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Abstract

Polarimetry is an useful tool in chemical identification and characterisation both inside
and outside the lab. It is a modality where the effects of chiral molecules, water impurities
and cancerous cells are noticeable through changes in light polarisation as it passes through
these samples. In the case of chiral molecules, like glucose, this change in polarisation man-
ifests as a rotation in polarisation. The amount of rotation that occurs is governed by Boits
Law; however, without large optical path lengths, or high concentrations of solution, these
rotations are typically very small, requiring elaborate, large and costly apparatus. These
devices ensure accuracy by performing complex optical procedures or time-averaging point
measurements. This ensures that any intensity variation in the measurements is a result
of rotation and not from inherent error in the system or from noise, such as sensor or shot
noise. Time Averaging is a lengthy process and does not utilizes all the information from
the incident light beam. To this end, we propose, design and build a novel inexpensive,
compact computational polarimetric measurement system. This system computationally
enhances polarimetric measurements by utilising the full spot size observed on a spatial
detector array. This allows the system to need only a single acquisition to enhance the
polarimetric measurements by recognizing that the full CMOS detector is a spatial array
of photosensitive areas. By using the full spot, it can mimic temporal acquisitions, but
through space rather than time. To ensure accuracy in computational enhancement, de-
tector noise and system error are characterized for their effect on both pixel intensity and
polarimetric measurement accuracy, given the entire acquisition system. All the while,
this device achieves a spatial footprint of less than 245 cm3 and costs 68% less than the
state-of-the-art lab polarimeters.

Two experiments are performed to validate this system. The first experiment is a syn-
thetic experiment meant to demonstrate the performance and robustness of this device in
determining the concentration of chiral molecules in a solution. The second experiment
validates the real life capability of this system by determining the concentration of Mal-
todextrin in water. Through these experiments, it is shown that the spatial enhancement
methods are capable of improving the estimate of chiral molecule concentrations. We also
demonstrate that through the use of a model based spatial enhancement method, we can
estimate with more accuracy and precision than the state-of-the-art enhancement method
of Temporal Averaging.

This system demonstrates that an inexpensive, compact polarimetry device can report
accurate measurements of chiral molecule concentrations through a priori knowledge of
the imperfections in the optical elements used and through computational enhancement
methods that utilise the entire light beam’s spot incident on a spatial detector array. This
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system acts as a proof of concept that the polarimetry modality can be taken outside the
lab and into the field for chiral molecule concentration identification. It also demonstrates
that spatial enhancement methods can be used for polarimetric measurement enhancement,
potentially reducing overall acquisition time which is advantageous in dynamic conditions.
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Chapter 1

Introduction

Light is an amazing thing. The changes that light undergoes as it passes through matter
can tell you a lot about that matter’s characteristics. For example, the matter’s chemical
make up can absorb or scatter different wavelengths and if those wavelengths are known a
priori, then its’ chemical composition can be identified. A research field to measure and
analyse this spectral change in light is called ‘spectroscopy.’

Another change that light can undergo is a phase or amplitude change between the
orthogonal components of the light wave, i.e., a change in the polarisation. Figure 1.1
shows examples of polarised light waves (explained further in Chapter 2). This phase and
amplitude change can occur due to an anisotropy in material structure or from matter
inhomogeneity. Measuring and studying this change in light polarisation is called ‘po-
larimetry.’

Polarimetry has been shown to be capable in flow cytometry, bacteria identification [2,
3], cancer detection [4, 5, 6, 7], and measuring sugar concentration [8, 9, 10], to cite a
few examples. These applications make it worthwhile to explore ways to measure the
polarisation state of light as it scatters through matter.

1.1 Measuring Polarisation State

To describe the polarised state of light, devices look to measure the complete polarisation
state of light by measuring its’ four Stokes parameters. These four parameters are explained
in further detail in Chapter 2. Devices that measure Stokes parameters can be split into
two categories: wavefront and amplitude division devices.
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Figure 1.1: Examples of polarised light [1].

Amplitude division devices take the entire energy of the wave and split it to measure
the Stokes parameters. This is the common method employed by industrial optical lab and
chemical lab polarimeters. For example, the PAX5720 line of polarimeters from Thorlabs
(Thorlabs, NJ) or with MCP-Polarimeters from Anton-Paar (Anton-Paar Germany GmbH,
Germany) use amplitude division methods. Wavefront division devices split the wavefront
of light and, under the assumption that the polarisation of the wave is consistent across
the wavefront area being measured, measure the polarisation state. For example, micropo-
lariser arrays where polarisation state measurement is on the pixel level [11, 12, 13, 14, 15]
are wavefront division devices. Wavefront division devices are still young in their devel-
opment, and while performing well under collimated light, suffer when imaging due to
aberrations and pixel cross talk/diffraction [12, 13].

Most industrial or scientific amplitude division devices are quite large and quite costly.
The size and cost are proportional to the accuracy one can expect from these devices due
to the quality of the optical elements. For example, the PAX5720 polarimeter, mentioned
earlier, is roughly $8000 USD.

1.2 Enhancing Polarimetric Measurements

Stokes parameters are measured through the irradiance of light on photosensitive materials
after passing through a set of appropriate filters. Typically, photodiodes or photomulti-
pliers are used as the transducers. These devices work through the photovoltaic effect,
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(a) Thorlabs PAX5710IR Polarimeter (b) Anton-Paar Polarimeters

Figure 1.2: Examples of lab and industrial polarimeters.

converting irradiance into a voltage or a current through active sensing areas. The outgo-
ing signal is amplified using operational amplifiers at the read-out electronics.

The photovoltaic effect in these devices can cause noise to occur in the form of dark
current and shot noise. Additional noise can arise from the read-out amplifier. The dark
current and read-out amplifier noise are modelled as Gaussian distributions and the shot
noise is modelled as a Poisson distribution [16].

The noise from these sources can be reduced, thereby enhancing the measurements, in
four ways: i) averaging over multiple temporal measurements [17], ii) lock-in amplifiers [18],
iii) an increase in photosensitive areas, or iv) by amplifying the potential energy difference.

Multiple measurements over time can be averaged to provide an enhanced measurement
under Gaussian noise assumptions. Lock-in amplifiers are capable of amplifying minute
signals that exist under the noise floor, but are extremely large and costly. An increase
in photosensitive areas decreases noise under the assumption that the overall signal is
homogeneous and the mean of the sensing areas is the signal, again, under Gaussian noise
assumptions. The increase in sensing areas also allows for a faster measurement of the
polarised state. Photomultipliers increase the potential energy difference that occurs from
an incident photon thereby suppressing any difference created from other sources.
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1.3 Thesis Contributions

The objective of this thesis is to design of an inexpensive, compact polarimetric system
that is capable of reporting polarimetric measurements for measuring chiral molecule con-
centration, thereby overcoming the need for a large, expensive tabletop apparatus.

The contributions of this thesis are

1. An inexpensive, compact polarimetric measurement system for measuring chiral
molecule concentration has been built. The design, formulation and analysis of this
system is done in Chapter 3.

2. The use of spatial detector arrays to utilise the full spot size on the detector to mimic
the capturing of multiple temporal measurements in Chapter 4, Section 4.3.

3. The correction of polarimetric measurement intensity variations that arise from in-
expensive optical elements and random measurement uncertainties from noise using
spatial computational methods with knowledge of the errors incorporated a priori.
The formulation of two spatial algorithms is done in Chapter 4.

The results from these contributions are reported and analysed in Chapter 5 and 6.
Discussions of future work and conclusions for this system are in Chapter 7.
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Chapter 2

Background

This chapter explorew the state-of-the-art in polarimetric system design for measurement
enhancement. Theoretical tools and terminology used in polarimetry are introduced in
Section 2.1, polarimetric system designs for enhancing measurements are explored in Sec-
tion 2.2, and post-processing techniques used for noise reduction are discussed in Sec-
tion 2.3.

2.1 Polarimetric Theory

Polarimetry is the measurement of phase and amplitude differences between orthogonal
components in a light wave. These measurements describe a wave’s polarisation state.
This section will describe the theoretical foundation that describes the polarisation of a
light wave, followed by the mathematical tools used in polarimetry. These derivations are
summarised from Tuchin et al. [2], Goldstein [19], and Collett [20].

2.1.1 Polarised Light

Ignoring diffraction, light can be described as an oscillating, monochromatic electromag-
netic (EM) planar wave emitting from a point source with some wavelength λ and angular
frequency ω. For the scope of this thesis, the polarisation of non-monochromatic waves
will not be described.
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If the EM wave is imagined to be travelling in some arbitrary direction through a
homogeneous, isotropic medium, r = r(x, y, z), then the electric wave’s amplitude can be
described as

E(r, t) = Eo cos (ωt− k · r + φi) (2.1)

where Eo = Eo(x, y, z) is the maximum amplitude, φi is some phase delay in the wave,
and k is the wave vector, where ‖ k ‖= 2π

λ
. The wave is assumed to be travelling in three-

space (x, y, z), allowing for eq. 2.1 to be decomposed into a scalar representation in three
orthogonal directions

Ex(r, t) = Eox cos (ωt− k · r + φx) (2.2)

Ey(r, t) = Eoy cos (ωt− k · r + φy) (2.3)

Ez(r, t) = Eoz cos (ωt− k · r + φz) (2.4)

where Eox, Eoy, and Eoz are the maximum amplitudes in each of the three orthogonal direc-
tions. The term polarisation is actually this vectorial nature of the wave and polarimetry
is the measurement of this vectorial nature. For the rest of this thesis, it is assumed that
there will be no change in the wave’s propagation direction. The propagation direction will
be along the z axis and since EM waves are defined as transverse waves in free space, there
will only be vibration in the x and y directions for the electric waves, thereby reducing the
amplitude equations from eq. 2.2, 2.3, 2.4 to eq. 2.5 and eq. 2.6.

Ex(z, t) = Eox cos (ωt− kz + φx) (2.5)

Ey(z, t) = Eoy cos (ωt− kz + φy) (2.6)

The term ωt−kz can be called the propagator and be represented by τ . Using τ , eq. 2.5
and 2.6 can be rephrased as eq. 2.7 and 2.8 to make the proceeding formulation easier.

Ex(z, t) = Eox cos (τ + φx) (2.7)

Ey(z, t) = Eoy cos (τ + φy) (2.8)

These two equations can be combined to form the equation of an ellipse. The term
(z, t) will be dropped for the following equations in this section.
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E2
x

E2
ox

+
E2
y

E2
oy

− 2
Ex
Eox

Ey
Eoy

cosφ = sin2 φ (2.9)

where the phase delay difference, φ, is defined as φ = φy−φx. This derivation demonstrates
that the wave generally propagates as an ellipse. This behaviour is coined the optical ellipse
while eq. 2.9 is the polarisation ellipse.

Special (Degenerate) forms of the polarisation ellipse can occur, leading to these polar-
isations: i) Eoy or Eox is 0, ii) φ is 0 or π, iii) φ is π

2
or 3π

2
, and iv) Eoy = Eox = Eo and

φ = π
2

or φ = 3π
2

. These special cases are important in describing polarimetric states and
their use will become clear in later sections.

1. In eq. 2.7 and eq. 2.8, when Eoy is zero, Ey is also zero leaving only the Ex component.
The resulting vectorial description describes a horizontally polarised wave. Similarly,
if Eox is zero, this describes a vertically polarised wave.

2. With a phase delay difference of 0 or π, the polarisation ellipse in eq. 2.9 reduces to

E2
x

E2
ox

+
E2
y

E2
oy

± 2
Ex
Eox

Ey
Eoy

= 0(
Ex
Eox
± Ey
Eoy

)
= 0 (2.10)

which has a solution of

Ex = ±
(
Eox
Eoy

)
Ey (2.11)

The solution in eq. 2.11 shows that there is a linear relation between the orthogonal
components. This describes a linearly polarised wave. In the case where φ = 0, there
is a negative linear relation and conversely when φ = π, the linear relation is positive.
If the maximum amplitudes are equal, i.e., Eox = Eoy, then this describes a ±45◦

linearly polarised wave.

3. For the third case, when there is a phase delay difference of φ = π
2

or 3π
2

, the
polarisation ellipse reduces to being the general description of the non-rotated ellipse
in eq. 2.12. In this case, unlike case two, it is not apparent whether the phase delay
difference is φ = π

2
or 3π

2
.
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E2
x

E2
ox

+
E2
y

E2
oy

= 1 (2.12)

4. In the final case, when the maximum amplitudes are the same and the phase delay
differences are the same as case three, the polarisation ellipse and eq. 2.12 reduces to

E2
x + E2

y = E2
o (2.13)

Depending on the phase delay difference, the resulting waves can be either right-
handed circularly polarised (RHCP) or left-handed circularly polarised (LHCP).
When φ = π

2
, the wave is RHCP and when φ = 3π

2
, the wave is LHCP. The polari-

sations are named as such because if an observer places their thumb in the direction
of k, the light wave will travel radially around their thumb. If the wave travels in
the direction of the fingers on their right hand, then the wave is right-hand circularly
polarised and conversely named if the wave follows the fingers on their left hand.
Unfortunately, again, like in case three, from the equation alone, the phase difference
is ambiguous. In all the special cases, the phase difference is only clear in case two.

In this section, polarisation was formulated mathematically along with the resulting
polarisation ellipse. This ellipse will degenerate to some special cases under certain circum-
stances and these cases will be used in later sections of this thesis for describing polarising
elements and in the design of the polarimetry system.

The polarisation ellipse described here has some limitations. This ellipse will be traced
out during such a short duration that it cannot be easily observed thereby making the
polarisation of the light wave difficult to determine. In addition, this method assumes the
light waves are entirely polarised, which could not be the case.

2.1.2 Stokes Parameters

What was mentioned in the last section motivates the search for a formulation of the
polarisation ellipse in terms of observables. This was a task taken on by Gabriel Stokes in
1852 [19].

To formulate the polarisation in terms of observables, both of the orthogonal waves in
eq. 2.5 and 2.6 can be imagined to be at the spatial position z = 0, leaving only time as
the wave propagator.
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Ex(t) = Eox cos (ωt+ φx) (2.14)

Ey(t) = Eoy cos (ωt+ φy) (2.15)

This leads to eq. 2.9, but now with only a time dependence.

E2
x(t)

E2
ox

+
E2
y(t)

E2
oy

− 2
Ex(t)

Eox

Ey(t)

Eoy
cosφ = sin2 φ (2.16)

To make this observable, the time average (〈· · · 〉) of the instantaneous amplitude term
can be taken.

〈E2
x(t)〉
E2
ox

+
〈E2

y(t)〉
E2
oy

− 2
〈Ex(t)
Eox

Ey(t)〉
Eoy

cosφ = sin2 φ (2.17)

where the time average is

〈Ei(t)Ej(t)〉 = lim
T→∞

1

T

∫ T

0

Ei(t)Ej(t)dt (2.18)

Each time average is evaluated, using eq. 2.14 and 2.15 in eq. 2.18. Due to the period-
icity of the monochromatic radiation, only the average over a single oscillation needs to be
taken

〈E2
x(t)〉 =

1

2
E2
ox (2.19)

〈E2
y(t)〉 =

1

2
E2
ox (2.20)

〈Ex(t)Ey(t)〉 =
1

2
EoxEoy cosφ (2.21)

and to make the waves observable, eq. 2.17 is multiplied by by 4E2
oxE

2
oy and E2

ox + E2
oy is

added to both sides of the equation to produce

(
E2
ox + E2

oy

)2 −
(
E2
ox − E2

oy

)2 −
(
2E2

oxE
2
oy cosφ

)2
=
(
2E2

oxE
2
oy sinφ

)2
(2.22)

Each of the square terms is recognized as the Stokes parameters of the light wave. The
parameters are all observable intensities.
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S0 = E2
ox + E2

oy (2.23)

S1 = E2
ox − E2

oy (2.24)

S2 = 2EoxEoy cosφ (2.25)

S3 = 2EoxEoy sinφ (2.26)

And if the derivation is done using the phasor representation,

Ex = Eoxe
iωteiφx (2.27)

Ey = Eoye
iωteiφy (2.28)

the Stokes parameters take the form of

S0 = ExE
∗
x + EyE

∗
y (2.29)

S1 = ExE
∗
x − EyE∗y (2.30)

S2 = ExE
∗
y + EyE

∗
x (2.31)

S3 = i(ExE
∗
y − EyE∗x) (2.32)

Eq. 2.23, eq. 2.29 and the first term in eq. 2.22 are recognized as the full intensity of
the light wave. Rearranging eq. 2.22 shows that the squared sum of S1−3 is equal to the
square of the full intensity of the light wave, S0, shown in eq 2.33.

S2
0 = S2

1 + S2
2 + S2

3 (2.33)

The sum in eq 2.33 is true under the assumption that the wave is perfectly polarised.
In the case of partial polarisation, it can be shown in eq. 2.34 that the relation in eq. 2.34
holds.

S2
0 ≥ S2

1 + S2
2 + S2

3 (2.34)

A metric can then be defined to describe the degree of polarisation, P , using eq. 2.33
and eq. 2.34

P =
Ipol
Itot

=
(S2

1 + S2
2 + S2

3)
1
2

S0

0 ≤ P ≤ 1 (2.35)
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2.1.3 Stokes Vectors

The four Stokes parameters can be expressed in terms of a vector with each element being
a Stokes parameter. The use of a vector representation allows other mathematical tools to
be used later on.

S =


S0

S1

S2

S3

 =


E2
ox + E2

oy

E2
ox − E2

oy

2EoxEoy cosφ
2EoxEoy sinφ

 (2.36)

Each of the special (degenerate) cases of the polarisation ellipse can be represented
using this observable representation from eq. 2.36. Each representation is scaled by the
intensity of the light wave, I0.

Horizontally Polarised Light

In horizontally polarised light, Eoy = 0, eq. 2.36 reduces to

S = I0


1
1
0
0

 (2.37)

where I0 = E2
ox.

Vertically Polarised Light

In vertically polarised light, Eox = 0, eq. 2.36 reduces to

S = I0


1
−1
0
0

 (2.38)

where I0 = E2
oy.
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+45◦ Polarised Light

In +45◦ polarised light, Eoy = Eox = Eo and φ = 0, so eq. 2.36 reduces to

S = I0


1
0
1
0

 (2.39)

where I0 = 2E2
o

−45◦ Polarised Light

In −45◦ polarised light, Eoy = Eox = Eo and φ = π, so eq. 2.36 reduces to

S = I0


1
0
−1
0

 (2.40)

where I0 = 2E2
o .

Right-hand Circularly Polarised Light

In RHCP light, Eoy = Eox = Eo and φ = π
2
, so eq. 2.36 reduces to

S = I0


1
0
0
1

 (2.41)

where I0 = 2E2
o .

Left-hand Circularly Polarised Light

In LHCP light, Eoy = Eox = Eo and φ = 3π
2

, so eq. 2.36 reduces to

S = I0


1
0
0
−1

 (2.42)
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where I0 = 2E2
o .

2.1.4 Mueller Matrices

Polarimetry is the measurement of how the polarisation state of light changes as it interacts
with matter. The mathematical characterisation of this matter and how it changes a wave’s
polarisation is described using Mueller matrices.

Mueller matrices are four-by-four matrices that map an incoming light beam’s Stokes
representation to an outgoing light beam’s Stokes representation, demonstrated in eq. 2.43,
mimicking the interaction of the polarized light wave with matter: i) as it changes the
amplitudes of components of the light wave, ii) as the phases change between the orthogonal
components, iii) as it changes the direction of the orthogonal field components, and iv) as
energy transfers from polarised to unpolarised states. This tool offers the ability, under
certain constraints, to theoretically observe the change in light polarisation for a wide range
of possible input Stokes vectors.

Sout = MSin (2.43)
S ′0
S ′1
S ′2
S ′3

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44



S0

S1

S2

S3

 (2.44)

The size of the Mueller matrix requires there to be 16 measurements taken with different
input and output Stokes vectors to determine the affect of matter on the polarisation of a
light wave. There is no guarantee that it will result in a well posed system [21].

2.1.5 Polarising Elements

For optical experiments and polarimetry, manipulating the polarisation of the incoming
and outgoing light beams is important to ensure proper light interaction [22], measurement
and interaction with matter. To perform this manipulation, elements can be placed in the
light path with varying effect.

Elements that are capable of changing the amplitudes of orthogonal components un-
equally are called polarisers or diattentuators. Elements that incur a phase change between
the orthogonal components are called retarders and elements that rotate the orthogonal
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components of the beam through some angle are called rotators. Each of these elements
can be described using a Mueller matrix.

Polarisers

The effect the polariser on the component amplitudes of the light wave can be described
using these two terminal equations

E ′x = pxEx 0 ≤ px ≤ 1 (2.45)

E ′y = pyEy 0 ≤ py ≤ 1 (2.46)

These representations are used as a starting point to describe the polariser’s Mueller
matrix. Substituting eq. 2.45 and 2.46 into eq. 2.23–2.26 produces a new Stokes vector,
S ′, as the output of the polariser.

S ′0 = p2
xE

2
ox + p2

yE
2
oy (2.47)

S ′1 = p2
xE

2
ox − p2

yE
2
oy (2.48)

S ′2 = 2pxpyEoxEoy cosφ (2.49)

S ′3 = 2pxpyEoxEoy sinφ (2.50)

This can be reformulated into the form of eq. 2.43 as
S ′0
S ′1
S ′2
S ′3

 =
1

2


p2
x + p2

y p2
x − p2

y 0 0
p2
x − p2

y p2
x + p2

y 0 0
0 0 2pxpy 0
0 0 0 2pxpy



S0

S1

S2

S3

 (2.51)

In the case of a perfectly ideal horizontal polariser (i.e., px = 1, py = 0), the above Mueller
matrix becomes

MH =
1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 (2.52)
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And conversely, if it was a perfectly ideal vertical polariser (i.e., px = 0, py = 1), then the
Mueller matrix becomes

MV =
1

2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

 (2.53)

In the case of commercially available polarisers, such as wire grid, stretched polymer,
glass, or nanoparticle polarisers, they are never perfectly polarising (i.e., pxpy 6= 0). There-
fore, the term 2pxpy does not go to zero and the polariser does not create perfectly linearly
polarised light, but instead elliptically polarised light. To describe the lack of ideal perfor-
mance, a metric called extinction ratio is used by manufacturers and defined in eq. 2.54.

e =
pp
ps

(2.54)

where pp is the larger scaling factor in the direction parallel to the polarising direction and
ps is the scaling factor in the cross (perpendicular) direction to the polarising. It can be
seen that in the case of a horizontal polariser, pp = px and ps = py and conversely in the
case of a vertical polariser, pp = py and ps = px. Typically the extinction ratio is in the
range of 104 − 107.

Retarders

Retarding elements produce a phase delay difference between the orthogonal components
of a light wave. From the derivation of the polarisation ellipse and its’ special (degenerate)
cases, the application of a retarder is needed to produce these cases. The effect of the
retarder can be described using the two terminal equations

E ′x = e+iδ/2Ex (2.55)

E ′y = e−i
δ/2Ey (2.56)

where δ is the incurred retardation by the retarding element. For mathematical conve-
nience, the retardation will be split between the two orthogonal components, −δ/2 for Ey
and +δ/2 for Ex. Taking the above representations into eq. 2.29–2.32, the resulting Stokes
parameters are

S ′0 = S0 (2.57)
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S ′1 = S1 (2.58)

S ′2 = S2 cos δ + S3 sin δ (2.59)

S ′3 = −S2 sin δ + S3 cos δ (2.60)

The Mueller matrix to create the Stokes parameters above is shown in eq. 2.61.

Mδ =


1 0 0 0
0 1 0 0
0 0 cos δ sin δ
0 0 − sin δ cos δ

 (2.61)

Rotators

There are elements in the lab, and in nature (such as sugars and amino acids [19]), that
can cause a rotation in polarised light and these elements can also be characterised using
Mueller matrices. To derive these Mueller matrices, a paradigm is necessary to describe
the rotation. This is described in Figure 2.1. In this figure, there is some wave, E, linearly
polarised at an angle β from the horizontal, in x, y, and it is rotated by θ. Both angles
are defined counter-clockwise from the horizontal. Two sets of terminal equations are used
here. The first set refer to the polarisation of the wave relative to the rotated coordinated
system, x′, y′, and the second set refers to the original coordinate system, x, y. In the x′, y′

coordinate space

E ′x = E cos (β − θ) (2.62)

E ′y = E sin (β − θ) (2.63)

and in the original x, y coordinate space

Ex = E cos β (2.64)

Ey = E sin β (2.65)

Expanding the first set and using the second set

E ′x = Ex cos θ + Ey sin θ (2.66)

E ′y = −Ex sin θ + Ey cos θ (2.67)
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Figure 2.1: Rotated coordinate system for rotating polarising element.

results in the Stokes parameters

S ′0 = S0 (2.68)

S ′1 = S1 cos 2θ + S2 sin 2θ (2.69)

S ′2 = −S1 sin 2θ + S2 cos 2θ (2.70)

S ′3 = S3 (2.71)

leading to a Mueller matrix described in eq. 2.72.

Mrot(2θ) =


1 0 0 0
0 cos 2θ sin 2θ 0
0 − sin 2θ cos 2θ 0
0 0 0 1

 (2.72)

2.1.6 Polarimetric Systems

Polarimetry typically involves five components: the source, the polarising elements (i.e.,
polarisers, retarders, and/or rotators), the matter, the analyser, and the detector. This
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Figure 2.2: Pictorial representation of a polarimetry system.

system can be split into four parts. Each of these four parts represent a single change in
the light wave’s polarisation: i) source through polarising element, ii) polarising element
through matter, iii) through analyser to detector, and iv) light beam flux to measured
intensity in the detector. The full system and these parts are shown in Figure 2.2.

1. The outgoing intensity from the source can be modelled as a Stokes vector, Ssource,
and some Mueller matrix can be used to represent the set of polarising elements,
Mpol.

SS→P = MpolSsource (2.73)

2. Next is the change in polarisation that occurs when the incoming wave interacts with
matter, Mmatter.

SP→M = MmatterSS→P (2.74)

3. The passing of the light wave through the analyser, Manalsyer is

SM→A = ManalsyerSP→M (2.75)

4. When the Stokes parameter are converted to the measured intensity on the detector,
there will be a matrix A. This matrix describes how the energy from the light
beam will be converted into information from the detector. This makes the resulting
measurements on the detector

ID = ASM→A (2.76)

where ID is a vector with a single non-zero value. This non-zero value is what the
detector produces as a measurement.
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Typically detectors measure the intensity of the light beam, which makes A

A =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (2.77)

Matrix A will be different depending on the kind of detector used, or the kind of
polarimetry being performed. For example, if a detector that was sensitive only to
horizontally polarised light is used in a polarimeter, then A will be

A =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (2.78)

For this thesis, we will use eq. 2.77 as A.

With the configuration in Figure 2.2, the polarisation analyser, i.e., Manalyser, can
be arranged in several ways to determine the polarisation of the light wave. There are
rotating element arrangements, phase modulation arrangements and oscillating element
arrangements. This thesis will use the rotating element arrangement and will elaborate in
the theoretical formulation of the proposed device later in this thesis. Information on the
other two arrangements can be found in Goldstein [19] and Collett [20].

Rotating Element Analyser

In the case of a rotating element analyser, the analyser can be modelled as a rotated
polarising element, similar to what was outlined in Section 2.1.5.

So far, the formulations for polarising elements have been done assuming the attenu-
ating directions are parallel to the orthogonal coordinate system x, y. In the case of a
rotated polarising element, it can be assumed that there is some x′, y′ coordinate system
where the polarising element is not rotated and our prior formulations hold. With the as-
sumption that the coordinate system is on-axis with the light beam, there can be an angle,
θ, that describes the angular displacement of x′, y′ from x, y. The coordinate systems are
shown in Figure 2.3. With the assumptions used in the derivation of the light wave and
the polarising elements, the wave must be described in a coordinate system that is parallel
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Figure 2.3: Graphical representation of the coordinate systems to mathematically formulate
the Mueller matrix for an element rotated by θ.
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to the directions of the polarising element for interaction to occur. After interaction, the
light wave needs to again be described in the original coordinate system for any subsequent
interaction. All this can be described using the formulation below

Manalsyer = Mrot(−2θ)MMrot(2θ) (2.79)

where M is the Mueller matrix of some polarising element and Mrot is the Mueller matrix
defined in eq. 2.72.

Ultimately, the system can be formulated from source to detector as eq. 2.80.

I = AMrot(−2θ)MMrot(2θ)MmatterMpolSsource (2.80)

The A matrix used to convert the observables to intensities can be perturbed from its’
non-ideal state to include intensity modulations and variations spatially and temporally.
The next two sections in this chapter will describe the variations that can occur and
methods for their reduction thereby enhancing the polarimetric measurements.

2.2 System Polarimetric Measurement Enhancement

Intensity variations in polarimetric measurements can occur from imperfections in the
polarising elements, from their arrangement relative to one another, and from detector
characteristics.

From a system design perspective, one can perform measurement enhancement by en-
suring that elements are chosen and placed in such a way that any possible variance in
the measurements are reduced. Vaughn et al. and Tyo approached this problem by min-
imizing the condition number of the overall Mueller matrix of the optical elements in the
system [23, 24]. Le Juene et al. take another approach by minimizing the χ2 function of
the noise variance [25]. These methods are capable of increasing the signal-to-noise ratio
by several tens of decibels through the optimal choice of polarising element placement.

Tyo’s work is of particular interest to this thesis for his use of spatial simulation data
to mimic the temporal polarimetric measurements for each of the Stokes vectors. This will
be discussed more in Section 2.3.

Intensity variations seen by the detector are not explicitly addressed in the system de-
sign of polarimeters and cannot easily be suppressed. The reason being that the variations
are either inherent from the physics of the light beam being measured, i.e., speckle and
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shot noise, or from the electronics, i.e., dark current noise, read-out noise and fixed pat-
tern noise. Typically, any enhancement on the detector is handled through post processing
methods or ignored [23].

2.3 Computational Polarimetric Measurement Enhance-

ment

The intensity projected on the photosensitive areas of a detector can not only be subject
to modulations from the arrangement of polarising elements, but also from additional
intensity variations from inherent physical or detector characteristics.

There are two kinds of intensity variations that can be introduced at the detector: i) in-
tensity variations from the inherent characteristics of the measured light, and ii) intensity
variations from the inherent characteristics of the electronics involved. From here on, this
thesis will make a distinction between these kinds of intensity variations: error and noise.
Error is a deterministic quantity that is constant through time, while noise is a stochastic
value that is temporally varying.

2.3.1 Physical Intensity Variations

Lasers are useful sources in polarimetry due to their monochromatic nature. Matter can
have varying polarimetric responses across the spectrum making it difficult to model using
Mueller matrices, given the assumptions stated in their formulation (see Section 2.1).
Lasers are also coherent sources (i.e., the phase difference between two temporal or spatial
points in the wave emitted is constant) which results in speckle. Speckle is a kind of
error that causes variation in the spatial intensity distribution due to the interference of
coherent wavefronts. This spatial pattern differs depending on the material scattered and
wavelength used, but is constant through time.

As found in Vaughn et al., speckle is a consequence that can be experienced in po-
larimetry [23], but in polarimetric applications for matter analysis that use the full laser
spot, methods for speckle removal have been explored in so far as the methods explained
in Section 2.2. Computational methods for polarimetric speckle reduction in matter iden-
tification have not been explored, as far as this author knows.

Another fundamental noise source on the detector is the statistical arrival of incident
photons. This is called shot noise and is typically modelled as a Poisson process. This is

22



a temporally varying noise source, but as more and more photons become integrated on
the detector, the intensity variations can be modelled more as a Gaussian process. This is
explained further in Chapter 4.

Shot noise is considered in the works of Vaughn et al. and Le Jeune et al.. They
recognize shot noise as a cause of variance in the measurements for matter identification
polarimetry, but pay no special attention to its’ Poisson characteristics [23, 25].

2.3.2 Electrical Intensity Variations

Detectors are transducers that use photosensitive areas and convert them to electrical
signals that can later be interpreted. In the transducer itself, there are electrical processes
that are necessary and common amongst most detectors that can cause temporal intensity
variations. These variations are modelled as zero-mean Gaussian distributions.

For an ideal intensity perturbed by zero-mean Gaussian noise, the observed intensity
can be modelled as:

U = I + η (2.81)

where U is the observed intensity, I is the ideal intensity and η is a value sampled from a
zero-mean Gaussian noise process (η ∼ N (0, σ2)). The most common method to address
Gaussian noise is to observe the intensity N times

Û =
1

N

N∑
i=0

(Ii + ηi) (2.82)

where Û is the enhanced signal such that Û ∼ I. As N approaches a large number, the
average of η will approach zero, since it is sampled from a zero-mean Gaussian distribu-
tion, leaving the observed intensity equal to the real intensity. One method is to capture
N observations is through time, but this is difficult to do when measuring dynamic phe-
nomena. Polarimetry is typically used in static scenarios and these observations can be
captured with no issue [17]. However, from a usability perspective, being able to capture
N observations can take a noticeable amount of time.

Tyo had performed an interesting simulation in his work in polarimetric enhancement
where he uses a two-dimensional representation to simulate the temporal arrival of measure-
ments from a photosensitive area [24]. In other words, he equates the spatial multiplexing
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in the two-dimensional image to the temporal multiplexing that occurs on a photosensitive
area. This is used as inspiration for two main contributions of this thesis.

2.4 Summary

This chapter summarised the theoretical tools used in describing the polarisation state of
a light beam and the methods for analysing its’ interaction with polarising elements and
matter. Unfortunately, these polarising elements are not perfect in their polarising effects
which causes undesirable polarisation states, as alluded to in Section 2.1.5. Analysis of
these imperfections and their affect on the polarimetric measurements is done in Chapter 3.

This chapter also summarised prior work in measurement enhancement methods to
reduce the effect of intensity variations on polarimetric measurements. Most of the prior
work is primarily concentrated on polarising element arrangements to reduce quantitative
metrics of Mueller matrices with the aim to reduce any intensity variation from poor
arrangement. There are sources of intensity variation, such as noise, that cannot be reduced
this way. Prior work on reducing the variations from these noise sources is limited to using
many temporal acquisitions and averaging. This thesis will formulate and implement other
methods for measurement enhancement utilising a spatial detector array in Chapters 4– 6.
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Chapter 3

System Design

The current market of polarimeters for determining the concentration of chiral molecules in
a solution is populated with tabletop devices with large footprints that use complex optical
systems to accurately measure the complete polarisation state. The cost of this accuracy
and complexity is high, with one such machine, the Thorlabs PAX5720 polarimeter, costing
8000 USD. These two reasons have constrained polarimetry to be an exclusive lab-only
mode of measurement. As one of the main contributions of this thesis, we propose, design
and build an inexpensive, compact polarimeter that can be used outside the lab. This
chapter will outline the design of the polarimeter.

We will start with an explanation and justification for the governing theoretical prin-
ciples behind the design of the polarimeter, then propose a contraption to arrange the
parts of the polarimeter. And finally, we will theoretically analyse the system, using the
tools and methods mentioned in Section 2.1, taking into account non-ideal characteristics;
introducing imperfect polarisers and retarders.

3.1 Polarimetric Principle

The polarimeter use two principles to guide its’ development and analysis: i) amplitude
division, and ii) perfect polarisation.
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3.1.1 Amplitude Division

This polarimeter uses amplitude division rather than wavefront division for polarimetry.
The reasons for this choice were to avoid the imperfections and inconsistencies that can
arise from the use of wavefront division devices:

1. The most common method for wavefront division polarimetry are micropolarisers.
Micropolariser arrangements are arrays of nanofabricated apertures that are capable
of polarising light waves. These apertures can be in the form of actual holes or grids
of metal wire [19].

The sizes of the micropolariser apertures are on the order of several wavelengths. This
is well within the size for diffraction to have non-trivial effects. Diffraction causes
pixel cross-talk to occur between the different micropolarisers, thereby producing
spatial intensity variations and contamination of the measurements [12].

2. Micropolariser polarimetry is a young field of study and fabricating a polarising
element array is expensive. It is very common for there to be some uncertainty
in the measurements due to imperfections in manufacturing of the array in a size
necessary for chiral molecule identification.

3. Micropolarisers perform quite well under conditions where the incident wavefront
is planar. This assumption doesn’t hold in applications requiring polarimetry for
matter identification since matter does not typically allow light to maintain spatial
coherence [12].

With the use of amplitude division methods, we can avoid all the issues outlined above.
The tradeoff, however, is that amplitude division splits the total energy of the wave, thereby
decreasing the intensity of the incident wave at every subsequent measurement.

3.1.2 Perfect Polarisation

Another principle used in this design is that eq. 2.33 holds. This implies that any material
being analysed in this system is perfectly polarising with P = 1, from eq. 2.33. The
implication is that only four measurements need be taken, rather than seven [2]. However,
the modular design outlined in Section 3.2, allows for the elements to be interchanged to
accommodate materials where P < 1, from eq. 2.34.
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3.2 System Design

This section will outline the design of the inexpensive, compact polarimeter for measur-
ing chiral molecule concentration. The device will be described in the following order:
i) illumination source and amplitude division, ii) cuvette analyser, and iii) detector.

3.2.1 Illumination and Amplitude Division

To minimize the cost of the device, an easy way to start is to reduce the amount of
illumination sources used. Hence, this design will use a single source and undergo amplitude
division to imitate four sources. There are several ways to perform this division, such
as using prisms and crystals. To meet the requirement for minimizing cost and size,
arrangement of beam splitters will be used with a single laser.

The beamsplitters are arranged in a three-by-one column punctuated with a mirror.
This configuration is demonstrated in Figure 3.1. Four beams are produced that can then
be transmitted into the next component of this polarimeter: the cuvette analyser.

3.2.2 Cuvette Analyser

The three reflected beams from the beamsplitters and the one reflected from the mirror
produce four independent beams that can be manipulated for the purpose of analysing the
solution.an array of polarising elements can be placed in the path of each beam to achieve
a particular known polarisation before interacting with the solution. Similarly, upon exit
of the solution, it can be assumed that the beams have not scattered enough to interfere
with another, so another array of polarising elements can be introduced in the path of the
beams to analyse their polarisation change. The four polarising and analysing elements
are secured in a filter holder, shown in Figure 3.2.

To perform this analysis, a single body element was designed to secure the polarising
elements, cuvette of solution, and analysing elements and have them maintain a constant
orientation with one another. This is to reduce any intensity loss that could occur from
misalignment and refraction. This element and the placement of the polarising elements,
cuvette of solution, and analysing elements is shown in Figure 3.3.
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Figure 3.1: Configuration of beamsplitters (BS) and mirrors (M) as a compact illumination
design for amplitude division.
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Figure 3.2: Holder for the polarisation and analyser filter arrays.

Figure 3.3: Holder to maintain parallel orientation of filters with cuvette of solution.
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3.2.3 Detector

The four light beams will be incident on the detector after they pass through the analysing
elements. The output from the detector is the integration of the wave amplitude over a
duration of time; however, there are imperfections in the conversion of the wave energy
into pixel value, which we will explore and compensate for later.

Detectors output a digital signal with a limited number of bits per pixel. These bits
represent the intensity of the pixel quantised within a range from the lowest pixel value,
or zero, to the highest. This poses a unique problem for this system because of the beam-
splitter arrangement from the light source. The wave energy will be decreasing, from the
first beam to the last, thereby increasing the range of the intensities on the detector. This
causes the system to lose accuracy due to an error known as quantisation error.

To increase the detector pixel accuracy, the wave amplitudes need to be kept to roughly
the same amount. To this end, neutral density (ND) filters are used after the beamsplitters
to attain a similar wave amplitude from all the reflected beams. This configuration is shown
in Figure 3.4.

The overall system, with the components described in the sections above, is rendered
in Figure 3.5. In Section 3.3, the system is modelled with tools from Section 2.1 to find
the Stokes parameters.

3.2.4 System Cost and Size

The system proposed and designed in this thesis is built at a low-cost relative to the
purchasing price of a tabletop, lab polarimeter. Table 3.1 lists the parts used in building
this system and also their prices. With a total price of 2570.00 USD, this polarimeter costs
68% less than the Thorlabs PAX5720.

1https://www.thorlabs.com/thorproduct.cfm?partnumber=CPS182
2https://www.thorlabs.com/thorproduct.cfm?partnumber=BS007
3https://www.thorlabs.com/thorproduct.cfm?partnumber=NE03B
4http://www.thorlabs.com/thorproduct.cfm?partnumber=PF03-03-P01
5http://www.edmundoptics.com/optics/polarizers/linear-polarizers/

high-contrast-linear-polarizing-film/86186/
6http://www.edmundoptics.com/optics/polarizers/waveplates-retarders/

polymer-waveplates-retarders/90941/
7http://www.edmundoptics.com/cameras/usb-cameras/point-grey-grasshopper-3-high-performance-usb-3-0-cameras/

88607/
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Figure 3.4: Beamsplitter (BS), mirror (M), and neutral density (ND) filter arrangement
to attain a constrained amplitude range incident upon detector.
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Figure 3.5: Rendering of the full polarimetric imaging system.

Table 3.1: Cost of parts for the compact polarimetry system.

Part Unit Price (USD) Quantity Extended Price (USD)

5 mW Laser Diode (Thorlabs,
NJ) 1

82.00 1 82.00

50:50 Non-polarising Beam-
splitter (Thorlabs, NJ) 2

147.00 3 441.00

Absorptive ND Filter, OD: 0.3
(Thorlabs, NJ) 3

32.00 3 96.00

Protected Silver Mirror (Thor-
labs, NJ) 4

26.00 1 26.00

High Contrast Linear Polariser
(Edmund Optics, NJ) 5

22.50 8 180.00

λ/4 Retarder (Edmund Optics,
NJ) 6

395.00 1 395.00

GS3-U3-23S6M-C Camera
(Point Grey, Canada) 7

1,350.00 1 1,350.00

Total Price 2570.00
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With this set of optical elements and light source in the arrangement described in this
chapter, the polarimeter is roughly 6.5× 4.4× 7.3 cm in size.

3.3 System Analysis

The system designed in the prior section can be analysed using Mueller matrices. The
perfectly polarising principle is used, thereby making the only necessary analysing elements:

1. Horizontal polariser

2. Vertical polariser

3. +45◦ polariser

4. Right-hand circular polariser

All four of these elements require the use a linear polariser, with one requiring an
additional π/2 or quarter-wave retarder. As mentioned in Section 2.1, commercial-grade
polarisers are not perfectly diattenuating in either the horizontal or vertical direction, i.e.,
pypx 6= 0. This requires manufacturers of polarisers to provide an extinction ratio for their
polarisers. The Mueller matrix for a general linear polariser is

1

2


p2
x + p2

y p2
x − p2

y 0 0
p2
x − p2

y p2
x + p2

y 0 0
0 0 2pxpy 0
0 0 0 2pxpy

 (3.1)

Each beam in the system starts from the illumination source and then undergoes a
power correction before it enters the initial polarising elements. The beamsplitters have
some normalised transmission coefficients br and bt. They represent the percentage of light
transmitted through reflection and transmission, respectively, from the beamsplitter. The
input intensity of each beam into the polarising elements, Ib, is related to the original in-
tensity of the laser, Io, where ‖ Io ‖= Io, through matrix B for the beamsplitter coefficients
and D for the ND filters

Ib = DBIo (3.2)
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where

Io =


1
1
1
1

 Io (3.3)

Ib =


I1

I2

I3

I4

 (3.4)

B =


br 0 0 0
0 btbr 0 0
0 0 btbtbr 0
0 0 0 btbtbt

 (3.5)

D =


btbtbt
br

0 0 0

0 btbt
br

0 0

0 0 bt
br

0

0 0 0 1

 (3.6)

In the system described by Figure 2.2, this makes the incoming Stokes vector into the
polarising elements an unpolarised beam with intensity

(Ssource)i =


1
0
0
0

 Ii where i = 1, 2, 3, 4 (3.7)

The system uses BS007, 50-50 beamsplitters, with a 635 nm laser from Thorlabs Inc
(Thorlabs, NJ). This makes br ≈ bt = 0.50, thereby making the ND coefficient matrix, D,
reduce to

D50-50 =


0.25 0 0 0

0 0.50 0 0
0 0 1 0
0 0 0 1

 (3.8)

implying that we do not need a neutral density filter on I3, reducing the total cost.
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The path of each beam after it leaves the beamsplitter-ND arrangement is outlined
below with the appropriate Mueller matrix. This analysis follows the same form as out-
lined in Section 2.1.6. For the sake of simplicity, it will be assumed that the polarising
elements, Mpol, are ideal. The polarising elements transform the light beams into a single
degenerate polarisation state each (i.e., SS→P is a degenerate state) and in the following
system analysis, will remain ambiguous until later in this section. With this in mind, the
analysis will begin at eq 2.74. For the sake of conciseness, the symbolic version of the
Mueller matrices will be used in the analysis. We can define the Mueller matrix of the
solution as:

Mmatter =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 (3.9)

1. The first light beam will encounter the solution and then a horizontal analyser before
it arrives at the detector. With a horizontal analyser, the extinction ratio is defined

as p2x
p2y

. For simplicity, the polariser matrix is redefined as

MH =
1

2


1 + e 1− e 0 0
1− e 1 + e 0 0

0 0 2
√
e 0

0 0 0 2
√
e

 (3.10)

where

e =
p2
y

p2
x

(3.11)

This reduced matrix approaches the representation of an ideal horizontal polariser
(eq. 2.52) as e→ 0.

With the above matrices defined, the intensity of the light incident on the detector
after going through the solution and the analyser, ID, can be determined.

ID = AMHMmatterSS→P (3.12)

2. To find the vertical polarisation of the light beam incident on the detector after
it travels through the solution and a vertical analyser, the same theoretical tools
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employed in the prior beam are used. The only difference now being in the analyser,

the extinction ratio is
p2y
p2x

. In this case, we can reduce the analyser now to

MV =
1

2


e+ 1 e− 1 0 0
e− 1 e+ 1 0 0

0 0 2
√
e 0

0 0 0 2
√
e

 (3.13)

And again, as e→ 0, the Mueller matrix becomes an ideal vertical polariser (eq. 2.53).

Using this reduced analyser matrix, ID becomes

ID = AMVMmatterSS→P (3.14)

3. To capture the +45◦ polarisation intensity incident on a detector after it has passed
through matter, the horizontal polariser is rotated by +45◦ degrees. To analyse this,
a rotating Mueller matrix is applied to the polariser.

A common error that can occur when placing the rotated polariser is an error in the
rotated angle. This error is referred to as εθ. A rotating Mueller matrix (eq. 2.72)
with this error is defined as

Mrot (2 (θ + εθ)) =


1 0 0 0
0 cos(2(θ + εθ)) sin(2(θ + εθ)) 0
0 − sin(2(θ + εθ)) cos(2(θ + εθ)) 0
0 0 0 1

 (3.15)

With this source of error, the analyser Mueller matrix becomes

Manalyser = Mrot (−2 (θ + εθ))MHMrot (2 (θ + εθ)) (3.16)

thereby making the intensity incident on the detector

ID = AMrot (−2 (θ + εθ))MHMrot (2 (θ + εθ))MmatterSS→P (3.17)

4. The final beam is analysed using a RHCP filter after passing through the solution.
To do this, the analyser has to be a combination of a +45◦ polariser and a quarter-
wave retarder i.e., a retarder that produces a π

2
phase delay difference between the

orthogonal components. A new source of error here is the retardation error, εδ. This

36



error comes about from the phase delay difference variation that can occur due to
wavelength dependence. This would modify the retardation Mueller matrix (eq. 2.61)
to become

Mδ (δ + εδ) =


1 0 0 0
0 1 0 0
0 0 cos (δ + εδ) sin (δ + εδ)
0 0 − sin (δ + εδ) cos (δ + εδ)

 (3.18)

The Mueller matrix for the analyser becomes

Manalyser = Mrot (−2 (θ + εθ))MHMrot (2 (θ + εθ))Mδ (δ + εδ) (3.19)

thereby making the intensity incident on the detector

ID = AMrot (−2 (θ + εθ))MHMrot (2 (θ + εθ))Mδ (δ + εδ)MmatterSS→P (3.20)

For each of the intensities incident on the detector, the value of the intensity will change
depending on e, εθ, and εδ. To observe the absolute error, the Mueller matrix representing
the solution is assumed to be identity. The intensities for each beam are described here
and each degenerate output from the analysers will be observed. The error is assumed to
be slight and centred around zero, so a first order Taylor approximation is taken for each
measured intensity on the detector.

For this analysis, the intensity on the detector can be formulated as

ID = AManalyserSM→A (3.21)

where Manalyser can be split into the ideal matrix and the first order approximation of the
error

ID = A (Manalyser + Merror)SM→A (3.22)

where Merror is Mueller matrix of error. This can be expanded to

ID = AManalyserSM→A + AMerrorSM→A (3.23)

The term on the right will contain only the impact of first order approximation of
the error on ID. To make this analysis input Stokes vector ambiguous, only AMerror is
analysed. The resulting matrix will have all zero entries, but the top row. In the following
analysis, we will look on at the top row of AMerror as a vector called E’.
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Horizontal Analyser In the case of the horizontal analyser, all the error that emerges
will be linear with respect to e.

E’ =
(

1
2
e −1

2
e 0 0

)
(3.24)

The above vector demonstrates that for the Stokes vector of the light beam that
emerges from the solution, the error will scale proportional to half the extinction
coefficient for the S0 and S1 terms. For the degenerate case of horizontally polarised
light, there is no error in the incident intensity.

Vertical Analyser Similarly for the vertical analyser, all the error that emerges will be
linear with respect to e.

E’ =
(

1
2
e 1

2
e 0 0

)
(3.25)

Similar to the prior case, but here there will be no error in the degenerate case of
input vertically polarised light.

+45◦ Analyser This is a rotated analyser and from the Mueller matrices formulated in
this section, there is potential error from the angular placement of the analyser and
from the imperfect diattenuation of the polariser.

E’ =
(
εθ −1

2
e 1

2
e 0

)
(3.26)

In this case, the intensity of the beam itself is influenced by the error in the angular
placement of the horizontal filter and, unlike the other cases, the error from the
polariser influences the second and third Stokes parameter. In the degenerate case
of +45◦ light however, the error from the polarisers persists. The cause of this is the
use of a first order Taylor approximation on the cos and sin functions.

Right-hand Circularly Polarised Analyser All the same error sources from the prior
analyser exist, but there is also an error in the phase change incurred by the retarder.

E’ =
(
e εθ

1
2
εδ

1
2
e
)

(3.27)

For analysing RHCP, we notice that there is twice the error incurred from the linear
polariser on the intensity of the beam. In this case, similar to the case above, the
error persists in the degenerate case of RHCP light.
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3.4 Summary

In this chapter, we have proposed the design of an inexpensive, compact polarimeter. This
polarimeter uses an amplitude division method using a single illumination source with a
train of beamsplitters and ND filters to reduce quantisation error in the measurements.
The light beams produced from the beamsplitters are passed through an apparatus that
has filters holders for polarising elements and analysers and secures a cuvette of solution,
thereby reducing alignment errors. After which, the beams come into contact with a
detector.

In prior chapters, we have alluded to possible intensity variations that can occur in
the A matrix, causing then to vary from ideal intensities. In the next chapter, we look
to enhance those measurement to make them closer to the ideal using a spatial detector
array.
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Chapter 4

Computational Enhancement

Noise comes from the physical characteristics of the light source being used and from
the electronics involved in the measurement and is an inherent problem in polarimetric
measuring systems. Conventional methods for reducing noise have been to manipulate the
arrangement of optical elements or to perform Time Averaging of the measured signal from
a photodiode.

One of the main contributions of this thesis is the use of computational enhancement
methods that take advantage of the full spot size incident on a spatial detector. This
mimicking of temporal multiplexing using a single spatial acquisition allows for faster
acquisitions of polarimetric measurements. This section will outline two ways in which
spatial enhancement techniques can be used to improve polarimetric measurements. But
first, we will come up with a theoretical model of the observed intensity, U , incident upon
the detector from its ideal intensity, I.

All the methods outlined in this chapter will be compared in Chapter 5 and Chapter 6.

4.1 Pixel Intensity Model

Before any method for computational enhancement is hypothesised, we need to model
the observed intensity as a function of the ideal. Since we are moving from a single
measurement through time to a set of measurements in space, we redefine variables used in
Section 2.3.2. Our observed intensity U , ideal intensity I, and enhanced intensity Û are now
defined as sets of measurements. Since these measurements are susceptible to variation, the
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members of these sets are called random variables. For the sake of maintaining convention,
the members of I will be v:

I = {v0, ..., vi, vj, ..., vn} (4.1)

U = {u0, ..., ui, uj, ..., un} (4.2)

Û = {û0, ..., ûi, ûj, ..., ûn} (4.3)

where subscript i, j represent the index of any two random variables of the set. In Sec-
tion 2.3, we identified two sources of noise that can influence the measured intensity on the
detector: physical intensity variations (i.e., shot noise and speckle) and electrical noise (i.e.,
amplifier read-out noise). Our model should incorporate these noise sources; therefore, we
can follow the work from Boulanger et al. [26]. This work models the observed intensities
as

ui = g0zi + η (4.4)

where zi is the Poisson degraded value of vi, g0 is the gain applied on the signal, and η is
a value sampled from a zero-mean Gaussian process (i.e., η ∼ N (0, σ)). The degradation
from shot noise is modelled as a Poisson process with a variance that is signal-dependant.
Any enhancement method that accounts for shot noise can either: i) incorporate Poisson
statistics directly into the enhancement algorithm [27] or, ii) treat the enhancement in a
modular fashion using variance stabilisation [28]. Both these algorithms work to similar
effect, however, the first limits the range of enhancement methods to those that specifically
account for shot noise. The second method stabilises the variance of the noise to the be
independent of the signal intensity. This allows for the use of the many enhancement
methods that assume constant variance.

Considering shot noise into the pixel model can lead to better enhancement in cases
where there is a low number of incident photons [27], however, the device built in this
thesis is capable of illuminating the detector with a large number of photons. This high
incidence of photons allows for the Poisson process to be approximated as having a Gaussian
distribution. This approximation is demonstrated in Appendix A. There are some cases
where there will be a low number of incident photons, for example, if there is high amount
of scattering from the solution, or if there is a low measured intensity of a polarisation
state, but we will be excluding those cases from the scope of this thesis.

With the approximation of the shot noise as a Gaussian, our pixel model will follow
the same model as in eq. 2.82
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ui = vi + η (4.5)

where vi is the ideal intensity signal incident on the detector, and η is a value sampled
from a zero-mean Gaussian process (i.e., η ∼ N (0, σ)). Special note has to be taken here
due to what we are measuring. The objective of this system is to measure the polarimetric
state of a light beam. An analyser filters a state of that beam, but the analysers are not
perfect and there can be an intensity influence from other polarisations in the light beam.
To this end, we have to modify our interpretation of I to being the ideal intensity of the
light beam with some deterministic error.

I ∼ I + E (4.6)

We have described a model that is capable of describing the measured intensity out of
the detector as it is varied through noise processes and deterministic error created from
the use of inexpensive, commercial-grade polarisers. In the next sections, we will describe
two methods that will use the full spatial detector array as independent measurements to
enhance the polarimetric measurements U to produce measurements similar to the ideal
measurement of the polarised state of the light beam (Û ∼ I).

4.2 Model Fitting

One of the benefits of using a spatial detector array is that we can use the spatial intensity
arrangement of the incident laser spot as a basis for comparison to an ideal laser spot.
This difference in intensity can offer insight into the intensity variations in the systems and
losses due to the scattering from the solution. The assumption is that there is a uniform
intensity loss across the entire laser spot due to scattering. With the use of the ideal laser
spot as a model and certain noise assumptions, that will be discussed later, we can use
this ideal model to enhance the measurements.

We shall call the ideal spot pattern on the spatial detector array L, defined as the set
of spatial intensities in eq. 4.7.

L = {l0, ...., li, lj, ...., ln} (4.7)
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The objective of this method is to maximise the likelihood that the set of random
variables representing our measurements U resemble L̂, P (U|L̂), where L̂ is a transformed
set of the ideal measurements, modelled by

L̂ = αL − C (4.8)

where α is a scaling factor, C is an intensity bias and the members of L̂ are

L̂ = {l̂0, ...., l̂i, l̂j, ...., l̂n} (4.9)

To ensure a realistic fit and avoid any trivial cases, we apply some constraints to these
parameters:

1. α > 0

2. C > 0

3. l̂i > 0 ∀ i ∈ L̂

Given the model defined in eq. 4.8, we can reformulate our objective as trying to
maximise the probability of the measurements occurring given a set of parameters, θ.

θ = argmax
θ

P (U|θ) where θ =

(
α
C

)
(4.10)

To properly define this probability, we need to make some assumptions. For this prob-
lem, we shall assume the random variables in U are independent and identically distributed
(iid) and we shall assume there is only the zero-mean Gaussian noise coming from the detec-
tor to vary the measurements. To this end, we model the likelihood as a normal distribution
centred around a biased, scaled L. We will use the iid assumption to further model the
likelihood as

P (U|θ) =
n∏
i=0

p (ui|θ) (4.11)

where

p (ui|θ) = exp

[
−(ui − (αli − C))2

σ

]
(4.12)
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We can take the logarithm of both sides of eq. 4.11, resulting in eq. 4.13.

logP (U|θ) = −
n∑
i=0

(ui − (αli − C))2

σ
(4.13)

Since σ will be constant over all the random variables due to the iid assumption, we
can disregard it and reformulate our problem to minimising instead the cost function C (θ),
defined in eq. 4.14.

C (θ) =
n∑
i=0

(ui − (αli − C))2 (4.14)

and once the parameter set is found, the enhanced measurements, Û , will be equal to the
scaled and shifted version of L, L̂.

Û = L̂ (4.15)

4.3 Spatial Filtering

The Model Fitting mentioned above is an optimization method which compares all the
measured intensities to all the ideal spot size measurements. This method, while being
elegant and straightforward, can only be performed if the ideal spot is known a priori
and the assumption of maintained coherence can be applied after the laser has passed
through the solution. In cases where that assumption cannot be used, we have to use the
measurements alone to produce the set of enhanced measurements. To do this, we look to
a field where spatial detector arrays are common: image processing.

A common assumption in the field of image processing is that there is some homogeneity
in intensity between a detector pixel and its’ surrounding neighbours. The pixels on a
detector are small enough and the modulation in intensity on the laser spot is ‘smooth’
enough that we can apply this assumption here to enhance the measurements on the
spatial detector array. The use of this assumption allows us to use a similar method for
measurement enhancement as in eq. 2.18, except over a spatial neighbourhood, rather than
time. And, just like in eq. 2.18, we are assuming the noise is sampled from a zero-mean
Gaussian distribution.
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Figure 4.1: Graphical similarity between averaging over a spatial area and over time.

ûi =
1

N

∑
j∈Ni

uj (4.16)

where Ni is the surrounding neighbourhood of detector pixels around pixel i and N is the
number of pixels in Ni. The difference between eq. 4.16 and eq. 2.18 is that we are not
summing over all measurements, we are only summing over the measurements in a local
area. A similarity can be drawn between the two, where if we take the pixels over the
local area and arrange them as a one dimensional vector, like in Figure 4.1, they mimic
measurements taken through time.

This spatial homogeneity assumption has its’ limitations, primarily edges and high
frequency textures. Edges are abrupt spatial changes in intensity and when they occur
inside the neighbourhood of ui, they can cause smearing to occur when using the Spa-
tial Averaging method. Spatial Averaging has no discrimination between high frequency
intensities and noise, so in regions where there are high frequency interference patterns,
Spatial Averaging will homogenise the intensities. There are more advanced Spatial Aver-
aging algorithms that try to account for these abrupt and high frequency changes in ideal
measurement intensity, however, they are outside the scope of this thesis.

Due to the use of imperfect optical elements, we ideally want to use an illumination
source that can suppress any other noise sources. The use of a powerful illumination source
also has the benefit of amplifying any low intensity polarisation states. With the use of
this illumination source, the shot noise will take on a Gaussian shape, and we will use this
assumption in the later Chapters 5 and 6. A consequence of using a powerful illumination
source is that the E’ vectors mentioned in Section 3.3 become amplified. However, in
all these algorithms, once the system is modelled and the noise has been suppressed, the
imperfections in the system can be accounted for using the imperfect Mueller matrices
from Section 3.3.
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4.4 Summary

In this chapter, we have produced a model of the measured light intensity from a spatial
detector array pixel, taking into account the deterministic error from optical elements and
electrical noise. We make an important assumption here that the incoming flux of photons
is large enough that we can assume the shot noise takes a Gaussian shape. This allows us
to make Gaussian noise assumptions in our formulations.

To enhance these measured intensities, we propose two methods that utilise the full
set of measurements from a spatial detector array. One method reconstructs the system
from an ideal model, known a priori and the other uses an assumption of local intensity
homogeneity on the detector to perform Spatial Averaging. This method was shown to
have some similarity with the Temporal Averaging method.
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Chapter 5

Synthetic Experiment

In the prior chapters, we introduced a design for and built an inexpensive, compact po-
larimeter and a novel method for polarimetric measurement and enhancement. We use
the combination of the main contributions, in this chapter and the next, to estimate the
concentrations of sugar in a solution. The results are summarised here and in the next
chapter. We will first test this system under synthetic conditions in this chapter and then
under real conditions in the next.

To demonstrate the capabilities of this thesis’ contributions, we perform two tests.
The first test will use a simulated detector with four light beams representing the four
polarisation states incident on the detector. The second test will enhance the measurements
taken through a cuvette of sugar solution. This chapter will outline the experimental setup
for performing the synthetic experiments, the experimental results and the quantitative
metrics used to evaluate those results.

5.1 Experimental Setup

The purpose of the synthetic experiment is to the validate the performance of our measure-
ment enhancement methods on synthetic data with known ideal characteristics to estimate
the concentration of sugar in the solution. To this end, we start with a laser spot, shown
in Figure 5.1. The ideal laser spot is a sinusoidally modulated ellipse mimicking real laser
spots seen using coherent laser sources.

This light beam will pass through a solution of chiral molecules that will rotate it by
a certain degree that is proportional to the concentration of those chiral molecules in a
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Figure 5.1: Simulated laser spot on the spatial detector array.

clear solution. This has been theoretically modelled by Biot’s Law, which states that the
amount of rotation that linearly polarised light undergoes is equal to

θ = [α]Tλ cl (5.1)

where c is the concentration of the sugar in the solution in
[

g
ml

]
, l is the pathlength in

decimeters (10 cm, dm), [α]Tλ is the specific rotation in
[
degg−1dm−1

]
and θ is the observed

rotation in polarisation in degrees [29]. We will keep this experiment solution-agnostic at
this point. The degrees of rotation tested are summarised in Table 5.2. For this synthetic
experiment, we will incorporate the non-ideal characteristics in commercial-grade linear
polarisers. We will not use the errors that can be encountered through the use of retarders
or in the placement of the rotated linear polariser for this experiment.

We will be assuming that the light is vertically polarised before encountering the solu-
tion and as a result the intensities incident on the detector can be modelled as

IH
IV
I+45◦

IRHCP

 =
1

4


(e1 + 1)(e2 + 1)− cos(2θ)(e1 − 1)(e2 − 1)
(e1 + 1)(e2 + 1) + cos(2θ)(e1 − 1)(e2 − 1)
(e1 + 1)(e2 + 1) + sin(2θ)(e1 − 1)(e2 − 1)
(e1 + 1)(e2 + 1)− sin(2θ)(e1 − 1)(e2 − 1)

 Io (5.2)

where IH , IV , I+45◦ , and IRHCP are the intensities for the four spots (horizontally, vertically,
+45◦ and RHCP polarised, respectively) representing measurement profiles incident on the
detector and Io is the intensity of the ideal laser spot. This description is not complete
since there will be some transmission loss from the use of commercial polarisers, so eq. 5.2
is actually 

IH
IV
I+45◦

IRHCP

 =
1

4


(e1 + 1)(e2 + 1)− cos(2θ)(e1 − 1)(e2 − 1)
(e1 + 1)(e2 + 1) + cos(2θ)(e1 − 1)(e2 − 1)
(e1 + 1)(e2 + 1) + sin(2θ)(e1 − 1)(e2 − 1)
(e1 + 1)(e2 + 1)− sin(2θ)(e1 − 1)(e2 − 1)

 Īo (5.3)
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Table 5.1: Table of Specifications for the Point Grey GS3-U3-236M-C camera where fps is
the maximum possible readout of frames per second, e− represent electrons and ADU is
the detector units represented out of 16-bits.

Camera Parameter Value Units

Frames per sec 128 fps
ADC 12 bits

Shutter Speed 0.035 ms
Gain 0.52 e−/ADU

Temporal Dark Noise 6.68 e−

QE @ 635 nm 55 %

where Īo is the attenuated ideal intensity from the laser due to transmission losses. We will
assume that there is 25% transmission in the linear polarisers. Using the setup outlined
in the next chapter, we will assume that there is 25% transmission in the linear polarisers
and that e1 = 1/9000 and e2 = 1/1000. To calculate the angle of rotation from the intensities
above, we can invert one of the intensities to solve for θ. For this experiment, we shall
invert IV using eq. 5.4.

θ = cos−1

(
4IV
Īo
− (e1 + 1)(e2 + 1)

(e1 − 1)(e2 − 1)

)
(5.4)

To mimic the noise conditions that can occur during real measurements, mentioned in
Section 2.3.1 and 2.3.2, we look to utilize the industry specifications of spatial detector
arrays as a starting point. For this, we choose the Point Grey GS3-U3-236M-C camera
(Point Grey, Canada) whose specifications are summarised in Table 5.1. Example of a noisy
measurement profiles are in Figure 5.2. We used a laser at 0.375mW and the parameters
in Table 5.1. The profiles in this figure have been magnified to demonstrate the occurring
noise.

To vary the noise that can occur in these images, we modify the incident photon flux
by changing the power of the laser, thereby influencing the amount of shot noise, and
we can modify the variance of the temporal noise. The testing values are summarised in
Table 5.2. We will choose the maximum laser power that can be incident on the detector
without saturating the pixels. We look to Table 5.1 to find that 0.375mW is the maximum
amount, so we choose to have our simulations incur a laser power in multiples of 0.375mW.
The range of temporal noise values is sampled from the CMOS detector product line from
Point Grey (Point Grey, Canada).
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(a) Power: 0.375 mW, Dark Noise: 21 e−

(b) Power: 0.281 mW, Dark Noise: 18 e−

(c) Power: 0.188 mW, Dark Noise: 15 e−

(d) Power: 0.094 mW, Dark Noise: 21 e−

Figure 5.2: Simulated measurement profiles of the vertical intensities incident upon the
detector under the assumption of no depolarisation. These profiles have been contaminated
with noise at various power levels and noise amounts specified in Table 5.1.

Table 5.2: Table to summarise the range of values used for the simulation experiment.

Parameter Testing Range Interval

Laser Power Scale 0 – 1 0.25
Temporal Noise 0 e− – 30 e− 6 e−

Rotation 0 ◦ – 15◦ 3◦
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Table 5.3: Averaging algorithm parameters for simulated experiments.

Algorithm Parameters

Spatial Averaging N = 3× 3 pixels
Temporal Averaging N = 9 frames

5.2 Algorithm Parameters

We enhanced the measurements using the three methods mentioned in this thesis: Tem-
poral Averaging from Section 2.3, Spatial Averaging from Section 4.3 and Model Fitting
from Section 4.2. Model Fitting requires a model to enhance the measurements, so the
intensities calculated in eq. 5.3 will be its’ model. The Temporal Averaging algorithm
will take a single pixel location in the simulation image and average its value through
N temporal acquisitions, where N is the same number of pixels included in the Spatial
Averaging algorithm’s homogeneous assumption (N ). The reason for this choice of N is
to properly perform the comparison of a Spatial Averaging to Temporal Averaging for
polarimetric measurement enhancement. The parameters for spatial and Temporal Aver-
aging are summarised in Table 5.3. The N was found by finding the size which maximises
the peak-signal-to-noise (PSNR) metric over all the parameters in Table 5.2. For demon-
stration purposes, a measurement profile is shown where all the pixels have been time
averaged independently, however, the values for PSNR and angle will still be calculated
using a single pixel.

5.3 Quantitative Evaluation

The performance of the spatial enhancement methods will be gauged against the original
contaminated noise profile and the state-of-the-art measurement enhancement method of
Time Averaging. For this comparison, the metric of PSNR is used, defined as

PSNR = 20 log10

(
MAXI√
MSE

)
(5.5)

where MAXI is the maximum value possible on the detector and MSE is the mean squared
error between the ideal measurement profile and the enhanced one. To reduce quantisation
error, we simulate a 16-bit detector, so MAXI = 216. A high PSNR implies the enhanced
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Table 5.4: Average values for PSNR and angular estimation from the temporal and spatial
algorithms for measurement enhancement.

Algorithm PSNR(dB) |∆θ◦|
Mean Std Mean Std

No Enhancement 70.19 5.53 0.5025 0.7534
Temporal Averaging 102.69 0.30 0.0718 0.1239

Model Fitting 121.16 9.47 0.0230 0.0514
Spatial Averaging 79.35 5.11 0.2781 0.4704

measurements have a strong resemblance to the ideal measurement profile, while a low
PSNR implies a large difference between the enhanced and ideal profiles.

We will also compare the estimates for the angle of rotation caused by the chiral solution
using an absolute difference between the algorithm’s estimate and the known rotation

|∆θ| = |θactual − θcalc| (5.6)

where θactual is the angle sampled from Table 5.2 and θcalc is the angle estimated from the
enhanced profiles. The smaller this metric, the better.

5.4 Observations

In this section, we will demonstrate the performance of spatial algorithms on a synthetic
laser spot, which has been contaminated with shot and dark noise, in estimating the angular
rotation of linearly polarised light.

For comparison across all parameters, we compare the mean and standard deviation
of the PSNR and θ difference metrics. These results are summarised in Tabel 5.4. The
tables of results for each set of test parameters are in Appendix B. To visually compare the
spatial algorithms alone, we place them side-by-side with their ideal and noisy counterparts
to observe the measurement enhancement potential of these algorithms for a set of test
parameters. This is done in Figure 5.3.

From Table 5.4, we can see that Model Fitting and Temporal Averaging perform com-
parably in terms of PSNR, while Spatial Averaging does not produce as high a PSNR
value. However, it is still higher than if there was no enhancement applied and allows us
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Table 5.5: Concentration differences due to error in angular measurement using all three
algorithms. Lowest average difference is bolded.

Algorithm |∆θ◦| Maltodextrin |∆c| g
ml

Glucose |∆c| g
ml

Mean Std Mean Std Mean Std

No Enhancement 0.5025 0.7534 0.0276 0.0414 0.0954 0.1430
Temporal Averaging 0.0718 0.1239 0.0039 0.0068 0.0136 0.0235

Model Fitting 0.0230 0.0514 0.0013 0.0028 0.0044 0.0098
Spatial Averaging 0.2781 0.4704 0.0528 0.0893 0.0153 0.0258

to conclude that spatial methods can reduce the intensity variations that come from im-
perfections in the system and noise. The reason for the performance of Spatial Averaging
is likely due to the failures in the spatial intensity homogeneity assumption at the edges
of the measurement profile and the background.

Model Fitting is able to estimate the rotation angle with higher accuracy and precision
than Temporal averaging. We observe the implications of this by determining the con-
centration of two faux sugar solutions. One solution will have an optical activity of 52.7
(similar to that of D-glucose [30]) and the other will have an optical activity of 181.97
(similar to that of Maltodextrin DE 17 [31]), which we call Glucose and Maltodextrin, re-
spectively. The pathlength used will be 0.1 dm. We reformulate eq. 5.1 to be in difference
form and solve for |∆c|

|∆c| = |∆θ|
[α]Tλ l

(5.7)

In Table 5.5, we see that Model Fitting is capable of estimating the concentrations
with more accuracy and precision than the other enhancement methods. Spatial averaging
does not produce as accurate or precise results, but is still a better estimation than no
enhancement. The error in the estimation from Model Fitting and Temporal Averaging
are in the thousandth of grams per millilitre. Depending on the application, these errors
can be negligible, or quite troublesome.
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(a) Ideal Measurement Profile from Source

(b) Noisy Rotated Measurement Profile

(c) Model Fitting

(d) Spatial Averaging

Figure 5.3: Side-by-side comparison of the enhanced measurement profiles from spatial
algorithms.
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Chapter 6

Real Experiment

We used the inexpensive, compact polarimetry system to estimate the concentration of
Maltodextrin DE 16.5-19.5 (Sigma-Aldrich, MO) in a clear solution. After measurements
have been taken with the system, we apply the better performing of the two spatial al-
gorithms used in the previous chapter, Model Fitting, to enhance the measurements. We
then compare the theoretical results following Boit’s law to the measurements before and
after enhancement. The objective of this experiment is to validate the performance of a
spatial enhancement method in a real scenario.

6.1 Experiment Setup

For this experiment, we decomposed the device into using a single polarising element and
analyser. This is shown in Figure 6.1. Solidworks parts in the rendering were provided by
Thorlabs, Inc. (Thorlabs, NJ). The light source is a 635 nm, 5 mW laser. The filter holder
part in this configuration will contain the NE2R20B (Thorlabs, NJ) ND filter which will
transmit a 635 nm light beam with 0.1% of it’s full power. The polarising filter holder in
the cuvette analyser will contain a single high contrast polarising film from Edmund Optics,
Inc. (Edmund Optics, NJ) arranged vertically, with a transmission of 42%. The analysing
filter holder in the cuvette analyser will be empty; replaced with a rotating nanoparticle
linear film polariser from Thorlabs, Inc (Thorlabs, NJ), with a transmission of 80%. We
will use this as a vertical polariser for capturing the measurement profile. The cuvette
holding the sugar solution is a UV Fused Quartz cuvette (CV10Q3500) (Thorlabs, NJ)
with physical outer dimensions of 12.5×12.5×45 mm, inner dimensions of 10×10×44.75
mm and a fluid capacity of 3.5 mL. This provides a pathlength of 0.1 dm through the
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Figure 6.1: Experimental setup for the Real experiment to determine sugar concentrations.

solution. The detector in this setup will be the same detector that we used as a basis in
our synthetic experiments. The parameters for that detector are summarised in Table 5.1.

We will use the same model we used in our synthetic experiments, eq. 5.3, to describe
the incident intensity of the vertically polarised state

I =

(
(1 + eV1)(1 + eV2)

4
+

(eV1 − 1)(eV2 − 1) cos 2θ

4

)
Īb (6.1)

where Ib is the vector of beam intensities from eq. 3.4.

In the current system, the vertical polariser in the filter holder has an extinction ratio
of eV1 = 1/9000 and the rotating analyser has an extinction ratio of eV2 = 1/10000. In addition
to the error caused by the optical elements, there is a scaling factor attributed to the
transmission loss in the overall intensity as the light beam passes through each element.
According to the specifications for each of these elements, the vertical polariser will have
a 42% transmission and the rotating analyser with have an 80% transmission, thereby
making Ib into a scaled Īb. This transmission loss is assumed uniform, thereby not making
it a source of error and rather a calibration factor.
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6.2 Experiment Parameters

To demonstrate the capabilities of the system to estimate sugar concentrations in solution,
we use Maltodextrin DE 16.5-19.5 at 0.824 g

ml
with an optical activity of 181.97 [31].

6.3 Procedure

The procedure that we will follow for this experiment is outlined in this section. Before
the experiment begins, calibration of the system needs to occur. The calibration procedure
has two steps:

1. Identifying fixed pattern noise

2. Capturing the ideal laser spot pattern scattered through a control solution

Fixed pattern noise can be determined by taking multiple exposures in a constant
illumination environment (i.e., having the intensity flux incident on the detector uniform)
and time averaging each pixel independently on the detector. This allows for the zero-mean
Gaussian dark current to approach zero, leaving only noise that can occur due to constant
inhomogeneities between the pixels in the detector. And since these inhomogeneities are
constant, a constant offset can be applied to each measurement profile we capture to remove
these artefacts.

To apply the Model Fitting method discussed in the previous chapter, we need to
capture the laser profile on the detector. Since there is a high chance that the laser will
lose some coherence as it passes through a solution, we capture the laser profile after it
travels through a control solution (i.e., a solution with no chiral molecules) and use this as
our model to enhance our measurements. By doing this, that loss of coherence is mimicked
to some degree.

After the calibration procedure has finished, we then proceed to capturing the mea-
surement profiles. We capture 300 exposures of the laser profile. Each exposure will be
spatially enhanced independently to find the precision of our estimation. We will report
the mean and standard deviation in the estimation error from all 300 exposures.
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Table 6.1: Summary of the difference between the theoretical and calculated angles after
measurement enhancement.

Theoretical Angle Estimated Angle |∆θ◦| |∆θ|
|θ|

Mean Std Mean Std

14.99 15.28 0.05 0.28 0.05 0.02

6.4 Evaluation

Unlike the synthetic experiments outlined in the last chapter, there is no ideal measurement
to compare against after enhancement(i.e., no PSNR metric), so we will use the model
outlined in eq. 5.1 as the benchmark. We take the pathlength given by the cuvette in the
optical system and the concentration and optical activity from Section 6.2 to calculate the
ideal rotation angle caused by the chiral molecules in the solution. That angle is 14.99
degrees.

The rotation angle from the measured intensity profile will be calculated by using
the ratio of the maximum intensity in the enhanced measurement profile to the original
measurement profile of the light beam, captured during our calibration procedure and then
solving for θ using eq. 5.4. The correctness of our enhancement will be evaluated as the
absolute difference between the rotation angle calculated from the enhanced measurement,
θem, and the theoretically obtained angle, θcalc (eq. 6.2). The smaller the difference, the
better the enhancement.

|∆θ| = |θem − θcalc| (6.2)

6.5 Observations

This section will demonstrate the results of using spatial enhancement algorithms for de-
termining the concentration of a chiral molecule in a a clear solution. This solution has a
concentration of 0.824 g

ml
of Maltodextrin DE 16.5-19.5. We compare the theoretical and

calculated angles in Table 6.1, show the spatial measurement profiles in Figure 6.2, and
the resulting spatial angular profile in Figure 6.3. To determine the final angular rotation,
we take a small area in the centre Figure 6.3 and use its’ average.

In Figure 6.2, we see that there are interference effects from the crystallised sugar in the
solution and through the use of Model Fitting, these intensity variations were corrected,
unintentionally. If a single point measurement was used and the interference pattern of
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(a) Ideal (b) Measured (c) Enhanced

Figure 6.2: The measurement profiles of the light beam through a control solution, the noisy
measurements of the light beam through Maltodextrin and the enhanced measurement
profile, enhanced through Model Fitting, used to determine the spatial angular profile.

Table 6.2: Summary of the difference between the actual and calculated concentrations
after measurement enhancement.

Actual Concentration Estimated Concentration |∆c| |∆c|
|c|

Mean Std Mean Std

0.824 0.839 0.002 0.015 0.002 0.019

59



Figure 6.3: The spatial angular measurement profile of the light beam after passing through
a cuvette of Maltodextrin. The black box is the region of interest from which the final
angular value will be taken.
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the sugar strand was incident on the photosensitive area, there would be a larger error in
the estimated angle for the concentration of Maltodextrin in the solution. In Table 6.1,
there is a small relative error in the estimated angle relative to the theoretical which, as
we see in Table 6.2, results in only a small relative error between the actual and estimated
concentrations.

Over all, we can conclude that in scenarios where the optical activity of the chiral
molecules is near that of Maltordextrin DE 16.5-19.5, then the inexpensive, compact po-
larimeter that is designed and implemented in this thesis is capable of measuring the
concentrations of those solutions with roughly 1% relative error.
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Chapter 7

Conclusion

In this thesis, a novel inexpensive, compact integrated computational measurement system
for enhancing polarimetric measurements for concentration estimation in chiral molecule
solutions has been proposed, designed, built and implemented. This thesis also proposed
and demonstrated the novel use of spatial algorithms as alternatives to the state-of-the-art
Temporal Averaging for computational measurement enhancement.

The polarimeter has a very small footprint in comparison to lab-quality polarimeters
for chiral concentration identification and with the use of commercial-grade elements, is
relatively inexpensive. Unfortunately, due to the quality of these optical elements, error is
incurred on the system. With the use of a computational algorithm and a priori knowledge
of the system, the error can be reduced; however, there still exists noise from photon
statistics and electronics which were before suppressed using Temporal Averaging of a
single photosensitve area. This thesis has demonstrated that spatial detector array pixels
can mimic temporal measurements and can be enhanced in a similar way to produce
enhanced results. In addition, through the use of a spatial detector array, the full spot size
of the light beam incident on the detector is taken advantage of and produced comparable
results to Temporal Averaging.

Future Work and Applications

This thesis has demonstrated that spatial algorithms can be used to similar effect in mea-
surement enhancement and concentration determination, relative to the state-of-the-art.
In addition, it has demonstrated that polarimetric devices can be built that occupy a small
footprint and be relatively inexpensive.
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The spatial enhancement methods demonstrated in this thesis are rudimentary. More
complex and robust spatial algorithms can be utilised to enhance polarimetric measure-
ments in more complex scenarios, for example, when the assumption of uniform scattering
across the light beam does not hold, or when low-light conditions exist and the shot noise
is dominant. These are common in biological applications, like in endoscopic polarimetric
analysis [32]. The use of a spatial detector array also allows for single exposure mea-
surement enhancement. This opens the modality for use in dynamic scenarios where the
motion cannot be controlled. For example, taking polarimetric measurements of the eye
for glucose concentration estimation [9]. The constant motion of the eye can change the
bulk properties of the tissue being analysed making Time Averaging difficult. With the
use of a spatial detector, a minimal number of acquisitions can be taken to provide an
accurate measurement, thereby reducing any error caused by the eye’s movement.

The small footprint and cost of this device allows it to be moved outside the lab and
into less constrained environments. For example, this device can be used for water bacteria
analysis by measuring the phase change as it travels through a sample taken from a stream
or lake [2].
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Appendix A

Gaussian Approximation for Poisson
Distribution

In Chapter 4, enhancement methods for polarimetric measurements that utilise the full
laser spot incident of a spatial detector array were formulated. These enhancement methods
suppress noise from physical and electrical sources, i.e., shot noise and dark noise. The shot
noise is modelled as a Poisson distribution and the dark noise is modelled as a Gaussian
distribution.

We claimed in the Section 4.3 that the Poisson distribution can be approximated to
a Gaussian when a powerful enough is used, i.e., when there is a large flux of photons.
This Appendix Chapter will support that claim by formulating the approximation. This
formulation is summarised from the work of Peacock [33].

A.1 Poisson Distribution

The Poisson distribution is a model of the probability of an event occurring given its’ rate
of occurrence. The distribution is formulated as

Pλ(n) =
λne−λ

n!
(A.1)

where λ is the rate of occurrence of an event during a unit of time and n is a number of
events in that unit of time. In the case of polarimetric measurements, λ is the incoming
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Figure A.1: A plot of the Poisson distribution for λ = 4, 7, 10, 15.

flux of photons onto the detector and n is the number of photons that will actually be
incident on the detector. This implies that the objective of measurement enhancement is
to recover the true flux of photons from the incident measurements on the detector. An
example of the Poisson distribution for several photon arrival rates is shown in Figure A.1
and visually we can see that as λ increases, the distribution tends to a more bell-like shape.
This motivates the mathematical formulation to approximate the Poisson distribution to
a Gaussian distribution as λ becomes large.

A.2 Gaussian Approximation

We start the derivation of our Gaussian approximation with three other approximations.
First, we provide an approximation for n
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n = λ(1 + δ) (A.2)

where λ � 1 and δ � 1. We can apply this approximation for large rate of events since
〈n〉 = λ. By the way of this approximation, we are assuming that we are only predicating
the probability of an equally large number of arrivals.

This allows us to use a second approximation called the Stirling approximation where

n! =
√

2πne−nnn as n→∞ (A.3)

Using the two approximations above in eq. A.1, we arrive at

Pλ(n) =
eλδ(1 + δ)−λ(1+δ)−1/2

√
2πλ

(A.4)

To manipulate this equation into the form of a Gaussian distribution, we need to take
another approximation: the second order Taylor approximation of ln

[
(1 + δ)λ(1+δ)+1/2

]
ln
[
(1 + δ)λ(1+δ)+1/2

]
= [λ(1 + δ) + 1/2] ln(1 + δ) = (λ(1 + δ) + 1/2)

(
δ + δ2/2 +O(δ3)

)
(A.5)

Using an assumption from the first approximation, δ � 1, the Taylor approximation
can reduce to

ln
[
(1 + δ)λ(1+δ)+1/2

]
= ... ≈ λδ + λδ2/2 +O(δ3) (A.6)

We arrange eq. A.2 to solve for δ and substitute that it into eq. A.6, with n � 1, to
use in eq. A.4

δ =
n− λ
λ

(A.7)

which simplifies to

Pλ(n) ≈ 1√
2πλ

e−
(n−λ)2

2λ (A.8)

This formulation demonstrates that as the rate of photon arrival, λ, becomes large,
the Poisson distribution can be approximated to a Gaussian distribution, with mean and
variance λ.

�
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Appendix B

Synthetic Experiment Results
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Glossary

Chirality Chirality a property of a molecule where it have different properties in different
spatial orientations.

Fixed Pattern Noise This is intensity variations on the detector that are not temporally
varying..

Intensity Observable value with which polarisation states are measured.

Intensity Error A deterministic source of variation on the ideal intensity measured by
the detector.

Intensity Variations A type of influence on the system that varies the measured intensity
from the ideal.

Irradiance The measure of power per unit area of a light wave. Typically in W
m2 .

Noise A stochastic source of variation on the ideal intensity measured by the detector,
usually modelled with a probabilistic distribution.

Random Variable A variable that can undergo random variations in value.
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