
Affine Arithmetic for Power and

Optimal Power Flow Analyses in the

Presence of Uncertainties

by

Alfredo Vaccaro

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2015

c© Alfredo Vaccaro 2015



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Optimal power system operation requires intensive numerical analyses to study and im-

prove system security and reliability. To address this issue, Power Flow (PF) and Optimal

Power Flow (OPF) analyses are important tools, since they are the foundation of many

power engineering applications. For the most common formalization of these problems,

the input data are specified using deterministic variables resulting either from a snapshot

of the system or defined by the analyst based on several assumptions about the system

under study. This approach provides problem solutions for a single system state, which is

deemed representative of the limited set of system conditions corresponding to the data

assumptions. Thus, when the input conditions are uncertain, numerous scenarios need to

be evaluated.

To address the aforementioned problem, this thesis proposes solution methodologies

based on the use of Affine Arithmetic (AA), which is an enhanced model for self-validated

numerical analysis in which the quantities of interest are represented as affine combinations

of certain primitive variables representing the sources of uncertainty in the data or approx-

imations made during computations. In particular, AA-based techniques are proposed to

solve uncertain PF and OPF problems. The adoption of these approaches allows to ex-

press the uncertain power system equations in a more convenient formalism compared to

the traditional and widely used linearization frequently adopted in interval Newton meth-

ods. The proposed techniques allow to reliably estimate the PF and OPF solution hull by

taking into account the parameter uncertainty inter-dependencies, as well as the diversity

of uncertainty sources.

A novel AA-based computing paradigm aimed at achieving more efficient computational

processes and better enclosures of PF and OPF solution sets is conceptualized. The main

idea is to formulate a generic mathematical programming problem under uncertainty by

means of equivalent deterministic problems, defining a coherent set of minimization, equal-

ity and inequality operators. Compared to existing solution paradigms, this formulation

presents greater flexibility, as it allows to find partial solutions and inclusion of multiple

equality and inequality constraints, and reduce the approximation errors to obtain better

PF and OPF solution enclosures.
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Finally, formal methods for knowledge discovery from large quantity of data as an

enabling methodology for reducing the complexity of the PF and OPF problem, and for

the optimal identification of the affine forms describing their uncertain parameters are

proposed. In particular, a knowledge-based paradigm for PF and OPF analysis is used

to extract from operation data-sets complex features, hidden relationships and useful hy-

potheses potentially describing regularities in the problem solutions. This is realized by

designing a knowledge-extraction process based on Principal Components Analysis (PCA).

The structural knowledge extracted by this process is then used to define a mathematical

kernel, which transforms the PF and OPF equations into a domain in which these equa-

tions can be solved more effectively. In this new domain, the cardinality of the PF and

OPF problem is sensibly reduced and, consequently, a more efficient algorithm can be used

to obtain PF and OPF solutions: also it is possible to define a formal connection between

the principal components and the noise symbols of the uncertain variables, which furnish

an effective method for the optimal identification of the affine forms.

Detailed numerical results are presented and discussed using a variety of test systems,

demonstrating the effectiveness of the proposed methodologies and comparing it to existing

techniques for uncertain PF and OPF analysis.
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Chapter 1

Introduction

1.1 Motivation

Optimal power system operation requires intensive numerical analysis to study and improve

system security and reliability. In this context, power system operators need to understand

and reduce the impact of system uncertainties. To address this issue, Power Flow (PF)

and Optimal Power Flow (OPF) analyses are some of the most important tools, since

they represent the mathematical foundations of many power engineering applications such

as state estimation, network optimization, unit commitment, voltage control, generation

dispatch, and market studies.

For the most common formalization of the PF and OPF problems, all input data are

specified using deterministic variables resulting either from a snapshot of the system or

defined by the analyst based on several assumptions about the system under study (e.g.

expected/desired generation/load profiles). This approach allows to compute PF and OPF

solutions for a single system state that is deemed representative of the limited set of system

conditions corresponding to the data assumptions. Thus, when the input conditions are

uncertain, numerous scenarios need to be analyzed. These uncertainties are due to several

internal and external sources in power systems. The most relevant uncertainties are related

to the complex dynamics of the active and reactive power supply and demand, which may

vary due to, for example:
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• the variable nature of generation patterns due to competition [1];

• the increasing number of smaller geographically dispersed generators that could sen-

sibly affect power transactions [1];

• the difficulties arising in predicting and modeling market operators behavior, gov-

erned mainly by unpredictable economic dynamics, which introduce considerable

uncertainty in short-term power system operation; and

• the high penetration of generation units powered by non-dispatchable renewable en-

ergy sources that induce considerable uncertainty in power systems operation [2].

Since uncertainties can affect the PF and OPF solution to a considerable extent, reliable

solution paradigms, incorporating the effect of data uncertainties, are required. Such algo-

rithms could allow analysts to estimate both the data tolerance (i.e. uncertainties charac-

terization) and the solution tolerance (i.e. uncertainty propagation assessment), providing,

therefore, insight into the level of confidence of PF/OPF solutions. Furthermore, these

methodologies could effectively support sensitivity analysis of large variables variations to

estimate the rate of change in the solution with respect to changes in input data.

To address the aforementioned problem, this thesis proposes novel solution methodolo-

gies based on the use of Affine Arithmetic, which is an enhanced model for self-validated

numerical analysis in which the quantities of interest are represented as affine combina-

tions of certain primitive variables representing the sources of uncertainty in the data or

approximations made during computations. Compared to existing solution paradigms, this

formulation presents greater flexibility, as it allows to find partial solutions and inclusion

of multiple equality and inequality constraints, and reduce the approximation errors to

obtain better PF and OPF solution enclosures.

To reduce the complexity of the proposed AA-based PF and OPF analysis, and to

optimally identify the affine forms describing their uncertain variables, formal methods for

knowledge discovery from large quantity of data are proposed. In particular, a knowledge-

based process based on Principal Components Analysis (PCA) for PF and OPF analysis is

used to extract from operation data-sets complex features, hidden relationships and useful
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hypotheses potentially describing regularities in the problem solutions. The structural

knowledge extracted by this process is then used to project the PF and OPF equations

into a domain in which the cardinality of the PF and OPF problem is sensibly reduced

and, consequently, a more efficient algorithm can be used to obtain PF and OPF solutions.

In this new domain, it is also possible to define a formal connection between the principal

components and the noise symbols of the uncertain variables, which furnish an effective

method for the optimal identification of the affine forms.

In this thesis, the application of these techniques to PF and OPF analyses is explained

in detail, and several numerical results are presented and discussed, demonstrating the

effectiveness of the proposed methodologies, especially in comparison to more traditional

techniques.

1.2 Literature Review

Conventional methodologies available in the literature propose the use of sampling, analyt-

ical and approximate methods for PF and OPF analysis [3, 4], accounting for the variability

and stochastic nature of the input data used. A critical review of the most relevant papers

proposing these solution methodologies is presented in the following subsections.

1.2.1 Sampling Methods

Uncertainty propagation studies based on sampling-based methods, such as Monte Carlo,

require several model runs that sample various combinations of input values. In particular,

the most popular Monte Carlo based algorithm adopted to solve PF and OPF problems

is simple random sampling, in which a large number of samples are randomly generated

from the probability distribution functions of the input uncertain variables. Although

this technique can provide highly accurate results, it has the drawback of requiring high

computation resources needed for the large number of repeated PF and OPF solutions

[5]. This hinders the application of this solution algorithm, especially for large scale power
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system analysis, where the number of simulations may be rather large and the needed

computational resources could be prohibitively expensive [6, 7].

The need to reduce the computational costs of Monte Carlo simulations, has stimulated

the research for improved sampling techniques aimed at reducing the number of model runs,

at the cost of accepting some level of risk. For example, in [8], an efficient Monte Carlo

method integrating Latin hypercube sampling and Cholesky decomposition is proposed to

solve PF problems. In [9], the unceratin PF problem with statistically correlated input

random variables is solved by a hybrid solution algorithm based on deterministic annealing

expectation maximization algorithm and Markov chain Monte Carlo. An extended Latin

hypercube sampling algorithm aimed at solving PF problems in the presence of correlated

wind generators is proposed in [10]. In [11], the uncertain OPF problem is formulated

as a chance-constrained programming model, and the stochastic features of its solutions

are obtained by combining Monte Carlo based simulations with deterministic optimisation

models.

Although the application of the aforementioned techniques lower the computational

burden of sampling-based approaches, they reduce the accuracy of the estimation of un-

certainty regions of PF and OPF solutions. Therefore, the dichotomy between accuracy

and computational efficiency is still an open problem that requires further investigation.

1.2.2 Analytical Methods

Analytical methods are computationally more effective, but they require some mathemati-

cal assumptions in order to simplify the problem and obtain an effective characterization of

the output random variables [12]. These assumptions are typically based on model multi-

linearization [13], convolution techniques, and fast Fourier transforms [14]. For example,

the cumulant method has been applied to solve the probabilistic PF problem in [15, 16],

and the OPF problem in [12]; the performance of this method is enhanced by combining

it with the Gram-Charlier expansion in [16], and by integrating the Von Mises functions

in [17], to handle discrete distributions.

Furthermore, in [7], a novel OPF formulation based on a chance-constrained program-

ming model is proposed to explore the stochastic features of the OPF solution by means
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of a Monte Carlo based probabilistic model, whose parameters are identified by solving

a deterministic optimization problem. However, the application of these techniques to

solve PF and OPF problems is not straightforward and requires a back-mapping approach

and a linear approximation of the non-linear PF equations [18]; this is mainly due to

the non-linearities, the multiple uncertain variables, and the multiple output constraints

characterizing PF and OPF problems.

Analytical techniques present various shortcomings, as discussed in [19, 20, 21, 22],

such as the need to assume statistical independence of the input data, and the problems

associated with accurately identifying probability distributions for some input data. This

is a problem for PF and OPF analysis, since it is not always feasible to translate imprecise

knowledge into probability distributions, as in the case of power generated by wind or

photovoltaic generators, due to the inherently qualitative knowledge of the phenomena

and the lack of sufficient data to estimate the required probability density distributions.

To address this issue, the assumptions of normality and statistical independence of the

input variables are often made, but experimental results show that these assumptions are

often not supported by empirical evidence. These drawbacks may limit the usefulness of

analytical methods in practical applications, especially for the study of large-scale power

networks.

1.2.3 Approximate Methods

In order to overcome some of the aforementioned limitations of sampling and analytical

methods, the use of approximate methods, such as the first-order second-moment method

and point estimate methods, have been proposed in the literature [23]. Rather than com-

puting the exact PF/OPF solution, these methods aim at approximating the statistical

proprieties of the output random variables by means of a probability distribution fitting

algorithm. In particular, the application of the first-order second-moment method allows

to compute the first two moments of the PF/OPF solution by propagating the moments

of the input variables by the Taylor series expansion of the model equations [24].

The point estimate methods, represent a more effective strategy, especially if the input

parameters uncertainties can be directly estimated or measured. The application of these
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solution algorithms allows to estimate the statistical moments of the PF solution by prop-

erly amalgamating the solutions of 2m deterministic problems, where m is the number of

uncertain parameters [25]. This feature could be further enhanced by deploying more so-

phisticated point estimation schemes, based, for example, on Hong’s point estimate method

[26]. The application of this enhanced solution strategy allows solving the PF problem in

the presence of multiple uncertainty sources characterized by both normal and binomial

distributions, which could be particularly useful in modeling generator outages. These

papers demonstrate that point estimate methods allow to effectively approximate the PF

solution while keeping low the computational burden, which is confirmed in [27], where a

comparison between the two-point estimate method proposed in [1] and a cumulant method

proposed in [12] for solving the OPF problem in the presence of multiple data uncertainty

is presented. The results obtained in this paper show that both approaches give similar

results in most cases, and are accurate provided that the OPF has a feasible solution.

It also observed that the cumulant method exhibits better performances for higher un-

certainty in the input variables; however, since it is based on a linearization around an

operation point, its performances rapidly decrease when this approximation is no longer

valid. Both of these methods are shown to be computationally signicantly faster than

a standard sampling-based approach, since they solve a reduced number of deterministic

problems.

Other approaches to solve the uncertain OPF problem are presented in: [28], where

a primal-dual interior point method is proposed to compute both the hull of the OPF

solutions and their sensitivity with respect to data variation; [29], where a multi-scenario

analysis based on the Taguchis orthogonal array testing is used to sample the input data

variables; and [30], where the robust design theory is applied to approximate the OPF

solutions in the presence of multiple data uncertainty. These papers confirm that the main

benefit derived by the application of approximated probabilistic methods in OPF analysis

is mainly due to the smaller level of data granularity required to approximate the problem

solution [26].

The application of the aforementioned solution methods present several shortcomings.

In particular, two-point estimate methods are not suitable to solve large scale problems,

since they typically do not provide acceptable results in the presence of a large number
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of input random variables. Moreover, the identification of the most effective scheme that

should be adopted to select the number of estimated points is still an open problem that re-

quires further investigations [31]; this is a critical issue, since a limited number of estimated

points does not allow for an accurate and reliable exploration of the solution space, espe-

cially for input uncertainties characterized by relatively large standard deviations, such as

in the case of lognormal or exponential distributions [31]. On the other hand, an increased

number of estimated points reduces the computational benefits deriving by the application

of point estimated methods, which could degenerate into a standard Monte Carlo solution

approach.

1.2.4 Non-Probabilistic Methods

Recent research has enriched the spectrum of available techniques to deal with uncertainty

in PF and OPF by proposing non-probabilistic formalisms, such as the theory of possibility

[32], based on the theory of fuzzy sets, and the theory of evidence [33]. Non probabilistic

formalisms are commonly adopted when uncertainty does not originate from unpredictable

numerical measurements but stems from imprecise human knowledge about the system

[34]; as a consequence, only imprecise estimates of values and relations between variables

are available. For example, wind can be locally measured, but it is difficult to estimate the

spatial distribution of wind speed in a geographical area using probabilities; also, weather

forecasts provide qualitatively information about environmental variables that can hardly

be represented in a probabilistic form. Hence, the availability of modeling and simulation

tools able to deal with non-probabilistic knowledge can be useful to analysts for PF and

OPF studies.

The application of fuzzy set theory to represent imprecise information, rather than

using uncertainty associated with a frequency of occurrence, has been proposed in several

papers [35, 36, 37]. In this paradigm, the input data and the inequality constraints are

modeled by fuzzy numbers, which are special instances of fuzzy sets [38], and the problem

solution is computed by deploying efficient linear programming solution algorithms based

on Dantzig-Wolfe decomposition and dual simplex [36].

Other studies reported in the literature have proposed the employment of self-validated
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computing for uncertainty representation in PF analysis. The main advantage of self-

validated computation is that the algorithm itself keeps track of the accuracy of the com-

puted quantities, as part of the process of computing them, without requiring information

about the type of uncertainty in the variables [39]. The simplest and most popular of these

models is Interval Mathematics (IM), which allows for numerical computation where each

quantity is represented by an interval of real numbers without a probability structure [40].

Such intervals are added, subtracted, and/or multiplied in such a way that each computed

interval is guaranteed to contain the unknown value of the quantity it represents.

The application of “standard” IM, referred here as interval arithmetic (IA), to PF anal-

ysis has been investigated by various authors [21, 20, 41, 42]. However, the adoption of

this solution technique presents many drawbacks derived mainly by the so called “depen-

dency problem” and “wrapping effect” [39, 43]; as a consequence, the solution provided

by an IA method for PF solution is not always as informative as expected. Thus in [44],

we showed that the use of IA for the solution of PF equations may easily yield aberrant

solutions, due to the fact that the IA formalism is unable to represent the correlations that

the PF equations establishes between the power systems state variables; as a consequence,

at each algorithm step spurious values are added to the solutions, which could converge

to large domains that include the correct solution. This phenomenon is well known in

the simulation of qualitative systems [45, 46], and requires the adoption of specific tech-

niques such as the Interval Gauss elimination, the Krawczyk’s method, and the Interval

Gauss Seidel iteration procedure. Therefore, the application of these paradigms in the PF

solution process leads to realistic solution bounds only for certain special classes of ma-

trices (e.g. M-matrices, H-matrices, diagonally dominant matrices, tri-diagonal matrices)

[47]; furthermore, to guarantee convergence, it is necessary to preconditioning the linear

PF equations by an M-matrix [48]. These techniques make the application of IA to PF

analysis complex and time consuming.

1.2.5 Affine Arithmetic-based Methods

To overcome the aforementioned limitations in IA, in [44], we propose the employment of

a more effective self validated paradigm based on Affine Arithmetic (AA) to represent the
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uncertainties of the PF state variables, which is one of the topics of the present thesis. In

this approach, each state variable is approximated by a first degree polynomial composed by

a central value, i.e. the nameplate value, and a number of partial deviations that represent

the correlation among various variables. The adoption of AA for uncertainty representation

allows expressing the PF equations in a more convenient formalism, so that a reliable

estimation of the PF solution hull can be computed taking into account the parameter

uncertainty inter-dependencies, as well as the diversity of uncertainty sources. The main

advantage of this solution strategy is that it requires neither derivative computations nor

interval systems, being thus suitable in principle for large scale PF studies, where robust

and computationally efficient solution algorithms are required. These benefits have been

confirmed in [49] and in [50], where we proposed AA-based methods to solve uncertain

OPF problems, which allows to determine operating margins for thermal generators in

systems with uncertain parameters, by representing all the state and control variables

with affine forms accounting for forecast, model error, and other sources of uncertainty,

without the need to assume a probability density function. These methodologies have been

recently recognized as a promising alternative for stochastic information management in

bulk generation and transmission systems for smart grids [51].

Based on our own work reported in [44], several papers have explored the application of

AA-based computing in power system analysis. In particular, in [52] the state estimation

problem in the presence of mixed phasor and conventional power measurements has been

addressed, considering the effect of network parameters uncertainty by an iterative weight

least square algorithm based on IA and AA processing. In [53], an AA-based model of the

uncertain PF problem is proposed, using complementarity conditions to properly represent

generator bus voltage controls, including reactive power limits and voltage recovery; the

model is then used to obtain operational intervals for the PF variables considering active

and reactive power demand uncertainties. In [54], a non-iterative solution scheme based

on AA is proposed to estimate the bounds of the uncertain PF solutions by solving an

uncertain PF problem, which is formalized by an interval power flow problem and solved

by quadratic programming optimization models.

The benefits deriving from the application of AA-based computing to power system

planning and operation in the presence of data uncertainty have been assessed in [55], which
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confirms that AA represents a fast and reliable computing paradigm that allows planners

and operators to cope with high levels of renewable energy penetration, electric vehicle

load integration, and other uncertain sources. Moreover, as confirmed in [56, 57, 49, 50],

AA allows the analyst to narrow the gap between the upper and lower bounds of the PF

and OPF solutions, avoiding the overestimation of bounds resulting from correlation of

variables in IA.

Although the aforementioned papers offer considerable insight on the role that AA may

play in power systems analysis, several open problems still remain unsolved, particularly:

• Further exploration of the application of AA-based techniques to uncertain OPF

analysis.

• Rigorous methodologies aimed at selecting the noise symbols of the affine forms

representing the power system state variables.

• More efficient paradigms aimed at reducing the overestimation errors of AA-based

PF and OPF problems.

1.3 Objectives

Based on the above literature review, the following are the main thesis objectives:

1. Demonstrate with several realistic test systems that the use IA in PF and OPF

analysis leads to over-pessimistic estimation of the solution hull, which are not useful

in most practical applications due to the inability of IA to keep track of correlations

between the power systems state variables, and analyze the employment of AA to

represent the uncertainties of the power systems state variables. The adoption of

AA for uncertainty representation will allow to express the PF and OPF models in a

more convenient formalism compared to the traditional and widely used linearization

frequently used in interval Newton methods.
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2. Present and thoroughly test with the help of multiple test systems solution method-

ologies based on AA for PF and OPF studies with data uncertainties. By using the

proposed methodology, a reliable estimation of the PF and OPF solutions hull will

be computed, taking into account the parameter uncertainty inter-dependencies as

well as the diversity of uncertainty sources. The main advantage of this solution

strategy is that it does not require the solution of interval systems of equations, be-

ing thus suitable in principle for large scale PF and OPF studies where robust and

computationally efficient solution algorithms are required.

3. Conceptualize a unified AA-based computational paradigm aimed at solving both PF

and OPF problems in the presence of data uncertainties. These are based on the idea

of formulating a generic mathematical programming problem under uncertainty by

means of equivalent deterministic problems, defining a coherent set of minimization,

equality and inequality operators.

4. Design more effective computing paradigms to reduce computational requirements

by knowledge discovery from historical operating data-sets, and use this approach to

better identify the noise symbols of the affine forms describing the uncertain variables

in the proposed AA-based PF and OPF analyses.

1.4 Content

The thesis is organized as follows:

• Chapter 2 introduces the mathematical preliminaries and the theoretical background

on which the presented research is based. In this chapter, the “standard” formal-

ization of PF and OPF, deterministic problems, and the theory of self-validated

computing are presented and discussed. The concept of Principal Component Anal-

ysis (PCA), which is an advanced technique for knowledge extraction from histori-

cal massive data, is also introduced in this chapter, since it represents an enabling

methodology to extract actionable information from power system data in order to
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determine potential patterns to simplify PF and OPF problems, as well as to properly

define affine forms in AA-based techniques.

• Chapter 3 describes a solution methodology based on the use of AA to solve uncertain

PF problems. This approach is shown to allow to reliable estimation of the PF

solution hull by taking into account the parameter uncertainty inter-dependencies,

as well as the diversity of uncertainty sources. Numerical results for a variety of

benchmark test systems are presented and discussed in some details to demonstrate

the effectiveness of the proposed AA-based PF methodology, especially in comparison

to previously proposed techniques.

• Chapter 4 presents a hybrid framework based on the fusion of AA and Range Arith-

metic for solving OPF problems, whose input data are specified in real compact

intervals. The main idea is to apply the theory of direct interval matching and se-

lection of the extreme value intervals to solve the constrained interval OPF problem,

so that this problem can be solved with state-of-the-art NLP solvers. Numerical

results for several realistic test systems are presented and discussed, demonstrating

the effectiveness of this methodology.

• Chapter 5 describes in detail the theoretical foundations, the mathematical formu-

lation, and the algorithmic deployment of a unified AA-based framework to solve

uncertain PF and OPF problems. Compared to existing AA-based solution tech-

niques, this framework is shown to present greater flexibility, as it allows to find

partial solutions and inclusion of multiple equality and inequality constraints, and

reduce the approximation errors to obtain a better solution enclosure. Detailed nu-

merical results for various test systems are presented and discussed, demonstrating

the effectiveness of the proposed methodology and comparing it to the AA-based PF

and AA-based OPF presented in Chapters 3 and 4, respectively.

• Chapter 6 discusses the application of the PCA-based knowledge discovery techniques

to lower the computational burdens in PF and OPF analysis, and to better represent

affine forms in the proposed AA-based PF and OPF methods. The effectiveness

of the proposed methodologies is assessed through the detailed simulation studies
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presented and discussed in this chapter for various benchmark systems.

• Finally, Chapter 7 summarizes the main conclusions and contributions of the thesis,

as well as the future research directions.
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Chapter 2

Mathematical Background

2.1 Introduction

In this chapter, the mathematical backbone of the proposed research is presented and

discussed. In particular, after the formalization of the deterministic PF and OPF problems

is first reviewed. Then alternatives for uncertainty representation based on IA and AA are

introduced, presenting the most relevant theorems supporting this techniques. Finally,

the main concepts associated with PCA for knowledge extraction from historical data are

briefly described.

2.2 Power Flow Analysis

PF analysis deals mainly with the calculation of the steady-state voltage phasor angle and

magnitude for each network bus, for a given set of variables such as load demand and real

power generation, under certain assumptions such as balanced system operation. Based

on this information, the network operating conditions, in particular, real and reactive

power flows on each branch, power losses, and generator reactive power outputs, can be

determined. Thus, the input (output) variables of the PF problem are typically:
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• the real and reactive power (voltage magnitude and angle) at each load bus, i.e. PQ

buses;

• the real power generated and the voltage magnitude (reactive power generated and

voltage angle) at each generation bus, i.e. PV buses;

• the voltage magnitude and angle (the real and reactive power generated) at the

reference or slack bus.

The equations typically used to solve the PF problem are the real power balance equa-

tions at the generation and load buses, and the reactive power balance at the load buses.

These equations can be written as:

P SP
i = Vi

∑N
j=1 VjYij cos (δi − δj − θij) ∀i ∈ NP

QSP
j = Vj

∑N
k=1 VkYjk sin (δj − δk − θjk) ∀j ∈ NQ

(2.1)

where:

• N is the total number of buses;

• NP is the set of the buses in which the active power is specified;

• NQ is the set of the buses in which the reactive power is specified;

• P SP
i and QSP

j are the real and reactive power injections specified at ith and jth bus;

• Vi∠δi is the unknown ith bus voltage in polar coordinates;

• Yij∠θij is the ijth element of the bus admittance matrix.

Due to the nonlinear nature of these equations the solution is not unique, and numerical

algorithms, mainly based on Newton-Raphson or fast-decoupled methods, are employed

to obtain a solution that is within an acceptable tolerance. These algorithms aim at

approximating the non-linear PF equations by linearized Jacobian-matrix equations, which

are solved by means of numerical iteration algorithms and sparse factorization techniques.
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The PF solution should take into account the limits on certain variables, in particular

max/min values of the reactive power at generation buses, to properly model the generator

voltage controls. To address this particular issue, the typical solution strategy is to carry

out a bus-type “switching”, which consists on converting a PV-bus into a PQ-bus with

the reactive power set at the limiting value, if the corresponding limits are violated. If at

any consequent iteration, the voltage magnitude at that bus is below or above its original

set point, depending on whether the generator is respectively underexcited or overexcited,

the bus is then reverted back to a PV-bus. An alternative and more effective strategy

to represent generator bus voltage controls, including reactive power limits and voltage

recovery processes, has been proposed in [58], where a novel OPF-based model of the PF

problem using complementarity conditions has been proposed.

2.3 Optimal Power Flow Analysis

Optimal Power Flow (OPF) analysis aims at computing the power system operation state

according to, for example, cost, planning, or reliability criteria without violating system

and equipment operating limits. The solution of this problem yields for identifying the

optimal asset of the control/decision variables u that minimizes one or more objective

functions fi, subject to a number of nonlinear equality gj and inequality constraints hk,

where fi, gj and hk are continous and diferrentiable functions. Hence, this problem can be

formalized in general by the following constrained, non-linear multi-objective programming

problem:

min
(x,u)

fi(x,u) ∀i ∈ [1, q]

s.t. gj(x,u) = 0 ∀j ∈ [1, n]

hk(x,u) < 0 ∀k ∈ [1,m]

(2.2)

where x is the vector of dependent variables, q is the number of scalar objective functions,

n is the number of equality constraints, and m is the number of inequality constraints.
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These equations can be expressed in a more compact vectorial form as follows:

min
(x,u)

f(x,u)

s.t. g(x,u) = 0

h(x,u) < 0

(2.3)

where f(.) is the q-dimensional objective function vector, and g(.) and h(.) are the n-

dimensional andm-dimensional vectors representing the equality and inequality constraints,

respectively.

The control/decision variables in (2.3) depend on the the specific application domain.

These can include both real-valued variables, such as the active power generated by the

available generators (i.e. optimal power dispatch), the set points of the primary voltage

controllers (i.e. secondary voltage regulation), the optimal location of control/generator re-

sources (i.e. planning studies), the maximum loading factor (i.e. voltage stability analysis),

and integer variables, such as the set of the available generators (i.e. unit commitment).

As a consequence, the OPF can be in general classified as a non-convex mixed integer/non-

linear programming (MINLP) problem.

The dependent variables include the voltage magnitude and phase angle at PQ buses,

the voltage phase angle and the reactive power generated at the PV buses, and the active

and reactive power generated at the slack bus. The inequality constraints include the

maximum allowable power flows for the power lines, the minimum and maximum allowable

limits for most control/decision variables, i.e. umin,i ≤ ui ≤ umax,i, ∀i ∈ [1, nu], such as

generator voltages, and for some dependent variables, i.e. xmin,i ≤ xi ≤ xmax,i, ∀i ∈ [1, nx],

such as bus voltage limits. In addition, the control/decision and the dependent variables

should satisfy the PF equations (2.1), which represent the equality constraints for (2.2)

and (2.3).

The objective functions f(.) could integrate both technical and economic criteria in-

cluding the minimization of the production costs, the minimization of the transmission

line losses, the minimization of the voltage deviations, etc. Because these design objectives

are typically competing, and its non-convexity, non-linear charateristics, the OPF prob-

lem has no unique solution and a suitable trade-off between the objectives needs to be
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identified. To deal with the multi-objective nature of the OPF problem, one of the most

common solution approaches used is the weighted global criterion method, in which all

objective functions, which are assumed to be non-negative, are combined to form a single

utility function expressed as:

U(x,u) =
∑p

i=1 (ωifi(x,u))r (2.4)

where the weights ωi, so that
∑p

i=1 ωi = 1, ωi > 0, are typically set by the analyst depending

on the relative importance of the objective functions.

Many classes of programming algorithms, such as nonlinear programming [59], quadratic

programming [60, 61], and linear programming [62], have been proposed to solve the OPF

problem. Some methods formalize the problems Karush-Kuhn-Tucker (KKT) optimality

conditions, which are a set of nonlinear equations that can be solved by using an iterative

Newton-based algorithm. These methods can handle both equality and inequality con-

straints, with the latter being added as quadratic penalty terms to the objective function

and multiplied by proper penalty multipliers [63]. Another useful paradigm to handle in-

equality constraints is based on the Interior Point method, i.e. barrier method [64]. This

approach converts the inequality constraints into equalities by the introduction of non-

negative slack variables. A self-concordant barrier function (e.g. logarithmic) of these slack

variables is then added to the objective function and multiplied by a barrier parameter,

which is gradually reduced to zero during the solution process. A more effective method

that does not require the definition of heuristic rules for barrier parameter reduction is

based on the unlimited point algorithm [65]. This method aims at converting the KKT

conditions to a set of nonlinear equations by implementing a proper transformation of the

slack and dual variables of the inequality constraints.

2.4 Self-Validated Computing

2.4.1 Interval Arithmetic

The most intuitive approach to the numerical solution of uncertain PF and OPF prob-

lems consists of extending the numerical algorithms for the solution of the corresponding
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deterministic problems using IA operators. IA is a range-based formalism for numerical

computation, where each real quantity θ is assumed to be “unknown but bounded” in an

interval of real numbers Θ = [θinf , θsup], also known as the tolerance of θ. The key element

of IA based computing is based on the following theorem [40]:

Theorem 1 (Fundamental invariant of range analysis for IA): ∀ Γ : <p → <q, globally

Lipschitz with bounded slope. There exists an interval extension ΓI : <p → <q such that:

∀ (θ1, .., θp) ∈ (Θ1, ..,Θp)⇒ Γ (θ1, .., θp) ∈ ΓI (Θ1, ..,Θp)

The implementation of interval extension ΓI is generally straightforward for elementary

operations, such as sums, products, square roots, since it requires only the identification of

the maximum and minimum values of Γ(θ1, .., θp), when the corresponding arguments vary

independently over specified intervals. Examples of simple arithmetic operations between

two intervals Θ1 = [θ1,inf , θ2,sup] and Θ2 = [θ2,inf , θ2,sup] are:

Θ1 + Θ2 = [θ1,inf + θ2,inf , θ1,sup + θ2,sup] (2.5)

Θ1 −Θ2 = [θ1,inf − θ2,sup, θ1,sup + θ2,inf ] (2.6)

Θ1 ·Θ2 = [min(θ1,infθ2,inf , θ1,infθ2,sup, θ1,supθ2,inf , θ1,supθ2,sup),

,max(θ1,infθ2,inf , θ1,infθ2,sup, θ1,supθ2,inf , θ1,supθ2,sup)]
(2.7)

Θ1/Θ2 = [θ1,inf , θ1,sup] ·
[

1
θ2,sup

, 1
θ2,inf

]
0 /∈ [θ2,inf , θ2,sup] (2.8)

Computation of interval extensions for more complex functions can be obtained by compos-

ing these primitive operators as illustrated in [40, 39]. Based on Theorem 1, it is possible

to conclude that if a function is evaluated using these IA-based operators, the resulting

interval is guaranteed to enclose the range of function values.

IA-based computing has been applied for solving mathematical problems under uncer-

tainty such as linear systems of equations [66, 67], non-linear systems of equations [68],

and optimization problems [69, 70]. The application of these algorithms typically yields

to approximate interval solutions, called outer solutions, that are guaranteed to contain

the exact interval solution. However, in many cases, these outer solutions are not always
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as expected; thus, as shown in [71, 46], the use of IA-based computing in iterative solu-

tion algorithms may easily yield aberrant solutions. This is due to the fact that the IA

formalism is unable to correctly represent the interaction between the problem variables,

due to what is known as the “wrapping problem”, as illustrated in Figure 2.1 [46], which

plots the state space evolution of the harmonic oscillator, θ̇1 = θ2, θ̇2 = −θ1, whose initial

condition (t=0) is represented by the rectangle ABCD with its sides parallel to the axes.

In this case, since the initial rectangle does not evolve into another rectangle parallel to

the coordinate axes, when one represents the uncertain state of the dynamical system at

time t′ using the interval notation, the IA solution (rotated rectangle A′B′C ′D′) adds a

set of “spurious states” (black regions), which do not correspond to an evolution of points

belonging to ABCD; thus, in a few iterations, the IA solution diverges and covers the entire

phase space. Another example is:

Θ1 · (Θ2 + Θ3) ⊂ (Θ1 ·Θ2 + Θ1 ·Θ3) (2.9)

As a consequence, the interval solutions produced by IA-based solvers are often much wider

than the true range of the corresponding quantities, especially during long computational

chains in which the interval width could diverge. This phenomenon is well known in the

simulation of qualitative systems [45], and requires the adoption of special techniques.

Another well-known issue which could limit the application of IA-based computing in

real world application is the so called “dependency problem”, which derives directly from

the definition of the interval difference operator (2.6):

Θ−Θ = [θinf , θsup]− [θinf , θsup] = [θinf − θsup, θsup + θinf ] 6= 0 (2.10)

This aberration is due to intrinsic inability of IA to discriminate the uncertainty sources,

which are assumed to be independent for each interval variable. In particular, if the interval

variables Θ1 = [1, 2] and Θ2 = [1, 2] describe two independent uncertain sources, then the

results computed by applying the IA-based difference operator,Θ1−Θ2 = [−1, 3], is correct.

On the other hand, if these interval variables describe the same uncertain source, then the

corresponding result leads to a large overestimation error.

In [44], we demonstrated that due to the introduction of spurious values in the result

of IA-based PF analysis, there is excessive conservatism in the output intervals, especially
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Figure 2.1: IA evolution of the external surface of the region of uncertainty for a 2-nd order

oscillatory system (“wrapping” effect).

when solving large scale problems. To address this limitation, it is proposed here the use

of more advanced paradigms based on AA, which is discussed next, to solve uncertain PF

and OPF problems.

2.4.2 Affine Arithmetic

Affine arithmetic (AA), introduced in [39], is a method for range analysis to manipulate

multiple uncertainty sources such as imprecise data, modeling errors, round off and trun-

cation errors. This paradigm is similar to standard IA, but, in addition, it keeps track

of correlations between the input and the computed quantities, providing much tighter

bounds in the computing process and avoiding the probability for the error explosion

problem observed in IA computations [72].

In AA, a partially unknown quantity χ is represented by an affine form that is a first
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degree polynomial of the form:

χ̂ = χ0 + χ1ε1 + χ2ε2 + ...+ χpεp (2.11)

where χ0 and χk are known real coefficients representing the central value and the partial

deviations of the affine form χ̂ respectively. The variables εk, called the noise symbols, are

symbolic quantities whose values are unknown but bounded in the interval [-1,1]. Each

noise symbol represents an independent uncertainty source affecting the variable χ, which

may be external, if related to the uncertainty of some input quantities, or internal, if

originated by round off and truncation errors in the computation of χ̂. Hence, these noise

symbols can be used to quantify the uncertainty of all interval quantities, which allows to

account for interactions between dependent variables. Thus a formal correlation between

AA and IA can be obtained by using the following operators:

$χ̂ :=

p∑
k=1

|χk| (2.12)

∇̄(χ̂) := χ0 +

p∑
k=1

|χk| (2.13)

∇(χ̂) := χ0 −
p∑

k=1

|χk| (2.14)

Θχ̂ := [∇(χ̂), ∇̄(χ̂)] (2.15)

which define the radius, the upper bound, the lower bound and the range of the affine form

χ̂, respectively.

In order to perform AA computations, it is necessary to replace each operation on

real numbers by equivalent mappings between affine forms. In particular, given a generic

mapping Γ(χ, ψ) the corresponding AA operation Γ(χ̂, ψ̂) is a procedure that computes an

affine form for ζ = Γ(χ, ψ), which is coherent with input affine forms (χ̂, ψ̂). If the function

Γ is a linear function of its argument χ and ψ, the affine representation of ζ is obtained by

expanding and rearranging into an affine form the noise symbols εk, as in the case of the

following arithmetic operations:

χ̂± ψ̂ = (χ0 ± ψ0) + (χ1 ± ψ1)ε1 + (χ2 ± ψ2)ε2 + ...+ (χp ± ψp)εp (2.16)
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λχ̂ = (λχ0) + (λχ1)ε1 + (λχ2)ε2 + ...+ (λχp)εp (2.17)

χ̂± λ = (χ0 ± λ) + χ1ε1 + χ2ε2 + ...+ χpεp (2.18)

On the other hand, if Γ is a non-affine operation, ζ cannot be expressed exactly as an affine

combination of the noise symbols εk, i.e.:

ζ̂ = Γ(χ̂, ψ̂) = Γ(χ0 + χ1ε1 + χ2ε2 + ...+ χpεp, ψ0 + ψ1ε1 + ψ2ε2 + ...+ ψpεp) (2.19)

In this case, the problem boils down to the identification of an affine function:

Γa(χ̂, ψ̂) = ζ0 + ζ1ε1 + ζ2ε2 + ...+ εpζp (2.20)

that approximates the function Γ(χ̂, ψ̂) reasonably well over its domain:

ẑ = Γa(χ̂, ψ̂) + ζp+1εp+1 = ζ0 + ζ1ε1 + ζ2ε2 + ...+ ζpεp + ζp+1εp+1 (2.21)

where the last term represents the residual or approximation error:

e∗(χ̂, ψ̂) = Γ(χ̂, ψ̂)− Γa(χ̂, ψ̂) (2.22)

The noise symbol εp+1 in (2.21) must be distinct from all other noise symbols that

already appeared in the same computation, and its coefficient ζp+1 must be an upper

bound on the absolute magnitude of e∗, as follows:

ζp+1 > max
(ε1,ε2,...,εp)

e∗(χ̂, ψ̂)(2.23)

Furthermore, the affine approximation function Γa in (2.20) could assume different struc-

tures, depending on the desired degree of accuracy and the available computational re-

sources. A good trade off between these goals could be obtained by assuming the following

approximation structure:

Γa(χ̂, ψ̂) = αχ̂+ βψ̂ + ξ (2.24)

where the unknown coefficients α, β, and ξ can be identified by the following theorem:
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Theorem 2 (Chebyshev approximation theorem for univariate functions): Let Γ be a

bounded and twice differentiable function defined in some interval χI = [χinf , χsup], whose

second derivative does not change sign inside χ. Let Γa(χ̂) = αχ̂+ξ be its Chebyshev affine

approximation in χI . Then:

α =
Γ(χsup)−Γ(χinf )

χsup−χinf
ξ = Γ(u)+r(u)

2
− αu dΓ(u)

dχ
= α r(u) = αu+ Γ(χsup)− αχsup

and the maximum absolute error is:

ζp+1 = |Γ(u)−r(u)
2
|

Observe that α is simply the slope of the line interpolating the points (χinf , f(χinf )) and

(χsup, f(χsup)), while the maximum absolute error will occur twice (with the same sign) at

the endpoints χinf and χsup of the range, and once (with the opposite sign) at every interior

point u of χ where dΓ(u)
dχ

= α. This important result provides an algorithm for finding the

optimum coefficients α and ξ of the affine approximation function, and the upper bound

ζp+1 of the corresponding approximation error.

The distinguishing propriety of AA compared to other self-validated computation model

providing first-order approximations, such as generalized interval arithmetic, first-order

Taylor arithmetic, and the ellipsoidal calculus, is that the function is expanded not only in

the initial parameters but also in intermediate intervals resulting from the non-linearities.

Hence, AA can be considered as an intermediate between Taylor forms and zonotopes,

as described in detail in [73], presenting several advantages, including a wider range of

applications and a more convenient programming interface [74].

In the next chapter, it will be shown that the adoption of AA-based computing allows

to express the power system equations in a more convenient form, to solve them using

algorithms that do not require the traditional and widely used linearization approach fre-

quently adopted in IA-based solution methods, thus avoiding the need to invert or factorize

matrixes, which introduce significant errors when using intervals to represent uncertain-

ties. This important feature will allow the design of more effective solution techniques for

uncertain PF and OPF problems.
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2.5 Principal Components Analysis

Effective AA-based computing requires the deployment of formal methods aimed at opti-

mally selecting the noise symbols of the affine forms and reducing the overestimation errors

of the solution sets. To address this open problem, novel techniques for knowledge discov-

ery from historical operation data-sets based on Principal Components Analysis (PCA)

will be proposed in this research.

PCA aims at discovering the potential relationships among a set of state variables

xi ∀i ∈ [1, Nx], from the following set of historical observations (usually referred as the

knowledge base):

x(K) = [x1(K)...xNx(K)]T ∀K ∈ [0, T ] (2.25)

where [0, T ] defines the integer sample time interval of available data. This is accomplished

by identifying a suitable domain transformation such that the elements of the knowledge

base can be accurately represented by an inverse model of the form:

x(K) = Π−1(ζ(K)) + r(K) ∀K ∈ [0, T ] (2.26)

where Π : <Nx → <Nζ is a continuous function describing the domain transformation

mapping; ζ(K) = [ζ1(K)...ζNζ(K)]T are the components of the state vector x(K) in the

transformed domain; and r(K) represents the residual error vector.

In standard PCA, the domain transformation function is composed of a linear combi-

nation with a proper number of orthogonal and uncorrelated principal components with

decreasing variance, namely [75]:

x(K) = Ω s(K) + xmed ∀K ∈ [0, T ]

xmed = 1
T

∑T
K=0 x(K)

(2.27)

where s(K) is the principal component vector, and Ω is a matrix of dimensions Nx×NPC ,

which can be determined by solving the following eigenvalue problem:

s(K) = M(x(K)− xmed) ∀K ∈ [0, T ]
(2.28)
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where the orthonormal matrix M is defined as:

Mi = σi(XXT ) (2.29)

with σi(XXT ) representing the ith eigenvector of the matrix XXT , for X = [x(1)...x(T )]T .

This domain transformation mainly consists of translating and rotating the original co-

ordinate axes, in such a way that the first principal component is characterized by the

largest variance, and each following component by the highest variance that is orthogonal

and uncorrelated with the previous components. As a consequence, each principal com-

ponent carries different and uncorrelated information to other components, and only a

limited number of them are necessary to accurately compute the state variables for highly

correlated datasets (NPC � Nx) [76]. Thanks to this feature, the NxT historical data

can be approximated by storing and processing a limited number of variables, namely, the

principal components profiles, the static matrix Ω, and the static vector xmed, for a total of

NPCT +NxNPC +Nx elements. The ratio between these quantities provides a rough esti-

mation of the data compression capability of the PCA-based knowledge extraction process,

which, for a large number of observations, tends to the following value:

C∞R = lim
T→∞

CR(T ) = lim
T→∞

NxT

NPCT +NxNPC +Nx

=
Nx

NPC

(2.30)

This result demonstrates the effectiveness of PCA in compressing the knowledge base by

extracting only the more relevant information, which mainly depends on the number of

principal components NPC assumed in the computation. The latter can be determined by

adopting various statistical methods, including:

• Kaiser criterion: it selects principal components with eigenvalues greater than 1.

• Scree test: it is based on the analysis of the scree plot of the available data.

• Cumulative percentage method: it selects the components that cumulatively explain

a certain percentage of variation.

• Binary search approach: it selects the components by identifying a proper trade-

off between statistical fidelity, i.e. maximizing the variance in the data, and inter-

pretability, i.e. minimizing the coordinate axes.
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More details about these methods can be found in [77].

As recently outlined in several papers [78, 79, 80], PCA could be useful in data man-

agement for smart grids, where a massive increase of data exchanging and processing is

expected in the short/medium term. Furthermore, the described PCA-based knowledge-

extraction process, codified in the matrix Ω, could also be used for selecting the optimal

number of noise symbols and reducing the complexities of AA-based PF and OPF analysis,

as proposed in this work.

2.6 Summary

In this chapter, the main mathematical background of the proposed research was presented.

In particular, the mathematical formalizations of the deterministic PF and OPF problems

has been introduced. Also, IA, which can be used to represent uncertainty through in-

tervals, has been reviewed, showing the main limitations of this technique, which results

in excessive conservatism, especially when solving large scale problems. To address this

limitation, a more effective alternative for uncertainty representation based on AA is pro-

posed in this work, introducing the most relevant theorems supporting this theory has been

presented in this chapter. Finally, the PCA-based knowledge discovery paradigm, aimed

at solving some open problems in AA-based computing, as discussed in this thesis, has

been briefly explained.

27



Chapter 3

Affine Arithmetic for Uncertain PF

Analysis

3.1 Introduction

In this chapter a solution based on the use of AA is presented to solve uncertain PF

problems. The adoption of this approach allows expressing the uncertain PF equations in

a more convenient formalism, compared to the traditional and widely used linearization

frequently adopted in interval Newton methods, and reliably estimating the PF solution

hull by taking into account the parameter uncertainty inter-dependencies, as well as the

diversity of uncertainty sources. Many numerical results are presented and discussed in

some detail to demonstrate the effectiveness of the proposed AA-based PF methodology,

especially in comparison to previously proposed interval arithmetics techniques.

3.2 Methodology

AA can be effectively adopted for uncertainty representation in PF analysis. Thus, as

described in [44], each state variable, i.e. the voltage magnitude of the load buses and the

voltage phase of all buses but the slack, can be expressed by a central value and a set of
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partial deviations. These deviations are associated with as many noise variables as those

which describe the effect of the various phenomena affecting the system state variables.

Without loss of generality, the typical sources of uncertainties considered here are those

related to the active and reactive power in loads and the active power in generators, asso-

ciated with elastic loads and intermittent sources. Therefore, the affine forms representing

the power system state variables can be represented as follows:

V̂i = Vi,0 +
∑

j∈NP
V P
i,jεj +

∑
k∈NQ

V Q
i,kεk ∀i ∈ NQ

δ̂i = δi,0 +
∑

j∈NP
δPi,jεj +

∑
k∈NQ

δQi,kεk ∀i ∈ NP
(3.1)

where εj, j ∈ NP , is the noise representing the uncertainty of the active power injection

at the jth bus; εk, k ∈ NQ, is the noise representing the uncertainty of the reactive power

injection at the kth bus; Vi,0 is the central value of the ith bus voltage magnitude; δi,0 is the

central value of the ith bus voltage angle; V P
i,j is the partial deviation of the ith bus voltage

magnitude due to the active power injected at the jth bus; V Q
i,j is the partial deviation of

the ith bus voltage magnitude due to the reactive power injected at the jth bus; δPi,j is the

partial deviation of the ith bus voltage angle due to the active power injected at the jth

bus and δQi,j is the partial deviation of the ith bus voltage angle due to the reactive power

injected at the jth bus.

The central values of the affine forms (3.1) are calculated by solving the conventional

PF equations (2.1) for the “nominal” operating point defined by:{
P SP
i =

PSPi,max−PSPi,min
2

∀i ∈ NP
QSP
i =

QSPi,max−QSPi,min
2

∀i ∈ NQ
(3.2)

and a first estimation of the partial deviations of the affine forms (3.1) can be first ap-

proximated by means of the sensitivities of the desired voltage magnitudes and angles with

respect to the uncertain inputs at the “nominal” operating point, i.e.

V P
i,j = ∂Vi

∂Pj

∣∣∣
0
∆Pj V Q

i,k = ∂Vi
∂Qk

∣∣∣
0
∆Qk ∀j ∈ NP ,∀‖, 〉 ∈ NQ

δPi,j = ∂δi
∂Pj

∣∣∣
0
∆Pj δQi,k = ∂δi

∂Qk

∣∣∣
0
∆Qk ∀i, j ∈ NP , ∀‖ ∈ NQ

(3.3)

Observe that if the PF equations would contain only affine expressions, i.e. be a linear

system of equations, the obtained affine forms would be the exact solution. However, these
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equations are nonlinear expressions, and hence the obtained affine forms are usually an

underestimation of the exact result [81]. Thus, to guarantee the inclusion of the solution

domain, each partial deviation is multiplied by an amplification coefficient [81]. Starting

from this initial affine solution, a “domain contraction” based method for narrowing its

bounds is used. Hence, the algorithm first starts by plugging (3.1), with the initial partial

deviation approximations defined in (3.3), in the right-hand side of the PF equations (2.1)

to compute the following AA form of the injected powers:

Q̂i = Qi,0 +
∑

j∈NP
QP
i,jεj +

∑
k∈NQ

QQ
i,kεk +

∑
h∈NN

Qi,hεh ∀i ∈ NQ
P̂i = Pi,0 +

∑
j∈NP

P P
i,jεj +

∑
k∈NQ

PQ
i,kεk +

∑
h∈NN

Pi,hεh ∀i ∈ NP
(3.4)

where P̂i and Q̂i are the affine forms of the calculated active and reactive power injections

in the ith bus; εh are new noise variables introduced in the computational process due to the

presence of non affine operations (NN denotes the set of these new noise variables); Qi,0,

QP
i,j, Q

Q
i,k, Pi,0, P P

i,j, and PQ
i,k are the computed central values and the partial deviations of

the affine forms of the calculated active and reactive powers injected in the ith node; and

Qi,h and Pi,h are the coefficients of the noise symbols εh, associated with the approximation

errors due to non-affine operations.

The AA operators (2.16)-(2.18) and affine approximations of the sinusoidal functions

described in [39] are used to obtain QP
i,j, Q

Q
i,k, Qi,h,P

P
i,j,P

Q
i,k, and Pi,h. The obtained affine

forms (3.4) can then be arranged in the following matrix form:
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Q̂1

...

Q̂NQ

P̂1

...

P̂NP


=



Q1,0

...

QNQ,0

P1,0

...

PNP ,0


+

+



QP
1,1 ... QP

1,NP
QQ

1,1 ... QQ
1,NQ

... ... ... ... ... ...

QP
NQ,1

... QP
NQ,NP

QQ
NQ,1

... QQ
NQ,NQ

P P
1,1 ... P P

1,NP
PQ

1,1 ... PQ
1,NQ

... ... ... ... ... ...

P P
NP ,1

... P P
NP ,NP

PQ
NP ,1

... PQ
NP ,NQ





ε1

...

εNP
εNP+1

...

εNP+NQ


+

+



Q1,1 ... Q1,NN

... ... ...

QNQ,1 ... QNQ,NN

P1,1 ... P1,NN

... ... ...

PNP ,1 ... PNP ,NN





εNP+NQ+1

...

...

...

...

εNP+NQ+NN



(3.5)

where NP and NQ represent the number of PV buses and PQ buses and NN is the number

of the noise symbols. In a more general form, (3.5) can be written as:

F(X) = AX + B (3.6)

where

A =



QP
1,1 ... QP

1,NP
QQ

1,1 ... QQ
1,NQ

... ... ... ... ... ...

QP
NQ,1

... QP
NQ,NP

QQ
NQ,1

... QQ
NQ,NQ

P P
1,1 ... P P

1,NP
PQ

1,1 ... PQ
1,NQ

... ... ... ... ... ...

P P
NP ,1

... P P
NP ,NP

PQ
NP ,1

... PQ
NP ,NQ


(3.7)
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X =



ε1

...

εNP
εNp+1

...

εNP+NQ


(3.8)

B =



Q1,0

...

QNQ,0

P1,0

...

PNP ,0


+



Q1,1 ... Q1,NN

... ... ...

QNQ,1 ... QNQ,NN

P1,1 ... P1,NN

... ... ...

PNP ,1 ... PNP ,NN





εNP+NQ+1

...

...

...

...

εNP+NQ+NN


(3.9)

Note that, A is a matrix of computed real coefficients; X is the vector that needs to be

contracted, with initial values for each of its components set at [-1,1]; and B is an interval

vector, since the new noise variables vary in the interval [-1,1] and hence it is not possible to

contract them, because these represent internal noise introduced by the AA computational

process. The PF solution can then be obtained by contracting the vector X so that:

AX + B = FSP (3.10)

where FSP is the following interval vector defining the specified range of the active and

reactive powers:

FSP =



[
QSP

1,min, Q
SP
1,max

]
...

[QSP
NQ,min

, QSP
NQ,max

]

[P SP
1,min, P

SP
1,max]

...

[P SP
NP ,min

, P SP
NP ,max

]


(3.11)

The problem is thus reduced to solving the IA problem:

AX = C (3.12)
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where C = FSP−B, and A is a real matrix. The linear IA problem (3.12) can be effectively

solved using the following NP +NQ constrained linear optimization problems:

min (εk, εj) ∀k ∈ NQ,∀j ∈ NP
s.t. − 1 ≤ εk ≤ 1, −1 ≤ εj ≤ 1

inf(C) ≤ AX ≤ sup(C)

(3.13)

max (εk, εj) ∀k ∈ NQ,∀j ∈ NP
s.t. − 1 ≤ εk ≤ 1, −1 ≤ εj ≤ 1

inf(C) ≤ AX ≤ sup(C)

(3.14)

These are standard linear programming (LP) problems which can be readily and efficiently

solved by using an LP solver such as CPLEX [82]. The desired PF solution is then obtained

as:

Vi = Vi,0 +
∑

j∈NP
V P
i,j [εj,min, εj,max] +

∑
k∈NQ

V Q
i,k[εk,min, εk,max] ∀i ∈ NQ

δi = δi,0 +
∑

j∈NP
δPi,j[εj,min, εj,max] +

∑
k∈NQ

δQi,k[εk,min, εk,max] ∀i ∈ NP
(3.15)

Observe that the proposed solution procedure represents an alternative to the tradi-

tional and widely used linearization formalism adopted in IA approaches, which is based

on the Interval Newton method and consist on solving the following IA problem:

F(x0 + ∆x) ∈ F(x) + J(x0)∆x ∀x ∈ x0 (3.16)

where x0 is a vector of intervals, the Jacobian matrix J(x0) is an interval matrix, and F(x)

is a real vector defined by x, which is typically the midpoint of x0. Solving (3.16) requires

the “inversion” of the interval matrix J(x0), which is a nontrivial problem [83, 84], and, as

pointed out in [48, 47], this is the main impediment in the application of IA to PF studies.

On the other hand, the solution of (3.12) does not require an interval matrix inversion,

making it computationally efficient and hence readily applicable to real size systems.

The described AA-based solution methodology can be improved to account for reactive

power limits and properly model the generators voltage regulators. This is done here by

using the standard PV- and PQ-bus switching as described in Section 2.2.
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3.3 Numerical Results

This section discusses the application of the presented AA-based PF to three IEEE test

systems. The PF solution bounds obtained by the proposed AA-based technique are com-

pared to those calculated using a Monte Carlo simulation with a uniform distribution,

which is typically assumed to yield the “correct” solution intervals. For the latter, 5000

different values of the input variables within the assumed input bounds were randomly

selected, and a conventional PF solution was obtained for each one; this procedure yielded

the desired interval solutions defined by the largest and the smallest values of the bus

voltage magnitudes and angles as well as line flows. It should be noted that increasing the

number of Monte Carlo simulations beyond 5000 did not yield any significant changes to

the solution intervals.

Since all computational tasks were performed using MatlabTM, for the representation

of affine forms, a vectorial-based approach was adopted, which is computationally more

efficient in MatlabTM. Thus, each affine form is represented as a vector whose first ele-

ment represents the central value while the other vector components describe the partial

deviations with respect to the corresponding noise variable.

Without loss of generality, a ±20% (40%) tolerance on load and generator powers

was assumed, since this would define an interval wide enough to represent, for example,

uncertain wind and solar generation. Based on the assumed load and generator power

bounds to represent input data uncertainty, the proposed AA-based PF was applied to

estimate the bounds of the PF solution. All the simulation studies were developed on a

PC workstation equipped with an Intel Core Duo CPU @ 3 GHz with 3 GB RAM, the

obtained results are presented and discussed in the following sections.

3.3.1 IEEE 30-bus test system

The IEEE 30-bus test case represents a portion of the American Electric Power System

composed by 30 buses, 3 generators, 3 synchronous condensers, 24 loads, and 41 lines

[85]. The power profiles used to simulate the network are shown in Figures 3.1 and 3.2.

The computed AA-based solution is compared with the one obtained by using the Monte
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Carlo approach, in the profiles depicted in Figures 3.3-3.4, which depict the bus voltages

magnitude and angle bounds, respectively. For this case study, the solution algorithm

detected that the upper bound of the reactive power on the 4th generator, connected at the

Bus 27, violated the upper limit. Consequently, the solution algorithm first switched this

bus from PV to PQ, then fixed the corresponding reactive power to the maximum allowable

value and, finally, proceeded to calculate the final PF solution. The corresponding reactive

power generated at the PV buses after the bus-type switches is depicted in Figure 3.5.

3.3.2 IEEE 57-bus test system

The IEEE 57-bus Test system represents a portion of the American Electric Power System

composed by 57 buses, 7 generators, 42 loads, and 80 lines [85]. The power profiles adopted

to simulate the network are shown in Figures 3.6 and 3.7. In this case, after the first

iteration, the solution algorithm detected that the upper bound of the reactive power on

both the 4th and the 6th generator, connected at Buses 6 and 8 respectively, violated the

upper limit. Consequently, the solution algorithm first switched these buses from PV to

PQ, then fixed the corresponding reactive powers to the maximum allowable values and,

finally, proceeded to calculate the final PF solution. The computed AA-based solution is

compared with that obtained by using the Monte Carlo approach, as shown in the profiles

depicted in Figures 3.8-3.10, with Figure 3.8 depicting the bus voltages magnitude bounds,

Figure 3.9 showing the bus voltages angle bounds, and Figure 3.10 depicting the reactive

power generated at the PV buses after the bus-type switches.

3.3.3 IEEE 118-bus test system

The IEEE 118 Bus Test Case represents a portion of the Midwestern American Electric

Power System composed by 118 bus, 54 generators, 64 loads and 186 lines [85]. The power

profiles adopted to simulate the network are shown in Figures 3.11 and 3.12. The computed

AA-based solution is compared with that obtained by using the Monte Carlo approach,

as shown in the profiles depicted in Figures 3.13 and 3.14, with Figure 3.13 depicting the

bus voltages magnitude bounds, while Figure 3.14 shows the corresponding bus voltages
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Figure 3.1: Active power (a) bounds and (b) net intervals for the IEEE 30-bus test system.
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Figure 3.2: Reactive power (a) bounds and (b) net intervals for the IEEE 30-bus test

system.
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Figure 3.3: Obtained bus voltage magnitude bounds for the IEEE 30-bus test system.

angle bounds. For this case study, the solution algorithm didn’t detect any violations of

the reactive power constraints.

3.3.4 Discussion

From the obtained results summarized in Table 3.1, comparing the average errors in the

difference of the upper and lower bounds for bus voltage magnitudes and angles between

the proposed AA method and Monte Carlo, it is worth observing that the AA-based

methodology gives fairly good approximations of the PF solution bounds, when compared

to the benchmark intervals obtained with the Monte Carlo approach; this is mainly due

to the intrinsic characteristic of AA, which keeps track of correlations between the power

systems state variables. It is important to notice that the solution bounds are slightly

conservative, which is due to the fact that AA, like IA, yields “worst case” bounds, which
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Figure 3.4: Obtained bus voltage angle bounds for the IEEE 30-bus test system.

take into account any uncertainties in the input data. This is to be expected, since, as stated

in [86], the random, uniformly distributed variation of variables (with mean equal zero)

assumed in the Monte Carlo approach tends to underestimate the worst case variations.

This can be considered as an advantage of the proposed approach, since no assumptions

regarding the probability distribution of load and generator power variations are required.

In order to assess the benefits of uncertainty representation by AA compared to IA,

further studies aimed at characterizing the solution domain of the PF equations were

performed for the IEEE 57-bus test system. These results are summarized in Figures 3.15

and 3.16, with Figure 3.15 showing the solution domain for Buses 2 and 6 voltage angles

assessed by IA, AA, and the Monte Carlo approach, and Figure 3.16 depicting the active

power bounds at the PV and PQ buses obtained by applying IA to the PF equations 2.1

using the solution bounds obtained from the Monte Carlo formulations as IA intervals.
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Figure 3.5: Obtained reactive power bounds at PV buses for the IEEE 30-bus test system.

Observe that AA yields a more realistic elliptical approximation of the solution domain

compared to the typical “hyper box” (rectangle) used in IA, which may result on missing

some salient features of the actual variations of the power systems state variables. This

in turn leads to a large overestimation of the complex power bus injections, as confirmed

by the wide IA-based bounds shown in Figure 3.16. Note that, although these bounds

were obtained by processing the best available approximation of the state variable solution

bounds, the calculated active power bus injection bounds are significantly larger than the

assumed ±20% (40%) interval.

Finally, it is worth observing that the AA-based methodology allows to compute a

reliable and fast estimation of the PF solution bounds compared to the sampling-based

approach. This is clearly observed in Table 3.2, which summarizes the execution times

observed in the simulation studies.
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Figure 3.6: Active power (a) bounds and (b) net intervals for the IEEE 57-bus test system.
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Figure 3.7: Reactive power (a) bounds and (b) net intervals for the IEEE 57-bus test

system.
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Figure 3.8: Obtained bus voltage magnitude bounds for the IEEE 57-bus test system.

3.4 Summary

In this chapter, a methodology for AA-based PF analysis that allows to better handle un-

certainty compared to the traditional and widely used IA approaches has been explained.

Based on this AA formalism, the PF solution bounds were readily obtained by solving a

limited number of linear optimization problems. It was shown, with the help of various tests

run on several power test systems, that using AA allows addressing effectively the “wrap-

ping effect” and the “dependency problem” of IA, leading to a better characterization of the

effects of input data uncertainty in PF solutions, and a more realistic approximation of the

solution domain compared to the typical “hyper box” form obtained with IA approaches.

It was also illustrated that the AA-based technique is computationally more efficient than

the Monte Carlo simulation sampling-based method. The presented analysis and results

demonstrate that the AA-based approach is well suited for the assessment of uncertainty
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Figure 3.9: Obtained bus voltage angle bounds for the IEEE 57-bus test system.

propagation in PF solutions, independent of the types and levels of uncertainties in the

input data.
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Figure 3.10: Obtained reactive power bounds at PV buses for the IEEE 57-bus test system.

Table 3.1: Average Errors

30 bus 57 bus 118 bus

Upper Lower Upper Lower Upper Lower

Bus Voltage Angle [deg] 0.65 0.97 3.32 3.33 3.18 3.16

Bus Voltage Magnitude [p.u.] 0.0055 0.0046 0.009 0.0088 0.0102 0.0101

Table 3.2: Execution Times (seconds)

30 bus 57 bus 118 bus

Monte Carlo (5000 trials) [s] 149.9 211.8 603.1

AA-based PF [s] 1.7 2.5 5.7
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Figure 3.11: Active power (a) bounds and (b) net intervals for the IEEE 118-bus test

system.

46



2 0 4 0 6 0 8 0 1 0 0
- 0 , 5

- 0 , 4

- 0 , 3

- 0 , 2

- 0 , 1

0 , 0

0 , 1

Re
ac

tive
 po

we
r [p

.u.
]

B u s e s

 U p p e r  B o u n d
 L o w e r  B o u n d

(a)

0 2 0 4 0 6 0 8 0 1 0 0
0 , 0

0 , 1

0 , 2

0 , 3

0 , 4

Re
ac

tive
 Po

we
r - 

ne
t in

ter
va

ls [
p.u

.]

B u s e s
(b)

Figure 3.12: Reactive power (a) bounds and (b) net intervals for the IEEE 118-bus test

system.
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Figure 3.14: Obtained bus voltage angle bounds for the IEEE 118-bus test system.
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Chapter 4

Range Arithmetic for Uncertain OPF

Analysis

4.1 Introduction

This chapter presents a hybrid framework based on the fusion of AA and Range Arithmetic

for solving OPF problems whose input data are specified within real compact intervals.

Reliable interval bounds are computed for the OPF problem, which is represented as an

optimization model with complementary constraints to properly represent generator bus

voltage controls, including reactive power limits and voltage recovery processes. It is

demonstrated that the lower and upper bounds of the OPF solutions can be obtained by

solving two determinate optimization problems. Several numerical results are presented

and discussed for several test system and the standard cost minimization and voltage

deviation minimization OPF problems, demonstrating the effectiveness of the proposed

methodology.
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4.2 Methodology

As proposed in [49], an “uncertain” OPF can be expressed as a class of nonlinear interval

optimization problems that can be defined as follows, based on the mathematical model

(2.2):

min
ẑ

f̂(ẑ)

s.t. ĝj(ẑ) = 0 ∀j ∈ [1, n]

ĥk(ẑ) < 0 ∀k ∈ [1,m]

(4.1)

where ẑ = (x̂, û), and the locally convex objective function f̂(ẑ), the n equality constrained

continuous functions ĝj(ẑ), and the m inequality constrained functions ĥk(ẑ), are defined

on closed intervals as follows:

f̂(ẑ) = [flow(ẑ), fup(ẑ)] (4.2)

ĝj(ẑ) = [gj,low(ẑ), gj,up(ẑ)] ∀j ∈ [1, n] (4.3)

ĥk(ẑ) = [hk,low(ẑ), hk,up(ẑ)] ∀k ∈ [1,m] (4.4)

Here, flow(ẑ), gj,low(ẑ) ∀j ∈ [1, n] and hk,low(ẑ) ∀k ∈ [1,m] are lower boundary functions,

while fup(ẑ), gj,up(ẑ) ∀j ∈ [1, n] and hk,up(ẑ) ∀k ∈ [1,m] are corresponding upper boundary

functions. If (4.2), (4.3) and (4.4) are assumed to be represented in affine form, the inclu-

sion isotonicity property of AA solves the nonlinear optimization problem under interval

uncertainty (4.1). This fundamental property can be expressed with the following theorem

[87]:

Theorem 3 (Fundamental Theorem of Range Analysis): For the convex interval function

Γ̂(χ̂) = [Γlow(χ̂),Γup(χ̂)] to take the minimum (maximum) value at χ∗ in its compact

domain G, it is necessary and sufficient that the boundary functions Γlow(χ̂) and Γup(χ̂)

take the minimum (maximum) value at the same point:

Γ̂(χ∗) = [Γlow(χ∗),Γup(χ
∗)] = min

χ̂∈G
Γ̂(χ̂) = [Γlow(χ̂),Γup(χ̂)]⇔

Γlow(χ∗) = min
χ̂∈G

Γlow(χ̂)

Γup(χ
∗) = min

χ̂∈G
Γup(χ̂)
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Γ̂(χ∗) = [Γlow(χ∗),Γup(χ
∗)] = max

χ̂∈G
Γ̂(χ̂) = [Γlow(χ̂),Γup(χ̂)]⇔

Γlow(χ∗) = max
χ̂∈G

Γlow(χ̂)

Γup(χ
∗) = max

χ̂∈G
Γup(χ̂)

This theorem reduces the search for the extreme of an interval function in a given domain

to the search for the extrema of its lower and upper boundary functions in the same

domain. In other words, the interval problem associated with (4.1) is reduced to two

ordinary optimization problems, namely, the lower and upper boundary problems [88, 89].

Therefore, the solution to (4.1) can be restated as the solution of the following two NLP

problems [90], [88], [89]:

min
ẑ

flow(ẑ)

s.t. gj,low(ẑ) = 0 ∀j ∈ [1, n]

hk,up(ẑ) < 0 ∀k ∈ [1,m]

(4.5)

min
ẑ

fup(ẑ)

s.t. gj,up(ẑ) = 0 ∀j ∈ [1, n]

hk,up(ẑ) < 0 ∀k ∈ [1,m]

(4.6)

Thus, Theorem 3 yields the problems (4.5) and (4.6) for determining the lower and upper

bounds of the interval objective function f̂(ẑ) = [flow(ẑ), fup(ẑ)] of the OPF problem (4.1),

with the respective constraints obtained from the upper and lower bound of the system

of equality constraints of the interval problem ĝj(ẑ) = [gj,low(ẑ), gj,up(ẑ)] ∀j ∈ [1, n], and

from the upper bound of the system of inequality constraints of the interval problem

ĥk(ẑ) = [hk,low(ẑ), hk,up(ẑ)] ∀k ∈ [1,m].

These formulae are deterministic optimization problems with point (non-interval) data,

which could significantly simplify the solution to the interval OPF problem (4.1), as pro-

posed in [49]. Thus, to find the OPF solution interval the following solution algorithm is

adopted:

1. Compute an outer estimation of the uncertain OPF problem solution (i.e. by using

the sensitivity-based approach described in (3.3)):

ẑouter = z0 + z1ε1 + ...+ zpεp (4.7)
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2. Solve the lower boundary problem (4.5) using any appropriate solver for determinate

nonlinear programming problems, obtaining a solution εi,low ∀i ∈ [1, p].

3. Solve the upper boundary problem (4.6) using the same solver as in Step 1, obtaining

a solution εi,up ∀i ∈ [1, p].

4. Compute the solution set as:

ẑ = z0 + z1ε1,opt + ...+ zpεp,opt (4.8)

where

εi,opt = [−εi,up, εi,up] ∩ [−εi,low, εi,low] ∀i ∈ [1, p] (4.9)

4.2.1 Optimal Economic Dispatch

Economic dispatch analysis aims at assessing the optimal output of a number of power

generators which meets the system load, at the lowest possible cost, and assures a secure

a reliable power system operation. The overall problem can be formalized by the following

constrained nonlinear optimization programming problem [91]:

min
(PG1

,...,PGNGA )

NGA∑
i=1

(ai + biPGi + ciP
2
Gi

)

s.t.

NG∑
i=1

PGi = PD + Ploss(PG1 , ..., PGNga)

PGi,min ≤ PGi ≤ PGi,max ∀i ∈ [1, NGA]

(4.10)

where PD is the power demand; NG is the total number of generators; NGA is the number

of dispatchable generators; PGi is the power generated by the ith generator; PGi,min and

PGi,max are the minimum and maximum generation limits respectively; ai bi and ci are the

corresponding cost coefficients; and Ploss(PG1 , ..., PGNGA) denotes the network active power

losses that can be computed by using the following simplified equations:

Ploss(PG1 , ..., PGNGA) =

NG∑
i=1

Bi P
2
Gi

(4.11)
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where Bi are fixed loss coefficients.

The solution paradigm formalized in (4.5) and (4.6) can be adopted to solve this problem

in the presence of interval uncertainty. To this aim, controllable generators are treated as

intervals, as follows:

P̂i = PGi,0 + PGi,1ε1 + ...+ PGi,pεp ∀i ∈ [1, NGA] (4.12)

Which yields the following upper and lower bounds:

P̂Gi,up = PGi,0 + PGi,1ε1,up + ...+ PGi,pεp,up ∀i ∈ [1, NGA]

P̂Gi,low = PGi,0 + PGi,1ε1,low + ...+ PGi,pεp,low ∀i ∈ [1, NGA]
(4.13)

where the noise symbols bounds εj,up and εj,low, ∀j ∈ [1, p], can be obtained by solving the

following deterministic OPF problems:

min
(ε1,up,...,εp,up)

∇̄

(
NGA∑
i=1

(ai + biP̂Gi,up + ciP̂
2
Gi,up

)

)

s.t.

NG∑
i=1

PGi,0 +

NG∑
i=1

p∑
j=1

∣∣PGi,j εj,up∣∣ = ∇̄
(
PD,max + Ploss(P̂Gi,up , ..., P̂GNGA,up)

)
PGi,0 +

p∑
j=1

∣∣PGi,j εj,up∣∣ ≤ PGi,max ∀i ∈ [1, NGA]

PGi,min ≤ PGi,0 −
p∑
j=1

∣∣PGi,j εj,up∣∣ ∀i ∈ [1, NGA]

(4.14)

min
(ε1,low,...,εp,low)

∇

(
NGA∑
i=1

(ai + biP̂Gi,low + ciP̂G
2
i,low)

)

s.t.

NG∑
i=1

PGi,0 −
NG∑
i=1

p∑
j=1

|PGi,j εj,low| = ∇
(
PD,min + Ploss(P̂G1,low, ..., P̂GNGA,low)

)
PGi,0 +

p∑
j=1

|PGi,j εj,low| ≤ PGi,max ∀i ∈ [1, NGA]

PGi,min ≤ PGi,0 −
p∑
j=1

|PGi,j εj,low| ∀i ∈ [1, NGA]

(4.15)

56



where ∇̄ and ∇ are the upper and lower bound operator for affine forms defined in (2.13)

and (2.14), respectively.

4.2.2 Reactive Power Dispatch

Reactive power dispatch in power systems aims to identify, for each network state, the

set-points of the primary generator voltage controllers that minimize an objective function

subject to a number of equality and inequality constraints. The overall problem can be

formalized by the following constrained non-linear programming problem [91]:

min
(Vi ∀i∈[1,N ],δi ∀i∈NP ,Q〉 ∀〉∈NPV )

1

N

N∑
i=1

(Vi − 1)2

s.t. P SP
i − Vi

N∑
j=1

VjYij cos (δi − δj − θij) = 0 ∀i ∈ NP

QSP
j − Vj

N∑
k=1

VkYjk sin (δj − δk − θjk) = 0 ∀j ∈ NQ

Qi − Vi
N∑
k=1

VkYik sin (δi − δk − θik) = 0 ∀i ∈ NPV

Vi,min ≤ Vi ≤ Vi,max ∀i ∈ [1, N ]

Qi,min ≤ Qi ≤ Qi,max ∀i ∈ NPV
(4.16)

where NPV is the set of voltage controlled buses.

The solution paradigm formalized in (4.5) and (4.6) can also be adopted to solve this

problem in the presence of interval uncertainty. To this aim, all optimization variables are

treated as affine forms as follows:

V̂i = Vi,0 + Vi,1ε1 + ...+ Vi,pεp ∀i ∈ [1, N ]

δ̂i = δi,0 + δi,1ε1 + ...+ δi,pεp ∀i ∈ NP
Q̂i = Qi,0 +Qi,1ε1 + ...+Qi,pεp ∀i ∈ NPV

(4.17)
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where each noise symbol represents an independent source of uncertainty affecting the input

variables. This affine based representation yields the following upper and lower bounds:

V̂i,low = Vi,0 + Vi,1ε1,low + ...+ Vi,pεp,low ∀i ∈ [1, N ]

V̂i,up = Vi,0 + Vi,1ε1,up + ...+ Vi,pεp,up ∀i ∈ [1, N ]

δ̂i,low = δi,0 + δi,1ε1,low + ...+ δi,pεp,low ∀i ∈ NP
δ̂i,up = δi,0 + δi,1ε1,up + ...+ δi,pεp,up ∀i ∈ NP

Q̂i,low = Qi,0 +Qi,1ε1,low + ...+Qi,pεp,low ∀i ∈ NPV
Q̂i,up = Qi,0 +Qi,1ε1,up + ...+Qi,pεp,up ∀i ∈ NPV

(4.18)

where the noise symbols bounds εj,up and εj,low ∀j ∈ [1, p] can be obtained by solving the

following deterministic OPF problems:

min
(ε1,up,...,εp,up)

∇̄

(
1

N

N∑
i=1

(V̂i,up − 1)2

)

s.t. ∇̄

(
P SP
i − V̂i,up

N∑
j=1

V̂j,upYij cos
(
δ̂i,up − δ̂j,up − θij

))
= 0 ∀i ∈ NP

∇̄

(
QSP
j − V̂j,up

N∑
k=1

V̂k,upYjk sin
(
δ̂j,up − δ̂k,up − θjk

))
= 0 ∀j ∈ NQ

∇̄

(
Qi − V̂i,up

N∑
k=1

V̂k,upYik sin
(
δ̂i,up − δ̂k,up − θik

))
= 0 ∀i ∈ NPV

Vi,0 +

p∑
j=1

|Vi,j εj,up| ≤ Vi,max ∀i ∈ [1, N ]

Vi,min ≤ Vi,0 +

p∑
j=1

|Vi,j εj,up| ∀i ∈ [1, N ]

Qi,0 +

p∑
j=1

|Qi,j εj,up| ≤ Qi,max ∀i ∈ NPV

Qi,min ≤ Qi,0 +

p∑
j=1

|Qi,j εj,up| ∀i ∈ NPV

(4.19)
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min
(ε1,low,...,εp,low)

∇

(
1

N

N∑
i=1

(V̂i,up − 1)2

)

s.t. ∇

(
P SP
i − V̂i,low

N∑
j=1

V̂j,lowYij cos
(
δ̂i,low − δ̂j,low − θij

))
= 0 ∀i ∈ NP

∇

(
QSP
j − V̂j,low

N∑
k=1

V̂k,lowYjk sin
(
δ̂j,low − δ̂k,low − θjk

))
= 0 ∀j ∈ NQ

∇

(
Qi − V̂i,low

N∑
k=1

V̂k,lowYik sin
(
δ̂i,low − δ̂k,low − θik

))
= 0 ∀i ∈ NPV

Vi,0 −
p∑
j=1

|Vi,j εj,low| ≤ Vi,max ∀i ∈ [1, N ]

Vi,min ≤ Vi,0 −
p∑
j=1

|Vi,j εj,low| ∀i ∈ [1, N ]

Qi,0 −
p∑
j=1

|Qi,j εj,low| ≤ Qi,max ∀i ∈ NPV

Qi,min ≤ Qi,0 −
p∑
j=1

|Qi,j εj,low| ∀i ∈ NPV

(4.20)

4.3 Numerical Results

4.3.1 Optimal Economic Dispatch

To assess the benefits of the range-arithmetic-based method for solving uncertain OPF

problems, two case studies are analyzed here. First, the presented methodology is applied

to solve the optimal active power dispatch of a 53 generators system proposed in [92], in

the presence of demand uncertainty, which is described by the following affine form:

P̂D = PD0 + PD1ε1 + PD2ε2 = 75 + 7.5ε1 + 3.75ε2 (4.21)
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Figure 4.1: Bounds of the computed economic dispatch solutions.

where the noise symbols ε1 and ε2 can be used to model uncertain power demand and

generation injections from wind and solar power sources (e.g. the forecasting errors in

renewable generators). The main goal of this study is to determine the bounds of the

active power generated, namely PGi = [PGi,low, PGi,up] with 0.8 ≤ PGi ≤ 1.8 ∀i ∈ [1, 53],

which minimize the total generation cost. Therefore, the solution algorithm discussed

in Section 4.2.1 is applied, and the computed solution bounds are compared with those

obtained by applying a Monte Carlo approach with 5000 simulations. The obtained results

are summarized in Figure 4.1.
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4.3.2 Reactive Power Dispatch

The second case study analyzes the solution of the reactive power dispatch in the presence

of a ±20% tolerance on load and generator powers for the IEEE 118-bus test system [85];

the test power network is composed of 54 voltage controllable generators, 186 lines, and

64 load buses.

The control variables of the OPF problem are the set-points of the voltage magnitude at

the generator buses, while the dependent variables are the reactive power at the generators,

the voltage magnitude at the load buses, and the voltage phase angle at all buses except

the slack bus. The voltage magnitudes at each bus are constrained to lie in the following

range:

0.95 ≤ Vi ≤ 1.05∀i ∈ [1, 118] (4.22)

Hence the data uncertainty characterizing the control and dependent variables of the OPF

problem are represented by the following affine forms:

V̂i = Vi,0 +
117∑
k=1

Vi,kεk ∀i ∈ [1, N ]

δ̂i = δi,0 +
117∑
k=1

δi,kεk ∀i ∈ NP

Q̂i = Qi,0 +
117∑
k=1

Qi,kεk ∀i ∈ NPV

(4.23)

where the central values and the partial deviations were obtained by the same sensitivity

analysis used in Chapter 3 to define the affine forms. The obtained results have been

summarized in Figures 4.2 and 4.3.

4.3.3 Discussions

From the obtained results, it can be observed that the range-arithmetic-based OPF tech-

nique yields fairly good approximations of the OPF solution bounds when compared to the

benchmark intervals obtained using the Monte Carlo approach. Note that the OPF solution
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Figure 4.2: Bounds of the computed reactive power dispatch: Voltage magnitudes.
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Figure 4.3: Bounds of the computed reactive power dispatch: Voltage angles.

bounds are slightly conservative, which is due to the fact that the AA-based methodology

yields “worst case” bounds, as mentioned in Chapter 3, that take into account any uncer-

tainties in input data. This can be argued to be an advantage of AA, as widely discussed

in the reliable computing literature, since probabilistic methods that deal with non prob-

abilistic uncertainty could neglect solutions that present a very low probability, but whose

possibility of realization is greater than zero.

In terms of computational requirements, it should be noted that the range-arithmetic-

based OPF is significantly cheaper than the Monte Carlo approach, since it only requires

the solution of 2 OPF problems, as opposed to computing hundred to thousands of OPF

solutions.
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4.4 Summary

A novel optimization framework for OPF analysis with uncertainty variables represented

as intervals was analyzed in this chapter. To solve the uncertain OPF, which is a con-

strained nonlinear interval optimization programming problem, a solution strategy based

on a fundamental theorem of Range Arithmetic theory was presented. This allowed to

compute the range of OPF solutions associated with input interval uncertainties by solv-

ing two determinate problems of the same type, namely, the lower and the upper boundary

problems, which can be readily solved using state-of-the-art NLP solvers. The main bene-

fits of the AA-based technique were assessed on several power test systems, demonstrating

the effectiveness of the proposed approach in solving uncertain OPF analysis, independent

of the types and levels of uncertainties in the input data.
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Chapter 5

Unified AA-based Framework for

Uncertain PF and OPF Analysis

5.1 Introduction

In this chapter a novel AA-based computing paradigm aimed at achieving more efficient

computational processes and better enclosures of PF and OPF solution sets is concep-

tualized. The main idea is to formulate a generic mathematical programming problem

under uncertainty by means of equivalent deterministic problems, defining a coherent set

of minimization, equality, and inequality operators. Compared to existing AA and Range-

Arithmetic-based solution paradigms, this formulation is expected to present greater flex-

ibility, as it would allow to find partial solutions and include of multiple equality and

inequality constraints, and reduce the approximation errors to obtain a better solution

enclosure. Detailed numerical results are presented and discussed, demonstrating the ef-

fectiveness of the proposed methodology and comparing it to the AA-based PF and Range

Arithemtic-based OPF presented in Chapters 3 and 4, respectively.
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5.2 Theoretical Framework

In this section, a theoretical framework is developed aimed at effectively solving linear and

nonlinear systems of equations for constrained optimizations problems, under multiple and

heterogeneous source of data uncertainty, based on a unified AA-based formalism. Thus,

the main aim is to solve the following non-linear constrained optimization problem in the

presence of data uncertainties represented in affine forms:

min
(x̂,û)

f(x̂, û)

s.t. gj(x̂, û) = 0 ∀j ∈ [1, n]

hk(x̂, û) < 0 ∀k ∈ [1,m]

(5.1)

where:

• x̂ and û are the unknown affine forms describing the dependent and independent

variables, respectively;

• f is the scalar, continuous and differentiable function describing the problem objec-

tives;

• and gj and hk are the continuous and differentiable functions describing the jth

equality and kth inequality constraints respectively.

To solve (5.1), novel AA-based mathematical operators are defined here aimed at ex-

tending to affine functions and affine forms the minimization operator and the main com-

parison operators <, >, ≤, ≥, and ==, respectively. To accomplish this, starting from the

definition of these novel operators and according to the Invariance Theorem of Affine Arith-

metic, it will be shown that (5.1) can be recasted as a dual deterministic problem, which

can be solved employing a traditional numerical programming technique. In particular, the

mathematical definitions introduced in Section 2.4.2 allow stating the following propriety

of affine forms, which directly results from the definition of the difference operator:
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Definition 1 (Equality operator for affine forms
A
=) Two affine forms χ̂ = χ0 +

∑pχ
k=1 χkε

χ
k

and ψ̂ = ψ0 +
∑pψ

k=1 ψkε
ψ
k are equal, i.e. χ̂

A
= ψ̂, if and only if:

χ̂− ψ̂ = χ0 − ψ0 +

pχ∑
k=1

χiε
χ
k −

pψ∑
k=1

ψkε
ψ
k = 0 (5.2)

That is, two affine forms are equal if they have the same central value and share the same

noise symbols with the same partial deviations, namely:

χ̂
A
= ψ̂ ⇔


χ0 = ψ0

εχk = εψk ∀k ∈ [1, p]

χk = ψk ∀k ∈ [1, p]

p = pχ = pψ

(5.3)

These rigorous equality conditions can be rarely satisfied when solving (5.1), due to the

presence of non-affine operations, which introduce approximation and computational er-

rors. For example, consider the following equality constraint:

(χ0 + χ1ε1)2 A
= 1 + 0.1ε1 (5.4)

Hence, there is no way to satisfy this constraint, since the square function is a non-affine

operation, which introduces a new and distinct noise symbol ε2 as follows:

χ2
0 + 2χ0χ1ε1 + χ2ε2

A
= 1 + 0.1ε1 (5.5)

This issue affects the handling of the equality constraints in the OPF analysis, which are

typically described by non-linear equations of the form:

gi(ẑ) = P̂i(ẑ)− P̂ SP
i ∀i ∈ NP

gj(ẑ) = Q̂j(ẑ)− Q̂SP
j ∀j ∈ NQ

(5.6)

where ẑ = (x̂, û) = (z1
0 +
∑p

k=1 z
1
kεk, ..., z

Nx+Nu
0 +

∑p
k=1 z

Nx+Nu
k εk) is the affine state vector;

while P SP
i = P SP

i,0 +
∑p

k=1 P
SP
i,k εk and QSP

j = QSP
j,0 +

∑p
k=1Q

SP
j,k εk are fixed affine forms.
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Since P̂i(ẑ) and Q̂j(ẑ) are non-linear functions of the affine vector ẑ, from (2.1) it follows

that:
P̂i(ẑ) = Pi,0 +

∑p
k=1 Pi,kεk +

∑p+pna
k=p+1 Pi,kεk ∀i ∈ NP

Q̂j(ẑ) = Qi,0 +
∑p

k=1Qj,kεk +
∑p+pna

i=p+1 Qj,kεk ∀j ∈ NQ
(5.7)

where the presence of the additional pna noise symbols deriving by the approximation of

non-affine operations, makes the application of the rigorous equality operator
A
= infeasi-

ble. Consequently, alternative operators aimed at assessing the similarity, rather than the

equality, between affine forms should be defined.

To address the aforementioned issue, a similarity criteria, which is based on the equality

of the partial deviations of the “primitive” noise symbols, denoted here as εk ∀k ∈ [1, p],

and on the definition of an approximation degree based on the radius of the uncertainties

generated by the approximation of the non-affine operations, denoted here as εk ∀k ∈
[p+ 1, p+ pna], is defined:

Definition 2 (Similarity operator for affine forms
A
≈) Two affine forms χ̂ = χ0+

∑p+pna
k=1 χkεk

and ψ̂ = ψ0 +
∑p+pna

k=1 ψkεk are similar with an approximation degree  Lχ,ψ , i.e. χ̂
A
≈ ψ̂, if

and only if: (
χk = ψk ∀k ∈ [0, p]

)
∧
(

 Lχ,ψ =

p+pna∑
k=p+1

(|χk|+ |ψk|)
)

(5.8)

The adoption of this operator is particularly useful in solving OPF problems in the presence

of interval uncertainties, where the bounds of the uncertain variables are the only available

information. In this case, the equality constraints between the affine forms describing the

computed and the fixed quantities can be formalized as follows:

P̂i(ẑ)
A
≈ P̂ SP

i ∀i ∈ NP
Q̂j(ẑ)

A
≈ Q̂SP

j ∀j ∈ NQ
(5.9)

and the corresponding approximation degrees depend on the non-affine operations needed

to compute P̂i(ẑ) and Q̂j(ẑ).

By following the same approach, it is possible to define an inequality operator for affine

forms as follows:
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Definition 3 (Inequality operator for affine forms
A
<) Given two affine forms χ̂ = χ0 +∑pχ

k=1 χkε
χ
k and ψ̂ = ψ0 +

∑pψ
k=1 ψkε

ψ
k , then χ̂

A
< ψ̂ if and only if:

χ0 +

pχ∑
k=1

|χk| < ψ0 −
pψ∑
k=1

|ψk| (5.10)

This definition directly follows from the basic theory of interval analysis, since this stats

that the upper bound of χ̂ is less than the lower bound of ψ̂.

Once the aforementioned relational operators are introduced, the problem of the mini-

mization of a scalar and non-linear affine function could be effectively addressed by defining

the following operator:

Definition 4 (Minimization operator for functions of affine forms) Given a non-linear

function f : < → <, and the affine form χ̂ = χ0 +
∑p

k=1 χkεk, then the following AA-based

minimization problem:

min
A
χ̂

f(χ̂) = f0(χ̂) +

p∑
k=1

fk(χ̂)εk +

p+pna∑
k=p+1

fk(χ̂)εk (5.11)

is equivalent to the following deterministic multi-objective programming problem:

min
(χ0,χ1,...,χp)

{f0(χ0, χ1, ..., χp),

p+pna∑
k=1

|fk(χ0, χ1, ..., χp)|} (5.12)

This definition follows from the AA-based robust circuit design approach proposed in [93],

and with the principles of risk-based programming theory, since the minimization of the

affine central value aims at identifying the most effective solutions, without considering the

uncertainty represented by the noise symbols, while the minimization of the affine radius

aims at identifying the most reliable solutions that exhibit the lowest tolerance to data

uncertainty. The tradeoff between these two conflicting objectives basically represents the
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decision maker’s risk. Based on this, the minimization of an affine function should be

equivalent to finding an affine form which minimizes both its central value and its radius.

From (5.12), problem (5.1) can be solved by solving to the following deterministic

multi-objective constrained optimization problem:

min
ẑ
{f0(ẑ),

p+pna∑
k=1

|fk(ẑ)|}

s.t. gj(ẑ)
A
≈ 0 ∀j ∈ [1, n]

hk(ẑ)
A
< 0 ∀k ∈ [1,m]

(5.13)

To solve this problem, a two stage solution algorithm is proposed here. In the first stage, the

main idea is to identify the central values of the unknown state vector by first considering

the system operating at its nominal condition, which defines these central values. In this

case, which is referred here as the “nominal state”, uncertainties are not considered and

thus the corresponding solution can be computed by solving the following deterministic

optimization problem:

min
(z10 ,...,z

Nx+Nu
0 )

f0(z1
0 , ..., z

Nx+Nu
0 )

s.t. gj(z
1
0 , ..., z

Nx+Nu
0 ) = 0 ∀j ∈ [1, n]

hk(z
1
0 , ..., z

Nx+Nu
0 ) < 0 ∀k ∈ [1,m]

(5.14)

In the second stage, referred here as the “perturbed state”, the effect of data uncertainty

is considered, computing the partial deviations of the unknown state vector by solving the

following deterministic optimization problem:

min
(z11 ,..,z

Nx+Nu
1 ,..,z1p,..,z

Nx+Nu
p )

p+pna∑
k=1

|fk(z
1
1 , ..., z

Nx+Nu
1 , ..., z1

p , ..., z
Nx+Nu
p )|

s.t. gj(z
1
1 , ..., z

Nx+Nu
1 , ..., z1

p , ..., z
Nx+Nu
p )

A
≈ 0 ∀j ∈ [1, n]

hk(z
1
1 , ..., z

Nx+Nu
1 , ..., z1

p , ..., z
Nx+Nu
p )

A
< 0 ∀k ∈ [1,m]

(5.15)
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To clarify the aforementioned approach consider the following example:

min
(χ̂,ψ̂)

f(χ̂, ψ̂) = χ̂2 + 4ψ̂2 − (3 + 0.1ε1 + 0.1ε2)

s.t. g(χ̂, ψ̂) = 4χ̂2 − 16χ̂+ ψ̂2 A
≈ −12 + 0.2ε1

(5.16)

where the central values and the partial deviations of the unknown affine forms χ̂ =

χ0 + χ1ε1 + χ2ε2 and ψ̂ = ψ0 + ψ1ε1 + ψ2ε2 can be identified by solving the optimization

problem in the “nominal” and “perturbed” state, namely:

min
(χ0,ψ0)

χ2
0 + 4ψ2

0 − 3

s.t. 4χ2
0 − 16χ0 + ψ2

0 + 12 = 0
(5.17)

min
(χ1,χ2,ψ1,ψ2)

|(2χ0χ1 + 8ψ0ψ1 − 0.1)|+ |2χ0χ2 + 8ψ0ψ2 − 0.1|+ (|χ1|+ |χ2|)2 + 4(|ψ1|+ |ψ2|)2

s.t. 8χ0χ1 − 16χ1 + 2ψ0ψ1 = 0.2

8χ0χ2 − 16χ2 + 2ψ0ψ2 = 0

(5.18)

The solution of these problems leads to the following results:

χ̂s = 1− 0.026ε1 = [0.9750, 1.0259]

ψ̂s = 0

f(χ̂s, ψ̂s) = −2− 0.15ε1 − 0.1ε2 + 0.00062ε3 = [−2.25,−1.75]

g(χ̂s, ψ̂s) = −12 + 0.2ε1 + 0.0025ε3 = [−12.2025,−11.7975]

(5.19)

To check the consistency of these results, the same problem has been solved by a Monte

Carlo-based simulation, obtaining the following results:

χs = [0.9753, 1.0253]

ψs = 0;

f(χs, ψs) = [−2.2443,−1.7535]

(5.20)

Observe that the adoption of the proposed AA-based computing paradigm allows obtaining

accurate intervals. Hence, thanks to the definition of rigorous relational and minimization

operators, it is possible to obtain more precise solution bounds compared to those obtained
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by applying others AA-based solution paradigms, as those described in Chapters 3 and 4,

which typically employ approximated minimization operators (i.e. domain contraction).

It should be noted that the solution of the AA-based optimization problem for the

“perturbed state” requires the identification of a larger number of state variables, i.e.,

p× (Nx+Nu). However, the number of the noise symbols describing the affine forms of the

state vector, which sensible influences the problem cardinality, can be significantly reduced

by exploring the statistical correlation between the uncertainty sources, as explained in the

next chapter.

5.3 Applications

5.3.1 PF Problem

The uncertain PF problem can be effectively solved by applying the proposed framework,

since, as proposed in [58], it can be stated as a particular instance of the optimal power

flow problem (5.1), as follows:

min
(V̂i,δ̂k,V̂aj ,V̂bj)

∑
i∈NP

(P̂i
SP
− P̂i)2 +

∑
j∈NQ

(Q̂SP
j − Q̂j)

2

s.t. P̂i = V̂i

N∑
j=1

V̂jYij cos
(
δ̂i − δ̂j − θij

)
∀i ∈ NP

Q̂j = V̂j

N∑
k=1

V̂kYjk sin
(
δ̂j − δ̂k − θjk

)
∀j ∈ NQ

V̂i = Vi0 + V̂ai − V̂bi ∀i ∈ NPV

0
A

≤ (Q̂i − Q̂i,min)∇V̂ai
A

≥ 0 ∀i ∈ NPV

0
A

≤ (Q̂i,max − Q̂i)∇V̂bi
A

≥ 0 ∀i ∈ NPV

V̂i, V̂ai, V̂bi
A

≥ 0 ∀i ∈ NPV

(5.21)

where, as in Chapter 4, NPV is the set of voltage controlled buses, where the injected

active power and the voltage magnitude are specified; V̂i = V i
0 +

∑p
k=1 V

i
k εk is the affine
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form describing the voltage magnitude of the ith load bus; δ̂i = δi0 +
∑p

k=1 δ
i
kεk is the affine

form describing the voltage angle for the ith bus (different from the slack); and p is the

number of noise symbols representing the source of uncertainties affecting the power system

operation. Consequently, the dependent variables of the AA-based PF problem are:

• [V i
0 , V

i
1 , ..., V

i
p ] for each load bus

• [V j
a,0, V

j
a,1, ..., V

j
a,p, V

j
b,0, V

j
b,1, ..., V

j
b,p] for each generation bus

• [δk0 , δ
k
1 , ..., δ

k
nN ] for each bus except the slack bus.

5.3.2 OPF Problem

The application of the proposed AA-based framework for OPF analysis is straightforward,

since the dependent variables are the affine forms of the voltage magnitudes at the load

buses, and the voltage angles at all buses except the slack bus, namely:

[V i
0 , V

i
1 , ..., V

i
nN ] ∀i ∈ NPQ

[δk0 , δ
k
1 , ..., δ

k
nN ] ∀k ∈ NP ⊂ NPV ∪NPQ

(5.22)

on the other hand the control variables depends on the particular application domain; thus

for example, in optimal economic dispatch analysis they include the active power generated

by the dispatchable generators, namely [P i
0, P

i
1, ..., P

i
nN ] ∀i ∈ NPV .

The equality constraints are described by the PF equations, while the inequality con-

straints typically include in practice the maximum allowable apparent power flow Pl on
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each line. Consequently, the AA-based formulation of the OPF problem is:

min
(V̂i,δ̂k,P̂j)

f(V̂i, δ̂k, P̂j)

s.t. P̂i
SP
− V̂i

N∑
j=1

V̂jYij cos (δ̂i − δ̂j − θij)
A
≈ 0 ∀i ∈ NP

Q̂SP
j − V̂j

N∑
k=1

V̂kYjk sin (δ̂j − δ̂k − θjk)
A
≈ 0 ∀i ∈ NQ

V min
i

A

≤ V̂i
A

≤ V max
i ∀i ∈ NPQ

Pmin
i

A

≤ P̂i
A

≤ Pmax
i ∀i ∈ NPV

Pmin
l

A

≤ P̂l(V̂1, ..., V̂N , δ̂1, ..., δ̂N)
A

≤ Pmax
l ∀l ∈ NL

(5.23)

where NL is the set of the constrained lines.

5.4 Numerical Results

To assess the benefits of the unified AA method for solving both uncertain PF and OPF

problems, the same case studies presented in Chapters 3 and 4 are considered here, in order

to make a direct comparison with the results obtained for the previous proposed PF and

OPF AA-based techniques. These results are discussed in the next sections.

5.4.1 PF Analysis

The uncertain power flow problems formalized in Chapter 3 are solved here using the unified

AA formulation presented in (5.21). The obtained results are summarized in Figures 5.1-

5.3 for the IEEE 30-bus test system; in Figures 5.4-5.6 for the IEEE 57-bus test system;

and in Figures 5.7-5.8 for the IEEE 118-bus test system. In all these figures, observe that

the unified AA method is characterized by an improved accuracy compared to the previous

methods. This is also confirmed by analyzing the average errors in the upper and lower

bounds for the bus voltage magnitudes and angles, as reported in Tables 5.1 and 5.2.

74



5 1 0 1 5 2 0 2 5 3 0
0 , 9 4

0 , 9 6

0 , 9 8

1 , 0 0

Bu
s V

olt
ag

e M
ag

nit
ud

e [
p.u

.]

B u s  n u m b e r

M o n t e  C a r l o         A A - b a s e d  P F         U n i f i e d  A A  P F
 U p p e r  B o u n d    U p p e r  B o u n d    U p p e r  B o u n d
 L o w e r  B o u n d    L o w e r  B o u n d    L o w e r  B o u n d

Figure 5.1: Bus voltage magnitude bounds obtained for the IEEE 30-bus test system for

both AA-PF methods.

As expected, this accuracy improvement is obtained at the cost of increased compu-

tational burden, as confirmed in Table 5.3, which depicts the execution times registered

for the simulations. This issue is addressed in Chapter 6, based on a novel PCA-based

approach.

5.4.2 Economic Dispatch

To assess the benefits of the unified AA method for solving uncertain OPF problems,

the uncertain optimal economic dispatch described in Chapter 4 is studied here using the

proposed unified OPF approach. Thus, this problem can be formalized as the following
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Table 5.1: Average Errors (Bus Voltage Magnitude Bounds

30 bus 57 bus 118 bus

Upper Lower Upper Lower Upper Lower

AA-based PF [p.u.] 0.0055 0.0046 0.009 0.0088 0.0102 0.0101

Unified AA method [p.u.] 0.002 0.003 0.0047 0.0071 0.0062 0.0065

Table 5.2: Average Errors (Bus Voltage Angle Bounds)

30 bus 57 bus 118 bus

Upper Lower Upper Lower Upper Lower

AA-based PF [deg] 0.65 0.97 3.32 3.33 3.18 3.16

Unified AA method [deg] 0.26 0.10 0.96 0.98 0.99 0.01

Table 5.3: Execution Times (seconds)

30 bus 57 bus 118 bus

Monte Carlo (5000 trials) [s] 149.9 211.8 603.1

AA-based PF [s] 1.7 2.5 5.7

Unified AA method 110.72 167.8 406.5
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Figure 5.2: Bus voltage angle bounds obtained for the IEEE 30-bus test system for both

AA-PF methods.

non-linear AA-based constrained optimization problem:

min
(P̂G1

,...,P̂G53
)

53∑
i=1

(ai + biP̂Gi + ciP̂
2
Gi

)

s.t.
53∑
i=1

P̂Gi
A
≈ P̂D +

53∑
i=1

BiP̂
2
Gi

0.8
A

≤ P̂Gi
A

≤ 1.8 ∀i ∈ [1, 53]

(5.24)

To solve this problem, the solution paradigm formalized in (5.23) is applied, and the

obtained results are summarized in Figure 4.1. Observe that, compared to the range-

arithmetic-based approach, the unified AA method is able to compute solution bounds

which are closer to the Monte Carlo solution. However, this improvement also involves a

sensible increase in the computational times, which is addressed in Chapter 6.
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Figure 5.3: Reactive power bounds at the generation buses for the IEEE 30-bus test system

for both AA-PF methods.

5.4.3 Reactive Power Dispatch

To confirm the benefits deriving from the application of the unified AA method to solve a

complex OPF problem, the uncertain optimal reactive power dispatch defined in Chapter

4 is analyzed here. To solve this problem, the solution paradigm formalized in (5.23) is

applied, and the obtained results are summarized in Figures 5.10 and 5.11, which depict

the bounds of the bus voltage magnitudes and angles, respectively. Note that compared

to the range-arithmetic-based approach, the unified AA method is able to compute more

accurate enclosures of the OPF solution bounds but, at a sensible increase again in the

computational times, which is addressed in Chapter 6.
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Figure 5.4: Bus voltage magnitude bounds obtained for the IEEE 57-bus test system for

both AA-PF methods.

5.5 Computational Requirements

In terms of computational requirements, the following observations can be made:

1. The AA-based PF and the range-arithmetic-based methods are the fastest techniques

for uncertain PF and OPF analysis, respectively.

2. The computational cost of Monte Carlo and its accuracy is related to the number of

required simulations.

3. Although the unified AA framework gives the more accurate enclosures for the so-

lution bounds, it is the costliest heaviest approach in terms of computational times,
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Figure 5.5: Bus voltage angle bounds obtained for the IEEE 57-bus test system for both

AA-PF methods.

since this is mainly influenced by the large number of control variables, which de-

pend on the number of noise symbols characterizing the parameter uncertainties.

This poses computational difficulties for addressing uncertain PF and OPF analysis

in large scale power systems.

To overcome this limitation, it is necessary to design techniques aimed at identifying the

optimal number of independent uncertainties (i.e. the optimal number of noise symbols)

affecting the system variables. To address this issue, knowledge discovery paradigms from

historical operation data can be used as explained in the next chapter.
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Figure 5.6: Reactive power bounds at the generation buses for the IEEE 57-bus test system

for both AA-PF methods.

5.6 Summary

In this chapter a novel AA-based computing paradigm aimed at achieving better enclosures

for AA PF and OPF solution sets was defined. Compared to existing AA-based solution

paradigms for uncertain PF an OPF analysis, this formulation allowed to drastically reduce

the approximation errors by obtaining a better estimation of the PF and OPF solution

sets. However, compared to the previous proposed AA-based PF and range-arithmetic-

based OPF, this approach resulted in higher computational costs, mainly due to the large

number of control variables required to solve the “perturbed state” problem. This could

pose some computational difficulties for large scale power system applications. To address

this problem, PCA-based paradigms for knowledge discovery from historical operation

data-sets is proposed in the next chapter, to identify the optimal affine forms describing

81



2 0 4 0 6 0 8 0 1 0 0

0 , 9 4

0 , 9 6

0 , 9 8

1 , 0 0

1 , 0 2

1 , 0 4

1 , 0 6
Bu

s V
olt

ag
e M

ag
nit

ud
e [

p.u
.]

B u s  n u m b e r

M o n t e  C a r l o         A A - b a s e d  P F        U n i f i e d  A A  P F
 U p p e r  B o u n d    U p p e r  B o u n d   U p p e r  B o u n d
 L o w e r  B o u n d    L o w e r  B o u n d   L o w e r  B o u n d

Figure 5.7: Bus voltage magnitude bounds obtained for the IEEE 118-bus test system for

both AA-PF methods.

the uncertain variables in the proposed AA framework.
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Figure 5.8: Bus voltage angle bounds obtained for the IEEE 118-bus test system for both

AA-PF methods.
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Figure 5.9: Bounds of the computed economic dispatch solutions.
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Figure 5.10: Voltage magnitude bounds of the computed reactive power dispatch solutions

for the 118-bus test system.
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Figure 5.11: Voltage angle bounds of the computed reactive power dispatch solutions for

the 118-bus test system.
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Chapter 6

PCA-based Knowledge Discovery

Paradigms

6.1 Introduction

This chapter proposes formal methods for knowledge discovery from large quantity of data

as an enabling methodology for reducing the complexity of PF and OPF problems, and

for the optimal identification of the affine forms describing their uncertain variables. In

particular, a knowledge-based paradigm for PF and OPF analyses is used to extract from

operation data-sets complex features, hidden relationships, and useful hypotheses poten-

tially describing regularities in the problem solutions. This is realized by designing a

knowledge-extraction process based on PCA. The structural knowledge extracted by this

process is then used to project the PF equations into a domain in which these equations can

be solved more effectively. In this new domain, the cardinality of the PF and OPF prob-

lem is sensibly reduced and, consequently, PF and OPF solutions can be obtained more

efficiently. Furthermore, in this new domain, it is also possible to define a formal con-

nection between the principal components and affine forms used to describe the uncertain

variables, furnishing an effective method for the optimal identification of the relevant noise

symbols. The effectiveness of the proposed framework is demonstrated with numerical

results obtained for small and large power networks for many operating conditions.
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6.2 Proposed PCA Applications

PCA-based paradigms for knowledge discovery from historical operation data-sets are pro-

posed here to simplify the computational burden of PF and OPF problems by reducing

their complexity. The underlying principle is to extract actionable information aimed at

determining potential patterns to reduce the cardinality of these problems.

6.2.1 PF Analysis

The main idea of the PCA-based PF is to generalize the mathematical formulation defined

in (2.27) by extrapolating the linear mapping between the power system state variables

and the principal components as follows:

x(K) = Ω s(K) + xmed ∀K > T (6.1)

This linear extrapolation allows to solve the PF problem for each K > T , by identifying

the unknown principal components s(K) = [s1(K)...sNPC (K)]T , such that:

P SP
i (K) = Pi(x(K)) = Pi(Ω s(K) + xmed) ∀i ∈ NP

QSP
j (K) = Qj(x(K)) = Qj(Ω s(K) + xmed) ∀j ∈ NQ

(6.2)

A noticeable benefit deriving from this mathematical formulation is the drastic reduction

of the problem cardinality, since the number of design variables that should be identified

at each time step is reduced from Nx to NPC . This important feature should improve

the convergence properties of the solution algorithm and lower its complexity and com-

putational burden, based on the reduction of the asymptotic complexity of the solution

algorithm, which is O(NxN
2
PC), due to the pseudo inverse of the Jacobian matrix of di-

mension Nx×NPC of the PF equations in the principal component domain. However, the

sparsity of the Jacobian is reduced with respect to the “standard” PF Jacobian, since the

latter roughly depends on the number of power system elements, whereas the former would

have more intertwining variables. Nevertheless, the complexity reduction of the solution

algorithm could be noticeable, given the significant Jacobian size reduction, especially in

the presence of variable load/generation patterns, which may require multiple PF solutions

(e.g. Monte Carlo simulations).
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Observe that the integration of the proposed solution paradigm on existing power sys-

tems analysis toolboxes is straightforward, since the Jacobian of the PF equations in the

principal components domain can be easily computed as:

JPC =
∂F

∂s
=
∂F

∂x

∂x

∂s
= J Ω (6.3)

where F is the set of PF equations and J is the corresponding Jacobian matrix. Observe as

well that the reactive power generation limits in conventional PF programs can be readily

integrated in the proposed framework by properly redimensioning the matrix Ω when a

PV to PQ bus switch, or vice-versa, takes place.

6.2.2 OPF Analysis

The benefits deriving by the formalization of the PF equations in the principal components

domain, can be easily extended to OPF analysis. In this context, the main idea is to

extrapolate a linear mapping between the variables of the OPF problem z and the principal

components s(K) as follows:

z(K) = Ω s(K) + zmed ∀K > T (6.4)

This linear extrapolation allows to solve the OPF problem for each K > T , by identifying

the unknown principal components s(K) such that:

min
s(K)

f(Ω s(K) + zmed)

s.t. g(Ω s(K) + zmed) = 0

h(Ω s(K) + zmed) < 0

(6.5)

observe again the drastic reduction of the problem cardinality, since the number of variables

has been reduced from Nz to NPC . Moreover, the gradient of the cost and constraints

functions in the principal components domain can be easily computed according to (6.3).

6.2.3 AA Analysis

The proposed PCA-based paradigm can also be used to better identify the noise symbols

adopted for uncertainty representation in PF and OPF analyses. The main idea is to
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exploit the capacity of PCA in detecting potential relations among a set of power systems

data, which allows to describe the evolution of a large number of statistically correlated

variables by a linear combination of a limited number of “primitive” variables. This feature

is particularly useful in solving uncertain PF and OPF analyses using AA as explained

in Chapters 3,4 and 5, where the hypothesis of statistically independence of the active

and reactive power injections involves the definition of a large number of noise symbols,

which increases the complexities of the AA-based computations. To discover the potential

patterns among these data, the following set of historical observations should be analyzed:

[P SP
i (K), QSP

j (K)]T ∀i ∈ NP , | ∈ NQ, K ∈ [′, T ] (6.6)

the application of PCA to this data set allows to represent the injected active and reactive

powers with a linear combination of a proper number of orthogonal and uncorrelated

principal components, namely:

P SP
i (K) = ΩP s(K) + P SP

i,med ∀i ∈ NP , K ∈ [′, T ]

QSP
j (K) = ΩQ s(K) +QSP

j,med ∀j ∈ NQ, K ∈ [′, T ]

P SP
i,med = 1

T

∑T
K=1 P

SP
i (K) ∀i ∈ NP

QSP
j,med = 1

T

∑T
K=1Q

SP
j (K) ∀j ∈ NQ

(6.7)

based on this, it can be argued that the evolution of the injected powers in the power

system is governed by NPC “primitive” variables. Hence, based on (3.4), the following

number of noise symbols describing the injected power uncertainties can be set to NPC ,

and the corresponding affine forms can be defined as follows:

P̂ SP
i = P SP

i,0 +
∑NPC

k=1 Pi,kεk ∀i ∈ NP
Q̂SP
j = QSP

j,0 +
∑NPC

k=1 Qj,kεk ∀j ∈ NQ
(6.8)

where the noise symbols εk ∀k ∈ [1, NPC ] represent the uncertainty affecting the principal

components. Compared to (3.4), this should yield a significant reduction in the number of

noise symbols.

The unknown parameters of the affine forms defined in (6.8) can be identified by solving

the system of linear interval equations describing the relationships between the bounds of
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the uncertain power injections and the bounds of the principal components, as follows:

[P SP
i,min, P

SP
i,max] = ΩP [smin, smax] + P SP

i,med ∀i ∈ NP
[QSP

j,min, Q
SP
j,max] = ΩQ [smin, smax] +QSP

j,med ∀j ∈ NQ
(6.9)

which directly follows from (6.7). Thus, by comparing (6.8) and (6.9), the unknown affine

form parameters can be identified as follows:

Pi,0 = P SP
i,med +

∑NPC
k=1 ΩP

i,k
sk,max+sk,min

2
∀i ∈ NP

Pi,k = ΩP
i,k

sk,max−sk,min
2

∀i ∈ NP
Qj,0 = QSP

j,med +
∑NPC

k=1 ΩQ
j,k

sk,max+sk,min
2

∀j ∈ NQ
Qj,k = ΩQ

i,k
sk,max−sk,min

2
∀j ∈ NQ

(6.10)

based on these equations, it is possible to identify the proper number of noise symbols, and

the optimal parameters of the affine forms describing the uncertain PF and OPF variables,

which is an issue in AA applications.

6.3 Numerical Results

This section describes the results obtained by applying the proposed framework to solve PF

and/or OPF problems for several power networks, namely, the IEEE 30 bus test system,

the IEEE 118 bus test system, and the 2383-bus Polish power system, for varying realistic

operating conditions.

6.3.1 IEEE 30-bus System PF

For the 30-bus test system, 24 load buses are clustered in 5 different classes characterized

by the bi-weekly 15 min profiles depicted in Figure 6.1 for K ∈ [0, 1343]; these profiles

correspond to realistic commercial, residential, and 3 different kinds of industrial load

patterns obtained from [94]. The corresponding generation profiles are defined for each

time sample K as follows:

PGi(K) = αGi
∑N

j=1 PDj(K) ∀i ∈ [1, nG] (6.11)
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where αGi are dispatch factors for the base case, i.e.

αGi =
PGi (0)∑N
j=1 PDj (0)

∀i ∈ [1, nG] (6.12)

nG is the number of generators; and PDj(0) and PGi(0) are the active power demands at the

jth bus and the active power generated by the ith generator, respectively. This approach

yields 1343 power flow problems, which, when solved using standard Newton-Raphson,

generate the voltage magnitudes and angles depicted in Figures 6.2 and 6.3, respectively.

The power flow results are arranged in two data sets, namely, a knowledge base com-

posed of 500 sample points, and a validation set composed of 843 sample points. Processing

the first 500 solutions using the PCA knowledge extraction process described in Chapter

2, identifies the principal components of bus voltage phasors, the matrix Ω and the vector

xmed. The second data set is used to validate the accuracy of the power flow solutions

computed by the proposed algorithm based on the calculated Ω and xmed. The knowledge

extraction process is then applied to a variable number of principal components NPC in the

interval [1, 18]. The obtained results are summarized in Figure 6.4 using a semi-logarithmic

scale to plot the norm of the approximation error eapp versus NPC , where:

e(K)
app (NPC) = x(K)− xPC(NPC , K) = ∀NPC ∈ [1, 18], K ∈ [0, 500]

= x(K)− [Ω(NPC) s(K) + xmed(K)]

⇒ eapp(NPC) = [e(1)
app(NPC), ..., e(500)

app (NPC)]

(6.13)

This figure shows that when the principal components number NPC increases, the ap-

proximation error drastically decreases approaching a saturation threshold. This allows to

identify the adequate number of principal components needed to properly solve the power

flow problem for a given approximation error tolerance. Thus, assuming an approximation

tolerance of 10−4, 8 principal components are needed in this case, which yelds Figure 6.5

depicting the profiles of these components for the first 500 data samples of the knowledge

base. It is then possible to reconstruct the profiles of 53 state variables with a compression

ratio CR(500) of 5.91.

In order to prove the extrapolation features of the proposed approach, the PF problem

was then solved in the principal components domain ∀K ∈ [500, 1343], and the obtained
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Figure 6.1: Assumed load profiles for the power flow analysis of the IEEE 30-bus test

system: (a) residential, (b) commercial, and (c) industrial.
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Figure 6.2: Power flow solutions for the IEEE 30-bus test system: bus voltage magnitudes.
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Figure 6.3: Power flow solutions for the IEEE 30-bus test system: bus voltage angles.
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Figure 6.4: Norm of the approximation error ‖eapp(NPC)‖2, in semi-logarithmic scale,

versus the number of principal components for the IEEE 30-bus test system.
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Figure 6.5: Principal components’ profile for the IEEE 30-bus test system.
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Figure 6.6: Approximation errors of the proposed PCA technique versus the true power

flow solution for the IEEE 30-bus test system: bus voltage magnitude error.

results were then compared with those computed by applying the traditional PF solution

algorithm. The corresponding error surfaces are shown in Figures 6.6 and 6.7, where

one can to observe the high accuracy of the solutions computed by the proposed solution

framework.

6.3.2 2383-bus Polish Power System PF

In order to further test the proposed technique, a large scale power system is also studied.

Thus, the bi-weekly 15min load profiles shown in Figure 6.8 are assumed for the 2383-bus

Polish test system; these real demand patterns were obtained from the Australian Energy

Market Operator database [95]. The generation profiles are computed using (6.11), but the
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Figure 6.7: Approximation errors of the PCA proposed technique versus the true power

flow solution for the IEEE 30-bus test system: bus voltage angle error.
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Figure 6.8: Loading profiles used for the power flow analysis of the 2382-bus Polish test

system.

dispatch factors are modified with respect to their base values defined by (6.12) perturbing

them with a random noise uniformly distributed in the range 0.9-1.1. The bus voltages

phasors are then computed and the results were arranged in two sets, namely the knowledge

base (first 500 sample points) and the Validation Set (remaining 843 sample points), as

shown in Figures 6.9 and 6.10. The knowledge extraction process is then implemented

for various numbers of principal components in the interval NPC = [1, 120], obtaining the

results summarized in Figure 6.11. Thus, for an approximation error tolerance of 0.05,

40 principal components can be extracted from the knowledge base, corresponding to a

compression ratio of 10.98, and the corresponding profiles are depicted in Figure 6.12.

To assess the extrapolation capabilities of the proposed methodology, the PF problem

is solved in the principal components domain ∀K ∈ [500, 1343]. The resulting solutions

are compared to those obtained by applying an open-source power flow program (Mat-
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Figure 6.9: Power flow solutions for the IEEE 2382-bus test system: bus voltage magni-

tudes.
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Figure 6.10: Power flow solutions for the IEEE 2382-bus test system: bus voltage angles.
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Figure 6.11: Norm of the approximation error, in semi-logarithmic scale, versus the number

of principal components for the 2382-bus Polish test system PF.

103



0 100 200 300 400 500
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time Sample

P
rin

ci
pa

l C
om

po
ne

nt
s 

[p
.u

.]

Figure 6.12: Principal components profile for the 2382-bus Polish test system PF.
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power 4.11 [96]). To characterize the approximation accuracy for each time sample K, the

following index is defined:

e(K) = 1
N

∑N
i=1 ‖Vi,PCA(K)−Vi,NR(K)‖ ∀K ∈ [500, 1343] (6.14)

where Vi,PCA(K) and Vi,NR(K) are the phasors of the ith bus voltage computed with the

proposed approach and the traditional solution algorithm, respectively. Furthermore, to

assess the computational benefits deriving by the application of the proposed approach,

the following complexity reduction factor is defined:

Cr(K) = tNR(K)−tPC(K)
tNR(K)

∗ 100 ∀K ∈ [500, 1343] (6.15)

where tNR(K) and tPC(K) are the CPU times required to solve the power flow problem at

the Kth time sample by the optimized algorithm and by the proposed approach, respec-

tively. Figures 6.13 and 6.14 depict the error and complexity reduction indices obtained

from (6.14) and (6.15), respectively. Observe that Figure 6.13 confirms the good accuracy

of the solutions computed with the proposed paradigm, and Figure 6.14 shows that the

CPU times of the proposed approach, even for non-optimal software routines, are on av-

erage 58% faster with respect to those of the traditional solution algorithm. It should be

mentioned that both algorithms were tested on the same computer and the same software

(Matlab 2013b), and the reactive power generation limits were assumed to be the same

in all cases. Furthermore, to solve the power flow problem in the principal components

domain, the standard pseudo-inverse operator available in the Matlab suite was used; a

more effective pseudo-inverse algorithm may further reduce the computational burden of

the proposed method [97].

It is important to note that the approximation accuracy and the CPU time of the

proposed algorithm are strictly influenced by the number of principal components assumed

for the inverse domain reconstruction (see Figures 6.4 and 6.11). Hence, a proper selection

criteria is needed to obtain a suitable tradeoff between solutions accuracy and algorithm

complexity. The latter mainly depends on the statistically characteristics of the historical

data set adopted for knowledge extraction.
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Figure 6.13: Statistical characterization of the approximation accuracy for the 2382-bus

Polish test system PF.
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Figure 6.14: Statistical characterization of the complexity reduction factor for the 2382-bus

Polish test system PF.
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6.3.3 IEEE 118-bus Test System OPF

The proposed technique is also applied to solve OPF problems. Thus, the optimal active

power dispatch problem for the IEEE 118-bus test system is studied here. The control

variables of the optimization problem in this case are the active power generated by the

dispatchable generators, while the dependent variables are the voltage magnitude at the

load buses, and the voltage phase angle at all buses except the slack bus. The objective

is to minimize the total generation cost satisfying both the equality constraints, described

by the power flow equations, and the inequality constraints, described by the limits in the

voltage magnitudes at all buses, and the reactive power limits at the PV buses.

The load buses are clustered in 10 different classes characterized by the bi-weekly 15

min profiles depicted in Figure 6.15, using similar load profiles as the ones proposed in [94].

The optimal power flow problem is then solved and the corresponding results are arranged

in two sets, namely the knowledge base (first 500 sample points) and the validation set

(remaining 843 sample points). The knowledge extraction process is then implemented

for various numbers of principal components in the interval NPC ∈ [5, 50], obtaining the

results summarized in Figure 6.16. Thus, for an approximation error tolerance of 10−3, 24

principal components can be extracted from the knowledge base.

To assess the extrapolation capabilities of the proposed methodology, the power flow

problem was solved in the principal components domain ∀K ∈ [500, 1343]. The resulting

solutions are then compared to those obtained by applying the built-in Matpower optimal

power flow program. The corresponding error surfaces are reported in Figures 6.17 and

6.18, where it is possible to observe the high accuracy of the solutions computed by the

proposed solution framework. This is also confirmed by analyzing Figures 6.19 and

6.20, which depict the error and complexity reduction indices obtained from (6.14) and

(6.15), respectively. Observe that Figure 6.19 confirms the good accuracy of the solutions

computed with the proposed paradigm, and Figure 6.20 shows that the CPU times of the

proposed approach, even for non-optimal software routines, are on average 77% faster with

respect to those of the traditional solution algorithm.
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Figure 6.15: Loading profiles adopted for the OPF analysis of the 118-bus IEEE test

system.
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Figure 6.16: Norm of the approximation error, in semi-logarithmic scale, versus the number

of principal components for the OPF analysis of the 118-bus IEEE test system.
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Figure 6.17: Approximation errors of the proposed technique versus the true OPF solution

for the IEEE 118-bus test system: bus voltage magnitude error.
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Figure 6.18: Approximation errors of the proposed technique versus the true OPF solution

for the IEEE 118-bus test system: bus voltage angle error.
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Figure 6.19: Statistical characterization of the approximation accuracy for the OPF anal-

ysis of the IEEE 118-bus test system.
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Figure 6.20: Statistical characterization of the complexity reduction factor for the OPF

analysis of the IEEE 118-bus test system.
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6.3.4 AA Analysis

In order to prove the effectiveness of the proposed PCA framework for identifying the main

correlations among historical power system operation data, the load profiles of the PF and

the OPF problems discussed in Sections 6.3.1 and 6.3.3 are processed using the method-

ology presented in Section 6.2.3. This resulted in the injected active and reactive powers

being represented, with an approximation error lower than 10−3, by a linear combination of

6 and 15 principal components, respectively. Therefore, for solving the uncertain PF and

OPF analyses for these two case studies, the input variables can be properly represented

by the following affine forms:

P̂ SP
i = P SP

i,0 +
∑6

k=1 Pi,kεk ∀i ∈ NP
Q̂SP
j = QSP

j,0 +
∑6

k=1 Qj,kεk ∀j ∈ NQ
(6.16)

for the uncertain PF analysis of the IEEE 30-bus test system, and:

P̂ SP
i = P SP

i,0 +
∑12

k=1 Pi,kεk ∀i ∈ NP
Q̂SP
j = QSP

j,0 +
∑12

k=1 Qj,kεk ∀j ∈ NQ
(6.17)

for the uncertain OPF analysis of the IEEE 118-bus test system.

The comparison of (6.16)-(6.17) with the affine forms assumed in Chapter 5 to solve

uncertain PF and OPF problems, characterized by a number of noise symbols equal to

the number of active and reactive power injections, demonstrate the sensible complexity

reduction obtained by the application of the proposed PCA-based framework. Thus, the

noise symbols are reduced from 53 to 6, and from 128 to 15 for the first and second case

studies, respectively.

To check the consistency of these representations, the PF and the OPF problems are

solved by applying the method proposed in Chapter 5, by assuming a ±20% (40%) vari-

ation of the active and reactive power injections around the corresponding mean values.

The obtained results are reported in Figures 6.21-6.24, where Figures 6.21-6.22 depict the

bounds of the bus voltage magnitudes and angles obtained for the uncertain PF analysis of

the IEEE 30-bus test system, while Figures 6.23-6.24 depict the bounds of the bus voltage

magnitudes and angles obtained for the uncertain economic dispatch analysis of the IEEE
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118-bus test system. In all these figures, the corresponding bounds computed by a Monte

Carlo-based approach are depicted in order to check the accuracy of the obtained solutions,

demonstrating that the affine forms obtained using the PCA approach yield adequate re-

sults, and allow to represent the data uncertainties with a reduced number of noise symbols,

which lead to a sensible reduction of the computational burdens. In particular, compared

to the affine forms defined in Chapter 5, an improvement of the convergence times of about

70% and 75% has been observed in solving the two case studies, respectively.

6.4 Summary

In this chapter, a novel framework aimed at identifying potentially regularities of the PF

and OPF solutions has been proposed. Based on structural knowledge, a mathematical

method projecting the PF and OPF equations to a new domain has been defined, thus

reducing the complexity and computational burden of the PF and OPF problem, and a

novel method to better identify the noise symbols in AA-based uncertain PF and OPF

analyses has been proposed.

The numerical results obtained for small and large scale power system under varius

operating scenario demonstrated that the overall complexity of the PF and OPF problem in

the transformed domain could be sensibly reduced, especially in the presence of correlated

variables. Moreover, the knowledge extracted from operation data sets allows to drastically

reduce the number of noise symbols in uncertain PF and OPF analysis, and consequently

the computational costs of the proposed AA-based solution methodologies. Finally, it

was observed that the approximation accuracy and the computational burdens observed

during the experiments were strictly influenced by the number of principal components

selected to decompose the power system state variables. Therefore, formal methods aimed

at defining a proper tradeoff between the solutions accuracy and the algorithm complexity

would be necessary for a comprehensive deployment of the proposed framework. This topic

is currently under investigation.
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Figure 6.21: Bus voltage magnitude bounds obtained for the IEEE 30-bus test system for

the AA-PCA PF method.
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Figure 6.22: Bus voltage angle bounds obtained for the IEEE 30-bus test system for the

AA-PCA PF method.
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Figure 6.23: Voltage magnitude bounds of the AA-PCA OPF dispatch solutions for the

118-bus test system.
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Figure 6.24: Voltage angle bounds of the AA-PCA OPF dispatch solutions for the 118-bus

test system.
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Chapter 7

Conclusions

7.1 Summary and Conclusions

This thesis proposed the use of AA-based computing paradigms for solving uncertain PF

and OPF problems, when no sufficient information is available to identify a probabilis-

tic description of the uncertainty. In particular, after analyzing the more relevant papers

published in the scientific literature and introducing the mathematical preliminaries, a

methodology for AA-based PF analysis that allows to better handle uncertainty compared

to the traditional and widely used IA approaches was described. Based on this AA for-

malism, the PF solution bounds were readily obtained by means of a domain contraction

technique. This paradigm allowed to effectively address the “wrapping effect” and the “de-

pendency problem” of IA, leading to a better characterization of the effects of input data

uncertainty in PF solutions, and a more realistic approximation of the solution domain

compared to the typical “hyper box” form obtained with IA approaches.

A domain contraction technique based on range arithmetic was then proposed for uncer-

tain OPF analysis. This method allowed to compute the range of OPF solutions associated

with input interval uncertainties by solving two determinate problems of the same type,

namely, the lower and the upper boundary problems, which were readily solved using

state-of-the-art NLP solvers.
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To reduce the approximation errors of uncertain PF and OPF analyses by obtaining

a better estimation of the solution sets, a novel AA-based computing paradigm was de-

fined. The main idea was to formulate a generic mathematical programming problem

under uncertainty by means of equivalent deterministic problems, defining a coherent set

of minimization, equality, and inequality operators. Compared to existing AA and Range-

Arithmetic-based solution paradigms, this formulation presented greater flexibility, as it

allowed to find partial solutions and include multiple equality and inequality constraints,

reducing the approximation errors. However, it resulted in higher computational costs,

mainly due to the large number of control variables required to solve the “perturbed state”

problem. To address this problem, a PCA-based paradigm for knowledge discovery from

historical operation data-sets was proposed to lower the cardinality of PF and OPF prob-

lems, and to identify the optimal affine forms describing the uncertain parameters in the

proposed AA frameworks.

On the basis of the obtained results, it could be argued that a power engineer aiming

at using AA-based techniques for solving uncertain PF and OPF problems is confronted

with an accuracy/complexity trade-off. On one hand AA techniques based on domain

contraction can be used to obtain a rough qualitative insight of the solution in a very

short time, comparable to the time required simulations-based methods like Monte Carlo.

On the other hand, solution methods based on the definition of formal AA operators can

be used to obtain a better description of the uncertainty evolution at the cost of higher

simulation times. In both cases, the use of PCA can contribute to sensibly reduce the

problem cardinality, and to better identify the affine forms describing the data uncertainty.

The results presented in this thesis should help in making the choice between the accuracy

and computational costs, based on information about the application of the simulation

outputs, and the existing computational resources.

7.2 Contributions

The following are the main thesis contributions:

• Through testing and validation of a methodology for AA-based PF analysis, demon-
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strating that it better handles uncertainty compared to the traditional IA-based

approaches, based on several realistic test systems.

• Through testing and validation of a novel optimization framework based on range

arithmetic for OPF analysis with uncertainty parameters represented as intervals,

which allows to compute the bounds of uncertain OPF solutions using state-of-the-

art NLP solvers, based on several realistic test systems.

• Proposal of a novel AA-based computing paradigm to drastically reduce the approx-

imation errors of previously proposed AA-based methods for uncertain PF and OPF

analyses by obtaining a better estimation of the solution sets.

• Propose and demonstrate a novel PCA-based framework for knowledge extraction

from historical power system operation data, which allows to reduce the complexity

and computational burden of PF and OPF problems, and to better identify the noise

symbols in AA-based uncertain PF and OPF analyses.

Two journal papers are being developed based on the content of Chapters 5 and 6. The

main techniques in Chapters 3 and 4 were already published in [44], and [49].

7.3 Future Work

Future directions of the research presented here will be oriented toward:

• Enhancement of the proposed AA-based optimization framework by introducing dis-

crete mathematical operators, which could allow to solve uncertain unit-commitment

problems.

• Propose and develop mathematical techniques to identify the optimal number of

principal components in PCA-based PF and OPF techniques.

• Propose hybrid computational paradigms for uncertain PF and OPF analysis, in

which the data uncertainty can be described by multiple paradigms (e.g. fuzzy

numbers, affine forms, intervals) in the context of the Granular Computing Theory.
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• Study the use of PCA to improve the efficiency of Monte Carlo simulations for un-

certain PF and OPF analyses.
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[53] M. Pirnia, C. A. Cañizares, K. Bhattacharya, and A. Vaccaro, “A novel affine arith-

metic method to solve optimal power flow problems with uncertainties,” in Proceedings

of the IEEE Power and Energy Society General Meeting, pp. 1–7, 2012.

[54] R. Bo, Q. Guo, H. Sun, W. Wu, and B. Zhang, “A non-iterative affine arithmetic

methodology for interval power flow analysis of transmission network,” Proceedings of

the Chinese Society for Electrical Engineering, vol. 33, no. 19, pp. 76–83, 2013.

[55] S. Wang, L. Han, and P. Zhang, “Affine arithmetic-based dc power flow for automatic

contingency selection with consideration of load and generation uncertainties,” Electric

Power Components and Systems, vol. 42, no. 8, pp. 852–860, 2014.

[56] G. Wei, L. Lizi, D. Tao, M. Xiaoli, and S. Wanxing, “An affine arithmetic-based

algorithm for radial distribution system power flow with uncertainties,” International

Journal of Electrical Power Energy Systems, vol. 58, no. 0, pp. 242 – 245, 2014.

130



[57] T. Ding, H. Z. Cui, W. Gu, and Q. L. Wan, “An uncertainty power flow algo-

rithm based on interval and affine arithmetic,” Automation of Electric Power Systems,

vol. 36, no. 13, pp. 51–55, 2012.

[58] M. Pirnia, C. A. Cañizares, and K. Bhattacharya, “Revisiting the power flow problem

based on a mixed complementarity formulation approach,” IET Generation, Trans-

mission & Distribution, vol. 7, no. 11, pp. 1194–1201, 2013.

[59] R. R. Shoults and D. Sun, “Optimal power flow based upon pq decomposition,” IEEE

Transactions on Power Apparatus and Systems, no. 2, pp. 397–405, 1982.

[60] J. A. Momoh, “A generalized quadratic-based model for optimal power flow,” in Pro-

ceedings of the IEEE International Conference on Systems, Man and Cybernetics,

pp. 261–271, 1989.

[61] R. Burchett, H. Happ, and K. Wirgau, “Large scale optimal power flow,” IEEE Trans-

actions on Power Apparatus and Systems, no. 10, pp. 3722–3732, 1982.

[62] K. Pandya and S. Joshi, “A survey of optimal power flow methods,” Journal of The-

oretical & Applied Information Technology, vol. 4, no. 5, 2008.

[63] D. I. Sun, B. Ashley, B. Brewer, A. Hughes, and W. F. Tinney, “Optimal power flow

by newton approach,” IEEE Transactions on Power Apparatus and Systems, no. 10,

pp. 2864–2880, 1984.

[64] J. A. Momoh and J. Zhu, “Improved interior point method for opf problems,” IEEE

Transactions on Power Systems, vol. 14, no. 3, pp. 1114–1120, 1999.

[65] G. Tognola and R. Bacher, “Unlimited point algorithm for opf problems,” IEEE Trans-

actions on Power Systems, vol. 14, no. 3, pp. 1046–1054, 1999.

[66] L. V. Kolev, “A method for outer interval solution of linear parametric systems,”

Reliable Computing, vol. 10, no. 3, pp. 227–239, 2004.

[67] I. Skalna, “A method for outer interval solution of parametrized systems of linear

interval equations,” Reliable Computing, vol. 12, no. 2, pp. 107–120, 2006.

131



[68] C. Jiang, X. Han, and G. Liu, “A sequential nonlinear interval number program-

ming method for uncertain structures,” Computer Methods in Applied Mechanics and

Engineering, vol. 197, no. 49, pp. 4250–4265, 2008.

[69] C. Jiang, X. Han, G. Liu, and G. Liu, “A nonlinear interval number programming

method for uncertain optimization problems,” European Journal of Operational Re-

search, vol. 188, no. 1, pp. 1–13, 2008.

[70] H. Ishibuchi and H. Tanaka, “Multiobjective programming in optimization of the

interval objective function,” European Journal of Operational Research, vol. 48, no. 2,

pp. 219–225, 1990.

[71] A. Bonarini and G. Bontempi, “A qualitative simulation approach for fuzzy dynamical

models,” ACM transactions on Modeling and Computer Simulation, vol. 4, no. 4,

pp. 285–313, 1994.

[72] L. H. De Figueiredo and J. Stolfi, “Affine arithmetic: concepts and applications,”

Numerical Algorithms, vol. 37, no. 1-4, pp. 147–158, 2004.

[73] N. S. Nedialkov, V. Kreinovich, and S. A. Starks, “Interval arithmetic, affine arith-

metic, taylor series methods: why, what next?,” Numerical Algorithms, vol. 37, no. 1,

p. 325336, 2004.

[74] A. Neumaier, “Taylor formsuse and limits,” Reliable Computing, vol. 9, no. 1, pp. 43–

79, 2003.

[75] F. Song, Z. Guo, and D. Mei, “Feature selection using principal component analysis,”

in Proceedings of the International Conference on System Science, Engineering Design

and Manufacturing Informatization, vol. 1, pp. 27–30, 2010.

[76] R. Bo and F. Li, “Power flow studies using principal component analysis,” in Proceed-

ings of the 40th North American Power Symposium, pp. 1–6, 2008.

[77] P. R. Peres-Neto, D. A. Jackson, and K. M. Somers, “How many principal com-

ponents? stopping rules for determining the number of non-trivial axes revisited,”

Computational Statistics Data Analysis, vol. 49, no. 1, pp. 974–997, 2005.

132



[78] D. J. Burke and M. J. O’Malley, “A study of principal component analysis applied

to spatially distributed wind power,” IEEE Transactions on Power Systems, vol. 26,

no. 4, pp. 2084–2092, 2011.

[79] J. Yin, I. Gorton, and S. Poorva, “Toward real time data analysis for smart grids,”

in Proceedings of the SC Companion: High Performance Computing, Networking,

Storage and Analysis, pp. 827–832, 2012.

[80] S. Das and P. N. Rao, “Principal component analysis based compression scheme for

power system steady state operational data,” in Proceedings of the IEEE PES Inno-

vative Smart Grid Technologies-India, pp. 95–100, 2011.

[81] D. Grabowski, M. Olbrich, and E. Barke, “Analog circuit simulation using range arith-

metics,” in Proceedings of the Asia and South Pacific Design Automation Conference,

pp. 762–767, 2008.
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