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ABSTRACT

Recently, the widespread use of power system controllers, such as PSS and FACTS

controllers, has led to the analysis of their effect on the overall stability of power

systems. Many studies have been conducted to allocate FACTS controllers so that

they achieve optimal power flow conditions in the context of Optimal Power Flow

(OPF) analysis. However, these studies usually do not examine the effect of these

controllers on the voltage and angle stability of the entire system, considering that

the types of these controllers and their control signals, such as reactive power,

current, or voltage, have significant effect on the entire system stability.

Due to the recent transition from government controlled to deregulated elec-

tricity markets, the relationship between power system controllers and electricity

markets has added a new dimension, as the effect of these controllers on the overall

power system stability has to be seen from an economic point of view. Studying

the effect of adding and tuning these controllers on the pricing of electricity within

the context of electricity markets is a significant and novel research area. Specifi-

cally, the link among stability, FACTS controllers and electricity pricing should be

appropriately studied and modelled.

Consequently, in this thesis, the focus is on proposing and describing of a novel

OPF technique which includes a new stability constraint. This technique is com-

pared with respect to existent OPF techniques, demonstrating that it provides an

appropriate modelling of system controllers, and thus a better understanding of

their effects on system stability and energy pricing. The proposed OPF technique

offers a new methodology for pricing the dynamic services provided by the system’s

controllers. Moreover, the new OPF technique can be used to develop a novel tun-

ing methodology for PSS and FACTS controllers to optimize power dispatch and

price levels, as guaranteeing an adequate level of system security. All tests and
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comparisons are illustrated using 3-bus and 14-bus benchmark systems.
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Chapter 1

INTRODUCTION

1.1 Research Motivation and Literature Review

During the last two decades, nonlinear issues in power system stability have been

the subject of several studies [1, 2, 3, 4, 5, 6, 7, 8, 9]. In general, power system sta-

bility problems can be classified into three categories: angle, voltage, and frequency

stability problems [10]. Due to torque imbalance of synchronous machines, angle

stability problems occur. Voltage stability problems result from reactive power

imbalance. Lastly, the coordination of the control and protection equipment and

the generation reserve are responsible for frequency stability issues. Large or small

disturbances can cause stability problems. For example, first swing stability prob-

lems occur as a result of large disturbances in the system; these problems can be

monitored by time domain simulation tools. Oscillatory instability, on the other

hand, may be associated with large or small disturbances; this phenomenon can be

studied by using eigenvalue analysis tools.

Voltage stability problems can not be isolated from angle stability problems.

1



CHAPTER 1. INTRODUCTION 2

The capability of the system to maintain a steady voltages at all buses in the

system after being subjected to a certain disturbance may be broken not only

because of the insufficient reserve of reactive power, but also due to angle instability

[10]. Typically, voltage stability problems are associated with system bifurcations,

i.e. saddle-node or limit induced bifurcations, that lead to voltage collapse [11].

The lack of sufficient damping torque leads to oscillatory instabilities, which may

be associated with Hopf bifurcations, as it has been discussed in a variety of power

system models [12, 13, 14, 15, 16], and in practice [17, 18, 19].

The probability of a bifurcation problem occurring depends on the loading level

of the system. For heavy loaded systems, when the operating point approaches the

maximum loading point on the P-V curve, the region of attraction is very small

[20]; consequently, perturbations cannot be withstanded by the system. Many of

today’s networks are operating close to their stability limits due to economical

reasons; this, in turn, has led to system collapse problems [17, 18]. From this point

of view, additional controllers should be added to enhance the overall stability of

systems [9].

1.1.1 Effect of Power System Controllers on System Stabil-

ity

Since a Power System Stabilizer (PSS) provides additional system damping, this

controller has become an accepted solution for oscillatory instability problems and

thus improves system stability [21]. Shunt and series compensation can also increase

the Maximum Transfer Capability (MTC) of power networks and hence enhance

system stability [11]. Improvements of the current and voltage handling capabilities

of power electronic devices have led to the development of Flexible Alternating
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Current Transmission Systems (FACTS), resulting in the use of FACTS controllers

for efficient shunt and series compensation. As a result, FACTS controllers based

on thyristor controlled reactor (TCR), such as Static Var Compensator (SVC) and

Thyristor Controlled Series Compensator (TCSC), have been adopted by several

utilities to enhance their system stability [22].

To improve the transfer capacity of power systems with FACTS controllers, the

focus has been on controlling the power flows in the network without generation

rescheduling or topological changes. By using controllable components such as

controllable series and shunt capacitors, line flows can be modified in such a way

that thermal limits are not violated, losses are minimized, and stability margins

are increased [23, 24]. Thus, angle and voltage stability problems may be solved by

adding FACTS controllers to the system; in particular, FACTS controllers can be

used to enhance damping by choosing the best location and suitable control signals

[9].

To enhance voltage stability by increasing loadability margins, the use of FACTS

controllers has been examined. Other studies have concentrated on the use of

FACTS controllers to control system oscillations. However, these studies have not

considered the relatively high cost associated with the inclusion of these system con-

trollers vis-a-vis the “savings” to the system attained by the stability improvements.

Thus, there is a need for evaluating and pricing the stability services provided by

these controllers.

1.1.2 Power System Stability and Energy Pricing

The deregulation and privatization process in the electricity industry has affected

the overall operation of power systems. In this environment, an Independent System
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Operator (ISO) is responsible for ensuring a certain level of stability, security, and

reliability of the system. Consequently, system security, where the social benefit for

all the market participants is maximized, is a major ISO concern. In this context,

there is a need to include suitable security constraints within the market pricing

mechanism, so that the correct market signals can be sent to all market participants

while operating the system within reasonable security margins.

Since optimization-based tools, particularly, optimal power flows (OPF), are

the main scheduling mechanism used by ISOs, various algorithms have been pro-

posed to include stability constraints in the OPF. In [25] and [26], the authors

propose the use of the minimum singular value of the power flow Jacobian as an

index to detect proximity to voltage instability, which is then used as a stability

constraint to propose a voltage-stability-constrained OPF (VSC-OPF) in [27]. In

[28], a different strategy is proposed based on the use of a multi-objective OPF

technique to maximize both social benefit and the distance to a voltage instability

point. The problem with the inclusion of only voltage security constraints is that,

in some power systems, oscillatory instabilities (interarea or plant and local oscilla-

tion modes) are the key limiting factor for maintaining system security (e.g. WSCC,

now WECC, August 1996 blackout) [29]. All these papers are based on power flow

models, without accounting for the system dynamics. In [30], however, a stability-

constrained OPF is proposed for some of the generator dynamic equations, but it

does not account for the other significant variables in stability studies such as volt-

age regulators. Hence, there is a need to develop a new stability-constraint OPF in

order to predict both voltage and oscillatory instabilities, and thus use this tool to

generate appropriate market signals and energy pricing.
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1.1.3 Tuning Power System Controllers and Pricing Their

Stability Services

In recently restructured power systems, the regulation of voltage and frequency is

part of the services provided by the ISO to maintain a stable and reliable oper-

ation of systems. The regulation of voltage and frequency and other services are

categorized as ancillary services in FERC Order No. 888 [31]. Hence, the enhance-

ment of angle and voltage stability of a system can be categorized as ancillary

services. PSS and FACTS controllers (e.g. Static Var Compensator or SVC and

Thyristor Controlled Series Compensator or TCSC) are acceptable solutions for

voltage and oscillatory instability problems, since these controllers increase loading

margins and provide additional system damping [32, 33, 34]. Furthermore, PSS

and FACTS control actions can be also technically classified as an ancillary service.

The valuation of the services provided by FACTS controllers, based on their effect

on system loadability, has been discussed in [35]. However, the dynamic services

provided by these controllers are an issue, because one of the key features of these

controllers is their dynamic response characteristics. Therefore, this thesis presents

the use of a novel stability-constrained OPF to value the services provided by these

controllers, thus proposing a pricing technique somewhat different than other an-

cillary service pricing techniques previously proposed in the literature (e.g. [36]).

However, these controllers (e.g. PSS and TCSC) should be first “optimally” tuned

to optimize the market operating conditions, i.e. power dispatch and price levels,

and adequate system security.

The tuning of the PSS and the TCSC has been discussed in [37, 38], in terms of

targeting better coordination to enhance oscillation damping using an optimization-

based tuning algorithm. In [39], the optimal tuning of PSS and FACTS controllers is
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accomplished by a simple parameter-constrained nonlinear optimization algorithm

to minimize an implicit objective function that accounts for the oscillatory instabil-

ity. Another approach presented in [40, 41] involves formulating an eigenvalue-based

objective function to enhance system damping during the tuning process. Similarly,

in [42], the authors suggest a PSS design that is derived from a multi-objective op-

timization algorithm to enhance the system damping. All these approaches concen-

trate on system damping enhancement and the effect of the interaction between the

PSS and the TCSC on oscillatory instability; however, the effect of controller tuning

on market signals within the context of deregulated operating environment has not

yet been discussed in the current literature. In this thesis, the effect of the tuning

process of system controllers by using a newly developed stability-constrained OPF,

that appropriately represents security levels in the operation of electricity markets

and their associated power systems, is investigated .

1.2 Research Objectives

In this research, the effect of power system controllers on system stability in the

context of restructured electricity markets is investigated, to address the following

three main issues:

1. The development of a stability-constrained OPF which predicts oscillatory

and voltage instabilities.

2. The development of a new methodology in order to value the dynamic stability

services of system controllers, in particular PSS and FACTS.

3. The development of a novel technique to properly tune the system controllers,

based on dynamic stability enhancement and adequate market conditions.
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Hence, the main goal of this thesis is to present and discuss a new Small-

Perturbation-Stability-Constrained OPF (SSC-OPF) to properly tune the system

controllers and value their dynamic services.

1.3 Outline of the Thesis

This thesis is organized into six chapters and two appendices. Chapter 2 provides

the theoretical background of power system stability and electricity markets, and

models of power system components and controllers used in this thesis. In addition,

the analysis techniques, analytical tools, and test systems used in this thesis are

introduced.

The new SSC-OPF, based on the inclusion of a stability index in the OPF

algorithm, besides the mathematical procedures used to solve this particular op-

timization problem, are discussed in Chapter 3. The application of the proposed

SSC-OPF on two different test systems is also described. Also, a comparison of

the novel SSC-OPF with the standard OPF auction, and the previously discussed

VSC-OPF is included.

Chapter 4 introduces the new methodology to value the dynamic stability ser-

vices of the system controllers, and its application to PSS and FACTS controllers

on two different benchmark systems.

A novel technique to tune PSS and TCSC, and the application of this technique

on a test case is detailed in Chapter 5. Lastly, conclusions and suggestions for

future research are presented in Chapter 6.

The static, dynamic and market data of the test systems, are given in Appen-

dices A and B.



Chapter 2

Models, Background and Tools

2.1 Introduction

In Chapter 1, the need to develop a new technique which combines power system

stability and deregulated electricity is argued. In this chapter detailed background

is provided on these two areas. The definition and types of power system stability,

the deregulation process of the electricity industry, and the structures of the elec-

tricity markets are discussed here. The analysis techniques and tools used in this

thesis are also described in terms of various stability and deregulations aspects.

Mathematical models for stability analysis (steady-state or small signal stabil-

ity), including those for generators, loads and FACTS controllers, are illustrated in

this chapter as well. Specifically, PSS, SVC, and TCSC controllers, and the power

system components used in this thesis are presented. The test systems utilized for

this thesis are also briefly discussed here.

8
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2.2 Power System Models

2.2.1 Synchronous Generator Model

Mathematical models of a synchronous machine vary from elementary classical

models to more detailed ones. In detailed models, transient and subtransient be-

haviours are considered [11, 43]. In this thesis, the classical generator transient

model, as shown in Figure 2.1, is used to represent the machines in various test

systems [44, 45, 46].

In this model, the following equations link the mechanical variables with the

electrical variables, and result in the block diagram representation in Figure 2.2:

(D + τjS) ω = Tm − (Ψq Iq + Ψd Id)

Sδ = ω − 1
(2.1)

where D and τj represent the damping constant and the inertia time constant,

respectively; Tm is the input mechanical torque; ω and δ represent the rotational

speed and rotor angle, respectively; Ψd and Ψq correspond to the flux linkage in the

direct and quadrature axes; and Id and Iq are the armature current in the direct

and quadrature axes, respectively.

For eigenvalue studies (small signal stability analysis), it is necessary to include

the effects of the excitation controller, which indirectly controls the reactive output

of a generator. A simple Automatic Voltage Regulator (AVR) model is used here to

represent the excitation control of the generators, as depicted in Figure 2.3 [44, 45].
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2.2.2 Load Models

The modelling of loads in stability studies is a complex problem due to the unclear

nature of aggregated loads (e.g. a mix of fluorescent, compact fluorescent, and

incandescent lamps, refrigerators, heaters, motors, etc.). Load models are typically

classified into two broad categories: static and dynamic. In this research work,

the loads are modeled using constant power static load models [47]. In this model,

the real and reactive powers have no relation to the voltage magnitude. It is also

referred to as a constant MVA load model.

In power flow studies and to obtain the P-V curves in the test systems, loads

are typically represented as constant PQ loads with a constant power factor, and

are increased according to

PL = PLo(1 + λ)

QL = QLo(1 + λ)
(2.2)

where PLo and QLo are the initial real and reactive power, respectively, and λ is

a p.u. loading factor, representing the slow varying parameter typically used in

voltage stability studies.

2.2.3 Power System Stabilizer (PSS) Model

A PSS model is viewed as an additional control block to enhance system stability

[44]. This block is added to the (AVR), and uses stabilizing feedback signals such

as shaft speed, terminal frequency and/or power to change the input signal of the

AVR. A PSS contains three blocks as shown in Figure 2.4. The first block is the

stabilizer gain block with the constant gain KPSS, which determines the amount of

damping. The second is the Washout Filter, which serves as a high-pass filter, with
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Figure 2.4: Transfer function of the PSS model, where Kpss is a constant gain, and

all T s are time constants.

a time constant that allows the signal associated with oscillations in rotor speed

to pass unchanged, and does not allow the steady state changes to modify the

terminal voltages. The last block, the Phase-Compensation, provides the desired

phase-lead characteristic to compensate for the phase lag between the AVR input

and the generator electrical (air-gap) torque. In practice, two or more first-order

blocks can be used to achieve the desired phase compensation.

2.2.4 FACTS Controllers Models

FACTS controllers are a family of power electronics controllers for enhancing power

system performance [48]. Some are widely used, and others are under development.

In particular, SVC and TCSC are FACTS controllers that are employed in this

thesis [23, 49, 50, 51, 52, 53, 54]. Here, a brief description of each model follows.

SVC

The role of a SVC is to inject a controlled capacitive or inductive current to maintain

or control a specific variable, particularly bus voltage [48]. Well-known configura-

tions of an SVC are the Fixed Capacitor (FC) with a Thyristor Controlled Reactor
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(TCR), and a Thyristor Switched Capacitor (TSC) in particular with the TCR.

Figures 2.5 and 2.7 illustrate the structure of an SVC with voltage control and its

steady state control characteristic, respectively, for a FC-TCR type SVC [55].

Typically, the SVC is modelled by a variable reactance with maximum inductive

and capacitive limits (see Figure 2.7), which directly correspond to the limits in the

firing angles of the thyristors. In addition to the main job of the SVC controller,

which is mainly the control of the SVC bus voltage, the reactance of the SVC

controller may be used to damp system oscillations using an additional control

signal denoted in Figure 2.7 by “SVC-sig”.
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TCSC

A TCSC controller is a TCR in parallel with a bank of capacitors. A typical one-

line diagram of a TCSC structure based on current control is illustrated in Figure

2.8; the usual steady-state V-I characteristic of this controller is portrayed in Figure

2.9 [22, 55].

In a TCSC, two operational blocks can be clearly identified: an external control

and an internal control [22]. The function of the former is to operate the controller

to fulfill specified compensation objectives; this control directly depends on mea-

sured systems variables to define the reference for the internal control, which is

defined by the value of the controller reactance. The function of the latter is to

provide the right gate drive signals for the thyristor valve to produce the appropri-
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ate compensating reactance. As a result, the functional operation of the controller

is defined by the external control [22, 56].

The external control is defined by the control objectives. The typical steady

state function of a TCSC is reactance control; however, additional functions for

stability improvement, such as damping controls, may be included in this control.

Another steady state control that has been discussed in the literature is power

flow control, which is achieved either automatically with a “slow” PI controller, or

manually, through direct operator intervention [57].

The block diagram of the TCSC model and external control structure used of

this research is depicted in Figure 2.10 [34]. In this figure, Xm is defined by the

stability control modulation reactance value which is determined by the stability or

dynamic control loop, and Xeo stands for the TCSC steady state reactance or set

point, whose value is provided by the steady state control loop. The sum of these

two values results in X ′

m, the net reactance order from the external control block.

Since the natural response of the device internal control is characterized by the

delayed action, this signal is put through a first-order lag that yields the equivalent

capacitive reactance Xe of the TCSC [58]. The steady state control loop can have

either a large time constant, or be adjusted manually; thus, for large disturbance

transients Xeo is assumed to be constant. In this work, Xeo is fixed during large

disturbance events by disabling the steady state control after a large disturbance.

The equivalent reactance of the TCSC is a function of the firing angle α, based

on the assumption of a sinusoidal steady-state controller current. Therefore, the

operating limits are defined by the limits of the firing angle α. The range of the

equivalent reactance is Xemin ≤ Xe ≤ Xemax with Xemax = Xe (αmin), and Xemin

= Xe (180o) = Xc, where Xc is the reactance of TCSC capacitor.

The structure of the stability controller is shown in Figure 2.11 [34], and it
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consists of a Washout Filter with a constant gain KTCSC , a Dynamic Compensator,

and a Limiter. The Washout Filter is used to avoid a controller response to the

dc offset of the input signal. The Dynamic Compensator consists of two (or more)

lead-lag blocks to provide the necessary phase-lead characteristics. Finally, the

Limiter is employed to improve the controller response to large deviations in the

input signal.

2.3 Power System Stability

Power system stability is defined as the capability of a system to maintain an

operating equilibrium point after being subjected to a disturbance for given initial

operating conditions [10]. To understand the different aspects and characteristics

of power system stability, the following issues need to be considered [10, 11]:



CHAPTER 2. MODELS, BACKGROUND AND TOOLS 20

1. Besides the highly non-linear nature of a power system, this system is contin-

uously subjected to changing in operating conditions (e.g. loads, generation,

etc.). Hence, the stability of the system depends on the initial operating

conditions.

2. Power systems are usually subjected to a wide range of disturbances. These

are classified as small disturbances (e.g. load changes) or large disturbances

(e.g. fault conditions). For example, short circuits and transmission line out-

ages can lead to structural changes from the reaction of the protection devices

to isolate the faulty elements.

Based on the previous discussion, power system stability is categorized based

on the following considerations [10, 11]:

1. The nature of the resulting instability mode indicated by the observed insta-

bility on certain system variables.

2. The size of the disturbance which consequently influences the tool used to

assess the system stability.

3. The time margin needed to assess system stability.

Thus, power system stability can be classified as follows:

2.3.1 Angle Stability

It is defined as the capability of the synchronous generators in the system to main-

tain its synchronism after being subjected to a disturbance. Maintaining this syn-

chronism depends on the synchronizing torque and the damping torque. The lack
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of sufficient synchronizing torque leads to aperiodic or non oscillatory instability,

whereas the lack of damping torque leads to oscillatory instability [10, 11, 59, 44].

Angle stability is hence categorized as follows [10]:

Small-disturbance Angle Stability

This category refers to the system’s ability to maintain angle stability under small

disturbances. Lack of sufficient damping torque leads to oscillatory instabilities,

which may be associated with Hopf bifurcations, as it has been discussed in a

variety of power system models [12, 13, 14, 15, 16] as well as in practice [17, 18, 19].

Linearization techniques of the system equations are used to assess the system’s

stability for such small disturbances. The time frame of these stability studies is in

the order of 10-20 seconds following the disturbances.

Large-disturbance Angle Stability (Transient Stability)

Transient stability is associated with sever disturbances. In this case, instabilities

are related to a aperiodic angular separations due to insufficient synchronizing

torque, which result in first swing instabilities, such as single area swing modes or

interarea swing modes [11]. The time frame of these stability studies is in the order

of 3-5 seconds following the disturbances.

2.3.2 Voltage Stability

The capability of a power system to maintain steady voltages at all its buses af-

ter a disturbance from an initial operating condition defines the voltage stability

phenomenon [10, 32, 60, 61]. The time frame for voltage stability has a wide range
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from a few seconds to several minutes. Thus, the voltage stability assessment varies

between a short term assessment which involves the dynamics of fast acting load

components for a study period in the order of several seconds to a large term assess-

ment which involves relatively slower acting system components (e.g. tap-changing

transformers) for a period of several minutes. The voltage stability criteria is also

categorized into two types, large disturbance and small disturbance voltage stability

[10, 61].

Typically, two types of bifurcations, i.e. saddle-node bifurcations or limit-induced

bifurcations, lead to voltage collapse [11]. Saddle-node bifurcations, are associated

with a singularity of the system Jacobian and/or state matrix that results in the

disappearance of steady-state solutions. Limit-induced bifurcations, on the other

hand, correspond to the disappearance of steady-state solutions when the system

controls limits are reached (e.g. generator reactive power limits), leads to limit-

induced bifurcations.

Large-disturbance Voltage Stability

Here, the concern is to maintain a steady bus voltages following a large disturbance

such as system faults. This ability is determined by the system and load charac-

teristics, and the interactions between the different voltage control devices in the

system, and it is typically studied using time-domain and steady-state dynamic

analysis tools.

Small-disturbance Voltage Stability

This category considers small perturbations such as an incremental change in sys-

tem load. It is the load characteristics and voltage control devices that determine
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the system capability to maintain its steady-state bus voltages. This problem is

usually studied using power-flow-based tools.

2.3.3 Frequency Stability

It refers to the ability of the system to maintain a steady frequency, following a

system drastic change resulting in a significant imbalance between generated and

demand power [10].

Due to the difference in the process time frame for different system devices, the

frequency stability phenomenon is classified as short-term or as long-term frequency

stability. The short-term is affected by load shedding, generator controls, and

protection devices, and covers the first several seconds following the disturbance.

Long-term assessment is determined by other factors such as the prime mover energy

supply, covering several minutes following the disturbance [10, 62]

2.4 Power System Stability Tools

When a system’s operating point is defined, the ability of the system to maintain a

stable operating condition under small and large perturbations should be studied.

For small perturbations, the available Static Load Margin (SLM), which is the

maximum loading level beyond which power flow solutions cannot be obtained for

the system, and that are usually associated with saddle-node and limit-induced

bifurcations, must be determined. This is accomplished by calculating full P-V

curves for various operating conditions and system topologies. On these P-V curves,

Dynamic Load Margins (DLM), which are typically the loading levels at which the

system presents oscillatory instabilities associated with Hopf bifurcations, and tends
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to be less than SLM, should also be determined. A mix of continuation power flow,

eigenvalue analysis tools, and a Hopf bifurcation index are used here to determine

these P-V curves and associated SLM and DLM values.

2.4.1 Continuation Power Flow (CPF)

Typically, CPF methods are employed to determine the P-V curves, and thus maxi-

mum loading points (maximum loadability or steady state stability limits) of power

systems. Although they are computationally demanding [11, 63], these techniques

provide useful information regarding system behaviour with respect to certain pa-

rameter variations, especially load changes.

The CPF technique is based on an iterative process, involving predictor and

corrector steps, as illustrated in Figure 2.12. Thus, from a known initial point

A, a tangent predictor step is used to estimate a solution point B for a given load

direction defined by the parameter λ. A corrector step is then used to determine the

exact solution C using a power flow with an additional equation to find the proper

value of λ. A parameterization step may be used to avoid convergence problems if

the Jacobian becomes ill-conditioned around the maximum loading point.

All P-V curves here were obtained using the University of Waterloo Power Flow

(UWPFLOW) package [64]. A variety of output files permit further analysis such

as tangent vectors, left and right eigenvectors at the bifurcation point, power flow

solutions at different loading levels, and voltage stability indices.
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2.4.2 Eigenvalue Analysis

From the equations of the various system components and control models discussed

in Section 2.1, a power system can be represented by the following set of differential

and algebraic equations (DAE) [45]:



ẋ

0



 =




f(x, y, p)

g(x, y, p)



 = F (x, y, p) (2.3)

where

• x = [δT
G ωT E ′T

q E ′T
d ET

fd V T
R RT

f xT
cont]

T ∈ <n is a vector of state variables

that represents the dynamic states of generators, loads, and other system

controllers. Thus, δG represents the generator torque angles; ω is the rotor

speed variations; E ′

q stands for the quadrature components of the generator

internal voltages; E ′

d represents the direct components of the generator in-

ternal voltages; Efd is the exciter output voltages; VR represents the voltage
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regulator output voltages; Rf stands for the rate of feed-back of the exciter

output voltages; and xcont represents all the dynamic variables of PSS and

FACTS controllers, such as the PSS voltage signal or the TCSC controlled

variable reactance.

• y = [δT V T QT
G]T ∈ <m is a vector of steady-state algebraic variables that

typically result from neglecting fast dynamics (e.g. load voltage phasor mag-

nitudes and angles). Thus, δ is the bus voltage phasor angles, V represents the

bus voltage phasor magnitudes, and QG denotes the bus generated reactive

powers.

• p = [P T
G P T

L QT
L V T

oG
P T

oTCSC
K]T ∈ <k is a set of controllable and uncontrol-

lable parameters such as Automatic Voltage Regulator (AVR) settings or load

levels. Therefore, PG represents the generator power levels; PL and QL are the

load active and reactive power levels, respectively; VoG
signifies the reference

voltage settings of the generators; PoTCSC
represents the active power settings

of the TCSC; and K indicates the PSS and TCSC controller’s PI gains.

• The vector field f(·) = [fT
G(·) fT

AV R(·) fT
cont(·)]

T : <n × <m × <k 7→ <n

is the system non-linear differential (state) equations [45]. Here, fG(·) are

the generator state equations (generator 4th order transient model), fAV R(·)

represent the voltage regulator state equations (IEEE Type 1), and fcont(·)

represents for the state equations of the PSS and TCSC.

• The vector field g(·) = [gT
G(·) gT

L(·)]T : <n × <m × <k 7→ <m represents

the system algebraic constraints (power flow equations gL(·) and generators’

stator algebraic equations gG(·)) [45].

• F (·) = [fT (·) gT (·)]T .
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In a small-perturbation stability analysis, (2.3) is linearized around an equilib-

rium or operating point (xo, yo) for the given values of the parameters po. Thus,



∆ẋ

0



 =




J1 J2

J3 J4





︸ ︷︷ ︸

J




∆x

∆y



 (2.4)

where J is the system Jacobian, and J1 = ∂f/∂x|0, J2 = ∂f/∂y|0, J3 = ∂g/∂x|0,

and J4 = ∂g/∂y|0. If it is assumed that J4 is nonsingular, which is a requirement for

equations (2.3) to appropriately represent the system [65], the system eigenvalues

can be readily computed by eliminating the vector of the algebraic variable ∆y in

(2.4), as follows:

∆ẋ = (J1 − J2 J−1
4 J3)∆x = A ∆x (2.5)

Once the reduced system state matrix A is determined at an equilibrium point

on the P-V curve, the system state matrix eigenvalues and eigenvectors are defined

by

Av =µv

AT w =µw
(2.6)

where µ is the eigenvalue, and v and w are the corresponding right and left eigen-

vectors, respectively.

2.4.3 Hopf Bifurcation Index

Based on (2.3) and (2.4), a complex pair of eigenvalues of J can be represented as:



J1 J2

J3 J4








v1R

± jv1I

v2R
± jv2I



 = [α ± jβ]




v1R

± jv1I

0



 (2.7)
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By separating the real and imaginary parts and rearranging these equations:











J1 − αI J2 βI 0

J3 J4 0 0

−βI 0 J1 − αI J2

0 0 J3 J4





















v1R

v2R

v1I

v2I











= 0



























J1 J2 βI 0

J3 J4 0 0

−βI 0 J1 J2

0 0 J3 J4











−

α




B 0

0 B































v1R

v2R

v1I

v2I











= 0










J βB

−βB J





︸ ︷︷ ︸

Jm

−α




B 0

0 B





















v1R

v2R

v1I

v2I











= 0 (2.8)

where B =




I 0

0 0



. Since at a Hopf bifurcation α = 0, the matrix Jm becomes

singular; the same holds at a saddle-node bifurcation point. Therefore, the mini-

mum singular value of the modified full Jacobian matrix Jm is adopted as an index

to indicate the proximity to a Hopf or a saddle-node bifurcation. Consequently, the

following stability index is proposed in [9, 29]:

HBI = σmin(Jm) (2.9)

This index, as shown in [29], has a fairly linear behaviour with respect to the

changing on system loading, with no significant discontinuities due to the control



CHAPTER 2. MODELS, BACKGROUND AND TOOLS 29

limits for a series of practical examples. Also, this particular behaviour is observed

in the current thesis for the test systems used. Nevertheless, even in the presence

of possible discontinuities, these are not a significant factor for the proposed OPF

technique, where this index is used as a security constraint as explained in Chapter

3. This is due to the fact that the main concern is the value of this index “near” a

bifurcation point, where it is demonstrated in [29, 66] that the index is smooth and

quasi-linear, since it is only at this point where this security constraint becomes

binding.

2.5 Energy Deregulation and Markets

In the past, the electric power industry has been vertically integrated, meaning

that a central “authority” monitored and controlled all the activities in generation,

transmission, and distribution. For the last decade or so, the electric power indus-

try has been undergoing a process of transition and restructuring, in particular the

separation of transmission from generation activities. Furthermore, competition

has been introduced in generation activities either through the creation of power

pools, provision for direct bilateral transactions, or bidding on spot markets [67, 68].

In this environment, a system operator has been appointed with the responsibility

of ensuring a balance between production and consumption for the whole system,

guaranteeing open and fair access to the transmission system. This system oper-

ator must never be involved in the market competition, and is usually called the

Independent System Operator (ISO).
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2.5.1 Different Entities in Deregulated Electricity Markets

The restructuring process has brought several new entities to the market. Variations

exist across many market structures around the world, but typically these entities

are:

Generation Companies (GENCOs)

They are the producers and the sellers of electricity, and they are classified by

different markets according to their rated capacity, or in the way the generators are

contracted to operate in the market.

Transmission Companies (TRANSCOs)

They are the owners and the operators of the transmission system. TRANSCOs’

prime responsibility is to transport the electricity from the generators to the cus-

tomers, ensuring the availability of the transmission system to all the entities in

the system.

Distribution Companies (DISCOs)

They are the owners and the operators of the local distribution companies. DIS-

COs buy wholesale electricity either through the spot-markets or through direct

contracts with GENCOs, and supply the electricity to the end-use customers.

Energy Services Companies (ESCOs)

These may be large industrial customers, customer pools or private companies, and

their main goal is to purchase power at the least cost for their customers from
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GENCOs. They participate in the market like DISCOs, except that they do not

own or operate the local distribution companies.

Customers

They are the consumers of electricity. Depending on the market structure, the

customers have several options for buying electricity. They can choose to buy

electricity from the spot-market by bidding for purchase, or buy directly from a

GENCO, a DISCO or an ESCO.

Independent System Operator (ISO)

The ISO is responsible for ensuring the reliability and security of the entire system.

As an independent authority, the ISO does not trade in the electricity market, and it

usually does not own generating resources. In order to maintain the system security

and reliability, the ISO procures various services such as the supply of emergency

reserves or reactive power form other entities in the system. The specific role of the

ISO depends on the particular market structure, in some markets the ISO is directly

involved in settling market transactions (e.g. Ontario), whereas in other markets

the market transactions are handled by a different entity (e.g. “old” California)

[67, 68].

2.5.2 Market Clearing Process

In most markets, both GENCOs and ESCOs bid in the market. A market clearing

price (MCP) is obtained, as illustrated in Figure 2.13, by stacking the supply bids

in order of increasing prices and the demand bids in order of decreasing prices.
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Figure 2.13: Double-auction markets.

The MCP and the amount of energy cleared for trading are obtained from the

intersecting point of these curves. This market clearing process is referred to as

double auction power pools [67, 68].

In practice, however, the load in most markets does not actively bid, i.e. the load

is inelastic. In this case, the system price is cleared by matching the supply curve

with a forecast of undispatchable load (e.g. Ontario). Typically, only GENCOs

submit bids that are stacked in increasing order of prices, as shown in Figure 2.14.

The highest priced bid to intersect with the system demand forecast determines

the MCP. Typically, such a market model is known as a single auction power pool.
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Figure 2.14: Single-auction markets.
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2.6 Market Tools

One of the objectives of this thesis is to study stability issues within the framework

of deregulated markets. Hence, a number of analysis programs and simulation

software are available to aid in the decision-making process, and to make power

system operation more reliable and economical. These programs are usually based

on OPF algorithms. In the following sections, the OPF is discussed in details,

since this is one of the principal optimization tools used in competitive market

environments nowadays.

2.6.1 Optimum Power Flow (OPF) Dispatch

The OPF-based auction is defined as a non-linear constrained optimization problem,

and consists of a scalar objective function (Sb), and a set of equality and inequality

constraints. The following optimization problem represents a typical OPF-based

auction model [28, 69]:

Min. Sb(x, p, λ) = −(CT
d Pd − CT

s Ps) (2.10)

s.t. FPF (δ, V,QG, Ps, Pd) = 0

0 ≤ Ps ≤ Psmax

0 ≤ Pd ≤ Pdmax

| Pij(δ, V ) |≤ Pijmax

| Pji(δ, V ) |≤ Pjimax

Iij(δ, V ) ≤ Iijmax

Iji(δ, V ) ≤ Ijimax

QGmin
≤ QG ≤ QGmax

Vmin ≤ V ≤ Vmax
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where Cs and Cd are the vectors of the supply and demand bids in $/MWh,

respectively; Ps and Pd are the supply and demand power bids, respectively, and

can not exceed their maximum values; FPF (·) represent the “classical”’ power flow

equations; QG stands for the generator reactive powers; V and δ define the bus

phasor voltages; and Pij and Pji represent the power flowing through the lines in

both directions, that are used to represent the system security by imposing limits

on them, in addition to line current Iij and Iji thermal limits and bus voltage

limits. In this model, referred to as a security-constrained OPF-based auction,

Pij and Pji limits are typically obtained by means of off-line angle and/or voltage

stability studies [70]. These limits do not present the actual stability conditions of

the resulting solutions, since these limits are not the actual operating conditions

that correspond to the solution of the OPF-based auction. Thus, this model can

lead to insecure solutions and/or inappropriate price signals [28].

In Figures 2.13 and 2.14, the social benefit is the shaded area. Although the

reactive power does not appear directly in the objective function, its effect is indi-

rectly represented by the optimization problem constraints [67], allowing its use in

other applications, such as reactive power planning. Another notable feature of the

OPF is its applicability over a wide time horizon. The OPF is usually used for op-

timal dispatch and control actions taken every few minutes, and for medium-term

planning studies months ahead, as in the case of reactive power planning. For long-

term studies, the OPF is used for generation and transmission expansion planning,

carried out years in advance to make decisions on investments in generation and

the transmission system [67].
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2.6.2 Voltage-Stability-Constrained OPF

The objective function of the OPF problem may vary, based on the target of the

optimization; for example, in [71], the target is to minimize the cost of the load

shedding to enhance the voltage stability of the system. The OPF-based auction

can also be used to minimize a multi-objective function, as in the case of [28], where

different terms in the objective function are used to maximize both the social welfare

and system voltage stability margins.

The minimum singular value of the power flow Jacobian can be used as an index

to predict voltage instability in power systems [25, 26]. By including a minimum

limit for this index in the standard OPF-based auction, a VSC-OPF can be written

as follows [27]:

Min. Sb = −(CT
d Pd − CT

s Ps) (2.11)

s.t. FPF (δ, V, QG, Ps, Pd) = 0

σmin(JPF ) ≥ σcPF

0 ≤ Ps ≤ Psmax

0 ≤ Pd ≤ Pdmax

Iij(δ, V ) ≤ Iijmax

Iji(δ, V ) ≤ Ijimax

QGmin
≤ QG ≤ QGmax

Vmin ≤ V ≤ Vmax

where JPF = [ ∂FPF

∂δ

∣
∣
o

∂FPF

∂V

∣
∣
o
] is the power flow Jacobian of the system, and σcPF

is a minimum limit for the voltage stability index, so that voltage instability can

be avoided even for the worst contingency (N-1 contingency criterion). Such a
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Figure 2.15: Three-bus test case.

value needs to be determined by off-line studies [27], and is used to replace the

off-line-based limits on transmission power levels.

2.7 Test Systems

2.7.1 3-Bus Test System

Figure 2.15 depicts the 3-bus benchmark test system used in this thesis, which is

extracted from [72]. This system was developed in [73] to study the oscillatory

instabilities in a simple two machines system. Both generators are modeled by a

fourth-order transient model, and the AVR model of Figure 2.3 [74]. The nominal

load is assumed to be 900 MW and 300 Mvar. The dynamic data for the generators’

exciters are selected from [44] and are illustrated in Appendix A, together with the

market bidding data.

2.7.2 IEEE 14-Bus Test System

A single-line diagram of the IEEE 14-bus test system, in Figure 2.16, consists of

five synchronous machines with IEEE type-1 exciters, two of which are synchronous

compensators for reactive power support. There are 11 loads in the system, totalling

259 MW and 81.3 Mvar. The dynamic and static data for the system, generators,
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and exciters are selected from [75] and are illustrated in Appendix B, together with

the market bidding data.

The selection of the test system is based on the following criteria:

1. The stability of the selected system is modelled and analyzed, including

FACTS, in detail in several technical documents based on the results of a va-

riety of software packages (e.g. [9, 75]). This sample system contains enough

dynamic and static elements to allow for meaningful stability and security

studies.

2. The selected system represents a portion of the American Power System in

the US Midwest, and hence can be considered a “realistic“ example.

3. The system has enough generation and load to simulate an electricity market,

and thus, produce significant results for examining the proposed techniques.

4. A larger system cannot be readily studied to illustrate the differences between

the proposed SSC-OPF technique and a standard OPF auction, since a large

amount of data and computations are required to reach conclusions that can

be also attained with this reduced size system.

2.8 Summary

This chapter includes a brief description of power system instabilities, the basic con-

cepts of deregulated energy markets, and the main analysis techniques and tools

used in this thesis. Also, this chapter describes the models of power system com-

ponents and controllers used to study the effect of system controllers on electricity
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Figure 2.16: IEEE 14-bus test system.
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pricing. The last part of this chapter briefly discusses and justifies the test systems

used in this thesis.



Chapter 3

Small-Perturbation Stability

Constrained (SSC)-OPF

3.1 Introduction

The inadequate assessment of system instability problems may lead to poor market

operating conditions, which may result in unsecure system conditions and inad-

equate price signals [28]. Hence, in this chapter, a technique that includes the

Hopf bifurcation index introduced in Chapter 2 as a stability constraint in the

OPF-based auction mechanism to better represent system security, is presented.

The implementation and solution techniques for the novel SSC-OPF technique are

also described. Finally, the application of the SSC-OPF to several test systems is

demonstrated and compared to the standard OPF and the VSC-OPF.

41
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3.2 SSC-OPF

As discussed in Section 2.7, the minimum singular value of the modified matrix

Jm (2.9) can be used as a stability index to detect voltage and oscillatory stability

problems. Thus, the following new OPF-based auction, which includes this index

as a constraint, is proposed as an improved alternative to properly represent these

types of stability problems:

Min. Sb = −(CT
d Pd − CT

s Ps) (3.1)

s.t. F (x, y, p) = 0

σmin(Jm) ≥ σc

pmin ≤ p ≤ pmax

Iij(x, y) ≤ Iijmax

Iji(x, y) ≤ Ijimax

ymin ≤ y ≤ ymax

where F (·) corresponds to the steady-state equations of the system dynamic model,

as defined in (2.3); σmin is the minimum singular value of the modified state ma-

trix Jm, which becomes zero at a Hopf or saddle-node bifurcation point; and σc

stands for the minimum stability index value as defined by the user. The value of

σc depends on the system’s characteristics, and must be determined from off-line

stability studies, so that it reflects appropriate system security margins (e.g. the

appropriate damping ratios).

It is important to highlight the differences between the proposed SSC-OPF

technique (3.1) and the VSC-OPF problem (2.11). Thus:

• A full dynamic model of the system is considered in (3.1), whereas (2.11) is

based on a power flow model.



CHAPTER 3. SMALL-PERTURBATION STABILITY CONSTRAINED (SSC)-OPF 43

• The stability index in (3.1) captures not only voltage stability problems ac-

counted for in (2.11), but oscillatory stability problems as well.

3.2.1 OPF Solution Procedure

SSC-OPF (3.1) corresponds to a nonlinear optimization problem with an implicit

constraint. Hence, “standard” optimization solution techniques must be modified

to solve this problem. In this thesis, an Interior Point Method (IPM) is adopted

to solve the proposed optimization problems (this technique is different than the

one used in [27] to solve the VSC-OPF problem). From (3.1), the OPF auction is

rewritten in the following form:

Min. S(χ) (3.2)

s.t. F (χ) = 0,

H ≤ H(χ) ≤ H,

where χ ∈ <N is the vector of the optimization variables; i.e. χ = [xT yT pT ]T ,

N = n+m+k, with lower bounds χ and upper bounds χ; S : <N → < is the scalar

optimization function; F : <N → <n+m is the vector function defined in (2.3); and

H : <N → <l is a vector function, with the lower bounds H and upper bounds

H, which includes the χ and χ limits, used to represent all the operating limits of

the system, including the stability constraint represented by the σmin(Jm) index.

This optimization problem is solved by using an IPM, which transforms all the

inequality constraints in (3.2) into equalities by adding non-negative slack vectors
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s and q, and incorporating them into logarithmic barrier terms as follows [76, 77]:

Min. S(χ) − µs

∑

i

(ln si + ln qi) (3.3)

s.t. F (χ) = 0,

−s − q + H − H = 0,

−H(χ) − q + H = 0,

s ≥ 0, q ≥ 0

where µs ∈ <, µs > 0 is the barrier parameter. To solve the equality-constrained

problem (3.3), the Lagrange-Newton method is used, which is based on the following

Lagrangian function Lµ(u) associated with (3.3),

Lµ(u) = S(χ) − µs

∑

i

(ln si + ln qi) − ρT F (χ) (3.4)

−ςT (−s − q + H − H) − τT (−H(χ) − q + H)

where ρ ∈ <n+m, ς ∈ <l, and τ ∈ <l are vectors of the Lagrange multipliers or

dual variables, and u = [χT sT qT ρT ςT τT ]T . The local minimum of (3.4)

is expressed in terms of a stationary point of Lµ(u), which must satisfy the Karush-

Kuhn-Tucker (KKT) optimality conditions ∇uLµ(u) = 0. Although ∇uLµ(u) = 0

is nonlinear, its solution is usually approximated by a single iteration of Newton’s

method; thus, the Hessian ∇2
χLµ(u) is required in the algorithm. The computation

of this Hessian requires an evaluation of the objective function Hessian ∇2
χS(χ) and

the constraint Hessians ∇2
χF (χ) and ∇2

χH(χ), since

∇2
χLµ(u) = ∇2

χS(χ) − ρT∇2
χF (χ) + τT∇2

χH(χ) (3.5)

To solve this problem, a good estimate of ∇2
χσmin(Jm) is needed. This requires

certain approximations, since σmin(Jm) is an implicit function of the optimization



CHAPTER 3. SMALL-PERTURBATION STABILITY CONSTRAINED (SSC)-OPF 45

variables χ. This approximation is accomplished here by first obtaining an estimate

of ∇χσmin(Jm), based on [25]. Thus, if χ∗ is perturbed such that χ∗ + ∆χ =

[zT
∗

+∆zT pT
∗

+∆pT ]T , where z = [xT yT ]T by using a Taylor series expansion, then

J |z∗+∆z ≈ J |z∗ + G∆z (3.6)

where G = ∂2F
∂z2

∣
∣
∣
z∗

. From (2.8)

Jm|z∗+∆z ≈




J |z∗+∆z β|z∗+∆z B

− β|z∗+∆z B J |z∗+∆z





≈




J |z∗ + G∆z βB

−βB J |z∗ + G∆z



 (3.7)

if it is assumed that β|z∗+∆z ≈ β|z∗ ≈ β, i.e. the frequency of the critical eigenvalues

(the eigenvalues that eventually reach the imaginary axis for a Hopf bifurcation)

does not change significantly, which is typically the case [29]. Then,

Jm|z∗+∆z ≈ Jm|z∗ +




G∆z 0

0 G∆z



 (3.8)

Following [25], by singular value decomposition, the matrix Jm|z∗ may be written

as

Jm|z∗ = UΣV T (3.9)

Similarly,

Jm|z∗+∆z = (U + ∆U)(Σ + ∆Σ)(V + ∆V )T (3.10)

is the singular value decomposition of Jm|z∗+∆z, where ∆U , ∆V , and ∆Σ are small

perturbations on U , V , and Σ, respectively. By substituting (3.9) and (3.10) into

(3.8), expanding the matrix multiplications, and disregarding the second and third

order perturbations, the following approximation is obtained:
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U∆ΣV T + ∆UΣV T + UΣ∆V T ≈




G∆z 0

0 G∆z



 (3.11)

Additional constraints are given by the orthogonality of U + ∆U and V + ∆V ,

(U + ∆U)(U + ∆U)T = 1 (3.12)

and

(V + ∆V )(V + ∆V )T = 1 (3.13)

If (3.12) is expanded disregarding the second order terms, and substituting the

unity matrix for UUT , the result is

UT ∆U = −[UT ∆U ]T (3.14)

Assume M = UT ∆U ; thus, M = −MT . Similarly, for N = V T ∆V . If (3.11) is

premultiplied and postmultiplied by UT and V , respectively, and including M and

N ,

∆Σ + MΣ + ΣNT = UT




G∆z 0

0 G∆z



 V (3.15)

Since M and N have zero diagonals and Σ is a diagonal matrix, the diagonal entries

of MΣ and ΣNT are zero. Hence, evaluating the minimum singular value of (3.15)

yields
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∆σmin(Jm) = UT
1




G∆z 0

0 G∆z



 V1 (3.16)

where U1 and V1 are, respectively, the left and right singular vectors corresponding

to the minimum singular value of Jm. Furthermore, since at a solution point χ∗,

F (χ∗) = F (z∗, p∗) = 0

∂F
∂z

∣
∣
z∗

dz + ∂F
∂p

∣
∣
∣
p∗

dp = 0

⇒ ∆z = −
[

∂F
∂z

∣
∣
z∗

]
−1

∂F
∂p

∣
∣
∣
p∗

∆p

= −J−1Jp∆p (3.17)

one can evaluate the change of σmin(Jm) with respect to the parameters p as follows:

∆σmin(Jm) ≈ UT
1




−GJ−1Jp∆p 0

0 −GJ−1Jp∆p



V1 (3.18)

Finally, to evaluate ∇2
χσmin(Jm), the following numerical approximation is used

[78]:

∂2σmin(Jm)

∂χiχj

∣
∣
∣
∣
χ∗+∆χ

≈

∂σmin(Jm)
∂χi

∣
∣
∣
χ∗

− ∂σmin(Jm)
∂χi

∣
∣
∣
χ∗+∆χ

∆χj
(3.19)

where ∂σmin

∂χi
are obtained by using the approximations (3.16) or (3.18) as needed.

3.2.2 Implementation of SSC-OPF

Figure 3.1 depicts the computational procedure for solving the proposed SSC-OPF

by an IPM, based on a Mehrotra’s predictor-corrector technique programmed in

MATLAB [77]. It is important to mention that the equilibrium equations of the

dynamic DAE model, as well as the corresponding Jacobian and eigenvalues closer
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to the imaginary axis, are computed for each iteration i. This procedure can be

summarized as follows:

1. The proposed SSC-OPF is initialized by using the results obtained from ap-

plying the standard OPF (2.10) to the system.

2. The equilibrium equations of (2.3), i.e. F (·) = 0, are solved.

3. The first and the second derivatives of the equality and inequality constraints

are calculated, including the first and second derivatives of the stability con-

straint with respect to the optimization variables, using (3.16), (3.18), and

(3.19).

4. The KKT optimality conditions are then formulated and solved by using

Mehrotra’s predictor-corrector technique, and the barrier parameter µs is up-

dated by the techniques described in [76, 77].

5. If the barrier parameter, the objective function, and the optimization vari-

ables converge within the given tolerance limits (10−4), the process ceases,

otherwise, it is repeated from Step 2.

To evaluate the computational burden of the proposed SSC-OPF technique, the

execution times for the VSC-OPF (2.11) and the SSC-OPF (3.1) were compared.

Thus, the VSC-OPF requires about one-tenth of the CPU time needed by the SSC-

OPF to obtain a solution, whereas both need approximately 40 to 50 iterations to

converge to an optimal solution. This difference can be significantly reduced by

optimizing the code (e.g. by using sparse matrix techniques). However, additional

computational costs are expected, since the number of constraints and, especially

the size of the Jacobians and Hessians, can be significantly larger than those in the

proposed SSC-OPF method.
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Figure 3.1: Solution procedures of the SSC-OPF.
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3.2.3 Locational Marginal Prices (LMPs)

OPF-based market models produce the optimal operating point and a variety of

sensitivities through the Lagrangian multipliers, which are associated with the Lo-

cational Marginal Prices (LMPs) at each node [28], providing reliable pricing indi-

cators [69]. The Lagrangian multipliers of the power flow equations, a subset of ρ

in (3.4), define the LMPs for the participants in the auction as follows:

∂Lµ(z)

∂Psi

= Csi
− ρPsi

+ ςPsmaxi
− ςPsmini

+ τσmin

(
∂σmin(Jm)

∂Psi

)

= 0 (3.20)

∂Lµ(z)

∂Pdi

= −Cdi
+ ρPdi

+ ςPdmaxi
− ςPdmini

+ τσmin

(
∂σmin(Jm)

∂Pdi

)

= 0

Consequently, the LMPs can be calculated as follows:

LMPsi
= ρPsi

= Csi
+ ςPsmaxi

− ςPsmini
+ τσmin

(
∂σmin(Jm)

∂Psi

)

(3.21)

LMPdi
= ρPdi

= Cdi
− ςPdmaxi

+ ςPdmini

− τσmin

(
∂σmin(Jm)

∂Pdi

)

From these definitions, the LMPs are affected by the costs Cs and Cd, as

well as the system constraints, particularly the stability constraint associated with

σmin(Jm), and are a byproduct of the solution process. These LMPs are used to

analyze the effect of the system constraints, such as security limits, in the market’s

prices, and are thus used here to price the dynamic controllers’ services.

3.3 Comparing OPF Techniques

In the standard OPF, VSC-OPF and SSC-OPF studies, the loads are typically

represented in steady-state as constant PQ loads with a constant power factor.
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Hence, the loads are modelled here as follows:

PL = PLo
+ Pd

Pd ≤ Pdmax
= PLo

λ (3.22)

QL = PL tanφ

where PLo
is the “base” real and power that represents the inelastic loads, φ stands

for the constant power factor angle, and λ is a p.u. loading factor. The change in

the generation bid is represented as:

PG = PGo
+ Ps (3.23)

where PGo
is the must run generation that is not included in the market bidding.

3.3.1 Standard OPF vs. SSC-OPF

IEEE 14-Bus base case

Figure 3.2 demonstrates the HBI stability index (2.9) and the voltage stability

index σmin(JPF ) in (2.11) since the ESCOs’ demand power is increased from its

nominal value according to (3.23) with Pd = PLo
λ. Both indices are calculated

with the assumption that the total demand is shared by GENCO1, GENCO2, and

GENCO3 proportionally to their inertias, i.e. the OPF technique is not applied to

determine the optimal schedules. Figure 3.2 shows that there is a Hopf bifurcation

point when the ESCOs’ loading factor reaches 0.45 p.u., which is associated with an

oscillatory instability linked to GENCO1. The voltage stability index indicates that

the maximum loading factor can reach a 0.705 p.u. value, if oscillatory stability is

not considered in the analysis. Figure 3.3 illustrates the HBI stability index with
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different contingencies applied to the system. In this case, a line 1-5 outage is

determined to be the most severe contingency from an oscillatory stability point of

view, the main concern in this thesis.

A 2% damping ratio is used as the minimum value of the system damping

required to maintain system security [79]. Without contingencies, this limit is

reached at the ESCOs’ loading factor of 0.37 p.u., which corresponds in Figure 3.2

to an HBI value of 0.00018; thus, the value of σc in (3.1) is chosen to be 0.0002.

With an N-1 contingency criterion, the value of σc in (3.1), obtained from Figure

3.3, is 0.00025.

For the base case, the SSC-OPF (3.1) results with σc = 0.0002 are compared

with those of a standard OPF (2.10). The power limits on the lines in (2.10) are

obtained by considering a damping ratio of 2%, as typically done in most systems

(e.g. Ontario). For the standard OPF and the SSC-OPF problems, the bus voltage

limits are 0.9 p.u. and 1.1 p.u.

The supplied power by the GENCOs and their LMPs, obtained by solving (2.10)

and (3.1) with respect to the ESCOs’ loading factor λ, are illustrated in Figure 3.4.

Notice that the power supplied by GENCO1 decreases as the demand increases

when the SSC-OPF is used, which is to be expected since this generator is the

reason for the low damping at λ = 0.45; this behaviour is not observed when using

the standard OPF. Furthermore, the GENCOs’ LMPs are higher for the standard

OPF than those obtained with the SSC-OPF, since the system is more congested

in (2.10) than in (3.1). All of this is due to the different security constraints used

in the OPFs to represent system security, which in both cases do not allow loading

levels greater than λ = 0.45. Similar results are obtained for the ESCOs’ LMPs, as

shown in Figure 3.5.
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These results clearly show the more restrictive nature of the “classical” security

constraints used in the standard OPF, as opposed to the σmin(Jm) constraint used

in the proposed SSC-OPF. As a result, the bus prices for the standard OPF are

higher than those for the SSC-OPF, in spite of both solutions being very similar

from the stability point of view, as demonstrated by the σmin(Jm) plots depicted

in Figure 3.6.

Table 3.1 summarizes the solution details for the standard OPF and SSC-OPF

at the loading factor λ = 0.45, which corresponds to the maximum loading level for

which there is a solution to both problems. Bus voltages and active and reactive

powers for all the GENCOs and ESCOs are shown, as well as the value of the indices

σmin(Jpf) and σmin(Jm). It is evident that the standard OPF is more “restrictive”

than the proposed SSC-OPF, since the supply and demand side powers are lower

for the standard OPF, which is to be expected, as the SSC-OPF better represents

the system stability.

IEEE 14-Bus with N-1 Security Criterion

With the N-1 security criterion, the SSC-OPF (3.1) results with σc = 0.00025 are

compared with the standard OPF (2.10) results. The power limits on the lines

in (2.10) are obtained by considering a damping ratio of 2% for the worst single

contingency (line 1-5 outage). For both the standard OPF and the SSC-OPF

problems, the bus voltage limits are 0.9 p.u. and 1.1 p.u.

The supplied power by GENCOs and their LMPs, obtained by solving (2.10)

and (3.1) with respect to the ESCOs’ loading factor λ, are illustrated in Figure

3.7. Observe that that both GENCO2 and GENCO3 supply all the demand needs,

whereas GENCO1 is not dispatched. Furthermore, the GENCOs’ LMPs are higher
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Table 3.1: Solution details for the standard OPF and SSC-OPF at λ = 0.45 p.u. for

the IEEE 14-bus test system.

Bus Standard OPF SSC-OPF

V P QG V P QG

(p.u.) (MW) (MVAr) (p.u.) (MW) (MVAr)

GENCO1 1.1 91.87 48.6 1.1 45.148 55

GENCO2 1.0546 4.263 50 1.058 60 50

GENCO3 1.006 56.27 40 1.006 60 40

ESCO2 1.0546 13.671 1.058 13.671

ESCO3 1.006 59.355 1.006 59.355

ESCO4 0.9972 30.114 0.99 30.114

ESCO5 1.0053 4.788 0.998 4.788

ESCO6 1.0338 5.119 24 1.02 1.877 24

ESCO9 0.9916 16.48 0.97 18.585

ESCO10 1.006 0.00 0.967 3.8836

ESCO11 1.01 2.203 0.987 2.205

ESCO12 1.0014 2.401 0.992 3.843

ESCO13 0.978 8.316 0.981 8.505

ESCO14 0.9768 0.000 0.943 9.387

Bus 7 1.016 0.999

Bus 8 1.056 24 1.04 24

σmin(Jm) 0.000212 (stable) 0.0002 (stable)
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Figure 3.7: GENCOs’ supplied power and LMPs with respect to loading levels for

the IEEE 14-bus system with contingencies.
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for the standard OPF than those obtained with the SSC-OPF, since the system is

more congested in (2.10) than in (3.1) due to the different constraints used in these

OPFs to represent system security. Similar results are obtained for the ESCOs’

LMPs, as shown in Figure 3.8. As mentioned in the base case comparison, these

results clearly demonstrate the more restrictive nature of the transmitted line power

constraints used in the standard OPF, as opposed to the σmin(Jm) constraint used

in the proposed SSC-OPF. Notice that both solutions are very similar from the

stability perspective as demonstrated by the σmin(Jm) plots depicted in Figure 3.9.

3.3.2 VSC-OPF vs. SSC-OPF

3-Bus Test System

Figure 3.10 plots the HBI stability index (2.9) and the voltage stability index

σmin(Jpf) in (2.11) as the ESCO’s demand power increases from its nominal value.

Both indices are calculated by assuming that the demand of the ESCO is shared

by GENCO1 and GENCO2 in proportion to their inertias.

Figure 3.10 shows that there is a Hopf bifurcation point when the ESCO demand

reaches 1350 MW (there is a second Hopf at about 1880 MW, but this is of no

interest from the system security point of view). The voltage stability index shows

that the maximum demand power of the ESCO can reach 2150 MW, if the angle

stability is not considered in the analysis. With the increase of the ESCO’s demand,

the system presents an oscillatory instability, associated with GENCO1, which the

voltage stability index cannot detect.

Figure 3.11 presents the damping ratio of the system prior to the Hopf bifur-

cation point of interest. A 2% damping ratio is used here as the minimum value
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of the system damping required to maintain the system secure [79]. This limit is

reached at an ESCO demand of 1230 MW, which corresponds, in Figure 3.10, to

an HBI value of 0.0008; thus, the value of σc in (3.1) used here is 0.001.

The proposed SSC-OPF and the VSC-OPF are applied to the test system as

the demand of the ESCO increases from 1000 to 1700 MW, which is the margin for

which a solution to SSC-OPF exists for the chosen value of σc. Figure 3.12 displays

the power supplied by GENCO1 and GENCO2 for both OPF problems. It is evident

that, for the VSC-OPF, the supplied powers by GENCO1 and GENCO2 increase

smoothly as the ESCO’s demand increases. When the ESCO’s demand approaches

1600 MW, the solutions to the VSC-OPF correspond to unstable system conditions

(the system eigenvalues are on the right-half plane). This is not the case for the

solutions obtained with the SSC-OPF; the solutions in this case are guaranteed to

be stable due to the HBI constraint. Notice that as the ESCO’s demand increases,

the GENCO2’s supplied power increases more rapidly than the GENCO1’s power,

which is expected, since GENCO1 yields oscillatory instabilities.

The LMPs of GENCO1 and GENCO2 are presented for both OPF problems,

(2.11) and (3.1), in Figure 3.12. It is clear that that the LMPs of GENCOS1 or

GENCOS2 are not affected by increasing the ESCO’s demand for the VSC-OPF,

since the system constraints are not active (the system is not congested). The

GENCO2’s LMP is higher than its bid, i.e. is paid more for its power, which makes

sense, since GENCO1 is the reason for the system’s stability problems. The ESCO’s

LMP is depicted in Figure 3.13 for both OPF problems; notice that the LMP in

this case is not significantly affected by the stability constraint, since the load is

not the reason for the stability problem.
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IEEE 14-Bus System

From Figures. 3.2 and 3.3, it is evident that the range of load variations is signifi-

cantly smaller in the case of contingencies; therefore, to better compare and analyze

results using a wider range of load variation without loss of generality, the stability

constraints in the VSC-OPF and SSC-OPF are those without contingencies. Thus,

the proposed SSC-OPF is applied to the test system as the loading factor is in-

creased from 0.05 to 0.45 p.u., which is the margin for which a solution to (3.1)

exists for the chosen value of σc = 0.0002, to simulate various operating conditions,

thus depicting the effect of different stress levels on the proposed technique. The

VSC-OPF, on the other hand, is applied to the test system as the loading factor

increases from 0.05 to 0.65 p.u. for a σcpf
= 0.1, corresponding to a load level

that is 95% of the value of the maximum loading factor for the system without

contingencies (this is the recommended margin by WECC). For both VSC-OPF

and SSC-OPF problems, the bus voltage limits are 0.9 p.u and 1.1 p.u.

Figure 3.14 presents the power supplied by the GENCOs for both the OPF prob-

lems. For the VSC-OPF, the powers supplied by the GENCOs increase smoothly

as the ESCOs’ demand increases. When the loading factor exceeds 0.45 p.u., the

solutions to (2.11) are unstable (a complex pair of system eigenvalues are on the

right-half plane). This is not the case for the solutions obtained with the proposed

SSC-OPF (3.1); the solutions in this case are guaranteed to be stable due to the

HBI constraint. As the loading factor increases, the GENCO2 and GENCO3 sup-

plied powers increase more rapidly than the power of GENCO1, which is to be

expected, since GENCO1 is directly associated with the oscillatory instabilities.

The LMPs of GENCOs are also shown for both OPF problems (2.11) and (3.1) in

Figure 3.14. Observe, that the LMPs of GENCOs increase smoothly as the loading
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factor increases, since the system’s constraints become active as the demand grows

(the system becomes congested). Notice that the GENCO2 and GENCO3 LMPs

are higher than their bids in the case of the proposed SSC-OPF when the system

reaches its HBI limit, i.e. they are paid more for their power, which is not the case

for GENCO1; this is to be expected, since GENCO1 is the principal reason for the

system’s oscillatory problems.

The ESCOs’ powers and LMPs for “remote” loads, i.e. ESCO12, 13 and 14,

are depicted in Figure 3.15 for the two OPF problems; as expected, the LMPs

increase as the system become congested. Notice that for the VSC-OPF, the power

of the most remote load begins to decrease as the system approaches its maximum

loading conditions, since the voltage of this bus approaches its minimum limit. The

“oscillations” in the power levels and the LMPs in these graphs as the loading factor

increases, which are also observed in Figures 3.14 and 3.15, are due to different

constraints becoming active as the load is increased.

Table 3.2 summarizes the solution for the VSC-OPF and SSC-OPF at ESCOs’

loading factor λ = 0.45, which corresponds to the maximum loading level for which

there is a solution to the SSC-OPF problem. The bus voltages and the active

and reactive powers for all the GENCOs and ESCOs are shown as well as the

values of the indices σmin(Jpf) and σmin(Jm). It is obvious that the SSC-OPF is

more “restrictive” than the VSC-OPF, i.e. the total supply and demand powers are

smaller, as expected, since the SSC-OPF stability constraint properly reflects the

system stability, which is not the case for the VSC-OPF. Observe that the system

solution for the latter corresponds to an unstable condition.
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Table 3.2: Solution details for VSC-OPF and SSC-OPF at λ = 0.45 p.u. for the

IEEE 14-bus system.

Bus VSC-OPF SSC-OPF

V P QG V P QG

(p.u.) (MW) (MVAr) (p.u.) (MW) (MVAr)

GENCO1 1.1 59.11 70.41 1.1 45.148 55

GENCO2 1.051 54.94 50 1.058 60 50

GENCO3 0.995 60 40 1.006 60 40

ESCO2 1.051 13.671 1.058 13.671

ESCO3 0.995 59.355 1.006 59.355

ESCO4 0.977 30.114 0.99 30.114

ESCO5 0.987 4.788 0.998 4.788

ESCO6 0.996 7.056 24 1.02 1.877 24

ESCO9 0.951 18.585 0.97 18.585

ESCO10 0.945 5.67 0.967 3.8836

ESCO11 0.964 2.203 0.987 2.205

ESCO12 0.968 3.843 0.992 3.843

ESCO13 0.978 8.505 0.981 8.505

ESCO14 0.92 9.387 0.943 9.387

Bus 7 0.982 0.999

Bus 8 1.023 24 1.04 24

σmin(Jm) 0.000275 (unstable) 0.0002 (stable)

σmin(JPF ) 0.1971 0.2632
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Figure 3.14: GENCOs’ supplied power and LMPs with respect to the loading factor

for the IEEE 14-bus system.
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Figure 3.15: ESCOs’ power and LMPs with respect to the loading factor for the
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3.4 Summary

Following the review and discussion of the theoretical background, an innovative

approach is introduced in the form of a new SSC-OPF that predicts or detects both

voltage and oscillatory instabilities. The ad-hoc approximations used to solve the

SSC-OPF are also illustrated.

The proposed SSC-OPF is applied on two test systems of increasing size and

complexity with and without contingencies. This illustrates the effect of the novel

stability constrained OPF technique on the market signals and prices, compared

to that of the standard OPF and a VSC-OPF. As clearly demonstrated, the novel

SSC-OPF properly detects voltage and oscillatory instabilities, and guarantees a

stable operation for the system with adequate LMPs and power signals.



Chapter 4

Pricing of Dynamic Services

4.1 Introduction

Chapter 3 introduces the new SSC-OPF and its solution procedure and application

to different test systems, and it also provides comparisons among the novel SSC-

OPF and a standard OPF and VSC-OPF. This comparison between the SSC-OPF

and VSC-OPF is used in this chapter when power system controllers, i.e. PSS,

SVC, and TCSC, are included in the power system to propose a new methodology to

price the dynamic services provided by these controllers. Steady-state and dynamic

models of these controllers are used in the VSC-OPF and SSC-OPF, respectively;

this allows to compare the effect of these models on electricity market signals,

demonstrating the importance of using dynamic models for these controllers.

75
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4.2 Pricing Technique

PSS and FACTS controllers are well identified solutions for oscillatory instabilities

in a power system. FACTS controllers such as SVC and TCSC are more expen-

sive solutions for these types of problems, as illustrated in the approximate cost

comparison of these controllers in Table 4.1 [9, 80, 81]. Since the costs associated

with FACTS controllers are high, pricing methodologies for the dynamic stability

services provided by these controllers should be developed.

Table 4.1: Cost comparison of the PSS and FACTS controllers.

Controller Cost (US)

PSS $30,000

SVC $40/kvar

TCSC $40/kvar

The pricing techniques proposed in this thesis depends on a comparison of the

market signals with and without the system controllers, based on the proposed

SSC-OPF. The proposed pricing methods are based on a comparison of congestion

costs and social welfare.

The congestion costs are defined as:

CC =
∑

LMPiPdi
−

∑

LMPjPsj
(4.1)

where CC is the congestion cost in $/h, LMP is the locational marginal price for

demand bus i or supply bus j in $/MWh, and Pdi
and Psj

are the demand and

supply power in MW. Thus, any gain in CC, due to the extension of the DLM
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associated with the addition of the controllers, is considered to be a profit which

cannot exist without these controllers. Consequently, the difference between the

CC with and without the system controllers is used to price the dynamic services

of the system controllers as follows:

CP = CC|wc − CC|woc (4.2)

where CP is the controller pricing in $/h, and CC|wc and CC|woc are the congestion

costs with and without the controller in service, respectively. The value of the CP

is not considerable if the system is not heavily loaded, i.e. for a large DLM, but as

the system loading approaches its DLM, these costs increase significantly.

The social welfare Sb in (2.10) could also be used as a tool for pricing the

dynamic services provided by the controllers. Although Sb can be viewed as a

“theoretical” measure for the controllers’ benefits, this value in principal can be

used to determine the “worth” of the controller. The social welfare pricing SP can

hence be defined as:

SP = SP |wc − SP |woc (4.3)

where SP is the social welfare controller pricing in $/h, and SP |wc and SP |woc are

the social welfare with and without the controller in service, respectively. Similar

to the CP , the value of the SP is not considerable if the system is not heavily

loaded.

This pricing techniques are applied in the following sections to the PSS for the

3-bus system and the IEEE 14-bus system, and to FACTS controllers, SVC and

TCSC, for the IEEE 14-bus system.
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4.3 Pricing PSS Services

In this section, the pricing methodology is applied to PSS controller to predict

the benefits of the controller for the system. Although the cost of PSS controller

is relatively cheap, its benefits for system stability should be “valued” to help

convince generating facilities to properly use and tune this controller, since these

are no longer under the control of the system operators.

When a PSS is added to the AVR of GENCO1 in the 3-bus test system, the

Hopf bifurcation point is removed. Consequently, when the SSC-OPF is applied to

the system with the PSS, the results are similar to those of the VSC-OPF. This is

expected, since the oscillatory instabilities are removed by the introduction of the

PSS, and thus, both OPF problems are basically the same, i.e. constrained by the

system voltage stability limits and other constraints.

As illustrated in Figures 4.1 and 4.2, the inclusion of the PSS benefits the system

congestion costs and social welfare. In terms of percentage of the CP and SP values

with respect to the GENCO1 power payment, the value is not significant, especially

if it is compared to the benefits for the entire system, which are quite significant,

since a proper damping ratio and much larger transaction levels are attained by

the introduction of the PSS.

The IEEE 14-bus test system is also analyzed with the inclusion of PSS and

FACTS controllers. A SVC, a TCSC, and a PSS are added to the system, as

shown in Figure 4.3, to study their effect on system stability and LMPs. The PSS

and TCSC are added to remove oscillatory instabilities, whereas the SVC is added

to improve the system voltage stability. The static and dynamic data of these

controllers are provided in Appendix B.

Figure 4.4 reflects the effect of the PSS on the HBI of the system, assuming the
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load increase in (3.23) with Pd = PLo
(the OPF techniques are not applied in this

case). The PSS is installed on GENCO1, since this is the source of oscillatory insta-

bility, completely removing the Hopf bifurcation from the system. Consequently,

when the SSC-OPF is applied to the test system with the PSS, the results are

similar to those obtained with the VSC-OPF. This is expected, since both OPF

problems are the same, i.e. mainly constrained by the system voltage stability limits

and current, and voltage constraints.

As depicted in Figures 4.5 and 4.6, the inclusion of the PSS results in a reduction

in the system congestion costs and an increase in the social welfare, as expected.

The difference between the CC and Sb of the system with and without the PSS

may then be used for pricing the PSS control services as proposed in (4.2) and

(4.3). In terms of percentage of the PSS payment with respect to the GENCO1

payment, this payment is somewhat significant. However, when compared to the

benefits for the whole system, which are quite significant, since proper damping

ratios and much larger transaction levels are attained by the introduction of the

PSS, these costs for the system are certainly justifiable. Notice that the benefits for

the system with the PSS are negative in the region, where the system without PSS

is near its stability limits; this is to be expected, since the stability constraint for

the system without PSS becomes active close to the point where there is an angle

stability problem, which is not the case for the system with the PSS. It should be

stressed that these costs should not necessarily correspond to a payment for the

services provided by the PSS, and it is only an indication of the benefits accrued

by the system with this controller.
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4.4 Pricing FACTS Services

Figure 4.7 plots the effect of the SVC and TCSC controllers on the HBI for the

test system, as the system load is increased according to (3.23) with Pd = PLo

(the OPF techniques are not applied in this case). The SVC controller moves the

Hopf bifurcation point from a loading factor of 0.45 to 0.62. The TCSC controller

is installed in series with the line connected between buses 4 and 5 with a 50 %

compensation level, using the active power flow in this line as the input signal for

the oscillation damping [34]; in this case, the Hopf bifurcation point moves from a

loading factor of 0.45 to 0.6.

4.4.1 SVC Controller

The power levels and LMPs of GENCOs are shown for both OPF problems (2.11)

and (3.1) with a SVC controller in Figure 4.8. In the VSC-OPF, the steady state

model of the SVC controller described in [23] is used. For the SSC-OPF, the

dynamic stability constraints force the LMPs of GENCO2 and GENCO3 to increase

with respect to the VSC-OPF. Observe that near the Hopf bifurcation point (at

λ ≈ 0.6), the power levels at GENCO1 decrease, as expected, since GENCO1 is

the principal contributer to the angle stability problem.

The ESCOs’ LMPs are depicted in Figure 4.9 for the two OPF problems. Both

the power and LMP of ESCO14 increases significantly with respect to the case

without the SVC. This is due to the SVC controller, connected to this bus, which

enhances the supply conditions for this load (this bus is the one that benefits the

most from the installation of the controller).

Figure 4.10 represents the effect of the dynamic modelling of the SVC controller
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on market prices. When the results obtained with the SSC-OPF are compared with

the ones obtained with the VSC-OPF, which includes the SVC steady-state model,

there is a significant discrepancy between these results, especially close to the Hopf

bifurcation point at λ ≈ 0.6, even at “low” loading conditions. This demonstrates

the importance of accounting for the FACTS controller dynamics within the market

auction mechanisms.

In Figures 4.11 and 4.12, the inclusion of the SVC controller result in a positive

effect on the system’s CC and Sb, as expected. The difference between the CC

and Sb resulting from the SSC-OPF with and without the SVC controller may

then be used for pricing the SVC dynamic stability control services. Notice that

at approximately the original Hopf bifurcation point (λ ≈ 0.4), the introduction of

the SVC does yield savings for the system, similarly to the PSS. Furthermore, with

respect to the percentage of GENCOs’ power payments, the SVC price is not that

significant, especially if it is compared to the benefits for the whole system, since

proper damping and higher transaction levels are attained by the introduction of

the SVC controller.

4.4.2 TCSC Controller

The power levels and LMPs of GENCOs are depicted in Figure 4.13 for the OPF

problems (2.11) and (3.1) with the addition of a TCSC controller, using the TCSC

steady state model described in [23] in the VSC-OPF problem. Notice that the

power levels and the LMPs of the GENCOs behave similarly, as observed in the

previous examples, when the loading factor is increased, and similarly for the ES-

COs’ power levels and LMPs, shown in Figure 4.14.

Figure 4.15 shows the difference between the market prices obtained with and
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Figure 4.11: SVC benefit and pricing analysis for the IEEE 14-bus test system

using congestion costs.
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Figure 4.12: SVC benefit and pricing analysis for the IEEE 14-bus test system
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without a dynamic model of the TCSC controller. Like the SVC controller, the

difference in the social welfare is significant, especially near the Hopf bifurcation

point (λ ≈ 0.6). Again, these results highlight the need for considering the FACTS

controller dynamics in the market auction mechanisms.

Figures 4.16 and 4.17 depict the effect of including the TCSC controller in the

system’s CC and Sb. By using a similar pricing methodology as that of the PSS and

SVC, the difference between the CC and Sb resulting from the proposed SSC-OPF

with and without the TCSC controller may be used for pricing the TCSC dynamic

stability control services. In terms of percentage of the GENCOs’ power payments,

these prices are not that significant, especially if they are compared to the benefits

for the entire system, as in the case of the other controllers.

4.5 Summary

A new technique for pricing dynamic services provided by the system controllers is

presented and discussed for the PSS, SVC, and TCSC. The methodology is applied

to two different test systems and the effect of the dynamic modelling of these

controllers on the market signals is demonstrated. This chapter also demonstrates

the importance of dynamic modelling of system controllers in the context of energy

markets.
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Figure 4.13: GENCOs’ supplied power and LMPs with respect to the loading factor

with the TCSC controller for the IEEE 14-bus test system.
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Figure 4.14: ESCOs’ power and LMPs with respect to the loading factor with the

TCSC controller for the IEEE 14-bus test system.
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Figure 4.17: SVC benefit and pricing analysis for the IEEE 14-bus test system
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Chapter 5

Optimal Tuning of Oscillation

Damping Controllers

5.1 Introduction

Chapter 4 offers a new methodology for pricing the dynamic services provided by

the PSS or other controllers such as FACTS. First though, these controllers should

be “optimally” tuned to improve of market operating conditions, i.e. power dispatch

and price levels, as well as guaranteeing an adequate level of system security. Thus,

this chapter compares the use of the proposed SSC-OPF versus a standard OPF

auction when oscillation damping controllers (e.g. PSS and TCSC) are included.

Furthermore, the adoption of the SSC-OPF for optimally tuning these controllers

within the context of an electricity market clearing mechanism is also discussed.

100
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5.2 Comparing OPF Techniques

In this section, the standard OPF auction is compared with respect to the newly

developed SSC-OPF when the PSS and TCSC are added to the IEEE 14-Bus test

system (Figure 4.3), demonstrating the benefits of using the proposed SSC-OPF,

which incorporates the dynamic models of these controllers.

The results in this section are obtained without considering system contingen-

cies, since this significantly limits the loading range for stability studies. There is

no reason to expect that contingencies would affect the conclusions of the analysis

presented here.

5.2.1 PSS and the Standard OPF

Figures 5.1 and 5.2 depict the supply and demand power and LMPs, respectively,

when the standard OPF (2.10) and SSC-OPF (3.1) are applied to the IEEE 14-bus

system, with the PSS included. The PSS gain is chosen to be KPSS = 2.5 for

the SSC-OPF, since this yields a 2% damping ratio at the original Hopf bifurcation

point at λ = 0.45 p.u. The power limits on the lines used in (2.10) are computed off-

line, considering a damping ratio of 2% for the system when the PSS is included.

The bus voltage limits in both OPF problems are 0.9 p.u. and 1.1 p.u. Higher

LMPs are obtained by using the standard OPF, and the supply and demand powers

are lower as the system becomes more congested for the standard OPF compared

to the results obtained from the SSC-OPF. A comparison of the congestion cost

between both OPFs is illustrated in Figure 5.3, which, as expected, shows the more

restrictive nature of the standard OPF auction.

The solution details, i.e. bus voltage, reactive powers and supply and demand
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powers, are illustrated in Table 5.1 for the loading factor λ = 0.5. It is evident

that the SSC-OPF leads to higher supply and demand powers compared to the

standard OPF’s results. This is because the stability constraint in the SSC-OPF

reflects better the effect of PSS on the system than the transmission line power

limits used in the standard OPF.

5.2.2 TCSC and the Standard OPF

Figures 5.4 and 5.5 present the power and LMPs for supply and demand side,

respectively, for the OPF problems (2.10) and (3.1) when applied to the IEEE 14-

bus system including the TCSC. The TCSC gain is chosen to be KTCSC = 1.3

for the SSC-OPF, since this gain yields a 2% damping ratio at the original Hopf

bifurcation point λ = 0.45 p.u. The power limits on the lines in (2.10) are obtained

off-line with a damping ratio of 2% for the case when the TCSC is included. The

bus voltage limits are 0.9 p.u. and 1.1 p.u. in both problems. Observe that the

LMPs obtained by using the standard OPF are higher, and the supply and demand

powers are lower when compared to the SSC-OPF results, as the system becomes

more congested. The CC comparsion between the OPFs depicted in Figure 5.6

shows the more restrictive nature of the standard OPF.

The solution details, i.e. bus voltage, reactive powers and supply and demand

powers, are listed in Table 5.2 at a loading factor of λ = 0.6. The SSC-OPF

results in higher supply and demand powers when compared to the standard OPF

solution. This is due to the SSC-OPF properly modelling the TCSC and its effect

on oscillation damping control on the market auction.
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Table 5.1: Solution details for the standard OPF and the SSC-OPF with the PSS

at λ = 0.5 p.u. and KPSS = 2.5 for the IEEE 14-bus test system with PSS.

Bus Standard OPF SSC-OPF

V P QG V P QG

(p.u.) (MW) (MVAr) (p.u.) (MW) (MVAr)

GENCO1 1.1 103.59 55.56 1.1 67.734 80

GENCO2 1.051 0.00 50 1.058 60 50

GENCO3 0.999 60.00 40 1.006 60 40

ESCO2 1.051 15.19 1.058 15.19

ESCO3 0.999 65.95 1.006 65.95

ESCO4 0.992 33.46 0.99 33.46

ESCO5 1.001 3.219 0.998 5.32

ESCO6 1.029 4.315 24 1.02 6.489 24

ESCO9 0.986 17.32 0.97 19.406

ESCO10 0.985 0.00 0.967 6.199

ESCO11 1.008 2.45 0.987 2.45

ESCO12 1.006 2.40 0.992 3.89

ESCO13 0.997 7.9076 0.981 8.252

ESCO14 0.972 0.00 0.943 8.445

Bus 7 1.01 0.999

Bus 8 1.051 24 1.04 24

σmin(Jm) 0.000263 0.0002
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Figure 5.1: GENCOs’ supplied power and the LMPs with respect to the loading

factor for the IEEE 14-bus test system with PSS.
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Figure 5.2: ESCOs’ power and the LMPs with respect to the loading factor for the

IEEE 14-bus test system with PSS.
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Table 5.2: Solution details for the standard OPF and the SSC-OPF at λ = 0.6

p.u. and KTCSC = 1.3 for the IEEE 14-bus test system with TCSC.

Bus Standard OPF SSC-OPF

V P QG V P QG

(p.u.) (MW) (MVAr) (p.u.) (MW) (MVAr)

GENCO1 1.1 131.34 75.83 1.1 94.516 98.7

GENCO2 1.041 0.00 50 1.038 60 50

GENCO3 0.978 60.00 40 0.965 60 40

ESCO2 1.041 18.228 1.038 18.228

ESCO3 0.978 79.14 0.965 79.14

ESCO4 0.977 36.033 0.996 40.152

ESCO5 0.988 6.384 0.969 6.384

ESCO6 1.013 5.457 24 0.976 4.926 24

ESCO9 0.97 10.486 0.926 24.78

ESCO10 0.967 2.731 0.921 5.413

ESCO11 0.983 2.94 0.941 2.94

ESCO12 0.987 3.829 0.948 3.735

ESCO13 0.981 3.322 0.937 11.34

ESCO14 0.946 6.727 0.909 3.293

Bus 7 0.995 0.958

Bus 8 1.036 24 1.00 24

σmin(Jm) 0.000259 0.0002
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Figure 5.4: GENCOs’ supplied power and the LMPs with respect to the loading

factor for the IEEE 14-bus test system with TCSC.
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Figure 5.5: ESCOs’ power and the LMPs with respect to the loading factor for the

IEEE 14-bus test system with TCSC.
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OPF when the TCSC is included in the IEEE 14-bus test system.
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5.3 Optimal Tuning

As shown in the previous section, the SSC-OPF appropriately models the oscillation

damping controllers, resulting in more adequate market and system conditions. In

this section, the PSS and TCSC gains, i.e. KPSS and KTCSC , are optimally tuned

by using the proposed SSC-OPF. The novel optimal tuning technique is illustrated

on the IEEE 14-bus system without contingencies.

5.3.1 Optimal Tuning of the PSS

Figure 5.7 presents the effect of the PSS gain (KPSS) on the HBI, as the ESCOs’ de-

mand power is increased from its nominal value, according to (3.23) with Pd = PLo
.

The HBI index is calculated assuming that the total demand is shared between

GENCO1, GENCO2 and GENCO3 in proportion to their inertias, i.e. OPF tech-

niques are not applied in this case to determine the optimal schedules. Notice that

as this gain is increased, the loadability margin increases, and the system becomes

more stable. This significant effect of KPSS on system stability illustrates the need

to choose the appropriate PSS gain.

Figures 5.8 and 5.9 portray the results of solving the SSC-OPF problem in

(3.1) with and without optimal tuning for supply and demand, respectively. The

PSS gain is chosen to be KPSS = 2.5, since it yields a 2% damping ratio at the

original Hopf bifurcation point at λ = 0.45 p.u. For the optimal tuning of the PSS,

the overall system and market conditions improve as the system changes due to

demand increase; thus, the operating margin of the system expands beyond the

loading factor of 0.5 p.u., which is the limit for the SSC-OPF with a fixed KPSS.

The KPSS optimal values, with respect to load increase obtained from the SSC-
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Figure 5.7: Effect of the PSS gain on the HBI for the IEEE 14-bus test system.
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factor for the IEEE 14-bus test system with PSS.
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Figure 5.9: ESCOs’ power and the LMPs with respect to the loading factor for the

IEEE 14-bus test system with PSS.
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Table 5.3: Solution details for the SSC-OPF at λ = 0.5 p.u. with and without

optimal tuning for the IEEE 14-bus test system with PSS.

Bus SSC-OPF without tuning SSC-OPF with tuning

V P QG V P QG

(p.u.) (MW) (MVAr) (p.u.) (MW) (MVAr)

GENCO1 1.1 67.734 80 1.1 71.286 83.9

GENCO2 1.058 60 50 1.044 60 50

GENCO3 1.006 60 40 0.981 60 40

ESCO2 1.058 15.19 1.044 15.19

ESCO3 1.006 65.95 0.981 65.95

ESCO4 0.99 33.46 0.964 33.46

ESCO5 0.998 5.32 0.975 5.32

ESCO6 1.02 6.489 24 0.979 7.84 23.3

ESCO9 0.97 19.406 0.931 20.65

ESCO10 0.967 6.199 0.926 5.75

ESCO11 0.987 2.45 0.946 2.45

ESCO12 0.992 3.89 0.951 3.791

ESCO13 0.981 8.252 0.941 6.89

ESCO14 0.943 8.445 0.900 10.43

Bus 7 0.999 0.964

Bus 8 1.04 24 1.006 24

σmin(Jm) 0.0002 0.00028

KPSS 2.5 2.84
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OPF, are illustrated in Figure 5.10. Observe that the PSS gain increases as the

demand increases, as expected from the results in Figure 5.7.

Table 5.3 summarizes the bus voltages, reactive powers, and the supply and

demand powers for the SSC-OPF with and without PSS tuning, at a loading power

factor of λ = 0.5. It is evident that the SSC-OPF leads to higher transaction levels

when the optimal tuning occurs. Notice that optimal tuning further enhances

system stability, as the value of HBI increases.

To illustrate the “value” of the optimal tuning of the PSS gain for the market,

the effect of the PSS tuning on CC is compared in Figure 5.11. The results reveal

that, with the optimal tuning of the PSS gain, the system becomes less congested.

5.3.2 Optimal Tuning of the TCSC

Figure 5.12 denotes the effect of the TCSC gain KTCSC on the HBI, as the ESCOs’

demand power is increased from its nominal value according to (3.23), with Pd =

PLo
. The HBI index is calculated by assuming that the total demand is shared

with GENCO1, GENCO2, and GENCO3 in proportion to their inertias, i.e. OPF

techniques are not applied in this case to determine optimal schedules. The effect of

the changes of KTCSC on the system’s stability clearly indicates that, as this gain

is increased, the system becomes more stable, resulting in increased loadability

margins.

The power outputs and LMPs of all the GENCOs are shown in Figure 5.13 for

the SSC-OPF problem (3.1) with and without optimal tuning. The TCSC gain

for the SSC-OPF problem with a fixed KTCSC is set to 1.3, which corresponds

to a 2% damping ratio at the original Hopf bifurcation point at λ = 0.45 p.u.

Notice that the powers and LMPs of the GENCOs behave similarly to those of
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Figure 5.13: GENCOs’ supplied power and the LMPs with respect to the loading

factor for the IEEE 14-bus test system with TCSC.
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Figure 5.14: ESCOs’ power and the LMPs with respect to the loading factor for

the IEEE 14-bus test system with TCSC.
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Table 5.4: Solution details of the SSC-OPF for the IEEE 14-bus test system with

TCSC at λ = 0.6 p.u. with and without optimal tuning.

Bus SSC-OPF without tuning SSC-OPF with tuning

V P QG V P QG

(p.u.) (MW) (MVAr) (p.u.) (MW) (MVAr)

GENCO1 1.1 94.516 98.7 1.1 103.18 107.6

GENCO2 1.038 60 50 1.03 60 50

GENCO3 0.965 60 40 0.957 60 40

ESCO2 1.038 18.228 1.03 18.228

ESCO3 0.965 79.14 0.957 79.14

ESCO4 0.996 40.152 0.959 40.152

ESCO5 0.969 6.384 0.942 6.384

ESCO6 0.976 4.926 24 0.963 5.91 24

ESCO9 0.926 24.78 0.922 24.76

ESCO10 0.921 5.413 0.918 5.641

ESCO11 0.941 2.94 0.938 2.94

ESCO12 0.948 3.735 0.941 3.81

ESCO13 0.937 11.34 0.929 9.561

ESCO14 0.909 3.293 0.900 11.96

Bus 7 0.958 0.953

Bus 8 1.00 24 0.992 24

σmin(Jm) 0.0002 0.00021

KTCSC 1.3 2.08
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the PSS example, as the loading factor increases. Similar results are obtained for

the ESCOs’ powers and LMPs, as depicted in Figure 5.14. Figure 5.15 depicts

the optimal TCSC gain as the demand increases; as expected, the optimal TCSC

gain increases more rapidly when the loading factor gets closer to the original Hopf

bifurcation point (λ ≈ 0.45 p.u.).

Table 5.4 provides a comparison between the SSC-OPF results with and without

optimal tuning for a loading factor λ = 0.6 p.u. Observe that the optimal tuning

technique results in better market prices and increased transacted powers, since the

system is less congested; the system stability is enhanced as well.

Figure 5.16 demonstrates the difference between the CC obtained with and

without optimal tuning. Notice that the difference in CC can be significant, es-

pecially near the Hopf bifurcation point for the system without optimal tuning

(λ ≈ 0.6). Again, these results highlight the importance of optimally tuning the

controllers as the ESCOs’ demand changes.

5.4 Summary

A novel technique to optimally tune these controllers is demonstrated, so that

system controllers can be better utilized in a market environment. This chapter

also compares the modelling of the oscillation damping controllers in the standard

OPF and SSC-OPF auctions. The results obtained for the IEEE 14-bus test system

with PSS and TCSC show the importance of properly modelling these controller in

the market auctions.
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Conclusions

This thesis presents a novel stability-constrained OPF which properly represents

both voltage and oscillatory instabilities in the system. The proposed SSC-OPF

is used to suggest a new methodology to price the dynamic services provided by

PSS and FACTS controllers. The newly developed SSC-OPF is also used to pro-

pose a novel tuning technique for oscillation damping controllers. The following

summarizes the content and main conclusions of this thesis:

• A newly developed SSC-OPF for managing and pricing oscillatory instability

is proposed and tested on different test systems. The proposed OPF tech-

nique is devised by including a HBI as a stability constraint in the OPF

algorithm to predict both the voltage and oscillatory instabilities in the sys-

tem. The proposed SSC-OPF is shown to guarantee stable system conditions

and adequate market conditions.

• The proposed SSC-OPF and a previously discussed VSC-OPF are compared

to show the effect on market and system conditions of the new stability con-

straint in the SSC-OPF. The results indicate that the SSC-OPF properly
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represents voltage and oscillatory instabilities in an OPF-based auction. A

VSC-OPF can result in unstable system conditions, since it cannot predict

oscillatory instabilities, which can occur before voltage collapse in power sys-

tems.

• The comparison between the results obtained from the proposed SSC-OPF

and a standard OPF auction, which represents system security via transmit-

ted power limits computed off-line, demonstrates the restrictive nature of the

“classical” stability-constrained OPF, as reflected by higher LMPs and lower

power transactions.

• The proposed SSC-OPF is used to price the dynamic services provided by

PSS, SVC and TCSC controllers. The novel pricing methodology is based on

a comparison of the congestion costs of the SSC-OPF with and without the

controllers. The methodology shows the benefits of adding the controllers to

the system, since they enhance system security, causing the system to become

less congested.

• The new pricing methodology reveals the importance of the dynamic mod-

elling of system controllers. A VSC-OPF is used to highlight the difference

between the steady state models and the dynamic models used in the proposed

SSC-OPF.

• The proposed SSC-OPF is used to devise a novel tuning technique for oscil-

lation damping controllers. The proposed tuning technique enables the ISOs

to optimally tune these controllers considering the proper dynamic modelling

of these controllers. This tuning technique is shown to decrease system con-

gestion and guarantee that oscillation damping controllers are fully utilized.
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6.1 Principal Contributions

The main contributions of this thesis are:

1. A novel SSC-OPF which predicts both voltage and oscillatory instabilities and

guarantees secure and stable system conditions is proposed and developed.

2. A methodology for pricing the dynamic services provided by PSS, SVC, and

TCSC controllers is devised.

3. The need for the dynamic modelling of power system controllers is exhibited.

4. An optimal tuning technique for oscillation damping controllers is developed.

5. The advantage for market auctions of the proposed techniques are demon-

strated.

This thesis has resulted in several papers that have been published or are under

review [82, 83, 84].

6.2 Future Work

There are a number of issues that still need to be addressed in the application of

the proposed SSC-OPF. Thus;

• The application of the proposed SSC-OPF on larger systems should be consid-

ered. The proposed SSC-OPF should also be tested under sever contingencies

for these systems.
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• The proposed SSC-OPF is significantly expensive from the point of view of

computation burden. Hence, there is a need for developing solution techniques

to reduce the computation time needed to solve the SSC-OPF problem, es-

pecially for large systems.

• The proposed SSC-OPF should be applied to systems with several controllers

in order to study the following problems:

– Optimal tuning of these controllers considering the interactions between

them to enhance system stability.

– Study the effect of interactions among these controllers on market sig-

nals.
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3-Bus Test System Data

Table A.1: Bus data for 3-bus test system.

GENCO1 GENCO2 ESCO

P Generated p.u. 4.00 5.00 0.00

Q Generated p.u. 1.5 1.5 0.00

P Load p.u. 0.00 0.00 9.00

Q Load p.u. 0.00 0.00 3.00

V p.u. 1.05 1.00 1.00

Q Generated max. p.u. 10.00 -2.00 0.00

Q Generated min. p.u. 10.00 -10.00 0.00
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Table A.2: Line data for 3-bus test system.

From To Resist. React.

Bus Bus (p.u.) (p.u.)

GENCO1 ESCO 0.005 0.05

GENCO2 ESCO 0.01 0.0399

GENCO2 ESCO 0.01 0.0399

Table A.3: GENCOS and ESCO bids for 3-bus test system.

Participants C Pbidmax

$/MWh MW

GENCO1 9.6 550

GENCO2 9.7 600

ESCO 11 900
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Table A.4: Generator data for 3-bus test system.

GENCO1 GENCO2

MVA 555 700

xl (p.u.) 0.00 0.00

ra (p.u.) 0.00 0.00

xd (p.u.) 1.81 1.81

x′

d (p.u.) 0.3 0.3

T ′

do 3.8 3.8

xq (p.u.) 1.76 1.76

x′

q (p.u.) 0.6 0.6

T ′

qo 0.9 0.9

H 3.53 3.53

D 1 1
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Table A.5: Exciter data for 3-bus test system.

GENCO1 GENCO2

KA 130 200

TA 0.02 0.02

TB 0.00 0.00

Tc 0.00 0.00

VRmax 7.32 7.32

VRmin 0.00 0.00

KE 1.0 1.0

TE 0.2 0.2

KF 0.03 0.05

TF 1.0 1.0

Table A.6: PSS data for GENCO1 for 3-bus test system.

Kpss 16

TW 3

T1 0.15

T2 0.05

T3 0.15

T4 0.05

Vsmax 0.05

Vsmin -0.05
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IEEE 14-BUS Test System

B.1 System data

Table B.1: Exciter data for the IEEE 14-bus test system.

Exciter No. 1 2 3 4 5

KA 200 20 20 20 20

TA 0.02 0.02 0.02 0.02 0.02

TB 0.00 0.00 0.00 0.00 0.00

Tc 0.00 0.00 0.00 0.00 0.00

VRmax 7.32 4.38 4.38 6.81 6.81

VRmin 0.00 0.00 0.00 1.395 1.395

KE 1.00 1.00 1.00 1.00 1.00

TE 0.19 1.98 1.98 0.70 0.70

KF 0.0012 0.001 0.001 0.001 0.001

TF 1.0 1.0 1.0 1.0 1.0
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Table B.2: Generator data for the IEEE 14-bus test system.

Generator Bus No. 1 2 3 4 5

MVA 615 60 60 25 25

xl (p.u.) 0.2396 0.00 0.00 0.134 0.134

ra (p.u.) 0.00 0.0031 0.0031 0.0014 0.0041

xd (p.u.) 0.8979 1.05 1.05 1.25 1.25

x′

d (p.u.) 0.2995 0.1850 0.1850 0.232 0.232

x′′

d (p.u.) 0.23 0.13 0.13 0.12 0.12

T ′

do 7.4 6.1 6.1 4.75 4.75

T ′′

do 0.03 0.04 0.04 0.06 0.06

xq (p.u.) 0.646 0.98 0.98 1.22 1.22

x′

q (p.u.) 0.646 0.36 0.36 0.715 0.715

x′′

q (p.u.) 0.4 0.13 0.13 0.12 0.12

T ′

qo 0.00 0.3 0.3 1.5 1.5

T ′′

qo 0.033 0.099 0.099 0.21 0.21

H 5.148 6.54 6.54 5.06 5.06

D 2 2 2 2 2
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Table B.3: Bus data for the IEEE 14-bus test system.

Bus P Q P Q Bus Q Q

No. Generated Generated Load Load Type* Generated Generated

(p.u.) (p.u.) (p.u.) (p.u.) max.(p.u.) min.(p.u.)

1 2.32 0.00 0.00 0.00 2 10.0 -10.0

2 0.4 -0.424 0.2170 0.1270 1 0.5 -0.4

3 0.00 0.00 0.9420 0.1900 2 0.4 0.00

4 0.00 0.00 0.4780 0.00 3 0.00 0.00

5 0.00 0.00 0.0760 0.0160 3 0.00 0.00

6 0.00 0.00 0.1120 0.0750 2 0.24 -0.06

7 0.00 0.00 0.00 0.00 3 0.00 0.00

8 0.00 0.00 0.00 0.00 2 0.24 -0.06

9 0.00 0.00 0.2950 0.1660 3 0.00 0.00

10 0.00 0.00 0.0900 0.0580 3 0.00 0.00

11 0.00 0.00 0.0350 0.0180 3 0.00 0.00

12 0.00 0.00 0.0610 0.0160 3 0.00 0.00

13 0.00 0.00 0.1350 0.0580 3 0.00 0.00

14 0.00 0.00 0.1490 0.0500 3 0.00 0.00

*Bus Type: (1) swing bus, (2) generator bus (PV bus), and (3) load bus (PQ bus).
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Table B.4: Line data for the IEEE 14-bus test system.

From Bus To Bus Resistance (p.u.) Reactance (p.u) Line charging (p.u.) tap ratio

1 2 0.01938 0.05917 0.0528 1

1 5 0.05403 0.22304 0.0492 1

2 3 0.04699 0.19797 0.0438 1

2 4 0.05811 0.17632 0.0374 1

2 5 0.05695 0.17388 0.034 1

3 4 0.06701 0.17103 0.0346 1

4 5 0.01335 0.04211 0.0128 1

4 7 0.00 0.20912 0.00 0.978

4 9 0.00 0.55618 0.00 0.969

5 6 0.00 0.25202 0.00 0.932

6 11 0.09498 0.1989 0.00 1

6 12 0.12291 0.25581 0.00 1

6 13 0.06615 0.13027 0.00 1

7 8 0.00 0.17615 0.00 1

7 9 0.00 0.11001 0.00 1

9 10 0.03181 0.08450 0.00 1

9 14 0.12711 0.27038 0.00 1

10 11 0.08205 0.19207 0.00 1

12 13 0.22092 0.19988 0.00 1

13 14 0.17093 0.34802 0.00 1
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Table B.5: GENCOs and ESCOs bidding data for the IEEE 14-bus test system.

Pdmaxo
/ Psmax

(MW ) Cd / Cs($/MWh)

GENCO1 615 9.50

GENCO2 60 10.20

GENCO3 60 11.30

ESCO2 30.38 13.00

ESCO3 131.9 13.20

ESCO4 66.92 12.10

ESCO5 10.64 12.33

ESCO6 15.68 12.24

ESCO9 41.3 13.55

ESCO10 12.6 14.66

ESCO11 4.9 13.67

ESCO12 8.54 14.62

ESCO13 18.9 14.22

ESCO14 20.86 14.45

B.2 PSS Data

Table B.6: PSS controller parameters for the IEEE 14-bus test system.

Kpss TW (s) T1 T2 T3 T4 Vsmax Vsmin

2.5 5 0.38 0.02 0.38 0.02 0.1 -0.1
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B.3 SVC Data

Table B.7: SVC static data for the IEEE 14-bus test system.

Xc (p.u.) Xl (p.u.) αmin (deg.) αmax (deg.) Slope (%) MVA kV

1.1708 0.4925 90 175 2 200 13.8

Table B.8: SVC controller parameters for the IEEE 14-bus test system.

K T (s) Bmax (p.u.) Bmin (p.u.)

25 0.15 2 -2

B.4 TCSC Data

Table B.9: TCSC static data for the IEEE 14-bus test system.

Xc (p.u.) Xl (p.u.) αmin (deg.) αmax (deg.) kV

0.00526 0.000526 155 175 69

Table B.10: TCSC controller parameters for the IEEE 14-bus test system.

T Kw Tw T1 T2 T3 T4 Xmin (p.u.) Xmax (p.u.)

0.015 1.3 5 1.1 0.05 0.08 0.5 0.00527 0.0514
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[29] C. A. Cañizares, N. Mithulananthan, F. Milano, and J. Reeve, “Linear Per-

formance Indices to Predict Oscillatory Stability Problems in Power System,”

IEEE Trans. on Power System, vol. 19, no. 2, May 2004, pp. 1023–1031.



BIBLIOGRAPHY 144

[30] D. Gan, R. J. Thomas, and R. D. Zimmerman, “Stability-Constrained Optimal

Power Flow,” IEEE Trans. on Power Systems, vol. 15, no. 2, May 2000, pp.

535–540.

[31] Promoting Wholesale Competition Through Open Access Nondiscriminatory

Transmission Services by Public Utilities. Federal Energy Regulatory Com-

mission of the United States of America, April 1996.
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bution System Voltage Regulation and Var Compensation for Different Static

Load Models,” IJEEE, vol. 37, no. 4, October 2000, pp. 384–395.

[48] IEEE FACTS working group 15.05.15, FACTS Application. IEEE Power En-

gineering Society, December 1995.

[49] N. Yang, Q. Liu, and J. D. McCalley, “TCSC Controller Design for Damp-

ing Interarea Oscillations,” IEEE Trans. on Power Systems, vol. 13, no. 4,

November 1998, pp. 1304–1309.

[50] M. J. Lautenberg, M. A. Pai, and K. R. Padiyar, “Hopf Bifurcation Control

in Power Systems with Static Var Compensators,” International Journal of

Electric Power and Energy Systems, vol. 19, no. 5, 1997, pp. 339–347.

[51] N. G. Hingorani, “Flexible AC Transmission Systems,” IEEE Spectrum, April

1993, pp. 40–45.

[52] L. Gyugyi, “Dynamic Compensation of AC Transmission Lines by Solid State

Synchronous Voltage Sources,” IEEE Trans. on Power Systems, vol. 9, no. 2,

April 1994, pp. 904–911.

[53] L. Gyugyi, N. G. Hingorani, P. R. Nannery, and N. Tai, Advanced Static Var

Compensators using Gate Turn-off Thyristors for Utility Application. CIGRE

23-203, August 1990.



BIBLIOGRAPHY 147
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