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Abstract 

 
This thesis examines the capacity of a suite of near-surface geophysical techniques (i.e., 

ground-penetrating radar (GPR), electromagnetic induction (EMI) and electrical resistivity 

tomography (ERT)) to monitor soil moisture dynamics over a complete annual cycle at the 

Arkell Research Station (ARS).  The ARS is located at the terminal edge of the Paris moraine 

within the outwash plain and consists of highly heterogeneous coarse grained deposits.  The 

characterization of the soil moisture conditions at this site would represent an important 

component in furthering our understanding of the capabilities of geophysical methods in coarse 

grained materials.  

Soil water contents can be monitored through measurements of dielectric permittivity 

from GPR surveys and electrical conductivity from EMI and ERT surveys. The geophysical 

measurements made during this study qualitatively agree with the soil moisture conditions 

determined through gravimetric sampling and inferred from weather data.  However, the 

quantitative correlation between the geophysical and gravimetric data was found to be low.  

Hence, while it is apparent from this work that the responses of these geophysical methods are 

sensitive to soil moisture conditions in coarse grained soils, more work is required to extract 

quantitative soil moisture information from geophysical data for these soils. 
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1.0 Introduction 

Soil moisture plays an important role in many hydrogeological processes and problems 

(e.g., contaminant transport and infiltration, groundwater recharge and  precision agriculture), 

which is why the characterization of subsurface hydraulic properties is important for 

understanding how water and contaminants move through the system.  Advancing our 

conceptual understanding of the hydrogeological system through such characterizations will 

undoubtedly improve current groundwater management strategies.  Water resources are of great 

importance especially with an ever-increasing demand on fresh water resources.  The vadose 

zone plays an important role in the protection of our water stores by providing a buffer zone 

between the surface and the groundwater, as well as regulating the water availability for crops 

and drinking water.  

Glacial outwash deposits act as large water reservoirs, but these quaternary deposits exhibit 

significant variability in terms of their permeability (Johnson and Gillam, 1995).  In Guelph, 

recharge to the underlying bedrock aquifer occurs through diffusive movement of water through 

the glacial overburden material (Cole et al., 2009).  The heterogeneous nature of the glacial 

material causes a non-uniform distribution of permeability and recharge.  Understanding the role 

soil moisture dynamics in the Paris moraine system is important for the preservation of these 

large underlying aquifers. The outwash channel deposits of the Paris moraine are extremely 

heterogeneous and contain stony coarse grained soils. 

Traditional hydrogeological methods have been employed to measure soil moisture, such 

as time-domain reflectometry (TDR), neutron probes and gravimetric samples; however, these 

methods yield localized information that are biased to the measurement point. These methods 

can provide less accurate results since they disturb the soil.  For instance, Coppolla et al. (2013) 
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showed how difficult it can be to accurately estimate soil moisture with traditional methods such 

as TDR probes and gravimetric sampling techniques in stony coarse grained materials.  The 

sampling difficulties result from practical issues related to inserting probes into the subsurface 

without disturbing the soil structure and the high degree of sampling that is required in order to 

capture the immense spatial heterogeneity.  

The use of multiple, non-invasive geophysical techniques (e.g., ground penetrating radar 

(GPR), electrical resistivity tomography (ERT) and electromagnetic induction (EMI)) have the 

capacity to provide extensive spatial and temporal information about soil moisture in the near 

surface.  Additionally, near-surface geophysical methods provide information about the 

subsurface structure of aquifers and potential permeable pathways (Celano et al., 2011; 

McArthur et al., 2011; Revil et al., 2012). McArthur et al. (2011) performed GPR and borehole 

geophysics studies to resolve the heterogeneity seen in a glacial outwash aquifer and showed that 

GPR could provide information about the complex subsurface heterogeneity including potential 

permeable pathways that correlated quite well with the borehole geophysics.   

 Two and three dimensional models of subsurface geophysical properties (e.g., dielectric 

permittivity, electrical conductivity) can be created in a non-invasive and efficient manner using 

GPR, EMI or ERT which can be used to estimate physical properties such as soil moisture (Luck 

et al., 2011; Pellicer et al., 2012; Smiarowski et al., 2011; Steelman and Endres, 2010). Steelman 

and Endres (2010) used the velocity estimates from common-midpoint (CMP) and direct ground 

wave (DGW) surveys to estimate soil moisture in the subsurface throughout the year.   

Although many geophysical studies have been conducted in order to characterize the 

hydrogeological systems within homogeneous fine grained deposits (Luck et al., 2011; Mouhri et 

al., 2013; Pellicer et al., 2012; Smiarowski et al., 2011; Steelman, 2010; Steelman and Endres, 
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2012), few have been carried out in heterogeneous stony coarse grained deposits.  The aim of 

this thesis is to examine the potential of GPR, EMI and ERT to provide information about the 

soil moisture dynamics in stony coarse grained soils such as those seen in the outwash deposits at 

the Arkell Research Station (ARS).  To investigate the potential of these three hydrogeophysical 

methods, the nature of the observed variations in the measured responses both spatially and 

temporally will be assessed.  Additionally, the correlation between hydrogeophysical responses 

and the available hydrological data (i.e. gravimetric sampling, weather data and water level 

measurements) will be examined.  The non-invasive nature and larger sampling volume of the 

hydrogeophysical methods (GPR, EMI and ERT) allow for more accurate characterization of 

hydrogeological systems in a stony coarse grained deposit compared to traditional 

hydrogeological methods (i.e. TDR probes and gravimetric sampling).  The results from this 

research illustrate that these three hydrogeophysical methods have the potential to monitor soil 

moisture conditions in a heterogeneous coarse grained material. 
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2.0 Background on Geoelectrical Methods 

Geoelectrical methods can be divided into two broad categories: 1) galvanic methods (e.g. 

ERT) which require direct contact via electrodes to inject an electrical current into the Earth; and 

2) electromagnetic methods (e.g. GPR and EMI) which involve the propagation of an 

electromagnetic (EM) field into the subsurface through transmitter and receiver coils that may 

not be in direct contact with the Earth.  The time-varying EM fields are governed by Maxwell’s 

equation: 

∇2𝐵 = 𝜇𝜎
𝜕𝐵

𝜕𝑡
+ 𝜇𝜀

𝜕2𝐵

𝜕𝑡2
 𝑎𝑛𝑑 ∇2𝐸 = 𝜇𝜎

𝛿𝐸

𝛿𝑡
+ 𝜇𝜀

𝛿2𝐸

𝛿𝑡2
 

[1] 

where B is the magnetic flux density and E is the electric field intensity.  The EM wave 

propagation is dependent on the Earth’s electrical properties: dielectric permittivity (), magnetic 

permeability () and electric conductivity (). 

The EM methods can be further divided with respect to whether the conduction or 

displacement currents are dominate where the 
𝜕

𝜕𝑡
 term is related to conduction currents and the 

𝜕2

𝜕𝑡2 corresponds to the displacement currents.  The displacement current term usually dominates 

at frequencies above 10 MHz where wave propagation occurs.  These are the conditions 

necessary for the use of GPR.  Conversely, conduction currents dominate at frequencies below 

10 MHz where diffusive behavior occurs.  The applications of EMI techniques require these 

conditions.  

2.1 Ground Penetrating Radar 

 GPR uses high-frequency (1-1000 MHz) EM waves to probe the subsurface.  An 

extensive coverage of the theories and applications of GPR can be found in Annan (2005).  In 
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general, this method involves the propagation of EM waves between a transmitter and a receiver 

along a variety of possible ray paths (Figure 2.1); the reflected and direct groundwave ray paths 

are the focus of this thesis.  In a low loss, non-magnetic geological material, the velocity of the 

propagating EM wave can be determined using: 

, 

[2] 

where κ is the relative dielectric permittivity (i.e.,  =  / 0 where 0 is the permittivity of a 

vacuum)  and c is the velocity of light in free space (0.29979 m/ns).  Therefore, the velocity of 

the EM wave is essentially a function of the relative permittivity in most cases. 

2.1.1 Determining Soil Water Content from Dielectric Permittivity 

Dielectric permittivity is a measure of the electric charge polarization in response to an 

applied electrical field.  The dielectric response of a material is strongly dependent on the 

presence of liquid water.   Different petrophysical relationships such as empirical relationships, 

volumetric mixing formulae and effective medium approximations, can be used to estimate 

volumetric water content (𝜃) from κ values.  The choice of relationship depends on the amount 

of auxiliary knowledge about the soil, such as porosity, mineral type and temperature (Steelman 

and Endres, 2011). The method used throughout this thesis is the empirical relationship 

developed by Topp et al. (1980):  

𝜃 = −5.3𝑥10−2 + 2.92𝑥10−2𝜅 − 5.5𝑥10−4𝜅2 + 4.3𝑥10−6𝜅3 

[3] 

where κ is equal to the measured dielectric permittivity of the bulk material.  This relationship is 

simple and does not require additional information about the porosity or the dielectric 



v 
c


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permittivity of the various soil constituents.  

2.1.2 Ground Penetrating Radar Techniques 

 There are two GPR surface techniques that are used throughout this thesis for measuring 

soil moisture content and characterizing the subsurface: reflection profiling and common-

midpoint (CMP) soundings.  

Reflection profiling is done by moving the transmitter (Tx) and the receiver (Rx) 

sequentially along the survey line with a constant separation (i.e. offset) between the antennae 

(Figure 2.2a).  As the antenna array is moved along the survey line, they image the ground, 

resulting in the collection of traces that show variations in reflection traveltime.  This technique 

can be used to map out the subsurface geology.  In addition, volumetric water content can be 

monitored using variations in two-way traveltimes of reflections from stratigraphic interfaces.  A 

quantitative estimate of water content using reflection profiling requires determination of the 

depth to the reflecting stratigraphic interface.  

CMP soundings involved the incremental separation of the Tx and Rx about a central point 

(Figure 2.2b).  Volumetric water content information can be obtained from velocity analysis of 

the shallow DGW and deeper reflection events.  Application of NMO velocity analysis to CMP 

data yield information about the subsurface EM velocity structure and depth to reflecting 

interfaces.  In addition, CMP data can be used to measure DGW velocity which yields 

information about the dielectric permittivity along the surface. 

2.2 Electromagnetic Induction 

An extensive coverage of the EMI theories and applications of ground conductivity meters 

(GCM) can be found in Fitterman and Labson (2005) and McNeil (1980).  GCM instruments are 

used for mapping the electrical conductivity of the subsurface for a wide range of applications, 
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including monitoring soil moisture content (e.g. Akbar et al., 2005; Reedy and Scanlon, 2003; 

Sheets and Hendrickx, 1995).  The response of a GCM device to the Earth is expressed in terms 

of an apparent conductivity (σa) which represents an identical instrument response over a 

homogeneous halfspace.  

 For an Earth with a vertically varying conductivity profile (σz), the apparent conductivity 

is given by: 

𝜎𝑎 = ∫ 𝜎(𝑧′)

∞

0

𝜙(𝑧′)𝑑𝑧′ 

[4] 

where 𝜙(𝑧′) is the response function of the GCM device and 𝑧′ = 𝑧 𝑠⁄  is the normalized depth 

with s being the Rx-Tx coil spacing. 

 The form of  𝜙(𝑧′) depends on the coil orientation.  The two orientations used in this 

study were the vertical (horizontal co-planar) and horizontal (vertical co-planar) dipole 

configurations where 

 

 

[5] 

and, 

 

[6] 

are the vertical or horizontal response function of the GCM, respectively.  Figure 2.3 shows that 

the horizontal dipole is most sensitive to surface conditions with the sensitivity decreasing 



v(z') 
4z'

[4(z')2 1]3 / 2



H (z')  2
4z'

[4(z')2 1]1/ 2
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significantly with depth.  The vertical dipole is highly sensitive at a depth of 40% of the coil 

separation and is minimally sensitive to surface conditions.  

2.3 Electrical Resistivity Tomography  

 ERT measures the ability of the subsurface to resist the flow of a current when it is 

applied to the ground.  Zonge and Urquhart (2005) and Revil et al. (2012) provide a 

comprehensive review of the theories and applications of ERT.  The resistivity measured by the 

ERT is dependent on the porosity, saturation and resistivity of the pore fluids as well as the soil 

texture. ERT can provide high-resolution images of the shallow subsurface in a wide range of 

field conditions; it works well in resistive and conductive environments (Amidu and Dunbar, 

2007; Frohlich and Parke, 1989; Zhou et al., 2001).  The IRIS Instruments Syscal Jr. 48 channel 

resistivity instrument was used to measure the resistivity variations in the subsurface.  The 

instrument is designed to cycle through the 48 electrodes using 4 electrodes at a time; there are 

two source current electrodes (A and B) and two sink potential electrodes (M and N). 

The electrical current moves radially away from the source current electrodes and then the 

potential difference between the sink potential electrodes can be measured  to determine apparent 

resistivity (a):  













BNANBMAM

a
NMMN

rrrr

I
VVV

1111

2


 

[11] 

 

[12] 

where VMN is the difference in electrical potential, a is the apparent electrical resistivity, I is 


 
VMN

I
2

1

rAM

1

rBM

1

rAN

1

rBN











1












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the electrical current used for injection of the current and r is the distance between  electrode 

pairs.  The separation of the electrodes and the array chosen affects the depth of penetration of 

the survey and the sensitivity to noise.  The further the electrodes are separated the deeper 

penetration you will get. 

The type of array used depends on the target and the location where the survey is being 

conducted.  In this thesis, Wenner arrays are used. The Wenner array is robust in the presence of 

noise and is most sensitive to changes in the vertical direction, i.e., horizontal layers (Loke, 

1997, 1999, 2000; Pellicer et al., 2012; Smith, 2006). 

The electrical resistivity data that is collected can also be used to infer soil moisture 

content using Archie’s law: 



  amSw
n
w . 

[13] 

where Sw is the water saturation which is the volume fraction of pore space containing water, n is 

the saturation exponent which can be assumed to be equal to 2, a is the empirical constant 



0.5 a2.5 and w is the resistivity of the pore water.  

The ERT data in this thesis was inverted using the software package (RES2DINV) which 

is based on a standard Gauss-Newton optimization routine.  The tutorial by Loke (2011) explains 

the inversion process fully.  There is a non-uniqueness issue with the forward modeling and 

inversion of the resistivity data; coupling other geophysical techniques with the ERT method can 

help reduce non-uniqueness issues.



10 
 

 
Figure 2.1: Diagram illustrating electromagnetic wave raypaths in the near surface and an 

example GPR data set (common-midpoint sounding) showing these events (taken 

from Steelman and Endres [2010]). 
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Figure 2.2: Schematic of GPR reflection profiling and common-midpoint sounding techniques. 

A 

B 
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Figure 2.3: The vertical and horizontal dipole response functions for a ground conductivity meter 

with a 1 m coil separation (Taken from, Sudduth et al., 2001). 

 

  

Vertical Dipole 
Φv(z) = (4z)(4z

2
+1)

3/2 

Horizontal Dipole 
φH(z) = 2-(4z)(4z

2
+1)

1/2
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3.0 Methodology and Approaches 

3.1 Site Characterization 

The test site (43.525153,-80.178223) is located within the ARS (Figure 3.1), within the 

city of Guelph.  This area was extensively glaciated during the Pleistocene era, most recently 

during the Wisconsin glacial episode (115-10 ka), resulting in thick quaternary deposits covering 

the Silurian-aged dolostone bedrock (Cole et al., 2009; Kunert et al., 2002).  This site is being 

actively studied by researchers at the University of Guelph, with many of these studies focused 

on nitrate contamination and transport.  

The ARS is situated within the outwash plain adjacent to the terminal edge of the Paris 

Moraine and is host to various agricultural activities.  The terminal edge of the Paris Moraine 

runs in the SW-NE direction, and the topography in the area consists of a relatively flat outwash 

plain with a few small streamlined drumlins and kettle depressions which eventually evolve into 

a relatively high ridge with a hummocky surface to the southwest (Sadura et al., 2006).  The 

Paris Moraine was created by ice bulldozing rock material in front of the glacier during small 

advance-retreat cycles of the ice sheet, which caused sands, gravels and clays to be washed out 

over the previously deposited glacial tills.  The deposited material formed a broad outwash plain 

in front of the ice sheet.  The permeable surface and hummocky topography leads to high rates of 

recharge and large aquifers are found within the till units (Cole et al., 2009).  The large aquifer 

system in this area supplies drinking water for the city of Guelph and the nearby townships. 

For this study, investigations were focused on a 100 meter survey line located in the 

vicinity of borehole P16 (Figure 3.1).   The survey line is located on the 5 m wide grass shoulder 

between the gravel access road and a cultivated field.  The profile is oriented with 0 meters to the 

south and 100 m to the north.  The elevation decreases northward along the survey line into a 
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depression located between 80 to 90 m. The monitoring well P16 is located at approximately 

20 m and is about 2 m west of the line.  The borehole log for this well shows a till unit at about 7 

m depth overlain by sand and gravels.  The water table depth at well P16 ranged between 7.9-8.5 

m below the ground surface throughout this study.  

3.1.1 Geophysical Characterization 

 A previous geophysical study by Sadura et al. (2006) characterized the geometry of 

shallow stratigraphic units within the moraine-outwash system.  Based on the GPR reflection 

profiling they concluded that the outwash area in front of the moraine primarily consisted of 

braided stream deposits. Unlike the study completed by Sadura et al. (2006) which was situated 

within the moraine, this study was completed within the proximal outwash moraine. 

3.2 Ground-Penetrating Radar  

CMP soundings and reflection profiles were conducted along the 100 m survey line every 

2 to 6 weeks from August 2011 to June 2012 using Sensors and Software pulse EKKO 1000 and 

100 GPR systems (Table 3.1).  Table 3.2 gives the CMP sounding and reflection profiling survey 

design details. 

The CMP soundings were acquired with 200 MHz and 450 MHz antennae; however, the 

data quality and depth of penetration seen with the 450 MHz antennae was less than that of the 

200 MHz data. The Direct Ground Wave (DGW) velocities obtained from the CMP soundings 

were compared with the gravimetric and precipitation data to examine the ability of the CMP 

soundings to characterize the hydrogeological systems in coarse grained materials.  The 

reflection profiles were acquired with the 200 MHz antennae since the low frequency antennae 

were found to perform better in the coarse grained materials.  The reflection profiles were 

conducted to image continuous stratigraphic boundaries under the survey line.  Since the depth 
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of a stratigraphic boundary does not change throughout the year, the changes in arrival times for 

a particular boundary can be used to characterize the hydrogeological systems above that 

boundary. 

3.3 Electromagnetic Induction 

 Electrical conductivity measurements were collected along the 100 meter survey line 

every 2 to 3 weeks using the EM38 and EM31 instruments from July 2011 to June 2012 

(Table 3.1).  Calibration of the EM38 instrument was done in accordance to the manufacturer’s 

manual (Geonics Ltd. EM38 Operating Manual).  The EM31 was calibrated by the manufacturer 

and did not require further calibration in the field. 

During the EM surveys, the apparent conductivity value of each survey position was 

obtained from the average of 25 readings.  The EM38 measurements were taken every 0.25 m 

along the survey line in both the horizontal and vertical dipole orientations. The instrument was 

placed on the ground and kept stationary for each measurement.  EM31 measurements were 

taken every 1 m on the ground along the survey line in both the horizontal and vertical dipole 

orientations’ as well.  A 12% reduction was applied to the EM31 readings since the 

manufacturers calibration assumes that the instrument is held at a height of 1 meter during data 

acquisition. 

As part of the EM38 survey procedure, a drift line was completed before the survey.  The 

drift line was positioned on the survey line between 82.5 to 87.5 m, both dipole orientations of 

the EM38 were collected prior to the survey.  This drift line was then compared to the actual 

EM38 readings collected between 82.5 and 87.5 m during the survey and the difference between 

the readings represented the EM38 instrument drift. 

The EM data provided insight to the variations seen in the average apparent conductivities 
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across the survey line and throughout the year.  By utilizing multiple coil separations and 

instrument dipole orientations, the variations in average apparent conductivities with depth were 

could be inferred.   The average apparent conductivity data were qualitatively compared with the 

gravimetric and weather data collected at the site.  

3.4 Electrical Resistivity Tomography 

 ERT surveys were conducted along the 100 m survey line using an IRIS Instruments 

Syscal Junior unit with 48 electrodes every 2 to 6 weeks from July 2011 to June 2012 

(Table 3.1).  Table 3.3 gives the survey details for the ERT data acquisition.  Larger-scale (i.e. 

field scale) ERT surveys were conducted to capture the long-period seasonal changes along the 

entire survey line.  The higher resolution ERT surveys were acquired to capture short-period 

dynamic processes in the shallow subsurface.   

3.5 Auxiliary Measurements 

 During the 2-3 week interval surveys, soil moisture variations were monitored using 

gravimetric soil samples collected at four equally spaced locations along the survey line: 20 m, 

40 m, 60 m and 80 m (Table 3.1).  These sampling locations coincide with four of the CMP 

survey locations, and are in the vicinity of where the high resolution ERT surveys were 

completed.  Gravimetric samples were collected in 10 cm depth increments using a ¾-inch soil 

science probe to a maximum depth of 1 m; this depth coincided with a layer of gravel or 

boulders.  Gravimetric water contents were determined from oven dried samples using the 

following equation: 

 

𝜃𝐺 =
(𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑡 𝑠𝑜𝑖𝑙 − 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑎𝑛) − (𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 − 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑛)

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 − 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑛
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[14] 

 At the end of the study, three trenches were dug to a depth of one meter at the 10 m, 50 m 

and 85m locations (Appendix A).  Bulk density samples were collected at three depth intervals 

(0-25 cm; 25-50 cm; 50-1 m) which represented three soil horizons seen within the 10 m and 50 

m trenches.  However, due to the presence of cobbles and boulders at the site, accurate bulk 

densities could not be determined.  At stations 10 m and 50 m, the cobbles and boulders were 

observed throughout all three of the identified soil horizons and the abundance of these coarse 

grained materials increased with depth.  At station 85 m, the cobble and boulder sized material 

was not seen until around 75 cm depth.  

 Water table depth measurements were collected with a Solinst water level probe at the 

well P16 throughout the geophysical monitoring periods (Figure 3.2).  Atmospheric temperature, 

precipitation, soil temperature, and wind speed/direction was monitored at the Turf Grass 

Institute in Guelph located approximately 4.5 km from the ARS.  The precipitation and 

temperature data are plotted on Figure 3.2.   

3.6 Data Analysis 

3.6.1 GPR Data Analysis 

 The GPR data analysis was performed using Sensors and Software’s EKKO View 

Deluxe
TM

 and Sandmeier Software’s REFLEXW
TM

. The EKKO View Deluxe
TM

 software was 

used for preliminary data preparation such as merging line files and zero time adjustments. 

Subsequent processing and analysis was completed with REFLEXW
TM

.  Table 3.4 summarizes 

the processing steps for the 200 MHz and 450 MHz data.   

 The DGW velocities were determined from the CMP data by picking both the leading 



18 
 

and lagging crossover of the first positive peak of the DGW event.  It was determined that the 

average of both of the picked events yielded the most representative DGW velocities.  The 

averaged DGW velocities were then compared to the gravimetric water contents and 

precipitation data. 

The EM velocities to three reflection events were determined using NMO analysis of 

CMP data collected with the 200 MHz antennas.  These velocity profiles were used to monitor 

temporal changes in the soil water content in the reflection profiling data by utilizing the two-

way traveltime measurements to a fixed stratigraphic reflection event.  

3.6.2 ERT Data Analysis 

 Analysis of ERT data was done with IRIS Instrument’s Prosys II
TM

 and Geotomo 

Software’s RES2DINV
TM

.  A least squares inversion using the Gauss-Newton optimization 

method was completed with a half width unit spacing in order to increase the resolution of the 

near surface.  The ratio of the thickness of the first layer to that unit electrode spacing was 0.125 

with a factor of 1.1 to increase the layer thickness with depth.  Additionally, a least squares time-

lapse inversion was completed with the first data set as the reference model and a constraint 

weight of 0.2.  

3.6.3 EMI Data Analysis 

 A drift correction was applied by subtracting the drift effect from the EM38 

measurements (refer to section 3.3) followed by a moving average spatial filter to reduce noise; 

the mean was taken across a 4 m window.  The EM31 data did not require be drift correction or a 

moving average filter. 
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Figure 3.1: Map (Google Maps) and satellite image (Google Earth, May 2014) showing location of survey line at the Arkell Research 

Station. 
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Figure 3.2: Weather data collected from the Turf Grass Institute as well as water level measurements from well P16.  Short and long 

term survey acquisition dates are also indicated.
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Table 3.1: Summary of geophysical field data collection 

  

ERT 0.25 
WennerSch 
@10m 

ERT 0.25 
WennerSch 
@ 50 m 

ERT 0.25 
WennerSch@ 
85m 

1m 
Roll 
Along 

EM31 
H 

EM31 
V 

EM38 
V&H 

200 Mhz 
CMP  

200Mhz 
Reflection 

Water 
table 
height Gravi 

24-May-11                   X   

07-Jul-11   X         X       X 

12-Jul-11                 X X   

19-Jul-11             X X X X X 

26-Jul-11 X   X       X     X X 

10-Aug-11       X X X X     X X 

23-Aug-11                   X X 

01-Sep-11 X X X     X X     X X 

12-Sep-11                       

14-Sep-11 X X X   X X X     X X 

28-Sep-11 X X X   X X X     X X 

07-Oct-11       X       X X X X 

11-Oct-11 X X X   X X X     X X 

26-Oct-11 X X X   X X X X   X X 

09-Nov-11               X   X X 

18-Nov-11 X X X X X X X X X X X 

28-Nov-11 X X X   X X X X   X X 

13-Dec-11 X X X   X X X X   X X 

03-Jan-12 X X X X X X X X X X Frozen 

17-Jan-12 X X X   X X X X   X Frozen 

31-Jan-12 X X X   X X X X   X Frozen 

15-Feb-12 X X X X X X   X X X Frozen 

06-Mar-12 X X X   X X X X   X Frozen 

28-Mar-12 X X X X X X X X X X X 

18-Apr-12 X X X   X X X X   X X 

15-May-12 X X X X X X X X X X X 

04-Jun-12 X X X   X X X X   X X 

26-Jun-12 X X X X X X X X X X X 
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Table 3.2: Survey design parameters for the GPR data (CMP soundings and reflection profiling) 

 200 MHz CMP 450 MHz CMP 200 MHz 

Reflection 

Sampling 

Location 

Every 10 m along 

the 100 m survey 

line 

Every 10 m along 

the 100 m survey 

line 

Entire 100 m 

survey line 

Frequency 2-3 weeks 2-3 weeks 6 weeks 

Step Size 0.1 m 0.05 m 0.1 m 

Offset Range* 0.5 m to 6 m 0.25 m to 3 m 0.5 m 

Time Window 200 ns 80 ns 200 ns 

Sampling Interval 800 ps 100 ps 800 ps 

Stack 64 64 64 
*the maximum offset allowed for the separation of the direct air and direct ground wave fields  

 

Table 3.3: Survey design for the field scale and high resolution ERT surveys 

 High Resolution ERT Field Scale ERT 

Frequency 2-3 weeks 6 weeks 

Location 10 m, 50 m and 85 m along 

survey line 

Entire 100 m survey line 

Array Wenner Wenner 

Electrode Spacing 0.25 m 1 m 

Signal Duration 1000 ms 1000 ms 

Stack 4-6 4-6 
 

Table 3.4: Processing parameters for the 200 MHz and 450 MHz data. 

 Dewow Filter Gain Function Bandpass Frequency Mean 

200 MHz 

CMP 

Time Window: 

11.46618 ns 

Start time: 0 ns 

Linear gain: 6.058288 

Exponent: 0.601158 

Max. gain: 500 

Low cutoff: 0 

Lower plateau: 50 

Upper plateau: 100 

Upper cutoff: 200 

n/a 

450 MHz 

CMP 

Time Window: 

3.978022 ns 

Start time: 0 ns 

Linear gain: 2 

Exponent: 10 

Max. gain: 5000 

Low cutoff: 0 

Lower plateau: 200 

Upper plateau: 600 

Upper cutoff: 800 

n/a 

Reflection Time Window:  

13 ns 

Start time: 0 ns 

Linear gain: 3 

Exponent: 3 

Max. gain: 1000 

Low cutoff: 0 

Lower plateau: 50 

Upper plateau: 100 

Upper cutoff: 150 

Mean range: 

3 
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4.0 Hydrogeophysical Data Analysis 

The three hydrogeophysical methods (GPR, EMI and ERT) that were examined have 

been evaluated separately in terms of their potential to provide information about the subsurface 

dynamics in a stony coarse grained material.  The variations in the measured responses were 

assessed with respect to both the spatial and temporal changes, and compared to available 

hydrological data.  The qualitative relationship between the hydrogeophysical responses and the 

hydrogeological information (i.e., precipitation data, grain size information and gravimetric 

water contents) were examined.  Additionally, the relationship between the GPR and EMI 

responses were quantitatively compared to the gravimetric data that was collected throughout the 

study.    

4.1 Ground Penetrating Radar- Common Midpoint Surveys 

 The CMP surveys conducted with the 200 MHz and 450 MHz antennas at stations 20 m, 

40 m, 60 m and 80 m along the survey line were analyzed to obtain DGW and NMO velocity 

information.  The CMP data can be found in Appendix B.  As discussed in Chapter 2, the NMO 

and DGW velocities have an inverse relationship with water content. 

The DGW velocities obtained from the CMP data and the corresponding water content 

values derived from gravimetric sampling are shown in Figure 4.1.  Significant variations in 

DGW velocity are observed over the duration of the study that qualitatively reflect the soil 

moisture conditions.  During the summer of 2011, the DGW velocities are relatively high during 

dry conditions (August 10, 2011).  The DGWs begin to decrease (September 28, 2011 to 

November 9, 2011) as conditions become wetter.  During the winter months (November 9, 2011 

to January 3, 2012), the DGW velocities remain relatively low during a period of unfrozen wet 

conditions.  The DGW velocities start to increase again around March 28, 2011 in response to 
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observed drier soil conditions.  

Figure 4.2 shows the overall spatial trends in the DGW velocities and soil moisture along 

the profile line.  Considering the average values at each station for the monitoring period, it can 

be seen that DGW velocities progressively decreased approximately 15% (0.086 m/ns to 0.0728 

m/ns) from 20 m to 80 m (i.e., from the crest of the profile to the depression).  This trend is 

consistent with the gravimetric data where there is roughly a 43% (0.23 to 0.33)  increase in the 

average gravimetric water contents as you move from 20 m to 80 m on the survey line.  Hence, 

both Figures 4.1 and 4.2 suggest that there is a qualitative relationship between DGW velocities 

and soil moisture. 

Figure 4.3 examines the quantitative relationship between DGW velocities and soil 

moisture conditions; this analysis was performed in terms of the inverse of the DGW velocity 

(i.e., 1/VDGW).  While there appears to be a qualitative relationship between the DGW velocities 

and soil moisture conditions in Figure 4.3, there is significant scatter in these data, particularly at 

60 m and 80 m.  Hence, the correlation between the DGW velocities and the gravimetric water 

contents at all four stations as quantified by the R
2
 values were not as strong as might be 

expected.  

NMO analysis was performed on the CMP data to examine spatial variations in 

subsurface EM wave velocities along the survey line.  Steelman and Endres (2012) provide an 

overview of the concepts behind the use of NMO analysis for vertical soil moisture 

characterization.  The data quality and depth of penetration deteriorated at the northern end of the 

survey line (i.e., from approximately 70 m to the end of the line).  This signal degradation is 

thought to be the result of increased electrical conductivities in the near surface materials which 

is illustrated in the ERT results below (see Section 4.4 and 4.5 below).  Hence, the CMP data 
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collected at 80 m and 90 m were excluded from the NMO analysis due to the data quality issues. 

Three reflections events that were consistently identified on the CMP data throughout the 

monitoring period were used in the NMO analysis.  An example CMP data set from October 7, 

2011 showing these three events is given in Figure 4.4.  The NMO analysis of each event yielded 

an average velocity (called the NMO velocity) of the material between the surface and reflecting 

interface, as well as zero offset traveltime which indicates the relative depth of the corresponding 

interface. 

Figure 4.5 shows the cross-sectional profile of the NMO analysis results along the survey 

line for different seasonal conditions.  It can be seen that overall higher NMO velocities occur 

during the drier summer conditions while lower NMO velocities were found during the wetter 

fall through spring period.  In addition, there appears to be a significant increase in NMO 

velocity with traveltime during the wetter conditions.  These trends are also apparent when the 

NMO analysis results are examined as time series covering the monitoring period at selected 

stations (Figure 4.6).  Further, the time series reveals more velocity variability in the results for 

the DGW and shallowest reflection event in comparison to the two deeper reflection events.  

This behavior is consistent with greater variation in soil moisture in the vicinity of the surface 

with the degree of soil moisture changes decreasing with depth. 

4.2 Ground Penetrating Radar- Reflection Profiling 

 The 200 MHz antennas were used for the reflection profiling along the entire length of 

the survey line (1 m to 100 m).  Due to increased deterioration of the data quality and depth of 

penetration at the northern end of the survey line, only the data between 1 m to 70 m of the 

reflection profile line was analyzed.  An example of the reflection profiling acquired during this 

study is shown in Figure 4.7; images of the reflection profiles collected throughout the survey 
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can be found in Appendix B.  On the reflection profiling data, the continuous reflection event 

around 90 ns could be consistently imaged and identified throughout the monitoring period 

(Figure 4.7); this reflection event corresponds to the deepest reflection event used in the CMP 

data analysis. 

The depth of the reflection event was estimated for the locations where CMP surveys 

were conducted; the results of this analysis averaged over the monitoring period are shown in 

Figure 4.8.  The estimated depth of the reflection event ranges from 4 m to almost 6 m across the 

survey line.  The continuous nature and amplitude of this reflector event suggests it corresponds 

to a continuous geological boundary such as a stratigraphic interface or the water table.  The 

water table depth was observed at approximately 8 mbgl at the monitoring well P16 along the 

profile line.  Hence, it is likely that this reflection event corresponds to an overlying stratigraphic 

boundary.  The borehole log of P16 (Figure 4.8), which is located at 20 m on the survey line, 

shows that there is a boundary between the upper silty sand gravel unit and the underlying unit 

comprised of sand and minor gravel fraction around 5 m.  This lithologic boundary is at a similar 

depth as the continuous reflection boundary seen in the reflection data. 

  The two-way traveltime of this reflection event was determined for 1 m to 70 m and is 

plotted as a function of position in Figure 4.9; these data are shown in Figure 4.10 as the change 

relative to the first survey date on July 19, 2011.  Since the depth of the stratigraphic boundary 

corresponding to this reflection event does not change, fluctuations in the soil moisture above 

this boundary will change its two-way traveltime throughout the year.  

Looking at the arrival times qualitatively you can associate the earliest arrival times to 

wetter conditions and the latest times to drier conditions (Figure 4.9).  According to the GPR 

reflection data, the earliest arrival time was on November 18, 2011 when the conditions were 
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very wet and the latest arrival times was on February 15, 2012 when the ground was frozen.  The 

temporal changes in two-way traveltimes appear to correlate with the general trends seen in the 

precipitation data throughout the year (Figure 3.2); however, this is not what one would expect.  

This behavior is consistent with delayed recharge into the subsurface and a bias towards the 

higher conductivity upper near surface.   

4.3 Electromagnetic Induction Results 

Apparent conductivity readings were obtained using the EM38 and EM31 along the 

entire length of the 100 m survey line at 0.25 m and 1 m intervals, respectively.  The EMI data 

can be found in Appendix D.  As discussed in Chapter 2, the EM instruments are very sensitive 

to changes in the subsurface conductivity.  The EM38 and EM31 data collected along the survey 

line has been plotted for select dates to illustrate the effects of varying seasonal conditions 

(Figures 4.11 and 4.12, respectively).  

It can be seen in Figure 4.11 that the apparent conductivities measured with the EM38 using 

the horizontal dipole orientation are greater than those measured with the EM38 vertical dipole 

orientation during wetter fall to spring period (i.e., October 26, January 3 and March 28). During 

the relatively drier summer months (i.e. July 19, 2011 and June 26, 2012), the apparent 

conductivities measured in both the horizontal and vertical dipole are similar.  This behavior is 

consistent with the development of a higher conductivity surface layer during the fall-spring due 

to increasing water content that dissipates during drier summer period. 

It can also be seen in Figure 4.11 that there is lateral area of elevated apparent conductivity 

values in the vicinity of the depression at the north end of the survey line (i.e., positions 70 to 

100 m).  This lateral change in apparent conductivity correlates with the pattern of increasing 

gravimetric water contents measured along the survey line.  Further, this lateral variation is more 
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pronounced during the wetter fall to spring period and can be observed in both dipole 

orientations.  This behavior suggests that there is a larger seasonal variation in soil moisture in 

the depression area and that these variations extend to greater depths than other portions of the 

survey line, potentially indicating the occurance depression focused infiltration. 

The apparent conductivity data measured with the EM31 shown in Figure 4.12 displays 

much less temporal and lateral variations than the EM 38 data in Figure 4.11.  In addition, 

similar values of apparent conductivity were obtained with both the vertical and horizontal 

dipole orientations over position range from 0 to 70 m.  This response supports the interpretation 

that the dipole orientation differences seen in the EM38 profiles are due to seasonal conductivity 

changes in a relatively thin surface layer.  While there are elevated apparent conductivity values 

in the vicinity of the depression at the north end of the survey line (i.e., positions 70 to 100 m) 

for the horizontal dipole data for the EM31, the vertical dipole data shows very little, if any, 

lateral changes through the depression.  Hence, if depression focused infiltration is affecting the 

subsurface conductivities, the EM31 vertical dipole data indicates that its effects attenuate 

significant beyond a critical depth. 

To examine the relationship between shallow soil moisture and the apparent conductivity 

obtained with the EM38, the time series of gravimetric water content measurements and the 

corresponding EM38 apparent conductivity data are given in Figure 4.13 for positions 20, 40 60 

and 80 m along the survey line.   The gravimetric water contents represent the average value over 

the upper 0.4 m while the EM-38 values are an average across a 6 m section of the survey line 

centered at positions 20, 40, 60 and 80 m.  Similar to the GPR data shown in Figure 4.1, there 

appears to be a qualitative relationship between the EM38 apparent conductivities measured in 

the horizontal dipole orientation and soil moisture conditions.  This potential relationship is 
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further examined in Figure 4.14 where the correlation between apparent conductivity and water 

content were determined for four gravimetric sampling positions.  During two of the site visits, 

conditions were very wet from a previous large rain fall event (November 28, 2011) and a mid-

season thaw event (January 31, 2012), these conditions caused water to pool at the surface.  To 

assess whether or not these data effect the correlation between the apparent conductivities and 

the water contents two scenarios were assessed.  The first scenario included all of the survey 

visits and the second scenario excluded the November 28, 2011 event at all four locations as well 

as the January 31, 2012 event at the 80 m location. These results indicate a relatively moderate 

level of quantitative dependence of the EM38 apparent conductivity measurements on the 

observed moisture contents with a significant component of scattering in these data. 

4.4 Field-Scale Electrical Resistivity Tomography  

The field-scale ERT surveys were acquired along the entire 100 m survey line; these 

profiles imaged to a depth of approximately 10 m over most of the survey line.  These surveys 

were conducted at approximately 6 week intervals.    These ERT data were inverted and the 

resulting tomograms are plotted in terms of conductivity (i.e. reciprocal of resistivity).   

 Figure 4.15 shows tomograms obtained from the field scale ERT surveys were able to 

detect seasonal variations as well as vertical changes in the conductivity.  These tomograms 

show that the subsurface is vertically divided into two distinct regions:  a surface layer and 

underlying zone.  The underlying zone has comparatively lower conductivity and displays little 

temporal variation in electrical properties. 

In contrast, the upper near-surface zone has relatively higher conductivity that exhibits 

significant temporal variations in the conductivity.  In addition, it laterally varies, being 

relatively thin at the higher south end of the profile and increasing in depth with decreasing 
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elevation to its greatest thickness in the vicinity of the depression at the north end of the profile.  

This upper layer exhibits lower conductivity in the mid to late summer (August 11, 2011) which 

subsequently increases during the fall (November 18, 2011).  The upper layer conductivity 

remain relatively high until early spring (March 28, 2012) at which correlates with the seasonally 

drier conditions that occur in late summer-early fall followed by the normally wetter conditions 

encountered during the fall-spring period.  Further, there is a significant downward expansion of 

this zone below the depression imaged on March 28 which persists until the May 15, 2012 

tomogram; this behavior is consistent with the recharge following the seasonal thaw event.  The 

onset of drier conditions in early-mid spring and the occurrence a major precipitation event in 

(June 1, 2012) by the weather observations correspond with the decreasing conductivity 

conditions and the return of higher conductivities observed in the May 15 and June 26 

tomograms, respectively. 

4.5 High Resolution Electrical Resistivity Tomography 

 To obtain improved imaging of the response of the near-surface layer changing soil 

moisture conditions, high resolution ERT surveys were acquired at three sites along the profile 

line (i.e., positions 10 , 50  and 85 meters) at a temporal interval of approximately 3-4 weeks.  

These survey locations are located at the knoll top, mid-slope and depression, respectively, along 

the profile line.  These ERTs cover a length of approximately 16 m with an investigation depth 

of approximately 2 m.  These ERT data were inverted and the resulting tomograms are plotted in 

terms of conductivity.   The complete set of tomograms generated from the high resolution ERT 

data can be found in Appendix C. 

 Figures 4.16-4.18 show representative tomograms illustrating spatial and temporal 

variations observed at 10, 50 and 85 meters, respectively.   The improved vertical resolution 
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obtained from using the smaller electrode spacing permits better imaging of the more dynamic, 

higher conductivity near surface layer previously observed in the field-scale tomograms.  At 10 

and 50 m stations, this upper layer is approximately 0.25-0.5 meters thick on the tomograms, this 

depth roughly coincides with boundary between the upper, finer grained soil layer and 

underlying very coarse gravel outwash deposits found in the trenches at these locations. 

The high resolution tomograms at the 85 m position indicate that the higher conductivity 

near-surface zone extends to almost 1.5 meters.  This depth is consistent with the trenching 

results which only encountered finer-grained material to its 0.80 meter completion depth.  In 

addition, this upper zone appears to develop a thinner, lower conductivity surface sublayer 

during the late spring-summer (i.e., July 26, 2011 and June 26, 2012) and winter (i.e., January 

31, 2012) period. 

To better visualize the temporal variations in conductivity observed in the high-resolution 

ERT tomograms, one-dimensional mean conductivity depth profiles were generated from the 

inversion results by laterally averaging the model elements between the 4 and 8 meters positions 

for each depth level.  The resulting mean conductivity profiles for 10, 50 and 85 m stations are 

given in Figures 4.19-4.21, respectively.  Similar seasonal patterns are observed at both the 10 

and 50 m stations.  The dynamic near surface layer has relatively lower conductivity values 

during the summer period and higher conductivity conditions in the fall and spring.   This pattern 

correlates with the expected drier summer and wetter fall and spring soil moisture conditions.  

Further, there is evidence of a seasonal conductivity reduction during the winter, particularly at 

the 10 m station.  This behavior is consistent with the effects of decreasing temperature and 

freezing on the conductivity of soils.  As previously noted from the field scale ERT results, the 

underlying resistive material show little temporal conductivity variations. 
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At the 80 m station, the thin surface sublayer exhibits a seasonal pattern similar to that 

observed for the surface layer at the 10 and 50 m stations.  The lower portion of the near-surface 

higher conductivity zone displays more subdued temporal conductivity variations.  This vertical 

difference in temporal response indicates that the impact of seasonal weather conditions on soil 

moisture conditions attenuate significant below the surface sublayer at this location.
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Figure 4.1: Time series of 200 MHz and 450 MHz DGW velocities obtained from analysis of the GPR CMP data and the 

corresponding gravimetric water contents derived from the gravimetric samples for stations (a) 20 m, (b) 40 m, (c) 60 m 

and (d) 80 m.  The gravimetric water contents are an average value over the upper 1 m of the vadose zone. 
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Figure 4.2: DGW velocities and gravimetric water contents plotted with respect to the station position.  The average values over the 

monitoring period of these two parameters are also given. The DGW velocities are marked with squares and the gravimetric 

water contents are represented with circles with dates given in the legend.
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Figure 4.3: Analysis of the relationship between the inverse of the 200 MHz DGW velocity measurements (i.e., 1/VDGW) and the 

gravimetric water contents for stations (a) 20 m, (b) 40 m, (c) 60m and (d) 80m. 
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Figure 4.4: An example of 200 MHz CMP surveys collected on October 7, 2011.  The three 

reflection events used in the NMO analysis are marked in blue, red and green.
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Figure 4.5: Cross sectional profile of the NMO velocities as a function of zero offset time 

obtained from NMO analysis of CMP sounding data for different seasonal 

conditions.  The DGW velocities are used as an estimate of the velocity along the 

surface.
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Figure 4.6: Temporal variations of the NMO velocities obtained from the NMO analysis of the 

CMP data at stations 20 m, 40 m and 60 m. 
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Figure 4.7: An example of the 200 MHz reflection profiling data along the survey line from October 7, 2012.  The continuous 

reflection event consistently identified throughout the monitoring is marked in green.  This event correlates with the 

deepest third reflection event (also denoted by green) seen in the 200 MHz CMP data.
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Figure 4.8: Estimated depth to reflection event along the survey line with the driller’s log of well P16.  The range in water level 

measurements observed throughout the monitoring period is also indicated. 
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Figure 4.9 part one: The absolute two way travel time for the 200 MHz reflection profile data plotted with respect to position for July 

19, 2011 through January 3, 2012.   Referring to both Figures 4.9 part one and part two the earliest arrival time was seen 

on November 18, 2011 and the latest arrival time was seen on February 15, 2012. 
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Figure 4.9 part two: The absolute two way travel time for the 200 MHz reflection profile data plotted with respect to position for 

February 15, 2012 through June 26, 2012.  Referring to both Figures 4.9 part one and part two the earliest arrival time was 

seen on November 18, 2011 and the latest arrival time was seen on February 15, 2012. 
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Figure 4.10: The relative difference between each 200 MHz reflection profile survey and the first survey on July 19, 2011 plotted as a 

function of position. A negative difference represents travel times that are less than those of the reference July 19, 2011 

date.    
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Figure 4.11: EM38 apparent conductivity profiles collected along the survey line for selected dates during the monitoring period to 

illustrate seasonal variations.  The EM38 data collected in the horizontal and vertical dipole orientation are denoted as blue 

and red, respectively.  
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Figure 4.12: EM31 apparent conductivity profiles collected along the survey line for selected dates during the monitoring period to 

illustrate seasonal variations.  The EM31 data collected in the horizontal and vertical dipole orientation are denoted as blue 

and red, respectively.  
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Figure 4.13: Time series of the EM38 apparent conductivities obtained in both the vertical and horizontal dipoles plotted with the 

corresponding gravimetric water contents derived from the gravimetric samples for stations (a) 20 m. (b) 40 m, (c) 60 m and (d) 80 m. 
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Figure 4.14: Analysis of the relationship between the EM38 apparent conductivities measured in both the vertical and horizontal 

dipoles and the gravimetric water contents for stations (a) 20 m, (b) 40 m, (c) 60 m and (d) 80 m.  Scenario 1 includes all 

of the survey data and Scenario 2 excludes the November 28, 2011 outlier at all four locations as well as January 31, 

2012 at the 80 m location. 
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Figure 4.15 part one: Tomograms generated from the field scale ERT data covering the 

monitoring period to illustrate  the seasonal variations in subsurface conductivity .  

The ERT data has been inverted and plotted with respect to conductivity on a log 

scale. 
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Figure 4.15 part two:T omograms generated from the field scale ERT data covering the 

monitoring period to illustrate  the seasonal variations in subsurface conductivity .  

The ERT data has been inverted and plotted with respect to conductivity on a log 

scale. 
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Figure 4.16: Tomograms obtained from the high resolution ERT data acquired at the 10 m station along the profile line for selected 

dates during the monitoring period.  These tomograms are plotted using linear conductivity scale. 
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Figure 4.17: Tomograms obtained from the high resolution ERT data acquired at the 50 m station along the profile line for selected 

dates during the monitoring period.  These tomograms are plotted using linear conductivity scale.  Data was not acquired 

at this station on July 26 2011. 
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Figure 4.18: Tomograms obtained from the high resolution ERT data acquired at the 85 m station along the profile line for selected 

dates during the monitoring period.  These tomograms are plotted using linear conductivity scale. 
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Figure 4.19: Mean conductivity depth profiles (lateral average from 4.00 to 8.00 m positions along the high resolution ERT profile 

line) presented as a time series for the complete monitoring period for the 10 m station. Results are presented as a linear 

plot (upper time series) and a log plot (lower time series).    
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Figure 4.20: Mean conductivity depth profiles (lateral average from 4.00 to 8.00 m positions along the high resolution ERT profile 

line) presented as a time series for the complete monitoring period for the 50 m station. Results are presented as a linear 

plot (upper time series) and a log plot (lower time series).  
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Figure 4.21: Mean conductivity depth profiles (lateral average from 4.00 to 8.00 m positions along the high resolution ERT profile 

line) presented as a time series for the complete monitoring period for the 85 m station. Results are presented as a linear 

plot (upper time series) and a log plot (lower time series).
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5.0 Conclusions 

The objective of this study is to add to our current knowledge and guide research into the 

potential of GPR, EMI and ERT geophysical methods to provide information about the near 

surface soil moisture dynamics in a coarse grained soils.  The results show that there is potential 

for the three geophysical methods (GPR, EMI and ERT) to provide insight into the near surface 

soil moisture dynamics in a coarse stony grained soil.  The evidence for this capacity seen at the 

ARS are as follows:  

1) The GPR data was able to show temporal and spatial variations in both the NMO and 

DGW velocities (Figures 4.2 and 4.5, respectively) as well as the two-way travel times seen in 

the reflection data (Figure 4.9). 

2) The EMI data showed a qualitative relationship between the EM38 apparent conductivities 

and the gravimetric water contents (Figure 4.13).  

3) The both the field scale and high resolution ERT surveys were able to illustrate seasonal 

and spatial variations in conductivity (Figure 4.15 and Figure 4.19 to 4.21, respectively). 

This study is unique in that the geophysical studies were carried out in highly heterogeneous 

coarse grained soils compared to the sandy soils in which previous studies had been conducted.  

Utilizing various configurations and orientations, all three geophysical methods were able to 

characterize the seasonal trends such as wetting in the spring and fall, drying in the summer and 

freezing in the winter.  The depression seen around 80 m on the survey line was also identified 

with all three geophysical methods.  The geophysical responses followed similar trends as the 

gravimetric water contents throughout the year and across the survey line. However, when the 

relationships were evaluated quantitatively the correlation was significantly weaker than 

expected.  The difference in effective sampling volumes between the geophysical methods and 
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the gravimetric samples could account for the weak correlations.  The gravimetric moisture 

contents represent a very small volume of the material, whereas the geophysical responses 

encompass a much large volume of the material.  With the highly heterogeneous nature of the 

outwash materials a more representative sampling volume would need to be taken in order to 

more accurately compare the gravimetric water contents and geophysical responses.  This is 

consistent with Coppola et al. (2013) where it was identified that the presence of stones makes it 

very difficult to quantify the overall soil moisture content due to the extreme heterogeneity 

attributed with stony materials.  

The various orientations and configurations also allowed for geophysical responses to 

identify geological boundaries and changes in soil moisture with depth.  The three geophysical 

methods consistently identified that the geophysical responses measured in the very near surface 

fluctuated significantly more than those measured in the deeper subsurface.  With the GPR 

reflection profile and the ERT profiles geological boundaries were also identified (Figures 4.7 

and 4.15, respectively). 

The GPR and EMI methods had some data quality issues at this site.  With the GPR 

instrument, the data quality and depth of penetration of the signal decreased down the survey line 

as a result of increase electrical conductivities in the near surface materials and the EM38 

experienced a significant amount of drift throughout the survey which required correction.   

The results in this thesis clearly demonstrate the capacity of the three geophysical methods 

(GPR, EMI and ERT) to characterize the vadose zone in a highly heterogeneous coarse grained 

soil.  However, it is also apparent that further work is required in order to quantitatively compare 

the geophysical responses with auxiliary measurements such as deeper test pits and/or 

gravimetric water contents from a more representative sampling volume.  Future work in similar 



58 
 

coarse grained soils could improve the understanding of the abilities of these geophysical 

methods and approaches.   
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