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Abstract

Spray models are increasingly becoming the principal tools in the design and devel-

opment of gas turbine combustors. Spray modeling requires a knowledge of the liquid

atomization process, and the sizes and velocities of subsequently formed droplets as initial

conditions. In order to have a better understanding of the liquid atomization process, the

breakup characteristics of plane liquid sheets in co-owing gas streams are investigated by

means of linear and nonlinear hydrodynamic instability analyses. The liquid sheet breakup

process is studied for initial sinuous and varicose modes of disturbance. It is observed that

the sheet breakup occurs at half-wavelength intervals for an initial sinuous disturbance and

at full-wavelength intervals for an initial varicose disturbance. It is also found that under

certain operating conditions, the breakup process is dictated by the initial varicose distur-

bance compare to its sinuous counterpart. Further, the breakup process is studied for the

combined mode and it is found that the sheet breakup occurs at half- or full-wavelength in-

tervals depending on the proportion of the individual sinuous and varicose disturbances. In

general, the breakup length decreases with the increase in the Weber number, gas-to-liquid

velocity and density ratios.

A predictive model of the initial droplet size and velocity distributions for the subse-

quently formed spray is also formulated here. The present model incorporates the deter-

ministic aspect of spray formation by calculating the breakup length and the mass-mean

diameter and the stochastic aspect by statistical means through the maximum entropy

principle based on Bayesian entropy. The two sub-models are coupled together by the

various source terms signifying the liquid-gas interaction and a prior distribution based on

instability analysis, which provides information regarding the unstable wave elements on

the two liquid-gas interfaces.

Experimental investigation of the breakup characteristics of the liquid sheet is per-

formed by a high speed CCD camera and the measurement of the initial droplet size and

distributions is conducted by phase-Doppler interferometry. Good agreement of the theo-

retical breakup length with the experiment is obtained for a planar, an annular and a gas

turbine nozzle. The predicted initial droplet size and velocity distributions show reasonably

satisfactory agreement with experimental data for all the three types of nozzles. Hence this

spray model can be utilized to predict the initial droplet size and velocity distributions in

sprays, which can then be implemented as a front-end subroutine to the existing computer

codes.
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Chapter 1

Introduction

In recent years, Computational Fluid Dynamics (CFD) codes for turbulent two-phase ows

have been widely used in the design and development of gas turbine combustors employing

spray nozzles. For the successful operation of these CFD codes, it is required to specify the

droplet size and velocity distributions in the vicinity of the nozzle as important boundary

conditions. However, due to the lack of the predictive capability of the existing spray

models, one has to rely on experimental data as an input or some judicious guesses for the

required boundary conditions. Therefore, there is a pressing need in the spray community

to develop a suitable atomization model that will predict the initial droplet size and velocity

distributions in sprays. Such distributions can then be implemented as a \front-end" to

the existing CFD codes.

A typical air-blast nozzle employed in a gas turbine combustor, shown in Fig. 1.1, causes

the fuel to form a thin annular sheet. A number of previous studies [1, 2] indicate that

the curvature e�ect is negligible due to the relatively small thickness of the liquid sheet

compared to the radius of curvature. As a result, the fuel to be atomized may be modeled

in a �rst approximation as a plane liquid sheet. Figure 1.2 illustrates the model of a plane

liquid sheet emerging from a two-dimensional nozzle. The unstable waves are formed at

the liquid-gas interfaces which eventually grow and cause the liquid sheet to break up into

ligaments. The ligaments then contract to form droplets of di�erent sizes and velocities.

Therefore, the early stage of the atomization process is clearly deterministic with distinct

wave motion, whereas the �nal stage of spray formation is random and stochastic.

1
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Figure 1.1: A typical air-blast nozzle for gas turbine application.
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Figure 1.2: Schematic of a plane liquid sheet breakup leading to spray formation.
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In order to understand the entire atomization process leading to spray formation, at-

tention is focused on two distinct regions of the spray formation processes. The �rst region

deals with the breakup of the liquid sheet to form ligaments and the analysis is carried

out by using linear and nonlinear hydrodynamic instability theories. The second region

deals with the stochastic aspect of droplet size and velocity distributions and is dealt with

by using the Maximum Entropy Principle (MEP) which is based on information theory.

These two regions are then coupled together through source terms, which represent the

interaction between the liquid and the surrounding gas medium and a prior distribution,

which contains the information about the unstable wave elements on the two liquid-gas

interfaces.

1.1 Objective and Methodology

The main purpose of the study carried out in this thesis is to formulate a predictive model

for the initial droplet size and velocity distributions in sprays by taking into account

both the deterministic and the stochastic aspects of droplet formation processes. The

deterministic aspect deals with the liquid sheet breakup process whereas the stochastic

aspect deals with the formation of droplets of di�erent diameters and velocities.

The deterministic sub-model adopts linear and nonlinear hydrodynamic instability the-

ories. The linear instability theory yields the dominant wavelength of unstable wave devel-

opment, and the nonlinear instability theory gives information on the breakup length and

the breakup characteristics of the liquid sheet. The stochastic sub-model is formulated by

the application of the MEP, along with the conservation of liquid mass, momentum and

energy, which must be satis�ed during the liquid atomization process. The two sub-models

are coupled together through source terms and a prior distribution. The source terms are

obtained by performing a boundary-layer type of analysis for the relative liquid-gas motion

over the liquid breakup length. The prior distribution is based on the linear instability

analysis of plane liquid sheets.

An experimental investigation is conducted for the veri�cation of the theoretical model.

The experiments provide two important pieces of information: the breakup length and

the associated breakup features of the liquid sheet in co-owing gas streams, which are



Introduction 4

needed for the validation and development of the deterministic sub-model; and the size

and velocity distributions of the resulting spray droplets required for the veri�cation of

the stochastic sub-model. A high speed CCD camera is used to obtain the breakup length

and breakup characteristics of the liquid sheet, and a laser-based, non-intrusive technique

(Phase-Doppler Particle Analyzer, PDPA) is used to measure the droplet size and velocity

distributions in the immediate vicinity of the sheet breakup region.

After veri�cation, this model is capable of providing, from �rst principles, the required

initial conditions for CFD simulation related to combustor design and development. Al-

though many di�erent types of spray exist, the present physical model can be applied for

each case. However, for the purpose of illustration of the present model, the sprays formed

from the breakup of plane liquid sheets will be used as an example.

1.2 Scope and Outline of Thesis

The present thesis has both theoretical and experimental components. Under theoretical

study, a nonlinear instability analysis is carried out to investigate the breakup process

of a plane liquid sheet. As a �rst step, the liquid sheet breakup process is analyzed

by applying a sinuous mode of disturbance (disturbance that causes the two liquid-gas

interfaces to move parallel to each other) at its interfaces. As the next step, breakup

process is investigated for a varicose mode of disturbance (disturbance that causes the

two interfaces to move in symmetry) applied at the liquid-gas interfaces. Subsequently, a

nonlinear instability analysis is performed to analyze the breakup process of the liquid sheet

subjected to the combined e�ect of both the sinuous and the varicose modes of disturbance.

The next portion of the theoretical study involves a formulation for determining the droplet

size and velocity distributions, which is based on the MEP. Under experimental study,

photographic investigations of spray formation from a two-dimensional planar nozzle and

a gas turbine nozzle have been conducted; and the droplet size and velocity distributions of

sprays produced by these nozzles are measured in order to verify the distributions obtained

from the theoretical model.

The background literature on instability analysis of liquid sheets, drop size and veloc-

ity distributions and experimental works related to liquid sheets and subsequent formed
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droplets are discussed in Chapter 2 of this thesis. The formulation for the nonlinear insta-

bility analysis is provided in Chapter 3. Chapters 4{6 deal with the breakup characteristics

of the liquid sheet subjected to a sinuous mode, a varicose mode, and a combined mode

of disturbance, respectively, which collectively form the deterministic sub-model of the

present study. Chapter 7 deals with the stochastic sub-model which includes a detailed

derivation of the joint probability density function (pdf) for droplet size and velocity dis-

tributions, the evaluation of various source terms and the numerical technique adopted for

obtaining the pdf. The experimental set-up, the instrumentation and the nozzles used for

generating sprays are discussed in Chapter 8. This is followed by Chapter 9, which shows

a comparison between theoretical predictions of the breakup length and the droplet size

and velocity distributions with experimental measurements. The thesis ends with Chap-

ter 10 which presents a summary of conclusions drawn from both the theoretical and the

experimental studies along with recommendations for future research.



Chapter 2

Literature Review

2.1 Instability Studies

The theoretical prediction of the droplet size and velocity distributions in sprays is diÆcult

because the mechanism of atomization is still not well understood and di�ers drastically

from one situation to another, according to the velocities and the physical properties of

the liquid and the surrounding gas medium, the geometrical shape of the disintegrating

liquid bulk, the liquid supply system and the atomizer used. However, preceding liquid

bulk breakup, distinct unstable waves develop and grow with a distinct wavelength. As

a result, earlier investigations of liquid atomization process are based on the instability

analysis of liquid-gas interfaces. Most of these have been reviewed and a summary of

state-of-art knowledge until late 1980s can be found in two books by Lefebvre [3, 4]. The

earlier theoretical works are focused on linear instability of two-dimensional plane liquid

sheets in a stationary gas medium, as presented by York et al. [5] and Squire [6]. Hagerty

& Shea [7] showed in their work that for inviscid and incompressible liquid and gas phases,

only two modes of instability exist on the two liquid-gas interfaces: sinuous (antisymmetric

about the centerline) and varicose (symmetric about the centerline) modes. They were also

able to successfully match the theoretical wave growth and wavelength for liquid sheets

with experimental measurements under di�erent operating conditions.

The e�ects of liquid viscosity were investigated by Dombrowski & Johns [8] in a one-

dimensional approximation, Lin [9] for a liquid curtain with ambient gas phase neglected,

6
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and Li & Tankin [10] for plane liquid sheets in a stationary ambient gas medium. The

liquid viscosity plays a dual role by increasing the amplitude of the disturbance for sinuous

mode at low Weber numbers (�`U
2
`
a�=�) as well as damping the growth rate for the sinuous

mode at large Weber numbers and for the varicose mode at any Weber number. Li [11]

also performed an instability analysis of viscous liquid sheets in two gas streams of unequal

velocities. Li showed that there exists two independent unstable modes, termed as para-

sinuous and para-varicose modes, which depend on the relative velocities of the liquid and

gas streams at large Weber numbers and on the absolute velocities of both streams at small

Weber numbers. The e�ect of gas compressibility, investigated by Cao & Li [12], for viscous

liquid sheets in two gas streams of unequal velocities shows that the gas compressibility

always increases the liquid instability. This �nding is especially of practical importance

for gas turbine applications because the air stream velocity is very large in the air-blast

atomization, often approaching the sonic velocity.

The spatial instability of plane liquid sheets has also been instigated extensively by

Li [13, 14] and it is found that spatial instability di�er qualitatively and quantitatively from

temporal instability [11] at low Weber numbers, but produces identical results through the

Gaster transformation [15] at large Weber numbers (greater than one). The study by Lin

et al. [16] shows that the sinuous mode is pseudo-absolutely unstable for Weber number

less than a critical value (approximately one) but it is convectively (spatially) unstable for

Weber numbers greater than one and non-zero density ratios. The varicose mode is always

convectively unstable unless the density ratio is zero. However, low Weber numbers are

not encountered in typical atomization applications and therefore absolute instability is

not present for the liquid sheets under study here.

Instability analysis is also carried out for attenuating sheets [17], i.e.; liquid sheets

whose thickness changes with the distance from the nozzle exit, by Dombrowski & Johns [8]

with one-dimensional approximation and Weihs [18] for a radial sheet. It is found that in

addition to the existing Kelvin-Helmholtz type of instability, there may exist other types

of instability depending on the distance from the nozzle. However, stability mechanism of

attenuating sheets is not yet fully understood due to the diÆculty in the solution process

involving hypergeometric functions, even though such sheet geometry is very important

for practical sprays.
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The linear instability analyses, discussed so far, do not produce the breakup of the

liquid sheet subjected to the sinuous mode of disturbance as the two interfaces remain at a

constant distant apart. As pointed by Crapper et al. [19], linear instability fails to match

experimental data at the later stages of the sheet development which has large amplitude

waves on its interfaces. Also the liquid sheet breakup processes are inherently nonlinear as

observed by Mansour & Chigier [20] and Hashimoto & Suzuki [21] in their experimental

works. Therefore, a nonlinear instability analysis is required in order to understand the

later stages of the breakup process of the liquid sheet. Clark & Dombrowski [22] studied

the nonlinear disintegration of inviscid liquid sheets by means of perturbation expansion

techniques with the initial disturbance amplitude as the perturbation parameter (up to

second-order). This study shows that the sheet thinning is due to the harmonic wave ap-

pearing in the second-order solution and the breakup of the sheet occurs at half-wavelengths

and at locations close to the maximumdeection region of the sheet. A similar observation

was made by Rangel & Sirignano [23, 24] using the discrete-vortex method. Jazayeri &

Li [25] extended the work of Clark & Dombrowski [22] up to the third-order of the initial

disturbance amplitude and also concluded that the sheet ruptures at the half-wavelength

for the fundamental sinuous mode. They observed that the breakup of the liquid sheet

is due to the nonlinear e�ects with the generation of higher harmonics (varicose �rst har-

monic and sinuous second harmonic) as well as a feedback into the fundamental sinuous

mode. They argued, through the work by Bogy [26] for circular liquid jet, that perturba-

tion solution up to third-order is adequate for the description of the breakup process in

liquid sheets. Their study also shows that the breakup length decreases with the increase

in the initial disturbance amplitude, the Weber number and the gas-to-liquid density ratio,

and it becomes asymptotically insensitive to the variations of the Weber number and the

density ratio when the respective values of Weber number and density ratio are large.

Modulational instability of weakly nonlinear capillary waves on planar liquid sheets

without the interaction of an ambient gas is studied by Matsuuchi [27, 28]. It is observed

that the instability of the varicose mode may lead to the breakup of the sheet rather than

that of the sinuous mode, which is contrary to Squire's instability [6] of a moving liquid

sheet. This work is further extended by Mehring & Sirignano [29] for in�nite and semi-

in�nite planar liquid sheets in a void. Their numerical simulations show that in case of
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the varicose mode, the sheet is unstable to superimposed sub-harmonic disturbances with

suÆcient strengths.

The nonlinear instability analyses discussed so far for two-dimensional liquid sheets are

conducted either in a void or in a stationary gas medium. However, in actual atomization

applications, the liquid sheet is blasted on both sides by air streams and hence it is very

important to consider a moving gas stream in the nonlinear instability analysis leading to

the breakup of liquid sheets.

Limited studies are conducted for three-dimensional wave distortion on liquid sheets.

Experimental works by Mansour & Chigier [20, 30] and Lozano et al. [31] show that at

low relative air/liquid velocity ratio, the ligaments produced after the sheet rapture are in

the spanwise direction (parallel to the nozzle slit). With the increase in the velocity ratio,

streamwise vorticity becomes equal to or greater than the spanwise component, causing

cellular structure and the ligaments being oriented in parallel to the ow direction. Such

observations have also been indicated in the numerical simulations by Lozano et al. [32]

using a three-dimensional Lagrangian model based on vortex dynamics methods and also

through a weak three-dimensional analysis for sinuous and varicose wave propagations on

in�nite and semi-in�nite planar liquid sheets by Kim & Sirignano [33]. Such other quasi-

three dimensional analyses are also cited in a review article by Sirignano & Mehring [34].

2.2 Droplet Size and Velocity Distributions

The �nal stage of the liquid sheet breakup process preceding the droplet formation is highly

nonlinear, and theoretically requires nonlinear analysis accurate up to very large orders.

This is extremely diÆcult to achieve, if possible at all. Further, the �nal breakup details

depend sensitively on the history of the wave motion, the interaction among various wave

elements which are not known in practice. As a result, droplet formation process appears

to be random and chaotic in practical sprays. This stochastic nature of droplet formation

process, coupled with a large quantity of droplets of various sizes formed per unit time in

a practical spray, has called for statistical description of spray droplets. Hence, droplet

size in sprays has been typically described by probability density function (pdf) and many

empirical pdfs have been proposed for this purpose [35, 36, 37]. However, all proposed
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empirical pdfs lack universal predictive capability.

As an alternative to the empirical approach, primarily two analytical methods for ob-

taining pdfs have been developed in the past two decades: the maximum entropy principle

(MEP) and the discrete probability function (DPF). The DPF method, �rst applied to

model the drop size distributions in sprays by Sovani et al. [38], divides the entire spray

formation into deterministic and non-deterministic portions and produces pdfs which are

dependent on initial conditions related to the uctuations of ow conditions at the nozzle

exit. These uctuations are diÆcult and in some practical cases impossible to measure for

real sprays. On the other hand, the MEP was developed by Jaynes [39] based on Shan-

non's [40] concept of information entropy, which is a measure of uncertainty of a probability

distribution. The application of MEP to spray modeling was pioneered by Sellens & Brzus-

towski [41, 42, 43, 44] and Li & Tankin [45, 46, 47, 48, 49], which is able to predict the

least biased pdf that duly satis�es a set of constraints expressing the available information

related to the distribution sought. The set of constraints for the liquid atomization process

contains the conservation of liquid mass, momentum and energy during the atomization

process, and the interaction between the atomizing liquid and the surrounding gas is rep-

resented by mass, momentum and energy source terms. The two approaches di�er in the

way the constraints related to energy are dealt with. Li & Tankin used a single constraint

combining together both the surface energy and kinetic energy of the system, whereas

Sellens & Brzustowski used separate constraint for each kind of energy. In practical sprays

such as diesel and pressure-swirl sprays, the surface energy of the liquid always increases.

Therefore, separate conservation of liquid kinetic energy and surface energy not only vio-

lates the physics involved, but also requires knowledge of the total surface energy of spray

droplets. However, the MEP applied for droplets produced from cylindrical liquid jets in

Rayleigh breakup regime by Chin et al. [50] uses a separate constraint for surface energy.

This is physically realistic because in the Rayleigh breakup regime surface tension plays

a predominant role, and the e�ects of liquid kinetic energy as well as the surrounding gas

medium are negligible.

The MEP approach has also been used by other researchers to obtain drop size dis-

tributions. Van der Geld & Vermeer[51] have obtained a size distribution function by

considering primary and satellite droplet formation separately with an assumed Gaussian
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distribution which is not substantiated by experiments. Instead of maximizing the contin-

uous form of the Shannon entropy, Cousin et al. [52] derived the drop size distributions

for pressure-swirl atomization by maximizing a more general expression of the Shannon

entropy, which is equivalent to Bayes entropy [53]. They used a single constraint based on

the de�nition of one mean droplet diameter instead of using conservation laws adopted in

the earlier studies. This approach is semi-empirical as it needs a priori knowledge about

the mean droplet diameter in a particular spray, which cannot be known without exper-

imental measurements. This work is further extended by Dumouchel et al. [54, 55] to

obtain the parameters needed to �t their results for practical sprays. They also proposed

a three-parameter volume-based drop size distribution to overcomes some limitations in

their earlier works.

In recent years, Mitra & Li [56] were able to use the MEP to obtain droplet size

distributions in a completely predictive manner for the atomization of liquid sheets in a

stationary gaseous medium. In their approach, the deterministic and the stochastic sub-

models for spray formation are coupled together by the mass-mean diameter and various

source terms signifying the liquid-gas interactions.

The models based on the MEP discussed so far fail to create a direct link between

the unstable wave elements present prior to the sheet breakup process and the droplets

produced after the breakup process. However, it is physically intuitive that the unstable

wave growth at the interfaces of the liquid sheet must somehow dictate the �nal drop

formation in sprays.

Apart from obtaining pdf, a few theoretical models have been developed to obtain the

droplet size with little success [57, 58]. These models need information regarding mass-

mean and volume-mean diameters of a spray and therefore lack predictive capability to

obtain drop size distributions.

2.3 Experimental Studies

Over the past decades, numerous researchers have been involved in the experimental inves-

tigation of a liquid sheet due to its simple geometry. One of the earliest studies on liquid

sheets was carried out by Dombrowski et al. [17]. They were interested in �nding the tra-
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jectory of the boundaries of the sheet produced from a rectangular-ori�ce fan spray nozzle.

A photographic study of Kelvin-Helmholtz waves on thin liquid sheets was performed by

Crapper et al. [19] in which sinuous waves of controlled frequency and amplitude were im-

posed on a water sheet to obtain the maximum growth rate. Asare et al. [59] studied the

wave growth on planar water sheets ejected from nozzles which were subjected to trans-

verse forced harmonic excitation. It was observed that the linear instability theory is able

to predict the onset of the unstable regime and the wave growth rate quite well for small

amplitude nozzle vibrations. Similar studies of forced vibration on the liquid sheet and

its e�ect on the resulting drop size have been carried out by Crapper & Dombrowski [60],

Dressler [61], and Chung et al. [62].

In order to obtain a two-dimensional liquid sheet, Mansour & Chigier [20] used a vari-

able geometry air-blast atomizer with a high aspect ratio and studied the detailed breakup

features of water sheets by using high-speed photography. As an extension to this work,

they further studied the aerodynamic instability of the liquid sheet issuing from the same

two-dimensional nozzle [30]. Three distinct modes of breakup were identi�ed from the

frequency of oscillation of the liquid sheet. In a recent work by Jazayeri & Li [63], spray

formation from a liquid sheet has been investigated by using a similar two-dimensional

nozzle but of constant geometry. The mechanism of sheet instabilities and spray formation

have also been studied by Lavergne et al. [64] for di�erent air-blast geometries. A micro-

phone and a frequency analyzer were used in conjunction with a high-speed video camera

to track the disintegration frequency. A similar arrangement was also used by Berthoumieu

et al. [65] to observe the breakup characteristics of the liquid sheet produced by a planar

and an annular nozzle.

The interfacial waves that are generated on the surface of the liquid sheet have been

studied by Hashimoto & Suzuki [21]. They observed that these waves greatly a�ect the

disintegration process of the liquid sheet. A study of stationary waves on liquid sheets due

to an obstacle placed normal to the sheet ow has been conducted by Luca & Costa [66].

By applying the same technique, Luca [67] further studied the onset of global instability

of the liquid sheet as opposed to the local absolute and convective instabilities.

Experiments were also conducted to study the tulip-shaped and cone-shaped liquid

sheets [68] formed in swirl nozzles and a critical Weber number of 150 was identi�ed at
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which the transition from the tulip-shape to the cone-shape occurs. The e�ects of liquid

properties on the breakup of a liquid sheet have been studied by Stapper et al. [69] for

a twin-uid, two-dimensional nozzle by means of pulsed laser imaging. Using dynamic

similarities and order of magnitude estimates, Hespel et al. [70] were able to obtain high

speed photographs related to the mechanism of breakup of �lm and sheet atomization for

liquid metal sprays.

A considerable amount of studies have been performed to obtain the droplet size and

velocity distributions in sprays. The phase-Doppler particle analyzer (PDPA) is primarily

used for obtaining such distributions. The PDPA is an advanced, laser-based, non-intrusive

diagnostic instrument that can be used for simultaneous measurement of size and velocity of

individual droplets by measuring the phase di�erence and the frequency of light scattered

when a droplet passes through the intersection of two laser beams (the Doppler burst).

It was �rst introduced by Bachalo & Houser [71], and is an extension to the well-known

technique of laser-Doppler velocimetry (LDV) that was developed by Yeh & Cummins [72].

The theory behind the operation of PDPA,which is based on Lorenz-Mie scattering [73],

is well established and the details of which are summarized by Bachalo & Sankar [74].

Research is still being conducted to explore the various errors involved in PDPA [75, 76]

and also to increase the sensitivity of the system to small particles which are of great

importance in atomization application where the spray contains large and small droplets

at the same time [77].

Mansour & Chigier [30] conducted detailed measurements of mean droplet size and

velocity for a two-dimensional air-assisted nozzle by using the PDPA. More recently, spray

characteristics and their spatial distribution have been investigated experimentally by Jaza-

yeri & Li [63] for sprays generated by the breakup of thin liquid sheets in co-owing air

streams. Their phase Doppler measurements show that at a given spray cross section, the

droplet axial mean velocity has a maximum value at the spray center, and decreases to-

wards the periphery of the spray; whereas the Sauter mean diameter (drop diameter whose

ratio of volume to surface area is same as that of the entire spray) has a minimum value

at the center and increases monotonically towards the spray edge. They also found that,

suÆciently downstream of the nozzle exit, the mean velocity attains a jet-like self-similar

distribution, but the Sauter mean diameter varies in a complex manner due to the sec-
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ondary atomization and droplet entrainment and coalescence at downstream of the spray.

However, such dynamic behavior of the spray at the downstream section can be resolved

by calculating the distance and the velocity di�erence between consecutive droplets in

sprays, as well as the number of droplets in close proximity (grouplets) and the frequency

of grouplet formation [78].

Both photographic and light scattering techniques are often used to measure drop sizes.

Rizk & Lefebvre [79] used such techniques to study the inuence of air velocity and liquid

properties on drop size distribution for an air-blast atomizer. Digital image and signal

processing techniques coupled with optics have also been used to obtain the drop size, as

in case of liquid jet by Moses et al. [80] and for gas-assisted liquid atomization by Snyder

& Reitz [81].

However, it is often diÆcult to reproduce the drop size measurements obtained by a

di�erent researcher or even to obtain the same data set for a given nozzle at di�erent

locations. As pointed out by Tate [82] and Lefebvre [83], certain problems arise due to

the inaccurate or incomplete information about the test atomizer and operating conditions.

Therefore, care should be taken while comparing experimental data obtained from di�erent

sources.

2.4 Summary

It is evident that limited studies have been performed on the nonlinear breakup of liquid

sheet, although plenty of studies exist on the linear instability of liquid sheets. However,

the breakup process is highly nonlinear. So far, the nonlinear instability studies are ei-

ther performed for a liquid sheet in a stationary gas medium or in a void. For air-blast

applications, it is extremely important to consider the breakup process of liquid sheets

in co-owing gas media. The current literature show that the application of the MEP is

successful in obtaining the droplet size and velocity distributions in sprays. However, the

present stochastic models fail to address the direct connection between the unstable wave

elements present at the liquid-gas interfaces with the droplet formation process. Signi�cant

works are reported by di�erent researchers in using the PDPA system for droplet size and

velocity measurements. However, limited studies exist on the experimental investigation

of the breakup process of plane liquid sheet. In the foregoing chapters, attempts will be

made to address the unresolved issues, which are discussed here.



Chapter 3

Nonlinear Instability Formulation

The liquid sheet breakup process is a key part in the deterministic sub-model of the present

study. The formulation for the breakup of the liquid sheet by means of hydrodynamic

instability analysis is discussed here. A two-dimensional liquid sheet of constant thickness

2a� is considered, as shown schematically in Fig. 3.1. The liquid sheet moves at a uniform

axial velocity of U` in a surrounding gas medium, which is moving with a uniform velocity

of Ug. The densities of the liquid and the gas phases are �` and �g respectively. The e�ect

of gravity is neglected because the Froude number (de�ned as the ratio of liquid inertia to

gravity) is typically very large for practical sprays. Both phases are assumed to be inviscid

and incompressible. Even though the liquid viscosity introduces additional instability

modes [10], the viscosity tends to decrease the ampli�cation rate of any disturbance at

large Weber number, such as in air-blast atomization. A similar argument is also valid

for gas viscosity, as observed by Teng et al. [84]. Therefore, with no loss of generality,

both the liquid and the gas viscosities are neglected here. Unequal gas stream velocity on

either side of the liquid sheet does not introduce additional modes of instability, although

it does modify the instability characteristics according to the degree of the gas velocity

di�erential [11]. For the sake of simplicity, the gas stream velocities are assumed to be

equal in this study.

In the present formulation, liquid and gas ows are assumed to be initially irrotational

(zero vorticity) so that by Lagrange's theorem along with the inviscid assumption, the

ows are irrotational for all subsequent times [85]. Therefore, the entire ow �eld can

15
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Figure 3.1: Schematic of a plane liquid sheet and imposed disturbance.

be treated as a potential ow. The uniform velocity assumption makes the pressure �eld

constant within each phase and the di�erence of pressure at the interfaces is balanced by

the surface tension, denoted by �.

When the base ow, described above, is perturbed by a small disturbance, the two

liquid-gas interfaces are displaced to new locations denoted by y� = (�1)j+1a� + ��
j
(x; t)

where j = 1 represents the upper interface and j = 2 represents the lower interface.

For the convenience of analysis, all the physical parameters are non-dimensionalized such

that length, time and density are scaled with half-sheet thickness a�, the convection time

a�=U`, and the liquid density �`. The dimensionless surface deformation �j and the velocity

potential � for the liquid and the gas phases must satisfy the following governing equations:

�l;xx + �l;yy = 0 for �1 + �2 6 y 6 1 + �1; (3.1)

�g;xx + �g;yy = 0 for 1 + �1 6 y < +1, �1 < y 6 �1 + �2; (3.2)

where Eqs. (3.1)-(3.2) are mass conservation applied to liquid and gas phases, respectively

and the subscripts, x and y, refer to the partial derivatives with respect to the spatial
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coordinates. The conservation of momentumyields the unsteady Bernoulli equation, which

provides the relationship between the pressure �elds for the liquid and the gas phase ow.

Since the governing equations in this case are elliptic, they can be solved by specifying

the boundary conditions on a complete contour enclosing the ow �eld. The boundary

conditions in y can be expressed in terms of interface locations, which is described later, for

both phases. The boundary conditions in x are not speci�ed because we are seeking a wave

form solution. Therefore, instead of solving the elliptic equation which needs boundary

conditions for the x domain, we are seeking hyperbolic solutions to the governing equations.

By implementing such a strategy, we are dealing with temporal instability analysis rather

than the spatial one, which is mathematically much more involved to solve. However, the

results of temporal instability are very close to those of spatial instability for the present

problem because both the wave velocity and the group velocity are almost identical to the

base ow velocity. For the gas phase, the boundary conditions at y = �1 require that

the velocity potential is �nite or bounded.

The boundary conditions applied to the perturbed interfaces, y = (�1)j+1 + �j , are

of two types: one is the kinematic boundary condition which states that the interfaces

are material surfaces and the uid particles initially on the interface will remain there

subsequently; the other is the dynamic boundary condition which states that the di�erence

in the normal stresses across the interface is balanced by the surface tension force. The

interface boundary conditions are listed here:

kinematic

�l;y � �j;t � �l;x�j;x = 0 (3.3)

�g;y � �j;t � �g;x�j;x = 0 (3.4)

dynamic

1

2
� 1

2
�U2 + ��g;t � �l;t +

1

2
�(�2

g;x
+ �2

g;y
)

�1

2
(�2

l;x
+ �2

l;y
) =

(�1)j�j;xx
We(1 + �2

j;x
)3=2

(3.5)

In the above equations, the dimensionless Weber number (We), velocity ratio (U), and



Nonlinear Instability Formulation 18

density ratio (�) are de�ned as:

We =
�`U

2
`
a�

�
; U =

Ug

U`

; � =
�g

�`
(3.6)

and the subscript t refers to the partial derivative with respect to time. Since the gov-

erning equations are second-order in both x and y, four constants (unknowns) need to be

evaluated. The two kinematic boundary conditions will be suÆcient to evaluate the two

constants. But the boundary conditions in x are not speci�ed explicitly, but are given in

terms of two unknowns: one in terms of wavenumber, denoted by k which is related to

wavelength by k = 2�=�; and the other as wave growth rate, denoted by !, are introduced

in the solution process, as discussed later. Therefore, one of the constants is replaced by

k and the value of ! is obtained from the coupling e�ect of the two phases given in the

dynamic boundary condition.

The surface deformations �j must satisfy the governing equations and the associated

boundary conditions given above. In order to obtain a solution for �j, regular perturbation

theory is utilized with the initial disturbance amplitude �0 as the perturbation parameter.

By means of series expansion method under the perturbation scheme, the surface defor-

mations or the location of the two liquid-gas interfaces are expanded in power series of �0

as:

�j(x; t) =

1X
n=1

�n0 �j;n(x; t) (3.7)

The term �00 is neglected from the expansion since it corresponds to the unperturbed

interfaces, which are known. Assuming that �j;n and all its derivatives are of the same

order of magnitude, the forms of the kinematic boundary conditions suggest that the

velocity potentials for the liquid and the gas phases can also be expanded in power series

of �0 as:

�l(x; y; t) =

1X
n=0

�n0�l;n(x; y; t) (3.8)

�g(x; y; t) =

1X
n=0

�n0�g;n(x; y; t) (3.9)
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where �l;0 = x and �g;0 = Ux represent the base ow �eld. Since the governing equations,

Eqs (3.1) and (3.2), are linear, by applying the principle of superposition, each of the �l;n

and �g;n must satisfy the governing equations independently. The corresponding boundary

conditions are obtained by substituting Eqs. (3.7)-(3.9) into Eqs. (3.3)-(3.5), and equating

to zero the successive coeÆcients of the same power of �n0 . Under such a scheme, the

velocity potentials need to be evaluated at the disturbed interfaces which are part of the

solution and not known a priori. In order to overcome this diÆculty, �l;n and �g;n are

approximated by a Taylor series expansion around the unperturbed interfaces, y = �1; 1,
as:

�jy=(�1)j+1+�j = �jy=(�1)j+1 + �j�yjy=(�1)j+1 +
�2
j

2!
�yyjy=(�1)j+1

+
�3
j

3!
�yyy jy=(�1)j+1 + � � � (3.10)

where �j is given in Eq. (3.7). Thus the governing equations and the corresponding bound-

ary conditions, which are evaluated at y = �1; 1, for the �rst three orders are obtained

and are given below:

�0 (or the �rst-order) :

�l;1;xx + �l;1;yy = 0 for �1 6 y 6 +1 (3.11)

�g;1;xx + �g;1;yy = 0 for +1 6 y < +1, �1 < y 6 �1 (3.12)

�l;1;y � �j;1;t � �j;1;x = 0 (3.13)

�g;1;y � �j;1;t � U�j;1;x = 0 (3.14)

��g;1;t � �l;1;t + �U�g;1;x � �l;1;x � (�1)j
We

�j;1;xx = 0 (3.15)

�20 (or the second-order):

�l;2;xx + �l;2;yy = 0 for �1 6 y 6 +1 (3.16)

�g;2;xx + �g;2;yy = 0 for +1 6 y < +1, �1 < y 6 �1 (3.17)
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�l;2;y � �j;2;t � �j;2;x = �j;1;x�l;1;x � �j;1�l;1;yy (3.18)

�g;2;y � �j;2;t � U�j;2;x = �j;1;x�g;1;x � �j;1�g;1;yy (3.19)

��g;2;t � �l;2;t + �U�g;2;x � �l;2;x � (�1)j �j;2;xx
We

= ��[�j;1;t�g;1;y

+�j;1�g;1;yt] + [�j;1;t�l;1;y + �j;1�l;1;yt]� 1

2
�[�2

g;1;x + �2
g;1;y

+2U(�j;1;x�g;1;y + �j;1�g;1;xy)] +
1

2
[�2

l;1;x+ �2
l;1;y

+2(�j;1;x�l;1;y + �j;1�l;1;yx)] (3.20)

�30 (or the third-order):

�l;3;xx + �l;3;yy = 0 for �1 6 y 6 +1 (3.21)

�g;3;xx + �g;3;yy = 0 for +1 6 y < +1, �1 < y 6 �1 (3.22)

�l;3;y � �j;3;t � �j;3;x = ��j;1�l;2;yy � �j;2�l;1;yy � 1

2
�2
j;1�l;1;yyy

+�j;1;x�l;2;x + �j;2;x�l;1;x + �j;1;x�j;1�l;1;xy (3.23)

�g;3;y � �j;3;t � U�j;3;x = ��j;1�g;2;yy � �j;2�g;1;yy � 1

2
�2
j;1�g;1;yyy

+�j;1;x�g;2;x + �j;2;x�g;1;x + �j;1;x�j;1�g;1;xy (3.24)

��g;3;t � �l;3;t + �U�g;3;x � �l;3;x � (�1)j �j;3;xx
We

= ��[�j;1;t�g;2;y

+�j;1�g;2;yt + �j;2;t�g;1;y + �j;2�g;1;yt + �j;1�j;1;t�g;1;yy +
1

2
�2
j;1�g;1;yyt]

+[�j;1;t�l;2;y + �j;1�l;2;y;t + �j;2;t�l;1;y + �j;2�l;1;yt + �j;1�j;1;t�l;1;yy

+
1

2
�2
j;1�l;1;yyt]�

1

2
�[2U(�j;1;x�g;2;y + �j;1�g;2;xy + �j;2;x�g;1;y

+�j;2�g;1;xy + �j;1�j;1;x�g;1;yy +
1

2
�2
j;1�g;1;xyy) + 2�g;1;x(�g;2;x

+�j;1;x�g;1;y + �j;1�g;1;xy) + 2�g;1;y(�g;2;y + �j;1;y�g;1;y + �j;1�g;1;yy)]

+
1

2
[2�l;1;x(�l;2;x + �j;1;x�l;1;y + �j;1�l;1;yx) + 2(�j;1;x�l;2;y + �j;1�l;2;yx

+�j;2;x�l;1;y + �j;2�l;1;yx + �j;1�j;1;x�l;1;yy +
1

2
�2
j;1�l;1;yyx)

+2�1;y(�l;2;y + �j;1;y�l;1;y + �j;1�l;1;yy)]� 3(�1)j
2We

�j;1;xx�
2
j;1;x (3.25)

The boundary conditions become linear for each order of the approximation, and the

nonlinear terms present from the second-order onward are known as part of solutions from
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the previous order. Therefore, successively higher orders of solutions can be obtained,

which provide successively more accurate solution to the nonlinear problem. In princi-

ple, a nonlinear analysis can be carried out up to the in�nite order, however, as pointed

out earlier, solutions up to the �rst three orders are suÆciently accurate to quantify the

breakup characteristics of the liquid sheet. Consequently, the present study will focus on

the �rst three-order solutions and the subsequent chapters provide solutions for the surface

deformation under di�erent imposed disturbances at the two liquid-gas interfaces.



Chapter 4

Nonlinear Analysis for Sinuous Mode

In order to solve for the perturbed interfaces at each order satisfying the governing equa-

tions and the associated boundary conditions, an initial condition needs to be speci�ed

as the interfaces are evolving with time. The initial condition can be in terms of surface

deformation, initial velocity, pressure or some combinations of the two. However, for the

sake of simplicity, in this study the initial condition is based on the surface deformation at

the interfaces. Again, the surface deformation can be in form a sinuous mode or a varicose

mode or some combinations of these two modes. As discussed earlier, both the sinuous and

the varicose modes have important e�ects on the liquid sheet instability [27, 29]. Therefore,

as a �rst step, the surface deformation due to an initial sinuous disturbance is considered

here. Once the nonlinear breakup characteristics of the liquid sheet subjected to an initial

sinuous disturbance are fully understood, further liquid sheet breakup process for other

modes will be considered.

4.1 Solution

The surface deformation is assumed to be due to an initial sinusoidal surface wave with

the constant amplitude �0 and wavenumber k. Figure 3.1 shows such imposed disturbance

at the two liquid-gas interfaces. Any disturbance can be decomposed into sine and cosine

functions by Fourier series, therefore, the �rst-order surface deformation can be written in

22



Sinuous Mode 23

the following form:

�j;1(x; t) = A1;s cosh(!1;st) cos(�1;st+ kx) (4.1)

where !1;s and �1;s are the growth rate and the angular frequency, and A1;s is the amplitude

of the sinuous disturbance, normalized by the initial disturbance amplitude �0 as shown in

Eq. (3.7). The surface deformation is subjected to the following initial conditions:

�j;1(x; 0) = cos(kx); and �j;1;t(x; 0) = ��1;s sin(kx) (4.2)

Substitution of the surface deformation, given in Eq. (4.1), into Eqs. (3.13)-(3.15) and

subject to Eq. (4.2) yields the following results:

�1;s = ��Uk + k tanh(k)

�+ tanh(k)
(4.3)

!1;s =
k[�(1� U)2 tanh(k)� k

We
f�+ tanh(k)g]1=2

�+ tanh(k)
(4.4)

�1;1 = �2;1 (4.5)

A1;s = 1 (4.6)

�l;1 =
sinh(ky)

k cosh(k)

�
!1;s sinh(!1;st) cos(�1;st+ kx)

�(�1;st+ kx) cosh(!1;st) sin(�1;st+ kx)
�

(4.7)

�g;1 =
(�1)j
k

�
!1;s sinh(!1;st) cos(�1;st+ kx)

�(�1;s + Uk) cosh(!1;st) sin(�1;st+ kx)
�
efk+(�1)

j
kyg (4.8)

The solution obtained for the �rst-order is similar to the result obtained from the linear

instability theory [11]. This is due to the fact that at the �rst order, we are solving for the

linearized form of the governing equations and the associated boundary conditions which

in essence is the linear instability analysis. Eq. (4.5) shows that the two interfaces, upper

(j = 1) and lower (j = 2), move parallel to each other and hence it represents a sinuous

mode.

Some important observations can be made in relation to Eq. (4.4). For a given value

of U; � and We, if the wavenumber k is such that it makes �(1 � U)2 tanh(k) � [� +



Sinuous Mode 24

tanh(k)]k=We > 0, then such surface waves will grow. On the other hand, for �(1 �
U)2 tanh(k) � [� + tanh(k)]k=We < 0, the surface waves will oscillate without decay.

Such oscillation of the surface wave without decay occurs due to the inviscid assumption,

the viscous e�ects tend to stabilize short-wavelength (large wavenumber) disturbances

resulting in the decay of the amplitude of oscillation [10]. Therefore, there exists a cut-o�

wavenumber kc which divides the wide spectrum of available disturbance wavenumbers

into two distinct region of stable (k > kc) and unstable (k < kc) waves. For a given ow

condition, the value of kc is obtained by setting !1;s = 0 in Eq. (4.4). Within the unstable

region, the wavenumber for which the growth rate (!1;s) is maximum is referred to as

the dominant wavenumber. Therefore, for any disturbance, typically consisting of a wide

range of wavenumbers, one can assume that the characteristic wavenumber which has the

maximum potential for growth is the dominant wavenumber.

Since the �rst-order solution is now known, we can proceed further to solve the second-

order surface deformation satisfying the governing equations, Eqs. (3.16)-(3.17), and the

associated boundary conditions, Eqs. (3.18)-(3.20). Careful observation of the equations

for the boundary conditions suggests that the nonlinear terms present in the left hand side

of the equations are already known as a part of the solution from the �rst-order. Therefore,

only the second-order terms need to be solved in order to obtain the desired second-order

surface deformation. As mentioned earlier, the second-order surface deformation can also

be resolved into sine and cosine terms, and hence can be written in the following form:

�j;2(x; t) = P2;s(t) cos(2kx)�Q2;s(t) sin(2kx) (4.9)

where P2;s and Q2;s are time dependent terms which are obtained by solving the second-

order governing equations and the associated boundary conditions. For the �rst-order, a

more compact and easily predictable form of the surface deformation was assumed. Due to

the presence of the nonlinear terms in the boundary conditions for the second-order, it is

diÆcult to assume a precise form of the surface deformation, and this makes the solution

procedure for subsequent higher orders more diÆcult. It is also assumed that there are no

initial displacement and velocity for the second-order surface deformation, which can be

written as,

�j;2(x; 0) = 0; and �j;2;t(x; 0) = 0 (4.10)
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Substitution of Eq. (4.9) into the kinematic boundary conditions, Eqs. (3.18)-(3.19),

along with the known �rst-order solutions, suggests the following form for the liquid and

the gas velocity potentials:

�l;2 = fl2;s(y)[
�
P2;s;t � 2kQ2;s +Kl2;s(t)

	
cos(2kx)

+
��Q2;s;t � 2kP2;s + Ll2;s(t)

	
sin(2kx)

�
+Al2;s(t) (4.11)

�g;2 = fg2;s(y)
��
P2;s;t � 2kUQ2;s +Kg2;s(t)

	
cos(2kx)

+
��Q2;s;t � 2kUP2;s + Lg2;s(t)

	
sin(2kx)

�
+Ag2;s(t) (4.12)

The unknown functions of y are obtained by substituting the above velocity potentials into

the governing equations, Eqs. (3.16)-(3.17), and the velocity potentials take the following

form:

�l;2 =
cosh(2ky)

2k sinh(2k)

��
P2;s;t � 2kQ2;s +Kl2;s(t)

	
cos(2kx)

+
��Q2;s;t � 2kP2;s + Ll2;s(t)

	
sin(2kx)

�
+Al2;s(t) (4.13)

�g;2 = � e�2ky

2ke�2k
��
P2;s;t � 2kUQ2;s +Kg2;s(t)

	
cos(2kx)

+
��Q2;s;t � 2kUP2;s + Lg2;s(t)

	
sin(2kx)

�
+Ag2;s(t) for y > 1 (4.14)

=
e2ky

2ke�2k
��
P2;s;t � 2kUQ2;s �Kg2;s(t)

	
cos(2kx)

+
��Q2;s;t � 2kUP2;s � Lg2;s(t)

	
sin(2kx)

�
+Ag2;s(t) for y 6 �1 (4.15)

Substitution of the velocity potentials into the dynamic boundary condition, Eq. (3.20),

and the initial conditions, Eq. (4.10), and then collecting terms with suÆxes cos(2kx) and

sin(2kx), yields the above time dependent terms. After considerable amount of simpli�ca-

tion, the following solutions for the second-order are obtained :

�2;s = ��U(2k) + (2k) coth(2k)

�+ coth(2k)
(4.16)

!2;s =
(2k)[�(1 � U)2 coth(2k)� 2k

We
f�+ coth(2k)g]1=2

�+ coth(2k)
(4.17)

�j;2(x; t) = (�1)j+1�A2;s cosh(!2;st) cos(�2;st+ 2kx) +B2;s cosh(2!1;st)

� cos(2�1;st+ 2kx) + C2;s cos(2�1;st+ 2kx)
�

(4.18)
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where !2;s is the growth rate and �2;s is the corresponding angular frequency for the second-

order; and the constants, A2;s; B2;s and C2;s, are provided in Appendix A.1. Important

observations that can be made regarding the second-order solutions are as follows:

(1) The second-order surface deformation, �j;2 given in Eq. (4.18), has the same magni-

tude for the upper (j = 1) and the lower (j = 2) interfaces, but opposite in sign.

This, along with the forms of Eqs. (4.16)-(4.17), suggest that the second-order surface

deformation is varicose in nature.

(2) The second-order surface deformation is due to two components of instability: the

feed-back from the fundamental represented by 2!1;s and the inherent instability

from the �rst harmonic represented by !2;s when the dimensionless wavenumber 2k

is such that �(1 � U)2 coth(2k)� [�+ coth(2k)](2k)=We > 0.

However, it should be pointed out that the nonlinear breakup of circular jets in the Rayleigh

breakup regime [86] shows that both the fundamental and the �rst harmonic are varicose

in nature and also the liquid mass is not conserved, which is not the case for the breakup

of plane liquid sheets, as shown by Jazayeri & Li [25].

Following the same path as the second-order solution, the third-order surface deforma-

tion can be written as:

�j;3(x; t) = P3;s(t) cos(3kx)�Q3;s(t) sin(3kx) (4.19)

where P3;s and Q3;s are time dependent terms obtained from the third-order governing

equations, Eqs. (3.21)-(3.22), and the associated boundary conditions, Eqs. (3.23)-(3.25).

The initial conditions remain same as before, which can be written as:

�j;3(x; 0) = 0; and �j;3;t(x; 0) = 0 (4.20)

Substitution of Eq. (4.19) into the kinematic boundary conditions indicates that the ve-

locity potentials for the liquid and the gas phases can be written as:

�l;3 = fl33(y)
��
P3;s;t � 3kQ3;s +Kl3;s(t)

	
cos(3kx) + f�Q3;s;t � 3kP3;s + Ll3;s(t)

	
� sin(3kx)

�
+ fl31

�
Gl1;s(t) cos(kx) +Hl1;s(t) sin(kx)

�
+Bl3;s(t) (4.21)

�g;3 = fg33(y)
��
P3;s;t � 3kUQ3;s +Kg3;s(t)

	
cos(3kx) +

��Q3;s;t � 3kUP3;s + Lg3;s(t)
	

� sin(3kx)
�
+ fg31

�
Gg1;s(t) cos(kx) +Hg1;s(t) sin(kx)

�
+Bg3;s(t) (4.22)
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By substituting the above velocity potentials into the governing equations, Eqs. (3.21)-

(3.22), the y dependence of the potentials can be obtained as:

�l;3 =
sinh(3ky)

3k cosh(3k)

��
P3;s;t � 3kQ3;s +Kl3;s(t)

	
cos(3kx) +

� �Q3;s;t � 3kP3;s + Ll3;s(t)
	

� sin(3kx)
�
+

sinh(ky)

k cosh(k)

�
Gl1;s(t) cos(kx) +Hl1;s(t) sin(kx)

�
+Bl3;s(t) (4.23)

�g;3 = � e�3ky

3ke�3k

��
P3;s;t � 3kUQ3;s +Kg3;s(t)

	
cos(3kx) +

� �Q3;s;t � 3kUP3;s + Lg3;s(t)
	

� sin(3kx)
�� e�ky

ke�k

�
Gg1;s(t) cos(kx) +Hg1;s(t) sin(kx)

�
+Bg3;s(t) for y > 1(4.24)

=
e3ky

3ke�3k
��
P3;s;t � 3kUQ3;s �Kg3;s(t)

	
cos(3kx) +

��Q3;s;t � 3kUP3;s � Lg3;s(t)
	

sin(3kx)
�
+

e�ky

ke�k

�
Gg1;s(t) cos(kx) +Hg1;s(t) sin(kx)

�
+Bg3;s(t) for y 6 �1(4.25)

Finally, by substituting the velocity potentials into the dynamic boundary condition,

Eq. (3.25), along with the initial conditions, Eq. (4.20), the third-order solutions are ob-

tained, which can be written as:

�3;s = ��U(3k) + (3k) tanh(3k)

� + tanh(3k)
(4.26)

!3;s =
(3k)[�(1� U)2 tanh(3k) � 3k

We
f�+ tanh(3k)g]1=2

�+ tanh(3k)
(4.27)

�j;3(x; t) = A3;s cosh(!3;st) cos(�3;st+ 3kx) +B3;s cosh(!1;st+ !2;st)

� cos(�1;st+ �2;st+ 3kx) + C3;s cosh(!2;st� !1;st)

� cos(�1;st+ �2;st+ 3kx) +D3;s cosh(3!1;st) cos(3�1;st+ 3kx)

+E3;s cosh(!1;st) cos(3�1;st+ 3kx) (4.28)

where !3;s is the growth rate and �3;s is the corresponding angular frequency for the third-

order; and the constants, A3;s; � � �E3;s, are provided in the Appendix A.2.

The third-order solutions also provide important information which is listed below:

(1) The third-order surface deformation �j;3, given in Eq. (4.28), is same for both the

interfaces and hence it is sinuous in nature, compared to the second-order varicose

surface-deformation.
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(2) Similar to the second-order deformation, the growth of the interfaces is due to the

energy feedback from the fundamental, represented by the terms involving !1;s, and

the �rst harmonic, !2;s; and due to the inherent instability of the second harmonic for

wavenumbers 3k satisfying the relation: �(1�U)2 tanh(3k)�[�+tanh(3k)](3k)=We >

0.

(3) The energy transfer mechanism from the �rst harmonic and the fundamental is quite

complicated for the third-order due to the presence of coupling terms involving !1;s

and !2;s.

Hence, the location of the two liquid-gas interfaces for an imposed sinuous disturbance, up

to the third-order, can be written as:

�j(x; t) = �0�j;1(x; t) + �20�j;2(x; t) + �30�j;3(x; t) (4.29)

where the expressions for �j;1; �j;2 and �j;3 are provided in Eqs. (4.1), (4.18) and (4.28),

respectively. The �nal form of the surface deformation appears to be quite complex.

However, it becomes comprehensive when the evolution of the two liquid-gas interfaces are

studied for di�erent ow conditions, as discussed in the next section.

4.2 Results and Discussions

As mentioned earlier, the surface deformation involves the growth rate terms and the

unstable wavenumber k, which is an unknown parameter. Therefore, it is worthwhile

to investigate the growth rates at di�erent orders and the value of k to be used in the

present analysis. A typical �rst-order wave growth curve is shown in Fig. 4.1 for a range

of wavenumbers. The physical parameters used are We = 40; � = 0:001 and U = 4 which

corresponds to a water spray in air at room temperature. The dominant wavenumber is

0:181, which corresponds to the maximum value of !1;s. The cut-o� wavenumber (kc) is

0:359 and therefore, the wavenumbers in the range 0 < k < 0:359 are unstable so far as the

�rst-order wave growth is concerned. Figure 4.2 shows the growth rate curve corresponding

to each order. It is observed that the range of unstable wavenumber decreases progressively

as the order increases. It is also found that at the dominant wavenumber for the �rst-order,
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Figure 4.1: First-order wave growth !1;s as a function of wavenumber k for We = 40; � =

0:001 and U = 4.

i.e.; k = 0:181, the wave growth is maximum. Therefore the dominant wavenumber for

the �rst-order is taken as the characteristic value for k in this study.

In order to study the breakup process of the liquid sheet, the evolution of the two liquid-

gas interfaces at di�erent times is shown in Fig. 4.3. An initial disturbance amplitude of

0:1 is considered, while keeping other physical parameters same as before. It is found that

at the initial time instant, the two interfaces are moving parallel to each other. However, at

a later instant, for e.g.; at t = 120, waviness appears at the interfaces due to the nonlinear

interaction between the three orders. This waviness eventually leads to the breakup of

the liquid sheet when the two interfaces touch each other, as observed for t = 135. The

breakup occurs at half-wavelength interval, which is consistent with the breakup observed

for a liquid sheet imposed with a sinuous disturbance [22, 25]. The result of this analysis

also matches with the work of Jazayeri & Li [25], where the gas phase motion is neglected.

Figure 4.4 shows such surface evolutions for U = 0. It is observed that in the absence of

gas phase motion, the breakup of the liquid sheet occurs at much later time. Therefore, the

inertia of the surrounding gas medium plays an important role in the breakup process of

the liquid sheet. The e�ect of gas phase velocity on the breakup process will be discussed



Sinuous Mode 30

0 0.1 0.2 0.3 0.4
0

0.005

0.01

0.015

0.02

0.025

0.03

Wavenumber (k)

G
ro

w
th

 R
at

e

ω
1,s

ω
2,s

ω
3,s

fundamental 

second 
harmonic 

first harmonic 

Figure 4.2: Growth rate curves for di�erent values of wavenumber k due to an initial

sinuous disturbance. We = 40; � = 0:001 and U = 4.

in more detail later on. Hence it is important to realize that the gas phase velocity can

not be neglected in the air-blast atomization models.

As discussed earlier, the growth rate at each order is related to the fundamental, the �rst

and the second harmonics, respectively. The e�ect of these on the evolution of the interfaces

at the breakup time is shown in Fig. 4.5, which also reveals that each order progressively

contributes towards the entire breakup process of the liquid sheet. Figure 4.5a shows the

surface deformation due to the �rst-order (fundamental) solution only, and as expected,

the two interfaces move parallel to each other without any sign of a sheet breakup. When

the second-order (�rst harmonic) is added with the fundamental, as in the case of Fig. 4.5b,

it is observed that the two interfaces are pulled close to each other and the locations where

the sheet might pinch-o� become distinct. With the addition of the third-order (second

harmonic), as shown in Fig. 4.5c, the breakup of the liquid sheet occurs at half-wavelength

intervals. Therefore, it becomes obvious that the �rst harmonic, which is varicose in nature,

contributes signi�cantly towards the breakup mechanism.

So far, only surface evolutions at di�erent time instants are considered, since they can

be obtained from Eq. (4.29) as outcome of this temporal instability analysis. However, as
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Figure 4.3: Evolution of surface deformation for We = 40; � = 0:001; U = 4; k = 0:181 and

�0 = 0:1 due to an initial sinuous disturbance.
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Figure 4.4: Evolution of surface deformation for We = 40; � = 0:001; k = 0:021; �0 = 0:1

and zero gas phase velocity (U = 0) due to an initial sinuous disturbance.
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Figure 4.5: The e�ect of the fundamental, the �rst and the second harmonic on surface

deformation at the breakup time t = 135 for We = 40; � = 0:001; U = 4; k = 0:181 and

�0 = 0:1 due to an initial sinuous disturbance
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mentioned earlier, the temporal instability results can be readily transformed into spatial

instability results, which give more physical understanding to the problem. Under such

transformation, dimensionless time t is equivalent to the dimensionless spatial distance x.

Figure 4.6 shows such spatial development of the liquid sheet as it is ows past the nozzle

exit for the same set of physical parameters, while varying initial disturbance amplitude �0

from 0:001 to 0:1. It is observed that as the liquid sheet emerges from the nozzle, the two

interfaces move parallel to each other and at suÆcient distance downstream of the nozzle,

the nonlinear e�ects appear which result in the breakup of the liquid sheet. It is also found

that the breakup length decreases as the strength of the initial disturbance amplitude is

increased.

It is important to observe the e�ects of various operating parameters on the breakup

process of the liquid sheet. Figure 4.7 shows the e�ect of velocity ratio U for We = 40; � =

0:001 and �0 = 0:1. The wavenumber used is the dominant wavenumber for each case.

With the increase in gas-to-liquid velocity ratio, the breakup time (or length) decreases

substantially from t = 48:8 at U = 6 to t = 13 at U = 10. At much higher velocity ratio

(U = 10), the two interfaces tend to move parallel with each other and the sheet amplitude

at the breakup locations is quite large compared to the lower gas velocity case, as shown

in Fig. 4.3 for U = 4. However, the breakup locations still remain at half-wavelength

intervals.

The e�ect of the gas-to-liquid density ratio is almost similar to that of gas-to-liquid

velocity ratio. Figure 4.8 shows surface evolution for We = 40; U = 4, �0 = 0:1 and the

wavenumber corresponds to the dominant wavenumber for each value of �. The breakup

time decreases with the increase in the density ratio along with the increase in the sheet

amplitude at the breakup points. The short breakup length causes less amount of liq-

uid bulk available for drop formation which eventually leads to the formation of smaller

droplets. Therefore at high pressure (high density ratio), more e�ective atomization is

possible.

It is to be noted that for all cases discussed so far, the wavenumber corresponds to

the dominant wavenumber is used. However, it may so happen that due to the presence

of an external excitation, the imposed frequency on the liquid sheet does not corresponds

to the dominant wavenumber. Under such circumstances, it is important to observe the
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Figure 4.6: Spatial surface deformation for We = 40; � = 0:001; U = 4 and k = 0:181 due

to an initial sinuous disturbance. (a) �0 = 0:001, (b) 0:01 and (c) 0:1.
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breakup characteristics for wavenumbers other than the dominant one. Figure 4.9 shows

the surface evolution for three di�erent wavenumbers. When k = 0:1, the disturbance is

unstable for all the three orders, as observed from Fig. 4.2. For k = 0:15, the disturbance

is stable for the second harmonic, but unstable for the �rst harmonic and the fundamen-

tal. When k = 0:3, the imposed disturbance is stable for both the �rst and the second

harmonics, but unstable for the fundamental. The characteristics of the breakup process

also change depending upon the wavenumber; and the breakup time increases for short

wavelength (large wavenumber) disturbances. Even though the dominant wavenumber of

0:181 corresponds to the stable �rst and second harmonics and an unstable fundamental,

the breakup characteristics, shown in Fig. 4.3, are di�erent from those observed for k = 0:3

in Fig. 4.9. This is because the wave growth at k = 0:3 is smaller compared to that at

k = 0:181.

4.3 Summary

The breakup process of the liquid sheet subjected to an initial sinuous mode of disturbance

is studied here. Solutions for the surface deformation up to the �rst three orders are

provided. It is found that the �rst-order solution (fundamental) is sinuous, the second-

order (�rst harmonic) is varicose, and the third-order (second harmonic) is again sinuous;

and also each order progressively contributes towards the breakup process of the liquid

sheet. It is observed that the breakup time (or length) decreases with the increase in the

gas-to-liquid velocity ratio, density ratio and the initial disturbance amplitude. It is also

found that the varicose mode appearing in the second-order solution (�rst harmonic) is

mainly responsible for the breakup of the liquid sheet subjected to a sinuous disturbance

(fundamental mode). Therefore, it is imperative to investigate the behavior of the liquid

sheet subject to a fundamental varicose mode of disturbance.
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Figure 4.9: Evolution of surface deformation at di�erent wavenumbers for We = 40; U =

4; � = 0:001 and �0 = 0:1 due to an initial sinuous disturbance.



Chapter 5

Nonlinear Analysis for Varicose

Mode

The nonlinear analysis of the liquid sheet subjected to a sinuous mode of disturbance shows

that the second-order solution is varicose in nature and is responsible for the breakup of

the liquid sheet. Previous nonlinear studies of liquid sheet in a void, by Matsucchi [27] and

Mehring & Sirignano [29], also revealed that the varicose mode plays a signi�cant role in

the breakup process of the liquid sheet. Therefore, in this chapter, attention is focussed on

the study of nonlinear breakup characteristics of the liquid sheet due to an initial varicose

mode of disturbance applied at the two liquid-gas interfaces, which is shown schematically

in Fig. 5.1.

5.1 Solution

The varicose mode in the present analysis has an initial disturbance amplitude of �0 and

the wavenumber k, which is same as that of the sinuous mode used in the previous chapter.

Since the governing equations and the associated boundary conditions for each order remain

the same, the solution procedure is similar to that used for the initial sinuous mode of

disturbance.

Figure 5.1 shows that the behavior of the liquid sheet is identical about the central x

axis, i.e.; y = 0. Therefore, only the solution of the upper interface (j = 1) is required, the

40
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Figure 5.1: Schematic of a plane liquid sheet subjected to a varicose disturbance

lower interface (j = 2) solution follows automatically. In order to implement such strategy,

additional boundary condition in the form of symmetry needs to be imposed at y = 0,

which can be written in terms of the liquid velocity potential as:

�l;1;xy = 0; �l;1;y = 0 (5.1)

�l;2;xy = 0; �l;2;y = 0 (5.2)

�l;3;xy = 0; �l;3;y = 0 (5.3)

Eqs. (5.1)-(5.3) are restating the fact that for each order of approximation, at y = 0, the

normal component of the liquid velocity is zero and the axial component of the velocity is

symmetric.

In order to obtain a solution for the �rst-order, which is the linear instability case, the

surface deformation can be written as:

�1;1(x; t) = A1;v cosh(!1;vt) cos(�1;vt+ kx) (5.4)

and the initial conditions as:

�1;1(x; 0) = cos(kx); and �1;1;t(x; 0) = ��1;v sin(kx) (5.5)



Varicose Mode 42

Substitution of Eq. (5.4) into the governing equations and the associated boundary con-

ditions, Eqs. (3.11)-(3.15), along with the initial conditions and the symmetry condition,

provides the solutions for the �rst-order varicose growth rate, !1;v, the corresponding an-

gular frequency, �1;v, and the amplitude A1;v, which can be written as:

�1;v = ��Uk + k coth(k)

�+ coth(k)
(5.6)

!1;v =
k[�(1� U)2 coth(k)� k

We
f�+ coth(k)g]1=2

� + coth(k)
(5.7)

A1;v = 1 (5.8)

�l;1 = � cosh(ky)

k sinh(k)

�
!1;v sinh(!1;vt) cos(�1;vt+ kx)

�(�1;vt+ kx) cosh(!1;vt) sin(�1;vt+ kx)
�

(5.9)

�g;1 =
(�1)j+1

k

�
!1;v sinh(!1;vt) cos(�1;vt+ kx)

�(�1;v + Uk) cosh(!1;vt) sin(�1;vt+ kx)
�
efk+(�1)

j
kyg (5.10)

Due to the symmetry condition, given in Eq. (5.1), the surface deformation for both the

interfaces is of same magnitude, but opposite in sign, i.e.; �2;1 = ��1;1. Hence the �rst-

order solution (fundamental) is varicose in nature, which is di�erent from the �rst-order

solution for an initial sinuous mode of disturbance. These results are consistent with the

outcomes of the linear instability, discussed earlier [13].

The second-order surface deformation can be written in terms of sine and cosine func-

tions as,

�1;2(x; t) = P2;v(t) cos(2kx)�Q2;v(t) sin(2kx) (5.11)

where P2;v and Q2;v are time dependent terms and the initial conditions are given as,

�1;2(x; 0) = 0; and �1;2;t(x; 0) = 0 (5.12)

Substitution of Eq. (5.11) into the kinematic boundary conditions, Eqs. (3.18) -(3.19),

suggests the form of the velocity potentials for the liquid and the gas phases, similar to

those given in Eqs. (4.11)-(4.12). These velocity potentials need to satisfy the governing
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equations, Eqs. (3.16)-(3.17), and the symmetry condition, Eq. (5.2), and hence these can

be written in terms of P2;v and Q2;v, and their time derivatives in the following form:

�l;2 =
cosh(2ky)

2k sinh(2k)

��
P2;v;t � 2kQ2;v +Kl2;v(t)

	
cos(2kx)

+
��Q2;v;t � 2kP2;v + Ll2;v(t)

	
sin(2kx)

�
+Al2;v(t) (5.13)

�g;2 = � e�2ky

2ke�2k

��
P2;v;t � 2kUQ2;v +Kg2;v(t)

	
cos(2kx)

+
��Q2;v;t � 2kUP2;v + Lg2;v(t)

	
sin(2kx)

�
+Ag2;v(t) for y > 1 (5.14)

The velocity potentials are then substituted back into the dynamic boundary condition,

Eq. (3.20), and the initial conditions, Eq. (5.12), to obtain the unknown time functions.

After considerable amount of mathematical simpli�cations, the surface deformation for the

upper interface can be written as:

�1;2(x; t) = A2;v cosh(!2;vt) cos(�2;vt+ 2kx) +B2;v cosh(2!1;vt) cos(2�1;vt+ 2kx)

+C2;v sinh(2!1;vt) sin(2�1;vt� 2kx) +D2;v cos(2�1;vt+ 2kx) (5.15)

where the constants, A2;v; � � �D2;v, are provided in Appendix B.1; and the second-order

growth rate, !2;v, and its angular frequency, �2;v, are of the following form:

!2;v =
(2k)[�(1� U)2 coth(2k) � 2k

We
f�+ coth(2k)g]1=2

� + coth(2k)
= !2;s (5.16)

�2;v = ��U(2k) + (2k) coth(2k)

�+ coth(2k)
= �2;s (5.17)

As before, the surface deformation for the lower interface is �2;2 = ��1;2. Therefore, the

second-order solution (�rst harmonic) is varicose in nature, which is same as the �rst

harmonic obtained for the breakup of the liquid sheet subjected to an initial sinuous mode

of disturbance. It is also observed that the growth of the �rst harmonic is due to two

e�ects: one is the feedback of energy from the fundamental, and the other is the inherent

instability of the �rst harmonic itself.

Finally, for the third-order solution, the surface deformation for the upper interface can

be written as:

�1;3(x; t) = P3;v(t) cos(3kx)�Q3;v(t) sin(3kx) (5.18)
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along with the initial conditions:

�1;3(x; 0) = 0; and �1;3;t(x; 0) = 0 (5.19)

where P3;v and Q3;v are the time dependent terms need to be solved. The upper in-

terface, given in Eq. (5.18), is substituted back into the kinematic boundary conditions,

Eq. (3.23)-(3.24), which suggests the form for the velocity potentials, similar to those given

in Eqs. (4.21)-(4.22). The velocity potentials for both the phases need to satisfy the gov-

erning equations, Eqs. (3.21)- (3.22), and the symmetry condition, Eq. (5.3), and therefore

can be written in the following form:

�l;3 =
cosh(3ky)

3k sinh(3k)

��
P3;v;t � 3kQ3;v +Kl3;v(t)

	
cos(3kx) + f�Q3;v;t � 3kP3;v + Ll3;v(t)

	
� sin(3kx)

�
+

cosh(ky)

k sinh(k)

�
Gl1;v(t) cos(kx) +Hl1;v(t) sin(kx)

�
+Bl3;v(t) (5.20)

�g;3 = � e�3ky

3ke�3k

��
P3;v;t � 3kUQ3;v +Kg3;v(t)

	
cos(3kx) +

��Q3;v;t � 3kUP3;v + Lg3;v(t)
	

� sin(3kx)
�� e�ky

ke�k

�
Gg1;v(t) cos(kx) +Hg1;v(t) sin(kx)

�
+Bg3;v(t) for y > 1(5.21)

The velocity potentials are then substituted back into the dynamic boundary condition,

Eq. (3.25), and the initial conditions, Eq. (5.19), to obtain the unknowns P3;v and Q3;v.

After a considerable amount of tedious mathematical simpli�cation, the �nal form of the

third-order surface deformation for the upper interface can be written as:

�1;3 = A3;v cosh(!3;vt) cos(�3;vt+ 3kx) +B3;v cosh(!1;vt+ !2;vt) cos(�1;vt+ �2;vt+ 3kx)

+C3;v sinh(!1;vt+ !2;vt) sin(�1;vt+ �2;vt� 3kx) +D3;v cosh(3!1;vt)

� cos(�1;vt+ 3kx) + E3;v sinh(3!1;vt) sin(�1;vt� 3kx)

+F3;v cosh(!1;vt) cos(3�1;vt+ 3kx) +G3;v sinh(!1;vt) sin(3�1;vt� 3kx) (5.22)

where the constants, A3;v; � � �G3;v, are given in Appendix B.2; and the third-order growth

rate, !3;v, and the corresponding angular frequency, �3;v, can be written as:

!3;v =
(3k)[�(1 � U)2 coth(3k) � 3k

We
f�+ coth(3k)g]1=2

� + coth(3k)
(5.23)

�3;v = ��U(3k) + (3k) coth(3k)

�+ coth(3k)
(5.24)
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The surface deformation for the lower interface, (j = 2), is same as the upper interface,

(j = 1), but opposite in sign, i.e.; �2;3 = ��1;3. The third-order solution (second harmonic)

is varicose in nature, as shown in Eq. (5.23), which is a direct outcome of the symmetry

boundary condition. This second harmonic is di�erent from that obtained for the fun-

damental sinuous mode, which is sinuous in nature, as shown in Eq. (4.27). Therefore,

depending upon the initial disturbance mode, the nature of the higher harmonics will be

di�erent and its inuence on the entire breakup process of the liquid sheet will be signif-

icant. It is also observed that the growth of the second harmonic is due to the complex

mechanism of energy feedback from the fundamental and the �rst harmonic, as suggested

by the terms involving !1;v and !2;v in Eq. (5.22), and also due to the inherent instability

of the second harmonic itself.

Hence the �nal form of the surface deformation up to the �rst three orders for an initial

varicose mode of disturbance can be obtained by using Eq. (4.29), for a given value of

the initial disturbance amplitude �0. The next section shows typical surface evolutions

following Eq. (4.29).

5.2 Results and Discussions

The liquid sheet is subjected to an initial varicose mode of disturbance with a wavenumber

k, which is not known and will be di�erent from that used for the initial sinuous mode.

However, as mentioned earlier, the typical value of k to be used is the dominant wavenumber

for which the growth rate is maximum. Therefore it is important to observe the growth

rate curves for the three di�erent orders, as shown in Fig. 5.2, with We = 40; � = 0:001

and U = 4. It is found that the dominant wavenumber is 0:269 which corresponds to the

maximum growth rate of the fundamental. Even though the three growth curves appear

to have the same maximum growth rate, the fundamental has slightly higher growth rate

compared to the �rst and the second harmonics. Therefore, the value of k corresponding

to the maximumwave growth of the �rst-order (fundamental) will be used in this analysis.

Figure 5.3 shows the surface evolution at di�erent time instants for Weber number of

40, gas-to-liquid density ratio of 0:001, gas-to-liquid velocity ratio of 4, wavenumber of

0:269 and the initial disturbance amplitude of 0:1. It is observed that the two interfaces
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Figure 5.2: Growth rate curves as a function of wavenumber k due to an initial varicose

disturbance for We = 40; � = 0:001 and U = 4.

grow with time, but retain the varicose nature for most of their growth time, for e.g.; up

to t = 300 in this case. Nonlinear e�ects slowly show up at later times and eventually the

sheet breaks up at full-wavelength intervals at t = 417, which is the typical breakup feature

for an initial varicose disturbance [27, 29]. Further, in between the pinch-o� points within

the liquid sheet, possible `satellite' ligament formation is observed, which is not present in

the sheet breakup process for an initial sinuous mode of disturbance. Interesting enough,

the wavy structures within each full-wavelength intervals correspond to the growth rate of

the three orders. The possible bigger ligament formation corresponds to the fundamental

whereas the other two `satellite' ligaments belong to the �rst and the second harmonics.

Therefore, the liquid sheet subjected to a fundamental varicose mode of disturbance shows

breakup characteristics which are quite di�erent from those observed earlier in case of a

fundamental sinuous disturbance.

The e�ect of the fundamental, the �rst and the second harmonics on the surface defor-

mation at the breakup time is shown in Fig. 5.4 for the same set of physical parameters

used earlier. In the presence of the fundamental, as in Fig. 5.4a, the two liquid-gas in-

terfaces move in symmetric manner. With addition of the �rst harmonic, the nonlinear
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Figure 5.3: Evolution of surface deformation for We = 40; � = 0:001; U = 4; k = 0:269 and

�0 = 0:1 due to an initial varicose disturbance.

interaction between the �rst harmonic and the fundamental causes the two interfaces to

come close to each other with the appearance of some waviness, as shown in Fig. 5.4b.

When all the three orders are superimposed, as in Fig. 5.4c, the sheet breakup occurs with

the formation of `satellite' ligaments in between the breakup points. It is also important

to note that the breakup time is increased compared to an initial sinuous disturbance for

the same set of physical parameters, as shown in Fig. 4.3.

As mentioned earlier, one of the key parameter for modeling air-blast atomization is

the relative velocity between the gas and the liquid phases. Figure 5.5 shows the e�ect of

the velocity ratio U on the surface evolution of the two interfaces. At U = 0, i.e.; with no

gas phase velocity, the breakup time is substantially long and also the `satellite' ligaments

in between the full-wavelength intervals are of comparable sizes. However, when the gas

velocity on either side of the sheet is three times the liquid velocity, the breakup time

decreases and the breakup characteristics also changes. The possible ligament formation
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Figure 5.4: The e�ect of the fundamental, the �rst and the second harmonic on surface

deformation at the breakup time t = 417 for We = 40; � = 0:001; U = 4; k = 0:269 and

�0 = 0:1 due to an initial varicose disturbance
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due to the fundamental is bigger than that produced by the �rst and the second harmonics,

which again switches position within the full-wavelength interval for U = 4, as shown earlier

in Fig. 5.4. When U = 6, the high momentum of the gas phase tends to decrease the

breakup time substantially and also the `satellite' ligament formation tends to disappear.

At the same time, with the increase in the gas velocity, the wavelength between the breakup

points decreases, which intuitively tends to produce small droplets.

The e�ect of gas-to-liquid density ratio on the breakup characteristics of the liquid sheet

is shown in Fig. 5.6. The wavenumber corresponding to the dominant wavenumber is used

for each value of �. It is observed that as the density ratio is increased, the breakup time

decreases substantially from t = 197 for � = 0:0015 to t = 6:9 for � = 0:01. It is also found

that the breakup features at density ratios of 0:005 and 0:01 are similar. However, the

breakup locations are still at full-wavelength intervals, which is the breakup characteristics

of the varicose mode.

Instead of using the dominant wavenumber, breakup characteristics of the liquid sheet

are observed for wavenumbers k = 0:1; 0:15 and 0:3, as shown in Fig. 5.7. It is found that

for k = 0:1, which is unstable for all the three orders, the sizes of the possible `satellite'

ligaments are equal. Similar observation is obtained for k = 0:15, which is stable for the

second harmonic but unstable for the �rst harmonic and the fundamental. The formation

of `satellite' ligaments tends to disappear for higher wavenumber, for e.g.; at k = 0:3. The

breakup time also increases for the short wavelength (large wavenumber) disturbances.

However, the breakup of the liquid sheet still occurs at full-wavelength intervals.

As discussed earlier, the temporal instability results presented so far can be converted

into their spatial instability counterpart. Under such transformation, the breakup time is

equivalent to the breakup length. Figure 5.8 shows the spatial growth of the liquid sheet for

We = 40; U = 4; � = 0:001; k = 0:269 and di�erent values of initial disturbance amplitude

�0. As expected, the breakup length decreases with the increase in the value of �0. For

small values of �0, the surface waviness is observed only at further downstream section,

whereas the large value of �0 causes the two interfaces to show the varicose mode at much

earlier part of the sheet development.

In practical applications, it is important to know the variation of the breakup length

with di�erent ow parameters and also the e�ect of the type of initial disturbance modes
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Figure 5.5: Evolution of surface deformation at di�erent gas-to-liquid velocity ratios U for

We = 40; � = 0:001 and �0 = 0:1 due to an initial varicose disturbance.
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Figure 5.8: Spatial surface deformation for We = 40; � = 0:001; U = 4 and k = 0:269 due

to an initial varicose disturbance. (a) �0 = 0:001, (b) 0:01 and (c) 0:1.
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on the breakup length of the liquid sheet. Figure 5.9 illustrates the variation of breakup

length due to the initial sinuous and varicose modes as a function of Weber number at

di�erent initial disturbance amplitudes for U = 4 and � = 0:001. For both the modes,

the breakup length �rst decreases rapidly with the increase in We and then it reaches

an asymptotic value for large Weber numbers. This is expected as with the increase in

Weber number, the aerodynamic instability of the liquid sheet increases and therefore, it

results into earlier sheet breakup. It is also observed that for a particular value of �0,

there exist a critical value of Weber number at which the fundamental varicose mode takes

over the breakup process from the fundamental sinuous mode. For e.g.; at �0 = 0:1, the

liquid sheet is found to be unstable for the fundamental sinuous mode up to We = 142.

Thereafter, the breakup process is dominated by the fundamental varicose mode, as it

causes the liquid sheet to breakup earlier than the imposed fundamental sinuous mode.

However, the results of the linear instability (�rst-order) predict that the growth rate of

the sinuous mode of disturbance increases with the increase in Weber number and it is

greater than the growth rate corresponding to the varicose mode of disturbance, as shown

in Fig 5.10 for We = 100 and 200. Therefore, it is believed that the sinuous mode, having

a higher growth rate than the varicose mode, is responsible for the breakup of the liquid

sheet. But the present nonlinear instability analysis shows that under certain operating

conditions, the fundamental varicose mode can dictate the breakup process of the liquid

sheet, even though it has a smaller growth rate than the fundamental sinuous mode. This

is an important outcome of the present nonlinear analysis.

The variation of the breakup length with density ratio is shown in Figure 5.11 for

di�erent values of �0 and for both the initial sinuous and varicose modes. It is observed

that for both the modes, at �rst the breakup length decreases signi�cantly with the increase

in density ratio, but at higher density ratios, the change in the breakup length is very small.

It is also observed that for a given value of �0, there exists a critical value of � beyond

which the breakup is dictated by the fundamental varicose mode rather than the sinuous

counterpart. This is similar to the observation made earlier regarding Weber number and

therefore it shows that the nonlinear e�ect due to an imposed fundamental varicose mode

plays an important role in the breakup mechanism of the liquid sheet and by no means it

can be ignored from the analysis.
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Figure 5.11: Variation of breakup length with gas-to-liquid density ratio for We = 40; U =

4 and di�erent values of �0.

As observed earlier, the gas phase velocity plays an important role in the breakup

process of the liquid sheet. Figure 5.12 shows the variation of the breakup length with

the gas-to-liquid velocity ratio for both the sinuous and the varicose modes and di�erent

values of initial disturbance amplitude. It is found that for both the modes, at �rst the

breakup length decreases rapidly with the increase in the velocity ratio and later it reaches

an asymptotic value for higher gas phase velocity. However, when the breakup length

is plotted as a function of velocity ratio for di�erent values of density ratio, as shown

in Fig. 5.13, it is also observed that there exists a critical value of U beyond which the

breakup time due to the fundamental varicose mode is shorter than the fundamental sinuous

mode. This again emphasize the fact that the fundamental varicose mode indeed plays an

important role in the breakup of plane liquid sheets.
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Figure 5.12: Variation of breakup length with gas-to-liquid velocity ratio for We = 40; � =

0:001 and di�erent values of �0.
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5.3 Summary

The breakup process of a plane liquid sheet subjected to an initial varicose mode of distur-

bance is studied here. It is found that the sheet breakup occurs at full-wavelength intervals

compared to the half-wavelength intervals for an initial sinuous mode of disturbance and the

possible formation of `satellite' ligaments appears between the breakup points. In general,

the breakup length (or time) decreases with the increase in Weber number, velocity and

density ratios, and initial disturbance amplitude. This nonlinear analysis also shows that

under certain ow conditions, the breakup process of the liquid sheet can be dictated by

the fundamental varicose mode instead of the fundamental sinuous mode. This is contrary

to the outcome of linear instability analysis which predicts that the sinuous mode, having

a higher growth rate, always dominates the varicose mode. Therefore, both the sinuous

and the varicose modes produce di�erent characteristics during the breakup process of the

liquid sheet. Hence, it is important to consider the combined e�ect of both the modes of

disturbance in order to understand the entire breakup mechanism of the liquid sheet.



Chapter 6

Nonlinear Analysis for Combined

Mode

The previous analysis of the liquid sheet subjected to an initial varicose mode of disturbance

indicates that the liquid sheet breaks up at full-wavelength interval in contrast to the

half-wavelength interval for an initial sinuous disturbance. Also, under certain operating

conditions, the breakup process is dictated by the fundamental varicose mode rather than

its sinuous counterpart. In reality, both the fundamental sinuous and varicose modes are

unstable, and they grow simultaneously. Hence it is worthwhile to investigate the breakup

process of plane liquid sheets under the combined inuence of both the sinuous and the

varicose modes (combined mode).

6.1 Solution

Figure 6.1 shows a schematic diagram of a plane liquid sheet subjected to the combined

sinuous and varicose modes of disturbance with a phase angle � between the two modes.

The governing equations and the associated boundary conditions remain the same, as

discussed in Chapter 3.

The initial condition for the �rst-order surface deformation takes into account that the

two liquid-gas interfaces are initially under the combined inuence of the sinuous and the
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Figure 6.1: Schematic of plane liquid sheet subjected to a combined mode of disturbance.

varicose modes of disturbance. Therefore, the initial condition can be expressed as:

�j;1(x; 0) = �s cos(kx) + (�1)j+1�v cos(kx+ �) (6.1)

where �s and �v are the weighting factors denoting an initial sinuous mode for �s = 1 and

�v = 0, and an initial varicose mode for �s = 0 and �v = 1; k is the wavenumber of the

combined mode. Seeking a wave form solution for the governing equations, Eqs. (3.11)-

(3.12), the boundary conditions, Eqs. (3.13)-(3.15), and the initial condition stated in

Eq. (6.1), the �rst-order solutions are as follows:

�j;1(x; t) = �s cosh(!1;st) cos(�1;st+ kx) + (�1)j+1�v cosh(!1;vt)
� cos(�1;vt+ kx+ �) (6.2)

�l;1 =
sinh(ky)

k cosh(k)

�
�s!1;s sinh(!1;st) cos(�1;st+ kx)� �s(�1;s + k) cosh(!1;st)

� sin(�1;st+ kx)
�� cosh(ky)

k sinh(k)

�
�v!1;v sinh(!1;vt) cos(�1;vt+ kx)

��v(�1;v + k) cosh(!1;vt) sin(�1;vt+ kx+ �)
�

(6.3)
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�g;1 = (�1)j e
(�1)jky

ke�k

��
�s!1;s sinh(!1;st) cos(�1;st+ kx)� �s(�1;s + Uk) cosh(!1;st)

� sin(�1;st+ kx)
	� ��v!1;v sinh(!1;vt) cos(�1;vt+ kx)� �v(�1;v + Uk)

� cosh(!1;vt) sin(�1;vt+ kx+ �)
	�

(6.4)

Here, !1;s and !1;v represent the �rst-order growth rates for the sinuous and the varicose

modes, respectively; and �1;s and �2;s are the corresponding �rst-order angular frequencies.

The explicit forms of these parameters are already stated in Eqs. (4.3)-(4.4) and (5.6)-

(5.7), respectively. It is observed that the �rst-order or linear instability solutions for the

combined mode of disturbance are linear superposition of the solutions obtained for the

individual initial sinuous and varicose modes.

To obtain the second-order solution, the surface deformation for this order can be

written as:

�j;2(x; t) = P2;c(t) cos(2kx)�Q2;c(t) sin(2kx) (6.5)

along with the initial conditions:

�j;2(x; 0) = 0 and �j;2;t(x; 0) = 0 (6.6)

where P2;c and Q2;c are time dependent terms to be solved. By substituting Eq. (6.5) into

the kinematic boundary conditions, Eqs. (3.18)-(3.19), along with the �rst-order solutions,

suggests the following form for the velocity potentials:

�l;2 = fl2;c(y)[
�
P2;c;t � 2kQ2;s +Kl2;c(t)

	
cos(2kx)

+
��Q2;c;t � 2kP2;c + Ll2;c(t)

	
sin(2kx)

�
+Al2;c(t) (6.7)

�g;2 = fg2;c(y)
��
P2;c;t � 2kUQ2;c +Kg2;c(t)

	
cos(2kx)

+
��Q2;c;t � 2kUP2;c + Lg2;c(t)

	
sin(2kx)

�
+Ag2;c(t) (6.8)

where the unknown functions of y are determined by substituting the above form of the

velocity potentials into the governing equations, Eqs. (3.16)-(3.17). Therefore, the liquid
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and the gas velocity potentials are obtained in the following form:

�l;2 =
cosh(2ky)

2k sinh(2k)

��
P2;c;t � 2kQ2;c +Kl2;c(t)

	
cos(2kx)

+
� �Q2;c;t � 2kP2;c + Ll2;c(t)

	
sin(2kx)

�
+Al2;c(t) (6.9)

�g;2 = � e�2ky

2ke�2k

��
P2;c;t � 2kUQ2;c +Kg2;c(t)

	
cos(2kx)

+
� �Q2;c;t � 2kUP2;c + Lg2;c(t)

	
sin(2kx)

�
+Ag2;c(t) for y > 1 (6.10)

=
e2ky

2ke�2k
��
P2;c;t � 2kUQ2;c �Kg2;c(t)

	
cos(2kx)

+
� �Q2;c;t � 2kUP2;c � Lg2;c(t)

	
sin(2kx)

�
+Ag2;c(t) for y 6 �1 (6.11)

Substitution of the above velocity potentials into the dynamic boundary condition,

Eq. (3.20), and the initial conditions, Eq. (6.6), yields the time dependent terms. After a

considerable amount of mathematical simpli�cation, the following solution for the second-

order surface deformation is obtained:

�j;2(x; t) = (�1)j+1�A2;c cosh(!2;ct) cos(2�2;ct+ 2kx) +B2;c cosh[(!1;s + !1;v)t]

� cos(�1;st+ �1;vt+ � + 2kx) + C2;c cosh[(!1;s � !1;v)t]

� cos(�1;st+ �1;vt+ � + 2kx) +D2;c cosh(2!1;vt) cos(2�1;vt+ 2� + 2kx)

+E2;c sinh(2!1;vt) sin(2�1;vt+ 2� � 2kx) + F2;c cosh(2!1;st) cos(2�1;st+ 2kx)

+G2;c cos(2�1;vt+ 2� + 2kx) +H2;c cos(2�1;st+ 2kx)
�

(6.12)

where !2;c = !2;s = !2;v is the growth rate and �2;c = �2;s = �2;v is the corresponding

angular frequency for the second-order; and the constants, A2;c; � � �H2;c, are provided in

Appendix C.1. Important observations for the second-order solution are as follows:

(1) The second-order growth rate for the combined mode is varicose in nature and it is

same as that obtained for an initial sinuous and varicose modes of disturbance.

(2) The constants, B2;c and C2;c, involve terms containing �s�v, which suggests a coupling

e�ect between the sinuous and the varicose modes.

(3) The growth of the second-order (�rst harmonic) is due to the feedback of energy from

the fundamental sinuous and varicose modes, and the inherent instability of the �rst

harmonic of the combined mode.
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In order to obtain the third-order surface deformation solution for the combined mode,

diÆculties are encountered since the third-order growth rates for the individual sinuous

and varicose modes are di�erent, as stated in Eqs. (4.27) and (5.23). This is not the

case for the second-order, as the growth rates for both the modes are varicose in nature.

Therefore, in order to overcome such diÆculties, the third-order surface deformation needs

to be expressed in the following form:

�j;3(x; t) = P3;c;s(t) cos(3kx) �Q3;c;s(t) sin(3kx)

+(�1)j+1�P3;c;v(t) cos(3kx)�Q3;c;v(t) sin(3kx)
�

(6.13)

It is to be noted that by assuming such form of the surface deformation, the sinuous and

the varicose modes are not decoupled. During the process of the solution, it will be shown

that the time dependent quantities, P3;c;s; Q3;c;s; P3;c;v and Q3;c;v, involve terms containing

�2
s
�v and �s�

2
v
and hence, the nonlinear coupling between the two modes is always present.

The initial conditions remain the same as before, and can be expressed as:

�j;3(x; 0) = 0 and �j;3;t(x; 0) = 0 (6.14)

Substituting Eq. (6.13) into the kinematic boundary conditions, Eqs. (3.23)-(3.24), provides

the form for the velocity potentials of the liquid and the gas phases in terms of unknown

functions of y. The unknown functions are obtained by substituting the velocity potentials

into the governing equations, Eqs. (3.21)-(3.22), and the velocity potentials for the liquid

and the gas phases can be expressed as:

�l;3 =
sinh(3ky)

3k cosh(3k)

��
P3;c;s;t � 3kQ3;c;s +Kl3;c;s(t)

	
cos(3kx) +

��Q3;c;s;t � 3kP3;c;s

+Ll3;c;s(t)
	
sin(3kx)

�
+

sinh(ky)

k cosh(k)

�
Gl1;c;s(t) cos(kx) +Hl1;c;s(t) sin(kx)

�
+

cosh(3ky)

3k sinh(3k)

��
P3;c;v;t � 3kQ3;c;v +Kl3;c;v(t)

	
cos(3kx) +

��Q3;c;v;t � 3kP3;c;v

+Ll3;c;v(t)
	
sin(3kx)

�
+

cosh(ky)

k sinh(k)

�
Gl1;c;v cos(kx) +Hl1;c;v sin(kx)

�
+Bl3;c(t) (6.15)
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�g;3 = � e�3ky

3ke�3k

��
P3;c;s;t � 3kUQ3;c;s +Kg3;c;s(t)

	
cos(3kx) +

��Q3;c;s;t � 3kUP3;c;s

+Lg3;c;s(t)
	
sin(3kx)

�� e�ky

ke�k

�
Gg1;c;s(t) cos(kx) +Hg1;c;s(t) sin(kx)

�
� e�3ky

3ke�3k

��
P3;c;v;t � 3kUQ3;c;v +Kg3;c;v(t)

	
cos(3kx) +

��Q3;c;v;t � 3kUP3;c;v

+Lg3;c;v(t)
	
sin(3kx)

�� e�ky

ke�k

�
Gg1;c;v(t) cos(kx)

+Hg1;c;v(t) sin(kx)
�
+Bg3;c(t) for y > 1 (6.16)

=
e3ky

3ke�3k

��
P3;c;s;t � 3kUQ3;c;s �Kg3;c;s(t)

	
cos(3kx) +

��Q3;c;s;t � 3kUP3;c;s

�Lg3;c;s(t)
	
sin(3kx)

�
+

e�ky

ke�k

�
Gg1;c;s(t) cos(kx) +Hg1;c;s(t) sin(kx)

�
+

e3ky

3ke�3k
��
P3;c;v;t � 3kUQ3;c;v �Kg3;c;v(t)

	
cos(3kx) +

��Q3;c;v;t � 3kUP3;c;v

�Lg3;c;v(t)
	
sin(3kx)

�
+

e�ky

ke�k

�
Gg1;c;v(t) cos(kx)

+Hg1;c;v(t) sin(kx)
�
+Bg3;c(t) for y 6 �1 (6.17)

Substitution of the above velocity potentials into the dynamic boundary condition, Eq. (3.25),

and the initial conditions, Eq. (6.14), yields the unknown functions of time. The terms

containing �2
s
�v and �

3
s
are collected together to obtain the solutions for P3;c;s and Q3;c;s; the

terms with �s�
2
v
and �3

v
are grouped together to obtain the solutions for P3;c;v and Q3;c;v. Af-

ter tedious mathematical simpli�cations, the surface deformation for the third-order takes

the following form:

�j;3(x; t) = A3;c;s cosh(!3;st) cos(�3;s + 3kx) +B3;c;s cosh(!1;st+ !2;st)

� cos(�1;st+ �2;st+ � + 3kx) + C3;c;s cosh(!1;st� !2;st) cos(�1;st+ �2;st+ � + 3kx)

+D3;c;s cosh(3!1;st) cos(3�1;st+ 3kx) + E3;c;s cosh(!1;st) cos(3�1;st+ 3kx)

+F3;c;s cosh(2!1;st+ !1;vt) cos(2�1;st+ �1;vt+ 2� + 3kx) +G3;c;s cosh(2!1;st� !1;vt)

� cos(2�1;st+ �1;vt+ 2� + 3kx) + (�1)j+1[A3;c;v cosh(!3;vt) cos(�3;v + 3kx)

+B3;c;v cosh(!1;vt+ !2;vt) cos(�1;vt+ �2t+ � + 3kx) + C3;c;v sinh(!1;vt+ !2t)

� sin(�1;vt+ �2;vt+ � � 3kx) +D3;c;v cosh(3!1;vt) cos(�1;vt+ 3� + 3kx)

+E3;c;v sinh(3!1;vt) sin(�1;vt+ 3� � 3kx) + F3;c;v cosh(!1;vt) cos(3�1;vt+ 3� + 3kx)
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+G3;c;v sinh(!1;vt) sin(3�1;vt+ 3� � 3kx) +H3;c;v cosh(2!1;vt+ !1;st)

� cos(2�1;vt+ �1;st+ 2� + 3kx) + I3;c;v cosh(2!1;vt� !1;st)

� cos(2�1;vt+ �1;st+ 2� + 3kx)] (6.18)

where the constants, A3;c;s; � � � I3;c;v, are provided in Appendix C.2. It is observed that the

growth of the two liquid-gas interfaces is due to the energy feedback from the fundamental

and the �rst harmonic sinuous and varicose modes, and the inherent instability of the sec-

ond harmonic sinuous and varicose modes. It is also found that certain terms in Eq. (6.18)

involve nonlinear coupling between the two modes of disturbance.

6.2 Results and Discussions

Previous analyses show that in order to obtain the breakup of the liquid sheet, higher

order solutions are needed. However, when the two liquid-gas interfaces are subjected to

an initial combined mode of disturbance, the breakup of the liquid sheet can be obtained

by the �rst-order or linear instability solution. The application of the linear theory to

predict the sheet breakup, as studied by Mitra et al. [87, 88], is instructive only because

the breakup phenomena are inherently nonlinear. Therefore, only results for the nonlinear

analysis will be discussed here.

Figure 6.2 shows a typical interface evolution for the liquid sheet subjected to the

combined mode of disturbance. The physical parameters used areWe = 50; � = 0:001; U =

4:0 and �0 = 0:1. The proportions of the initial sinuous and varicose modes are �s = 0:1

and �v = 0:9, respectively and it is assumed that there is no phase di�erence between the

two modes, i.e.; � = 0. Since both the sinuous and the varicose modes are present at the

two liquid-gas interfaces, the characteristic wavenumber can correspond to the dominant

wavenumber of the either modes. As a �rst step, the liquid sheet breakup features are

studied for the wavenumber corresponding to the dominant wavenumber for the sinuous

mode of disturbance. Hence, in Fig. 6.2, k = 0:229(� = 27:4) corresponds to the dominant

wavenumber for the sinuous mode. As the proportion of the varicose mode within the

initial combined mode is large, the two liquid-gas interfaces appear to be in varicose mode

for early times (t = 10). However, the presence of a small proportion of sinuous mode with
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a higher growth rate than the varicose counterpart, slowly tends to override the varicose

mode. Such phenomenon is observed at t = 160 when the two interfaces are moving parallel

to each other and at a constant distant apart. The initial varicose mode, present in large

proportion, also grows with time and makes its presence known by pulling the two interfaces

close together. Eventually, at t = 197, the sheet breaks up at full-wavelength intervals,

which is the characteristic breakup feature for the liquid sheet subjected to the varicose

mode of disturbance only. It is also observed that the breakup time is signi�cantly long

for We = 50, which is consistent with the earlier observation shown in Fig. 5.9. Such long

breakup time also provides the opportunity for both the modes to interact and produce

interesting breakup features, as observed here.

The breakup features change quite signi�cantly at large Weber numbers, for e.g.; at

We = 150, as shown in Fig. 6.3. The other physical parameters remain the same with

the exception of the wavenumber k, which is equal to 0:764(� = 8:2) for We = 150. It is

observed earlier in Fig. 5.9 that at large Weber numbers, the breakup of the liquid sheet

is dictated by the varicose mode rather than the sinuous counterpart. This becomes more

obvious in Fig. 6.3, where the large proportion of the varicose mode signi�cantly reduces

the breakup time to t = 81 compared to t = 197 for We = 50 in Fig. 6.2. It is also

observed that the two interfaces appear to be in varicose mode for most of the time. The

sheet breakup also occur at full-wavelength interval, which is the characteristics of the

varicose mode. This suggests that for small breakup time coupled with large proportion

of the varicose mode, the entire breakup process of the liquid sheet is dominated by the

varicose mode.

More interesting breakup characteristics are observed in Fig. 6.4 where the proportion

of the sinuous and the varicose modes are switched, keeping other parameters the same

as in Fig. 6.3. Here, due to the presence of 90% sinuous mode, the two interfaces remain

at constant distance apart for the majority of time. The sheet thinning starts at about

t = 70 when the varicose mode with small proportion (10%), pulls the two interfaces close

together and eventually the sheet breaks up at full-wavelength interval at t = 76. It is

observed that the large proportion of the sinuous mode tends to cause the sheet thinning

at half-wavelength intervals, which is the characteristic breakup feature due to the sinuous

mode of disturbance only. It is also found that the sheet amplitude at the breakup is almost
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Figure 6.2: Evolution of surface deformation for We = 50; U = 4; � = 0:001; k = 0:229; � =

0; �s = 0:1; �v = 0:9 and �0 = 0:1 due to an initial combined mode of disturbance.
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Figure 6.3: Evolution of surface deformation for We = 150; U = 4; � = 0:001; k =

0:764; � = 0; �s = 0:1; �v = 0:9 and �0 = 0:1 due to an initial combined mode of dis-

turbance.
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Figure 6.4: Evolution of surface deformation for We = 150; U = 4; � = 0:001; k =

0:764; � = 0; �s = 0:9; �v = 0:1 and �0 = 0:1 due to an initial combined mode of dis-

turbance.

double compared to that observed in Fig. 6.2, which clearly reects the higher growth rate

of the large proportion of the sinuous mode. Even though the proportion of varicose mode

is much smaller than the sinuous mode, still the sheet breaks up at full-wavelength interval,

demonstrating the dominance of the varicose mode at large Weber numbers.

However, for relatively small Weber numbers along with large proportion of the sinuous

mode, the breakup features are quite di�erent from that observed in Fig. 6.4. Figure 6.5

shows the surface evolution for We = 50, with other parameters remaining the same as

before. It is observed that due to the presence of 90% sinuous mode, the two interfaces

appear to move parallel to each other for most of the time and eventually the sheet breaks

up at t = 134 due to the nonlinear interactions between the two modes. It is found that the

breakup location occurs at half-wavelength interval, which is the characteristic breakup of

the liquid sheet due to the sinuous mode only. This is consistent with the fact that at small

Weber numbers, the breakup is dominated by the sinuous mode of disturbance. However,

earlier observation of breakup locations at full-wavelength intervals in Fig. 6.2 forWe = 50
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might be due to the presence of the large proportion of the varicose mode in the initial

combined mode of disturbance. Therefore, the operating Weber number along with the

proportions of the two modes play signi�cant roles in the breakup locations of the plane

liquid sheet.

So far, the wavenumber used to obtain the surface evolution is the dominant wavenum-

ber for the sinuous mode of disturbance. As mentioned earlier, the wavenumber can cor-

respond to the dominant wavenumber for the varicose mode. Therefore, in Fig. 6.6, the

breakup characteristics of the liquid sheet are observed for wavenumbers corresponding to

the dominant wavenumber of the varicose mode. In Fig. 6.6a forWe = 50, the breakup time

is long (t = 149) and the interface deformation is di�erent from those observed in Fig. 6.5.

Here, the presence of the dominant wavenumber corresponding to the varicose mode causes

the breakup to occur at full-wavelength interval as opposed to the half-wavelength interval

in Fig. 6.5; the large proportion of the sinuous mode (90%) causes the sheet thinning at

half-wavelength intervals. By switching the strength of the two modes, as in Fig. 6.6b, the

breakup features change quite signi�cantly and also they are di�erent from those observed

for the dominant wavenumber of the sinuous mode in Fig. 6.2. However, for We = 150 in

Fig. 6.6c, it is observed that the interfaces at the breakup time are wavy in appearance

with increased sheet amplitudes. The breakup locations are still at full-wavelength intervals

with considerable amounts of sheet thinning at half-wavelength intervals. When the pro-

portions of the two modes are switched for We = 150, as shown in Fig. 6.6d, the breakup

features are quite similar to those observed in Fig. 6.3. These interesting characteristics

of the liquid sheet clearly suggest that the disturbance wavenumber and the individual

proportion of the two modes play important role in the entire breakup mechanism of the

liquid sheet.

Figure 6.7 shows the e�ect of the initial strength of the two modes of disturbance,

where the proportion of the individual sinuous and varicose modes are varied from 25%

to 75% and each case is observed for the wavenumbers that correspond to the dominant

wavenumbers for the sinuous and the varicose modes, respectively. It is found that for

the dominant wavenumber of the sinuous mode (k = 0:229), the breakup time decreases

with the increase in the proportion of the sinuous mode, keeping in mind that the breakup

process is dominated by the sinuous mode of disturbance at relatively smallWeber numbers,
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Figure 6.5: Evolution of surface deformation for We = 50; U = 4; � = 0:001; k = 0:229; � =

0; �s = 0:9; �v = 0:1 and �0 = 0:1 due to an initial combined mode of disturbance.
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Figure 6.6: Surface deformation at breakup time for U = 4; � = 0:001; � = 0 and �0 = 0:1

due to an initial combined mode of disturbance. (a) & (b) We = 50 and k = 0:335; (c) &

(d) We = 150 and k = 0:971.
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as in this case. The liquid sheet breaks up at full-wavelength interval for �s = 0:25 and

�v = 0:75, but the sheet thinning at half-wavelength interval becomes more prominent

with the increase in the proportion of the sinuous mode and eventually the sheet breaks

up at half-wavelength interval, as shown in Fig. 6.5 for �s = 0:9 and �v = 0:1. For the

dominant wavenumber corresponding to the varicose mode (k = 0:335), it is observed

that the breakup time also decreases with the increase in the proportion of the sinuous

mode along with visible sheet thinning at half-wavelength intervals. However, for large

Weber numbers, it is found that the breakup time changes by a small magnitude when the

proportion of the two modes are varied. This is evident in Figs. 6.6c and 6.6d, where the

breakup time is increased by only 8% with the increase in the proportion of the sinuous

mode of disturbance from 10% to 90%.

In order to obtain a more meaningful representation of the breakup process of the

liquid sheet, the temporal instability results, discussed so far, can be converted to their

spatial counterpart by using Gaster's transformation [15]. Under such transformation,

the breakup time becomes the breakup length (Lb). Figure 6.8 shows spatial deformation

of the two liquid-gas interfaces for We = 50 and at wavenumbers corresponding to the

dominant wavenumber for the sinuous (k = 0:229) and the varicose (k = 0:335) modes.

The proportions of the two modes are switched between 10% and 90%. It is observed

that the pro�le of the interfaces is distinctly di�erent under each speci�ed condition and is

consistent with the observations made earlier. Similar spatial developments of the interfaces

are observed in Fig. 6.9 for We = 150 and at wavenumbers corresponding to the dominant

wavenumber for the sinuous (k = 0:764) and the varicose (k = 0:971) modes.

The e�ect of the gas-to-liquid density ratio on the breakup characteristics of the liquid

sheet is shown in Fig. 6.10. The wavenumber k = 0:479(� = 13:1) in Fig. 6.10a corresponds

to the dominant wavenumber for the sinuous mode. At low density ratios, for e.g.; at

� = 0:002, the two liquid-gas interfaces remain almost parallel for most of the time and the

sheet breaks up at full-wavelength intervals. The breakup features are quite comparable

with those observed for � = 0:001 in Fig. 6.7b, but the breakup time for � = 0:002 is

substantially smaller (t = 75). However, at high density ratios, for e.g.; at � = 0:006, the

growth rates of the fundamental sinuous and varicose modes are almost the same, which

result in the enhancement of one interface and the attenuation of the other interface. This
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Figure 6.7: Surface deformations at breakup time for di�erent proportions of �s and �v.
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Figure 6.8: Spatial surface deformation for We = 50; � = 0:001; U = 4; � = 0; �0 = 0:1 and
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Figure 6.9: Spatial surface deformation for We = 150; � = 0:001; U = 4; � = 0; �0 = 0:1
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Figure 6.10: Evolution of surface deformation for We = 50; U = 4; � = 0; �s = 0:5; �v =

0:5; �0 = 0:1 and di�erent values of �. (a) � = 0:002 and k = 0:479; (b) � = 0:006 and

k = 1:719.

is evident in Fig. 6.10b, where the wavenumber k = 1:719(� = 3:6) corresponds to the

dominant wavenumber for the sinuous mode. The breakup of the liquid sheet still occurs

at full-wavelength intervals with the breakup time being substantially reduced.

However, for the wavenumber corresponding to the dominant wavenumber for the vari-

cose mode, the breakup characteristics change at low density ratios with the presence of

large sheet amplitudes but remain the same at high density ratios, as shown in Fig. 6.11.

This is expected as at high density ratios, the growth rates of the fundamental sinuous

and varicose modes are almost same, which also causes the breakup time to remain un-

changed. The spatial developments of the interfaces for � = 0:002 and 0:006 are shown

in Fig. 6.12. It is found that the results agree with the qualitative observations of their

temporal counterparts.

Figure 6.13 illustrates the e�ect of the gas-to-liquid velocity ratio on the breakup process

of the liquid sheet. The wavenumbers k = 0:697(� = 9:0) for U = 6 and k = 1:547(� = 4:1)

for U = 8 correspond to the dominant wavenumbers for the sinuous mode. It is observed
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Figure 6.11: Surface deformation at breakup time for We = 50; U = 4; � = 0; �s = 0:5; �v =

0:5; �0 = 0:1 and di�erent values of �. (a) � = 0:002 and k = 0:659; (b) � = 0:006 and

k = 1:840.
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Figure 6.12: Spatial surface deformation for We = 50; U = 4; � = 0; �s = 0:5; �v = 0:5; �0 =

0:1 and di�erent values of �.
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Figure 6.13: Evolution of surface deformation for We = 50; � = 0:001; � = 0; �s = 0:5; �v =

0:5; �0 = 0:1 and di�erent values of U . (a) U = 6 and k = 0:697; (b) U = 8 and k = 1:547.

that at low velocity ratios, the breakup time is long and it reduces drastically as the velocity

ratio is increased, for e.g.; at U = 8, the breakup time is 20 compared with the breakup

time of 151 for U = 4 shown in Fig. 6.7b. Similar to high density ratios, at high velocity

ratios, the growth rates of the fundamental sinuous and varicose modes are almost same.

This results in the strengthening of the wave growth at the upper interface and canceling

at the lower interface, as shown in Fig. 6.13b. It is to be noted that the sheet breakup

still occurs at full-wavelength intervals. However, at wavenumber corresponding to the

dominant wavenumber for the varicose mode, as shown in Fig. 6.14a for U = 6, the wave

amplitude at the breakup time is large and also the pro�le of the two interfaces are di�erent

from that shown in Fig. 6.13a. But at high velocity ratios, the breakup characteristics

remain unchanged, similar to that observed for high density ratios. Figure 6.15 shows

the spatial developments of the liquid sheet at di�erent velocity ratios and they are in

agreement with the temporal observations made earlier.

The e�ect of the phase angle between the two disturbance modes on the surface evolu-
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Figure 6.14: Surface deformation at breakup time for We = 50; � = 0:001; � = 0; �s =

0:5; �v = 0:5; �0 = 0:1 and di�erent values of U . (a) U = 6 and k = 0:903; (b) U = 8 and

k = 1:689.
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Figure 6.15: Spatial surface deformation for We = 50; � = 0:001; � = 0; �s = 0:5; �v =

0:5; �0 = 0:1 and di�erent values of U .
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tion is shown in Fig. 6.16 for We = 50; � = 0:001; U = 4; k = 0:229; �s = 0:5; �v = 0:5 and

�0 = 0:1. It is found that even though the breakup time remains unchanged, the charac-

teristics of the surface pro�le alternate at every �=2 phase angle. In order to understand

more clearly the breakup characteristics at � = �=2, the temporal evolutions of the liquid

sheet leading to the breakup is shown in Fig. 6.17. It is observed that the two interfaces

remain parallel to each other for quite some time. At t = 140, the liquid sheet bulges out at

quarter-wavelength interval and becomes thin at full-wavelength interval. Eventually the

sheet breaks up at full-wavelength intervals and sheet thinning occurs at half-wavelength

interval, which might be the location of further breakup of the liquid sheet.

6.3 Summary

The breakup characteristics of a plane liquid sheet in a surrounding gas stream have been

investigated under the combined inuence of the sinuous and the varicose modes (combined

mode) with a phase angle between the two modes. It is observed that the liquid sheet

breaks up at full-wavelength and half-wavelength intervals, depending on the proportions

of the individual modes in the combined mode and the operating Weber numbers. It

is found that at relatively large Weber numbers, the breakup process is dominated by

the varicose mode, which is in accordance with the observation made for the liquid sheet

subjected to the individual sinuous and varicose modes. It is also observed that the breakup

characteristics depend on the dominant wavenumber corresponding to either the sinuous

or the varicose modes, but its inuence at high gas-to-liquid velocity and density ratios is

not signi�cant. In general, it is found that the breakup length decreases with the increase

in Weber number, density and velocity ratios, but remain invariant with the change in

phase angle. However, distinct breakup features are observed for complementary phase

di�erence between the two modes.
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Figure 6.16: Spatial surface deformation for We = 50; � = 0:001; U = 4; k = 0:229; �s =

0:5; �v = 0:5; �0 = 0:1 and di�erent values of �.
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Figure 6.17: Evolution of surface deformation for We = 50; � = 0:001; U = 4; k =

0:229; � = �=2; �s = 0:5; �v = 0:5 and �0 = 0:1.



Chapter 7

Droplet Size and Velocity

Distributions

The deterministic sub-model, discussed so far, is valid up to the breakup of the liquid sheet.

After the sheet breakup, the entire process becomes random and highly nonlinear with the

formation of droplets of di�erent diameters and velocities. However, the liquid mass,

momentum, and energy must be conserved during the atomization process. For a given

condition at the nozzle exit, there are in�nite sets of possible droplet sizes and velocities

that can satisfy the conservation requirements. Further, the enormous number of droplets

with various sizes and velocities produced in a spray requires a statistical description of

droplet ensembles. Therefore, the droplet formation process is dealt with the stochastic

sub-model, where a probability density function (pdf) is used to describe the distribution

of droplets in sprays. The most probable pdf can then be obtained by using the Maximum

Entropy Principle (MEP). In this chapter, formulation of the stochastic sub-model and its

coupling with the deterministic sub-model will be discussed.

84
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7.1 Formulation

The history of the MEP goes back to 1948, when Claude Shannon [40] in his study on

communication of information across channels, proposed the following de�nition of entropy:

S = �K
nX
i=1

pi ln pi (7.1)

where pi is the probability of occurrence of the state i and K is the Boltzmann constant.

This above de�nition of entropy can further be extended to a more general form, provided

by Kullback & Leibler [89], as:

I = K
nX
i=1

pi ln
pi

pi;0
(7.2)

where pi;0 is the prior distribution of the state i and I is the measure of the nearness of

the two probability distributions. This is often referred to as the Bayesian entropy [53].

Jaynes [39], starting with Shannon's information entropy, propounded a formalism - the

maximization of S or minimization of I, subject to constraints which characterize macro-

scopically a physical system under consideration. This is referred to as the Maximum

Entropy Principle, which has also been applied by Tribus [90] in a more general area like

thermodynamics.

It is to be noted that the starting equation for the MEP in this study is Eq. (7.2). This

is di�erent from the stochastic sub-model used by Mitra & Li [56], where the expression

for Shannon's entropy was used. By using the form given in Eq. (7.2), it is possible to

couple the stochastic and the deterministic sub-models through the information about the

unstable wave growth at the two liquid-gas interfaces, which play a signi�cant role in the

entire drop formation process. The details of this coupling between the two sub-models

will be discussed later.

Under the MEP, many physical systems can be described by average or moment quan-

tities which may be known for the particular system. These observations can be expressed

mathematically by the following constraints:

nX
i=1

pigr;i =< gr > r = 1; 2; : : :m (7.3)



Droplet Size & Velocity Distributions 86

wherem is the number of physical constraints for the particular system, gr;i is some function

evaluated at state i and < gr > is the (known) expectation of average value of the function

g over the entire system. The additional constraint, which arises from the de�nition of

probability is

nX
i=1

pi = 1 (7.4)

where n is the number of possible states.

In the event of m + 1 = n, the number of equations become equal to the number of

unknowns and hence the probability distribution pi can be uniquely determined. On the

other hand, if m+1 < n, then the system of Eqs. (7.3)-(7.4) become indeterminate and the

probability distribution pi has an in�nite set of solutions. However, under such a condition,

one can still obtain a reasonable prediction of pi by minimizing I given in Eq. (7.2).

The solution of the system of equations which minimizes I can be found by using the

method of Lagrange multipliers [91] �r; r = 1; 2; : : :m. Under such a scheme, Eq. (7.3)

and Eq. (7.4) are multiplied by �r and (�0 � 1), respectively, and then added together.

The quantity I is also added with the resulting expression and �nally, the derivative with

respect to pi is taken, which can be written in the following form:

@

@pi

"
I

K + (�0 � 1)

nX
i=1

pi +

mX
r=1

�r

nX
i=1

pigr;i

#
= 0 (7.5)

Substitution of Eq. (7.2) into the above equation, gives

nX
i=1

�
ln

pi

pi;0
+ 1 + (�0 � 1) +

mX
i=1

�rgr;i
�
dpi = 0 (7.6)

To ensure that the above equation is satis�ed for arbitrary dpi, the quantity in the square

bracket must be zero, which yields

pi = pi;0 exp
�� �0 �

mX
r=1

�rgr;i
�

(7.7)

where �0 and �r must satisfy the constraint equations. The probability distribution ob-

tained is the solution to the problem, which maximizes the entropy under all the constraints

imposed on the physical system.
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The multiplier �0 can be obtained by substituting Eq. (7.7) into Eq. (7.4), which gives

�0 = ln

nX
i=1

pi;0 exp
�� mX

r=1

�rgr;i
�

(7.8)

Eq. (7.8) allows the determination of �0, once the �r's are determined. In order to obtain

�r's, Eq. (7.7) is substituted back into the constraint equation, Eq. (7.3), which gives

nX
i=1

gr;ipi;0 exp
���0 �

mX
r=1

�rgr;i
�
=< gr > (7.9)

Therefore, Eqs. (7.8)-(7.9), yield a set of m+ 1 equations with m + 1 unknown Lagrange

multipliers, �0 and �r, r = 1; : : :m. Thus, such a probabilistic set of equations can be

approached deterministically from the standpoint of their solution process.

The MEP, discussed so far, is applicable for a one dimensional system, which can be

readily extended into multi-dimensions. In order to apply this principle for obtaining

droplet size and velocity distributions (two dimensions), the probability pi can be replaced

by the joint probability pij , where i denotes the state of the droplet size and j denotes the

corresponding state for the droplet velocity. Hence, Eqs. (7.8)-(7.9) can still be used with

an additional summation over the j states.

The constraints imposed on the physical problem for determination of droplet size

and velocity distributions are the conservation of mass, momentum and energy. These

conservation principles are applied to the control volume enclosing the bulk liquid and

extending from the atomizer exit to the plane where the droplets are produced immediately

after the breakup of the liquid sheet. If _m` denotes the mass ow rate at which the liquid

is ejected from the atomizer, _n the total number of droplets being produced per unit

time, then the mass conservation under steady state requires that the sum of all droplets

produced per unit time be equal to the mass of the liquid sprayed per unit time, plus the

mass source term (Sm), which denotes the mass transfer process between the liquid and

the gas phases. Hence, the expression for the conservation of mass can be written as:X
i

X
j

pij
�

6
D3

i
�` _n = _m` + Sm (7.10)

where the droplets are assumed to be spherical with diameter Di.
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For the conservation of liquid momentum, the total momentum of all the droplets must

be equal to the momentum of the liquid at the atomizer exit, plus a momentum source

term (Smv), which accounts for the momentum exchange between the bulk liquid and the

surrounding gas medium. Therefore, momentum conservation can be written as:

X
i

X
j

pij
�

6
D3

i
�` _nUj = _m`U` + Smv (7.11)

where Uj is the velocity of the droplets with diameter Di. The momentum source term,

Smv, is positive when the momentum is transfered from the gas medium into the liquid

phase, as in the case for an air-blast atomizer.

Similarly, the conservation of liquid energy requires that the total energy of all the

droplets formed in a spray, i.e.; the sum of their kinetic and surface energies, be equal

to the kinetic energy of the liquid at the atomizer exit, plus a source term (Se), which

represents the exchange of energy between the two phases. Hence, the energy conservation

can be written as:

X
i

X
j

pij

�
1

2

��
6
D3

i
�` _nU

2
j

�
+ ��D2

i
_n

�
=

1

2
_m`U

2
`
+ Se (7.12)

Eqs. (7.10)-(7.12) are nondimensionalized such that the droplet diameter is scaled with

the mass-mean diameter D30 and the droplet velocity is scaled with the liquid velocity at

the atomizer exit, U`. Then, the conservation equations for the liquid mass, momentum,

and energy can be written as:

Mass:
X
i;j

pij �Di

3
= 1 + �Sm (7.13)

Momentum:
X
i;j

pij �Di

3 �Uj = 1 + �Smv (7.14)

Energy:
X
i;j

pij( �Di

3 �U2
j
+B �Di

2
) = 1 + �Se (7.15)

where �Sm = Sm= _m`, �Smv = Smv=( _m`U`), and �Se = Se=( _m`U
2
`
) denote the dimensionless

mass, momentum and energy source terms, respectively; �Di = Di=D30 and �Uj = Uj=U`

denote the dimensionless droplet diameter and velocity, respectively. The parameter B is
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a constant and is related to the surface tension through the following relation:

B =
12

We30
; We30 =

�`U
2
`
D30

�
(7.16)

In addition to the conservation equations, there is one more constraint to be imposed on

the joint probability, pij . From the de�nition of a probability, the sum of pij over the

indices i and j should be unity, which can be expressed mathematically as:

Normalization:
X
i;j

pij = 1 (7.17)

There are in�nite sets of possible solutions of pij , which satisfy the constraints given

in Eqs. (7.13)-(7.15) and Eq. (7.17). The most appropriate probability distribution is

obtained by applying the MEP, as discussed earlier. Therefore, similar to Eq. (7.7), the

most probable probability distribution is of the following form:

pij = pi;0 exp
�� �0 � �1

�D3
i
� �2

�D3
i
�Uj � �3( �D

3
i
�U2
j
+B �D2

i
)
�

(7.18)

where �i(i = 0; 1; 2; 3) are the Lagrange multipliers to be determined by the method

discussed before.

It is customary to consider the droplet size and velocity as continuous variables. There-

fore, the subscripts, i and j, can be dropped, and the summations in Eqs. (7.13)-(7.15)

and Eq. (7.17) can be replaced by integrals with limits from the corresponding minimum

to maximum values. The discrete probability pij in Eq. (7.18) can also be replaced by the

continuous joint droplet size and velocity probability density function (pdf). Thus,

f = f0 exp
�� �0 � �1

�D3 � �2
�D3 �U ��3( �D

3 �U2 +B �D2)
�

(7.19)

where f0 is the continuous prior droplet size pdf. The discrete summation form of the
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conservation laws and the normalization condition can be written in their integral form as,

Mass:

Z �Dmax

�Dmin

Z �Umax

�Umin

f �D3d �Ud �D = 1 + �Sm (7.20)

Momentum:

Z �Dmax

�Dmin

Z �Umax

�Umin

f �U �D3d �Ud �D = 1 + �Smv (7.21)

Energy:

Z �Dmax

�Dmin

Z �Umax

�Umin

f( �D3 �U2 +B �D2)d �Ud �D = 1 + �Se (7.22)

Normalization:

Z �Dmax

�Dmin

Z �Umax

�Umin

fd �Ud �D = 1 (7.23)

As observed earlier, Eq. (7.19) represents the number-based joint pdf for the droplet

size and velocity distributions in sprays. Therefore, the number-based droplet size distri-

bution can be obtained by integrating Eq. (7.19) over the velocity space from minimum to

maximum value. Hence, the number-based droplet size distribution can be expressed as:

dN

d �D
=

Z �Umax

�Umin

fd �U

=

p
�

2

f0
�
erf(Xmax) � erf(Xmin)

�
p

�D3�3

exp

�
��0 ��3B �D2 �

�
�1 � �2

2

4�3

�
�D3

�
(7.24)

where erf(X) denotes the error function, N the normalized cumulative droplet number,

and

Xmax =

�
�Umax +

�2

2�3

�
(�3

�D3)1=2; Xmin =

�
�Umin +

�2

2�3

�
(�3

�D3)1=2 (7.25)

Similarly, the number based droplet velocity distribution can be obtained by integrating

Eq. (7.19) over the diameter space from minimum to maximum value, i.e.;

dN

d �U
=

Z �Dmax

�Dmin

fd �D (7.26)

However, such integration cannot be carried out analytically, and hence needs a numerical

technique.
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7.2 Source Terms and D30

In order to solve for the joint droplet size and velocity distributions, the source terms,
�Sm; �Smv, and �Se, need to be evaluated and also the mass-mean diameter D30 needs to be

estimated. The source terms form a link between the deterministic and the stochastic

sub-models along with the prior droplet size distribution, f0, which will be discussed later.

It should be pointed out that the e�ect of Tollmien-Schlichting waves in the gas boundary

layer is at least one order of magnitude smaller than the Kelvin-Helmholtz instability in

liquid atomization [92]. As a result, the inviscid assumption for the instability analysis in

the deterministic sub-model is reasonable with no loss of generality, even though Tollmien-

Schlichting waves may extract kinetic energy from the mean ow and grow. This latter

e�ect is considered in the determination of the momentum and energy source terms, as

discussed here.

For the present formulation, it is assumed that the surrounding gas medium is fully

saturated and therefore no mass transfer occurs. This assumption is reasonable for labo-

ratory experiments of water sprays with air because of the large enthalpy of vaporization

and low vapor pressure of water at room temperature. Therefore, the mass source term

can be taken as zero, i.e.;

�Sm = 0 (7.27)

The quantitative estimate of the degree of interaction between the liquid sheet and the

co-owing gas stream is determined from the boundary layer theory, similar to the ow

over the at plate. Even though the liquid sheet is wavy during its disintegration process,

experimental observations [93] and the present nonlinear instability analysis indicate that

the wave amplitude is small except very close to the breakup point. As a result, the liquid

sheet may be assumed at for the purpose of drag coeÆcient calculations in the boundary

layer theory [94]. The method for obtaining the momentum and the energy source terms

is already been discussed by Mitra & Li [56]. However, for the sake of completeness, the

key steps in the derivation of the source terms are provided here.

The momentum source term is obtained by considering the drag force acting on both

sides of the liquid sheet due to the relative motion of the gas phase over the nondimensional
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breakup length Lb. The drag force on the liquid sheet can be written as

F = 2

�
1

2
�g(Ug � U`)

2A�Cf

�
; A� = (Lba

�)� b� (7.28)

where Cf is the drag coeÆcient for ow over a at plate, which has di�erent values for

laminar and turbulent ows and b� is the width of the nozzle. Considering the surrounding

gas medium as the control volume, the rate of change of momentum is equal to the drag

force. In other words, the drag force is equal to the amount of momentum transferred from

the surrounding gas medium to the liquid sheet per unit time. Therefore, the momentum

source term is obtained as

�Smv =
F

�`U
2
`
b�(2a�)

(7.29)

Combining Eqs. (7.28) and (7.29), the momentum source term can be written as

�Smv =
1

2
Cf�(U � 1)2Lb (7.30)

Similarly, the energy source term is calculated by considering the work done by the drag

force per unit time over the length Lb, which can be expressed as:

W = F � jUg � U`j (7.31)

Combining Eqs. (7.28) and (7.31), the energy source term can be written as

�Se = Cf�(U � 1)3Lb (7.32)

where � and U are the gas-to-liquid density and velocity ratios, respectively. Depending

upon the gas phase Reynolds number, Reg = �gjUg�U`ja�Lb=�g, correlations are available

to compute Cf [95].

The mass-mean diameter, D30, is obtained by considering the mass of the liquid sheet

that contracts to form ligaments, which is followed by the formation of spherical droplets.

The nonlinear instability analysis discussed in Chapter 5 shows that the liquid sheet breaks

up at full-wavelength or half-interval intervals depending on the proportions of the indi-

vidual sinuous and varicose modes of disturbance. Figure 7.1 shows the breakup locations
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Figure 7.1: A typical interface deformation at the breakup time for a given ow condition

at nozzle exit.

for a given ow condition speci�ed at the atomizer exit, i.e.; at �xed We; �; U; �; �0; �s and

�v. The liquid mass between the two breakup points, denoted by �b (dimensionless) in

Fig. 7.1, produces cylindrical ligaments, the diameter (d�
lg
) of which can be obtained from

the following relation:

�

4
d�2
lg
= �ba

�(2a�)

) d�
lg
= 1:6a�

p
�b (7.33)

The ligaments so produced from the liquid sheet further break down into individual droplets

by the Rayleigh instability of cylindrical liquid columns [96]. According to the Rayleigh

mechanism, the droplets are formed from the ligament breakup at full-wavelength interval,

with the wavelength related to the ligament diameter as

��
r
= 4:5d�

lg
(7.34)

Therefore, the resulting droplet diameter, which corresponds to the mass-mean diameter

D30, is obtained from the conservation of mass, as follows:

�

4
d�2
lg
��
r
=
�

6
D3
30 (7.35)

Combining Eqs. (7.33)-(7.35), the �nal expression for the mass-mean diameter is obtained

as

D30 = 3a�
p
�b (7.36)
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where a� is the half-sheet thickness. However, Eq. (7.36) is valid for an ideal spray which

produces droplets according to the Rayleigh mechanism, discussed here. In an actual spray,

the mass-mean diameter is most likely be expressed in the following manner:

D30 � a�
p
�b ) D30 = Ca�

p
�b (7.37)

where C is a nozzle constant whose value depends on the type of the nozzle and the spatial

location in the spray. This technique of estimating D30 has also been used by Dombrowski

and Hooper [93] for their fan sprays.

7.3 Prior Distribution f0

As mentioned in Chapter 2, the models used for the MEP, so far, do not incorporate the

information about the unstable wave growths at the two liquid-gas interfaces. However,

as observed from the nonlinear instability analysis, the wavenumber corresponding to the

maximum growth rate for the sinuous or the varicose modes of disturbance plays a sig-

ni�cant role in the breakup mechanism of the liquid sheet. Intuitively, such behavior of

the disturbance wavenumber may propagate to the droplet formation process and thereby

inuence the actual drop size distribution in sprays.

Traditionally, only linear instability is used to obtain the drop size in sprays [60]. How-

ever, in actual spray formation process, the initial portion of the liquid sheet formation is

dictated by the linear instability while near the breakup region, the nonlinear instability

plays a dominant role. But due to the complex nature of the interaction between di�erent

modes of disturbances, as discussed in Chapter 6, it is diÆcult to quantify the inuence of

the nonlinear interactions on the resultant drop formation. Therefore, in order to incor-

porate information about the wave elements, the prior distribution is obtained from the

growth curve based on the linear instability of the plane liquid sheet. The nonlinear insta-

bility is incorporated in the droplet distribution through the breakup length Lb present in

the source terms and the breakup wavelength �b in the mass-mean diameter.

In the present MEP formulation, based on the de�nition of entropy given in Eq. (7.2),

the information regarding the prior droplet size distribution, f0, can be extracted from the

�rst-order growth rate curves, similar to those shown in Figs. 4.1 and 5.2. It is suggested
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that f0 be proportional to either !1;s or !1;v, depending on the dominant wavenumber of the

particular disturbance wave; and the dimensionless droplet diameter �D be inversely propor-

tional to the square root of the dimensionless wavenumber k, according to the Eq. (7.36).

Therefore, in the range of the unstable wave numbers (0 6 k 6 kc), the droplet diameter

varies with the wave number in the following manner:

�D =

r
�

�b
; � =

2�

k
(7.38)

However, according to the linear instability theory, the wavenumbers beyond the cut-o�

wavenumber (kc) are stable. Therefore, in order to accommodate the droplets correspond-

ing to k > kc, it is assumed that the prior distribution f0 varies as the square of the droplet

diameter. The smooth transition between the two regimes of the disturbance wavenumber

is achieved by evaluating a critical droplet diameter, �Dcr, such that �Dcr is the common

tangent point for the two curves. This can be written mathematically as:

f0 =

(
m �D2 �D 6 �Dcr

!1;s(kb= �D
2) or !1;v(kb= �D

2) �D > �Dcr

(7.39)

where m denotes the slope of f0, kb is the breakup wavenumber corresponding to �b and

!(�)'s represent the �rst-order growth rates, provided in Eqs. (4.4) and (5.7), wherein k's

are substituted by kb= �D
2. Figure 7.2 shows such prior distribution as per Eq. (7.39), for

We = 50; � = 0:001; U = 4; C = 3 and a� = 10�m. It is observed that the distribution

peaks at �D = 1 which corresponds to the dominant wavenumber k = 0:228. A smooth

transition between the two portions of the curve is obtained for �Dcr = 0:822 and m = 0:041.

7.4 Droplet Size and Velocity Limitations

The minimum droplet velocity in a practical spray can be taken as zero, whereas the

maximum value is limited for a given droplet size due to secondary droplet breakup. The

maximum velocity that a droplet of size Di can sustain depends upon the ratio of the

dynamic force to surface tension force, and is governed by the following relation [97]:

Wec =
�gjUj � Ugj2Di

�
� 10 (7.40)
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Figure 7.2: Prior droplet size distribution f0 for We = 50; U = 4; � = 0:001; C = 3 and

a� = 10 �m.
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The above equation can be nondimensionalized to obtain the desired maximum droplet

velocity for a given droplet size, which can be written as:

�Umax = U +

�
10

�We30 �D

�1=2

(7.41)

This is used in Eq. (7.24) for the number based droplet size distribution.

For a given droplet velocity, Eq. (7.40) yields the maximum droplet diameter

�Dmax =
10

�We30( �U � U)2
(7.42)

which is used in Eq. (7.26) for the number based droplet velocity distribution. The min-

imum droplet diameter for sprays is set to zero. It should be emphasized that the value

of �Umax only e�ects the smallest droplets in sprays, typically for diameters of sub-microns,

which is not important for practical applications. Further, such droplets tend to lose

their momentum, and hence velocities within extremely small distances, less than 1 mm.

Therefore, it is physically unrealistic to have relatively large value of �Umax for such small

droplets.

7.5 Numerical Technique

The objective of the MEP formulation is to obtain the Lagrange multipliers by solving the

set of equations, Eqs. (7.20)-(7.23), which are nonlinear. Therefore, a numerical technique,

such as the Newton-Raphson method, is implemented to obtain the desired multipliers.

Once, the Lagrange multipliers are known, Eq. (7.19), can be used to obtain the droplet

size and velocity distributions in sprays.

The nonlinear set of equations, Eqs. (7.20)-(7.23), involve double integrals over velocity

and diameter ranges. Since the integrals over the velocity space can be obtained analyti-

cally, as observed in Eq. (7.24), the double integrals are converted into single integrals over

the diameter range to reduce the computational e�ort. Appendix D provides the necessary

steps involve in simplifying the governing mass, momentum, energy, and normalization

equations.

The integrand over the diameter range involves an exponential function, which makes

the Newton-Raphson method highly sensitive to the initial guess values of the Lagrange
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multipliers. However, by modifying the numerical method such that the normalization

condition is enforced at each iteration step, the convergence can be improved and the

strict requirement on the initial guess can also be relaxed.

Eqs. (7.20)-(7.23) can be written in a matrix form as

A�� = �B (7.43)

where A is the coeÆcient symmetric square matrix with its element, ai;j, which is the

Jacobian matrix, de�ned as

ai;j =
@Bi

@�j

i; j = 0; 1; 2; 3 (7.44)

and B = (B0; B1; B2; B3)
T is a column vector, the form of which is provided in Appendix D.

It is to be noted that both A and B are functions of unknown �i's, i = 1; 2; 3, with �0
0

being determined from the normalization condition for the initial guess values of �0
1;�

0
2

and �0
3. Therefore, for n

th iteration step, �(n) is obtained from the following relation:

�
(n)

i
= �

(n�1)

i
+��

(n)

i
i = 1; 2; 3 (7.45)

where ��
(n)

i
's are the solution of Eq. (7.43), and �

(n)

0 is updated from the normalization

condition after �
(n)

i
's, i = 1; 2; 3, have been determined. Under such a scheme, it is ensured

that B0 = 0 at every iteration step, while Bi, i = 1; 2; 3, may not be equal to zero exactly.

As a result of this modi�cation, the element a0;0 = �1 for all iteration steps in the coeÆcient

matrix A.

It is to be noted that the values of Lagrange multipliers are very sensitive to the number

of signi�cant digits after the decimal point. Therefore, a very small tolerance value is taken

as a convergence criteria for each iteration step and can be written as:

maxfjB1j; jB2j; jB3jg � 1 � 10�11 (7.46)

Such small tolerance value ensures that an unique solution for the Lagrange multipliers,

subjected to the given constraints, is obtained and hence physically realistic droplet size

and velocity distributions can be predicted. A macro-ow chart for the entire numerical

scheme is shown in Fig. 7.3. Generally, it is observed that the converged solution of the
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Figure 7.3: A macro-ow chart for the numerical scheme.
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Lagrange multipliers for realistic droplet size distribution satis�es the following relations:

�1 > 0; �3 > 0; and �2 < 0

�1 + �3 > j�2j (7.47)

7.6 Results and Discussions

The MEP calculates the actual droplet size and velocity distributions for sprays when the

nozzle exit conditions are speci�ed. The nozzle exit conditions are: (a) Weber numberWe,

(b) density ratio �, (c) velocity ratio U , (d) half-sheet thickness a�, (e) initial disturbance

amplitude �0, (f) proportions of sinuous and varicose modes, �s and �v(�v = 1 � �s), (g)

nozzle constant C, and (g) physical properties like gas phase viscosity, �g and liquid phase

density, �`. Table 7.1 gives the values of the mass-mean diameter, the breakup length and

the source terms for di�erent nozzle exit conditions. Table 7.2 tabulates, for each case, the

corresponding values of the Lagrange multipliers obtained by solving the nonlinear set of

equations.

Figure 7.4 shows a three dimensional plot of the joint pdf for a typical spray resulting

from the breakup of the liquid sheet with half-sheet thickness of 10�m, Weber number

of 50, density ratio of 0:001 and velocity ratio of 4. The corresponding iso-probability

density curve is shown in Fig. 7.5. It is observed that there exists a global maximum

for the distribution which is located at dimensionless diameter slightly less than one and

dimensionless velocity close to one. It is also observed that the velocity distribution is

wider for very small droplets. As discussed earlier, relative wide velocity distribution for

such small droplets is practically insigni�cant.

The e�ect of Weber number on the number based droplet size distribution is shown in

Fig. 7.6. It is observed that with the increase in the Weber number, We, while keeping

other conditions at the nozzle exit �xed, the distribution curve shifts to smaller droplet

sizes, and the population of large droplets is reduced as the liquid injection velocity is

increased. It is also interesting to note that the maximum droplet diameter, as shown

in Fig. 7.6, is reduced from about 350 �m at We = 50 to about 180 �m at We = 500.

Figure 7.7 shows the e�ect of the Weber number on the number based droplet velocity

distribution. It is found that the distribution peak shifts to larger droplet velocities with
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Table 7.1: Estimates of mass-mean diameters and source terms for di�erent nozzle exit

conditions for a� = 10�m, �0 = 0:1, �s = �v = 0:5, C = 3, liquid density �` = 998kg=m3,

gas dynamic viscosity �g = 1:8 � 10�5N:s=m2 and surface tension � = 0:073N=m.

We � U D30(�m) Lb
�Smv

�Se

50 0:001 4 157 151 2:869 � 10�2 0:1708

6 90 52 3:595 � 10�2 0:3595

8 60 20 3:693 � 10�2 0:5170

10 46 9 3:612 � 10�2 0:6501

0:002 4 108 75 2:837 � 10�2 0:1703

0:01 4 43 18 3:108 � 10�2 0:1865

0:1 4 14 0:3 1:269 � 10�2 7:6138 � 10�2

150 0:001 4 86 75 2:033 � 10�2 0:1219

500 0:001 4 43 23 1:111 � 10�2 6:6666 � 10�2

Table 7.2: Values of Lagrange multipliers for di�erent nozzle exit conditions for a� = 10�m,

�0 = 0:1, �s = �v = 0:5, C = 3, liquid density �` = 998kg=m3, gas dynamic viscosity

�g = 1:8� 10�5N:s=m2 and surface tension � = 0:073N=m.

We � U �0 �1 �2 �3

50 0:001 4 �4:3481678748616 9:7400790999519 �19:943664831976 10:68000608991

6 �2:5361610868733 3:6284506380845 �7:5558326062940 4:0450516935088

8 �1:1235628222108 1:0041188370271 �2:0149310979988 1:0544634128522

10 �0:4586785558384 1:2714337607212 �2:1569472254512 1:0058071415191

0:002 4 �3:1484215040733 5:1110567194360 �10:563860598095 5:6623654733625

0:01 4 �0:35343900742010 1:4902476114638 �2:1698424128921 1:0661735803751

0:1 4 �0:276559846864092 1:0440937195022 �2:1382385844951 1:0168090551732

150 0:001 4 �3:3041352942455 5:6467781487816 �11:613666450495 6:2337659701939

500 0:001 4 �1:7724039089618 2:2356016845789 �4:6064573519788 2:4834614916249
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Figure 7.4: Joint droplet size and velocity distribution for We = 50; � = 0:001 and U = 4.
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Figure 7.6: E�ect of Weber number on droplet size distribution for U = 4 and � = 0:001.

the increase in the Weber number. However, at large droplet velocities, the distribution

curves tend to collapse onto each other.

The e�ect of the density ratio on the number based size distribution is shown in Fig. 7.8.

It is seen that the peaks of the distribution curves shift toward smaller droplet diameters as

the density ratio is increased. This is due to the fact that as the density ratio is increased,

or as the gas density is increased while keeping the liquid density constant, the mass-mean

diameterD30 is decreased, which is also observed in Table 7.1. It is also interesting to note

that the maximum droplet diameter is reduced from about 225 �m at � = 0:002 to about

40 �m at � = 0:1. Therefore, the quality of liquid atomization improves signi�cantly at

higher gas densities (or pressure). Figure 7.9 shows the e�ect of the density ratio on the

number based velocity distribution. It is observed that the distribution peak shifts to the

larger droplet velocities with the increase in the density ratio.

The e�ect of the gas-to-liquid velocity ratio on the droplet size distribution is shown in

Fig. 7.10. It is observed that with the increase in the gas phase velocity, the distribution

curves shift to small droplet sizes. This is due to the fact that the higher momentum of
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Figure 7.7: E�ect of Weber number on droplet velocity distribution for U = 4 and � =

0:001.
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Figure 7.8: E�ect of density ratio on droplet size distribution for We = 50 and U = 4.
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Figure 7.9: E�ect of density ratio on droplet velocity distribution for We = 50 and U = 4.
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Figure 7.10: E�ect of velocity ratio on droplet size distribution forWe = 50 and � = 0:001.
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the gas phase results in a better overall atomization and hence much smaller mass-mean

diameter for the entire spray. It is observed that the maximum droplet diameter is reduced

from about 250 �m at U = 6 to about 150 �m at U = 10. Figure 7.11 shows the e�ect of

the velocity ratio on the droplet velocity distribution. It is observed that with the increase

in the gas phase velocity, the peak of the distribution moves to the large droplet velocities.

7.7 Summary

A predictive model for the initial droplet size and velocity distribution in sprays has been

formulated, which incorporates both the deterministic and the stochastic aspects of liquid

atomization processes. The deterministic aspect is characterized by the linear and the

nonlinear instability theories, and the stochastic aspect is described by statistical means

through an application of the maximum entropy principle based on Bayesian entropy. The

two sub-models are linked together by the various source terms that represent the interac-

tion of the spray with its surrounding and the prior distribution which carries information

about the growth of the unstable waves at the two liquid-gas interfaces. It is found that

the population of large droplets is signi�cantly reduced with the increase in Weber number,

density ratio and gas-to-liquid velocity ratio. It is also found that the peaks of the veloc-

ity size distributions shift to the larger droplet velocities with the increase in the Weber

number, gas-to-liquid density and velocity ratios.



Chapter 8

Experiments

Experimental investigation of the breakup process of the liquid sheet leading to the spray

formation is carried out for the veri�cation of the theoretical model discussed in the earlier

chapters. The main objectives for the experimental work are to obtain the breakup length

and the breakup characteristics of the liquid sheet in a co-owing gas stream, and the

initial droplet size and velocity distributions of the resulting spray. Once these quantities

are measured, they can be used for the veri�cation of the deterministic and the stochastic

sub-models.

Two di�erent nozzle con�gurations are used in experiments. First is a planar research

nozzle which produces a plane liquid sheet blasted by a co-owing gas stream on both sides

of the liquid sheet. The geometry of the planar nozzle matches well with the theoretical

model discussed earlier. Secondly, an actual gas turbine nozzle from Pratt & Whitney

Canada (PWC) has been used in the experimental investigation of its spray characteristics.

In order to execute the experimental works, primarily two items of equipment have been

used. A high speed CCD camera is used to obtain the breakup length and the breakup

characteristics of the liquid sheet; and a two-component phase-Doppler particle analyzer

(PDPA) system is used to obtain the droplet size and velocity distributions in sprays.

108
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8.1 Apparatus

The experiments are conducted on a test rig, shown in Fig. 8.1. The test rig has a traversing

unit which allows movements in three perpendicular directions. It also has a mounting

plate which allows easy interchangeability of di�erent nozzles. The table in front of the

traversing unit holds the high-speed CCD camera and its associated light sources, and the

transmitting and the receiving optics for the PDPA system.

Compressed Air

Air Vent

Compressed Air

Water Drainage

Flow
Meters

Traversing Unit

 Table for Camera
 & PDPA System

Water CollectorTank
Water

 Vacuum Pump

Nozzle
Mounting Plate

Water
Inlet

Figure 8.1: Schematic of the test rig used for experimental study.

The liquid used for the experiment is water, which is stored in a galvanized tank with

a pressure rating of 125 psi (gauge). The gas phase is air which is fed into the system at a

line pressure of 60 psi (gauge). In order to maintain constant pressure during the course of

the experiment, the tank is pressurized by compressed air to the desired operating pressure.

In general, the water pressure is maintained at 70 psi (gauge) for the entire experiment.

Flow meters are used to maintain the desired ow rates for both the liquid and gas

phases. Two sets of ow meters are used for di�erent nozzle con�gurations. In case of the

planar nozzle, the operating ranges of the ow meters are 0:� 1:0 gpm (6:31� 10�5m3=s)

and 0:� 7:0 scfm (47:14 � 10�5m3=s) for water and air, respectively. However, in case of
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the industrial nozzle (PWC nozzle), the ow meter for water is changed to handle a range

of 106 � 388 ml=min, whereas the ow meter used for air remains the same. Adequate

water �lters are placed along the ow lines to prevent any possible clogging of the nozzles.

During the course of the experiment, the nozzles are mounted vertically downward on

the traversing unit, which allows the water to be collected in the collector placed down-

stream. The collector has a honeycomb screen placed approximately 1 m below the nozzle

exit and is connected to a vacuum pump near its bottom. These arrangements help to im-

prove the uniformity of the ow conditions in the collector due to the proper air ventilation

and prevent the mist and recirculation of large number of small droplets. This improves

the overall quality of the spray measurements.

The investigation of liquid sheet breakup and the subsequent spray formation is �rst

conducted with a two-dimensional planar nozzle as shown in Fig. 8.2, which was designed

by Jazayeri & Li [63]. Within the two-dimensional nozzle, the central channel used for

liquid ow has dimensions of 0:254 mm by 25:4 mm (aspect ratio 100:1) at the nozzle exit.

Two air ow paths, located on either side of the liquid channel, both have the dimension

of 1:397 mm by 25:4 mm. A set of honeycomb and �ne screens are placed upstream of the

nozzle contraction for both the ow passages to reduce the turbulence level in the ow.

The PWC nozzle, shown in Fig. 8.3, is mounted inside an air-box to provide the air ow

needed for this gas turbine nozzle. For proprietary reasons, limited information is available

about the geometry of the nozzle. The sheet thickness for this nozzle is also not known,

which varies with the air and water ow rates. The nozzle has both inner and outer air

ow passages. It is diÆcult to identify the proportion of the actual inner and outer air

ow rates and hence, the actual gas phase velocities are not readily obtained under this

situation. However, with the known air ow rate, measured from the ow meter, and the

dimensions of both the inner and outer air passages, the air velocities can be estimated.

Both the inner and the outer air velocities are assumed to be equal, in parallel with the

present physical model. The liquid velocity is obtained by measuring the sheet velocity

close to the nozzle exit by the PDPA system. The liquid sheet thickness is then calculated

based on the sheet velocity and the measured liquid mass ow rate.

The PWC nozzle also produces swirl for both the liquid and gas ows. Even though the

nozzle geometry does not match the present physical model, attempts will still be made
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Figure 8.2: The planar nozzle used in experiment. (a) nozzle assembly; (b) cross-sectional

view of nozzle exit (dimensions are in millimeters).
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Figure 8.3: The PWC nozzle used for the experiment.

in the next chapter to compare the experimental results from the PWC nozzle with those

from the theoretical model, which is based on a planar liquid sheet geometry.

8.2 Experimental System

In order to obtain the breakup characteristics of the liquid sheets and the size and velocity

distributions for the subsequently formed droplets, primarily two systems are used. The

breakup length Lb and the breakup characteristics are measured by using a high-speed

CCD camera. The initial droplet size and velocity distributions are obtained by using

a laser based non-intrusive measurement system called phase-Doppler particle analyzer

(PDPA).

8.2.1 High-Speed CCD Camera

The ow visualization of the spray is conducted by a digital high-speed CCD camera

(SensiCamHS). The CCD camera has the capacity of taking single or multiple exposures

(up to ten) on one frame. The exposure time can be varied from 100ns to 1000�s in steps

of 1�s. Delays between the exposures can also be set in the range between zero (no delay)
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Pixel Size 9:9�m� 9:9�m

Sensor Format 1=200

Scan Area 6:3mm� 4:8mm

Readout Time 30fps

Binning 1 to 8

Horizontal

Binning 1 to 128

Vertical

Table 8.1: Speci�cations for the SensiCamHS CCD camera.

Lens WD .5X Adapter .67X Adapter 1X Adapter 2X Adapter

Attachment Low-High Low-High Low-High Low-High

0.25X 334 120.0-12.8 95.6-9.6 64.0-6.4 32.0-3.2

0.5X 160 64.0-6.4 47.8-4.8 32.0-3.2 16.0-1.6

0.75X 107 42.7-4.3 31.8-3.2 21.3-2.1 10.7-1.1

Table 8.2: Working distance (WD) (in mm) for the standard lens and various lens adapters

for TenX zoom system.

to 1000�s. The camera can record images at a rate of 10; 000; 000 images per second, and

has resolution of 640(H)�480(V ) pixels and a high ASA rating between 2; 500 and 6; 400.

Additional speci�cations for the camera are provided in Table 8.1.

The camera is operated through software which allows di�erent features of SensiCamHS

to be used easily. Optical lenses are used in conjunction with the camera to get images

of appropriate interrogation area on the liquid sheet. The lens system consists of a lens

attachment and adapters that give a wide range of working distance (WD, i.e.; distance

between object and the camera) and �eld of view. The zoom matrix for the TenX lens

system is provided in Table 8.2.

The digital images, once captured by the camera, are processed by using image analysis

software (ImagePro). ImagePro is versatile software which allows enhancement, noise
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reduction, and spatial measurements of the images. By using ImagePro, quantitative

estimates of the breakup characteristics of the liquid sheet can be obtained.

Figure 8.4 illustrates the arrangement used for taking pictures with the CCD camera.

Proper lighting is very important to achieve a good quality image of the breakup process

of the liquid sheet. Two halogen photo optic lamps (300 W rating) are used to get the

desired quality of lighting.

Computer
running IMAGE-PRO

External
Trigger

 CCD Camera

Lens
Adapter

Water Collector

Halogen Photo
Optic Lamp (300W)

Lamp

2-D Nozzle

Traversing Unit

Table

Traversing
Rail

Figure 8.4: Schematic of the arrangement used for taking pictures with CCD camera.

8.2.2 Phase-Doppler Particle Analyzer (PDPA)

The Aerometrics PDPA used for the experiment is a commercial particle sizing system

based on the phase-Doppler method [71]. This system is being used with con�dence by a

number of researchers in our laboratory to obtain droplet size and velocity distributions

in sprays [98, 99]. The schematic of the entire system is shown in Fig. 8.5. This is a two

component system which allows the exibility of measuring the diameter and velocity of

the droplets simultaneously. It consists of an argon ion laser, a beam separator and �bre

optic module, a transmitter, a receiver and photo-multipliers, a signal analyzer, and a PC
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Fibre Drive
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Probe Volume
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Test Section Cross−section

Photomultipliers

Signal Analyzer

Computer

Figure 8.5: Schematic of the PDPA system [99].

computer.

A water-cooled Coherent Inova 90 argon-ion laser is used to produce the desired laser

beam with an output power range of 250 mW to 2 W . Typical operating power used is

500 � 650 mW . The polarized laser beam is guided by the two steering mirrors into the

beam separator, where the beam splits into two beams. One of these beams passes through

a Bragg cell which shifts the frequency of the beam by 40 MHz. After the Bragg cell,

each beam splits again, which results into four beams - a pair of green (515 nm) and a

blue (488 nm) with a shifted beam per pair. All four beams are then launched into mode-

preserving �bres and sent into the transmitter module with coupling eÆciencies varying in

the range 30 % to 50 %.

The transmitter module consists of four �bre-optic terminators, collimating optics,
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removable beam expanding telescope, and focusing lens. The combination of these optic

devices produces the measuring or the probe volume by focusing all the four beams to a

common point in space. The receiver, which is also focussed at the same point, consists

of a receiving lens, a spatial �lter (slit), collimating optics, and a multi-mode, multi-�bre

cable termination. The image of the probe volume gets transmitted to the photo-multiplier

module consisting of four photo-multipliers. The control of the photo-multipliers and the

subsequent signal processing is done by the Doppler Signal Analyzer (DSA). By using

fast Fourier transform, DSA evaluates the frequency and the phase of the Doppler signal.

The entire system is controlled by Aerometrics software. Appendix E lists the optical

parameters and some typical settings used in the experiments for the Aerometrics PDPA

system.

8.3 Results and Discussions

The breakup characteristics and the breakup lengths of the liquid sheet are obtained by

using the high speed CCD camera for di�erent liquid and gas ow rates. Figure 8.6 shows

the breakup process of the liquid sheet produced by the planar nozzle for two di�erent air

ow rates. It is observed that at low air ow rate, i.e.; at low gas-to-liquid velocity ratio,

the breakup length is long. However, by increasing the air ow rate on both sides of the

liquid sheet, the breakup length decreases substantially. It is to be noted that the breakup

location is diÆcult to identify as the stretching and the shearing of the ligaments take

place over a certain distance before the droplets are produced. When the water ow rate is

increased, while keeping a low air ow rate, it is observed that the large momentum of the

liquid sheet tends to cause the breakup location to move further downstream of the nozzle,

as shown in Fig. 8.7a. The breakup region for this case is stretched over a few millimeters

and the large wave distortion at the breakup location becomes more obvious. However,

by increasing the gas-to-liquid velocity ratio, the momentum of the air tends to blast the

liquid sheet from both sides resulting in much shorter and distinct breakup location, as

observed in Fig. 8.7b.

The deformation of the liquid sheet near the breakup region can be observed by cap-

turing the side view of the liquid sheet. Figure 8.8 shows such breakup characteristics
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(a) (b)

Figure 8.6: Breakup of the liquid sheet from the planar nozzle with Red = 981:0 and

We = 6:7. (a) U` = 2:0 m=s;Ug = 27 m=s; (b) U` = 2:0 m=s;Ug = 93 m=s.
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(a) (b)

Figure 8.7: Breakup of the liquid sheet from the planar nozzle with Red = 1956:9 and

We = 26:5. (a) U` = 3:9 m=s;Ug = 40 m=s; (b) U` = 3:9 m=s;Ug = 93 m=s.
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of the liquid sheet for two di�erent ow conditions. It is found that initially the liquid

sheet remains undisturbed for some distance from the nozzle exit. Slowly the nonlinear

interaction of di�erent modes of disturbance becomes prominent, which eventually leads to

the breakup of the liquid sheet with large surface deformation near the breakup location.

However, with the increase in air ow rate, as shown in Fig. 8.8b, the large deformation

of the two interfaces are not prominent enough. The momentum of the increased air ow

tends to breakup the bulk liquid associated with the large surface deformation and carries

the liquid mass along with it to form droplets in the downstream section.

Figure 8.9 shows the quantitative variation of the breakup length with the air velocity

for di�erent values of liquid sheet velocities. It is observed that within the operating

conditions, at a given water ow rate, the breakup length decreases with the increase in

the atomizing air velocity. It is found that, for this planar nozzle, the di�erence in the

breakup lengths for di�erent liquid velocities is large at low air ow rates. It is also observed

that at a given air ow rate, the breakup length tends to increase with the increase in the

liquid ow rate.

Figure 8.10 shows the breakup characteristics of the liquid sheet produced by the PWC

nozzle. It is observed that the breakup length decreases with the increase in the air ow

rate. At high air ow rates, the breakup location is not well de�ned. It is to be noted that

the sheet thickness also changes with di�erent combinations of liquid and gas velocities.

In order to obtain the initial droplet size and velocity distributions, the PDPA mea-

surements need to be carried out in the immediate vicinity of the breakup location of the

liquid sheet. As observed from the images of the liquid sheet, the region near the breakup

point has large irregular droplets and often some stretched ligaments. Therefore, PDPA

measurements in this location often become diÆcult, if not impossible. Also, since the

PDPA only accounts for the spherical droplets, the validation rates of the measurements

are often low. Keeping these diÆculties in mind, attempts have been made to obtain

reasonable measurements as close as possible to the breakup location.

It is to be noted that there is an error of about 1 % in droplet velocity measurements

and an error of about 4 % associated with size measurements [98], except for small droplets

less than 10 �m, for which errors may be large. The PDPA system used in the experiments

is already calibrated and expected to have an error even less than 4 % for larger droplet
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(a) (b)

Figure 8.8: Side view of the liquid sheet breakup process from the planar nozzle. (a) U` =

2:0 m=s;Ug = 27 m=s;Red = 981:0 and We = 6:7; (b) U` = 6:9 m=s;Ug = 53 m=s;Red =

1956:9 and We = 81:5.
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Figure 8.9: Variation of the breakup length of the planar nozzle with the air velocity for

di�erent liquid velocities.

size measurements. However, the system errors are of secondary nature in comparison to

the error encountered due to the inability of the PDPA system to measure all the droplets

passing through its probe volume and hence giving rise to a validation rate of only around

60 %. Therefore, it is judicious to refrain from allocating error bars with the experimental

data obtained from the PDPA system.

Figure 8.11 shows the variation of the dimensional droplet size distribution of the planar

nozzle with the droplet diameter for Ug = 80 m=s and at two di�erent liquid velocities. It

is observed that at lower water ow rate, the population of droplets below 100 �m is large.

With the increase in the water ow rate, more large droplets are produced.

The dimensional droplet velocity distribution for the planar nozzle is shown in Fig. 8.12.

It is observed that at higher liquid ow rate, the population of droplets with low velocities

is large. However the number of droplets with high velocities is the same for both liquid

ow rates. The maximum droplet velocity is about 45 m=s. The spray produced by this

planar nozzle is usually coarse with large number of non-spherical particles. As a result,

the validation rate for the droplet size and velocity measurements is around 65 %.
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(a)

(b)

Figure 8.10: Breakup of the liquid sheet from the PWC nozzle. (a) U` = 3:9 m=s;Ug =

28 m=s;Red = 1021:8 and We = 21:5 ; (b) U` = 4:2 m=s;Ug = 42 m=s;Red = 1023:3 and

We = 23:3.
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Figure 8.11: Droplet size distribution of the planar nozzle for Ug = 80m=s and two di�erent

liquid velocities.
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Figure 8.12: Droplet velocity distribution of the planar nozzle for Ug = 80 m=s and two

di�erent liquid velocities.
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Figure 8.13: Droplet size distribution of the PWC nozzle for two di�erent ow conditions.

In case of the PWC nozzle, measurements near the breakup location are shown in

Figs. 8.13 and 8.14. The dimensional droplet size distribution in Fig. 8.13 shows that a

signi�cantly large number of small droplets are produced with the increase in the atomizing

air velocity. A good quality spray is produced by this nozzle and small droplets, less than

10 �m, are present in the spray. The sheet velocity is obtained by conducting PDPA

measurement close to the nozzle exit with measurement control volume near the edge of

the liquid sheet.

Figure 8.14 shows the dimensional droplet velocity distribution of the spray produced

by the PWC nozzle for two di�erent ow conditions. The velocity distributions are uni-

form with the peak shifting towards the higher velocity for the higher gas ow rate. The

maximum droplet velocities are 30 m=s for Ug = 42 m=s and 40 m=s for Ug = 56 m=s,

respectively. Since the spray is much uniform and �ne, a high validation rate, about

82 %, can be obtained for the droplet size and velocity measurements at the vicinity of the

breakup region.
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Figure 8.14: Droplet velocity distribution of the PWC nozzle for two di�erent ow condi-

tions.

8.4 Summary

The experiments are conducted for a planar research nozzle and an actual gas turbine

nozzle to obtain the breakup length and the initial droplet size and velocity distributions.

A high speed CCD camera is used to obtain the breakup characteristics of the liquid sheet.

It is found that the breakup length decreases with the increase in the gas phase velocity.

The droplet size and velocity distributions are obtained by using a two-component phase-

Doppler particle analyzer system. It is found that conducting measurements near the

breakup region of the spray is extremely diÆcult.



Chapter 9

Experimental Validation of the

Model

In the preceding chapters, the theoretical development of the spray model that incorporates

both the deterministic and the stochastic aspect of the spray has been discussed. For

speci�ed ow conditions at the nozzle exit, the spray model predicts the breakup length of

the liquid sheet and also the initial droplet size and velocity distributions of the subsequent

formed sprays. The experimental techniques for the model validation have been discussed in

Chapter 8. In the validation process, the quantities that need to have reasonable agreement

with their theoretical counterparts are the breakup length Lb and the initial droplet size

and velocity distributions.

For the veri�cation of the model, the planar research nozzle is �rst used, which produces

a 254 �m thick liquid sheet blasted on both sides by equal velocity gas streams. The geom-

etry of this nozzle matches well with the liquid sheet model used here. As a second step,

the model is validated against an annular research nozzle, which o�er a better simulation

of the real air-blast gas turbine nozzles. This annular nozzle also generates a 254 �m thick

liquid sheet, which is blasted by equal velocity of inner and outer gas streams. Finally, the

model is tested for the actual gas turbine nozzle provided by Pratt & Whitney Canada

(PWC nozzle).

126
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9.1 Comparison of Breakup Length

The spatial evolution of the two liquid-gas interfaces up to the breakup point is theoretically

obtained from the nonlinear instability analysis of the plane liquid sheet. This is veri�ed

with the experimental breakup length obtained from the CCD image of the plane liquid

sheet.

Figure 9.1 shows the comparison of the liquid sheet pro�les between the experiment and

the theoretical prediction for the planar nozzle. The water and air velocities are 2 m=s and

27 m=s, respectively, which corresponds to a Weber number of 6:7, gas-to-liquid velocity

ratio of 13:5 and gas-to-liquid density ratio of 1:202 � 10�3. Since, the wavenumber k is

needed for the model, it is assumed that the disturbance wavenumber corresponds to the

dominant wavenumber for the sinuous mode. The dominant wavenumber is then calculated

from Eq. (4.4) and is found to be 0:7041 for the speci�ed ow conditions. The experimental

breakup length, obtained from Fig. 9.1a, is around 20 mm. It is found that the theoretical

evolution of the liquid sheet matches well with the experimental result for �0 = 0:00008

and �s = �v = 0:5, with a breakup length Lb = 157 (or 20 mm). For a �xed value of �s,

the breakup length is obtained by using a trial and error method over a range of �0. As

observed earlier, the breakup length decreases with the increase in the value of �0.

It might appear from the side view of the liquid sheet that breakup occurs further

downstream. However, the front view of the liquid sheet clearly suggests that indeed the

liquid sheet breaks up much earlier and the ligament formation and their stretching cause

the interfaces to have large deformations, which are observed in the side view of the liquid

sheet. It is to be noted that the nonlinear instability analysis can predict the pro�les of

the two liquid gas interfaces till the breakup point. Therefore, the ligament formation and

the further stretching of the liquid sheet, as shown in Fig. 9.1a, is not observed for the

theoretical prediction.

Figure 9.2 shows the breakup process of the liquid sheet for a di�erent set of ow

conditions. Here, We = 14:9; U = 13:8; � = 1:202 � 10�3; k = 1:829; �0 = 0:0002 and

�s = �v = 0:5. The experimental breakup length is around 17 mm, and the breakup length

obtained from the model is Lb = 134 (or 17 mm). Even though the breakup length is more

or less the same as the previous case, the images of the two liquid sheets are di�erent. This

trend is also observed for the theoretical predictions, where the sheet pro�les in Figs. 9.1c
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(a)

(b)

0 5 10 15 20 25 30 35 40 (c)

Figure 9.1: Breakup process of the liquid sheet produced by the planar nozzle for U` =

2:0 m=s and Ug = 27 m=s. (a) Side view; (b) Front view; (c) Prediction (scale in mm).
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and 9.2c are di�erent.

With the increase in the liquid and the air ow rates, the breakup characteristics

of the liquid sheet also change, as shown in Fig. 9.3. Here We = 26:5; U = 13:6; � =

1:202 � 10�3; k = 3:356; �0 = 0:00009; �s = 0:7 and �v = 0:3. For this case, the mea-

sured breakup length is around 18 mm and the predicted breakup length is Lb = 142

(or 18 mm). In general, it is observed that the prediction of the breakup characteristics

for the planar nozzle is reasonable for the choices of the initial disturbance amplitude �0

around 0:00008 � 0:0002 and �s = 0:5 � 0:8. The breakup length Lb can be theoretically

estimated with reasonable accuracy, even though the sheet pro�les may not match with the

experiments. The matching of the breakup length is important, since its value is required

for the estimation of the di�erent source terms in the stochastic sub-model, which in turn

e�ect the �nal size and velocity distributions of the spray.

The present model is also veri�ed with the liquid sheet images taken by Berthoumieu

et al. [65] for a planar nozzle which generates a liquid sheet of 300 �m thick. In their

experiments, they used two CCD cameras, positioned perpendicular to one another, which

were synchronized in such a way that simultaneous images of the liquid sheet can be

obtained, as shown in Fig. 9.4a. Such images clearly shows the distinct breakup location of

the liquid sheet and as well as the large sheet deformation caused by the ligaments after the

breakup point, as stated earlier. The nozzle exit conditions are We = 23:7; U = 11:8; � =

1:202 � 10�3; k = 2:147; �0 = 0:001; �s = 0:8, and �v = 0:2. The theoretical breakup length

with these parameters is found to be 10 mm compared to the measured length of 11 mm.

The deformation of the sheet close to the breakup point matches well with the experiment.

So far the comparison of the breakup length has been done assuming that the wavenum-

ber of the disturbance on the liquid sheet interfaces corresponds to the dominant wavenum-

ber for the sinuous mode. Mansour & Chigier [20] conducted experimental investigation

of the breakup process of the plane liquid sheet where they are able to capture the fre-

quency of disturbance wave present on the liquid sheet. Figure 9.5a shows the breakup

characteristics of 254 �m thick liquid sheet obtained from a planar nozzle whose geometry

is similar to that of the research planar nozzle. They observed that under the given ow

conditions, the frequency of the disturbance wave on the liquid sheet is around 500 Hz and
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(a)

(b)

0 5 10 15 20 25 30 35 40 (c)

Figure 9.2: Breakup process of the liquid sheet produced by the planar nozzle for U` =

2:9 m=s and Ug = 40 m=s. (a) Side view; (b) Front view; (c) Prediction (scale in mm).
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(a)

(b)

0 5 10 15 20 25 30 35 40 (c)

Figure 9.3: Breakup process of the liquid sheet produced by the planar nozzle for U` =

3:9 m=s and Ug = 53 m=s. (a) Side view; (b) Front view; (c) Prediction (scale in mm).
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(a)

(b)

0 10 20 30 40

Figure 9.5: Breakup process of 274 �m thick plane liquid sheet for U` = 3:9 m=s and

Ug = 31 m=s. (a) Experiment [30]; (b) Prediction (scale in mm).
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Figure 9.6: Cross-section of the annular nozzle [101] (dimension in mm).

the breakup of the liquid sheet occurs at 17 mm downstream of the nozzle exit. In order

to match their results, the wavenumber corresponding to the measured frequency need to

be determined. The wavenumber can be obtained by solving the dispersion relation for

the growth rate, in terms of real and imaginary parts, provided by Li [11]. The imaginary

part of the growth rate is related to the disturbance frequency as 2� times the measured

frequency; the real part is same as that given in Eq. 4.4. Therefore, by using the dispersion

relation for We = 26:3; U = 7:9, and � = 1:202 � 10�3, the wavenumber corresponding to

500 Hz is found to be 0:0945. With this value of k, it is found that the breakup length of

18 mm can be predicted for the choices of �0 = 0:0002; �s = 0:8 and �v = 0:2. Hence, it is

found that the theoretical model can predict the breakup characteristics of the liquid sheet

with reasonable accuracy for the disturbance wavenumber di�erent from the dominant one.

As a next step, the theoretical model for the liquid sheet breakup process is veri�ed

with an annular nozzle, the cross-section of which is shown in Fig. 9.6. This nozzle also

produces a liquid sheet of 254 �m thick. Figure 9.7a shows the breakup process of the

liquid sheet produced by this annular nozzle for U` = 1:1 m=s and Ug = 14 m=s. The

breakup location is measured to be around 6 mm downstream of the nozzle exit. Similar to

the planar nozzle, there are distinct ligament formation and the buckling of the sheet after

the breakup location. Since, the geometry is annular, the theoretical pro�les are drawn for

the outer interface only with a spacing between the pro�les equal to the diameter of the

liquid sheet. For the theoretical prediction, following parameters are used: We = 2:0; U =

12:7; � = 1:202 � 10�3; k = 0:167; �0 = 0:001; �s = 0:4 and �v = 0:6. The breakup length
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Table 9.1: Typical parameters for the breakup length of the PWC nozzle. The half-sheet

thicknesses are Case I: a� = 93 �m, Case II: a� = 96 �m, Case III: a� = 69 �m and

Case IV: a� = 67 �m. The density ratio � = 1:202 � 10�3 for all cases.

Experiment Prediction

Case U` Ug L�
b

We U k �0 �s �v L�
b

(m=s) (m=s) (mm) (mm)

I 4:4 56 3 24:2 12:7 2:615 0:0003 0:6 0:4 3

II 4:2 42 7 23:3 10:0 1:360 0:0001 0:7 0:3 6

III 4:5 42 8 18:9 9:3 0:902 0:0001 0:7 0:3 8

IV 4:6 56 4 19:5 12:2 1:816 0:0003 0:6 0:4 4

tained from the PWC nozzle. However, as shown earlier in Fig. 8.10, the geometry of the

liquid sheet produced by this nozzle is quite di�erent than that of the plane liquid sheet.

Therefore, attempts are made to match the breakup length of the sheet, instead of the

evolution of the two interfaces of the liquid sheet. Table 9.1 shows di�erent parameters

that are used in the theoretical model to match the experimental breakup lengths. It is

observed that by varying the initial disturbance amplitude between 0:0001 � 0:0003 and

the value of �s between 0:6 � 0:7, a reasonable agreement with the experimental breakup

length is obtained. It is to be noted that the liquid velocity is obtained by measuring the

sheet velocity close to the nozzle exit by the PDPA system. Based on such sheet velocities,

the liquid sheet thickness is obtained by using conservation of mass for the known ow

rates. However, in order to validate the model more accurately, the actual sheet thickness

for the PWC nozzle need to be known by some experimental means.

9.2 Comparison of Droplet Size and Velocity Distri-

butions

The present theoretical model is able to predict the initial droplet size and velocity distri-

butions in sprays. Such distributions can be compared with the experimental distributions
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Table 9.2: Exit ow conditions for the planar nozzle with half-sheet thickness a� = 127 �m,

liquid density �` = 998 kg=m3, gas density �g = 1:2 kg=m3, dynamic viscosity �g =

1:8 � 10�5 kg=m:s and � = 0:073N=m.

Experiment Prediction

Case U` Ug We U k �0 �s �v

(m=s) (m=s)

I 1:0 93 1:7 93:0 11:736 0:0001 0:7 0:3

II 2:0 80 6:7 40:0 8:373 0:0002 0:6 0:4

III 1:0 80 1:7 80:0 8:589 0:0001 0:7 0:3

IV 2:0 93 6:7 46:5 11:462 0:0001 0:7 0:3

obtained from the PDPA system. The comparison is �rst provided for the planar nozzle,

followed by the annular nozzle and �nally for the actual gas turbine nozzle (PWC nozzle).

The planar nozzle matches well with the physical model, but it produces a coarse spray

and often large irregular droplets which are not suitable for measurement with a PDPA

system. Therefore, the nozzle can be operated within a small range of ow conditions

to obtain reasonable measurements, especially close to the breakup region, with a high

validation rate for the measured droplet size and velocity. Suchmeasurements are compared

with the theoretical distributions and their corresponding ow conditions at the nozzle

exit are provided in Table 9.2. For the speci�ed ow conditions at the nozzle exit, the

breakup length Lb, and the momentum and the energy source terms are obtained, with the

assumption that the mass source term is zero for the spray at room temperature. Table 9.3

shows the relevant parameters needed to obtain the droplet size and velocity distributions

in spray.

Figure 9.10 shows the comparison between the droplet size distribution obtained from

the PDPA measurement and the theoretical prediction for the conditions corresponding to

the Case I in Table 9.2. The PDPA measurement is obtained at a distance 5 mm from the

nozzle exit and at the center plane of the nozzle. The validation rate for the measured data

is about 65 %. It is observed that the theoretical distribution predicts more smaller droplets
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Table 9.3: Estimates of breakup length, nozzle constant and source terms for di�erent

nozzle exit conditions of the planar nozzle.

Experiment Prediction

Case L�
b

D30 L�
b

C �Smv
�Se

(mm) (�m) (mm)

I 3 96 2 1:0 0:4949 92:8999

II 6 131 5 1:2 0:2148 17:0404

III 3 112 3 1:0 0:4796 77:0317

IV 5 120 5 1:3 0:2582 23:9766

compared to the PDPA measurements. This may be related to the prior distribution f0,

for which a �D2 variation is assumed for smaller droplets. Also such di�erence in the

distributions may be due to the dynamic range of the photo-multipliers used in PDPA

system, which allows the detection of the large droplets by sacri�cing the smaller ones.

However, it is observed that the prediction matches well with the experimental data for

droplet diameters greater than 50 �m and the peak of the distribution curve also shows

reasonable agreement.

The velocity distribution corresponding to the Case I is shown in Fig. 9.11. It is

observed that the peak of the theoretical distribution is slightly shifted towards the larger

droplet velocity compared to the experimental distribution. However, there exist di�erences

between the prediction and the experiment for very small and large droplet velocities. This

is due to the fact that the maximumdroplet diameter, given by Eq. (7.42), used in obtaining

the velocity distribution is not accurate enough for very small and large droplet velocities.

It is also to be noted that the extremely small droplet velocities corresponds to droplet

diameters less than 1 �m, which are not signi�cant so far as the entire spray is concerned.

The comparisons between the experimental and the theoretical distributions corre-

sponding to the Case II are shown in Figs. 9.12-9.13. The PDPA measurements for this

case is conducted at the center plane located 8 mm downstream of the nozzle exit with

a validation rate of about 65 %. It is observed that for the droplet size distribution, the
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Figure 9.10: Comparison between the experimental and the theoretical droplet size distri-

bution for the planar nozzle (Case I).

prediction matches reasonably with the experimental data, except for droplet diameters

larger than 150 �m. The presence of such large number of droplets more than 200 �m

is always questionable and it might be due to the presence of irregular shaped droplets

near the breakup region of the liquid sheet. The velocity prediction matches well with the

experimental distribution, except the distribution peak being slightly shifted towards the

larger droplet velocity.

Figures 9.14-9.15 show the comparisons between the predicted droplet size and velocity

distributions with the experimental distributions corresponding to Case III for the planar

nozzle. The measurements are taken at the center plane located 5 mm downstream of the

nozzle exit with a validation rate of about 65 %. It is observed that for droplet diameters

less than 50 �m, the theoretical distribution over predicts due to the reasons discussed

earlier. The distribution shows a good agreement for droplet sizes larger than 50 �m. For

the droplet velocity distribution, it is observed that the distribution peak is shifted towards

the larger droplet velocity. It is also found that the distribution does not match well for

smaller droplet velocities, for which even the experimental data show some irregularities.
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Figure 9.11: Comparison between the experimental and the theoretical droplet velocity

distribution for the planar nozzle (Case I).
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Figure 9.12: Comparison between the experimental and the theoretical droplet size distri-

bution for the planar nozzle (Case II).

The theoretical and the experimental distributions corresponding to the Case IV for the

planar nozzle is illustrated in Figs. 9.16-9.17. The PDPA measurements are conducted at

the center plane located 8 mm downstream of the nozzle exit with a validation rate of about

65 %. In this case also, the presence of such large number of droplets greater than 200 �m

is questionable. The distribution peak for the droplet size matches reasonably and the

theoretical distribution again over predicts smaller droplet sizes. The velocity distribution

matches well with the experimental data, except the peak being shifted towards the larger

droplet velocity.

As a next step, the present model is compared with the initial droplet size and velocity

distributions obtained for the annular research nozzle [101], which produces a liquid sheet

of same thickness as that of the planar nozzle. The ow conditions at the nozzle exit for

two di�erent cases are listed in Table 9.4. For the annular nozzle also, there is a limited

range of operating ow conditions such that a good quality spray can be obtained. The

validation rate for the measured data is about 65 %. For the speci�ed ow conditions at
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Figure 9.13: Comparison between the experimental and the theoretical droplet velocity

distribution for the planar nozzle (Case II).

Table 9.4: Exit ow conditions for the annular nozzle with half-sheet thickness a� =

127 �m, liquid density �` = 998 kg=m3, gas density �g = 1:2 kg=m3, dynamic viscosity

�g = 1:8� 10�5 kg=m:s and � = 0:073N=m.

Experiment Prediction

Case U` Ug We U k �0 �s �v

(m=s) (m=s)

I 1:1 43 2:0 39:1 2:377 0:001 0:3 0:7

II 2:1 68 8:0 32:4 6:072 0:001 0:4 0:6
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Figure 9.14: Comparison between the experimental and the theoretical droplet size distri-

bution for the planar nozzle (Case III).

the nozzle exit, the breakup length Lb, and the momentum and the energy source terms

are obtained, with the assumption that the mass source term is zero for the spray at room

temperature. Table 9.5 shows the relevant parameters needed to obtain the droplet size

and velocity distributions in spray for the annular nozzle.

Figures 9.18-9.19 show the comparison between the theoretical and the experimental

distributions for the nozzle exit conditions corresponding to Case I. The PDPA measure-

ments are obtained at the center plane located 5 mm downstream of the nozzle exit with

a validation rate of about 65 %. It is observed that except for the smaller droplet diam-

eters, the prediction for the droplet size matches well with the experimental distribution.

The di�erence in the distributions for the smaller droplets can be attributed to the prior

distribution f0, which is based on the linear instability for the planar liquid sheet. The

prediction for the smaller droplets may be improved by using a prior distribution based

on this annular con�guration. In the case the droplet velocity distribution, the theoret-

ical distribution matches well with the experimental data, except for very small droplet

velocities. It is also observed that the distribution peaks match reasonably well.
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Figure 9.15: Comparison between the experimental and the theoretical droplet velocity

distribution for the planar nozzle (Case III).
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Figure 9.16: Comparison between the experimental and the theoretical droplet size distri-

bution for the planar nozzle (Case IV).
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Figure 9.17: Comparison between the experimental and the theoretical droplet velocity

distribution for the planar nozzle (Case IV).

Table 9.5: Estimates of breakup length, nozzle constant and source terms for di�erent

nozzle exit conditions of the annular nozzle.

Experiment Prediction

Case L�
b

D30 L�
b

C �Smv
�Se

(mm) (�m) (mm)

I 2 76 2 0:5 0:1146 8:9323

II 2 92 2 0:7 0:0936 5:7880
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Figure 9.18: Comparison between the experimental [101] and the theoretical droplet size

distribution for the annular nozzle (Case I).
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Figure 9.19: Comparison between the experimental [101] and the theoretical droplet ve-

locity distribution for the annular nozzle (Case I).
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Figure 9.20: Comparison between the experimental [101] and the theoretical droplet size

distribution for the annular nozzle (Case II).

The theoretical and the experimental distributions corresponding to Case II for the

annular nozzle is illustrated in Figs. 9.20-9.21. It is found that for the droplet size distri-

bution, the prediction matches well with the experimental data for diameters greater than

50 �m. The prediction deviates from the experimental distribution for smaller droplet

diameters, the reasons for which are discussed earlier. However, in the case of the droplet

velocity distribution, it is observed that the experimental distribution is very symmetric,

which is the typical velocity distribution for annular geometry [102]. Therefore, for this

case, the velocity distribution does not match well with the experimental counterpart near

the small and the larger droplet velocities. Still, it is found that the distribution peaks

match reasonably well. Hence, it can be concluded that even though the annular con�g-

uration is di�erent from the planar sheet geometry, the present model shows reasonable

agreement with the experimental data for the initial droplet size and velocity distributions.

Finally, the present model is compared with the actual gas turbine nozzle provided

by Pratt & Whitney Canada. Since this nozzle produces a good spray, a high validation
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Figure 9.21: Comparison between the experimental [101] and the theoretical droplet ve-

locity distribution for the annular nozzle (Case II).
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Table 9.6: Estimates of nozzle constant and source terms for di�erent nozzle exit conditions

of the PWC nozzle.

Experiment Prediction

Case D30 C �Smv
�Se

(�m)

I 41 0:4 3:6630 � 10�2 0:8571

II 47 0:3 3:2998 � 10�2 0:5847

III 52 0:4 4:7434 � 10�2 0:7865

IV 45 0:5 4:7434 � 10�2 0:7865

rate of about 80 % is obtained for the measured PDPA data. The di�erent nozzle exit

conditions for the PWC nozzle is provided in Table 9.1. The nozzle constants and the

source terms required for obtaining the corresponding theoretical distributions are provided

in Table 9.6. Figures 9.22-9.23 show the comparison between the theoretical and the

experimental distributions for the PWC nozzle corresponding to Case I. The measurements

are carried out at the center plane located 5 mm downstream from the nozzle exit. It is

observed that the droplet size distribution over predicts for smaller droplet diameters. This

may be due to the use of an over simpli�ed prior distribution f0 for this complex nozzle

con�guration. However, for droplet diameters greater than about 20 �m, the theoretical

prediction matches well with the experimental distribution. In the case of the velocity

distribution, it is observed that the prediction matches well, except close to smaller droplet

velocities.

The distributions corresponding to the Case II for the PWC nozzle is shown in Figs. 9.24-

9.25. The measurements are obtained at the center plane located 8 mm downstream of the

nozzle exit. For this case also, the droplet size distribution over predicts the small droplet

sizes. It is observed that the velocity distribution matches well with the experimental data

and also the distribution peaks agree well with each other.

Figures 9.26-9.27 shows the droplet size and velocity distributions, respectively, for the

nozzle exit conditions stated in Case III. The measurements are obtained at the center
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Figure 9.22: Comparison between the experimental and the theoretical droplet size distri-

bution for the PWC nozzle (Case I).

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

Droplet Velocity (m/s)

D
ro

pl
et

 V
el

oc
ity

 D
is

tr
ib

ut
io

n 
(s

/m
)

Experiment
Prediction

Figure 9.23: Comparison between the experimental and the theoretical droplet velocity

distribution for the PWC nozzle (Case I).



Experimental Validation 152

0 20 40 60 80 100 120 140
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Droplet Diameter (µ m)

D
ro

pl
et

 S
iz

e 
D

is
tr

ib
ut

io
n 

(µ
 m

−
1 )

Experiment
Prediction

Figure 9.24: Comparison between the experimental and the theoretical droplet size distri-

bution for the PWC nozzle (Case II).
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Figure 9.25: Comparison between the experimental and the theoretical droplet velocity

distribution for the PWC nozzle (Case II).
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Figure 9.26: Comparison between the experimental and the theoretical droplet size distri-

bution for the PWC nozzle (Case III).

plane located 10 mm downstream of the nozzle exit. It is observed that the droplet

size distribution over predicts even for larger droplet diameters. However, the velocity

distribution shows a good agreement with the experimental distribution.

The comparison of the theoretical and the experimental distributions corresponding

to the Case IV is presented in Figs. 9.28-9.29. The PDPA measurements are collected

at the center plane located 5 mm downstream of the nozzle exit. It is observed that the

distribution peak for the droplet size matches well with the experimental data. In case of

the velocity distribution, the theoretical distribution matches well with the experimental

distribution, except for small droplet velocities.

In order to use the initial droplet size and velocity distributions in a computer code

for CFD applications, often the cross correlation between the droplet diameter and the

droplet velocity is required. With such information, along with the knowledge of the

droplet trajectories, the users can specify the much needed \initial condition" for their

combustion codes. Figures 9.30-9.33 show the droplet velocity-diameter cross correlation

for the four cases of the PWC nozzle. A reasonably good agreement is observed between

the experimental data and the prediction, except for the larger droplet diameters. It is to
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Figure 9.27: Comparison between the experimental and the theoretical droplet velocity

distribution for the PWC nozzle (Case III).
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Figure 9.28: Comparison between the experimental and the theoretical droplet size distri-

bution for the PWC nozzle (Case IV).
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Figure 9.29: Comparison between the experimental and the theoretical droplet velocity

distribution for the PWC nozzle (Case IV).

be noted that the PDPA measurements for droplet velocities are accurate, but there are

errors associated in the size measurements, especially for the larger ones due to the droplet

deformation. This is evident in the experimental data where a large scatter is observed for

droplet diameters greater than 80 �m.

It is important to note that the critical breakup Weber number based on droplet diam-

eter (Wec), given in Eq. (7.40), is not a constant, rather it varies over a range, depending

upon the type of droplet breakup process [4]. In this thesis, the value for the critical

breakup Weber number is taken as 10. Figures 9.34-9.35 show the e�ect of the breakup

Weber number on the droplet-velocity correlation and the droplet size distribution for the

PWC nozzle corresponding to the Case IV. It is observed that by changing the critical

value from 5 to 20, the cross correlation changes, and appears to provide better agreement

for the larger droplet diameters when the critical Weber number is less than 10. However,

for the droplet size distribution, there is insigni�cant change in the distributions with the

variation of the critical breakup Weber number.

The above comparisons show that the present model can predict initial droplet size and
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Figure 9.30: Comparison between the experimental and the theoretical droplet velocity-

diameter correlation for the PWC nozzle (Case I).
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Figure 9.31: Comparison between the experimental and the theoretical droplet velocity-

diameter correlation for the PWC nozzle (Case II).
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Figure 9.32: Comparison between the experimental and the theoretical droplet velocity-

diameter correlation for the PWC nozzle (Case III).
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Figure 9.33: Comparison between the experimental and the theoretical droplet velocity-

diameter correlation for the PWC nozzle (Case IV).
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Figure 9.34: The e�ect of the critical breakup Weber number (Wec) on the droplet velocity-

diameter correlation for the PWC nozzle (Case IV).
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Figure 9.35: The e�ect of the critical breakup Weber number (Wec) on the droplet size

distribution for the PWC nozzle (Case IV).
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velocity distributions reasonably for the actual gas turbine nozzle. Even though the PWC

nozzle geometry is quite di�erent than the physical geometry used in the present model,

yet the performance of the present model is quite satisfactory.

9.3 Critical Review

As stated earlier, in order to obtain the initial droplet size and velocity distributions in

sprays, certain parameters are needed as inputs for the present theoretical model. These

inputs parameters are discussed below:

� Liquid and gas velocities (U` and Ug) - In most applications, the mass ow rates for

both the fuel and the atomizing gas are known from the measurements obtained by

calibrated ow meters. The gas phase velocity is relatively easier to calculate since

the geometries of the inner and the outer ow passages are known, as in the case of

the PWC nozzle. However, for the present model, it is assumed that the gas velocities

on both sides of the liquid sheet are equal, which may not necessarily be the case for

the actual nozzles. In case of the liquid velocity, the ow path is not always easily

determined, as in the case of the PWC nozzle. For such a complex geometry, one

has to rely on the measurement of the liquid sheet velocity close to the nozzle exit.

Once the velocities of both phases are known, then the gas-to-liquid velocity ratio U

can be readily calculated.

� Half-sheet thickness (a�) - The determination of half-sheet thickness is very important

as it e�ects the value of mass-mean diameter D30 and the operating Weber number

We. Ideally, the value of the sheet thickness should be provided as an input from

another model, which does the calculation for the half-sheet thickness a� within the

nozzle. However, in the absence of such a model, one can obtain the sheet thickness

by using the liquid sheet velocity and the mass ow rate, as done in the case of the

PWC nozzle.

� Nozzle constant (C) - This is a weak parameter in the model and it e�ects D30

signi�cantly. In the case of the planar nozzle it is found that typical value of C

ranges between 1:0 � 1:3, whereas for the annular and the PWC nozzle the ranges
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are 0:5� 0:7 and 0:3� 0:5, respectively. Such variation of the value of C for di�erent

nozzles is expected as this parameter depends on the nozzle geometry and also on

the spatial location in the spray. Therefore, an experimental value of the mass-mean

diameter is needed in order to obtain the accurate value of C, which in turn will

produce distributions representative of the actual spray.

� Initial disturbance amplitude (�0) - In practical applications, natural disturbances

are produced from a variety of sources. The amplitude of such disturbance can be

obtained experimentally, but it is not within the mandate of the research carried out

in this thesis. Current literature show that the initial disturbance amplitude for the

Rayleigh breakup of a circular liquid jet has been identi�ed. If similar experimental

e�orts are also directed towards the plane liquid sheets, it is possible to obtain a

value for �0, which can then be used in our present model. However, for the three

nozzle geometries studied here, the value of �0 is found to be within the range of

0:001� 0:00008, which is also a small parameter for the mathematical validity of the

nonlinear instability analysis presented here. The value of �0 a�ects the determination

of breakup length Lb, which in turn a�ects the evaluation of the di�erent source terms

needed in the model. In an actual spray, the breakup lengths are extremely small,

of the order of few millimeters, and hence its e�ect on the overall droplet size and

velocity distribution is not dramatic.

� Proportion of the modes (�s or �v) - This parameter is diÆcult to obtain experimen-

tally for practical sprays. In the present study, it is observed that for a given nozzle

geometry, the value of �s or �v is more or less constant. Its value a�ects the breakup

length and as discussed earlier, it will not have signi�cant impact on the overall spray.

� Physical properties - The determination of the physical properties are relatively easier

compared to the other input parameters discussed above. From the known physical

properties, the gas-to-liquid density ratio � can be calculated, which is an input to

the present model. However, diÆculties may arise in obtaining an accurate value for

the surface tension �, whose value sensitively depends on the concentration of surface

contaminants Surface contaminants may be always present for practical operation.
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Despite some shortcomings, the present theoretical model predicts the initial droplet

size and the velocity distributions reasonably well, even for the \real world" application

such as a gas turbine nozzle. Hence, this model can be applied in more adverse situa-

tions, such as a high pressure gas turbine application, where conducting reliable spray

measurements are very diÆcult.



Chapter 10

Conclusions and Recommendations

The breakup process of a plane liquid sheet in a co-owing gas stream has been studied

and a predictive model for the initial droplet size and velocity distributions in sprays

has been formulated. The characteristics of the breakup process and the initial droplet

size and velocity distributions have been experimentally investigated. Comparisons of the

theoretical predictions with the experimental measurements have also been performed.

10.1 Conclusions

The liquid sheet breakup process is investigated by using linear and nonlinear hydrody-

namic instability theories. The breakup characteristics of the liquid sheet are studied for

the initial sinuous and the varicose modes of disturbance. It is observed that the sheet

breakup occurs at half-wavelength intervals for an initial sinuous disturbance and at full-

wavelength interval for an initial varicose disturbance. It is also found that under certain

operating conditions, the breakup process is dictated by the initial varicose mode compare

to its sinuous counterpart. Further, the breakup process is studied for the combined mode

and it is found that indeed the breakup characteristics change. The breakup occurs at

half- or full-wavelength intervals, depending on the proportion of the individual sinuous

and varicose modes. In general, the breakup length decreases with the increase in the

Weber number, gas-to-liquid velocity and density ratios.

The predictive model for the spray formation incorporates both the deterministic and

162



Conclusions and Recommendations 163

the stochastic aspects of liquid atomization process. The deterministic aspect involves the

determination of the breakup length by means of hydrodynamic instability theory. The

stochastic aspect is described by statistical means through an application of the maximum

entropy principle based on Bayesian entropy. The two sub-models are coupled together

by the various source terms signifying the liquid-gas interaction and a prior distribution

which provides information regarding the unstable wave elements on the two liquid-gas

interfaces.

Experimental investigation of the breakup process of the liquid sheet produced by

a planar nozzle and an actual gas turbine nozzle is performed with a high speed CCD

camera. The droplet size and velocity distributions for these nozzles, near the breakup

region, are obtained by using a two-component phase-Doppler particle analyzer (PDPA)

system. Good agreement of the breakup length is obtained for the planar nozzle, the

annular nozzle, and the gas turbine nozzle. It is observed that a satisfactory agreement

of the predicted initial droplet size and velocity distributions is obtained for the planar

nozzle. The application of this theoretical model to di�erent geometries, like the annular

and the gas turbine nozzles, for the prediction of the droplet size and velocity distributions

also shows reasonable agreement with the measurements. Despite some shortcomings, the

present model can be utilized in obtaining the initial droplet size and velocity distributions

for a wide range of spray applications.

10.2 Recommendations

The breakup process of the liquid sheet can be investigated, in a similar manner, for an

annular geometry and further for the case with swirl in both the liquid and gas phases.

Such an analysis will closely resemble the actual air-blast nozzles used in gas turbine

applications. In the present nonlinear analysis, the liquid sheet thickness is assumed to

be constant. However, in the actual application, the sheet thickness tends to vary with

the distance from the nozzle exit. It will be interesting to study a variable thickness sheet

geometry, even from the linear instability stand point.

Regarding the predictive model for the initial droplet size and velocity distributions,

further attempts can be made to obtain a more accurate prior distribution for di�erent
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complex geometries based on the information from the linear and nonlinear instability

analyses. Modeling e�ort is needed in obtaining a relation between the droplet diameter

and the wavenumber greater than the cut-o� wavenumber. Also, an additional prior distri-

bution based on the droplet velocity can be coupled with the present prior distribution to

obtain a better agreement with the experimental measurements. Studies can be directed

towards a better formulation for the source terms for complex nozzle geometries.

The weakest parameter in the present model is the nozzle constant C. A better under-

standing of the droplet formation process is needed, which will provide a better modeling

for the mass-mean diameter D30. At present, calculation of D30 is based on the Rayleigh

breakup mechanism, which is too idealized for real sprays.

Finally, more experimental measurements need to be carried out for di�erent nozzle

geometries and their comparisons with the theoretical predictions to be done. This might

help in characterizing a particular type of nozzle for which a �xed combination of the nozzle

constant C, the initial disturbance amplitude �0 and the strength of the disturbance mode

(�s or �v) will produce optimum agreement with the experiment.



Appendix A

Constants for Sinuous Mode

A.1 Second-Order Solution

B2;s =
1

8
[4!22;s!

2
1;s sinh(k) cosh(k) cosh(2k) � 4k2�22;s sinh(k) cosh(k) cosh(2k)

�16k2�2;s�1;s sinh(2k) cosh(k)2 � 8k�1;s!
2
2;s sinh(k) cosh(k) cosh(2k)

+8k�1;s!
2
2;s sinh(2k) cosh(k)

2 + 4!22;s�
2
2;s sinh(2k) cosh(k)

2

+16k!21;s sinh(k) cosh(k) cosh(2k) + 32�22;s!
2
1;s sinh(2k) cosh(k)

2

�32�1;s!1;s sinh(k) cosh(k) cosh(2k) � 4�2;s!1;s sinh(2k) cosh(k)
2

�16�2;s�1;s!21;s sinh(2k) cosh(k)2 + 16�2;s�1;s!
2
1;s sinh(k) cosh(k) cosh(2k)

�4!22;s�21;s sinh(k) cosh(k) cosh(2k) + 4�22;s!
2
1;s sinh(k) cosh(k) cosh(2k)

�32k!21;s�2;s sinh(2k) cosh(k)2 + 32k!21;s�2;s sinh(k) cosh(k) cosh(2k)

�32k!21;s�1;s sinh(k) cosh(k) cosh(2k) � 16!41;s sinh(k) cosh(k) cosh(2k)

�4!22;s!21;s sinh(2k) cosh(k)2 + 32k!21;s�1;s sinh(2k) cosh(k)
2

+16�41;s sinh(2k) cosh(k)
2 � 4k2!21;s sinh(2k)

�4�22;s�21;s sinh(k) cosh(k) cosh(2k) � 32k�21;s�2;s sinh(2k) cosh(k)
2

+32k�21;s�2;s sinh(k) cosh(k) cosh(2k) + 4�22;s�
2
1;s sinh(2k) cosh(k)

2

�8k�1;s�22;s sinh(k) cosh(k) cosh(2k) + 16k2�21;s sinh(2k) cosh(k)
2
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�16k2�21;s sinh(k) cosh(k) cosh(2k) � 16�2;s�
3
1;s sinh(2k) cosh(k)

2

�16�41;s sinh(k) cosh(k) cosh(2k) + 16�2;s�
3
1;s sinh(k) cosh(k) cosh(2k)

+16k2�1;s�2;s sinh(k) cosh(k) cosh(2k) + 8k�1;s!
2
2;s sinh(2k) cosh(k)

2

+32k�31;s sinh(2k) cosh(k)
2 � 32k�31;s sinh(k) cosh(k) cosh(2k)

+4k2!22;s sinh(2k) cosh(k)
2 � 4k2!22;s sinh(k) cosh(k) cosh(2k)

�16k2!21;s sinh(2k) cosh(k)2 + 4k2�22;s sinh(2k) cosh(k)
2

+4�41;s sinh(2k)� 8k!21;s�2;s sinh(2k)� 8k�21;s�2;s sinh(2k)

+2k�1;s!
2
2;s sinh(2k) + 16!41;s sinh(2k) cosh(k)

2 + 8k!21;s�1;s sinh(2k)

�!22;s!21;s sinh(2k) + 4!41;s sinh(2k)� 4�1;s�2;s!
2
1;s sinh(2k)

+!22;s�
2
1;s sinh(2k) + 8�21;s!

2
1;s sinh(2k)� �22;s!

2
1;s sinh(2k)

+8k�31;s sinh(2k) + 4k2�21;s sinh(2k) � 4k2�2;s�1;s sinh(2k)

+2k�1;s�
2
2;s sinh(2k) � 4�2;s�

3
1;s sinh(2k) + k2�22;s sinh(2k)

+�22;s�
2
1;s sinh(2k) + k2!22;s sinh(2k)]=

[sinh(2k) cosh(k)2 (�42;s + 16�41;s � 32�2;s�
3
1;s � 8�32;s�1;s + 24�22;s�

2
1;s

�8!22;s!21;s + 8�22;s!
2
1;s � 32�2;s!

2
1;s�1;s + 8!22;s�

2
1;s + 32�21;s!

2
1;s

+16!41;s � 8�1;s�2;s!
2
2;s + 2�22;s!

2
2;s + !42;s )] (A.1)

C2;s = [�8k�1;s cosh(k)2 � 4�21;s cosh(k)
2 � 4k2 cosh(k)2

+coth(2k) tanh(k) cosh(k)2(4�21;s + 8k�1;s + 4k2)� 2k�1;s

�!21;s � k2 � �21;s ]=[�
2
2;s � 4�1;s�2;s + !22;s + 4�21;s ] cosh(k)

2 (A.2)

A2;s = �[B2;s + C2;s] (A.3)
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A.2 Third-Order Solution

S1 = tanh(k) coth(2k) (A.4)

S2 = tanh(3k) tanh(k) (A.5)

S3 = tanh(3k) coth(2k) (A.6)

S4 = tanh(3k) coth(2k) tanh(k) (A.7)

a31 = �+ tanh(3k) (A.8)

a32 = (3k)2�U2 + (3k)2 tanh(3k)� (3k)3

We
(A.9)

a33 = 3k[�+ tanh(3k)] (A.10)

B3;s = �A2;s[S2(�0:75k�1;s�2;s � 2:25k3 � 0:75k2�1;s�2;s + 0:75k�21;s � 0:75k�21;s

+0:75k!1;s!2;s + 3k2�1;s ) + S1(�1:5k3 � 0:75k2�2;s � 1:5k2�1;s � 0:75k�1;s�2;s

+0:75k!1;s!2;s ) + S3(�4:5k3 � 3:75k2�2;s � 1:5k2�1;s � 0:75k�22;s

+0:75k!22;s � 0:75k�1;s�2;s + 0:75k!1;s!2;s ) + 8:25k3 + 5:25k2�2;s + 6k2�1;s

�0:375k!22;s + 0:375k�22;s � 0:75k!21;s + 0:75k�21;s � 1:5Uk2�2;s

+1:5�Uk2�2;s + 0:375�k�22;s � 0:375k�!22;s + 1:5k�1;s�2;s

+0:75k��1;s�2;s � 2:25k!1;s!2;s ]=[a33� a31!
2
1;s � a31!

2
2;s

+a31�
2
1;s + a31�

2
2;s + 2a32�1;s + 2a32�2;s � 2a31!1;s!2;s + 2a31�1;s�2;s ] (A.11)

C3;s = �A2;s[S2(�0:75k�1;s�2;s � 2:25k3 � 0:75k2�1;s�2;s � 3k2�1;s + 0:75k!21;s

�0:75k�21;s � 0:75k!1;s!2;s ) + S1(�1:5k3 � 0:75k2�2;s � 1:5k2�1;s � 0:75k!1;s!2;s

�0:75k�1;s�2;s ) + 8:25k3 + 5:25k2�2;s � 6k2�1;s � 0:375k!22;s + 0:375k�22;s

�0:75k!21;s + 0:75k�21;s � 1:5Uk2�2;s + 1:5�Uk2�2;s + 0:375�k�22;s

�0:375�k!22;s + 1:5k�1;s�2;s + 0:75�k�1;s�2;s + 2:25k!2;s!1;s

+S3(�4:5k3 � 3:75k2�2;s � 1:5k2�1;s � 0:75k�22;s + 0:75k!22;s � 0:75k�1;s�2;s

�0:75k!2;s!1;s )]=[a33� a31!
2
1;s � a31!

2
2;s + a31�

2
1;s

+a31�
2
2;s + 2a32�1;s + 2a32�2;s + 2a31!2;s!1;s + 2a31�1;s�2;s ] (A.12)
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D3;s = �[tanh(3k)(�0:28125k4 � 5:625k3�1;s + 0:28125k2!21;s � 0:28125k�21;s )

+S4(1:125k
4 � 0:9375k2!21;s + 2:25k3�1;s + 1:125k2�21;s ) + tanh(k)(�1:5k4

+0:28125k2!21;s � 1:59375k2�21;s + 0:75k!21;s � 3k3�1;s ) + coth(2k)(0:375k4

+0:75k3�1;s � 0:375k2!21;s + 0:375k2�21;s ) + S3(�4:5B2;sk
3 � 9k2B2;s�1;s

+3:75kB2;s!
2
1;s � 4:5kB2;s�

2
1;s ) + S2(�4:5B2;sk

3 � 4:5B2;sk
2�1;s + 1:5kB2;s!

2
1;s

�2:25kB2;s�
2
1;s ) + S1(�1:5k3B2;s + 1:5kB2;s!

2
1;s )�

2:8125

We
k5 + 8:25k3B2;s

+0:75k2!21;s � 0:375k2�21;s � 0:375k3U�1;s + 0:375�k2�21;s � 0:1875�k2!21;s

+16:5k2B2;s�1;s + 6:75kB2;s�
2
1;s � 8:25kB2;s!

2
1;s + 3:75k3�U�1;s

�1:5Uk2B2;s�1;s + 1:5�Uk2B2;s�1;s + 1:5k�B2;s�
2
1;s � 1:5�kB2;s!

2
1;s ]

=[6a32 + a33 � 9a31!
2
1;s + 9a31�

2
1;s ] (A.13)

E3;s = �[C2;s(15k�
2
1;s + 4:5k3 + 34:5k2�1;s � 1:5k!21;s + 3k��21;s

�3Uk2�1;s + 3Uk2�1;s�) + S4(3:375k
4 � 0:5625k2!21;s + 6:75k3�1;s

+3:375k2�21;s ) + S2(�4:5k3C2;s � 4:5B2;sk
3 � 9C2;sk

2�1;s + 1:5kC2;s!
2
1;s

�4:5kC2;s�
2
1;s � 1:5kB2;s!

2
1;s � 4:5B2;sk

2�1;s � 2:25kB2;s�
2
1;s

+S3(�9C2;sk
3 � 4:5k3B2;s � 13:5k2C2;s�1;s + 1:5kB2;s!

2
1;s � 9kC2;s�

2
1;s

�9k2B2;s�1;s � 4:5kB2;s�
2
1;s ) + S1(�3k3C2;s � 0:75k3�1;s � 1:5k3B2;s

�6k2C2;s�1;s � 3kC2;s�
2
1;s � 1:5kB2;s!

2
1;s � 3k2B2;s�1;s � 1:5kB2;s�

2
1;s )

+B2;s(8:25k
3 + 3:75k!21;s + 16:5k2�1;s + 6:75k�21;s � 1:5Uk2�1;s

+1:5Uk2�1;s�+ 1:5k��21;s � 1:5k�!21;s ) + tanh(k)(�4:5k4
�4:78125k2�21;s � 9k3�1;s � 1:03125k2!21;s � 0:75kB2;s!

2
1;s )

+ tanh(3k)(�0:84375k4 + 0:09375k2!21;s � 1:6875k3�1;s )

+ coth(2k)(1:125k4 + 0:375k2!21;s + 1:5k3�1;s + 1:125k2�21;s )

�1:125k2�21;s + 0:375k2!21;s � 0:5625k2�!21;s + 1:125k2��21;s � 1:125k3U�1;s

+1:125k3U�1;s�� 0:84375

We
k5]=[a33+ 6a32�1;s � a31!

2
1;s + 9a31�

2
1;s ] (A.14)

A3;s = �[B3;s + C3;s +D3;s + E3;s] (A.15)
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Constants for Varicose Mode

B.1 Second-Order Solution

X1 = � 1

�+ coth(2k)
k[!21;v + (�1;v + k)2][0:25fcoth(k)2 � 1g

�f1� coth(k) coth(2k)g] (B.1)

X2 = � 0:5

�+ coth(2k)
k!1;v(�1;v + k)[5� coth(k)2 � 4 coth(2k) coth(k)] (B.2)

A1 = 4(�21;v!
2
1;v) + (!22;v + �22;v) (B.3)

A2 = 8�1;v!1;v (B.4)

B2;v =
4X2�2;v!1;v + 4X1�1;v�2;v +X1A1 +X2A2

A22 � 16!21;v�
2
2;v +A12 � 16�21;v�

2
2;v

(B.5)

C2;v =
�A2X1 + 4!1;v�2;vX1 +A1X2 � 4�1;v�2;vX2

A2
2 � 16!21;v�

2
2;v +B2

2;v � 16�21;v�
2
2;v

(B.6)

B1 = �k(�1;v + k)2f1� coth(k) coth(2k)g (B.7)

B2 = 0:25k[!21;v + (k + �1;v)
2][1� coth(k)2] (B.8)

D2;v = � B1 +B2

[4�21;v + (!22;v + �22;v)� 4�1;v�2;v][�+ coth(2k)]
(B.9)

A2;v = �[B2;v + C2;v +D2;v] (B.10)
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B.2 Third-Order Solution

b1 = 0:75kA2;v[coth(3k) coth(2k)f!22;v � 2k�2;v � 2�1;vk � �1;v�2;v � �22;v

��22;v � !1;v!2;vg+ coth(k) coth(2k)f!21;v
��1;v�2;v � !1;v!2;v � �2;vk � k�1;vg] (B.11)

b2 = A2;v[1:5k�1;v�2;v + 1:5k!1;v!2;v + 2:25�1;vk
2 + 0:75k2�2;v

�0:75k!22;v + 0:75k�22;v � 0:75k!21;v + 0:75k�21;v] (B.12)

b3 = �0:75k coth(k) coth(2k)A2;v[�1;v�2;v + 2�1;vk + k�2;v + 2k2!1;v!2;v] (B.13)

b4 = 0:75kA2;v[�1;v�2;v + 2�1;vk + k�2;v + 2k2 + !1;v!2;v] (B.14)

b5 = �0:75k2A2;v[coth(3k) coth(2k)f2�2;v + 6kg+ coth(3k) coth(k)

f3�1;v + 3kg � 3�2;v � 8k � 2�1;v] (B.15)

x3b = (b1 + b2 + b3 + b4 + b5)=[�+ coth(3k)] (B.16)

c1 = �0:75kA2;v[coth(3k) coth(2k)f�1;v!2;v + 2�2;v!2;v + 2!1;vk + 2k!2;v

+�2;v!1;vg+ coth(3k) coth(k)f!2;v�1;v + �2;v!1;v + !2;vk

+k!1;v + 2�1;v!1;vg] (B.17)

c2 = A2;vk[1:5�1;v!2;v + �2;v!1;v + k!1;v + !2;v�2;v + k!2;v + !1;v�1;v] (B.18)

c3 = �0:75kA2;v coth(2k) coth(k)[2!1;vk + k!2;v + �1;v!2;v + !1;v�2;v] (B.19)

c4 = 0:75kA2;v(2!1;vk + k!2;v + �1;v!2;v + !1;v�2;v] (B.20)

c5 = �0:75k2A2;v[2!2;v coth(3k) coth(k) + 3!1;v coth(3k) coth(k)

�3!2;v � 2!1;v] (B.21)

x3c = (c1 + c2 + c3 + c4 + c5)=[�+ coth(3k)] (B.22)

B3;v = f�x3c[2!1;v�1;v + 2!1;v�3;v + 2�2;v!2;v + 2�2;v!1;v + 2�1;v!2;v + 2�3;v!2;v]

�x3b[�!21;v + �21;v + !23;v + �23;v + 2�1;v�3;v � !22;v + 2�1;v�2;v + �22;v

+2�2;v�3;v � 2!1;v!2;v]g=[4�21;v!1;v!2;v + 2�21;v!
2
1;v � 6!21;v�

2
3;v � 2!21;v!

2
3;v

+2�21;v!
2
3;v � 2�21;v�

2
3;v + 2!23;v�

2
3;v + !41;v�

4
1;v + !43;v + �43;v � 4!1;v!2;v!

2
3;v

+4�1;v�2;v!
2
3;v + 2�21;v!

2
2;v + 2�22;v!

2
2;v + 2�22;v!

2
1;v � 6�23;v!

2
2;v + 4!31;v!2;v

+6!21;v!
2
2;v + 4!1;v!

3
2;v � 2!22;v!

2
3;v + 4�31;v�2;v + 6�21;v�

2
2;v + 4�1;v�

3
2;v

+2�22;v!
2
3;v � 2�22;v�

2
3;v + 4�1;v!

2
1;v�2;v + 4�1;v!

2
2;v�2;v + 4�22;v!1;v!2;v
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�12!1;v�23;v!2;v � 4�1;v�2;v�
2
3;v + !42;v + �42;v + 8�1;v!1;v�2;v!2;v] (B.23)

C3;v = f�x3c[�23;v � 2�1;v�3;v � 2�3;v�2;v � !21;v � 2!2;v!1;v + �21;v � !22;v

+2�1;v�2;v + !23;v + �22;v]� x3b[2�3;v!1;v + 2�3;v!2;v � 2�1;v!1;v � 2�2;v!1;v

�2�1;v!2;v � 2�2;v!2;v]g=[4�21;v!1;v!2;v + 2�21;v!
2
1;v � 6!21;v�

2
3;v � 2!21;v!

2
3;v

+2�21;v!
2
3;v � 2�21;v�

2
3;v + 2!23;v�

2
3;v + !41;v + �41;v + !43;v + �43;v � 4!1;v!2;v!

2
3;v

+4�1;v�2;v!
2
3;v + 2�21;v!

2
2;v + 2�22;v!

2
2;v + 2�22;v!

2
1;v � 6�23;v!

2
2;v + 4!31;v!2;v

+6!21;v!
2
2;v + 4!1;v!

3
2;v � 2!22;v!

2
3;v + 4�31;v�2;v + 6�21;v�

2
2;v + 4�1;v�

3
2;v

+2�22;v!
2
3;v � 2�22;v�

2
3;v + 4�1;v�2;v!

2
2;v + 4�22;v!1;v!2;v � 12!1;v�

2
3;v!2;v

�4�1;v�2;v�23;v + !42;v + �42;v + 8�1;v�2;v!1;v!2;v] (B.24)

d1 = �0:1875k[coth(3k) coth(2k)f!1;v�1;vC2;v + 8!1;vkC2;v � 20�1;v!1;vC2;v

+115�21;vB2;vg+ coth(3k) coth(k)f8C2;v!1;v�1;v + 4C2;v!1;vkg] (B.25)

d2 = 0:046875k[coth(k)f5!21;vk � 9�1;vk
2 � 9�21;vkg � 32!21;vB2;v � 16B2;v�1;v

�64C2;v�1;v!1;v + 48kC2;v!1;v + 16�21;vB2;v] (B.26)

d3 = �3 coth(2k) coth(k)k�1;v!1;vC2;v (B.27)

d4 = 0:046875k[coth(k)f�12�1;vk2 � 6k3 � 3!21;vk � 5�21;vkg � 16�21;vB2;v

+64C2;v�1;v!1;v + 16B2;v�1;v] (B.28)

d5 = �0:046875k2[coth(3k) coth(2k)f64C2;v!1;v � 32B2;v�1;vg
�48C2;v!1;v coth(3k) coth(k)� coth(3k)f�3�1;vk � 3k2g
+coth(k)fk�1;v + k2g � 64C2;v!1;v] (B.29)

d6 = �0:0703125 k5

We
(B.30)

x3d = (d1 + d2 + d3 + d4 + d5 + d6)=[�+ coth(3k)] (B.31)

e1 = 0:375k[3k�1;v!1;v coth(3k) coth(2k) coth(k) + coth(3k) coth(2k)f3k2!1;v
�3k!1;v�1;v + 12!21;vC2;v + 2k�1;vC2;vg+ coth(3k) coth(k)f2C2;v�1;vk

�8B2;v�1;v!1;v + 2C2;v�
2
1;v + 6C2;v!

2
1;vg] (B.32)

e2 = �0:1875k[coth(k)f�!1;vk2 + 8!1;vk�1;vg � 12C2;v�
2
1;v � 4B2;v�1;v!1;v
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+12C2;v�1;vk + 36C2;v!
2
1;v] (B.33)

e3 =
0:375k cosh(k) coth(2k)

cosh(k)2 � 1
[sinh(k)f4C2;v!

2
1;v � 4k2C2;v + 4C2;v�

2
1;vg

+cosh(k)f!21;vk � !1;vk
2g] (B.34)

e4 = �0:1875k[coth(k)f2!21;vk � !1;vk
2 + !1;vk�1;vg

+8C2;v!
2
1;v � 8k2C2;v + 8C2;v�

2
1;v] (B.35)

e5 = �0:046875k2[coth(3k) coth(2k) coth(k)f24k!1;v � 24!1;vg
+coth(3k) coth(k)f�64C2;v�1;v � 32B2;v!1;v + 96kC2;vg
+coth(3k) coth(k)f49C2;vk + 48C2;v�1;v �B2;v!1;vg+ 12k!1;v coth(3k)

�4!1;vk coth(k) + 32B2;v!1;v + 96C2;v�1;v � 96kC2;v] (B.36)

x3e = (e1 + e2 + e3 + e4 + e5)=[� + coth(3k)] (B.37)

D3;v = f�x3d[2�1;v�3;v � 9!21;v + �21;v + !23;v + �23;v]� x3e[6�1;v!1;v + 3!1;v�3;v]g
=[18�21;v!

2
1;v � 27!21;v�

2
3;v + 81!41;v + �41;v + !43;v + �43;v � 18!21;v!

2
3;v

+2�21;v!
2
3;v � 2�21;v�

2
3;v + 2!23;v�

2
3;v] (B.38)

E3;v = f�x3d[3�3;v!1;v � 6�1;v!1;v]� x3e[�
2
3;v � 2�3;v�1;v + �21;v � 9!21;v + !23;v]g

=[18�21;v!
2
1;v � 27!21;v�

2
3;v + 18!41;v + �41;v + !43;v + �43;v18!

2
1;v!

2
3;v

+2�21;v!
2
3;v � 2�21;v�

2
3;v + 2!23;v�

2
3;v] (B.39)

f1 = 0:09375k[coth(3k) coth(2k)f48B2;v!
2
1;v � 48kB2;v�1;v � 48�21;vB2;v

�8�1;vkC2;vg+ coth(3k) coth(2k) coth(k)f�20k!21;v + 36k�21;v

+24�1;vk
2g+ coth(3k) coth(k)f�24B2;v�1;vk + 24B2;v!

2
1;v � 24B2;v�

2
1;vg

+coth(3k)f5k!21;v � 9k�21;vg] (B.40)

f2 = �0:09375k[coth(k)f21�1;vk2 � 5k!21;v + 17k�21;vg � 72kB2;v�1;v

�144�1;vkD2;v � 144�21;vD2;v + 10k�21;v + 16D2;v!
2
1;v + 2k!21;v + 6�1;vk

2

�72�21;vB2;v + 56B2;v!
2
1;v] (B.41)

f3 = �0:09375k cosh(k)

cosh(k)2 � 1
[� coth(2k) cosh(k)f�12k3 � 4k!21;v

�12k�21;v � 24�1;vk
2g+ coth(2k) sinh(k)f64�1;vkD2;v + 32�21;vD2;v

+32k2D2;v + 16k2B2;v + 32k�1;vB2;v + 16�21;vB2;v � 16B2;v!
2
1;vg

+sinh(k)f11k3 + 4k!1; v2 + 12k�21;v + 24k2�1;vg] (B.42)
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f4 = 0:046875k[coth(k)f�19k3 � 18k�21;v � 36�1;vk
2 � 6k!21;vg

�32B2;v!
2
1;v + 64�21;vD2;v + 32k2B2;v + 64k2D2;v + 32�21;vB2;v

+128�1;vkD2;v + 64kB2;v�1;v] (B.43)

f5 = �0:046875k2[coth(3k) coth(2k) coth(k)f�72k�1;v � 72k2g
+coth(3k) coth(2k)f192kD2;v + 64B2;v�1;v + 96kB2;v + 64C2;v!1;v

+128D2;v�1;vg+ coth(3k) coth(k)f48B2;v�1;v + 48B2;vk

+96D2;v�1;v + 96D2;vkg+ coth(3k)f15�1;vk + 15k2g+ coth(k)f51k�1;v
+36k2g � 128kB2;v � 256kD2;v � 128B2;v�1;v � 256D2;v�1;v] (B.44)

f6 = 0:6328125
k5

We
(B.45)

x3f = (f1 + f2 + f3 + f4 + f5 + f6)=[� + coth(3k)] (B.46)

g1 = �0:09375k[�24k!1;v�1;v coth(3k) coth(2k) coth(k)
+ coth(3k) coth(2k)f32!1;vkD2;v + 16!1;vkB2;v + 32!1;vD2;v�1;v

+64B2;v!1;v�1;v � 8C2;v!
2
1;v � 12k2!1;vg+ coth(3k) coth(k)f64D2;v!1;v�1;v

+8B2;v!1;vk + 16D2;vk!1;v � 16B2;v�1;v!1;v + 4C2;v�
2
1;v + 8C2;v!

2
1;vg

+coth(3k)f3k2!1;v + 6k!1;v�1;vg] (B.47)

g2 = �0:09375k!1;v [coth(k)f9k2 + 10k�1;vg+ 8k�1;v � 32C2;v!1;v

�96D2;v�1;v � 48B2;v�1;v � 48D2;vk � 24B2;vk] (B.48)

g3 =
0:75k!1;v cosh(k)

cosh(k)2 � 1
[coth(2k)f�4D2;v�1;v � 4D2;vkg

+coth(2k) cosh(k)fk�1;v + k2g+ sinh(k)f�k2 � k�1;vg] (B.49)

g4 = �0:1875k!1;v [coth(k)f3k�1;v + 3k2g � 16D2;v�1;v � 16D2;vk] (B.50)

g5 = 0:001875k2[600k!1;v coth(3k) coth(2k) coth(k)

+ coth(3k) coth(2k)f�1600B2;v!1;v � 800C2;v�1;vg
+coth(3k) coth(k)f�2400D2;v!1;v + 1200B2;v!1;vg
+coth(3k)f�125k!1;v � 119!1;vkg+ 1600B2;v!1;v + 1600D2;v!1;v] (B.51)

x3g = (g1 + g2 + g3 + g4 + g5)=[�+ coth(3k)] (B.52)

F3;v = f�x3f [�!21;v + !23;v + 6�1;v�3;v + 9�21;v + �23;v]� x3g[6�1;v!1;v + 2!1;v�3;v]g
=[18�21;v!

2
1;v � 6!21;v�

2
3;v + !41;v + 81�41;v + !43;v + �43;v � 2!21;v!

2
3;v
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+18�1;v!
2
3;v � 18�21;v�

2
3;v + 2!23;v�

2
3;v] (B.53)

G3;v = f�x3f [2�3;v!1;v � 6�1;v!1;v]� x3g[�
2
3;v � 6�3;v�1;v + !23;v � !21;v + 9�21;v]g

=[18�21;v!
2
1;v � 6!21;v�

2
3;v + !41;v + 81�41;v + !43;v + �43;v � 2!21;v!

2
3;v

+18�21;v!
2
3;v � 18�21;v�

2
3;v + 2!23;v�

2
3;v] (B.54)

A3;v = �[B3;v + C3;v +D3;v + E3;v + F3;v +G3;v] (B.55)



Appendix C

Constants for Combined Mode

C.1 Second-Order Solution

a1 = � + coth(2k) (C.1)

b1 = (2k)2U2�+ (2k)2 coth(2k) � (2k)3

We
(C.2)

c1 = 2kU� + 2k coth(2k) (C.3)

T =
1

4
� 3

4 cosh(k)2
+

1

2 cosh(k)4
(C.4)

B2;c = 0:5k�s�v�[!
2
1;s � !21;v � �21;s + �21;v]� 0:5k cosh(2k)2�s�v[!

2
1;s � �21;s + cosh(k)2�21;v

+�1;vkfcosh(k)2 � 1g � cosh(k)2!21;v + �1;skfcosh(k)2 � 1g+ !1;s!1;vf1� cosh(k)2g

+�1;s�1;vfcosh(k)2 � 1g] + k�s�v�Uk
2(�1;v � �1;s)�

1� 0:5 cosh(k)2 � 0:5
cosh(k)2

1 � cosh(k)2
k�s�v[k

2

��1;s�1;v + !1;s!1;v]� 0:5�s�vk�[!
2
1;s � !21;v + �21;v � �21;s]

��s�v coth(2k) coth(k)[k2T (!1;s + !1;v) + 0:5k!1;v(!1;s + !1;v) + k�1;sT (�1;s + �1;v)

�k2T (�1;s + �1;v)� 0:5k�1;v(�1;s + �1;v)]� k2�s�v�U(�1;v � �1;s)

�2k2 coth(2k) coth(k)�s�v[T�1;s � kT � 0:5�1;v]

=[a1f(!1;s + !1;v)
2 � (�1;s + �1;v)

2g � b1 � 2c1(�1;s + �1;v)] (C.5)
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C2;c = 0:5k�s�v�[!
2
1;s � !21;v � �21;s + �21;v]� 0:5k cosh(2k)2�s�v[!

2
1;s � �21;s + cosh(k)2�21;v

+�1;vkfcosh(k)2 � 1g � cosh(k)2!21;v + �1;skfcosh(k)2 � 1g+ !1;s!1;vf1� cosh(k)2g

+�1;s�1;vfcosh(k)2 � 1g] + k�s�v�Uk
2(�1;v � �1;s)�

1� 0:5 cosh(k)2 � 0:5
cosh(k)2

1 � cosh(k)2
k�s�v[k

2

��1;s�1;v + !1;s!1;v]� 0:5�s�vk�[!
2
1;s � !21;v + �21;v � �21;s]

��s�v coth(2k) coth(k)[k2T (!1;s + !1;v) + 0:5k!1;v(!1;s + !1;v) + k�1;sT (�1;s + �1;v)

�k2T (�1;s + �1;v)� 0:5k�1;v(�1;s + �1;v)]� k2�s�v�U(�1;v � �1;s)

�2k2 coth(2k) coth(k)�s�v[T�1;s � kT � 0:5�1;v]

=[a1f(!1;s � !1;v)
2 � (�1;s + �1;v)

2g � b1 � 2c1(�1;s + �1;v)] (C.6)

X1 = k�2
v
�[�!21;v + �21;v + �1;vUk]� k�2

v
[�!21;v + �1;vk + �21;v]

+�2
v
k2�U [Uk + �1;v]� k

1 � cosh(k)2
�2
v
[k2f3

4
� cosh(k)2g+ �1;vkf1

2
� cosh(k)2g

�1

4
�21;v +

1

4
!21;v]� ��2

v
k[�21;v � !21;v]� coth(2k) coth(k)�2

v
k[!21;v � �21;v]

�k2�2
v
U� + k2 coth(2k) coth(k)(�1;v + k)�2

v
=[a1f4!21;v � 4�21;vg � b1 � 4�1;vc1] (C.7)

X2 = 2k��2
v
[!1;v�1;v + 0:5!1;vUk]� 2k�2

v
[!1;v�1;v + 0:5!1;vk) + k��2

v
!1;vUk

� k�2
v

cosh(k)4(1 � cosh(k)2)
[�k!1;v cosh(k)6 � 0:5!1;v�1;v cosh(k)

4

+0:5!1;vk cosh(k)
4]� ��2

v
[k!1;vf�1;v + Ukg+ k!1;v�1;v]

+ coth(2k) coth(k)k!1;v�
2
v
(�1;v + k)� �kU�2

v
!1;v (C.8)

D2;c = �
a1�

2
1;vX1 + a1!1;v�1;vX2 � a1!

2
1;vX1 � c1�1;vX1 + b1X1 � c1!1;vX2

4(a21�
4
1;v � a21�

2
1;v!

2
1;v + a1�

2
1;vb1 + a21!

4
1;v � a1!

2
1;vb1 + b21 � c21�

2
1;v � c21!

2
1;v)

(C.9)

E2;c = � a1�
2
1;vX2 � a1!

2
1;vX2 + c1�1;vX2 � !1;va1�1;vX1 � c1!1;vX1

4(a21�
4
1;v � a21�

2
1;v!

2
1;v + a1�

2
1;vb1 + a21!

4
1;v � a1!

2
1;vb1 + b21 � c21�

2
1;v � c21!

2
1;v)
(C.10)

F2;c = �2
s
k�[!21;s � �21;s � �1;sUk]� k�2

s

cosh(k)2
[!21;s � �21;s � �1;sk]

��2
s
Uk2�[Uk + �1;s]� k

1 � cosh(k)2
�2
s
[!21;sf

1

4 cosh(k)4
+
1

2
cosh(k)2 � 1

2
g

�k2f 1

2 cosh(k)4
+

1

cosh(k)2
+
1

4
cosh(k)2 � 3

2
g � 1

2
k�1;sf 1

cosh(k)4
+ cosh(k)2g

+�21;sf
1

2
� 1

4 cosh(k)4
� 1

4
cosh(k)2g]� ��2

s
k[!21;s � �1;s(�1;s + Uk)]
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�2 coth(2k) coth(k)�2
s
kT [�!21;s + �21;s + �1;sk] + k2�2

s
�U(�1;s + Uk)

�2k2 coth(k) coth(2k)�2
s
T [�1;s + k]=[4a1(!

2
1;s � �21;s)� b1 � 4c1�1;s] (C.11)

G2;c = k��2
v
[�21;v + �1;vUk]� k�2

v
[�1;vk + �21;v] + Uk2�2

v
�[Uk + �1;v]

� k

1� cosh(k)2
�2
v
[�1

4
!21;v + k2f3

4
� cosh(k)2g � 1

4
�21;v + �1;vkf1

2
� cosh(k)2g]

�k�2
v
��1;v(�1;v + Uk) + coth(2k) coth(k)�2

v
k�1;v(�1;v + k)� k2U��2

v
(�1;v + Uk)

�k2 coth(2k) coth(k)�2
v
(�1;v + k)=[�4a1�21;v � b1 � 4c1�1;v] (C.12)

H2;c = �k�2s�[�1;sUk + �21;s] +
k�2

s

cosh(k)2
[�1;sk + �21;s]� �2

s
k2U�[Uk + �1;s]

� k

1� cosh(k)2
�2
s
[!21;sf

1

2
� 1

4 cosh(k)4
� 1

2
cosh(k)2g � k2f 1

2 cosh(k)4
+

1

cosh(k)2

�3

2
+
1

4
cosh(k)2g � 1

2
k�1;sfcosh(k)2 + 1

cosh(k)4
g+ �21;sf

1

2
� 1

4 cosh(k)4
� 1

4
cosh(k)2g]

+k��2
s
�1;s(�1;s + Uk)� 2kT coth(2k) coth(k)�2

s
[�21;s + k�1;s] + k2��2

s
U(�1;s + Uk)

�2k2 coth(2k) coth(k)�2
s
T (�1;s + k)=[�4a1!21;s � b1 � 4c1�1;s] (C.13)

A2;c = �[B2;c + C2;c +D2;c + E2;c + F2;c +G2;c +H2;c] (C.14)
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C.2 Third-Order Solution

a2 = �+ tanh(3k) (C.15)

b2 = (3k)2U2�+ (3k)2 tanh(3k) � (3k)3

We
(C.16)

c2 = 3kU� + 3k tanh(3k) (C.17)

a3 = �+ coth(3k) (C.18)

b3 = (3k)2U2�+ (3k)2 coth(3k)� (3k)3

We
(C.19)

c3 = 3kU� + 3k coth(3k) (C.20)

B3;c;s = f��[0:25�s�1;sA2;c�2;s + 0:25�s�1;sUkA2;c + 0:25�s!1;s!2;sA2;c +
1

8
�s!

2
1;sA2;c

�5

8
�s�

2
1;sA2;c � 3

8
�s�1;sUkA2;c +

1

8
�s�2;sUkA2;c +

1

8
�s!

2
2;sA2;c

�1

8
�s�

2
2;sA2;c] +

0:25

cosh(k)3 sinh(k)
[�0:5�s!22;sA2;c + �s!2;skA2;c +

1

2
�s�

2
2;sA2;c

�1

2
�sk�2;sA2;c]� 0:25�sk�2;sA2;c + 0:5�skU�1;sA2;c + 0:5�sU

2k2A2;c

+0:25�s�1;s�2;sA2;c � 0:25�s!1;s!2;sA2;c + 0:25�sUk�2;sA2;cg
=[a2f(!1;s + !2;s)

2 � (�1;s + �2;s)
2g � b2 � 2c2(�1;s + �2;s)] (C.21)

C3;c;s = f��[0:25�s�1;sA2;c�2;s + 0:25�s�1;sUkA2;c � 0:25�s!1;s!2;sA2;c +
3

8
�s!

2
1;sA2;c

�5

8
�s�

2
1;sA2;c +

1

8
�s�1;sUkA2;c +

1

8
�s�2;sUkA2;c � 1

8
�s!

2
2;sA2;c

�1

8
�s�

2
2;sA2;c] +

0:25

cosh(k)3 sinh(k)
[�0:5�s!22;sA2;c + �s!2;skA2;c � 1

2
�s�

2
2;sA2;c

�1

2
�sk�2;sA2;c]� 2:25�sUk

2A2;c � 0:75�sk�2;sA2;c � 0:75�sk�1;sg
=[a2f(!1;s � !2;s)

2 � (�1;s + �2;s)
2g � b2 � 2c2(�1;s + �2;s)] (C.22)

D3;c;s = f��[3
8
�3
s
!1;sk�1;s +

1

2
�s!

2
1;sF2;c +

1

2
�s�

2
1;sH2;c � 1

16
�3
s
�21;sk �

5

8
�s�

2
1;sF2;c

+
1

8
�s!

2
1;sH2;c � 2

3
�s�1;sUkH2;c +

1

8
�s!1;sUkH2;c +

5

8
�s!1;sUkF2;c

� 1

16
�3
s
�1;sk

2U � 1

2
�s�1;sUkF2;c +

1

16
�3
s
�21;sk �

1

16
�3
s
!21;sk]

+
0:25

cosh(k)3 sinh(k)
[
1

4
�3
s
�21;sk +

1

4
�3
s
!1;s�1;sk +

3

8
�3
s
!1;sk
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CoeÆcients in the MEP formulation
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Appendix E

Aerometrics PDPA system

Table E.1: Aerometrics PDPA system optical parameters used in the experiment.

Planar Nozzle PWC Nozzle

Laser

Coherent Inova 90 water-cooled argon

ion laser

300 mW 300 mW

Transmitting Optics

Beam expanding telescope ratio 0.5:1 1:1

Beam separation 10 mm 20 mm

Transmitting lens focal length 500 mm 250 mm

Receiving Optics

Receiving lens focal length 300 mm 300 mm

Lens diameter 72 mm (f/4.2) 72 mm (f/4.2)

Spatial �lter slit width 500 �m 150 �m

Collimating lens focal length 250 mm 250 mm

Magni�cation 0.833 0.833

Orientation 30Æ 30Æ
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Table E.2: Aerometrics PDPA system settings
Parameter Description Range Typical Value

Planar Nozzle PWC nozzle

Hight Voltage Photo-multiplier voltage. 188� 900 V 375� 400 V 500� 600 V

Frequency Shift Frequency shift applied to

beams.

40 MHz or OFF 40 MHz 40 MHz

DC O�set DC bias in raw signal. -75 to +75 mV � 57 mV � 69 mV

Mixer Frequency Frequency subtracted from

observed Doppler frequency.

30� 45 MHz 39� 42 MHz 39� 41 MHz

Low Pass Low pass �lter setting ap-

plied to down-mixed signal.

0:5� 80 MHz 5:0 MHz 20 MHz

Burst Filter Filter applied to raw signal. 40 MHZ B.P. 50 MHZ 50 MHZ

10 MHZ or

50 MHZ L.P.

Threshold Minimum RMS trigger volt-

age required to trigger sys-

tem.

0� 500 mV 22� 40 mV 30� 47 mV

Envelope Filter Minimum time that thresh-

old must be exceeded to trig-

ger.

0� 3 �s 3 �s 3 �s

% After Peak Selects % of processed sig-

nal that occurs after peak de-

tection (50 % corresponds to

signal peak).

0� 100 % 50 % 50 %

N
Æ of Samples Selects number of bits that

A/D converter uses to digi-

tize signal.

64 256 256

Sampling Rate Rate at which signal is sam-

pled.

75 kHz � 160 MHz 40 MHz 40 MHz

Min S/N Ratio Minimum acceptable signal

to noise ratio.

0:01� 9:99 0.3 0.3
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