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Abstract

In this thesis we study symmetric structures in Hilbert spaces known as symmetric
informationally complete positive operator-valued measures (SIC-POVMs), mutually unbi-
ased bases (MUBs), and MUB-balanced states [1–3]. Our tools include symmetries such
as the Weyl-Heisenberg (WH) group symmetry, Clifford unitaries, Zauner symmetry, and
Galois-unitaries (g-unitaries). In the study of SIC-POVMs, we found their geometric
significance as the ‘‘most orthogonal’’ bases on the cone of non-negative operators. While
investigating SICs, we discovered a linear dependency property of the orbit of an arbitrary
vector with the Zauner symmetry under the WH group. In dimension d = 3, the linear
dependency structures arising from certain special SIC states are identified with the Hesse
configuration known from the study of elliptic curves in mathematics. We provide an
analytical explanation for linear dependencies in every dimension, and a numerical analysis
based on exhaustive numerical searches in dimensions d = 4 to 9. We also study the
relations among normal vectors of the hyperplanes spanned by the linearly dependent sets,
and found 2-dimensional SICs embedded in the Hilbert space of dimension d = 6, and
3-dimensional SICs for d = 9. A full explanation is given for the case d = 6. Another
study in the thesis focuses on the roles of g-unitaries in the theory of mutually unbiased
bases. G-unitaries are, in general, non-linear operators defined to generalize the notion of
anti-unitaries. Due to Wigner’s theorem [4], their action has to be restricted to a smaller
region of the Hilbert space, which consists of vectors whose components belong to a specific
number field. G-unitaries are relevant to MUBs when this number field is the cyclotomic
field. In this case, we found that g-unitaries simply permuted the bases in the standard set
of MUBs in odd prime-power dimensions. With their action further restricted only to MUB
vectors, g-unitaries can be represented by rotations in the Bloch space, just as ordinary
unitary operators can. We identify g-unitaries that cycle through all d+ 1 bases in prime
power dimensions d = pn where n is odd (the problem in even prime power dimensions
has been solved using ordinary unitaries). Each of these MUB-cycling g-unitaries always
leaves one state in the Hilbert space invariant. We provide a method for calculating these
eigenvectors. Furthermore, we prove that when d = 3 mod 4, they are MUB-balanced
states in the sense of Wootters and Sussman [5] and Amburg et al [6].
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Chapter 1

Introduction

‘‘It is only slightly overstating the case to say that physics is the study of
symmetry.’’

-- Philip Anderson (1972)

1.1 Overview

A symmetry is a property of an object that remains the same under certain transformations.
Although this might sound like a purely mathematical concept, symmetries can be found
almost everywhere in the world surrounding us. For example, a bicycle has a left-right
reflection symmetry: its left half is (mostly) the mirror image of its right half. Without
this property, an unbalanced bicycle might be unpleasant to ride. A circular shape has
a full rotational symmetry: if someone rotates your round dinner plate about its center
by an arbitrary angle while you are away, you will not be able to tell the difference when
you come back. Not only have we all made use of this property when we learned how to
use a compass in elementary school, or when we played ball games as kids, we are all now
living in a world of modern machinery that is largely based on inventions with rotational
symmetry, such as wheels and gears. Nature is full of symmetries as well. The bodies
of most animals have a bilateral (left-right) symmetry. Flowers often have radially or
bilaterally symmetric shapes, which have been found to aid bumble bees in their foraging
process [7]. In general, one can find symmetries from a minuscule scale such as in atomic
or molecular lattices, all the way to the cosmic scale such as in galaxies that are hundreds
of thousands light years in diameter across.
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In physics, symmetry plays a fundamental role. Studying physical phenomena can be
broken down into two components [8]. The first component is the given initial conditions,
which might be very complicated and unpredictable, and therefore they have to be ‘‘given,’’
i.e. there is not much we can do but to accept them as they are. The second component
consists of rules that capture all the patterns and regularities that are independent of
the initial conditions. This is where the physics lies. In other words, when we say we
understand the physics of a phenomenon, it means we have figured out what some of these
rules are, and the more rules we have found, the more deeply have we understood. In this
sense, one major goal of physics is to discover rules of regularities that can be applied to a
broad range of phenomena. However, this is a very difficult task, as regularities are often
buried under a vast amount of irregularity from the initial conditions. For example, who
would have thought that there is a similarity between the elliptic orbits of planets in the
Solar system and the falling of an apple? Or who would have thought that electric fields
and magnetic fields can be transformed into each other, and how this could start a train of
thoughts leading to the explanation of the perihelion precession of Mercury’s orbit? This is
where symmetry comes to help.

Symmetries in physics, often coming in the form of invariance or equivalence principles,
help filter out the irrelevant complications to reveal the regularities at the heart of physical
phenomena. For example, the weak equivalence principle (also known as the Galilean
equivalence principle, which lays the foundation for theories of gravity) states that the
trajectory of a point mass in a gravitational field depends only on its initial position and
velocity, and not on its mass or composition. In this example, the principle was deduced
from experimental observations by Galileo in the late 16th century. However, as symmetries
have become an increasingly powerful tool, it often is the case that symmetries dictate the
laws in modern physics and even provide predictions that predate experimental discoveries.
For example, Lorentz symmetry formed the backbone of relativity and led to the derivation
of Dirac’s equation and the prediction of anti-particles. The gauge symmetries underlay the
development of electromagnetism, quantum electrodynamics, quantum chromodynamics,
and the Standard Model. The symmetry of exchanging identical particles in quantum
mechanics classified all elementary particles into bosons or fermions whose behaviors are
very distinctive. The list can go on. However, the intimate connection between symmetry
and physics is not merely based on historical evidence. It has been rigorously proved that
every continuous symmetry of the action of a physical system implies a conserved physical
quantity, a result known as Noether’s theorem [9]. As Philip Anderson has put it, ‘‘it is
only slightly overstating the case to say that physics is the study of symmetry.’’

In this thesis, we are interested in the study of symmetries in quantum physics. Quantum
theory is considered one of the most successful theories in physics in many different ways:
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1) no experiment has ever violated its predictions, 2) the theory has provided the most
accurate experimental tests to date, for example the determination of the fine structure
constant α with an agreement to one part per billion [10], 3) the theory is applied in
most areas of modern physics including condensed matter physics, atomic, molecular and
optical physics, particle physics, astrophysics etc., and finally 4) it has a huge impact
on today’s world, with a wide range of applications such as transistors for computing
devices, lasers, light emitting diodes, liquid crystal displays, nuclear magnetic resonance,
and magnetic resonance imaging, just to name a few. On the other hand, quantum theory
is also considered one of the strangest theories. It has been developed for over a century
now, but many questions since its birth are still under debate: what is the nature of the
wave function? do wave functions collapse? is the theory non-local because of ‘‘spooky
action at a distance’’? and many more. Indeed, the field of quantum foundations is still an
active research area, and many questions have to be answered before quantum theory can
be fully comprehended.

During the last few decades, research in quantum foundations has received a boost from
developments in the new field of quantum information. Quantum information makes use
of special features in quantum theory to help accomplish information-related tasks that
are impossible using classical physics. For example, entanglement is used in superdense
coding [11] and quantum teleportation [12]. Another example is quantum key distribution
[13], which relies on the quantum information-disturbance trade-off to help generate and
distribute secure encryption keys. At the same time, quantum information brings tools
from information theory into quantum physics, and helps provide us with an information
theoretic framework to study quantum theory. An example of this is the quantification of
quantum information using von Neumann entropy, which is an analogue of the Shannon
entropy used in classical information theory [14].

The research presented in this thesis arises from problems in quantum information
involving various symmetric structures in the space of quantum states such as SICs, MUBs,
and MUB-balanced states (their definitions will be provided later). These structures display
such a high degree of symmetry that makes it seem as though they have no ‘‘right to exist,’’
as Amburg et al [6] have described MUB-balanced states. Our hopes in investigating these
problems are not only to make use of their symmetries to discover new properties and
new applications in quantum information, but also to gain a deeper understanding about
symmetries in quantum state spaces and quantum theory. The content of the thesis is
organized as follows.
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1.2 Organization of the thesis

The thesis consists of various studies, from symmetric informationally complete states and
linear dependency structures in Weyl-Heisenberg orbits, to the study of Galois-unitaries
with applications to the theory of mutually unbiased bases. The results of these studies are
organized into two main chapters according the relevant symmetry: Chapter 2 contains
results related to the Weyl-Heisenberg symmetry, as well as Clifford unitaries and Zauner
symmetry, and Chapter 3 provides the results from a study of Galois-unitary symmetry.

Chapter 2 starts with a historical introduction of the Weyl-Heisenberg group in Sec-
tion 2.1. We then focus on a class of symmetric structures in the Hilbert space known as
SICs in Section 2.2. We provide a brief history of the development of the SIC problem,
and an extensive list of SICs’ applications and major known results. We discuss group
symmetries that are intimately related to SICs such as Weyl-Heisenberg covariance, Clifford
group, and Zauner symmetry. We show that SICs form the most orthogonal bases on the
cone of non-negative operators. Then, in Section 2.3, we present our results from studies of
linear dependencies in Weyl-Heisenberg orbits, which include an analysis in dimension d = 3
and the connection to elliptic curves via Hesse configuration, an analytical explanation
of linear dependencies in all dimensions where the initial vector is an eigenvector of the
Zauner unitary, a detailed numerical report in low dimensions which shows extra linearly
dependent relations that cannot be accounted for by our theorem, and a robust construction
of ‘‘small SICs’’ resulted from the linear dependency structure.

Chapter 3 contains our results from the study of a novel symmetry called Galois-unitary,
applied to the theory of mutually unbiased bases. Section 3.1 describes the motivations
for our study, including the context in which g-unitaries were first constructed. We
first introduce mutually unbiased bases and describe their Clifford-based construction in
Section 3.2. We then provide a representation for the general linear group, using Clifford
group extended by g-unitary operators in Section 3.3. The treatment is divided into cases,
when the dimension d = p is an odd prime, and when d = pn is an odd prime power. We
proved that the representation is faithful if n is odd, and is ‘‘almost’’ faithful if n is even.
We provide some basic arithmetic of g-unitaries in Section 3.4. In Section 3.5 we describe a
type of geometric object called complementarity polytopes and use their symmetry groups
to provide a geometric interpretation of g-unitaries. Section 3.6 proposes a scheme to
simulate g-unitaries using unitary operators in a larger Hilbert space. The MUB-cycling
problem is discuss in Section 3.7, in which we prove that MUB-cyclers exist in every odd
prime power dimensions d = pn where n is odd, and they do not exist when n is even.
We also provide a characterization of all MUB-cyclers when they do exist. In Section 3.8,
we prove that every MUB-cycler has a unique (up to a phase) eigenvector, and provide
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a way to calculate this eigenvector. In Section 3.9, we show that when d = 3 mod 4, the
eigenvectors of MUB-cyclers are MUB-balanced states, that they form a single orbit under
the extended Clifford group, and that they are identical to those constructed in Amburg et
al [6].

Chapter 4 provides a summary of our main results, and suggests a list of open problems
and ideas for future investigation.

Appendix A.1 provides an introduction to field theory, which covers the basic concepts
used in the thesis such as field extensions, Galois automorphisms, finite fields, cyclotomic
fields, etc. Appendix A.2 describes faithful representations of the Clifford group specifically
for the case of prime and prime power dimensions.

1.3 List of specific contributions

Results in this thesis that represent my own specific contributions include:

1. Section 2.2.4, published in [1].

2. Sections 2.3.2 to 2.3.4, published in [2].

3. Sections 3.4 and 3.6, from my own research notes.

4. Numerical analysis of g-unitary rotations leading to Section 3.5, published in [3].

5. Lemma 3.4 and Theorem 3.5 in Section 3.7, published in [3].

6. Contribution to the proof of Theorem 3.8 and Lemmas 3.9 to 3.11 in Section 3.8,
published in [3].

7. Contribution to the proof of Theorem 3.13 in Section 3.9, published in [3].

5



Chapter 2

Weyl-Heisenberg group symmetry

Contents
2.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Symmetric informationally-complete POVMs . . . . . . . . . 9

2.2.1 Definitions, significances, and the existence problem . . . . . . . 9

2.2.2 Weyl-Heisenberg group covariance . . . . . . . . . . . . . . . . . 14

2.2.3 Clifford unitaries and Zauner symmetry . . . . . . . . . . . . . . 16

2.2.4 Analogues to orthonormal bases . . . . . . . . . . . . . . . . . . 18

2.3 Linear dependencies in Weyl-Heisenberg orbits . . . . . . . . 21

2.3.1 Dimension d = 3 and Hesse configuration . . . . . . . . . . . . . 22

2.3.2 Linear dependencies from Zauner eigenvectors . . . . . . . . . . . 26

2.3.3 Numerical linear dependencies . . . . . . . . . . . . . . . . . . . 29

2.3.4 Small SICs in dimensions d = 6 and 9 . . . . . . . . . . . . . . . 32

2.1 Historical background

The use of group theory in quantum mechanics dates back to the very early days of the
theory. In 1925, Hermann Weyl learned from Born the recent developments in quantum
mechanics made by Born, Jordan, and Heisenberg, and he immediately tried his own
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approach from the perspective of the representation theory of groups [15]. This work was
published in 1927 [16], and further developed in his book [17], in which Weyl used the ray
representations of the Abelian group of rotations to develop a quantum formalism that is
applicable to both finite and infinite dimensions.

Weyl realized that the canonical commutation relation between the position operator
q̂ and momentum operator p̂ (this is sometimes called the Heisenberg commutation rule,
although it first appeared in a paper by Born and Jordan [18, 19])

[q̂, p̂] = i (2.1)

does not admit finite-dimensional representations (we have set the unit to ~). In other
words, for any dimension d that is finite, there do not exist d× d matrices Q and P that
can satisfy (2.1). One can see that by taking the trace of (2.1) and observing that the left
hand side is zero due to the cyclic property of the trace function, while the right hand side
is non-zero. Moreover, p̂ and q̂ are unbounded operators and they are not defined on the
whole Hilbert space.

For a finite dimension d, Weyl instead introduced Hermitian matrices P and Q, which
are defined by

P =
1

iα
logX Q =

1

iβ
logZ (2.2)

so that
X = eiαP Z = eiβQ, (2.3)

where X and Z are d× d unitary matrices satisfying Weyl’s commutation relation

XZ = ω−1ZX ω = e2πi/d. (2.4)

The commutator [Q,P ], as one takes the limit d→∞ while keeping αβ = 2π/d, can be
calculated to be [20]

[Q,P ]r,s = iδ(r − s), (2.5)

which recovers Heisenberg commutation relation. For a detailed construction of quantum
mechanics in finite dimensions based on Weyl’s commutation relation (2.4), we refer the
readers to a series of papers by Jagannathan and Santhanam et al [20–24]. Here, let
us focus on how Weyl constructed unitary X and Z in finite dimensions that satisfy
such a commutation relation. The following argument should not be taken as a rigorous
mathematical derivation, but should rather be considered as a train of thoughts leading to
the construction of the Weyl-Heisenberg group.
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Let X and Z be two elements of the group of unitary rotations in a (d− 1)-dimensional
ray space, meaning that they are d × d unitary matrices. We further assume that they
satisfy the following commutation relation

XZ = ω−1ZX, (2.6)

where ω = e2πi/d is a primitive d-th root of unity. It follows that

XjZk = ω−jkZkXj (2.7)

for all integers j and k. If either j or k is equal to d, then ω−jk = 1 and it follows that
Xd commutes with Z and Zd commutes with X. Under the extra assumption that the
representation is irreducible, by Schur’s lemma we conclude that

Xd = Zd = 1. (2.8)

We can choose a basis in which Z is diagonal and write it in the form

Z =



1 0 0 · · · 0

0 ω 0 · · · 0

0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωd−1


. (2.9)

In this basis, X takes the form of a cyclic permutation matrix

X =



0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


. (2.10)

The two operators X and Z we arrive at are known as the shift and the clock (or phase)
operators, respectively. They were introduced by Sylvester in 1882 in the very early days
of matrix theory [25]. Here they naturally arise from the construction of a group-based
quantum theory built upon Weyl’s commutation relation.

The set of operators of the form ωiXjZk, with i, j and k taking integer values in the
range [0, d− 1], forms a group under ordinary matrix multiplication. This group is called
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the discrete Weyl-Heisenberg (WH) group (to be distinguished from the continuous WH
group in infinite dimensions, although we will drop the label ‘‘discrete’’ from now on, as
it should be clear from the context of the thesis that we are working in finite dimensions
only). The group elements

Dj,k = XjZk (2.11)

are called displacement operators (please note that displacement operators may be defined
with different phases to suit different situations, and we will make the definition precise
when it comes to each situation).

Besides its structural role in the foundations of quantum mechanics, the WH group has
found applications and connections to many other fields of science. For example, in modern
mathematics, it naturally appears in the theory of elliptic curves and theta functions [26].
In classical signal processing, WH group is used in the development of adaptive radar
and error-correcting codes in communications [27]. In quantum information, this group is
also known as the generalized Pauli group, and it has numerous applications, for example
in superdense coding [11], quantum error correction [28, 29] and the theory of mutually
unbiased bases [1, 30–32]. Its intimate relation to SIC-POVMs will be discussed in the
next section.

2.2 Symmetric informationally-complete POVMs

The Weyl-Heisenberg group symmetry plays an indisputable role in the studies of a special
class of symmetric structures in quantum state space known as Symmetric Informationally-
Complete Positive Operator-Valued Measures (SIC-POVMs), or SICs for short. We will
prove a number of results about SICs in this thesis. Moreover, the SIC problem was part
of the motivation for the study of linear dependencies in Section 2.3 and g-unitaries in
Chapter 3. We devote this section to give an introduction to SIC-POVMs and their relation
to the WH group, and to present our result on SICs being the closest to orthonormal bases
with respect to a class of orthogonality measures.

2.2.1 Definitions, significances, and the existence problem

There is more than one way to define a SIC-POVM. We start with the one that explains
the meaning of its name.

9



Definition. A set of n Hermitian operators {Ei}ni=1 on a d-dimensional Hilbert space is
called a Positive Operator-Valued Measure (POVM) if they satisfy

Ei ≥ 0 (2.12)

for all i = 1, 2, ..., n and ∑
i

Ei = 1. (2.13)

Example. The projection operators Pi = |i〉〈i| of a projective (Von Neumann) measurement,
where |i〉 are states constituting an orthonormal basis in a d-dimensional Hilbert space,
form a POVM of d elements.

A POVM {Ei}ni=1 can be thought of as a generalized quantum measurement, with n
outcomes labeled by i, whose probabilities are given by the Born rule

p(i) = Tr(ρEi). (2.14)

One can see that condition (2.12) in the definition is to enforce that all the probabilities are
non-negative, while condition (2.13), often called the completeness condition, guarantees
that they add up to one, as should be the case for a normalized probability distribution.

Definition. A POVM is said to be informationally complete if the unknown measured
quantum state ρ is completely specified by the measurement outcome probabilities p(i).

Informational completeness is equivalent to saying that the POVM elements Ei span
the space of Hermitian operators regarded as a d2-dimensional real vector space equipped
with the Hilbert-Schmidt inner product

〈H1, H2〉 = Tr(H1H2). (2.15)

An informationally complete POVM therefore must have a minimum of d2 elements.

Definition. A SIC-POVM is a POVM with d2 elements {Πi/d}d
2

i=1, where Πi are rank-1
projection operators satisfying the symmetric property

Tr(ΠiΠj) = α ∀i 6= j (2.16)

for some constant α.

Note. We loosely call {Πi} a SIC, even though the POVM elements are technically Πi/d.
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There are a few things one can quickly deduce from the definition of SIC-POVMs. First,
the value of the constant α can be determined from the dimension of the Hilbert space.
From the POVM completeness condition, we have

d2∑
i,j=1

ΠiΠj =

(
d2∑
i=1

Πi

)2

= d2
1. (2.17)

Taking the trace of both sides and making use of the symmetric property, one finds

α =
1

d+ 1
. (2.18)

Secondly, although it is not explicit, the definition of a SIC-POVM implies that it is
informationally complete. To see this, we will first show that the operators Πi are linearly
independent. Suppose ∑

i

biΠi = 0 (2.19)

for some set of numbers bi. Multiplying both sides of the equation by Πk for some k and
then taking the trace, we obtain

bk + α
∑
i 6=k

bi = 0. (2.20)

On the other hand, Πi have unit trace as they are rank-1 projectors, so just taking the
trace of (2.19) yields ∑

i

bi = 0. (2.21)

Given that α 6= 1, it follows that
bk = 0 ∀k (2.22)

and Πi are indeed linearly independent. There are d2 of them, so they span the d2-
dimensional space of Hermitian operators. Thus, the POVM is informationally complete.

If one prefers to work with quantum states rather than with quantum measurements,
there is an alternative definition of SIC-POVMs.

Definition. A set of d2 normalized quantum states {|ψi〉}d
2

i=1 is called a SIC set if it has a
constant overlap between any two distinct states:

|〈ψi|ψj〉| =
1√
d+ 1

∀i 6= j. (2.23)
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If we define the projection operators Πi = |ψi〉〈ψi|, then they are linearly independent
and they span the space of Hermitian operators (following the same argument as before).
Therefore the identity matrix can be written as a linear combination

1 =
∑
i

ciΠi. (2.24)

Using the previous trick of taking the trace of the equation above and taking its trace after
multiplying both sides by some Πk, one can show that ck = 1/d for all k. So the set {Πi/d}
is a POVM, and the two definitions of SIC-POVMs are indeed equivalent.

The second definition has a geometrical interpretation. Any vector |ψ〉 ∈ Cd spans a
one-dimensional subspace of Cd called a line, which consists of all vectors of the form a |ψ〉
for any scalar a. If two lines are represented by normalized vectors |ψ1〉 and |ψ2〉, then the
angle θ between the two lines is given by

cos θ = |〈ψ1|ψ2〉| . (2.25)

This means that the lines represented by vectors in a SIC set have a constant pairwise
angle. Such lines are called equiangular lines, and a SIC set therefore is a set of equiangular
lines, not just any set but a maximal one (there cannot be more than d2 elements in the
set because of the linear independence and the dimensionality of the space of Hermitian
operators). The question is: do SICs exist in every dimension d?

Mathematicians have long been interested in figuring out the largest number of equian-
gular lines a vector space can admit (let us denote that number by N(V ), where V refers
to the vector space), and in constructing these maximal sets of equiangular lines.

We start with the simplest type of vector spaces: the real ones Rd. In dimension d = 2,
one can draw a maximum of 3 equiangular lines on a 2-dimensional plane (imagine the
three hands of a watch at 20 minutes past 8 o’clock), so N(R2) = 3. In three dimensions,
N(R3) = 6 and the 6 equiangular lines can be constructed by connecting antipodal vertices of
a regular icosahedron, one of the five Platonic solids. This result, together with N(R4) = 6,
has been known since 1948 in work by Haantjes [33]. Lint and Seidel further investigated
the problem, and obtained results in a number of higher dimensions [34]:

N(R5) = 10, N(R6) = 16, N(R7) = 28. (2.26)

Lemmens and Seidel’s paper in 1973 [35] contains some important results about real
equiangular lines. One result is Gerzon’s theorem, which provides an upper bound for
N(Rd)

N(Rd) ≤ d(d+ 1)/2. (2.27)
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This actually can be seen from the linear independence argument in (2.22) together with
the fact that a real d × d orthogonal matrix is specified by d(d + 1)/2 real parameters.
When the bound is saturated, one can calculate the angle to be

cos θ =
1√
d+ 2

. (2.28)

Another key result, mentioned in [35] as P. Neumann’s theorem, states that if there exist
m equiangular lines in Rd, where m > 2d, and if the pairwise angle among them is θ, then
(cos θ)−1 is an odd integer. Together with (2.28), this implies that for d > 3, a necessary
condition for the bound in (2.27) to be achieved is that d = a2 − 2 for some odd integer
a. The converse is not true, for example in dimension d = 47 = 72 − 2, where it has been
proved that the bound cannot be achieved [36].

We will skip the detailed developments of this problem during the last 40 years or so, but
we want to note that many dimensions have been investigated, many sets (not necessarily
maximal) of real equiangular lines have been constructed, and many improvements have
been made to the bounds of N(Rd) since 1948. However, the exact value for N(Rd) largely
remains unknown even in small dimensions, and as of now in 2015, this is still an on-going
line of research [37, 38].

One would have thought that if the problem has been so difficult for the case of real
vector spaces, its counterpart in complex vector spaces would be hopeless. Perhaps this is
why the problem of complex equiangular lines did not get a lot of attention until much
later. Surprisingly, the complex version of the problem seems to be more tractable than the
real one. This is just to say that N(Cd) seems to be of a nice and simple form. Proving so,
on the other hand, is a totally different matter and is in fact one of the most challenging
open problems in quantum information and algebraic combinatorics.

The upper bound for the number of complex equiangular lines

N(Rd) ≤ d2 (2.29)

was proved by Delsarte et al in their 1975 paper [39], which also mentioned that the bound
can be saturated for d = 2 and 3 without giving further details. Hoggar later provided
solutions to the complex equiangular lines problem for d = 2, 3 and 8 in 1982 [40]. In 1999,
Zauner introduced the problem in the context of quantum designs in his PhD thesis [41], in
which he conjectured that

N(Cd) = d2 (2.30)

for every dimension d, and gave concrete constructions for dimensions d = 2 to 5.
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The term SIC-POVM was coined in a paper by Renes et al in 2003 [42], in which
they constructed SICs numerically all the way up to dimension d = 45, thereby adding
considerable weight to Zauner conjecture. In addition to its geometric name ‘‘complex
equiangular lines’’, SICs are also known as ‘‘minimal spherical 2-designs’’ in studies of
quantum t-designs for quantum information theory, and as ‘‘equiangular tight frames’’ in
the theory of signal processing for engineering. They have practical applications in quantum
tomography [43–49], quantum cryptography and communication [50–58], and radar and
classical signal processing [27, 58–61]. In addition, SIC-POVMs play important roles in
foundational studies in quantum physics such as the QBist interpretation of quantum
mechanics [62–66]. They also have deep mathematical connections to Lie algebras [67, 68],
elliptic curves [69, 70], and Galois theory [71]. Despite an enormous amount of research
on SIC-POVMs in the recent years [1, 27, 41–95] and strong numerical evidences of their
existence (published for every dimension up to d = 67 [73]) as well as analytical solutions in
many small dimensions (d = 2 to 15, 16, 19, 24, 28, 35, and 48 [73–75]), a general analytical
construction or an existence proof for all dimensions is still missing.

2.2.2 Weyl-Heisenberg group covariance

One may attempt to find a SIC set by solving the defining system of equations (2.23). But
one would quickly realize that this set of non-linear equations is highly over-constrained:
including normalization there are a total of d4 equations, while the number of real param-
eters needed to describe d2 vectors in Cd is 2d3. Taking the conjugate symmetry of the
inner product into account, the number of equations reduces to (d4 + d2)/2, but that is
still one order in d higher than the number of variables. It seems that the existence of a
solution must be a miracle. This is what it means when we say SIC states have no ‘‘right
to exist’’ (the expression is borrowed from Amburg et al [6], in which they actually talk
about MUB-balanced states). However, given strong evidences of SIC states’ existence,
there is another viewpoint one could take: their existence is not a miracle, but rather an
indication of deep underlying symmetries. In fact, one such symmetry has been observed,
namely the Weyl-Heisenberg symmetry.

Definition. We define the shift operator X and the phase operator Z by their action on
the basis states {|x〉}d−1

x=0 in a d-dimensional Hilbert space:

X |x〉 = |x+ 1〉 Z |x〉 = ωx |x〉 , (2.31)

where ω = e2πi/d is a primitive d-th root of unity, and the arithmetic inside Dirac’s kets is
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modulo d. X and Z in matrix form are given in (2.10) and (2.9).

Definition. The Weyl-Heisenberg displacement operators Du, labeled by a two-component
vector u, are defined to be

Du ≡ τu1u2Xu1Zu2 u =

(
u1

u2

)
, (2.32)

where τ = −eπi/d and the two components u1 and u2 are integers modulo d̄, which is defined
to be

d̄ ≡

{
d if d is odd

2d if d is even.
(2.33)

to allow us to conveniently deal with both cases of odd d and even d at the same time [76].
Note that τ d̄ = 1, Du = Dv if and only if u = v mod d̄, and Du are all traceless except
when u = 0 mod d.

The particular choice of the phase factors τu1u2 in the definition above is so that

D†u = D−u, (2.34)

DuDv = τΩ(u,v)Du+v, (2.35)

where
Ω(u,v) ≡ u2v1 − u1v2 (2.36)

is the symplectic form of u and v.

Definition. The WH group is defined to be the set of operators

Wd = {τ sDu : s ∈ Zd̄,u ∈ Z2
d̄}. (2.37)

This is a group under matrix multiplication, with the group law given by (2.35). Al-
though Wd technically has d3 elements if d is odd or 8d3 elements if d is even, if we ignore
overall phases of its elements this number reduces to d2. For example, the Weyl-Heisenberg
(WH) orbit of a given quantum state, i.e. a set of states obtained by applying all the
displacement operators to the initial state, can only have at most d2 distinct states because
the overall phases of quantum states carry no physical meaning. For this reason, from now
on when we consider a WH orbit, we will use Z2

d instead of Z2
d̄

to index the displacement
operators.
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Definition. A SIC set is said to be Weyl-Heisenberg covariant if it is an orbit under the
WH group. In other words, it can be written as {Du |ψ〉 : u ∈ Z2

d} for some |ψ〉. Such a
state |ψ〉 is called a Weyl-Heisenberg SIC fiducial.

If we assume WH covariance, the problem of finding a SIC set turns into the problem
of finding a single normalized fiducial state |ψ〉 such that

|〈ψ|Du |ψ〉|2 =
1

d+ 1
∀u ∈ Z2

d\{0}. (2.38)

One can see that the Weyl-Heisenberg symmetry helps reduce the number of equations
to the order of d2. Although the number of (real) variables is now 2d, and this system
of equations is still over-constrained, it significantly simplifies the problem. Almost all
known analytical solutions to the SIC problem, as well as all numerical solutions to date
[42, 73], are Weyl-Heisenberg covariant, with one exception being the construction in d = 8
by Hoggar [40], which is covariant with respect to a 3-fold tensor product of WH groups for
d = 2. It has even been proved that in prime dimensions, if a SIC set with group covariance
exists, the group must be the WH group [89]. It therefore looks as though Weyl-Heisenberg
covariance is an intrinsic symmetry of SIC-POVMs.

2.2.3 Clifford unitaries and Zauner symmetry

On top of the Weyl-Heisenberg covariance, another order-3 symmetry on SIC-POVMs was
observed by Zauner [41] and later explicitly worked out by Appleby [76]. Before we get
there, we first need to define the Clifford group and provide a unitary representation.

Definition. The Clifford group Cd is defined to be the normalizer of the Weyl-Heisenberg
group Wd within the unitary group U(d). In other words, a unitary operator U belongs to
Cd if and only if

UWdU
† =Wd. (2.39)

Remark. It should be mentioned that there are several different versions of the Weyl-
Heisenberg and Clifford groups. The version that we have just defined is the ordinary one,
which can be defined for any dimension d. This ordinary version is relevant to the current
chapter when we discuss SICs and linear dependencies in WH orbits. In Chapter 3, we will
use another version which is applicable only to odd prime power dimensions, where one takes
advantage of finite fields to define a Galoisian variant of the WH group. Corresponding to
this Galoisian WH group are two Galoisian variants of the Clifford group: the full and the
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restricted one [30], of which we will only use the latter. To avoid confusion, the definitions
of the Galoisian WH and Clifford groups are put in Appendix A.2. For now, in this chapter,
we use the name WH and Clifford groups to refer to the ordinary version.

Clifford unitaries can be constructed from symplectic matrices [76]. We define the
symplectic group SL(2,Zd̄) to be the set of all 2× 2 matrices

S =

(
α β

γ δ

)
α, β, γ, δ ∈ Zd̄ (2.40)

such that det(G) = 1 mod d̄. If β has a multiplicative inverse β−1 in Zd̄ , we can associate
S with a unitary US defined explicitly by

US =
eiφ√
d

d−1∑
x,y=0

τβ
−1(αy2−2xy+δx2) |x〉 〈y| , (2.41)

where eiφ is an arbitrary phase. If β does not admit an inverse, we can always decompose
S into a product of two symplectic matrices [76]

S = S1S2 =

(
α1 β1

γ1 δ1

)(
α2 β2

γ2 δ2

)
(2.42)

such that β1 and β2 have inverses, and then define US = US1US2 . Such unitaries US with
arbitrary overall phases are called symplectic unitaries. They are particularly constructed
to satisfy

USDuU
†
S = DSu (2.43)

and
USUS′

.
= USS′ (2.44)

for any S, S ′ ∈ SL(2,Zd̄) and u ∈ Zd̄ , where ‘‘
.
=’’ means equal up to an overall phase.

Clifford unitaries (modulo overall phases) are then products of symplectic unitaries and
displacement operators USDu.

Every known WH covariant SIC fiducial vector is invariant (ignoring a global phase)
under an order 3 Clifford unitary, and conversely, every canonical order 3 Clifford unitary
(corresponding to a symplectic matrix of trace -1) has a SIC fiducial as one of its eigenvectors
in all dimensions where an exhaustive search has been done [73]. There is a particular
choice for an order 3 Clifford unitary that can be conveniently written in the same form in
all dimensions, which we call the Zauner unitary.
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Definition. The Zauner unitary is defined to be the symplectic unitary UZ corresponding
to the Zauner symplectic matrix Z

Z ≡

(
0 −1

1 −1

)
. (2.45)

One can easily verify that Z3 = 1 so that Z is indeed of order 3.

Conjecture (Zauner-Appleby [41, 76]). In every d-dimensional Hilbert space, there exists
a Weyl-Heisenberg SIC fiducial which is an eigenvector in the largest eigen subspace of the
Zauner unitary UZ .

We want to note that in addition to being an extra symmetry for SIC-POVMs on top
of the WH covariance, the Zauner symmetry also plays a pivotal role in the study of linear
dependencies in Weyl-Heisenberg orbits in Section 2.3.

2.2.4 Analogues to orthonormal bases

While the discussion is still on SIC-POVMs, there is one nice property of them that we
would like to introduce, namely they are as close as possible to being an orthonormal basis
on the cone of non-negative operators [1].

The set operators acting on d-dimensional vectors in Cd can be considered as a d2-
dimensional Hilbert space with the Hilbert Schmidt inner product given by

〈A,B〉 = Tr(A†B). (2.46)

Let {Bi}d
2

i=1 be an orthogonal basis for this space of operators. One might wonder if it is
possible to put some restrictions on Bi. For example, can they all be Hermitian? Or unitary?
The answers for both are yes. The Hermitian operators themselves form a d2-dimensional
real vector space with the same inner product as defined in (2.46), so one can have a set
of d2 Hermitian operators Hi that forms an orthogonal basis for the space of Hermitian
operators. One can show that this basis spans the whole space of operators by noticing
that any operators (not necessarily Hermitian) can be written as

A = H+ − iH−, (2.47)
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where
H+ = (A+ A†)/2, H− = (iA− iA†)/2 (2.48)

are clearly Hermitian. As for an orthogonal unitary basis, one example is the set of Weyl-
Heisenberg displacements operators {Du : u ∈ Z2

d} defined in (2.32). These displacement
operators are orthogonal to each other because for any u 6= v

〈Du, Dv〉 = Tr(D†uDv) = τ−Ω(u,v) Tr(Dv−u) = 0. (2.49)

However, imposing positive semi-definiteness on an orthogonal basis for the space of
operators is impossible, as we will show. Let {Ai} be a set of d2 positive semi-definite
operators and assume that Ai are normalized, meaning that Tr(A2

i ) = 1. We would like
to quantify the extent to which this set is orthogonal. A natural class of ‘‘orthogonality
measures’’ is defined by

Kt ≡
∑
i 6=j

|〈Ai, Aj〉|t =
∑
i 6=j

(Tr(AiAj))
t (2.50)

for any real number t ≥ 1. This sum consists of d4 − d2 terms and it vanishes if and only if
Ai are orthogonal to each other. However, as we will see from the following theorem, this
can never happen, since Kt is bounded below by a positive number.

Theorem 2.1. Let {Ai}d
2

i=1 be a set of d2 normalized positive semi-definite operators on a
Hilbert space of dimension d, and let Kt be defined as in (4.1), then Kt is lower bounded by

Kt ≥
d2(d− 1)

(d+ 1)t−1
(2.51)

When t = 1, the bound is saturated if and only if Ai are rank-1 projectors and
∑
Ai = d1.

When t > 1, the bound is saturated if and only if {Ai/d} forms a SIC-POVM.

Proof. We will first prove the inequality for the t = 1 case, by making use of a version of
the Cauchy-Schwarz inequality (also known as Bouniakowsky inequality [96]):(

N∑
i=1

x2
i

)(
N∑
i=1

y2
i

)
≥

(
N∑
i=1

xiyi

)2

(2.52)

for any 2N real numbers xi and yi. Particularly, setting yi = 1 leads to(
N∑
i=1

x2
i

)
≥ 1

N

(
N∑
i=1

xi

)2

, (2.53)
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with equality if and only if x1 = x2 = ... = xN .

Since Tr(A2
i ) = 1 by the normalization assumption, the (real and positive) eigenvalues

of Ai are no larger than 1, and therefore

Tr(Ai) ≥ Tr(A2
i ) = 1, (2.54)

with equality if and only if exactly one eigenvalue of Ai is 1 and the rest are 0, meaning
that Ai are rank-1 projectors. Let G be a positive semi-definite operator defined by

G =
d2∑
i=1

Ai (2.55)

It follows that Tr(G) ≥ d2. Applying the inequality (2.53) to the eigenvalues of G we get

Tr(G2) ≥ 1

d
(TrG)2 ≥ d3, (2.56)

which implies
K1 ≥ d3 − d2. (2.57)

Equality is obtained if and only if Ai are all rank-1 projectors, and G = d1.

For t > 1, if we define a function f(x) = xt, then this is a strictly convex function. We
can rewrite Kt as

Kt =
∑
i 6=j

f (Tr(AiAj)) . (2.58)

Applying a particular instance of Jensen inequality [97], namely

N∑
i=1

f(xi) ≥ Nf

(∑
xi
N

)
(2.59)

for any convex function f(x) and any xi in the domain, with equality (in the case of strict
convexity) if and only if xi are all constant, we obtain

Kt ≥ (d4 − d2)f

(∑
i 6=j Tr(AiAj)

d4 − d2

)
≥ (d4 − d2)f

(
d3 − d2

d4 − d2

)
=

d2(d− 1)

(d+ 1)t−1
.

(2.60)
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For this bound to be saturated, equality must take place in both the Jensen inequality and
(2.57). This means the d2 operators Ai must be all rank-1 projectors satisfying

∑
iAi = d1

and Tr(AiAj) are constant for all i 6= j. This is precisely the definition of a SIC-POVM.

Remark. What we have shown is that on the cone of non-negative operators, there does
not exist an orthonormal basis. Furthermore, using Kt as a natural class of ‘‘orthogonality
measures’’, we have shown that SIC-POVMs stand out as the ‘‘most orthogonal’’ bases on
this cone. We want to note that one of our orthogonality measures, namely K2, is closely
related to the frame potential

Φ =
∑
i,j

|〈ψi|ψj〉|4 (2.61)

introduced by Renes et al [42] via the simple relation

K2 = Φ− d2. (2.62)

In [42], the minimization of the frame potential was used to aid the numerical search for
SICs, and the bound was proved in the context of frames and spherical t-designs. Here, our
proof of the bound relies only on a few well-known elementary inequalities.

2.3 Linear dependencies in Weyl-Heisenberg orbits

The study of linear dependencies in WH orbits [2] stems from an observation that among 9
vectors in any known 3-dimensional SIC set, one can find some sets of 3 vectors that are
linearly dependent. This led to our investigation in higher dimensions, where the question
we asked was: among d2 SIC vectors in dimension d, could one find a set of d of them that
are linearly dependent? Going through the numerical SICs provided in [73], we found a
striking pattern: it seems as though whenever d is divisible by 3, the answer is yes.

Since these are Weyl-Heisenberg covariant SICs, the SIC vectors can be expressed as
Dp |ψ〉, where Dp are the WH displacement operators indexed by p = (p1, p2) ∈ Z2

d, and
|ψ〉 is a SIC fiducial vector. If {pi}di=1 is a set of d indices pi such that the d vectors Dpi |ψ〉
are linearly dependent, we call it a ‘‘good’’ p-set. It follows that for any good p-set, there
exists a set of coefficients λi, which are not simultaneously zero, such that∑

i

λiDpi |ψ〉 = 0 or L |ψ〉 = 0, (2.63)

where L is defined to be L =
∑

i λiDpi . In dimensions d that are divisible by 3, not only
have we found many good p-sets, but we have also noticed numerically that in many
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cases their corresponding L matrices are of rank d − 1. This means the null space of L
is 1-dimensional, i.e. the matrix equation Lx = 0 has a unique solution (up to a phase),
which is the SIC fiducial |ψ〉. If we know what the L matrices are, we could simply solve
this matrix equation to obtain the SIC fiducial!

Finding the L matrices requires us to identify good p-sets {pi} as well as the coefficients
λi. As it will be shown later in this section, we succeeded in the first task. However, finding
λi is non-trivial, despite a 3-fold symmetry of theirs that we observe. In fact, it turns out
that this approach to the SIC problem cannot work, because the linear dependence property
is not unique to SIC fiducials, but is generic to a class of eigenvectors of certain Clifford
unitaries, one of which is the Zauner unitary UZ defined in (2.45).

In this section, we first examine a special SIC set in dimension d = 3, which has a
connection to elliptic curves via Hesse configuration [69]. We then provide an analytical
proof for linear dependencies in the WH orbits of the eigenvectors of the Zauner unitary.
We give a detailed report on our numerical study, in which the number of observed linear
dependencies is often higher than what can be accounted for from the analytical prediction.
And lastly, we show a robust construction of ‘‘small SICs’’ in dimension d = 2 and 3 that
resulted from this study of linear dependencies.

Remark. Before going into the details of this study, we want to note that the opposite
problem, i.e. to find fiducial vectors whose WH orbits contain no linear dependencies, is
useful for classical signal processing and it has been solved [98–100].

2.3.1 Dimension d = 3 and Hesse configuration

In dimension d = 3, there is a continuous family of SICs that can be parameterized by a
single parameter [76]. All other known SICs in dimension 3 have been shown to be unitarily
equivalent to this family [89]. Explicitly, the 9 vectors of a SIC in this family can be written
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in the following form (ignoring normalization factors): 0

1

−eiθ

 ,

 0

1

−eiθη

 ,

 0

1

−eiθη2

 ,

−e
iθ

0

1

 ,

−e
iθη

0

1

 ,

−e
iθη2

0

1

 ,

 1

−eiθ

0

 ,

 1

−eiθη
0

 ,

 1

−eiθη2

0

 ,

(2.64)

where η = e2πi/3 is a third root of unity (we reserve ω for the d-th root of unity in general)
and the parameter θ is in the interval [0, π/3]. One observes that the 3 vectors on each
line in (2.64) span a 2-dimensional subspace. Hence, any such SIC contains 3 sets of 3
linearly dependent vectors. However, for certain values of θ, there are additional linear
dependencies. One can find these values by putting any 3 vectors from 3 different lines in
(2.64) together as a 3× 3 matrix and set the determinant of this matrix to zero to obtain

e3iθ = ηk k = 0, 1, 2. (2.65)

Given the range of θ in consideration [0, π/6], there are two choices θ = 0 or 2π/9, giving
rise to two special SICs that both contain 12 sets of 3 linearly dependent vectors. The SIC
corresponding to θ = 0 is ‘‘extra special’’ because its fiducial vector

|φ〉 =

 0

1

−1

 (2.66)

is an eigenvector of symplectic unitaries US for all S ∈ SL(2,Fd). One can see this by
noticing that the density operator can be written as

|φ〉〈φ| = 1− UP , (2.67)

where the parity operator UP is the symplectic unitary corresponding to an SL element

P =

(
−1 0

0 −1

)
, (2.68)
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which in turn is the only element (besides the identity element) that commutes with all
other elements in SL. If we label the 9 SIC vectors in (2.64) by |00〉 , |01〉 , ..., |22〉, then the
linearly dependent relations for the θ = 0 SIC are as follows:

|00〉+ |10〉+ |20〉 = 0

|01〉+ |11〉+ |21〉 = 0

|02〉+ |12〉+ |22〉 = 0

(2.69)

|00〉+ η |01〉+ η2 |02〉 = 0

|10〉+ η |11〉+ η2 |12〉 = 0

|20〉+ η |21〉+ η2 |22〉 = 0

(2.70)

|00〉+ |11〉+ η |22〉 = 0

|01〉+ η |12〉+ |20〉 = 0

η |02〉+ |10〉+ |21〉 = 0

(2.71)

|00〉+ |12〉+ η2 |21〉 = 0

η2 |01〉+ |10〉+ |22〉 = 0

|02〉+ η2 |11〉+ |20〉 = 0.

(2.72)

We note that in Equations (2.69) to (2.72), each linearly dependent relation involves 3
SIC vectors, and each SIC vector appears in 4 relations. If we represent the SIC vectors by
9 points, and draw a ‘‘line’’ connecting 3 points if their SIC vectors are linearly dependent,
then we obtain a set of 9 points and 12 lines, each line containing 3 points, and each point
is contained in 4 lines, as illustrated in Figure 2.1. It was pointed out by Lane Hughston
[69] that this was precisely the Hesse configuration [101], often denoted by the configuration
(94, 123) in the language of configurations in geometry.

The Hesse configuration is not realizable in the Euclidean plane. However, it can be
realized in the complex projective plane, which was discovered by Hesse in the study of
elliptic curves. Particularly, let us consider the following family of cubic curves described
by the polynomial equations

P (x1, x2, x3) = x3
1 + x3

2 + x3
3 + λx1x2x3 = 0 λ ∈ C. (2.73)

The 3× 3 Hessian matrix H consists of second derivatives of P , with its entries given by

Hij =
∂2P

∂xi∂xj
. (2.74)
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Figure 2.1: The linear dependency structures of a generic 3-dimensional SIC
(on the left) and of the special SICs with θ = 0 or 2π/9 (on the right). Each point
represents a SIC vector, and points are connected by a line if the corresponding
SIC vectors are linearly dependent. The structure to the right, with 9 points
and 12 lines, is known as the Hesse configuration.

Points on the curve where the determinant of the Hessian matrix vanishes are called
inflection points. This determinant is also a cubic polynomial in the family, and by Bézout’s
theorem [102], these two cubic curves intersect at 9 points. These 9 inflection points are
the same for all values of λ, and they coincide exactly with the 9 vectors of the θ = 0 SIC.
Furthermore, there are 4 special (singular) curves in the family corresponding to the cases
when λ =∞ and λ3 = −27:

P0 : x1x2x3 = 0

P1 : (x1 + x2 + x3)(x1 + ηx2 + η2x3)(x1 + η2x2 + ηx3) = 0

P2 : (x1 + η2x2 + η2x3)(x1 + ηx2 + x3)(x1 + x2 + ηx3) = 0

P3 : (x1 + ηx2 + ηx3)(x1 + η2x2 + x3)(x1 + x2 + η2x3) = 0

(2.75)

One can see that each of these curves Pi degenerates into 3 projective lines, giving a total
of 12 lines. Each of the lines passes through 3 inflection points, and each inflection point
belongs to 4 lines. This results in the Hesse configuration. More details on its connection
to SICs can be found in [70].

Remark. For each of the 12 linear dependencies in the θ = 0 SIC, the corresponding set of 3
linearly dependent vectors spans a 2-dimensional plane in the Hilbert space, whose normal
vector is unique up to a scalar multiplication. These 12 normal vectors form a complete
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set of MUBs in dimension d = 3 and this observation has been used for a Kochen-Specker
inequality [72].

2.3.2 Linear dependencies from Zauner eigenvectors

As we mentioned earlier, the linear dependence property is not a unique feature of SICs.
We will now show that linear dependencies can arise in all dimensions in Weyl-Heisenberg
orbits of vectors that lie in certain eigenspaces of the Zauner unitary UZ . Known SIC
fiducials just happen to be among those vectors.

Recall that by the definition in (2.45), the Zauner symplectic matrix Z is of order 3.
Hence, its symplectic unitary UZ is also of order 3, for a suitable choice of the phase eiφ in
(2.41). This means that its eigenvalues must be 1, η, or η2, where η = e2πi/3 is a third root
of unity, and UZ has 3 eigenspaces corresponding to these 3 eigenvalues. If the phase in
(2.41) is particularly chosen to be

eiφ = eiπ(d−1)/12, (2.76)

then one finds that [41] the eigenspaces H1, Hη, and Hη2 corresponding to the eigenvalues
1, η, and η2 have dimensions as shown in Table 2.1. In all dimensions d, SIC fiducials are
found in H1, which will be specifically referred to as the Zauner subspace. We want to
note that when d is equal to 8 mod 9, additional SIC fiducials are found in the other two
eigenspaces as well [73].

d = 3k d = 3k + 1 d = 3k + 2

dim(H1) k + 1 k + 1 k + 1

dim(Hη) k k k + 1

dim(Hη2) k − 1 k k

Table 2.1: Dimensions of the three eigenspaces H1, Hη, and Hη2 of the Zauner
unitary UZ for different dimensions d.

Since Zauner symplectic Z is of order 3, it generally moves points p = (p1, p2) on the
discrete phase space F2

d in orbits {p,Zp,Z2p} of size 3, which will be referred to as triplets.
The exception is when p is a fixed point of Z, i.e. Zp = p, in which case we will call it a
singlet. One can easily solve for the fixed points of Z and find that there are 3 singlets

26



when d is divisible by 3, and only 1 trivial singlet (the zero vector) otherwise. The singlets
are given in Table 2.2. In the Hilbert space, we will use the same terminology to call Dp |ψ〉
a singlet if p is a singlet, and to call {Dp |ψ〉 , DZp |ψ〉 , DZ2p |ψ〉} a triplet otherwise.

d = 3k d 6= 3k(
0

0

)
,

(
k

2k

)
,

(
2k

k

) (
0

0

)

Table 2.2: Fixed points of the Zauner symplectic Z.

Theorem 2.2. Let |φ〉 be an eigenvector of the Zauner unitary UZ with eigenvalue λ, and
let V be a set of d vectors in the Weyl-Heisenberg orbit of |φ〉, i.e. {Dp |φ〉 : p ∈ F2

d}. Then
the vectors in V are linearly dependent if:

1. V contains k triplets, or k − 1 triplets and 3 singlets for the case d = 3k,

2. V contains k triplets and 1 singlet and |φ〉 ∈ Hη ∪Hη2 for the case d = 3k + 1,

3. V contains k triplets and 1 singlet and |φ〉 ∈ Hη2 for the case d = 3k + 2.

Proof. We start with the case d = 3k. If p is a singlet, then |φ〉 and Dp |φ〉 lie in the same
eigenspace of UZ because

UZDp |φ〉 = UZDpU
†
ZUZ |φ〉 = λDZp |φ〉 = λDp |φ〉 . (2.77)

If p is in a triplet, we construct 3 new vectors from linear combinations of vectors in the
triplet {Dp |φ〉 , DZp |φ〉 , DZ2p |φ〉} as follows:

|r〉 = Dp |φ〉+ UZDp |φ〉+ U2
ZDp |φ〉

|s〉 = Dp |φ〉+ η2UZDp |φ〉+ η U2
ZDp |φ〉

|t〉 = Dp |φ〉+ η UZDp |φ〉+ η2U2
ZDp |φ〉 .

(2.78)

Given a choice of p, we will refer to vectors constructed in way as r-type, s-type, and
t-type respectively. One can straightforwardly verify that

UZ |r〉 = |r〉 (2.79)
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so r-type vectors belong to the eigenspace H1 of UZ . Similarly, s-type and t-type vectors
belong to the other two eigenspace Hη and Hη2 , respectively. Moreover, (2.78) can be
inverted so that any vector in the triplet {Dp |φ〉 , DZp |φ〉 , DZ2p |φ〉} can be written as a
linear combination of |r〉 , |s〉 and |t〉:

Dp |φ〉 =
(
|r〉+ |s〉+ |t〉

)
/3

UZDp |φ〉 =
(
|r〉+ η |s〉+ η2 |t〉

)
/3

U2
ZDp |φ〉 =

(
|r〉+ η2 |s〉+ η |t〉

)
/3.

(2.80)

Therefore the two sets {Dp |φ〉 , DZp |φ〉 , DZ2p |φ〉} and {|r〉 , |s〉 , |t〉} have exactly the same
linear span.

If V contains k triplets, this gives k-many of each r-,s-, and t-type vector. From
Table 2.1 we know that the r-type vectors belong to an eigenspace of dimension k + 1, the
s-type vectors belong to an eigenspace of dimension k, and the t-type vectors belong to
an eigenspace of dimension k − 1. It clearly follows that the k r-type vectors cannot fully
span their eigenspace, while the k t-type vectors are overcomplete and therefore linearly
dependent.

If V contains k − 1 triplets and 3 singlets, this gives (k − 1)-many of each r-,s-, and
t-type vector, plus the 3 singlets that belong to the same eigenspace as |φ〉. This means
there will be k + 2 vectors among these that belong to the same eigenspace. Since the
largest eigenspace of UZ has dimensionality k + 1, we obtain linear dependency.

Still sticking to the case d = 3k, we want to note that if we further assume |φ〉 ∈ Hη,
we also obtain linear dependency when V contains k − 1 triplets and 2 singlets, or k − 2
triplets and 3 singlets, using the same argument. Assuming |φ〉 ∈ Hη2 allows us to extend
this linear dependency condition even further, to include cases when V contains k − 3
triplets and 3 singlets.

In the case d = 3k + 1, the 3 eigenspaces H1,Hη and Hη2 have dimensionality k + 1, k,
and k respectively. If |φ〉 ∈ Hη, then the singlet together with k s-type vectors give k + 1
vectors in Hη, resulting in linear dependency. If |φ〉 ∈ Hη2 , the singlet together with k
t-type vectors give k + 1 vectors in Hη2 , also resulting in linear dependency.

In the case d = 3k + 2, the eigenspace Hη2 has dimensionality k. The k t-type vectors,
together with the singlet, form a set of k + 1 vectors in Hη2 . Therefore they are linearly
dependent.
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2.3.3 Numerical linear dependencies

Although the results in the previous section provide a significant understanding of how
linear dependencies can arise in a WH orbit of an initial vector that is an eigenvector of
UZ , they do not account for all the linear dependencies that we observe numerically. In
this section, we provide a numerical analysis for linear dependencies in dimensions d = 4 to
8, with partial results in d = 9. We pay more attention and provide more details for the
cases d = 6 and 9, as we are interested in dimensions that are divisible by 3 (we know from
Theorem 2.2 that in dimensions d = 3k one can obtain linear dependencies from an initial
vector in the Zauner subspace H1, where SIC fiducials are expected to be). Although the
additional (cannot be accounted for by Theorem 2.2) linear dependencies in d = 6 and 9 do
not depend on whether the initial vector is a SIC fiducial or not, there are some interesting
orthogonality relationships in the dependency structure that seem to be unique to SICs.
Our investigation in d = 6 and 9 also led to ‘‘small SICs’’, which will be the focus of the
next section. In dimension d = 8, there are SIC fiducials in Hη2 , and we observe that these
SIC fiducials yield more linearly dependencies than an arbitrary initial vector in Hη2 . This
indicates some similarity to the situation in d = 3 that led to the Hesse configuration that
we discussed in Section 2.3.1.

In each dimension d that we analyzed, our computer program started with an arbitrary
initial vector of each of the eigenspaces of the Zauner unitary UZ , generated the full orbit
under the action of the WH group, and then performed an exhaustive search for all subsets
of d vectors that are linearly dependent by calculating the determinants of the d×d matrices
formed by these d vectors to a numerical precision of 10−15. For each eigenspace, the
procedure was repeated for a small number of arbitrarily chosen initial vectors, to make
sure that the results are the same. As for SIC fiducials, we used those given in [73], and
when there are more than one Clifford orbit we repeat the calculation with fiducials from
each orbit.

We found no distinction between choices of the initial vector, except in dimension d = 8
where the SIC fiducial gives rise to 24,935,160 sets of linearly dependent vectors, slightly
higher than the generic result shown in Table 2.3. In dimension d = 7, the numerical results
match our prediction from Theorem 2.2. But in all other cases, there are more numerically
observed linear dependencies than what Theorem 2.2 can account for. Table 2.3 shows
the number of linearly dependent sets found in WH orbits with generic initial vectors in
different eigenspaces of UZ for dimensions d = 4 to 8. We were not able to perform an
exhaustive search for dimension 9 or higher.

In dimension d = 6 we found 984 numerical linearly dependent sets starting from a
generic initial vector in the Zauner subspace. Among these, only 768 sets have the property
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d = 4 d = 5 d = 6 d = 7 d = 8

H1 0 0 984 0 0

0 0 (768) 0 0

Hη 116 0 635,052 5,796 0

(68) 0 (75,342) (5,796) 0

Hη2 116 6,600 17,903,28 5796 24,756,984

(68) (4,200) - (5,796) (≤766,080)

Table 2.3: Number of linear dependencies in a WH orbit where the initial vector is arbitrarily
taken from each eigenspace of UZ . The numbers in brackets are the number of sets (or an
upper bound in one case) predicted from Theorem 2.2.

that they are invariant under the Zauner unitary, a condition for linear dependency in
Theorem 2.2. This leaves 216 sets unaccounted for by our theorem. Interestingly, it is worth
noting that these additional 216 sets are instead invariant under an order 6 symplectic
unitary UM, where

M =

(
3 8

4 11

)
. (2.81)

Each of the 36 vectors in the Weyl-Heisenberg orbit lies in 164 different linearly dependent
sets, and each of the 984 sets clearly contains 6 vectors. In the language of geometry,
we have 36 points and 984 hyperplanes in the complex projective space CP5, forming the
configuration (36164, 9846).

The 984 linearly dependent sets in dimension d = 6 themselves (for an initial vector
in the Zauner subspace) can be grouped into orbits under the WH group (note that if a
set is linearly dependent, then the set obtained by displacing it with the operator Dp for
any p is also linearly dependent). We counted 27 orbits of length 36, and 1 orbit of length
12. The reason for the short orbit is because it contains sets that are invariant under the
subgroup {1, D24, D42}. Among these 28 orbits, 22 contain sets that are invariant under
UZ , while the other 6 contain sets that are invariant under UM. The results are summarized
in Table 2.4, where we have labeled the orbits from 1 to 28, with the first one being the
short orbit, and the last 6 (23 to 28) are the ones invariant under UM.

In hope of finding nice structures as in dimension d = 3, we also studied the relationship
among normal vectors of the 984 5-dimensional hyperplanes corresponding to the linearly
dependent sets from Zauner subspace in d = 6. We performed an exhaustive search for
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Orbit Length No. orbits under
UZ

No. orbits under
{1, D24, D42}

No. ON
quadruples

1 12 2 2 0

2-10 36 2 1 0

11 36 2 0 9

12-13 36 2 0 0

14-22 36 2 0 0

23-28 36 1 1 0

Table 2.4: Properties of WH orbits of linearly dependent sets with an initial vector in the
Zauner subspace H1 in dimension d = 6.

orthogonalities between these vectors. No basis was found, nor was a MUB. However we
did find over 20,000 orthogonal triples of normal vectors, i.e. sets of 3 normal vectors that
are orthogonal to each other. If we start from a SIC fiducial instead of an arbitrary vector
in the Zauner subspace, the linear dependency remains identical. However, in this case we
found 216 additional orthogonal triples, and we also found 9 orthogonal quadruples. They
all belong to the same orbit (of length 36) under the WH group.

In dimension d = 9, starting from an arbitrary vector |φ〉 in the Zauner subspace, we
found 79,767 sets of 9 linearly dependent vectors in the WH orbit of |φ〉, 78,795 of which can
be accounted for by Theorem 2.2. This number is too large for us to perform an exhaustive
calculation of the scalar products between all pairs of normal vectors as in d = 6, but we
did find interesting relations among some normal vectors, which will be discussed in the
next section. The 79,767 sets can be grouped into orbits under the WH group. We found a
total of 987 orbits: 984 of length 81, 2 of length 27, and 1 of length 9. Like in d = 6, they
can be split into 2 groups: one group of 975 orbits that are exclusively invariant under UZ ,
and the other group of 12 orbits that are exclusively invariant under UM (there are 186
orbits that are invariant under both), where M in odd dimensions d = 3k takes the form

M =

(
k + 1 k

2k 2k + 1

)
. (2.82)

If we start from a SIC fiducial in d = 9, we obtain an identical linear dependency
structure. This suggests a distinction between SICs in dimension d = 3 and SICs in higher
dimensions divisible by 3. The ‘‘special’’ SICs in d = 3 give rise to 12 linearly dependent
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sets, while others produce only 3. In this sense, no SICs are ‘‘special’’ in dimension d = 6
and 9. However, we did find one other instance of a SIC fiducial vector giving more
linear dependencies than other arbitrary vectors in the same eigenspace. This is the SIC
fiducial in Hη2 in dimension d = 8 (this additional SIC fiducial seems to only exist in
dimensions that are equal to 8 mod 9 [73]). In d = 8, this particular SIC fiducial exhibit
24,935,160 linearly dependent sets, while a generic vector in Hη2 produces 24,756,984 sets.
This may be connected to the fact that the SIC has a larger automorphism group than
an arbitrary vector in the same eigenspace. Comparing to the case in d = 3 where the
Hesse configuration arises from the ‘‘special’’ SICs, one might ask whether there is a similar
connection to elliptic curves in this family of SICs in dimensions d = 9k + 8.

2.3.4 Small SICs in dimensions d = 6 and 9

In the numerical investigation presented in the previous section, we intentionally left out
some interesting observations in dimensions d = 6 and 9 for a separate discussion in this
section. Among 984 vectors normal to the linear dependent sets generated from an arbitrary
vector in the Zauner subspace (not necessarily a SIC fiducial) in d = 6, we found 30 sets of
4 normal vectors that form 2-dimensional SICs, i.e. within each set, the overlaps between
the vectors are 1/

√
3 and the vectors lie in a 2-dimensional subspace. This phenomenon

also happens in dimension d = 9, where 3-dimensional SICs are found among 79,767 normal
vectors. We refer to SICs of this kind as ‘‘small SICs’’, as their dimension is smaller than
that of the embedding Hilbert space. Attempts to find small SICs in dimension d = 12
yielded no positive result so far, but we have not been able to perform an exhaustive search.
In this section, we provide an explanation for the small SICs in d = 6. Small SICs in d = 9
are not yet fully understood.

We observed that every 2-dimensional SIC set found in d = 6 can be expressed as an
orbit of a vector under the subgroup {1, D03, D30, D33}. In other words, the SICs take the
form {|ψ〉 , D03 |ψ〉 , D30 |ψ〉 , D33 |ψ〉}, where Dij are the displacement operators defined in
(2.32) for dimension d = 6. In the following theorem we will prove that for such a set to
form a 2-dimensional SIC, |ψ〉 just needs to be any normalized eigenvector of UZ that is
not in the Zauner subspace. Normal vectors of linearly dependent sets containing 3 singlets
in the case the initial vector lies in the Zauner subspace happen to meet this condition, as
seen from the proof of Theorem 2.2.

Theorem 2.3. In dimension d = 6, if |ψ〉 is an eigenvector of UZ , then the 4 vectors
|ψ〉 , D03 |ψ〉 , D30 |ψ〉 and D33 |ψ〉 are equiangular. Furthermore, if |ψ〉 ∈ Hη or |ψ〉 ∈ Hη2,
those 4 vectors span a 2-dimensional subspace and therefore constitute a SIC.
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Proof. Let λ be the eigenvalue of UZ corresponding to |ψ〉, so that

UZ |ψ〉 = λ |ψ〉 |ψ〉 = λU †Z |ψ〉 . (2.83)

The first statement of the theorem is true because

〈ψ|Dp |ψ〉 = 〈ψ|λ∗UZDpU
†
Zλ |ψ〉 = 〈ψ|DZp |ψ〉 (2.84)

and because the Zauner symplectic matrix Z simply permutes the three points 03, 30 and
33 in the discrete phase space according to Table 2.5.

p (0,3) (3,0) (3,3)

Zp (3,3) (0,3) (3,0)

Table 2.5: Cyclic action of Z on points (0,3), (3,0) and (3,3).

In proving the second statement of the theorem, we make use of a square root of the
Zauner unitary. Let W be the symplectic matrix given by

W ≡

(
1 −1

1 0

)
W2 =

(
0 −1

1 −1

)
= Z (2.85)

Let UW be the symplectic unitary corresponding to W , with a phase chosen so that

U2
W = UZ . (2.86)

The structure of the eigenspaces of UZ and UW are described in Table 2.6, where ω = e2πi/6

and η = e2πi/3 = ω2. Next, we define three operators R, S and T as follows:

R = (D03 +D30 +D33)/
√

3

S = (D03 + ω2D30 + ω4D33)/
√

3

T = (D03 + ω4D30 + ω2D33)/
√

3.

(2.87)

Note that {|ψ〉 , D03 |ψ〉 , D30 |ψ〉 , D33 |ψ〉} and {|ψ〉 , R |ψ〉 , S |ψ〉 , T |ψ〉} have the same
linear span. We will prove that |ψ〉 ∈ Hη implies S |ψ〉 = 0 and R |ψ〉 = |ψ〉, and that
|ψ〉 ∈ Hη2 implies T |ψ〉 = 0 and R |ψ〉 = − |ψ〉. It will immediately follow that the linear
span above is 2-dimensional.
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Eigenspaces of UZ H1 (Zauner) Hη Hη2

Eigenvalue 1 η η2

Dimensionality 3 2 1

Eigenspaces of UW K1 Kω3 Kω Kω4 Kω2

Eigenvalue 1 ω3 ω ω4 ω2

Dimensionality 2 1 1 1 1

Table 2.6: Structure of the eigenspaces of UZ and its squareroot UW , with ω = e2πi/6 and
η = e2πi/3 = ω2. Note that UW is order 6, but it only has 5 eigenvalues (missing ω5) because
the eigenspace corresponding to eigenvalue 1 is degenerate.

From their definitions, one can verify the following properties of R, S and T :

S = T †, S2 = T 2 = 0, R2 = 1, (2.88)

ST = 1 +R, TS = 1−R. (2.89)

Moreover, ST/2 and TS/2 are rank-3 projection operators that are orthogonal to each
other. One can also verify the following commutation relations between R, S, T and UW :

UWR = RUW , UWS = ω4SUW , UWT = ω2TUW . (2.90)

These equations tell us how R, S and T permute the eigenspaces of UW . For example, if
|φ〉 is an eigenvector of UW with eigenvalue ω2, then UWS |φ〉 = ω4SUW |φ〉 = S |φ〉, so
S |φ〉 is an eigenvector of UW with eigenvalue 1. A full description of the action of S and T
on the eigenspaces of UW is shown in Figure 2.2 (the action of R is not shown because R
commutes with UW and simply leaves the eigenspaces invariant).

Let |k0〉, |k1〉, |k2〉, |k3〉 and |k4〉 be non-zero eigenvectors of UW belonging to the
eigenspaces K1, Kω, Kω2 , Kω3 and Kω4 respectively. Except for |k0〉, the rest of them are
unique up to a scalar, because the corresponding eigenspaces are 1-dimensional. As seen
from the diagram, we have S |k1〉 = 0. We are going to prove that S |k4〉 = 0, so that
S |ψ〉 = 0 for any |ψ〉 ∈ Hη.
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Figure 2.2: Action of S (solid arrow) and T (dashed arrow) on the eigenspaces of UW .
Note that K1 (2D) and Kω3 (1D) span the Zauner subspace H1 (3D), while Kω4 (1D) and
Kω (1D) span Hη (2D), and Kω2 (1D) is identical to Hη2 (1D).

Suppose otherwise, that S |k4〉 6= 0. It has to be the case that S |k0〉 = 0, because
otherwise S |k0〉 will be a non-zero vector in the 1-dimensional eigenspace Kω4 , which implies
S |k0〉 = α |k4〉 for some α 6= 0, and therefore S |k4〉 = α−1S2 |k0〉 = 0, contradicting the
assumption that S |k4〉 6= 0. Since S |k4〉 is a non-zero vector in the 1-dimensional eigenspace
Kω2 , we must also have S |k4〉 = β |k2〉 for some β 6= 0, and therefore S |k2〉 = β−1S2 |k4〉 = 0.
So from the assumption that S |k4〉 6= 0, we deduce that 0 = S |k1〉 = S |k2〉 = S |k0〉, which
implies 0 = TS |k1〉 = TS |k2〉 = TS |k0〉, which in turn means that TS is orthogonal to
the 4-dimensional subspace spanned by K1, Kω and Kω2 . This contradicts the fact that
TS/2 is a rank-3 projection operator.

Thus, we conclude that S |k4〉 = 0, and that S |ψ〉 = 0 for any |ψ〉 ∈ Hη. The identity
R |ψ〉 = |ψ〉 immediately follows from 0 = TS |ψ〉 = (1 − R) |ψ〉. Note that T |ψ〉 6= 0
(because TS is orthogonal to ST ) is a non-zero vector in H1. T |ψ〉 is not proportional
to |ψ〉 because T |ψ〉 lies in H1 and |ψ〉 lies in Hη. Therefore |ψ〉, R |ψ〉, S |ψ〉 and T |ψ〉
indeed span a 2-dimensional subspace.

It is a similar reasoning that leads to T |k2〉 = 0, which implies that T |ψ〉 = 0 and
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R |ψ〉 = − |ψ〉 for any |ψ〉 ∈ Hη2 . We conclude that {|ψ〉, R |ψ〉, S |ψ〉 , T |ψ〉} spans a 2D
subspace whenever |ψ〉 ∈ Hη ∪Hη2 , thus proving the second statement of the theorem.

We have provided an analytical explanation for why 2-dimensional small SICs occur
in dimension d = 6. Unfortunately, this argument cannot be applied to explain the 3-
dimensional small SICs found in d = 9. If one tries to use the construction described in the
proof of Theorem 2.3 for the case d = 9, one would obtain 9 vectors which do not span a
3-dimensional subspace and whose overlaps are not constant (even though they only take
two different values). The construction also fails to produce SICs in dimensions 12 and 15.
We summarize the situation in Table 2.7, which shows the dimensionality of the subspace
spanned by the d2/9 vectors obtained using the construction in Theorem 2.3 for different
eigenspaces of UZ from which |ψ〉 is chosen.

d = 6 d = 9 d = 12 d = 15

H1 4 8 12 15

Hη 2 7 8 15

Hη2 2 6 8 10

Table 2.7: Dimensions of the spans of the orbits of |ψ〉 under the subgroup
generated by D03 and D30 in higher dimensions for three eigenspaces of UZ
that |ψ〉 is chosen from.

Nevertheless, the fact remains that in dimension d = 9, instead of choosing a vector in
Hη or Hη2 and following the construction in the proof of Theorem 2.3, if one starts from
an initial vector |ψ〉 in the Zauner subspace (not necessarily a SIC fiducial), then one can
always find 3-dimensional SICs among the normal vectors to the linearly dependent sets
generated by |ψ〉. We have found 4 such small 3-dimensional SICs (there could possibly be
more). Upon an inspection of the triple products, we noticed that all of these are unitarily
equivalent to the ‘‘most exceptional’’ SIC, whose WH fiducial vector is (0, 1,−1)/

√
2 [66].

This construction is robust in the sense that the resulting small SICs are always the same,
regardless of the choice of the initial vector |ψ〉 ∈ H1. If this phenomenon repeats in higher
dimensions it might open up an intriguing possibility that one might be able to get a
constructive proof of SIC existence in this way. We did not succeed in finding small SICs
in dimension d = 12, but an exhaustive search was out of computational power’s reach.
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3.8 Eigenvectors of MUB cyclers . . . . . . . . . . . . . . . . . . . 71

3.9 MUB-balanced states . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1 Motivations

In contrast to the previous chapter where our study was based on an almost 90-year-old
group symmetry, in this chapter we focus on a novel symmetry, which is a generalization
of anti-unitary symmetry.

Quantum physicists are very familiar with unitary transformations. One of the postulates
in quantum mechanics states that the evolutions of quantum states are described by unitary
transformations. All physical transformations must therefore be unitary. Unitary operators
are defined to be operators that preserve the inner product between any two vectors in a
Hilbert space:

〈Ux, Uy〉 = 〈x, y〉, (3.1)

and therefore they also preserve the transition probabilities:

|〈Ux, Uy〉| = |〈x, y〉| . (3.2)

Anti-unitary operators Ū are defined to satisfy

〈Ūx, Ūy〉 = 〈x, y〉∗, (3.3)

where ∗ represents complex conjugation. Although anti-unitaries are unphysical and less
frequently seen, they also play important roles in physics, such as in representing time-
reversal symmetry [4] and in entanglement theory [103]. One can clearly see from the
definition that they also preserve transition probabilities. Together with unitaries, they
form the only transformations of quantum states that have this probability preserving
property, a milestone result from 1931 known as Wigner’s theorem [4].

In a restricted region of a Hilbert space, however, it is possible to have symmetries
beyond those of unitary or anti-unitary character. Such transformations were recently
constructed by Appleby et al [71] to aid the search of SIC-POVMs. They are named
Galois-unitaries (or g-unitaries for short), for they are unitary operators composed with
Galois automorphisms of a chosen number field extension. The motivation under the
construction of g-unitaries stems from an observation by Scott and Grassl [73] that every
known analytical SIC fiducial (except the continuous family in dimension d = 3) can be
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expressed in terms of radicals, implying that the corresponding Galois group is solvable. In
Appleby et al [71], SIC fiducials were found to be eigenvectors of a family of g-unitaries.
It was hoped that the additional g-unitary symmetry, on top of WH covariance and
Zauner symmetry, would help reveal the solution for the SIC problem. Despite significant
progresses, the SIC problem remains unsolved.

On the other hand, one notices that the Galois groups of cyclotomic field extensions
(see Appendix A.1 for a review of Galois groups and cyclotomic fields) are quite simple.
This is relevant to Mutually Unbiased Bases (to be defined in the next section) since all the
components of standard MUB vectors indeed belong to a cyclotomic field. As we will see
in Section 3.2, Clifford unitaries simply move one MUB vector to another and permute the
bases according to Möbius transformations. However, not all permutations on the bases
can be realized by Clifford unitaries. This is where g-unitaries come in to provide some
of the missing symmetries. Started out as a toy model for SICs, our study of the roles of
g-unitaries in the theory of mutually unbiased bases [3] led to a number of new findings.
By extending the Clifford group with g-unitaries, we were able to solve the MUB-cycling
problem in odd prime-power dimensions (see Section 3.7). We also provided a construction
for a distinguished class of quantum states known as MUB-balanced states (see Section 3.9).
Although our construction relies on a different technique, namely the g-unitary symmetry,
it yields identical results to the construction by Amburg et al [6].

We want to note that g-unitay operators are not unitary in general, and therefore cannot
be physically realized. However, it is possible to simulate them using unitary operators in
a larger Hilbert space. We propose such a simulation scheme in Section 3.6.

3.2 Mutually unbiased bases

In a d-dimensional Hilbert space, two orthonormal bases {ei} and {e′i} are called Mutually
Unbiased Basess (MUBs) if ∣∣〈ei|e′j〉∣∣ =

1√
d

(3.4)

for any i, j = 0, 1, ..., d − 1. One can see that if a quantum state is completely specified
from the measurement outcome probabilities in one basis (i.e. it is one of the basis vectors),
then the outcome probabilities from the measurement in the other basis must be a uniform
distribution. This is very much like measuring with the position and momentum operators,
where learning the precise location of a particle erases all information about its momentum
and vice versa. Mutually unbiased bases can therefore be considered as a finite-dimensional
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analogue of complementary observables. They play important roles not only in foundational
studies such as complementarity in quantum mechanics [104], but also in areas in quantum
information such as quantum state estimation [105] and quantum cryptography [13] (we
have provided only a few milestone references).

If the Hilbert space has d dimensions, there can be at most d+ 1 bases that are mutually
unbiased to each other [105]. These are said to form a complete (or full) set of MUBs, and
we will use the acronym MUBs to refer to such a complete set only. It has been shown
by Ivonovic [106] that complete sets of MUBs can be constructed in prime dimensions.
This construction was later generalized to prime power dimensions by Wootters and Fields
[105]. The existence of complete sets of MUBs in general is still an open question. Even
in the lowest non-prime-power dimension d = 6, although it has been found unlikely that
a complete set of MUBs could exist, a non-existence proof has not been reached despite
numerous research efforts [107–113].

There are many known techniques for constructing a complete set of MUBs, for example
by finding maximal Abelian subgroups of the Weyl-Heisenberg group, by taking the
eigenbases of unitary operators constructed from the shift operator X and the clock
operator Z, by using Hadamard matrices, and by taking the WH orbit of an Alltop fiducial
[32]. Here we describe a Clifford-based construction [30], which produces the same set
of MUBs that originally appeared in Wootters and Fields’ paper [105]. We will refer to
this particular set as the standard set of MUBs. All MUBs in the thesis are implicitly
understood as standard sets of MUBs, unless specifically noted otherwise.

We now restrict ourselves to the case d = pn is an odd prime power. Making use of the
existence of the finite field Fd when d is a prime power, one can provide a faithful unitary
representation US of symplectic matrices S ∈ SL(2,Fd). We will appeal to the particular
representation described by (A.41) in Appendix A.2 (see [30] for more details). Note that
this is the representation for the restricted Galoisian Clifford group, which is not the same
as the ordinary Clifford group used in Chapter 2.

Consider the following d+ 1 matrices in SL(2,Fd)

Sb =

(
1 b

0 1

)
for b ∈ Fd

S∞ =

(
0 1

−1 0

)
for b =∞.

(3.5)

If we transform the standard basis by the symplectic unitaries USb we will obtain d + 1
bases in a full set of MUB. More explicitly, let |v〉 denote the standard basis vectors, and
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let us define
|b, v〉 = USb |v〉 (3.6)

for all b ∈ Fd ∪ {∞} and v ∈ Fd, then the claim is that |b, v〉 are d(d + 1) vectors in a
complete set of MUBs, where b labels the bases, and v labels the vectors within each basis.
To see why, let us first note that for any symplectic matrix

S =

(
α β

γ δ

)
det(S) = 1 (3.7)

with β 6= 0, it directly follows from (A.41) that

|〈v|US |v′〉| =
1√
d

(3.8)

for all standard basis vectors |v〉 and |v′〉. One can verify that for any b, b′ ∈ Fd ∪ {∞} and
b 6= b′, the β-entry of S−1

b Sb′ is non-zero, therefore

|〈b, v|b′, v′〉| =
∣∣∣〈v|U †SbUSb′ |v′〉∣∣∣

=
∣∣∣〈v|US−1

b
US

b′
|v′〉
∣∣∣

=
∣∣∣〈v|US−1

b S
b′
|v′〉
∣∣∣

=
1√
d

(3.9)

so that the two bases b and b′ are indeed mutually unbiased.

We would like to point out that it also directly follows from the representation in (A.41)
that when β = 0, US simply permutes vectors in the standard basis and adds phases to
them. In general (for any value of β), for any symplectic S in the form given by (3.7) one
can explicitly work out the action of US on the MUB vectors |b, v〉 to be [30]

US |b, v〉
.
=



∣∣∣αb+βγb+δ
, v
γb+δ

〉
if b 6=∞, γb+ δ 6= 0

|∞,−γv〉 if b 6=∞, γb+ δ = 0∣∣∣αγ , vγ〉 if b =∞, γ 6= 0

|∞, δv〉 if b =∞, γ = 0

(3.10)
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where ‘‘
.
=’’ means ‘‘equals up to a phase’’. One now sees the reason behind the use of the

symbol ∞: it allows us to summarize the permuting actions of US on the bases by the
Möbius transformation [114]

b → αb+ β

γb+ δ
. (3.11)

Remark. The faithful unitary representation we have is for symplectic matrices S ∈ SL(2,Fd),
which have detS = αδ − βγ = 1. However, a general Möbius transformation only requires
that αδ − βγ 6= 0, which is the requirement for the general linear group GL(2,Fd). Note
that if we scale α, β, γ and δ by a constant factor, the Möbius transformation in (3.11)
remains the same. Möbius transformations are therefore represented by the quotient group
of GL, where any two elements G and G′ in GL are considered equivalent if they are
related by G′ = cG for some constant c ∈ Fd. This is called the projective general linear
group PGL(2,Fd). In a similar manner, the special linear group SL(2,Fd) gives rise to the
projective special linear group PSL(2,Fd), which is a proper subgroup of PGL. The orders
of these groups are provided in Table 3.1.

Notation Name Order

GL(2,Fd) general linear group d(d− 1)(d2 − 1)

PGL(2,Fd) projective general linear group d(d2 − 1)

SL(2,Fd) special linear group d(d2 − 1)

PSL(2,Fd) projective special linear group d(d2 − 1)/2

Table 3.1: The orders of the general linear group and its various subgroups.

We observe that if an element G in GL(2,Fd)

G =

(
α β

γ δ

)
det(G) 6= 0 (3.12)

has determinant det(G) = ∆ which is a quadratic residue in Fd, meaning that ∆ = x2 for
some non-zero x ∈ Fd, we can write G as

G =

(
α β

γ δ

)
= x

(
αx−1 βx−1

γx−1 δx−1

)
= xS, (3.13)

where S is clearly an element of SL(2,Fd). Since G and S in the above expression are
equivalent, they correspond to the same element in PGL. Therefore, elements in GL whose

42



determinants are quadratic residues do not add to PGL beyond the contribution from SL.
But elements whose determinants are quadratic non-residues do. The message here is that
symplectic unitaries permutes MUB bases according to Möbius transformations, but not
all Möbius transformations can be realized by these permutations. We will later see that
Galois-unitaries come in to help supply the missing transformations (all of them in certain
cases, and some of them in other cases).

3.3 The Clifford group extended by g-unitaries

We again want to remind that throughout this chapter, we exclusively use the term Clifford
group to refer to the restricted Galoisian Clifford group [30], as opposed to the ordinary
version used in the previous chapter. The symplectic group SL(2,Fd) is one key ingredient
in the construction of the Clifford group. In Appendix A.2 we describe a faithful unitary
representation of SL(2,Fd). Here, the question of interest is: is it possible to extend this
representation to also include all linear transformations G in the discrete phase space that
have determinant ∆ = det(G) 6= 1? According to (A.33), such a transformation scales
the symplectic area by a factor of ∆. In order for the group law in (A.31) to hold, the
representation of G should also transform ω 7→ ω∆, otherwise it will not be an automorphism
of the Weyl-Heisenberg group. This is where Galois automorphisms come into the picture
(see Appendix A.1.2 for an introduction to Galois automorphisms), as they do precisely
what we need:

g∆ : ω 7→ ω∆. (3.14)

In the special case when ∆ = det(G) = −1, G is called an anti-symplectic matrix
in ESL(2,Fd), and it is represented by an anti-unitary transformation, i.e. an ordinary
unitary transformation following complex conjugation. The Clifford group extended by
these anti-unitaries is called the extended Clifford group, which was well studied in [76].

We now consider the case when G is an arbitrary element of GL(2,Fd), i.e. a 2 × 2
matrix with determinant ∆ 6= 0 (so that it is invertible) over the field Fd. Although it is
possible to analyze the most general case of odd prime power dimensions right away, we
would like to start with the simpler case when d = p is an odd prime to explain the core
concepts first, then add the technical complications of the general case d = pn later.
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3.3.1 In odd prime dimensions

Let the dimension d = p be an odd prime, and let G be any element in GL(2,Fd)

G =

(
α β

γ δ

)
(3.15)

where α, β, γ, δ ∈ Fd and ∆ ≡ det(G) 6= 0. We can always decompose G into

G = SK∆, (3.16)

where, for any x ∈ Fd, we define Kx ∈ GL(2,Fd) to be

Kx ≡

(
1 0

0 x

)
, (3.17)

and

S = GK−1
∆ =

(
α β∆−1

γ δ∆−1

)
(3.18)

Note that S has determinant 1, so S ∈ SL(2,Fd) and can be represented by the unitary US
given in (A.35). The matrix K∆ has determinant ∆ and will be represented by the Galois
automorphism g∆:

K∆ =

(
1 0

0 ∆

)
→ g∆ : ω 7→ ω∆. (3.19)

Therefore G can now be represented by a Galois-unitary (or g-unitary for short) UG:

G = SK∆ → UG ≡ USg∆. (3.20)

This concept of a g-unitary was introduced in [71] as a generalization to an anti-unitary
transformation, which can be realized by first applying complex conjugation, and then
applying a unitary transformation. Similarly, to realize a g-unitary, one first applies a
Galois automorphism, and then performs a unitary transformation.

It is worth emphasizing that UG is not a unitary operator except when det(G) = 1. It
is not even a linear operator in general, so it cannot be expressed in a matrix form. The
action of UG on a vector in the Hilbert space is

UG |ψ〉 = USg∆(|ψ〉), (3.21)
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where g∆(|ψ〉) denotes the vector obtained by applying g∆ to the components of |ψ〉 in the
standard basis.

Furthermore, g-unitaries are only defined to act on vectors (or matrices) whose compo-
nents belong to the cyclotomic field Q(ω). Because of this restriction, we have to verify
that these added Galois automorphisms can act on the whole Clifford group. Looking at
the representation in (A.35) one might ask whether the overall factor eiφ/

√
p is in the

cyclotomic field. Let us recall the Gaussian sum [115]

p−1∑
x=0

ωx
2

=
∑
x∈Q

ωx −
∑
x∈N

ωx =

{√
p if p = 4k + 1

i
√
p if p = 4k + 3.

(3.22)

It follows that the factors eiφ/
√
p in (A.35) belong to the cyclotomic field, and therefore

so do the entries of the symplectic unitaries US. We are now allowed to use symplectic
unitaries along with the Galois automorphisms of the cyclotomic field extension to represent
GL(2,Fd). This representation is faithful, as shown in the following lemma.

Lemma 3.1. Let the dimension d = p be an odd prime and let G1 and G2 be any two
elements of GL(2,Fd). It then holds that

UG1UG2 = UG1G2 . (3.23)

Proof. Explicitly, let

G1 =

(
α1 β1

γ1 δ1

)
G2 =

(
α2 β2

γ2 δ2

)
, (3.24)

and let us write them in the same form as (3.16):

G1 = S1K1 G2 = S2K2. (3.25)

Note that K1 and K2 are short notations for K∆1 and K∆2 . Then we can write

G1G2 = S1K1S2K2 = S1(K1S2K
−1
1 )K1K2, (3.26)

where

K1S2K
−1
1 =

(
α2 β2∆−1

1

γ2∆1 δ2

)
, (3.27)
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is symplectic and is therefore represented by a symplectic unitary UK1S2K
−1
1

. On the other
hand, in the g-unitary representation we have

UG1UG2 = US1g1(US2g2) = US1g1(US2)g1g2, (3.28)

where g1 and g2 are short notations for g∆1 and g∆2 . From (3.22) it follows that

g1(eiφ/
√
p) =

{
eiφ/
√
p if ∆1 ∈ Q

−eiφ/√p if ∆1 ∈ N
(3.29)

In addition to the fact that l(−β∆−1
1 ) = l(−β)l(∆−1

1 ), which equals to l(−β) if ∆1 ∈ Q,
and −l(−β) if ∆1 ∈ N, and in view of the representation given in (A.35), we obtain

g1(US2) = UK1S2K
−1
1
. (3.30)

Given that the representation of SL is faithful, (3.28) can be rewritten as

UG1UG2 = US1UK1S2K
−1
1
g1g2 = US1(K1S2K

−1
1 )K1K2

= UG1G2 (3.31)

as desired.

Remark. We want to remind that the action of g-unitaries is restricted to vectors in the
Hilbert space whose components belong to the cyclotomic field Q(ω). Although this set is
dense within the Hilbert space, one should not be tempted to play the usual trick of taking
limits because these transformations are not continuous, as will be demonstrated below.
The good news, however, is that this restricted subset of the Hilbert space g-unitaries can
act on includes all MUB vectors, since the components of the standard basis vectors are in
the field, and since every other MUB vector can be obtained from the standard basis by a
Clifford unitary, whose entries are also in the field. It also includes all vectors that can be
obtained from the standard basis by applying a larger set of transformations known as the
Clifford hierarchy, which is large enough for universal quantum computation [116].

The Hilbert space norm is preserved by g-unitaries only if it is rational, which need not
always be the case. This means that g-unitaries are wildly discontinuous. As an example,
let us consider the g-unitary consisting of only the Galois automorphism g2 : ω 7→ ω2 in
dimension d = 5, and its action on the (unnormalized) vector

|ψ〉 =


ω2 + ω3

1

1

1

1

 → g2(|ψ〉) =


ω4 + ω

1

1

1

1

 . (3.32)
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Both of these are real vectors. So they can be approximated by rational vectors, which are
left invariant by the g-unitary. However |ψ〉 has clearly been moved quite a distance in the
Hilbert space by g2.

G-unitaries do, however, preserve a norm that is the product of the scalar product of
two vectors with all its d − 2 Galois conjugates [117]. In mathematics this is called the
field norm. It is unknown whether the field norm has any physical meaning in this case.

3.3.2 In odd prime power dimensions

Now that the concept of g-unitaries has been explained, we move on to the general case of
odd prime power dimensions d = pn. In this case, complications come from the fact that
the finite field Fd of order d no longer contains only ordinary integers like the prime field
Zp. Materials on finite fields (see Appendix A.1.4) and on the Galoisian Weyl-Heisenberg
and Clifford groups in odd prime power dimensions (see Appendix A.2.2) will be assumed.

We start with the first complication that the definition of a g-unitary UG in (3.20) no
longer makes sense in general. This is because one cannot define the Galois automorphism
gx : ω 7→ ωx for all elements x ∈ Fd: one can only raise ω to a power which is an integer, not
an abstract element of a finite field. In order to still use (3.20), we now have to impose a
restriction on G, namely its determinant ∆ must belong to the ground field Fp (i.e. integers
mod p). All such G form a subgroup that we will denote by GLp(2,Fd).

Definition. GLp(2,Fd) is defined to be the subgroup of GL(2,Fd) consisting of 2 × 2
matrices whose (non-zero) determinants are in the ground field Fp.

We can now safely use (3.20) to define UG for any G ∈ GLp(2,Fd). Hence the case
of prime power dimensions (where the power n > 1) differs from the prime dimensional
case in that the g-extended Clifford group only includes a proper subgroup of GL. Another
difference is that we should now use the more general formula (A.41) for the unitary
representation US of a symplectic S:

S =

(
α β

γ δ

)
→ US =

{
l(α)

∑
x∈Fd ω

tr(αγx2/2) |αx〉 〈x| if β = 0

h(β)
∑

x,y∈Fd ω
tr( δx

2−2xy+αy2

2β
) |x〉 〈y| if β 6= 0,

(3.33)

where we have defined h(x) = (−i)−n(p+3)/2l(−x)/
√
d.

The main result of this section is the faithfulness of the above representation described
by the following theorem.
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Theorem 3.2. Let the dimension d = pn be an odd prime power, where n is odd, and let
G1 and G2 be any two elements of GLp(2,Fd). Then it holds that

UG1UG2 = UG1G2 . (3.34)

Proof. The proof is similar to the proof of Lemma 3.1, so we will not repeat the set-up
here. The only thing we need to do is to re-verify (3.30):

g1(US2) = UK1S2K
−1
1
. (3.35)

First, recall the basic fact that Fp = {x ∈ Fd : xp = x}. Let θ be a primitive element of
Fd. One can then show that

θp ≡ θ1+p+···+pn−1

(3.36)

belongs to Fp by verifying that θpp = θp, and that θp is a primitive element of Fp. We can
then write ∆1 = θup , and g1 = guθp , for some integer 0 ≤ u ≤ p − 2. Note that ∆1 is a
quadratic residue in Fp if and only if u is even.

Since h(β)2 is rational while h(β) is irrational, and since gθp generates the Galois group,
we must have

gθp (h(β)) = −h(β), (3.37)

which implies
g∆1 (h(β)) = (−1)uh(β). (3.38)

As n is odd, we can use Lemma 1 in [30] to write

g∆1 (h(β)) = h(∆1β). (3.39)

Since l(α) is either 1, -1, or 0, and is therefore rational, it is invariant under g∆1 . Thus

g∆1US2 =

{
l(α)

∑
x∈Fd ω

tr(∆1αγx2/2) |αx〉 〈x| if β = 0

h(∆1β)
∑

x,y∈Fd ω
tr(

∆1(δx2−2xy+αy2)
2β

) |x〉 〈y| if β 6= 0,
(3.40)

which validates (3.35).

Remark. It can be seen from the proof above that when n is even, we have UG1UG2 = ±UG1G2 .
The representation in this case is therefore ‘‘close to faithful’’ in a sense.
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3.4 Arithmetic of g-unitaries

This section provides some basic arithmetic of g-unitaries. The derivations are straight-
forward, but they might help readers better understand how to handle these non-linear
g-unitary operators. In any case, it would be useful to have a list of formulae that we can
readily use in later calculations. Throughout this section we will always use the notation
UG to refer to the g-unitary representing an element G ∈ GLp(2,Fd)

G =

(
α β

γ δ

)
α, β, γ, δ ∈ Fd ∆ ≡ det(G) ∈ Fp\{0}, (3.41)

and decompose UG into a Galois automorphism g∆ followed by a symplectic unitary US

UG = USg∆, (3.42)

where S = GK∆−1 is an element of SL(2,Fd), with K∆ being a matrix of determinant ∆ as
defined in (3.17). Where there is no ambiguity, we will drop the subscript ∆ and write g for
the Galois automorphism for short. It should also be noted that if we omit the parentheses
specifying what g acts on, it should be understood that g acts on everything to its right in
the expression, for example:

g1Ag2B = g1(Ag2(B)) = g1(A)g1g2(B). (3.43)

3.4.1 Action on vectors and matrices

We know how a Galois automorphism g∆ transforms a number in the cyclotomic field Q(ω):
it replaces every p-th root of unity ω by ω∆ in that number’s decomposition into powers of
ω. For a matrix (or a vector), we require all its entries (or components) in the standard
basis to be in the cyclotomic field in order to define the action of a Galois automorphism
on it. When this condition is met, the action is defined entry-wise:

(g(A))j,k = g(Aj,k). (3.44)

Accordingly, the action of a g-unitary on a matrix (or a vector) A is:

UGA = USg(A). (3.45)
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3.4.2 Composition and power

Let UG1 and UG2 be two g-unitaries. We want to find out the resulting action of applying
them one after another. Since these are operators, it is the safest practice to apply them to
an arbitrary matrix A

UG1UG2A = US1g1US2g2A

= US1g1(US2g2(A))

= US1g1(US2)g1(g2(A)),

(3.46)

and remove A in the end to get

UG1UG2 = US1g1(US2)g1g2. (3.47)

Similarly, the composition of more than two g-unitaries is given by

UG1UG2 · · ·UGk = US1g1(US2)g1g2(US3) · · · g1g2...gk. (3.48)

Setting all g-unitaries identical in the previous equation results in the power formula

Uk
G = USg(US) · · · gk−1(US)gk. (3.49)

If the dimension d is a prime number, we have (by Fermat’s little theorem)

∆d−1 = 1 (mod d). (3.50)

This means gd−1
∆ : ω 7→ ω∆d−1

= ω is the identity mapping, and therefore

Ud−1
G = USg(US) · · · gd−2(US) (3.51)

is an ordinary unitary.

3.4.3 The inverse

The inverse of a g-unitary UG = USg is given by

U−1
G = g−1U−1

S = g−1(U−1
S )g−1, (3.52)

where the inverse of a Galois automorphism g∆ is given by

g−1
∆ = g∆−1 , (3.53)
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so that g∆g
−1
∆ = g−1

∆ g∆ is the identity mapping. One can prove (3.52) by verifying that
U−1
G UG = UGU

−1
G = 1.

When the power n is odd, the representation of UG is faithful (see Theorem 3.2) and
another expression for the inverse of UG is

U−1
G = UG−1 , (3.54)

because UGUG−1 = UGG−1 = 1.

3.4.4 Conjugate transposition and the adjoint

Since the action of a Galois automorphism g on a vector or matrix A is defined entry-wise,
it commutes with the transposition on A. Meanwhile, the Galois group for the cyclotomic
extension is abelian, therefore g also commutes with all other Galois automorphisms in the
group including the complex conjugation. This means

(g(A))† = g(A†). (3.55)

The conjugate transposition of UGA, where A is a matrix or a vector over the cyclotomic
field Q(ω), can be calculated as follows:

(UGA)† = (USg(A))†

= (g(A))†U †S

= g(A†)U †S,

(3.56)

or in Dirac notation, when applied to state vectors:

(UG |ψ〉)† = g(〈ψ|)U †S. (3.57)

Definition. As in [71], we define the adjoint of a g-unitary UG to be the unique operator
U †G such that

〈UGx, y〉 = g(〈x, U †Gy〉) ∀x, y ∈ Q(ω)d. (3.58)

This is a natural generalization from the case of anti-linear operators [71], where their
adjoints are defined so that 〈Lx, y〉 = (〈x, L†y〉)∗, with ∗ denoting complex conjugation. It
turns out that the adjoint of a g-unitary UG is exactly its inverse, since

g〈x, U−1
G y〉 = g〈x, g−1U †Sy〉

= g (〈x|) g(g−1U †S |y〉)
= g (〈x|)U †S |y〉
= 〈UGx, y〉.

(3.59)
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If d = pn and n is odd, we further have

U †G = U−1
G = UG−1 . (3.60)

3.4.5 Conjugate action on matrices and displacement operators

Let A be an arbitrary d× d matrix over the cyclotomic field Q(ω). Its conjugation by a
g-unitary UG is given by

UGAU
−1
G = USg(A)U−1

S , (3.61)

which can be verified straightforwardly.

Next, we are going to calculate the conjugation of a displacement operator Dp by UG.
We will show that

UGDpU
−1
G = DGp. (3.62)

We first need to know how a Galois automorphism acts on Dp. From the explicit form of
the shift and the phase operator, one can see that

g∆(X) = X g∆(Z) = Z∆, (3.63)

which implies

g∆(Dp) = g(ω
p1p2

2 )g(Xp1)g(Zp2)

= ω
∆p1p2

2 Xp1Z∆p2

= DK∆p.

(3.64)

Therefore

UGDpU
−1
G = USgDpg

−1U−1
S

= USg(Dp)g(g−1U−1
S )

= USDK∆pU
−1
S

= DSK∆p

= DGp.

(3.65)

Conjugations of phase point operators Ap used in the discrete Wigner function can be
similarly calculated. Recall their definition

Ap = DpA0D
†
p, (3.66)
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where

A0 =
1

d

∑
p

Dp. (3.67)

It is clear that A0 is left invariant by the conjugation:

UGA0U
−1
G =

1

d

∑
p

DGp = A0. (3.68)

Other phase point operators Ap are transformed into

UGApU
−1
G = (UGDpU

−1
G )(UGA0U

−1
G )(UGD

†
pU
−1
G )

= DGpA0D
†
Gp

= AGp.

(3.69)

3.5 Geometric interpretation

3.5.1 Complementarity polytopes

In this section we would like to introduce a class of geometrical objects closely related to
MUBs that can help explain the role of g-unitaries from a geometrical perspective. These
are called complementarity polytopes and they have been well studied in [118]. The space
under consideration here is called the Bloch space, which will be defined shortly.

We start from the set of d× d Hermitian matrices of unit trace. This set includes all
quantum states represented by density matrices, and it also contains matrices that are not
quantum states, namely those that are not positive semidefinite. For any element H in the
set, we define the Hermitian traceless matrix Ḣ by

Ḣ = H − 1/d. (3.70)

We obtain the set of all traceless Hermitian matrices. This new set is clearly closed under
addition and multiplication by real scalars. It therefore forms a real vector space, with the
zero element (the origin) corresponding to the maximally mixed state 1/d, as can be seen
from (3.70).
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Definition. The aforementioned vector space will be referred to as the Bloch space. A
point (which can also be considered as a vector) Ḣ in the Bloch space corresponds to a
Hermitian operator H of unit trace on the Hilbert space via equation (3.70). The density
operators on the Hilbert space form a convex body in the Bloch space, which will be called
the Bloch body.

Considered as a real vector space, the Bloch space has dimensionality equal to the
number of real parameters needed to describe a d by d traceless Hermitian matrix, which
can be worked out to be d2 − 1. The Bloch body, restricted by positive semidefiniteness,
is also (d2 − 1)-dimensional. For example, for the qubit case (d = 2), the Bloch body of
quantum states is a 3-dimensional ball, which is commonly called the Bloch ball. In higher
dimensions, the Bloch body is no longer a ball.

Next, we use the standard Hilbert-Schmidt inner product to define a dot product for
two vectors Ḣ1 and Ḣ2 in the Bloch space by

Ḣ1 · Ḣ2 ≡
1

2
Tr(Ḣ1Ḣ2) =

1

2

(
Tr(H1H2)− 1

d

)
. (3.71)

The Bloch space therefore can be thought of as a (d2 − 1)-dimensional Euclidean space,
with the Euclidean distance between any two points Ḣ1 and Ḣ2 given by

D(Ḣ1, Ḣ2) =

√
1

2
Tr
(
Ḣ1 − Ḣ2

)2

=

√
1

2
Tr (H1 −H2)2 . (3.72)

Remark. Pure quantum states are the extreme points of the Bloch body. They all lie on
the surface of a sphere of radius

√
(d− 1)/2d centered at the origin. However, not every

point on this sphere corresponds to a quantum state, except when d = 2, in which case the
sphere is called the Bloch sphere and it consists entirely of pure states, while the interior of
the Bloch ball consists of all mixed states.

We also want to note that if H1 and H2 are density matrices of two MUB vectors in
two distinct bases, then the vectors Ḣ1 and Ḣ2 in the Bloch space are orthogonal to each
other, as their dot product can be seen to vanish.

In the Bloch space, one can construct a regular (d2 − 1)-dimensional simplex, consisting
of d2 vertices labeled by Ȧu, where the index u = (u1, u2) ∈ F2

d can take d2 values. Since
the dihedral angle of a regular n-simplex is cos−1(n−1) (see [119] for the first general proof,
or [120] for a more elementary calculation), the vertices Ȧu can be chosen so that

Ȧu · Ȧv =

{
d2−1

2d
if u = v

−1
2d

if u 6= v,
(3.73)
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or equivalently in the Hilbert space

Tr(AuAv) =

{
d if u = v

0 if u 6= v.
(3.74)

Eventually, Au will be identified with Wootters’ phase point operators for odd prime
dimensions [121], or kernel operators [122] and displaced parity operators [123] in the more
general case of odd prime power dimensions. But for now we simply use them to define a
regular simplex in the Bloch space. We center the simplex at the origin by imposing the
condition ∑

u

Ȧu = 0 ⇔
∑
u

Au = d1. (3.75)

Each facet (a hyperplane containing d2 − 1 vertices) of the simplex that does not contain
vertex Ȧu for some u consists of all points Ṁ such that Tr(AuM) = 0.

What we have so far is a regular simplex centered at the origin created from d2 vertices
in the Bloch space. We are now going to impose a combinatorial structure on it, using
what is called a finite affine plane. From now on, we will assume that the dimension d = pn

is a prime power, because that is when affine planes are guaranteed to exist.

Definition. A finite affine plane of order d consists of d2 points grouped into subsets that
are called lines. The grouping is done in such a way that any two points belong to a unique
line, and for every point not belonging to a line there exists a parallel line (two lines are
called parallel if they are disjoint subsets of points) containing that point.

The existence or non-existence of affine planes in general is an open problem. However,
there are some cases for which it has been solved. Bruck-Ryser theorem states that if d = 1
or 2 mod 4, and d is not the sum of two squares, then affine planes of order d cannot exist
[124]. The existence for d = 10 has also been ruled out [125, 126]. Here, we are interested
in the case d = pn is a prime power, when it is known that affine planes exist and that they
have the following properties [127]:

1. Each line contains exactly d points.

2. Each point belongs to exactly d+ 1 lines.

3. There are d+ 1 sets of d parallel lines, which totals to d(d+ 1) lines.
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The sets of parallel lines in the last property mentioned above will be called pencils of
lines, or just pencils for short. An easy way to visualize a finite affine plane is by associating
it with the vector space F2

d (see Figure 3.1 for an example when d = 3). Although this
coordinatization is not required for the construction of affine planes in general, we choose
to stick with it here. Particularly, we will use the index b ∈ {Fd ∪∞} to label the d+ 1

Figure 3.1: Example of an affine plane of order 3 with 9 points and 12 lines.
The points are positioned by their coordinates in Z2

3. The lines are grouped
into 4 pencils, each containing 3 parallel lines marked by the same color. The
orange pencil (solid lines) is labeled by ∞ since they have a ‘‘slope’’ of ∞.

pencils, where the symbol ∞ refers to the pencil of ‘‘vertical’’ lines. Lines in the b-th pencil
are labeled by the index v ∈ Fd, and are denoted by lbv (the reason behind this labeling is
that the line lbv will later be made to correspond to the v-th MUB vector in the b-th basis).
The affine plane’s points are labeled by u = (u1, u2) ∈ F2

d.

We associate each line in the affine plane with an operator P
(b)
v defined to be the average

of all phase point operators Au associated with points on that line:

P (b)
v =

1

d

∑
u∈lbv

Au. (3.76)

One can verify that P
(b)
v is a Hermitian matrix of unit trace, so it corresponds to a point in

the Bloch space. In view of (3.75) and the fact that there are d + 1 lines intersecting at
each point, we can invert the above equation to get

Au =
∑
lbv3u

P (b)
v − 1, (3.77)
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which contains a summation of all operators P
(b)
v representing lines going through the point

u represented by Au. Using the properties of the affine plane, we can then derive

 

00A

 

0
0P

Figure 3.2: Illustrations of line operators and phase point operators for d = 3.

To the left, the operator P
(0)
0 corresponding to the line is given by the equation

P
(0)
0 = (A00 +A10 +A20)/3. To the right, the intersection point of four lines

corresponds to the phase point operator A00 = P
(0)
0 + P

(1)
0 + P

(2)
0 + P

(∞)
0 − 1.

Note that both the lines and the points in the affine plane correspond to points
in the Bloch space.

Tr
(
P (b1)
v1

P (b2)
v2

)
=


1 if b1 = b2 and v1 = v2 (identical lines)

0 if b1 = b2 and v1 6= v2 (parallel lines, no common point)
1
d

if b1 6= b2 (intersecting lines, one common point).

(3.78)

This means that any pencil of d parallel lines (in the affine plane) forms a regular simplex
spanning a (d− 1)-dimensional hyperplane in the Bloch space. There are d + 1 of these
hyperplanes. They are orthogonal to each other and they span the whole Bloch space.

If we take the convex hull of d(d+ 1) vertices Ṗ
(b)
v in the Bloch space, we obtain what

is called a complementarity polytope [118]. One can construct complementarity polytopes
in all Euclidean spaces of dimension d2 − 1 for an arbitrary d by splitting the space into
d+ 1 totally orthogonal (d− 1)-dimensional subspaces, placing a regular simplex centered
at the origin in each subspace, and taking the convex hull. The special advantage when d
is a prime power is that we are able to make use of the combinatorics of an affine plane to
inscribe it in a regular simplex. In fact, the phase point operator simplex (whose vertices
are the Ȧu) is not the only simplex we can inscribe the complementarity polytope into. It
is just one out of dd−1 possibilities. Let us consider a vector ~v = (v0, v1, ..., vd−1, v∞) with
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d+ 1 components vb, which are elements of Fd. There are dd+1 such vectors. For each ~v we
define a generalized phase point operator

A~v ≡
∑
b

P (b)
vb
− 1. (3.79)

The difference between this equation and (3.77) is that here no assumption is made about
the lines labeled by b and vb, whereas the lines in (3.77) are required to intersect at the
point u. If we do this for each ~v, we obtain dd+1 generalized phase point operators A~v.
They clearly have unit trace, and for any vectors ~v and ~v′ they satisfy

Tr (A~vA~v′) =
∑
b

Tr
(
P (b)
vb
P

(b)

v′b

)
− 1. (3.80)

The dd+1 vectors ~v can be grouped into dd−1 groups, each containing d2 vectors, in such a
way that any two vectors ~v and ~v′ within a group agree at exactly one component (this is
a non-trivial combinatorial problem, see section 4 in [128] for how to do it). One can see
from the previous equation that for any ~v and ~v′ belonging to the same group

Tr(A~vA~v′) =

{
d if ~v = ~v′

0 if ~v 6= ~v′.
(3.81)

So the points Ȧ~v in each group form the vertices of a regular (d2 − 1)-simplex, much like
the phase point operators Ȧu do in (3.74), resulting in dd−1 simplices. Moreover, we have

Tr
(
A~vP

(b)
v

)
=

{
1 if the b-th component of ~v is v

0 otherwise.
(3.82)

This means for each A~v and two associated parallel hyperplanes defined by the two equations
Tr (A~vH) = 0 and Tr (A~vH) = 1, every vertex Ṗ

(b)
v of the complementarity polytope must

lie on one of the two hyperplanes. The complementarity polytope is therefore confined with
between all such pairs of hyperplanes, hence circumscribed by each of the dd−1 simplices.
We have an illustration for d = 2 (see Figure 3.3), as the Bloch space in this case is
3-dimensional.

3.5.2 The symmetry group of the complementarity polytope

Recall from the geometrical meaning of (3.78) that a complementarity polytope consists
of d+ 1 simplices, each of which spans a (d− 1)-dimensional hyperplane, and that these
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Figure 3.3: When d = 2, the Bloch space has 22 − 1 = 3 dimensions and
the Bloch body consisting of all quantum states is a 3-dimensional ball. The
complementarity polytope (green) is inscribed in 22−1 = 2 simplices. It is a
regular octahedron with 2 · 3 vertices and 23 facets.

hyperplanes are all orthogonal to each other. The symmetry group of the complementarity
polytope is therefore

Sd+1 × Sd × Sd × · · · × Sd ⊂ O(d2 − 1), (3.83)

where Sd is the group of all permutations of the vertices of a (d− 1)-dimensional simplex,
and Sd+1 is the group of all permutations of d+ 1 orthogonal (d− 1)-dimensional planes.
However, we want to impose an extra condition on the complementarity polytope, namely
that its vertices must correspond to pure quantum states. This means the polytope is
inscribed in the convex Bloch body of quantum states. This might sound like a hard task,
but when d is a prime power, a full set of MUBs exists and this could be done by letting
P

(b)
v be the density matrix of the standard MUB vector r in the MUB basis z:

P (b)
v = |e(b)

v 〉〈e(b)
v |. (3.84)

From Wigner’s theorem [4], we know the symmetry group of the Bloch body of quantum
states, ignoring anti-unitaries for the moment, is

U(d)/U(1) ⊂ SO(d2 − 1). (3.85)

Since Clifford unitaries simply transform one MUB vector into another, we deduce that the
intersection of the two symmetry groups in (3.83) and (3.85) contains the Clifford group
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(ignoring overall phases), which, when d is a prime power, can be written as

SL(2,Fd) n F2
d. (3.86)

If we include anti-unitaries, this will lead to the extended Clifford group [30]

ESL(2,Fd) n F2
d. (3.87)

On the other hand, from the combinatorics of an affine plane, we know that the
complementarity polytope can be inscribed into a regular simplex, whose symmetry group
is Sd2 . The intersection of the symmetry group of the polytope and that of the simplex can
be identified by noticing that it must take points to points and lines to lines on the affine
plane. Its elements are therefore affine transformations, and the group is isomorphic to

GL(2,Fd) n F2
d. (3.88)

This is not quite the same as the result in (3.87) that we obtain by considering symmetries
of the complementarity polytope that also preserve the inscribed body of quantum states.
When d is a prime (d > 3), it is g-unitaries that provide all of the extra symmetries. When
d is a prime power, g-unitaries provide only some of the extra transformations, namely
those belonging to the subgroup GLp(2,Fd) of GL(2,Fd), as a g-unitary UG is only defined
for G with det(G) ∈ Fp.

Thus, we come to the conclusion on the geometrical interpretation of g-unitaries: when
their action is restricted to the standard MUB vectors, they are simply rotations in the
Bloch space, just like ordinary unitaries. However, unlike unitary operators, which are
rotations on the whole Bloch body, first of all g-unitaries do not apply to all quantum
states. Then, even on the domain that they do apply, namely Q(ω)d, they are not rotations
on the whole domain due to their wildly discontinuous nature. This interpretation therefore
has a very limited scope.

Remark. Further to the discussion at the end of Section 3.2, we want to note that in odd
prime dimensions the projective group PGL is a subgroup of the group Sd+1 in (3.83), which
permutes the (d− 1)-dimensional hyperplanes corresponding to the bases of the MUB. Let
us recall that elements of GL whose determinant is a quadratic residue do not add anything
to PGL beyond the contribution from SL, as seen from (3.13). When d = 3 mod 4, element
−1 of the field Fd is a quadratic non-residue, so the full set of projective transformations can
be obtained from the extended symplectic group represented by unitary and anti-unitary
operators. When d = 1 mod 4, −1 is a quadratic residue, and we need to include general
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g-unitaries to obtain the full set of projective transformations. In prime power dimension
d = pn, we only obtain all the projective transformations from g-unitaries when n is odd.

Lastly, we want to note that when the vertices of the complementarity polytope are
associated with the standard MUB vectors as in (3.84), there is a special choice for the
phase point operators that takes a rather simple form. When d is odd, one of them is the
parity operator

A0 =
1

d

∑
v∈F2

d

Dv, (3.89)

and the others are simply obtained by acting on the parity operator with the WH group’s
displacement operators

Au = DuA0D
−1
u =

∑
v∈F2

d

ωΩ(u,v)Dv. (3.90)

3.6 Simulating g-unitaries using unitaries

Quantum mechanics teaches us that physical transformations must be unitary: a non-
unitary operator cannot be implemented in any physical system. But that is not to say that
it cannot be simulated in a physical system. Simulations of unphysical transformations can
be useful in fundamental studies in physics, and have in fact been experimentally realized,
for example to study Majorana’s equation where anti-unitaries are involved [129, 130]. The
key technique used in these papers is to separate the real and the imaginary parts of a
quantum state and embed them in a larger Hilbert space. It is worth going through their
simulation of an anti-unitary for a qubit, as it will help make the idea transparent. Then,
we will propose a scheme for simulating g-unitaries in any odd prime power dimension.

Let Ū be an anti-unitary, which can always be written as

Ū = UK, (3.91)

where U is an ordinary 2× 2 unitary and K stands for complex conjugation. Let

|ψ〉 =

(
a1 + ib1

a2 + ib2

)
(3.92)

be a quantum state expressed as a vector in the standard basis, where a1, a2, b1, b2 are real
numbers. The action of Ū on |ψ〉 is then

Ū |ψ〉 = UK |ψ〉 = U

(
a1 − ib1

a2 − ib2

)
= U |ψ〉re − iU |ψ〉im . (3.93)
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If we embed |ψ〉 into a Hilbert space twice as large using the following mapping T

(
a1 + ib1

a2 + ib2

)
T−→


a1

a2

b1

b2

 , (3.94)

applying the unitary operator (σz ⊗ U), where σz is a Pauli matrix, to obtain
U 0

0 −U




a1

a2

b1

b2

 =


U |ψ〉re

−U |ψ〉im

 , (3.95)

and finally applying the inverse of the embedding mapping to go back to the original Hilbert
space 

U |ψ〉re

−U |ψ〉im

 T −1

−−→ U |ψ〉re − iU |ψ〉im , (3.96)

we will get the same result as if we have used Ū to act on |ψ〉. Therefore the unphysical
anti-unitary Ū can be effectively simulated by the unitary operator (σz ⊗ U) in a larger
embedding space.

Let us now make the generalization to g-unitaries. Let d = pn be an odd prime power
dimension. Let G be an element of GLp(2,Fd) and let UG be its corresponding g-unitary
written in the usual form

UG = USg∆, (3.97)

where US is unitary, and ∆ = det(G) ∈ Fp. The Galois automorphism g∆ can be thought
of as a permutation on the set {1, ω, ..., ωp−1} leaving 1 invariant and mapping ωk to ω∆k.
We will denote this p× p permutation matrix by σ∆. For any vector |ψ〉 ∈ Q(ω)d, we can
embed it into a dp-dimensional vector space over the rational field Q using the embedding
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mapping T defined as follows:

|ψ〉 =


q

(1)
0 + q

(1)
1 ω + ...+ q

(1)
p−1ω

p−1

q
(2)
0 + q

(2)
1 ω + ...+ q

(2)
p−1ω

p−1

...

q
(d)
0 + q

(d)
1 ω + ...+ q

(d)
p−1ω

p−1

 −→ T (|ψ〉) =



q
(1)
0
...

q
(d)
0
...

q
(1)
p−1
...

q
(d)
p−1


, (3.98)

where q
(k)
j are rational numbers and q

(1)
p−1 = q

(2)
p−1 = ... = q

(d)
p−1 = 0 (we leave them in the

expression as we need to keep track of ωp−1 terms).

It can be seen that by applying the unitary operator (σ∆ ⊗ US) on T (|ψ〉) and then
applying T −1 to get back to the d-dimensional vector space Q(ω)d, we obtain

T −1
(

(σ∆ ⊗ US) T (|ψ〉)
)

= USg∆(|ψ〉). (3.99)

This means that the action of UG can be simulated by the unitary (σ∆ ⊗ US) in the
embedding space using the embedding mapping T as defined.

Remark. We have shown that in principle it is possible to simulate a g-unitary by a physical
unitary operator in a larger Hilbert space. In practice, however, this is extremely difficult
to implement because the embedding mapping T is highly discontinuous: given 2 complex
numbers that are very close to each other, the rational coefficients in their cyclotomic
expansions can be vastly different.

3.7 The MUB-cycling problem

Definition. Given a full set of MUB, a MUB-cycler is an operator whose repeated actions
on any single basis generate all other bases in succession.

Note. Although technically a MUB-cycler is an operator acting on MUB bases in the Hilbert
space, we also call an element G ∈ GL(2,Fd) a MUB-cycler if its representation UG is a
MUB-cycler.
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In even prime power dimensions, unitary MUB-cyclers have been constructed [5, 131]. In
odd prime power dimensions it has been shown that there is no Clifford unitary MUB-cycler
[30]. However, if the dimension equals 3 mod 4, there are MUB-cycling anti-unitaries [30].
Now that we have a notion of Galois-unitaries, we want to see whether they enable us to
solve the MUB cycling problem in cases where ordinary unitary and anti-unitary operators
fail. The quick answer is yes: in odd prime power dimension d = pn where the exponent n
is odd, there exist g-unitaries that cycle through the MUBs. In this section we will provide
a construction for all such operators. For even n we will disprove their existence. These
results will come clear from the theorems to follow.

3.7.1 Suborder and 3 types of GL elements

We first want to introduce the notion of the suborder of a GL element. There are d+1 bases
in a full set of MUBs in a prime power dimension d. In order for a projective permutation
of the bases to cycle through all of them, we need an element of PGL (see Section 3.2)
with order d+ 1, or equivalently an element of GL with an ‘‘effective order” of d+ 1, by
which we mean that we only care about its permutation on the bases and neglect its action
on individual vectors within each basis. To explain this more precisely let us consider an
element G ∈ GL(2,Fd) and its m-th power expressed as:

G =

(
α β

γ δ

)
, Gm =

(
αm βm

γm δm

)
. (3.100)

It follows from the expression for the Möbius transformation (3.11) that UGm takes the
basis labelled by b = 0 to basis b′ = βm/δm if δm 6= 0, and to basis b′ =∞ if δm = 0. So if
βm = 0, basis b = 0 will be brought back to itself if repeatedly acted on by UG for m times.
We can now define the suborder of G as follows.

Definition. The suborder m of G is the smallest positive integer for which βm = 0.

Remark. The suborder m of G need not be equal to the order of G because although UGm
brings a MUB basis back to itself, it might permute the vectors within the basis. In general,
m is a factor of the order of G (hence the name suborder). Following Lemma 3.4, we will
see that the smallest positive integer m for which Gm is proportional to the 2× 2 identity
matrix is an equivalent definition of the suborder.

What we can say about the suborder of a GL element turns out to depend crucially on
the nature of its eigenvalues. Let G be an element of GL(2,Fd) with trace t and determinant
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∆ 6= 0. The eigenvalues of G are roots of the characteristic polynomial x2 − tx + ∆ = 0
and are given by

λ± = (t±
√
t2 − 4∆)/2 . (3.101)

If t2 − 4∆ is zero or a quadratic residue, i.e. it has a non-zero square root in Fd, then λ±
belong to the field Fd. Otherwise, the eigenvalues do not belong to Fd, but they are still
well-defined and they can be included in the extension field Fd2 . To deal with these cases,
it is convenient to classify GL elements into three types, as summarized in Table 3.2.

Type Definition in terms of t and ∆ Equivalent definition

1 t2 − 4∆ is a quadratic residue λ± ∈ Fd, λ+ 6= λ−

2 t2 − 4∆ is a quadratic non-residue λ± /∈ Fd, λ+ 6= λ−

3 t2 − 4∆ = 0 λ± = t/2 ∈ Fd

Table 3.2: A classification of GL elements into three types, among which only
type 2 can include MUB-cyclers, as will be seen in the next section.

3.7.2 Constructing MUB-cyclers

Throughout this section we assume that the dimension d is a prime power of the form
d = pn, where p is an odd prime number.

Lemma 3.3 (Cayley-Hamilton theorem [132] for 2× 2 matrices). If A is a 2× 2 matrix of
trace t and determinant ∆, then

A2 = tA−∆I, (3.102)

where I is the 2× 2 identity matrix.

Proof. One can explicitly calculate A2 to verify that the lemma is true.

Lemma 3.4. If A is a 2× 2 matrix with trace t and determinant ∆, then it holds, for any
integer m ≥ 1, that

Am = smA− sm−1∆I, (3.103)

where the sequence {sm} is defined by the recurrence relation

sm+1 = tsm −∆sm−1, (3.104)
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with s0 = 0 and s1 = 1. Equivalently, sm can be calculated by

sm =

{
(λm+ − λm− )/(λ+ − λ−) if λ+ 6= λ−

mλm−1
+ if λ+ = λ−

(3.105)

where λ± are roots of the characteristic polynomial x2 − tx+ ∆.

Proof. We will prove the lemma by induction. Let us first note that (3.105) is equivalent
to

sm =
m−1∑
i=0

λm−1−i
+ λi− . (3.106)

By definition, s2 = ts1 −∆s0 = t = λ+ + λ−, therefore (3.106) holds for m = 1 and m = 2.
Suppose (3.106) holds for m = 1, 2, ..., up to m = k, then

sk+1 = tsk −∆sk−1 = (λ+ + λ−)
k−1∑
i=0

λk−1−i
+ λi− − λ+λ−

k−2∑
i=0

λk−2−i
+ λi−

=
k−1∑
i=0

λk−i+ λi− +
k−1∑
i=0

λk−1−i
+ λi+1

− −
k−2∑
i=0

λk−1−i
+ λi+1

−

=
k−1∑
i=0

λk−i+ λi− +

(
k∑
i=1

λk−i+ λi− −
k−1∑
i=1

λk−i+ λi−

)

=
k−1∑
i=0

λk−i+ λi− + λk− =
k∑
i=0

λk−i+ λi− ,

(3.107)

which implies that it also holds for m = k + 1, and consequently, for all m ≥ 1.

Equation (3.103) obviously holds for m = 1. Lemma 3.3 implies that it also holds for
m = 2. Suppose it holds for m = 1, 2, ..., up to m = k, then

Ak+1 = AkA = (skA− sk−1∆I)A

= skA
2 − sk−1∆A

= sk(tA−∆I)− sk−1∆A

= (skt− sk−1∆)A− sk∆I
= sk+1A− sk∆I ,

(3.108)

which implies that it also holds for m = k + 1, and consequently, for all m ≥ 1.
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Remark. If A takes the form A =

(
α β

γ δ

)
, we can explicitly rewrite Eq. (3.103) as

Am =

(
smα− sm−1∆ smβ

smγ smδ − sm−1∆

)
, (3.109)

from which it can be seen that if β 6= 0 (for a non-zero determinant, we can always force
β 6= 0 using the canonical form in (3.126) near the end of this section) the suborder of A is
the smallest positive integer m for which sm = 0. For such m, Am is proportional to the
identity matrix.

Theorem 3.5. Let G be an element of GL(2,Fd) with determinant ∆.

1. If G is of type 1, then G has suborder of at most d− 1.

2. If G is of type 2, then G has suborder of at most d+ 1 and satisfies

Gd+1 = ∆I (I is the 2× 2 identity matrix). (3.110)

3. If G is of type 3, then G has suborder of at most d.

Proof. Let λ± be the eigenvalues of G, based upon which we define the sequence {sm} just
as in Lemma 3.4. Although λ± might not be in the field Fd, the sequence {sm} always
is, as seen from the recursive definition in (3.104). Lemma 3.4 implies that if sm = 0 for
some m, then Gm = −sm−1∆I, and therefore the suborder of G is at most m. Let us now
consider specific cases. Facts about finite fields (see Section A.1.4) will be used implicitly.

1. If G is of type 1, then the eigenvalues λ± are in Fd, so

λd−1
+ = λd−1

− = 1 , (3.111)

sd−1 = (λd−1
+ − λd−1

− )/(λ+ − λ−) = 0 , (3.112)

and therefore G has suborder of at most d− 1.

2. If G is of type 2, to include λ± we create an extension field Fd2 from the base field Fd
and the generator j ≡

√
t2 − 4∆. Since (jd)2 = (t2 − 4∆)d = t2 − 4∆ = j2, we have
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jd = ±j. Because j is not in the field Fd we cannot have jd = j, and it therefore
must be the case that jd = −j. As d is odd we have:

λd± =
(t± j)d

2d
=
t± jd

2
=
t∓ j

2
= λ∓ . (3.113)

We then use (3.105) to derive

sd = (λd+ − λd−)/(λ+ − λ−) = −1 , (3.114)

sd+1 =
λd+1

+ − λd+1
−

λ+ − λ−
=
λ+λ− − λ−λ+

λ+ − λ−
= 0 , (3.115)

and therefore
Gd+1 = sd+1G− sd∆I = ∆I . (3.116)

It follows that G has suborder of at most d+ 1.

3. If G is of type 3, then λ± = t/2. It follows from (3.105) that sd = dλd−1
+ = 0, so G

has suborder of at most d.

Lemma 3.6. Let G ∈ GLp(2,Fd), i.e. an element GL(2,Fd) whose determinant ∆ is in
the prime field Fp. Let θ̄ be a primitive element of Fd2 (therefore θ = θ̄d+1 is a primitive
element of Fd). Note that (d− 1)/(p− 1) is an integer, so we can define η ∈ Fd2 as

η ≡ θ̄(d−1)/(p−1) . (3.117)

Then G is of type 2 if and only if it has eigenvalues ηr and ηdr, for some integer r in the
range 0 < r < (p− 1)(d+ 1) that is not a multiple of (d+ 1)/2.

Proof. Assume that G is of type 2, and let λ± /∈ Fd be its eigenvalues. Following (3.113),
we have λd± = λ∓, so we may write

λ+ = θ̄k λ− = θ̄dk (3.118)

for some integer 1 ≤ k ≤ d2 − 1. The assumption that λ± are not elements of Fd implies
that k is not a multiple of d+ 1. The fact that ∆ ∈ Fp means

θ̄pk(d+1) = ∆p = ∆ = θ̄k(d+1) , (3.119)
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or equivalently
θ̄k(p−1)(d+1) = 1 , (3.120)

implying that (d− 1) | k(p− 1). Let r = k(p− 1)/(d− 1), then r is an integer in the range
0 ≤ r ≤ (p− 1)(d+ 1). The eigenvalues can then be re-written as

λ+ = ηr λ− = ηdr . (3.121)

The requirement that λ+ /∈ Fd means

ηr = θ̄r(d−1)/(p−1) /∈ Fd , (3.122)

which is true if and only if r(d− 1)/(p− 1) is not a multiple of (d+ 1), which in turn is
equivalent to r not being a multiple of (d+ 1)/2 because gcd((d− 1)/(p+ 1), d+ 1) = 2.

Conversely, if G has eigenvalues of the form λ+ = ηr and λ− = ηdr, where r is not a
multiple of (d+ 1)/2, then λ± are not in the field Fd, and G is therefore of type 2. One can
further verify that its trace is in Fd and its determinant is in Fp by defining

t ≡ ηr + ηdr ∆ ≡ η(d+1)r (3.123)

and using the facts ηd
2

= η and η(d+1)p = ηd+1 to check that

td = t ∆p = ∆ . (3.124)

Remark. With Lemma 3.6, all type-2 elements of GLp(2,Fd) are now characterized by an
integer r, via their eigenvalues. In the next theorem, we will pin down exactly which values
of r correspond to MUB-cyclers when they exist.

Theorem 3.7. Let G ∈ GLp(2,Fd) be of type 2 and let the integer r be as in the statement
of Lemma 3.6.

1. When n is even, G has suborder of at most (d+ 1)/2.

2. When n is odd, G has suborder d+ 1 if and only if gcd(r, d+ 1) = 1.

Proof. Let λ± be the eigenvalues of G and the sequence sm be as defined in Lemma 3.4.
We recall that the suborder of G is the smallest positive integer m for which sm = 0, which
in this case is equivalent to λm+ = λm− , as G is of type 2 and its eigenvalues are distinct.
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1. When n is even, (d− 1)/(p− 1) = 1 + p+ . . .+ pn−1 is an even integer, so (d− 1)/2
is a multiple of (p− 1). It then follows from (3.120) that

θ̄k(d−1)(d+1)/2 = 1 , (3.125)

which implies λ
(d+1)/2
+ = λ

(d+1)/2
− , or s(d+1)/2 = 0. Therefore G has suborder of at most

(d+ 1)/2 and cannot be a MUB-cycler.

2. When n is odd, (d− 1)/(p− 1) is an odd integer. It follows from this, and the fact
that gcd(d+ 1, d− 1) = 2, that (d− 1)/(p− 1) is co-prime to d+ 1. We have λm+ = λm−
if and only if ηm(d−1)r = 1, which in turn is true if and only if mr(d− 1)/(p− 1) is a
multiple of d+ 1. Therefore G has suborder d+ 1 if and only if r is co-prime to d+ 1.

In summary, in this section we have proved the non-existence of MUB-cyclers when
the exponent n is even. When n is odd, we have identified all MUB-cycling elements in
GL(2,Fd) according to the characteristics of their eigenvalues. Lastly, we want to provide
an explicit form for these MUB-cyclers. The proof in the Appendix of [114] can be extended
to show that for any element in G ∈ GL(2,Fd) with trace t and determinant ∆, where
t2 − 4∆ 6= 0, there exists S ∈ SL(2,Fd) such that

G = SGcS
−1 Gc =

(
0 −∆

1 t

)
, (3.126)

where we call Gc the canonical form of G. Therefore, an element of GL(2,Fd) is a MUB-
cycler if and only if it is conjugate to Gr

0 where

G0 =

(
0 −η(d+1)

1 η + ηd

)
, (3.127)

η is defined as in (3.117), and r is an integer co-prime to d+ 1. Note that the order of G0

is (p− 1)(d+ 1) because this is the smallest integer r such that ηr and ηdr, the eigenvalues
of Gr

0, are both equal to 1.

Remark. It follows that anti-symplectic MUB-cyclers exist if and only if the dimension
d = 3 (mod 4), a fact already shown in [30]. This is because Gr

0 is anti-symplectic if and
only if ηr(d+1) = −1, which is true if and only if r is an odd multiple of (p− 1)/2. If d = 1
(mod 4) then (p − 1)/2 is even, so no multiple of (p − 1)/2 is co-prime to d + 1. But if

d = 3 (mod 4) one can see that (p− 1)/2 is co-prime to d+ 1, implying that G
r(p−1)/2
0 is an

anti-symplectic MUB-cycler for every r co-prime to d+ 1.
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3.8 Eigenvectors of MUB cyclers

One can always find eigenvalues and eigenvectors of an ordinary unitary operator by
diagonalizing it. However when it comes to g-unitaries, the situation is tricker. When
dealing with g-unitaries, one has to be extra careful because much of our intuition about
ordinary unitaries can fail for g-unitaries. For example, a scalar multiplication of an
eigenvector of a g-unitary can change its eigenvalues, resulting in the possibility of a
g-unitary having infinitely many eigenvalues (see the example below). Or in other cases, a
g-unitary might not have any eigenvector at all (see the example below). We will start
this section with an example of anti-unitaries, and then proceed to the analysis of the
eigenvectors of a special kind of g-unitaries, namely the MUB-cyclers.

Example. Let UA be an anti-unitary over the complex field C, which can be expressed
as UA = UK, where U is a unitary and K denotes complex conjugation. We notice that
U2
A = UKUK = UŪ , where Ū denotes the complex conjugate of U , is a unitary. Let |φ〉

be an eigenvector of UA with the eigenvalue λ:

UA |φ〉 = λ |φ〉 . (3.128)

It then follows that

U2
A |φ〉 = UKλ |φ〉 = λ∗UK |φ〉 = |λ|2 |φ〉 . (3.129)

Since U2
A is unitary, |λ|2 must be of modulus 1, and therefore λ = eiθ is a phase. There are

two things that follow from this. First of all, let eiφ be any phase, then

UA(eiφ |φ〉) = e−iφλ |φ〉 = ei(θ−2φ)eiφ |φ〉 (3.130)

so eiφ |φ〉 is an eigenvector of UA with eigenvalue ei(θ−2φ). This means that UA has a
continuum of eigenvalues, whose eigenvectors only differ by an overall phase, and that
we can ensure the eigenvalue is 1 by adjusting the phase. Secondly, since |λ|2 is real and
positive, we must have |λ|2 = 1. Therefore |φ〉 is an eigenvector of the unitary U2

A with
unit eigenvalue. If U2

A does not have any eigenvalue equal to 1, then UA cannot have any
eigenvector at all. For a concrete example in C2 consider the anti-unitary UA = UK where

U =
1√
2

(
1 1

−1 1

)
, U2

A = UŪ =

(
0 1

−1 0

)
. (3.131)

The eigenvalues of U2
A are ±i, therefore UA has no eigenvector.
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Wigner has characterized the eigenvectors of anti-unitaries [133]. It is not straightforward
to generalize his results to g-unitaries. However, by restricting ourselves to a special kind
of g-unitaries, namely those that have the MUB-cycling property, we are able to provide a
complete characterization of their eigenvalues and eigenvectors. The results are summarized
in Theorem 3.8, which states that MUB-cycling g-unitaries always have eigenvectors, which
are unique up to multiplication by a scalar, and that we can always find an eigenvector
with unit eigenvalue.

Let us first set up some notations and definitions. For the rest of this section, we will
always assume that the dimension d = pn is an odd prime power where the exponent n
is odd. G is a fixed element of GLp(2,Fd) with eigenvalues ηr and ηrd (as in Lemma 3.6),
where r is co-prime to d + 1 so that G is a MUB-cycler (by Theorem 3.7). We will use
t = ηr + ηrd and ∆ = ηr(d+1) to denote the trace and determinant of G, respectively.

Definition. If we define the multiplicative order of G to be the smallest positive integer
m for which ∆m = 1, then it follows from (3.117) that θ̄mr(d+1)(d−1)/(p−1) = 1 (where θ̄ is a
primitive element of Fd2), which is true if and only if mr is a multiple of p− 1. Since r is
odd because it is co-prime to d+ 1, and p− 1 is even, m must be even. We will therefore
use 2m0 to denote the multiplicative order of G.

Remark. It then follows that ∆m0 = ±1. Since 2m0 is the smallest positive integer for
which ∆2m0 = 1, we cannot have ∆m0 = 1, and therefore it must be the case that

∆m0 = −1 . (3.132)

This implies that G2m0 is a symplectic matrix and Gm0 is an anti-symplectic matrix, and
correspondingly, U2m0

G = UG2m0 is unitary and Um0
G = UGm0 is anti-unitary.

Definition. If {|x〉} denotes the standard basis, then the parity operator A is defined as

A =
∑
x

|−x〉 〈x| . (3.133)

Alternatively, A can also be defined from the unitary representation of the (unique) element
of order 2 in the symplectic group:

A = (−1)(p−1)/2UP where P =

(
−1 0

0 −1

)
. (3.134)

Theorem 3.8. Let d = pn be an odd prime power, where the exponent n is odd, and let
G ∈ GLp(2,Fd) be a MUB cycler. Let Q(ω)d be the subspace of the Hilbert space consisting
of all vectors whose components (in the standard basis) belong to the cyclotomic field Q(ω).

72



1. There exists a non-zero |ψ〉 ∈ Q(ω)d such that UG |ψ〉 = |ψ〉.

2. |φ〉 ∈ Q(ω)d is an eigenvector of UG if and only if |φ〉 = µ |ψ〉 for some µ ∈ Q(ω).

3. The eigenspace of U2m0
G with eigenvalue 1 is one-dimensional and spanned by |ψ〉.

4. |φ〉 is an eigenvector of the parity operator with eigenvalue (−1)(p−1)/2.

Proof. The theorem in an immediate consequence of the following lemmas.

Lemma 3.9. With notations and definitions as above, suppose |φ〉 ∈ Q(ω)d is an eigen-
vector of UG with eigenvalue λ ∈ Q(ω), i.e.

UG |φ〉 = λ |φ〉 , (3.135)

then it holds that
U2m0
G |φ〉 = |φ〉 . (3.136)

Proof. Applying UG to (3.135) repeatedly we will obtain

Um0
G |φ〉 = κ |φ〉 , (3.137)

where
κ = λg∆(λ) . . . gm0−1

∆ (λ) . (3.138)

Then we apply the anti-unitary Um0
G to (3.137) to obtain

U2m0
G |φ〉 = κ∗κ |φ〉 , (3.139)

where κ∗ is the complex conjugate of κ and U2m0
G is unitary. As n is odd, by Theorem 3.2

the representation of GLp(2,Fd) is faithful, and therefore

U
2m0(d+1)
G = UG2m0(d+1) = 1 . (3.140)

It then follows that (κ∗κ)d+1 = 1, which implies κ∗κ = 1 because it has to be a real positive
number. Hence, we conclude that |φ〉 is an eigenvector of U2m0

G with unit eigenvalue.

Lemma 3.10. With notations and definitions as above, let S1 be the eigenspace of U2m0
G

corresponding to eigenvalue 1, then S1 is one-dimensional.
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Proof. To determine the dimensionality of S1, we will calculate the trace of the projection
operator onto that subspace. We first note the following linear algebraic fact. If U is a
unitary of order k, and τ is an eigenvalue of U (τ therefore has to be a k-th root of unity),
then the projection operator onto the eigenspace corresponding to τ is given by

Pτ = (1 + τ−1U + . . .+ τ−(k−1)Uk−1)/k . (3.141)

One can prove this by verifying that P 2
τ = Pτ so that Pτ is a projection operator, and that

Pτ projects any vector into an eigenvector with eigenvalue τ and leaves all eigenvectors
with eigenvalue τ invariant. Particularly in our case, the projection operator onto S1 is
given by

P1 =
1

d+ 1

d∑
u=0

Uu
G2m0 , (3.142)

and the dimensionality of S1 is therefore

dimS1 = Tr(P1) =
1

d+ 1

d∑
u=0

Tr (Uu
G2m0 ) . (3.143)

To calculate these traces we make use of a result from Theorem 5 in Ref. [30], applicable to
any symplectic S ∈ SL(2,Fd), namely

Tr(US) = l(t− 2) , (3.144)

where t = Tr(S) and l(x) is the Legendre symbol defined in (A.36). Since the eigenvalues
of G are ηr and ηdr, we have

Tr(G2m0u) = η2rm0u + η2drm0u

= η2rm0u + η−2rm0u

= (ηrm0u − η−rm0u)2 + 2 ,

(3.145)

where in the second step we use the fact that ∆2m0 = η2rm0η2drm0 = 1. Note that
Tr(G2m0u) = 2 if and only if η2rm0u = 1, or equivalently, 2rm0u is a multiple of (p−1)(d+1).
Since 2m0 is the order of ∆, which is an element of a group of order p− 1, 2m0 must be
a factor of (p− 1). Therefore ru is a multiple of (d+ 1)(p− 1)/2m0, hence a multiple of
d+ 1. Taking into account the fact that r is co-prime to d+ 1, we deduce that u must be a
multiple of d+ 1 and therefore must be zero, since 0 ≤ u ≤ d. Therefore, for 1 ≤ u ≤ d, we
have Tr(G2m0u) 6= 2, and

Tr (Uu
G2m0 ) = Tr (UG2m0u) = l

(
(ηrm0u − η−rm0u)2

)
, (3.146)
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which equals 1 if ηrm0u − η−rm0u ∈ Fd, and −1 otherwise. To determine this, we notice

(ηrm0u − η−rm0u)d = ηdrm0u − η−drm0u

= (−1)u+1(ηrm0u − η−rm0u) ,
(3.147)

where in the last step we make use of the fact that ηdrm0 = −η−rm0 since ∆m0 = −1
according to (3.132). Hence, ηrm0u − η−rm0u ∈ Fd if and only if u is odd, and therefore

Tr (Uu
G2m0 ) = (−1)u+1 1 ≤ u ≤ d . (3.148)

For u = 0, clearly Tr(Uu
G2m0

) = Tr(1) = d. We now evaluate (3.143) to conclude the proof:

dimS1 =
1

d+ 1

(
d+

d∑
u=1

(−1)u+1

)
= 1 . (3.149)

Lemma 3.11. Every MUB-cycling UG has a non-zero eigenvector |ψ〉 ∈ Q(ω)d with unit
eigenvalue, i.e.

UG |ψ〉 = |ψ〉 . (3.150)

Proof. From Lemma 3.10 we know that the unitary UG2m0 has exactly one eigenvalue equal
to 1, implying det(UG2m0 − 1) = 0, which in turns means the system of linear equations
(UG2m0 − 1)X = 0 has a non-trivial solution. Since the matrix elements of UG2m0 are in the
cyclotomic field Q(ω), there exists a non-zero vector |φ〉 ∈ Q(ω)d so that UG2m0 |φ〉 = |φ〉.
Since

UG2m0UG |φ〉 = UGUG2m0 |φ〉 = UG |φ〉 (3.151)

and since S1 is one-dimensional, we must have

UG |φ〉 = λ |φ〉 , λ ∈ Q(ω) . (3.152)

Repeatedly applying UG to this equation and recalling the fact U2m0
G = 1, we see that λ

has to satisfy
λg∆(λ) . . . g2m0−1

∆ (λ) = 1 . (3.153)

By Theorem A.2 (a variant of Hilbert’s Theorem 90), there exists µ ∈ Q(ω) such that

λ = µ/g∆(µ) . (3.154)

If we define |ψ〉 = µ |φ〉, it immediately follows that UG |ψ〉 = |ψ〉 as desired.
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Lemma 3.12. Any eigenvector of a MUB-cycler UG is also an eigenvector of the parity
operator A defined in (3.134), with eigenvalue (−1)(p−1)/2.

Proof. Appealing again to the fact that ∆m0 = −1, and the result from Theorem 3.5 that
Gd+1 = ∆I, we have G(d+1)m0 = P (where P = −I), and therefore

A = (−1)(p−1)/2UP

= (−1)(p−1)/2UG(d+1)m0

= (−1)(p−1)/2(U2m0
G )(d+1)/2

(3.155)

Let |φ〉 be an eigenvector of UG, then by Lemma 3.9 we have U2m0
G |φ〉 = |φ〉. It follows

that A |φ〉 = (−1)(p−1)/2 |φ〉, which concludes the proof of the lemma.

Remark. Since every MUB-cycling g-unitary has exactly one eigenvector (up to a scalar
multiplication), |φ〉 is an eigenvector of UGr0 if and only if it is an eigenvector of UG0 , where
G0 is defined in (3.127). As every MUB-cycler is conjugate to Gr

0 (for some r co-prime to
d+ 1), it then follows that the eigenvectors of all MUB-cycling g-unitaries form a single
orbit under the extended Clifford group.

3.9 MUB-balanced states

In section 3.8 we showed that when the dimension d is an odd power of an odd prime, every
MUB-cycling g-unitary has an eigenvector, which is unique up to a scalar multiplication.
Additionally, if d = 3 mod 4, as we will show in this section, these eigenvectors have
an extra property: they are MUB-balanced states. The concept of MUB-balanced states
was recently introduced by Amburg et al [6]. Rotationally invariant states previously
constructed by Sussman and Wootters in even prime power dimensions [5, 134] also have
this property. These states all belong to a larger class of quantum states called Minimum
Uncertainty States (MUS) [1, 5, 6, 134]. In the case d = 1 mod 4, our numerical calculations
in low dimensions (up to d = 31) show that the eigenvectors of MUB-cyclers are neither
MUB-balanced states nor MUS.

Given a full set of MUBs, a MUB-balanced state is one whose measurement outcome
probabilities with respect to every basis are the same up to a permutation. Let |ψ〉 be a
normalized state, let |b, v〉 denote the MUB vectors, where b ∈ {0, 1, ..., d − 1,∞} labels
the bases, and v ∈ {0, 1, ..., d− 1} labels the vectors in a basis, and let

pb,v = |〈ψ|b, v〉|2 (3.156)
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be the measurement probabilities. Then |ψ〉 is a MUB-balanced state if and only if for each
basis b, there exists a permutation σ such that

pb,v = p0,σ(v) (3.157)

for all v. It follows from an argument in [5] that MUB-balanced states have to be MUS.
For completeness, it is worth providing a sketch of this argument. Let

Hb = − log2

(∑
v

p2
b,v

)
(3.158)

be the quadratic Rényi entropy in basis b. One can show that the total entropy T =
∑

bHb

satisfies the inequality

T ≥ (d+ 1) log2

(
d+ 1

2

)
(3.159)

which turns out to be saturated if and only if for all b∑
v

p2
b,v =

2

d+ 1
. (3.160)

States that saturate the bound in (3.159) are called minimum uncertainty states (MUS).
For a MUB-balanced state,

∑
v p

2
b,v is independent of b. Together with the fact that∑

b,v

p2
b,v = 2, (3.161)

it clearly follows that a MUB-balanced state is consequently a MUS. MUB-balancedness is
therefore a stricter condition than minimum uncertainty.

The main result of this section is stated in the following theorem.

Theorem 3.13. Let the dimension d = pn be a prime power satisfying d = 3 mod 4 (the
exponent n therefore has to be odd), and let G ∈ GLp(2,Fd) be a MUB-cycler. Let |φ〉 be a
normalized eigenvector of U2m0

G with eigenvalue 1 as defined in Theorem 3.8, then |φ〉 is
MUB-balanced.

Remark. The g-unitary UG plays a crucial part in the following proof. However, for the
practical purpose of calculating |φ〉, it suffices to work with the ordinary unitary U2m0

G .
Moreover, since the eigenstates of MUB-cycling g-unitaries form a single orbit of the
extended Clifford group, we only need to prove the theorem for the case of MUB-cycling
anti-unitaries. We will proceed with the general case of an arbitrary g-unitary nevertheless.
This way one will see why it does not work for the case d = 1 mod 4.
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Proof. Recall from Lemma 3.6 and Theorem 3.7 that ∆ = det(G) can be written as

∆ = θr(d−1)/(p−1), (3.162)

where θ is a primitive element of Fd, and gcd(r, d+ 1) = 1. By the assumption that n is
odd, it follows that r(d− 1)/(p− 1) is odd, so ∆ is a quadratic non-residue. By Lemma 1 of
reference [30], when d = 3 mod 4 we also have -1 being a quadratic non-residue. Therefore
−∆ is a quadratic residue, i.e. there exists x ∈ Fd such that x2 = −∆. If we let F be
arbitrary

F =

(
α β

γ δ

)
(3.163)

and define a symplectic

S =

(
x−1 0

0 x

)
, (3.164)

then it can be verified straightforwardly that

SK−1FK−1S
−1 =

(
α ∆−1β

∆γ δ

)
= K∆FK

−1
∆ . (3.165)

Note that K−1 is represented by complex conjugation, so in the g-unitary representation
we have

USU
∗
FU
−1
S = g∆(UF ). (3.166)

From Theorem 3.8 we know that there exists |ψ〉 such that UG |ψ〉 = |ψ〉. We can write

|ψ〉〈ψ| = λP1 (3.167)

for some constant λ, where P1 is the projection operator defined in (3.142). Noting that
(3.166) can be applied to P1 and letting v be arbitrary, we now can calculate

g∆(p0,v) = g∆

(
|〈0, v|ψ〉|2

)
= g∆ (〈0, v|ψ〉〈ψ|0, v〉)
= g∆ (〈0, v|λP1 |0, v〉)
= g∆(λ)g∆(〈0, v|)USP ∗1U−1

S g∆(|0, v〉)

=
g∆(λ)

λ∗
g∆(〈0, v|)US |ψ〉∗ 〈ψ|∗ U−1

S g∆(|0, v〉)

=
g∆(λ)

λ∗
∣∣〈ψ|∗ U−1

S g∆(|0, v〉)
∣∣2

=
g∆(λ)

λ∗
|〈ψ|0, xv〉|2

= µp0,xv,

(3.168)
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where µ = g∆(λ)/λ∗ is a constant, and in the penultimate step we have used (3.10).
Repeating this formula k times for an arbitrary integer k, we obtain

gk∆(p0,v) = µk p0,xkv (3.169)

where µk = gk−1
∆ (µ)gk−2

∆ (µ)...µ is independent of v.

Since UG is a cycling g-unitary, for every basis b there exists an integer k such that

|b, v〉 .= Uk
G |0, σ(v)〉 (3.170)

for all v. In the above expression ‘‘
.
=’’ means ‘‘equal up to a phase’’ and σ is a permutation

dependent only on b. It follows that

〈ψ|b, v〉 .= 〈ψ|Uk
G |0, σ(v)〉

= gk∆
(
〈U−kG ψ|0, σ(v)〉

)
= gk∆ (〈ψ|0, σ(v)〉) .

(3.171)

Consequently,
pb,v = gk∆

(
p0,σ(v)

)
= µkp0,xkσ(v). (3.172)

Since pb,v are probabilities, we must have∑
v

pb,v =
∑
v

p0,xkσ(v) = 1. (3.173)

This implies µk = 1, which in turn implies that the normalized state

|φ〉 =
|ψ〉√
|〈ψ|ψ〉|

(3.174)

is MUB-balanced.

Remark. The MUB-balanced states established in this theorem are identical to those
constructed by Amburg et al using a completely different method [6]. In their paper, the
orbit of states is generated from the state corresponding to the discrete Wigner function

Wp =
1

d(d+ 1)

1− dδp,0 +
∑
x∈F∗d

l(x2 + 1)ωtr(xp2
1+xp2

2)

 . (3.175)
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Let us define a specific element in GL(2,Fd)

G =

(
α β

−β α

)
, (3.176)

with
α = (η + ηd)/2 β = iM(η − ηd)/2, (3.177)

where iM = η(p−1)(d+1)/4 is a modular analogue of i (notice that i2M = −1), and η is defined
in Lemma 3.6. Using basic finite-field facts (see Section A.1.4), one can check that

αd = α βd = β, (3.178)

so α and β belong to the field Fd. Thus G is indeed an element of GL(2,Fd). Furthermore,
G has trace

Tr(G) = η + ηd (3.179)

and determinant
∆ = det(G) = ηd+1, (3.180)

and therefore, by Theorem 3.7, it is a MUB-cycler. Since

(αp1 + βp2)2 + (−βp1 + αp2)2 = ∆(p2
1 + p2

2), (3.181)

it clearly follows that
WGp = g∆(Wp). (3.182)

Let ρ be the density matrix corresponding to Wp given by:

ρ =
∑
p

WpAp, (3.183)

where the phase point operators Ap are defined in (3.66). It follows from (3.182) and (3.69)
that

UGρU
−1
G = ρ. (3.184)

In view of a result from reference [6] that the state corresponding to Wp is a pure state,
one can now conclude that this state is an eigenvector of the MUB-cycling g-unitary UG.
The Wigner functions of these MUB-balanced states for dimension 7 and 11 are visualized
in Figure 3.4.
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Figure 3.4: Color plots of the scaled Wigner function (dWp) corresponding to ρ in dimension d = 7 and
11. The axes of the discrete phase space are labeled by the two components of p = (p1, p2). The rotational
invariance property is manifested via concentric ‘‘circles’’ on the discrete plane.

One might want to ask how many MUB-balanced states arising from MUB-cycling
g-unitaries there are. Let us consider the MUB-cycler UG0 where G0 is the matrix with
multiplicative order 2m0 = p− 1 defined in (3.127). Let |ψ〉 be the corresponding MUB-
balanced state. By Theorem 3.8, we know |ψ〉 is the unique eigenvector of the unitary Up−1

G0

with eigenvalue 1. Therefore it will be left invariant by any element V of the extended
Clifford group satisfying

V Up−1
G0

V −1 = U
(p−1)k
G0

(3.185)

for some integer k. It turns out that the only possible values for k are ±1 and

V = U
G
m(p−1)/2
0

(3.186)

when k = 1, or
V = U

G
m(p−1)/2
0 F

(3.187)

when k = −1, where

F =

(
0 iMη

(d+1)/2

iMη
−(d+1)/2 0

)
(3.188)

is a symplectic matrix satisfying FGp−1
0 F−1 = G

−(p−1)
0 and m can take any integer value

from 0 to 2d+ 1. Hence, there are 4d+ 4 possibilities for V .
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Conjecture. We conjecture that there are no other unitaries or anti-unitaries in the
extended Clifford group that leave |ψ〉 invariant. As the order of the extended Clifford
group is 2d3(d2−1) [135], the number of MUB-balanced states would therefore be d3(d−1)/2.

Dimension ord(Ed) MUB-cyclers MUB-balanced

d = 7 32,928 504 1,029

d = 11 319,440 2,200 6,655

d = 19 4,938,480 24,624 61,731

Table 3.3: The order of the extended Clifford group, the number of
MUB-cyclers and the number of distinct MUB-balanced states found
in dimensions 7, 11 and 19.

We have checked the conjecture in detail for dimensions d = 7, 11, 19. The numbers
reported in Table 3.3 agree with our prediction. Originally, we expected that our construc-
tion technique would yield many new MUB-balanced states in addition to those found by
Amburg et al. Our results, however, suggest that Amburg et al have indeed constructed the
entire set. If this is true, it means that MUB-balanced states form a highly distinguished
geometrical structure. They seem to be even rarer than SICs: in most of the dimensions
that have been analyzed, there exist more than one orbits of SICs, whereas MUB-balanced
states seem to come only in a single orbit. They ‘‘have no right to exist’’, as Amburg et
al has put it. Of course this should not be taken literally, as we know they do exist after
all. Our work provides one way of explaining their right of existence, by unveiling a new
underlying g-unitary symmetry.
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Chapter 4

Summary and Outlook

4.1 Summary of main results

We chose to study SICs as we believed such a symmetric structure in the Hilbert space
could reveal deep insights into quantum theory. One of our results reveals the geometric
significance of SICs on the cone of non-negative operators: SICs are the closest to being
orthogonal bases. Explicitly, they form the only sets of d2 normalized positive semidefinite
operators that minimize a class orthogonality measures Kt defined to be

Kt =
∑
i 6=j

(Tr(AiAj))
t t ∈ R, t > 1. (4.1)

Studying SICs naturally led us to a study of the Weyl-Heisenberg symmetry - the group
symmetry that finite dimensional quantum mechanics was built upon in the very early
years. While studying orbits of quantum states under the WH group, we observed that
under certain conditions, among d2 vectors in the orbits one can find sets of d vectors that
are linearly dependent. We proved in Theorem 2.2 that if the initial vector belongs to
certain eigenspaces (depending on the dimension d) of the Zauner unitary, and if a set
of d vectors consists of certain combinations of triplets and singlets, linear dependency
will occur. In dimensions d = 3 this explains the 3 linear dependencies that arise from
arbitrary SIC fiducial vectors in the known SIC family. Interestingly, there are special
SICs in this family that give rise to 9 linear dependencies. This fact is connected to the
Hesse configuration in the theory of elliptic curves. We performed an exhaustive numerical
search for linear dependencies in dimensions d = 4 to 9. The only other case where we

83



observed extra linear dependencies from a SIC fiducial (compared to an arbitrary initial
vector from the same eigenspace of UZ) is when the SIC fiducial lies in Hη2 in dimension
d = 8. In dimension d = 6 and d = 9 we analyzed in detail the relations among normal
vectors of hyperplanes spanned by linearly dependent sets. Besides some orthogonality
relations, we observed that some of these normal vectors always formed 2-dimensional and
3-dimensional SICs, even though the initial vector is not a SIC fiducial. We were able to
provide an analytical explanation for the observed 2-dimensional small SICs in d = 6.

SICs are also the motivation for the construction of g-unitary operators. In Chapter 3 we
describe a toy model for SICs, in which g-unitaries were constructed from the simple Galois
groups of cyclotomic field extensions, and we studied their actions on MUBs. We have
gone through a large amount of technical details, which are summarized in Theorems 3.2,
3.5, 3.7, 3.8 and 3.13. However, the picture can be better summarized in words.

G-unitaries are constructed to generalize the notion of anti-unitaries. However, their
action is restricted only to vectors whose components belong to some special number field,
which is the cyclotomic field in our case. In this case, g-unitaries play role in the description
of MUBs in odd prime power dimensions. Their actions on the MUB vectors can be
interpreted as rotations in Bloch space, just as any ordinary unitary operator.

We studied projective transformations that permute mutually unbiased bases. In odd
prime power dimension d = pn where n is odd, we showed that there are transformations
that cycle through the full set of d + 1 bases and that can be realized by g-unitaries. If
d = 3 mod 4, these transformations can be effected by anti-unitaries, but if d = 1 mod 4, we
need to appeal to g-unitaries. We studied the eigenvectors of these MUB-cycling g-unitaries
and showed every MUB-cycling g-unitary always had a unique eigenvector (up to a scalar
multiplication). Furthermore, we can always choose a scalar so that this eigenvector is
invariant under the g-unitary, in which case we proved that it is also invariant under the
parity operator.

When d = 3 mod 4, we proved that the invariant eigenvectors of MUB-cycling g-
unitaries are MUB-balanced states. Our construction can be considered as a supplement
to work done by Amburg et al [6] in two ways. First, while the construction of Amburg
et al was done using Wigner functions, our construction was done directly in the Hilbert
space. Secondly, our technique provides a connection to the original construction in even
prime power by Wootters and Sussman [5] in which MUB-balanced states were found to be
eigenvectors of MUB-cycling unitaries. In our case, because of the lack of cycling unitaries
in odd prime power dimensions, we instead used cycling g-unitaries. Originally, we expected
that our construction would yield more MUB-balanced states, since we were able to expose
the underlying symmetry and found all such states with this symmetry. However, the
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results suggest that these states all lie on a single orbit the the extended Clifford group,
which is remarkable since even rare quantum states like SICs come in more than one orbits
in many dimensions that have been analyzed.

G-unitary symmetry for the simple case of cyclotomic field extensions has provided us a
thorough understanding of the ‘‘right to exist’’ of a distinguished class of quantum states,
namely MUB-balanced states. Extending our analysis to g-unitaries that are applicable to
SIC states or some other special quantum states is a non-trivial task. However, we hope
that our results can be considered as a first useful step in the direction of solving the SIC
problem, as we believe that symmetries play very important roles in solving hard problems
in physics.

4.2 List of open problems

The following list brings up research questions or problems we have not been able to answer
that are worth further investigation.

1. As discussed in Section 2.3.3, there are more linearly dependent sets observed numer-
ically than what can be accounted for by Theorem 2.2. An explanation for this is
still left open.

2. Small 3-dimensional SICs arising from normal vectors of the hyperplanes spanned by
linearly dependent sets in d = 9 are observed, but have not yet been fully understood.

3. An exhaustive search for small SICs in d = 12 has not been done. It is also an open
question if small SICs can be found in other dimensions rather than d = 6 and 9.

4. In the study of g-unitaries, we only found eigenvectors for a special class of them,
namely those that have the MUB-cycling property. It is an open question whether
other g-unitaries also have eigenvectors, and how to find them.

5. We have counted the number of MUB-balanced states for small dimensions in Table 3.3.
It remains as a conjecture that the number of MUB-balanced states in every odd
prime power dimensions equal to 3 mod 4 is d3(d− 1)/2.
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Appendix A

Appendices

A.1 Field theory

The theory of fields is a major branch in mathematics that has been studied extensively.
In the scope of the thesis we use a number of elementary facts in field theory. We devote
this section as an introduction to fields, field extensions, Galois automorphisms, and finite
fields, for readers with little or no background in field theory. Besides finite fields, which
play an important role in the theory of Mutually Unbiased Bases, we also discuss infinite
fields, especially cyclotomic fields, which are crucial for our construction of g-unitaries in
Chapter 3. With the purpose of helping the readers quickly grasp the relevant key concepts,
we avoid unnecessarily technical definitions and derivations as much as we can. Rigorous
treatments of the subjects can be found in textbooks on fields and Galois theory [136–139].

Definition. A field F is a set together with two operations addition and multiplication
(denoted by + and ·) such that for all a, b, c ∈ F the following axioms hold.

1. Closure: a+ b and a · b are in F.

2. Associativity: a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c.

3. Commutativity: a+ b = b+ a and a · b = b · a.

4. Identity elements: there exists an additive identity 0 such that a+ 0 = a for all a ∈ F,
and there exists a multiplicative identity 1 such that a · 1 = a for all a ∈ F.
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5. Inverses: for every a ∈ F there exists an element −a such that a+ (−a) = 0, and for
every non-zero a ∈ F there exists an element a−1 such that a · a−1 = 1. These imply
the existence of subtraction and division operations.

6. Distributivity: a · (b+ c) = (a · b) + (a · c).

Remark. A field F consists of two abelian groups (F under addition, and F \ {0} under
multiplication), whose operations are compatible in the sense of the distributivity law.

Example. Common examples include the field of all rational numbers Q and field of all
real numbers R under ordinary addition and multiplication. There also exist finite fields,
i.e. fields with a finite number of elements. For example, if p is a prime number, then
the set of integers Zp = {0, 1, .., p− 1} with addition and multiplication modulo p forms a
field, called a prime field. To see why multiplicative inverses exist in Zp, take any non-zero
element x ∈ Zp and consider p− 1 products xk where k = 1, 2, ..., p− 1. As p is prime we
cannot have x(k1 − k2) = 0 (mod p) for k1 6= k2 (mod p). Therefore these products are
distinct and they must take all p− 1 non-zero values in Zp including 1.

A.1.1 Field extensions

Example. The concept of field extensions is best illustrated by the example of the con-
struction of C, the complex field that quantum physicists are very familiar with. We start
with the real field R and an observation that the polynomial x2 + 1 is irreducible over R. If
we define an imaginary number i by the property i2 + 1 = 0, then it does not belong to R,
and we can extend R to include i by defining the complex field C as the set of all numbers
of the form:

C ≡ {a+ ib : a, b ∈ R}. (A.1)

The addition rule in the new field C can be straightforwardly defined as

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2). (A.2)

For the multiplication rule we use the defining property of i, namely i2 = −1, to derive

(a1 + ib1)(a2 + ib2) = a1a2 + i(a1b2 + a2b1) + i2b1b2

= (a1a2 − b1b2) + i(a1b2 + a2b1).
(A.3)

One can think of a complex number (a+ ib) as a 2-component vector (a, b) in a real vector
space. The dimensionality of this vector space is equal to the degree of the polynomial
defining i, namely 2. The construction of C in (A.1) can be generalized as follows.
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Given a field F and a number h /∈ F, let E be the smallest field containing both h and
F, denoted by E ≡ F(h). F is called the ground field, E is called the extended field or the
extension field, the field extension (not to be confused with the extension field) is denoted
by E/F (reads as E over F), and h is called a field generator. Field generators need not be
unique. For example, for the field extension C/R instead of i we could also use −i as a
generator.

Definition. Assume that h is algebraic over F, meaning that it is a root of a polynomial
with coefficients in F. Among all such polynomials that admit h as a root, let

P (x) = xn + cn−1x
n−1 + ...+ c1x+ c0 (ci ∈ F) (A.4)

be the one with the lowest degree having the leading coefficient equal to one (P (x) is called
the minimal polynomial of h over F). The extended field E can then be constructed as

E ≡ F(h) = {f0 + f1h+ ...+ fn−1h
n−1 : fi ∈ F} . (A.5)

Remark. We do not include higher powers of h in (A.5) because they can be reduced to
powers smaller than n by the property of h being a root of a polynomial of degree n. One
can see that E is closed under addition, subtraction, and multiplication, and it can be
shown to be also closed under division [137]. E can be regarded as an n-dimensional vector
space over F, and n is called the degree of the field extension E/F.

A.1.2 Galois automorphisms

Definition. Given a field extension E/F (E is an extension of F), a Galois automorphism
of the extension E/F is defined as an automorphism of E that fixes elements in F. In other
words, it is a bijective mapping g : E→ E that has the following properties.

1. g(e1 + e2) = g(e1) + g(e2) for all e1, e2 ∈ E.

2. g(e1e2) = g(e1)g(e2) for all e1, e2 ∈ E.

3. g(f) = f for all f ∈ F.

Remark. It follows from the definition that if a Galois automorphism g takes an element
x ∈ E to the ground field F, then x has to belong to the ground field itself, or else g fails to
be a bijective mapping.
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Definition. The Galois automorphisms form a group called the Galois group of the
extension E/F, denoted by Gal(E/F).

One property of the Galois group is that its order is less than or equal to the degree
of the field extension. To see why we first note that if E = F(h) and g ∈ Gal(E/F), then
the value of g(h) determines the value of g(e) for every element e ∈ E, as can be clearly
seen from the defining properties of Galois automorphisms and from the construction of E
in (A.5). In other words, a Galois automorphism g is completely specified by its action
on a generator. Secondly, we notice that when we apply g to both sides of the equation
P (h) = 0, where P (x) is the minimal polynomial of h with the form given in (A.4), g does
not act on the polynomial coefficients because they are in the ground field F, therefore

(g(h))n + an−1(g(h))n−1 + ...+ a1g(h) + a0 = 0, (A.6)

which implies that g(h) is also a root of P (x). Since P (x) has degree n, the number of
values of g(h) is at most n, and hence, so is the number of Galois automorphisms. When
the Galois group has the same order as the degree of the extension, the extension is called a
Galois extension. This has an important mathematical implication, namely the fundamental
theorem of Galois theory. Although this theorem is not invoked in the thesis, we do want
to note that all the field extensions used in the thesis are in fact Galois extensions.

Example. Let us go back to the example of the extension of the real field R to the complex
field C. If g : C→ C is a Galois automorphism of the extension C/R, then it must satisfy

g(i)g(i) = g(i2) = g(−1) = −1 , (A.7)

which implies either g(i) = i or g(i) = −i. If g(i) = i, then for any a, b ∈ R we have
g(a+ ib) = g(a) + g(i)g(b) = a+ ib, meaning that g is the identity mapping. If g(i) = −i,
then g(a+ ib) = a− ib, so g is complex conjugation. The Galois group for the extension
C/R therefore consists of only two elements: the identity mapping and complex conjugation.
It is a Galois extension because the group has order 2, which is same as the degree of the
extension.

When viewed as functions from E to F, Galois automorphisms are linearly independent,
as shown in the following theorem.

Theorem A.1 (Dedekind). Given an extension E/F, let {gi}ni=1 be its Galois group then
gi’s are linearly independent functions from E to F, meaning that for a1, a2, ..., an ∈ E,

a1g1(x) + a2g2(x) + . . .+ angn(x) = 0 for all x ∈ E (A.8)
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if and only if each and every ai = 0. It then follows that any non-zero linear combination
of Galois automorphisms is a non-zero mapping.

Remark. Dedekind’s theorem in fact holds for a larger class of functions called characters.
Here we restrict ourselves to Galois automorphisms, but the proof is the identical.

Proof. Suppose we have a zero function

a1g1 + a2g2 + . . .+ akgk = 0 (A.9)

for some a1, a2, ..., ak ∈ E. We will prove by induction that all the coefficients ai must be
zero. As none of the Galois automorphisms is zero, the statement is clearly true for k = 1.
For k > 1, because g1 6= gk, we can find an element x0 ∈ E such that g1(x0) 6= gk(x0).
Multiplying equation (A.9) by gk(x0) we get

a1gk(x0)g1 + . . .+ akgk(x0)gk = 0 . (A.10)

Evaluate (A.9) at x0x we get

a1g1(x0)g1(x) + . . .+ akgk(x0)gk(x) = 0 , (A.11)

which, as x can take any value in E, implies

a1g1(x0)g1 + . . .+ akgk(x0)gk = 0 . (A.12)

Subtracting (A.10) from the above equation we obtain

a1 [g1(x0)− gk(x0)] g1 + . . .+ ak−1 [gk−1(x0)− gk(x0)] gk−1 = 0 , (A.13)

which, by the induction hypothesis, implies a1 = 0. Removing the a1 term in (A.9) and
appealing to the induction hypothesis again, we then deduce a2 = . . . = ak = 0.

A.1.3 Cyclotomic fields

Definition. A cyclotomic field Q(ω) is an extension field generated from the rational field
Q and a primitive N -th root of unity ω = e2πi/N . Although cyclotomic fields can be defined
for any N , we will restrict ourselves to the case when N = p is a prime number. In such a
case, the minimal polynomial of ω over Q is

P (x) = 1 + x+ x2 + ...+ xp−1 , (A.14)

and the elements of the cyclotomic field Q(ω) are of the form

Q(ω) = {q0 + q1ω + ...+ qp−2ω
p−2 : qi ∈ Q} . (A.15)
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The extension Q(ω)/Q is of degree p−1. Let g : Q(ω)→ Q(ω) be a Galois automorphism
of the field extension. We then have the identity

(g(ω))p = g(ωp) = g(1) = 1 , (A.16)

which implies that g(ω) = ωk for some integer k in the range 1 ≤ k ≤ p − 1 (the value
of g(ω) cannot be 1 because ω does not belong to the ground field). If we specifically
denote the Galois automorphism that maps ω 7→ ωk by gk, then {gk}p−1

k=1 forms the Galois
group of order p − 1 of this field extension. Note that g1 is the identity mapping, and
gp−1 is complex conjugation. A general element gk can be thought of as a generalization of
complex conjugation, and it is often called a Galois conjugation. Galois conjugations are
the building blocks for our later construction of g-unitaries. For now we want to mention
one more property of theirs, as stated in the following theorem.

Theorem A.2 (a variant of Hilbert’s Theorem 90 [140]). Let g ∈ Gal(Q(ω)/Q) be a Galois
automorphism of order m, meaning that m is the smallest positive integer for which gm is
the identity mapping. If λ ∈ Q(ω) satisfies

λg(λ)...gm−1(λ) = 1 , (A.17)

then there exists µ ∈ Q(ω) such that

λ = µ/g(µ) . (A.18)

Proof. Let us consider a mapping T : Q(ω)→ Q(ω) defined as

T (x) = x+ a1g(x) + a2g
2(x) + ...+ am−1g

m−1(x) , (A.19)

where ai = λg(λ)...gi−1(λ). Note that

λg(ai) = ai+1 for i = 1, ...,m− 2 (A.20)

and
λg(am−1) = λg(λ)...gm−1(λ) = 1 , (A.21)

therefore we have
λg(T (x)) = T (x) . (A.22)

From Theorem A.1 we know that T (x) is not a zero mapping, so there exists x0 ∈ Q(ω)
such that T (x0) 6= 0. If we define µ ≡ T (x0), then (A.18) is immediately obtained.
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A.1.4 Finite fields

We have mostly dealt with fields that are infinite in size so far. Finite fields also come
into play in the thesis, especially in the theory of Mutually Unbiased Bases (MUB) and in
technical manipulations for MUB cyclers and their eigenvectors.

Definition. A finite field (somewhat confusingly also called a Galois field) is a field that
has a finite number of elements, called its order.

The prime field Zp for any prime number p is an example of a finite field, as previously
mentioned. There are also finite fields of other orders. However, it is well known (dating
back to Galois) that finite fields only exist for which the order is a prime power pn, and
that for every prime power there exists a unique (up to an isomorphism) field of this order.
Thus, we can refer to a finite field only by its order, and we shall denote the finite field
of order d by Fd, where d must be a prime power for Fd to exist. We will not provide
the proof here, but will instead give a concrete example of how to generate a larger finite
extension field from a prime field Fp.

Example. Consider the finite field F2 = {0, 1} of order 2, and let P (x) = x2 + x+ 1. We
see that P (0) = P (1) = 1, so P (x) does not have a root in F2. We then define λ to be a
root of P (x) and define

F2(λ) = {a+ λb : a, b ∈ F2}. (A.23)

One can see that F4 ≡ F2(λ) = {0, 1, λ, λ + 1} has 4 elements and its addition and
multiplication tables can be calculated using the identity λ2 + λ + 1 = 0 as shown in
Table A.1. In general, if we start from an irreducible polynomial of degree r in Fp, we will
be able to extend the field to Fpr .

+ 0 1 λ λ+1

0 0 1 λ λ+1

1 1 0 λ+1 λ

λ λ λ+1 0 1

λ+1 λ+1 λ 1 0

· 0 1 λ λ+1

0 0 0 0 0

1 0 1 λ λ+1

λ 0 λ λ+1 1

λ+1 0 λ+1 1 λ

Table A.1: Addition and multiplication tables for the finite field F4.
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We would like to mention a few basic properties of finite fields [139] that are frequently
used in Section 3.7 and Section 3.8. First of all, every finite field admits a primitive element
θ (there could be more than one) such that every non-zero element λ in the field can
be written as λ = θk for some non-negative integer k smaller than the order of the field.
Secondly, for Fp and its extension field Fd, where d = pn is a prime power, the following
statements hold:

1. ad = a ∀a ∈ Fd.

2. (a+ b)p = ap + bp ∀a, b ∈ Fd.

3. ∀a ∈ Fd, ap = a if and only if a ∈ Fp.

A.1.5 Field trace

Definition. Given a Galois extension E/F, the field trace of an element e ∈ E denoted
by tr(e) (we use the lower case to denote the field trace to distinguish it from the matrix
trace) is defined as the sum of all Galois conjugates of e:

tr(e) =
∑

g∈Gal (E/F)

g(e). (A.24)

One notices that tr(e) is left invariant by every Galois automorphism in the Galois
group, which implies that tr(e) belongs to the ground field F. Thus, field trace is a mapping
from E to F. Its following properties can be straightforwardly verified.

1. tr(e1 + e2) = tr(e1) + tr(e2) for all e1, e2 ∈ E.

2. tr(fe) = f tr(e) for all e ∈ E and f ∈ F.

Example. For the C/R extension, the Galois group only has 2 elements: the identity and
complex conjugation. Therefore taking the field trace of a complex number,

tr(c) = c+ c∗, (A.25)

is just the same as taking its real part (modulo a factor of 2).

For the extension Fd/Fp, where d = pn is a prime power (this will be the context in
which we use field trace), there is a concrete formula for the field trace given by [139]

tr(x) = x+ xp + xp
2

+ ...+ xp
n−1 ∀x ∈ Fd . (A.26)

93



A.2 Finite-field construction of Clifford unitaries

The Clifford group is introduced in Section 2.2.3, in which we describe a construction of
Clifford unitaries in a d-dimensional Hilbert space for a general d. We refer to those as the
ordinary Clifford group. When d is a prime or a prime power, a finite field of order d exists
(see Appendix A.1.4), providing us an aid to express the Weyl-Heisenberg group and Clifford
unitaries in a slightly different way that is more convenient for certain purposes, such as in
the constructions of MUBs (in Section 3.2) and Galois-unitaries (in Section 3.3). These
variants of the WH and Clifford groups are referred to as Galoisian variants. Galoisian
Clifford groups in turn come in two versions: a full and a restricted one, where the latter is
a subgroup of the former [30]. Here we are only interested in the restricted version. To
better illustrate how finite fields come into play, we will start with the simpler case of
prime dimensions before going into the generalized case of prime power dimensions.

Note. This section is a review of some results already fully described by Appleby in [30].
There are other constructions for unitary representations of SL(2,Fd) (for example by Chau
[141]). We choose to use the one in [30] only for convenience.

A.2.1 In odd prime dimensions d = p

We start with the case of the Hilbert space’s dimension d = p being an odd prime. Let ω
be a p-th primitive root of unity

ω = e2πi/p, (A.27)

and let {|x〉 : x = 0, 1, ..., p− 1} be the standard basis, where the labels on the states are
elements of the finite field Zp, i.e. they are integers modulo p.

Definition. We define the shift operator X and the phase operator Z by their action on
the basis states in the usual way:

X |x〉 = |x+ 1〉 Z |x〉 = ω |x〉 . (A.28)

Definition. The Weyl-Heisenberg displacement operators Du are defined to be

Du = ωu1u2/2Xu1Zu2 u =

(
u1

u2

)
, (A.29)

where the two components u1 and u2 are elements of Zp and 1/2 denotes the inverse of 2
in that field.
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Definition. For any two vectors u and v in the discrete phase space Z2
p, the symplectic

form Ω(u,v) is defined as
Ω(u,v) = u2v1 − u1v2. (A.30)

The phases ωu1u2/2 in (A.29) allow us to write the group law in the form

DuDv = ωΩ(u,v)Du+v. (A.31)

The symplectic form Ω(u,v) has a geometrical meaning: if we consider u and v as
vectors on the real plane R2, whose components happen to be integers modulo p, then
Ω(u,v) is the area of the parallelogram spanned by u and v. Therefore it is sometimes
also called the symplectic area. Let G be a linear transformation on the phase space, i.e. G
is a 2× 2 matrix whose entries are in Zp, and let

∆ = det(G). (A.32)

It can be seen that under this linear transformation, the symplectic form is scaled by a
factor of ∆:

Ω(Gu, Gv) = ∆Ω(u,v). (A.33)

Next, we want to define unitaries US, which are called symplectic unitaries for a
reason that will become clear in a moment, so that their action on the Weyl-Heisenberg
displacement operators takes the form

USDuU
−1
S = DSu. (A.34)

Two conditions are required for this [30]. The first condition is that S has to be a linear
transformation. The second one comes from the group law (A.31), from which it can be
seen that S has to preserve the symplectic form. In view of (A.33), we deduce that S must
have determinant one and must therefore belong to the symplectic group SL(2,Zp). Their
faithful (as opposed to only projective) unitary representation is given by [30]

S =

(
α β

γ δ

)
→ US =

{
l(α)

∑
x ω

αγx2/2 |αx〉 〈x| if β = 0

eiφ√
d

∑
x,y ω

δx2−2xy+αy2

2β |x〉 〈y| if β 6= 0,
(A.35)

where det(S) = αδ − βγ = 1 mod d,

l(x) =


1 if x ∈ Q

−1 if x ∈ N

0 if x = 0,

(A.36)
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and

eiφ =

{
(−1)kl(−β) if d = 4k + 1

i(−1)k+1l(−β) if d = 4k + 3.
(A.37)

In number theory, l(x) is known as the Legendre symbol. Q is the set of quadratic residues,
i.e. elements of Zp that can be written as the square of another non-zero element, and N is
the set of quadratic non-residues.

The Clifford group then consists of all possible products of symplectic unitaries and
displacement operators USDu. In other words, it is isomorphic to the semidirect product of
the symplectic group and the Weyl-Heisenberg group

SL(2,Zp) n Z2
p . (A.38)

A.2.2 In odd prime power dimensions d = pn

When the dimension d = pn is an odd prime power, we use the elements of the field Fd to
label the elements of the Weyl-Heisenberg group just like in the odd prime case. However,
Fd in general contains abstract elements which are not ordinary numbers, so the definitions
in the previous section have to be slightly adjusted (since, for example in the definition of
Du in (A.29), one cannot raise ω, X, and Z to the power of an abstract field element).

Definition. With ω = e2πi/p still being a primitive p-th root of unity, we now define the
shift and the phase operators as follows:

Xu |x〉 = |x+ u〉 Zu |x〉 = ωtr(xu) |x〉 , (A.39)

where x, u ∈ Fd and the field theoretic trace tr(x) is a mapping from Fd to the ground field
Fp defined in (A.26) and specifically denoted in the lower case to be distinguished from the
trace of linear operators.

Definition. The Weyl-Heisenberg displacement operators are defined to be

Du = ωtr(u1u2/2)Xu1Zu2 , (A.40)

where the two components u1 and u2 of u are elements in Fd.

96



The WH group constructed this way is isomorphic to the direct product of n copies of
the WH group defined in the previous section for prime dimension p [30]. The Clifford
group, just like in the previous case, is the semidirect product of the symplectic group
SL(2,Fd) and the WH group. A faithful unitary representation of SL(2,Fd) is given by [30]

S =

(
α β

γ δ

)
→ US =

{
l(α)

∑
x∈Fd ω

tr(αγx2/2) |αx〉 〈x| if β = 0

eiφ√
d

∑
x,y∈Fd ω

tr( δx
2−2xy+αy2

2β
) |x〉 〈y| if β 6= 0,

(A.41)

where
eiφ = (−i)−n(p+3)/2l(−β) (A.42)

and l(x) is again the Legendre symbol defined in (A.36), but now for the field Fd. One can
verify that this representation reduces to (A.35) when d = p.
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Garćıa-Ripoll, and E. Solano, Quantum Simulation of the Majorana Equation and
Unphysical Operations, Phys. Rev. X 1, 021018, 2011 (cited on p. 61).

[130] X. Zhang, Y. Shen, J. Zhang, J. Casanova, L. Lamata, E. Solano, M.-H. Yung,
J.-N. Zhang, and K. Kim, Time reversal and charge conjugation in an embedding
quantum simulator, arXiv:1409.3681, 2014 (cited on p. 61).

[131] O. Kern, K. S. Ranade, and U. Seyfarth, Complete sets of cyclic mutually unbiased
bases in even prime-power dimensions, J. Phys. A 43, A275305, 2010 (cited on
p. 64).

[132] W. R. Hamilton, Lectures on quaternions, 1853 (cited on p. 65).

[133] E. P. Wigner, Normal Form of Antiunitary Operators, J. Math. Phys. 1, 409–413,
1960 (cited on p. 72).

[134] D. M. Sussman, Minimum-uncertainty states and rotational invariance in discrete
phase space, BSc thesis, Williams College, 2007 (cited on p. 76).

[135] K. E. Gehles, Ordinary Characters of Finite Special Linear Groups, MA thesis,
University of St. Andrews, 2002 (cited on p. 82).

[136] I. Stewart, Galois Theory, Chapman and Hall, London, 1972 (cited on p. 86).

[137] S. Roman, Field Theory, Springer, New York, 2006 (cited on pp. 86, 88).

107

http://dx.doi.org/10.1088/1464-4266/7/12/022
http://dx.doi.org/10.1088/1464-4266/7/12/022
http://dx.doi.org/10.1088/0305-4470/38/39/011
http://dx.doi.org/10.4153/cjm-1949-009-2
http://dx.doi.org/10.4153/CJM-1989-049-4
http://dx.doi.org/10.1063/1.1874558
http://dx.doi.org/10.1063/1.1874558
http://arxiv.org/abs/quant-ph/0406174
http://dx.doi.org/10.1103/PhysRevX.1.021018
http://arxiv.org/abs/1409.3681
http://dx.doi.org/10.1088/1751-8113/43/27/275305
http://dx.doi.org/10.1063/1.1703672


[138] J. S. Milne, Fields and Galois Theory, Courses Notes, 2003 (cited on p. 86).

[139] R. Lidl, Finite fields, Vol. 20, Cambridge University Press, 1997 (cited on pp. 86,
93).

[140] D. Hilbert, The theory of algebraic number fields, Springer Science & Business Media,
1998 (cited on p. 91).

[141] H. Chau, Unconditionally secure key distribution in higher dimensions by depolar-
ization, IEEE Trans. Inform. Theory 51, 1451–1468, 2005 (cited on p. 94).

108

http://dx.doi.org/10.1109/tit.2005.844076

	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	List of Notations
	Introduction
	Overview
	Organization of the thesis
	List of specific contributions

	Weyl-Heisenberg group symmetry
	Historical background
	Symmetric informationally-complete POVMs
	Definitions, significances, and the existence problem
	Weyl-Heisenberg group covariance
	Clifford unitaries and Zauner symmetry
	Analogues to orthonormal bases

	Linear dependencies in Weyl-Heisenberg orbits
	Dimension d=3 and Hesse configuration
	Linear dependencies from Zauner eigenvectors
	Numerical linear dependencies
	Small SICs in dimensions d=6 and 9


	Galois-unitary symmetry
	Motivations
	Mutually unbiased bases
	The Clifford group extended by g-unitaries
	In odd prime dimensions
	In odd prime power dimensions

	Arithmetic of g-unitaries
	Action on vectors and matrices
	Composition and power
	The inverse
	Conjugate transposition and the adjoint
	Conjugate action on matrices and displacement operators

	Geometric interpretation
	Complementarity polytopes
	The symmetry group of the complementarity polytope

	Simulating g-unitaries using unitaries
	The MUB-cycling problem
	Suborder and 3 types of GL elements
	Constructing MUB-cyclers

	Eigenvectors of MUB cyclers
	MUB-balanced states

	Summary and Outlook
	Summary of main results
	List of open problems

	Appendices
	Field theory
	Field extensions
	Galois automorphisms
	Cyclotomic fields
	Finite fields
	Field trace

	Finite-field construction of Clifford unitaries
	In odd prime dimensions d=p
	In odd prime power dimensions d=pn


	References

