained above are based on this classical, individual representation of the data
as feature vectors. However, there is a whole family of methods based on a set of pairwise
comparisons. In other words, they are represented as real-valued comparison functions

13

k : X × X → R, and the data set S is represented by the n × n matrix of pairwise
comparisons ki,j = k(xi, xj) [42]. This type of representation produces squared matrices,
which are completely independent of the nature of the objects being analyzed. As a result,
data of different natures can be analyzed with this unified framework, which is part of a
family of algorithms known as “kernel methods.”

2.6 Clustering Algorithms

Clustering algorithms are mainly categorized into partitional and hierarchical [1]. The
choice of which type of algorithms to use depends on the nature of the data being analyzed
and the prior knowledge available about the data. Figure 2.2 provides an overview of
the main types of clustering algorithms. This subsection will briefly introduces these two
categories.

2.6.1 Partitional Clustering

Partitioning algorithms, also known as “flat clustering”, divide data points into non-
overlapping clusters in order to optimize a certain criterion function such as the one defined
in Section 2.5.1. A standard algorithm that gives an effective representation of the parti-
tioning category is the k -means algorithm. The goal of k -means is to group the data points
into k partitions such that the distance between the points in each cluster and its centroid
is minimized. Refer to Algorithm 1, which outlines the algorithm’s pseudocode.

The algorithm performs a greedy minimization of the criterion function; however, there
is no guarantee of reaching a global minimum. The quality of the obtained solution depends
on the initial partitioning of the data points. An heuristic for obtaining a better (albeit
not optimal) solution is to repeat the algorithm, starting from different initial solutions,
and to return the solution with the minimum value of the criterion function.

Another partitioning algorithm is called k -medoids. K -medoids is a variation of k -
means, which instead of using the mean point to define the centre of the clusters, it uses
actual points to represent the cluster. As a result, this method is more robust to noises and
outliers. K -medoids determines the k centres, which are actual points, by minimizing the
sum of the distances between each point and the nearest centre. The Partitioning around
Medoids (PAM) is a method that implements this approach, and its time complexity is
O(K(N −K)2I), where N is the number of points, K is the number of clusters, and I the
number of iterations to converge [43].

14

Clustering	
Algorithms	

Hierarchical	

Agglomera3ve	

Single	 Link	

Complete	 Link	

Divisive	

Par33onal	

Distribu3on/
density	

Mixture	
models	

DBScan	

Squared-‐error	

k-‐means	

Kernel	 k-‐
means	

Graph	
theore3c	

Spectral	

MST	

Nearest	
neighbor	

1	 to	 k-‐NN	

Figure 2.2: Taxonomy of clustering algorithms. [1]

Kernel Clustering

As discussed in Section 2.5.3, there is a family of methods (kernel methods) that use square
matrices that are symmetric-positive-definite. In other words, if k is an n × n matrix of
pairwise comparisons, it should satisfy ki,j = kj,i for any 1 ≤ i, j ≤ n, and c>kc ≥ 0 for
any c ∈ Rn, as described in [42]. This family of methods includes approaches such as SVM
[44], PCA, kernel k -means [45], Spectral Clustering [46], non-negative matrix factorization
(NMF) [47], and kernel Self-Organizing Maps [48].

Kernel k -means is one of the simplest kernel clustering algorithms, and is a non-linear
extension of the k -means. In kernel k -means, the Euclidean distance function is simply
replaced by a non-linear distance function, which has the capacity of projecting the data
into higher dimensions.

Kernel k -means is a partitioning clustering algorithm, in which n data points are divided

15

Algorithm 1 k -means

1: Choose randomly k points centres C1,...,Ck.
2: while the clusters are changing do
3: Reassign the data points.
4: for i = 1→ n do
5: Assign data point xi to the cluster whose centre Cj is closest
6: end for
7: end while
8: Update the cluster centrers.
9: for j = 1→ k do
10: nj = number of points in Cj;
11: cj = 1

nj

∑
xi∈Cj xi

12: end for

into k disjoint groups by minimizing the within-cluster variation. It finds the partition of
the data that is a local optimum of the following energy function:

Jkkm(G) =
k∑
c=1

n∑
i=1

gci ‖φ(xi)− zc‖2︸ ︷︷ ︸
dist2φ(xi, zc)

= ‖X− ZG‖2F , s.t.GT1k = 1n, (2.12)

where xi ∈ Rd (see notation1.) is a vector representing the ith data point, φ(.) is a
nonlinear mapping function, and zc ∈ Rd represents the centroid of the data points in
cluster c. Matrix G ∈ {0, 1}k×n indicates, in a binary format, the cluster to which xi
belongs, and Z ∈ Rd×n is the actual value of the means.

The squared distance between the ith element and the centre of the cluster c represented
by dist2φ(xi, zc) can be calculated as:

dist2φ(xi, zc) = ki,i −
2

nc

n∑
j=1

gcjkij +
1

n2
c

n∑
j1,j2=1

gcj1gcj2kj1j2 , (2.13)

where nc =
∑n

j=1 gcj represents the total number of samples that are in cluster c, and the

kernel function k is given by kij = φ(xi)
Tφ(xj).

1Bold capital letters denote a matrix X, bold lower-case letters a column vector x

16

Kernel k -means follows the same approach as regular k -means, and assigns a data point
xi to the cluster whose mean ż, which was computed in the previous step, it is closest to,
that is

gc∗i = 1, where c∗i = arg min
c

dist2φ(xi, żc). (2.14)

The algorithm subsequently updates the new cluster centres. Although kernel k -means
cannot explicitly compute the centres, there is no need to do so, because the distances
dist2φ(xi, żc) between the samples and the means can be retrieved from the kernel matrix.

2.6.2 Hierarchical Clustering

Hierarchical algorithms construct the clusters by building a nested structure or tree, also
known as dendrogram (Figure 2.3). The root of the tree represents the top cluster, and
the leaf nodes represent the singleton clusters.

1 7 2 4 3 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Si
m
ila
rit
y

Figure 2.3: Dendrogram

Unlike partitioning algorithms, hierarchical clustering does not require the number of
clusters to be specified. However, a flat-partition can be obtained by traversing the root

17

of the dendrogram until a number of clusters arise. A flat-partition can also be acquired
by defining a threshold of the combination similarity between clusters and cutting off the
tree at this specific point.

The strategy for construction of the tree can be generated in two ways: agglomerative
hierarchical clustering (AHC) or divisive hierarchical clustering (DHC). AHC begins with
singleton clusters, and then merges the most similar pairs of clusters until all data is
grouped in one cluster. DHC operates in the opposite direction, with all the data points as
one cluster, and then a partition of the dissimilar groups into separate clusters until each
point becomes a singleton.

Of the two approaches AHC is more commonly used in applications ostensibly because
the DHC criterion is less natural and more computationally expensive. Instances of AHC
differ in their methods of calculating the similarities and distances between pairs of clusters.
The most common methods are:

1. Single-link clustering: The distance between two clusters is computed as the
distance between the two closest elements in the two clusters.

d(Ci, Cj) = min{d(xi, xj)|∀xi ∈ Ci,∀xj ∈ Cj (2.15)

2. Complete-link clustering: The distance between two clusters is computed as the
maximum distance between the farthest elements in two clusters.

d(Ci, Cj) = max{d(xi, xj)|∀xi ∈ Ci,∀xj ∈ Cj (2.16)

3. Average-link clustering: The distance between two clusters is computed as the
average distance between objects from the first cluster and objects from the second
cluster.

d(Ci, Cj) =
1

|Ci| × |Cj|
∑
xi∈Ci
xj∈Cj

d(xi, xj) (2.17)

The dendrogram that is generated using the hierarchical algorithm displays the struc-
ture of the data distribution. This type of structure allows for the number of clusters to
be chosen a posterior, unlike from k -means and k -median, which require a priori number
of clusters.

18

Hierarchical clustering algorithms possess some limitations. AHC follows a greedy pro-
cess in order to decide whether to merge or split clusters. The decision, once made, is
never reconsidered in later steps. Another limitation of AHC is its computational com-
plexity (O(N3)) in the worst-case for computing pairwise similarities and iterations.

AHC includes many other approaches beyond those described above. Some of these
alternatives use hybrid algorithms, such as BIRCH (Balanced Iterative Reducing and
Clustering using Hierarchies) [49], to address the aforementioned limitations. Other al-
gorithms include CURE (Clustering Using REpresentatives), ROCK (RObust Clustering
using linKs), CHAMELEON, and SOTM (Self-organizing Hierarchical Variance Map) [50].

2.7 Semi-Supervised Clustering

In machine learning, unsupervised methods such as clustering algorithms have been used
in a variety of tasks, though mainly in exploratory data analysis. Some examples of these
tasks include group discovery, data compression, dimensionality reduction, and outlier
detection. In some certain tasks, some expert knowledge may be available, such as labels,
relationship between data, or global assumption that are part of the domains. The process
of leveraging extra knowledge is known as “semi-supervised learning”. Semi-supervised
learning exists at the intersection between supervised and unsupervised learning, and falls
into two categories:

1. Semi-supervised classification: Tasks falling into this category are, essentially,
supervised in the presence of low quantities of supervision. Semi-supervised classi-
fication uses the addition of unlabelled data to help supervised classifier learning.
Semi-supervised classification nevertheless suffers from the same limitations as other
supervised methods, including a priori knowledge of the number of classes and a
minimum number of training samples for each class.

2. Semi-supervised clustering: Also known as constrained clustering, semi-supervised
clustering is essentially an unsupervised method that uses the addition of some super-
vision to support the clustering process. Classes are not known beforehand; therefore,
there is no need for a minimum number of data samples for each class.

The reason why semi-supervised clustering is also known as “constrained clustering”
is because constraints are the typical approach to leveraging supervision in the clustering

19

process. These constraints usually come in pairs, and are commonly known as “pairwise
constraints.”

Methods such Constrained K-means Clustering with Background Knowledge represent
a category of semi-supervised clustering algorithms. COP-KMEANS, as the authors of
[3] call their algorithm, is a modification of the popular k -means algorithm that uses
instance-level constraints in the form of must-link and cannot-link constraints. During the
assignment phase of k -means, in which points are assigned to the closest clusters, COP-
KMEANS ensures that no constraint is broken, guiding the clustering process towards a
more appropriate partitioning of the data.

Basu et al. [51] propose a probabilistic model for semi-supervised clustering, based on
Hidden Markov random fields (HMRFs). Their model is a combination of a constraint-
based method, which uses constraints to modify the objective function, and a distance-
based method, which trains similarities to satisfy constraints. This method partitions the
data into k clusters, such that the total distortion between the points and the representa-
tives of the clusters is minimized, and a minimum number of constraints are violated in
the process.

Anand et al. [4] propose a kernel mean shift algorithm that incorporates pairwise
constraints. Their method first maps the data to a high-dimensional kernel space. Then,
by using a linear transformation, the points are projected to a space where the constraints
are enforced. The authors show that this transformation can be achieved implicitly by
modifying the kernel matrix. This method is another effort directed towards transforming
an established clustering algorithm into semi-supervised clustering.

2.7.1 Pairwise Constraints

The use of extra knowledge in the clustering process can be of great value for improving
accuracy, or even for creating clusters with desirable geometric properties [52]. One way of
incorporating this extra knowledge is through the introduction of constraints. Constraints
can be introduced at the cluster level (group of instances), in ways such as constraining the
size of a cluster [53], constraining neighbours in a cluster to be within a certain threshold
distance [54], or forcing time contiguity of instances in a temporal clustering [55]. Con-
straints can also be introduced at the instance level. The most common instance-level
constraints are must-link and cannot-link [56]. A must-link constraint denotes that two
instances x and y must be in the same cluster, whereas a cannot-link constraint denotes
that two instance x and y must not be in the same cluster. Figure 2.4 illustrates the con-
cept of must-links and cannot-links. In many situations where there is no domain expert

20

available, feedback in the form of these two constraints is easier to acquire, compared to
the actual label. Since must-link constraints share symmetrical, reflexive, and transitive
properties, it can be inferred that, if (x, y) ∈M and (y, z) ∈M ⇒ (x, z) ∈M, where M
represents a set of must-links. Therefore, it is possible to infer extra pairs of constraints
by applying transitive closure.

Must-link
Cannot-link

Figure 2.4: Pairwise constraints in the form of must-link and cannot-link

The use of pairwise constraints can also contribute to seeding the cluster initialization.
For example, during cluster initialization, points that are must-links should start in the
same cluster, whereas points that are cannot-links should start in different clusters.

2.8 Temporal Clustering

Temporal clustering (TC) can be defined as the partitioning of multiple time series into a
set of non-overlapping segments that belong to k temporal clusters [38]. Temporal clus-
tering is similar to normal clustering in that both require a similarity measures, clustering
algorithms, and evaluation criteria; however, the temporal nature of the data requires spe-
cial treatment when it comes to one or more of these components. The two major ways
of handling time series are either to modify existing static data-clustering algorithms to
handle time, or to convert the time series into a form that works with static algorithms.
The former approach relies, in most cases, on modifying the similarity measure to an ap-
propriate measure of time series, such as DTW and DTAK. The latter maps the time series
into a different representation or domain that embeds the temporal information – such as
Wavelets, Fourier, and Haar transform [9] – or into a number of model parameters, and
then applies the conventional static data clustering algorithm.

21

Temporal clustering can be used as a tool to solve segmentation problems. Applying a
clustering approach to the segmentation problem requires global modelling of all temporal
segments in a time series, instead of only finding local boundaries. As a result, simply
using some of the traditional time series segmentation techniques, such as change point
detection, may not produce satisfactory results. HACA [25] and ACA [7] solve this problem
by minimizing errors across various segments for each k cluster, yet, all of these methods
lack mechanisms for adding supervision.

Most of the time series clustering techniques, such as the ones reviewed in [57], assume
that the time series are already segmented, which underlies the main difference between
the traditional time series clustering techniques and TC.

2.9 Related Work

Semi-supervised temporal clustering, as its name suggests, combines temporal and semi-
supervised clustering in order to perform temporal segmentation. Much like general clus-
tering approaches, temporal segmentation using clustering may not produce satisfactory
results, due to being a completely unsupervised approach. In some situations, however,
prior high-level knowledge exists about the segments, or some labeled data is available.
This information can be used to aid the clustering algorithm.

However, there are few methods discussed in the literature dealing with both temporal
and semi-supervised aspects. Of the few methods available, temporal-driven constrained k -
means (TDCK) [55] shows the best results compared to other methods such as TCK-means
[58], Constrained k -means, and Temporal-Driven k -means, as described in [59]. TDCK
offers a framework to model external information and add it to an unsupervised algorithm.
Originally created as a solution to the problem of detecting typical evolution patterns,
such as country evolutions, TDCK also provides benefits to applications for social network
analysis, such as detecting social roles. Intuitively, TDCK adds must-links between all the
pairs of observations belonging to the same entity. This mechanism, however, restricts the
method to lower control at the instance level, and does not allow the use of cannot-links.

[60] describes a similar method, which combines discriminative cluster analysis (DCA)
with a temporal and a semi-supervised term. The paper describes a semi-supervised tempo-
ral clustering algorithm used to group large amounts of multimodal data into different ac-
tivities. Similar to the approach used in [55], the constraints penalize non-smooth changes
(over time) on the assigned clusters. However, there is no control over the granularity of
the temporal term, and there is also no robust metric between time series.

22

2.9.1 Temporal-Driven Constrained K-means

The goal of TDCK is to cluster observations xi ∈ X , which are descriptions of entities
at a given timestamp written as triples (entity, timestamp, description): xi = (xφi , x

t
i, x

d
i),

where xdi ∈ D is the vector in the multidimensional description space that describes the
entity xi ∈ Φ in time xti ∈ T , while taking into account both the temporal component and
the multidimensional description [59]. TDCK-means searches to minimize the following
objective function:

∑
µj∈M

∑
xi∈Cj

‖xi − µj‖TA +
∑
xk /∈C|
xφk=x

φ
i

w(xi, xk)

 , (2.18)

where ‖·‖TA is a temporal dissimilarity measure, w(xi, xj) is the cost function that de-
termines the penalty of clustering adjacent observations of the same entity into different
clusters, and Cj is the set of observations in cluster j.

The temporally-aware dissimilarity measure combines distances, both in the multidi-
mensional space D and in the time space T , and is described as follows:

‖xi − xj‖TA = 1−
(

1− γd
‖xdi − xdj‖2

∆x2max

)
×(

1− γt
‖xti − xtj‖2

∆t2max

)
,

(2.19)

where γd is the weight given to the multidimensional component of the temporally-aware
dissimilarity measure, and γt is the weight of the temporal component. The cost function
w(xi, xj) encourages temporally-adjacent observations that belong to the same entity to
be assigned to the same cluster. The cost function is defined as:

w(xi, xj) = β × e−
1
2

(
‖xti−x

t
j‖

δ

)2

1[xφi = xφj] (2.20)

[59] compares TDCK to other methods available in the literature – such as TCK-
means [58], Constrained k -means, Temporal-Driven k -means – and proves it to be the
most effective approach to temporal clustering.

23

Chapter 3

Proposed Semi-Supervised Temporal
Clustering

The problem addressed in this research is different from simple clustering of time series,
which refers to the problem of clustering time series when they are already segmented.
More specifically, it is a temporal clustering problem, which is explained in Section 3.1. The
main goal of this chapter is to explain the process of adding side information to a temporal
clustering algorithm. The approaches proposed in this chapter are an extension of aligned
cluster analysis (ACA), a temporal-clustering method, which is described in Section 3.2.
The particular mechanism of which side information is added to the clustering method
is based on the semi-supervised kernel k -means framework, which is explained in Section
3.3. Sections 3.4 and 3.5 detail the two proposed methods, semi-supervised aligned cluster
analysis (SSACA) and semi-supervised temporal spectral clustering (SSTSC), and Section
3.6 discusses a constraint-propagation mechanism used to extend SSACA and SSTSC. The
extended methods are discussed in Sections 3.7 and 3.8. Finally, Section 3.9 elaborates on
the use of constraints on semi-supervised methods, and Section 3.10 explains the differences
between the proposed methods and subsequence time series (STS).

3.1 The Problem of Temporal Clustering

Given a time series X = [x1, . . . , xn] ∈ Rd×n, find a vector s ∈ Rm that contains the
start positions of m segments, where m is the total number of segments, and each segment
X[sj ,sj+1) starts at the position sj, and ends at the position sj+1 − 1, such that similar

24

segments are grouped into k clusters, as illustrated in Figure 3.1. In other words, temporal
clustering (TC) performs temporal segmentation while simultaneously grouping segments
into similar clusters. Although TC is a relatively less explored problem, it is especially
important for applications such as human motion analysis, audio-visual emotion analysis,
animal behaviour analysis, and speaker diarization.

a posterior, di↵erently from k -means and k -median that need to have a priori number of
clusters defined.

There are some limitations of the Hierarchical clustering algorithms. AHC, alike, par-
titioning algorithm fallows a greedy process to decide on whether to merge or split clusters
and this decision is never reconsidered in further steps. Another limitation of AHC is the
computational complexity (O(N3)) in the worst-case for computing pairwise similarity and
iterations

There as many other approaches for AHC, some of them uses hybrid algorithms to
address the above limitations such as BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies) [46]. Others algorithms are CURE (Clustering Using REpresentatives),
ROCK (RObust Clustering using linKs), and CHAMELEON.

2.6 Temporal Clustering

Temporal clustering (TC) can be defined as the factorization of multiple time series into
a set of non-overlapping segments that belong to k temporal clusters [21]. Given a time
series X = [x1, . . . , xn] 2 Rd⇥n, define a set of segments S = [sj, sj+1, . . . , sm] where sj

is limited by a maximum length nmax and m is the total number of segments, such that
similar segments are grouped in clusters. Although a relatively unexplored problem, TC
is especially important in applications like human motion analysis, audio-visual emotion
analysis, animal behaviour analysis, speaker diarization, etc.

Temporal clustering is similar to normal clustering, which also requires a similarity
measure, a clustering algorithm, and an evaluation criterion; however, the temporal nature
of the data requires special treatment at one or more of these components. The two major
ways to handle time series are to either modify existing static data clustering algorithms
to handle time, or to convert the time series into a form that works with static algorithms.
The former approach relies, in most cases, on modifying the similarity measure to an
appropriate measure of time series, for example, dynamic time warping (DTW). The latter
maps the time series into a di↵erent representation or domain that embeds the temporal
information, such as Wavelets, Fourier, and Haar transform [16]; or into a number of model
parameters and then applies the conventional static data clustering algorithm.

Temporal clustering can be an important tool for segmentation, which is the basis for
solving the problems of the applications described before. Applying a clustering approach
to the segmentation problem requires a global modelling of all temporal segments in a
time series instead of finding local boundaries only. As a result, simply using some of

15

a posterior, di↵erently from k -means and k -median that need to have a priori number of
clusters defined.

There are some limitations of the Hierarchical clustering algorithms. AHC, alike, par-
titioning algorithm fallows a greedy process to decide on whether to merge or split clusters
and this decision is never reconsidered in further steps. Another limitation of AHC is the
computational complexity (O(N3)) in the worst-case for computing pairwise similarity and
iterations

There as many other approaches for AHC, some of them uses hybrid algorithms to
address the above limitations such as BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies) [46]. Others algorithms are CURE (Clustering Using REpresentatives),
ROCK (RObust Clustering using linKs), and CHAMELEON.

2.6 Temporal Clustering

Temporal clustering (TC) can be defined as the factorization of multiple time series into
a set of non-overlapping segments that belong to k temporal clusters [21]. Given a time
series X = [x1, . . . , xn] 2 Rd⇥n, define a set of segments S = [sj, sj+1, . . . , sm] where sj

is limited by a maximum length nmax and m is the total number of segments, such that
similar segments are grouped in clusters. Although a relatively unexplored problem, TC
is especially important in applications like human motion analysis, audio-visual emotion
analysis, animal behaviour analysis, speaker diarization, etc.

Temporal clustering is similar to normal clustering, which also requires a similarity
measure, a clustering algorithm, and an evaluation criterion; however, the temporal nature
of the data requires special treatment at one or more of these components. The two major
ways to handle time series are to either modify existing static data clustering algorithms
to handle time, or to convert the time series into a form that works with static algorithms.
The former approach relies, in most cases, on modifying the similarity measure to an
appropriate measure of time series, for example, dynamic time warping (DTW). The latter
maps the time series into a di↵erent representation or domain that embeds the temporal
information, such as Wavelets, Fourier, and Haar transform [16]; or into a number of model
parameters and then applies the conventional static data clustering algorithm.

Temporal clustering can be an important tool for segmentation, which is the basis for
solving the problems of the applications described before. Applying a clustering approach
to the segmentation problem requires a global modelling of all temporal segments in a
time series instead of finding local boundaries only. As a result, simply using some of

15

a posterior, di↵erently from k -means and k -median that need to have a priori number of
clusters defined.

There are some limitations of the Hierarchical clustering algorithms. AHC, alike, par-
titioning algorithm fallows a greedy process to decide on whether to merge or split clusters
and this decision is never reconsidered in further steps. Another limitation of AHC is the
computational complexity (O(N3)) in the worst-case for computing pairwise similarity and
iterations

There as many other approaches for AHC, some of them uses hybrid algorithms to
address the above limitations such as BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies) [46]. Others algorithms are CURE (Clustering Using REpresentatives),
ROCK (RObust Clustering using linKs), and CHAMELEON.

2.6 Temporal Clustering

Temporal clustering (TC) can be defined as the factorization of multiple time series into
a set of non-overlapping segments that belong to k temporal clusters [21]. Given a time
series X = [x1, . . . , xn] 2 Rd⇥n, define a set of segments S = [sj, sj+1, . . . , sm] where sj

is limited by a maximum length nmax and m is the total number of segments, such that
similar segments are grouped in clusters. Although a relatively unexplored problem, TC
is especially important in applications like human motion analysis, audio-visual emotion
analysis, animal behaviour analysis, speaker diarization, etc.

Temporal clustering is similar to normal clustering, which also requires a similarity
measure, a clustering algorithm, and an evaluation criterion; however, the temporal nature
of the data requires special treatment at one or more of these components. The two major
ways to handle time series are to either modify existing static data clustering algorithms
to handle time, or to convert the time series into a form that works with static algorithms.
The former approach relies, in most cases, on modifying the similarity measure to an
appropriate measure of time series, for example, dynamic time warping (DTW). The latter
maps the time series into a di↵erent representation or domain that embeds the temporal
information, such as Wavelets, Fourier, and Haar transform [16]; or into a number of model
parameters and then applies the conventional static data clustering algorithm.

Temporal clustering can be an important tool for segmentation, which is the basis for
solving the problems of the applications described before. Applying a clustering approach
to the segmentation problem requires a global modelling of all temporal segments in a
time series instead of finding local boundaries only. As a result, simply using some of

15

a posterior, di↵erently from k -means and k -median that need to have a priori number of
clusters defined.

There are some limitations of the Hierarchical clustering algorithms. AHC, alike, par-
titioning algorithm fallows a greedy process to decide on whether to merge or split clusters
and this decision is never reconsidered in further steps. Another limitation of AHC is the
computational complexity (O(N3)) in the worst-case for computing pairwise similarity and
iterations

There as many other approaches for AHC, some of them uses hybrid algorithms to
address the above limitations such as BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies) [46]. Others algorithms are CURE (Clustering Using REpresentatives),
ROCK (RObust Clustering using linKs), and CHAMELEON.

2.6 Temporal Clustering

Temporal clustering (TC) can be defined as the factorization of multiple time series into
a set of non-overlapping segments that belong to k temporal clusters [21]. Given a time
series X = [x1, . . . , xn] 2 Rd⇥n, define a set of segments S = [sj, sj+1, . . . , sm] where sj

is limited by a maximum length nmax and m is the total number of segments, such that
similar segments are grouped in clusters. Although a relatively unexplored problem, TC
is especially important in applications like human motion analysis, audio-visual emotion
analysis, animal behaviour analysis, speaker diarization, etc.

Temporal clustering is similar to normal clustering, which also requires a similarity
measure, a clustering algorithm, and an evaluation criterion; however, the temporal nature
of the data requires special treatment at one or more of these components. The two major
ways to handle time series are to either modify existing static data clustering algorithms
to handle time, or to convert the time series into a form that works with static algorithms.
The former approach relies, in most cases, on modifying the similarity measure to an
appropriate measure of time series, for example, dynamic time warping (DTW). The latter
maps the time series into a di↵erent representation or domain that embeds the temporal
information, such as Wavelets, Fourier, and Haar transform [16]; or into a number of model
parameters and then applies the conventional static data clustering algorithm.

Temporal clustering can be an important tool for segmentation, which is the basis for
solving the problems of the applications described before. Applying a clustering approach
to the segmentation problem requires a global modelling of all temporal segments in a
time series instead of finding local boundaries only. As a result, simply using some of

15

a posterior, di↵erently from k -means and k -median that need to have a priori number of
clusters defined.

There are some limitations of the Hierarchical clustering algorithms. AHC, alike, par-
titioning algorithm fallows a greedy process to decide on whether to merge or split clusters
and this decision is never reconsidered in further steps. Another limitation of AHC is the
computational complexity (O(N3)) in the worst-case for computing pairwise similarity and
iterations

There as many other approaches for AHC, some of them uses hybrid algorithms to
address the above limitations such as BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies) [46]. Others algorithms are CURE (Clustering Using REpresentatives),
ROCK (RObust Clustering using linKs), and CHAMELEON.

2.6 Temporal Clustering

Temporal clustering (TC) can be defined as the factorization of multiple time series into
a set of non-overlapping segments that belong to k temporal clusters [21]. Given a time
series X = [x1, . . . , xn] 2 Rd⇥n, define a set of segments S = [sj, sj+1, . . . , sm] where sj is
limited by a maximum length nmax and m is the total number of segments. Each segment
X[sj ,sj+1)starts at sj and end at sj+1�1, such that similar segments are grouped in clusters.
Although a relatively unexplored problem, TC is especially important in applications like
human motion analysis, audio-visual emotion analysis, animal behaviour analysis, speaker
diarization, etc.

Temporal clustering is similar to normal clustering, which also requires a similarity
measure, a clustering algorithm, and an evaluation criterion; however, the temporal nature
of the data requires special treatment at one or more of these components. The two major
ways to handle time series are to either modify existing static data clustering algorithms
to handle time, or to convert the time series into a form that works with static algorithms.
The former approach relies, in most cases, on modifying the similarity measure to an
appropriate measure of time series, for example, dynamic time warping (DTW). The latter
maps the time series into a di↵erent representation or domain that embeds the temporal
information, such as Wavelets, Fourier, and Haar transform [16]; or into a number of model
parameters and then applies the conventional static data clustering algorithm.

Temporal clustering can be an important tool for segmentation, which is the basis for
solving the problems of the applications described before. Applying a clustering approach
to the segmentation problem requires a global modelling of all temporal segments in a

15

...

Figure 3.1: Temporal Clustering

Aligned Cluster Analysis, which is discussed in Section 3.2, is a method that tackles
this problem by minimizing an objective function through dynamic programming (DP).

3.2 Aligned Cluster Analysis (ACA)

Aligned cluster analysis (ACA) [7] is an extension of the kernel k -means clustering algo-
rithm that takes into account temporal ordering of frames. ACA combines kernel k -means
with dynamic time alignment kernel (DTAK) (see Section 2.2.2 for details)

The goal of ACA is to decompose a segment X = [x1, . . . ,xn] ∈ Rd×n into m disjoint
segments, where each segment belongs to a single k cluster. Each segment is constrained
by a maximum length nmax, which controls the temporal granularity of the segmentation,
and it is defined as an input parameter. The ith segment Yi = X[si,si+1) = [xsi , . . . ,xsi+1]
begins at position si and ends at si+1 − 1, such that ni = si+1 − si ≤ nmax. An indicator
matrix G ∈ {0, 1}k×m assigns each segment to a cluster: gci = 1 if Yi belongs to cluster c;
otherwise, gci = 0.

ACA achieves temporal clustering by minimizing:

25

Jaca(G, s) =
k∑
c=1

m∑
i=1

gci ‖ψ(X[si,si+1))− zc‖2︸ ︷︷ ︸
dist2ψ(Yi, zc)

=

‖[ψ(Y1), . . . , ψ(Ym)− ZG‖2F ,
s.t.GT1k = 1m and si+1 − si ∈ [1, nmax],

(3.1)

where G ∈ {0, 1}k×m is a cluster indicator matrix, and s ∈ Rm+1 is the vector that
contains the start1 of each segment.Y = X[si,si+1) indicates a segment. In the case of ACA,
the dist2ψ(Yi, zc) is the squared distance between the ith segment and the centre of cluster
c in the nonlinear mapped feature space represented by ψ(.); that is,

dist2ψ(Yi, zc) = τi,i −
2

mc

m∑
j=1

gcjτij +
1

m2
c

m∑
j1,j2=1

gcj1gcj2τj1j2 , (3.2)

where mc =
∑m

j=1 gcj represents the total number of segments in cluster c, and the dynamic

kernel function τ is given by τij = ψ(Yi)
Tψ(Yj). Equation 2.5 shows this calculation using

DTAK.

Optimizing the temporal clustering problem described in Equation 3.2 is NP-hard.
However, by applying a coordinate-descent scheme that uses dynamic programming to
compute s and G with a winner-takes-all strategy, it is possible to produce an efficient
solution.

3.2.1 Optimization of ACA

The strategy proposed by [25] consists of breaking the problem into the following subprob-
lems at each iteration:

G, s = arg min
G,s

Jaca(G, s) = arg min
G,s

k∑
c=1

m∑
i=1

gcidist
2
ψ(Yi, żc) (3.3)

1There is a dummy position sm+1 = n+ 1 kept for the last segment.

26

where żc is the implicitly computed cluster mean from the segmentation (Ġ, ṡ), calculated
in the previous step. Trying to find all the possible segments by brute force is an infeasible
task: for a segment of length n, the number of possible segments s is O(2n). However, using
a dynamic-programming-based algorithm, it is possible to make the complexity polynomial
instead of exponential.

Equation 3.3 can be rewritten as

Jaca(G, s) =
k∑
c=1

m∑
i=1

gcidist
2
ψ(Yi, zc). (3.4)

To take advantage of the relationship between G and s an auxiliary function, J(·) : [1, n]→
R,

J(v) = min
G,s

Jaca (G, s) |x[1,v]
(3.5)

was created. This auxiliary function relates the minimum energy directly with the tail
position v of the subsequence X[1,v) = [x1,x2, . . . ,xv]. Moreover, J(·) satisfies the principle
of optimality, i.e.,

J(v) = min
1<i≤v

(
J(i− 1) + min

G,s
Jaca(G, s)|x[1,v]

)
, (3.6)

which suggests that an optimal decomposition of subsequence X[1,v] is only achieved when
the two sides X[1,i−1] and X[i,v] are optimal, and their sum is minimal. By using Bellman’s
equation,

J(v) = min
v−nmax<i≤v

(
J(i− 1) + min

g

k∑
c=1

gcdist
2
ψ(X[i,v], żc)

)
, (3.7)

where dist2ψ(X[i,v], żc) is the squared distance between the segment X[i,v] and the centre of
the cluster c:

dist2ψ(X[i,v], żc) = τ(X[i,v],X[i,v])−
2

ṁc

ṁ∑
j=1

ġcjτ(X[i,v], Ẏj)+

1

ṁ2
c

ṁ∑
j1,j2=1

ġcj1 ġcj2τ(Ẏj1 , Ẏj2).

(3.8)

27

Once v = n, the function J(n) possesses the optimal segmentation that is being sought.
The inner values i∗v and g∗v = arg mini,g J(v) are the intermediate values of head position
and label of the last segment, respectively.

The ACA algorithm is divided into two phases: forward step and backward step. Before
beginning the forward step, the sequence X of length n is randomly segmented. In the
forward step, the algorithm scans from the beginning (v = 1) of the sequence to its end
(v = n). For each v, the respective J(v) is computed as described in Equation 3.7. For
every position i−nmax < i < v−1, the DTAK between the segment X[i,v] and each segment
Yj of each of the clusters, which is precomputed in the last iteration. Because the mean of
each cluster cannot be explicitly calculated, the values that are stored internally are the
head position i∗v, the label g∗v, and J(v) that has the lowest value. Once the forward step
is complete, the algorithm starts the backward step, which traces back from the end of
the sequence (v = n) and cuts off the segment whose head s = i∗v. The indicator vector
g = g∗v can be retrieved from the stored positions. This operation is repeated for the entire
sequence (v = i∗v − 1). Both steps are repeated until J(n) converges.

3.3 Applying Semi-Supervised Framework to ACA

A theoretical equivalence between weighted kernel k -means and graph clustering has been
shown, unifying several vector- and graph-based approaches [5]. One implication of this
unification is that a single algorithm for semi-supervised clustering includes several objec-
tive functions in the same framework as special cases. Weighted Kernel k -means objec-
tive function captures a number of semi-supervised clustering objective functions, such as
HMRF k -means. HMRF k -means, with a certain distance and class of constraint penalty
function, can be expressed as a special case of weighted kernel k -means.

The semi-supervised clustering objective of HMRF can be expressed as

JHMRF (Z,G) =
k∑
c=1

n∑
i=1

gci‖xi − zc‖2

−
∑

xi,xj∈M
gi=gj

wij +
∑

xi,xj∈C
gi=gj

wij,
(3.9)

where M is the set of must-link constraints, C is the set of cannot-link constraints, wij
is the constant cost for violating or complying with a constraint xi and xj, and gi refers

28

to the cluster label of xi. There are three terms in this objective function. The first
term is the unsupervised k -means term of the objective function. The distance ‖xi − zc‖2
can be represented as a matrix of pairwise squared Euclidean distances among the data
points (see [5] for proof). We refer later to this distance matrix as S. The second term is
based on the must-link constraints, which state that, every xi and xj that are must-links,
and are in the same cluster, have satisfied that constraint, and, as a result, the objective
function is rewarded by subtracting some pre-specified weight. Similarly, the third term
in the objective function states that, every xi and xj that are cannot-links, and are in
the same cluster, have violated that constraint, so the objective function is penalized by
some pre-specified penalty weight. Later, the second and third terms of the function are
incorporated in a single matrix W.

As previously mentioned, for the equivalence of the HMRF k-means and the weighted
kernel k -means to hold, it is necessary to construct a specific kernel matrix and set weights
in a certain way. A kernel matrix K should have two components: K = S + W. S is the
similarity matrix and comes from the unsupervised term, while W is the constraint matrix,
which incorporates the penalties and rewards of the constraints. Thus, this objective
function is mathematically equivalent to the weighted kernel k -means objective function.
In other words, weighted kernel k -means can be used to decrease the objective function.

It may be the case that K is not positive semidefinite, a requirement for the kernel
k -means to converge. This problem can be avoided by performing diagonal shifting [5],
which does not change the global optimal solution. However, in practice, it was observed
that diagonal shifting was not necessary in order to guarantee convergence.

ACA, as discussed in Section 3.2, is derived from kernel k -means. In fact, ACA is a
segment-based kernel k -means controlled by a length constraint nmax. If nmax = 1, each
segment consists of a single frame, and ACA becomes a special case of kernel k -means.

3.4 Semi-Supervised ACA (SSACA)

In semi-supervised aligned cluster analysis (SSACA), the equivalence of ACA and
weighted kernel k -means is used to incorporate the kernel k -means semi-supervised frame-
work into ACA. Therefore, the two cost terms, which are derived from the must-link and
cannot-link, are incorporated into the objective function. The must-links and cannot-links
are informed as inputs to the algorithm, defined by the user in the form of pairs of segments
(vectors containing the start and end of each segment). Thus, the objective function of
SSACA can be written as

29

Jssaca(G, s) =
k∑
c=1

m∑
i=1

gci ‖ψ(X[si,si+1))− zc‖2︸ ︷︷ ︸
dist2ψ(Yi, zc)

−
∑

Yi,Yj∈M
gi=gj

wij +
∑

Yi,Yj∈C
gi=gj

wij,

(3.10)

whereM is the set of must-link constraints, C is the set of cannot-link constraints, and wij is
the constant cost for violating or respecting a constraint between Yi and Yj. G ∈ {0, 1}k×m
is an indicator matrix that assigns each segment to a cluster: gci = 1 if Yi belongs to cluster
c; otherwise, gci = 0, and s ∈ Rm+1 is the vector that contains the start of each segment,
and as described in Equation 3.3. The distance dist2ψ(Yi, zc) is explained in Equation 3.2.
Like the objective function of HMRF k -means, the objective function of SSACA can be
represented by three terms, an unsupervised term, a must-link term, and a cannot-link
term. These terms can be written in matrix form.

T = [τij]m×m ∈ Rm×m is the segment kernel matrix that represents the similarity of
the segments using DTAK, and is the matrix representation on the unsupervised term of
the objective function. Because the constraints are held in the segment level, there are
two kernel matrices: K and T. K is the frame kernel matrix, K = φ(X)Tφ(X) ∈ Rn×n,
and each entry kij defines the similarity between two frames, xi and xj. To use the same

framework, the kernel matrix should be constructed as T̃ = T + W, where T represents
the similarity matrix in the segment level described previously, and W is the constraint
matrix. W = [wij]m×m ∈ Rm×m represents the must-link and cannot-link term of the
objective function, where wij = wij for must-links and wij = −wij for cannot-links. Figure
3.2 illustrates the different matrices.

The SSACA algorithm in its entirety consists of two main steps. The first step is the
inclusion of the constraints in the similarity matrix, represented by step 1 of Algorithm
2. The second step, explained above, is the search process for optimizing the objective
function, represented by step 5 of Algorithm 2. This search process is repeated until no
more changes in the final partition of the data are observed, or until the process reaches a
maximum number of iterations.

The search algorithm that searches for the segmentation (Ġ, ṡ) which minimizes J is
discussed in the next section.

30

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0 5 10 15 20 25
0
5

10
ground truth, 24 frames, 7 segments, 3 clusters, 1.00 noise

5 10 15 20
24
68

SSACA accuracy 0.50

5 10 15 20
24
68

ACA accuracy 0.46

5 10 15 20
24
68

SC accuracy 0.50

5 10 15 20
24
68

SSACA+EP accuracy 0.50

5 10 15 20
24
68

SSTSC+EP accuracy 0.67

5 10 15 20
24
68

5 10 15 20 250

10
5
0

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

5 10 15 20

5

10

15

20

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

must-link
cannot-link

(a) (b) (c)

Figure 3.2: (a) shows the frame kernel matrix K, where each entry kij defines the similarity
between two frames, xi and xj. (b) shows the segment kernel matrix calculated by DTAK.
(c) shows the constraint matrix W.

3.4.1 Optimizing SSACA

The optimization of SSACA’s objective function is a non-convex problem. ACA adopts a
dynamic-programming-based (DP-based) algorithm, which has a complexity of O(n2nmax)
to examine all possible segmentations as its primary method. In SSACA, an adaptation
of the DP-based search into a semi-supervised framework is proposed, in which pairwise
constraints are incorporated to the algorithm. The same general strategy adopted in ACA
to break the problem into subproblems is adopted for SSACA. At every iteration, the
following subproblem is solved:

G, s = arg min
G,s

Jssaca(G, s) = arg min
G,s

k∑
c=1

m∑
i=1

gcidist
2
ψ(Yi, żc)

−
∑

Yi,Yj∈M
gi=gj

wij +
∑

Yi,Yj∈C
gi=gj

wij,
(3.11)

where żc is the implicitly-computed cluster mean from the segmentation (Ġ, ṡ), calculated
in the previous step.

31

Algorithm 2 SS Aligned Cluster Analysis (SSACA)

input: K ∈ Rn×n: input frame kernel matrix, T ∈ Rm×m: input segment kernel matrix,
W ∈ Rm×m: constraint penalty, k: number of clusters,M: set of must-link constraints,
C: set of cannot-link constraints, ṡ: initial segmentation , tmax: optional maximum
number of iterations.

output: G ∈ {0, 1}k×n: Final partitioning of the points, s: Final segmentation.
1: Form the kernel matrix T̃ = T + W.
2: Diagonal-shift T̃ by adding σI to guarantee positive definiteness of T̃.
3: Get initial clusters G(0) using constraints.
4: while G 6= G0 or iter > tmax do
5: G, s = SSDPSearch(G(0), ṡ, K, T̃, M , C, k).
6: G0 ← G;
7: iter = iter + 1;
8: end while
9: Return G, s;

SSACA can be rewritten as the sum of the following distances:

Jssaca(G, s) =
k∑
c=1

m∑
i=1

gcidist
2
ψ(Yi, zc)−

∑
Yi,Yj∈M
gi=gj

wij +
∑

Yi,Yj∈C
gi=gj

wij. (3.12)

Similar to ACA, an auxiliary function J(·) : [1, n] → R (see Equations 3.5 and 3.6) that
satisfies the principle of optimality can be introduced to form a direct relation between the
minimum energy and the tail position v of the subsequence X[1,v) = [x1,x2, . . . ,xv]. By
using Bellman’s equation, the following optimization problem can be derived:

J(v) = min
v−nmax<i≤v

(
J(i− 1) + min

g

k∑
c=1

gcdist
2
ψ(X[i,v], żc)

−
∑

Yi,Yj∈M
gi=gj

wij +
∑

Yi,Yj∈C
gi=gj

wij

 ,

(3.13)

where dist2ψ(X[i,v], żc) is the squared distance between the segment X[i,v] and the centre of
the cluster c, as given by Equation 3.8.

32

Directly solving Equation 3.13 results in a complexity of O(n2n2
max), which corresponds

to computing τ(X[i,v], Ẏ) for all i, v, and j. However, by using dynamic programming, it is
possible to minimize J more efficiently. The algorithmic implementation of Equation 3.13
that uses dynamic programming to solve J by using a cumulative kernel matrix, proposed
by [25], was adapted to make use of the extra information given by the pairwise constraints.

Calculating τ(X[i,v], Ẏ) effectively involves using a cumulative U ∈ Rnv×ṅj , where

nv = v − i + 1 and ṅj are respective sizes of the segments X[i,v] and Ẏ. In the effi-
cient implementation, U ∈ Rnmax×nmax×n is a matrix that retains the kernel calculations of
all previously calculated segments; therefore, the calculation uses the previous results, e.g.
τ(X[i,v−1], Ẏ), to quickly calculate the next segment τ(X[i,v], Ẏ). In other words,

τ(X[i,v], Ẏ) =
U(nv, v̄, ṡj+1 − 1)

nv + ṅj
,

where U(nv, v̄, ṡ) = max

U(nv, v̄, ṡ− 1) + kvṡ
U(nv − 1, v − 1, ṡ− 1) + 2kvṡ
U(nv − 1, v − 1, 8̇) + kvṡ,

(3.14)

where ṡ ∈ [ṡj, ṡj+1) and U is initialized at U(1, v, s) = 2kvṡj for each v ∈ [1, n] and j ∈
[1, ṁ]. However, since some segments are known a priori based on the pairwise constraints,
the algorithm does not need to check for every v ∈ [1, n]. Instead, when v, which is the tail
part of the segment being calculated, is part of a known segment X[i,v], the algorithm can
skip all the intermediate steps that process the interval from [i, v] in order to calculate U
and retrieve the segment similarities directly from the initial segmentation kernel matrix
T, which contains the correct segmentation of the known segments. Empirically speaking,
the algorithm can skip some of the processing when the search process reaches a known
segment. The search process follows the same strategy as ACA, and divides the process
into two phases:

1. Forward phase: The forward phase consists of scanning the entire sequence, from
v = 1 to v = n, where v ∩ X[i,v] = ∅. At every interval i − nmax < i < v − 1, the
sequence X[i,v] has its similarity measured against the segments Yj precomputed in
the previous iteration by DTAK, as described in Equation 3.14. The computed values
for the head position i∗v, the label g∗v, and J(v) with the lowest values are stored in
a table, which will be traced back in the backward phase.

2. Backward phase: The backward phase consists of tracing backwards from the end
of the sequence (v = n) and cutting off the sequence where the head s = i∗. The

33

indication vector g = g∗v can be indexed from the stored positions. This operation is
repeated until v, which is given by (v = i∗v − 1), is v = 1.

This process is repeated until J(n) converges, or, in other words, until no more changes
in the segmentation S and indication matrix G occur. The complete process is depicted
in Figure 3.3.

9

3
6

nmax

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X

31

cannot-link

which implies that the optimal decomposition of the
subsequence X½1;v" is achieved only when the segmentations
on both sides of X½1;i#1" and X½i;v" are optimal and their sum is
minimal. Although the number of possible ways to decom-
pose the sequence X is exponential in n, dynamic program-
ming [53] offers an efficient approach to minimize Jð%Þ by
using Bellman’s equation, which is

JðvÞ ¼ min
v#nmax<i(v

!
Jði# 1Þ þmin

g

Xk

c¼1

gcdist
2

"
X½i;v"; _zc

#$
; ð14Þ

where dist2 ðX½i;v"; _zcÞ is the squared distance between the
segment X½i;v" and the center of class c:

dist2
"
X½i;v"; _zc

#
¼ !

"
X½i;v";X½i;v"

#
2

_mc

X_m

j¼1

_gcj!
"
X½i;v"; _Yj

#

þ 1

_m2
c

X_m

j1;j2¼1

_gcj1 _gcj2!
"

_Yj1 ; _Yj2

#
:

When v ¼ n, JðnÞ is the optimal cost of the segmentation that
we seek. The inner values, i*v, g*v ¼ arg mini;gJðvÞ, are the
head position and label for the last segment, respectively,
which lead to the minimum. Equation (14) unifies KKM and
segment-based ACA clustering based on the length con-
straint nmax. If nmax ¼ 1, each segment consists of a single
frame and (14) is equivalent to KKM.

Fig. 5 illustrates the procedure for optimizing ACA. Given
ann-length sequence X with an initial segmentation (Fig. 5a),
ACA applies the following forward-backward algorithm to
cluster the sequence (Figs. 5b and 5c):

. Forward step. Scan from the beginning (v ¼ 1) of the
sequence to its end (v ¼ n). For each v, JðvÞ is
computed according to (14). That is, for every position
i# nmax < i < v# 1, we compute the DTAK between

the segment X½i; v" and each of the segments for each
of the classes, Yj, precomputed in the last iteration.
Fig. 4b illustrates this process. Recall that we cannot
compute explicitly the mean of each class. We store
the head position i*v, label g*v, and JðvÞ that has the
lowest error in table, see Fig. 4c.

. Backward step. Trace back from the end of sequence
(v ¼ n) and cut off the segment whose head s ¼ i*v.
The indication vector g ¼ g*v can be indexed from the
stored positions (see Fig. 5c for an example). Repeat
this operation on the left part of the sequence
(v ¼ i*v # 1).

These steps are repeated until JðnÞ converges (Fig. 5d).

3.7 Efficient Dynamic Programming for Kernel
Calculation

A straightforward implementation of (14) is prohibitively
expansive, i.e., Oðn2n2

maxÞ, due to the bottleneck of comput-
ing !ðX½i;v"; _YjÞ for all i; v; j. This section describes an
efficient dynamic programming solution to solve J which
has the time complexity of Oðn2nmaxÞ.

The computation of !ðX½i;v"; _YjÞ involves the construc-
tion of the cumulative kernel matrix U 2 IRnv+ _nj , where
nv ¼ v# iþ 1 and _nj ¼ _sjþ1 # _sj are segment lengths of
X½i;v" and _Yj, respectively. Observe that we do not need to
recompute the whole matrix U because some columns of U
have been previously calculated in the forward scan of JðvÞ.
The computation of !ðX½i;v"; _YjÞ is illustrated in Fig. 6.
!ðX½i;v#1"; _YjÞ has been previously calculated (the top-left
matrix in Fig. 6), and to compute !ðX½i;v"; _YjÞ DP has to be
computed the matrix U by adding a new column (the top-
right matrix in Fig. 6). Using this simple observation, we
can reduce the computational complexity to Oðn2nmaxÞ.

To make an efficient implementation, we maintain an
active cumulative kernel matrix U 2 IRnmax+nmax+n that is
used in the kernel calculation:

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

Fig. 5. Coordinate-descent optimization for ACA. (a) Optimization of a 1D sequence that has converged in four steps. (b) Illustration of the DP-based
search between first step and second step. (c) Data structure used in DP-based search. (d) ACA error in each step.

output

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X i⇤v g⇤
v

31

Skip processing

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X i⇤v g⇤
v

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X i⇤v g⇤
v v = 0 v = n

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X i⇤v g⇤
v v = 0 v = n

31

5 10 15 20 25 30 35 40 45 50

...

cannot-link

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%
Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

initial segmentation

Step 1

Step n

SSDPSearch

Forward

Backward

which implies that the optimal decomposition of the
subsequence X½1;v" is achieved only when the segmentations
on both sides of X½1;i#1" and X½i;v" are optimal and their sum is
minimal. Although the number of possible ways to decom-
pose the sequence X is exponential in n, dynamic program-
ming [53] offers an efficient approach to minimize Jð%Þ by
using Bellman’s equation, which is

JðvÞ ¼ min
v#nmax<i(v

!
Jði# 1Þ þmin

g

Xk

c¼1

gcdist
2

"
X½i;v"; _zc

#$
; ð14Þ

where dist2 ðX½i;v"; _zcÞ is the squared distance between the
segment X½i;v" and the center of class c:

dist2
"
X½i;v"; _zc

#
¼ !

"
X½i;v";X½i;v"

#
2

_mc

X_m

j¼1

_gcj!
"
X½i;v"; _Yj

#

þ 1

_m2
c

X_m

j1;j2¼1

_gcj1 _gcj2!
"

_Yj1 ; _Yj2

#
:

When v ¼ n, JðnÞ is the optimal cost of the segmentation that
we seek. The inner values, i*v, g*v ¼ arg mini;gJðvÞ, are the
head position and label for the last segment, respectively,
which lead to the minimum. Equation (14) unifies KKM and
segment-based ACA clustering based on the length con-
straint nmax. If nmax ¼ 1, each segment consists of a single
frame and (14) is equivalent to KKM.

Fig. 5 illustrates the procedure for optimizing ACA. Given
ann-length sequence X with an initial segmentation (Fig. 5a),
ACA applies the following forward-backward algorithm to
cluster the sequence (Figs. 5b and 5c):

. Forward step. Scan from the beginning (v ¼ 1) of the
sequence to its end (v ¼ n). For each v, JðvÞ is
computed according to (14). That is, for every position
i# nmax < i < v# 1, we compute the DTAK between

the segment X½i; v" and each of the segments for each
of the classes, Yj, precomputed in the last iteration.
Fig. 4b illustrates this process. Recall that we cannot
compute explicitly the mean of each class. We store
the head position i*v, label g*v, and JðvÞ that has the
lowest error in table, see Fig. 4c.

. Backward step. Trace back from the end of sequence
(v ¼ n) and cut off the segment whose head s ¼ i*v.
The indication vector g ¼ g*v can be indexed from the
stored positions (see Fig. 5c for an example). Repeat
this operation on the left part of the sequence
(v ¼ i*v # 1).

These steps are repeated until JðnÞ converges (Fig. 5d).

3.7 Efficient Dynamic Programming for Kernel
Calculation

A straightforward implementation of (14) is prohibitively
expansive, i.e., Oðn2n2

maxÞ, due to the bottleneck of comput-
ing !ðX½i;v"; _YjÞ for all i; v; j. This section describes an
efficient dynamic programming solution to solve J which
has the time complexity of Oðn2nmaxÞ.

The computation of !ðX½i;v"; _YjÞ involves the construc-
tion of the cumulative kernel matrix U 2 IRnv+ _nj , where
nv ¼ v# iþ 1 and _nj ¼ _sjþ1 # _sj are segment lengths of
X½i;v" and _Yj, respectively. Observe that we do not need to
recompute the whole matrix U because some columns of U
have been previously calculated in the forward scan of JðvÞ.
The computation of !ðX½i;v"; _YjÞ is illustrated in Fig. 6.
!ðX½i;v#1"; _YjÞ has been previously calculated (the top-left
matrix in Fig. 6), and to compute !ðX½i;v"; _YjÞ DP has to be
computed the matrix U by adding a new column (the top-
right matrix in Fig. 6). Using this simple observation, we
can reduce the computational complexity to Oðn2nmaxÞ.

To make an efficient implementation, we maintain an
active cumulative kernel matrix U 2 IRnmax+nmax+n that is
used in the kernel calculation:

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

Fig. 5. Coordinate-descent optimization for ACA. (a) Optimization of a 1D sequence that has converged in four steps. (b) Illustration of the DP-based
search between first step and second step. (c) Data structure used in DP-based search. (d) ACA error in each step.

Step n-1

.

.

.

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3.

v J(v) i⇤v g⇤
v

...

...
43 1.123 40 2
...
...

31

(b)

(a)

(c)

a posterior, di↵erently from k -means and k -median that need to have a priori number of
clusters defined.

There are some limitations of the Hierarchical clustering algorithms. AHC, alike, par-
titioning algorithm fallows a greedy process to decide on whether to merge or split clusters
and this decision is never reconsidered in further steps. Another limitation of AHC is the
computational complexity (O(N3)) in the worst-case for computing pairwise similarity and
iterations

There as many other approaches for AHC, some of them uses hybrid algorithms to
address the above limitations such as BIRCH (Balanced Iterative Reducing and Clustering
using Hierarchies) [46]. Others algorithms are CURE (Clustering Using REpresentatives),
ROCK (RObust Clustering using linKs), and CHAMELEON.

2.6 Temporal Clustering

Temporal clustering (TC) can be defined as the factorization of multiple time series into
a set of non-overlapping segments that belong to k temporal clusters [21]. Given a time
series X = [x1, . . . , xn] 2 Rd⇥n, define a set of segments S = [sj, sj+1, . . . , sm] where sj

is limited by a maximum length nmax and m is the total number of segments, such that
similar segments are grouped in clusters. Although a relatively unexplored problem, TC
is especially important in applications like human motion analysis, audio-visual emotion
analysis, animal behaviour analysis, speaker diarization, etc.

Temporal clustering is similar to normal clustering, which also requires a similarity
measure, a clustering algorithm, and an evaluation criterion; however, the temporal nature
of the data requires special treatment at one or more of these components. The two major
ways to handle time series are to either modify existing static data clustering algorithms
to handle time, or to convert the time series into a form that works with static algorithms.
The former approach relies, in most cases, on modifying the similarity measure to an
appropriate measure of time series, for example, dynamic time warping (DTW). The latter
maps the time series into a di↵erent representation or domain that embeds the temporal
information, such as Wavelets, Fourier, and Haar transform [16]; or into a number of model
parameters and then applies the conventional static data clustering algorithm.

Temporal clustering can be an important tool for segmentation, which is the basis for
solving the problems of the applications described before. Applying a clustering approach
to the segmentation problem requires a global modelling of all temporal segments in a
time series instead of finding local boundaries only. As a result, simply using some of

15

9

3
6

5 10 15 20 25 30 35 40 45 50

...

nmax

cannot-link

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X

31

cannot-link

which implies that the optimal decomposition of the
subsequence X½1;v" is achieved only when the segmentations
on both sides of X½1;i#1" and X½i;v" are optimal and their sum is
minimal. Although the number of possible ways to decom-
pose the sequence X is exponential in n, dynamic program-
ming [53] offers an efficient approach to minimize Jð%Þ by
using Bellman’s equation, which is

JðvÞ ¼ min
v#nmax<i(v

!
Jði# 1Þ þmin

g

Xk

c¼1

gcdist
2

"
X½i;v"; _zc

#$
; ð14Þ

where dist2 ðX½i;v"; _zcÞ is the squared distance between the
segment X½i;v" and the center of class c:

dist2
"
X½i;v"; _zc

#
¼ !

"
X½i;v";X½i;v"

#
2

_mc

X_m

j¼1

_gcj!
"
X½i;v"; _Yj

#

þ 1

_m2
c

X_m

j1;j2¼1

_gcj1 _gcj2!
"

_Yj1 ; _Yj2

#
:

When v ¼ n, JðnÞ is the optimal cost of the segmentation that
we seek. The inner values, i*v, g*v ¼ arg mini;gJðvÞ, are the
head position and label for the last segment, respectively,
which lead to the minimum. Equation (14) unifies KKM and
segment-based ACA clustering based on the length con-
straint nmax. If nmax ¼ 1, each segment consists of a single
frame and (14) is equivalent to KKM.

Fig. 5 illustrates the procedure for optimizing ACA. Given
ann-length sequence X with an initial segmentation (Fig. 5a),
ACA applies the following forward-backward algorithm to
cluster the sequence (Figs. 5b and 5c):

. Forward step. Scan from the beginning (v ¼ 1) of the
sequence to its end (v ¼ n). For each v, JðvÞ is
computed according to (14). That is, for every position
i# nmax < i < v# 1, we compute the DTAK between

the segment X½i; v" and each of the segments for each
of the classes, Yj, precomputed in the last iteration.
Fig. 4b illustrates this process. Recall that we cannot
compute explicitly the mean of each class. We store
the head position i*v, label g*v, and JðvÞ that has the
lowest error in table, see Fig. 4c.

. Backward step. Trace back from the end of sequence
(v ¼ n) and cut off the segment whose head s ¼ i*v.
The indication vector g ¼ g*v can be indexed from the
stored positions (see Fig. 5c for an example). Repeat
this operation on the left part of the sequence
(v ¼ i*v # 1).

These steps are repeated until JðnÞ converges (Fig. 5d).

3.7 Efficient Dynamic Programming for Kernel
Calculation

A straightforward implementation of (14) is prohibitively
expansive, i.e., Oðn2n2

maxÞ, due to the bottleneck of comput-
ing !ðX½i;v"; _YjÞ for all i; v; j. This section describes an
efficient dynamic programming solution to solve J which
has the time complexity of Oðn2nmaxÞ.

The computation of !ðX½i;v"; _YjÞ involves the construc-
tion of the cumulative kernel matrix U 2 IRnv+ _nj , where
nv ¼ v# iþ 1 and _nj ¼ _sjþ1 # _sj are segment lengths of
X½i;v" and _Yj, respectively. Observe that we do not need to
recompute the whole matrix U because some columns of U
have been previously calculated in the forward scan of JðvÞ.
The computation of !ðX½i;v"; _YjÞ is illustrated in Fig. 6.
!ðX½i;v#1"; _YjÞ has been previously calculated (the top-left
matrix in Fig. 6), and to compute !ðX½i;v"; _YjÞ DP has to be
computed the matrix U by adding a new column (the top-
right matrix in Fig. 6). Using this simple observation, we
can reduce the computational complexity to Oðn2nmaxÞ.

To make an efficient implementation, we maintain an
active cumulative kernel matrix U 2 IRnmax+nmax+n that is
used in the kernel calculation:

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

Fig. 5. Coordinate-descent optimization for ACA. (a) Optimization of a 1D sequence that has converged in four steps. (b) Illustration of the DP-based
search between first step and second step. (c) Data structure used in DP-based search. (d) ACA error in each step.

output

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X i⇤v g⇤
v

31

Skip processing

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X i⇤v g⇤
v

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X i⇤v g⇤
v v = 0 v = n

31

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3. sj sj +1 sj +2 sm X[sj ,sj+1) X[sj+1,sj+2) X[sj+2,sj+3)

X i⇤v g⇤
v v = 0 v = n

31

initial segmentation

Step 1

Step n

SSDPSearch

Forward

Backward

which implies that the optimal decomposition of the
subsequence X½1;v" is achieved only when the segmentations
on both sides of X½1;i#1" and X½i;v" are optimal and their sum is
minimal. Although the number of possible ways to decom-
pose the sequence X is exponential in n, dynamic program-
ming [53] offers an efficient approach to minimize Jð%Þ by
using Bellman’s equation, which is

JðvÞ ¼ min
v#nmax<i(v

!
Jði# 1Þ þmin

g

Xk

c¼1

gcdist
2

"
X½i;v"; _zc

#$
; ð14Þ

where dist2 ðX½i;v"; _zcÞ is the squared distance between the
segment X½i;v" and the center of class c:

dist2
"
X½i;v"; _zc

#
¼ !

"
X½i;v";X½i;v"

#
2

_mc

X_m

j¼1

_gcj!
"
X½i;v"; _Yj

#

þ 1

_m2
c

X_m

j1;j2¼1

_gcj1 _gcj2!
"

_Yj1 ; _Yj2

#
:

When v ¼ n, JðnÞ is the optimal cost of the segmentation that
we seek. The inner values, i*v, g*v ¼ arg mini;gJðvÞ, are the
head position and label for the last segment, respectively,
which lead to the minimum. Equation (14) unifies KKM and
segment-based ACA clustering based on the length con-
straint nmax. If nmax ¼ 1, each segment consists of a single
frame and (14) is equivalent to KKM.

Fig. 5 illustrates the procedure for optimizing ACA. Given
ann-length sequence X with an initial segmentation (Fig. 5a),
ACA applies the following forward-backward algorithm to
cluster the sequence (Figs. 5b and 5c):

. Forward step. Scan from the beginning (v ¼ 1) of the
sequence to its end (v ¼ n). For each v, JðvÞ is
computed according to (14). That is, for every position
i# nmax < i < v# 1, we compute the DTAK between

the segment X½i; v" and each of the segments for each
of the classes, Yj, precomputed in the last iteration.
Fig. 4b illustrates this process. Recall that we cannot
compute explicitly the mean of each class. We store
the head position i*v, label g*v, and JðvÞ that has the
lowest error in table, see Fig. 4c.

. Backward step. Trace back from the end of sequence
(v ¼ n) and cut off the segment whose head s ¼ i*v.
The indication vector g ¼ g*v can be indexed from the
stored positions (see Fig. 5c for an example). Repeat
this operation on the left part of the sequence
(v ¼ i*v # 1).

These steps are repeated until JðnÞ converges (Fig. 5d).

3.7 Efficient Dynamic Programming for Kernel
Calculation

A straightforward implementation of (14) is prohibitively
expansive, i.e., Oðn2n2

maxÞ, due to the bottleneck of comput-
ing !ðX½i;v"; _YjÞ for all i; v; j. This section describes an
efficient dynamic programming solution to solve J which
has the time complexity of Oðn2nmaxÞ.

The computation of !ðX½i;v"; _YjÞ involves the construc-
tion of the cumulative kernel matrix U 2 IRnv+ _nj , where
nv ¼ v# iþ 1 and _nj ¼ _sjþ1 # _sj are segment lengths of
X½i;v" and _Yj, respectively. Observe that we do not need to
recompute the whole matrix U because some columns of U
have been previously calculated in the forward scan of JðvÞ.
The computation of !ðX½i;v"; _YjÞ is illustrated in Fig. 6.
!ðX½i;v#1"; _YjÞ has been previously calculated (the top-left
matrix in Fig. 6), and to compute !ðX½i;v"; _YjÞ DP has to be
computed the matrix U by adding a new column (the top-
right matrix in Fig. 6). Using this simple observation, we
can reduce the computational complexity to Oðn2nmaxÞ.

To make an efficient implementation, we maintain an
active cumulative kernel matrix U 2 IRnmax+nmax+n that is
used in the kernel calculation:

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. X, XXXXXXX 2013

Fig. 5. Coordinate-descent optimization for ACA. (a) Optimization of a 1D sequence that has converged in four steps. (b) Illustration of the DP-based
search between first step and second step. (c) Data structure used in DP-based search. (d) ACA error in each step.

Step n-1

.

.

.

quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The complexity decrease of SSACA can be translated in terms of time processing.
Figure 3.3 shows the time of SSACA as well as some variations of SSACA that will be
discussed in section 3.10 compared to their original method ACA.

0"
0.01"
0.02"
0.03"
0.04"
0.05"
0.06"
0.07"
0.08"

0" 10" 20" 30" 40" 50" 60" 70"

Ti
m
e%
in
%se

co
nd

s%

Number%of%Constraint%Pairs%

Wall6clock%8me%

ACA"

SSTSC+EP"

SSACA+EP"

SSACA"

Figure 3.3: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

Note that the time processing of the semi-supervised methods start o↵ slower. This
behaviour is caused by some extra checking done by the algorithm specifically in line 1 and
4 of algorithm 3. However, the overhead caused by this extra checking is compensated by
skipping the processing of the known segments. The gains in the time processing starts to
be visible as the number of constraints increases. The time processing displayed in table
3.3 does not account for the extra processing that is needed for the initial seeding, which
consist of making sure that when first initializing the clusters the constrained segments are
grouped consistently according to their must-link and cannot-links definitions. However,
in practice, inconsistent cluster initializations still managed to return good results as can
be seen in experiments of section 5.1.3.

v J(v) i⇤v g⇤
v

...

...
43 1.123 40 2
...
...

31

(b)

(a)

(c)

Figure 3.3: Optimization of SSACA in a 1D sample. (a) Initial segmentation of sequence
X into m subsequences s. The cannot-link constraint assists the segments X[sj ,sj+1) and
X[sj+2,sj+3). (b) Search process using forward phase and backward phase applied to every
step of the optimization. The table keeps track of the head position i⇤v, the label g⇤

v, and
the J(v) with the lowest values. (c) Converged segmentation.

30

Figure 3.3: Optimization of SSACA in a 1D sample. (a) Initial segmentation of sequence
X into m subsequences s. The cannot-link constraint assists the segments X[sj ,sj+1) and
X[sj+2,sj+3). (b) Search process using forward phase and backward phase applied to every
step of the optimization. The table keeps track of the head position i∗v, the label g∗v, and
the J(v) with the lowest values. (c) Converged segmentation.

The proposed modified algorithm that performs these tasks is SS DPSearch, outlined
in Algorithm 3. SS DPSearch optimizes SSACA with respect to G and s, while rewarding

34

or penalizing the distance between segments, τ(X[i,v], Ẏj), according to the given pairwise
constraints M∈ Znml×2 and C ∈ Zncl×2.

Algorithm 3 SS DPSearch

parameter: nmax, k, nml, ncl
input: G ∈ {0, 1}k×ṁ, ṡ ∈ R(ṁ+1), K ∈ Rn×n, T ∈ Rm×m, M ∈ Znml×2, C ∈ Zncl×2
output: G ∈ {0, 1}k×m, ṡ ∈ R(m+1)

1: headTail = getHeadTails(M, C);
{Forward step }

2: for v = 1 to n do
3: J(v)←∞;
4: if v ≥ headTail(:,1) and v < headTail(:,2) then
5: continue;
6: end if
7: if isTail(v) then
8: for j = 1 to ṁ do
9: Retrive directly from T(X[i,v], Ẏj);
10: end for
11: c∗ ← arg minc distψ(X[i,v], żc); J ← distψ(X[i,v], żc∗);
12: J([i, v])← J , g∗[i,v] ← e∗c , i

∗
[i,v] ← i;

13: else
14: for nv = 1 to min(nmax, v) do
15: { Same as DPSearch [25]}
16: end for
17: end if
18: end for
{Perform backward step}

19: while v > 0 do
20: Create a segment Y = X[i∗v ,v] with the label g∗v ;
21: v ← i∗v − 1;
22: end while

As parameters, SS DPSearch receives the length constraint nmax and the number k of
clusters. As inputs, SS DPSearch requires an initial indicator matrix G ∈ {0, 1}k×m that
assigns segments to a cluster, an initial segmentation ṡ ∈ R(ṁ+1), and the frame kernel
matrix K ∈ Rn×n. In addition to the inputs of the original approach, there are pairs of
must-links ∈ Znml×2, cannot-links ∈ Zncl×2, and T ∈ Rm×m, which is the segment kernel
matrix.

35

3.4.2 Complexity Analysis of SSACA

The bottleneck of the search exists in the update of matrix U. When updating U, the
algorithm requires that all the segments

∑ṁ
j=1 ṡj+1 − ṡj ≡ n, which correspond with the

total number of frames, be analyzed. Therefore, the estimated time-cost of DPSearch is
O(n2nmax). Considering the number (t) of iterations, the overall time complexity becomes
O(n2nmax)t.

The time-complexity of SSACA is efficient because it skips the computation of the
frames of some segments. For instance, if two segments Sj and Sj+1 are used as cannot-
link constraints, they are automatically a known segment; as a result, all the frames that
belong to these two sequences can be skipped. The U matrix, which is calculated in a
cumulative way by adding a new column every time a new frame v is presented, can be
directly fetched specifically for this segment from the kernel segment matrix T without
any loss of accuracy.

The complexity of SSACA is influenced by the number of constraints nc. Each con-
straint represents a pair of sequences Sj, Sj+1, which are formed by sets of frames nv;
these specific frames will be called constrained frames ncf . Therefore, the more con-
straints available, the fewer the frames to be computed. The complexity notation becomes
O((n− (ncnv) + nc)

2nmaxt), where ncnv is the number of constrained frames, or, in a sim-
pler fashion the complexity can be reduced to O((n − ncf)2nmax). The complexity is still
quadratic; however, as the number of constraints increases, the complexity exponentially
decreases.

The decrease in complexity of SSACA can be translated in terms of time-processing.
Figure 3.4 shows the time of SSACA, as well as some variations of SSACA that are discussed
in Section 3.6, compared to ACA.

The time-processing of the semi-supervised methods starts off more slowly. This be-
haviour is caused by some extra checking done by the algorithm, specifically, in lines 1 and
4 of Algorithm 3. However, the overhead caused by this extra checking is compensated for
by skipping the processing of the known segments. The gains in the time-processing start
to become visible as the number of constraints increase. The time-processing displayed in
Table 3.4 does not account for the extra processing needed for the initial seeding, which
consists of making sure that, when first initializing the clusters, the constrained segments
are grouped consistently, according to their must-link and cannot-links definitions. How-
ever, in practice, inconsistent cluster initializations still managed to return good results,
as evidenced by the experiments of section 5.1.5.

36

0	
0.01	
0.02	
0.03	
0.04	
0.05	
0.06	
0.07	
0.08	

0	 10	 20	 30	 40	 50	 60	 70	

Ti
m
e	
in
	 se

co
nd

s	

Number	 of	 Constraint	 Pairs	

Wall-‐clock	 8me	

ACA	

SSTSC+EP	

SSACA+EP	

SSACA	

Figure 3.4: Wall time of the proposed semi-supervised methods compared to a completely
unsupervised method.

3.5 Semi-Supervised Temporal Spectral Clustering

Spectral clustering is a graph-clustering algorithm that uses the eigenvectors of the similar-
ities to reduce their dimensionality before clustering them. In other words, the clustering
process takes place in a lower dimension. Two conditions are necessary in order to trans-
form a simple spectral clustering to a semi-supervised temporal spectral clustering. The
first of these conditions is the addition of extra knowledge, and the second is the consid-
eration of time awareness. The same analogy used in ACA and kernel k -means to derive
SSACA can be applied to spectral clustering. Extra knowledge is added in the form of a
constraint matrix derived from must-links and cannot-links, and time awareness is intro-
duced by the DTAK measure embedded in the SSDPSearch.

To perform semi-supervised temporal spectral clustering, the algorithm needs to first
find the eigenvectors corresponding to the k largest eigenvalues of T̃, in order to derive the
low-dimension feature vector, where T̃ is a similarity graph or a similarity matrix modified
by the pairwise constraints. Next, the algorithm performs the temporal clustering search,
which adds the temporal aspect to this approach, using the dynamic-programming search,
SSDPSearch. The first steps of the algorithm are described in Algorithm 4.

The kernel created in step 3 acts as the input for the SSDPSearch. The mechanism of
adding extra information in the form of constraints is explained in section 3.8, along with
the complete algorithm.

37

Algorithm 4 First Steps Spectral Clustering

1: Find k largest eigenvectors v1 . . . vk of D̃
−1
2 T̃ D̃

−1
2 , where D̃ is a diagonal matrix with

its (i,i)-element equal to the sum of the i -th row of T̃ ;
2: Form E = [v1, . . . , vk], and normalize each row to the unit length. The rows of E

represent the low-dimensional features of segment X[si,si+1];
3: Create a kernel with the new feature vector Ei(i = 1, . . . ,m).

3.6 Exhaustive and Efficient Constraint Propagation

Pairwise constraints are used to penalize or reward constrained segments, in order to adjust
the similarity matrix for the kernel k -means clustering algorithm. This technique, affects
only the constrained segment similarities, however. To make the propagation of constraints
more efficient, the idea of exhaustive and efficient constraint propagation (E2CP) is bor-
rowed from Lu and Ip [6] and adapted for the proposed framework. The rationale behind
this method is to spread the effects of the constraints throughout the similarity matrix.

E2CP tackles the problem of constraint propagation by decomposing it into sets of label
propagation subproblems. Given the dataset X = [x1, . . . ,xn] ∈ Rd×n, a set of must-link
M, and a set of cannot-link C, all the pairwise constraints can be represented as a single
matrix W = [Wij]n×n, where

Wij =

+1, (xi, xj) ∈M
−1, (xi, xj) ∈ C

0, otherwise.
(3.15)

Each j-th column of W.j can be seen as a two-class, semi-supervised learning problem,
where the positive class (Wij > 0) represents the segments that should be in the same
cluster, and the negative class (Wij < 0) represents the segments that should not be in the
same cluster. If (Wij) = 0, xi xj are not constrained. Each column and row are solved by
label propagation in parallel [61], to ensure that all the segments will be affected by the
propagation. The algorithm can be described as follows:

1. Create the similarity matrix T or a symmetric k -NN graph.

2. Create the matrix L̄ = D
−1
2 TD

−1
2 , where D is a diagonal matrix with its (i,i)-element

equal to the sum of the i -th row of T .

38

3. Iterate Fv(t + 1) = αL̄Fv(t) + (1 − α)W for vertical constraint propagation until
convergence, where Fv(t) ∈ F , and α is a parameter between 0 and 1.

4. Iterate Fh(t + 1) = αFh(t)L̄+ (1− α)F ∗v for horizontal constraint propagation until
convergence, where Fh(t) ∈ F and F ∗v is the limit of {Fv(t)}.

5. Output F ∗ = F ∗h as the final representation of the pairwise constraints, where F ∗h is
the limit of {Fh(t)}.

Intuitively, the similarities receive information from their neighbours at each iteration,
and the parameter α controls the relative amount of information passed from that neigh-
bours. Without loss of generality, [61] shows that {F (t)} can be calculated in a closed
form. The output F ∗ represents an exhaustive set of pairwise constraints, with associated
confidence scores |F ∗|. At this point, the similarities in T can be adjusted with the output
scores of F ∗, as described in Equation 3.16. The resulting similarity matrix T̃ has the
same properties as the kernel matrix specified in the kernel k -means framework; it is both
nonnegative and symmetric [6].

T̃ij =

{
1− (1− F ∗ij)(1− Tij), F ∗ij ≥ 0
(1 + F ∗ij)Tij, F ∗ij < 0

(3.16)

3.7 Semi-Supervised ACA with Exhaustive Propaga-

tion (SSACA+EP)

To improve the performance of SSACA, exhaustive propagation (EP) is added to the
SSACA framework to create SSACA+EP. Step 1 of Algorithm 2 is replaced with two
steps. First, the initial weights W are propagated to F ∗, as described in the five steps of
section 3.6. Later, the matrix T̃ is created according to Equation 3.16. The rest of the
algorithm remains unchanged. The complete algorithm can be seen in Algorithm 5.

3.8 Semi-Supervised Temporal Spectral Clustering with

EP (SSTSC+EP)

In order to apply the same methodology as used in SSACA, and to comply with the semi-
supervised kernel k -means framework, it is necessary to again form a kernel matrix as a

39

Algorithm 5 SSACA + EP (Exhaustive propagation)

input: K ∈ Rn×n: input frame kernel matrix, T ∈ Rm×m: input segment kernel matrix,
W ∈ Rm×m: constraint penalty, k: number of clusters,M: set of must-link constraints,
C: set of cannot-link constraints, ṡ: initial segmentation, tmax: optional maximum
number of iterations.

output: G ∈ {0, 1}k×n: Final partitioning of the points, s: Final segmentation.
1: Propagate the constraints F ∗ ← F by label propagation using W.
2: Form the matrix T̃ according to Equation 3.16.
3: Diagonal-shift T̃ by adding σI to guarantee positive definiteness of T̃.
4: Get initial clusters G(0) using constraints.
5: while G 6= G0 or iter > tmax do
6: G, s = SSDPSearch(G(0), ṡ, K, T̃, M , C, k).
7: G0 ← G;
8: iter = iter + 1;
9: end while
10: Return G, s;

combination of similarity matrix and constraint. The output T̃ generated by the exhaustive
propagation method is a combination of the propagated constraints F ∗ and the similarity
matrix T, as described in Equation 3.16. T̃ becomes, therefore, the new modified similarity
matrix that will be used for the spectral clustering process. The complete algorithm is
displayed in Algorithm 6.

3.9 Do Constraints Always Improve Performance?

The general assumption is that, if given constraints are drawn from correctly-labeled data
and are free from noise, the performance of the algorithm will always increase. This
observation is indeed true when performance is averaged over many different constraint
sets. However, for a single set of constraints, no change or even a decrease in performance
may occur. The reason why the average over different sets of constraints does not show this
behaviour is simply that the magnitude of the increases is much higher than the negative
losses. This phenomenon has been analyzed and empirically demonstrated by [62].

Some characteristics of the constraints can affect the accuracy of performance in ei-
ther a positive or negative way. [62] introduces two measures that can qualify whether a
set of constraints may increase or decrease the performance of the clustering algorithm:

40

Algorithm 6 SS Temporal Spectral Clustering + EP

input: K ∈ Rn×n: input frame kernel matrix, T ∈ Rm×m: input segment kernel matrix,
W ∈ Rm×m: constraint penalty, k: number of clusters,M: set of must-link constraints,
C: set of cannot-link constraints, ṡ: initial segmentation.

output: G ∈ {0, 1}k×n: Final partitioning of the points, s: Final segmentation.
1: Propagate the constraints F ∗ ← F by label propagation using W.
2: Form the matrix T̃ according to Equation 3.16.
3: Diagonal-shift T̃ by adding σI to guarantee positive definiteness of T̃.
4: Get initial clusters G(0) using constraints.
5: Create a new kernel T̂ based on T̃ using Algorithm 4.
6: Return G, s = SSDPSearch(G(0), ṡ, K, T̂, M , C, k).

informativeness and coherence.

Informativeness is defined as the amount of information available in the constraint set
which the algorithm cannot determine using only its bias, created by the objective function.
For example, a k -means-based algorithm is naturally biased to cluster together data that
are closer in distance, and separate points that are further away; however, in a highly-
informative constraint set, information that contradicts this bias would be more readily
available through the constraints.

Coherence is defined as the amount of agreement within the constraints, with respect
to a given distance measure. For example, in a situation where two pairs of constraints
are parallel to each other in a Euclidean space, both pairs are expected to be part of a
must-link set. However, if one pair is part of a must-link set, and the other is part of
a cannot-link link set, these two pairs are incoherent with respect to Euclidean distance
metrics.

By quantifying these measures, [62] shows empirically that highly-informative and co-
herent constraints are most likely to improve clustering-accuracy performance, whereas
incoherent sets of constraints may drop the performance of the clustering algorithm. This
thesis’ focus is not to deeply analyze this phenomenon; however, it is important to ac-
knowledge its relevance to semi-supervised temporal clustering.

41

3.10 Differentiating SSACA from Subsequence Time

Series

Subsequence Time Series clustering was a popular technique in the late 1990s and early
2000s, used as a subroutine in many data mining algorithms. However, after research find-
ings published by Keogh and Lin [2], STS lost its popularity. Their research showed that
clustering time series subsequences extracted by a sliding window produced meaningless
results. Because our proposed method is applied to time series, and includes a sliding
window component in its process, it is understandable that concerns about the meaning-
fulness of proposed method might be raised. This section will respond to those concerns
and demonstrate the fact that SSACA suffers from none of the same weaknesses as STS.

To show that SSACA is different from subsequence clustering, it is necessary to define
subsequence clustering and whole clustering. According to [2], the definitions of these two
processes are the following:

Subsequence Clustering: Given a single time series, subsequences are consecutively
extracted by a sliding window, and then clustered.

Whole Clustering: Given a set of individual time series, much like in a conventional
clustering algorithm, where similar objects are clustered together, the goal is to group
similar time series into clusters.

A time series T = [ti, . . . , tn] can be defined as a set of n ordered points. A subsequence
Cm of T is a sampling of length w < n of contiguous positions from T ; that is, C =
[tm, . . . , tm+w−1] for 1 ≤ m ≤ n − w + 1. A set S of all subsequences of a time series T
can be constructed by a sliding window that spans the entire time series, starting from
[t1, . . . , tw] and proceeding all the way to [tn−w, . . . , tn], where S ∈ R1×n is a matrix of the
subsequences generated by the sliding window. Figure 3.5 illustrates these definitions.

Keogh and Lin’s work also shows that, if the subsequences defined in S are clustered,
the produced outputs are independent of the input; in other words, the centre of the gener-
ated clusters are no different from randomly generated cluster centres. They demonstrate
the existence of this behaviour in several databases, distance measures, and clustering al-
gorithms. To pinpoint the differences between STS and SSACA, one of Keogh and Lin’s
experiments is reproduced here using the Cylinder-Bell-Funnel data [63], but subjected to
the process of SSACA. This dataset consists of random instantiations of the eponymous

42

Cm

m = [1 ... 6]

T

Cm+i

Figure 3.5: Sample time series T of length n, a subsequence in position m+ i, and the first
6 subsequences extracted by a sliding window. Figure based on [2].

0 20 40 60 80 100 120 140
−2

0

2

C
yl
in
de
r

0 20 40 60 80 100 120 140
−2

0

2

Be
ll

0 20 40 60 80 100 120 140

−1
0
1
2
3

Fu
nn
el

Figure 3.6: Samples of the three different patterns (Cylinder, Bell, and Funnel) of the CBF
dataset.

43

patterns, with Gaussian noise added, and contains three different patterns, which can be
seen in Figure 3.6. Each time series has a length of 128.

This analysis used a total of 128 time series, wherein 42 series corresponded with the
Cylinder pattern, 42 with the Bell pattern, and 44 with the Funnel pattern. For the control
experiment, whole clustering was performed on the set of 128 individual time series. To
make this experiment compatible with the proposed method, a kernel k -means was used as
the clustering algorithm, and DTAK as the distance measure. The centre of each cluster
can be seen in Figure 3.7. Note that the centre of the clusters naturally resembles the
samples of each pattern.

0 20 40 60 80 100 120 140
−1
0
1
2

Whole Clustering

Figure 3.7: Cluster centers of the CBF dataset generated by kernel k -means. The shapes
are similar to approximations of the original pattern.

For the subsequence analysis, the 128 time series were concatenated into a single time
series in order to be able to extract subsequences. Then, subsequences were extracted
using a sliding window of size 128 (w = 128), and clustered using kernel k -means with
k = 3. The results were three close-to-perfect sine waves (see Figure 3.8), the same results
reported by Keogh and Lin, in their explanation of the lack of meaningfulness derived from
STS clustering.

0 20 40 60 80 100 120 140

−0.5
0

0.5
1

Subsequence Clustering

Figure 3.8: Cluster centers of the CBF dataset generated by sliding windows using kernel
k -means. The shapes of the centers look like sine waves.

In stark contrast to STS, ACA attempts to cluster and segment at the same time,
starting by pre-segmenting the time series into k partitions. After pre-segmenting, ACA
searches within the different consecutive incremental segments of a subsequence Cm =

44

[t1][t1t2][t1t2t3] . . . [t1 . . . tw] for the segment that minimizes the distance to the centroids of
the pre-segmented partitions. Later, the selected segment is assigned to the new cluster,
and this process is repeated until no more changes are found. Therefore, the sliding window
technique in ACA is a mechanism to find the size of the sequence that best fits the analyzing
cluster.

To demonstrate that the technique used by the method proposed in this thesis, which is
based on ACA, is different from STS clustering, one step of the ACA process was examined.
Since the mechanism of temporal clustering and segmentation of ACA consists of several
iterations of these steps, if step one is proven not to retrieve a meaningless result, the
argument can thus be extrapolated to the whole method.

Given a subsequence Cm, generated by an incremental sliding window of final size w,
clustered against an initially segmented time series T , there is an output subsequence that
is closer to one of the cluster centres than to a sine wave.

The initial segmentation of the concatenated CBF dataset was clustered into k parti-
tions. Then, centroids were calculated by averaging the segments that belonged to each
k(th) cluster. The distances from one set of complete subsequences
Cm = [t1][t1t2][t1t2t3] . . . [t1 . . . tw], which contains incrementing sized segments, to the cen-
troid of each cluster were computed to find the subsequence that minimized the distance to
the centroids, exactly as defined in ACA. The resulting subsequence is displayed in Figure
3.9, and is closer to one of the centroids of the CBF dataset than to a sine wave.

0 20 40 60 80 100
−2

0

2
Selected subsequence

Figure 3.9: Retrieved subsequence generated by ACA. This sample is similar to the Funnel
pattern of the CBF dataset.

The initial pre-segmentation of the time series was purposely chosen as 128, which
is the size of each concatenated time series T , in order to give the algorithm a “head
start.” Obviously, the centroids retrieved by ACA in its first step were essentially whole
clusterings of individual time series, as shown in Figure 3.7. However, the approach to
initial segmentation of the time series does not matter. Any initial segmentation would
ultimately lead to a converged result – not necessarily a global optimal, but at least a local
optimal, as guaranteed by k -means based algorithms. The intent of this experiment is to

45

show that ACA starts with whole clustering, and only later draws on the sliding window
mechanism. Therefore, the sliding window mechanism is merely a way of searching for the
best segment that fits the analyzing cluster centres.

As explained previously, the mechanism used in ACA generates a retrieved segment that
is closer to the centre of one of the patterns, and does not resemble the sine wave produced
by the STS clustering in any shape or form. Therefore, the mechanism of clustering and
segmenting used in ACA is based on whole clustering of segments of variable sizes.

46

Chapter 4

Experimental Analysis of the
Proposed Methods

One of the goals of this chapter is to evaluate the proposed methods in comparison with
other approaches, including the two baseline methods, ACA, a version of spectral clustering
(SC) used in [25], and the native semi-supervised temporal method TDCK-means [55]. The
reason for choosing TDCK as the comparative method is the fact that TDCK is a temporal
semi-supervised method (see details in Section 2.9.1). Compared to other methods available
in the literature, such as TCK-means [58], Constrained k -means, and Temporal-Driven k -
means, TDCK shows the best results, as attested to by [59]. This thesis uses a synthetic
dataset to compare the methods and confirm the results of [59].

The other goal is to analyze the behaviour of the proposed method in different situ-
ations, which includes varying the number of constraints and clusters. In addition, this
chapter also seeks to provide an understanding of the effect of the exhaustive propagation
on the accuracy of the algorithms, and the effect of the initial segmentation.

To achieve these goals a synthetic dataset was created. A synthetic dataset is flexible
enough to provide a better test bed for analyzing different setup variations. The experi-
ments on the synthetic dataset are presented and discussed in Section 4.2.

4.1 Setup of the Experiments

The methods being compared were tested on different variations of the synthetic datasets.
All the datasets had their own ground truth, making it possible to calculate the accuracy

47

of the result segmentations by comparing them to a “gold standard”. The methodology for
calculating the accuracy and other evaluation measures are described in Section 4.1.1. All
the accuracy results and other qualitative measures were the average over multiple runs,
where in each run, random initializations and random pairs of constraints were selected.
This randomization process diminished the bias caused by specific sets of constraints and
initializations.

Must-link constraints were subjected to augmentation by applying transitive closure
in all the experiments performed using semi-supervised methods (SSACA, SSACA+EP,
and SSTSC+EP). Pairwise constraints were used to seed the initial segmentation of the
proposed methods.

As discussed in Chapter 3, main parameters needed to be selected for the compared
methods. The first one was the nmax parameter, which controls the granularity of the
temporal term. This term was chosen empirically, according to the dataset. The second
parameter is related to the frame kernel matrix. The kernel used on the experiments was

the Gaussian kernel, kij = exp
(
−‖xi−yj‖2

2σ2

)
, and the parameters σ was set to 1. The third

parameter is the propagation rate α, which applies only to the methods with exhaustive
propagation (i.e., SSACA+EP and SSTSC+EP). The value of the propagation rate was
selected by grid-search in a portion of the data. For this experiment, the propagation rate
was α = 0.40. The last set of parameters is exclusively for the TDCK algorithm, i.e., γt
γd β δ. These four parameters were also chosen by grid search. In this experiment, the
dimensional weight was set to γd = 1, and the temporal weight was set to γt = 0.25. The
scaling factor was set to β = 0.3, and the width of the function was set to δ = 3. Details
about TDCK parameters are included in Section 2.9.1.

TDCK can be applied to multiple entities; however, because the proposed experiments
consider a single entity at a time, all temporal data are treated as a single entity.

4.1.1 Evaluation Measures

Three major evaluation measures were considered to analyze the behaviour of the compared
methods. The first measure was the clustering accuracy, which represents a quantitative
value of the performance of the algorithms. The second measure was the mean cluster vari-
ance, which represented a qualitative measure of the “tightness” of the clusters. The third
measure was a modified version of Shannon entropy, which was reserved for evaluating the
variability of the datasets. Besides these three measures measures, the objective function
values were also used to evaluate the approaches.

48

Clustering Accuracy

Since the datasets have ground truth, a natural way to evaluate the quality of results
from the different algorithms is to compare the produced clustered segments to the ground
truth. The result of this comparison is referred as “clustering accuracy”. To compute
the clustering accuracy, the metric from [25] was used. A confusion matrix was computed
between the returned segmentation results of the different algorithms (Galg, Halg) and the
ground truth (Gtru, Htru), i.e.,

C = GalgHalgH
T
truG

T
tru ∈ Rk×k, (4.1)

where Galg was the segment cluster and Halg was the sample-segment indicator. Each
entry cc1,c2 in the confusion matrix corresponded with the total number of frames of cluster
segment c1 that were shared by cluster segment c2 in the ground truth. Then, the calculated
confusion matrix was subjected to the Hungarian algorithm to find the optimal cluster
correspondence. The accuracy was calculated by the following equation:

Accuracy = max
P

Tr(CP)

Tr(C1k×k)
, (4.2)

where P was a permutation matrix constrained to P ∈ {0, 1}k×k.

Mean Cluster Variance

Mean cluster variance is used mainly to quantify the dispersion in clusters. This measure
can be used to evaluate the influence of extra knowledge added to the clustering process
(semi-supervised clustering). The mean cluster variance was calculated as follows:

MCVar =
1

m
×

k∑
c=1

∑
xi∈gc
||Yi − zc||2 , (4.3)

where m was the number of segments, and ||Yi − zc||2 was the squared distance between
the segment Yi and the centre of the cluster c.

49

Cluster Alternation Rate

This measure was not used to evaluate the quality of the clusters, but rather to measure
the variability of the datasets in terms of the number of alternations between clusters. This
rate was calculated based on a modified version of Shannon entropy, adapted from [55],
and was calculated as follows:

H = −
k∑
c=1

P (gc) log2 P (gc)

(
1 +

nch − nmin
m− 1

)
, (4.4)

where P (gc) represented the probability of a cluster c in the observed series, nch represented
the number of cluster changes, nmin was the minimal required number of changes, and m
was the total number of segments. The last term in brackets constituted a penalty factor
that increased the measurement value as the number of changes grew.

4.2 Synthetic Dataset

One of the datasets used for the analysis was a randomly-generated synthetic dataset that
created time series by sampling 2D Gaussian distributions, according to the setup used in
[25]. Figure 4.1 shows a sample of the dataset.

10 20 30 40 50 60 70 80 90
2
4
6
8

10
ground truth, 92 frames, 10 segments, 3 clusters, 1.00 noise

10 20 30 40 50 60 70 80 90
2
4
6
8

10
ssaca accuracy 1.00

10 20 30 40 50 60 70 80 90
2
4
6
8

10
aca accuracy 0.49

10 20 30 40 50 60 70 80 90
2
4
6
8

10
sc accuracy 0.53

10 20 30 40 50 60 70 80 90
2
4
6
8

10
E2cp accuracy 1.00

10 20 30 40 50 60 70 80 90
2
4
6
8

10
SL accuracy 1.00

10 20 30 40 50 60 70 80 90
2
4
6
8

10

Figure 4.1: A sample time series from the synthetic dataset.

4.2.1 Baseline Algorithm

Comparative studies in the literature [55] [59] show that the semi-supervised method,
TDCK, outperforms other similar methods. However, in order to confirm its superior-
ity, a similar comparison was performed on the synthetic data. Compared to simple
k -means, temporal-driven k -means, constrained k -means, and temporal Constrained k -
means, TDCK had the best results, as Table 4.1 attests.

50

Table 4.1: Average accuracy results of some temporal-based k -means methods.

Average Accuracy
TDCK-means TCK-means Constrained Temp-driven Simple

[55] k-means K-means K-means
0.38 ± 0.05 0.36 ± 0.05 0.34 ± 0.04 0.30 ± 0.04 0.28 ± 0.02

The results of this comparison in Table 4.1 confirmed the superiority of TDCK for
the synthetic dataset. Therefore, in the rest of the experiments, TDCK was used as the
semi-supervised baseline method.

4.2.2 Analysis of the Number of Constraints

The goal of this experiment was to analyze how the addition of extra knowledge in the
form of pairwise constraints affected the performance of semi-supervised clusters. This
experiment used a randomly-generated synthetic time series composed of 276 frames and
30 segments (m = 30). The number of constraints was varied progressively from zero to 20.
For each random pair of constraints added to the experiment, it was necessary to ensure
that the pair of segments designated by that pair of constraints complied with the labels.
For example, in a simple case where there were two pairs of constraints (i.e., segment 1 must
link with segment 2, and segment 2 must link with segment 4), by transitiveness, it can
be inferred that segment 4 should have the same label as segment 1 and 2. Consequently,
in the experiment setup, it was necessary to create an initial segmentation that complied
with the inferred labels. The single process of keeping these compatibilities correct can get
very expensive as the number of constraints increases.

In a sample of 30 segments (m = 30), the total number of non-repeatable possible pairs
of constraints was m ∗ (m − 1)/2. In this particular experiment, it equated to 435 pairs.
For every pair of constraints that were allowed in the experiment, the correct segmentation
for two segments was provided. The minimum number of constraints required in order
to cover the correct segmentation of a whole sequence would correspond with the set of
subsequent pairs of constraints with no intersection (overlapping) between them. Figure
4.2 illustrates an example where one pair of must-link constraint accounts for the correct
segmentation of the whole time series.

On the same 30-segment sample (m = 30), it was possible to predict the correct seg-
mentation with as little as 8 pairs of constraints in the best case scenario; however, this

51

Must-link pair

Figure 4.2: A sample of a time series with one pair of constraint.

specific arrangement is unrealistic in real life. In this experiment, the pairs of constraints
were generated randomly; therefore, to guarantee the full coverage of all the segments, it
would be necessary to have 379 pairs out of the 435 possible, which represent the worst
case scenario. The value 379 represents the number of pairs of constraints that completely
covers 28 segments (28 ∗ 27/2 = 378) plus one extra pair to cover the last 2 segments.

Segmentation was only one of the two problems being solved. The second one was
the clustering itself. Even with a perfect segmentation, it was still necessary to organize
these segments into coherent groups, where similar segments were in the same group and
dissimilar segments were in different groups.

The accuracy, mean cluster variation, and the value of the objective function of the
methods were evaluated as the dataset was grouped into three clusters (k = 3). Column
4.3a of Figure 4.3 depicts the average accuracy results of ten runs of each of the proposed
methods: SSACA, SSACA+EP, and SSTSC+EP. Column 4.3b shows the mean cluster
variance, and Column 4.3c shows the objective function values. In terms of accuracy, the
results showed that, in all three methods, the performance rose quickly as the constraints
were progressively added. In this particular example, as constraints reached as low as 2
pairs, the accuracy had already reached above 85% for SSTSC+EP, and above 90% for
SSACA and SSACA+EP. High variability was noticeable in the results, as can be observed
by the standard deviation displayed in the figures. This behaviour was particularly normal
for k -means-based algorithms; such algorithms rely on random initializations, which may
lead to different results for different runs.

Conversely, the mean cluster variance decreased as the number of constraints increased.
This behaviour shows that the pairwise constraints were “helping” the cluster method
create tighter clusters. Similarly, the values of the objective functions decreased as the
number of constraints increased, because of the adjustments made to the similarities of
the segments by the constraints. The must-link constraints made distances between two
segments in the same cluster smaller, and cannot-link constraints made distances between
two segments larger.

52

0.4	
0.45	
0.5	

0.55	
0.6	

0.65	
0.7	

0.75	
0.8	

0.85	
0.9	

0.95	
1	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

Ac
cu
ra
cy
	

Number	 of	 Constraint	 Pairs	

Accuracy	 SSACA	

0.025	

0.03	

0.035	

0.04	

0.045	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

M
ea
n	
Cl
us
te
r	 V

ar
ia
ce
	

Number	 of	 Constraint	 Pairs	

Mean	 Cluster	 Varia5on	 SSACA	

0	

2	

4	

6	

8	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

O
bj
ec
&v

e	
Fu
nc
&o

n	

Number	 of	 	 Constraint	 Pairs	

Objec&ve	 Func&on	 SSACA	

0.4	
0.45	
0.5	
0.55	
0.6	
0.65	
0.7	
0.75	
0.8	
0.85	
0.9	
0.95	

1	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

Ac
cu
ra
cy
	

Number	 of	 Constraint	 Pairs	

Accuracy	 SSACA+EP	

0.025	

0.03	

0.035	

0.04	

0.045	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

M
ea
n	
Cl
us
te
r	 V

ar
ia
nc
e	

Number	 of	 Constraint	 Pairs	

Mean	 Cluster	 Variance	 SSACA	 +	 EP	

0	

2	

4	

6	

8	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	
O
bj
ec
&v

e	
Fu
nc
&o

n	
Number	 of	 Constraint	 Pairs	

Objec&ve	 Func&on	 SSACA	 +	 EP	

0.4	
0.45	
0.5	

0.55	
0.6	

0.65	
0.7	

0.75	
0.8	

0.85	
0.9	

0.95	
1	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

Ac
cu
ra
cy
	

Number	 of	 Constraint	 Pairs	

Accuracy	 SSTSC	 +	 EP	

(a) Accuracy

0.02	

0.025	

0.03	

0.035	

0.04	

0.045	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

M
ea
n	
Cl
us
te
r	 V

ar
ia
nc
e	

Number	 of	 Constraint	 Pairs	

Mean	 Cluster	 Variance	 SSTSC	 +	 EP	

(b) Mean Cluster Variance

0	
2	
4	
6	
8	
10	
12	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	

O
bj
ec
&v

e	
Fu
nc
&o

n	

Number	 of	 Constraint	 Pairs	

Objec&ve	 Func&on	 SSTSC	 +	 EP	

(c) Objective Function

Figure 4.3: Constraint analysis of SSACA, SSACA+EP, SSTSC+EP. (a) Accuracy average,
(b) Mean cluster variance, (c) Objective function values.

53

0.4	
0.45	
0.5	

0.55	
0.6	

0.65	
0.7	

0.75	
0.8	

0.85	
0.9	

0.95	
1	

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20	

Ac
cu
ra
cy
	

Number	 of	 Constraint	 Pairs	

Comparison	 of	 SSACA	

SSACA	

ACA	

TDCK	

SC	

(a) SSACA

0.4	
0.45	
0.5	

0.55	
0.6	

0.65	
0.7	

0.75	
0.8	

0.85	
0.9	

0.95	
1	

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20	

Ac
cu
ra
cy
	

Number	 of	 Constraint	 Pairs	

Comparison	 of	 SSACA+EP	

SSACA+EP	

ACA	

TDCK	

SC	

(b) SSACA+EP

0.4	
0.45	
0.5	
0.55	
0.6	
0.65	
0.7	
0.75	
0.8	
0.85	
0.9	
0.95	

1	

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20	

Ac
cu
ra
cy
	

Number	 of	 Constraint	 Pairs	

Comparison	 of	 SSTSC+EP	

SSTSC+EP	

ACA	

TDCK	

SC	

(c) SSTSC+EP

Figure 4.4: Comparison of SSACA, SSACA+EP, SSTSC+EP with ACA, SC, and TDCK.

Figure 4.4 shows the average accuracy of the proposed methods compared to two unsu-
pervised methods (ACA and SC) and one temporal semi-supervised method (TDCK). The
average was the result of 10 runs applied to 276 synthetically-generated frames, organized
into 30 segments (m = 30) and three clusters (k = 3). Figure 4.4a shows the average accu-
racy of SSACA, Figure 4.4b shows the average accuracy of SSACA+EP, and Figure 4.4c
shows the average results of SSTSC+EP. Note that the overall accuracy of the proposed
methods was boosted by the addition of very few constraints, surpassing the accuracy of
the other methods with only a small amount of side information in the form of pairwise
constraints.

4.2.3 Analysis of the Number of Clusters

The goal of this experiment was to analyze how the number of clusters affected the results
of the proposed semi-supervised methods. For this experiment, 30 randomly-generated
synthetic time series samples were used, ranging from 180 to 350 frames and made up of 30
segments (m = 30) and 6 pairs of constraints (nconst = 6). Then, the number of clusters was
varied from 3 to 6 (k = [3 . . . 6]) in order to observe the behaviour of the proposed methods.
For this analysis, the accuracy (Acc.), the mean cluster variance (MCVar), the value of
the objective function (Obj.), and the cluster alternation rate (H) of the samples were
evaluated. The results shown in Table 4.2 are the average of all the evaluation measures
over the 30 runs. As the number of clusters increased, the average cluster alternation
rate of the analyzed samples also increased – meaning that the variability of the samples
increased, or, in other words, that the number of alternations of clusters rose. In addition,
the number of elements for each cluster decreased as the number of clusters increased.
With fewer elements per cluster, the pool of elements used to calculate the centroids was
smaller, increasing the chances of finding an incorrect cluster. As a result, the overall
performance of all methods dropped consistently across the different numbers of clusters.

54

Still, the relative increase in accuracy and quality of clusters that semi-supervised methods
caused was not compromised. Figure 4.5 shows the relative difference among the methods.

Table 4.2: Analysis of number of clusters

ACA SSACA SC SSACA SSTSC TDCK
+EP +EP

k 3 3 3 3 3 3
nconst 6 6 6 6 6 6
H 2.4222
Acc. 0.5880 0.9214 0.4928 0.9294 0.8344 0.4600
MCVar 0.0389 0.0300 0.0417 0.0294 0.0290 0.0673
Obj. 8.0691 0.5437 n/a 0.5283 0.6852 75.8242
k 4 4 4 4 4 4
H 3.2157
Acc. 0.4839 0.8248 0.4129 0.8446 0.7724 0.3815
MCVar 0.0501 0.0398 0.0529 0.0386 0.0376 0.0476
Obj. 8.3097 0.6442 n/a 0.5948 0.6993 116.6765
k 5 5 5 5 5 5
H 3.7623
Acc. 0.4616 0.7247 0.4011 0.7259 0.7013 0.3479
MCVar 0.0621 0.0494 0.0746 0.0491 0.0475 0.0566
Obj. 7.5798 0.5075 n/a 0.4857 0.5308 115.0031
k 6 6 6 6 6 6
H 4.1516
Acc. 0.4347 0.7081 0.3774 0.7177 0.7045 0.3244
MCVar. 0.0711 0.0604 0.0814 0.0590 0.0541 0.0464
Obj. 7.5697 0.5237 n/a 0.5756 0.6136 145.5870

4.2.4 Analysis of the Influence of Exhaustive Propagation

The goal of this experiment was to analyze the effect of exhaustive propagation of con-
straints on the accuracy of a semi-supervised temporal clustering algorithm, compared
to regular instance-based constraints. This experiment analyzed the averaged results of
100 runs of a randomly-generated time series, containing 78 segments (m = 78) and four
clusters (k = 4), while varying the number of constraints from 0 to 60.

55

0.3	
0.35	
0.4	

0.45	
0.5	

0.55	
0.6	

0.65	
0.7	

0.75	
0.8	

0.85	
0.9	

0.95	
1	

k=3	 k=4	 k=5	 k=6	

Ac
cu
ra
cy
	

Number	 of	 Clusters	

Accuracy	 Analysis	 varying	 k	

ACA	

SSACA	

SC	

SSACA+EP	

SSTSC+EP	

TDCK	

Figure 4.5: Analysis of variation of the number of clusters applied to a synthetic dataset.

0.35	
0.4	

0.45	
0.5	

0.55	
0.6	

0.65	
0.7	

0.75	
0.8	

0.85	

0	 10	 20	 30	 40	 50	 60	

Ac
cu
ra
cy
	

Number	 of	 Constraint	 Pairs	

Synthe6c	 Dataset	

SSACA+EP	

SSACA	

Figure 4.6: Analysis of the effect of exhaustive propagation.

56

Figure 4.6 shows that, after 30 pairs of constraints, the effect of the exhaustive propa-
gation became noticeable. The higher the number of constraints, the more they reassured
the neighbourhood similarities affected by the propagation of the constraints. Therefore,
greater improvements were only noticeable when the number of constraints was higher.

4.2.5 Analysis of the Influence of Constrained Initial Segmenta-
tion

The use of constraints in a clustering problem can provide several benefits, not only by
helping to “guide” the clustering algorithm, but also by helping with initial segmentation
and with seeding the initial clusters. In the case of a temporal segmentation problem,
the pairwise constraints are provided in the form of segments. These constrained seg-
ments can be used to help with initial segmentation. The logical consequence of adding
more constraints is the improvement of initial segmentation, which is a contribution of
the approach proposed in this thesis. The question that remains is whether the overall
gain, as the constraints increase, comes only from supporting the initial segmentation, or
if there is improvement that comes from the direct influence of the similarity manipulation
of the constraints in the clustering process. The goal of this experiment was to answer this
question.

A randomly-generated synthetic time series composed of 20 frames, 7 segments (m = 7),
and three clusters (k = 3) was used for this experiment. The number of constraints
was varied progressively from zero to 15. For each random pair of constraints added to
the experiment, the accuracy of the temporal segmentation was calculated based on the
initially-constrained segmentation only, and on the complete semi-supervised method. The
former case is referred in the figures as “(Avg. Acc. Constrained Initial Segmentation)” and
the latter as “Avg. Acc. (method name)”. Figure 4.7 shows the comparison for SSACA,
Figure 4.8 shows the comparison for SSACA+EP, and Figure 4.9 shows the comparison
for SSTSC.

In Figure 4.7, the average gains in accuracy of SSACA are greater than the gains
provided by the simple, constrained initial segmentation. In this particular example, there
was an increase of 8 points of extra improvement in the total accuracy when providing 1
or 2 constraints. Similar results can be observed in Figure 4.8, which depicts the accuracy
of SSACA+EP compared to its initial segmentation. Figure 4.9, which depicts the results
of the comparison of SSTSC and its initial constrained segmentation, shows even better
results, with improvements of 11 points in the overall performance, when given 1 pair of
constraint, even after the initial segmentation improvements. All these results show that

57

the improvements are not limited to the gains of the initial segmentation. In other words,
there is actual “learning” in the clustering process provided by the pairwise constraints.

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Number	 of	 Constraints	

0.55	
0.64	

0.79	

0.90	
0.98	 1.00	 0.99	 0.99	 0.99	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	

0.55	

0.73	

0.87	
0.92	

1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	

Total	 Accuracy	 vs.	 Constrained	 Segmenta7on	 Accuracy	
(SSACA)	

Avg.	 Acc.	 Constrained	 IniAal	 SegmentaAon	 Avg.	 Acc.	 SSACA	

Figure 4.7: Comparison between the accuracy of only using the initial constrained segmen-
tation and the accuracy of SSACA plus the initial constrained segmentation.

The same experiment was repeated in a larger dataset, so that a larger number of
constraints could be observed without reaching total coverage of the initial segmentation.
In this second experiment, the same randomly-generated synthetic time series was used,
but this time, it was composed of 4,474 frames, 78 segments (m = 78), and four clusters
(k = 4). The results showed that, with a larger number of constraints, the gains in
performance discounting the influence of the constrained initial segmentation were even
higher. In Figure 4.10, which depicts a comparison of the results of SSACA and its initial
constrained segmentation, there was an increase of up to 12 points of extra improvement in
the total accuracy. The improvement of SSACA+EP, compared to its initial constrained
segmentation was an increase of 12 points using 10 constraints (0.33% of constraints), as
shown in Figure 4.11. The improvements of SSTSC+EP reached 6 points using 1% of
the constraints (see Figure 4.12). Although the absolute number of constraints was higher
compared to the experiment with the smaller dataset, relatively speaking, it represented a
smaller percentage of the total number of possible constraints.

58

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Number	 of	 Constraints	

0.55	
0.64	

0.79	

0.90	
0.98	 1.00	 0.99	 0.99	 0.99	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	

0.55	

0.73	

0.87	
0.94	

1.00	 1.00	 0.99	 0.99	 0.99	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	

Total	 Accuracy	 vs.	 Constrained	 Segmenta7on	 Accuracy	 	
(SSACA+EP)	

Avg.	 Acc.	 Constrained	 IniAal	 SegmentaAon	 Avg.	 Acc.	 SSACA+EP	

Figure 4.8: Comparison between the accuracy of only using the initial constrained segmen-
tation and the accuracy of SSACA+EP plus the initial constrained segmentation.

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Number	 of	 Constraints	

0.55	
0.64	

0.79	

0.90	
0.98	 1.00	 0.99	 0.99	 0.99	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	

0.54	

0.75	

0.87	
0.95	

1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	 1.00	

Total	 Accuracy	 vs.	 Constrained	 Segmenta7on	 Accuracy	
(SSTSC+EP)	 	

Avg.	 Acc.	 Constrained	 IniAal	 SegmentaAon	 Avg.	 Acc.	 SSTSC+EP	

Figure 4.9: Comparison between the accuracy of only using the initial constrained segmen-
tation and the accuracy of SSTSC+EP plus the initial constrained segmentation.

59

0	 (0%)	
10	 (0.33%)	

20	 (0.67%)	
30	 (1%)	

40	 (1.33%)	
50	 (1.67%)	 Number	 of	 Constraints	 (Percentage)	

0.39	
0.51	 0.52	 0.57	 0.60	 0.66	 0.39	

0.63	
0.57	 0.63	 0.66	 0.70	

Total	 Accuracy	 vs.	 Constrained	 Segmenta7on	 Accuracy	
(SSACA)	

Avg.	 Acc.	 Constrained	 IniDal	 SegmentaDon	 Avg.	 Acc.	 SSACA	

Figure 4.10: Comparison between the accuracy of only using the initial constrained seg-
mentation and the accuracy of SSACA (initial constrained segmentation + similarity ma-
nipulations).

0	 (0%)	
10	 (0.33%)	

20	 (0.67%)	
30	 (1%)	

40	 (1.33%)	
50	 (1.67%)	 Number	 of	 Constraints	 (Percentage)	

0.39	
0.51	 0.52	 0.57	 0.60	 0.66	 0.39	

0.63	
0.58	 0.63	 0.67	

0.76	

Total	 Accuracy	 vs.	 Constrained	 Segmenta7on	 Accuracy	
(SSACA+EP)	

Avg.	 Acc.	 Constrained	 IniEal	 SegmentaEon	 Avg.	 Acc.	 SSACA+EP	

Figure 4.11: Comparison between the accuracy of only using the initial constrained seg-
mentation and the accuracy of SSACA+EP (initial constrained segmentation + similarity
manipulations).

60

0	 (0%)	
10	 (0.33%)	

20	 (0.67%)	
30	 (1%)	

40	 (1.33%)	
50	 (1.67%)	 Number	 of	 Constraints	 (Percentage)	

0.39	
0.51	 0.52	 0.57	 0.60	 0.66	 0.38	

0.56	 0.56	 0.63	 0.65	 0.70	

Total	 Accuracy	 vs.	 Constrained	 Segmenta7on	 Accuracy	
	 (SSTSC+EP)	

Avg.	 Acc.	 Constrained	 IniEal	 SegmentaEon	 Avg.	 Acc.	 SSTSC+EP	

Figure 4.12: Comparison between the accuracy of only using the initial constrained seg-
mentation and the accuracy of SSTSC+EP (initial constrained segmentation + similarity
manipulations).

61

Chapter 5

Experiments on Emotion Analysis
and Human Motion Segmentation

This chapter provides some experiments on real-world applications. The first application is
on emotion segmentation. Two naturally-occurring human emotion datasets are analyzed,
which include the VAM corpus and the AVEC dataset. The second application is on human
motion segmentation, and the dataset used is the Carnegie Mellon University Motion
Capture.

An overview of emotion analysis and human motion segmentation is provided, before
each experiment is presented and discussed. Section 5.1 gives an introduction to emotion
analysis, and reviews some of the work in the field of facial expression analysis, more
specifically, the methods based on clustering approaches. It also explains the problem
of facial expression analysis, and the fundamental steps involved in the process, which
includes face acquisition, facial data extraction and representation, and facial expression
interpretation. Finally, the experiments are presented and analyzed by the end of the
section. Section 5.2 explains the problem of human segmentation, discusses some related
work, and analyzes the experiments performed in a human motion dataset.

5.1 Emotion Analysis

Analysis of naturally-occurring human emotions is the main focus of recent research in the
field of affective computing. Emotional analysis is a vital step in building efficient and more
realistic intelligent human-computer interfaces. Facial expressions and speech are the two

62

modalities most commonly used to analyze emotions in human interaction [64] [65] [66].
While facial expression is considered to be the primary modality in human communication,
according to [67], speech is the fastest and most natural method of communication between
humans.

Facial expressions consist of movements of the muscles of the face. These movements
represent a response to physical or emotional internal states of a person, and play a major
role in interpersonal and non-verbal communication. Facial expression analysis has been
studied for many years in the fields of psychology and behavioural science. More recently, a
great deal of effort has been put into automatic recognition and analysis of these expressions
in images and videos. The automation of facial expression analysis can provide many useful
applications, from straightforward ones, such as automatically assessing the credibility of
statements in interrogations, to those less evident, such as warning a drowsy driver that
he or she is about to fall asleep, or judging how difficult a student finds a video lecture.

Focus is now directed towards recognition in terms of dimensional and continuous de-
scription, rather than a small number of discrete emotional categories. Numerical repre-
sentation of emotions in a multi-dimensional space is considered to be a more appropriate
representation of the gradated nature of emotions. Moreover, human natural affective be-
haviour is multimodal, subtle, and complex, making it challenging to map the affective
human state into a single label or discrete number of classes [68].

The bulk of the approaches found in the literature use supervised learning, despite the
fact that the labelling process is demanding. With the abundance of data available in this
domain, and the burdensome nature of the labelling process, there should be a natural
inclination for researchers to pursue unsupervised methods for these applications more
intensively. However, purely unsupervised methods may not produce desirable results,
due to the complexity of emotion analysis. A semi-supervised approach offers a balance
between the demands of process and accuracy of results.

There are few attempts in the literature based on unsupervised methods. This obser-
vation is true for both of the two most-used modalities: facial expressions and speech. A
possible reason for the shortage of unsupervised work is the lack of the temporal aspect of
the traditional clustering algorithms, preventing the analysis of dimensional and continuous
emotion.

Wollmer et al. [69] study the estimation of emotions from speech in the valence and
activation dimensions using Long-Short-Term Recurrent Neural Networks. Nicolaou et
al. [70] propose the use of Output-Associative Relevance Vector Machine (OA-RVM) for
dimensional and continuous estimation of emotions from facial expressions. Grimm et al.
[71] compares the performance of Support Vector Regression, Fuzzy k-Nearest Neighbour,

63

and Rule-based Fuzzy Logic classifiers as estimators of spontaneously expressed emotions
in speech from three continuous-valued emotion primitives.

Hoey [72] presents an early study that uses unsupervised methods to categorize facial
expressions. He proposes a hierarchical dynamic bayesian network for unsupervised clas-
sification of expression sequences from video input. He shows that learning the high-level
temporal structure of the environment helps the unsupervised learning process of the facial
expressions. His approach categorizes five basic emotions on a posed database.

[73] presents an approach using existing clustering techniques to obtain temporal clus-
tering by grouping frames capturing consistent shapes. These temporal cuts detect non-
rigid changes in the shape of objects. One example illustrating this approach uses sequences
of facial expressions, grouping frames into smiling and serious clusters. The results show
accuracy similar to supervised methods, and achieve moderate intersystem agreement with
FACS. One of the challenges that this study presents is how to increase accuracy for subtle
facial actions.

De la Torre et al. [74] propose a temporal segmentation method of facial gestures
in order to cluster similar facial actions. They apply their approach to spontaneous facial
expressions, using two steps. First, they cluster the facial gestures by shape in a way that is
invariant to specific geometric transformations, and second they group clusters effectively
into temporally coherent chunks. They use this approach in two applications: both to
detect unusual or rare facial expressions and actions and to preprocess videos for manual
FACS annotation. For clustering, they use a spectral graph clustering algorithm.

Another work that focuses on unsupervised approach for recognition is that of Zhou
et al. [75]. The goal of their work is to discover facial events directly from naturally
occurring videos, using unsupervised temporal clustering instead of FACS or other label
schemes. The first algorithm they use for this task is ACA, and the second is a multi-
subject correspondence algorithm for matching expressions. ACA is an extension of kernel
k -means to cluster time series, combined with Dynamic Time Alignment Kernel (DTAK).

The only research that applies semi-supervised clustering to the problem of emotion
segmentation are studies co-authored by the author of this thesis [76] [77] [78]. These
researches are part of the experiments presented in Chapter 5.

5.1.1 Facial Expression Analysis

According to Tian et al. [79], facial expression analysis refers to the process by which
computer systems attempt to automatically analyze and recognize facial motions and facial
feature changes from visual information.

64

Facial motions not only represent internal emotional states, but also represent physical
states, such as intentions, and cognitive processes. Computer analysis systems should
be able to analyze facial movements regardless of the context involved. However, the
interpretation of facial movements depends heavily on context. For example, a facial
expression recognition system running in a car safety environment will be programmed to
identify facial movements that indicate signs of fatigue on the driver’s face, so that the
system can warn the driver to stop and rest.

The ability to automatically recognize facial motions broadens the horizon for many
new real-world applications in fields such as medicine, education, and human-computer
interaction. The applications developed so far, many of which are mentioned in previous
sections, are part of a nascent movement, with many more sure to follow.

Fundamental Steps of an Automatic Facial Expression Recognition System

Automatic facial expression recognition systems share many of their fundamental steps with
general computer vision systems. In fact, the three fundamental steps in both processes
are the same. The three steps are: (1) face acquisition, (2) facial data extraction and
representation, and (3) facial expression recognition.

Face acquisition is the process of capturing images of faces through the use of a sensor
device. Acquisition can be as simple as gathering a sequence of digitized images that has
already been digitized. Two main approaches are used for this step. The first approach
finds the face or faces in the image, and then keeps track of them in the remainder of the
video sequence. The second appoach detects the faces at each frame.

The next step is facial data extraction and representation. Data extraction and repre-
sentation is the process of deriving a set of features which represents the original digital
image in a different format. Usually, features are a more compact way of representing
digital images. Two main types of data extraction and representation are found in the lit-
erature: geometric and appearance-based approaches. Geometric-based approaches define
features as shapes or locations of facial feature points (such as the corners of the mouth or
eyes) [65]. Appearance-based approaches define features based on texture changes (wrin-
kles, furrows, lines, etc.) [80].

Each method has its own advantages and disadvantages. Appearance-based approaches
cope with variations of skin patterns or markings well, but are susceptible to illumination
changes. Geometric-based approaches demand less computation, but they only consider
some specific fiducial points and, as a result, may miss some important information.

65

The last step is facial expression recognition. Facial expression recognition is the process
of assigning a label to a pattern based on its features. Most of the work in this area uses
supervised learning methods to classify the patterns, either by individual movements of the
face, also known as action units (AU), or by prototypic emotional categories. Another way
of recognizing the emotions is to continuously predict the intensity of dimensional models
by performing regression. Dimensional models are discussed in Section 5.1.1.

Face Acquisition

Face acquisition is the first phase of a facial expression analysis system, and can be classified
into one of two types of imaging: static images and video sequences. From the data modal-
ity point-of-view, face acquisition can be either 2D or 3D. There is a current upward trend
in the number of publications that uses 3D data [81, 82] due to its robustness to changes
in lighting conditions and even pose variations. However, there are some limitations of 3D
imaging, including the cost of the computational time, the cost of memory allocation, and
the cost of the acquisition itself (although the price of 3D scanners is constantly becoming
cheaper). Despite the increase in 3D acquisition, the majority of the databases still use 2D
data [83, 84], which requires less computational effort and offers greater ease of acquisition.

There are some databases available in the literature that can be used for facial expres-
sion analysis. Table A.11 lists some of the publicly-available databases and their charac-
teristics.

Head Orientation

Head orientation represents the position of the face in relation to the camera. The frontal
view is the most natural position, and the one that provides more visible facial features.
However, in real-world applications, a frontal view is not always possible. Some databases,
such as Multi-PIE and Face Database MPI, even provide multiple views in order to make
systems more robust for such view variations. In contrast, some studies claim that non-
frontal-view facial expression recognition outperforms frontal-view facial expression recog-
nition. The experiments of Hu et al. [85] suggest that, although a frontal-view face has
the most visible facial features, the displays of facial features are always symmetrical at
the frontal view, causing a certain degree of redundancy of information.

Moore and Bowden [86] raise the question of whether Hu et al.’s conclusion is related to
the geometric features they used and consequently proposes an appearance-based approach
to answer the same question. According to their results, the frontal pose is optimal for

66

facial expression recognition, but its efficacy is dependent on feature selection. They state
that weaker features perform better with non-frontal pose, and that some expressions may
perform better with non-frontal views.

Pantic and Patras [87] go even further in their approach to the problem of non-frontal
view facial expressions by exploring temporal segments of the video (i.e., onset, apex, and
offset) of action units. However, their method operates under two assumptions: the input
video sequence is a non-occluded, near-profile view of the face, with possible in-image-
plane head rotations and an initial frame showing a neutral expression. They do not
address the problem initial location of the facial points, and their method cannot deal with
spontaneously-occurring facial behaviour.

In a more recent paper, Rudovic et al. [88] propose a regression-based scheme for
multi-view facial expression recognition for 2D geometric features. They point out that
2D-based methods need to train view-specific classifiers, and as a result, the number of
classes increases proportionally with the number of different views and facial expressions.
Consequently, the demand for training data for specific views increases. A similar amount
of training data is needed in order to avoid bias, but there is an imbalance between the
data available from frontal-view and multi-view, making it possible for a good frontal-
view classifier that generalizes poorly for non-frontal views. Rudovic et al. address this
problem by mapping facial points from non-frontal to frontal views, using regression models
that perform facial expression recognition with state-of-the-art methods. Although some
experiments add some noise to the testing data, the process is not analogous to a real-world
application, which has no controlled environment.

Building a facial expression system that is robust to non-frontal-view face is a necessary
task in order to achieve a truly automated facial expression recognition system – one that
can operate in a less constrained environment and is able to deal with spontaneous facial
behaviour.

Posed vs Spontaneous Expressions

Spontaneous and posed facial differ substantially in terms of which muscle is moving, and
consequently affecting the overall dynamics of facial movements. As a result, fine-motor
control of deliberate facial actions are often less symmetrical than spontaneous. Tian et al.
[79] give an example of one specific facial movement that can be different in spontaneous
and deliberate expression. Many people can raise their outer brows spontaneously while
leaving their inner brows at rest, but performing this movement voluntarily is uncommon.
[89] offers more details on the differences.

67

Some effort has been put into the creation of spontaneous expression datasets. Some of
the public databases are RU-FACS (interview-based), Prkachin-Solomon (pain induction),
MMI, Cohn-Kanade+ (only part of the dataset), and Belfast.

Facial Feature Extraction and Representation

Optimal features should be able to maximize variations of intra-class patterns and minimize
variation of inter-class patterns. Inappropriate features will make a good classifier work
poorly.

The existing approaches in the literature can be placed into one of the two main cat-
egories, denoted by facial features. The first one of these categories is geometric-based
approaches, in which features are defined as shapes, specific points, or fiducial points
[90, 88, 65, 91, 92]. The second category is appearance-based approaches, which treat the
image as a whole. Some examples of this approach include: texture [83], local binary pat-
tern (LBP) [80], gabor wavelet [93] and moments [84, 94]. Some works have mixed both
approaches [93, 95].

A new and emerging method is the dynamic-texture-based approach, which can be seen
as a generalization of appearance-based approaches. Two papers have used this method:
[96] and [83]. The latter uses a temporal model that allows recognition of sequences of
temporal segments, such as neutral, onset, apex, and offset. However, one of the limitations
of these approaches is their need for near-frontal-view face videos.

Facial Expression Categorization

The majority of studies use supervised methods for the process of categorization of facial
expression. Most systems rely on a famous code system called FACS (Facial Action Coding
System) [97], published by Ekman and Friesen in 1978 and later revised in 2002 [98]. This
system maps all possible muscle movements of the face into independent facial actions,
which are called Action Units (AU).

Regardless of debate amongst on the psychology community about the uniqueness and
universality of this system, these AUs are extensively documented, and have been used in
various scientific papers [83, 84, 81], either alone or in combination, to predict or categorize
different emotions.

Ekman and Friesen’s work [97] defines six prototypical emotions: anger, disgust, fear,
happiness, sadness and surprise. The majority of theorists accept these categories as

68

universal emotions. So far, generalization of expression recognition to new expression
classes remains unsolved, according to [99]. However, some unsupervised approaches have
been created in attempt to avoid FACS taxonomy [75].

Categorical vs Dimensional Affect

For many years, the focus of affect recognition has been on the categorization of emotions
into a discrete number of prototypical emotions, as discussed in Section 5.1.1. This ap-
proach makes it difficult to map the affective human state into a single label. Recently, the
focus has shifted to dimensional emotion models. These models make it possible to analyze
real-life emotions, which are usually subtle, mixed, and complex, in less constrained ways.

Arousal

Valence

Excited

Happy

Frustated

Sad

Sleepy

At ease
Bored

Figure 5.1: The arousal-valance (A-V) space proposed by Russell with some plotted affect
words.

Affective states are characterized in terms of a small number of latent dimensions. The
dimensional representation of emotions is described using the emotion space concept [100].
One popular dimensional emotion model uses three dimension primitives: valence (positive
to negative), activation (calm to excited), and dominance (weak to strong) dimensions [68].
The valence dimension refers to how positive or negative the emotion is, and ranges from

69

very unpleasant emotion to happiness. Arousal refers to the level of excitement, and
ranges from boredom to frantic excitement. The dominance dimension refers to the sense
of control over the emotion. Figure 5.1 shows the Circumflex of Affect proposed by Russell
[101].

5.1.2 VAM Corpus

The VAM corpus [102] is an authentic, spontaneous audio-visual dataset of real-life con-
versations. This dataset was recorded from the German TV talk show “Vera am Mittag”,
in which guests talk about their personal issues in a spontaneous, affective, and unscripted
manner. Three emotion primitives describe the actual emotions of the participants: ac-
tivation or arousal (calm – excited), dominance (weak – strong), and valence (positive –
negative). Figure 5.2 shows sample images taken from the dataset.

Figure 5.2: Sample images from the VAM-Corpus dataset.

Each emotion primitive ranges from [-1,+1], where 0 signifies a lack of the evaluated
primitive, and -1 and +1 signify the very low and very high values, respectively. For
example, in the analysis of activation, -1 means that the person is very calm, 0 means that
the person shows neutral emotion, and +1 shows that the person is very excited. In this
experiment, the spectrum was divided into four categories: very low [-1, -0.5], low [-0.5, 0],
high [0, +0.5], and very high [+0.5, 1]. For some subjects, the particular primitive being
considered may not produce labels for the four categories. For instance, some speakers
show small variation in emotions, which generates only two categories (low and high).
Figure 5.3 shows a sample of the discretization process.

70

10 20 30 40 50 60 70
−1

01
arousal continuous

10 20 30 40 50 60 70
02
4

arousal categorized

ground truth, 75 frames, 11 segments, 3 clusters

aca accuracy 0.48

ssaca accuracy 0.80

sc accuracy 0.45

ssaca+ep accuracy 0.80

sstsc accuracy 0.72

tdck accuracy 0.65

Figure 5.3: Discretization of the arousal dimensional emotion in subject 17 of VAM-Corpus
dataset.

5.1.3 Features

For visual feature extraction, Local Binary Patterns (LBP) [103] were used in this work
based on the approach described in [104]. A total of 1,486 facial images, which were anno-
tated by 17 human evaluators using Self Assessment Manikins [105] were used. The number
of frames per individual ranged from 32 to 113. The face region in each frame was first
detected using the real-time face detection approach of Viola and Jones [106].The resulting
face regions were then normalized. The normalization process began with identification of
the coordinates of the two eyes, based on the OpenCV implementation of a Haar-cascade
object detector, trained for either a left or a right eye. Then the size normalization was
completed by resizing the image to create a distance between the eyes of 55 pixels. After-
wards, the whole face image was cropped to the size of 150 x 110, relative to the position
of the eyes. The resulting face images were then divided into 7 x 6 sub-regions. Finally,
the LBP descriptors were extracted for each region, and the histograms were mapped into
uniform patterns in an (8, 2) neighbourhood. The size of the final feature vector was 2,478
(7 x 6 x 59) for each face.

5.1.4 Experimental Results and Analysis

The performance of six different algorithms for the three emotion primitives was evaluated
based on the general setup described in 4.1. The whole dataset had a total of 20 subjects.
However, some subjects were removed due to a lack of emotional variation. Subjects 3, 9,
and 19 were removed from the valence analysis, subjects 9 and 10 from dominance, and
subjects 9 and 12 from activation.

71

Table 5.1: Average accuracy results of VAM corpus dataset.

Average Accuracy VAM
Activation Valence Dominance

SSACA+EP 0.63 ± 0.05 0.65 ± 0.05 0.66 ± 0.06
SSTSC+EP 0.60 ± 0.05 0.63 ± 0.04 0.64 ± 0.05
SSACA 0.63 ± 0.05 0.65 ± 0.05 0.66 ± 0.06
TDCK [55] 0.54 ± 0.06 0.55 ± 0.06 0.58 ± 0.07
ACA [7] 0.53 ± 0.09 0.55 ± 0.09 0.58 ± 0.09
SC [25] 0.55 ± 0.10 0.56 ± 0.11 0.58 ± 0.11

The frame kernel used was computed by kij = exp
(
−‖xi−yj‖

2

2σ2

)
, where σ was set to be

the average distance from the 5% closest neighbours, and nmax = 3. For the two methods
that used constraint propagation (i.e., SSACA+EP and SSTSC+EP), the propagation rate
was α = 0.40. For the TDCK method, the dimensional weight was set to γd = 1, and the
temporal weight was set to γt = 0.25. The scaling factor was set to β = 0.3, and the width
of the function was set to δ = 3.

Figure 5.4 shows the segmentation and the respective accuracy values of all the analyzed
methods of one initialization of subject 17 compared to the ground truth. Table 5.1
shows the average result of all the analyzed subjects over 30 different initializations and
sets of constraints. Regardless of the dimensions (activation, valence, and dominance),
all three proposed methods (SSACA+EP, SSTSC+EP, and SSACA) had much better
results compared to the alternative semi-supervised method, TDCK. Compared to the two
unsupervised methods (ACA and SC), a highly significant increase in accuracies occurred
using only 7% of the possible constraints.

5.1.5 AVEC Dataset

Audio/Visual Emotion Challenge (AVEC) [107] is an audio-visual emotion recognition
dataset created for the emotion recognition challenge (AVEC 2012). The dataset consists of
conversations among several participants and four stereotyped characters. Each character
has a specific emotion stereotype: sensible, happy, angry, and sad. The dataset is labeled
for arousal, valence, power, and expectancy. Some sample images of the AVEC dataset can
be seen in Figure 5.5. The train partition of the database contains 31 sections, wherein

72

10 20 30 40 50 60 70
−1

01
arousal continuous

10 20 30 40 50 60 70
02
4

arousal categorized

ground truth, 75 frames, 11 segments, 3 clusters

aca accuracy 0.48

ssaca accuracy 0.80

sc accuracy 0.45

ssaca+ep accuracy 0.80

sstsc accuracy 0.72

tdck accuracy 0.65

Figure 5.4: Accuracy of the analyzed methods compared to the ground truth of speaker
17 of VAM dataset.

each session contains one dialogue with a specific character. A total of seven different
subjects (subject 1 was used to record eight sections) were used to record the 31 sections.

LBP were the features extracted as described in Section 5.1.3. Approximately 5% of
the total number of possible constraints were applied.

5.1.6 Experimental Results and Analysis

The experiments were performed in the training portion of the AVEC dataset and were
organized by subject, with each subject representing a dialog with four consecutive different
characters. This setup allowed for longer conversation and higher variability. User 6 was
removed from the experiments due to a high number of out-of-boundary frames during

73

Figure 5.5: Sample images of AVEC dataset.

the face tracking process, caused by excessive head movement. Therefore, a total of six
subjects were tested in this experiment. The continuous values of the affective dimensions,
which ranged from [-1, +1], were discretized in 6 categories, similar to [76], and the results
of the segmentation were observed for arousal, valence, power, and expectancy.

The frame kernel used was computed by kij = exp
(
−‖xi−yj‖

2

2σ2

)
, where σ was set to be

the average distance from the 5% closest neighbours, and nmax = 43. For the two methods
that used constraint propagation (i.e., SSACA+EP and SSTSC+EP), the propagation rate
was α = 0.01. For the TDCK method, the dimensional weight was set to γd = 1, and the
temporal weight was set to γt = 0.25. The scaling factor was set to β = 0.3, and the width
of the function was set to δ = 3.

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

Subj.	 1	 Subj.	 2	 Subj.	 3	 Subj.	 4	 Subj.	 5	 Subj.	 7	

Expectancy	

SSACA+EP	 SSACA	 SSTSC+EP	 ACA	 SC	 TDCK	

Figure 5.6: Average accuracy results per subject for expectancy.

74

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

Subj.	 1	 Subj.	 2	 Subj.	 3	 Subj.	 4	 Subj.	 5	 Subj.	 7	

Power	

SSACA+EP	 SSACA	 SSTSC+EP	 ACA	 SC	 TDCK	

Figure 5.7: Average accuracy results per subject for power.

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

Subj.	 1	 Subj.	 2	 Subj.	 3	 Subj.	 4	 Subj.	 5	 Subj.	 7	

Valence	

SSACA+EP	 SSACA	 SSTSC+EP	 ACA	 SC	 TDCK	

Figure 5.8: Average accuracy results per subject for valence.

75

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

Subj.	 1	 Subj.	 2	 Subj.	 3	 Subj.	 4	 Subj.	 5	 Subj.	 7	

Arousal	

SSACA+EP	 SSACA	 SSTSC+EP	 ACA	 SC	 TDCK	

Figure 5.9: Average accuracy results per subject for arousal.

Table 5.2: Characteristics of each subject of the AVEC dataset for the Expectancy emo-
tional dimension.

Expectancy
Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 7

Seg. (m) 118 59 44 73 123 38
Clus. (k) 5 3 3 4 4 5
Total # of Const. 6903 1711 946 2628 7503 703
Known Const. 345 86 47 131 375 35
H 3.3702 2.5830 2.3829 2.6254 3.1479 3.6999

76

Table 5.3: Characteristics of each subject of the AVEC dataset for the Power emotional
dimension.

Power
Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 7

Seg. (m) 77 39 25 38 78 54
Clus. (k) 5 4 5 4 4 4
Total # of Const. 2926 741 300 703 3003 1431
Known Const. 146 37 15 35 150 72
H 4.0435 3.1098 3.3765 3.0021 3.1499 2.9016

Table 5.4: Characteristics of each subject of the AVEC dataset for the Valence emotional
dimension.

Valence
Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 7

Seg. (m) 81 41 23 32 83 48
Clus. (k) 4 3 4 4 5 4
Total # of Const. 3240 820 253 496 3403 1128
Known Const. 162 41 13 25 170 56
H 3.5589 2.7209 3.3637 3.1651 3.9309 3.6105

Table 5.5: Characteristics of each subject of the AVEC dataset for the Arousal emotional
dimension.

Arousal
Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 7

Seg. (m) 98 48 57 39 98 33
Clus. (k) 4 3 3 3 5 3
Total # of Const. 4753 1128 1506 741 4753 528
Known Const. 238 56 80 37 238 26
H 3.3379 2.7515 2.9555 2.8265 3.5142 2.8711

77

For this experiment, because of the higher number of constraints and segments, the
seeding process that accounted for initializing the clusters in a consistent fashion became
very cumbersome in order to be guaranteed. As a result, initial labels were not guaranteed
to be consistent with the must-link and cannot-link constraints, which otherwise could the-
oretically have produced better results. Nevertheless, results showed great improvements
in the proposed methods compared to the other methods.

Figure 5.6 shows the average accuracy results of 20 different initializations for all the
compared methods. The results were grouped by subjects and derived by visual features for
the expectancy dimension. Table 5.2 shows some characteristics generated by expectancy
dimension in terms of number of segments m, number of clusters k, total number of possible
constraints, total number of known constraints, and cluster alternation rate. Results show
that all three proposed methods (SSACA, SSACA+EP, and SSTSC+ EP) performed much
better than the methods to which they were compared (TDCK, ACA, and SC), particularly
for subjects 1 and 5. These subjects were the ones with both a higher number of segments,
118, and 123, respectively, and high rate of cluster alternation. The higher the number
of segments, the more constraints could be drawn from the samples, as a result, a higher
absolute number of pairwise constraints could be derived. For example, in subject 1, 5% of
all possible constraints accounted for 345 pairwise constraints, as opposed to 35 in subject
7. The higher number of constraints reassured the neighbourhood similarities, producing
better results. This effect is even more noticeable in the methods that use the exhaustive
propagation (SSACA+EP and SSTSC+EP). The numerical results with the respective
standard deviations is shown in Table A.1.

Figure 5.7 shows the average accuracy results of 20 different initializations for the power
dimension. The results were also grouped by subjects and derived from visual features.
Table A.8 shows the characteristics generated by the power dimension. The results for this
dimension were similar to the expectancy dimension in terms of the overall improvement
of the proposed methods (SSACA, SSACA+EP, and SSTSC+ EP). In this dimension,
subjects 1 and 5, also had the best results, consequence of the combination of high number
of segments and high cluster alternation rate. This observation is on par with the results
of Section 4.2.4.

Figure 5.8 shows the average accuracy results of 20 different initializations for the
valence dimension. The results were also grouped by subjects and derived from visual
features. Table 5.4 shows the characteristics generated by the valence dimension. The same
trend showed in expectancy and valence was observed for the valence dimension, where the
proposed methods produced great improvements with minimal supervision. One interesting
aspect that can be pointed out, is the fact that small samples tend to produce even results
across the different methods. For example, subject 3 produced only 23 segments, which

78

allowed for only 13 constraints. Consequently, the difference of the results across the
methods were not very significant, ranging from 0.41 in the worse case and 0.54 in the best
case. This detailed numerical results can be seen on Table A.3.

Finally, Figure 5.9 shows the average accuracy results of 20 different initializations for
the arousal dimension. The results were also grouped by subjects and derived from visual
features. Table A.10 shows the characteristics generated by the arousal. Results for this
dimension showed similar trends produced by the previous dimensions. Subjects 1 and 5
produced the best results, as consequence of the higher number of segments and constraints
discussed previously. The exception, however, was subject 2. In this particular case, a
combination of factors contributed to lower accuracy of the semi-supervised methods and
higher results for SC. The main characteristic that benefits SC as a method is having frames
from the same cluster that are contiguous. This characteristic is defined by low cluster
alternation rate. In contrast, having a high number of segments combined with high cluster
alternation rate benefits the semi-supervised methods; however, subject 2 showed very low
cluster alternation rate combined with an unbalanced distribution of segments per cluster,
with 87.5% of the segments divided between two clusters, which can be seen in Table A.10.

TDCK in most of the cases performed better than the unsupervised methods, ACA
and SC. However, in this type of application, emotions categories are recurrent, which
means, for example, that segments with high arousal, may occur several times during a
conversation, and are likely to be further apart in time. This behaviour causes TDCK
to not perform as good as the proposed method, due to its assumption that benefits the
creation of clusters that are closer in time. In contrast, the proposed methods do not
make general assumptions based on time similarity, instead it use the constraints in the
instance-level as provided.

Overall, the results show that all three proposed methods (SSACA, SSACA+EP, and
SSTSC+ EP) performed much better than the methods to which they were compared
(TDCK, ACA, and SC) with the addition of only 5% of the possible constraints across all
emotion dimensions. SSACA+EP, which has exhaustive propagation, performed better or
at least very similar to its counter-part without exhaustive propagation (SSACA). Greater
differences in accuracy were more noticeable in sets with a higher number of segments,
which enables higher absolute numbers of constraints, as discussed in Section 4.2.4. This
effect was more visible in the results of subjects 1 and 5 in all the dimensions.

All numerical detailed results showed in Figures 5.6, 5.7, 5.8, and 5.9 can be seen in
Tables A.1, A.2, A.3, A.4, A.5, and A.6 organized by users. Detailed tables with informa-
tion about the number of segments and distribution of frames per cluster are included in
Section A.2.

79

5.2 Human Motion Segmentation

The development of devices that capture motion data has increased vastly in recent years.
As a result, research on motion analysis, recognition, and synthesis has grown in impor-
tance. Motion segmentation is one of the most relevant techniques in the context of these
new devices, as discussed in [108]. Motion segmentation splits motion capture data into
continuous segments. In a human context, the process consists of breaking motion into
actions. Applications that can benefit from motion segmentation include those in the field
of entertainment, computer animation, healthcare, and consumer electronics [109].

According to [8], some challenges of this task include the high level of variability in
the temporal scale and periodicity of human actions, as well as the exponential nature of
all possible movement combinations. Kulic and Nakamura [110] classify the segmentation
algorithms according to whether they require previous knowledge of the motion primitives
or not. The category of algorithms that does not need prior information about the motion
primitives is called unsupervised segmentation. Some examples of unsupervised methods
are velocity-based approaches. Fod et al. [111] use a Zero Velocity Crossing (ZVC) ap-
proach, in which the segmentation point is given when zero-velocity crossing is detected
in a sufficient number of dimensions in the joint angle data. The first stage of the method
proposed by [112] uses a similar approach. In Pomplum and Matarić [113], a new segment
is defined every time the root square value of the joint velocity falls below a threshold.
The drawback of these methods is that the algorithm becomes more difficult to tune as
the number of joints increases.

Another family of unsupervised methods are based on variances of the feature data.
In [114], for example, the algorithm searches for a set of segment points that minimize
a cost function of the data variance. In [25] and [8], the segmentation is formulated as
a temporal clustering problem. Their approach extends the standard kernel k -means by
changing the similarity measure to a kernel distance to achieve temporal invariance. The
segmentation boundaries are found by minimizing a clustering objective function across
several segments.

The second category of segmentation algorithms, which require prior knowledge of the
motion primitives, is known as supervised segmentation. This category of segmentation
compares known motions with incoming data. [115] searches for the best match between
an observed sequence and a known prototypical motion primitive. Other methods encode
the known primitives in short HMMs, and later, the segmentation points are decided based
on the error of the predicted motion data returned by the HMM and the actual observed
motion data. If the error increases over a threshold, it triggers a segment [116].

80

As discussed in [109], the great diversity of applications and the considerable amount
of recorded data makes it especially important to boost unsupervised motion analysis
methods, while also making them more efficient. These observations are in line with the
goal of semi-supervised methods, and provide even greater motivation to use the proposed
methods.

Motion segmentation is usually divided into two levels. The higher level includes the
detection of distinct activities, where the result segments are defined in the level of be-
haviour or activity (e.g., walk, run, and kick). The lower level includes the detection of
motion primitives, where the result segments are defined as reoccurring units or cycles (e.g.,
steps). The focus of the experiments bellow is on the higher level of distinct activities.

5.2.1 CMU Motion Capture Dataset (MOCAP)

Carnegie Mellon University Motion Capture Dataset (MOCAP) [117] is a human motion
dataset. The dataset is the result of twelve Vicon infrared MX-40 cameras being placed
in the centre of a room, around a rectangular area of approximately 3m x 8m. Humans
wearing a black jumpsuit with forty-one markers taped onto it performed several actions
while the markers were captured by the cameras using infrared. The images picked up by
the cameras were triangulated to produce 3D data. Only the fourteen most informative
joints were considered.

Figure 5.10: Sample images of CMU MOCAP dataset.

5.2.2 Experimental Results and Analysis

The experiments were performed on fourteen sequences of subject 86, containing roughly
ten actions, such as walking, punching, and kicking. The length of the sequences was
reduced by a factor of five to improve scalability, and frames were grouped into twenty
clusters, as described in [25]. The range of frames for each activity in the experiment was
between 160 and 300, the nmax was set to 60, and the number of constraints were based
on 20% of all possible constraints.

81

Table 5.6: Accuracy of 14 sequences of subject 86 from the MOCAP dataset.

Average over 14 sequences
Accuracy

SSACA+EP 0.91 ± 0.08
SSTSC+EP 0.90 ± 0.08
SSACA 0.91 ± 0.08
TDCK [55] 0.51 ± 0.06
ACA [7] 0.87 ± 0.09
SC [25] 0.74 ± 0.14

The frame kernel used was computed by kij = exp
(
−‖xi−yj‖

2

2σ2

)
, where σ was set to be

the average distance from the 3% closest neighbours, and nmax = 60. The propagation
rate for EP was set to α = 0.40. The TDCK dimensional weight was set to γd = 1 and the
temporal weight was set to γt = 0.25, while the scaling factor was set to β = 0.3 and the
width of the function was set to δ = 3.

Some improvement in accuracy of the proposed methods can be observed in Table
5.6, although these improvements were not as significant as the ones produced in other
applications. One of the reasons for these smaller improvements was that the baseline
accuracy was already very high (e.g., ACA had 87% accuracy on average). The differences
between methods with EP and without EP were not as significant in this experiment, due
to the low number of segments. The average number of segments for this dataset was
only 8.7. Despite the low increases, the proposed method performed better than the other
semi-supervised method (TDCK). The better performance of the proposed methods can
be attributed to the use of kernel, which maps points to a higher dimension where they
can be clustered more easily.

82

Chapter 6

Conclusions and Future Work

This chapter summarizes and concludes this thesis, while also providing some discussion
on the directions of future work and a list of publications that resulted from this research.

6.1 Conclusions

This thesis proposed an approach to creating kernel-based semi-supervised temporal clus-
tering algorithms. This approach used instance-level constraints, in the form of must-link
and cannot-link, to add supervision to the clustering process, and a dynamic-programming
method to search for the optimal temporal clusters. This approach was applied to two
algorithms, a kernel-based temporal clustering (ACA), and a graph-based clustering (spec-
tral clustering), transforming both algorithms into semi-supervised temporal clustering
methods.

The use of pairwise constraints at the instance level was demonstrated to be better-
suited for the real-world applications presented, when compared to TDCK [59], the avail-
able alternative approach. Another benefit of pairwise constraints at the instance level is
their specificity, which only considers constraints between two points, instead of making
general assumptions. The proposed methods showed substantial improvements in accuracy
compared to the completely unsupervised methods, with the addition of minimal super-
vision. Furthermore, the introduction of supervision did not affect the complexity of the
core algorithm, and in fact, lowered the search complexity as the number of constraints
increased.

83

Many applications which require temporal segmentation may benefit from this ap-
proach, particularly when extra knowledge can be provided. The trade-off between the
gains in accuracy and the amount of side information provided was demonstrated to be
advantageous. Good results were also shown for real-world applications, such as emotion
analysis and human motion segmentation; however, applications such as activity catego-
rization, animal behaviour analysis, speaker diarization, and neuron activity modelling
could also potentially benefit from this approach.

6.2 Future Work

Some aspects of this approach which are open to improvement include the time and space
complexity of the algorithms. Although the dynamic programming implementation of the
objective function makes the time complexity polynomial, for very large datasets, some
scalability problems may occur. The same can be said for the space complexity, which is
the memory required to store data for the algorithm to run. All kernel-based approaches
need to store a pairwise kernel matrix of the data instances used in the clustering process
(e.g., the kernel matrix of a dataset of size n needs to be stored in O(n2) of memory).
One alternative to mitigate this problem is the use of distributed algorithms for scaling the
proposed methods on a MapReduce framework. Elgohary [118] proposed a way to scale
kernel k -means algorithms by first creating low-dimensional embeddings based on Nström
approximation and p-stable distributions, and then applying a parallelization strategy using
MapReduce.

One of the limitations of the proposed approaches is the necessity of having the complete
data in order to do the clustering. Therefore, the problem of clustering streaming data
was not considered in this thesis. However, for future work, the proposed methods can be
adapted to handle online data. Another extension includes the expansion of this approach
to other kernel-based methods (e.g., kernel-mean shift [4]). A detailed analysis of the trade-
off between accuracy and the complexity added in order to guarantee the consistency of
the seeding process is another possibility potential direction for future research.

One area that has gained a great deal of attention in the last few years, due to the explo-
sion of wearable technologies, is accelerometer-based human activity recognition (AHAR).
This area of research has potential applications for health monitoring, context-awareness,
and new forms of human-computer interaction. AHAR, which naturalistic 3D acceleration-
based activity datasets are available, such as SCUT-NAA dataset [119], has the same
temporal characteristics of emotion analysis and human-motion segmentation. Therefore,

84

AHAR is an interesting candidate for the application of semi-supervised temporal cluster-
ing.

6.3 List of Publications

Journal Paper

• R. Araujo and M. S. Kamel. A Constraint-based Approach for Temporal Clustering.
Pattern Recognition, submitted.

Refereed Conference

• R. Araujo and M. S. Kamel. Audio-visual emotion analysis using semi- supervised
temporal clustering with constraint propagation. In Aurélio Campilho and Mohamed
Kamel, editors, Image Analysis and Recognition, Lecture Notes in Computer Science,
pages 3–11. Springer International Publishing, 2014.

• R. Araujo and M. S. Kamel. Semi-supervised kernel-based temporal clustering. In
13th International Conference on Machine Learning and Applications, ICMLA 2014,
Detroit, MI, USA, December 3-5, 2014., pages 123–128, 2014.

• R. Araujo and M. S. Kamel. A semi-supervised temporal clustering method for
facial emotion analysis. In Multimedia and Expo Workshops (ICMEW), 2014 IEEE
International Conference on, pages 1–6, July 2014.

• R. Araujo, Y-Q. Miao, Mohamed S. Kamel, and Mohamed Cheriet. A fast and
robust feature set for cross individual facial expression recognition. In Leonard Bolc,
Ryszard Tadeusiewicz, LeszekJ. Chmielewski, and Konrad Wojciechowski, ed- itors,
Computer Vision and Graphics, volume 7594 of Lecture Notes in Computer Science,
pages 272–279. Springer Berlin Heidelberg, 2012.

• Y-Q. Miao, R. Araujo, and M.S. Kamel. Cross-domain facial expression recogni-
tion using supervised kernel mean matching. In Machine Learning and Applications
(ICMLA), 2012 11th International Conference on, volume 2, pages 326–332, Dec
2012.

• A. Sayedelahl, R. Araujo, and M.S. Kamel. Audio-visual feature-decision level fusion
for spontaneous emotion estimation in speech conversations. In Multimedia and Expo
Workshops (ICMEW), 2013 IEEE International Conference on, pages 1–6, July 2013.

85

APPENDICES

86

Appendix A

Detailed Results

A.1 Detailed Accuracy Results of AVEC Dataset

This section details the results per subject of the AVEC experiment described in Section
5.1.5.

A.2 Detailed Description of AVEC Dataset

This section gives additional details about the characteristics of the AVEC dataset previ-
ously discussed in Section 5.1.6.

A.3 List of Public Available Facial Expression Datasets

87

Table A.1: Subject 1 average accuracy results.

AVEC Subject 1 - Average Accuracy
Arousal Valence Power Expectancy

SSACA+EP 0.84 ± 0.07 0.84 ± 0.07 0.87 ± 0.07 0.89 ± 0.09
SSTSC+EP 0.84 ± 0.09 0.75 ± 0.11 0.83 ± 0.11 0.85 ± 0.12
SSACA 0.82 ± 0.06 0.80 ± 0.10 0.77 ± 0.13 0.83 ± 0.13
TDCK [55] 0.38 ± 0.03 0.49 ± 0.05 0.44 ± 0.05 0.45 ± 0.05
ACA [7] 0.47 ± 0.03 0.42 ± 0.03 0.41 ± 0.05 0.40 ± 0.05
SC [25] 0.53 ± 0.00 0.37 ± 0.00 0.41 ± 0.00 0.51 ± 0.00

Table A.2: Subject 2 average accuracy results.

AVEC Subject 2 - Average Accuracy
Arousal Valence Power Expectancy

SSACA+EP 0.66 ± 0.12 0.67 ± 0.10 0.62 ± 0.15 0.67 ± 0.10
SSTSC+EP 0.66 ± 0.13 0.69 ± 0.11 0.67 ± 0.17 0.64 ± 0.11
SSACA 0.63 ± 0.12 0.68 ± 0.09 0.60 ± 0.14 0.67 ± 0.10
TDCK [55] 0.49 ± 0.09 0.58 ± 0.07 0.49 ± 0.10 0.49 ± 0.06
ACA [7] 0.48 ± 0.04 0.46 ± 0.03 0.35 ± 0.06 0.47 ± 0.06
SC [25] 0.78 ± 0.00 0.60 ± 0.00 0.36 ± 0.00 0.64 ± 0.00

Table A.3: Subject 3 average accuracy results.

AVEC Subject 3 - Average Accuracy
Arousal Valence Power Expectancy

SSACA+EP 0.74 ± 0.13 0.54 ± 0.09 0.59 ± 0.13 0.68 ± 0.16
SSTSC+EP 0.82 ± 0.13 0.51 ± 0.07 0.71 ± 0.15 0.68 ± 0.12
SSACA 0.75 ± 0.14 0.55 ± 0.08 0.59 ± 0.13 0.67 ± 0.15
TDCK [55] 0.57 ± 0.07 0.45 ± 0.04 0.53 ± 0.10 0.57 ± 0.09
ACA [7] 0.65 ± 0.02 0.51 ± 0.03 0.43 ± 0.05 0.56 ± 0.02
SC [25] 0.54 ± 0.00 0.41 ± 0.00 0.34 ± 0.00 0.51 ± 0.00

88

Table A.4: Subject 4 average accuracy results.

AVEC Subject 4 - Average Accuracy
Arousal Valence Power Expectancy

SSACA+EP 0.68 ± 0.14 0.57 ± 0.10 0.62 ± 0.13 0.72 ± 0.09
SSTSC+EP 0.72 ± 0.14 0.56 ± 0.11 0.62 ± 0.12 0.71 ± 0.10
SSACA 0.68 ± 0.13 0.59 ± 0.10 0.61 ± 0.12 0.72 ± 0.09
TDCK [55] 0.54 ± 0.09 0.51 ± 0.06 0.43 ± 0.08 0.41 ± 0.06
ACA [7] 0.50 ± 0.05 0.43 ± 0.05 0.42 ± 0.06 0.38 ± 0.05
SC [25] 0.45 ± 0.00 0.32 ± 0.00 0.35 ± 0.00 0.33 ± 0.00

Table A.5: Subject 5 average accuracy results.

AVEC Subject 5 - Average Accuracy
Arousal Valence Power Expectancy

SSACA+EP 0.87 ± 0.07 0.79 ± 0.07 0.74 ± 0.10 0.89 ± 0.06
SSTSC+EP 0.85 ± 0.09 0.78 ± 0.08 0.75 ± 0.13 0.94 ± 0.04
SSACA 0.79 ± 0.09 0.78 ± 0.07 0.75 ± 0.12 0.85 ± 0.09
TDCK [55] 0.50 ± 0.06 0.48 ± 0.06 0.44 ± 0.08 0.42 ± 0.04
ACA [7] 0.41 ± 0.03 0.53 ± 0.05 0.39 ± 0.04 0.41 ± 0.01
SC [25] 0.37 ± 0.00 0.44 ± 0.00 0.41 ± 0.00 0.40 ± 0.00

Table A.6: Subject 7 average accuracy results.

AVEC Subject 7 - Average Accuracy
Arousal Valence Power Expectancy

SSACA+EP 0.69 ± 0.14 0.69 ± 0.13 0.60 ± 0.07 0.61 ± 0.13
SSTSC+EP 0.71 ± 0.11 0.66 ± 0.11 0.61 ± 0.11 0.59 ± 0.10
SSACA 0.69 ± 0.13 0.66 ± 0.13 0.60 ± 0.08 0.59 ± 0.12
TDCK [55] 0.56 ± 0.06 0.46 ± 0.05 0.43 ± 0.05 0.40 ± 0.05
ACA [7] 0.48 ± 0.07 0.47 ± 0.04 0.36 ± 0.03 0.36 ± 0.03
SC [25] 0.56 ± 0.00 0.49 ± 0.00 0.56 ± 0.00 0.48 ± 0.00

89

Table A.7: Cluster distribution of each subject of the AVEC dataset for the Expectancy
emotional dimension.

Expectancy
Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 7
Segs. # Segs. # Segs. # Segs. # Segs. # Segs.

C 1 4 (3%) 24 (41%) 20 (45%) 33 (45%) 37 (30%) 9 (24%)
C 2 44 (37%) 30 (51%) 22 (50%) 35 (48%) 59 (48%) 15 (39%)
C 3 53 (45%) 5 (8%) 2 (5%) 4 (5%) 25 (20%) 10 (26%)
C 4 14 (12%) - - 1 (1%) 2 (2%) 3 (8%)
C 5 3 (3%) - - - - 1 (3%)

Table A.8: Cluster distribution of each subject of the AVEC dataset for the Power emo-
tional dimension.

Power
Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 7
Segs. # Segs. # Segs. # Segs. # Segs. # Segs.

C 1 4 (5%) 3 (8%) 1 (4%) 1 (3%) 8 (10%) 2 (4%)
C 2 12 (16%) 3 (8%) 8 (32%) 5 (13%) 34 (44%) 4 (7%)
C 3 24 (31%) 16 (41%) 11 (44%) 18 (47%) 32 (41%) 25 (46%)
C 4 27 (35%) 17 (44%) 4 (16%) 14 (37%) 4 (5%) 23 (43%)
C 5 10 (13%) - 1 (4%) - - -

90

Table A.9: Cluster distribution of each subject of the AVEC dataset for the Valence
emotional dimension.

Valence
Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 7
Segs. # Segs. # Segs. # Segs. # Segs. # Segs.

C 1 7 (9%) 15 (37%) 4 (17%) 1 (3%) 4 (5%) 8 (17%)
C 2 27 (33%) 21 (51%) 9 (39%) 7 (22%) 13 (16%) 18 (38%)
C 3 32 (40%) 5 (12%) 8 (35%) 15 (47%) 30 (36%) 16 (33%)
C 4 15 (18%) - 2 (9%) 9 (28%) 28 (34%) 6 (13%)
C 5 - - - - 8 (10%) -

Table A.10: Cluster distribution of each subject of the AVEC dataset for the Arousal
emotional dimension.

Arousal
Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 7
Segs. # Segs. # Segs. # Segs. # Segs. # Segs.

C 1 7 (7%) 6 (13%) 16 (28%) 6 (15%) 1 (1%) 6 (18%)
C 2 36 (37%) 24 (50%) 28 (49%) 19 (49%) 6 (6%) 16 (48%)
C 3 43 (44%) 18 (38%) 13 (23%) 14 (36%) 30 (31%) 11 (33%)
C 4 12 (12%) - - - 44 (45%) -
C 5 - - - - 17 (17%) -

91

D
at

ab
as

e
N

o.
of

E
li
ci

ta
ti

on
Im

ag
in

g
C

am
er

a
V

ie
w

L
ab

el
s

S
u
b

je
ct

s
V

ie
w

A
R

12
6

P
os

ed
S
ta

ti
c

F
ro

n
ta

l
E

m
ot

io
n
s

A
V

E
C

20
12

7
(t

ra
in

)
D

ia
lo

g
V

id
eo

M
os

tl
y

F
ro

n
ta

l
C

on
ti

n
u
ou

s
D

i-
m

en
si

on
al

B
el

fa
st

12
5

In
te

rv
ie

w
an

d
T

V
V

id
eo

O
cc

lu
si

on
/F

ro
n
ta

l
E

m
ot

io
n
s

an
d

d
i-

m
en

si
on

s
B

os
p
h
or

ou
s

10
5

P
os

ed
S
ta

ti
c

3D
F
A

C
S

A
U

B
U

-3
D

F
E

10
0

P
os

ed
S
ta

ti
c

3D
E

m
ot

io
n
s

B
U

-4
D

F
E

10
1

P
os

ed
D

y
n
am

ic
3D

E
m

ot
io

n
s

C
oh

n
-K

an
ad

e
97

P
os

ed
V

id
eo

F
ro

n
ta

l
F
A

C
S

A
U

C
oh

n
-K

an
ad

e+
12

3
P

os
ed

an
d

C
on

ve
rs

at
io

n
V

id
eo

F
ro

n
ta

l
an

d
15

to
th

e
si

d
e

F
A

C
S

A
U

/
em

o-
ti

on
s

F
A

B
O

23
P

os
ed

V
id

eo
F

ro
n
ta

l
L

an
d
m

ar
k
s/

em
ot

io
n
s

G
E

M
E

P
10

A
ct

ed
V

id
eo

F
ro

n
ta

E
m

ot
io

n
s

K
D

E
F

70
P

os
ed

S
ta

ti
c

F
iv

e
v
ie

w
s

E
m

ot
io

n
s

J
A

F
F

E
10

P
os

ed
S
ta

ti
c

F
ro

n
ta

l
E

m
ot

io
n
s

M
M

I
10

1
P

os
ed

/
sp

on
ta

n
eo

u
s

S
ta

ti
c

/V
id

eo
(5

m
in

)
F

ro
n
ta

l
90

to
th

e
si

d
e

F
A

C
S

A
U

F
ac

e
D

at
ab

as
e

M
P

I
2

P
os

ed
V

id
eo

18
in

te
rv

al
s

F
A

C
S

A
U

M
u
lt

i-
P

IE
33

7
P

os
ed

S
ta

ti
c

15
v
ie

w
s

19
il
lu

m
i-

n
at

io
n
s

E
m

ot
io

n
s

P
rk

ac
h
in

-
S
ol

om
on

P
ai

n
12

9
P

ai
n

In
d
u
c-

ti
on

V
id

eo
F

ro
n
ta

l
L

an
d
m

ar
k
s/

A
U

L
an

d
m

ar
k
s

M
u
lt

i-
P

IE
72

P
os

ed
S
ta

ti
c

F
iv

e
v
ie

w
s

fi
ve

v
ie

w
s

R
U

-F
A

C
S

10
0

In
te

rv
ie

w
V

id
eo

(2
m

in
)

M
os

tl
y

F
ro

n
ta

l
F
A

C
S

A
U

/E
m

ot
io

n
s

R
M

L
8

P
os

ed
V

id
eo

F
ro

n
ta

l
F
A

C
S

A
U

U
n
iv

er
si

ty
of

T
ex

as
V

id
eo

D
at

ab
as

e

28
4

V
ie

w
in

g
v
id

eo
cl

ip
V

id
eo

(1
0m

in
)

F
ro

n
ta

l
E

m
ot

io
n
s

V
A

M
-F

ac
es

20
In

te
rv

ie
w

V
id

eo
M

os
tl

y
F

ro
n
ta

l
C

on
ti

n
u
ou

s
D

i-
m

en
si

on
al

T
ab

le
A

.1
1:

P
u
b
li
cl

y
av

ai
la

b
le

fa
ci

al
ex

p
re

ss
io

n
d
at

ab
as

es

92

References

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Comput.
Surv., vol. 31, pp. 264–323, Sept. 1999.

[2] E. Keogh and J. Lin, “Clustering of time-series subsequences is meaningless: Im-
plications for previous and future research,” Knowl. Inf. Syst., vol. 8, pp. 154–177,
Aug. 2005.

[3] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, “Constrained k-means clustering
with background knowledge,” in Proceedings of the Eighteenth International Con-
ference on Machine Learning, ICML ’01, (San Francisco, CA, USA), pp. 577–584,
Morgan Kaufmann Publishers Inc., 2001.

[4] S. Anand, S. Mittal, O. Tuzel, and P. Meer, “Semi-supervised kernel mean shift clus-
tering,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 36,
pp. 1201–1215, June 2014.

[5] B. Kulis, S. Basu, I. S. Dhillon, and R. J. Mooney, “Semi-supervised graph clustering:
a kernel approach,” Machine Learning, vol. 74, no. 1, pp. 1–22, 2009.

[6] Z. Lu and H. H. S. Ip, “Constrained spectral clustering via exhaustive and efficient
constraint propagation,” in Proceedings of the 11th European Conference on Com-
puter Vision: Part VI, ECCV’10, (Berlin, Heidelberg), pp. 1–14, Springer-Verlag,
2010.

[7] F. Zhou, F. De la Torre, and J. F. Cohn, “Unsupervised discovery of facial events,”
in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pp. 2574–2581, June 2010.

[8] F. Zhou, F. De la Torre Frade, and J. K. Hodgins, “Aligned cluster analysis for
temporal segmentation of human motion,” in IEEE Conference on Automatic Face
and Gestures Recognition, September 2008.

93

[9] T. Fu, “A review on time series data mining,” Engineering Applications of Artificial
Intelligence, vol. 24, no. 1, pp. 164 – 181, 2011.

[10] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality reduction
for fast similarity search in large time series databases,” Knowledge and Information
Systems, vol. 3, no. 3, pp. 263–286, 2001.

[11] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani, “Locally adaptive dimen-
sionality reduction for indexing large time series databases,” ACM Trans. Database
Syst., vol. 27, pp. 188–228, June 2002.

[12] R. Agrawal, C. Faloutsos, and A. N. Swami, “Efficient similarity search in sequence
databases,” in Proceedings of the 4th International Conference on Foundations of
Data Organization and Algorithms, FODO ’93, (London, UK, UK), pp. 69–84,
Springer-Verlag, 1993.

[13] K.-P. Chan and A. W.-C. Fu, “Efficient time series matching by wavelets,” in Data
Engineering, 1999. Proceedings., 15th International Conference on, pp. 126–133, Mar
1999.

[14] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence matching
in time-series databases,” in Proceedings of the 1994 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’94, (New York, NY, USA), pp. 419–
429, ACM, 1994.

[15] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: A novel symbolic
representation of time series,” Data Min. Knowl. Discov., vol. 15, pp. 107–144, Oct.
2007.

[16] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh, “Exper-
imental comparison of representation methods and distance measures for time series
data,” Data Mining and Knowledge Discovery, vol. 26, no. 2, pp. 275–309, 2013.

[17] E. Frentzos, K. Gratsias, and Y. Theodoridis, “Index-based most similar trajectory
search,” in Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference
on, pp. 816–825, April 2007.

[18] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering similar multidimensional
trajectories,” in Data Engineering, 2002. Proceedings. 18th International Conference
on, pp. 673–684, 2002.

94

[19] L. Chen and R. Ng, “On the marriage of lp-norms and edit distance,” in Proceedings
of the Thirtieth International Conference on Very Large Data Bases - Volume 30,
VLDB ’04, pp. 792–803, VLDB Endowment, 2004.

[20] D. J. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time
series.,” in KDD Workshop (U. M. Fayyad and R. Uthurusamy, eds.), pp. 359–370,
AAAI Press, 1994.

[21] J. Aßfalg, H.-P. Kriegel, P. Kröger, P. Kunath, A. Pryakhin, and M. Renz, “Simi-
larity search on time series based on threshold queries,” in Proceedings of the 10th
International Conference on Advances in Database Technology, EDBT’06, (Berlin,
Heidelberg), pp. 276–294, Springer-Verlag, 2006.

[22] Y. Chen, M. A. Nascimento, B. Chin, O. Anthony, and K. Tung, “Spade: On shape-
based pattern detection in streaming time series,” in Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on, pp. 786–795, April 2007.

[23] C. A. Ratanamahatana and E. Keogh, “Three myths about dynamic time warping
data,” in Mining, in the Proceedings of SIAM International Conference on Data
Mining (2005, pp. 506–510, 2005.

[24] H. Shimodaira, K.-i. Noma, M. Nakai, and S. Sagayama, “Dynamic Time-Alignment
Kernel in Support Vector Machine,” Advances in Neural Information Processing Sys-
tems 14, NIPS2001, vol. 2, pp. 921–928, December 2001.

[25] F. Zhou, F. De la Torre, and J. K. Hodgins, “Hierarchical aligned cluster analysis
for temporal clustering of human motion,” IEEE Transactions Pattern Analysis and
Machine Intelligence (PAMI), vol. 35, no. 3, pp. 582–596, 2013.

[26] K. T. Vasko and H. T. T. Toivonen, “Estimating the number of segments in time
series data using permutation tests,” in Data Mining, 2002. ICDM 2003. Proceedings.
2002 IEEE International Conference on, pp. 466–473, 2002.

[27] X. Xuan and K. Murphy, “Modeling changing dependency structure in multivari-
ate time series,” in Proceedings of the 24th International Conference on Machine
Learning, ICML ’07, (New York, NY, USA), pp. 1055–1062, ACM, 2007.

[28] Z. Harchaoui, F. Bach, and E. Moulines, “Kernel change-point analysis,” in NIPS,
pp. 609–616, 2008.

95

[29] S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point detection in time-
series data by relative density-ratio estimation,” Neural Networks, vol. 43, no. 0,
pp. 72 – 83, 2013.

[30] M. Sugiyama, T. Suzuki, and T. Kanamori, “Density-ratio matching under the breg-
man divergence: a unified framework of density-ratio estimation,” Annals of the
Institute of Statistical Mathematics, vol. 64, no. 5, pp. 1009–1044, 2012.

[31] A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf,
“Covariate shift by kernel mean matching,” in Dataset Shift in Machine Learning
(J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, eds.),
pp. 131–160, Cambridge, MA, USA: MIT Press, 2 2009.

[32] V. Pavlovic, J. M. Rehg, and J. MacCormick, “Learning switching linear models of
human motion,” in Advances in Neural Information Processing Systems 13 (T. Leen,
T. Dietterich, and V. Tresp, eds.), pp. 981–987, MIT Press, 2001.

[33] S. M. Oh, J. M. Rehg, T. Balch, and F. Dellaert, “Learning and inferring motion pat-
terns using parametric segmental switching linear dynamic systems,” Int. J. Comput.
Vision, vol. 77, pp. 103–124, May 2008.

[34] E. Fox, E. Sudderth, M. Jordan, and A. Willsky, “Bayesian nonparametric infer-
ence of switching dynamic linear models,” Signal Processing, IEEE Transactions on,
vol. 59, pp. 1569–1585, April 2011.

[35] R. Cutler and L. S. Davis, “Robust real-time periodic motion detection, analysis,
and applications,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 22, pp. 781–796, Aug 2000.

[36] E. Pogalin, A. Smeulders, and A. Thean, “Visual quasi-periodicity,” in Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1–8,
June 2008.

[37] L. Zelnik-Manor and M. Irani, “Statistical analysis of dynamic actions,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, pp. 1530–1535,
Sept 2006.

[38] M. Hoai and F. De la Torre, “Maximum margin temporal clustering,” in Proceed-
ings of the Fifteenth International Conference on Artificial Intelligence and Statistics
(AISTATS-12), vol. 22, pp. 520–528, 2012.

96

[39] J. Abonyi, B. Feil, S. Nemeth, and P. Arva, “Modified gath–geva clustering for fuzzy
segmentation of multivariate time-series,” Fuzzy Sets Syst., vol. 149, pp. 39–56, Jan.
2005.

[40] J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmaki, and H. T. Toivonen, “Time
series segmentation for context recognition in mobile devices,” in Data Mining, 2001.
ICDM 2001, Proceedings IEEE International Conference on, pp. 203–210, 2001.

[41] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2Nd Edition).
Wiley-Interscience, 2000.

[42] J.-P. Vert, K. Tsuda, and B. Schölkopf, “A primer on kernel methods,” Kernel Meth-
ods in Computational Biology, pp. 35–70, 2004.

[43] X. Jin and J. Han, “K-medoids clustering,” in Encyclopedia of Machine Learning
(C. Sammut and G. Webb, eds.), pp. 564–565, Springer US, 2010.

[44] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, 1995.

[45] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain, “Approximate kernel k-means:
Solution to large scale kernel clustering,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’11, (New
York, NY, USA), pp. 895–903, ACM, 2011.

[46] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On Spectral Clustering: Analysis and an
algorithm,” in Advances in Neural Information Processing Systems (T. Dietterich,
S. Becker, and Z. Ghahramani, eds.), pp. 849–856, MIT Press, 2001.

[47] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative matrix
factorization,” in Proceedings of the 26th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR ’03, (New York,
NY, USA), pp. 267–273, ACM, 2003.

[48] R. Inokuchi and S. Miyamoto, “LVQ clustering and SOM using a kernel function,”
in Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on, vol. 3,
pp. 1497–1500, July 2004.

[49] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data clustering
method for very large databases,” in In Proc. of the ACM SIGMOD Intl. Conference
on Management of Data (SIGMOD, pp. 103–114, 1996.

97

[50] M. J. Kyan and L. Guan, “The self-organising hierarchical variance map,” in Neural
Networks, 2006. IJCNN ’06. International Joint Conference on, pp. 3767–3774, 2006.

[51] S. Basu, M. Bilenko, and R. J. Mooney, “A probabilistic framework for semi-
supervised clustering,” in Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’04, (New York, NY,
USA), pp. 59–68, ACM, 2004.

[52] I. Davidson and S. Basu, “A survey of clustering with instance level constraints,”
2007. This work was presented as a tutorial at the IEEE ICDM Conference 2005 and
ACM KDD Conference 2006.

[53] S. Zhu, D. Wang, and T. Li, “Data clustering with size constraints,” Knowledge-
Based Systems, vol. 23, no. 8, pp. 883 – 889, 2010.

[54] I. Davidson and S. S. Ravi, “Clustering with Constraints: Feasibility Issues and the
k-Means Algorithm,” in Proc. 5th SIAM Data Mining Conference, 2005.

[55] M.-A. Rizoiu, J. Velcin, and S. Lallich, “Structuring typical evolutions using
temporal-driven constrained clustering,” in Tools with Artificial Intelligence (IC-
TAI), 2012 IEEE 24th International Conference on, vol. 1, pp. 610–617, 2012.

[56] K. Wagstaff and C. Cardie, “Clustering with instance-level constraints,” in Proceed-
ings of the Seventeenth International Conference on Machine Learning, ICML ’00,
(San Francisco, CA, USA), pp. 1103–1110, 2000.

[57] T. W. Liao, “Clustering of time series data – a survey,” Pattern Recognition, vol. 38,
no. 11, pp. 1857 – 1874, 2005.

[58] W.-H. Lin and E. Hauptmann, “Structuring continuous video recordings of everyday
life using time-constrained clustering,” in IS&T SPIE Symposium on Electronic
Imaging, 2006.

[59] M.-A. Rizoiu, Semi-supervised Structuring of Complex Data. PhD thesis, Univ. of
Lumière Lyon 2, Lyon, 2013.

[60] F. De la Torre and C. Agell, “Multimodal diaries,” in Multimedia and Expo, 2007
IEEE International Conference on, pp. 839–842, July 2007.

[61] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with local
and global consistency,” in Advances in Neural Information Processing Systems 16,
pp. 321–328, MIT Press, 2004.

98

[62] I. Davidson, K. L. Wagstaff, and S. Basu, “Measuring constraint-set utility for par-
titional clustering algorithms,” in Knowledge Discovery in Databases: PKDD 2006
(J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, eds.), vol. 4213 of Lecture Notes in
Computer Science, pp. 115–126, Springer Berlin Heidelberg, 2006.

[63] E. Keogh and S. Kasetty, “On the need for time series data mining benchmarks: A
survey and empirical demonstration,” Data Min. Knowl. Discov., vol. 7, pp. 349–371,
Oct. 2003.

[64] Y.-Q. Miao, R. Araujo, and M. Kamel, “Cross-domain facial expression recogni-
tion using supervised kernel mean matching,” in Machine Learning and Applications
(ICMLA), 2012 11th International Conference on, vol. 2, pp. 326–332, Dec 2012.

[65] R. Araujo, Y.-Q. Miao, M. S. Kamel, and M. Cheriet, “A fast and robust feature set
for cross individual facial expression recognition,” in Computer Vision and Graphics
(L. Bolc, R. Tadeusiewicz, L. Chmielewski, and K. Wojciechowski, eds.), vol. 7594 of
Lecture Notes in Computer Science, pp. 272–279, Springer Berlin Heidelberg, 2012.

[66] Z. Xie and L. Guan, “Multimodal information fusion of audiovisual emotion recogni-
tion using novel information theoretic tools,” in Multimedia and Expo (ICME), 2013
IEEE International Conference on, pp. 1–6, July 2013.

[67] M. Pantic and L. J. M. Rothkrantz, “Automatic analysis of facial expressions: The
state of the art,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, pp. 1424–1445, 2000.

[68] H. Gunes and M. Pantic, “Automatic, dimensional and continuous emotion recogni-
tion,” Int. J. Synth. Emot., vol. 1, pp. 68–99, Jan. 2010.

[69] M. Wöllmer, F. Eyben, S. Reiter, B. Schuller, C. Cox, E. Douglas-cowie, and
R. Cowie, “Abandoning emotion classes - towards continuous emotion recognition
with modelling of long-range dependencies,” in in Proceedings Interspeech, 2008.

[70] M. A. Nicolaou, H. Gunes, and M. Pantic, “Output-associative rvm regression for
dimensional and continuous emotion prediction,” Image Vision Comput., vol. 30,
pp. 186–196, Mar. 2012.

[71] M. Grimm and K. Kroschel, “Emotion estimation in speech using a 3d emotion
space concept,” in Robust Speech Recognition and Understanding (M. Grimm and
K. Kroschel, eds.), pp. 281–300, I-Tech Education and Publishing, Vienna, Austria,
2007.

99

[72] J. Hoey, “Hierarchical unsupervised learning of facial expression categories,” in De-
tection and Recognition of Events in Video, 2001. Proceedings. IEEE Workshop on,
pp. 99 –106, 2001.

[73] L. Zelnik-Manor and M. Irani, “Temporal factorization vs. spatial factorization,” in
Computer Vision - ECCV 2004 (T. Pajdla and J. Matas, eds.), vol. 3022 of Lecture
Notes in Computer Science, pp. 434–445, Springer Berlin Heidelberg, 2004.

[74] F. De La Torre, J. Campoy, Z. Ambadar, and J. F. Cohn, “Temporal segmentation
of facial behavior,” in International Conference on Computer Vision, pp. 1–8, 2007.

[75] F. Zhou, F. De la Torre, and J. F. Cohn, “Unsupervised discovery of facial events,”
in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010.

[76] R. Araujo and M. S. Kamel, “Audio-visual emotion analysis using semi-supervised
temporal clustering with constraint propagation,” in Image Analysis and Recognition
(A. Campilho and M. Kamel, eds.), Lecture Notes in Computer Science, pp. 3–11,
Springer International Publishing, 2014.

[77] R. Araujo and M. S. Kamel, “A semi-supervised temporal clustering method for
facial emotion analysis,” in Multimedia and Expo Workshops (ICMEW), 2014 IEEE
International Conference on, pp. 1–6, July 2014.

[78] R. Araujo and M. S. Kamel, “Semi-supervised kernel-based temporal clustering,” in
13th International Conference on Machine Learning and Applications, ICMLA 2014,
Detroit, MI, USA, December 3-5, 2014., pp. 123–128, 2014.

[79] Y.-L. Tian, T. Kanade, and J. F. Cohn, “Facial expression analysis,” Handbook of
Face Recognition, vol. 3, no. 5, pp. 247–276, 2005.

[80] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face description with local binary pat-
terns: Application to face recognition,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 28, pp. 2037–2041, Dec 2006.

[81] Y. Venkatesh, A. K. Kassim, and O. R. Murthy, “Resampling approach to facial
expression recognition using 3d meshes,” in 20th International Conference on Pattern
Recognition, pp. 3772–3775, Aug. 2010.

[82] X. Zhao, D. Huang, E. Dellandrea, and L. Chen, “Automatic 3d facial expression
recognition based on a bayesian belief net and a statistical facial feature model,” in
20th International Conference on Pattern Recognition, pp. 3724–3727, Aug. 2010.

100

[83] S. Koelstra, M. Pantic, and I. Patras, “A dynamic texture-based approach to recog-
nition of facial actions and their temporal models,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 32, pp. 1940–1954, Nov 2010.

[84] Y. Ji and K. Idrissi, “Using moments on spatiotemporal plane for facial expression
recognition,” in Pattern Recognition (ICPR), 2010 20th International Conference on,
pp. 3806–3809, Aug 2010.

[85] Y. Hu, Z. Zeng, L. Yin, X. Wei, J. Tu, and T. Huang, “A study of non-frontal-
view facial expressions recognition,” in Pattern Recognition, 2008. ICPR 2008. 19th
International Conference on, pp. 1–4, Dec 2008.

[86] S. Moore and R. Bowden, “Effects of pose on facial expression recognition,” in Proc.
British Machine Vision Conference BMVC’09, 2009.

[87] M. Pantic and I. Patras, “Dynamics of facial expression: recognition of facial actions
and their temporal segments from face profile image sequences,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 36, pp. 433 –449, april
2006.

[88] O. Rudovic, I. Patras, and M. Pantic, “Regression-based multi-view facial expression
recognition,” in 20th International Conference on Pattern Recognition, pp. 4121–
4124, Aug. 2010.

[89] M. S. Bartlett, G. C. Littlewort, M. G. Frank, C. Lainscsek, I. R. Fasel, and
J. R. Movellan, “Automatic recognition of facial actions in spontaneous expressions,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1, pp. 22–35, Sep 2006.

[90] A. Maalej, B. B. Amor, M. Daoudi, A. Srivastava, and S. Berretti, “Local 3d shape
analysis for facial expression recognition,” in 20th International Conference on Pat-
tern Recognition, pp. 4129–4132, Aug. 2010.

[91] T. Yun and L. Guan, “Fiducial point tracking for facial expression using multiple
particle filters with kernel correlation analysis,” in Image Processing (ICIP), 2010
17th IEEE International Conference on, pp. 373–376, Sept 2010.

[92] Y. Tie and L. Guan, “A deformable 3-d facial expression model for dynamic hu-
man emotional state recognition,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 23, pp. 142–157, Jan 2013.

101

[93] Y.-L. Tian, T. Kanade, and J. F. Cohn, “Evaluation of gabor-wavelet-based facial
action unit recognition in image sequences of increasing complexity,” in Fifth IEEE
International Conference on Automatic Face and Gesture Recognition, pp. 229–234,
May 2002.

[94] P. Li, S. L. Phung, A. Bouzerdoum, and F. H. C. Tivive, “Improved facial expression
recognition with trainable 2-d filters and support vector machines,” in 20th Interna-
tional Conference on Pattern Recognition, pp. 3732–3735, Aug 2010.

[95] Y.-L. Tian, T. Kanade, and J. F. Cohn, “Recognizing action units for facial ex-
pression analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23,
pp. 97–115, Feb 2001.

[96] M. Valstar, M. Pantic, and I. Patras, “Motion history for facial action detection in
video,” in Systems, Man and Cybernetics, 2004 IEEE International Conference on,
vol. 1, pp. 635 – 640 vol.1, oct. 2004.

[97] P. Ekman and W. Friesen, Facial Action Coding System: A Technique for the Mea-
surement of Facial Movement. Palo Alto: Consulting Psychologists Press, 1978.

[98] P. Ekman, W. Friesen, and J. Hager, The Facial Action Coding System. Salt Lake
City: Research Nexus eBook, second ed., 2002.

[99] G. Littlewort, J. Whitehill, T.-F. Wu, N. Butko, P. Ruvolo, J. Movellan, and
M. Bartlett, “The motion in emotion a cert based approach to the fera emotion chal-
lenge,” in Proceedings of the 9th IEEE Conference on Automatic Face and Gesture
Recognition, Workshop on Facial Expression Recognition and Analysis Challenge,
2011.

[100] R. Kehrein, “The Prosody of Authentic Emotions,” in Proceedings of Speech Prosody
Conference, pp. 423–426, 2002.

[101] J. A. Russell, “A circumplex model of affect,” Journal of Personality and Social
Psychology, vol. 39, pp. 1161–1178, 1980.

[102] M. Grimm, K. Kroschel, and S. Narayanan, “The vera am mittag german audio-
visual emotional speech database,” in Multimedia and Expo, 2008 IEEE International
Conference on, pp. 865–868, June 2008.

[103] C. Shan, S. Gong, and P. W. McOwan, “Facial expression recognition based on local
binary patterns: A comprehensive study,” Image and Vision Computing, vol. 27,
no. 6, pp. 803 – 816, 2009.

102

[104] A. Sayedelahl, R. Araujo, and M. S. Kamel, “Audio-visual feature-decision level
fusion for spontaneous emotion estimation in speech conversations,” in Multimedia
and Expo Workshops (ICMEW), 2013 IEEE International Conference on, pp. 1–6,
July 2013.

[105] M. Grimm and K. Kroschel, “Evaluation of natural emotions using self assessment
manikins,” in Automatic Speech Recognition and Understanding, 2005 IEEE Work-
shop on, pp. 381–385, Nov 2005.

[106] P. Viola and M. Jones, “Robust real-time object detection,” in International Journal
of Computer Vision, 2001.

[107] B. Schuller, M. Valstar, R. Cowie, and M. Pantic, “Avec 2012: The continuous au-
dio/visual emotion challenge - an introduction,” in Proceedings of the 14th ACM In-
ternational Conference on Multimodal Interaction, ICMI ’12, (New York, NY, USA),
pp. 361–362, ACM, 2012.

[108] S. Schulz and A. Woerner, “Automatic motion segmentation for human motion syn-
thesis,” in Articulated Motion and Deformable Objects (F. Perales and R. Fisher,
eds.), vol. 6169 of Lecture Notes in Computer Science, pp. 182–191, Springer Berlin
Heidelberg, 2010.

[109] A. Vögele, B. Krüger, and R. Klein, “Efficient unsupervised temporal segmentation of
human motion,” in 2014 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, July 2014.

[110] D. Kulić and Y. Nakamura, “Comparative study of representations for segmentation
of whole body human motion data,” in Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on, pp. 4300–4305, Oct 2009.

[111] A. Fod, M. J. Mataric, and O. C. J. Jenkins, “Automated derivation of primitives
for movement classification,” Autonomous Robots, vol. 12, no. 1, pp. 39–54, 2002.

[112] J. F.-S. Lin and D. Kulić, “Segmenting human motion for automated rehabilitation
exercise analysis,” in Engineering in Medicine and Biology Society (EMBC), 2012
Annual International Conference of the IEEE, pp. 2881–2884, Aug 2012.

[113] M. Pomplun and M. Matarić, “Evaluation metrics and results of human arm move-
ment imitation,” in in: Proceedings of the 1st IEEE-RAS International Conference
on Humanoid Robotics, 2000.

103

[114] N. Koenig and M. J. Matarić, “Behavior-based segmentation of demonstrated task,”
in International Conference on Development and Learning, (Bloomington, IN), May
2006.

[115] W. Ilg, G. H. Bakir, J. Mezger, and M. Giese, “On the representation, learning
and transfer of spatio-temporal movement characteristics,” International Journal of
Humanoid Robotics, vol. 1, pp. 613–636, 12 2004.

[116] W. Takano and Y. Nakamura, “Humanoid robot’s autonomous acquisition of proto-
symbols through motion segmentation,” in Humanoid Robots, 2006 6th IEEE-RAS
International Conference on, pp. 425–431, Dec 2006.

[117] M. Shell, “Carnegie mellon university motion capture database.,” 2012.

[118] A. Elgohary, “Scalable embeddings for kernel clustering on mapreduce,” Master’s
thesis, University of Waterloo, Waterloo, 2014.

[119] Y. Xue and L. Jin, “A naturalistic 3d acceleration-based activity dataset amp; bench-
mark evaluations,” in Systems Man and Cybernetics (SMC), 2010 IEEE Interna-
tional Conference on, pp. 4081–4085, Oct 2010.

[120] M. W. Robards and P. Sunehag, “Semi-markov kmeans clustering and activity recog-
nition from body-worn sensors,” in Data Mining, 2009. ICDM ’09. Ninth IEEE In-
ternational Conference on, pp. 438–446, Dec 2009.

104

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Proposed Work
	Summary of Contributions
	Thesis Organization

	Background and Literature Review
	Time Series Representation
	Similarity Measures
	Dynamic Time Warping
	Dynamic Time Alignment Kernel (DTAK)

	Time Series Tasks
	Time Series Segmentation
	Clustering
	Clustering Objective Function
	Similarity Measures
	Kernel as Similarity Measure

	Clustering Algorithms
	Partitional Clustering
	Hierarchical Clustering

	Semi-Supervised Clustering
	Pairwise Constraints

	Temporal Clustering
	Related Work
	Temporal-Driven Constrained K-means

	Proposed Semi-Supervised Temporal Clustering
	The Problem of Temporal Clustering
	Aligned Cluster Analysis (ACA)
	Optimization of ACA

	Applying Semi-Supervised Framework to ACA
	Semi-Supervised ACA (SSACA)
	Optimizing SSACA
	Complexity Analysis of SSACA

	Semi-Supervised Temporal Spectral Clustering
	Exhaustive and Efficient Constraint Propagation
	Semi-Supervised ACA with Exhaustive Propagation (SSACA+EP)
	Semi-Supervised Temporal Spectral Clustering with EP (SSTSC+EP)
	Do Constraints Always Improve Performance?
	Differentiating SSACA from Subsequence Time Series

	Experimental Analysis of the Proposed Methods
	Setup of the Experiments
	Evaluation Measures

	Synthetic Dataset
	Baseline Algorithm
	Analysis of the Number of Constraints
	Analysis of the Number of Clusters
	Analysis of the Influence of Exhaustive Propagation
	Analysis of the Influence of Constrained Initial Segmentation

	Experiments on Emotion Analysis and Human Motion Segmentation
	Emotion Analysis
	Facial Expression Analysis
	VAM Corpus
	Features
	Experimental Results and Analysis
	AVEC Dataset
	Experimental Results and Analysis

	Human Motion Segmentation
	CMU Motion Capture Dataset (MOCAP)
	Experimental Results and Analysis

	Conclusions and Future Work
	Conclusions
	Future Work
	List of Publications

	APPENDICES
	Detailed Results
	Detailed Accuracy Results of AVEC Dataset
	Detailed Description of AVEC Dataset
	List of Public Available Facial Expression Datasets

	References

