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Abstract
The numerical modelling of twelve concrete beams reinforced with glass fibre reinforced poly-

mer (GFRP) longitudinal and transverse bars was performed by the author using the finite

element analysis (FEA) software ABAQUS. The experimental beam tests as performed by Krall

(2014) were used to calibrate the Concrete Damaged Plasticity Model (CDPM) provided within

ABAQUS. Recommendations were made regarding the modelling of concrete beams reinforced

with and without GFRP stirrups.

The analyses of beams without stirrups are presented first. The Hognestad Parabola was

effective in modelling the compressive behaviour of the concrete. A fracture mechanics approach

was used to model the post-cracking tensile behaviour of the concrete, with a bilinear stress-

displacement response and a fracture energy of Gf = 90N/m providing the strongest accuracy.

The use of discrete truss sections and smeared membrane sections to model the GFRP longitu-

dinal reinforcement were both studied; both methods were effective, but the truss approach is

recommended.

Further modifications to the CDPM were necessary for the modelling of beams with stirrups.

The presence of GFRP stirrups that do not exhibit the plastic behaviour that steel stirrups

exhibit resulted in concrete-governed compression failures. To consider the confining effects that

the stirrups had on the concrete, an increased dilation angle of ψ = 50◦ was used in combination

with an increased maximum concrete compressive strain of εc,max = 0.015. Truss reinforcement

was again used for the longitudinal reinforcement, whereas membrane sections are recommended

for the stirrups.

A parametric study was performed by applying the proposed models to beams with slender-

ness ratios (a/d) ranging from 1.5 to 6.5. For a/d less than 2.5, further research is recommended

to confirm the influence of the arch effect on the shear strength of deep members. For a/d = 2.5,

the proposed ABAQUS models agree strongly with the shear model proposed by Nehdi et al.

(2007). For larger ratios, the proposed models agree strongly with the flexural strength predic-

tions. The proposed models are effective in accurately predicting the strength of beams with and

without stirrups for various a/d ratios, and are able to produce reinforcement strain profiles and

crack patterns that agree strongly with the experimental data.
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Chapter 1

Introduction

1.1 General

Many existing reinforced concrete structures experience deterioration as a result of the

corrosion of internal steel reinforcement. The costs associated with repairing or replac-

ing concrete structures that suffer from this deterioration consume a large portion of the

owner’s budget, and have prompted the development of solutions to impede the progression

of corrosion. Alternatives to bare steel have been used including stainless steel, galvanized

steel, epoxy-coated steel, and cathodic protection, with limited effectiveness. The use of

fibre reinforced polymer (FRP) bars, an alternative to steel, as internal reinforcement for

new concrete structures has become a topic of interest due to the material’s high tensile

strength, light weight, and inability to corrode. This material has been used successfully

as internal reinforcement in concrete structures that are exposed to highly corrosive en-

vironments including bridge decks, barrier walls, parking garage slabs, and containment

structures housing corrosive materials.

When a new material such as FRP is introduced, experimental testing is essential to observe

the actual behaviour and failure mode of structures that utilize this material. However,

this testing is often very expensive, time consuming, and may dictate the pace of research
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progress. The testing of existing structures to ultimate failure is not possible, and the

limitations of laboratory resources and testing equipment capabilities will often require

experimental specimens of reduced scale. This therefore encourages the development and

utilization of advanced analytical methods such as finite element analysis (FEA) to study

the behaviour of structures (Nour et al., 2007).

The collaboration of numerical studies with an experimental program will not only yield

time-consumption and financial benefits to the research, but will also improve the effective-

ness of the experimental testing. For example, an alternative to testing 100 experimental

specimens to study the influence of various design parameters on the structure’s response,

an exercise that may take a lifetime, one may test a much smaller sample of specimens and

use these results to calibrate a numerical model. This model can then be used to propose

future experiments that have been designed with a stronger technical understanding, thus

providing more meaningful results.

This thesis presents the numerical analyses of concrete beams reinforced with internal FRP

bars. The conclusions made from this research will allow for the effective design of future

experimental tests and accurate prediction of beam responses. The knowledge gained from

this research will be used to propose informed recommendations to design standards and

codes to improve design procedures and encourage the use of FRP as a structural material.

1.2 Research Scope and Objectives

The primary objective of this research was to perform the finite element analysis (FEA) of

concrete beams reinforced with glass fibre reinforced polymer (GFRP) bars. Twelve beams

were constructed and tested at the University of Waterloo as presented by Krall (2014).

These beams varied in terms of longitudinal bar diameter, longitudinal bar configuration,
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stirrup spacing, and stirrup diameter. This research utilized the FEA software ABAQUS

to perform the numerical simulations of these twelve beams. The Concrete Damaged

Plasticity Model as provided by ABAQUS was used exclusively to model the concrete

behaviour. The results of the experimental beams were used to calibrate and corroborate

the Concrete Damaged Plasticity Model in order to propose recommendations regarding

the accurate modelling of concrete members reinforced with internal FRP reinforcement.

The specific objectives of this research are summarized as follows:

1. Perform numerical analyses of concrete beams reinforced with GFRP reinforce-

ment.

2. Utilize the Concrete Damaged Plasticity Model (CDPM) as provided by ABAQUS

to model the concrete behaviour.

3. Use the experimental beam data as presented by Krall (2014) to calibrate the

CDPM.

4. Study the influence of the concrete model on the load-deflection response of each

beam by modifying compression, tension, plasticity, and damage parameters.

5. Propose models to effectively simulate the response of concrete beams reinforced

with and without stirrups.

6. Study the use of two methods to model the reinforcement: discrete truss sections

and smeared reinforced membrane sections.

7. Study the reinforcement strain profiles provided by each model and compare to

experimental data.

8. Study the concrete crack patterns provided by each model and compare to exper-

imental observations.

9. Perform a parametric study by applying the proposed models to beams of varying

shear span to effective depth (a/d) ratios.

10. Compare the FEA results with strength predictions as presented in current design

standards and available literature.
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11. Add to the limited literature regarding the numerical study of concrete structures

reinforced with FRP materials.

1.3 Thesis Organization

This thesis is organized into seven chapters and four appendices:

• Chapter 2 presents a review of available background information and literature on the

use of FRP materials in structural applications, finite element modelling of structures

reinforced with FRP, the experimental tests performed on concrete beams reinforced

with GFRP that were used to calibrate the models studied in this research, and

current strength prediction models proposed for FRP reinforced concrete structures.

• Chapter 3 provides an overview of the Concrete Damaged Plasticity Model imple-

mented by the FEA software ABAQUS that was used to perform the numerical

simulations presented in this thesis.

• Chapter 4 provides an overview of the material properties, geometric details, and

analytical parameters that were used to model all concrete beams studied in this

research.

• Chapter 5 presents the analyses performed for beams reinforced with longitudinal

bars only (beams with no stirrups).

• Chapter 6 presents the analyses performed for beams reinforced with both longitu-

dinal and stirrup reinforcement (beams with stirrups).

• Chapter 7 presents the parametric study that was performed using the models pro-

posed in Chapters 5 and 6.

• Appendix A provides the detailed drawings of the twelve reinforced concrete beams

that were studied in this research, including the locations and nomenclature of the

reinforcement strain gauges.
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• Appendix B and Appendix C present the results of all ABAQUS modelling performed

for beams without and with stirrups, respectively.

• Appendix D presents the results of the parametric study presented in Chapter 7.
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Chapter 2

Background Information and

Literature Review

2.1 Fibre Reinforced Polymers as Internal Reinforce-

ment

Fibre reinforced polymer (FRP) materials were originally developed for the use in the

aerospace and automotive industries due to their high strength and light weight. The use

of FRP materials for civil engineering applications has been considered since the 1950s,

but it was not until the 1970s that FRP was considered as a viable material for internal

reinforcement for concrete structures (ISIS Canada, 2007). FRP composites have many

civil engineering applications. One application includes all-FRP structures and compo-

nents such as pultruded sections, pedestrian bridges, utility poles, and marine platforms.

FRP can also be used as internal reinforcement for new concrete structures in the form of

bars, rods, and prestressing tendons. The use of FRP materials for the strengthening and

rehabilitation of existing structures has also been successful and is a field of extensive re-

search. The focus of this thesis will be the use of FRP composites as internal reinforcement

for new concrete structures.
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2.1.1 FRP Constituents - Fibres

FRP products are composite materials that consist of high strength fibres embedded in a

resin matrix. The fibres have high tensile strengths and provide the strength and stiffness

of the FRP composite. The fibres have extremely large length-to-diameter ratios as they

are considered continuous in length and have diameters in the range of 3 - 25 microme-

tres (ISIS Educational Committee, 2003). The two most common FRP materials used for

structural applications include glass fibre reinforced polymers (GFRP) and carbon fibre

reinforced polymers (CFRP), which utilize glass and carbon fibres, respectively. Aramid

fibre reinforced polymers (AFRP) have also been developed, but are not used extensively in

North America. Aramid fibres have been known to be susceptible to degradation due to ul-

traviolet exposure and moisture as well as sensitive to creep, thus limiting their desirability

for structural applications (ISIS Educational Committee, 2006).

The selection of an appropriate fibre type for an FRP composite is dependent on the ap-

plication. As the fibres provide the strength and stiffness to the composite, the mechanical

properties of the composite are dependent on the type of fibres selected. Factors to be

considered include the required tensile strength, the required stiffness, fatigue properties,

durability, and cost. Table 2.1 provides a summary of the properties of the three main

fibre types (ISIS Educational Committee, 2003).

Table 2.1: Comparison of Fibre Types

Criterion
Fibre Type

Carbon Aramid Glass

Tensile Strength Very Good Very Good Very Good

Modulus of Elasticity Very Good Good Adequate

Fatigue Behaviour Excellent Good Adequate

Bulk Density Good Excellent Adequate

Alkaline Resistance Very Good Good Adequate

Price Adequate Adequate Very Good
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Glass fibres are the most commonly used fibres in structural engineering applications as

they are the least expensive option and extensive research has been conducted using this

type of reinforcement. Glass fibres are available in a variety of grades, with the most

common being E-glass. FRP composites that utilize glass fibres have a typical modulus

of elasticity of 40-65GPa, which is significantly lower than the modulus of elasticity of

conventional steel reinforcement (200GPa).

Carbon fibres can be produced using one of three precursor fibre materials; polyacryloni-

trile, rayon, or petroleum pitch. As the precursor material is variable, the mechanical

properties of carbon fibres can vary significantly, thus these fibres are often differentiated

into classes based on their elastic moduli. FRP composites that utilize carbon fibres are

significantly more expensive than GFRP, however do exhibit properties that are very ad-

vantageous for structural engineering applications; CFRP materials have elastic moduli

that are comparable to or higher than that of steel, outstanding durability properties, and

excellent fatigue behaviour. These properties make CFRP ideal for prestressing tendons

or rehabilitation and strengthening of existing structures (ISIS Educational Committee,

2003).

2.1.2 FRP Constituents - Resin

The high strength fibres are embedded into a polymeric resin matrix. The role of this

matrix is to disperse and separate the individual fibres, to protect the fibres from abrasion

and environmental degradation, to transfer externally applied stresses to the fibres through

shear stresses that develop at the fibre-matrix interface, and to provide lateral support to

the fibres against buckling when subjected to compressive loads (Amertrano, 2011).

The matrix materials used for FRP composites in structural engineering applications are

often divided into two categories: thermoplastic resins and thermosetting resins. Ther-
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moplastics are polymers that are composed of long-chain molecules with relatively weak

secondary forces. This molecular structure allows the material to be repeatedly softened

and hardened without causing degradation of the mechanical properties of the mate-

rial. Conversely, thermosetting polymers are composed of long-chain molecules that are

highly cross-linked. Therefore, the molecular structure of thermosets will experience irre-

versible deterioration if softened due to elevated temperatures, causing a severe reduction

in strength. Thermosetting resins exhibit relatively good thermal stability under service

temperatures and low creep and relaxation behaviour as compared to thermoplastic resins,

therefore thermosetting resins are the preferred matrix material for structural engineering

applications (ISIS Educational Committee, 2003).

Common thermosetting resins used include polyesters, vinyl esters, and epoxies. Vinyl es-

ters are produced by the esterification between an epoxy resin and an unsaturated mono-

carboxylic acid. This means that vinyl esters are a class of polyesters that have been

strengthened with epoxy molecules (Chimatech, 2014). Vinyl esters have been shown to

have superior resistance to the ingress of moisture and alkalinity as compared to polyesters

and epoxies, which makes this resin type advantageous for internal reinforcing bars that

are exposed to highly alkaline concrete environments. Furthermore, vinyl esters appear to

be tougher and more resistant to microcracking, thus minimizing the diffusion of potential

acids and chemical solutions (ISIS Educational Committee, 2006). As a result of its supe-

rior durability, vinyl esters are a very common resin type for GFRP reinforcing bars and

polyesters are not recommended (Micelli and Nanni, 2004).

2.1.3 FRP Constituents - Fillers and Additives

The final components of fibre reinforced polymers are materials known as fillers and addi-

tives. Fillers are inorganic compounds that are added to the polymer resin. Common filler
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materials include calcium carbonate, aluminum silicate, alumina trihydrate and calcium

sulphate. Fillers are used to reduce the final product cost by diluting the expensive resin

material. Fillers also reduce the organic content of the composite, which improves the

performance of the FRP under fire conditions by reducing its flammability and produc-

tion of toxic smoke. Fillers can also be used to improve certain mechanical properties of

the composite such as shrinkage, hardness, fatigue and creep performance. For pultruded

sections such as unidirectional reinforcing bars, it is typical for less than 5% of the total

weight to be filler in the resin matrix (Bai, 2013).

Additives are also incorporated into the resin material and serve to facilitate material

processing, improve performance of the final product, and to modify certain mechanical

properties of the composite. Certain additives are activated by heat and act as catalysts,

or polymerization agents, to initiate the curing reaction of the resin. Additives may also be

used to prevent the degradation of the FRP due to ultraviolet exposure, to ease the removal

of the FRP from the molds (release agents), increase toughness, or to reduce flammability

and smoke production (flame retardants). For reinforcing bars, it is typical for less than

1% of the resin weight to be additives (Bai, 2013).

2.1.4 Manufacture of FRP Internal Reinforcing Bars

There are many methods used to manufacture FRP materials used for structural engineer-

ing applications including, but not limited to, pultrusion, wet lay-up, filament winding,

pull-winding, and injection molding. Pultrusion is the typical process used to manufac-

ture straight internal reinforcement products such as bars, rods, and tendons, and will

therefore be the focus of this discussion. The pultrusion process is an automated system

which requires very little labour and is thus highly economical. It is an ideal process for

products with a constant cross-section. Figure 2.1 depicts the typical steps involved in the
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pultrusion process for FRP sections.

Figure 2.1: Pultrusion Process (Unicomposite Technology, 2014)

The process begins with the raw fibres stored in small spools called rovings which are kept

on metal racks called creels. Guide plates are used to spread the fibre rovings as they

travel through a bath of polymeric resins, thus allowing for maximum impregnation of the

fibres into the resin. Upon exiting the resin bath, the fibres travel through a preforming

system that continues to align the individual fibres while removing excess resin. The wet

fibres are then pulled through a heated die with a predefined shape which molds the section

and cures the resin. As a result of the elevated temperatures, the composite shrinks and

separates from the internal walls of the die and exits as the finished product. The cured

composite is typically pulled by means of urethane pads using a caterpillar belt. A cut-off

saw is positioned at the end of the assembly to create products of set lengths. As the

fibres and pultrusion system are continuous, any length of section is possible, but will be

constrained by transportation and handling limitations (Bai, 2013).

The composite reinforcement that is produced in the pultrusion process will have a smooth

surface. To improve the bond mechanisms between the reinforcing bar and concrete, man-
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ufacturers will apply various surface treatments to the smooth bars. Figure 2.2 depicts

reinforcing bar products with different surface treatments. A common treatment is to

blast the surface of the bars with sand. Another treatment is to create ribbed bars by

cutting grooves into the smooth bar or by using compression molding. Other manufactur-

ers create bars that are helically wrapped with fibres and are then sand coated (Hollaway,

2009).

Figure 2.2: Various FRP Surface Treatments (Baena et al., 2009)

2.1.5 FRP Material Behaviour

The discussion presented here focuses on the properties and behaviour of FRP composites

used as internal reinforcing bars for new concrete structures. When FRP materials are

used for internal reinforcing bars, the fibres are continuous and oriented in the axis of the

bar’s length. This fibre orientation causes FRPs to be highly orthotropic composites with

strength and stiffness properties much higher in the direction of the fibres than in the

transverse direction. As the mechanical properties of FRP reinforcement are directionally

dependent, the properties are typically specified by the manufacturer for the direction of

the fibres. The tensile behaviour of FRP reinforcing bars is linear-elastic up to failure.

Therefore, FRP bars rupture, and do not exhibit the plastic behaviour, or yielding, that is

typical for conventional steel reinforcement. This has significant influence on the flexural
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and shear behaviours and failure mechanisms of concrete structures reinforced with FRP.

In terms of compressive strength, steel is considered to be an isotropic material, and

thus possesses compressive properties equal to its tensile properties. In doubly-reinforced

sections, therefore, steel subjected to compressive stresses is considered to contribute to the

resistance of the section. Conversely, FRP is an anisotropic material with a compressive

strength that is significantly lower than its tensile strength. The lower compressive strength

can be attributed to factors including fibre micro-buckling, transverse tensile stresses in

the resin matrix material, and shear stresses (ISIS Educational Committee, 2003). In

previous experimental work, the compressive strength was found to be 10%, 40% and 35%

of the tensile strength for AFRP, CFRP and GFRP bars, respectively (Kobayashi and

Fujisaki, 1995). Other studies have shown that the compressive strength of GFRP bars is

approximately 80% of the tensile strength (Chaallal and Benmokrane, 1993). It is clear

that this is a highly variable property for FRP products. Therefore, each design code

or standard typically neglects the compressive strength of FRP bars as recommended by

researchers (Almusallam et al., 1997).

The mechanical properties of FRP materials, such as ultimate tensile strength and tensile

modulus of elasticity, will vary between products as these properties are highly dependent

on factors including fibre type, resin matrix type, fibre volume fraction, manufacturing

process, and varying uses of fillers and additives. Tables 2.2 and 2.3 present the material

properties of commercially available GFRP and CFRP products, respectively. Figure 2.3

compares the stress-strain relationships of these products.

As shown in Figure 2.3, GFRP and CFRP reinforcing bars have ultimate tensile strengths

that are significantly higher than conventional steel, but fail at much lower strains. It is also

clear that the tensile modulus of elasticity of GFRP (42-66GPa) is significantly lower than

that of steel (200GPa). As a result of the relatively low axial stiffness of FRP materials,

the design of concrete structures reinforced with FRP bars will typically be governed by
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Table 2.2: Available GFRP Products

Nominal Guaranteed Tensile

Bar Bar Tensile Modulus of Ultimate

Designation Diameter Strength Elasticity Strain (%)

(mm) (MPa) (GPa)

#3 10 880 42.5 2.07

V-Rod - LM #4 13 1000 42.5 2.35

Grade I #5 16 940 42.5 2.21

(Pultrall, 2013a) #6 19 940 42.5 2.21

#8 25 960 42.5 2.26

#2 6 990 52.5 1.89

#3 10 1100 52.5 2.10

V-Rod - Standard #4 13 1140 52.5 2.17

Grade II #5 16 1130 52.5 2.15

(Pultrall, 2013b) #6 19 1110 52.5 2.11

#7 22 1100 52.5 2.10

#8 25 800 52.5 1.52

#3 10 1372 65.1 2.11

#4 13 1312 65.6 2.00

V-Rod - HM #5 16 1184 62.6 1.89

Grade III #6 19 1105 63.7 1.73

(Pultrall, 2012a) #7 22 1059 62.6 1.69

#8 25 1000 66.4 1.51

#10 32 1093 65.1 1.68

#2 6 896 46.0 1.94

#3 10 827 46.0 1.79

#4 13 758 46.0 1.64

Aslan 100 #5 16 724 46.0 1.57

(Hughes Brothers, #6 19 690 46.0 1.49

2011a) #7 22 655 46.0 1.42

#8 25 620 46.0 1.34

#9 29 586 46.0 1.27

#10 32 551 46.0 1.19

- 8 >1000 >63.5 1.67

ComBAR - 12 >1000 >63.5 1.67

(Schoeck, 2013) - 16 >1000 >63.5 1.67

- 25 >1000 >63.5 1.67
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Table 2.3: Available CFRP Products

Nominal Guaranteed Tensile

Bar Bar Tensile Modulus of Ultimate

Designation Diameter Strength Elasticity Strain (%)

(mm) (MPa) (GPa)

#2 6 1356 127.0 1.20

V-Rod - Carbon #3 10 1431 120.0 1.33

(Pultrall, 2011a) #4 13 1765 144.0 1.32

#5 16 1532 140.0 1.18

Aslan 200 #2 6 2241 124.0 1.81

(Hughes Brothers, #3 10 2172 124.0 1.75

2011b) #4 13 2068 124.0 1.67

Figure 2.3: Stress-Strain Response for Various FRP Products
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serviceability limits.

2.1.6 Advantages and Applications of Internal FRP Reinforcing

Bars

FRP reinforcing bars have become a preferred alternative to conventional steel reinforce-

ment in new concrete structures due to the superior durability properties of FRP compos-

ites. Steel reinforced concrete structures are susceptible to corrosion of the reinforcement.

This corrosion induces tensile stresses within the concrete which often leads to spalling or

delamination of the concrete. Corrosion also reduces the area of reinforcement available to

provide strength, thus weakening the structure. Therefore, corrosion leads to deterioration

that may be limited to aesthetic concerns only, or may progress to failure of the structure.

FRP reinforcing bars do not corrode electrochemically, making this technology an attrac-

tive solution for structures in corrosive environments. Figure 2.4 presents four examples of

reinforced concrete structures that are highly susceptible to corrosion and have successfully

used FRP reinforcement.

Underground concrete storage tanks often contain highly corrosive liquids that may attack

the reinforcement. Figure 2.4a depicts the use of Pultrall’s V-Rod GFRP bars to reinforce

the walls and foundation slab of a water treatment chlorination tank located in Thetford

Mines, Quebec in 2012 (Pultrall, 2011a). Concrete bridge decks are also highly susceptible

to corrosion due to the use of de-icing salts on roads in the winter months. Figure 2.4b

depicts the use of Pultrall’s V-Rod GFRP bars to reinforce the historic Bridgeport Bridge

located in Kitchener, Ontario during a rehabilitation in 2009 (Pultrall, 2009). Concrete

barrier walls are also exposed to splashing of corrosive de-icing salts from vehicles on roads

and bridges, and are thus highly susceptible to corrosion. Figure 2.4c depicts the use

of Schoeck’s ComBAR GFRP bars to reinforce the concrete barriers on the Irvine Creek
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Figure 2.4: Various Applications of FRP Reinforcement

Bridge located near Fergus, Ontario in 2009 (Schoeck, 2009). Parking structures are also

exposed to high levels of de-icing salts that fall off incoming vehicles. Figure 2.4d depicts

the use of Pultrall’s V-Rod GFRP bars to reinforce the floor slabs of the La Chanceliere

Parking Garage located in Quebec City, Quebec in 2011 (Pultrall, 2012a).

FRP materials are also electromagnetically inert. This property is advantageous for struc-

tures that house equipment that use magnetic fields that are sensitive to the presence of

steel. The functionality and precision of such equipment may be hindered by the mere

presence of steel reinforcement in the concrete. Therefore, nano-technology laboratories,

hospitals using magnetic resonance imaging (MRI), and toll booths are all applications

that benefit from the use of FRP materials. The Mike and Ophelia Lazaridis Quantum-

Nano Centre at the University of Waterloo is a local example where GFRP reinforcing

bars have been used in the concrete floor slabs to prevent the interference of very sensitive

equipment.

A further benefit of FRP reinforcing bars is their extremely high strength-to-weight ratio.
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With tensile strengths that are significantly higher than the yield strength of steel, FRP

bars are approximately one fifth the weight of steel (ISIS Educational Committee, 2003).

As the weight of the reinforcement is minimal relative to the weight of the concrete, this

lower reinforcement weight will not reduce the overall weight of the structure significantly.

However, this lighter weight is advantageous as it will increase the ease of installation,

handling, and shipping.

2.1.7 Limitations and Considerations for Internal FRP Reinforc-

ing Bars

There are also disadvantages to using FRP reinforcing bars as an alternative to conven-

tional steel bars. Although the cost of FRP bars continues to decrease as manufacturing

processes are refined, the initial material cost of FRP reinforcement remains more expen-

sive than steel. However, it has been shown that if a life-cycle analysis is performed to

compare FRP reinforcement with other reinforcement alternatives (unprotected steel, ca-

thodic protection, and epoxy-coated steel), the cost of the FRP design is significantly less

(Eamon et al., 2012). This is a result of the superior durability of FRP reinforced struc-

tures that do not require the extensive rehabilitation work that is typical of steel reinforced

structures.

A further disadvantage of FRP reinforcing bars, with GFRP most specifically, is their rela-

tively low tensile modulus of elasticity as compared to steel. Concrete structures reinforced

with FRP will experience larger reinforcement strains as a result of this lower axial stiffness,

which will lead to the development of wider cracks, thus larger member deflections (Zhao,

1999). It is thus typical for the design of FRP reinforced concrete structures to be gov-

erned by serviceability limits as opposed to ultimate strength limits. Concrete members

reinforced with FRP may then require more bars to satisfy serviceability requirements,
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which may lead to highly congested formwork for cast-in-place concrete.

A further consideration that must be made when designing concrete structures reinforced

with FRP materials is the potential of creep rupture. Polymeric resins are viscoelastic

and their behaviour is characterized by time dependent factors including creep, stress re-

laxation, and load rate effects. Creep is the progressive deformation of a material with

time under sustained loading. When FRP materials are subjected to constant elevated

stress levels, sudden failure may occur; a failure mode referred to as creep rupture. To pre-

vent failure of an FRP reinforced member due to creep rupture of the FRP reinforcement,

design standards have specified limits on the maximum allowable stress to be carried by

the reinforcement under service loading. These stress limits are typically expressed as a

percentage of the ultimate tensile strength of the FRP.

Other factors to be considered when using FRP products include exposure to ultraviolet

radiation, exposure to highly alkaline environments, exposure to elevated temperatures

during a fire event, and exposure to moisture. The influence of these factors on the per-

formance of internal FRP reinforcing bars remains a topic of research, and will not be

discussed here. However, the use of bends in FRP internal reinforcement also introduces

significant challenges in the design of FRP reinforced structures, and will be discussed

next.

2.2 Bent FRP Reinforcement

Bent reinforcement in concrete structures is commonly required for shear reinforcement

such as stirrups or to provide development to straight bars using hooks. Conventional

steel reinforcement exhibits elasto-plastic behaviour, and can be easily formed to many

shapes by cold bending, thus minimizing detailing costs. FRP reinforcement, however,
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introduces challenges when compared to steel with regards to producing these bends. As

discussed previously, thermosetting resins are the preferred resin material used for struc-

tural engineering applications and have highly cross-linked molecular structures. This

molecular structure causes the material properties to be severely degraded if the compos-

ite is reheated. Therefore, once a thermoset FRP has cured and hardened, it cannot be

bent. If a bend or hook is required, it must be produced during the manufacturing process

before the resin has cured. As a result, unlike for steel reinforcement, this introduces a

significant practical limitation as the modification or bending of FRP bars is not possible

on a construction site.

A further concern with the use of bent FRP bars is the reduction of tensile strength that

occurs at the bend. At a bend, in the corner portion of a stirrup for example, the FRP

is subjected to the axial tensile stresses that are developed in the straight portion of the

bar, the compressive transverse bearing stresses exerted by the confined concrete, and the

bond stresses developed along the concrete-bar interface. This combination of transverse

and axial stresses creates a multiaxial state of stress at the bend as shown in Figure 2.5.

Figure 2.5: Multiaxial State of Stress at Bent Portion (International Federation for Struc-
tural Concrete, 2007)

Referring to Figure 2.5, σ1 represents the axial tensile stress, σ2 represents the transverse

bearing stress, and τ represents the bond stresses. Researchers have shown that this state
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of multiaxial stress can reduce the tensile strength of the FRP at the bend to as low as 40%

of the tensile strength of the straight portion (Currier et al., 1994; Ueda et al., 1995; Ehsani

et al., 1995; Morphy et al., 1997; Shehata et al., 2000). Consequently, if high stresses are

developed in the reinforcement, premature failure is expected to occur at the bends prior

to the full utilization of the straight portions.

It has been found that the bend strength is dependent on factors including the ratio of

bend radius to bar diameter (rb/db), concrete strength, and tail length (for hooks). The

bend radius has been identified as a significant contributor to the strength of a bend, with

larger radii yielding higher strengths (Imjai et al., 2007a). Equation 2.1 presents the design

tensile strength of FRP bars at a bend as proposed by the Japan Society of Civil Engineers

(JSCE, 1997):

ffb =

(
0.05

rb
db

+ 0.3

)
ffu ≤ ffu (2.1)

where ffb is the design tensile strength of the FRP at the bend, rb is the radius of the bend

(mm), db is the diameter of the bar (mm), and ffu is the design ultimate tensile strength of

the straight portion of the FRP. Imjai et al. (2007a) recommended an rb/db value greater

than 4 to guarantee a bend capacity of 40% of the ultimate strength of the straight portion.

CSA S806-12 and ACI 440.1R-06 both require a minimum value of rb/db = 3 for bent bars.

There may also be manufacturing defects present in the bent portion of the bar that

influence the strength in this region. Fibres located at the inside of the bend radius may

experience kinking or buckling. This results in fibres that are no longer oriented in the axis

of the bar. Furthermore, distortion of the cross-section may occur at the bend, such as the

collapse or flattening of the section as shown in Figure 2.6. These defects in combination

with the multiaxial state of stress at the bend will significantly reduce the capacity of the

bent bar.
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Figure 2.6: Flattening of Cross-Section at Bend (Imjai et al., 2007b)

2.3 Tests on Concrete Beams with GFRP Flexural

and Shear Reinforcement

An experimental test program was conducted at the University of Waterloo by graduate

student Martin Krall and his supervisor Dr. Maria Anna Polak. Three-point bending tests

were performed on simply-supported concrete beams reinforced with glass fibre reinforced

polymer (GFRP) longitudinal bars and GFRP stirrups. The results of this test program

form the basis for the finite element analysis (FEA) performed for this thesis. The experi-

mental results were used to develop, calibrate, and corroborate the FEA models presented

by the author, thus the intent of this section is to provide an overview of this testing. This

section provides an overview of the following: the test program objectives, the beam spec-

imens tested, the design considerations used to construct the beams, and the observations

recorded during testing. For further details regarding this testing, the reader is directed

to the thesis of Martin Krall (Krall, 2014).
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2.3.1 Objectives of Beam Testing

The original objective of the experimental beam testing was to investigate the influence

of GFRP longitudinal reinforcing bar arrangements on the effective strength of GFRP

stirrups. As discussed previously, it has been identified in the literature that the ultimate

strength of FRP at bends is significantly less than the strength of the straight portion.

Therefore, the strength of a GFRP stirrup will be governed by the strength at the corners.

It was therefore the objective to determine how the longitudinal bar arrangement influenced

the utilization of the stirrup bend strength, thus the influence on the strength of the

stirrups. Unfortunately, the tested beams behaved more like deep beams as opposed to

slender beams, and no stirrups ruptured during the testing. It was therefore not possible

to make conclusions regarding the strength of the stirrups, thus a modified hypothesis was

necessary.

The modified objective of the experimental beam testing was to investigate the influence

of flexural and transverse reinforcement arrangements on the shear strength and failure

mode of GFRP reinforced beams. Parameters that were varied included the longitudinal

bar configuration, longitudinal bar diameter, stirrup diameter, and stirrup spacing. The

influence of these parameters on the failure mode, peak load, and reinforcement strains

was studied.

2.3.2 Overview of Beam Specimens

The experimental program consisted of the testing of a total of twelve concrete beams.

Three longitudinal bar core diameters were considered, including 12mm, 16mm, and 25mm.

Note that the term “core diameter” will be used throughout this thesis and refers to the

diameter of the bar excluding the ribs. When calculating tensile strength properties of an

FRP ribbed bar, it is typical to utilize only the material within the core and not the ribs.

23



For each longitudinal bar diameter, a different bar layout was used. Four stirrup spacings

were considered, including 150mm, 220mm, 230mm and INF (INF refers to an infinite

spacing, meaning no stirrups were used). Two stirrup core diameters were considered,

including 12mm and 20mm. The following naming convention was used for all beams:

BM XX-(s)YYY

XX is a two digit value that is equal to the core diameter of the longitudinal bars in

millimetres. YYY is a three digit value that is equal to the spacing of the stirrups within

the shear span in millimetres. The inclusion of ‘s’ in front of the stirrup spacing YYY

means that the beam uses stirrups with a larger diameter of 20mm; the absence of ‘s’ in

front of YYY means that the beam uses stirrups with a diameter of 12mm. To demonstrate

this naming convention, BM 12-150 has GFRP longitudinal bars with core diameters of

12mm and GFRP stirrups with core diameters of 12mm and spaced at 150mm; BM 16-

s230 has GFRP longitudinal bars with core diameters of 16mm and GFRP stirrups with

core diameters of 20mm and spaced at 230mm. Table 2.4 summarizes the beam specimens

tested.

Table 2.4: Beam Specimen Naming Convention

Stirrup Spacing Longitudinal Bar Core Diameter (mm) Stirrup Core

(mm) 12 16 25 Diameter (mm)

INF BM 12-INF BM 16-INF BM 25-INF 12

150 BM 12-150 BM 16-150 BM 25-150 12

220 BM 12-220 BM 16-220 BM 25-220 12

230 BM 12-s230 BM 16-s230 BM 25-s230 20

The configuration of the longitudinal bars was dependent on the bar diameters. Beams

with 12mm bars used three layers of four bars (12 bars total). Beams with 16mm bars used

two layers of three bars (6 bars total). Beams with 25mm bars used one layer of two bars

(2 bars total). Bar configurations were chosen to create test groups which corresponded to
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having one, two, or three layers of bars. The size and number of bars in each layer were

selected such that the moment resistance of each beam configuration would be similar.

Figure 2.7 presents the longitudinal bar configurations and reinforcement core diameters

for all beams tested.

Figure 2.7: Bar Configurations for Tested Beams

For all twelve beams, the shear span to effective depth ratio (a/d) was fixed at 2.5. This

is the limit between beam action and deep-beam action failure modes. Larger ratios were

initially considered, but increased the probability of flexural failure which did not satisfy

the objectives of the testing. The height of each beam, h, was altered in order to maintain

a constant effective depth to the longitudinal tensile reinforcement, d, of 270mm for all

beams. As the a/d ratio and d were equal for all beams, the shear span, a, was also constant
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for all beams at 675mm. A constant shear span allowed a single pedestal configuration to

be used for the testing of all twelve beams, thus reducing the labour required for testing.

The width of the beam, b, was dependent on the stirrup diameter; beams with 12mm

diameter stirrups had a designed beam width of 200mm, and beams with 20mm diameter

stirrups had a designed beam width of 230mm.

The longitudinal reinforcing bars used in the beam specimens were ComBAR, glass fibre

reinforced polymer bars provided by Schoeck Canada. The longitudinal bars were pro-

duced using the pultrusion process with ribs cut into the surface to improve the bar’s bond

properties. Closed-loop stirrups were also provided by Schoeck Canada. These stirrups

were manufactured by enveloping the fibres and resin using a corrugated polypropylene

conduit pipe. This pipe is flexible in the bending direction but stiff in the radial direc-

tion. This manufacturing technique was aimed to increase the strength of the stirrups

in the bend regions. Table 2.5 provides a summary of the mechanical properties of the

GFRP reinforcement used in the beam designs as specified by Schoeck Canada at the time

of testing and Figure 2.8 depicts the products used for the longitudinal and transverse

reinforcement. Referring to Table 2.5, Ef is the tensile modulus of elasticity, Af is the

cross-sectional area, ffu,straight is the ultimate tensile strength of the FRP in the straight

portion, ffu,bend is the ultimate tensile strength of the FRP in the bent region, and rbend

is the radius of the stirrup corners. It is important to note that the strength and stiffness

properties presented are applicable to the direction of the fibres only; FRP is significantly

weaker in the transverse direction.

The beams and reinforcement were outfitted with a series of instrumentation to record

strains and displacements during testing. Strain gauges were used to measure the axial

strains of the longitudinal reinforcing bars. Gauges were positioned at mid-span on the

middle bars of each reinforcing layer for the BM 12-YYY and BM 16-YYY series and

at mid-span on both bars for the BM 25-YYY series. Strain gauges were also used to
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Table 2.5: Properties of GFRP Reinforcement Used in Beam Testing

Longitudinal Bars Stirrups

Beam
ffu,straight

(MPa)
Ef

(GPa)
Af

(mm2)
ffu,straight

(MPa)
ffu,bend
(MPa)

Ef
(GPa)

Af
(mm2)

rbend
(mm)

12-INF

12-150 1000 60 113 1000 700 50 113 42

12-220

16-INF

16-150 1000 64 201 1000 700 50 113 42

16-220

25-INF

25-150 1000 60 491 1000 700 50 113 42

25-220

12-s230 60 113

16-s230 1000 64 201 900 550 50 314 70

25-s230 60 491

Figure 2.8: Reinforcement used in Testing: (a) Longitudinal GFRP Bar; (b) GFRP Stirrup

measure the axial strains of the stirrups. For beams with stirrups, one gauge was placed

on the straight portion of the stirrup at mid-height, while a second gauge was positioned

immediately above the bend region on the opposite leg of the stirrup. Beam displacements
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were measured at mid-span and at the two quarter-span locations using linear variable

displacement transformers (LVDTs). Appendix A presents the detailed drawings of each

beam, as well as the location and labeling convention for all reinforcement strain gauges.

2.3.3 Beam Design Considerations

The maximum load permitted by the testing frames at the University of Waterloo was

500kN at the time of testing. Beams were therefore designed to have modest cross-sections

in order to fail at a load within the 500kN limit. The next challenge was to design beams

that had varying bar configurations and that would fail due to shear. The design became

an exercise of decreasing the beam dimensions to satisfy the load testing limits without

creating a beam that failed due to flexure.

A further design consideration was the required width of the beams to accommodate the

stirrups. Ideally, all beams would have a constant width for comparison purposes. A width

of 200mm was found to be acceptable for the beams that used 12mm diameter stirrups.

However, as shown in Table 2.5, the 20mm diameter stirrups that were used in beams BM

12-s230, BM 16-s230, and BM 25-s230 required a larger radius at the bends as specified

by the manufacturer. Manufacturers and design standards specify minimum limits on

the bend radius to bar diameter ratio for reasons discussed previously. Therefore, it was

necessary to increase the width of the beams to 230mm where larger stirrups were used to

accommodate the larger bend radii.

CSA S806-12 - Design and Construction of Building Structures with Fibre-Reinforced Poly-

mers was used to design the concrete beams for shear and flexure. The models proposed

by Nehdi et al. (2007) were also utilized in the prediction of shear strengths. Maximum

deflections were predicted using CSA S806-12 assuming a maximum load of 500kN. These

deflection predictions were necessary to estimate the operating ranges of the LVDTs that
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were used to measure beam deflections. Deflection predictions also provided a basis to

determine an appropriate displacement-controlled load rate for the testing frame.

In order to keep the strength of the beams within testing limits, it was necessary to deviate

from the provisions of CSA S806-12 when designing the concrete cover and bar spacing. The

requirements for minimum bar spacing and minimum cover were relaxed for the purposes

of this experimental investigation in order to accommodate the required number of bars.

With the reduced bar spacing, some beams became highly congested, specifically the BM

12-YYY series (beams with twelve longitudinal bars with diameters of 12mm) as shown in

Figure 2.7. It was therefore necessary to use a concrete mix design that was highly workable

to ensure that all voids around the congested reinforcing bars were filled in order to prevent

honeycombing. To achieve this, a mix with 3/8 inch (9.5mm) pea-stone aggregate and a

slump of 200mm-250mm was specified. The mix also utilized plasticizer to encourage a

workable batch.

2.3.4 Experimental Results and Observations

As discussed previously, no stirrups ruptured during testing, which prompted the revision

of the testing objectives. Failure modes were very consistent amongst each beam series.

Beams with no stirrups experienced shear-tension failures, while beams with stirrups ex-

perienced shear-compression / strut crushing failures. Cracking of all beams initiated with

vertical flexural cracking at the mid-span. As loading increased, additional flexural cracks

developed. For beams with stirrups, these flexural cracks typically developed at the stirrup

locations. With further loading, diagonal shear cracks developed. All beams, except BM

25-INF, ultimately failed along a crack plane that ran from the point of load application to

the support bearing plate. Figures 2.9 and 2.10 depict the typical failure mode of beams

without and with stirrups, respectively.
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Figure 2.9: Typical Failure Mode for Beams with No Stirrups

Figure 2.10: Typical Failure Mode for Beams with Stirrups

Figure 2.9 depicts BM 12-INF after testing and represents the typical failure mode of

beams with no stirrups. It can be seen that the major crack ran from the load plate to

the support plate. At failure, the cracks tended towards the three layers of reinforcement

indicating tensile splitting. Figure 2.10 depicts BM 12-s230 after testing and represents

the typical failure mode of beams with stirrups. It can be seen that the shear crack is

significantly larger than for the beams with no stirrups. There is also a region of crushed

concrete adjacent to the load plate, indicating a shear-compression failure.

Reinforcement strains were also analyzed. Longitudinal bar strains were found to be ini-

tially stiff before cracking. After cracking, the response softened significantly but remained

linear until the beam’s peak load was reached, as expected. Figure 2.11 depicts the ap-
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plied load vs. axial strain plot for the longitudinal reinforcement within BM 25-150; this

response was typical for all beams.

Figure 2.11: Typical Load-Strain Response of Longitudinal Reinforcing Bars

For beams with longitudinal bar diameters of 16mm and stirrups with diameters of 12mm

(BM 16-YYY), strain gauges were positioned on the longitudinal bars at multiple positions

along the beam’s length. The motivation behind this was to study the development of

strains in each bar at different locations. Figure 2.12 depicts the positions of the six strain

gauges used for BM 16-220, as well as the axial strains at each gauge location under varying

load levels.

Each curve in Figure 2.12 represents a different load level during the beam testing as a

percentage of the peak load. At lower loads, only the strain gauges closest to the mid-

span experienced significant strains. As loading increased, sections closer to the support

began to experience larger strains. This plot is significant as it shows that the three gauges

closest to the mid-span, Gauges 4, 5 and 6, experienced similar strains at peak load. This

observation indicates that the bar had debonded in this region. Furthermore, the fact

that Gauge 1 experienced negligible strains at all load levels indicates that the bar was

adequately anchored at the ends. These observations of a tied-arch mechanism indicate
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Figure 2.12: Strain Development in Reinforcing Bars - BM 16-220

that BM 16-220 experienced arch-action, which was reflected in the observed failure mode.

Similar strain behaviour was observed for BM 16-150, which also experienced arch-action

failure, but was not observed for BM 16-INF which experienced a shear-tension failure.

The strain behaviour of the stirrups was also analyzed. It was found that the strains within

the straight portion of the stirrup were significantly larger than the strains in the regions

near the stirrup bends. It was also found that stirrups in the middle of the shear span

experienced larger strains than the stirrups closest to the supports and load location. This

is to be expected, as the middle stirrups intersect the diagonal shear cracks that formed

between the load application point and the support bearing plate.

Using the beam displacement data, load-displacement relationships were created for each

beam. Figure 2.13 presents the load-displacement responses for all beams, with beams

32



organized with respect to stirrup spacing.

Figure 2.13: Comparison of Load-Displacement Responses

It was found that beams with higher flexural reinforcement ratios displayed stiffer load-

displacement responses than those with lower flexural reinforcement ratios. For beams

with no stirrups, an increase in flexural reinforcement ratio correlated to both an increase

in peak load and mid-span deflection at peak load. For beams with stirrups, beams that

had the same shear reinforcement ratio (same stirrup spacing) had similar peak loads. For

beams with 12mm diameter stirrups, an increase in shear reinforcement ratio correlated to

both an increase in peak load and mid-span deflection at peak load. It was also observed

that as the shear reinforcement ratio increased, the crack sizes at peak load also increased.

The plots also show that beams reinforced with GFRP reinforcing bars and stirrups are

able to exhibit some post-peak ductility.
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2.4 Strength Prediction of FRP Reinforced Beams

The experimental data and observations as collected by Krall (2014) were used to calibrate

the numerical models proposed in this thesis. The model output will also be compared to

the shear strength predictions as provided by CSA S806-12 - Design and Construction of

Building Structures with Fibre-Reinforced Polymers, as well as the shear strength model

proposed by Nehdi et al. (2007). An overview of these two models is presented in this

section.

2.4.1 Shear Strength of FRP Reinforced Beams - CSA S806-12

The approach used by CSA S806-12 to determine the factored shear resistance of a concrete

section reinforced with FRP longitudinal and transverse reinforcement follows the tradi-

tional approach used for steel reinforced sections where the contribution of the concrete

and stirrups are summed. The provisions for the design of members for shear is found

in Clause 8.4.4. The factored shear resistance, Vr, is determined using Equation 2.2 as

specified in Clause 8.4.4.4.

Vr = Vc + Vsf (2.2)

where Vc is the factored shear resistance provided by the concrete and Vsf is the factored

shear resistance provided by the FRP shear reinforcement. For non-prestressed members,

the ultimate shear resistance must not exceed the following:

Vr,max = 0.22φcf
′

cbwdv (2.3)

where φc is the material resistance factor for concrete (0.65), f
′
c is the compressive strength

of concrete, bw is the width of the member web, and dv is the effective shear depth. The

effective shear depth, dv, is taken as the greater of 0.9d or 0.72h, where d is the depth to
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the centroid of the longitudinal tensile reinforcement and h is the height of the member.

Clause 8.4.4.5 provides the shear resistance contribution provided by the concrete, Vc, and

can be determined using Equations 2.4 and 2.5. These equations are applicable to members

with an f
′
c less than 60MPa and an effective depth less than 300mm.

Vc = 0.05λφckmkr(f
′

c)
1/3bwdv (2.4)

where:

km =

√
Vfd

Mf

≤ 1.0 (2.5a)

kr = 1 + (Efρfw)1/3 (2.5b)

In the above equations, λ accounts for concrete density (typically taken as 1.0 for normal

density concrete), Vf and Mf are the factored shear force and bending moment at the

section of interest, Ef is the modulus of elasticity of the FRP, and ρfw is the longitudinal

FRP reinforcement ratio. The term km is a factor to account for the influence of the

bending moment on the shear resistance, and the term kr is a factor to account for the

influence of the reinforcement rigidity on the shear resistance. Equation 2.6 specifies the

limitations imposed on the concrete shear resistance:

Vc < 0.22φc
√
f ′
cbwdv (2.6a)

Vc > 0.11φc
√
f ′
cbwdv (2.6b)

Clause 8.4.4.6 provides the shear modification due to the arch effect. For sections that are

located within a distance of 2.5d from the face of a support reaction that causes compression

in the beam, the value of Vc as calculated using Equations 2.4 to 2.6 shall be multiplied
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by the factor ka as given in Equations 2.7 and 2.8:

ka =
2.5
Mf

Vfd

(2.7)

where:

1.0 ≤ ka ≤ 2.5 (2.8)

Clause 8.4.4.7 provides the shear modification due to member size. For members with

an effective depth greater than 300mm and with less transverse shear reinforcement than

required in Clause 8.4.5.2, the value of Vc as calculated using Equations 2.4 to 2.6 shall

be multiplied by the factor ks as given in Equation 2.9. If the member has an effective

depth greater than 300mm but satisfies the minimum shear reinforcement requirement, a

ks value of 1.0 shall be used.

ks =
750

450 + d
≤ 1.0 (2.9)

Clause 8.4.4.9 provides the shear resistance contribution provided by the FRP stirrups,

Vsf . For members with transverse reinforcement perpendicular to the longitudinal axis,

Vsf shall be determined using Equation 2.10:

VsF =
0.4φfAfvffudv

s
cotθ (2.10)

where φf is the material resistance factor for FRP (0.75), Afv is the area of FRP shear

reinforcement perpendicular to the axis of the member, and s is the spacing of the shear

reinforcement. ffu is the ultimate tensile strength of the straight portion of the FRP

transverse reinforcement and shall not exceed a value of 0.005Ef . The angle of the diagonal

compressive strut, θ, shall be determined as:

θ = 30◦ + 7000εl (2.11)
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where εl is the longitudinal strain of the section at mid-depth as determined using Equation

2.12:

εl =
Mf/dv + (Vf − Vp) + 0.5Nf − Apfpo

2(EfAf + EpAp)
≥ 0 (2.12)

where Vp is the component of the effective prestressing force in the direction of the applied

shear, Nf is the factored axial load acting normal to the member’s cross-section, Ap is

the area of prestressing tendons, fpo is the stress in the prestressing tendons when the

stress in the surrounding concrete is zero, Af is the area of the FRP longitudinal tensile

reinforcement, and Ep is the modulus of elasticity of the prestressing tendons. When

evaluating Equation 2.12, Vf and Mf shall be taken as positive values, and Mf shall not be

taken less than (Vf − Vp)dv. The resulting value of θ shall satisfy the following limitation:

30◦ ≤ θ ≤ 60◦ (2.13)

2.4.2 Shear Strength of FRP Reinforced Beams - Nehdi et al.,

2007

An extensive literature review was conducted by Krall (2014) to investigate current models

proposed to predict the shear capacity of FRP reinforced concrete members. It was con-

cluded that the model proposed by Nehdi et al. (2007) was both the simplest formulation

as well as the most accurate among available research. The objective of the work proposed

by Nehdi et al. (2007) was to develop simple yet accurate design equations to predict the

shear strength of FRP reinforced concrete members with and without FRP stirrups. The

genetic algorithm approach was used to develop the equations using the experimental re-

sults of 168 FRP reinforced concrete beams (68 of which had no shear reinforcement, and

100 of which were reinforced with FRP stirrups). The beams considered were all rectan-

gular, simply supported, and exhibited shear failure. The genetic algorithm approach is
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an advanced global optimization technique used for very complex and nonlinear problems.

This approach was used to search for an optimum set of coefficients to be used in the

proposed equations such that the difference between the predicted shear capacities and the

experimental capacities is minimized.

The proposed model consists of two components; one to consider the shear resistance

contribution of the concrete (Vcf ) and the other to consider the shear resistance contribution

of the FRP stirrups (Vfv). Therefore, the shear resistance as proposed by Nehdi et al. (2007)

is as follows:

Vr = Vcf + Vfv (2.14)

The shear resistance as contributed by the concrete is dependent on the ratio of a/d as

follows:

For a/d > 2.5:

Vcf = 2.1

(
f

′
cρfld

a

Efl
Es

)0.23

bwd (2.15)

For a/d < 2.5:

Vcf = 2.1

(
f

′
cρfld

a

Efl
Es

)0.23

bwd

(
2.5d

a

)
(2.16)

The shear resistance as contributed by the FRP stirrups is as follows:

Vfv = 0.74(ρfvffv)
0.51bwd (2.17)

In the above equations, f
′
c is the compressive strength of the concrete, ρfl is the longitudinal

FRP reinforcement ratio, d is the effective depth to the tensile reinforcement, Efl is the

modulus of elasticity of the FRP, Es is the modulus of elasticity of steel, a is the length of

the shear span, bw is the width of the section, ρfv is the transverse FRP reinforcement ratio,

and ffv is the ultimate tensile capacity of the FRP shear reinforcement. These proposed

equations were found to accurately predict the shear strength of beams reinforced with
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and without FRP stirrups, and were found to be more accurate than existing equations

provided by current shear design guidelines and codes.

2.5 Finite Element Modelling of Beams Reinforced

with FRP

Ferreira et al. (2001) formulated a model for the finite element analysis of concrete beams

reinforced with GFRP longitudinal reinforcing bars. The proposed model utilized two-

dimensional degenerated concrete shell elements based on a first-order shear deformation

theory. This shell element allowed for a layered discretization of the laminate materials.

The compressive behaviour of concrete was modelled using two unidirectional approaches:

Elastic-perfectly plastic and strain-hardening. A dual criterion for yielding and crushing

conditions in terms of stresses and strains was considered. To model the tensile behaviour

of concrete, a smeared crack approach was used. This approach assumes that the cracked

concrete remains a continuum with degraded material properties. The tensile response

of concrete was assumed to be linear-elastic up to peak stress, at which point there is

a sudden and complete loss of stress carrying capacity. Once cracking has occurred, the

elastic modulus is reduced to zero in the direction perpendicular to the cracked plane, and

a reduced shear modulus is used. The GFRP tensile reinforcing bars were modelled as

elastic-brittle layers of equivalent thickness, with strength and stiffness properties in the

bar direction only. Several experiments of concrete beams were performed to validate the

model, and strong correlation between the proposed model and the experimental results

was observed. Although beam experiments were used for validation, the model is generally

applicable to plates or shells of arbitrary shape.

Nour et al. (2007) performed finite element modelling of concrete structures reinforced with
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internal FRP materials. Bouzaiene and Massicotte (1997) developed a three-dimensional

hypoelastic constitutive model that can simulate the behaviour of concrete under multiax-

ial stress conditions. This model considers the elastic modulus degradation under loading-

unloading, the transition between brittle and ductile behaviour under confinement, and

the increase in concrete volume as the ultimate strength is approached. Massicotte et al.

(2007) later introduced a tension stiffening model for steel reinforced concrete members to

the original model proposed by Bouzaiene and Massicotte (1997). This model integrates

variable tension stiffening factors defined as a function of the member strain to account

for the steel-concrete interaction as proposed by Fields and Bischoff (2004). The post-

cracking modelling of concrete uses the smeared crack approach as proposed by Rashid

(1968). This new model was made portable, meaning the constitutive model can be im-

plemented as a user-defined subroutine at Gauss integration point within finite element

software. Nour et al. (2007) implemented this model into the general-purpose finite ele-

ment software ABAQUS/Standard and ABAQUS/Explicit to analyze slender rectangular

beams internally reinforced with GFRP longitudinal bars and steel stirrups. As a result

of the lower modulus of elasticity of FRP reinforcement as compared to steel, the revised

tension-stiffening relationship applicable to GFRP proposed by Bischoff and Paixao (2004)

was used in the models performed by Nour et al. (2007). Concrete was modelled using

8-noded three-dimensional solid elements. The internal reinforcement, including longitu-

dinal bars and stirrups, were modelled using 2-noded truss elements that were embedded

into the solid concrete elements. Experimental testing performed by Grace et al. (1998)

was used to validate the proposed model, and strong correlation between the model and

the tests was observed.

Rafi et al. (2007) performed a two-dimensional non-linear finite element analysis of sim-

ply supported concrete beams reinforced with carbon fibre reinforced polymer (CFRP)

bars. The constitutive model that was used for concrete in compression was proposed by

Popovics (1973) and later modified by Thorenfeldt et al. (1987). The uniaxial stress-strain
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relationship for compression includes an ascending branch until the ultimate compressive

strength, followed by a gradual descending branch representing strain-softening. Further

recommendations for the variables within this model as proposed by Collins and Mitchell

(1991) were used for this analysis. The tensile behaviour of the concrete was modelled

using a smeared crack approach. The uncracked concrete was considered isotropic, while

the cracked concrete was considered orthotropic. The cracking criterion was based on frac-

ture energy (Gf ), where Gf was calculated using the relationship proposed by Wittmann

(2002) as shown in Equation 2.18:

Gf = aΦn
max (2.18)

where a = 80.6, n = 0.32, and Φmax is the maximum aggregate size. A fracture energy

of 0.168N/mm was used for this study. The rotating crack model (RCM) was used to

simulate the formation and propagation of cracks. The FRP reinforcing bars were modelled

as linear-elastic up to failure with a von Mises yield criterion, associated flow and isotropic

hardening. The concrete was modelled as two-dimensional isoparametric quadrilateral

plane stress elements with eight nodes. The FRP reinforcement was modelled as uniaxial

bar elements with strength and stiffness properties in the bar direction only. These bar

elements were embedded into the quadrilateral concrete elements. The non-linear analysis

was performed by incorporating the material models and element formulation into the

finite element analysis software DIANA. Excellent convergence and numerical stability

was observed, and strong agreement between the recorded experimental data and model

was found.

Rafi et al. (2008) performed a three-dimensional finite element analysis of concrete beams

reinforced with CFRP under elevated temperatures. This publication was the first to con-

sider the numerical simulation of concrete structures reinforced with FRP under combined

thermal and mechanical loading up to failure. The material formulations used for the

concrete in compression and tension and for the reinforcing bars was identical to the for-
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mulations used by Rafi et al. (2007). The concrete was modelled using three-dimensional

isoparametric solid brick elements with 20 nodes and three translational degrees of free-

dom per node (translation in the three orthogonal directions). Only longitudinal tensile

reinforcement was considered, and was modelled using uniaxial bar elements embedded in

the concrete brick elements. The nonlinear analysis was performed using the finite element

software DIANA. Thermal properties such as thermal conductivity, thermal capacitance

and coefficient of thermal expansion were also considered, as well as the influence of el-

evated temperatures on the mechanical properties of concrete such as the reduction of

compressive strength and reduction of modulus of elasticity.

Zhang and Lin (2013) proposed the use of a novel composite beam element for the nonlinear

finite element analyses of FRP reinforced concrete beams. The proposed element is a one-

dimensional two-noded layered composite beam element with two degrees of freedom per

node (transverse displacement w, and rotation θ) as shown in Figure 2.14.

Figure 2.14: Two-Noded Composite Beam Element

As depicted in Figure 2.14, the cross-section of the element is divided into a number of

layers in order to capture the nonlinear properties of concrete, with the reinforcing bars

represented by a smeared layer of equivalent thickness. Each layer is assumed to be in a

state of plane stress, and the material properties are constant throughout the thickness of

each layer. The phenomenon of shear-locking in finite element analysis is a common concern

when elements used to analyze deep beams are used to analyze slender beams. In previous

studies, elements formulated using the Timoshenko beam theory have been found to prevent

this phenomenon. In this study, the Timoshenko composite beam functions formulated in
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Zhang and Kim (2006) were further developed to avoid shear-locking naturally within the

one-dimensional layered element. This formulation allows the proposed element to be used

for both slender and moderately deep beams. The nonlinear constitutive model proposed by

Nitereka and Neale (1999) was used to model the compression behaviour of concrete. The

stress-strain relationship consists of a quadratic ascending branch and a linear descending

branch. For concrete in tension, the concrete is assumed to be isotropic and linear-elastic

before cracking and orthotropic after cracking. The tension stiffening model proposed by

Nour et al. (2007) was employed, which utilizes a tension-stiffening factor, β, which is a

function of the reinforcing bar properties. The FRP reinforcement was modelled as linear-

elastic up to failure. The numerical results were compared to experimental test data and

it was demonstrated that the proposed composite element is able to accurately reproduce

the response of both slender and moderately deep beams.

Lin and Zhang (2013) then extended this proposed model to analyze FRP reinforced con-

crete beams under fire conditions. Using the same one-dimensional composite beam el-

ement, a two-dimensional non-linear heat transfer analysis was performed to determine

the temperature distribution throughout the element cross-section. A simplified method

was then used to transfer the two-dimensional analysis into a one-dimensional result in

order to carry out the one-dimensional structural analysis. A parametric study was per-

formed to determine the influence of the concrete cover, type of FRP reinforcement, and

the level of load on the flexural response of FRP reinforced concrete beams under elevated

temperatures.

Demenico et al. (2014) proposed a finite element-based limit analysis approach to predict

the peak load and failure mechanism of concrete members reinforced with FRP bars. The

proposed methodology combines the use of the Linear Matching Method (LMM) and the

Elastic Compensation Method (ECM). The LMM was originally conceived by Ponter and

Carter (1997) and involves the kinematic approach of limit analysis and thus provides a
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prediction of the upper bound to the peak load. The ECM was proposed by Mackenzie

and Boyle (1993) and involves the static approach of limit analysis and thus provides a

prediction of the lower bound to the peak load. The implementation of the LMM and ECM

was carried out using the finite element analysis software ADINA. The concrete was mod-

elled using three-dimensional 8-noded solid elements. The longitudinal reinforcement and

stirrups were modelled using one-dimensional 2-noded truss elements that were embedded

into the solid concrete elements. Test results for six beam sets with varying amounts of

GFRP longitudinal reinforcement and steel stirrups were used to validate the proposed

approach. The upper bound and lower bound peak load predictions were compared to

the experimentally observed peak loads. It was found that the model was able to provide

accurate ranges for the upper and lower limits on the peak load. However, it was also

found that the model provided poor predictions for under-reinforced beams (beams that

fail due to the rupture of the FRP bars as opposed to the crushing of concrete). This was

to be expected, as the rupture of FRP bars represents a brittle failure and the proposed

procedure focuses on the plastic behaviour of concrete. This limitation to the model was

found to be acceptable as the brittle failure mode of under-reinforced concrete members is

typically not considered in practical designs.

2.6 Nonlinear Fracture Mechanics of Concrete

Fracture mechanics is the study of the response and failure of structures as a consequence

of crack initiation and propagation. In terms of concrete structures, fracture mechanics

can be used to explain the various mechanisms by which cracks occur and to evaluate

the damaging effects that these cracks have on the structure (Shi, 2009). The concepts

discussed in this section, with emphasis on the tension-softening law and fracture energy

of cracked concrete, will be used in the finite element modelling presented in this thesis.
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2.6.1 Cracking Behaviour of Concrete

Concrete is a heterogeneous composite material that consists of cement, fine aggregate,

coarse aggregate, and water (other admixtures and supplementary cementitious materials

may also be present). Concrete can be considered to be a two-phase material consisting of

a cement matrix and aggregates. These two phases are bonded together at the interface.

Cracking at the interface between the aggregate and the matrix may occur due to bleeding

or segregation of fresh concrete. Cracking may also occur due to the non-uniform distribu-

tion of strains that result from the shrinkage of the cement matrix during the hardening of

the concrete. Therefore, many internal flaws and cracks exist in the concrete prior to load-

ing (Shah et al., 1995). The mechanical behaviour of concrete is governed by the initiation

and propagation of these internal cracks during loading.

Experimental evidence from uniaxial tension tests on concrete specimens have been col-

lected from multiple researchers, including Hughes and Chapman (1966) and Evans and

Marathe (1968), and have been used to formulate many of the fundamental concepts of

concrete fracture mechanics. To demonstrate these key concepts, the uniaxial tension test-

ing of concrete plates performed by Li et al. (1993) will be discussed. Four linear variable

differential transducers (LVDTs) were used to measure displacements at various locations

on the plates. Figure 2.15a shows the positions of the four LVDTs, Figure 2.15b shows the

displacements as measured by each LVDT, and Figure 2.15c shows the stress-displacement

response for LVDT-3 and LVDT-4.

Referring to Figure 2.15b and Figure 2.15c, four distinct stages of crack development are

identified. In the first stage, prior to Point A, an acoustic emission detection system indi-

cated that there were negligible internal cracks, which is reflected in the similar responses

of all four LVDTs. Within the second stage, between Point A and Point B, differences

in the displacements measured by each LVDT are observed, indicating the initiation of
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Figure 2.15: Tension Testing of Concrete Plates (Shah et al., 1995)

internal cracks. Within this stage the cracks are isolated and generally uniformly dis-

tributed. Within the third stage, between Point B and Point C, a narrow band of internal

cracks was observed in the region of LVDT-4, which is reflected in the increased rate of

displacement experienced by LVDT-4. This band of cracks indicates that the damage had

begun to localize, and that the internal microcracks were beginning to form a major crack

that was stable and propagated only with increasing load. This phenomenon is referred

to as “strain localization”. The fourth stage is beyond the peak load at Point C, at which

point the displacement of LVDT-4 continued to increase while the displacement of all other

LVDTs decreased. This phenomenon indicates that the major crack is no longer stable,

and continues to propagate even with decreasing load. It also indicates that the regions of

concrete beyond the localized area of damage had begun to unload. In summary, concrete

under tensile loading experiences strain localization prior to the obtainment of the peak

load, which results in the development of a major crack. The specimen will experience

a strain-softening response as this major crack propagates and the rest of the specimen

unloads (Shah et al., 1995).
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2.6.2 Fracture Process Zone

Linear elastic fracture mechanics allows the stress to approach infinity at a crack tip. Since

this phenomenon is not possible in real materials, an inelastic zone must exist at the crack

tip. When performing a numerical analysis using the discrete crack approach, this in-

elastic zone around the crack tip is referred to as the Fracture Process Zone (FPZ). The

FPZ is a tension zone that forms ahead of the pre-existing crack tip and is dominated by

complicated toughening mechanisms that exist when a crack propagates. These mecha-

nisms, as depicted in Figure 2.16, include: (a) microcrack shielding; (b) crack deflection;

(c) aggregate bridging; (d) cracked surface interlock; (e) crack tip blunting; and (f) crack

branching.

Figure 2.16: Fracture Process Zone Toughening Mechanisms (Shah et al., 1995)

Microcrack shielding refers to the formation of microcracks at flaws near the crack tip as

a result of the high stress state. Crack deflection occurs when the path of least resistance

is around a relatively large particle or along a weak interface. Aggregate bridging occurs

when a crack has advanced beyond an aggregate that continues to carry stress across the

crack. Cracked surface interlock refers to the friction that occurs between two cracked faces
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which causes energy to be dissipated. Crack tip blunting is when a crack tip is terminated

by an internal void, resulting in a blunted crack tip that requires an increased amount of

energy to propagate. Crack branching is when a crack propagates into multiple branches;

a process that consumes more energy to achieve (Shah et al., 1995).

The FPZ consumes a significant amount of energy from the applied external loads, thus

the propagation of cracks is stable prior to the peak load. Furthermore, the toughening

mechanisms present in the FPZ are responsible for the quasi-brittle fracture response of

the concrete after peak load. Whereas brittle materials are linear elastic up to the peak

stress followed by a catastrophic and complete loss of strength, quasi-brittle materials

exhibit nonlinearity prior to the peak load, followed by strain-softening. As regions of the

crack surfaces may still be in contact, mechanisms such as friction and aggregate interlock

prevent catastrophic failure immediately after the peak load and results in a gradually

decreasing, softening type response. The presence of these complex mechanisms deters the

use of linear elastic fracture mechanics for concrete and necessitates the use of nonlinear

fracture mechanics (Shah et al., 1995).

2.6.3 Fictitious Crack Model

The presence of the FPZ in front of an open crack poses an analytical challenge to the

modelling of concrete fracture. The FPZ cannot be characterized as a continuous region

nor as a discontinuous region. This region represents a partially damaged zone with some

remaining stress-transferring capabilities through the toughening mechanisms discussed

previously. This region functions as a transition zone between the open crack that is

completely discontinuous and the intact concrete material that is completely continuous.

Fracture of concrete originates in this region, thus the analysis of cracking necessitates the

modelling of the FPZ (Shi, 2009). Hillerborg et al. (1976) proposed the first nonlinear the-
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ory of fracture mechanics in the form of the Fictitious Crack Model (FCM). This approach

models the fracture process zone as a fictitious crack that extends ahead of the physical,

traction free, crack. This fictitious crack is subjected to closure stresses, σ(w), as depicted

in Figure 2.17 (Karihaloo, 2003).

Figure 2.17: Fictitious Crack Model (Malm, 2006)

Referring to Figure 2.17, ao represents the length of the open crack; lp is the length of the

fracture process zone; and w is the crack-opening-displacement within the FPZ. As can

be seen, the closure stresses, often referred to as cohesion stresses, are not constant and

are a function of the crack-opening-displacement. The closure stresses are equal to zero at

the tip of the pre-existing open crack, which is the location of the critical crack-opening-

displacement, wc. These stresses then increase to the full uniaxial tensile strength of the

material, ft, at the location of the fictitious crack tip (extent of the FPZ). Figure 2.18 is

also useful for the demonstration of the tension softening behaviour within the FPZ.

Prior to the peak load, Region AB, the concrete experiences micro-cracking but is not

yet subject to the fracture process zone. Within the post peak region, BC, toughening

mechanisms within the FPZ provide closure stresses that are a function of the crack-

opening-displacements, w. The crack-opening-displacements continue to grow until Point

D is reached, at which point zero stress is transferred and the crack-opening-displacement

has reached the critical value, wc (Karihaloo, 2003).
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Figure 2.18: Tension Softening Response within the FPZ (Karihaloo, 2003)

2.6.4 Fracture Energy and Tension-Softening Law

Recalling the experiments of Li et al. (1993) discussed previously, portions of a concrete

member under tension will experience strain localization at peak load while the remain-

der of the section will experience unloading. Figure 2.19a depicts a generalized stress-

deformation response of a member under tension.

Figure 2.19: Derivation of Fracture Energy (Shah et al., 1995)
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The total deformation of a member of length L can be expressed using Equation 2.19:

∆L = δe + δine + w (2.19)

where δe is the elastic deformation, δine is the inelastic deformation, and w is the crack-

opening-displacement of the fictitious crack (Shi, 2009). Figure 2.19a can be divided into

two separate curves; Figure 2.19b depicts the stress-strain response of the uncracked section

which undergoes linear-elastic unloading at peak load (strain is equal to the deformation

divided by the original gauge length), and Figure 2.19c depicts the stress-elongation re-

sponse for the additional deformation, w, within the damaged section (Hillerborg, 1985).

The area under the stress-deformation curve (Figure 2.19c) represents the energy absorbed

by the damaged concrete. This quantity represents the amount of energy required to over-

come the resistance of various toughening mechanisms in order to create a crack of unit

area. This property is referred to as the Mode-I fracture energy, or simply the fracture

energy, and is denoted by Gf . The relationship between the stress-elongation response and

the fracture energy can be expressed mathematically using Equation 2.20:

Gf =

∫ wc

0

σ(w)dw (2.20)

where wc is the critical crack-opening-displacement when the softening stress is equal

to zero. The relationship between the decreasing tensile stresses with increasing crack-

opening-displacements as depicted in Figure 2.19c is referred to as the tension-softening

law. The tension-softening law used to define the tensile response within the fracture pro-

cess zone, σ(w), and the fracture energy, Gf , are two fundamental parameters required for

the Fictitious Crack Model. These parameters are material properties that are independent

of structural geometry or size (Shah et al., 1995). The softening curve, σ(w), requires only

three parameters to be completely defined: the ultimate tensile strength of the material ft,

the fracture energy Gf (area under the curve), and the shape of the curve. Many shapes of

51



the softening curve have been proposed in the literature as shown in Figure 2.20, including

linear, bilinear and exponential relationships. Specific models will be discussed in more

detail in Section 3.3.2.

Figure 2.20: Various Tension-Softening Laws

2.7 Plasticity of Reinforced Concrete

The theory of plasticity is a necessary extension to the theory of elasticity and is required

to study the stresses and strains of ductile materials that exhibit irrecoverable plastic

deformations. The classical theory of plasticity was originally developed to model metals

which exhibit significantly different deformation mechanisms as compared to concrete;

however, there are similarities. Concrete does exhibit a nonlinear stress-strain response

during loading and develops significant irreversible strains upon unloading. Concrete also

exhibits ductility under compression loading and confining pressures. Therefore, the theory

of plasticity can be used to model this behaviour of concrete (Chen and Han, 1988). The

theory of plasticity has been used successfully to model many problems involving reinforced

concrete and other similar materials that are subjected primarily to compressive stresses.

In problems in which tension plays a significant role, such as shear failure, the plasticity

theory may be applied to the compression zones while a fracture mechanics approach may

be applied to the tension zones (Lubliner et al., 1989). There are three requirements for
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any plasticity model:

1. Initial yield criterion

2. Hardening/softening rule

3. Flow rule

The plasticity models that have been proposed in the literature will typically differ from

each other with regards to the shape of the yield surface, the hardening/softening rule and

the flow rule. Aspects of each of these features is discussed next.

2.7.1 Initial Yield Criterion

A generalized stress-strain response of concrete subjected to uniaxial compression is shown

in Figure 2.21.

Figure 2.21: Unloading Response of Concrete under Compression (Chen and Han, 1988)

Under uniaxial compression, the stress-strain response is linear-elastic up to the initial yield

stress σco, which corresponds to point A on the curve. Increased loading beyond point A
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causes the concrete to behave plastically. The stress continues to increase with further

straining, which is referred to as work-hardening or strain-hardening. Work-hardening is

exhibited up to the ultimate stress σcu, which corresponds to point B on the stress-strain

curve. Loading beyond the peak stress at point B causes the slope of the stress-strain curve

to become negative; a phenomenon referred to as strain-softening.

Consider a case where a specimen is loaded monotonically to a stress of σ
′
A (point A

′
), a

stress state beyond the initial yield point. If the specimen then experiences unloading, the

response will follow the linear-elastic unloading path A
′
B

′
, which is parallel to the initial

loading path OA (the unloading stiffness of concrete actually undergoes degradation, or

damage, which will be discussed in more detail later). When the stress is again zero at the

end of unloading, a residual strain will remain, OB
′
. This irreversible strain is referred to

as plastic strain while the recoverable strain, B
′
C, is the elastic strain. If the specimen is

then reloaded, the stress-strain curve will follow the reloading path B
′
A

′
, which is identical

to the unloading path A
′
B

′
. The material is therefore elastic until the previous maximum

stress at point A
′

is reached again. The stress σ
′
A is then regarded as the new yield stress.

Increased loading beyond point A
′

will lead to further plastic deformation and the stress-

strain response will follow the original monotonic loading path A
′
D (Chen and Han, 1988).

When using the theory of plasticity to model this work-hardening plasticity behaviour, it

is necessary to define the initial yield surface and the failure surface within the stress space

as shown in Figure 2.22.

The initial yield surface represents the limit of elastic behaviour and the initiation of

plastic behaviour. When a state of stress falls within the initial yield surface, the material

is assumed to be linear-elastic. When the material is stressed beyond the initial yield

surface, the material behaves plastically and a new subsequent yield surface is developed.

This new surface replaces the initial yield surface and is referred to as a loading surface. If

the specimen is unloaded and reloaded within the new loading surface, no additional plastic
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Figure 2.22: Loading Surfaces for Biaxially Stressed Concrete (Chen, 1982)

strain will occur until the specimen is reloaded beyond the new loading surface. If the

specimen is loaded beyond the new loading surface, the loading surface will again expand

and the specimen will experience an increase in plastic strain (Chen, 1982). Therefore,

subsequent loading surfaces act as yield functions for the deformed material. This is

identical to the scenario discussed in Figure 2.21. The failure surface represents the state

of stress associated with failure (peak stress). The failure surface remains unchanged during

loading and encloses all loading surfaces. Once loading has exceeded the initial yield surface

and hardening occurs, the loading surface expands and changes its shape from the initial

yield surface to the final shape that matches the ultimate failure surface (Chen and Han,

1988).

Many failure (or yield) criteria have been developed for concrete materials, including

von Mises, Mohr-Coulomb, Drucker-Prager, Bresler-Pister, Hsieh-Ting-Chen, and Willam-

Warnke. Figure 2.23 presents these failure models in both the meridional plane (left) and

in the deviatoric plane (right).
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Figure 2.23: Common Failure Criteria for Concrete (Chen and Han, 1988)

The Drucker-Prager and Mohr-Coulomb criteria are the most commonly used yield cri-

teria for concrete (Malm, 2006). However, it was concluded that these criteria require

modifications to better represent concrete. As will be discussed in Section 3.3.4, a mod-

ified hyperbolic Drucker-Prager yield function as proposed by Lubliner et al. (1989) is

implemented in ABAQUS.

2.7.2 Hardening Rule

The theory of plasticity allows the material strain to be dependent on its load history

through the introduction of an internal scalar variable, κ, referred to as the hardening

parameter. This parameter describes the irreversible material behaviour and is expressed

by means of rate equations which are functions of the plastic strain rate: dκ = f(dεp)

(Karihaloo, 2003). A significant challenge in the theory of plasticity is to determine the

nature of the subsequent loading surfaces that develop during plastic loading. The hard-

ening rule defines the motion of the subsequent loading surfaces and is responsible for

how these surfaces evolve (Chen, 1982). A number of hardening rules have been proposed

to describe the growth of the subsequent loading surfaces for work-hardening materials.
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Three examples of hardening rules include isotropic hardening, kinematic hardening, and

independent hardening.

Before these three examples of hardening rules can be discussed, it is first necessary to

define the “Bauschinger effect”. The Bauschinger effect refers to a type of directional

anisotropy induced by plastic deformation. This effect is evident when a specimen that

initially undergoes plastic deformation of one sign then exhibits a reduced yield stress

when subsequently loaded in the opposite sign. For example, if a rod is subjected to a

tensile stress that exceeds its yield strength and induces plastic deformation, subsequent

compression of the same rod will lead to a compressive yield value that is noticeably lower

than the initial tensile yield point. Therefore, the load history of a specimen is considered

by the Bauschinger effect (Chen, 1982).

Isotropic hardening applies mainly to models in which the plastic deformation develops

well beyond the initial yield surface and where the material is subjected to mainly mono-

tonic and proportional loading. This rule therefore neglects completely the Bauschinger

effect during load reversals. Isotropic hardening assumes that the loading surfaces can only

expand in the stress space, but cannot translate or rotate. Conversely, kinematic harden-

ing considers the Bauschinger effect and is more appropriate for problems with cyclic and

reversed-type loading. Kinematic hardening assumes that the loading surface translates

as a rigid body in stress space, maintaining its size, shape and orientation. A third rule,

independent hardening, assumes that the hardening experienced in compression is inde-

pendent of the hardening experienced in tension. This final hardening rule is best suited

for concrete, and is a combination of the isotropic and kinematic hardening rules (Chen

and Han, 1988). The independent hardening rule is implemented in the plasticity model

used by ABAQUS, and is discussed further in Section 3.3.4.
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2.7.3 Flow Rule

Up until this point, the initial yield surface has been discussed, as well as the use of

hardening rules to determine the shape of subsequent loading surfaces at any given stress

level. The flow rule represents the connection between the yield surface and the stress-

strain relationship. For the purpose of this discussion, the yield surface will be denoted as

f (Chen, 1982).

Concrete exhibits non-linear volume change when subjected to severe inelastic stress states

during hardening. Experimental results indicate that under compressive loading, the con-

crete experiences inelastic volume contraction at initial yielding and volume dilation at

stress levels of 75-90% of the ultimate stress (Kupfer et al., 1969). Figure 2.24 shows this

phenomenon for concrete under uniaxial and biaxial compression.

Figure 2.24: Volumetric Strain of Concrete under Compression (Kupfer et al., 1969)

The dilation that results from plastic deformation can be reproduced well using a plastic

potential function G. The flow rule can be defined using Equation 2.21:

dεp = dλ
∂G

∂σ
(2.21)
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where dλ is a scalar hardening parameter that can vary throughout the straining process.

This parameter uses positive values, and is nonzero only when plastic deformations occur.

The gradient of the plastic potential function, ∂G/∂σ, defines the direction of the plastic

strain increment dεp, while the length is determined by the hardening parameter dλ (Chen,

1982). Figure 2.25 presents the flow rule for the classical linear Drucker-Prager model in

the meridional plane.

Figure 2.25: Drucker-Prager Flow Rule (DSS, 2012)

If the plastic potential surface has the same shape as the current yield or loading surface

(G = f), the flow is considered “associated”, meaning the plastic flow is connected or

associated with the yield criterion. If the associated flow rule is utilized, the plastic flow

develops normal to the loading surface, f . If two separate functions are used for the plastic

potential surface and the yield surface (G 6= f) and the two surfaces do not coincide, the

flow is considered “non-associated”. If the non-associated flow rule is utilized, the plastic

flow develops normal to the plastic potential surface, G (Malm, 2006).

As discussed previously, the initial contraction followed by dilation exhibited by concrete

under compression yields an inflection point within the stress versus volumetric-strain curve

as shown in Figure 2.24. This behaviour violates the associated flow rule. It has also been

shown that the associated flow rule tends to overestimate the plastic volume expansion

of concrete. Therefore, the non-associated flow rule is typically recommended to control

dilatancy when modelling concrete (Chen and Han, 1988).
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Chapter 3

Overview of Concrete Modelling

using ABAQUS

3.1 ABAQUS Overview

Many commercial finite element analysis (FEA) software packages are available for the anal-

ysis of concrete structures. Examples include: ADINA (Automatic Dynamic Incremental

Nonlinear Analysis) developed by ADINA R&D Inc. located in Watertown, Massachusetts,

USA (ADINA R&D, 2014), DIANA (Displacement Analyzer) developed by TNO DIANA

BV located in Delft, Netherlands (TNO DIANA BV, 2014), and ATENA developed by

Cervenka Consulting located in Czech Republic (Cervenka Consulting, 2014). The FEA

software ABAQUS was used for the simulations performed for this thesis (DSS, 2012).

ABAQUS was developed by Hibbitt, Karlsson and Sorensen, Inc. which was established

in 1978. In 2005, this company was acquired by Dassault Systemes Simulia Corp. (DSS)

based out of Providence, Rhode Island, USA. ABAQUS is a finite element analysis soft-

ware that has become popular in academic and research institutions due to its extensive

library of materials and elements and its ability to be customized for one-, two-, and three-

dimensional problems. The ABAQUS product suite includes three core products, including
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ABAQUS/CAE, ABAQUS/Standard, and ABAQUS/Explicit (DSS, 2012).

ABAQUS/CAE, referring to Complete ABAQUS Environment, is software that allows

users to create, analyze, and visualize model output all in one environment using a cus-

tomizable graphical user interface (GUI). ABAQUS/CAE allows users to create geome-

tries using the GUI or by importing CAD models for meshing. Users can then analyze

models and use the comprehensive visualization options to interpret and communicate

the analysis results. ABAQUS/Standard is a finite element analysis product that uti-

lizes solution techniques that are ideal for static and low-speed dynamic simulations.

ABAQUS/Explicit is a finite element analysis product that utilizes solution techniques that

are ideal for transient dynamic and highly nonlinear simulations. Both ABAQUS/Standard

and ABAQUS/Explicit are supported within the CAE modelling environment for both pre-

processing and post-processing activities (DSS, 2012). ABAQUS/Standard was used within

the CAE modelling environment for all simulations performed for this thesis. Literature

provided by DSS (2012), including the ABAQUS Analysis User’s Manual, ABAQUS/CAE

User’s Manual, and ABAQUS Theory Manual, were used to prepare the concepts presented

in this chapter.

3.2 Concrete Constitutive Models in ABAQUS

ABAQUS offers three constitutive models for concrete, including:

1. Smeared Crack Model (SCM)

2. Brittle Cracking Model (BCM)

3. Concrete Damaged Plasticity Model (CDPM)

All three models provide a general capability for modelling typical concrete structures such

as beams, trusses, shells and solids. All models can be used for plain concrete, or other
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quasi-brittle materials, but are intended primarily for the analysis of reinforced concrete

structures.

The Smeared Crack Model (SCM) can be implemented in ABAQUS/Standard and is in-

tended for applications in which the concrete is subjected to primarily monotonic loadings

at low confining pressures. Cracking of the concrete is treated as the most important aspect

of the concrete behaviour, thus cracking and post-cracking behaviour dominate the mod-

elling. A crack detection surface is utilized to determine if an integration point has failed

by tensile cracking. A smeared crack approach is used to represent the discontinuous brittle

behaviour of cracked concrete. This approach does not track the formation of macrocracks,

but instead modifies the stress and stiffness material properties to account for the presence

of cracks. The SCM uses an associated flow rule with isotropic hardening which generally

over-predicts the inelastic volumetric strain. When stresses are dominantly compressive,

a simplified elastic-plastic yield surface is used. This yield surface is a function of only

the first and second stress invariants; a simplification that leads to output that does not

match all data accurately (inclusion of the third stress invariant in the yield surface would

be required to achieve higher accuracy). The simplifications and limitations placed in this

model are an attempt to increase computational efficiency.

The Brittle Cracking Model (BCM) can be implemented in ABAQUS/Explicit and is

intended for applications in which the behaviour of the material is dominated by tensile

cracking. This model can be used for materials such as ceramics and brittle rock, but is usu-

ally intended for plain concrete. The compressive behaviour is assumed to be linear-elastic,

a significant simplification of the actual compressive behaviour of concrete. Therefore, the

BCM is only adequate if brittle tensile behaviour dominates the material behaviour such

that the linear-elastic compression model assumption is acceptable. The BCM only con-

siders the brittle aspects of concrete behaviour; when microcracks coalesce to form discrete

macrocracks representing regions of highly localized deformation. This model also utilizes
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the smeared crack approach to represent the discontinuous brittle behaviour as discussed

previously.

The Concrete Damaged Plasticity Model (CDPM) can be implemented in both ABAQUS/Standard

and ABAQUS/Explicit and can be used to analyze concrete and other quasi-brittle mate-

rials. This model assumes that the two main failure mechanisms of concrete include tensile

cracking and compressive crushing. The CDPM is effective for monotonic, cyclic, and

dynamic loading under low confining pressures. Isotropic tensile plasticity and isotropic

compressive plasticity are used to represent the inelastic behaviour of concrete. A non-

associated flow rule with a multi-variable hardening plasticity is implemented in combi-

nation with a scalar isotropic damaged elasticity to describe the irreversible damage that

occurs during the fracture process. Viscoplastic regularization may also be implemented

to improve the convergence rate in tensile softening regions.

It is clear that the Concrete Damaged Plasticity Model is highly versatile in modelling

concrete under various loading conditions. For this reason, the CDPM was used for all

analyses performed in preparation of this thesis, and will be discussed in further detail in

the next section.

3.3 Concrete Damaged Plasticity Model

3.3.1 Compression Modelling

In the Concrete Damaged Plasticity Model, the uniaxial compressive behaviour of concrete

is assumed to follow the general stress-strain response as shown in Figure 3.1.

Under uniaxial compression, the stress-strain response is linear within the elastic region

until the initial yield σco. Beyond this point, the concrete becomes plastic and experiences
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Figure 3.1: Stress-Strain Response for Concrete in Compression (DSS, 2012)

work-hardening up to the ultimate stress σcu, followed by strain-softening. To model

the elastic compression behaviour, the user provides the initial undamaged modulus of

elasticity, Eco. For the response beyond the elastic range, compressive stress data are

provided in a tabular form as a function of the inelastic strain, εinc . The inelastic strain,

as shown in Figure 3.1, is expressed in Equation 3.1:

εinc = εc − εeloc = εc −
σc
Eco

(3.1)

where εinc is the inelastic strain, εc is the total compressive strain, εeloc is the elastic compres-

sive strain corresponding to the undamaged material, σc is the compressive stress, and Eco

is the initial undamaged modulus of elasticity. The inelastic strain values inputted are pos-
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itively increasing values, with the first value being zero (corresponding to the initial yield

point). The specific stress-strain relationships used to model the concrete in compression

will be presented in Section 5.1.

3.3.2 Tension Modelling

The uniaxial tensile behaviour of concrete is assumed to follow the general stress-strain

response as shown in Figure 3.2.

Figure 3.2: Stress-Strain Response for Concrete in Tension (DSS, 2012)

Under uniaxial tension, the stress-strain response is linear-elastic until the peak stress σto.

As discussed previously, the peak tensile stress corresponds to the coalescing of microcracks

which induces strain localization. This leads to the unstable propagation of a major crack,
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the unloading of regions beyond the strain localization, and a strain-softening post-peak

response. As concrete is a quasi-brittle material and is bonded to the reinforcement, the

concrete between cracks continues to carry tensile loads even after cracking. The ability

of the concrete between cracks to carry tension, a phenomenon which helps control the

deformation of a member and the development of crack widths, is referred to as “tension

stiffening”. To account for this phenomenon, ABAQUS requires the user to define a post-

peak response of the concrete in tension to simulate the interaction between the concrete

and the reinforcing bars. There are three methods that can be used to define the post-

peak uniaxial tensile response of concrete in the Concrete Damaged Plasticity Model within

ABAQUS:

1. Provide the tensile stress in a tabular form as a function of the cracking strain,

εckt .

2. Provide the tensile stress in a tabular form as a function of the crack-opening-

displacement, w.

3. Prescribe a value for fracture energy, Gf .

The first method to define the post-peak tensile response of concrete allows the user to input

a stress-strain curve similar to the one shown in Figure 3.2. The post-failure behaviour is

provided as a function of the cracking strain εckt , as expressed in Equation 3.2:

εckt = εt − εelot = εt −
σt
Eco

(3.2)

where εckt is the cracking strain, εt is the total tensile strain, εelot is the elastic tensile strain

corresponding to the undamaged material, σt is the tensile stress, and Eco is the initial

undamaged modulus of elasticity. To ensure numerical convergence, the Concrete Damaged

Plasticity Model enforces the following lower limit on the post-peak tensile stresses specified
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by the user:

σt ≥
σto
100

(3.3)

where σto is the peak tensile stress. This method allows the user to control the shape of

the post-peak curve, thus allowing the interaction between the concrete and reinforcing

bars to be modelled and adjusted to suit the specific application. The specific post-peak

stress-strain responses that were considered in the modelling performed for this thesis are

presented in Section 5.2.1.

The second method to define the post-peak tensile response of concrete allows the user to

input the tensile stress as a function of the crack-opening-displacement, w. This approach

implements the concept of fracture energy as proposed by Hillerborg et al. (1976). Fracture

energy, Gf , is a material parameter used in brittle fracture mechanics to define the energy

required to open a crack of unit area. With this approach, the brittle behaviour of concrete

is characterized by a stress-displacement response as opposed to a stress-strain response.

Similar to the first approach, this method allows the user to customize the tension stiffening

behaviour of the member by modifying the curve to fit the application. Examples of stress-

displacement curves proposed in the literature are depicted in Figure 3.3.

Figure 3.3: Examples of Stress-Displacement Curves

The bilinear stress-displacement response presented in Figure 3.3a was found to fit the

tension-softening response for concrete by Petersson (1981). Figure 3.3b presents a bilinear
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response with slightly modified parameters as found by Rokugo et al. (1989). Cornelissen

et al. (1986) found that the exponential response in Figure 3.3c fits well with experimental

data. As the area under these curves is equal to the material’s fracture energy, this approach

not only allows the user to define the rate of strength loss upon cracking but also the

fracture energy of the material. The application and comparison of different proposed

models will be presented in Chapters 5 and 6.

The third method to define the post-peak tensile response of concrete requires the user

to simply prescribe a value for the fracture energy, Gf , as a material property. The only

inputs required are the tensile peak stress, σto, and the fracture energy. This method

assumes a linear stress-displacement post-peak response as shown in Figure 3.4.

Figure 3.4: Linear Stress-Displacement Curve

As the peak stress is defined and the area under the linear curve is equal to the fracture

energy provided by the user, the maximum crack displacement corresponding to a complete

loss of strength, wc, is given by Equation 3.4:

wc =
2Gf

σto
(3.4)

The selection of the optimal fracture energy value and stress-displacement curve is studied

in further detail in Sections 5.2.3 and 6.2.1.
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3.3.3 Damage Modelling

When concrete is unloaded from any point within the work-hardening or strain-softening

regions of the compression and tension stress-strain curves (post-elastic regions), the un-

loading response becomes weakened and a degraded, or damaged, elastic modulus is used.

As shown in Figures 3.1 and 3.2, the degradation of the elastic stiffness during unloading

is characterized by two damage variables, dc and dt, for uniaxial compression and tension

responses, respectively. These damage parameters are functions of the plastic strains εplc

and εplt , temperature θ, and other predefined field variables fi. The damage parameters can

take values ranging from zero to one, with a value of zero corresponding to the undamaged

material and a value of one corresponding to a material with a complete loss of strength

(Equation 3.5).

dt = dt(ε
pl
t , θ, fi); 0 ≤ dt ≤ 1.0 (3.5a)

dc = dc(ε
pl
c , θ, fi); 0 ≤ dc ≤ 1.0 (3.5b)

As the damage parameters are a function of the plastic strains, ABAQUS will automatically

convert the user defined inelastic or cracking strain values to plastic values. For uniaxial

compression damage, damage parameter values are provided as a function of the inelastic

strains, εinc , which are converted to plastic strains using Equation 3.6:

εplc = εinc −
dc

1− dc
σc
Eco

(3.6)

where Eco is the initial undamaged modulus of elasticity. For uniaxial tension, if Method 1

is used to define the post-peak response as discussed previously, damage parameter values

are provided as a function of the cracking strains, εckt , which are converted to plastic strains

using Equation 3.7:

εplt = εckt −
dt

1− dt
σt
Eco

(3.7)
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If Method 2 or 3 is used to define the post-peak tensile response as discussed previously,

damage parameter values are provided as a function of the cracking displacements, uckt

(previously referred to as w), which are converted to plastic displacements using Equation

3.8:

uplt = uckt −
dt

1− dt
σtlo
Eco

(3.8)

where lo is the specimen length which is assumed to be equal to 1.0. It is important to

note that when defining the damage parameters, excessive damage may cause the model to

experience convergence issues. It is recommended to avoid using damage variables greater

than 0.99, representing 99% reduction of the elastic stiffness.

If Eco is the initial undamaged modulus of elasticity of the concrete, the stress-strain

responses for uniaxial tension and compression behaviour with consideration of the degra-

dation of the elastic stiffness can be expressed using Equation 3.9:

σt = (1− dt)Eco(εt − εplt ) (3.9a)

σc = (1− dc)Eco(εc − εplc ) (3.9b)

A concrete member subjected to uniaxial load will experience the development and prop-

agation of cracks. This phenomenon will cause the reduction of the available load carry-

ing area, thus increasing the effective stresses that the concrete experiences. Therefore,

ABAQUS considers this effect by automatically calculating these effective stresses, σ̄t and

σ̄c, for tension and compression, respectively. These effective stresses, as expressed in Equa-

tion 3.10, are referred to as uniaxial effective cohesion stresses and are used to determine

the size of the yield and loading surfaces within the plasticity modelling of the concrete.

σ̄t =
σt

1− dt
= Eco(εt − εplt ) (3.10a)

σ̄c =
σc

1− dc
= Eco(εc − εplc ) (3.10b)
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To further demonstrate the concept and influence of elastic stiffness degradation of con-

crete, a simple model was created using ABAQUS/Standard. A cube of concrete with

dimensions 1.0x1.0x1.0mm was subjected to a uniaxial compressive load. The concrete

was modelled using the Concrete Damaged Plasticity Model with a compressive strength

of 54MPa and an initial undamaged modulus of elasticity of 36,742MPa. A displacement-

controlled test was performed by imposing a downwards vertical displacement boundary

condition to the top surface of the cube. This test method was selected so that the

post-peak behaviour of the concrete could be studied. Figure 3.5 presents the uniaxial

compressive stress-strain responses for a variety of tests performed.

Figure 3.5: Elastic Stiffness Damage

In Case 1, the displacement was applied until a complete loss of strength was achieved

(Load Only). For Cases 2, 3, 4 and 5, the load was applied to different strain levels, at

which point the cube was unloaded completely (Load-Unload). As can be seen, the slope

of the unloading curve for Cases 2, 3, 4 and 5 are no longer equal to the slope of the initial

elastic loading curve. It is also shown that the slope of each unloading curve is dependent

on the strain level at the initiation of unloading. Models that were unloaded later in
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the stress-strain curve, Case 4 and 5 for example, experienced larger plastic strains, thus

larger damage parameters, which resulted in a larger reduction in the unloading stiffness.

Therefore, when concrete is unloaded from a state of stress that is beyond the elastic range,

it will experience a reduction in stiffness, and the magnitude of this reduction depends on

the strain level at the time of unloading. Table 3.1 presents further details of this modelling.

Table 3.1: Elastic Stiffness Damage Modelling

Case
Load

Pattern

Total
Stress at

Unloading
(MPa) σc

Total
Strain at

Unloading
εc

Ereduced
(MPa)

dc εplc εelc εinc εeloc

1 Load Only - - - - - - - -

2
Load-

Unload
50.6 0.002 32,362 0.119 0.0004 0.0016 0.0006 0.0014

3
Load-

Unload
53.9 0.003 27,975 0.239 0.0011 0.0019 0.0015 0.0015

4
Load-

Unload
44.0 0.005 18,800 0.488 0.0027 0.0023 0.0038 0.0012

5
Load-

Unload
18.9 0.007 7,674 0.791 0.0045 0.0025 0.0065 0.0005

For each unloading case, σc and εc have been recorded, which are the total compressive

stress and total compressive strain at the initiation of unloading, respectively. The reduced

modulus of elasticity was calculated based on the slope of each unloading curve. Using this

reduced stiffness, the compressive damage parameter, dc, was found using Equation 3.11:

Ereduced = (1− dc)Eco ∴ dc = 1− Ereduced
Eco

(3.11)

Table 3.1 shows that Case 2 experienced an 11.9% reduction in stiffness, while Case 5 expe-

rienced a 79.1% reduction. The elastic compressive strain, εelc , and the plastic compressive

strain, εplc , were found using Equations 3.12a and 3.12b, respectively. Note that the sum of

these two strains is equal to the total compressive strain, εc. Furthermore, the plastic strain
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corresponds to the permanent strain level after complete unloading considering damage,

and can be determined directly from the stress-strain curves in Figure 3.5. As can be seen,

the values from the plots match the values calculated.

εelc =
σc

(1− dc)Eco
(3.12a)

εplc = εc − εelc = εc −
σc

(1− dc)Eco
(3.12b)

The elastic compressive strain corresponding to the undamaged concrete, εeloc, and the

inelastic compressive strain, εinc , were calculated using Equations 3.13a and 3.13b, respec-

tively. Note that the sum of these two strains is equal to the total compressive strain, εc.

εeloc =
σc
Eco

(3.13a)

εinc = εc − εeloc = εc −
σc
Eco

(3.13b)

The intent of this modelling exercise was to demonstrate elastic degradation, as well as

the calculation of the various concrete strains that ABAQUS uses. These calculations,

however, required the unloading curves to be known in order to determine the damage

parameters. The relationships used to define the damage parameters used in the modelling

performed for this thesis are discussed in detail in Chapter 5.

3.3.4 Plasticity Modelling

As discussed in Section 2.7, the requirements of a plasticity model include the definition

of an initial yield surface, a hardening rule, and a flow rule. The specific aspects of the

plasticity model used by the Concrete Damaged Plasticity Model within ABAQUS are

discussed here.
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Yield Function

The Concrete Damaged Plasticity Model uses the yield condition proposed by Lubliner

et al. (1989) with the modifications proposed by Lee and Fenves (1998) to account for the

differences in strength evolution under tension and compression loading. In terms of the

effective cohesion stresses, the yield function is expressed in Equation 3.14:

F (σ̄, ε̃pl) =
1

1− α
[
q̄ − 3αp̄+ β(ε̃pl)

〈
ˆ̄σmax

〉
−γ
〈
−ˆ̄σmax

〉]
− σ̄c(ε̃plc ) = 0 (3.14)

α =
(σbo/σco)− 1

2(σbo/σco)− 1
(3.15a)

β =
σ̄c(ε̃

pl
c )

σ̄t(ε̃
pl
t )

(1− α)− (1 + α) (3.15b)

γ =
3(1−Kc)

2Kc − 1
(3.15c)

where:

• σ̄t(ε̃plt ) and σ̄c(ε̃
pl
c ) are the effective tensile cohesion stress and effective compressive co-

hesion stress, respectively. These are both functions of the equivalent plastic strains,

ε̃plt and ε̃plc , respectively;

• σbo is the initial equibiaxial compressive yield stress;

• σco is the initial uniaxial compressive yield stress;

• q̄ is the Mises equivalent stress, where q̄ =
√

3
2
S̄ : S̄ =

√
3J2; J2 is the second devia-

toric stress invariant;

• p̄ is the effective hydrostatic pressure stress, where p̄ = −I1/3; I1 is the first stress
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invariant;

• ˆ̄σmax is the maximum principal effective stress.

The terms α and γ represent material constants. The term α is a function of the ratio

of initial equibiaxial and uniaxial compressive yield stresses, σbo and σco, respectively.

Experimental values of this ratio lie between 1.10 and 1.16, yielding values of α between

0.09 and 0.12 (Lubliner et al., 1989). Testing performed by Kupfer et al. (1969) showed

that specimens subjected to equal biaxial compression yielded a 16% higher strength than

uniaxially loaded specimens. Therefore, the default value of σbo / σco used by ABAQUS is

1.16.

The term γ only appears under states of triaxial compression, corresponding to a stress

state where σmax<0, and is a function of the parameter Kc. Kc is the ratio of the second

stress invariant on the tensile meridian (T.M.) to the second stress invariant on the com-

pression meridian (C.M.) at initial yield for any given pressure invariant value. As shown

in Figure 3.6, Kc is used to define the shape of the failure surface within the deviatoric

plane.

When Kc takes a value of 1.0, the failure surface within the deviatoric plane becomes a

circle, corresponding to the classical Drucker-Prager hypothesis. It has been shown in the

literature that the shear strength of concrete under equal biaxial compression (the case

where equal stresses act in two principal axes and zero stress acts in the third) is different

than the shear strength of concrete under triaxial compression. These two stress states

represent different positions within the deviatoric plane. Therefore, the failure surface

which aims to reflect the experimental behaviour of concrete should take into account the

influence of the third deviatoric stress invariant and adopt a non-circular failure surface

within the deviatoric plane (Yu et al., 2010). Furthermore, the original model proposed

by Lubliner et al. (1989) states that constant values of Kc ranging from 0.64 - 0.80 are

75



Figure 3.6: Influence of Kc on the Failure Surface in the Deviatoric Plane (DSS, 2012)

acceptable. The Concrete Damaged Plasticity Model in ABAQUS recommends a default

value of 2/3 for Kc, and limits the permissible values to 0.5 < Kc ≤ 1.0.

Hardening

In the original plasticity model proposed by Lubliner et al. (1989), isotropic hardening

was used. This hardening rule provides good results for monotonic loading, but is not

appropriate for modelling the cyclic behaviour of concrete. Under cyclic loading, the evo-

lution of one strength (compression or tension) does not influence the evolution of the

other strength. Therefore, the modifications proposed by Lee and Fenves (1998) incorpo-

rated a two-variable hardening rule; one variable to control compression and the second

to control tension. Recalling the hardening rules discussed in Section 2.7.2, this approach

follows the independent hardening rule, where the material is assumed to harden inde-

pendently in both tension and compression. In the Concrete Damaged Plasticity Model,

the evolution of the yield and loading surfaces is controlled by two hardening variables,

ε̃plt and ε̃plc , referred to as the tensile and compressive equivalent plastic strains, respectively.
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Plastic Flow Rule

It has been found that the use of the associated flow rule for concrete is not valid for the

full range of the concrete response spectrum, and leads to significant discrepancies between

the predicted and experimental responses (Hu and Schnobrich, 1989). As concrete is a

material that experiences significant volume changes under loading, a non-associated flow

rule is necessary to control dilatancy in the modelling (Lee and Fenves, 1998). Therefore,

the Concrete Damaged Plasticity Model utilizes a non-associated plastic potential flow

rule, which can be expressed in the effective stress space using Equation 3.16:

ε̇pl = λ̇
∂G(σ̄)

∂σ̄
(3.16)

where ε̇pl is the plastic strain rate, G is the flow potential function and λ is a non-

negative scalar hardening parameter. The flow potential function, G, used in this model

is a hyperbolic Drucker-Prager function and is expressed in the p − q plane (meridional

plane) using Equation 3.17:

G =
√
εσtotanψ + q̄2 − p̄tanψ (3.17)

where ψ is the dilation angle, σto is the uniaxial tensile stress of the concrete at failure as

defined by the user, and ε is a parameter referred to as the plastic potential eccentricity.

This flow potential curve gives the relation between the plastic flow direction and the plastic

strain rate. The curve is continuous and smooth, thus ensuring that the flow direction is

always uniquely defined. The flow potential curve is defined in the p − q plane as shown

in Figure 3.7.

The function approaches the classic linear Drucker-Prager flow potential asymptotically as

the confining pressure increases, and intersects the hydrostatic pressure axis at 90◦. The

shape of the hyperbola is adjusted through the eccentricity parameter, ε. The eccentricity is
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Figure 3.7: Hyperbolic Drucker-Prager Flow Potential Function (DSS, 2012)

a small positive value which defines the rate that the plastic potential function approaches

the asymptote. The default value for the eccentricity is 0.1. This value implies that the

material has a relatively constant dilation angle over a wide range of confining pressures.

If a larger eccentricity is used, the function will have a greater curvature, thus the dilation

angle will increase more rapidly as the confining pressure is decreased. Using eccentricity

values that are significantly less than the default value may lead to convergence issues

when modelling low confining pressures due to the tight curvature of the function at the

intersection with the p-axis.

The flow potential function is also dependent on the dilation angle, ψ. This angle is a

material property that is a measure of the inclination of the flow potential function within

the meridional plane relative to the hydrostatic pressure axis at high confining pressures

(Figure 3.7). A small dilation angle will produce a brittle behaviour, while higher values

will produce a more ductile behaviour (Malm, 2009). The physical meaning of this angle

and its influence on the behaviour of concrete will be discussed in further detail in Sections

5.4.1 and 6.4.1.

Viscoplastic Regularization

The softening behaviour exhibited in the post-peak response of concrete may cause nu-

merical convergence problems in the model. This is especially significant for the uniaxial

tensile stress-strain curve that displays a drastic change in slope at peak stress. A com-
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mon technique to overcome these convergence issues is to use viscoplastic regularization

of the constitutive equations. The Concrete Damaged Plasticity Model utilizes a general-

ization of the Devaut-Lions approach which allows the stresses to be outside of the yield

surface. Within the plasticity material definition of the concrete model, users may input

a value for the viscosity parameter, µ. The default value of µ that ABAQUS/Standard

uses is zero, which corresponds to no viscoplastic regularization. A model that does not

utilize viscoplastic regularization yields the inviscid solution, or the solution that considers

zero viscosity of the concrete. If a viscosity parameter greater than zero is specified, the

viscoplastic strain rate, ε̇plv , is defined using Equation 3.18:

ε̇plv =
1

µ
(εpl − εplv ) (3.18)

where µ is the viscosity parameter that represents the relaxation time of the viscoplastic

system, εpl is the plastic strain evaluated in the inviscid solution, and εplv is the viscoplastic

strain. As a viscoplastic strain is now used, the viscous stiffness damage variable, dv, is

utilized and is defined using Equation 3.19:

ḋv =
1

µ
(d− dv) (3.19)

where d is the stiffness damage variable of the inviscid solution. If viscoplastic regu-

larization is specified, model output will be based on plastic strain and elastic stiffness

degradation values, εplv and dv, respectively. The use of a small value for the viscosity pa-

rameter relative to the iteration time increment will result in improvements to the solution

convergence rate without compromising the accuracy of the results. As µ decreases towards

zero, the solution becomes the plastic solution. If µ becomes significantly larger than the

iteration time increment, the solution approaches the elastic solution. The selection of an

appropriate viscosity parameter is discussed in detail in Sections 5.4.2 and 6.4.2.
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Chapter 4

Beam Modelling Parameters

This chapter presents an overview of the model parameters that were used in the numerical

simulations that apply to all twelve beams studied. The material properties of concrete

and glass fibre reinforced polymer (GFRP) that were used for all beam simulations are

presented. This chapter then focuses on the geometric and analytical details used to

model the concrete beams and GFRP reinforcement, including beam dimensions, section

assignments, boundary conditions, element selection, and time step incrementation.

4.1 Material Properties used in Modelling

4.1.1 Concrete - Compressive Strength

Concrete compressive strength testing was performed by Krall (2014) on 100x200mm cylin-

ders to determine the actual properties of the concrete used in the experimental beams.

After 28 days of being cast, 3 cylinders were tested and yielded an average compressive

strength of 47.3MPa. After 101 days of being cast, 28 cylinders were tested and yielded

an average compressive strength of 58.1MPa. The average compressive strength of all

cylinders tested, regardless of age, was 56.5MPa. The twelve concrete beams were tested

80



over a span of 55 days; the first beam was tested 43 days after the concrete was cast,

while the final beam was tested 98 days after the concrete was cast. Therefore, to increase

the accuracy of the finite element modelling, it was necessary to predict the compressive

strength of each beam at the time of testing. The model as proposed by ACI 209R-92

was considered, which correlates the compressive strength of concrete with the age of the

concrete as shown in Equation 4.1:

fcmt =

(
t

a+ bt

)
fcm28 (4.1)

where fcmt is the compressive strength of concrete at time t, t is the age of the concrete

in days, a and b are constants, and fcm28 is the concrete mean compressive strength at 28

days with units of MPa. The constants a and b are functions of the type of cement used

and the method of curing. The ranges of these constants for normal weight concrete are

0.05 - 9.25 for a and 0.67 - 0.98 for b. Table 4.1 presents typical recommended values for

a and b.

Table 4.1: ACI 209R-92 Concrete Age Model

Type of Moist-Cured Concrete Steam-Cured Concrete

Cement a b a b

I 4.00 0.85 1.00 0.95

III 2.30 0.92 0.70 0.98

It was determined through trial-and-error that values of a = 7.140 and b = 0.743 are

effective in replicating the strength development observed in the tested concrete and are

able to accurately predict the measured 28-day and 101-day strengths. Figure 4.1 compares

the relationship between compressive strength and time using the proposed constants and

using the recommended constants for a Type I cement that has been moist cured (a = 4.0,

b = 0.85).

Using the proposed model, the compressive strength was predicted for each beam. Table 4.2
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Figure 4.1: Proposed Concrete Age Model

presents the age of each beam at the time of testing, the compressive strength as predicted

using the proposed model, and the percent difference between the predicted strength and

the average experimental compressive strength of 56.5MPa.

As shown in Table 4.2, the beams with no stirrups (BM XX-INF) were tested first while

the beams with the increased stirrup diameter (BM XX-s230) were tested last. As a result,

the beams with no stirrups had the lowest predicted concrete compressive strengths and

had the largest percent difference with the average compressive strength. For this reason,

the compressive strength as predicted by the model was used for all beams with no stirrups.

Conversely, the predicted concrete strength for all beams with stirrups matched very closely

to the average tested strength. Therefore, the average compressive strength of 56.5MPa

was used for all beams with stirrups to simplify the analyses, as shown in Table 4.2.

4.1.2 Concrete - Tensile Strength

The tensile strength of concrete typically ranges from 8 to 15% of the compressive strength.

The tensile strength is strongly influenced by the type of aggregates, compressive strength
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Table 4.2: Selection of Concrete Compressive Strength

Beam
t f

′
c Predicted % f

′
c Used

(Days) (MPa) Difference (MPa)

12-INF 54 54.0 4.3 54.0

16-INF 50 53.4 5.5 53.4

25-INF 43 52.0 7.9 52.0

12-220 72 56.2 0.6 56.5

16-220 68 55.8 1.3 56.5

25-220 56 54.3 3.8 56.5

12-150 91 57.6 1.9 56.5

16-150 86 57.3 1.3 56.5

25-150 84 57.1 1.1 56.5

12-s230 98 58.0 2.6 56.5

16-s230 96 57.9 2.4 56.5

25-s230 92 57.6 2.0 56.5

of the concrete, and the stress acting transversely to the tensile stress. The tensile strength

is also strongly affected by the type of test used to determine it (MacGregor and Wight,

2005). Figure 4.2 presents three common experimental tests used to determine the tensile

strength of concrete.

Figure 4.2: Common Tensile Strength Test Methods

The first tensile test is the “direct test” as shown in Figure 4.2a. Although this method is
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less common as it is difficult to apply a tensile load directly to a concrete specimen, it is

an effective means to determine the tensile capacity directly. The cracking stress, fcr, can

be determined from the test using the equation shown in Figure 4.2. In absence of this

test, the cracking stress can be predicted as follows:

fcr = 0.33λ
√
f ′
c (4.2)

where λ accounts for the concrete density. As it is difficult to apply tensile loads directly,

indirect test methods have become standard practice. The “modulus of rupture” or flexure

test involves the four-point loading of a concrete prism as shown in Figure 4.2b. This creates

a region of pure bending between the load points where the shear force is zero. The applied

moment that induces fracture within this region, Mcr, can be used to indirectly calculate

the ultimate tensile stress, or modulus of rupture fr. As the tensile strength of concrete

under flexure is a primary concern, the modulus of rupture is typically used in design. CSA

A23.3-04 specifies the following approximation to fr:

fr = 0.6λ
√
f ′
c (4.3)

Another common test is the “split-cylinder test”. This test involves the application of a

compressive load to the side of a standard test cylinder as shown in Figure 4.2c. This

compressive load induces indirect tensile stresses transverse to the applied loading due to

Poisson’s effect, causing the cylinder to eventually split into two halves. Split-cylinder

testing was performed by Krall (2014) on the experimental concrete to determine the

splitting tensile strength fsp, and yielded strengths ranging from 3.56MPa to 5.06MPa,

with an average strength of 4.2MPa.

To accurately model the uniaxial behaviour of concrete under direct tensile loads, it was

concluded that the estimation of the tensile strength using the direct test formulation was
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the most appropriate. Therefore, Equation 4.2 was used for all beams. This resulted in

a tensile strength of 2.42MPa, 2.41MPa, and 2.38MPa for beams 12-INF, 16-INF, and

25-INF, respectively, and 2.48MPa for all beams with stirrups.

4.1.3 Concrete - Modulus of Elasticity

The initial modulus of elasticity of concrete, Eco, is dependent on factors including the

concrete compressive strength, properties of the aggregates and cement paste, and the rate

of loading. Various relationships have been derived to estimate the modulus of elasticity of

concrete. CSA A23.3-04 recommends the following relationship for concrete with densities

between 1500 and 2500kg/m3:

Eco = (3300
√
f ′
c + 6900)

( γc
2300

)1.5
(4.4)

where γc is the density of the concrete in kg/m3. The density of each concrete cylinder used

for compressive testing was determined by Krall (2014), and it was found that the average

density of the concrete used in the beam specimens was 2417kg/m3, which falls within the

applicable range for Equation 4.4. CSA A23.3-04 also presents a simplified relationship as

shown in Equation 4.5 which is applicable for normal density concrete with compressive

strengths between 20 and 40MPa:

Eco = 4500
√
f ′
c (4.5)

ACI 318-11 provides the following empirical equations for computing the modulus of elas-

ticity for concrete with unit weights varying between 90 and 155pcf (1442 and 2483kg/m3):
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Eco = 33w1.5
c

√
f ′
c (Imperial Units) (4.6a)

Eco = 0.0427w1.5
c

√
f ′
c (SI Units) (4.6b)

where wc is the unit weight of concrete. For normal weight concrete with a density of

145pcf (2323kg/m3), Equation 4.6 can be simplified to:

Eco = 57000
√
f ′
c (Imperial Units) (4.7a)

Eco = 4700
√
f ′
c (SI Units) (4.7b)

The average compressive strength of the concrete used in the beam testing was found

to be 56.5MPa, thus Equation 4.5 is not applicable. Therefore, to consider the higher

stiffness of high strength concrete and to maintain the simplicity of Equations 4.5 and 4.7,

the following relationship was used to calculate the concrete modulus of elasticity for all

beams:

Eco = 5000
√
f ′
c (4.8)

This resulted in a modulus of elasticity of 36,742MPa, 36,538MPa, and 36,056MPa for

beams 12-INF, 16-INF, and 25-INF, respectively, and 37,583MPa for all beams with stir-

rups.

4.1.4 Concrete - Poisson’s Ratio

When using ABAQUS/CAE, the Poisson’s ratio for concrete, υ, is inputed when defining

the elastic properties. The Poisson’s ratio of concrete as recommended by Model Code 2010

ranges from 0.14 to 0.26. This range is applicable for compressive stresses ranging from -

0.6fck to 0.8fck, where fck is the characteristic compressive strength equal to approximately
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f
′
c minus 1.6MPa (Reineck et al., 2003). For the purposes of design, Model Code 2010 states

that a value of υ = 0.20 is sufficiently accurate. Chen (1982) states that the Poisson’s ratio

for concrete ranges from 0.15 to 0.22, with a representative range being 0.19 to 0.20.

Therefore, a value of 0.20 was selected for all beam simulations performed for this thesis.

The influence of the Poisson’s ratio on the beam responses is presented in Appendix B and

C, and was found to be negligible.

4.1.5 GFRP - Modulus of Elasticity and Tensile Strength

Fibre reinforced polymer (FRP) materials are linear-elastic until failure. This sudden and

brittle rupture mode is regarded as a disadvantageous material characteristic as there is

little warning of impending failure as compared to steel reinforcement which exhibits plastic

deformation upon yielding. However, as it is only necessary to prescribe the tensile modulus

of elasticity and the ultimate strength of the FRP material, this material behaviour is very

simple to model. ComBAR, glass fibre reinforced polymer (GFRP) bars manufactured

by Schoeck Canada, were used for both the longitudinal and transverse reinforcement

within the experimental beams. The material properties used for the GFRP were taken

from technical literature provided by the manufacturer at the time of testing, and have

been previously summarized in Table 2.5. For the GFRP stirrups, the ultimate tensile

strength of only the straight portion of the stirrup was specified in the modelling (the

reduced strength at the stirrup corners was not considered). As no stirrups ruptured

during testing, the reduced strength in the bent regions of the stirrups was not critical,

therefore this simplification is acceptable.
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4.2 Concrete Beam Modelling

4.2.1 Beam Dimensions

The considerations used to design the experimental beams were discussed previously, in-

cluding the process used to select the width (b), height (h), effective reinforcement depth

(d), shear span (a), longitudinal reinforcement ratio (ρF ), and the transverse reinforcement

ratio (ρV ) for each beam. Table 4.3 presents the designed dimensions of the experimen-

tal beams that were used in the ABAQUS modelling. As can be seen, the shear span to

effective depth ratio (a/d) remained constant for all beams, thus simplifying the analyses.

Table 4.3: Beam Dimensions

Beam
b h d

a/d
ρF ρV

(mm) (mm) (mm) (%) (%)

12-INF

200 350 270 2.5 2.51

0.00

12-150 0.75

12-220 0.51

16-INF

200 345 270 2.5 2.23

0.00

16-150 0.75

16-220 0.51

25-INF

200 330 270 2.5 1.82

0.00

25-150 0.75

25-220 0.51

12-s230

230

365

270 2.5

2.18

1.1916-s230 360 1.94

25-s230 345 1.58

Due to the symmetry of the beams and applied loading, only one-half of each beam was

analyzed to reduce the computational effort. Each beam was split at the mid-span such

that only one shear span and one support were analyzed.
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4.2.2 Beam Parts and Section Assignments

Each beam geometry was modelled in three-dimensions using the ABAQUS/CAE interface.

The model is constructed by creating “Parts”. Parts represent the building blocks of any

ABAQUS model, and are assembled to create the final model. Each part is an independent

geometry that is assigned a “Section”. A section contains the information about the

properties of a part or region of a part. The properties of this section are dependent on the

type of part being considered. For example, for a deformable wire part, the section will

define the cross-sectional area of the wire; for beam parts, the section will assign the profile

of the part, thus defining cross-sectional properties such as moment of inertia. The section

also assigns the desired material to the part. Each material that is created is assigned its

own name and is independent of any specific section. Therefore, the user may assign a

particular material to as many sections as necessary. Similarly, each section is assigned

its own name and is independent of any specific part. Therefore, the user may assign a

section to as many parts as necessary. In summary, the following procedure is used to

assign properties to a part:

1. Create material

2. Create section

3. Assign the material to the section

4. Assign the section to the part

For the modelling performed for this thesis, three parts were necessary. The first part

was the rectangular geometry of the beam consisting of concrete elements. The second

part was the longitudinal tensile GFRP reinforcement. The third part was the transverse

shear GFRP reinforcement (for beams with stirrups). Each of these parts was created

independently, given section and material properties, and then assembled to create the
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final model as shown in Figure 4.3.

Figure 4.3: Beam Modelling Parts

The concrete part was defined as a three-dimensional “Deformable” body, meaning it is

a part that can be of arbitrary shape and that can deform under mechanical, thermal, or

electrical loading (as opposed to a “Discrete Rigid” body which is assumed to remain rigid

during the analyses). To create the rectangular concrete region of the beam, the Extrusion

formulation was used. This method allows the user to create a three-dimensional geometry

by defining a two-dimensional cross-section profile and extruding this profile to the required

length.

To define the properties of the concrete part, a “homogeneous solid” section was applied to

it. This section is used to define a single material for solid regions. Other section options

are available for different analysis types including “composite solid” sections for layered

regions or “generalized plane strain” sections for two-dimensional planar regions.

The definition of the remaining two parts (longitudinal and transverse reinforcement) will

be discussed in Section 4.3.
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4.2.3 Concrete Element Selection

The use of ABAQUS software has become increasingly popular among researchers due to

the extensive element library that is available. A discussion of the elements selected to

model the concrete is presented here. The selection of elements for the GFRP reinforcement

is discussed in Section 4.3.

The geometry that an element assumes is dependent on its “family”. The element families

that this thesis will focus on include continuum, membrane, and truss elements as shown

in Figure 4.4.

Figure 4.4: Element Families (DSS, 2012)

The concrete in all analyses performed in this thesis was modelled using continuum ele-

ments. Continuum, or solid, elements are the standard volume element offered by ABAQUS.

These elements are advantageous for modelling three-dimensional nonlinear problems in-

volving plasticity and large deflections. In three-dimensions, continuum elements may take

the form of tetrahedra, triangular prisms, or hexahedra bricks. Tetrahedral elements are

geometrically versatile and are advantageous for meshing complex shapes. Tetrahedra are

also less sensitive to initial element shape; hexahedra elements are effective if their shape is

approximately rectangular, and become less accurate if they are initially distorted. A mesh

of undistorted hexahedral elements will often provide a solution of equivalent accuracy to

tetrahedral elements, but with less computational effort. Hexahedral elements are more

efficient and have a higher convergence rate. As the concrete beams modelled in this thesis

were rectangular, hexahedral continuum elements were selected to improve the efficiency
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of the analyses.

For a stress analysis, the degrees of freedom of interest are the translations of the element

nodes. Interpolation of these nodal values is performed to determine the displacement

at all other points within the element. The order of the interpolation (linear, quadratic,

cubic, etc.) is dependent on the number of nodes per element. For example, the 8-node

continuum element shown in Figure 4.4 uses linear interpolation and is referred to as a

first-order element, whereas a 20-node continuum element uses quadratic interpolation

and is referred to as a second-order element. Although second-order elements will provide

results of higher accuracy with fewer elements as compared to linear elements in theory,

higher-order elements will experience convergence issues when analyzing highly nonlinear

problems. For this reason, a sufficient number of linear elements was deemed acceptable

for all analyses.

“Shear locking” is a common phenomenon that occurs with first-order elements that are

subjected to bending. Consider a block of material subjected to pure bending as shown in

Figure 4.5a with the expected deformation shown in Figure 4.5b. If a two-dimensional, 4-

noded, quadrilateral, linear element with 4 integration points is used to model this material,

it would exhibit the deformation shown in Figure 4.5c.

Figure 4.5: Shear Locking of First-Order Elements (DSS, 2012)

As can be seen, the dotted lines in the deformed shape of the element are no longer

perpendicular at each integration point. This indicates that the shear stress at these points

is nonzero, which is not true for a material under pure bending. This is a consequence of

the inability of linear elements to have curved edges. This phenomenon means that strain
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energy is creating shearing deformation as opposed to the expected bending deformation.

This causes the element to be too stiff, and overall deflections to be underpredicted. A

common technique to overcome this behaviour is through the use of “reduced integration”.

Reduced integration reduces the number of integration points per element in order to avoid

excessive restraint. Consider the two-dimensional quadrilateral elements shown in Figure

4.6.

Figure 4.6: Full Integration vs. Reduced Integration Elements (DSS, 2012)

Reduced integration also decreases the time of analyses, which is especially beneficial for

three-dimensional problems. For example, a C3D8 element is an 8-noded continuum ele-

ment with 8 integration points (full integration), whereas a C3D8R element is an 8-noded

continuum element with only 1 integration point (reduced integration). Although reduced

integration is recommended to avoid shear locking of linear elements, this solution leads

to the issue of “hourglassing”. Consider the use of a single reduced integration element to

model the previously discussed material as shown in Figure 4.7a.

With reduced integration, the linear quadrilateral element has only 1 integration point (as
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Figure 4.7: Hourglassing of Reduced Integration Element (DSS, 2012)

opposed to the fully integrated element with 4 integration points). Under pure bending,

neither of the dotted lines at the integration point has changed length and the angle

between them has not changed as shown in Figure 4.7b. Therefore, all components of

stress at the element’s only integration point are zero. This means that the strain energy

in the element is zero, thus the element will be unable to resist this type of deformation as

it has no stiffness under this loading. As a result, hourglassing may lead to uncontrolled

distortions of the mesh. ABAQUS provides elements with hourglass control to minimize

this effect.

In summary, C3D8R elements were used to model all concrete regions. These elements

are hexahedral continuum elements (C), three-dimensional (3D), 8-noded linear bricks (8),

reduced integration (R), with hourglass control.

4.2.4 Beam Boundary Conditions

The boundary conditions used for all beams are shown in Figure 4.8. As can be seen, the

boundary conditions are in terms of the directional axes 1, 2, and 3 (‘1’ represents the

out-of-plane direction, ‘2’ represents the direction transverse to the beam’s longitudinal

axis, and ‘3’ represents the direction parallel to the beam’s longitudinal axis).

For the purposes of this discussion, “U” will represent displacements while “UR” will

represent rotations. Therefore, U1 refers to the displacement in the 1-axis while UR2

refers to the rotation about the 2-axis.
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Figure 4.8: Boundary Conditions

As shown in Figure 2.9, the beams were tested with simple supports. One support provided

restraint to both vertical and longitudinal displacements (directions 2 and 3) while allowing

rotations about the out-of-plane axis (pin support). The second support provided restraint

to only vertical displacements (direction 2) while allowing longitudinal displacements and

rotations about the out-of-plane axis (roller support). To model these conditions, a dis-

placement of zero was prescribed in the 2-axis to a line of nodes at the support (U2 = 0),

thus allowing for rotations and longitudinal displacements.

Furthermore, as only one-half of each beam was modelled, it was necessary to apply bound-

ary conditions to the mid-span section. To provide the continuity of the beam at the mid-

span, the rotations about the 1-axis and the displacements in the 3-axis were restrained at

all nodes at the mid-span while allowing for vertical displacements in the 2-axis (UR1 =

0, U3 = 0).

To ensure stability of the model and to avoid singularity, the out-of-plane translations were

restrained at three nodes at the support (U1 = 0).
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The models were analyzed using displacement-controlled loading. This method was used

in order to study the post-peak response of the load-displacement behaviour of each beam.

To do this, a downwards vertical displacement boundary condition was applied to all nodes

at the mid-span. The magnitude of this displacement was set large enough to ensure that

failure of each beam occurred. For example, a boundary condition of U2 = -12mm was

used for all beams with no stirrups (BM XX-INF).

To study the behaviour of each beam under loading, Applied Loading vs. Mid-span De-

flection curves were constructed for each proposed model. As the loading was applied as

an imposed vertical displacement, it was necessary to calculate the applied loading for

each simulation using the support reaction forces. As the beams were simply-supported,

Equation 4.9 can be used to calculate the reaction forces:

R =
P

2
∴ P = 2R (4.9)

where R is the vertical component of the reaction force at each support and P is the total

applied load. As the simulations were performed on three-dimensional beams, the reaction

forces were distributed to multiple nodes (line of nodes at the support with prescribed

boundary condition). Therefore, the reaction forces outputted at each support node were

summed and multiplied by 2 to determine the total applied loading at any given time.

4.2.5 Time Step Incrementation

When creating an ABAQUS model for analysis, it is necessary to define one or more

analysis “steps”. The sequence of steps allows the user to capture changes in the loading

and boundary conditions of the model, changes to the interaction between parts in the

model, changes to the analysis procedure, or any other changes to the model that may

occur during the analysis (DSS, 2012). For the models created in preparation of this
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thesis, only one analysis step was required to capture the monotonic loading conditions.

ABAQUS/Standard uses the Newton’s method to solve nonlinear equilibrium equations

within each step. The solution is obtained through a series of increments, with iterations

to obtain equilibrium occurring within each increment. ABAQUS allows the user to use

Automatic Incrementation, where the analysis will select increment sizes automatically

based on computational efficiency. With this type of solution technique, it is necessary to

input the minimum increment size, the maximum increment size, and the maximum num-

ber of increments. If ABAQUS requires a smaller time increment than the value specified

to reach convergence, the analysis will be terminated. Therefore, the required lower limit

size may become quite small for highly nonlinear problems. Similarly, if ABAQUS requires

more increments than the maximum value specified, the analysis will be terminated. Fi-

nally, when using Automatic Incrementation, ABAQUS will select the largest increment

size possible to increase efficiency, but will not exceed the maximum size specified by the

user.

The selection of the maximum increment size plays a critical role in the accuracy of the

analysis. To demonstrate this point, ABAQUS/Standard was used to analyze a cube of

concrete under uniaxial compression. The Hognestad Parabola was used to define the

uniaxial stress-strain behaviour of the concrete, with a compressive strength of 56.5MPa.

The model was analyzed using various values for the maximum time increment size as

shown in Figure 4.9.

As can be seen, with a maximum increment size of 0.01, the analysis results are able to

correlate strongly with the expected response (the expected response is omitted here for

clarity, but is identical to the model response). With larger increment sizes, such as 0.1

and 1.0, the analyses are able to match the pre-peak behaviour that exhibits negligible

change to the curvature, but fail to capture the large curvatures in the post-peak region.

Therefore, to maximize the accuracy of the modelling, a maximum time increment size of
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Figure 4.9: Influence of Maximum Time Increment Size

0.01 was used for all models to ensure that the full spectrum of the concrete response is

captured.

4.3 GFRP Reinforcement Modelling

As discussed previously, an ABAQUS model is created by assembling one or more parts.

The first part of the proposed model, the concrete beam, has been discussed. This section

will now focus on the modelling of the remaining parts: the GFRP longitudinal and GFRP

transverse reinforcement. Two methods of providing reinforcement to concrete were studied

in this research:

1. Discrete, one-dimensional truss sections

2. Smeared, reinforced membrane sections
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Each method will be presented separately, with each discussion to include the part and

section properties, element selection, and assembly constraints.

4.3.1 Reinforcement Method 1 - Truss Sections

The first method used to model the reinforcement was the use of discrete truss sections.

For the longitudinal bars, each individual bar was modelled as a discrete one-dimensional

rod. For the transverse reinforcement, each stirrup was constructed using four discrete rods

to create rectangular, closed-loop stirrups. The reinforcing bars were defined as deformable

“wire” type parts. A wire is depicted as a line in ABAQUS/CAE, and is used to model a

solid that has a thickness and depth that are significantly smaller relative to its length. To

assign properties to this wire part, a “beam” section or a “wire” section can be assigned

to it. Beam sections provide both axial and bending stiffness and define the cross-section

profile (I-section, box section, circular section, etc.). Truss sections provide only axial

stiffness and define the material properties and cross-sectional area. As the axial stiffness

and cross-sectional area were the only two parameters of interest for each reinforcing bar,

the truss section was applied to each wire part. The cross-sectional area of each bar was

set equal to the values presented in Table 2.5 as specified by the manufacturer.

Using this method to model reinforcement, truss elements were used to mesh the discrete

rods. Truss elements are slender structural elements that can only transmit axial force and

do not transmit moments or transverse loads. ABAQUS provides 2-noded truss elements

as shown in Figure 4.4 that perform linear interpolation of the nodal displacement values

and carry constant strains. 3-noded truss elements are also available which use quadratic

interpolation, thus allowing for curved elements and linear, non-constant, strain distribu-

tions within the element. It was concluded that a sufficient number of linear elements was

adequate to capture the strain distribution within each reinforcing bar. Therefore, T3D2
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elements were selected to model the truss sections: Truss elements (T), three-dimensional

(3D), and 2-nodes per linear element (2).

These individual bars are then incorporated into the model by being embedded into the

concrete through the “Embedded Region” constraint. With this constraint, the truss

elements are referred to as the “embedded region” and the continuum concrete elements

are referred to as the “host region”. If a node of an embedded element lies within a host

element, the translational degrees of freedom of the embedded node become constrained to

the values of the corresponding degrees of freedom of the host element. With this modelling

approach, the concrete behaviour is considered independently of the reinforcement. The

influence of the interaction between the concrete and reinforcing bars on the member

response, such as bond slip and dowel action, are not considered. However, these factors

that influence the phenomenon of tension stiffening are simulated approximately through

modifications made to the post-peak tensile response within the concrete model as discussed

in Section 3.3.2. Therefore, the interaction between the concrete and the reinforcement is

considered in the modelling of the concrete, not the reinforcement.

4.3.2 Reinforcement Method 2 - Membrane Sections

The second method studied to provide reinforcement to the concrete involved the use

of embedded reinforced membrane sections. ABAQUS allows the user to define one or

multiple layers of reinforcement within membrane sections. Once reinforcement has been

specified for the membrane section, the membrane can be embedded into the continuum

concrete elements using the Embedded Region constraint as discussed previously for the

truss section method. For the longitudinal reinforcement, each membrane section repre-

sents a single layer of reinforcing bars. For the transverse reinforcement, each membrane

section represents a single stirrup.
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Each membrane was defined by first creating a three-dimensional, deformable “shell” part.

A shell part is a planar representation of a solid that has a thickness that is significantly

smaller relative to its width and length. To assign material properties and reinforcing layers

to the shell part, a “membrane” section was assigned to it. Membrane sections represent

thin surfaces that offer strength in the plane of the surface only, do not provide bending

stiffness, and have negligible stresses in the thickness direction.

Using this method to model reinforcement, membrane elements were used to mesh the

membrane sections. ABAQUS provides 4-noded quadrilateral membrane elements that

perform linear interpolation of the nodal displacement values. Similar to the 8-noded

hexahedral continuum elements that were used to model the concrete, the fully-integrated

4-noded membrane element also suffers from the phenomenon of shear locking, and thus

requires reduced integration in combination with hourglass control. Alternatively, 8-noded

quadrilateral membrane elements with quadratic interpolation as shown in Figure 4.4 could

be used to avoid these issues, but may introduce numerical convergence issues. Therefore,

M3D4R elements were selected to model the membrane sections: Membrane elements (M),

three-dimensional (3D), 4-noded linear quadrilaterals (4), reduced integration (R), with

hourglass control.

To define a layer of reinforcing bars within the membrane section, the user must specify the

following: cross-sectional area of a single reinforcing bar (Abar), spacing of the reinforcing

bars (S), material of the reinforcing bars, and the orientation of the reinforcing bars within

the membrane. The individual reinforcing bars within the membrane are treated as a

smeared layer of reinforcement with an equivalent thickness. The equivalent thickness of

this layer is determined using Equation 4.10:

teq =
Abar
S

(4.10)
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where teq is the equivalent thickness of the reinforcement layer within the membrane section.

Figure 4.10 presents the cross-sectional view of a reinforced membrane.

Figure 4.10: Reinforced Membrane Cross-Section

Referring to Figure 4.10, b is the width of the membrane, tmemb is the thickness of the

membrane, and Amemb is the area of the membrane. When the reinforced membrane is

embedded into the solid concrete elements and subjected to tensile loads, the area of the

membrane and the area of the smeared reinforcement will contribute to the tensile carrying

capacity and stiffness of the assembly. Therefore, the total area of material resisting tensile

loading can be expressed using Equation 4.11:

Amemb = (b)(tmemb) (4.11a)

Areinf = (Number of bars)(Abar) =
Abarb

S
(4.11b)

Atotal = Amemb + Areinf (4.11c)

It is important to note that the area that the bars occupy within the membrane is double

counted when calculating the tensile load in the reinforced membrane. This means that

the full area of the membrane is used; the area that the bars occupy is not subtracted from

the membrane area. For example, the total area is not calculated as follows:

Atotal 6= (Amemb − Areinf ) + Areinf (4.12)
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To demonstrate this point, an ABAQUS model was created of a single reinforced membrane.

For simplicity, glass fiber reinforced polymer (GFRP) was used for both the membrane

material and the reinforcing bar material. The membrane had a width of 200mm, a height

of 350mm, and was fixed at the base. The membrane was reinforced with GFRP bars that

had individual cross-sectional areas of 113mm2 and spaced at 100mm. The membrane was

put into a state of tension by applying a 3mm upwards vertical displacement to the top

boundary of the membrane. As GFRP is a linear-elastic material and a single material

was used for both the membrane and the reinforcing bars, the relationship expressed in

Equation 4.13 was used to predict the applied load required to create the imposed vertical

deformation.

∆ =
PL

AE
; P =

∆AE

L
(4.13)

where ∆ is the applied displacement, A is the total area of the material resisting the applied

displacement, E is the modulus of elasticity of the membrane/reinforcement materials,

and L is the initial length of the membrane. For the analyses performed, ∆ = 3mm, E

= 63,500MPa, L = 350mm, b = 200mm, Abar = 113mm2, S = 100mm. The total area

of reinforcement was equal to Areinf = Abarb/S = 226mm2. The area of the membrane,

Amemb = b ∗ tmemb, was a function of the membrane thickness, therefore the influence of

various membrane thicknesses was studied. Ideally, the membrane material will provide

zero contribution to the tensile carrying capacity of the reinforced membrane; it is the

reinforcement within the membrane that should carry the loading. Table 4.4 presents the

analysis for various membrane thicknesses.

Referring to Table 4.4, Case 1 represents the ideal scenario where only the reinforcement

contributes to the strength (Amemb = 0). This case has a theoretical load of Ptheor =

123.009kN. However, we cannot specify a membrane thickness of zero in ABAQUS, so this

case was not modelled. Table 4.4 shows that with the same membrane reinforcement but

an increased membrane thickness of 1mm, the ABAQUS model yielded a load of Pmodel =
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Table 4.4: Reinforced Membrane Analysis

CASE 1 CASE 2 CASE 3 CASE 4 CASE 5

Reinf. Membrane Membrane Membrane Membrane

Only + Reinf. + Reinf. + Reinf. + Reinf.

tmemb (mm) 0 0.000001 0.001 1 10

∆L (mm) 3 3 3 3 3

L (mm) 350 350 350 350 350

b (mm) 200 200 200 200 200

Amemb (mm2) 0 0.0002 0.2 200 2,000

Efrp (MPa) 63,500 63,500 63,500 63,500 63,500

S (mm) 100 100 100 100 100

Abar (mm2) 113 113 113 113 113

Areinf (mm2) 226 226 226 226 226

Atotal (mm2) 226.0 226.0002 226.2 426.0 2226.0

Ptheor (kN) 123.009 123.009 123.117 231.866 1,211.580

Pmodel (kN) - 123.009 123.117 231.866 1,211.581

% Increase - 0.00002% 0.09% 88.50% 884.96%

231.866kN, an 88.5% over-prediction of the load required in Case 1. Conversely, a mem-

brane thickness of 0.000001mm is able to predict the load to within 0.00002% error. This

analysis shows that it is possible to achieve accurate results using reinforced membranes.

A further observation is that the load predicted by the model strongly agrees with the

theoretical load. This proves that the total area of material that ABAQUS uses to resist

the tensile load, Atotal, is the summation of Amemb and Areinf . Therefore, the area that the

bars occupy is double counted as demonstrated in Equations 4.11 and 4.12.

To model the longitudinal reinforcement, each truss section in Method 1 represents a single

reinforcing bar, whereas each membrane section in Method 2 represents a single layer of
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reinforcing bars. Beams BM 12-YYY have 3 layers of longitudinal bars, therefore 3 mem-

brane sections were used to model this reinforcement configuration. Similarly, 2 membrane

sections were used for beams BM 16-YYY, and 1 membrane section for beams BM 25-YYY.

Each membrane section was embedded at the depth corresponding to the reinforcement

layer. Within each membrane section, the reinforcement inputs were modified to yield a

smeared layer of reinforcement with an area equivalent to the single layer of interest. Table

4.5 presents the inputs specified when defining the membrane sections that were used to

model the three longitudinal reinforcement configurations for beams with 12mm diameter

stirrups (beams with 20mm diameter stirrups used a different beam width, thus require

different inputs).

Table 4.5: Membrane Details - Longitudinal Reinforcement

Beam
Area per Bar Spacing teq Area/Layer # of Total Area

(mm2) (mm) (mm) (mm2) Layers (mm2)

12-YYY 113 50.00 2.26 452 3 1356

16-YYY 201 66.67 3.02 603 2 1206

25-YYY 491 100.00 4.91 982 1 982

Table 4.5 shows that the area of each bar matches the area provided by the manufacturer

for each beam. It is important to note that the spacing specified is not equal to the

actual spacing of the physical bars. This spacing was selected such that the product of the

equivalent thickness, teq = A/S, and the beam width, b = 200mm, is equal to the required

area of reinforcement per layer. To model the stirrups, each membrane section represented

a single stirrup. Therefore, it was necessary for the reinforcement inputs to yield a smeared

layer of reinforcement with an area equivalent to the area of two stirrup legs (closed loop

stirrups). Table 4.6 presents the inputs specified when defining the membrane sections

that were used to model the two stirrup types (12mm diameter and 20mm diameter).

Note that for beams with the larger stirrups, BM XX-sYYY, the beam width was increased
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Table 4.6: Membrane Details - Transverse Reinforcement

Beam
Area per Bar Spacing teq Total Area of Two Legs

(mm2) (mm) (mm) (mm2)

XX-YYY 113 100.00 1.13 226

XX-sYYY 314 115.00 2.73 628

to b = 230mm. Figure 4.11 depicts the longitudinal reinforcement arrangements for the

three types of beams using both truss sections and membrane sections. Note that the

membrane sections span the entire width and length of each beam. Figure 4.12 depicts a

typical transverse reinforcement arrangement using both truss and membrane sections.
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Figure 4.11: Modelling of Longitudinal Reinforcement: (a) Membrane Sections (b) Truss
Sections
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Figure 4.12: Modelling of Transverse Reinforcement: (a) Membrane Sections (b) Truss
Sections
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Chapter 5

Modelling of Beams with No Stirrups

Section 2.3 provided an overview of the experimental tests performed by Krall (2014) on

concrete beams reinforced with glass fibre reinforced polymer (GFRP) bars. Three-point

bending tests were performed on twelve rectangular beams. Three beams were reinforced

with GFRP longitudinal bars and no transverse reinforcement (BM XX-INF). The remain-

ing nine beams were reinforced with both GFRP longitudinal bars and GFRP transverse

reinforcement (BM XX-(s)YYY). This chapter focuses on the finite element modelling of

the beams with no stirrups, including BM 12-INF, BM 16-INF, and BM 25-INF.

5.1 Compression Modelling

The Hognestad Parabola constitutive equations were utilized to model the uniaxial concrete

compressive behaviour for all beams with no stirrups as shown in Equation 5.1:

σ(1)
c = Ecoεc for σc ≤ 0.4f

′

c (5.1a)

σ(2)
c = f

′

c

[
2

(
εc
ε′c

)
−
(
εc
ε′c

)2
]

for εc/ε
′

c ≤ 1.0 (5.1b)

σ(3)
c = f

′

c

1−

(
εc
ε′c
− 1

2

)2
 for εc/ε

′

c > 1.0 (5.1c)
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where:

ε
′

c =
2f

′
c

Ect
(5.2a)

Eco = 5000
√
f ′
c (5.2b)

Ect = 5500
√
f ′
c (5.2c)

In Equations 5.1 and 5.2, εc is the concrete compressive strain, ε
′
c is the concrete strain

at peak stress, Eco is the initial modulus of elasticity, and Ect is the modified modulus

of elasticity in the second region. These equations capture three regions of the uniaxial

compressive behaviour of concrete as shown in Figure 5.1.

Figure 5.1: Hognestad Parabola Uniaxial Compression Model

The first region, σ
(1)
c , represents the linear-elastic region up to a stress level of 0.4f

′
c. The

second region, σ
(2)
c , represents the nonlinear ascending region up to the peak stress, f

′
c. The

third region, σ
(3)
c , represents the post-peak strain-softening region that extends from the

peak stress to a complete loss of strength. These equations were used in the compression

modelling for all beams with no stirrups.
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The compressive strength used for BM 12-INF, BM 16-INF and BM 25-INF was 54.0MPa,

53.4MPa, and 52.0MPa, respectively, as previously summarized in Table 4.2. Table 5.1

shows the calculated values for the strain at peak stress, ε
′
c, and the maximum strain

corresponding to a complete loss of strength, εc,max, for all beams with no stirrups.

Table 5.1: Concrete Compressive Strains for Beams with No Stirrups

Beam f
′
c (MPa) ε

′
c εc,max

12-INF 54.0 0.00267 0.00802

16-INF 53.4 0.00266 0.00797

25-INF 52.0 0.00262 0.00787

The influence of this maximum compressive strain on each beam’s behaviour was studied.

To accomplish this, the expression for region 3 of the uniaxial compression curve, Equation

5.1c, was modified to become a function of the maximum strain as shown in Equation

5.3. This expression maintains the same peak stress and parabolic shape, but allows the

maximum strain to be prescribed easily.

σ(3)
c = f

′

c +
f

′
c(εc − ε

′
c)

2

(εc,max − ε′c)2
(5.3)

Various maximum compressive strain values were utilized to study the influence that this

variable had on each beam’s behaviour. Figure 5.2 presents the modified uniaxial com-

pression curves as provided by Equation 5.3 for BM 12-INF using various values of εc,max.

Figure 5.3 shows the influence of various maximum strain values on the load vs. mid-span

deflection response for BM 12-INF.

As can be seen, for maximum compressive strain values ranging from 0.008 (original

Hognestad Parabola value) to 0.0125, there is no change to the pre-peak response for BM

12-INF. This result was similar for the other beams with no stirrups. This behaviour is to

be expected, as the beams with no stirrups all experienced shear-tension failures during

the experimental testing. Therefore, failure modes were not dependent on the compressive
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Figure 5.2: Modified Hognestad Parabola Curves for BM 12-INF

Figure 5.3: Influence of Maximum Compressive Strain - BM 12-INF

crushing of concrete. The influence of this maximum strain was found to be significant for

the modelling of beams with stirrups as will be discussed in Chapter 6.
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5.2 Tension Modelling

Section 3.3.2 introduced three methods to define the uniaxial post-peak tensile response of

concrete in the Concrete Damaged Plasticity Model: 1) Stress-strain approach, 2) Fracture

energy approach, and 3) Crack-opening-displacement approach. The intent of this section is

to provide an overview of the analyses performed for each method, compare the effectiveness

of each method, and propose recommendations as to the most beneficial approach.

5.2.1 Stress-Strain Approach

The first approach to model the post-cracking response of concrete under uniaxial tensile

loads is to specify stress-strain data. It is common for design standards to assume that

concrete can support zero tensile stresses after cracking. However, as a result of the bond

between the concrete and the reinforcing bars, concrete is in fact capable of carrying tensile

stresses between cracks. This additional strength and stiffness that is associated with the

concrete-bar interaction is known as “tension stiffening”, and can be simulated by utilizing

a gradually descending post-peak tensile response. To consider this effect, the following

stress-strain constitutive equations were considered:

σ
(1)
t = Ecoεt for εt ≤ εcr (5.4a)

σ
(2)
t = f

′

t

(
εcr
εt

)0.4

for εt > εcr (5.4b)
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where:

Eco = 5000
√
f ′
c (5.5a)

εcr =
f

′
t

Eco
(5.5b)

f
′

t = 0.33
√
f ′
c (5.5c)

In Equations 5.4 and 5.5, εt is the concrete tensile strain, Eco is the initial modulus of

elasticity, εcr is the concrete strain at peak stress (at cracking), and f
′
t is the tensile

strength of the concrete (peak stress). These equations capture two regions of the uniaxial

tensile behaviour of concrete as shown in Figure 5.4.

Figure 5.4: Uniaxial Stress-Strain Tension Model

The first region, σ
(1)
t , represents the linear-elastic region up to the cracking stress f

′
t . The

second region, σ
(2)
t , represents the nonlinear descending post-peak region that attempts

to simulate the tension stiffening phenomenon. The post-peak relationship presented in

Equation 5.4b was first proposed by Tamai (1988), and has since been used by many

researchers including Belarbi and Hsu (1994), Hsu and Zhang (1996), and Wang and Hsu
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(2001). As the magnitude of the tension stiffening that occurs will significantly influence

the response of a reinforced structure, Kmiecik and Kaminski (2011) utilized a modified

version of the post-peak response:

σ
(2)
t = f

′

t

(
εcr
εt

)n
for εt > εcr (5.6)

Equation 5.6 allowed Kmiecik and Kaminski (2011) to study various post-peak responses

by introducing a variable, n, to control the rate of strength degradation. Values of n

ranging from the original value, 0.4, to 1.5 were studied. As n increases, the rate of decay

of the tensile capacity increases, representing less tension stiffening as shown in Figure 5.5.

Figure 5.5: Modified Uniaxial Stress-Strain Tension Model

When using the stress-strain approach to define the tensile behaviour of the concrete, it

was found that the simulations were terminated early in the analysis due to significant

convergence issues. With these numerical difficulties, no useful results were produced.

Wang and Hsu (2001) also encountered this issue, and suggested that the sharp change in

curvature at the peak stress was responsible. Potential solutions to this issue were studied

by the author, including the use of a plateau at the peak stress or the use of a higher
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viscosity parameter, with no success.

In addition to the numerical issues encountered when using the uniaxial stress-strain ap-

proach, this approach may also introduce unreasonable mesh sensitivity into the results

if significant regions of the concrete contain little or no reinforcement (DSS, 2012). This

applies particularly to the beams with no stirrups, as significant strains and deformations

associated with the shear-tension failures occur in elements that do not contain reinforce-

ment. This issue can be addressed through the use of the fracture energy concept as

proposed by Hillerborg et al. (1976), which will be discussed next.

5.2.2 Fracture Energy Approach

The second approach studied to define the tensile behaviour of the concrete was the use of

fracture energy. As discussed in Section 3.3.2, fracture energy, Gf , is a material property

as proposed by Hillerborg et al. (1976) to define the energy required to open a crack of

unit area. This approach defines the brittle nature of concrete through a stress vs. crack-

opening-displacement relationship as opposed to the previously discussed stress vs. strain

relationship.

For normal strength concrete, the fracture energy is dependent on factors including the

water-to-cement ratio, maximum aggregate size, curing conditions, and age of the concrete.

For high strength concrete, the type and quantity of aggregate become more influential

than the size of the aggregate. High strength aggregates are tougher to fracture and will

cause the crack orientations to change and multiply, thus will consume more energy during

the fracture process. The influence of all these factors has led to a significant scatter of

experimental Gf values presented in the literature. However, it is clear that there is a direct

correlation between a concrete’s compressive strength and fracture energy (International

Federation for Structural Concrete, 2013).
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Model Code 1990 estimates the fracture energy using the following expression:

Gf = GFo

(
fcm
fcmo

)0.7

(5.7)

where fcmo = 10MPa. fcm is the mean value of the concrete compressive strength, and is

a function of the characteristic compressive strength, fck, as shown in Equation 5.8:

fcm = fck + ∆f (5.8a)

∆f = 8MPa (5.8b)

Reineck et al. (2003) proposed the following relationship between the characteristic com-

pressive strength, fck, and the cylinder strength, f
′
c:

fck = f
′

c − 1.6MPa (5.9)

The final variable of Equation 5.7 is the base value of the fracture energy, GFo, which is a

function of the maximum aggregate size, dmax, as found in Table 5.2.

Table 5.2: Base Values of Fracture Energy - Model Code 1990

dmax (mm) GFo (Nmm/mm2)

8 0.025

16 0.030

32 0.058

When compared with experimental data, Model Code 1990 appears to over-emphasize

the influence of compressive strength on the fracture energy, causing significant underes-

timation of Gf for concrete with strengths below 120MPa. Trunk and Wittmann (1998)

proposed the following relationship between fracture energy and the maximum aggregate

size, dmax:

Gf = adnmax (5.10)
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where a = 80.6 and n = 0.32 as obtained from experimental data. fib Bulletin 42 (2008)

derived an improved approximation based on experimental data as shown in Equation 5.11:

Gf = GFo

(
1− 0.77

fcmo
fcm

)
(5.11)

where GFo = 0.18N/mm, fcmo = 10MPa, and fcm is calculated using Equations 5.8 and

5.9. It has been found that Equation 5.11 provides the best fit to experimental data, but

becomes inconsistent for very low concrete strengths (fck < 15MPa). In the absence of

experimental data, it is recommended to use the following expression specified by Model

Code 2010 for normal weight concrete due to its simplicity and consistency over the full

spectrum of concrete strengths (International Federation for Structural Concrete, 2013):

Gf = 73(fcm)0.18 (5.12)

where fcm is calculated using Equations 5.8 and 5.9. Table 5.3 provides a summary of the

predicted values for Gf for each beam using the presented models.

Table 5.3: Fracture Energy Predictions for Beams with No Stirrups

Beam

Gf (N/m)

f
′
c fck fcm Model Trunk and fib Model

(MPa) (MPa) (MPa) Code Wittmann Bulletin 42 Code

1990 1998 2008 2010

12-INF 54.0 52.4 60.4 91.3 165.7 157.1 152.7

16-INF 53.4 51.8 59.8 90.7 165.7 156.8 152.5

25-INF 52.0 50.4 58.4 89.2 165.7 156.3 151.8

As expected, Model Code 1990 predicted the lowest fracture energy values with an av-

erage of 90.4N/m, whereas Trunk and Wittmann (1998) predicted the highest values of

165.7N/m. To prescribe a fracture energy to the Concrete Damaged Plasticity Model, the

user must select the “GFI” tension type. This approach requires the user to input the
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tensile strength of the concrete and the desired fracture energy. This method assumes a

linear stress-displacement post-peak response as depicted in Figure 3.4.

The influence of various fracture energy values was studied for each beam with no stirrups.

Figure 5.6 shows the load-displacement responses for BM 12-INF. The designation “Linear”

for each curve in Figure 5.6 refers to the shape of the stress-displacement curve used. This

classification will become necessary in the next section.

Figure 5.6: Influence of Fracture Energy - BM 12-INF

Figure 5.6 shows the influence of fracture energy values ranging from 70N/m to 150N/m.

For BM 12-INF, each curve begins to diverge at a load of approximately 80kN. This is

the point at which the formation of major cracks initiate, thus reducing the stiffness of

the beam response. As the concrete fracture energy increased, so did the stiffness of the

beam response within the post-cracking region. At a given crack-opening-displacement, an

element of concrete with a larger fracture energy will carry larger tensile stresses, thus stiff-

ening the response. With low fracture energies, 70N/m specifically, the beams experienced
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sudden and brittle failures. With larger fracture energies, the beams failed at larger peak

loads and experienced larger mid-span deflections. Using the linear stress-displacement

method to model the tension, a fracture energy of 90N/m produced the strongest agree-

ment to the experimental data for all beams with no stirrups.

5.2.3 Crack-Opening-Displacement Approach

The use of the “GFI” tension modelling discussed previously implements the concept

of fracture energy, but enforces a linear stress-displacement curve. To utilize a custom

stress-displacement curve, the “Displacement” tension modelling approach can be used in

ABAQUS. The user is able to input the post-cracking tensile stress as a function of the

crack-opening-displacement, w. Examples of stress-displacement curves proposed in the

literature were presented in Figure 3.3. The bilinear curve proposed by Petersson (1981)

and the exponential curve proposed by Cornelissen et al. (1986) were each studied using

various values of fracture energy. Figure 5.7 presents the three stress-displacement rela-

tionships studied for BM 12-INF (f
′
c = 54MPa) with a fracture energy of Gf = 90N/m,

and Table 5.4 summarizes the maximum crack-opening-displacements, wc, associated with

each curve.

Table 5.4: Maximum Crack Displacements for BM 12-INF

Method wc (mm)

Linear 0.074

Bilinear 0.134

Exponential 0.191

The curves used for BM 16-INF and BM 25-INF were similar to those shown in Figure 5.7;

however, these beams used slightly different compressive strengths, resulting in different

tensile strengths and maximum crack-opening-displacements. As each curve in Figure 5.7
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Figure 5.7: Stress-Displacement Curves for BM 12-INF

represents a fracture energy of 90N/m, the area under all three curves is equal to 90N/m.

Therefore, as the tensile stress associated with a displacement of zero is equal to the tensile

strength of the concrete, f
′
t , and is a material constant, a larger fracture energy will result

in a larger maximum displacement, wc. Figure 5.8 shows the influence of various fracture

energies using the bilinear stress-displacement approach on the load-displacement response

of BM 16-INF.

The responses presented in Figure 5.8 show a similar behaviour as provided by the GFI

method discussed previously. Larger fracture energies, 125N/m and 150N/m, yielded

beams that were much stronger and more ductile than the experimental beams. Lower

fracture energies, 70N/m and 90N/m, yielded beams that experienced brittle failures that

matched closely with the experiment. Again, a fracture energy of 90N/m yielded the most

accurate and consistent results for all beams with no stirrups.

The tensile strains experienced by the longitudinal reinforcement were then studied to
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Figure 5.8: Influence of Fracture Energy - BM 16-INF

further demonstrate the influence of fracture energy. Strain gauges were used on the

reinforcing bars to monitor the development of tensile strains at various locations during

the experimental testing. Appendix A depicts the locations and nomenclature of the strain

gauges used during testing. For the purposes of this discussion, all models presented in

this section utilized truss elements to model the longitudinal reinforcement. The tensile

strains of the longitudinal reinforcement as measured during testing were compared with

the strains predicted by the ABAQUS analyses for various fracture energies. Figure 5.9

compares the tensile strains at the L-1A-C strain gauge location for BM 25-INF. Figure

5.10 compares the tensile strains at the L-1-C strain gauge location for BM 16-INF. The

bilinear stress-displacement function was used for all models presented.

Referring to Figure 5.9, it can be seen that the bilinear stress-displacement relationship with

a fracture energy of 90N/m provided results that agreed strongly with the experimental

strain profiles. With an increased fracture energy of 150N/m, the strain curves were shifted
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Figure 5.9: Influence of Fracture Energy on Reinforcement Strains - BM 25-INF

Figure 5.10: Influence of Fracture Energy on Reinforcement Strains - BM 16-INF

upwards, indicating a stiffer response. When a higher fracture energy is specified, more

energy is required to overcome the toughening mechanisms as discussed in Section 2.6.2,

thus requiring more energy to be consumed to crack the concrete. This increased energy

reflects a stronger “bond” between the concrete and the reinforcing bars. This stronger

interaction, simulating the effects of tension stiffening, allows the concrete to carry more

load after cracking, thus creating a stronger and stiffer structure. Further discussion of the

reinforcement modelling is discussed in Section 5.6.
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5.2.4 Comparison of Tension Modelling Approaches

It was shown that the use of a stress-strain tension model was not an appropriate alternative

for the modelling of the beams presented in this thesis. In the analyses to determine the

influence of fracture energy, a fracture energy of Gf = 90N/m was found to produce the

strongest agreement with the experimental data for beams with no stirrups. This value

correlates best with the fracture energy prediction provided by Model Code 1990. Figures

5.11 and 5.12 compare the use of the three stress-displacement curves studied (linear,

bilinear, and exponential), with a fracture energy of 90N/m for beams BM 12-INF and

BM 25-INF, respectively.

Figure 5.11: Influence of Stress-Displacement Model - BM 12-INF

For BM 12-INF, all three methods produced similar peak loads of 169.4kN, 167.3kN, and

164.8kN for the bilinear, linear, and exponential functions, respectively. However, the

difference between each method is observed in the deflection response within the post-

cracking region prior to the obtainment of the peak load. At a load of approximately 70kN,
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Figure 5.12: Influence of Stress-Displacement Model - BM 25-INF

the three curves begin to diverge. Although the beams using the bilinear and exponential

functions continue to match closely, the linear stress-displacement function produces a

stiffer response after the major cracking occurs. This can be explained by referring to

Figure 5.7. For a given crack displacement that is less than 0.055, the linear function will

provide the largest tensile stress capacity. Alternatively, the slope of the linear function

is far less than the initial slopes of the bilinear and exponential functions. This means

that after cracking, the bilinear and exponential functions will experience a reduction in

tensile carrying capacity at an initial rate much faster than the linear function. Therefore,

although the fracture energy of all three methods is equal, thus the area under each curve is

equal, the shape of the function will dictate the rate at which the concrete loses its tensile

stress carrying ability. This behaviour was also observed for BM 16-INF and BM 25-INF.

Figures 5.13 and 5.14 compare the influence of the tension model on the longitudinal

reinforcement strain profile for BM 12-INF and BM 25-INF, respectively. Again, the
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fracture energy remained constant at 90N/m for all three models presented.

Figure 5.13: Influence of Stress-Displacement Model on Reinf. Strains - BM 12-INF

Figure 5.14: Influence of Stress-Displacement Model on Reinf. Strains - BM 25-INF

It is clear that the reinforcement strains in the beams that used the bilinear tension model

agree strongly with the beams that used the exponential tension model; a result of the

similar shape that these stress-displacement models take. The linear approach, however,

consistently produced responses that exhibited additional strength immediately after crack-

ing before converging to the solution of the bilinear and exponential models at higher load

levels. Again, this is a result of the shape of the stress-displacement curve that favours a

more gradual reduction of strength loss. As the bilinear and exponential tension models

126



yield identical results, the bilinear approach is recommended due to its simplicity. Fur-

thermore, the bilinear model is favoured over the linear tension model as it is more able to

capture the rapid loss of tension capacity after cracking that was observed in the experi-

mental beams.

5.3 Damage Modelling

When concrete is stressed beyond the elastic region and develops plastic strains, subsequent

unloading of this concrete will exhibit a degraded or damaged elastic modulus. Therefore,

to increase the accuracy of the concrete modelling, damage parameters dt and dc may be

specified for both tension and compression, respectively.

To incorporate compression damage, the user specifies compressive damage parameters

in a tabulated form as a function of the inelastic strains, εinc . Referring to the uniaxial

compression response shown in Figure 3.1, the compressive damage parameter, dc, is a

function of the plastic strain and elastic strain corresponding to the damaged concrete, εplc

and εelc , respectively. Restating Equation 3.1, the inelastic concrete strain can be found as

follows:

εinc = εc − εeloc = εc −
σc
Eco

(5.13)

where εc and σc are determined using the specified constitutive equations. To approximate

the plastic strain associated with a given total strain, the model proposed by Polling (2001)

was used:

εplc = bcε
in
c (5.14)

For concrete under compression, the recommended value for bc is 0.7. Therefore, the elastic

127



strain corresponding to the damaged concrete can be found using Equation 5.15:

εelc = εc − εplc = εc − bcεinc (5.15)

Using the calculated elastic strain, the compression damage parameter at any given strain

level can be estimated as:

dc = 1−
σc
εelc

Eco
(5.16)

In summary, to define the damage parameters at a given strain level for concrete under

compression, Equations 5.13 to 5.16 were used.

To incorporate tension damage, the tensile damage parameters may be specified in a

tabulated form as a function of either the cracking strain, εckt , or the crack-opening-

displacement, w. If the damage parameters are to be defined using the strain method,

an approach similar to the one used to find the compressive damage parameters may be

used to calculate dt. For concrete under tension loading, Polling (2001) recommends a bt

value of 0.1.

εckt = εt − εelot = εt −
σt
Eco

(5.17a)

εplt = btε
ck
t (5.17b)

εelt = εt − εplt = εt − btεckt (5.17c)

dt = 1−
σt
εelt

Eco
(5.17d)

If the crack-opening-displacement method is used to specify dt, the values of w can be

defined using the approaches discussed in Section 5.2.2 and 5.2.3 including linear, bilinear,

or exponential formulations. The damage parameter associated with each displacement

value can then range from dt = 0 at a crack opening of 0 to dt = 1.0 at the maximum crack

opening, wc. It is important to note, however, that excessive damage may have a critical
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effect on the rate of convergence of the ABAQUS analyses. Therefore, it is recommended

to avoid the use of damage parameters greater than 0.99, corresponding to 99% reduction

of the elastic modulus. For all analyses performed for this thesis, the damage parameters

were limited to 0.9, or 90% reduction of the elastic modulus, to avoid such issues.

The influence of incorporating damage into the beam models was studied. The following

four cases were considered:

1. Compression and tension damage included

2. No damage included

3. Compression damage only

4. Tension damage only

Figure 5.15 shows the influence of each of the four cases on the load-displacement response

for BM 16-INF.

First compare Cases 1 and 2; the use of both damage parameters versus the omission

of both damage parameters, respectively. It can be seen that the beam response in the

service loading region is similar regardless if damage is included or not. However, the

beam that considered both compression and tension damage failed at a load very close to

that of the experimental beam, whereas a larger peak load and higher degree of ductility

are observed when damage is omitted. This behaviour is identical for all beams with no

stirrups. As the damaged response is different than the no-damage response, it proves

that unloading occurred within the damaged zones of the concrete during the analyses

as a result of the coalescing of localized cracks, even though the loading was monotonic.

When damage is considered, the unloaded concrete will have a degraded capacity, thus will

respond differently than if no damage is used.
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Figure 5.15: Influence of Damage - BM 16-INF

Now compare Cases 2 and 4; the omission of both damage parameters versus the use

of tension damage only, respectively. For all beams with no stirrups, these two responses

matched strongly. This means that the use of tension damage alone has negligible influence

on the modelling of beams with no stirrups. Alternatively, consider Cases 1 and 3; the

use of both damage parameters versus the use of compression damage only. Again, these

two curves match strongly. This further shows that if tensile damage is removed such that

only compression damage is used, the response remains unchanged. It can therefore be

concluded that tension damage had minimal influence on the behaviour of beams with

no stirrups (slight variations were noted for BM 12-INF). Conversely, the comparison of

Case 2 with Case 3 or Case 1 with Case 4 demonstrates the large influence of compression

damage.

In summary, the use of both compression and tension damage parameters yielded accurate

responses for all beams with no stirrups. Compression damage proved to play a significant
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role in replicating the shear failures of the experimental beams, whereas tension damage

played a lesser role.

5.4 Plasticity Modelling

The plasticity modelling within the Concrete Damaged Plasticity Model is controlled by

five parameters as introduced in Section 3.3.4: ψ, ε, σbo/σco, Kc, and µ. The parameters

σbo/σco and Kc directly influence the yield function as presented in Equations 3.14 and 3.15.

The default value of 1.16 was used for σbo/σco for all beam simulations, which represents the

ratio of the initial equibiaxial compressive yield stress to the initial uniaxial compressive

yield stress. The default value of 2/3 was used for Kc for all beam simulations, which

represents the ratio of the second stress invariant on the tensile meridian to the second

stress invariant on the compressive meridian. ε represents the plastic potential eccentricity

and is a parameter that controls the flow potential function, G, as expressed in Equation

3.17. The default value of 0.1 was used for ε for all beam simulations. The purpose of

this section is to study the influence of the remaining two parameters, ψ and µ, on the

modelling of beams with no stirrups.

5.4.1 Dilation Angle

The dilation angle of concrete, ψ, is a material parameter in the Concrete Damaged Plas-

ticity Model used to control the plastic flow potential function, G. This angle is a measure

of the inclination of the plastic flow potential function within the meridional plane relative

to the hydrostatic pressure axis at high confining pressures (Figure 3.7). Malm (2006)

performed finite element modelling of shear critical beams subjected to four-point bending

using ABAQUS to determine the influence of the dilation angle. It was found that small
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dilation angles (10◦) produced very brittle beam responses, whereas larger angles (> 40◦)

produced responses that exhibited higher ductility and achieved larger peak loads. Malm

(2006) found that dilation angles between 30◦ and 40◦ provided the best agreement with

experimental data. In the material model proposed by Lee and Fenves (1998), the dilation

angle for both uniaxial tension and compression is defined as 31◦. Jankowiak and Lody-

gowski (2005) proposed a dilation angle of 38◦ based on the minimization of error between

the biaxial failure envelope of Kupfer et al. (1969) and the yield surface used by ABAQUS.

Therefore, typical values for the dilation angle of normal grade concrete range from 30◦ to

40◦ as presented in the literature.

The influence of various dilation angles, ranging from 20◦ to 50◦, on the load-deflection

response was studied for all beams with no stirrups. Figure 5.16 shows the results for BM

16-INF.

Figure 5.16: Influence of Dilation Angle - BM 16-INF

Figure 5.16 shows a similar pattern as observed by Malm (2006). As the dilation angle
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increased, the beam’s response became more ductile and failed at higher loads and larger

mid-span deflections. Furthermore, with larger dilation angles, the post-cracking response

became much stiffer. These stiffer responses were much less pronounced in the modelling

performed by Malm (2006). It was found that for all beams with no stirrups, a dilation

angle of 40◦ and 50◦ led to the overprediction of the member stiffness and peak load, most

notably for BM 25-INF. An angle of 20◦ provided an improvement to the post-cracking

behaviour, however an angle of 30◦ provided the strongest and most consistent agreement

with the experimental data. For this reason, a dilation angle of ψ = 30◦ was used for the

modelling of all beams with no stirrups.

5.4.2 Viscoplastic Regularization

The Concrete Damaged Plasticity Model allows the user to perform viscoplastic regular-

ization of the constitutive equations to overcome numerical convergence issues associated

with the post-peak response of concrete as discussed in Section 3.3.4. Viscoplastic regu-

larization is provided through the viscosity parameter, µ. The default value of µ is zero,

which means no viscoplastic regularization is used. The influence of various values of µ on

the behaviour of beams with no stirrups is demonstrated in Figure 5.17 for BM 16-INF.

When a value of zero was used for the viscosity parameter for BM 16-INF, the model

encountered convergence issues and aborted the analysis prematurely at an applied load

of 107kN (71% of the experimental peak load). Therefore, a non-zero input for µ was

required to model the full spectrum of the beam response. An increased value of 0.00001

was then used, which resulted in an accurate estimation of the load-deflection response.

This analysis, however, remained significantly computationally inefficient. Increasing µ

to 0.0001 provided a more accurate representation of the response, and was significantly

less computationally demanding. Further increases to µ provided responses with significant
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Figure 5.17: Influence of Viscoplastic Regularization - BM 16-INF

deviations from the experimental data. As this value becomes large relative to the iteration

time increment, the response approaches the elastic solution, which is inappropriate for a

concrete model. This behaviour is consistent for all three beams with no stirrups as shown

in Appendix B. A value of µ = 0.0001 was found to produce the most accurate results for

all three beams, and was used for all further modelling of beams with no stirrups. This

small, non-zero value introduces viscoplastic regularization that overcomes the numerical

solution issues, improves computational efficiency, and does not compromise the accuracy

of the results.

5.5 Mesh Refinement

The influence of mesh refinement of the concrete region on the beam response was studied

for all beams with no stirrups. Table 5.5 presents the mesh alternatives considered.
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Table 5.5: Concrete Mesh Alternatives

Beam
H B L Number of Elements Total Number Aspect

(mm) (mm) (mm) Depth Width Length of Elements Ratio

12-YYY

350 200 839.63 21 12 51 12,852 1.01

350 200 855.00 16 9 38 5,472 1.03

350 200 851.09 12 7 29 2,436 1.03

350 200 843.75 8 5 20 800 1.09

350 200 859.09 6 3 14 252 1.14

16-YYY

345 200 839.63 21 12 51 12,852 1.01

345 200 855.00 16 9 38 5,472 1.04

345 200 851.09 12 7 29 2,436 1.03

345 200 843.75 8 5 20 800 1.08

345 200 859.09 6 3 14 252 1.16

25-YYY

330 200 839.63 (20) 12 51 12,240 1.01

330 200 855.00 (15) 9 38 5,130 1.02

330 200 851.09 12 7 29 2,436 1.07

330 200 843.75 8 5 20 800 1.05

330 200 859.09 (5) 3 14 210 1.09

Table 5.5 presents the height (H), width (B) and total length (L) of each beam. The number

of elements in each dimension of the beam are shown. For example, the coarsest mesh used

for beams with 12mm diameter longitudinal bars, BM 12-YYY, was 6 elements deep, 3

wide, and 14 long. The total number of elements and the governing aspect ratio of the

elements are also presented. When selecting the various mesh patterns and element sizes,

effort was made to ensure that each option utilized elements with aspect ratios as close to

1.0 as possible. Three-dimensional hexahedral elements are sensitive to initial distortions,

thus the use of square elements yields more stable analyses with higher accuracy and less

numerical issues. It is important to note that beams 25-YYY have a significantly reduced

height as compared to the other beams, therefore required modified mesh alternatives to
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maintain aspect ratios close to 1.0. These modified mesh options will be referred to in

brackets for this discussion. Figure 5.18 presents the various mesh alternatives studied.

Figure 5.18: Mesh Alternatives

It is important to discuss the total length of each beam, L. Each beam studied had the

same shear span of 675mm, which extended from the mid-span to the support. Additional

elements were added to each model such that the beam extended beyond the support

and created an overhang as depicted in Figure 5.18. The length of this overhang was

dependent on the number of elements in the overhang and the length of each element

within the overhang. As the size of each element varied between mesh refinements, the

length of this overhang also varied. This explains the slight variation between the values

of L shown in Table 5.5.

The various mesh refinement options are characterized by the number of elements in the
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depth of the beam. The coarsest mesh used only 5 elements throughout the beam depth,

while the finest mesh used 21 elements throughout the beam depth. To truly model the re-

sponse of a beam subjected to bending, a model would need to be capable of capturing the

curvature of the beam. Curvature is the second derivative of the deflected shape, meaning

the shape functions within each element are required to be a minimum of second-order to

produce continuous derivatives within and between elements. As first-order, linear con-

crete elements were used for all models to improve computational efficiency and to prevent

numerical complications, a finer mesh is expected to yield a stronger approximation of the

beam response. Furthermore, the strain within a linear element is constant, whereas the

strain distribution of a beam cross-section subjected to bending is not constant. There-

fore, to accurately capture the variation of strains throughout the depth of each beam, a

sufficient number of element layers must be present.

Figure 5.19 shows the influence of each mesh refinement on the load-deflection response

for BM 25-INF.

Figure 5.19: Influence of Mesh Refinement - BM 25-INF
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Table 5.6 compares the peak load predicted by each mesh for all beams with no stirrups

and the percent difference with the experimental values. Note that the mesh designations

in brackets refer to the modified mesh alternatives used for BM 25-INF.

Table 5.6: Influence of Mesh Refinement on Peak Load

BM 12-INF BM 16-INF BM 25-INF

Load (kN) % Diff. Load (kN) % Diff. Load (kN) % Diff.

Experiment 163.1 - 150.2 - 125.1 -

21 (20) Deep 158.3 2.92% 160.0 6.51% 131.6 5.16%

16 (15) Deep 157.8 3.24% 149.3 0.63% 127.4 1.84%

12 Deep 169.4 3.87% 142.3 5.28% 132.5 5.92%

8 Deep 168.7 3.47% 144.5 3.83% 135.0 7.94%

6 (5) Deep 145.5 10.76% 152.6 1.58% 120.8 3.43%

Referring to Table 5.6, it can be seen that all mesh densities provided peak load predic-

tions that were within 10% of the experimental results (with the exception of the 6-deep

mesh used for BM 12-INF). However, as Figure 5.19 shows, it is the deflection responses

that vary significantly within the service loading range. Figure 5.19 presents an interest-

ing pattern that was consistent for all beams studied. As the mesh becomes finer, the

pre-peak response of each beam becomes stiffer. This observation contradicts the typical

behaviour of finite element models where a finer mesh provides less restraint to nodal dis-

placements, thus yielding responses that are less stiff. This phenomenon was also observed

in the ABAQUS modelling performed by Malm (2006). DSS (2012) attributes this mesh

sensitivity to regions of the concrete with little or no reinforcement. In the absence of

reinforcement, cracking failures are not distributed evenly and may lead to the localization

of cracking. If no additional cracks are formed with mesh refinement, the crack bands

will become narrower and more localized, thus preventing the model from converging to

a unique solution as the mesh density is refined. Furthermore, DSS (2012) also theorizes

that three-dimensional models have a higher susceptibility to mesh sensitivity as compared
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to two-dimensional models due to the potential of cracking in the out-of-plane direction.

Figure 5.20 compares the crack patterns at failure associated with the five mesh refinements

studied for BM 25-INF. The crack pattern observed at failure during the experimental

testing is also shown. Note that the right end of each mesh represents the mid-span

section of the beam (point of load application), and the left end of each mesh represents

the location of the support

Figure 5.20: Influence of Mesh Refinement on Crack Pattern - BM 25-INF

It can be seen that all mesh densities accurately capture the presence of diagonal shear

cracks, in the form of large plastic strains, originating from the load point. As the mesh

is refined, the crack pattern remains similar, but the crack bands become narrower and

better defined. The use of finer meshes, 12-deep to 20-deep, provide crack patterns that

agree strongly with the experimentally observed pattern. These results are consistent for

all other beams with no stirrups.
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The use of a 16 (15) element deep mesh yielded the highest accuracy results in terms of

peak load and deflection response. However, the 12-deep mesh was also able to provide

accurate results that correlated well with the experimental data as shown in Figure 5.21.

Furthermore, the 12-deep mesh was able to provide this accuracy with the use of less than

one-half of the number of elements required for the 16 (15)-deep mesh. With the accuracy

of the 12-deep mesh and the reduced computational effort required as compared to the 16

(15)-deep mesh, the 12-deep mesh was utilized for all modelling of beams with no stirrups.

Figure 5.21: Influence of Mesh Refinement - BM 16-INF

5.6 Modelling of GFRP Reinforcement

Two methods of modelling the GFRP reinforcement were studied in this research: 1)

Discrete, one-dimensional truss sections; and 2) Smeared, reinforced membrane sections.

As this chapter focuses on beams with no stirrups, this section will concentrate on the

modelling of the longitudinal reinforcing bars.
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5.6.1 GFRP Longitudinal Reinforcement

Figures 5.22 to 5.24 compare the influence of the reinforcement modelling technique on the

load-deflection responses for all beams with no stirrups.

Figure 5.22: Influence of Longitudinal Reinforcement Modelling - BM 12-INF

For BM 12-INF, both methods of modelling the reinforcement produced similar responses

over the complete spectrum of the analysis (both pre-peak and post-peak regions) that

agree strongly with the experimental behaviour. For BM 16-INF and BM 25-INF, both

methods provide similar post-cracking responses but result in different peak loads.

The load-strain behaviour of the reinforcing bars was then studied for each modelling

method. As discussed in Section 2.3.2, strain gauges were used during the experimental

testing to monitor the strain development of individual bars at various locations. For beams

with 12mm or 16mm diameter longitudinal bars (BM 12-YYY and BM 16-YYY), a strain

gauge was positioned on the middle bars of each reinforcing layer at the mid-span section.
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Figure 5.23: Influence of Longitudinal Reinforcement Modelling - BM 16-INF

Figure 5.24: Influence of Longitudinal Reinforcement Modelling - BM 25-INF
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For beams with 25mm diameter longitudinal bars (BM 25-YYY), gauges were placed on

both bars at the mid-span section. Appendix A shows the locations and nomenclature of

all strain gauges used. Figure 5.25 compares the experimental reinforcement strains for

each of the three reinforcing layers in BM 12-INF with the model analyses for both truss

and membrane approaches. Figure 5.26 presents the strain profiles for each of the two

layers in BM 16-INF. Figure 5.27 presents the strain profiles for the single layer in BM

25-INF.

With the exception of the second layer of reinforcement in BM 12-INF (strain gauge L-2-

C), the membrane strains agree strongly with the truss strains for all reinforcement layers

in each beam. This proves that the smeared reinforcement within each membrane section

is capable of providing the same stiffness properties as the discrete truss bars, and that the

process used to define the membrane sections as presented in Section 4.3.2 was accurate.

This validates the use of embedded membranes to model layers of reinforcement as an

alternative to the traditional, discrete truss approach. However, the truss reinforcement

provided a higher level of consistency and agreement with the experimental data, and allows

for the easy visualization of the stress distribution within each individual bar. Therefore,

it was concluded that the truss approach is the optimal solution to model the longitudinal

bars.

The strain profiles for BM 16-INF were then studied. At a load of approximately 41kN,

the experiment reinforcement experienced a sudden increase in strain while maintaining a

constant load. This plateau suggests that the reinforcement debonded from the concrete at

the location of the strain gauge, causing an immediate activation of the GFRP reinforce-

ment. As can be seen in Figure 5.26, the analysis reinforcement became fully activated at

a much more gradual rate and was unable to exhibit the rapid loss of bond. This is a result

of the concrete tension model used. By incorporating a tension model that utilizes a post-

cracking strain-softening region, the analysis assumes that the concrete is able to carry
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Figure 5.25: Longitudinal Reinforcement Strains - BM 12-INF
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Figure 5.26: Longitudinal Reinforcement Strains - BM 16-INF

Figure 5.27: Longitudinal Reinforcement Strains - BM 25-INF
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tensile loads immediately after cracking. Therefore, this tension model assumes a certain

degree of bond between the reinforcement and the concrete. To more accurately replicate

the experimental results, a modified post-cracking tension model can be used that intro-

duces a more drastic reduction in tension carrying capacity upon cracking. Maintaining a

constant fracture energy Gf = 90N/m, Figure 5.28 presents a possible modified version of

the original bilinear stress-displacement model for BM 16-INF.

Figure 5.28: Modified Bilinear Tension Model - BM 16-INF

This modified curve represents the same fracture energy as the original bilinear curve; the

area under both curves is equal. However, the modified curve implements a rapid decay of

strength for very small crack displacements. The influence of this modified model on the

beam response and on the tensile reinforcement strains is shown in Figures 5.29 and 5.30

for BM 16-INF, respectively.

The modified bilinear stress-displacement curve produces a beam response that is signifi-

cantly less stiff after cracking as compared to the response with the original bilinear model.
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Figure 5.29: Influence of Modified Tension Model - BM 16-INF

Figure 5.30: Influence of Modified Tension Model on Reinf. Strains - BM 16-INF
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With the new curve, the concrete loses its tensile strength rapidly upon cracking, caus-

ing the beam to experience a brittle failure earlier. However, Figure 5.30 shows that the

modified tension model was able to accurately replicate the experimental strains. This

demonstrates that not only does the magnitude of the fracture energy influence the beam

behaviour, but also the shape of the stress-displacement curve. By modifying this shape,

one can control the amount of tension stiffening that the reinforcement experiences. With

a rapid loss of tensile strength immediately after cracking, the model was able to replicate

the debonding, or slippage, that the experimental beams experienced.

5.7 Final Recommendations and Comparison to Code

Predictions

5.7.1 Proposed Model for Beams with No Stirrups

Table 5.7 summarizes the parameters recommended for the effective modelling of concrete

beams reinforced with GFRP longitudinal bars and no stirrups.

Figure 5.31 compares the load-deflection responses for the beams with no stirrups as pre-

dicted using the proposed ABAQUS model with the responses measured during the exper-

imental testing.

Figure 5.32 presents the crack patterns at failure as produced by the proposed model.

The actual crack patterns at failure as observed during the experimental testing have been

superimposed in white. Note that the top right corner of each diagram represents the point

of load application at mid-span and the bottom left corner is the location of the support.

It can be seen that all models were able to accurately capture the crack patterns at failure.
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Figure 5.31: Proposed Model for BM XX-INF: (a) BM 12-INF (b) BM 16-INF (c) BM
25-INF
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Table 5.7: Proposed Parameters for the Modelling of Beams with No Stirrups

Compression Model: Hognestad Parabola

Maximum Compressive Strain, εc,max: 0.008

Tension Model: Bilinear Stress-Displacement

Fracture Energy, Gf : 90 N/m

Damage: Tension and Compression Included

Poisson’s Ratio, v: 0.2

Dilation Angle, ψ: 30◦

σbo/σco: 1.16

Eccentricity, ε: 0.1

Kc: 2/3

Viscosity Parameter, µ: 0.0001

Mesh Refinement: 12 Deep

Longitudinal Reinforcement: Linear Truss Sections

Stirrup Reinforcement: N/A

It is interesting to note that the diagonal crack developed in BM 12-INF originated near

the support and propagated towards the load point. For BM 16-INF and BM 25-INF,

however, the diagonal cracks originated further and further away from the support, result-

ing in cracks with steeper inclinations. This demonstrates the influence of the longitudinal

reinforcement ratio and bar configuration on the concrete cracking. BM 12-INF had the

largest reinforcement ratio and the smallest bars, thus allowing for a stronger interaction

between the reinforcement and concrete. Although this resulted in a higher number of

cracks, the cracks were more distributed and had smaller widths. Conversely, BM 25-INF

had the smallest reinforcement ratio and used much larger bar diameters. With larger and

fewer bars, there will be less interaction between the reinforcement and concrete, which

will result in fewer and larger cracks. As these beams had no stirrups, these larger cracks

resulted in a more drastic shear failure with fewer flexural cracks.

150



Figure 5.32: Comparison of Crack Patterns at Failure - BM XX-INF: (a) BM 12-INF, (b)
BM 16-INF, (c) BM 25-INF

5.7.2 Comparison to Code Predictions

Table 5.8 presents the failure loads for each beam as provided by various flexure and shear

resistance predictions and the proposed model. These predictions, PP , are then compared

to the experimental peak loads, PE.

Referring to Table 5.8, the flexural strengths provided poor approximations to the exper-
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Table 5.8: Comparison of Predicted and Experimental Peak Loads

Beam

Experiment
CSA S806-12 CSA S806-12 Nehdi et al. ABAQUS

Flexure Shear Shear Model

PE PP Ratio PP Ratio PP Ratio PP Ratio

(kN) (kN) PE/PP (kN) PE/PP (kN) PE/PP (kN) PE/PP

12-INF 163.1 431.9 0.38 152.8 1.07 151.3 1.08 169.4 0.96

16-INF 150.2 410.3 0.37 144.8 1.04 146.9 1.02 142.3 1.06

25-INF 125.1 372.5 0.34 131.8 0.95 139.3 0.90 132.5 0.94

imental peaks load; this is to be expected as all beams experienced shear failures. The

shear strengths provided by CSA S806-12 were able to consistently predict the peak load

to within 7% of the experimental loads. The shear strengths predicted by Nehdi et al.

(2007) were all within 10% of the experimental strengths. Finally, the proposed ABAQUS

model was able to accurately predict the peak loads to within 4%, 6%, and 6% of the

experimental values for BM 12-INF, BM 16-INF, and BM 25-INF, respectively.

Table 5.9 presents the ratio of the peak load as predicted by the proposed ABAQUS model

to the peak load as provided by the various strength prediction models and the experimental

data. Note that a value less than 1.0 means that the proposed model underpredicted the

peak load relative to the model of interest, whereas a ratio greater than 1.0 means the

proposed model overpredicted the peak load.

Table 5.9: Comparison of Model Results Relative to Peak Load Predictions

Beam Experiment
CSA S806-12 CSA S806-12 Nehdi et al.

Flexure Shear Shear

12-INF 1.04 0.39 1.11 1.12

16-INF 0.95 0.35 0.98 0.97

25-INF 1.06 0.36 1.01 0.95

It is clear that the shear strength predictions of CSA S806-12 provided the strongest
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agreement with the ABAQUS model output, with BM 16-INF and BM 25-INF providing

strengths within 2% and 1%, respectively. The model proposed by Nehdi et al. (2007) also

agreed strongly; it will be shown in the next chapters that this model is very effective in

providing accurate shear strength predictions for FRP reinforced beams.
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Chapter 6

Modelling of Beams with Stirrups

Chapter 5 presented the finite element analyses of three concrete beams with no stirrups

as tested by Krall (2014). This chapter focuses on the remaining nine concrete beams that

were reinforced with both glass fibre reinforced polymer (GFRP) longitudinal bars and

stirrups. Similar to the beams with no stirrups, the beams with stirrups are characterized

by three longitudinal reinforcement core diameters: 12mm, 16mm, and 25mm. Each core

diameter corresponds to a different longitudinal reinforcement arrangement as presented

in Figure 2.7. For each longitudinal reinforcement arrangement, three stirrup spacings

were tested: 150mm, 220mm, and 230mm. The beams with stirrups spaced at 150mm

and 220mm used stirrups with a core diameter of 12mm, whereas the beams with stirrups

spaced at 230mm used stirrups with a core diameter of 20mm. This chapter therefore

focuses on the modelling of beams BM XX-150, BM XX-220, and BM XX-s230.

6.1 Compression Modelling

The Hognestad Parabola constitutive equations used for the modelling of beams with no

stirrups as introduced in Equations 5.1 and 5.2 were also considered for the modelling

of beams with stirrups. The modification to the third region of the uniaxial compressive
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response as expressed in Equation 5.3 was also utilized to control the maximum strain

within the post-peak strain-softening region, εc,max. All concrete beams with stirrups

were modelled using a compressive strength of f
′
c = 56.5MPa, resulting in a maximum

concrete compressive strain of εc,max = 0.0082 when using the original Hognestad Parabola

equations. It was concluded in Chapter 5 that a maximum strain value of 0.008 and a

dilation angle of ψ = 30◦ provided the best results for the modelling of beams with no

stirrups. Using this model, Figure 6.1 presents the load-deflection response for BM 16-150

as determined using ABAQUS.

Figure 6.1: Influence of Maximum Compressive Strain with ψ = 30◦ - BM 16-150

It can be seen that the model recommended for beams with no stirrups (εc,max = 0.008

and ψ = 30◦) severely underpredicted the ultimate load of BM 16-150. This behaviour was

observed for all other beams with stirrups. Also shown in Figure 6.1 is the influence of

increasing the maximum compressive strain to 0.015 while maintaining a dilation angle of

30◦. Similar to the beams with no stirrups, increasing the maximum strain had negligible

influence on the beam strength. However, Figures 6.2 and 6.3 present the influence of
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changing εc,max on the load-deflection responses for BM 12-150 and BM 12-220, respectively,

when an increased dilation angle of 50◦ is used.

Figure 6.2: Influence of Maximum Compressive Strain with ψ = 50◦ - BM 12-150

In the modelling of beams with no stirrups, the magnitude of εc,max had no influence

on the beam strength as these beams experienced shear-tension failures that were not

governed by the crushing of concrete. Similarly, the modelling of beams with stirrups and

a dilation angle of 30◦ also yielded brittle tension failures, thus εc,max had no influence

again. However, it can be seen that the maximum compressive strain has a significant

influence on the response of beams with stirrups once the dilation angle is increased to

50◦. As εc,max increases, the peak load and deflection at failure both increase, providing a

more ductile response. For BM 12-150, the original Hognestad Parabola caused the beam

to fail at a load of 324.9kN and a mid-span deflection of 9.5mm, whereas the modified

Hognestad Parabola with a maximum strain of 0.015 caused the beam to fail at 385.1kN

and a mid-span deflection of 14mm. This dependence on the concrete compression model

is ideal for the modelling of beams with stirrups, as the experimental beams experienced
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Figure 6.3: Influence of Maximum Compressive Strain with ψ = 50◦ - BM 12-220

compression crushing of diagonal struts that extended from the point of load application

to the support bearing plate. Therefore, a model that is able to capture the ductility of

the concrete reinforced with stirrups and to shift the failure mode from a brittle tension

fracture to a more ductile crushing failure is desired.

When modelling the tension behaviour of concrete, various post-peak models were used

to recognize the ability of concrete to sustain loading after cracking as presented in Sec-

tion 5.2 (stress-strain, fracture energy, stress-displacement). The manipulation of these

post-cracking relationships simulated the effects of tension stiffening by controlling the

rate at which the concrete lost its tensile carrying capacity. The influence of the concrete-

reinforcement interaction that governs the effects of tension stiffening was therefore incor-

porated into the concrete modelling and not the reinforcement modelling. Similarly, the

stirrups also interact with the concrete and significantly influence the structure’s behaviour.

These stirrups act to carry tensile loads across cracks, thus preventing brittle shear failures.
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More significantly, these stirrups provide passive confinement to the concrete bound within

the stirrups as a result of the inelastic expansion, or dilation, that concrete experiences

under high compressive loading. This confinement strengthens the beam response by al-

lowing the concrete to carry higher stresses. Similar to the impact of tension stiffening, the

influence of confinement will not be captured by ABAQUS. Therefore, the manipulation of

the concrete compression model, similar to the manipulation of the tension models, allows

for the effects of confinement to be reflected in the simulation outputs.

Therefore, in order for the concrete compression model to simulate the failures observed

during the experimental testing, the combined calibration of the maximum compressive

strain, εc,max, and the dilation angle, ψ, was necessary. Further discussion of the influence

of the dilation angle on the response of beams with stirrups is provided in Section 6.4.1.

6.2 Tension Modelling

Section 3.3.2 introduced three methods to define the uniaxial post-peak tensile response of

concrete in the Concrete Damaged Plasticity Model: 1) Stress-strain approach, 2) Fracture

energy approach, and 3) Crack-opening-displacement approach.

The use of the stress-strain tension model was considered in the modelling of beams with

no stirrups. It was found that this approach led to significant numerical issues that forced

the analyses to terminate prematurely, thus preventing the full beam response from be-

ing captured. This method may also lead to unreasonable mesh sensitivity in regions of

concrete that contain little or no reinforcement. Therefore, this approach was not pursued

in the modelling of beams with stirrups. Furthermore, the fracture energy approach is

an extension of the crack-opening-displacement approach used in Section 5.2, thus both

methods will be discussed together.
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6.2.1 Crack-Opening-Displacement Approach

Section 5.2.2 provided an overview of the various models that have been proposed to predict

the fracture energy of concrete, Gf . Table 6.1 provides a summary of the predicted Gf

values for all beams with stirrups using the proposed models. As a concrete compressive

strength of f
′
c = 56.5MPa was used for all beams with stirrups, the values presented are

applicable to all beams studied in this chapter.

Table 6.1: Fracture Energy Predictions for Beams with Stirrups

Beam

Gf (N/m)

f
′
c fck fcm Model Trunk and fib Model

(MPa) (MPa) (MPa) Code Wittmann Bulletin 42 Code

1990 1998 2008 2010

ALL 56.5 54.9 62.9 94.0 165.7 158.0 153.8

As the concrete compressive strength used for the beams with stirrups was slightly higher

than the strengths used for the beams with no stirrups, the predicted fracture energies are

also slightly higher. The exception to this is the Trunk and Wittmann (1998) model which

is a function of the maximum aggregate size, dmax, and not the compressive strength. To

define the strain-softening behaviour of the concrete under tensile loading, it was concluded

previously that specifying the tensile stress as a function of the crack-opening-displacement,

w, provided both accurate and efficient solutions. Three stress-displacement curves were

studied, including linear, bilinear, and exponential relationships. Figures 6.4 and 6.5 show

the influence of various fracture energies using the bilinear stress-displacement approach

on the load-displacement response of BM 16-150 and BM 25-220, respectively.

As shown in Figures 6.4 and 6.5, fracture energies ranging from 70N/m to 150N/m were

considered. The influence of the fracture energy is most apparent in the service loading

region after the formation of major cracks and prior to the obtainment of the peak load.
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Figure 6.4: Influence of Fracture Energy - BM 16-150

Figure 6.5: Influence of Fracture Energy - BM 25-220
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As the fracture energy increased, more energy was required to crack the concrete, thus

producing a stiffer member response. All fracture energies studied produced similar peak

loads and failure modes. This is to be expected, as the definition of the concrete com-

pression model and calibration of the dilation angle used in the modelling of beams with

stirrups shifted the failure modes to compression-governed. Therefore, the post-peak ten-

sion modelling played a significantly lesser role in the modelling of beams with stirrups as

compared to the modelling of beams with no stirrups. In some cases, BM 12-150 and BM

25-150 in particular, a larger fracture energy was able to produce higher peak loads that

matched closer to the experimental results. However, these larger fracture energies also

produced stiffer deflection responses. Therefore, similar to the modelling of beams with

no stirrups, a lower fracture energy of Gf = 90N/m was selected as the most appropriate

value as a result of the consistency in results, strong accuracy of the peak load predictions,

and superior agreement to the service-loading deflection responses.

Figures 6.6 and 6.7 present the influence of various fracture energy values on the longi-

tudinal reinforcement tensile strains for BM 16-150 and BM 25-220, respectively. The

bilinear stress-displacement relationship was used to model the concrete in tension, and

truss sections were used to model the reinforcement.

Figure 6.6: Influence of Fracture Energy on Reinforcement Strains - BM 16-150
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Figure 6.7: Influence of Fracture Energy on Reinforcement Strains - BM 25-220

It can be seen that the bilinear stress-displacement relationship with a fracture energy

of 90N/m provided a strong agreement to the experimental strain profile at the L-1-C

strain gauge location for BM 16-150. With an increased fracture energy of 150N/m, the

reinforcement exhibited a modest increase in strength immediately after cracking before

converging to the 90N/m response. With a larger fracture energy, the tensile strength of

the concrete degrades at a slower rate upon cracking, thus will stiffen the reinforcement

response. For the modelling of beams with stirrups, the influence of fracture energy on

the reinforcement strains is only apparant immediately after cracking. This influence is far

less pronounced than was observed in the modelling of beams with no stirrups (Figure 5.9,

5.10).

Figures 6.8 and 6.9 compare the influence of the three stress-displacement curves studied

(linear, bilinear, and exponential) on the beam response for BM 16-150 and BM 25-220,

respectively, with a constant fracture energy of 90N/m.

For each beam with stirrups, all three stress-displacement models produced similar peak

loads. For BM 16-150, the bilinear, exponential, and linear functions yielded peak loads

of 398.6kN, 389.4kN, and 372.6kN, respectively. However, the difference between each

method was observed in the post-cracking region prior to the obtainment of the peak load.
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Figure 6.8: Influence of Stress-Displacement Model - BM 16-150

Figure 6.9: Influence of Stress-Displacement Model - BM 25-220
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At a load of approximately 70kN, the three responses begin to diverge. Although the

beams using the bilinear and exponential functions continued to match closely, the linear

stress-displacement function produced a stiffer response after the major cracking occurred.

This behaviour is consistent with the results presented for beams with no stirrups, and is

a result of the rate of strength loss associated with the stress-displacement responses as

discussed in Section 5.2.4.

Figures 6.10 and 6.11 compare the influence of the stress-displacement tension models on

the longitudinal reinforcement strain profiles for BM 16-150 and BM 25-220, respectively,

with a constant fracture energy of 90N/m. The use of the exponential stress-displacement

model was omitted here for clarity as this function provided similar results to the bilinear

approach for all beams.

Figure 6.10: Influence of Stress-Displacement Model on Reinf. Strains - BM 16-150

Again, all tension models provided similar strain profiles. However, the linear function is

able to sustain larger tensile stresses than the bilinear and exponential models for a wide

range of crack-displacements, thus resulting in a slightly stiffer strain response immediately

after cracking. Referring to Figures 6.6 and 6.7, the use of a higher fracture energy produced

a similar effect as using the linear tension model.

It has been shown that a fracture energy of 90N/m is effective in modelling the beams
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Figure 6.11: Influence of Stress-Displacement Model on Reinf. Strains - BM 25-220

with stirrups. The bilinear and exponential tension models produce similar results that

agree strongly with the experimental data. The use of high fracture energies or the linear

tension model also produce accurate results, but tend to over-stiffen the beam responses

and reinforcement strain profiles within the service-loading range.

6.3 Damage Modelling

The influence of incorporating damage into the beam models was studied. Similar to the

modelling of beams with no stirrups, the following four cases were considered:

1. Compression and tension damage included

2. No damage included

3. Compression damage only

4. Tension damage only
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Figures 6.12 and 6.13 show the influence of each of the four cases on the load-displacement

responses for BM 12-150 and BM 12-220, respectively.

Figure 6.12: Influence of Damage - BM 12-150

The responses of the four cases presented were similar for all beams with stirrups, regardless

of stirrup spacing or longitudinal bar arrangement. The following list is the order that

each case consistently conformed to for each beam, ordered from strongest peak load to

weakest peak load: Tension damage only, no damage, compression and tension damage,

and compression damage only.

First compare Cases 2 and 3; the omission of both damage parameters versus the use of

compression damage only, respectively. When compression damage is included, the peak

load achieved by BM 12-150 was reduced significantly from 460.6kN to 347.8kN. Similar

to the beams with no stirrups, this proves that the stiffness degradation of concrete under

compressive loads plays a significant role in the structure’s response, even under monotonic

loading.
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Figure 6.13: Influence of Damage - BM 12-220

Next compare Cases 2 and 4; the omission of both damage parameters versus the use

of tension damage only, respectively. For beams with no stirrups, it was found that the

inclusion of only tension damage produced no significant difference to the load-deflection

responses as compared to the no-damage response. However, for all beams with stirrups,

BM 25-220 most notably, the inclusion of tension damage resulted in the significant increase

in beam stiffness and peak load. This means that the inclusion of tension damage produces

a structure that is in fact stronger, not weaker, which is a counter-intuitive observation.

When starting with zero damage, the addition of compression damage or tension damage

individually has been discussed. Now consider the alternative perspective by starting

with both damage parameters and removing compression or tension damage individually.

Compare Cases 1 and 3; the use of both damage parameters versus the use of compression

damage only. When tension damage is removed, the peak load achieved by each beam is

reduced. Next, compare Cases 1 and 4; the use of both damage parameters versus the use
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of tension damage only. When compression damage is removed, the peak load is increased

significantly. The following summary can be made regarding the influence of including

tension and/or compression damage parameters on the peak load of beams with stirrups.

Start with No Damage:

Add Tension Damage: Peak Load ↑

Add Compression Damage: Peak Load ↓↓

Add Tension and Compression Damage: Peak Load ↑ + ↓↓ = ↓

Alternatively, start with Tension and Compression Damage:

Remove Tension Damage: Peak Load ↓

Remove Compression Damage: Peak Load ↑↑

Remove both Tension and Compression Damage: Peak Load ↓ + ↑↑ = ↑

It is clear that the use of compression damage parameters has a detrimental, or degrading,

effect on the beam stiffness and failure load. Conversely, it appears that the use of tension

damage parameters has a strengthening effect on the beam response. Similar to the beams

with no stirrups, the degrading effects of the compression damage have shown to be stronger

than the strengthening effects of the tension damage. Thus, the combined use of both

compression and tension damage parameters leads to a weaker beam as compared to the

no-damage case and is able to accurately replicate the experimental data.

6.4 Plasticity Modelling

The plasticity modelling within the Concrete Damaged Plasticity Model is controlled by

five parameters as introduced in Section 3.3.4: ψ, ε, σbo/σco, Kc, and µ. Similar to the

modelling of beams with no stirrups, the default values of 1.16, 2/3, and 0.1 were used for
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the parameters σbo/σco, Kc, and ε, respectively, for the modelling of beams with stirrups.

The purpose of this section is to study the influence of the remaining two parameters, ψ

and µ, on the modelling of beams with stirrups.

6.4.1 Dilation Angle

As discussed in Section 5.4.1, typical dilation angles used for normal grade concrete range

from 30◦ to 40◦. The influence of various dilation angles, ranging from 30◦ to 50◦, on the

load-deflection response was studied for all beams with stirrups. Figures 6.14 and 6.15

show the results for BM 16-150 and BM 25-220, respectively. The responses presented

here all used a maximum concrete compressive strain of εc,max = 0.015.

Figure 6.14: Influence of Dilation Angle - BM 16-150

Figures 6.14 and 6.15 show that the beam responses are highly dependent on the dilation

angle when a maximum compressive strain of 0.015 is used. Similar to the beams with

no stirrups, as the dilation angle increases, the beam’s response becomes more ductile and
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Figure 6.15: Influence of Dilation Angle - BM 25-220

fails at higher loads and larger mid-span deflections. Furthermore, with larger dilation

angles, the post-cracking response becomes much stiffer. For the modelling of beams with

no stirrups, a dilation angle of 30◦ provided the most accurate results while an angle of 50◦

led to the significant overprediction of the failure load. For the modelling of beams with

stirrups, a dilation angle of 30◦ was found to severely underpredict the failure load while

an angle of 50◦ provided a stronger agreement with experimental results. Considering BM

16-150, an angle of 30◦ resulted in a peak load of 236.0kN, while an increased angle of 50◦

resulted in a peak load of 398.6kN; a 69% increase.

Malm (2006) performed finite element modelling of wide-flanged concrete deep beams sub-

jected to four-point bending using ABAQUS. The beams studied had very small shear span

to effective depth ratios (a/d) of 1.25, thus experienced shear failures. The beams utilized

stirrups in the flanges and in the web. Concrete experiences inelastic volume expansion,

or dilation, under high compressive stresses. As concrete dilates, the stirrups will resist
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this expansion and will exert passive confinement to the concrete. This confinement in-

creases the ductility of the concrete by allowing the concrete to carry higher compressive

stresses and undergo larger compressive strains. The ABAQUS modelling performed by

Malm (2006), however, was unable to account for this confinement effect, thus resulted

in beam responses that were significantly weaker than experimental data. To account for

the effects of confinement, Malm (2006) used an associated plastic flow rule. This was

achieved by equating the dilation angle, ψ, with the concrete material friction angle, β.

The formulation used by Malm (2006) to find β was as follows:

ψ = β = arctan(3/2) = 56.3◦ (6.1)

The use of this higher dilation angle produced a more ductile material, thus simulating

the effects of high confining stresses. Chen and Han (1988) stated that the use of the

associated flow rule has been shown to overestimate the dilation of concrete, which is

why the non-associated flow rule is typically used (the non-associated rule is used by

ABAQUS). Therefore, by using a larger dilation angle that is close to the material friction

angle, one can simulate the associated flow rule, thus allowing for the confinement effects

to be considered. It is also interesting to note that the angle of 56.3◦ as used by Malm

(2006) is the maximum dilation angle that ABAQUS will permit the user to input.

Section 6.1 discussed the combined influence of the dilation angle and the maximum com-

pressive strain, εc,max. Figure 6.16 compares the use of maximum strain values of 0.008

and 0.015 and dilation angles of 30◦ and 50◦ for BM 25-220.

With a dilation angle of 30◦, brittle failure occurs, thus the increase in maximum com-

pressive strain has little influence. Conversely, with an increased dilation angle of 50◦, the

beam responses exhibit more ductility and a strong dependence on the maximum com-

pressive strain. Alternatively, increasing only the maximum strain has negligible influence,
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Figure 6.16: Influence of Dilation Angle and Maximum Compressive Strain - BM 25-220

while increasing only the dilation angle proves to strengthen the beam significantly. It

is therefore necessary to increase both the dilation angle and the maximum compressive

strain to simulate the behaviour as observed during the experimental testing.

In summary, it was concluded that the dilation angle used to model the beams with no

stirrups, 30◦, was not appropriate for the modelling of beams with stirrups. A larger angle

was required to simulate the confinement of the concrete provided by the GFRP stirrups. It

was found that an angle of 50◦ produced results that agreed strongly with the experimental

data when used in combination with a larger maximum compressive strain.

6.4.2 Viscoplastic Regularization

Section 5.4.2 presented the influence of the viscoplastic regularization of the constitutive

equations for beams with no stirrups by comparing the use of various viscosity parameters,
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µ. The influence of various values of µ on the behaviour of beams with stirrups is presented

in Figures 6.17 and 6.18 for BM 25-150 and BM 25-220, respectively.

Figure 6.17: Influence of Viscoplastic Regularization - BM 25-150

Similar to the modelling of beams with no stirrups, the use of a viscosity parameter of

µ = 0 led to significant numerical issues that caused the analyses to terminate prema-

turely. Therefore, a non-zero input for µ was required to capture the full spectrum of

the beam response. The use of non-zero viscosity parameters including 0.00001, 0.0001,

and 0.001 were considered. Beams BM 25-150 and BM 25-220 are presented here as they

demonstrate a common pattern found for all beams. When a large viscosity parameter

of 0.001 was used, the models failed at peak loads that matched more closely with the

experimental failure loads than the other viscosity parameters considered. For BM 25-150,

the experimental beam failed at a load of 415.8kN. A viscosity parameter of 0.001 yielded

a peak load of 413.3kN (0.6% difference), while a viscosity parameter of 0.0001 yielded a

peak load of 348.6kN (16% difference). This would suggest that µ = 0.001 is the most

appropriate value. However, the deflection response associated with this viscosity param-
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Figure 6.18: Influence of Viscoplastic Regularization - BM 25-220

eter is severely stiffer than the experimental response. With larger values of µ, the beam

will behave more elastically, thus reducing the accuracy and legitimacy of the model. To

remain consistent with the modelling of beams with no stirrups, a value of µ = 0.0001

was selected for the modelling of all beams with stirrups. This small, non-zero value in-

troduces viscoplastic regularization that overcomes the numerical solution issues, improves

computational efficiency, and is able to produce accurate responses. Although this value

of µ appears to severely underpredict the experimental peak load of BM 25-150, Section

6.8 will show that this model provides results that match closely to the shear strength

predictions proposed by Nehdi et al. (2007).
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6.5 Mesh Refinement

The concrete mesh alternatives studied for the modelling of beams with no stirrups as

presented in Table 5.5 were also studied for the beams with stirrups. Recall that the beams

with 25mm diameter longitudinal bars required modifications to the mesh alternatives

(denoted using brackets) in order to maintain element aspect ratios close to 1.0. Figures

6.19 and 6.20 present the influence of mesh refinement on the load-deflection responses for

BM 12-150 and BM 25-220, respectively.

Figure 6.19: Influence of Mesh Refinement - BM 12-150

It can be seen that the influence of mesh refinement follows the same pattern as observed

with the modelling of beams with no stirrups. As the mesh becomes finer, the pre-peak

response of the beam becomes stiffer. This behaviour was consistent for all beams with

stirrups. The 6 (5) element deep mesh proved to severely underpredict the ultimate load

of each beam. For all beams, with the exception of BM 12-220, the 12-deep and 16 (15)-

deep meshes agreed strongly and were able to provide the highest level of accuracy and
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Figure 6.20: Influence of Mesh Refinement - BM 25-220

consistency with the experimental results. The 21 (20)-deep mesh either provided similar

results to the 12-deep mesh or yielded responses that were far stiffer. Therefore, similar

to the beams with no stirrups, it was concluded that a mesh utilizing 12 elements in the

cross-section depth was the alternative that optimized both the accuracy of the model

predictions and the computational effort required to achieve that accuracy.

Figure 6.21 compares the crack patterns at failure for each of the five mesh refinements

studied for BM 12-150. The crack pattern observed at failure during the experimental

testing is also shown. Note that the right end of each mesh represents the mid-span

section of the beam (point of load application), and the left end of each mesh represents

the location of the support.

It can be seen that all mesh densities accurately capture the presence of diagonal shear

cracks, in the form of large plastic strains, spanning from the load point to the support

point. As the mesh is refined, the crack pattern remains similar, but the crack bands
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Figure 6.21: Influence of Mesh Refinement on Crack Pattern - BM 12-150

become narrower and better defined. The use of finer meshes, 16-deep and 21-deep, provide

crack patterns that agree strongly with the experimentally observed pattern. These results

are consistent for all other beams with stirrups.

6.6 Modelling of GFRP Reinforcement

Two methods of modelling the GFRP reinforcement were studied in this research: 1)

Discrete, one-dimensional truss sections; and 2) Smeared, reinforced membrane sections.

As this chapter focuses on beams with stirrups, this section will discuss the modelling of

both the longitudinal and transverse reinforcement.
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6.6.1 GFRP Longitudinal Reinforcement

Section 5.6 compared the use of discrete truss sections and reinforced membrane sections

to model the longitudinal reinforcing bars in beams with no stirrups. It was demonstrated

that both methods produced beam responses that agreed strongly with the experimental

behaviour. The tensile strains in the reinforcement were also studied, and it was determined

that both modelling methods provided similar strain profiles that matched strongly with

the experimental strain gauge data. It was concluded that the use of truss sections was the

preferred method of modelling the longitudinal reinforcement for beams with no stirrups.

For this reason, discrete truss sections were used exclusively to model the longitudinal bars

for all beams with stirrups.

Figures 6.22 and 6.23 show the longitudinal reinforcement strain profiles for BM 16-150

and BM 16-220, respectively. Truss sections were used for all longitudinal reinforcement,

and membrane sections were used for the stirrups. A concrete dilation angle of 50◦ was

used with a maximum concrete compressive strain of 0.015.

It can be seen that the truss sections provided accurate strain responses that matched

closely with the experimental data. It is important to discuss BM 16-220. During the

experimental testing of this beam, a thunderstorm caused the test-frame hydraulics to

shut off, thus terminating the testing. The beam was loaded to approximately 43% of

the ultimate load and was then unloaded completely due to the thunderstorm. Once

power was restored, testing re-initiated. Therefore, all data presented here for BM 16-220

was collected after the unloading. As unloading occurred after the formation of many

cracks, this beam underwent a load cycle. This load cycle is reflected in Figure 6.23. The

experimental strain profile is approximately linear for the full response and does not exhibit

the sharp decrease in stiffness at cracking that the ABAQUS model does. This is because

cracking had already occurred due to the load cycle, and the reinforcement was activated
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Figure 6.22: Longitudinal Reinforcement Strains - BM 16-150

immediately. However, the model response does converge to the experimental response

after cracking.

6.6.2 GFRP Stirrup Reinforcement

Figure 6.16 presented the influence of the concrete dilation angle, ψ, and maximum concrete

compressive strain, εc,max, on the load-deflection response of BM 25-220. It has been

discussed that the combined calibration of these two parameters is necessary to capture

the influence of the GFRP stirrups on the beam behaviour. The influence of the GFRP
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Figure 6.23: Longitudinal Reinforcement Strains - BM 16-220

stirrup modelling will now be considered by demonstrating the results of BM 12-150.

Figure 6.24 presents the influence of the stirrup modelling on the load-deflection response

for BM 12-150. Models considered the use of truss-section stirrups, membrane-section stir-

rups, and no stirrups. The responses shown in Figure 6.24 utilized the concrete parameters

as recommended in Chapter 5 for the modelling of beams with no stirrups (ψ = 30◦ and

εc,max = 0.008).

The experimental beam failed at a peak load of 405.2kN. When using the concrete model

proposed for beams with no stirrups, peak loads of 232.0kN, 218.6kN, and 169.4kN were

obtained by the truss-stirrup, membrane-stirrup, and no-stirrup models, respectively. Both
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Figure 6.24: Influence of Stirrups (ψ = 30◦ & εc,max = 0.008) - BM 12-150

methods of modelling the stirrups produced similar peak loads and identical deflection

responses. However, the models experienced brittle failures and severely underpredicted

the peak load as compared to the experiment. Furthermore, it can be seen that the models

with stirrups produced responses similar to the model with no stirrups. This shows that

the stirrup reinforcement was not utilized as expected. Modifications to the concrete model

were therefore necessary to capture the effects of the stirrups.

Figure 6.25 presents the influence of the stirrup modelling on the load-deflection response

of BM 12-150 with a concrete dilation angle of 30◦ and an increased maximum concrete

compressive strain of 0.015.

With the increased compressive strain, peak loads of 237.9kN, 249.8kN, and 169.9kN were

produced by the truss-stirrup, membrane-stirrup, and no-stirrup models, respectively. This

increased strain had minimal influence on the peak loads of each beam. As discussed

previously, a dilation angle of 30◦ produces brittle failures that are not dependent on
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Figure 6.25: Influence of Stirrups (ψ = 30◦ & εc,max = 0.015) - BM 12-150

the compressive crushing of concrete, therefore increasing εc,max had minimal influence.

However, the beams experienced a more gradual reduction in strength after the failure

load when a larger maximum strain was used. Again, although the models with stirrups

were not able to capture the strength and ductility of the experimental response, the

truss-section model continued to match closely with the membrane-section model.

Figure 6.26 presents the influence of the stirrup modelling on the load-deflection response

of BM 12-150 with an increased concrete dilation angle of 50◦ and the original maximum

concrete compressive strain of 0.008.

With an increased dilation angle, peak loads of 310.5kN, 324.9kN, and 195.0kN were pro-

duced by the truss-section, membrane-section, and no-stirrup models, respectively. The

larger dilation angle produced a significant increase in the peak load obtained by the mod-

els with stirrups, and also increased the strength of the beam with no stirrups. The beam

with truss-stirrups continued to match closely with the beam with membrane-stirrups.
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Figure 6.26: Influence of Stirrups (ψ = 50◦ & εc,max = 0.008) - BM 12-150

Figure 6.27 presents the influence of the stirrup modelling on the load-deflection response

of BM 12-150 with both an increased concrete dilation angle of 50◦ and an increased

maximum concrete compressive strain of 0.015.

With both an increased dilation angle and an increased compressive strain, peak loads of

343.6kN, 385.1kN, and 195kN were produced by the truss-stirrup, membrane-stirrup, and

no-stirrup models, respectively. This final case had the largest influence on the responses

of beams with stirrups. Unlike the first three cases, the response of the membrane-stirrup

model deviated significantly from the truss-stirrup model. It can be seen that the use

of membrane-section stirrups provided the most accurate results when compared to the

experimental response. Table 6.2 summarizes the peak loads predicted by each concrete

model and stirrup modelling technique. This table also presents the percent difference

between the peak load predicted by each model, PP , and the peak load predicted by the

original concrete model used for beams with no stirrups, P1 (ψ = 30◦ and εc,max = 0.008).
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Figure 6.27: Influence of Stirrups (ψ = 50◦ & εc,max = 0.015) - BM 12-150

Table 6.2: Influence of Stirrup Modelling and Concrete Model - BM 12-150

Stirrups

ψ = 30◦ ψ = 30◦ ψ = 50◦ ψ = 50◦

εc,max = 0.008 εc,max = 0.015 εc,max = 0.008 εc,max = 0.015

P1 PP % PP % PP %

(kN) (kN) Diff. (kN) Diff. (kN) Diff.

Truss 232.0 237.9 2.5% 310.5 33.8% 343.6 48.1%

Membrane 218.6 249.8 14.3% 324.9 48.6% 385.1 76.2%

None 169.4 169.9 0.3% 195.0 15.1% 195.0 15.1%

Table 6.2 demonstrates the influence of changing the concrete parameters ψ and εc,max

on the beam peak loads. Considering the beams with stirrups first, increasing only the

maximum concrete strain had minimal influence, resulting in a 2.5% and 14.3% increase

to the peak load predicted by the truss and membrane models, respectively. Conversely,

increasing only the dilation angle had a significant influence, resulting in a 33.8% and 48.6%

increase for the truss and membrane models, respectively. The combined modification of
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the dilation angle and the maximum strain resulted in further increases to the peak load,

with the membrane stirrups yielding a strong correlation to the experimental results (PP

= 385.1kN, within 5% of experimental load). These observations were consistent for the

modelling of all beams with stirrups.

Now considering the results for the models with no stirrups, increasing only the maximum

concrete strain resulted in negligible change to the peak load (0.3%). However, increasing

only the dilation angle increased the peak load by 15.1%. The combined modification of the

dilation angle and the maximum strain also resulted in a 15.1% increase; the same result

as increasing the dilation angle only. These results suggest that even with an increased

dilation angle, the beams with no stirrups exhibit brittle tension-governed failures that are

not influenced by εc,max.

The stirrup strains were then studied and compared to the data collected during the

experimental testing. Appendix A provides information regarding strain gauge locations

and nomenclature. Figure 6.28 presents the strain profiles for three stirrups within the

shear span of BM 12-150 at strain gauge locations S-4-S, S-5-S, and S-6-S. Figure 6.29

presents the strain profiles for two stirrups within the shear span of BM 16-220 at strain

gauge locations S-5-S and S-6-S. All gauges presented were located at the mid-height of

each stirrup within the straight regions.

BM 12-150 and BM 16-220 were presented here as these beams were representative of all

beams modelled. A consistent observation is that the truss-stirrup strains match closely

with the membrane-stirrup strains initially. At failure, however, the truss-stirrups exhibited

brittle responses, whereas the membrane-stirrups exhibited much higher ductility. It is

clear that the use of membrane sections to model the stirrups allowed the stirrups to

carry higher tensile strains. This higher utilization of the stirrups resulted in the increased

strength of these beams as compared to the truss-stirrup models. Figures 6.30 and 6.31

compare the stirrup strains for BM 12-150 and BM 16-220, respectively, as produced using
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Figure 6.28: Influence of Stirrup Modelling on Strains - BM 12-150

the membrane-stirrup method.
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Figure 6.29: Influence of Stirrup Modelling on Strains - BM 16-220

Figure 6.30: Membrane Stirrup Strains - BM 12-150
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Figure 6.31: Membrane Stirrup Strains - BM 16-220

For BM 12-150, the membrane-stirrup model predicted the largest stirrup strains at the

S-5-S and S-6-S locations. This is to be expected, as the experimental beams failed by

the crushing of a diagonal strut running from the point of load application to the support

plate. This failure surface intersects the S-5-S and S-6-S locations, thus activating these

stirrups and causing larger strains. This is also reflected in the large strains measured

at S-5-S during the experimental testing. It is important to note that the strain gauge

at S-6-S failed prior to the peak load during the experimental testing, which explains the

sudden loss of data as shown in Figure 6.28. However, it is reasonable to assume that this

gauge would have experienced large strains matching the model output if it had not failed

prematurely. Similarly for BM 16-220, the membrane-stirrup model predicted the largest

strains at S-6-S as this location was intersected by the major shear crack.

The GFRP stirrups were defined using a modulus of elasticity of 50,000MPa and an ul-

timate tensile strength of 1000MPa, resulting in a rupture strain of 0.02 (20,000 micro-

strain). In all models of beams with stirrups, the rupture of the stirrups was not the cause

of failure. However, as shown for S-6-S in both BM 12-150 and BM 16-220, the membrane

stirrups experienced very large strains that approached the failure strain. Therefore, al-

though the membrane elements were able to accurately capture the strain profile for most
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stirrups, the strain predictions for stirrups that were intersected by major diagonal shear

cracks experienced excessively large strains.

In conclusion, the comparison of the models with and without stirrups proved that the

presence of stirrup members in the models provided significant contribution to the beam

strength. These stirrups allowed tensile stresses to be carried in damaged regions and

across cracks, thus preventing brittle shear failures of the beams. Furthermore, the use

of membrane sections to model the stirrups, in conjunction with an increased concrete

dilation angle and maximum concrete compressive strain, proved to produce accurate beam

responses, and is the preferred method to model stirrups as compared to the traditional

truss-stirrup alternative.

6.7 Influence of Stirrup Diameter

Thus far, the modelling of beams with stirrups spaced at 150mm and 220mm within the

shear span have been discussed. This section will now apply the proposed model for beams

with stirrups to the BM XX-s230 beam series: BM 12-s230, BM 16-s230, and BM 25-s230.

These beams used stirrups that are spaced at 230mm within the shear span and have core

diameters of 20mm (as opposed to 12mm as used for all other beams). With the larger

stirrup diameters, these beams required larger cross-sections to accommodate the larger

bend radii at the stirrup corners as previously summarized in Table 4.3. Figures 6.32 to

6.34 compare the experimental load-deflection responses with the proposed models for each

beam with larger stirrups.

It can be seen that the proposed model was able to provide reasonable predictions for the

load-deflection responses for each beam. It is interesting to note that the load-deflection

response for each of the beams tested with larger stirrups exhibited two peaks. The first
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Figure 6.32: Load-Deflection Response - BM 12-s230

Figure 6.33: Load-Deflection Response - BM 16-s230
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Figure 6.34: Load-Deflection Response - BM 25-s230

peak was observed at a mid-span deflection of 12.5mm, 13.0mm, and 17.0mm for BM 12-

s230, BM 16-s230, and BM 25-s230, respectively. BM 25-s230 experienced a sudden drop

in strength at a load of 388.7kN, however regained strength and continued to a second peak

of 444.0kN at a mid-span deflection of 35mm. This beam continued to carry a load greater

than 350kN for deflections greater than 60mm (not shown in Figure 6.34), thus exhibiting

significant ductility. For BM 25-s230, the model matched closely with the first peak load.

This first peak load also matched the peaks loads of BM 12-s230 and BM 16-s230. For

this reason, the first peak exhibited by BM 25-s230 was used for all comparisons. Table

6.3 presents the failure loads provided by the experimental tests and the proposed model.

Figures 6.35 to 6.37 compare the crack patterns observed at failure during the experimental

testing with the pattern produced by the ABAQUS modelling. All experimental crack

patterns were provided by Krall (2014).

The crack patterns from each beam were similar, and consisted of diagonal shear cracks
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Table 6.3: Comparison of Peak Loads for Beams with Larger Stirrups

Beam
Peak Load (kN)

% Diff.
Experiment Model

12-s230 466.9 422.5 9.5%

16-s230 434.0 391.8 9.7%

25-s230 388.7 368.1 4.1%

Figure 6.35: Crack Pattern at Failure - BM 12-s230: (a) Experiment (b) ABAQUS Model
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Figure 6.36: Crack Pattern at Failure - BM 16-s230: (a) Experiment (b) ABAQUS Model

Figure 6.37: Crack Pattern at Failure - BM 25-s230: (a) Experiment (b) ABAQUS Model

extending from the point of load application (top right corner) towards the support bearing

plate (bottom left corner). The model was able to accurately replicate these crack patterns.
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6.8 Final Recommendations and Comparison to Code

Predictions

6.8.1 Proposed Model for Beams with Stirrups

Table 6.4 summarizes the parameters recommended for the effective modelling of concrete

beams reinforced with GFRP longitudinal bars and stirrups.

Table 6.4: Proposed Parameters for the Modelling of Beams with Stirrups

Compression Model: Modified Hognestad Parabola

Maximum Compressive Strain: 0.015

Tension Model: Bilinear Stress-Displacement

Fracture Energy, Gf : 90 N/m

Damage: Tension and Compression Included

Poisson’s Ratio, v: 0.2

Dilation Angle, ψ: 50◦

σbo/σco: 1.16

Eccentricity, ε: 0.1

Kc: 2/3

Viscosity Parameter, µ: 0.0001

Mesh Refinement: 12 Deep

Longitudinal Reinforcement: Linear Truss Sections

Stirrup Reinforcement: Reinforced Membrane Sections

The final parameters proposed for the modelling of beams with GFRP stirrups utilizes a

modified concrete compression model that has been calibrated to match the experimental

results. From the experimental observations and ABAQUS simulations, it was clear that

the beams tested experienced concrete-governed failures; the longitudinal and transverse

reinforcement did not rupture. For concrete beams reinforced with traditional steel, the

members are designed assuming that the steel will yield prior to the failure of the concrete.
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When steel yields, it undergoes significant plastic straining which ultimately leads to the

failure of the member. Therefore, as the reinforcement did not control the failure of

these beams, it was necessary to focus on the concrete model in order to replicate the

experimental results.

Furthermore, the confinement provided by the GFRP stirrups has been discussed. As

GFRP does not yield and has a significantly higher tensile strength as compared to steel,

the GFRP stirrups will be able to provide a higher level of passive confinement to the

concrete as the concrete dilates under high compressive stresses, thus strengthening the

concrete. To capture this additional degree of confinement, modifications to the concrete

parameters were considered, including the maximum compressive strain, εc,max, and the

dilation angle, ψ.

Figures 6.38 and 6.39 compare the load-deflection responses as predicted using the proposed

model with the responses measured during the experimental testing for beams with stirrups

spaced at 150mm and 220mm, respectively.

Figures 6.40 and 6.41 present the crack patterns at failure as produced by the proposed

model. The actual crack patterns at failure as observed during the experimental testing

have been superimposed in white. Note that the top right corner of each diagram represents

the point of load application at mid-span and the bottom left corner is the location of the

support.

It can be seen that all models were able to accurately capture the crack patterns at failure.

All beams presented experienced diagonal shear cracks that extended from the load point

towards the support.
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Figure 6.38: Proposed Model for BM XX-150: (a) BM 12-150 (b) BM 16-150 (c) BM
25-150
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Figure 6.39: Proposed Model for BM XX-220: (a) BM 12-220 (b) BM 16-220 (c) BM
25-220
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Figure 6.40: Comparison of Crack Patterns at Failure - BM XX-150: (a) BM 12-150, (b)
BM 16-150, (c) BM 25-150

6.8.2 Comparison to Code Predictions

Table 6.5 presents the failure loads for each beam as provided by various flexure and shear

resistance predictions and the proposed model. These predictions, PP , are then compared

to the experimental peak loads, PE.

Table 6.6 presents the ratio of the peak load as predicted by the proposed ABAQUS model

to the peak load as provided by the various strength prediction models and the experimental

data. Note that a value less than 1.0 means that the proposed model underpredicted the
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Figure 6.41: Comparison of Crack Patterns at Failure - BM XX-220: (a) BM 12-220, (b)
BM 16-220, (c) BM 25-220

peak load relative to the model of interest, whereas a ratio greater than 1.0 means the

proposed model overpredicted the peak load.

It is clear that the shear strength predictions of CSA S806-12 severely underestimated the

shear strength of all beams and provided the weakest correlation with the model output

and experimental data. The shear strength predictions proposed by Nehdi et al. (2007)

provided the best agreement to the ABAQUS results for beams with stirrups at 150mm and

220mm, whereas the CSA flexure model provided better results for beams with stirrups at

199



Table 6.5: Comparison of Predicted and Experimental Peak Loads

Beam

Exper.
CSA S806-12 CSA S806-12 Nehdi et al. ABAQUS

Flexure Shear Shear Model

PE PP Ratio PP Ratio PP Ratio PP Ratio

(kN) (kN) PE/PP (kN) PE/PP (kN) PE/PP (kN) PE/PP

12-150 405.2 441.9 0.92 226.2 1.79 376.7 1.08 385.1 1.05

16-150 416.5 422.0 0.99 214.4 1.94 372.7 1.12 398.6 1.04

25-150 415.8 388.0 1.07 195.4 2.13 365.7 1.14 348.6 1.19

12-220 382.4 441.9 0.87 206.2 1.85 337.0 1.13 332.2 1.15

16-220 309.3 422.0 0.73 195.7 1.58 333.0 0.93 319.7 0.97

25-220 360.1 388.0 0.93 178.9 2.01 326.0 1.10 294.1 1.22

12-s230 466.9 484.0 0.96 293.3 1.59 477.9 0.98 422.5 1.11

16-s230 434.0 462.0 0.94 277.0 1.57 473.4 0.92 391.8 1.11

25-s230 388.7 424.0 0.92 245.5 1.58 465.7 0.83 368.1 1.06

Table 6.6: Comparison of Model Results Relative to Peak Load Predictions

Beam Experiment
CSA S806-12 CSA S806-12 Nehdi et al.

Flexure Shear Shear

12-150 0.95 0.87 1.70 1.02

16-150 0.96 0.94 1.86 1.07

25-150 0.84 0.90 1.78 0.95

12-220 0.87 0.75 1.61 0.99

16-220 1.03 0.76 1.63 0.96

25-220 0.82 0.76 1.64 0.90

12-s230 0.90 0.87 1.44 0.88

16-s230 0.90 0.85 1.41 0.83

25-s230 0.95 0.87 1.50 0.79

230mm. As will be discussed in Chapter 7, the beams with larger stirrups required larger

sections, thus had shear strengths that matched closely with the flexural strengths.
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Chapter 7

Parametric Study

Chapters 5 and 6 presented the ABAQUS analyses of concrete beams reinforced without

and with stirrups, respectively. Recommendations were made regarding the parameters

that were most effective in producing simulations that replicated the experimental obser-

vations. Two models were proposed: one for the analysis of beams without stirrups as

presented in Table 5.7 and the other for the analysis of beams with stirrups as presented

in Table 6.4. The proposed models specify parameters that influence the concrete model

including the compression, tension, plasticity, and damage behaviour. The proposed mod-

els recommend the element types to be used for the glass fibre reinforced polymer (GFRP)

longitudinal and stirrup reinforcement. The proposed models also suggest analytical pa-

rameters that optimize the accuracy and computational effort of each analysis including

the mesh refinement and level of viscoplastic regularization. Using these proposed models,

a parametric study was performed.

7.1 Scope of Study

The primary objective of the parametric study was to apply the proposed models to beams

of various shear span to effective depth (a/d) ratios ranging from 1.5 to 6.5. This ratio,
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hereafter referred to as the slenderness ratio, dictates the slenderness of the beam and will

influence the governing mode of failure. All experimental beams and analytical models

presented up to this point have utilized slenderness ratios of a/d = 2.5, effective depths

of d = 270mm, and shear spans of a = 675mm. As all beams studied were loaded using

three-point bending, the total span of each simply-supported beam was therefore L = 2a =

1350mm. Using the same effective depth d = 270mm, Table 7.1 presents the shear spans

and total spans of the six slenderness ratios considered in the parametric study.

Table 7.1: Spans Considered in Parametric Study

a/d
a L

(mm) (mm)

1.5 405 810

2.5 675 1350

3.5 945 1890

4.5 1215 2430

5.5 1485 2970

6.5 1755 3510

All six slenderness ratios were studied for each of the twelve beams (BM XX-INF, XX-150,

XX-220, XX-s230). For each analysis, the slenderness ratio was the only variable changed;

all material parameters and mesh refinements remained constant.

The secondary objective of the parametric study was to analyze the influence of the slen-

derness ratio on each beam’s behaviour and failure mode. This involved studying the

load-deflection response, moment-deflection response, and crack patterns.

The final objective of the parametric study was to compare the failure loads as provided

by the numerical models with the strength predictions as provided by design standards

and available literature. Comparisons were limited to the flexural and shear strength

predictions provided by CSA S806-12 and the shear strength prediction provided by Nehdi
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et al. (2007) as introduced in Section 2.4.

7.2 Results and Analysis

Appendix D presents the load-deflection and moment-deflection responses that were mod-

elled for slenderness ratios (a/d) ranging from 1.5 to 6.5 for each beam. Table D.1 from

Appendix D presents the failure load, P , and corresponding bending moment, M , for each

slenderness ratio for all twelve beams as determined using by ABAQUS. The results will

now be separated for beams with and without stirrups.

7.2.1 Beams with No Stirrups

Figure 7.1 shows the load-deflection and moment-deflection responses for BM 16-INF.

It can be seen that as the slenderness ratio increased, the mid-span deflection at failure

increased. This is to be expected, as the stiffness of a beam decreases as the slenderness

is increased. Furthermore, as the slenderness ratio increased, the applied load at failure

decreased. However, the bending moment at failure remained relatively similar, ranging

from 40.1kNm to 61.4kNm. As will be shown later, these moments are far less than the

flexural strength of this beam. Therefore, for even the most slender models, the absence of

stirrups resulted in shear-governed failures that occurred at approximately similar bending

moments and that were independent of the slenderness of the beam. This was consistent for

all beams with no stirrups. This behaviour is also reflected in the crack patterns exhibited

at failure as shown in Figure 7.2.

Referring to Figure 7.2, the top-right corner of each beam represents the point of load

application at mid-span, and the bottom-left corner is the location of the support. For
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Figure 7.1: Influence of Slenderness Ratio - BM 16-INF

slenderness ratios of 1.5 to 3.5, a very distinct diagonal shear crack is apparent at failure

that extends from the load point towards the support. Ratios of 4.5 and 5.5 show the

distinct formation of vertical flexural cracks; however there are still regions within the

mid-height of the beam that exhibited critically concentrated plastic strains, indicating
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Figure 7.2: Influence of Slenderness Ratio on Crack Pattern at Failure - BM 16-INF

shear failures within these elements. The largest slenderness ratio of 6.5 exhibited very

distinct vertical flexural cracks; this is to be expected as the flexural strength approaches
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the shear strength with increasing slenderness. However, even this most slender beam with

no stirrups showed concentrated plastic strains within the web of the beam, thus indicating

shear failure. Furthermore, the crack patterns of this beam differ significantly from the

flexural failures exhibited by beams with stirrups as will be discussed later.

Table 7.2 compares the peak loads obtained from the ABAQUS model with various strength

predictions for all beams with no stirrups. Strength predictions include: (1) flexural

strength as predicted by CSA S806-12; (2) shear strength as predicted by CSA S806-

12; and (3) shear strength as predicted by Nehdi et al. (2007). Table 7.2 also provides the

ultimate load as measured during the experimental testing (Exp.); applicable to a/d = 2.5.

Table 7.2: Comparison of Ultimate Loads for Beams with No Stirrups (kN)

Beam a/d
CSA CSA Nehdi ABAQUS

Exp.
Flexure Shear et al. Model

12-INF

1.5 719.9 271.6 283.7 217.3 -

2.5 431.9 152.8 151.3 169.4 163.1

3.5 308.5 129.1 140.1 133.3 -

4.5 240.0 113.9 132.2 100.0 -

5.5 196.3 103.0 126.2 83.3 -

6.5 163.6 94.8 121.5 85.8 -

16-INF

1.5 683.8 266.2 275.4 215.0 -

2.5 410.3 144.8 146.9 142.3 150.2

3.5 293.1 122.3 136.0 110.3 -

4.5 227.9 107.9 128.4 90.5 -

5.5 186.5 97.6 122.6 83.3 -

6.5 155.4 89.8 117.9 72.5 -

25-INF

1.5 620.8 256.9 261.0 198.1 -

2.5 372.5 131.8 139.3 132.5 125.1

3.5 266.1 111.4 128.9 105.0 -

4.5 206.9 98.2 121.6 83.8 -

5.5 169.3 88.9 116.2 71.8 -

6.5 141.1 81.7 111.8 69.9 -

For the purposes of this discussion, the shear model proposed by Nehdi et al. (2007) will
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be referred to as the “Nehdi” model; the CSA S806-12 flexure prediction will be referred

to as the “Flexure” model; and the CSA S806-12 shear prediction will be referred to as

the “CSA Shear” model. Figure 7.3 plots the peak load predictions as a function of the

slenderness ratio for BM 16-INF. The experimental failure load is also presented.

Figure 7.3: Failure Load Predictions - BM 16-INF

As shown in Table 7.2 and Figure 7.3, the Flexure model vastly overpredicted the failure

load for all values of a/d as compared to the other strength predictions. This means that

flexure never governed the failure; a pattern consistent for all beams with no stirrups. This

is to be expected as these beams had no stirrups and will thus experience brittle shear

failures; it would take a very slender beam with no stirrups to fail due to flexure (a/d >

6.5). It is also clear that the ABAQUS modelling agreed strongly with the shear predictions

provided by the Nehdi model and CSA Shear model. Figure 7.4 focuses on these curves.

It can be seen that for a/d = 1.5, the Nehdi and CSA Shear models match closely with a

peak load of 275.4kN and 266.2kN, respectively. However, the ABAQUS model predicted
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Figure 7.4: Governing Load Predictions - BM 16-INF

a lower load of 215kN. As discussed in Section 2.4.1, CSA S806-12 applies a ka factor to

the shear resistance provided by the concrete, Vc. This factor ranges from 1.0 to 2.5 and

is multiplied with Vc to account for the additional strength provided by the arch effect in

deep members. Using the shear strength predictions of CSA S806-12, the critical section of

a simply-supported beam under three-point bending is the mid-span; this section has the

lowest shear resistance. It was found that for all beams with slenderness ratios of 1.5, the

ka factor at mid-span was 1.67, whereas a factor of 1.0 was found for all other slenderness

ratios. Similarly, the Nehdi model also considers the influence of the beam slenderness on

the concrete shear strength. As shown in Equation 2.16, the shear resistance contribution of

the concrete is multiplied by (2.5d/a) if the slenderness ratio is less than 2.5. Again, it was

found that this factor is equal to 1.67 for all beams with slenderness ratios of 1.5, whereas

a factor of 1.0 was found for all other slenderness ratios. Therefore, both shear models

used a factor of 1.67 to increase the concrete shear strength for beams with slenderness

ratios less than 2.5. It is clear that the ABAQUS model was unable to consider the effects
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of arch action as this additional strength was not captured.

For a slenderness ratio of 2.5, the proposed model agreed strongly with both shear strength

prediction models. For all ratios greater than 2.5, the strengths predicted by the Nehdi

model were consistently higher than the strengths of CSA S806-12, and the ABAQUS

model results agreed best with the CSA Shear model. This was consistent for all beams

with no stirrups.

7.2.2 Beams with Stirrups

Figure 7.5 shows the load-deflection and moment-deflection responses for BM 16-150.

It can be seen that the moment-deflection response for BM 16-150 was highly dependent

on the slenderness ratio of the beam. For low ratios of 1.5 and 2.5, the beam failed at lower

moments, 95.2kNm and 133.0kNm, respectively, whereas larger ratios of 3.5 to 6.5 caused

the beam to fail at larger moments of 149.4kNm, 159.5kNm, 168.8kNm, and 168.7kNm,

respectively. As the ratio increased, the failure moments converged to a relatively constant

value that was significantly higher than the failure moments of the deeper beams. This

suggests that the presence of stirrups allowed the beams to shift from shear-governed

failures to flexure-governed failures with increasing slenderness. This was consistent for all

beams with stirrups. This behaviour is also reflected in the crack patterns exhibited at

failure as shown in Figure 7.6 for BM 16-150.

For slenderness ratios of 1.5 and 2.5, a very distinct diagonal shear crack is apparent at

failure that extends from the load point towards the support. For ratios of 3.5 and greater,

the formation of distinct vertical flexural cracks is evident, especially with a/d = 6.5. It is

important to note the difference between the crack patterns shown in Figure 7.6 and the

patterns shown in Figure 7.2 for BM 16-INF. Although the crack patterns for BM 16-INF
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Figure 7.5: Influence of Slenderness Ratio - BM 16-150

also exhibited vertical flexural cracks, the failures were concentrated in elements within

the web of the beam and resulted in shear failures. Conversely, the cracking of BM 16-150

shows that the plastic strains were distributed more evenly amongst elements, suggesting

a more ductile failure mode. Furthermore, BM 16-150 exhibited distinct plastic strains
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Figure 7.6: Influence of Slenderness Ratio on Crack Pattern at Failure - BM 16-150

in the vicinity of the load point (top-right corner) for a/d ratios of 3.5 and greater, thus

indicating concrete crushing at the top of the beam; a further indication of flexural failure
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of the section.

Table 7.3 compares the peak loads obtained from the ABAQUS model with various strength

predictions for all beams with stirrups spaced at 150mm. This table also provides the

ultimate load as measured during the experimental testing (Exp.); applicable to a/d = 2.5.

Table 7.3: Comparison of Ultimate Loads for Beams with Stirrups at 150mm (kN)

Beam a/d
CSA CSA CSA Nehdi ABAQUS

Exp.
Flexure Shear, 0.4 Shear, 1.0 et al. Model

12-150

1.5 736.4 345.5 446.9 510.5 478.1 -

2.5 441.9 226.2 300.8 376.7 385.1 405.2

3.5 315.6 196.9 262.4 365.4 325.0 -

4.5 245.5 177.2 235.1 357.4 269.2 -

5.5 200.8 162.3 214.2 351.4 234.1 -

6.5 167.4 150.6 205.8 346.6 207.6 -

16-150

1.5 703.3 336.2 407.4 502.8 469.9 -

2.5 422.0 214.4 283.2 372.7 393.9 416.5

3.5 301.4 186.4 246.1 361.6 316.2 -

4.5 234.4 167.3 219.8 353.9 262.5 -

5.5 191.8 153.0 207.5 348.0 227.4 -

6.5 159.8 141.7 199.5 343.3 192.3 -

25-150

1.5 646.6 320.9 380.2 489.8 369.7 -

2.5 388.0 195.4 254.4 365.7 346.0 415.8

3.5 277.1 169.2 220.2 355.1 271.7 -

4.5 215.5 151.3 206.6 347.7 226.8 -

5.5 176.4 137.9 197.0 342.1 213.5 -

6.5 147.0 127.3 189.7 337.7 185.6 -

The results for the beams with stirrups spaced at 220mm and 230mm can be found in

Appendix D. Figure 7.7 plots the peak load predictions as a function of the slenderness

ratio for BM 16-150. The experimental failure load is also presented.

As shown in Table 7.3 and Figure 7.7, the Flexure model vastly overpredicted the failure

load for a/d = 1.5 as compared to the other strength predictions. This is to be expected
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Figure 7.7: Failure Load Predictions - BM 16-150

as this low slenderness ratio represents a deep beam which will experience a brittle shear

failure as opposed to a flexural failure. At a slenderness ratio of 2.5, the flexural strength

prediction approached the shear strength determined by the Nehdi model. A ratio of 2.5

represents the theoretical boundary between deep-beam behaviour (shear-governed) and

slender-beam behaviour (flexure-governed). Beyond this boundary ratio, the predicted

flexural strength became less than the shear strength predicted by the Nehdi model and

became the governing strength.

It is important to discuss the shear predictions provided by CSA S806-12. Referring back

to Equation 2.10, the shear contribution provided by the GFRP stirrups is multiplied by a

reduction factor of 0.4; a factor that is not applied when steel stirrups are used. This factor

is used to consider the reduced strength of the FRP stirrups due to the bent regions. As no

stirrups ruptured during the experimental tests or ABAQUS modelling, a factor of 1.0 was

also considered in the presented comparisons (CSA Shear, 1.0). For all beams with stirrups,
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the CSA shear predictions (factor of 0.4 and 1.0) significantly underestimated the shear

strength as compared to the Nehdi model for all values of a/d. Although these models

matched closely for the beams with no stirrups (concrete contribution only), it is clear

that CSA S806-12 assumes that the stirrups provide a significantly smaller contribution

to the shear resistance of the beam as compared to the Nehdi model. Alternatively, it is

possible that the CSA model underestimates the influence that the FRP stirrups have on

the concrete such as increased confinement as compared to steel.

As the failure mode shifted from shear-governed to flexure-governed with increases to the

slenderness ratio, Figure 7.8 compares the ABAQUS model results for BM 16-150 with the

governing strength predictions.

Figure 7.8: Governing Load Predictions - BM 16-150

The curve labeled “Governing - Nehdi et al.” presents the minimum of the CSA flexural

strength and the shear strength predicted by Nehdi et al. (2007). The curve labeled

“Governing - CSA Shear, 1.0” presents the minimum of the CSA flexural strength and
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the CSA shear strength with a factor of 1.0. For a slenderness ratio of 1.5 and 2.5, the

ABAQUS model for BM 16-150 agreed strongly with the Nehdi model. For ratios of 3.5 and

greater, the flexural strength of the beam governed and agreed strongly with the model.

The results for beams with stirrups spaced at 230mm (BM XX-s230) differed slightly from

the results for beams with stirrups at 150mm and 220mm. The cross-sections of these

beams were increased to accommodate the presence of larger stirrups. Figure 7.9 presents

the peak loads as predicted for BM 16-s230 using various models, and Figure 7.10 presents

the governing peak loads.

Figure 7.9: Failure Load Predictions - BM 16-s230

As BM 16-s230 had a larger height and width than all other beams with 16mm longitudinal

bars, this section had a much higher shear capacity. As a result, the two governing curves

converged much sooner (a/d = 3.5) as compared to the beams with stirrups at 150mm or

220mm that did not converge until ratios of 5.5 or 6.5. This means that the shift from

shear-governed to flexure-governed failures occurred much sooner for beams with larger
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Figure 7.10: Governing Load Predictions - BM 16-s230

stirrups (at lower slenderness ratios).

7.2.3 Final Discussion

Beams with No Stirrups:

The study of the moment-deflection responses, crack patterns at failure, and various

strength predictions demonstrated that the failure mode of each beam with no stirrups

was shear governed, regardless of the slenderness ratio. Therefore, the Flexure model was

not appropriate for these beams. It was found that for slenderness ratios of 1.5 and 2.5, the

CSA Shear model and the Nehdi model matched closely. For a/d = 1.5, these shear models

both predicted larger failure loads than the ABAQUS model to consider the influence of

the arch effect in very deep beams. As this increased strength was not exhibited by the

ABAQUS models, more research is required to study this effect.
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For slenderness ratios greater than 2.5, the CSA Shear model and Nehdi model diverged,

with the proposed ABAQUS model agreeing most strongly with the CSA Shear model.

Therefore, when considering the contribution of only the concrete to the shear resistance

of a beam (no stirrups present), both the Nehdi and CSA Shear models provide accurate

results for a/d ≤ 2.5, whereas the CSA Shear model is recommended for all a/d > 2.5.

Beams with Stirrups:

The study of the moment-deflection responses, crack patterns at failure, and various

strength predictions demonstrated that each beam with stirrups experienced shear-governed

failures for low slenderness ratios of 1.5 and 2.5, and shifted towards flexure-governed fail-

ures for ratios larger than 2.5. For beams with no stirrups, the shear predictions provided

by Nehdi et al. (2007) and CSA S806-12 matched closely for all slenderness ratios. Con-

versely, the strength predictions provided by these two models diverged significantly for

all beams with stirrups. For the CSA Shear model, a reduction factor of 0.4 is applied to

the strength contribution of the FRP stirrups; this proved to severely underestimate the

shear strength of each beam as compared to experimental and ABAQUS results. Even

with the omission of this reduction factor, the CSA Shear model consistently predicted

lower shear strengths than the Nehdi model for low slenderness ratios. However, when the

reduction factor was omitted, the CSA Shear model provided the best correlation to the

ABAQUS model for a/d = 1.5 whereas the Nehdi model produced much higher strengths.

Therefore, one conclusion could be that the CSA Shear model with no reduction factor

and the proposed ABAQUS model are both able to provide accurate shear predictions for

beams with FRP stirrups and slenderness ratios of 1.5 while the Nehdi model overpredicts

this strength; conversely, it is possible that the Nehdi model is the most accurate and is

able to capture the arch effects of deep beams while the CSA Shear model and ABAQUS

model are unable to. Therefore, more research is necessary to study very deep beams with

a/d = 1.5 to conclude which model is most appropriate.
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For a slenderness ratio of 2.5, the Nehdi model provided the best correlation with experi-

mental results for all beams with stirrups. For beams with stirrups at 150mm and 220mm,

the ABAQUS model matched closely with the experimental and Nehdi results. For the

larger beams with stirrups at 230mm, however, the ABAQUS model agreed best with the

CSA Shear model (with no reduction factor). Although the BM XX-s230 series did ex-

perience shear failures during the experimental testing, the larger sections of these beams

increased the shear strengths such that the flexural strength matched closely with the shear

predictions as shown in Figure 7.9. Therefore, it is possible that the Nehdi model was less

effective for these larger beams as this model is applicable to shear-governed failures and

these beams were close to the shear-flexure failure boundary.

For all values of a/d equal to and greater than 3.5, flexural failures were predicted. As a

consequence, the Nehdi model became less and less accurate as compared to the ABAQUS

model as this model was calibrated using shear-critical beams only. The ABAQUS model

agreed strongly with the Flexure model for all beams with stirrups. It was found that

the strengths predicted by the CSA Shear model (no reduction factor) converged with the

Flexure model at large slenderness ratios of 5.5 and 6.5 for beams with stirrups at 150mm

and 220mm, whereas the CSA Shear model with the reduction factor included converged

with the Flexure model for beams with stirrups at 230mm.

Table 7.4 presents the final recommendations for the modelling and strength prediction of

concrete beams reinforced with GFRP stirrups. This table presents whether each model

is recommended (“Yes”) or not recommended (“No”) for various slenderness ratios.
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Table 7.4: Model Recommendations for Beams with Stirrups

a/d
CSA CSA CSA Nehdi ABAQUS

Flexure Shear, 0.4 Shear, 1.0 et al. Model

1.5 No No More research required

2.5 No No No* Yes Yes

≥ 3.5 Yes No No No Yes

* Most accurate for BM XX-s230, but underpredicted all others
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Chapter 8

Conclusions and Recommendations

Krall (2014) performed testing on twelve concrete beams reinforced with glass fibre rein-

forced polymer (GFRP) longitudinal bars and stirrups. Beams varied in terms of longitudi-

nal bar diameter, longitudinal bar configuration, stirrup diameter, and stirrup spacing (or

absence of stirrups). Beams were classified as having no stirrups (BM XX-INF), stirrups

spaced at 150mm (BM XX-150), stirrups spaced at 220mm (BM XX-220), and stirrups

spaced at 230mm (BM XX-s230).

This thesis presented the numerical modelling of these beams using the finite element anal-

ysis software ABAQUS. The Concrete Damaged Plasticity Model is a concrete constitutive

model provided within ABAQUS and was used exclusively in this thesis. This model imple-

ments a non-associated plastic flow rule with a multi-variable hardening formulation. The

use of a scalar isotropic damaged elasticity is possible and viscoplastic regularization may

be used in tensile softening regions to improve convergence of the models. The Concrete

Damaged Plasticity Model was calibrated using the experimental data for the modelling of

beams with and without GFRP stirrups. The conclusions made regarding these analyses

and recommendations for future work will now be presented.
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8.1 Beam Modelling Parameters

Chapter 4 provided an overview of the selection of material properties and element formu-

lations. The following conclusions were made:

• The concrete age model proposed by ACI 209R-92 was used to correlate the concrete

compressive strength with the time after casting in order to increase the accuracy of

the ABAQUS modelling with respect to the experimental testing. Using this analysis,

compressive strengths of 54.0MPa, 53.4MPa, and 52.0MPa were used for BM 12-INF,

16-INF, and 25-INF, respectively, and a strength of 56.5MPa was used for all beams

with stirrups.

• The tensile strength of the concrete was calculated using the direct cracking formu-

lation, fcr = 0.33λ
√
f ′
c, which yielded tensile strengths ranging from 2.38MPa to

2.48MPa.

• All GFRP reinforcement used for the experimental beams was ComBAR as provided

by Schoeck Canada. The mechanical properties of this material used in the ABAQUS

modelling were taken from the technical literature provided by Schoeck Canada.

• Three “parts” were used to assemble the beam models: (1) concrete beam, (2) GFRP

longitudinal reinforcement, and (3) GFRP stirrups. The concrete beam was modelled

as a deformable, homogeneous solid. The concrete was discretized using hexahedral,

first-order, continuum elements. Reduced integration and hourglass control were

incorporated to prevent the phenomena of shear locking and hourglassing.

• Two methods of modelling the GFRP reinforcement were studied in this research:

(1) discrete, one-dimensional truss sections, and (2) smeared, reinforced membrane

sections. The truss members were defined as deformable wire sections which were

discretized using first-order truss elements, thus providing axial stiffness only. The

membrane members were defined as deformable membrane sections which were dis-

cretized using 4-noded quadrilateral membrane elements with reduced integration
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and hourglass control. It was demonstrated that the modification of the membrane

thickness and smeared reinforcement spacing allowed the reinforced membranes to

provide the required stiffness.

• The Embedded Region constraint was used to embed the GFRP reinforcement into

the continuum concrete elements.

8.2 Modelling of Beams with No Stirrups

Chapter 5 presented the ABAQUS analyses of the three concrete beams reinforced with

GFRP longitudinal reinforcement and no stirrups, including BM 12-INF, BM 16-INF, and

BM 25-INF. The following conclusions were made:

• The Hognestad Parabola was used to model the uniaxial compressive behaviour of

the concrete. Using the original parabola, a maximum strain corresponding to a

complete loss of strength of εc,max = 0.008 was used.

• The post-peak region of the Hognestad Parabola was modified to become a function

of εc,max in order to study the influence of this strain on the beam behaviour. It

was concluded that this maximum strain had no influence on the pre-peak beam

response, which was to be expected as the beams with no stirrups experienced brittle

shear-tension failures that were not dependent on the crushing of concrete.

• Three methods of defining the post-cracking tensile behaviour of the concrete were

studied: (1) stress-strain approach, (2) fracture energy approach, and (3) stress-

displacement approach. It was found that the stress-strain approach created numer-

ical difficulties that prevented any useful results from being produced. Therefore, it

was concluded that this method is not appropriate for these analyses.

• The fracture energy approach and stress-displacement approach allow the user to de-

fine post-cracking tensile stresses as a function of the crack-opening-displacements.

222



Values of fracture energy, Gf , ranging from 70N/m to 150N/m were studied, and

various stress-displacement curves were studied, including linear, bilinear, and ex-

ponential. With higher fracture energies, the beams exhibited stiffer post-cracking

responses and failed at higher loads. It was concluded that a fracture energy of 90N/m

as recommended by Model Code 1990 provided the most consistent and accurate re-

sults for all beams with no stirrups. Furthermore, the bilinear and exponential func-

tions produced similar responses that agreed strongly with the experiments, while

the linear model was unable to capture the sharp strength loss at cracking. There-

fore, the bilinear model as proposed by Cornelissen et al. (1986) was recommended

due to its simplicity. This curve was able to capture the displacement response and

reinforcement strain profiles accurately.

• The use of concrete damage parameters was considered to account for the elastic

degradation that occurs upon unloading. It was concluded that the tension dam-

age parameters did not influence the beam responses, whereas the compression pa-

rameters significantly weakened the behaviour. The combined use of tension and

compression damage parameters is recommended as it provides results that agree

strongly with the experiments and is consistent with the model proposed for beams

with stirrups.

• The influence of the concrete dilation angle, ψ, on each beam response was studied.

The typical values for the dilation angle as recommended in the literature range

from 30◦ to 40◦. It was concluded that an angle of ψ = 30◦ produced the strongest

agreement with the experimental results.

• The Concrete Damaged Plasticity Model allows the user to specify a viscosity pa-

rameter, µ, to perform viscoplastic regularization in order to overcome numerical

convergence issues. An analysis was performed to determine the optimal value of

this parameter, and it was concluded that a value of µ = 0.0001 improved the com-

putational efficiency of the models without compromising the accuracy of the results.
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• The influence of the concrete mesh refinement on each beam response was studied.

Meshes were characterized by the number of elements in the depth of the beam which

ranged from 5-deep to 21-deep. All mesh refinements produced similar peak loads

and crack patterns. However, as the mesh became finer, the displacement response

became stiffer within the service loading region. It was concluded that a mesh with

12 elements in the depth of the beam provided both accurate and consistent results

while optimizing the computational effort required.

• The longitudinal reinforcement was modelled using both the truss and membrane re-

inforcement approaches. It was determined that both methods provided similar beam

responses and both produced reinforcement strain profiles that agreed strongly with

the experimental strain data. It was concluded that the traditional truss method was

the optimal solution as this approach resulted in slightly higher accuracy and allowed

for easy visualization of the stresses in the individual reinforcing bars. However, it

was demonstrated that the reinforced membrane approach is a valid alternative that

produces accurate results.

• The influence of a modified bilinear stress-displacement tension model on the beam

response and reinforcement strain behaviour was presented. This modified relation-

ship implemented a sharper decrease in strength at cracking while maintaining a

constant fracture energy, thus allowing the reinforcement “slippage” or debonding to

be modelled at cracking. This analysis demonstrated how the tension model may be

modified to simulate the interaction between the reinforcement and concrete.

• It was found that with minor calibration of the Concrete Damaged Plasticity Model,

ABAQUS was able to provide accurate load-deflection responses, reinforcement strain

profiles, and crack patterns that agreed strongly with the experimental data for all

beams with no stirrups.
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8.3 Modelling of Beams with Stirrups

Chapter 6 presented the ABAQUS analyses of the nine concrete beams reinforced with

GFRP longitudinal bars and GFRP stirrups, including the BM XX-150, BM XX-220, and

BM XX-s230 beam series. The following conclusions were made:

• The use of the Hognestad Parabola was considered for the concrete uniaxial com-

pressive model. Using the original parabola (εc,max = 0.008) and a dilation angle of

ψ = 30◦ as recommended for the modelling of beams with no stirrups, the ABAQUS

results severely underpredicted the ultimate load of all beams with stirrups. With

a dilation angle of 30◦, the beams experienced brittle failures and modifications to

εc,max had no influence on the beam responses. With an increased dilation angle

of 50◦, the beam responses became more ductile and modifications to εc,max had a

significant influence on the beam behaviour. It was theorized that since the GFRP

stirrups did not rupture during testing and are unable to exhibit the plastic yielding

that steel stirrups undergo, GFRP stirrups provide a significant degree of passive

confinement to the core concrete, thus increasing the strength and ductility of the

beam. Therefore, it was concluded that the combined modification of the concrete

dilation angle and the maximum compressive strain was necessary to simulate the

effects of this confinement provided by the GFRP stirrups. Values of ψ = 50◦ and

εc,max = 0.015 were recommended for the modelling of all beams with stirrups.

• The influence of the post-cracking tensile response was studied. The stress-strain

formulation was again found to be inappropriate as this approach led to significant

numerical difficulties. The stress-displacement approach was studied using various

values of fracture energy, Gf , and curve shapes (linear, bilinear, exponential). It was

concluded that the amount of fracture energy had minimal influence on the peak load;

this was to be expected as these failures were compression-governed. However, larger

fracture energies resulted in stiffer post-cracking responses. Similar to the modelling

225



of beams with no stirrups, it was concluded that the bilinear model as proposed by

Cornelissen et al. (1986) with a fracture energy of 90N/m provided the best results

for all beams with stirrups.

• The use of concrete damage parameters was considered to account for the elastic

degradation that occurs upon unloading. It was concluded that the incorporation of

compression damage parameters had a detrimental, or weakening, effect on the beam

response, as expected. Conversely, the incorporation of tension damage parameters

had a strengthening effect. The degrading effects of the compression damage proved

to be stronger than the strengthening effects of the tension damage. Therefore, the

combined use of both parameters resulted in a weaker beam as compared to the

no-damage case, and is recommended for the modelling of beams with stirrups.

• It was concluded that viscoplastic regularization of the constitutive equations was

necessary for all beams with stirrups, and a viscosity parameter of µ = 0.0001 was

found to improve the computational efficiency while producing accurate results.

• Similar to the modelling of beams with no stirrups, it was concluded that a mesh

refinement with 12 elements in the depth of the beam provided both accurate and

consistent results while optimizing computational effort.

• It was concluded that truss elements were the preferred method of modelling the lon-

gitudinal reinforcing bars. The reinforcement strains outputted by ABAQUS agreed

strongly with the experimental data.

• The stirrup reinforcement was modelled using both the truss and membrane rein-

forcement approaches. It was determined that when a dilation angle of 30◦ and a

maximum compressive strain of 0.008 were used, the stirrups were not engaged and

the beams behaved similar to the beams with no stirrups. As the experimental beams

with stirrups experienced concrete-governed failures (no stirrups ruptures), modifi-

cations to the concrete model were necessary to strengthen the beam and utilize the

stirrups. With these modifications, it was concluded that the membrane stirrups were
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the preferred alternative as they were able to capture the load-deflection response of

each beam and provide reasonable stirrup strain predictions.

• The proposed model was also applied to beams with larger stirrup diameters (BM

XX-s230). It was found that the model was able to replicate the experimental crack

patterns and predict the failure loads to within 10% of the experimental data.

• It was found that with proper calibration of the Concrete Damaged Plasticity Model,

ABAQUS was able to provide accurate load-deflection responses, reinforcement strain

profiles, and crack patterns that agreed strongly with the experimental data for all

beams with stirrups.

8.4 Parametric Study

A parametric study was performed to study the effectiveness of the proposed ABAQUS

models in simulating the behaviour of GFRP reinforced concrete beams with varying slen-

derness ratios, (a/d). The proposed models for beams with no stirrups and for beams

with stirrups were applied to beams with slenderness ratios ranging from 1.5 to 6.5. The

following conclusions were made:

• For the beams with no stirrups, the bending moment at failure was relatively constant

for each beam as the slenderness ratio changed and remained well below the flexural

strength of the section. This proved that the absence of stirrups resulted in shear-

governed failures, regardless of the beam slenderness. With no stirrups, it would take

a very slender beam (a/d > 6.5) to generate moments that govern the failure.

• For the beams with no stirrups, slenderness ratios of 1.5 to 3.5 resulted in distinct

diagonal shear cracks that extended from the load point towards the support. El-

ements within the web of the beam experienced highly concentrated strains that

resulted in brittle shear failures of the beams. With ratios larger than 3.5, vertical
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flexural cracks developed, but failure was again governed by the tensile shear cracking

of the concrete.

• For beams with stirrups, the bending moment at failure was highly dependent on the

slenderness ratio. For a/d of 1.5 and 2.5, the beams experienced shear failures and

failed at bending moments much lower than the flexural strength. For ratios of 3.5 and

greater, the beams shifted towards flexural failures, thus failed at relatively similar

bending moments. These failure modes were also reflected in the crack patterns. At

low slenderness ratios, distinct diagonal shear cracks governed the failures. For ratios

greater than 3.5, vertical flexural cracks were distributed evenly along the tensile face

of the beams and no concentrated shear failures were observed. These beams also

exhibited plastic strains in the compression zone at mid-span suggesting compression

crushing; a further indication of flexural failure.

• The peak loads obtained from the ABAQUS modelling were compared with various

strength prediction models. It was concluded that the flexural strength predictions

for beams with no stirrups as provided by CSA S806-12 did not govern for any

slenderness ratios. For beams with no stirrups, the shear strength for very deep

beams (a/d = 1.5) as predicted by CSA S806-12 and Nehdi et al. (2007) considered

the increased strength resulting from the arch effect. This increased strength was

not captured by the ABAQUS model. For a/d ≥ 2.5, the CSA shear model and the

Nehdi model matched closely, however the CSA shear model agreed best with the

ABAQUS results.

• For beams with stirrups, the CSA shear predictions diverged significantly from the

Nehdi predictions. For a/d = 1.5, the predicted strengths were quite variable, thus it

was concluded that more research is required to determine which model provides the

most accurate strength prediction. For a/d = 2.5, the Nehdi model proved to be the

most accurate as compared to the experimental and ABAQUS results. For all slen-

derness ratios greater than 2.5, flexural failures governed, and the ABAQUS model
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provided results that matched strongly with the CSA flexural strength predictions.

• In conclusion, with the exception of a/d = 1.5, the proposed ABAQUS models were

able to accurately simulate the failure load, mode of failure, and crack pattern at

failure for all slenderness ratios up to 6.5.

8.5 Recommendations for Future Work

Aspects of the presented research require further investigation to provide a stronger un-

derstanding of the observations and conclusions made in this thesis. The following recom-

mendations are made regarding future work:

• Further investigation is required to determine the physical meaning of the dilation

angle, ψ. Studies should aim to explain why an increased dilation angle of 50◦ was

able to better represent the concrete used for beams with stirrups

• Further investigation is required to study the influence of compression and tension

damage parameters. Studies should aim to explain why compression damage has a

detrimental effect on a beam’s response, whereas tension damage has an apparent

strengthening effect.

• Further investigation is required regarding the accuracy of the shear predictions pro-

vided by CSA S806-12. The parametric study demonstrated that this model con-

sistently underestimated the strength as compared to the model proposed by Nehdi

et al. (2007) (a model calibrated by actual shear-critical beam experiments) and the

ABAQUS results.

• Further investigation is required regarding the strength prediction of very deep mem-

bers (a/d = 1.5). Studies should aim to solve the inconsistencies that were observed

between the shear prediction models regarding the influence of the “arch effect”.

• Further experimental beam tests should be designed using the proposed ABAQUS
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models. The ability of the proposed model to simulate these future experiments will

further validate its accuracy. The combined knowledge gained from the future exper-

iments and potential modifications made to the current model will provide the basis

for recommendations to be made to current design standards. These recommenda-

tions are necessary, as it was shown, that the CSA shear predictions are currently far

too conservative.
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Appendix A

Beam Drawings

This Appendix provides the detailed drawings of the twelve concrete beams that were

studied in this thesis. Drawings include cross-section dimensions, longitudinal bar ar-

rangements, and stirrup layouts. The location and nomenclature of all reinforcement strain

gauges are also presented.
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Appendix B

Beams with No Stirrups

This Appendix provides the results of all analyses performed for beams with no stirrups, in-

cluding BM 12-INF, BM 16-INF, and BM 25-INF. Unless stated otherwise, the parameters

summarized in Table B.1 were used in all analyses presented in this appendix.

Table B.1: Parameters Used for the Modelling of Beams with No Stirrups

Compression Model: Hognestad Parabola

Maximum Compressive Strain: 0.008 (Hognestad)

Tension Model: Bilinear Stress-Displacement

Fracture Energy, Gf : 90 N/m

Damage: Tension and Compression Included

Poisson’s Ratio, v: 0.2

Dilation Angle, ψ: 30◦

σbo/σco: 1.16

Eccentricity, ε: 0.1

Kc: 2/3

Viscosity Parameter, µ: 0.0001

Mesh Refinement: 12 Deep

Longitudinal Reinforcement: Linear Truss Sections

Stirrup Reinforcement: N/A
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Appendix C

Beams with Stirrups

This Appendix provides the results of all analyses performed for beams with stirrups spaced

at 150mm and 220mm. Unless stated otherwise, the parameters summarized in Table C.1

were used in all analyses presented in this appendix.

Table C.1: Parameters Used for the Modelling of Beams with Stirrups

Compression Model: Modified Hognestad Parabola

Maximum Compressive Strain: 0.015

Tension Model: Bilinear Stress-Displacement

Fracture Energy, Gf : 90 N/m

Damage: Tension and Compression Included

Poisson’s Ratio, v: 0.2

Dilation Angle, ψ: 50◦

σbo/σco: 1.16

Eccentricity, ε: 0.1

Kc: 2/3

Viscosity Parameter, µ: 0.0001

Mesh Refinement: 12 Deep

Longitudinal Reinforcement: Linear Truss Sections

Stirrup Reinforcement: Reinforced Membrane Sections
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Appendix D

Parametric Study

This Appendix presents the results of the parametric study performed as discussed in

Chapter 7. Table D.1 presents the ultimate load at failure, P , as determined by the

proposed ABAQUS models and the corresponding bending moment, M , for each beam.

The units for the applied loads and bending moments are kN and kN-m, respectively.

Table D.2 compares the ultimate loads predicted for beams with no stirrups. Tables D.3

to D.5 compare the ultimate loads predicted for beams with stirrups spaced at 150mm,

220mm, and 230mm, respectively. The comparisons presented are limited to the following:

1. Flexural strength provided by CSA S806-12

2. Shear strength provided by CSA S806-12 (with reduction factor of 0.4)

3. Shear strength provided by CSA S806-12 (with reduction factor of 1.0)

4. Shear strength model proposed by Nehdi et al., (2007)

5. Strength predicted by proposed ABAQUS models

6. Strength observed during experimental testing

For each beam, the load-deflection and moment-deflection responses are presented for each

slenderness ratio (a/d) studied. The strength predictions are then plotted as a function of

the slenderness ratio, and the proposed ABAQUS results are compared with the governing

strength predictions.
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Table D.1: Ultimate Loads and Moments

Beam
a/d

1.5 2.5 3.5 4.5 5.5 6.5

12-INF
P 217.3 169.4 133.3 100.0 83.3 85.8

M 44.0 57.2 63.0 60.7 61.8 75.3

16-INF
P 215.0 142.3 110.3 90.5 83.3 72.5

M 43.5 48.0 52.1 55.0 61.8 63.6

25-INF
P 198.1 128.6 105.0 83.8 71.8 69.9

M 40.1 43.4 49.6 50.9 53.3 61.4

12-150
P 478.1 385.1 325.0 269.2 234.1 207.6

M 96.8 130.0 153.5 163.6 173.8 182.2

16-150
P 469.9 393.9 316.2 262.5 227.4 192.3

M 95.2 133.0 149.4 159.5 168.8 168.7

25-150
P 369.7 346.0 271.7 226.8 213.5 185.6

M 74.9 116.8 128.4 137.8 158.5 162.8

12-220
P 395.5 332.2 269.3 234.9 203.7 186.1

M 80.1 112.1 127.3 142.7 151.2 163.3

16-220
P 373.3 320.4 283.5 226.6 200.4 180.8

M 75.6 108.1 133.9 137.7 148.8 158.6

25-220
P 345.8 294.1 255.8 218.6 196.0 175.3

M 70.0 99.3 120.8 132.8 145.5 153.8

12-s230
P 526.5 422.5 364.9 285.2 247.8 218.7

M 106.6 142.6 172.4 173.3 184.0 191.9

16-s230
P 542.2 391.8 343.6 277.9 239.9 207.6

M 109.8 132.2 162.4 168.8 178.1 182.1

25-s230
P 440.2 368.1 301.1 257.3 221.1 198.2

M 89.1 124.2 142.2 156.3 164.2 173.9

Note: All loads, P, have units of kN. All moments, M, have units kNm
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Table D.2: Comparison of Ultimate Loads for Beams with No Stirrups (kN)

Beam a/d
CSA CSA Nehdi

Model Exp.
Flexure Shear et al.

12-INF

1.5 719.9 271.6 283.7 217.3 -
2.5 431.9 152.8 151.3 169.4 163.1
3.5 308.5 129.1 140.1 133.3 -
4.5 240.0 113.9 132.2 100.0 -
5.5 196.3 103.0 126.2 83.3 -
6.5 163.6 94.8 121.5 85.8 -

16-INF

1.5 683.8 266.2 275.4 215.0 -
2.5 410.3 144.8 146.9 142.3 150.2
3.5 293.1 122.3 136.0 110.3 -
4.5 227.9 107.9 128.4 90.5 -
5.5 186.5 97.6 122.6 83.3 -
6.5 155.4 89.8 117.9 72.5 -

25-INF

1.5 620.8 256.9 261.0 198.1 -
2.5 372.5 131.8 139.3 132.5 125.1
3.5 266.1 111.4 128.9 105.0 -
4.5 206.9 98.2 121.6 83.8 -
5.5 169.3 88.9 116.2 71.8 -
6.5 141.1 81.7 111.8 69.9 -

Table D.3: Comparison of Ultimate Loads for Beams with Stirrups at 150mm (kN)

Beam a/d
CSA CSA CSA Nehdi

Model Exp.
Flexure Shear, 0.4 Shear, 1.0 et al.

12-150

1.5 736.4 345.5 446.9 510.5 478.1 -
2.5 441.9 226.2 300.8 376.7 385.1 405.2
3.5 315.6 196.9 262.4 365.4 325.0 -
4.5 245.5 177.2 235.1 357.4 269.2 -
5.5 200.8 162.3 214.2 351.4 234.1 -
6.5 167.4 150.6 205.8 346.6 207.6 -

16-150

1.5 703.3 336.2 407.4 502.8 469.9 -
2.5 422.0 214.4 283.2 372.7 393.9 416.5
3.5 301.4 186.4 246.1 361.6 316.2 -
4.5 234.4 167.3 219.8 353.9 262.5 -
5.5 191.8 153.0 207.5 348.0 227.4 -
6.5 159.8 141.7 199.5 343.3 192.3 -

25-150

1.5 646.6 320.9 380.2 489.8 369.7 -
2.5 388.0 195.4 254.4 365.7 346.0 415.8
3.5 277.1 169.2 220.2 355.1 271.7 -
4.5 215.5 151.3 206.6 347.7 226.8 -
5.5 176.4 137.9 197.0 342.1 213.5 -
6.5 147.0 127.3 189.7 337.7 185.6 -
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Table D.4: Comparison of Ultimate Loads for Beams with Stirrups at 220mm (kN)

Beam a/d
CSA CSA CSA Nehdi

Model Exp.
Flexure Shear, 0.4 Shear, 1.0 et al.

12-220

1.5 736.4 325.7 384.9 470.8 395.5 -
2.5 441.9 206.2 264.6 337.0 332.2 382.4
3.5 315.6 178.9 231.1 325.6 269.3 -
4.5 245.5 160.6 207.7 317.7 234.9 -
5.5 200.8 147.1 189.9 311.7 203.7 -
6.5 167.4 136.5 175.7 306.9 186.1 -

16-220

1.5 703.3 318.0 372.2 463.1 373.3 -
2.5 422.0 195.7 250.0 333.0 320.4 309.3
3.5 301.4 169.6 217.7 321.9 283.5 -
4.5 234.4 152.1 195.1 314.1 226.6 -
5.5 191.8 139.1 178.0 308.3 200.4 -
6.5 159.8 128.9 165.1 303.6 180.8 -

25-220

1.5 646.6 305.6 351.1 450.1 345.8 -
2.5 388.0 178.9 226.2 326.0 294.1 360.1
3.5 277.1 154.6 195.9 315.4 255.8 -
4.5 215.5 138.2 174.7 308.0 218.8 -
5.5 176.4 126.1 163.4 302.4 196.0 -
6.5 147.0 116.6 156.1 298.0 175.3 -

Table D.5: Comparison of Ultimate Loads for Beams with Stirrups at 230mm (kN)

Beam a/d
CSA CSA CSA Nehdi

Model Exp.
Flexure Shear, 0.4 Shear, 1.0 et al.

12-s230

1.5 806.6 442.0 552.7 626.8 526.5 -
2.5 484.0 293.3 396.1 477.9 422.5 466.9
3.5 345.7 255.4 357.8 465.2 364.9 -
4.5 268.9 229.0 340.0 456.4 285.2 -
5.5 220.0 209.0 327.3 449.7 247.8 -
6.5 183.3 193.4 317.7 444.3 218.7 -

16-s230

1.5 770.0 427.6 532.9 618.3 542.2 -
2.5 462.0 277.0 373.9 473.4 391.8 434.0
3.5 330.0 240.5 347.7 461.0 343.6 -
4.5 256.7 215.1 330.7 452.4 277.9 -
5.5 210.0 196.1 318.7 445.9 239.9 -
6.5 175.0 186.9 309.5 440.7 207.6 -

25-s230

1.5 706.7 395.7 510.7 604.0 440.2 -
2.5 424.0 245.5 348.5 465.7 368.1 444.0
3.5 302.9 211.9 324.9 454.0 301.1 -
4.5 235.6 192.1 309.6 445.7 257.3 -
5.5 192.7 181.3 298.7 439.5 221.1 -
6.5 160.6 173.0 290.5 434.5 198.2 -
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