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Abstract

The results in this thesis are steps toward bridging the gap between the handful of
exact structure theorems known for minor-closed classes of graphs, and the very general,
yet wildly qualitative, Graph Minors Structure Theorem.

This thesis introduces a refinement of the notion of tree-width. Tree-width is a measure
of how “tree-like” a graph is. Essentially, a graph is tree-like if it can be decomposed across
a collection of non-crossing vertex-separations into small pieces. In our variant, which we
call k-tree-width, we require that the vertex-separations each have order at most k.

Tree-width and branch-width are related parameters in a graph, and we introduce a
branch-width-like variant for k-tree-width. We find a dual notion, in terms of tangles, for
our branch-width parameter, and we prove a generalization of Robertson and Seymour’s
Grid Theorem.
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Chapter 1

Introduction

The results in this thesis are motivated by the following question:

Question. What is the structure of graphs with no K6-minor?

The structure of graphs with no K5-minor is described exactly by a classic theorem
of Wagner (Theorem 1.1.3), but the structure of graphs with no K6-minor is known only
very roughly. We do not make direct progress on an exact description of the structure
of graphs with no K6-minor, but we introduce a new qualitative approach that improves
substantially on existing techniques.

The results presented here are quite general and may also be applicable to related
problems, such as understanding the structure of graphs with no Petersen Graph-minor,
but we will focus our discussion on K6.

Our main result, Theorem 1.8.2, is a generalization of Robertson and Seymour’s Grid
Theorem [23]; it characterizes graphs containing large, “θ-connected pieces” by a class of
highly structured minors that such graphs must contain.

1.1 Exact structure theorems

A minor of a graph G is a graph G′ obtained from G by a series of vertex-deletions, edge-
deletions and edge-contractions—an edge-contraction of an edge e incident with vertices
u and v in graph G is a graph G/e obtained from G by identifying vertices u and v and
deleting the edge e. If G and H are graphs, such that G has a minor isomorphic to H, then
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Figure 1.1: G is a 3-sum between graphs G1 and G2 along the 3-vertex cliques H1 and H2.

we say that G has an H-minor , while if G has no minor isomorphic to H, then we say that
G is H-minor-free. We are interested in graphs that are K6-minor-free, but let us begin
with some easier related questions about graphs that do not have other small minors.

A graph with no K3-minor cannot have any cycles of length greater than 2, and hence
must be a forest (possibly with some parallel edges and/or loop edges). This means that
graphs with no K3-minor can be built up from graphs on at most 2 vertices by two simple
operations—a 0-sum, which is just the disjoint union of two graphs, and a 1-sum which
takes two vertex-disjoint graphs and identifies exactly one vertex from the first graph with
exactly one vertex from the second graph.

Proposition 1.1.1. A graph has no K3-minor if and only if it can be constructed from
graphs with at most two vertices by 0-sums and 1-sums.

For graphs that exclude cliques larger than K3, we must generalize the 0-sum and 1-sum
operations as follows. A k-sum, or a clique-sum of order k, combines two vertex-disjoint
graphs G1 and G2 with complete subgraphs H1 and H2 in G1 and G2 respectively, where
|V (H1)| = |V (H2)| = k, by bijectively identifying each vertex in H1 with a vertex in H2,
and removing all of the edges in E(H1) ∪ E(H2). See Figure 1.1.

Graphs with no K4-minor are called series-parallel graphs [8], and can be constructed
using clique-sums of order at most 2.
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Figure 1.2: The graph V8

Proposition 1.1.2. A graph has no K4-minor if and only if it can be constructed from
graphs on at most three vertices by 0-sums, 1-sums and 2-sums.

A classic theorem of Wagner [31] (see also [30]) shows that graphs with no K5-minor
possess a similar structure. The graph V8 is obtained from an eight vertex cycle by adding
the 4 diagonal edges; see Figure 1.2.

Theorem 1.1.3 (Wagner’s Theorem). A graph has no K5-minor if and only if it can be
obtained from planar graphs and copies of V8 by clique-sums of order at most three.

Proposition 1.1.1, Proposition 1.1.2 and Theorem 1.1.3 are all exact structure theo-
rems—the sets of graphs built using the respective constructions are exactly the sets of
graphs excluding the respective minors. Exact structure theorems are also known for a few
other small graphs.

Kelmans [18] and, independently, Robertson [22], described the structure of graphs
with no V8-minor.

Theorem 1.1.4. A graph G has no V8-minor if and only if G can be obtained by clique-
sums of order at most three from graphs in a family H such that, for each H ∈ H, either

1. H is planar,

2. H has two distinct vertices x and y such that H − {x, y} is a cycle,

3. H has a set B of four vertices such that every edge in H is incident with a vertex in
B,

3



(a) (b)

Figure 1.3: The cube graph (a) and the octahedron graph (b)

4. H is isomorphic to the line graph of K3,3, or

5. |V (H)| ≤ 7.

Maharry [19] gave an exact structure theorem for graphs with no cube-minor; the cube
graph is pictured in Figure 1.3a. Ding [5] recently described the structure of graphs with
no octahedron-minor; the octahedron graph is pictured in Figure 1.3b. Ding and Liu [7, 6]
recently gave an exact structure theorem of graphs with no H-minor for each 3-connected
graph H—a graph H is 3-connected if the deletion of any two vertices in H leaves a
connected graph) with 11 edges; together with previous results, exact structure theorems
for graphs with no H-minor are known for all 3-connected graphs with at most 11 edges.

The only 3-connected graphs with more than 11 edges for which exact structure theo-
rems are known are V8, the cube and the octahedron, which each have 12 edges. On the
other hand, K6 has 15 edges, so it does not seem likely that existing techniques will yield
an exact structure theorem for graphs with no K6-minor any time soon.

1.2 Graph Minors Structure Theorem

With an exact structure theorem out of reach, we turn our attention to qualitative meth-
ods—that is, we seek a graph construction such that each graph with no K6-minor can
be constructed, and each graph that can be constructed is “close to” a graph with no
K6-minor. This can be seen as a kind of “approximation” of the structure of graphs with
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no K6-minor, allowing us to prove useful structural results despite the apparent difficulty
in finding an exact description. Of course, we want our notion of a graph being “close to”
a graph with no K6-minor to be as tight as possible, to approximate the exact structure
as closely as possible.

Robertson and Seymour’s Graph Minors Structure Theorem [26] provides, for each
graph H, a very rough qualitative description of the structure of graphs with no H-minor
in terms of graph embeddings—a graph embeds in a surface if it can be drawn on the surface
with no edge crossings. The precise statement of the Graph Minors Structure Theorem is
technical and not necessary for our purposes; it essentially says that, for each graph H, a
graph with no H-minor can be constructed using clique-sums from graphs which “almost”
embed in some surface in which H cannot be embedded, where the measure of “almost”
embedding in the surface is bounded by a constant depending only on the graph H.

For the special case of H = K6, the Graph Minors Structure Theorem becomes much
simpler. The only surface on which K6 cannot be embedded is the plane, and notion of
“almost” embedding in the plane can be simplified to the notion of k-apex—a k-apex graph
is a graph G with a set X of at most k vertices such that G−X is planar.

Theorem 1.2.1. There exists a constant N ∈ N such that if G is a graph with no K6-
minor, then G can be constructed by clique-sums from N-apex graphs.

This description of the structure of K6-minor-free-graphs is extremely coarse compared
to the exact results in Section 1.1. The constant N in Theorem 1.2.1 is astronomical, so,
for example, K1000 is one of the pieces that can be used to construct a graph with no
K6-minor.

What is even more troubling is that these large cliques can then be used in clique-sum
operations, so the order of the clique-sums used in the construction can be huge. A K6-
minor can have its edges distributed in a totally arbitrary way between the two sides of
a clique sum of order 6 or greater, as shown in Figure 1.4a. This means that the graphs
constructed by clique sums from N -apex graphs can have K6-minors that do come from
any particular graph used in the construction, but emerge only in the global structure.
This is in contrast with constructions using clique-sums of order at most 5, where any
particular K6-minor must have at least one vertex that is incident only with edges from
one side of the clique-sum, as shown in Figure 1.4b. This means that a K6-minor in a
graph constructed by clique-sums of order at most 5 can be associated in a natural way
with a K6-minor in exactly one of the graphs used in the construction.

Also, K5 and K6 are indistinguishable by this kind of structure theorem—for K5-
minor-free graphs, the Graph Minors Structure theorem gives a result of an identical form
to Theorem 1.2.1, but with a different constant N .
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(a) (b)

Figure 1.4: A K6-minor in a graph constructed by a clique-sum of order 6 (a) and order
5 (b), where contracting the dashed edges between vertices with the same label yields K6.
The K6-minor can be distributed arbitrarily between the two sides of a clique-sum of order
6 or greater (a), but must lie primarily on one side of a clique-sum of order at most 5,
which is the side that all of the edges incident with one vertex of the K6 (b).
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The results in this thesis are designed to help prove a more refined qualitative structure
theorem for graphs with no K6-minor.

1.3 Separations and connectivity

A separation in a graph G is a bipartition of the edges of G; the order of a separation
(A,B) is the number of vertices in G incident with both an edge in A and an edge in B;
for θ ∈ N, a separation of order at most θ is called a θ-separation. For θ ∈ N, a graph
G is θ-connected if, for every (θ − 1)-separation (A,B), of G, either every vertex in G is
incident with an edge in A, or every vertex in G is incident with an edge in B. Note that
we do not require that a θ-connected graph have more than θ vertices.

For small values of θ, θ-connectivity is related to clique-sum constructions of order at
most (θ− 1) as follows. If G is a graph that is not (1-)connected, then G can be expressed
as a 0-sum of two proper subgraphs of G; recursively, this shows that each graph G can
be constructed using 0-sums from connected subgraphs of G. If G is a connected graph
that is not 2-connected, then G can be expressed as a 1-sum of two connected, proper
subgraphs of G by splitting a cut-vertex; therefore, each graph G can be constructed using
0-sums and 1-sums from 2-connected subgraphs of G. If G is a 2-connected graph that is
not 3-connected, then G can be expressed as a 2-sum of two 2-connected, proper minors of
G—in a 2-connected graph, each side of a separation (A,B) of 2 is connected, and hence
can be contracted to a single edge between the two vertices, each incident with both an
edge in A and an edge in B; see Figure 1.5; this implies the following lemma.

Lemma 1.3.1. Each graph G can be constructed from 0-sums, 1-sums and 2-sums from
3-connected minors of G.

Thus, any graph G with no K4-minor can be constructed using 0-sums, 1-sums and
2-sums from 3-connected minors of G, each of which has no K4-minor, so the earlier exact
structure theorem for graphs with no K4-minors, Proposition 1.1.2, is equivalent to the
following.

Proposition 1.3.2. If G is a 3-connected graph with no K4-minor, then |V (G)| < 4.

One might hope that this pattern continues—that graphs can be constructed from their
θ-connected minors by clique-sums of order at most θ− 1—but this begins to break down
for θ > 3. Suppose G is a graph with a vertex u with three neighbours, v1, v2 and v3 along
edges e1, e2 and e3 respectively, and G has no edges between vertices in {v1, v2, v3}. Then
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Figure 1.5: An illustration of the fact that a 2-connected graph with a separation of order
2 is a 2-sum of two minors; the bold path on each side of the separation can be contracted
to an edge between the two cut vertices.

({e1, e2, e3}, E(G)−{e1, e2, e3}) is a 3-separation, demonstrating that G is not 3-connected.
The corresponding 3-sum construction of G, however, involves a graph isomorphic to K4

and a graph, G′, constructed from G by deleting u and adding edges between each pair of
vertices in {v1, v2, v3}, as shown in Figure 1.6. The graphs G and G′ have the same number
of edges, so G′ is not a proper minor of G.

It turns out that this problem with degree 3 vertices is the only thing that can cause a
graph to have a 3-separation but not a 3-sum construction, so the situation can be partially
salvaged by relaxing our notion of connectivity. A graph G is internally 4-connected if it
is 3-connected and, for each separation (A,B) of order 3, min{|A|, |B|} = 3.

Lemma 1.3.3. Each graph G can be constructed using clique-sums of order at most 3 from
internally 4-connected minors of G.

Thus, any graph G with no K5-minor can be constructed using clique-sums of order
at most 3 from internally 4-connected minors of G, each of which has no K5-minor, so
Wagner’s structure theorem for graphs with no K5-minor, Theorem 1.1.3, is equivalent to
the following.

Theorem 1.3.4 (Wagner’s Theorem, connectivity version). An internally 4-connected
graph G has no K5-minor if and only if G is either planar or isomorphic to V8.
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Figure 1.6: G is a graph with a 3-separation, but the clique-sum corresponding to this
3-separation involves a graph G′ that is not a minor of G.

Because internal 4-connectivity is weaker than 4-connectivity, and V8 is internally 4-
connected but not 4-connected, Theorem 1.3.4 implies the following relationship between
K5 and planar graphs.

Theorem 1.3.5. Every 4-connected graph with no K5-minor is planar.

Jørgensen conjectured [14] that a similar relationship holds between K6 and apex
graphs—that is, graphs which possess some vertex whose deletion yields a planar graph.

Conjecture 1.3.6 (Jørgensen’s Conjecture). Every 6-connected graph with no K6-minor
is apex.

Kawarabayashi, Norine, Thomas and Wollan recently proved [17] that Jørgensen’s Con-
jecture is true for sufficiently large 6-connected graphs.

Theorem 1.3.7. There exists a constant N ∈ N such that every 6-connected graph on at
least N vertices with no K6-minor is apex.

Norine and Thomas have also announced [17] that Theorem 1.3.7 can be generalized
as follows, although the proof has not yet been published.

Theorem 1.3.8. For each integer t, there exists an integer Nt such that every t-connected
graph on at least Nt vertices with no Kt-minor is (t− 5)-apex.
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Whether or not Jørgensen’s Conjecture holds for all 6-connected graphs, Theorem 1.3.7
suggests that the relationship between K6 and apex graphs may be similar to the relation-
ship between K5 and planar graphs.

This analogy, while quite promising, does have some important limitations. First, the
constant N in Theorem 1.3.7 is quite large, so, if we use this to describe the structure of
graphs with no K6 minors as being constructed from apex graphs and a finite family of
“small graphs”, as in Wagner’s Theorem, then the “small graphs” will be much larger than
V8. This limitation seems hard to avoid, and, as we are seeking a qualitative as opposed to
exact structure theorem, we are prepared to accept it.

The larger issue, however, is that the structural version of Wagner’s Theorem, Theo-
rem 1.1.3, is equivalent to the connectivity version, Theorem 1.3.4. As we saw, decomposing
along 3-sums into 4-connected pieces is already problematic, requiring the use of internal
4-connectivity instead, and decomposing along 5-sums into “6-connected pieces”, is even
more problematic. Therefore, Theorem 1.3.7 does not by itself lead to a structure theorem
for graphs with no K6-minor. In this thesis we describe a way that graphs can be de-
composed into “weakly 6-connected pieces” (something weaker than a 6-connected graph).
Because we need to relax the notion of connectivity, Theorem 1.3.7 cannot be immediately
applied, but the overall strategy seems promising.

1.4 Graphs with no K6-minor

Here we review some natural classes of graphs that do not contain K6-minors.

1.4.1 Apex graphs

Conjecture 1.3.6 and Theorem 1.3.7 suggest that apex graphs, the class of graphs which
can be constructed by adding a single vertex to a planar graph, as in Figure 1.7, are a
fundamental class of K6-minor-free graphs.

Proposition 1.4.1. If a graph is apex, then it does not contain a K6-minor.

Proof. The class of apex graphs is closed under taking minors, and K6 is not apex.
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Figure 1.7: A schematic of the construction of an apex graph; deleting vertex v0 leaves a
graph embedded in the plane, represented by the shaded region.

Figure 1.8: A schematic of the construction of planar-plus-triangle graphs; the shaded
region represents a graph embedded in the plane, and the edges e12, e13 and e23 are added
between vertices of this embedded graph in a not-necessarily-planar way.

1.4.2 Planar plus a triangle

Another simple class of graphs that trivially has no K6-minors is the class of planar-plus-
triangle graphs , constructed from a planar graph G with vertices v1, v2 and v3 by adding 3
edges incident with {v1, v2}, {v1, v3} and {v2, v3} respectively, as illustrated in Figure 1.8.
This class of graphs is distinct from apex graphs because the deletion of any single vertex
can remove at most two of the 3 edges in the triangle, which will leave a non-planar graph
in some cases.

Proposition 1.4.2. If G is a planar-plus-triangle graph, then G does not contain a K6-
minor.

Proof. Each minor of a planar-plus-triangle graph is either planar-plus-triangle or apex,
but K6 is neither planar-plus-triangle nor apex.
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Figure 1.9: A schematic of the construction of a doublecross graph; the shaded region
represents a graph embedded in the plane with vertices u1, u2, v1, v2, u3, u4, v3, v4 appearing
in clockwise order around the outer face.

1.4.3 Doublecross

The class of doublecross graphs provides yet another example of a class of graphs with no
K6-minor; a doublecross graph is constructed as follows: let G0 be a graph embedded in the
disk with exactly eight vertices on the boundary of the disk, labelled, in clockwise order,
u1, u2, v1, v2, u3, u4, v3 and v4; the doublecross graph G is constructed from G0 by adding,
for each i ∈ {1, 2, 3, 4}, an edge, ei incident with vertices ui and vi; see Figure 1.9.

Doublecross graphs have no K6-minors because it can be shown that doublecross graphs
have a linkless embedding in 3-dimensional space, meaning that each pair of disjoint cycles
are not linked, in the sense of knot-theory; Sachs [29] and Conway and Gordon [2] proved
that K6 has no linkless embedding and, in fact, Robertson, Seymour and Thomas [27]
proved that the linklessly embeddable graphs are precisely the graphs that do not have a
minor in the Petersen family of graphs, which includes K6.

Theorem 1.4.3. If G has a linkless embedding, then G does not contain a K6-minor.

Proposition 1.4.4. If G is a doublecross graph, then G does not contain a K6-minor.

1.4.4 Hose

A hose graph is a generalization of a doublecross graph. This class of K6-minor-free graphs
was discovered, but not published, by Robertson, Seymour and Thomas, and appears in
papers of Kawarabayashi and Mohar [15] and Kawarabayashi, Mukae and Nakamoto [16],
as well as a thesis of Whalen [32], under the name serpent. A hose graph is constructed as
follows:

12



1. let G1, . . . , Gn be a sequence of graphs, where n ≥ 2;

2. for i ∈ {2, . . . , n − 1}, suppose Gi has an embedding on the disk with exactly 10
vertices on the boundary of the disk labelled, in clockwise order,

xi,1, x
′
i,1, xi,2, x

′
i,2, xi,3, yi,1, y

′
i,1, yi,2, y

′
i,2, yi,3;

3. suppose G1 has edges e1 and e2 incident with vertices {u1, v1} and {u2, v2}, respec-
tively, and that G1 − {e1, e2} can be embedded on the disk with exactly 9 vertices
on the boundary of the disk labelled, in clockwise order,

u1, u2, v1, v2, y1,1, y
′
1,1, y1,2, y

′
1,2, y1,3;

4. suppose Gn has edges e3 and e4 incident with vertices {u3, v3} and {u4, v4}, respec-
tively, and that Gn − {e3, e4} can be embedded on the disk with exactly 9 vertices
on the boundary of the disk labelled, in clockwise order,

xn,1, x
′
n,1, xn,2, x

′
n,2, xn,3, u3, v3, u4, v4;

5. for i ∈ {1, . . . , n − 1}, let ϕi be a bijection between {yi,1, y′i,1, yi,2, y′i,2, yi,3} and
{xi+1,1, x

′
i+1,1, xi+1,2, x

′
i+1,2, xi+1,3} such that, for j ∈ {1, 2, 3}, ϕi(yi,j) ∈ {xi+1,1, xi+1,2, xi+1,3}

and, for j′ ∈ {1, 2}, ϕi(y′i,j) ∈ {x′i+1,1, x
′
i+1,2};

6. the hose graph G is constructed from the disjoint union of G1, . . . , Gn by identifying,
for each i ∈ {1, . . . , n − 1}, and each j ∈ {1, 2, 3}, the vertices yi,j and ϕi(yi,j) and
identifying, for each i ∈ {1, . . . , n − 1} and each j′ ∈ {1, 2}, the vertices y′i,j and
ϕ′i(y

′
i,j);

see Figure 1.10.

Whalen [32] showed that each hose graph has a linkless embedding, which implies a
hose graph cannot have a K6-minor.

Proposition 1.4.5. If G is a hose graph, then G does not contain a K6-minor.

1.4.5 Hamburger

One final class of K6-minor-free graphs is the class of hamburger graphs , which appear in
papers of Kawarabayashi and Mohar [15] and Kawarabayashi, Mukae and Nakamoto [16],
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Figure 1.10: A schematic illustration of the construction of hose graphs; the shaded regions
represent the graphs G1, . . . , Gn embedded in separate disks with the indicated vertices on
the boundaries of those disks; between each of these graphs, the vertices are identified in
pairs of the same colour (both white or both black); the dashed lines indicate some possible
pairings that could be identified.

although neither paper includes a proof of their being K6-minor-free. This construction has
been attributed to unpublished work of Robertson, Seymour and Thomas. A hamburger
graph is a graph G constructed as follows: let G1, G2 and G3 be three graphs; suppose
that, for i ∈ {1, 2, 3}, Gi has an embedding in the disk with vertices vi,1, . . . , vi,5 on the
boundary of the disk, in clockwise order; then the hamburger graph G is obtained from
the disjoint union of G1, G2 and G3 by identifying, for each j ∈ {1, . . . , 5}, the vertices
v1,j, v2,j and v3,j; see Figure 1.11.

Hamburger graphs can also be shown to have linkless embeddings, so hamburger graphs
do not have K6-minors.

Proposition 1.4.6. If G is a hamburger graph, then G does not contain a K6-minor.

Proof (Sketch). By Theorem 1.4.3, it suffices to show that G has a linkless embedding.
This linkless embedding is obtained by embedding G1, G2 and G3 in disjoint disks D1,
D2 and D3, respectively, such that, for i ∈ {1, 2.3}, Gi intersects the boundary of Di

at {vi,1, vi,2, vi,3, vi,4, vi,5}, and identifying the boundaries of these three disks, so that, for
j ∈ {1, 2, 3, 4, 5}, v1,j, v2,j and v3,j are identified as a single vertex, vj; see Figure 1.11.

If C1 and C2 are two vertex-disjoint cycles in G, then it cannot be the case that both C1

and C2 contain more than two vertices in {v1, v2, v3, v4, v5}, so, without loss of generality,
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Figure 1.11: A schematic illustration of the construction of hamburger graphs; the shaded
regions represent graphs G1, G2 and G3 embedded in separate disks, with indicated vertices
on the boundary of the disk; vertices are identified along the dashed lines

|V (C1) ∩ {v1, v2, v3, v4, v5}| ≤ 2. Therefore, E(C1) can contain edges in at most two of the
graphs G1, G2 and G3. Thus, there exists a disk D such that D ∩ (D1 ∪D2 ∪D3) = C1;
hence, C2 is disjoint from D, and, therefore, is not linked with C1.

1.4.6 A conjecture

Observe that planar-plus-triangle graphs, doublecross graphs and hamburger graphs, are
not generally apex. However, deleting any two of the three vertices in the triangle turns
a planar-plus triangle graph into a planar graph and deleting one vertex from each cross-
ing pair in a doublecross graph yields a planar graph, so planar-plus-triangle graphs and
doublecross graphs are 2-apex; Also, deleting any three of the five identified vertices in a
hamburger graph yields a planar graph, so hamburger graphs are 3-apex.

For any natural number k, there exists a hose graph that is not k-apex, but they can
be constructed using 5-sums from 4-apex graphs.

Lemma 1.4.7. If G is a hose graph, then G can be constructed using 5-sums from 4-apex
graphs.

Proof. Let G1, . . . , Gn be as in the definition of a hose graph. For i ∈ {1, . . . , n}, let G′i
be obtained form Gi by adding edges between each pair of vertices in {x1, x′1, x2, x′2, x3}, if
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i < n, and adding edges between each pair of vertices in {y1, y′1, y2, y′2, y3}, if i > 1. Then
G can be obtained from G1, . . . , Gn by 5-sums in the obvious way.

For i ∈ {1, . . . , n}, deleting from Gi any two of the vertices in {x1, x′1, x2, x′2, x3}, if
i < n, and any two of the vertices in {y1, y′1, y2, y′2, y3}, if i > 1, yields a planar graph, so
Gi is 4-apex.

Motivated by these examples, we conjecture the following.

Conjecture 1.4.8. There exists a natural number N such that every graph with no K6-
minor can be obtained from graphs with at most N vertices and 4-apex graphs by clique-sums
of order at most 5.

If true, this would be exactly the sort of qualitative structure theorem for graphs with
no K6-minor that we seek. The key improvement of Conjecture 1.4.8 over Theorem 1.2.1,
is that the clique-sums used in the construction have order at most 5; as illustrated in
Figure 1.4, each K6-minor in a graph constructed by clique-sums of order at most 5 cor-
responds naturally to a K6-minor in exactly one of the graphs used in the construction,
but this is not true for graphs constructed using clique-sums of larger order. The results
in this thesis are designed to help prove Conjecture 1.4.8, or something like it.

1.5 Tree-decompositions

It is convenient to describe clique-sum constructions in terms of another structure, called
a tree-decomposition—a tree-decomposition of a graph G is a pair, (T, µ), where T is a tree
and µ is an injective function from the edges of G to the leaves of T . Each vertex v in
V (G) gives rise to a subtree, Tv, of T : the minimum tree containing the set of leaves in
T that are labelled by any graph-edge incident with v. Each tree-node t in T corresponds
naturally to a set of vertices in G: the vertices v ∈ V (G) for which Tv contains t; we call
this set of vertices the node-bag of t. Similarly, each tree-edge f in T corresponds to the
set of vertices, called the edge-bag of f , consisting of the vertices v ∈ V (G) for which Tv
contains f . See Figure 1.13.

Tree-decompositions have been discovered several times, by Bertelé and Brioschi [1], by
Halin [13], and by Robertson and Seymour [24]. Tree-decompositions have traditionally
been defined directly in terms of the node-bags, with the axioms that each pair of adjacent
graph-vertices appear in a node-bag together and that, for each graph-vertex v, the set of
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Figure 1.12: An example graph for which a tree-decomposition is shown in Figure 1.13

Figure 1.13: One possible tree-decomposition of the graph shown in Figure 1.12. The
non-leaf tree-nodes are labelled with their node-bag; the separation presented by the bold
edge is ({1, . . . , 16}, {17, . . . , 27}); the edge-bag of the bold edge is {g, i, j}
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nodes whose node-bags containing v form a subtree. The non-standard definition here is
more convenient for our purposes.

Each tree-edge f in a tree-decomposition (T, µ) of a graph G presents the separation
(A1, A2) defined as follows: let T1 and T2 be the components of T \ {f} and, for i ∈ {1, 2},
let Ai be the set of graph-edges e ∈ E(G) for which µ(e) lies in Ti. Note that the edge-bag
of f is precisely the set of vertices in G which are incident with an edge on each side of
the separation presented by f .

Two separations (A,B) and (C,D) of a graph G cross if A ∩ C 6= ∅, A ∩ D 6= ∅,
B ∩C 6= ∅ and B ∩D 6= ∅. A tree-decomposition (T, µ) of a graph G can be thought of as
an encoding of a family of (pairwise) non-crossing separations as follows.

Lemma 1.5.1. If G is a graph then

1. for each tree-decomposition (T, µ) of G, the separations presented by the tree-edges
in T are non-crossing, and

2. for each family A of non-crossing separations in G, there exists a unique tree-
decomposition (T, µ) of G such that A is precisely the family of separations presented
by tree-edges in T that are not incident with a leaf.

1.5.1 Clique-sums

Next we show how tree-decompositions are equivalent to clique-sum constructions. For
each tree-decomposition (T, µ) of a graph G and each node t in T , the part of (T, µ) at t is
the graph Gt with V (Gt) equal to the node-bag of t and E(Gt) defined as follows: for each
tree-edge f incident with t and each pair of distinct vertices u and v in the edge-bag of f ,
E(Gt) contains an edge ef,u,v incident with u and v; if t is a leaf and t = µ(e) for some
graph-edge e in G, then E(Gt) additionally contains the edge e, with the same incidences
as in G.

If the parts of a tree-decomposition are combined using clique-sums in the natural way,
the graph G is recovered.

Theorem 1.5.2. If G is a graph with no loops and at least 3 edges and (T, µ) is a tree-
decomposition of G, then G can be constructed using clique-sums from the parts of (T, µ).

Proof. The proof goes by induction on the number of tree-edges f in T that are not incident
with any leaf. If every tree-edge in T is incident with a leaf, then T is a star and the part
of (T, µ) at the unique non-leaf node is isomorphic to G.
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Suppose f is a tree-edge between non-leaf nodes t1 and t2. For i ∈ {1, 2}, let Gi be the
subgraph of G consisting of the edges, e, for which µ(e) ∈ Ti; let G′i be obtained from Gi

by adding edges ei,u,v incident with vertices u and v, for each pair {u, v} of distinct vertices
in the edge-bag of f . Note that G is a clique-sum of G′1 and G′2.

For i ∈ {1, 2}, let Ti be the component of T \ {f} containing ti and let T ′i be obtained
from Ti by adding leaves si,u,v adjacent to ti for each pair {u, v} of distinct vertices in the
edge-bag of f ; for e ∈ E(Gi), let µi(e) = µ(e) and for each pair {u, v} of distinct vertices
in the edge-bag of f , let µi(ei,u,v) = si,u,v.

For i ∈ {1, 2}, (T ′i , µi) is a tree-decomposition of G′i, and T ′i has fewer edges not incident
with any leaf than T ; by the induction hypothesis, G′i can be constructed using clique-sums
from the parts of (T ′i , µi), which are also parts of (T, µ). Thus, G can be constructed using
clique-sums from the parts of (T, µ).

On the other hand, clique-sum constructions also give rise to tree-decompositions. To
see this, note first that the set of vertices in a clique must appear together in some node-bag.

Lemma 1.5.3. If G is a graph, (T, µ) is a tree-decomposition of G and K is a complete
subgraph in G, then there exists a tree-node tK in T such that the node-bag of tK contains
every graph-vertex in V (K).

Proof. For each vertex v ∈ V (K), let Tv be the subtree of T consisting of the tree-nodes
whose node-bag contains v. For each pair {u, v} of vertices in V (K), K contains an edge
eu,v incident with u and v and µ(eu,v) ∈ Tu ∩ Tv. Therefore, because these subtrees have
pairwise non-empty intersection, there exists a node tK in Tv for all v ∈ V (K) (this uses
the Helly property for subtrees of a tree).

Thus, if a graph is a clique-sum of two graphs, then tree-decompositions of the sum-
mands can be combined into a tree-decomposition of the sum. We only need to add an edge
between the tree-nodes whose node-bags contain the vertices of the cliques being summed
along; see Figures 1.14 and 1.15.

If G is a clique-sum of the graphs G1 and G2 along the cliques K1 and K2 in G1 and G2

respectively, and (T1, µ1) and (T2, µ2) are tree-decompositions of G1 and G2 respectively,
then the amalgamation of (T1, µ1) and (T2, µ2) is a tree-decomposition (T, µ), where T is
constructed from the disjoint union of T1 and T2 by adding a single edge, f0, and where
for each i ∈ {1, 2} and each e ∈ E(Gi)− E(Ki), µ(e) = µi(e).
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Figure 1.14: A clique-sum decomposition of the graph in Figure 1.12, corresponding to the
bold tree-edge in Figure 1.13.

Lemma 1.5.4. If G is a clique-sum of the graphs G1 and G2 along the cliques K1 and K2

in G1 and G2 respectively, and (T1, µ1) and (T2, µ2) are tree-decompositions of G1 and G2

respectively, and (T, µ) is the amalgamation of (T1, µ1) and (T2, µ2), then, for i ∈ {1, 2}
and for each tree-edge f ∈ E(Ti) ∩ E(T ), the edge-bag of f in (T, µ) is a subset of the
edge-bag of f in (Ti, µi), and the edge-bag of f0 is a subset of V (K1) = V (K2).

This shows that a clique-sum construction of a graph gives rise to a natural tree-
decomposition—each of the graphs used in the clique-sum construction has a trivial tree-
decomposition which is just a star with a leaf for each edge, and, for each clique-sum
operation, the tree-decompositions can be combined according to Lemma 1.5.4.

The parts of a tree-decomposition of a graph G are nearly minors of G, except that
some additional edges may be needed for the clique-sums.

Lemma 1.5.5. If G is a simple graph, (T, µ) is a tree-decomposition of G, t is a node in
T , and G′ is the subgraph of G induced by the node-bag of t, then G′ is a subgraph of the
part of (T, µ) at t, up to relabelling of edges.

Proof. Suppose e is a graph-edge in G′ incident with vertices u and v. Both u and v are
in the node-bag of t, and are also in the node-bag of the leaf µ(e). If t = µ(e), then e is
an edge incident with u and v in the part of (T, µ) at t. Otherwise, let f be the tree-edge
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Figure 1.15: Tree-decompositions of the two clique-summands in Figure 1.14; combining
these tree-decompositions by adding the dashed edge between the nodes {c, g, i, j} and
{g′, i′, j′, `,m}, as described in Lemma 1.5.4, yields the tree-decomposition in Figure 1.13.
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on the path between t and µ(e) which is incident with t. Then u and v are both in the
edge-bag of f , and, hence, are adjacent in the part of (T, µ) at t.

1.5.2 Tree-width and branch-width

A graph is “tree-like” if it can be obtained from small graphs by clique-sums. For ex-
ample, trees are highly “tree-like”, while large cliques are highly non-tree-like. Tree-
decompositions give rise to two graph parameters measuring how “tree-like” a graph is.

The classic measure of “tree-like”, tree-width, goes back to the original work of Bertelé
and Brioschi [1], Halin [13], and Robertson and Seymour [24]. For each tree-node t in a
tree-decomposition, the node-width of t is the size of the node-bag of t. The node-width of a
tree-decomposition (T, µ) is the maximum node-width of any tree-node in T , and the tree-
width of a graph G, denoted tw(G), is the minimum node-width of any tree-decomposition
of G minus 1.

It can be shown that a simple graph G has tree-width at most 1 if and only if G is
a forest, while, at the other extreme, the complete-graph Kn has tree-width n − 1 by
Lemma 1.5.3.

For each tree-edge f in a tree-decomposition, the edge-width of f is the size of the
edge-bag of f . The edge-width of a tree-decomposition (T, µ) is the maximum edge-width
of any tree-edge in T .

Simply bounding the edge-width of a tree-decomposition is not enough to tell us that a
graph is “tree-like” because every graph G has a tree-decomposition (T, µ) with edge-width
at most 2—namely, T is the star with |E(G)| leaves; the edge-bag of each tree-edge f in T
consists of the two graph-vertices incident with the graph-edge µ−1(`). The problem here,
is that this tree-decomposition has an extremely high-degree node, so we need to control
the degrees of the nodes in the tree-decomposition along with the edge-widths.

One natural approach, introduced by Robertson and Seymour [25], is branch-width—the
branch-width of a graph G, denoted bw(G), is the minimum edge-width of the tree-
decompositions of G with degree at most 3.

Robertson and Seymour [25] showed that the branch-width of a graph is closely related
to the tree-width, as follows. In a tree-decomposition of degree at most three, each vertex
in a node-bag of a non-leaf node t is in the edge-bag of at least two of the tree-edges
incident with t, so the node-width can exceed the edge-width by a factor of at most 3/2.
On the other hand, in a tree-decomposition of small node-width, high-degree nodes can be
replaced by degree-3 trees, and each of the edge-bags will be a subset of some node-bag.
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Theorem 1.5.6 (Robertson and Seymour). If G is a graph with bw(G) ≥ 2, then

bw(G) ≤ tw(G) + 1 ≤ (3/2) bw(G).

If G has branch-width at most 5, then it can be constructed from small graphs (with
at most 7 vertices) using clique-sums of order at most 5. This means that Conjecture 1.4.8
holds for graphs with branch-width at most 5.

1.5.3 θ-tree-width and θ-branch-degree

For Conjecture 1.4.8, we are interested only in tree-decompositions of fixed maximum edge-
width, 5. For each natural number θ, a θ-tree-decomposition of G is a tree-decomposition
of edge-width at most θ. For each natural number θ, the θ-tree-width of a graph G, denoted
twθ(G), is the minimum node-width of the θ-tree-decompositions of G minus 1.

A graph with bounded 5-tree-width can be constructed from small graphs using clique-
sums of order at most 5, so Conjecture 1.4.8 holds for such graphs.

Branch-width also has an analogous parameter for tree-decompositions of bounded
edge-width. The θ-branch-degree of G, denoted bdθ(G), is the minimum δ for which G
has a θ-tree-decomposition of degree at most δ; This means that graphs with bounded
5-branch-degree can be constructed from small graphs using clique-sums of order at most
5, so Conjecture 1.4.8 holds for such graphs.

The θ-tree-width and θ-branch-degree parameters are qualitatively equivalent, just as
tree-width and branch-width are.

Theorem 1.5.7. For each natural number θ, there exist positive constants cθ and c′θ such
that if G is a graph with bdθ(G) ≥ 3, then, twθ(G) ≤ bdθ(G)θ and bdθ(G) ≤

(
twθ(G)

θ

)
.

Proof. Let (T, µ) be a θ-tree-decomposition of G such that each node in T has degree at
most bdθ(G). Then each node, t in T has at most bdθ(G)θ vertices in its node-bag, so
twθ(G) ≤ bdθ(G)θ.

Let (T ′, µ′) be a θ-tree-decomposition of G such that the node-width of each node in
T ′ is at most twθ(G) and the sum of the degrees of the nodes in T ′ with degree at least 4
is minimized. Let t be a tree-node in T ′ with degree at least 4. If f1 and f2 are two tree-
edges incident with {t, s1} and {t, s2}, respectively, and the edge-bags of f1 and f2 are both
contained in some set A ⊆ E(G) with |A| = θ, then f1 and f2 can be replaced by a new
degree-3 node, s′ adjacent to t, s1 and s2; all three edges incident with s′ have edge-bags
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that are subsets of A, and the node-bag of s′ is also a subset of A so this operation yields
another θ-tree-decomposition of no larger node-width than (T ′, µ′), but with a smaller sum
of degrees of the nodes with degree at least 4; this contradicts the choice of (T ′, µ′), so, in
fact, the union of any two edge-bags of tree-edges incident with t must contain more than
θ vertices. Thus, t has degree at most

(
twθ(G)

θ

)
, so bdθ(G) ≤

(
twθ(G)

θ

)
.

To prove Conjecture 1.4.8, it would suffice to show that a graph G has a 5-tree-
decomposition (T, µ) such that the parts of (T, µ) at the nodes with large node-bags (or,
equivalently, high-degree) are 4-apex.

1.5.4 Displaying a minor

Let us now examine how minors interact with separations and tree-decompositions.

First we show that separations in a graph give rise to separations in each minor of that
graph.

Lemma 1.5.8. If G is a graph, G′ is a minor of G, and (A,B) is a θ-separation in G,
then (A ∩ E(G′), B ∩ E(G′)) is a θ-separation in G′.

Proof. If (A,B) is a separation in G and e ∈ E(G), then the number of vertices incident
with both an edge in A and an edge in B is at most the number of vertices incident
with both an edge in A − {e} and an edge in B − {e}, so the order of the separation
(A− {e}, B − {e}) in G− e is at most the order of the separation (A,B) in G. If z is the
vertex in G/e created by contracting e, then z is incident with both an edge in A − {e}
and an edge in B −{e}, then either u or v is incident with both an edge in A and an edge
in B, so the order of the separation (A− {e}, B − {e}) in G/e is at most the order of the
separation (A,B) in G. The result follows by induction on |E(G)| − |E(G′)|.

In particular, Lemma 1.5.8 shows that θ-tree-decompositions in a graph give rise to
θ-tree-decompositions in each minor.

Lemma 1.5.9. For each natural number θ, if G is a graph, (T, µ) is a θ-tree-decomposition
of G and G′ is a minor of G, then (T, µ|E(G′)) is a θ-tree-decomposition of G′.

If (T, µ) is a tree-decomposition of a graph G and t is a non-leaf node in T such that
the node-bag of t is the entire set V (G), then we say that t displays G. In general, G
might be displayed by zero, one, or more nodes in T . However, if |V (G)| is greater than
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the edge-width of (T, µ), then G cannot be displayed by more than one node in T and, if G
is θ-connected, then G is displayed by exactly one node in any (k − 1)-tree-decomposition
of G.

Lemma 1.5.10. For each natural number θ, if G is a θ-connected graph with |V (G)| ≥ θ
and (T, µ) is a (θ− 1)-tree-decomposition of G, then there exists a unique tree-node t in T
such that t displays G.

More generally, if G′ is a minor of G, and t′ is a node in T such that t′ displays G′ in
(T, µ|E(G′)), then we also say that t′ displays G′ in (T, µ|E(G′)). By Lemma 1.5.10, each
θ-connected minor of G is displayed by exactly one node in each (θ−1)-tree-decomposition
of G.

Lemma 1.5.11. For each natural number θ, if G is a graph, G′ is a θ-connected minor of
G and (T, µ) is a (θ− 1)-tree-decomposition of G, then there exists a unique tree-node t in
T such that t displays G′.

In particular, Kθ is θ-connected, so each Kθ-minor of G is displayed by exactly one
node in each (θ − 1)-tree-decomposition of G.

Lemma 1.5.5 implies that minors displayed at a node in a tree-decomposition are minors
of the part of the tree-decomposition at that node.

Lemma 1.5.12. If G is a graph, G′ is a simple minor of G, (T, µ) is a tree-decomposition
of G, and t is a tree-node in t displaying G′, then G′ is isomorphic to a minor of the part
of (T, µ) at t.

With this in mind, we reformulate Wagner’s Theorem in terms of tree-decompositions
as follows.

Theorem 1.5.13 (Wagner’s Theorem, tree-decomposition version). If G is a graph with
no K5-minor, then G has a 3-tree-decomposition (T, µ) such that, for each node t in T , the
part of (T, µ) at t either is isomorphic to V8 or is planar.

This version of Wagner’s Theorem is equivalent to Theorem 1.1.3 because the tree-
decomposition simply encodes a cliques-sum construction. However, this formulation sug-
gests a slightly different interpretation—the structure of the parts of the tree-decomposition
certify that no K5-minor can be displayed at each node, by Lemma 1.5.12; Lemma 1.5.10
shows that this also certifies that the entire graph is K5-minor-free.
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An exact structure theorem for K6 might similarly be given in terms of a 5-tree-
decomposition, together with some structure at each node t certifying that a K6-minor
cannot be displayed at t; for example, a 5-tree-decomposition in which each part is apex
certifies that the graph is K6-minor-free. As we are seeking only a qualitative structure
theorem, we could relax the “certificate” at each node to allow parts that are 4-apex. Of
course, this would no longer certify that the graph was K6-minor-free, but it would still
give useful structure. We can reformulate Conjecture 1.4.8 in terms of tree-decompositions
as follows.

Conjecture 1.5.14. There exists a natural number θ such that if G is a graph with no
K6-minor then G has a 5-tree-decomposition (T, µ) such that, for each node t in T , either
t has node-width at most θ or the part of (T, µ) at t is 4-apex.

Note that Conjecture 1.5.14 implies Conjecture 1.4.8 because a graph with at 5-tree-
decomposition can be constructed from the parts of that tree-decomposition by clique-sums
of order at most 5, using Theorem 1.5.2.

Even if Conjecture 1.5.14 turns out to be false, it is possible that a more sophisti-
cated qualitative structure for K6-minor-free graphs could be defined in terms of 5-tree-
decompositions, using some alternative “relaxed certificate” at each node; such “relaxed
certificates” might not even have a nice formulation in terms of the part of the 5-tree-
decomposition at that node, so this formulation of the conjecture might be more robust
than Conjecture 1.4.8.

1.6 Tangles

To prove something like Conjecture 1.5.14, we need to understand the conditions that can
force 5-tree-decompositions to have nodes with large node-bags (or, equivalently, nodes
with high degree).

To do this, we build on the notion of a tangle, introduced by Robertson and Sey-
mour [25]. For each natural number θ with θ > 0, a tangle of order θ, or simply a θ-tangle,
in a graph G is a family, T , of subsets of E(G) satisfying the following axioms:

(T1) for each A ∈ T , (A,E(G)− A) is a (θ − 1)-separation;

(T2) for each (θ − 1)-separation (A,B), either A ∈ T or B ∈ T ;

(T3) for each (θ − 1)-separation (A,B), if there exists A′ ∈ T with A ⊆ A′, then A ∈ T ;
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(T4) for each partition (A1, A2, A3) of E(G), T does not contain all three of the sets A1,
A2 and A3;

(T5) for each e ∈ E(G), E(G)− {e} 6∈ T .

The intuition here is that T contains the “small side” of each (θ − 1)-separation, relative
to a particular “θ-connected piece” of the graph. Hence, we will refer to the sets in T as
T -small or simply small. For example, if G is a large θ-connected graph, then the entire
graph ought to be a “θ-connected piece”; indeed, if |V (G)| ≥ θ, and (A,B) is a (θ − 1)-
separation in G then, without loss of generality, each vertex in G is incident with an edge
in B, but there is some vertex in G that is not incident with any edge in A; we say that
the set A is small, and the collection of these small sets forms a θ-tangle.

Proposition 1.6.1. For each natural number θ with θ > 1, if G is a θ-connected graph
with |V (G)| > 3(θ − 1) and T is the family consisting of the sets A ⊆ E(G) such that
(A,E(G) − A) is a (θ − 1)-separation and each vertex in G is incident with at least one
edge in E(G)− A, then T is a θ-tangle in G.

Proof. Axiom (T1) is satisfied by construction. Axiom (T2) is satisfied by the earlier
observation that, by θ-connectivity of G, for each (θ − 1)-separation (A,B), either every
vertex in G is incident with an edge in A, or every vertex in G is incident with an edge in
B, but not both. Axiom (T3) is satisfied because, if A′ ∈ T , then G contains a vertex v
incident with no edge in A′, so if A ⊆ A′, then v contains no edge incident with A.

To prove axiom (T4), suppose (A1, A2, A3) is a partition of E(G) and suppose that
{A1, A2, A3} ⊆ T . For i ∈ {1, 2, 3}, at most θ − 1 vertices in G are incident with an edge
in Ai, so at most 3(θ− 1) vertices in G are incident with edges in A1 ∪A2 ∪A3. Therefore,
A1 ∪ A2 ∪ A3 6= E(G), contradiction.

Finally, for each edge e ∈ (G) incident with vertices u and v, G contains a vertex
x 6∈ {u, v}, so x is not incident with any edge in {e}, so E(G)− {e} 6∈ T and axiom (T5)
holds.

Tangles in minors give rise to tangles in the graph containing them; this might seem
backwards, but makes sense if you think about the fact that a θ-connected minor in a
graph G should be a “θ-connected piece” of G and should give rise to a θ-tangle in G, but
a minor in a θ-connected graph need not be θ-connected or give rise to any tangle.

Lemma 1.6.2. For each natural number θ with θ > 0, if G is a graph with a minor G′,
T ′ is a θ-tangle in G′, and T is the family consisting of the sets A ⊆ E(G) such that
(A,E(G)− A) is a (θ − 1)-separation and A ∩ E(G′) ∈ T ′, then T is a θ-tangle in G.
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Proof. Axiom (T1) is satisfied by construction. By Lemma 1.5.8, for each (θ−1)-separation
(A,B) in G, (A∩E(G′), B ∩E(G′)) is a (θ− 1)-separation in T . Therefore, axioms (T2),
(T3), (T4) and (T5) hold for T because they hold for T ′.

We can deduce, then, one of the principal motivational examples of tangles—the tangles
coming from large, highly-connected minors.

Theorem 1.6.3. For each natural number θ with θ > 1, if G is a graph with a θ-connected
minor, G′, and T is the family consisting of the sets A ⊆ E(G) such that each vertex in
G′ is incident with an edge in E(G′)− A, then T is a θ-tangle in G.

Proof. By Proposition 1.6.1 and Lemma 1.6.2.

1.6.1 Duality theorems

Robertson and Seymour [25] showed that tangles are precisely the structures that force a
graph to have high branch-width (or, equivalently, high tree-width).

Theorem 1.6.4. For each natural number θ with θ ≥ 2 and each graph G, G has branch-
width at most θ if and only if G has no tangle of order greater than θ.

For our purposes, we are interested in forcing high 5-branch-degree (or, equivalently,
high 5-tree-width), rather than high branch-width. Recall that branch-width is defined in
terms of tree-decompositions with maximum degree 3, while tangles cannot contain 3 sets
that partition the edge set of G; the number 3 in both of these definitions is no coincidence,
and both can be generalized. The covering-number of a tangle T in a graph G is the size
of the smallest subset, A, of T that covers E(G), meaning

⋃
A∈AA = E(G); by definition,

the covering-number of each tangle is at least 4.

The main result of Chapter 2 is the following generalization of Theorem 1.6.4:

Theorem 1.6.5. For natural numbers θ and δ with θ ≥ 2 and δ ≥ 3, a graph G has
θ-branch-degree at most δ if and only if G has no tangle of order greater than θ and
covering-number greater than δ.
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1.6.2 Tree of tangles

If a graph G has small 5-branch-degree, then Conjecture 1.5.14 holds for G; if G has high
5-branch-degree, then Theorem 1.6.5 gives a 6-tangle, T , in G with high covering-number.
This is some progress, but it still quite limited because the tangle is a local structure,
representing a large “6-connected piece” of G. Other parts of G “far away from T ” might
have different tangles, or might have “locally small 5-branch-degree”. What we really want
is a tangle for each “large 6-connected piece” of G, and a 5-tree-decomposition of small
degree for the parts that are not “6-connected pieces”. Indeed, we will show that there
is a 5-tree-decomposition in which each high degree-node is “justified” by a 6-tangle with
high covering-number.

If

1. θ is a natural number with θ > 0,

2. G is a graph,

3. T is a θ-tangle in G,

4. (T, µ) is a (θ − 1)-tree-decomposition,

5. t is a non-leaf tree-node in T ,

6. for each tree-edge f incident with t, Af is the set of graph-edges e in G for which
µ(e) and t are in distinct components of T \ {f}, and

7. for each tree-edge f incident with t, Af ∈ T ,

then we say that the node t displays the tangle T .

Recall from Lemma 1.5.11 that each large, θ-connected minor in G is displayed at a
unique node in each (θ − 1)-tree-decomposition; θ-tangles, which generalize θ-connected
minors, are also displayed at unique nodes in each (θ − 1)-tree-decomposition. This is
proved in Chapter 3 as Lemma 3.2.1.

Lemma 1.6.6. For each natural number θ with θ > 0, if G is a graph, T is a θ-tangle,
(T, µ) is a (θ−1)-tree-decomposition of G, then there exists a unique tree-node t in T such
that t displays T .

The main result of Chapter 3 is that there always exists a θ-tree-decomposition where
the degree of each node is forced by a tangle it displays.
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Theorem 1.6.7. For each natural number θ with θ > 1, if G is a graph, then there
exists a (θ − 1)-tree-decomposition (T, µ) of G such that, for each tree-node t in T , if
degT (t) > 3, then G contains a unique θ-tangle Tt and covering-number δt such that t
displays Tt; moreover,

δt ≤ degT (t) ≤ θδt.

Theorem 1.6.7 will likely be quite useful in proving a structure theorem such as Con-
jecture 1.5.14 because it gives a 5-tree-decomposition such that each high-degree node
displays a 6-tangle with high covering-number; these tangles make the parts of this tree-
decomposition at high degree nodes “weakly 6-connected”, in some sense. In this way, we
are able to decompose a graph along 5-separations into “6-connected pieces”, as we alluded
to earlier.

1.7 θ-connected sets

Another rich source of tangles comes from the θ-connected set of vertices in a graph—for
θ ∈ N, a set of vertices, X in a graph G is said to be a θ-connected set if, for each pair of
subsets Y, Z ⊆ X with |Y | = |Z| ≤ θ, G contains a collection of |Y | vertex-disjoint paths
between Y and Z.

A natural example a θ-connected set arises in the θ × θ-grid —the graph with vertex
set {vi,j : i, j ∈ {1, . . . , θ}} with vi,j adjacent to vi′,j′ if and only if |i − i′| + |j − j′| = 1.
For each i ∈ {1, . . . , θ}, the ith-row of G, {vi,j : j ∈ {1, . . . , θ}}, is a θ-connected set; see
Figure 1.16.

A large, θ-connected set in a graph gives rise to a tangle in the following natural way.

Theorem 1.7.1. For natural numbers θ and δ with θ ≥ 1 and δ ≥ 3, if X is a θ-connected
set in a graph G with |X| > (θ − 1)(δ − 1), and T is the family consisting of the sets
A ⊆ E(G) such that (A,E(G) − A) is a (θ − 1)-separation in G and fewer than θ of
vertices in X are incident with an edge in A, then T is a θ-tangle with covering number at
least δ.

Conversely, each θ-tangle with high covering-number also give rise to a large θ-connected
set, although in a more complicated way that we defer to Chapter 2.

Theorem 1.7.2. For positive integers θ and n there exists a positive integer δ such that,
if G is a graph and T is a θ-tangle in G with covering number at least δ, then G contains
a θ-connected set of size at least n.
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Figure 1.16: An example of a collection of vertex-disjoint paths between the vertex sets
Y and Z in a single row of the grid; in general, similar collections paths exist of any pair
of of sets of vertices in a single row of a θ × θ-grid, so the set of vertices in each row of a
θ × θ-grid form an θ-connected set.

This correspondence between large, θ-connected sets and θ-tangles with high cover-
ing number, together with the correspondence between tree-width and branch-width in
Theorem 1.5.6, shows that the existence of large, highly-connected sets in a graph G is
qualitatively equivalent to G having high tree-width. There is also more direct connec-
tion between large, highly connected sets and high tree-width, shown by Diestel, Jensen,
Gorbonov and Thomasen [4].

Theorem 1.7.3. For each natural number ω, and for each graph G,

(i) if G contains an (ω + 1)-connected set of size at least 3ω then G has tree-width at
least ω, and

(ii) conversely, if G has no (ω+1)-connected set of size at least 3ω, then G has tree-width
less than 4ω.

1.8 Minors arising from θ-tangles

Robertson and Seymour’s classic Grid Theorem [23] (see also [4]) shows that high-order
tangles give rise to large grid-minors.

Theorem 1.8.1 (Grid Theorem). For each n ∈ N, there exists some N ∈ N such that if
G has a tangle of order N , then G contains an n× n-grid-minor.
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The Grid Theorem provides an important dual for branch-width (or, equivalently, tree-
width)—by Theorem 1.6.4 and Theorem 1.8.1, a graph either has large branch-width or
it has a large grid-minor. A grid-minor in a graph is generally easier to make use of in
applications than a tangle.

1.8.1 The main theorem

For studying graphs with no K6-minor, the Grid Theorem cannot be applied because we are
not interested in high-order tangles, but instead in 6-tangles, with high covering-number.
We generalize the Grid Theorem by showing that θ-tangles with high covering-number
give rise to a graph constructed as follows. For each r, `, n ∈ N with r ≥ 1 and n ≥ 3,
an (r, `, n)-wheel is a graph G constructed by taking the union of the following pieces,
illustrated in Figure 1.17:

1. for i ∈ {1, . . . , n}, let Ti be an r-vertex tree such that, for distinct i, j ∈ {1, . . . , n},
Ti and Tj are vertex-disjoint;

2. for i ∈ {1, . . . , n}, let Mi be a perfect matching between V (Ti) and V (Ti+1) (indices
taken modulo n);

3. let Z be a set of vertices with |Z| = ` such that Z is disjoint from V (Ti) for each
i ∈ {1, . . . , n};

4. for i ∈ {1, . . . , n} and z ∈ Z, there is a unique edge ei,z incident with z and a vertex
in V (Ti).

We show in Chapter 4 that a θ-tangle with high covering-number gives rise to a minor
isomorphic to either the complete bipartite graph, Kθ,n or an (r, `, n)-wheel, where 2r+` =
θ and n is large. This is the main result of this thesis.

Theorem 1.8.2. For natural numbers θ, n with θ ≥ 2, there exists a natural number m
such that if G is a graph containing a θ-tangle with covering-number at least m, then G
contains either a Kθ,n-minor, or an (r, `, n)-wheel-minor such that r, ` ∈ N and 2r+ ` = θ.

Moreover, we show that, if 2r+ ` and m are both sufficiently large, then each (r, `,m)-
wheel contains an n× n-grid-minor, implying the Grid Theorem.
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Figure 1.17: A (5, 3, 10)-wheel.
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1.8.2 Specialization for θ = 6

For θ = 6, Theorem 1.8.2 can be refined to show that each graph with a 6-tangle of
sufficiently high covering-number contains a minor from one of the following families, each
depicted in Figure 1.18.

(a) K6,n—the complete bipartite graph with 6 vertices on one side and n vertices on the
other side

(b) a cycle of length n plus 4 vertices each adjacent to every vertex in the cycle

(c),(d) a cyclic ladder of length n, plus two vertices each adjacent to all vertices on one
side of the cyclic ladder

(e),(f) a Möbius (twisted) ladder of length n, plus two vertices each adjacent to all vertices
on one side of the Möbius ladder

(g),(h),(i),(j) a cyclic triple-ladder of length n, with each possible twist.

We hope that a proof of Conjecture 1.5.14 can be found by understanding the ways in
which graphs in Figure 1.18 can be extended to non-4-apex graphs. Norine and Thomas
[20] give an exact description of minimal non-planar extensions of planar graphs, and also
give a description of non-θ-apex extensions of θ-apex graphs in some limited settings, so
the prospects of such research seem promising.

1.9 Summary of results

This thesis presents new tools for developing qualitative structure theorems for classes of
graphs that exclude small minors, such as K6. Our main results are summarized below.

1. We prove Theorem 2.6.1, showing an exact duality between (θ − 1)-branch-degree
and the covering number of a θ-tangle. This result generalizes the duality between
tangles and branch-width proved by Robertson and Seymour [25].

2. We prove Theorem 3.1.1, showing that each graph admits a (θ−1)-tree-decomposition
where the degree of each node is either 3 or is qualitatively related to the covering
number of the unique θ-tangle displayed at the node. This result can be interpreted
as a global decomposition of a graph into its “θ-connected components”.
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(a) K6,n (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1.18: The unavoidable-minors in tangles of order 6, each representing an infinite
family.
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3. Finally, we prove Theorem 4.1.7, showing that each graph that contains a sufficiently
large θ-connected set of vertices contains one of a finite set of explicitly described
minors, each of which has a large θ-connected set. This is the main result of the
thesis; it implies the Grid Theorem (Theorem 4.1.6) of Robertson and Seymour [23].
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Chapter 2

Tree-decompositions and tangles

2.1 Introduction

Robertson and Seymour [25] introduced tangles (see also [10]) and proved that they are
dual to branch-width:

Theorem 2.1.1. For θ ∈ N with θ ≥ 2, if G is a graph, then G has branch-width at most
θ if and only if G has no tangle of order greater than θ.

The main goal of this chapter is to prove Corollary 2.6.2 which shows that θ-branch-
degree and (θ + 1)-tangles are dual in a similar same way.

There is also a natural qualitative duality between tree-width and large, highly-connected
sets, due to Diestel, Jensen, Gorbonov and Thomasen [4].

Theorem 2.1.2. For each natural number ω, and for each graph G,

(i) if G contains an (ω + 1)-connected set of size at least 3ω then G has tree-width at
least ω, and

(ii) conversely, if G has no (ω+1)-connected set of size at least 3ω, then G has tree-width
less than 4ω.

Together with the qualitative equivalence of branch-width and tree-width, these results
show that high-order tangles and large, highly-connected sets of vertices are qualitatively
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equivalent. We generalize this and give a direct proof that θ-tangles with high covering-
number are qualitatively equivalent to large θ-connected sets in Theorem 2.9.2.

In summary, this chapter proves that the following are qualitatively equivalent for each
natural number θ > 2 and each graph G:

(1) G has high (θ − 1)-tree-width;

(2) G has high (θ − 1)-branch-degree;

(3) G has a θ-tangle with high covering-number;

(4) G has a large θ-connected set.

The qualitative equivalence between (θ − 1)-tree-width (1) and (θ − 1)-branch-degree
(2) is established in Theorem 1.5.7. Corollary 2.6.2 shows that the (θ−1)-branch-degree of
G (2) equals the maximum covering-number of a θ-tangle of G (3). Theorem 2.9.2 shows
that the presence of a θ-tangle with high covering-number (3) implies the presence of a
large, θ-connected set (4); conversely, Theorem 2.9.1 shows that the presence of a large,
θ-connected set (4) implies the presence of a θ-tangle with high covering-number (3).

Like Robertson and Seymour [25], we obtain our results in the more general setting of
“connectivity systems”.

2.2 Connectivity systems

A connectivity system is a pair (S, λ) consisting of a ground set S and a connectivity
function λ : 2S → N such that

• λ is symmetric; that is λ(X) = λ(S −X) for each X ⊆ S; and

• λ is submodular ; that is λ(X ∪ Y ) + λ(X ∩ Y ) ≤ λ(X) + λ(Y ) for each X, Y ⊆ S.

A separation in a connectivity system is a bipartition of the ground set. The order of
a separation (X, Y ) is λ(X); for each natural number θ, a separation of order at most θ
is called a θ-separation. Connectivity systems were introduced by Fujishige [9], where he
showed that each connectivity system has a canonical decomposition along 2-separations.
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2.2.1 Examples of connectivity systems

We are principally interested in connectivity systems that arise from graphs in the following
way. For each graph G, there is a connectivity system whose ground set is E(G) and whose
connectivity function, λG, is defined for F ⊆ E(G) as the number of vertices incident with
both an edge in F and an edge in E(G)−F . Fujishige [9] prove that this is a connectivity
system.

Lemma 2.2.1. If G is a graph then (E(G), λG) is a connectivity system.

Connectivity systems arising from graphs in this way are called a graphic connectivity
system.

Connectivity systems also arise naturally from matroids. Given a matroid M with
ground set E and rank function ρ, there is a connectivity system with ground set E and
connectivity function λM defined for X ⊆ E as λM(X) = ρ(X) + ρ(E −X)− ρ(E); λM is
symmetric by definition and submodular because ρ is submodular.

2.2.2 Domination

In this section we explore a natural substructure relation for connectivity systems, which
is related to the concept of a minor in a graph or a matroid.

If (S, λ) is a connectivity system, then, for any two disjoint sets A and B in S, the
connectivity between A and B is

κλ(A,B) = min{λ(A′) : A ⊆ A′ ⊆ S −B}.

In the case of a graphic connectivity system of a graph G, κλG(A,B) measures the
maximum number of vertex-disjoint paths containing both a vertex incident with an edge
in A and a vertex incident with an edge in B.

If (S, λ) and (S ′, λ′) are connectivity systems such that S ′ ⊆ S and, for each X ⊆ S ′,
λ′(X) ≤ κλ(X,S

′ −X), then we say that (S, λ) dominates (S ′, λ′).

Lemma 2.2.2. If (S, λ) and (S ′, λ′) are connectivity systems and (S, λ) dominates (S ′, λ′),
then, for each A ⊆ S, λ(A) ≥ λ′(A ∩ S ′).
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Proof.
λ′(A ∩ S ′) ≤ κλ(A ∩ S ′, S ′ − A) ≤ λ(A).

The principal example of dominated connectivity systems arise from minors in a graph.

Lemma 2.2.3. If G is a graph and G′ is a minor of G, then (E(G), λG) dominates
(E(G′), λG′).

Proof. Suppose C and D are disjoint subsets of edges of G and G′ = G/C \D; that is, G′

is obtained from G by contracting the edges in C and deleting the edges in D.

Let F ′ ⊆ E(G′) and choose F ⊆ E(G) such that F ′ ⊆ F ⊆ E(G′) − F ′ and λG(F ) =
κλG(F ′, E(G′)−F ′). Let U ′ be the set of vertices, u, in G′ incident with both an edge, e1,u
in F ′ and an edge, e2,u in E(G′) − F ′. For each u ∈ U ′, there exists a path Pu in G such
that E(Pu) ⊆ C and Pu contains a vertex incident with e1,u and a vertex incident with
e2,u; moreover, for distinct u, v ∈ U ′, Pu and Pv are vertex-disjoint. Thus, if F ⊆ E(G)
such that F ′ ⊆ F ⊆ E(G′)− F ′, and λG(F ) = κλG(F ′, E(G′)− F ′) then

κλG(F ′, E(G′)− F ′) = λG(F ) ≥ |U ′| = λG′(F
′),

so (G, λG) dominates (G′, λG′).

2.3 Tree-decompositions

We describe here how the concept of tree-decompositions for graphs, as defined in Chap-
ter 1, generalizes to connectivity systems.

A leaf in a tree T is a node of degree exactly 1. An incidence in a tree T is a pair (t, e),
where t is a node and e is a tree-edge incident with t in T . A leaf-incidence in a tree T is
an incidence (t, e) such that t is a leaf.

Tree-decompositions, discovered independently by Bertelé and Brioschi [1], by Halin [13],
and by Robertson and Seymour [24] in the context of graphs, generalize in a trivial way to
connectivity systems—a tree-decomposition of a connectivity system (S, λ) is a pair (T, µ)
where T is a tree and µ is an injective function from the ground set, S, to the set of leaves
of T .

If (T, µ) is a tree-decomposition of the connectivity system (S, λ), then each tree-edge e
in T gives rise to a separation in (S, λ) as follows. Note that T \ {e} has two components,
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T1 and T2. For i ∈ {1, 2}, let Si ⊆ S be the elements, s, of the ground set for which µ(s)
is in Ti We say that (S1, S2) is the separation presented by e in (T, µ). If t1 is the node
incident with e in T with t1 ∈ V (T1), then we also say that S2 is the set presented by
the incidence (t1, e); we emphasize that the set presented by (t1, e) is the set of elements
labelling leaves across e from t1, not the set of elements labelling leaves on the same side
of e as t1.

If (S, λ) is a connectivity system with a tree-decomposition (T, µ) and e is a tree-edge in
T presenting the separation (S1, S2), then the edge-width of e is λ(S1) (which equals λ(S2)
by symmetry of λ); The edge-width of (T, µ) is the maximum edge-width of the tree-edges
in T . For θ ∈ N, the θ-branch-degree of a connectivity system (S, λ), denoted bdk(S, λ), is
the minimum δ ∈ N for which (S, λ) has a θ-tree-decomposition with maximum degree at
most δ.

2.4 Tangles

Tangles—structures which capture the general notion of a “θ-connected piece” of a graph—were
discovered by Robertson and Seymour [25]. For each natural number θ with θ > 0, a tangle
of order θ, or simply a θ-tangle, in a connectivity system (S, λ) is a family, T , of subsets
of S satisfying the following axioms:

(T1) if A ∈ T then λ(A) < θ;

(T2) if A ⊆ S with λ(A) < θ then either A ∈ T or S − A ∈ T ;

(T3) if A ⊆ A′ ⊆ S, A′ ∈ T and λ(A) < θ, then A ∈ T ;

(T4) for each partition (A1, A2, A3) of S, T does not contain all three of the sets A1, A2

and A3;

(T5) for each x ∈ S, S − {x} 6∈ T .

Traditionally, tangles are defined as families satisfying (T1), (T2), (T5) and the follow-
ing axiom:

(T4′) if A1, A2, A3 ∈ T , then A1 ∪ A2 ∪ A3 6= S.

These two definitions are equivalent by the following lemma, which follows from (2.9) in [25].
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Lemma 2.4.1. For θ ∈ N, if (S, λ) is a connectivity system, and T ⊆ 2S satisfying axioms
(T1), (T2) and (T5) for being a θ-tangle, then T is a θ-tangle if and only if T satisfies
(T4′).

As we saw in Proposition 1.6.1, if G is a θ-connected graph with more than 3(θ − 1)
vertices, then the graphic connectivity system (E(G), λG) has a θ-tangle, T , such that, for
each A ∈ T , there exists a vertex in G not incident with any edge in A.

Grids also possess natural tangles; recall that, for each natural number n, the n×n-grid
is the graph with vertices {vi,j : i, j ∈ {1, . . . , n}} where vi,j is adjacent to vi′,j′ if and only
if |i − i′| + |j − j′| = 1; for i ∈ {1, . . . , n}, the ith-row of the n × n-grid is the subgraph
induced by the vertices {vi,j : j ∈ {1, . . . , n}}; The following is attributed to Kleitman and
Saks [25].

Proposition 2.4.2. For each natural number θ with θ ≥ 3, if G is the θ×θ-grid, and T ⊆
2E(G) is the family consisting of the sets A ⊆ E(G) for which there exists iA ∈ {1, . . . , θ}
such that each vertex in the ithA -row of G is not incident with any edge in A, then T is a
θ-tangle in G.

2.4.1 Induced tangles

As we saw in Section 1.6, a tangle in a graph G′ gives rise to a tangle in each graph G
containing G′ as a minor, a tangle in a connectivity system (S ′, λ′) gives rise to a tangle
in each connectivity system (S, λ) dominating (S ′, λ′).

Lemma 2.4.3. For each natural number θ, if (S, λ) and (S ′, λ′) are connectivity systems
such that (S, λ) dominates (S ′, λ′), T ′ is a θ-tangle in (S ′, λ′), and T ⊆ 2S is the family
consisting of the sets A ⊆ S for which A ∩ S ′ ∈ T ′, then T is a θ-tangle in (S, λ).

Proof. Let T be the family consisting of the sets A ⊆ S such that λ(A) < θ and A ∩ S ′ ∈
T ′. Then T satisfies (T1) by construction and satisfies (T2),. . .,(T5) because T ′ satisfies
these axioms, together with the fact that, for each (θ − 1)-separation (A,B) in (S, λ),
(A ∩ S ′, B ∩ S ′) is a (θ − 1)-separation in (S ′, λ′) by Lemma 2.2.2.

We say that the tangle T in Lemma 2.4.3 is induced by the tangle T ′.
If a graph G has a large, θ-connected minor, then G has a θ-tangle induced by the

tangle in the θ-connected minor; similarly, if G has a θ × θ-grid-minor, then G has a
θ-tangle induced by the tangle in the θ × θ-grid.
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Induced tangles can also be used to relate tangles with sets of vertices, using the
following connectivity system: if G is graph and (E(G), λG) is the graphic connectivity
system for G, then (E(G), λG) is dominated by the connectivity system (E(G)∪V (G), λ̃G),
where, for each F ⊆ E(G) and each U ⊆ V (G), λ̃G(F ∪ U) is the number of vertices, v in
G such that both

1. v ∈ U or v is incident with an edge in F , and

2. v ∈ V (G)− U or v is incident with an edge in E(G)− F .

Note that (E(G) ∪ V (G), λ̃G) is a connectivity system and dominates (E(G), λG) because
(E(G)∪V (G), λ̃G) is isomorphic to the graphic connectivity system on the graph G̃ obtained
from G by adding a loop edge at each vertex, and G is a minor of G̃. We call (E(G) ∪
V (G), λ̃G) the extended graphic connectivity system of G. By Lemma 2.4.3, each tangle in
(E(G), λG) induces a tangle in (E(G) ∪ V (G), λ̃G) of the same order.

2.5 Covering-number

The covering-number of a tangle T in a connectivity system (S, λ) is the size of the smallest
subset, A, of T such that

⋃
A∈AA = S.

One natural class of graphs with tangles of high covering-number are the cylindrical
grids—the θ× n-cylindrical-grid is the graph with vertex set {vi,j : i ∈ {1, . . . , θ}, j ∈ Zn}
(where Zn denotes the cyclic group of order n) such that vertices vi,j and vi′,j′ are adjacent
if and only if

(i− i′, j − j′) ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)};

see Figure 2.1. For i ∈ {1, . . . , θ}, the ith-circuit of the θ×n-cylindrical-grid is the subgraph
induced by the vertex set {vi,j : j ∈ Zn}; for j ∈ Zn, the jth-path of the θ×n-cylindrical-grid
is the subgraph induced by the vertex set {vi,j : i ∈ {1, . . . , θ}}.

Proposition 2.5.1. For θ, δ, n ∈ N with θ ≥ 2 and n > (δ − 1)(2θ − 1), the graphic
connectivity system of the θ×n-cylindrical-grid contains a 2θ-tangle T with covering number
at least δ.

Proof. Let G be the θ × n-cylindrical-grid. Let T be the family consisting of the sets
A ⊆ E(G) such that λG(A) < 2θ and there exists iA ∈ {1, . . . , θ} for which A does not
contain any edge in the ithA -circuit of G. Then T satisfies axioms (T1), (T3) and (T5) by
construction.
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Figure 2.1: A 5× 20-cylindrical grid.

To prove axiom (T2), let (A,B) be a (2θ − 1)-separation in (S, λ). For, i ∈ {1, . . . , θ},
if the ith-circuit of G contains both an edge in A and an edge in B, then the ith-circuit
contains two vertices that are each incident with both an edge in A and an edge in B;
hence, this occurs for at most θ − 1 circuits so, without loss of generality, there exists
iA ∈ {1, . . . , θ} such that the edges in the ithA -circuit are each in B. Thus, A ∈ T and T
satisfies axiom (T2).

To prove axiom (T4), note that, for each A ∈ T and each j ∈ Zn, if the jth-path of
G contains an edge in A, then, because viA,j is incident with an edge in E(G) − A, the
jth-path contains a vertex incident in G with both an edge in A and an edge in E(G)−A;
therefore, there are at most (2θ− 1) such pathss. Thus, if A1, . . . , Aδ−1 ∈ T , then at most
(δ − 1)(2θ − 1) paths of G contain an edge in

⋃δ−1
i=1 Ai, so

⋃δ−1
i=1 Ai 6= E(G). Hence, axiom

(T4) holds and T has covering-number at least δ.

Cylindrical grids are a special case of the class of graphs that we describe in Chapter 4,
which also have tangles with high covering number.

We observe that the covering-number of a θ-tangle gives a lower bound on the maximum
degree of a (θ− 1)-tree-decompositions. This gives the first (easy) direction of the duality
between θ-tangles with high covering-number and (θ−1)-tree-decompositions of low degree.

Lemma 2.5.2. For each natural number θ, if (S, λ) is a connectivity system, T is a θ-
tangle in (S, λ) and (T, µ) is a (θ− 1)-tree-decomposition of (S, λ), then T has a node with
degree at least the covering-number of T .
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Proof. Let ~T be an orientation of T obtained as follows. If t is a node in T incident with
a tree-edge e and the set presented by the incidence (t, e) is in T , then orient e away
from t. Note that this orientation is well defined because the separation presented by each
tree-edge is a (θ−1)-separation, and so exactly one side of the separation is in T . Because
~T is acyclic, there exists a node, t0 such that each edge incident with t0 is oriented toward
t0. Note that t0 is not a leaf by axiom (T5). Therefore, if A is the family consisting of, for
each tree-edge e incident with t0, the set presented by the incidence (t0, e), then A ⊆ T
and

⋃
A∈AA = S. Therefore, t0 has degree at least the covering-number of T .

2.6 The duality theorem

The main theorem of this chapter is that the converse of Lemma 2.5.2 also holds—that
if (S, λ) has no θ-tangle with covering number at least δ, then (S, λ) has a (θ − 1)-tree-
decomposition with maximum degree less than δ. This generalizes Robertson and Sey-
mour’s [25] duality theorem between high order tangles and branch-width (Theorem 2.1.1).

Theorem 2.6.1. For natural numbers θ and δ with δ ≥ 4, if (S, λ) is a connectivity-system
with λ({x}) < θ for each x ∈ S, and (S, λ) has no θ-tangle with covering at least δ, then
(S, λ) has a (θ − 1)-tree-decomposition with maximum degree less than δ.

Together, Lemma 2.5.2 and Theorem 2.6.1 imply the following.

Corollary 2.6.2. For each natural number θ and each connectivity system (S, λ), if (T, µ)
is a minimum degree (θ− 1)-tree-decomposition of (S, λ) and T is a θ-tangle in (S, λ) with
maximum covering-number, then the degree of T equals the covering-number of T .

For each tree T , let L(T ) denote the set of leaves of T .

A partial tree-decomposition of a connectivity system (S, λ) is a pair (T, µ) where T is
a tree and µ : S → L(T ). If A ⊆ 2S and, for each leaf t ∈ L(T ), there exists a set A ∈ A
such that {x ∈ S : µ(x) = t} ⊆ A, then we say that (T, µ) is a partial tree-decomposition
over A. Note that a partial tree-decomposition over {{x} : x ∈ S} is a tree-decomposition.

The separation presented by a tree-edge, the set presented by a tree-incidence, the width
of a tree-edge, and the width of a partial tree-decomposition are all defined for partial tree-
decompositions in exactly the same way that they are defined for tree-decompositions. As
for tree-decompositions, for θ ∈ N, we define a partial θ-tree-decomposition to be a partial
tree-decomposition of width at most θ.
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Lemma 2.6.3. For natural numbers θ and δ with δ ≥ 4, if (S, λ) is a connectivity system
and A ⊆ 2S such that

(1)
⋃
A∈AA = S,

(2) for A ∈ A, λ(A) < θ,

(3) (S, λ) has no partial (θ − 1)-tree-decomposition over A of degree less than δ, and

(4) for each X ⊆ S with λ(X) < θ, there exists A ∈ A such that either X ⊆ A or
S −X ⊆ A,

then A extends to a θ-tangle in (S, λ) with covering number at least δ.

Proof. Let T be the family consisting of the sets X ⊆ S for which λ(X) < θ and X ⊆ A
for some A ∈ A.

The family T satisfies tangle property (T1) by construction. Tangle property (T2) is
satisfied by assumption (4).

Claim 2.6.3.1. If {X1, . . . , Xδ−1} ⊆ T , then
⋃δ−1
i=1 Xi 6= S.

Proof of Claim. Suppose for contradiction that {X1, . . . , Xδ−1} ⊆ T , and
⋃δ−1
i=1 Xi = S.

Choose such {X1, . . . , Xδ−1} minimizing
∑δ−1

i=1 |Xi|.
Note that {X1, . . . , Xδ−1} is a partition of S—if Xi ∩Xj 6= ∅ for distinct i and j, then,

by submodularity, either λ(Xi − Xj) ≤ λ(Xi) or λ(Xj − Xi) ≤ λ(Xj); without loss of

generality, the former occurs, so Xi −Xj ∈ T , contradicting minimality of
∑δ−1

i=1 |Xi|.
Let T be the degree-(δ − 1) star with leaves {t1, . . . , tδ−1} and let µ : S → L(T ) be

defined as µ(x) = ti for each x ∈ Xi. Then (T, µ) is a partial (θ − 1)-tree-decomposition
over A, contradicting (4). � (Claim)

Therefore, T satisfies property (T4′) and has covering-number at least δ. If S−{x} ∈ T
for some x ∈ S, then there exists A ∈ A ⊆ T such that x ∈ A, and (S − {x}) ∪ A = S,
which contradicts Claim 2.6.3.1; therefore, T satisfies property (T5), and is a θ-tangle.

Lemma 2.6.4. For natural numbers θ and δ with δ ≥ 4, if (S, λ) is a connectivity system
and A ⊆ 2S such that

(1)
⋃
A∈AA = S,
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(2) for A ∈ A, λ(A) < θ, and

(3) (S, λ) has no partial (θ − 1)-tree-decomposition over A of degree less than δ,

then A extends to a θ-tangle in (S, λ) with covering number at least δ.

Proof. Suppose the contrary and let A ⊆ 2S be maximal such that A satisfies (1), (2) and
(3) but A does not extend to a θ-tangle with covering number at least δ.

If, for each X ⊆ S with λ(X) < θ, there exists A ∈ A such that either X ⊆ A or
S−X ⊆ A, then A extends to a θ-tangle with covering-number at least δ by Lemma 2.6.3.

Suppose, then, that there exists a (θ − 1)-separation (X1, X2) is (S, λ) such that, for
each A ∈ A, X1 6⊆ A and X2 6⊆ A; choose such a separation minimizing λ(X1).

For i ∈ {1, 2}, A ∪ {Xi} satisfies (1) and (2), and A ∪ {Xi} does not extend to a
θ-tangle, so (S, λ) has a partial (θ− 1)-tree-decomposition (Ti, µ

′
i) over A∪{Xi} of degree

less than δ. By assumption (Ti, µ
′
i) is not a partial tree-decomposition over A, so there

exists some ti ∈ V (Ti) such that, for each A ∈ A,

{x ∈ S : µ′i(x) = ti} 6⊆ A.

Because (Ti, µ
′
i) is a partial tree-decomposition over A ∪ {Xi},

{x ∈ S : µ′i(x) = ti} ⊆ Xi.

Let µi : S → L(T ) be defined as

µi(x) =

{
ti x ∈ Xi

µ′i x 6∈ Xi.

Claim 2.6.4.1. For each i ∈ {1, 2} and each tree-edge e ∈ E(Ti), the width of e in (Ti, µi)
is at most the width of e in (Ti, µ

′
i)

Proof of Claim. Let t be the node incident with e such that t and ti are in distinct compo-
nents of Ti \ {e}. Let Y and Y ′ be the sets presented by the incidence (t, e) in (Ti, µi) and
(Ti, µ

′
i) respectively. Note that Y = Y ′∪Xi. Suppose for contradiction that λ(Y ) > λ(Y ′).

By submodularity, λ(Y ′ ∩ Xi) < λ(Xi). Therefore, by minimality of λ(X1), there is
some A ∈ A such that either
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(i) Y ′ ∩Xi ⊆ A,

(ii) or S − (Y ′ ∩Xi) ⊆ A.

In case (i),
{x ∈ S : µ′i(x) = ti} ⊆ Y ′ ∩Xi ⊆ A

contradicting our choice of ti. In case (ii),

S −Xi ⊆ S − (Y ′ ∩Xi) ⊆ A,

contradicting our choice of (X1, X2). � (Claim)

Therefore, (Ti, µi) is a partial (θ − 1)-tree-decomposition.

Note that, if S = ∅, then the empty tree gives a trivial partial (θ−1)-tree-decomposition
over A, so we may assume S 6= ∅.

Claim 2.6.4.2. For each i ∈ {1, 2} and each leaf t ∈ L(Ti)−{ti}, there exists A ∈ A such
that

{x ∈ S : µi(x) = t} ⊆ A

Proof of Claim. If
{x ∈ S : µi(x) = t} = ∅,

then, because S 6= ∅, we know that A 6= ∅, so ∅ ⊆ A for an arbitrary A ∈ A.

Otherwise, there is some x ∈ S such that µi(x) = t 6= ti, so

{x ∈ S : µi(x) = t} 6⊆ Xi

but, because (Ti, µ
′
i) is a partial tree-decomposition over A∪{Xi}, there exists A ∈ A such

that
{x ∈ S : µi(x) = t} ⊆ {x ∈ S : µ′i(x) = t} ⊆ A.

� (Claim)

Let T be the tree constructed the disjoint union of T1 and T2 by identifying nodes t1
and t2. Let µ : S → L(T ) be defined for x ∈ S as

µ(x) =

{
µ1(x) x ∈ X2

µ2(x) x ∈ X1.
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Note that L(T ) = (L(T1) ∪ L(T2)) − {t1, t2}, so, by Claim 2.6.4.2, µ is well-defined and
(T, µ) is a partial tree-decomposition over A. For i ∈ {1, 2}, each tree-edge in Ti presents
the same separation in (Ti, µi) and (T, µ), so, by Claim 2.6.4.1, (T, µ) is a partial (θ − 1)-
tree-decomposition over A. This contradicts our choice of A.

We now prove Theorem 2.6.1, restated here.

Theorem 2.6.1. For natural numbers θ and δ with δ ≥ 4, if (S, λ) is a connectivity-system
with λ({x}) < θ for each x ∈ S, and (S, λ) has no θ-tangle with covering at least δ, then
(S, λ) has a (θ − 1)-tree-decomposition with maximum degree less than δ.

Proof. Let A = {{x} : x ∈ S}. If (S, λ) has no (θ − 1)-tree-decomposition, then it has
no partial (θ − 1)-tree-decomposition over A. Therefore, by Lemma 2.6.4, A extends to a
θ-tangle in (S, λ).

2.7 Tangle matroids

Each tangle in a connectivity system gives rise to a matroid ; here we use standard definition
of a matroid in terms of the rank function; that is, a matroid is a pair (S, ρ) where S is a
set, called the ground set of the matroid, and ρ : 2S → N, called the rank function, such
that

(M1) for A ⊆ S, ρ(A) ≤ |A|,

(M2) ρ is monotonic—for A,B ⊆ S, if A ⊆ B then ρ(A) ≤ ρ(B), and

(M3) ρ is submodular—for A,B ⊆ S, ρ(A ∪B) + ρ(A ∩B) ≤ ρ(A) + ρ(B).

Given a connectivity system (S, λ) and a θ-tangle T , the rank-function of T , ρT : 2S →
N is defined for X ⊆ S as

ρT (X) =

{
min{λ(A) : X ⊆ A ∈ T } if X ⊆ A for some A ∈ T
θ otherwise.

Intuitively, ρT (X) gives the “connectivity of X into the tangle T ”. We have called ρT
the “rank-function” of T because we would like it to be the rank-function of a matroid.
Indeed, (S, ρT ) satisfies matroid axioms (M2) and (M3), as shown in Lemma 2.7.2 and
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Lemma 2.7.3, respectively, but matroid axiom (M1) might not hold in general. For example,
there might be some x ∈ S such that, for each A ∈ T with x ∈ A, λ(A) > 1, so
ρT ({x}) > 1 = |{x}|. Robertson, Seymour and Thomas [28] (see also [10]) proved that
restricting the connectivity of the empty-set and the singletons yields a matroid.

Lemma 2.7.1. For θ ∈ N with θ ≥ 2, if (S, λ) is a connectivity system with λ(∅) = 0 and,
for each x ∈ S, λ({x}) ≤ 1, T is a θ-tangle in (S, λ) and ρT is the rank-function of T ,
then (S, ρT ) is a rank-θ matroid.

Here we want something slightly more general, although the proof is not substantially
different. For V ⊆ S with λ({v}) ≤ 1 for each v ∈ V , we define the tangle-matroid of T on
V , M(V, T ) = (V, ρ′), where ρ′ is the restriction of ρT to V . We show that that M(V, T )
is a matroid in Lemma 2.7.5, using the following lemmas.

Lemma 2.7.2 and Lemma 2.7.3 are proved by Robertson, Seymour and Thomas [28].

Lemma 2.7.2. For θ ∈ N with θ ≥ 2, if (S, λ) is a connectivity system with λ(∅) = 0, T
is a θ-tangle in (S, λ), then the rank-function of T is monotonic.

Proof. Suppose X ⊆ Y ⊆ S. If ρT (Y ) = θ, then ρT (X) ≤ θ = ρT (Y ). We may assume,
then, that ρT (Y ) < θ, so there exists A ∈ T such that Y ⊆ A and ρT (Y ) = λ(A).
Therefore, X ⊆ A, so ρT (X) ≤ λ(A) = ρT (Y ).

Lemma 2.7.3. For θ ∈ N with θ ≥ 2, if (S, λ) is a connectivity system with λ(∅) = 0, T
is a θ-tangle in (S, λ), then the rank-function of T is submodular.

Proof. Suppose first that, for each A ∈ T , X 6⊆ A. Then for each A ∈ T , X ∪ Y 6⊆ A, so
ρT (X) = ρT (X ∪ Y ) = θ. Thus,

ρT (X ∪ Y ) + ρT (X ∩ Y ) = ρT (X) + ρT (X ∩ Y ) ≤ ρT (X) + ρT (Y ),

where the last inequality holds by Lemma 2.7.2, because X ∩ Y ⊆ Y .

If, for each A ∈ T , Y 6⊆ A, then ρT (X ∪ Y ) + ρT (X ∩ Y ) ≤ ρT (X) + ρT (Y ) by the
same argument.

We may assume, then, that there exists A,B ∈ T such that X ⊆ A, Y ⊆ B, ρT (X) =
λ(A) and ρT (Y ) = λ(B).

Note that ρT (X ∪Y ) ≤ λ(A∪B); indeed, if A∪B ∈ T , then, because X ∪Y ⊆ A∪B,
ρT (X ∪ Y ) ≤ λ(A ∪ B); on the other hand, if A ∪ B 6∈ T , then, by tangle axiom (T4),
S− (A∪B) 6∈ T , so, by tangle axiom (T2), λ(A∪B) ≥ θ, and ρT (X ∪Y ) ≤ θ ≤ λ(A∪B).
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Similarly, ρT (X ∩ Y ) ≤ λ(A ∩B). Thus,

ρT (X ∪ Y ) + ρT (X ∩ Y ) ≤ λ(A ∪B) + λ(A ∩B)

≤ λ(A) + λ(B)

= ρT (X) + ρT (Y ).

Lemma 2.7.4. For θ ∈ N with θ ≥ 2, if (S, λ) is a connectivity system with λ(∅) = 0,
T is a θ-tangle in (S, λ), and X ⊆ S with |X| < θ and λ({x}) ≤ 1 for each x ∈ X, then
X ∈ T and λ(X) ≤ |X|.

Proof. By induction on |X|.

Note that λ(∅) = 0 ≤ θ, so ∅ ∈ T and λ(∅) = 0.

Note also that, for each v ∈ V , λ({v}) ≤ 1 ≤ θ, so {v} ∈ T and λ({v}) = 1.

We may assume, then, that 1 < |X| < θ and, for each Y ⊆ V , if |Y | < |X| then Y ∈ T
and λ(Y ) ≤ |Y |. Let x ∈ X.

λ(X) = λ(X) + λ(∅)
≤ λ(X − {x}) + λ({x})
≤ (|X| − 1) + 1 = |X|.

Therefore, λ(X) < θ. By the induction hypothesis, X −{x} and {x} are both in T , so, by
tangle axiom (T4), S −X 6∈ T , so by tangle axiom (T2), X ∈ T .

Now we can prove that M(V, T ) is a matroid.

Lemma 2.7.5. For θ ∈ N with θ ≥ 2, if (S, λ) is a connectivity system with λ(∅) = 0,
T is a θ-tangle in (S, λ), and V ⊆ S with λ({v}) ≤ 1 for each v ∈ V , then M(V, T ) is a
matroid.

Proof. Let ρ′ be the restriction of ρT to V .

To prove that M(V, T ) satisfies matroid axiom (M1), note that, for X ⊆ V with
|X| ≥ θ, ρT (X) ≤ θ ≤ |X|; therefore, it suffices to show that, for X ⊆ V , with |X| < θ,
ρT (X) ≤ |X|; by Lemma 2.7.4, if |X| < θ, then X ∈ T , so ρT (X) ≤ λ(X) ≤ |X|.

M(V, T ) satisfies matroid axiom (M2) by Lemma 2.7.2, and satisfies matroid axiom
(M3) by Lemma 2.7.3.
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2.8 Graphic tangles and their matroids

For graphic connectivity systems, tangle matroids allow us to relate tangles with the ver-
tices of the graph. Suppose G is a graph and T is a θ-tangle in (E(G), λG). As we
saw in Section 2.4, the graphic connectivity system (E(G), λG) is dominated by the ex-
tended graphic connectivity system (E(G)∪V (G), λ̃G), and the tangle T induces a tangle,
T̃ in (E(G) ∪ V (G), λ̃G). The graphic tangle-matroid, M(G, T ) is the tangle-matroid
M(V (G), T̃ ) in (E(G) ∪ V (G), λ̃G). We let ρT (X) denote the rank-function of M(G, T ).
Then, for each X ⊆ V (G), ρT̃ (X) essentially gives “connectivity of X into T ”.

Lemma 2.8.1. For θ, k ∈ N with θ > 2, if G is a graph, T is a θ-tangle in G, and
X1, X2 ⊆ V (G), then G contains min(ρT (X1), ρT (X2)) vertex-disjoint paths between X1

and X2.

Proof. Suppose for contradiction that G does not contain min{ρT (X1), ρT (X2)} vertex-
disjoint paths between X1 and X2. By Menger’s Theorem (see [3, Theorem 3.3.1]), there
exists graphs G1 and G2 such that

(a) G = G1 ∪G2,

(b) X1 ⊆ V (G1),

(c) X2 ⊆ V (G2), and

(d) |V (G1) ∩ V (G2)| < min{ρT (X1), ρT (X2)}.

Then, for i ∈ {1, 2},

λG(E(Gi)) ≤ λ̃G(E(Gi) ∪ V (Gi)) ≤ |V (G1) ∩ V (G2)| < min{ρT (X1), ρT (X2)} ≤ θ.

We may assume that E(G1)∩E(G2) = ∅. By tangle axiom (T2), without loss of generality,
E(G1) ∈ T ; therefore, E(G1) ∪ V (G1) ∈ T̃ , where T̃ is the tangle in (E(G) ∪ V (G), λ̃G)
induced by T . Thus, ρT (X1) ≤ λ̃G(E(G1) ∪ V (G1)), contradicting the earlier observation
that λ̃G(E(G1) ∪ V (G1)) < ρT (X1).

2.9 θ-connected sets

Recall from Chapter 1 that, for θ ∈ N, a θ-connected set in a graph G is a set X ⊆ V (G)
such that, for Y, Z ⊆ X with |Y | = |Z| ≤ θ, G contains θ vertex-disjoint paths between Y
and Z.
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Each large, θ-connected set in a graph gives rise to a tangle.

Theorem 2.9.1. For θ, δ ∈ N, with θ > 2 and δ > 3, if G is a graph and X is a θ-
connected set in G with |X| > (θ− 1)(δ− 1), and T ⊆ 2E(G) is the family consisting of the
sets A ⊆ E(G) for which both λG(A) < θ and X contains at most λG(A) vertices incident
with edges in A, then T is a θ-tangle in G with covering-number at least δ.

Proof. Note that T satisfies (T1) by construction. If (A,B) is a θ-separation in G then G
contains at most λG(A) vertex-disjoint paths between the set of vertices incident with any
edge in A and the set of vertices incident with any edge in B; because X is θ-connected,
one of these sets of vertices must have size at most λG(A), so either A ∈ T or B ∈ T ,
and hence (T2) holds. Axiom (T5) holds because, for each e ∈ E(G), the number of the
vertices in X incident with an edge in E(G)− {e}, is at least

|X| − 2 ≥ (θ − 1)(δ − 1)− 1 ≥ 5 > λ({e}).

If A1, . . . , Aδ−1 ∈ T then the number of vertices in X incident with an edge in
⋃δ−1
i=1 Ai is

at most (δ − 1)(θ − 1) < |X|. But |X| > 2, so each vertex in X is incident with at least
one edge, so

⋃δ−1
i=1 Ai 6= E(G). Thus, (T4′) holds and T is a θ-tangle with covering number

at least δ.

We will prove in this section that, qualitatively, the converse of Theorem 2.9.1 also
holds.

Theorem 2.9.2. For θ, n ∈ N, with θ > 2 there exists N ∈ N such that, if G is a graph
and T is a θ-tangle in (V (G), λG) with covering-number at least N , then G contains a
θ-connected set X of size n such that, for each A ∈ T , at most λG(A) vertices in X are
incident with any edge in A.

Combining Theorem 2.9.1 and Theorem 2.9.2, we obtain the following qualitative equiv-
alence between θ-connected sets and θ-tangles.

Corollary 2.9.3. For θ, δ ∈ N, with θ > 2 and δ > 3, there exist Nθ,δ,Mθ,δ ∈ N such that,
for each graph G:

1. if G contains a θ-connected set of size at least Nθ,δ, then G contains a θ-tangle with
covering-number at least δ, and

2. conversely, if G contains a θ-tangle with covering-number at least Mθ,δ, then G con-
tains a θ-connected set of size at least δ.
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2.9.1 Uniform matroids

If (S, ρ) is a matroid and X ⊆ S, then the restriction of (S, ρ) to X is the matroid (X, ρ|X).

For θ, n ∈ N, the rank-θ uniform matroid with n elements , denoted Uρ,n is the matroid
with ground set {1, . . . , n} and rank function ρθ defined for X ⊆ {1, . . . , n} as

ρθ(X) =

{
|X| if |X| ≤ θ

θ if |X| > θ.

Robertson, Seymour and Thomas [28] showed that the independent sets in a tangle
matroid are fully connected to each other. This implies that uniform restrictions of tangle
matroids give rise to θ-connected sets, as follows.

Lemma 2.9.4. For θ ∈ N with θ > 2, if

1. G is a graph,

2. T is a θ-tangle in (E(G), λG),

3. T̃ is the tangle induced by T in (E(G) ∪ V (G), λ̃G),

4. X ⊆ V (G), and

5. (X, ρT̃ ,V (G)|X), the tangle matroid of T̃ on V (G), restricted to X, is isomorphic to a
rank-θ uniform matroid,

then X is a θ-connected set and, for each A ∈ T , at most λ(A) vertices in X are incident
with any edge in A.

Proof. For Y, Z ⊆ X with |Y | = |Z| ≤ θ, ρT̃ ,V (G)(Y ) = ρT̃ ,V (G)(Z) = |Y |, so, by
Lemma 2.8.1, G contains |Y | vertex-disjoint paths between Y and Z.

2.9.2 Hyperplanes in matroids

In this section we prove two elementary results from matroid theory that we require.

A hyperplane in a matroid (S, ρ) is a maximal set H ⊆ S with ρ(H) = ρ(S)− 1. Recall
that each X ⊆ S extends to a unique maximal set of rank ρ(X), called the closure of X.

If many hyperplanes are required to cover the ground set of a matroid, then Geelen
and Kabel [12] that the matroid has a large uniform restriction of rank ρ(S).
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Lemma 2.9.5. For θ, n ∈ N, if (S, ρ) is a matroid with ρ(S) = θ and, S is not the union of
fewer than

(
n−1
θ−1

)
+1 hyperplanes in (S, ρ), then (S, ρ) has a restriction (X, ρ|X) isomorphic

to Uθ,n.

2.9.3 Constructing a θ-connected set

The covering-number of a tangle is precisely the number of hyperplanes required to cover
the ground set of the tangle matroid, so a tangle with high covering-number has a large
uniform restriction.

Lemma 2.9.6. For θ, δ, n ∈ N with δ >
(
n−1
θ−1

)
, if (S, λ) is a connectivity system, T is a

θ-tangle in (S, λ) and V ⊆ S such that V is not covered by fewer than δ sets in T , then
the tangle matroid (V, ρT ,V ) has a restriction isomorphic to Uθ,n.

Proof. Note that ρT ,V (V ) = θ. Therefore, if H is a hyperplane in (V, ρT ,V ), then ρT ,V (H) <
θ, so there exists AH ∈ T such that H ⊆ AH . Hence, the number of hyperplanes required
to cover V in the matroid (V, ρT ,V ) is at least δ, the number of sets in T required to cover
V . By Lemma 2.9.5, (V, ρT ,V ) has a Uθ,n-restriction, as desired.

Now we are able to construct the θ-connected set arising from a θ-tangle.

Theorem 2.9.2. For θ, n ∈ N, with θ > 2 there exists N ∈ N such that, if G is a graph
and T is a θ-tangle in (V (G), λG) with covering-number at least N , then G contains a
θ-connected set X of size n such that, for each A ∈ T , at most λG(A) vertices in X are
incident with any edge in A.

Proof. Let

N =

(
n− 1

θ − 1

)
+

(
(θ − 1)

(
n−1
θ−1

)
2

)
+ 1.

Let T̃ be the tangle induced by T in the extended graphic connectivity system (E(G) ∪
V (G), λ̃G). We emphasize that the sets in T̃ are subsets of E(G) ∪ V (G).

Claim 2.9.6.1. V (G) is not covered by any collection of
(
n−1
θ−1

)
sets in T̃ .

Proof of Claim. Suppose A ⊆ T̃ such that V (G) ⊆
⋃
A∈AA and |A| ≤

(
n−1
θ−1

)
. Let V ′ ⊆

V (G) be the set of vertices, v, in G which are incident with an edge, ev in E(G)−
⋃
A∈AA.
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Note that, for each v ∈ V ′, there is some Av ∈ A such that v ∈ Av and ev 6∈ Av. For each
A ∈ A,

|{v ∈ V ′ : A = Av}| ≤ λ̃(Av) < θ.

Thus,

|V ′| ≤ (θ − 1)|Ã| ≤ (θ − 1)

(
n− 1

θ − 1

)
.

For each pair u, v ∈ V ′, let Eu,v be the set of edges in G incident only with the vertices u
and v; note that λ̃(Eu,v) ≤ 2 < θ, so Eu,v ∈ T . Thus,

A′ = {A ∩ E(G) : A ∈ A} ∪ {Eu,v : u, v ∈ V ′}

is a cover of E(G) by sets in T and

|A′| ≤
(
n− 1

θ − 1

)
+

(
(θ − 1)

(
n−1
θ−1

)
2

)
< N.

This contradicts the fact that T has covering number at least N . � (Claim)

Let (V (G), ρT̃ ,V (G)) be the tangle matroid of T̃ over V (G). By Lemma 2.9.6, there
exists X ⊆ V (G) such that |X| = n and the restriction (X, ρT̃ ,V (G)|X) is isomorphic to
Uθ,n. By Lemma 2.9.4, X is a θ-connected set.

For A ∈ T , if XA ⊆ X is the set of vertices in X incident with at least one edge in A,
then XA ∪ A ∈ T̃ . Therefore,

ρT̃ ,V (G)(XA) ≤ λ̃(XA ∪ A) ≤ λ(A) < θ

so, because the restriction of (S, ρT̃ ,V (G)) to X is rank-θ-uniform,

|XA| = ρT̃ ,V (G)(XA) ≤ λ(A).

Thus, at most λ(A) vertices in X are incident with any edge in A, as desired.
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Chapter 3

Trees of tangles

3.1 Introduction

The goal of Chapter 2 was to find a (θ− 1)-tree-decomposition with node-degrees as small
as possible. We saw that θ-tangles with high covering number are obstacles to finding such
decompositions. We will show that more is true—by Lemma 3.2.1, if (T, µ) is a (θ−1)-tree-
decomposition and T is a θ-tangle, then T is displayed by a unique node of T ; moreover,
the degree of that node is at least the covering number of T .

The goal of this chapter is to find a width (θ−1)-tree-decomposition with node-degrees
as small as possible, subject to the obstacles posed by the θ-tangles. In particular, we
prove the following result.

Theorem 3.1.1. For θ ∈ N with θ > 2, if G is a graph, then there exists a (θ − 1)-tree-
decomposition (T, µ) of G such that for each node t in T with degT (t) > 3, G contains a
unique θ-tangle Tt such that Tt is displayed by t; moreover, if δt is the covering number of
Tt, then

degT (t) ≤ θδt.

This result can be viewed as a global structure theorem, decomposing a graph into its
“θ-connected pieces”.

We prove the results in the same general setting of connectivity systems used in Chap-
ter 2.
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3.2 Displaying tangles

For θ ∈ N, if (S, λ) is a connectivity system with a θ-tangle T and (θ−1)-tree-decomposition
(T, µ), and t is a node in T such that, for each tree-edge e incident with t, the set presented
by the incidence (t, e) is in T , then we say that t displays T .

Let I(T ) denote the set of incidences in a tree T ; that is, the set of pairs (t, e) where t
is a node in T and e is a tree-edge incident with t.

Each θ-tangle is displayed by exactly one node of each (θ − 1)-tree-decomposition:

Lemma 3.2.1. If (S, λ) is a connectivity system with a θ-tangle T and a (θ − 1)-tree-
decomposition (T, µ), then there exists a unique tree-node tT in T such that tT displays T ;
moreover, for each incidence (t, e) ∈ I(T ), (t, e) presents a set in T if and only if t and tT
are in the same component of T \ {e}.

Proof. Let ~T be the orientation of T such that, for each incidence (t, e) presenting a set in
T , e is oriented toward t; this is a well-defined orientation because exactly one side of the
(θ− 1)-separation presented by each tree-edge e is in T . Note that a node, t, in T displays

T if and only if each tree-edge incident with t is oriented toward t in ~T ; such a node, tT ,
exists because ~T is acyclic.

Claim 3.2.1.1. If t is a node incident with tree-edges e1 and e2 in T , then at least one of
e1 or e2 is oriented toward t.

Proof of Claim. Suppose e1 and e2 are both oriented away from t in ~T and X1 and X2

are the sets presented by the incidences (t, e1) and (t, e2) respectively. Then S − X1 and
S −X2 are both in T . However, X1 and X2 are disjoint so

(S −X1) ∪ (S −X2) = S,

which contradicts tangle property (T3). � (Claim)

If t is a node in T and P is the (unique) path in T from t to tT then P contains an
edge oriented toward tT (the edge in P incident with tT ), so, by Claim 3.5.1.1, each edge
of P is oriented toward tT . Therefore, the only tree-edge incident with t that is oriented
away from t is the edge in P . Thus, for each tree-edge e incident with t, (t, e) displays a
separation in T if and only if t and tT are in the same component of T \ {e}. This also
shows that tT is the unique node displaying T .
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We say that the node tT in Lemma 3.2.1 is the node in (T, µ) displaying the tangle T .

The covering-number of a tangle gives a trivial lower bound on the degree of the node
displaying that tangle:

Lemma 3.2.2. If (S, λ) is a connectivity system with a θ-tangle T with covering-number
δ and a (θ − 1)-tree-decomposition (T, µ), and tT is the node displaying T in (T, µ), then
degT (tT ) ≥ δ.

Proof. If (t, e) is a leaf-incidence in T , then (t, e) presents either the set S (if t is not in
the image of µ), or the set S − {x}, for some x ∈ S (and µ(x) = t). By tangle property
(T5), S − {x} 6∈ T and, by tangle property (T4), S 6∈ T . Hence, tT is not a leaf.

For each tree-edge e incident with tT , let Xe be the set presented by the incidence
(tT , e). Because tT displays T , Xe ∈ T for each e ∈ T . Also, for each x ∈ S, if e is the
tree-edge separating tT from µ(x), then x ∈ Xe, so⋃

e incident with t

Xe = S.

Therefore, t must be incident with at least δ tree-edges.

3.3 Distinguishing separations

Suppose T1 and T2 are two distinct θ-tangles in a connectivity system (S, λ). A (T1, T2)-
distinguishing separation is a (θ − 1)-separation (A1, A2) such that A1 ∈ T1 and A2 ∈ T2.
Robertson and Seymour [25] proved that any two distinct tangles of the same order have
a distinguishing separation.

Lemma 3.3.1. For θ ∈ N, if T1 and T2 are distinct θ-tangles in a connectivity system
(S, λ), then there exists a (T1, T2)-distinguishing separation.

Proof. Because T1 and T2 are distinct, either T1 − T2 6= ∅ or T2 − T1 6= ∅; without loss
of generality, there exists X1 ∈ T1 − T2. Let X2 = S − X1. Then (X1, X2) is a (θ − 1)-
separation, so one of X1 or X2 is in T2 by tangle axiom (T2). Thus, X2 ∈ T2, so (X1, X2)
is a (T1, T2)-distinguishing separation.

We are particularly interested in (T1, T2)-distinguishing separations, (X1, X2), such that,
for each (T1, T2)-distinguishing separation (Y1, Y2), λ(X1) ≤ λ(Y1); we call (X1, X2) a
minimum-order (T1, T2)-distinguishing separation.
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3.4 Tree of tangles

Robertson and Seymour [25] (see also [11]) showed that a connectivity system with at least
one tangle has a tree-decomposition displaying all of its maximal tangles (that is, tangles
which are not contained in any other tangle).

Theorem 3.4.1. If (S, λ) is a connectivity system, then (S, λ) has a tree-decomposition
(T, µ) satisfying the following conditions:

1. for each maximal tangle T in (S, λ), there exists a unique node tT in T displaying
T , and

2. for each non-leaf node t in T , there exists a unique maximal tangle T in (S, λ) such
that t = tT , and

3. for distinct maximal tangles T1 and T2 in (S, λ), the path between tT1 and tT2 in T
contains a tree-edge e presenting a minimum-order (T1, T2)-distinguishing separation.

We prove here a similar result for tangles of some fixed order, θ. For θ ∈ N, if (S, λ)
is a connectivity system, then a tree of θ-tangles in (S, λ) is a (θ − 1)-tree-decomposition
(T, µ) in (S, λ) satisfying the following properties:

(TT1) for each node t in T of degree greater than three, there exists a unique θ-tangle Tt
in (S, λ) such that t displays Tt; and

(TT2) for distinct nodes t and t′ in T each of degree greater than three, the path in T
between t and t′ contains an edge presenting a minimum-order (Tt, Tt′)-distinguishing
separation.

A tree of θ-tangles, (T, µ), in (S, λ) is a full tree of θ-tangles if it satisfies the following
additional property:

(FTT) for each non-leaf node t in T , there exists a unique θ-tangle T in (S, λ) such that
t = tT .

Observe that property (FTT) implies property (TT1).

For θ ∈ N, a connectivity system (S, λ) is said to be θ-elementary if, for each x ∈ S,
λ({x}) < θ.

The existence of a full tree of θ-tangles can be shown using Theorem 3.4.1.
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Theorem 3.4.2. For θ ∈ N, if (S, λ) is a θ-elementary connectivity system and (S, λ)
contains a θ-tangle, then (S, λ) has a full tree of θ-tangles.

Proof. For each θ-tangle T , let T̃ be a maximal tangle (of any order) containing T . If
T1 and T2 are distinct θ-tangles, then we saw in Lemma 3.3.1 that there exists a (T1, T2)-
distinguishing separation (X1, X2). Note that, by tangle property (T4’), X1 ∈ T̃1 − T̃2, so
T̃1 6= T̃2. This also shows that (X1, X2) is a (T̃1, T̃2)-distinguishing separation of order less
than θ. Therefore, each minimum-order (T̃1, T̃2)-distinguishing separation has order less
than θ, and hence is a (T1, T2)-distinguishing separation.

Let (T̃ , µ̃) be the tree-decomposition shown to exist in Theorem 3.4.1. For each θ-tangle
T , let t̃T be the node in T̃ displaying the maximal tangle T̃ .

Let Eθ ⊆ E(T̃ ) be a set of minimum cardinality such that, for each pair of distinct
θ-tangles T1 and T2, there exists a tree-edge eT1,T2 ∈ Eθ presenting a minimum-order
(T̃1, T̃2)-distinguishing separation; as we just showed, this is also a minimum-order (T1, T2)-
distinguishing separation.

Let E` ⊆ E(T̃ ) be the set of tree-edges in T incident with an edge. Let

T = T̃ /(E(T̃ )− (Eθ ∪ E`)).

Because no tree-edge incident with a leaf was contracted, L(T ) = L(T̃ ), so let µ = µ̃. Each
edge in T presents the same separation in (T, µ) and (T̃ , µ̃).

Each separation presented by a tree-edge in (T, µ) is either a minimum-order distin-
guishing separation between two θ-tangles, or is of the form ({x}, S−{x}) for some x ∈ S;
in either case, the edge has width less than θ, so (T, µ) is a (θ − 1)-tree-decomposition.

For distinct θ-tangles T1 and T2, T contains a tree-edge, eT1,T2 , presenting a minimum-
order (T1, T2)-distinguishing separation. By Lemma 3.2.1, eT1,T2 is on the path between tT1
and tT2 in T , so (TT2) holds.

Claim 3.4.2.1. Property (FTT) holds for (T, µ).

Proof of Claim. Suppose for contradiction that there exists a non-leaf tree-node t that does
not display any θ-tangle.

Because (S, λ) has at least one θ-tangle, T0, and T0 is presented at some non-leaf node
distinct from t, t is incident with at least one tree-edge e such that e is not incident with
a leaf. Let k be the maximum width of a tree-edge incident with t and not incident with
a leaf.
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Note that, for each x ∈ S, T contains exactly one edge presenting the separation
({x}, S − {x})—namely, the edge incident with µ(x). Therefore, for each tree-edge e not
incident with a leaf, e = eT1,T2 , for some pair of θ-tangles, T1 and T2.

Suppose T1 and T2 are distinct θ-tangles, eT1,T2 is incident with t, and eT1,T2 has width
equal to k. Note that e lies on the path between tT1 and tT2 . Without loss of generality,
the component of T \ {e} containing t also contains tT1 but not tT2 .

There exists some tree-edge e1 incident with t such that tT1 and t lie in distinct compo-
nents of T \ {e1}, and e1 6= e. Note that the separation presented by e1 is also a (T1, T2)-
distinguishing separation, so e1 has width no smaller than the width of e; but e was chosen
to have maximum width, so the width of e1 equals the width of e, and, hence, the sep-
aration presented by e1 is a minimum-order (T1, T2)-distinguishing separation. Thus, T
contains two distinct edges each presenting a minimum-order (T1, T2)-distinguishing sepa-
ration. This contradicts minimality of |Eθ|. � (Claim)

Property (TT1) follows from (FTT), so (T, µ) is a full tree of θ-tangles.

3.4.1 Bounded-degree tree of θ-tangles

For θ ∈ N, if (S, λ) is a connectivity system, then a bounded-degree tree of θ-tangles is a
tree of θ-tangles, (T, µ) such that, for each node t ∈ V (T ) with degT (t) > 3, t displays a
θ-tangle Tt with covering-number δt such that degT (t) ≤ θδt.

We say that a connectivity system (S, λ) is initial if it satisfies the following property:

(INIT) for each separation (X, Y ) in (S, λ) and each x ∈ S, if |X| > 1 and |Y | > 1, then
λ(X) > λ({x}).

Theorem 3.4.3. For θ ∈ N, if (S, λ) is a θ-elementary, initial connectivity system, then
(S, λ) has a bounded-degree tree of θ-tangles.

Property (INIT), while slightly cumbersome, does not add any serious restriction for
applications to graphs. We show now that Theorem 3.1.1, restated here, follows from
Theorem 3.4.3.

Theorem 3.1.1. For θ ∈ N with θ > 2, if G is a graph, then there exists a (θ − 1)-tree-
decomposition (T, µ) of G such that for each node t in T with degT (t) > 3, G contains a
unique θ-tangle Tt such that Tt is displayed by t; moreover, if δt is the covering number of
Tt, then

degT (t) ≤ θδt.
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Proof. Suppose the contrary and let G be a minor-minimal graph with no bounded-degree
tree of θ-tangles. If G is 3-connected then (E(G), λG) satisfies property (INIT); because
θ > 2, (E(G), λG) is θ-elementary, so, by Theorem 3.4.3, the desired tree of θ-tangles exists.

Otherwise, G is constructed from two proper minors G1 and G2 by a clique-sum of
order at most two. By minor-minimality of G, G1 and G2 each have a bounded-degree tree
of θ-tangles. These can be combined along the clique-sum to construct a bounded-degree
tree of θ-tangles for G.

The factor of θ in the definition of a bounded-degree tree of θ-tangles is due to a
technical limitation of the proof and is likely unnecessary; we conjecture that the following
exact version of Theorem 3.4.3 is also true.

Conjecture 3.4.4. For θ ∈ N, if (S, λ) is a θ-elementary, initial connectivity system, then
(S, λ) has a tree of θ-tangles such that, for each tree-node t ∈ V (T ) with degT (t) > 3, the
degree of t equals the covering-number of the unique θ-tangle displayed at t.

3.5 Partial tree-decomposition

Recall from Section 2.6 that, if (S, λ) is a connectivity system and A ⊆ 2S, then a partial
tree-decomposition over A is a pair (T, µ), where T is a tree and µ : S → L(T ) such that,
for each leaf t ∈ L(T ), there exists some A ∈ A such that

{x ∈ S : µ(x) = t} ⊆ A.

The following lemma generalizes Lemma 3.2.1 and shows how each θ-tangle is displayed
at a unique node in each partial (θ − 1)-tree-decomposition.

Lemma 3.5.1. If

(1) (S, λ) is a connectivity system

(2) T is a θ-tangle in (S, λ),

(3) A ⊆ 2S, and

(4) (T, µ) is a partial (θ − 1)-tree-decomposition over A,
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then there exists a unique node tT in T such that, for each incidence (t, e) ∈ I(T ), (t, e)
presents a set in T if and only if t and tT are in the same component of T \ {e}; moreover,
if A ⊆ T , then tT is not a leaf, and is the unique node in T displaying T .

Proof. Let ~T be the orientation of T such that, for each incidence (t, e) presenting a set in
T , e is oriented toward t; this is a well-defined orientation because exactly one side of the
(θ− 1)-separation presented by each tree-edge e is in T . Because ~T is acyclic, there exists
a node tT such that each tree-edge incident with tT is oriented toward tT .

Claim 3.5.1.1. If t is a node incident with tree-edges e1 and e2 in T , then at least one of
e1 or e2 is oriented toward t.

Proof of Claim. Suppose e1 and e2 are both oriented away from t in ~T and X1 and X2

are the sets presented by the incidences (t, e1) and (t, e2) respectively. Then S − X1 and
S −X2 are both in T . However, X1 and X2 are disjoint so

(S −X1) ∪ (S −X2) = S,

which contradicts tangle property (T3). � (Claim)

If t is a node in T and P is the shortest path in T from t to tT then P contains an
edge oriented toward tT (the edge in P incident with tT ), so, by Claim 3.5.1.1, each edge
of P is oriented toward tT . Therefore, the only tree-edge incident with t that is oriented
away from t is the edge in P . Thus, for each tree-edge e incident with t, (t, e) displays a
separation in T if and only if t and tT are in the same component of T \ {e}.

If A ⊆ T , then tT is not a leaf, because each leaf-incidence presents the complement of
a set in A; therefore, tT displays T , and no other node in T displays T .

3.6 Partial tree of θ-tangles

For each connectivity system (S, λ) and each A ⊆ S, a partial tree of θ-tangles over A is a
partial (θ − 1)-tree-decomposition satisfying the properties of trees of tangles, (TT1) and
(TT2), repeated here, and the additional property (PTT):

(TT1) for each node t in T of degree greater than three, there exists a unique θ-tangle Tt
in (S, λ) such that t displays Tt; and
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(TT2) for distinct nodes t and t′ in T each of degree greater than three, the path in T
between t and t′ contains an edge presenting a minimum-order (Tt, Tt′)-distinguishing
separation.

(PTT) for each node t in T of degree greater than three, Tt ⊇ A.

It follows directly from the definition that a partial tree of θ-tangles over the family of
singletons is equivalent tree of θ-tangles.

Lemma 3.6.1. For each θ ∈ N and each connectivity system (S, λ), (T, µ) is a partial tree
of θ-tangles over A = {{x} : x ∈ S} in (S, λ), if and only if (T, µ) is a tree of θ-tangles in
(S, λ).

3.7 Robust sets

For each m ∈ N and each connectivity system (S, λ), a set X ⊆ S is m-robust if there
is no partition (X1, . . . , Xm) of X such that, for each i ∈ {1, . . . ,m}, λ(Xi) < λ(X) and
λ(X − Xi) ≤ λ(X). A 2-robust set is simply a set that cannot be partitioned into two
sets of smaller connectivity; Robertson and Seymour [25] call 2-robust sets robust. If X is
m-robust for each m ∈ N, then X is∞-robust . The simplest example of an∞-robust set is
a singleton, but it also turns out that minimum-order distinguishing separations between
tangles are ∞-robust.

Lemma 3.7.1. For θ ∈ N, if T1, T2 are distinct θ-tangles in a connectivity system (S, λ),
and (X1, X2) is a minimum-order (T1, T2)-distinguishing separation, then X1 and X2 are
both ∞-robust.

Proof. Suppose for the sake of contradiction that there exists a minimum-order (T1, T2)-
distinguishing separation (X1, X2) such that X1 is not ∞-robust, so X1 is not m-robust
for some m ∈ N; choose (X1, X2) and m to minimize m. Let {Y1, . . . , Ym} be a partition
of X1 such that for each j ∈ {1, . . . ,m}, λ(Yj) < λ(X1) and λ(X1 − Yj) ≤ λ(X1).

Note that X2 6= S by (T4), so X1 6= ∅, so m > 0.

Because λ(Yj) < λ(X1) and Yj ⊆ X1, Yj ∈ T1 but (Yj, S − Yj) is not a (T1, T2)-
distinguishing separation, so Yj ∈ T2 as well. Therefore, X1 − Yj 6∈ T2 or else {Yj, X1 −
Yj, X2} would cover S by 3 sets in T2. But X1 − Yj ∈ T1, so by minimality of (X1, X2),
λ(X1−Yj) ≥ λ(X1), so λ(X1−Yj) = λ(X1). Therefore, (X1−Yj, S− (X1−Yj)) is another
minimum-order (T1, T2)-distinguishing separation.
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For each j ∈ {1, . . . ,m − 1}, λ(Yj) < λ(X1) = λ(X1 − Ym) and λ((X1 − Ym) − Yj) ≤
λ(X1 − Ym) because

λ((X1 − Ym)− Yj) + λ(X1)

= λ((X1 − Ym) ∩ (X1 − Yj)) + λ((X1 − Ym) ∪ (X1 − Yj))
≤ λ(X1 − Ym) + λ(X1 − Yj)
≤ λ(X1 − Ym) + λ(X1)

Hence, X1 − Ym is a minimum-order (T1, T2)-distinguishing separation and X1 − Ym is not
(m− 1)-robust, contradicting minimality of m.

The key property of ∞-robust sets that we require here is that, given a collection of
disjoint ∞-robust sets in a tangle T , T contains a cover of S that is only slightly larger
than the covering-number of T and does not cross any of the ∞-robust sets. This can
be thought of as “identifying” each of the ∞-robust sets with a single element, in which
case we are showing that the covering number of a tangle cannot increase too much when
identifying a collection of disjoint ∞-robust sets.

Lemma 3.7.2. For θ ∈ N, if (S, λ) is a connectivity system, A is a collection of disjoint,
∞-robust sets in (S, λ), and T ⊇ A is a θ-tangle in (S, λ) with covering-number δ, then S
can be covered by n ≤ θδ disjoint sets {Y1, . . . , Yn} ⊆ T such that, for each A ∈ A, A ⊆ Yi
for some i ∈ {1, . . . , n}.

Lemma 3.7.2 is a special case of Lemma 3.7.3.

Lemma 3.7.3. For θ ∈ N, if

1. (S, λ) is a connectivity system,

2. A is a collection of disjoint, ∞-robust sets in (S, λ),

3. T ⊇ A is a θ-tangle in (S, λ) with covering-number δ

4. d ∈ {0, . . . , δ}, and

5. {X1, . . . , Xδ} is a cover of S by sets in T such that, for each i ∈ {d + 1, . . . , δ} and
each A ∈ A, Xi ∩ A ∈ {∅, A},

then S can be covered by disjoint sets {Y1, . . . , Yn} ⊆ T such that for each A ∈ A, A ⊆ Yi
for some i, and n− δ ≤ d(θ − 1).

66



Proof. Choose {Y1, . . . , Yn} ⊆ T covering S and such that

(a) for each i ∈ {d+ 1, . . . , n}, and each A ∈ A, Yi ∩ A ∈ {∅, A} and

(b)
∑d

i=1 λ(Yi) + n− δ ≤ d(θ − 1) and

(c) |{A ∈ A : ∃i ∈ {1, . . . , n}, A∩Yi 6∈ {∅, A}}| is minimized subject to (a) and (b), and

(d)
∑n

i=1 |Yi| is minimized subject to (a), (b) and (c).

Note that {X1, . . . , Xδ} is a covering satisfying (a) and (b), and both functions being
minimized have non-negative integer value, so {Y1, . . . , Yn} exists.

Claim 3.7.3.1. The sets in {Y1, . . . , Yn} are pairwise disjoint.

Proof of Claim. If i, j ∈ {1, . . . , n} are distinct and Yi ∩ Yj 6= ∅, then, by submodularity,
either λ(Yi − Yj) ≤ λ(Yi) or λ(Yj − Yi) ≤ λ(Yj), so without loss of generality, λ(Yi − Yj) ≤
λ(Yi). A ∩ (Yi − Yj) = ∅ if A ∩ Yi = ∅ or A ⊆ Yj; otherwise A ⊆ Yi and A ∩ Yj = ∅,
so A ⊆ Yi − Yj. In both cases, A ∩ (Yi − Yj) ∈ {A, ∅}, so replacing Yi by Yi − Yj cannot
make (a) or (b) false or increase the objective function in (c), but decreases the objective
function in (d), contradicting minimality. � (Claim)

If
{A ∈ A : ∃i ∈ {1, . . . , n}, A ∩ Yi 6∈ {∅, A}} = ∅,

then, for each A ∈ A there exists i ∈ {1, . . . , n} such that A ⊆ Yi. By (b),

n− δ ≤ d(θ − 1)−
d∑
i=1

λ(Yi) ≤ d(θ − 1).

Hence, {Y1, . . . , Yn} satisfy all of the required properties, and the lemma holds.

Now suppose that there exists A0 ∈ A and i ∈ {1, . . . , n} such that A0 ∩ Yi 6∈ {∅, A0}.
Then, for each i ∈ {1, . . . , n}, A0 6⊆ Yi, so, for each i ∈ {d+ 1, . . . , n}, Yi ∩ A0 = ∅. Let

I∪ = {i ∈ {1, . . . , d} : λ(A0 ∪ Yi) ≤ λ(Yi)}

and
I− = {i ∈ {1, . . . , d} : λ(Yi − A0) ≤ λ(Yi)}

Claim 3.7.3.2. I∪ ∪ I− = {1, . . . , d}
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Proof of Claim. If i 6∈ I∪ then, by submodularity, λ(A0 ∩ Yi) < λ(A0), so by 2-robustness
of A0, λ(A0−Yi) ≥ λ(A0), so, by submodularity, λ(Yi−A0) ≤ λ(Yi), so i ∈ I−. � (Claim)

For i ∈ {1, . . . , n}, define Y ′i ∈ T as follows. If i ∈ {d + 1, . . . , n}, then Y ′i = Yi; if
i ∈ I∪ then Y ′i = Yi ∪ A0; if i ∈ I− − I∪ then Y ′i = Yi − A0.

Claim 3.7.3.3. For i ∈ {1, . . . , d}, Y ′i ∈ T

Proof of Claim. If i ∈ I∪ then either Y ′i = Yi∪A0 ∈ T or S− (A0∪Yi) ∈ T ; but the latter
cannot occur, or else {A0, Yi, S − (A0 ∪ Yi)} would be a cover of S by 3 sets in T .

If i ∈ I− then Y ′i = Yi − A0 ⊆ Yi ∈ T , so Yi − A0 ∈ T . � (Claim)

Claim 3.7.3.4. I∪ = ∅.

Proof of Claim. Note that {Y ′1 , . . . , Y ′n} satisfies (a) because, for each i ∈ {d + 1, . . . , n},
Y ′i = Yi. Note also that {Y ′1 , . . . , Y ′n} satisfies (b) because

∑d
i=1 λ(Y ′i ) ≤

∑d
i=1 λ(Yi). If

A ∈ A, i ∈ {1, . . . , d} and A ∩ Y ′i 6∈ {∅, A}, then A 6= A0 by the choice of {Y ′1 , . . . , Y ′n}, so
A∩A0 = ∅. Therefore, A∩ (Yi ∪A0) = A∩ (Yi−A0) = A∩ Yi, so A∩ Y ′i = A∩ Yi. Hence,

{A ∈ A : ∃i ∈ {1, . . . , d}, A ∩ Y ′i 6∈ {∅, A}} (
{A ∈ A : ∃i ∈ {1, . . . , d}, A ∩ Yi 6∈ {∅, A}}.

Therefore, by minimality of (c), {Y ′1 , . . . , Y ′n} must not cover S. Note that, for each i ∈
{1, . . . , n}, Y ′i ⊆ Yi − A0, so S − A0 ⊆

⋃n
i=1 Y

′
i . If i ∈ I∪ then A0 ⊆ Y ′i , in which case

{Y ′1 , . . . , Y ′n} would cover S, so I∪ = ∅. � (Claim)

Thus, for each i ∈ {1, . . . , n}, λ(Yi ∪ A0) > λ(Yi), so, by submodularity, λ(Yi ∩ A0) <
λ(A0). Because Y1, . . . , Yn are pairwise disjoint, {Yi ∩ A0 : i ∈ {1, . . . , n}} is a partition of
A0. Therefore, by∞-robustness of A0, there is some i ∈ {1, . . . , n} such that λ(A0−Yi) >
λ(A0), so, by submodularity, λ(Yi − A0) < λ(Yi). Hence,

∑d
i=1 λ(Y ′i ) <

∑d
i=1 λ(Yi).

Let Y ′n+1 = A0. Then {Y ′1 , . . . , Y ′n+1} is a cover of S by sets in T . Property (a) is
satisfied because Y ′n+1 = A0 is disjoint from the other sets in A. Property (b) is satisfied
because

d∑
i=1

λ(Y ′i ) + (n+ 1)− δ ≤
d∑
i=1

λ(Yi) + n− δ ≤ d(θ − 1).

But this contradicts minimality of (c).
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3.8 Tiebreakers

A tiebreaker for a connectivity system (S, λ) is a symmetric, submodular function λ̂ : 2S →
N satisfying the following properties:

(TB1) for X, Y ⊆ S, if λ(X) < λ(Y ), then λ̂(X) < λ̂(Y ), and

(TB2) for distinct X, Y ⊆ S, λ̂(X) 6= λ̂(Y ).

Robertson and Seymour [25] proved that each connectivity system has a tiebreaker:

Lemma 3.8.1. If (S, λ) is a connectivity system, then there exists a tiebreaker, λ̂ for (S, λ).

If T and T ′ are distinct θ-tangles in a connectivity system (S, λ) with a tiebreaker λ̂,
then a λ̂-minimum (T , T ′)-distinguishing separation is a (T , T ′)-distinguishing separation
(X,X ′) minimizing λ̂(X).

Lemma 3.8.2. For θ ∈ N, if T and T ′ are distinct θ-tangles in a connectivity system
(S, λ) with a tiebreaker λ̂, and (X,X ′) is a λ̂-minimum (T , T ′)-distinguishing separation,
then for each partition (X1, X2) of X, with X1 6= ∅ and X2 6= ∅,

max{λ̂(X1), λ̂(X2)} > λ̂(X).

Proof. Suppose the contrary, so, by (TB2), for i ∈ {1, 2},

λ̂(Xi) < λ̂(X) < θ;

Also
Xi ⊆ X ∈ T ,

so Xi ∈ T by tangle property (T3). Because (X,X ′) is λ̂-minimum, (Xi, S −Xi) is not a
(T , T ′)-distinguishing separation, so Xi ∈ T ′. Thus, {X1, X2, X

′} is a partition of S into
three sets in T ′, contradicting tangle property (T4).

Robertson and Seymour [25] proved that tiebreakers give rise to “non-crossing” sepa-
rations, in the following sense:

Lemma 3.8.3. For θ ∈ N, if (S, λ) is a connectivity system with a tiebreaker λ̂, T1, T2, T ′1 , T ′2
are θ-tangles in (S, λ), and (A1, A2) and (A′1, A

′
2) are λ̂-minimum (T1, T2)- and (T ′1 , T ′2 )-

distinguishing separations, respectively, then, for some i, j ∈ {1, 2}, Ai ∩ A′j = ∅.
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In particular, we are interested in the following special case.

Lemma 3.8.4. For θ ∈ N, if (S, λ) is a connectivity system with a tiebreaker λ̂, T , T1, T2
are θ-tangles in (S, λ), and (A1, B1) and (A2, B2) are λ̂-minimum (T , T1)- and (T , T2)-
distinguishing separations, respectively, then, either A1 ⊆ A2, or A2 ⊆ A1, or A1∩A2 = ∅.

Proof. By Lemma 3.8.3 with T1 = T ′1 = T , one of the following occurs: A1 ∩ A2 = ∅;
A1 ∩B2 = ∅, in which case A1 ⊆ A2; A2 ∩B1 = ∅, in which case A2 ⊆ A1; B1 ∩B2 = ∅, in
which case A1 ∪ A2 = S, which contradicts tangle property (T4′).

3.9 Distinguishing covering

For θ ∈ N, if (S, λ) is a connectivity system with a tiebreaker λ̂ and T is a θ-tangle in
(S, λ), then a λ̂-distinguishing covering of T is a family Y ⊆ T satisfying the following
properties:

(DC1)
⋃
Y ∈Y Y = S;

(DC2) for each θ-tangle T ′ in (S, λ) with T ′ 6= T , there exists a λ̂-minimum (T , T ′)-
distinguishing separation (X,X ′) such that, for each Y ∈ Y , either X ⊆ Y or
X ∩ Y = ∅.

Using Lemma 3.7.2, the existence of a distinguishing covering with small cardinality
can be established.

Lemma 3.9.1. For θ ∈ N, if (S, λ) is a connectivity system with a tiebreaker λ̂ and T is
a θ-tangle in (S, λ) with covering-number δ, then there exists a λ̂-distinguishing covering
Y for T such that |Y| ≤ θδ.

Proof. For each θ-tangle T ′ distinct from T , let (AT ′ , BT ′) be a λ̂-minimum (T , T ′)-
distinguishing separation. Let A0 be the family consisting of AT ′ for each θ-tangle T ′
distinct from T . Let A1 = {{x} : x ∈ S}. Let A be the maximal sets in A0 ∪ A1. By
Lemma 3.8.4, no pair of sets in A can properly intersect, so A is a partition of S.

By Lemma 3.7.1, A is a family of ∞-robust sets. By, Lemma 3.7.2, there exists a
partition Y of S such that |Y| ≤ θδ, Y ⊆ T and, for each A ∈ A, A ⊆ Y for some Y ∈ Y .
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Therefore, for each θ-tangle T ′ distinct from T , there is some A ∈ A and some Y ∈ Y
such that

AT ′ ⊆ A′ ⊆ Y ;

moreover, because Y is a partition, for Y ′ ∈ Y − {Y }, AT ′ ∩ Y ′ = ∅. Thus, Y is a
λ̂-distinguishing covering, as desired.

If λ̂ is a tiebreaker for (S, λ), then a λ̂-distinguishing covering Y for T is said to be
minimum if it satisfies the following property:

(MDC) for each distinguishing covering Y ′ for T with |Y ′| ≤ |Y|,∑
Y ∈Y

λ̂(Y ) ≤
∑
Y ′∈Y ′

λ̂(Y ′)

Next we show some important properties of minimum distinguishing coverings.

Lemma 3.9.2. For θ ∈ N, if Y is a λ̂-minimum distinguishing covering for a θ-tangle T
in a connectivity system (S, λ) with a tiebreaker λ̂, then Y is a partition of S.

Proof. By (DC1), it suffices to show that the sets in Y are pairwise disjoint. Suppose
Y1, Y2 ∈ Y are distinct and Y1 ∩ Y2 6= ∅. Because λ̂ is a tiebreaker, we may assume
λ̂(Y1 − Y2) < λ̂(Y1). Let Y ′ = (Y − {Y1}) ∪ {Y1 − Y2}.

Claim 3.9.2.1. The family Y ′ is a distinguishing covering for T .

Proof of Claim. Note first that

λ(Y1 − Y2) ≤ λ(Y1) < θ,

and Y1−Y2 ⊆ Y1, so Y1−Y2 ∈ T by property (T3). Note also that
⋃
Y ∈Y ′ Y = S, so (DC1)

holds. To prove (DC2), suppose that T ′ is a θ-tangle in (S, λ) with T ′ 6= T . By property
(DC2) of Y , there exists a minimum-order (T , T ′)-distinguishing separation (X,X ′) such
that, for each Y ∈ Y , either X ⊆ Y or X∩Y = ∅. If X ⊆ Y1 and X ⊆ Y2 then X ⊆ Y1∩Y2,
so X ∩ (Y1 − Y2) = ∅. Otherwise, X ∩ (Y1 ∩ Y2) = ∅ so X ∩ (Y1 − Y2) = X ∩ Y1. In either
case, (DC2) holds, and Y ′ is a distinguishing covering for T . � (Claim)

Also, we have that ∑
Y ′∈Y ′

λ̂(Y ′) <
∑
Y ∈Y

λ̂(Y ),

contradicting (MDC).
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Lemma 3.9.3. For θ ∈ N, if

1. (S, λ) is a connectivity system with a tiebreaker λ̂,

2. T is a θ-tangle in (S, λ),

3. Y is a λ̂-minimum distinguishing covering for (S, λ),

4. Y ∈ Y,

5. Z ∈ T such that Y ⊆ Z,

then λ̂(Z) ≥ λ̂(Y ).

Proof. For each θ-tangle T ′ in (S, λ) with T ′ 6= T , let XT ′ ∈ T such that (XT ′ , S −XT ′)
is a λ̂-minimum (T , T ′)-distinguishing separation and for each Y ∈ Y , either XT ′ ⊆ Y or
XT ′ ∩ Y = ∅.

Suppose there exists Z ∈ T such that Y ⊆ Z and λ̂(Z) < λ̂(Y ); choose such an Z
minimizing λ̂(Z).

If, for each θ-tangle T ′, either XT ′ ⊆ Z or XT ′ ∩Z = ∅, then replacing Y by Z yields a
distinguishing covering that contradicts minimality in (MDC). Therefore, we may assume
that there exists a θ-tangle T ′ such that XT ′ ∩ Z 6∈ {∅, XT ′}.

By minimality of λ̂(Z), λ̂(Z ∪XT ′) > λ̂(Z).

By submodularity, λ̂(Z∩XT ′) < λ̂(XT ′). By Lemma 3.8.2 applied to XT ′ , λ̂(XT ′−Z) ≥
λ̂(XT ′); because λ̂ is a tiebreaker, λ̂(XT ′ −Z) > λ̂(XT ′). By submodularity, λ̂(Z−XT ′) <
λ̂(Z). However, XT ′ 6⊆ Y because XT ′ 6⊆ Z and Y ⊆ Z, so XT ′ ∩ Y = ∅. Therefore,
Y ⊆ Z −XT ′ , contradicting the choice of Z.

3.10 Constructing a bounded-degree tree of θ-tangles

For θ ∈ N, if (S, λ) is a connectivity system and A ⊆ 2S, then a partial tree of θ-tangles
(T, µ) over A is a bounded-degree partial tree of θ-tangles over A in (S, λ) if and only if
(T, µ) satisfies the following property:

(BDPTT) for each node t ∈ T , if degT (t) > 3 and δt is the covering-number of the unique
θ-tangle displayed by t, then degT (t) ≤ θδt.
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We say that a partial (θ − 1)-tree-decomposition, (T, µ) over A is tight if it satisfies the
following property:

(TIGHT) for each leaf t ∈ L(T ),

{x ∈ S : µ(x) = t} ∈ A.

If (S, λ) is a connectivity system, then a family A ⊆ 2S is said to be a λ̂-monotone
covering of (S, λ) if it satisfies the following properties:

(MC1)
⋃
A∈AA = S;

(MC2) for A,A′ ∈ A, if λ̂(A) < λ̂(A′), then A′ 6⊆ A and S − A′ 6⊆ A; and

(MC3) for X ⊆ S, if λ̂(X) ≤ max{λ̂(A) : A ∈ A}, then there exists A ∈ A such that
λ̂(A) ≤ λ̂(X) and either X ⊆ A or S −X ⊆ A,

The width of a λ̂-monotone covering A is max{λ(A) : A ∈ A}. A monotone covering A is
said to be θ-complete if it has width less than θ and satisfies the following property

(CMC) for X ⊆ S, if λ̂(X) < θ, then there exists A ∈ A such that λ̂(A) ≤ λ̂(X) and
either X ⊆ A or S −X ⊆ A.

Lemma 3.10.1. For θ ∈ N, if A is a θ-complete λ̂-monotone covering for a connectivity
system (S, λ) and A does not extend to any θ-tangle in (S, λ), then (S, λ) has a tight,
bounded-degree partial tree of θ-tangles over A.

Proof. Let T be the family consisting of the sets X ⊆ S such that λ(X) < θ and there
exists A ∈ A with X ⊆ A. Let Y ⊆ T such that

(i)
⋃
Y ∈Y Y = S,

(ii) |Y| is minimum subject to (i),

(iii)
∑

Y ∈Y λ̂(Yi) is minimum subject to (ii).

Claim 3.10.1.1. |Y| ≤ 3.
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Proof of Claim. The family T satisfies tangle properties (T1), by construction, (T2), by
(CMC), and (T3), by construction.

If T does not satisfy tangle property (T5), then there exists x ∈ S such that S−{x} ∈
T ; by (MC1), there exists A ∈ A such that x ∈ A; therefore {S − {x}, A} ⊆ T and
S − {x} ∪ A = S, so |Y| ≤ 2.

Otherwise, because T is not a θ-tangle property (T4) fails, so there is a partition
{Y1, Y2, Y3} of S such that {Y1, Y2, Y3} ⊆ T ; hence, |Y| ≤ 3. � (Claim)

Claim 3.10.1.2. Y is a partition of S.

Proof of Claim. If Y ∩Y ′ 6= ∅ for distinct Y and Y ′ in Y , then, by submodularity, without
loss of generality, λ̂(Y − Y ′) < λ̂(Y ). Therefore, replacing Y by Y − Y ′ preserves (i) and
(ii) but decreases the objective in (iii), contradicting the choice of Y . � (Claim)

Claim 3.10.1.3. Y ⊆ A.

Proof of Claim. Let Y ∈ Y . By the definition of T , there exists A′ ∈ T such that Y ⊆ A′.
If Y = A′ then Y ∈ A, as required, so we may assume Y ( A′. Therefore, by (iii),
λ̂(Y ) < λ̂(A′).

By (CMC) there exists A ∈ A such that λ̂(A) ≤ λ̂(Y ) and either Y ⊆ A or S−Y ⊆ A.
In the former case, by (iii), Y = A, so we may assume S − Y ⊆ A. But

λ̂(A′) > λ̂(Y ) ≥ λ̂(A),

and
S − A′ ⊆ S − Y ⊆ A,

contradicting (MC2). � (Claim)

Let T be a degree-|Y| star with set of leaves {tY : Y ∈ Y}. For Y ∈ Y and x ∈ Y , let
µ(x) = tY . Then (T, µ) is a tight partial tight (θ−1)-tree-decomposition over A. Moreover,
because T has no node of degree greater than three, (T, µ) is a tight, bounded-degree partial
tree of θ-tangles over A.

Lemma 3.10.2. For θ ∈ N, if A is a θ-complete λ̂-monotone covering for a connectivity
system (S, λ) and T is a θ-tangle in (S, λ) such that A ⊆ T , then (S, λ) has a tight,
bounded-degree partial tree of θ-tangles over A.
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Proof. Let δ be the covering-number of T . By Lemma 3.9.1, T has a distinguishing
covering Y with |Y| ≤ θδ; we may assume that Y is a minimum distinguishing covering.
By Lemma 3.9.2, Y is a partition.

Claim 3.10.2.1. Y ⊆ A.

Proof of Claim. For Y ∈ Y , by (CMC), there exists A ∈ A such that λ̂(A) ≤ λ̂(Y ) and
either Y ⊆ A or S − Y ⊆ A; the latter is impossible because both A and Y are in T , so
A∪Y 6= S. Therefore Y ⊆ A. By Lemma 3.9.3, λ̂(Y ) ≤ λ̂(A), so λ̂(Y ) = λ̂(A). Therefore,
because λ̂ is a tiebreaker, Y = A. � (Claim)

Claim 3.10.2.2. For each θ-tangle T ′ distinct from T , Y 6⊆ T ′.

Proof of Claim. By (DC1) and (DC2), there exists a λ̂-minimum (T , T ′)-distinguishing
separation (X,X ′) and Y ∈ Y such that X ⊆ Y . Then

S − Y ⊆ X ′ ∈ T ′,

so S − Y ∈ T ′ by tangle property (T3), so, by tangle propelty (T4), Y 6∈ T ′. � (Claim)

Let T be a degree-|Y| star with set of leaves {tY : Y ∈ Y} adjacent to a degree-|Y|
node t0. For Y ∈ Y and y ∈ Y , let µ(y) = tY . Then (T, µ) is a tight partial (θ − 1)-
tree-decomposition over A. The node t0 has degree at most θδ displays T and no other
θ-tangle, so (T, µ) is a tight, bounded-degree partial tree of θ-tangles over A.

Lemma 3.10.3. For θ ∈ N, if A is a λ̂-monotone covering of width less than θ for a
connectivity system (S, λ), then (S, λ) has a tight, bounded-degree partial tree of θ-tangles
over A.

Proof. Suppose the contrary and let A ⊆ 2S be maximal such that A is λ̂-monotone of
width less than θ and (S, λ) has no tight, bounded-degree partial tree of θ-tangles.

Claim 3.10.3.1. If, for each (θ− 1)-separation (X1, X2) in S, there exists an A ∈ A such
that either X1 ⊆ A or X2 ⊆ A, then property (CMC) holds.

Proof of Claim. Let (X1, X2) be a (θ − 1)-separation. By assumption, there exists A ∈ A
such that either X1 ⊆ A or X2 ⊆ A. If λ̂(A) ≤ λ̂(X1), then the claim holds, so we may
assume λ̂(A) > λ̂(X1). Therefore,

λ̂(X1) ≤ max{λ̂(A) : A ∈ A},
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so, by (MC3), there exists A′ ∈ A such that λ̂(A′) ≤ λ̂(X1) and either X1 ⊆ A′ or X2 ⊆ A′,
as desired. � (Claim)

Claim 3.10.3.2. There exists a (θ − 1)-separation (X1, X2) such that for each A ∈ A,
X1 6⊆ A and X2 6⊆ A.

Proof of Claim. By Claim 3.10.3.1, if there is no (θ− 1)-separation (X1, X2) such that, for
A ∈ A, X1 6⊆ A and X2 6⊆ A, then the lemma follows from Lemma 3.10.1, in the case when
A does not extend to a θ-tangle, and Lemma 3.10.2, in the case when A does extend to a
θ-tangle. � (Claim)

Choose a (θ − 1)-separation (X1, X2) such that, for each A ∈ A, X1 6⊆ A and X2 6⊆ A,
and minimizing λ̂(X1).

Claim 3.10.3.3. For i ∈ {1, 2}, A ∪ {Xi} is λ̂-monotone of width less than θ.

Proof of Claim. Property (MC1) is trivial.

To prove property (MC2), note that, by (MC3) for A and the choice of (X1, X2), for
each A ∈ A, λ̂(X) > λ̂(A), and, for each A ∈ A, X1 6⊆ A and X2 6⊆ A.

To prove property (MC3), let X ′ ⊆ S such that λ̂(X ′) ≤ max{λ̂(A) : A ∈ A∪{Xi}}. If
λ̂(X ′) < max{λ̂(A) : A ∈ A}, then, by (MC3), there exists A ∈ A such that λ̂(A) ≤ λ̂(X)
and either X ′ ⊆ A or S−X ⊆ A. Otherwise, λ̂(X ′) ≤ λ̂(Xi), so, by the choice of Xi, either
X ′ = Xi or there exists A ∈ A such that λ̂(A) ≤ λ̂(X) and either X ′ ⊆ A or S −X ⊆ A.
in each case, A ∪ {Xi} satisfies property (MC3).

The width is less than θ because Xi is a (θ − 1)-separation. � (Claim)

By the choice of A, there exist tight, bounded-degree partial trees of θ-tangles, (T1, µ1)
and (T2, µ2) over A ∪ {X1} and A ∪ {X2}, respectively.

For i ∈ {1, 2}, if (Ti, µi) is a partial tree-decomposition over A, then (Ti, µi), trivially
satisfies properties (TIGHT), (BDPTT), (PTT), (TT1) and (TT2), so (Ti, µi) is a tight,
bounded-degree partial tree of θ-tangles over A, and the lemma holds. Therefore, we may
assume that (Ti, µi) has some leaf, ti such that

{{x} : µi(x) = ti} = Xi.
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Let T be obtained from the disjoint union of T1 and T2 by identifying vertices t1 and t2.
Let µ : S → L(T ) be defined as

µ(x) =

{
µ1(x) x ∈ X2

µ2(x) x ∈ X1

Then (T, µ) is a tight, bounded-degree partial tree of θ-tangles over A, as desired.

Theorem 3.4.3, restated here, now follows easily.

Theorem 3.4.3. For θ ∈ N, if (S, λ) is a θ-elementary, initial connectivity system, then
(S, λ) has a bounded-degree tree of θ-tangles.

Proof. Let λ̂ be a tiebreaker for (S, λ). Let A = {{x} : x ∈ S}. Then A trivially satisfies
properties (MC1) and (MC2) and satisfies property (MC3) by (INIT). Therefore, A is a
λ̂-monotone covering. By Lemma 3.10.3, there exists a tight, bounded-degree partial tree
of θ-tangles, (T, µ), over A. Then (T, µ) is a bounded-degree tree of θ-tangles.
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Chapter 4

Unavoidable-minors

4.1 Introduction

In this chapter we describe the “unavoidable-minors” arising from “large θ-connected
pieces” of a graph. We begin with some examples.

4.1.1 Unavoidable-minors

It is easy to show, and has been previously observed in the literature [21], that each
sufficiently large, connected graph contains either a high degree vertex or a long path.
Hence, every sufficiently large connected graph has a minor that is either a high-degree
star or a long path; see Figure 4.1.

Theorem 4.1.1. For each n ∈ N there exists N ∈ N such that if G is a connected graph
with at least N vertices, then G contains a minor isomorphic to either a degree-n star or
a path of length n.

For each n ∈ N, it is easy to show that each sufficiently large 2-connected graph contains
either a cycle of length n or a K2,n-minor; see Figure 4.2. This has also been observed
previously [21].

Theorem 4.1.2. For each n ∈ N there exists N ∈ N such that if G is a 2-connected graph
with at least N vertices, then G contains either a K2,n-minor or a cycle with at least n
edges.
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(a) A degree-n star (b) A path of length n

Figure 4.1: The unavoidable-minors in large connected graphs

(a) K2,n (b) A cycle of length n

Figure 4.2: The unavoidable-minors in large 2-connected graphs
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(a) K3,n (b) A length n wheel

Figure 4.3: The unavoidable-minors in large 3-connected graphs, depicted with n = 12

Oporowski, Oxley and Thomas [21] described the minors that are forced to appear in
sufficiently large 3-connected graphs; a wheel of length n is constructed from a cycle of
length n by adding a new vertex adjacent to every vertex in the cycle; see Figure 4.3.

Theorem 4.1.3. For n ∈ N, there exists N ∈ N such that, if G is a 3-connected graph
with at least N vertices, then G contains either K3,n-minor or a length-n-wheel-minor.

Oporowski, Oxley and Thomas [21] also described a family of minors that are forced to
appear in each sufficiently large 4-connected graph. For each n > 2, a 2-wheel of length n is
a graph obtained from a cycle of length n by adding two new vertices that are adjacent to
every vertex in the cycle, but are not adjacent to each other. A cyclic-ladder of length n is a
graph obtained from two disjoint cycles of length n, with vertices u1, . . . , un and v1, . . . , vn
respectively appearing in that order around the cycles, by adding an edge between ui and
vi for each i ∈ {1, . . . , n}. A Möbius-ladder of length n is a graph obtained from a cyclic
ladder of length n by deleting the edges {u1un, v1vn} and adding the edges {u1vn, v1, un}.
See Figure 4.4.

Theorem 4.1.4. For each n ∈ N there exists N ∈ N such that if G is a 4-connected graph
with at least N vertices, then G contains a minor isomorphic to one of the following: K4,n,
a 2-wheel of length n, a cyclic zig-zag ladder of length n, or a Möbius zig-zag ladder of
length n.

In this chapter we generalize Theorems 4.1.1, 4.1.2, 4.1.3 and 4.1.4.
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(a) K4,n (b) A 2-wheel of length n

(c) A cyclic ladder of length n (d) A Möbius ladder of length n

Figure 4.4: Examples of the unavoidable-minors for internally-4-connected graphs, depicted
with n = 12

81



4.1.2 θ-connected sets

For θ ∈ N, a set of vertices X in a graph G is said to be a θ-connected set if, for each
pair of subsets Y, Z ⊆ X with |Y | = |Z| ≤ θ, G contains a collection of |Y | vertex-disjoint
paths between Y and Z.

Robertson, Seymour and Thomas [28] showed that the existence of a large, highly-
connected sets of vertices in a graph is qualitatively equivalent to the existence of a high-
order tangle; they defined the tangle matroid and showed that the independent sets in this
matroid are fully connected to each other, which implies that the independent sets are
highly connected.

Diestel, Jensen, Gorbonov and Thomasen [4] showed the following more direct connec-
tion between large, highly-connected sets of vertices and high tree-width.

Theorem 4.1.5. For each natural number ω, and for each graph G,

(i) if G contains an (ω + 1)-connected set of size at least 3ω then G has tree-width at
least ω, and

(ii) conversely, if G has no (ω+1)-connected set of size at least 3ω, then G has tree-width
less than 4ω.

It is worth noting that the theorem proved by Diestel, Jensen, Gorbonov and Thomasen [4]
is actually slightly stronger—in (ii), it is not necessary that G have no (ω + 1)-connected
set, but only that G have no externally (ω + 1)-connected set, a stronger property.

Robertson and Seymour [23] proved that high-order tangles give rise to large grid -
minors; recall that, for k ∈ N, the n × n-grid is the graph with vertex set {vi,j : i, j ∈
{1, . . . , n}} with vi,j adjacent to vi′,j′ if and only if |i− i′|+ |j− j′| = 1. Together with the
connection between high-order tangles and highly-connected sets, this implies the following.

Theorem 4.1.6 (Grid Theorem). For each n ∈ N, there exists N ∈ N such that if G is
a graph containing an N-connected set of size at least N , then G contains an n× n-grid-
minor.

Theorem 4.1.6 was also proved directly by Diestel, Jensen, Gorbonov and Thomasen [4].
Theorem 4.1.6 also follows from the results presented here.

82



(a) A (1, 4, 12)-wheel (b) A (5, 3, 10)-wheel

Figure 4.5: Two examples of an (r, `, n)-wheel for different values of r, ` and n

4.1.3 The main theorem

Next we describe a graph construction which gives the unavoidable-minors for our main
theorem.

For each r, `, n ∈ N with r ≥ 1 and n ≥ 3, an (r, `, n)-wheel is a graph G constructed
as follows:

1. let (Ti : i ∈ Zn) be a sequence of vertex-disjoint r-vertex trees indexed by the
n-element cyclic group, Zn, and let G1 be the disjoint union of these trees;

2. let G2 be a graph obtained from G1 by adding, for each i ∈ Zn, an r-edge matching,
Mi, between V (Ti) and V (Ti+1);

3. let G be a graph obtained from G2 by adding an independent set, Z, of ` new vertices
such that, for each z ∈ Z and each i ∈ Zn, z is adjacent to exactly one of the vertices
in V (Ti), along an edge ei,z.

The trees in (Ti : i ∈ Zn) are called the rim-trees of the (r, `, n)-wheel. The matchings
(Mi : i ∈ Zn) are called the rim-matchings of the (r, `, n)-wheel. The vertices in Z are
called hubs of the (r, `, n)-wheel. The edges in (ei,z : i ∈ Zn, z ∈ Z) are called spokes of
the (r, `, n)-wheel. See Figure 4.5. When we do not care about the values of r, ` or n, we
will call an (r, `, n)-wheel a generalized wheel .
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We say that an (r, `, n)-wheel has length n.

We will prove that generalized wheels, together with complete-bipartite graphs give
classes of unavoidable-minors for graphs with large θ-connected sets.

Theorem 4.1.7. For each θ, n ∈ N with θ ≥ 2, there exists N ∈ N such that, if G is a
graph containing a θ-connected set of size at least N , then either G contains a Kθ,n-minor
or there exists r, ` ∈ N with 2r + ` = θ such that G contains an (r, `, n)-wheel-minor.

We actually prove Theorem 4.4.1, a stronger version of Theorem 4.1.7.

4.2 Homogeneous wheels

We can further refine the structure of generalized-wheels by applying Ramsey-theoretic
techniques; this can be useful in applications.

For r, `, n ∈ N with r ≥ 1 and n ≥ 3, a homogeneous (r, `, n)-wheel is a graph con-
structed as follows:

1. let T be an r-vertex tree, and let G1 be the disjoint union of n copies of T , named
T1, . . . , Tn, such that, for each v ∈ V (T ) and each i ∈ {1, . . . , n}, the copy of v in Ti
is labelled vi;

2. Let G2 be obtained from G1 by adding an edge between vi and vi+1 for each v ∈ V (T )
and each i ∈ {1, . . . , n− 1};

3. Let G3 be obtained from G2 by adding an arbitrary matching of size r between
{v1 : v ∈ V (T )} and {vn : v ∈ V (T )};

4. Let G be obtained from G3 by adding a set, Z of ` new vertices, to G3, where each
z ∈ Z is adjacent to each copy of some vertex vz ∈ V (T ).

See Figure 4.6. Note that a homogeneous (r, `, n)-wheel is an (r, `, n)-wheel.

Theorem 4.2.1. For θ, n ∈ N with θ ≥ 2 and n ≥ 3, there exists N ∈ N such that if
G is a graph containing a θ-connected set of size at least N , then either G contains a
Kθ,n-minor or there exists r, ` ∈ N such that 2r + ` = θ and G contains a homogeneous
(r, `, n)-wheel-minor.
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Figure 4.6: An example of a homogeneous (4, 3, 12)-wheel
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We will actually prove Theorem 4.4.2, a stronger version of Theorem 4.2.1.

Applying Theorem 4.2.1 to small values of θ, gives results that are very similar to those
discussed in Subsection 4.1.1.

Corollary 4.2.2. For each n ∈ N there exists N ∈ N such that if G is a graph containing
a 1-connected set of size at least N , then G contains a minor isomorphic to a either a
degree-n star or a path of length n.

Corollary 4.2.3. For each n ∈ N there exists N ∈ N such that if G is a graph containing
a 2-connected set of size at least N , then G contains a minor isomorphic to either K2,n or
a cycle length n.

Corollary 4.2.4. For each n ∈ N there exists N ∈ N such that if G is a graph containing
a 3-connected set of size at least N , then G contains a minor isomorphic to either K3,n or
a wheel of length n.

Corollary 4.2.5. For each n ∈ N there exists N ∈ N such that if G is a graph containing
a 4-connected set of size at least N , then G contains a minor isomorphic to one of the
following: K4,n, a 2-wheel of length n, a cyclic ladder of length n, or a Möbius ladder of
length n.

Because the vertex set of a θ-connected graph is a θ-connected set, Theorems 4.2.2,
4.2.3, 4.2.4 and 4.2.5 imply Theorems 4.1.1, 4.1.2, 4.1.3 and 4.1.4, respectively.

Theorem 4.2.1 also implies the Grid Theorem (Theorem 4.1.6). This is proved in
Subsection 4.10.3. Our proof does not make use of the Grid Theorem, and hence provides
an alternative proof of the Grid Theorem.

A hub of a cyclic ladder or Möbius ladder is a vertex not in the ladder that is in-
cident with each vertex in one of the two cycles used to construct the ladder; see Fig-
ure 4.7 (c) and (d).

Applying Theorem 4.2.1 with θ = 5 shows that each graph with a sufficiently large 5-
connected set contains a large homogeneous wheel-minor from one of the classes illustrated
in Figure 4.7.

Corollary 4.2.6. For each n ∈ N there exists N ∈ N such that if G is a graph containing
a 5-connected set of size at least N , then G contains a minor isomorphic to one of the
following: K5,n, a 3-wheel of length n, a cyclic ladder of length n with one hub, or a
Möbius ladder of length n with one hub.
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(a) K5,n (b) A cycle with 3 hubs

(c) A cyclic-ladder with 1 hub (d) A Möbius-ladder with 1 hub

Figure 4.7: The unavoidable-minors for graphs with large 5-connected sets.
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A twisted-triple-ladder of length n is a graph obtained from 3 disjoint cycles of length
n with vertices {u1, . . . , un}, {v1, . . . , vn} and {w1, . . . , wn} respectively, by adding, for
each i ∈ {1, . . . , n}, an edge between ui and vi and an edge between vi and wi, and
replacing the edges {u1un, v1vn, w1wn} with an arbitrary matching between {u1, v1, w1}
and {un, vn, wn}; there are four isomorphism classes of twisted-triple-ladders of length n,
depicted in Figure 4.8 (e).

Applying Theorem 4.2.1 with θ = 6 shows that each graph with a sufficiently large 6-
connected set contains a large homogeneous wheel minor from one of the classes illustrated
in Figure 4.8.

Corollary 4.2.7. For each n ∈ N there exists N ∈ N such that if G is a graph containing
a 6-connected set of size at least N , then G contains a minor isomorphic to one of the
following: K5,n, a 3-wheel of length n, a cyclic ladder of length n with one hub, or a
Möbius ladder of length n with one hub.

4.3 Connectivity and tangles in wheels

It is possible that a generalized wheel graph could be constructed in multiple ways. To
avoid ambiguity when referring to the pieces used in the construction of a generalized
wheel, we define a model of a generalized wheel as follows. For r, `, n ∈ N with r ≥ 1 and
n ≥ 3, a model for an (r, `, n)-wheel W is a tuple W = (T,M, Z, e) where

1. T = (Ti : i ∈ Zn) is a collection of vertex-disjoint, r-vertex trees in W ,

2. M = (Mi : i ∈ Zn) where, for i ∈ Zn, Mi is an r-edge matching between V (Ti) and
V (Ti+1),

3. Z is an `-element subset of V (W ) disjoint from T1, . . . , Tn, and

4. e = (ei,z : i ∈ Zn, z ∈ Z) where, for i ∈ Zn and z ∈ Z, ei,z is an edge of W incident
with z and incident with a vertex of Ti.

Given a length n generalized wheel with a model W = (T,M, Z, e), for i ∈ Zn, let T+
i

be the tree induced by the edge-set E(Ti)∪Mi ∪{ei,z : z ∈ Z}. We call T+
i an augmented

tree of the model W .

For r, `, n, θ ∈ N with r ≥ 1, θ = 2r+ ` and n ≥ θ, if W is an (r, `, n)-wheel with model
W , then the fundamental tangle of W is the family consisting of the sets A ⊆ E(W ) such
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(a) K6,n (b) 4-wheel

(c) Cyclic ladder with 2 hubs (d) Möbius ladder with 2 hubs

(e) Twisted-triple-ladder

Figure 4.8: The unavoidable-minors for graphs with large 6-connected sets.
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that λ(A) < θ and A does not contain the edge-set of any augmented tree of W . We will
show in Theorem 4.3.4 that, if n > 1

2
(δ − 1)(θ − 1), then the fundamental tangle of W is,

in fact, a tangle.

Lemma 4.3.1. For r, `, n, θ ∈ N with r ≥ 1, θ = 2r+` and n ≥ θ, if G is an (r, `, n)-wheel
with model W = (T,M, Z, e), and (A,B) is a (θ− 1)-separation in G, then at most one of
A and B contains the edge-set of an augmented tree of W.

Proof. If E(T+
i ) ⊆ A and E(T+

i′ ) ⊆ B, then⋃
j∈Zn−{i,i′}

E(Mj) ∪ Z

is the union of 2r+` vertex-disjoint paths that are each incident with an edge in E(T+
i ) ⊆ A

and incident with an edge in E(T+
i′ ) ⊆ B, contradicting the fact that (A,B) is a (2r+`−1)-

separation.

Lemma 4.3.2. For r, `, n, θ ∈ N with r ≥ 1, θ = 2r + `, and n ≥ θ, if W is an (r, `, n)-
wheel with model W = (T,M, Z, e), T is the fundamental tangle of W, and A ∈ T , then
A contains edges from at most θ − 1 distinct augmented trees of W.

Proof. If i ∈ Zn and A∩E(T+
i ) 6= ∅, then E(T+

i ) contains an edge in both A and E(W )−A;
therefore, E(T+

i ) contains a vertex vi incident with both an edge in E(T+
i ) ∩ A and an

edge in E(T+
i )−A. The vertex vi has degree at least two in T+

i , so v ∈ V (Ti). For distinct
i, i′ ∈ Zn, with A ∩ E(T+

i ) 6= ∅ and A ∩ E(T+
i′ ) 6= ∅, V (Ti) ∩ V (Ti′) = ∅, so vi 6= vi′ . Thus,

the number of indices i ∈ Zn such that A ∩E(T+
i ) 6= ∅ is at most λ(A), which is less than

θ.

Lemma 4.3.3. For r, `, n, θ ∈ N with r ≥ 1, θ = 2r+` and n ≥ θ, if W is an (r, `, n)-wheel
with model W, T is the fundamental tangle of W, and A ∈ T , then |A| ≤ (θ − 1)(θ − 2).

Proof. The set A has edges in at most θ−1 distinct augmented trees ofW by Lemma 4.3.2.
Each augmented tree has θ − 1 edges, at least one of which is not in A, giving the desired
bound.

We now prove that the fundamental tangle of a model is, in fact, a tangle.

Theorem 4.3.4. For r, `, n, δ, θ ∈ N with r ≥ 1, θ = 2r+ `, δ ≥ 4 and n > 1
2
(δ−1)(θ−1),

if W is an (r, `, n)-wheel with model W = (T,M, Z, e), then the fundamental tangle, T , of
W is a θ-tangle with covering number at least δ.
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Proof. Tangle properties (T1) and (T5) hold by construction. Tangle property (T2) holds
by Lemma 4.3.1.

Let {X1, . . . , Xm} ⊆ T with
⋃m
i=1Xi = E(W ). By Lemma 4.3.1, for j ∈ {1, . . . ,m}, Xj

contains edges in at most θ−1 distinct augmented trees ofW by Lemma 4.3.2. For i ∈ Zn,
the augmented tree T+

i contains edges from at least two different sets in {X1, . . . , Xm};
also, the augmented trees are edge-disjoint. Therefore, by double counting the number of
pairs (i, j) ∈ Zn × {1, . . . ,m} such that Xi ∩ E(Tj) 6= ∅,

(δ − 1)(θ − 1) < 2n ≤ (θ − 1)m,

so m > δ ≥ 4. Thus, tangle property (T4′) holds, and T is a tangle with covering number
at least δ.

We also define, for θ, n ∈ N with n ≥ θ ≥ 3, the fundamental tangle of Kθ,n to be the
family consisting of the sets A ⊆ E(Kθ,n) such that λ(A) < θ and there exists v ∈ V (Kθ,n)
such that A does not contain any edge incident with v. We will show in Theorem 4.3.6
that, if n > 3

2
(θ − 1), then the fundamental tangle of Kθ,n is, in fact, a tangle.

Lemma 4.3.5. For θ, n ∈ N with θ ≥ 3, if T is the fundamental tangle of Kθ,n and (A,B)
is a (θ − 1)-separation in Kθ,n, then either A ∈ T or B ∈ T .

Proof. Suppose the contrary, so there exist vertices vA, vB ∈ V (Kθ,n) such that A contains
each edge incident with vA and B contains each edge incident with vB. Then vA and vB are
not adjacent, because an edge between vA and vB could not be in A nor in B. Therefore,
vA and vB, have the same set of neighbours, and this common set of neighbours has size
at least θ. Each common neighbour of vA and vB is incident with both an edge in A and
an edge in B, contradicting the fact that (A,B) is a (θ − 1)-separation.

Theorem 4.3.6. For n, θ, δ ∈ N with θ ≥ 3, δ ≥ 4, and n > 1
2
(δ − 1)(θ − 1), if T is the

fundamental tangle of Kθ,n, then T is a tangle with covering-number at least δ.

Proof. Tangle properties (T1) and (T5) hold by construction. Tangle property (T2) holds
by Lemma 4.3.5.

Fix a bipartition (A,B) of Kθ,n such that |A| = θ, |B| = n and each vertex in B has
degree θ, and each vertex in A is adjacent to each vertex in B.

Let {X1, . . . , Xm} ⊆ T with
⋃m
i=1Xi = E(Kθ,n). For i ∈ {1, . . . ,m}, let Vi ⊆ B be the

set of vertices in B incident with an edge in Xi; note that each vertex in Vi is incident with
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both an edge in Xi and an edge in E(Kθ,n)−Xi, so

|Vi| ≤ λ(Vi) < θ.

Each vertex v ∈ B is incident with edges in at least two different sets in {X1, . . . , Xm}.
Therefore, by double counting the number of pairs (v, j) ∈ B × {1, . . . ,m} such that v is
incident with an edge in Xj

(δ − 1)(θ − 1) < 2n ≤ (θ − 1)m,

so m ≥ δ ≥ 4. Thus, tangle property (T4′) holds, and T is a tangle with covering number
at least δ.

4.3.1 Weak θ-connectivity

A graph G is weakly θ-connected if, for each t < θ and each t-separation (A,B) of G we
have min{|A|, |B|} < t2.

Lemma 4.3.7. If r, `, n, θ ∈ N with r ≥ 1, θ = 2r + ` and n > 2(θ − 1), then any
(r, `, n)-wheel is weakly θ-connected.

Proof. Let W be an (r, `, n)-wheel with model W , and let T be the fundamental tangle
of W . If (A,B) is a (θ − 1)-separation, then T contains at least one of A or B by tangle
property (T2); without loss of generality, A ∈ T . By Lemma 4.3.3,

|A| ≤ (θ − 1)(θ − 2) < (θ − 1)2.

Lemma 4.3.8. For θ, n ∈ N with θ ≥ 2 and n > 2(θ − 1), Kθ,n is weakly θ-connected.

Proof. Let T be the fundamental tangle of Kθ,n. If (A,B) is a (θ − 1)-separation, then T
contains at least one of A or B by tangle property (T2); without loss of generality, A ∈ T .
Each vertex incident with an edge in A is also incident with an edge in E(Kθ,n) − A, so
there are at most λ(A) < θ such vertices. Therefore,

A ≤ 1

4
(θ − 1)2 < (θ − 1)2.
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Our results can be formulated in terms of unavoidable-minors for weakly θ-connected
graphs as follows.

Theorem 4.3.9. For θ, n ∈ N with n, θ ≥ 3, and for f : N→ N, there exists N ∈ N such
that, if G is graph with |E(G)| ≥ N and, for each t < θ and each t-separation (A,B) of
G, min{|A|, |B|} < f(t), then G contains a minor G′ such that G′ is isomorphic to either
Kθ,n or an (r, `, n)-wheel, where 2r + ` = θ.

Theorem 4.3.9 is proved as a consequence of Theorem 4.4.1. It implies the following
result for weakly θ-connected graphs.

Corollary 4.3.10. For θ, n ∈ N with n, θ ≥ 3, there exists N ∈ N such that if G is a
weakly θ-connected graph with |E(G)| ≥ N , then G conatains a minor G′ such that G′ is
isomorphic to either Kθ,n or an (r, `, n)-wheel, where 2r + ` = θ.

Proof. By Theorem 4.3.9, with f(t) = t2.

4.3.2 Large θ-connected sets

Large generalized wheels contain large θ-connected sets. For r, `, n ∈ N with r ≥ 1 and
n ≥ 3 a transversal of a modelW = (T,M, Z, e) for an (r, `, n)-wheel W is a set of vertices,
X ⊆ V (G) such that, X ∩ Z = ∅ and, for i ∈ Zn, |X ∩ V (Ti)| = 1.

Lemma 4.3.11. For r, `, n, θ ∈ N with r ≥ 1, n ≥ 3 and θ = 2r + `, if W is an (r, `, n)-
wheel with model W and X is a transversal for W, then X is a θ-connected set.

Proof. Suppose Y, Z ⊆ X with |Y | = |Z| = t ≤ θ and (A,B) is a separation of W such
that each vertex in Y is incident with an edge in A and each vertex in Z is incident with
an edge in B. Without loss of generality, A is in the fundamental tangle of W .

Let i ∈ Zn such that Y ∩ V (Ti) 6= ∅. Note that Ti contains a vertex, vi, incident
with an edge in A—the vertex in Y ∩ V (Ti). By definition of the fundamental tangle, the
augmented tree, there exists e′i ∈ E(T+

i )∩B; each edge in T+
i is incident with at least one

vertex in V (Ti), so e′i is incident with some vertex v′i ∈ V (Ti). Therefore, the path between
vi and v′i in Ti contains some vertex, v̂i ∈ V (Ti) incident with both an edge in A and an
edge in B. Thus, because X is a transversal of W , the order of the separation (A,B) is at
least |Y |, so X is a θ-connected set.
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4.4 Alignment of minors and tangles

Recall from Subsection 2.4.1 that, if G is a graph with a minor G′, and T ′ is a θ-tangle in
G′, then T ′ induces the tangle T in G consisting of the sets A ⊆ E(G) for which λG(A) < θ
and A ∩ E(G′) ∈ T ′.

For r, `, n, δ, θ ∈ N with r ≥ 1, θ = 2r + `, δ ≥ 4 and n > 1
2
(δ − 1)(θ − 1), if

1. G is a graph,

2. T is a tangle in G of order at least θ,

3. G′ is a minor of G isomorphic to an (r, `, n)-wheel,

4. W is a model of G′,

5. T ′ is the fundamental tangle of W ,

6. T̃ is the θ-tangle in G induced by T ′, and

7. T̃ ⊆ T ,

then we say that G′ is a T -aligned (r, `, n)-wheel-minor of G. Note that the tangle T may
have higher order than the induced tangle T̃ , but these tangles agree on separations of
order less than the order of T̃ .

For n, θ, δ ∈ N with θ ≥ 2, δ ≥ 4, and n > 1
2
(δ − 1)(θ − 1)− θ, if

1. G is a graph,

2. T is a tangle in G of order at least θ,

3. G′ is a minor of G isomorphic to Kθ,n,

4. T ′ is the fundamental tangle of G′,

5. T̃ is the θ-tangle in G induced by T ′, and

6. T̃ ⊆ T ,

then we say that G′ is a T -aligned Kθ,n-minor of G.

We can now state our main theorem in its full generality.
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Theorem 4.4.1. There exists a function f4.4.1 : N2 → N such that for θ, n,N ∈ N with
θ ≥ 2, n > 2(θ − 1), and N = f4.4.1(θ, n), if G is a graph containing a θ-tangle T with
covering-number at least N , then either G contains a T -aligned Kθ,n-minor or there exists
r, ` ∈ N such that 2r + ` = θ and G contains a T -aligned (r, `, n)-wheel-minor.

Theorem 4.4.1 is proved in Section 4.9. Theorem 4.4.1 implies the weaker version of
our main theorem, Theorem 4.1.7, restated here.

Theorem 4.1.7. For each θ, n ∈ N with θ ≥ 2, there exists N ∈ N such that, if G is a
graph containing a θ-connected set of size at least N , then either G contains a Kθ,n-minor
or there exists r, ` ∈ N with 2r + ` = θ such that G contains an (r, `, n)-wheel-minor.

Proof. Let N ′ = f4.4.1(θ, n) and let N = (θ−1)(N ′−1). By Theorem 2.9.1, G contains a θ-
tangle with covering number at least N . By Theorem 4.4.1, G contains either a Kθ,n-minor
or an (r, `, n)-wheel-minor with 2r + ` = θ, as desired.

Theorem 4.4.1 also implies the weakly θ-connected version of our main theorem, The-
orem 4.3.9, restated here.

Theorem 4.3.9. For θ, n ∈ N with n, θ ≥ 3, and for f : N→ N, there exists N ∈ N such
that, if G is graph with |E(G)| ≥ N and, for each t < θ and each t-separation (A,B) of
G, min{|A|, |B|} < f(t), then G contains a minor G′ such that G′ is isomorphic to either
Kθ,n or an (r, `, n)-wheel, where 2r + ` = θ.

Proof. Let k = max{f(t) : t < θ}, let N ′ = max{f4.4.1(θ, n), 4} and let N = kN ′. Let
T ⊆ 2E(G) be the family consisting of the sets A ⊆ E(G) such that λG(A) < θ and |A| < k.
Note that |E(G)| > 2k, so for each (θ − 1)-separation (A,B) in G, exactly one of A or
B has fewer than k edges, so exactly one of A or B is in T . Therefore, T satisfies tangle
axioms (T1) and (T2). If A′ ⊆ A ∈ T and λ(A′) < θ, then |A′| < |A| < k, so A′ ∈ T ;
therefore T satisfies tangle axiom (T3). Because N ′ ≥ 4 and |E(G)| ≥ 4k, E(G) cannot be
partitioned into three sets each of size less than k, so T satisfies tangle axiom (T4). Also,
for e ∈ E(G), |E(G) − {e}| ≥ k, so T satisfies tangle axiom (T5). Thus, T is a tangle
of order θ in G. Note that T has covering number at least N ′, so, by Theorem 4.4.1, G
contains either a Kθ,n-minor or an (r, `, n)-wheel-minor with 2r + ` = θ, as desired.

We will also prove a similar theorem for homogeneous wheels:
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Theorem 4.4.2. There exists a function f4.4.2 : N2 → N such that, for each θ, n,N ∈ N,
with θ > 1, n > 2(θ− 1) and N = f4.4.2(θ, n), if G is a graph containing a θ-tangle T with
covering-number at least N , then either G contains a T -aligned Kθ,n-minor or there exists
r, ` ∈ N such that 2r + ` = θ and G contains a T -aligned, homogeneous (r, `, n)-wheel-
minor.

Theorem 4.4.2 is proved in Section 4.10. Theorem 4.4.2 implies the weaker version of
our main theorem, Theorem 4.2.1, restated here.

Theorem 4.2.1. For θ, n ∈ N with θ ≥ 2 and n ≥ 3, there exists N ∈ N such that if
G is a graph containing a θ-connected set of size at least N , then either G contains a
Kθ,n-minor or there exists r, ` ∈ N such that 2r + ` = θ and G contains a homogeneous
(r, `, n)-wheel-minor.

Proof. Let N ′ = f4.4.2(θ, n) and let N = (θ−1)(N ′−1). By Theorem 2.9.1, G contains a θ-
tangle with covering number at least N . By Theorem 4.4.1, G contains either a Kθ,n-minor
or an homogeneous (r, `, n)-wheel-minor with 2r + ` = θ, as desired.

The grid theorem also has a stronger formulation in terms of T -aligned minors. If G is
the n × n-grid with V (G) = {vi,j : i, j ∈ {1, . . . , n}} and vi,j adjacent to vi′,j′ if and only
if |i − i′| + |j − j′| = 1, then, for i ∈ {1, . . . , n}, row i of G is the subgraph of G induced
by the vertex set {vi,j : j ∈ {1, . . . , n}}. The fundamental tangle of the n × n-grid is the
family consisting of the sets A ⊆ E(G) for which λG(A) < n and A does not contain the
edge set of any row of G. Robertson and Seymour [28] proved that the fundamental tangle
of the n × n-grid is a tangle of order n, and proved that each high-order tangle, T in a
graph gives rise to a large, T -aligned grid-minor.

Theorem 4.4.3. (Grid Theorem). For each n ∈ N, there exists some N ∈ N such that if
G contains a tangle T of order at least N , then G contains a T -aligned n× n-grid-minor.

We will show in Section 4.10 that Theorem 4.4.3 follows from Theorem 4.4.1.

4.5 Necklace

Working directly with wheel-minors is unwieldy, so this section introduces a closely related
structure, called a necklace, to prove Theorem 4.4.1.
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Figure 4.9: (B,X, Y ) is an example of a 4-bead—B is connected and for each X ′ ⊆ X
and each Y ′ ⊆ Y with |X ′| = |Y ′| ≤ 4, B contains |X ′| vertex-disjoint paths between X ′

and Y ′; a collection of 4 vertex-disjoint paths between a particular example of X ′ and Y ′

is shown by the bold edges.

If X and Y are two sets of vertices in G, then an (X, Y )-path in G is a path P such
that either P contains only one vertex, which is in X ∩ Y , or P has length greater than
0 and one of the degree-1 vertices in P is in X and the other is in Y ; we will also call an
(X, Y )-path a path between X and Y .

For t ∈ N with t ≥ 1, a t-bead is a triple (B,X, Y ) where B is a connected graph
and X, Y ⊆ V (B) such that min{|X|, |Y |} ≥ t and for any X ′ ⊆ X and any Y ′ ⊆ Y
with |X ′| = |Y ′| ≤ t, B contains |X ′| vertex-disjoint (X ′, Y ′)-paths. A 0-bead is a triple
(B,X, Y ) where B is a graph and X, Y ⊆ V (B) such that B is the union of two connected
subgraphs, B1 and B2 with X ⊆ V (B1), Y ⊆ V (B2). For example, if B is a complete
bipartite graph with bipartition (X, Y ) and min{|X|, |Y |} ≥ t, then (B,X, Y ) is a t-bead.
A grid is another example of a bead—if B is an n× n-grid, X is the set of vertices in the
leftmost column, and Y is the set of vertices in the rightmost column, and n ≥ t, then
(B,X, Y ) is a t-bead. Figure 4.9 shows an example of a 5-bead.

For t, s, n ∈ N with t ≥ max{1, s}, and n ≥ 3, if G is a graph, then a (t, s, n)-necklace in
G is a cyclic sequence (Bi : i ∈ Zn) of subgraphs of G satisfying the following properties:

(N1) for each i ∈ Zn, |V (Bi) ∩ V (Bi+1)| = t;

(N2) for each i, j ∈ Zn if j − i 6∈ {−1, 0, 1} then V (Bi) ∩ V (Bj) = ∅;

(N3) for each i ∈ Zn − {0}, (Bi, V (Bi−1) ∩ V (Bi), V (Bi) ∩ V (Bi+1)) is a t-bead; and
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Figure 4.10: (Bi : i ∈ Z5) is an example of a (4, 2, 6)-necklace. (B0, V (B5)∩V (B0), V (B0)∩
V (B1)) is a 2-bead and for i ∈ {1, 2, 3, 4}, (Bi, V (Bi), V (Bi+1)) is a 4-bead. Observe that
the beads in a necklace need not be edge-disjoint—B3 and B4 share edges.

(N4) (B0, V (Bn−1) ∩ V (B0), V (B0) ∩ V (B1)) is an s-bead.

See Figure 4.10. We call B0 the weak bead of the necklace.

A hub of a necklace is a vertex z ∈ V (G)−
⋃n
i=1 V (Bi) such that for each i ∈ Zn, z is

adjacent to a vertex in V (Bi).

We define the fundamental tangle of a necklace in a way similar to the fundamental
tangle of a model for a wheel. For each t, s ∈ N with t ≥ s and t ≥ 1, if (Bi : i ∈ Zn) is a
(t, s, n)-necklace, then the fundamental tangle of (B1 : i ∈ Zn) is the family T consisting
of the sets A ⊆ E(

⋃
i∈Zn E(Bi)) such that λ(A) < t+ s and, for each i ∈ Zn, E(Bi) 6⊆ A.

Lemma 4.5.1. For each t, s ∈ N with t ≥ s, t ≥ 1 and n > 3(t+ s), if (Bi : i ∈ Zn) is a
(t, s, n)-necklace, and T is the fundamental tangle of (B1 : i ∈ Zn), then T is a tangle of
order t+ s.

Proof. Let G =
⋃
i∈Zn E(Bi). As was the case for for fundamental tangles of wheel models,

if (X, Y ) is a (t + s − 1) separation in G, then there exists a bead Bi such that either
E(Bi) ⊆ X or E(Bi) ⊆ Y , but not both; without loss of generality, the latter occurs, so
X ∈ T . Then X contains edges in at most t+ s distinct beads, so no three sets in T can
cover S. Therefore, T is a tangle of order t+ s.

If G is a graph with a tangle T of order at least (t+ s), we say that a (t, s, n)-necklace
(Bi : i ∈ Zn) in G is T -aligned if the fundamental tangle of the necklace induces a subset
of T in G.
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We say that a (t, s, n)-necklace is a (t+ s)-linked necklace.

To prove Theorem 4.4.1, we first prove Lemma 4.5.2 which shows that a graph with
a sufficiently large θ-tangle contains a large (θ − `)-linked necklace with ` hubs. Then, in
Section 4.9, we will show how to turn the necklace with hubs into a large θ-connected-
wheel-minor.

Lemma 4.5.2. There exists a function f4.5.2 : N2 → N such that for each θ,m, n ∈ N with
θ ≥ 3, n ≥ 3 and m = f4.5.2(θ, n), if G is a graph containing a θ-tangle T with covering
number at least m, then either G contains a T -aligned Kθ,n-minor or there exists t, s, ` ∈ N
with t ≥ s, t ≥ 1 and t+ s+ ` = θ such that G contains a T -aligned (t, s, n)-necklace with
` hubs.

The proof of Lemma 4.5.2 essentially goes by induction on the connectivity θ. In
Section 4.6 we find either a Kθ,n-minor (in which case Lemma 4.5.2 holds) or a (1, 0, n)-
necklace aligned with our tangle along with θ vertex-disjoint paths between each pair of
beads in the (1, 0, n)-necklace. Then, in Section 4.7 and Section 4.8 we show how to use
these paths between the beads to increase the necklace connectivity.

If (Bj : j ∈ Zm) and (B′i : i ∈ Zn) are two necklaces such that, for each i ∈ {1, . . . , n}
there exists j ∈ {1, . . . ,m} such that Bj ⊆ B′i, then we say that (B′i : i ∈ Zn) is supported
by (Bj : j ∈ Zm). Supported necklaces have some crucial properties: if (Bj : j ∈ Zm)
is T -aligned, for some tangle T in G, then any necklace supported by (Bj : j ∈ Zm)
is also T -aligned. Also, if G contains θ vertex-disjoint paths between any two beads of
(Bj : j ∈ Zm), then the same is true of any necklace supported by (Bj : j ∈ Zm). Finally,
if G contains a hub z of (Bj : j ∈ Zm), then z is also a hub of any necklace that does not
contain z and is supported by (Bj : j ∈ Zm).

4.5.1 Basic properties of beads and necklaces

The following simple observations about beads and necklaces are used throughout the rest
of the chapter. First, observe that a (t+ 1)-bead is always also a t-bead.

Lemma 4.5.3. For t ∈ N, if (B,X, Y ) is a (t+ 1)-bead, then (B,X, Y ) is a t-bead.

Proof. Suppose first that t = 0, so (B,X, Y ) is a 1-bead. Then B is connected, so it is the
union of two connected subgraphs that contain X and Y : two copies of itself.

Suppose now that t > 0. Then B is connected and min{|X|, |Y |} ≥ t+ 1 ≥ t. For each
X ′ ⊆ X and Y ′ ⊆ Y with |X| = |Y | ≤ t ≤ t + 1, B contains |X ′| vertex-disjoint paths
between X ′ and Y ′.
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Lemma 4.5.4 and Lemma 4.5.5 show that the union of beads is a bead, provided they
overlap in the appropriate way.

Lemma 4.5.4. For t1, t2 ∈ N with max{t1, t2} ≥ 1, if (B1, X, Y ) is a t1-bead, (B2, Y, Z)
is a t2-bead, and V (B1) ∩ V (B2) = Y , then (B1 ∪B2, X, Z) is a min{t1, t2}-bead.

Proof. By symmetry, we may assume t1 ≤ t2 and t2 ≥ 1.

Suppose first that t1 = 0. Then B1 is the union of two connected subgraphs, B1
1 and B2

1

such that X ⊆ V (B1
1) and Y ⊆ V (B2

1). Because (B2, Y, Z) is a t2-bead and t2 ≥ 1, Y 6= ∅,
so B2

1 ∪ B2 is connected. Therefore, B1 ∪ B2 is the union of two connected subgraphs, B1
1

and B2
1 ∪ B2 and X ⊆ V (B1

1) and Z ⊆ V (B2
1 ∪ B2), so (B1 ∪ B2, X, Z) is a 0-bead, as

desired.

Now suppose t1 > 0, so both B1 and B2 are connected and V (B1) ∩ V (B2) = Y 6= ∅.
Therefore, B1∪B2 is connected. LetX ′ ⊆ X and Z ′ ⊆ Z such that |X ′| = |Z ′| ≤ t1. Choose
a collection {Px : x ∈ X ′} of vertex-disjoint (X ′, Y )-paths in B1 minimizing |

⋃
x∈X′ E(Px)|.

By minimality, for each x ∈ X ′, Px contains exactly one vertex, yx, in Y , and yx is an
endpoint of Px. Because V (B1) ∩ V (B2) = Y , V (Px) ∩ V (B2) = V (PX) ∩ Y = {yx}. Let
Y ′ = {yx : x ∈ X ′}. Choose collection {Qy : y ∈ Y ′} of vertex-disjoint (Y ′, Z ′)-paths in
B2. Then {Px ∪ Qyx : x ∈ X ′} is a collection of vertex-disjoint (X ′, Z ′)-paths in B1 ∪ B2,
as desired.

Lemma 4.5.5. For each n ∈ N and each sequence (t0, . . . , tn+1) of natural numbers with
|{i ∈ {1, . . . , n} : ti = 0}| ≤ 1, if (B0, . . . , Bn+1) is sequence of subgraphs in a graph G
such that,

(i) for each i ∈ {0, . . . , n}, |V (Bi) ∩ V (Bi+1)| ≥ max{ti, ti+1},

(ii) for each i, j ∈ {0, . . . , n+ 1}, if j − i > 1, then V (Bi) ∩ V (Bj) = ∅,

(iii) for each i ∈ {1, . . . , n}, (Bi, V (Bi−1) ∩ V (Bi), V (Bi) ∩ V (Bi+1)) is a ti-bead

then (
n⋃
i=1

Bi, V (B0) ∩ V (B1), V (Bn) ∩ V (Bn+1)

)
is a (min{t1, . . . , tn})-bead.
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Proof. The proof goes by induction on n. If n ≤ 2, the lemma follows immediately from
Lemma 4.5.4, so suppose n > 2. By the induction hypothesis,(

n−1⋃
i=1

Bi, V (B0) ∩ V (B1), V (Bn−1) ∩ V (Bn)

)

is a (min{t1, . . . , tn−1})-bead. Because |{i ∈ {1, . . . , n} : ti = 0}| ≤ 1, it cannot be the case
that both min{t1, . . . , tn−1} = 0 and tn = 0. Therefore, by Lemma 4.5.4,(

n⋃
i=1

Bi, V (B0) ∩ V (B1), V (Bn) ∩ V (Bn+1)

)

is a (min{t1, . . . , tn})-bead.

Beads in a necklace always overlap as required in Lemma 4.5.5, so it is easy to prove
that taking the union of adjacent beads in a necklace, yields a necklace.

Lemma 4.5.6. For each t, s,m, n ∈ N with t ≥ max{s, 1} and m ≥ n ≥ 3, if G is a graph
containing a (t, s,m)-necklace (Bi : i ∈ Zm) and (ai : i ∈ {1, . . . ,m}) is a sequence of
integers such that 0 ≤ a0 < · · · < an−1 ≤ m, then (B′i : i ∈ Zn) is a (t, s, n)-necklace
supported by (Bi : i ∈ Zm) where for each i ∈ Zn B′i =

⋃ai
j=ai−1+1Bj.

Proof. For each i ∈ Zn,

|V (B′i) ∩ V (B′i+1)| = |V (Bai) ∩ V (Bai+1)| = t,

so necklace axiom (N1) holds.

For each i, j ∈ Zn with j − i 6∈ {−1, 0, 1}, and each i′, j′ ∈ Zm such that Bi′ ⊆ B′i and
Bj′ ∈ B′j, j′ − i′ 6∈ {−1, 0, 1}, so V (B′i) ∩ V (B′j) = ∅, so axiom (N2) holds.

By Lemma 4.5.5, for each i ∈ {1, . . . , n − 1}, (B′i, V (B′i−1) ∩ V (B′i), V (B′i) ∩ V (B′i+1))
is a t-bead, so axiom (N3) holds.

By Lemma 4.5.5, (B′0, V (B′n−1) ∩ V (B′0), V (B′0) ∩ V (B′1)) is an s-bead, so axiom (N4)
holds.

As a consequence, the length of a necklace can always be reduced.

Corollary 4.5.7. For t, s,m, n ∈ N with t ≥ max{s, 1} and m ≥ n ≥ 3, if G is a graph
containing a (t, s,m)-necklace (B1, . . . , Bm), then G contains a (t, s, n)-necklace supported
by (B1, . . . , Bm).
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4.6 Initial necklace

In this section we will prove the basis for the inductive proof of Lemma 4.5.2. In particular,
we will show that a large θ-tangle either gives rise to a (1, 0, n)-necklace aligned with that
tangle along with θ vertex-disjoint paths between each bead, or gives rise a Kθ,n-minor
aligned with the tangle.

This is done in two parts: in Subsection 4.6.1, we use the tangle to obtain a large
collection of disjoint, connected subgraphs (or a Kθ,n-minor), and in Subsection 4.6.2,
these disjoint, connected subgraphs are turned into a (1, 0, n)-necklace (or a Kθ,n-minor).

We start with a few definitions used in this and later sections.

As with wheels and necklaces, a hub of a family H of subgraphs is a vertex that is not
in any graph in H, but has a neighbour in each graph in H.

If G is a graph and X ⊆ V (G), then a bridge B of X in G (or simply an X-bridge) is
a maximal subgraph of G such that, for any two edges e, f ∈ E(B), either

1. there exists a cycle C ⊆ B such that e, f ∈ E(C) and |V (C) ∩X| ≤ 1, or

2. there exists a path P ⊆ B with endpoints x and y such that e, f ∈ E(P ) and
V (P ) ∩X ⊆ {x, y}.

We call V (B)∩X the attachment vertices of the bridge B. Note that each bridge B of X
is either a single edge with both ends in X or is a connected component of G−X together
with all of the edges between that connected component and X.

4.6.1 From a tangle to disjoint connected subgraphs

In this subsection, we will show that a large tangle gives rise to either a large collection of
disjoint, connected subgraphs, none of which are contained in any set in the tangle, or a
large Kθ,n-minor aligned with the tangle; see Lemma 4.6.2.

The following lemma proves the intuitive fact that, for any θ-tangle, the deletion of
fewer than θ vertices leaves a single connected component that is “large” relative to the
tangle, and all of the other connected components lie in a single small set of the tangle,
separated from the “large” part by the deleted vertices.

Lemma 4.6.1. If G is a graph, T is a θ-tangle in G, and X ⊆ V (G) such that |X| < θ,
then G contains a unique X-bridge B0 such that E(G)− E(B0) ∈ T .
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Proof. If A1, A2 ∈ T and V (Ai) ∩ V (E(G)− Ai) ⊆ X for i ∈ {1, 2}, then

V (A1 ∪ A2) ∩ V (E(G)− (A1 ∪ A2)) ⊆ X.

Therefore, λ(A1 ∪ A2) ≤ |X| < θ, so A1 ∪ A2 ∈ T .

Let B be the collection all X-bridges B in G for which E(B) ∈ T . Note that, for each
B ∈ B,

V (B) ∩ V (E(G)− E(B)) ⊆ X.

It follows by induction on |B′|, for each B′ ⊆ B, E(
⋃
B′) ∈ T . But E(G) 6∈ T , so there

is some X-bridge B0 such that E(B0) 6∈ T . Because λG(E(B0)) ≤ |X| < θ, this implies
E(G)− E(B0) ∈ T .

B0 is the only such bridge because, for any X-bridge B with B 6= B0, E(B) ⊆ E(G)−
E(B0), so E(B) ∈ T .

Now we can prove that a large tangle either gives rise to a large collection of disjoint,
connected subgraphs, none of which are contained in any set in the tangle, or gives rise to
a large Kθ,n-minor aligned with the tangle.

For each m ∈ N, a set A of edges of a graph G is m-covered by a tangle T in G if there
exists X1, . . . , Xm ∈ T such that A ⊆

⋃m
i=1Xm. A subgraph H of G is m-covered by a

tangle T in G if E(H) is m-covered by T .

Lemma 4.6.2. There exists a function f4.6.2 : N2 → N such that, for θ,m, n ∈ N with
θ > 2 and m = f4.6.2(θ, n), if G is a graph and T is a θ-tangle in G and covering number
at least m, then either G contains a collection H of disjoint, connected subgraphs, none of
which are 1-covered by T , with |H| ≥ n, or G contains a T -aligned Kθ,n-minor.

Proof. Let

m′ = 2(θ − 1)2(n− 1) + 1,

m1 = m′
(

2(θ − 1)(n− 1)

θ

)
max{n− 1, 2(θ − 1)},

m2 =

(
2(θ − 1)(n− 1)

θ − 1

)
,

m3 =

(
n(θ − 1)

2

)
,

f4.6.2(θ, n) = m = m1 +m2 +m3 + n+ 1,
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and let G be a graph with a θ-tangle T and covering number at least m.

Let H be a collection of disjoint, connected subgraphs of G such that, for each H ∈ H,
H is 2-covered but not 1-covered by T , and |H| is maximum. If |H| ≥ n, then the
lemma holds, so we may assume |H| < n. For each H ∈ H, let AH1 , A

H
2 ∈ T such that

E(H) ⊆ AH1 ∪ AH2 . Let G′ = G− V (
⋃
H∈H(AH1 ∪ AH2 )).

Claim 4.6.2.1. Each connected subgraph of G′ is 1-covered by T .

Proof of Claim. Suppose the contrary, and let H be a minimal connected subgraph of G′

that is not 1-covered by T . Let T be a spanning tree of H, and let e ∈ E(T ) be an edge
incident with a leaf v. Let H ′ be obtained from H by deleting e and, if v is not incident
with any other edge in H, deleting v. Then H ′ is connected and is a proper subgraph of
H, so, by minimality of H, H ′ is 1-covered by T . Let A ∈ T such that E(H ′) ⊆ A. Then
{A, {e}} is a cover of H by two sets in T , so H is 2-covered by T , so H∪ {H} satisfies all
the requirements of H, contradicting maximality of |H|. � (Claim)

Given any set E ′ ⊆ E(G), let ∂(E ′) = V (E ′) ∩ V (E(G) − E ′). Similarly, for any
subgraph H of G, let ∂(H) = ∂(E(H)). Let V∂ =

⋃
H∈H ∂(AH1 ∪ AH2 ), and note that

|V∂| ≤ 2(θ − 1)|H| ≤ 2(θ − 1)(n− 1).

Claim 4.6.2.2. For any V∂-bridge B in G, B is m′-covered by T .

Proof of Claim. By Claim 4.6.2.1, the connected component C of G′ contained in B is 1-
covered by T , so there exists A ∈ T such that E(C) ⊆ A. Let X = V (C)∩∂(A), and note
that, because A ∈ T , |X| ≤ |∂(A)| ≤ θ−1. If e ∈ E(B)−A, then e 6∈ E(C), so e is incident
with a vertex in V∂ and a vertex in X; hence, there are at most |V∂||X| ≤ 2(θ− 1)2(n− 1)
parallel classes of such edges, and each parallel class is in T . Therefore, B can be covered
by at most 2(θ − 1)2(n − 1) + 1 = m′ sets in T , so B is m′-covered by T , proving the
claim. � (Claim)

Let B1 denote the set of all V∂-bridges B such that |∂(B)| ≥ θ; let B2 denote the set of
all V∂-bridges B such that |∂(B)| < θ.

Claim 4.6.2.3. If
⋃
B1 is not m1-covered by T , then G contains a T -aligned Kθ,n-minor.

Proof of Claim. Suppose
⋃
B1 is not m1-covered by T . For Z ⊆ V∂ with |Z| = θ, let

BZ1 = {B ∈ B1 : Z ⊆ ∂(B)}. For each B ∈ B1, there is some Z ⊆ ∂(B) with |Z| = θ, so⋃
Z⊆V∂ :|Z|=θ B

Z
1 = B1. Therefore, by the pigeon-hole principle, there is some Z ⊆ V∂ with

|Z| = θ such that
⋃
BZ1 is not

(
m1

(|V∂ |
θ

)−1)
-covered by T .
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Because each B ∈ B1 is m′-covered by T , Claim 4.6.2.2 implies

|BZ1 | > m1

((
|V∂|
θ

)
m′
)−1
≥ m1

((
2(θ − 1)(n− 1)

θ

)
m′
)
≥ n− 1,

so |BZ1 | ≥ n. For each z ∈ Z and B ∈ BZ1 , there is some edge ez,B in G between z and B.
Let G′ be obtained from G by contracting B − V∂ to a single vertex, vB for each B ∈ BZ1 ,
and deleting every other edge except {ez,B : z ∈ Z,B ∈ BZ1 }.

Note that Z ⊆ V (G′) because Z ⊆ V (B) for each B ∈ BZ1 . Note also that, for each
B ∈ BZ1 and each z ∈ Z, ez,B is an edge from z to vB in G′, so G′ is isomorphic to Kθ,|BZ1 |.
Therefore, we need only show that G′ is a T -aligned minor.

Let (X, Y ) be a (θ − 1)-separation in G. Not every vertex in Z can be incident with
both an edge in X and an edge in Y because |Z| = θ, so, without loss of generality, there
is some z0 ∈ Z such that each edge incident with z0 in G is in Y . Therefore, each bridge
B ∈ BZ1 contains an edge in Y , so at most θ− 1 of these bridges can contain an edge in X.

Note that the bridges in BZ1 containing an edge in X can be covered by at most m′(θ−
1) < m1

(|V∂ |
θ

)−1
sets in T . If Y ∈ T , then

⋃
BZ1 can be covered by at most m1

(|V∂ |
θ

)−1
sets

in T , contradicting the choice of Z, so it must be that X ∈ T .

For each B ∈ BZ1 , ez0,B ∈ Y , so |{ez,B : z ∈ Z} ∩X| ≤ θ − 1, and, as we just showed,
{ez,B : z ∈ Z} ∩X = ∅ for all but at most θ − 1 bridges B ∈ BZ1 , so

|X ∩ E(G′)| = |X ∩ {ez,B : z ∈ Z,B ∈ BZ1 }| ≤ (θ − 1)2.

Note that

|BZ1 | > m1

((
|V∂|
θ

)
m′
)−1
≥ m1

((
2(θ − 1)(n− 1)

θ

)
m′
)
≥ 2(θ − 1),

so
|E(G′)| = |BZ1 ||Z| ≥ 2(θ − 1)θ > 2(θ − 1)2 ≥ 2|X ∩ E(G′)|.

Thus, for any (θ − 1)-separation in G, the side in T contains fewer than half of the edges
of G′, so G′ is a T -aligned minor, proving the claim. � (Claim)

Claim 4.6.2.4.
⋃
B2 is m2-covered by T .

Proof of Claim. For Z ⊆ V∂ with |Z| = min{θ − 1, |V∂|}, let BZ2 = {B ∈ B2 : ∂(B) ⊆ Z}.
For each B ∈ BZ2 , λG(E(B)) ≤ |Z| < θ, so either E(B) ∈ T or E(G) − E(B) ∈ T . By
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Claim 4.6.2.2, E(B) is m′-covered by T , and T has covering number at least m > m′ + 1,
so E(G) − E(B) 6∈ T , so E(B) ∈ T . Thus, E(B) ∈ T for each B ∈ BZ

2 . It follows by a
simple inductive argument that

⋃
B∈BZ2

E(B) ∈ T .

But, for each B ∈ B2, there is some Z ⊆ V∂ with ∂(B) ⊆ Z and |Z| = min{θ− 1, |V∂|},
so E(B) ⊆

⋃
B′∈BZ2

E(B′). Therefore,⋃
B2 =

⋃
Z⊆V∂

|Z|=min{θ−1,|V∂ |}

⋃
BZ2 ,

so
⋃
B2 can be covered by at most(

|V∂|
min{θ − 1, |V∂|

)
≤
(

2(θ − 1)(n− 1)

θ − 1

)
= m2

sets in T , proving the claim. � (Claim)

Let E∂ denote the set of edges of G with both ends in V∂.

Claim 4.6.2.5. E∂ is m3-covered by T .

Proof of Claim. E∂ consists of at most
(|V∂ |

2

)
≤
(
n(θ−1)

2

)
= m3 parallel classes, each of which

is in T . � (Claim)

If |A| ≤ n and G contains no T -aligned Kθ,n-minor, then each edge in G is either in⋃
A, which is n-covered by T , or

⋃
B∈B1 E(B), which is m1-covered by T , or

⋃
B∈B2 E(B),

which is m2-covered by T , or E∂, which is m3-covered by T . Therefore, E(G) can be
covered by at most m1 +m2 +m3 + n sets in T , contradicting the assumption that T has
covering number at least m1 +m2 +m3 + n+ 1.

4.6.2 From disjoint connected subgraphs to an initial necklace

The following fact is just a slight refinement of the simple observation that a large connected
graph must have a long path or a vertex of high degree.

Lemma 4.6.3. There exists a function f4.6.3 : N → N such that, for m,n ∈ N with m =
f4.6.3(n), if G is a connected graph, and {H1, . . . , Hm} are vertex-disjoint, connected, non-
empty subgraphs of G, then G contains vertex-disjoint, connected subgraphs {H ′1, . . . , H ′n}
supported by {H1, . . . , Hm} such that either
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(i) G contains a hub z of {H ′1, . . . , H ′n} or

(ii) for each i ∈ {1, . . . , n− 1}, G contains an edge between H ′i and H ′i+1.

Proof. Let

f4.6.3(n) =
1− (n− 2)n−2

3− n
For each i ∈ {1, . . . ,m}, let Ti be a spanning tree of Hi. Because {T1, . . . , Tm} are vertex
disjoint, there exists a spanning tree T of G such that, for each i ∈ {1, . . . , n}, Ti is a
subtree of T .

Let T ′ be obtained from T by contracting, for each i ∈ {1, . . . ,m}, E(Ti) to obtain
a single vertex vi. Let T̃ be the smallest subtree of T ′ containing {v1, . . . , vm}. Note
that it suffices to find a family {T̃1, . . . , T̃n} of disjoint subtrees of T̃ such that, for each
i ∈ {1, . . . , n}, V (T̃i) ∩ {v1, . . . , vm} 6= ∅ and either T̃ contains a hub z of {T̃1, . . . , T̃n} or,
for each i ∈ {1, . . . , n− 1}, T̃ contains an edge between T̃i and T̃i+1.

Note that, by minimality of T̃ , each leaf of T̃ is in {v1, . . . , vm}. If T̃ has a vertex z of
degree at least n, then let {T̃1, . . . , T̃n} be distinct, non-empty components of T̃ − z; z is
a hub of {T̃1, . . . , T̃n} and for each i ∈ {1, . . . , n}, T̃i contains some leaf of T̃ , which is in
{v1, . . . , vm}. Thus, we may assume that each vertex in T̃ has degree at most n− 1.

For u, v ∈ V (T̃ ), let Pu,v be the path in T̃ from u to v and let d̃(u, v) be the number
of vertices in Pu,v that do not have degree 2 in T̃ . Let x be a leaf of T̃ . For each i ≥ 2,
the number of vertices v ∈ V (T̃ ) with d̃(x, v) = i is at most (n − 2)i−2, so the number of
vertices v ∈ V (T̃ ) with d̃(x, v) ≤ n− 1 is at most

1 +
n−1∑
i=2

(n− 2)i−2 = 1 +
1− (n− 2)n−2

3− n
> m.

Therefore T̃ contains a path Q with at least n vertices, y1, . . . , yn that do not have degree
2; we may assume that y1, . . . , yn occur in that order along Q. For each i ∈ {1, . . . , n− 1},
let Qi be the subpath of Q between yi and yi+1.

For each i ∈ {1, . . . , n}, there exists a path Ri from yi to a leaf such that Ri is internally
vertex disjoint from Q —either yi is a leaf, in which case yi ∈ {v1, . . . , vm}, or yi has degree
at least 3, in which case there is a subtree attached to yi that contains a leaf and is disjoint
from Q. For each i ∈ {1, . . . , n − 1}, let T̃i = Ri ∪ (Qi − {yi+1}) and let T̃n = Rn.
Then {T̃1, . . . , T̃n} is a collection of vertex-disjoint subtrees of T̃ each containing a vertex
in {v1, . . . , vn}, and, for each i ∈ {1, . . . , n − 1}, T̃ contains an edge from T̃i to T̃i+1, as
desired.
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The basic idea now is that alternative (ii) in Lemma 4.6.3 will give us a (1, 0, n)-necklace
where each bead contains at least θ vertices of our θ-connected set. Alternative (i), on the
other hand, gives us a hub, and if we are able to find θ hubs, then we will have a Kθ,n-minor.
Proposition 4.6.4 handles this basic induction argument.

Proposition 4.6.4. There exists a function f4.6.4 : N3 → N such that, for θ, `,m, n ∈ N
with θ ≥ 3, n ≥ 3 and m = f4.6.4(θ, `, n), if G is a graph, T is a θ-tangle in G, H is a
family of disjoint, connected subgraphs of G, none of which are 1-covered by T , Z is a set
of ` hubs of H, then G contains either

(i) a family H′ of disjoint, connected subgraphs supported by H with |H′| ≥ n and a set
Z ′ of hubs of H′ with |Z ′| ≥ θ or

(ii) a (1, 0, n)-necklace (Bi : i ∈ Zn) supported by H.

Proof. By induction on θ− `. If ` ≥ θ, then alternative (i) holds with H′ = H and Z ′ = Z,
so we may assume ` < θ.

By Lemma 4.6.1, G contains a unique Z-bridge B0 for which E(G)− E(B0) ∈ T . Let
G0 be the connected component of G− Z contained in B0.

Claim 4.6.4.1. For each H ∈ H, H is a subgraph of G0

Proof of Claim. For each H ∈ H, V (H)∩Z = ∅ and H is connected, so H is contained in
a Z-bridge; but H is not 1-covered by T , so E(H) 6⊆ E(G) − E(B0), so E(H) ⊆ E(B0).
Note that H does not contain any edge incident with a vertex in Z, so H is a subgraph of
G0, proving the claim. � (Claim)

Thus, G0 is a connected graph and H is a collection of at least m = f4.6.3(n
′) connected

subgraphs of G0, so, by Lemma 4.6.3, G0 contains a family of disjoint, connected subgraphs
H′ = {H ′1, . . . , H ′n′} supported by H such that either

(a) G0 contains a hub z of H′ or

(b) for each i ∈ {1, . . . , n′ − 1}, G0 contains an edge between H ′i and H ′i+1.

If case (a) holds, then Z∪{z} is a collection of `+1 hubs ofH′. BecauseH′ is supported
by H, for each i ∈ {1, . . . , n′}, H ′i contains a set that is not 1-covered by T , so H ′i is not
1-covered by T . Because n′ ≥ f4.6.4(θ, ` + 1, n), applying the induction hypothesis to H′
shows that the proposition holds.
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Now suppose case (b) holds, and note that n′ ≥ n. For i ∈ {1, . . . , n− 1}, let ei be an
edge between H ′i and H ′i+1, let ui ∈ V (H ′i) and vi+1 ∈ V (H ′i+1) be incident with ei, and let
Bi = H ′i ∪ {ei}. Let v1 ∈ V (H ′1) and let B0 = H ′n ∪ {v1}.

Claim 4.6.4.2. (Bi : i ∈ Zn) is a (1, 0, n)-necklace.

Proof of Claim. For each i ∈ Zn, V (Bi)∩V (Bi+1) = {vi+1}, so necklace axiom (N1) holds.
Note that v1 ∈ V (B1) − V (B2), so V (B0) ∩ V (B2) = ∅; the other pairs of non-adjacent
beads are disjoint because the graphs in H′ are disjoint, so axiom (N2) holds. For each
i ∈ {1, . . . , n − 1}, Bi is connected, and hence contains a path between vi and vi+1, so
(Bi, {vi}, {vi+1}) is a 1-bead, so axiom (N3) holds. Finally, note that B0 is the union of
two connected subgraphs: {v1} and H ′n; because vn ∈ H ′n, (B0, {v1}, {vn}) is a 0-bead, so
axiom (N4) holds. � (Claim)

Thus, (Bi : i ∈ Zn) is a (1, 0, n)-necklace supported by H′, and hence supported by H,
proving the proposition.

From Proposition 4.6.4 we are now able to find a Kθ,n-minor or a (1, 0, n)-necklace with
θ paths between each bead:

Lemma 4.6.5. There exists a function f4.6.5 : N2 → N such that, for θ,m, n ∈ N with
n ≥ θ ≥ 3 and m = f4.6.5(θ, n), if G is a graph and T is a θ-tangle in G with covering
number at least m, then either G contains a T -aligned Kθ,n-minor or G contains a T -
aligned (1, 0, n)-necklace (Bi : i ∈ Zn) such that for each i, j ∈ {1, . . . , n}, G contains θ
vertex-disjoint (V (Bi), V (Bj))-paths.

Proof. Define f4.6.5(θ, n) = f4.6.2(θ, f4.6.4(θ, 0, n)). Let θ, n ∈ N, m = f4.6.5(θ, n). Suppose
G is a graph with a θ-tangle T and covering number at least m.

By Lemma 4.6.2, there exists a collection H of disjoint, connected subgraphs of G,
none of which are 1-covered by T such that |H| ≥ f4.6.4(θ, 0, n). By Proposition 4.6.4, G
contains either

(a) a family H′ of disjoint, connected subgraphs supported by H with |H′| ≥ n and a set
Z ′ of hubs of H′ with |Z ′| ≥ θ or

(b) a (1, 0, n)-necklace (Bi : i ∈ Zn) supported by H.

Claim 4.6.5.1. If case (a) holds, then G contains a T -aligned Kθ,n-minor.
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Proof of Claim. For H ∈ H′ and z ∈ Z ′, choose an edge ez,H between z and H. Contracting
eachH ∈ H to a single vertex vH and deleting all other edges except {ez,H : z ∈ Z ′, H ∈ H′}
gives a minor G′ isomorphic to Kθ,n; we need only show that G′ is T -aligned. Fix a (θ−1)-
separation (X, Y ) in G. It cannot be the case that Z ′ ⊆ ∂(X), so, without loss of generality,
there is some z0 ∈ Z ′ such that each edge incident with z0 is in Y . In particular, ez0,H ∈ Y
for each H ∈ H′, so H contains a vertex incident with an edge of Y . If H also contains a
vertex incident with an edge of X then, because H is connected, H contains some vertex in
∂(X). Because the subgraphs in H′ are vertex-disjoint, at most θ− 1 of them can contain
a vertex in ∂(X), so at most θ − 1 of them contain a vertex incident with an edge in X.

Because |H′| = n ≥ θ, there is some H ∈ H′ such that V (H)∩V (X) = ∅, so E(H) ⊆ Y .
Because H′ is supported by H, and no subgraph in H is 1-covered by T , H is also not
1-covered by T , so Y 6∈ T . Therefore, X ∈ T .

There are at most θ − 1 vertices z ∈ Z ′ such that {ez,H : H ∈ H′} ∩ X 6= ∅, and, for
each of these, ez0,H ∈ Y , and

|{ez,H : H ∈ H′} ∩X| ≤ θ − 1,

therefore,
|E(G′) ∩X| = |{ez,H : z ∈ Z ′, H ∈ H′} ∩X| ≤ (θ − 1)2.

On the other hand,

|E(G′)| ≥ |H′||Z ′| = nθ ≥ 2(θ − 1)θ > 2(θ − 1)2 ≥ 2|E(G′) ∩X|,

so X, the side of the (θ − 1)-separation in T , contains fewer than half of the edges in G′.
Hence, G′ is T -aligned, proving the claim. � (Claim)

We may now assume (b) holds, so G contains a (1, 0, n)-necklace (Bi : i ∈ Zn) sup-
ported by H.

Claim 4.6.5.2. For each i, j ∈ {1, . . . , n}, G contains θ vertex-disjoint paths between Bi

and Bj.

Proof of Claim. Suppose not, so G has a (θ − 1)-separation (X, Y ) with E(Bi) ⊆ X and
E(Bj) ⊆ Y . One of X or Y must be in T by tangle axiom (T2); without loss of generality,
X ∈ T . But (Bi : i ∈ Zn) is supported by H, so there is some H ∈ H such that
H ⊆ Bi ⊆ X ∈ T , contradicting the fact that H is not 1-covered by T . � (Claim)
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Therefore, (Bi : i ∈ Zn) is a T -aligned (1, 0, n)-necklace in G with θ vertex-disjoint
paths between any two beads, so the lemma holds in this case as well.

4.7 Jumps in a necklace

Now that we have a necklace with θ disjoint paths between each bead, we need to under-
stand how those paths can interact with the necklace. A path between two beads might go
through several other beads along the way, but it will be composed of some subpaths within
beads together with jumps between the beads—if (Bi : i ∈ Zn) is a (t, s, n)-necklace in a
graph G and i, j ∈ Zn, then an (i, j)-jump of (Bi : i ∈ Zn) in G is a path P in G with end-
points x and y such that x ∈ V (Bi), y ∈ V (Bj) and V (P )∩

⋃n
i′=1 V (Bi′) = {x, y}. A neck-

lace (Bi : i ∈ Zn) is said to be jump-free in G if, for each i, j ∈ Zn with j − i 6∈ {−1, 0, 1},
G does not contain any (i, j)-jump of (Bi : i ∈ Zn).

Lemma 4.7.1 shows that we only need to consider two possible configurations of jumps
of our necklace: we will be able to assume that the necklace is either jump-free or that
there is a jump from the weak bead to each other bead in the necklace.

Lemma 4.7.1. There exists a function f4.7.1 : N → N such that, for t, s,m, n ∈ N with
t ≥ max{s, 1}, n ≥ 3 and m = f4.7.1(n), if G is a graph containing a (t, s,m)-necklace
(Bi : i ∈ Zm) then either

(i) G contains a (t, s, n)-necklace (B′i : i ∈ Zn) supported by (Bi : i ∈ Zm) such that
(B′i : i ∈ Zn) is jump-free in G or

(ii) G contains a (t, s, n)-necklace (B′i : i ∈ Zn) supported by (Bi : i ∈ Zm) such that for
each i ∈ {1, . . . , n− 1}, G contains a (0, i)-jump.

Proof. Let ñ = (n−1)2 +1 and let f4.7.1(n) = (ñ−1)n−2 +2. Choose a sequence of natural
numbers (a1, . . . , a`, b`, . . . , b1) such that

1 ≤ a1 < a2 < · · · < a` < b` < b`−1 < · · · < b1 ≤ m

and, for each i ∈ {1, . . . , `}, bi − ai ≥ (ñ − 1)n−i−1 + 1 and G contains an (ai, bi)-jump of
(Bi : i ∈ Zm), and ` is maximized.

Suppose first that ` ≥ n − 1. Let a0 = 0 and, for each i ∈ {1, . . . , n − 1}, let B′i =⋃ai
j=ai−1+1Bj and let B′0 =

⋃m
j=an−1+1Bj. By Lemma 4.5.6, (B′i : i ∈ Zn) is a (t, s, n)-

necklace supported by (Bi : i ∈ Zm) and, for each i ∈ {1, . . . , n − 1}, G contains an
(0, i)-jump of (B′i : i ∈ Zn), so alternative (ii) holds.
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Therefore, we may assume ` < n − 1. Because t ≥ 1, G contains a (0, 1)-jump of
(Bi : i ∈ Zm) (namely, the path of length 0 at a vertex of V (B0) ∩ V (B1)), and m− 1 ≥
(ñ−1)n−2+1, so ` ≥ 1. Then b`−a` ≥ (ñ−1)n−`−1+1 and for each a′, b′ ∈ {a`+1, . . . , b`−1}
with b′ − a′ ≥ (ñ− 1)n−`−2 + 1, G does not contain an (a′, b′)-jump.

Let α = (ñ− 1)n−`−2 + 1. For i ∈ {1, . . . , ñ− 1}, let

B̃i =
α−1⋃
j=1

Ba`+(i−1)(α−1)+j

and let

B̃0 =
m−1⋃

j=a`+(ñ−1)(α−1)+1

Bj ∪
a⋃̀
j=0

Bj,

so (B̃i : i ∈ Zñ) is a (t, s, ñ)-necklace by Lemma 4.5.6. For each ã, b̃ ∈ {1, . . . , ñ− 1} with
b̃− ã ≥ 2, any (ã, b̃)-jump of (B̃i : i ∈ Zñ) is an (a, b)-jump of (Bi : i ∈ Zm) for some

a ∈ {a` + (ã− 1)(α− 1) + 1, . . . , a` + ã(α− 1)}

and some
b ∈ {a` + (b̃− 1)(α− 1) + 1, . . . , a` + b̃(α− 1)},

but b− a ≥ α and

a` + 1 ≤ a < b ≤ a` + (ñ− 1)(α− 1) = a` + (ñ− 1)n−`−1 ≤ b` − 1,

contradiction. Therefore, for each ã, b̃ ∈ {1, . . . , ñ− 1} with b̃− ã ≥ 2, G does not contain
a (ã, b̃)-jump of (B̃i : i ∈ Zñ).

Suppose there exists some a ∈ {1, . . . , ñ− n− 2} such that for each i ∈ {a+ 1, . . . , a+
n− 1}, G does not contain an (0, i)-jump of (B̃i : i ∈ Zñ). For each i ∈ {1, . . . , n− 1}, let
B′i = B̃a+i and let B′0 =

⋃ñ
i=a+n B̃i ∪

⋃a
i=1 B̃i. Then (B′i : i ∈ Zn) is a (t, s, n)-necklace by

Lemma 4.5.6, and is jump-free by construction, so alternative (i) holds.

Finally suppose that, for each a ∈ {1, . . . , ñ−n−2} there is some i ∈ {a+1, . . . , a+n−1}
such that G contains an (i, ñ)-jump of (B̃i : i ∈ Zñ). For each i ∈ {1, . . . , n − 1}, let

B′i =
⋃i(n−1)
j=(i−1)(n−1)+1 B̃j and let B′0 = B̃0 = B̃(n−1)2+1. Then (B′i : i ∈ Zn) is a (t, s, n)-

necklace by Lemma 4.5.6, and, for each i ∈ {1, . . . , n − 1}, G contains an (0, i)-jump of
(B′i : i ∈ Zn), so alternative (ii) holds.
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4.7.1 Jump-free necklaces

Jump-free necklaces are convenient because the θ paths between a pair of beads are quite
restricted.

We need a small lemma about connectivity, Lemma 4.7.2, which solves the following
problem: Suppose we have one family of n disjoint paths that start off in some set X, and
another family of n disjoint paths that end up at a set Y , and we want to find a family of
paths from X to Y . If we also have a family of n disjoint connected subgraphs that each
meet all of these paths, then we can start off on the paths from X, and use the connected
subgraphs to switch to the paths to Y . This ability to switch from one family of paths to
another turns out to be quite useful. In Lemma 4.7.2, you should think of the family A as
the paths that start in X, B as the paths that end up in Y , and H as the graphs used to
switch between the paths.

Lemma 4.7.2. If n ∈ N and A,B,H are three families of connected pairwise vertex-
disjoint subgraphs of a graph G such that min{|A|, |B|, |H|} ≥ n and for each A ∈ A,
B ∈ B, H ∈ H, V (A) ∩ V (H) 6= ∅ and V (B) ∩ V (H) 6= ∅ and if X, Y ⊆ V (G) such that,
for each A ∈ A, X ∩ V (A) 6= ∅ and for each B ∈ B, Y ∩ V (B) 6= ∅, then G contains n
vertex-disjoint (X, Y )-paths.

Proof. Suppose G does not contain n vertex-disjoint (X, Y )-paths, and let (G1, G2) be an
(n− 1)-separation in G such that X ⊆ V (G1) and Y ⊆ V (G2). Note that, for each A ∈ A,

V (A) ∩ V (G1) ⊇ V (A) ∩X 6= ∅,

so, if V (A) ∩ V (G2) 6= ∅ as well then, because A is connected, V (A) contains a vertex in
V (G1) ∩ V (G2); also,

|V (G1) ∩ V (G2)| < n ≤ |A|,

so there exists some A0 ∈ A such that V (A0) ∩ V (G2) = ∅. Similarly, there exists some
B0 ∈ B such that V (B0) ∩ V (G1) = ∅. For each H ∈ H,

V (H) ∩ V (G1) ⊇ V (H) ∩ V (A0) 6= ∅

and
V (H) ∩ V (G2) ⊇ V (H) ∩ V (B0) 6= ∅,

so H contains some vertex in V (G1) ∩ V (G2). But |H| ≥ n, contradicting the fact that
(G1, G2) is an (n− 1)-separation.
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Before looking at jump-free necklaces, we first need to understand how surplus paths
can be used to augment a jump-free “piece” of a necklace. If (B0, . . . , Bn+1) is a sequence
of subgraphs of a graph G, for each i ∈ {0, . . . , n}, |V (Bi) ∩ V (Bi+1)| = t, for each
i, j ∈ {0, . . . , n + 1} with i < j − 1, V (Bi) ∩ V (Bj) = ∅ and, for each i ∈ {1, . . . , n},
(Bi, V (Bi−1) ∩ V (Bi), V (Bi) ∩ V (Bi+1)) is a t-bead, then (B0, . . . , Bn+1) is a (t, n)-chain.

Lemma 4.7.3. There exists a function f4.7.3 : N2 → N such that, for t,m, n ∈ N with
t ≥ 1, n ≥ 3, and m = f4.7.3(t, n), if G is a graph, (B0, . . . , Bm+1) is a jump-free (t,m)-
chain in G, and G contains a collection of t + 1 vertex-disjoint (B1, Bm)-paths, then G
contains a (t+ 1, n)-chain (B′0, . . . , B

′
n+1) supported by (B0, . . . , Bm+1). Moreover,

(i) for each i ∈ {1, . . . , n}, V (B′i) ∩ V (B0) = V (B′i) ∩ V (Bm+1) = ∅,

(ii) B′0 ∩B0 = B1 ∩B0 and (B′0, B
′
0 ∩B0, B

′
0 ∩B1) is a t-bead, and

(iii) B′n+1 ∩Bm+1 = Bm ∩Bm+1 and (B′n+1, B
′
n+1 ∩Bm+1, B

′
n+1 ∩B′n) is a t-bead.

Proof. Let f4.7.3(t, n) = 4t(n + 1) + 2t + 1. The major difficulty in this proof is that the
t + 1 vertex-disjoint (B1, Bm)-paths might wind back and forth through the other beads
in complex ways, so we need to choose these paths very carefully. Let P be a collection of
t+ 1 vertex-disjoint (B2, Bm−1) paths minimizing

|
⋃
P∈P

E(P )−
(m+1)/2⋃
i=2

E(B2i)|.

Notice first that, because (B0, . . . , Bm+1) is jump-free, for each i ∈ {2, . . . ,m−1}, G−V (Bi)
has no (B2, Bm−1)-path, so for each P ∈ P , V (P ) ∩ V (Bi) 6= ∅.

For each P ∈ P , let xP be the endpoint of P in B2 and let yP be the endpoint of P in
Bm−1.

For this proof, if P is a path and x, y ∈ V (P ), we use the notation P [x, y] to denote
the subpath from x to y in P .

Now we need to show that the paths in P cannot backtrack too far through the beads.

Claim 4.7.3.1. If P ∈ P, i, j ∈ {1, . . . , (m − 1)/2}, i + t ≤ j, v ∈ V (P ) ∩ V (B2j), then
P [v, yP ] is disjoint from B2i.
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Figure 4.11: Illustration of notation used in the proof of Lemma 4.7.3

Proof of Claim. Suppose the contrary and let u ∈ V (P [v, yP ]) ∩ V (B2i). Let

G′ =

j⋃
i′=i

B2i′ ∪
⋃

((P − {P}) ∪ {P [xP , v], P [u, yP ]}).

See Figure 4.11. By Lemma 4.7.2 with A = (P − {P}) ∪ {P [xP , v]}, B = (P − {P}) ∪
{P [u, yP ]} and H = {B2i′ : i′ ∈ {i, . . . , j}}, G′ contains a collection P ′ of t + 1 vertex-
disjoint ({xP ′ : P ′ ∈ P}, {yP ′ : P ′ ∈ P})-paths. But∣∣∣∣∣∣

⋃
P ′∈P ′

E(P ′)−
(m−1)/2⋃
i′=1

E(B2i′)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃
P ′∈P

E(P ′)−
(m−1)/2⋃
i′=1

E(B2i′)

∣∣∣∣∣∣
−

∣∣∣∣∣∣E(P [u, v])−
(m−1)/2⋃
i′=1

E(B2i′)

∣∣∣∣∣∣
andB2i andB2j are vertex-disjoint soE(P [u, v]) must have an edge outside of

⋃(m−1)/2
i′=1 E(B2i′),

contradicting minimality of P . Hence we have proven the claim that if P ∈ P , i, j ∈
{1, . . . , (m − 1)/2}, i + t ≤ j, v ∈ V (P ) ∩ V (B2j), then P [v, yP ] is disjoint from B2i.

� (Claim)

For i ∈ {2, . . . ,m − 1}, let xiP ∈ V (P ) ∩ V (Bi) minimizing the distance along P from
xP to xiP . Therefore, for each i, j ∈ {1, . . . , (m− 1)/2} with i+ t ≤ j, B2i is vertex disjoint
from P [x2jP , yP ].

For i ∈ {1, . . . , n}, let

B′i =
t⋃

j=1

B4ti+2j ∪
⋃
P∈P

P [x4ti+2
P , x

4t(i+1)+2
P ]
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so, for each i ∈ {1, . . . , n− 1}, B′i ∩B′i+1 = {x4t(i+1)+2
P : P ∈ P}, which has size t+ 1.

Notice that, for i, i′ ∈ {1, . . . , n} if i < i′ or i > i′ + 1 then
⋃t
j=1B4ti+2j is disjoint from⋃

P∈P P [x4ti
′+2

P , x
4t(i′+1)+2
P ]. Therefore, if |i− i′| > 1, then V (B′i) ∩ V (B′i′) = ∅.

Claim 4.7.3.2. For each i ∈ {1, . . . , n},

(B′i, {x4ti+2
P : P ∈ P}, {x4t(i+1)+2

P : P ∈ P})

is a (t+ 1)-bead.

Proof of Claim. Let X ⊆ {x4ti+2
P : P ∈ P} and Y ⊆ {x4t(i+1)+2

P : P ∈ P} such that

|X| = |Y | ≤ t+ 1. If |X| = t+ 1 then X = {x4ti+2
P : P ∈ P} and Y = {x4t(i+1)+2

P : P ∈ P},
so {P [x4ti+2

P , x
4t(i+1)+2
P ] : P ∈ P} is a family of |X| vertex-disjoint (X, Y )-paths in B′i.

Otherwise, |X| ≤ t, so by Lemma 4.7.2 with A = {P [x4ti+2
P , x

4t(i+1)+2
P ] : x4ti+2

P ∈ X},
B = {P [x4ti+2

P , x
4t(i+1)+2
P ] : x4ti+2

P ∈ X} and H = {B4ti+2j : j ∈ {1, . . . , t}}, B′i contains

|X| vertex-disjoint (X, Y )-paths. Hence (B′i, {x4ti+2
P : P ∈ P}, {x4t(i+1)+2

P : P ∈ P}) is a
(t+ 1)-bead. � (Claim)

Claim 4.7.3.3. (B′0, . . . , B
′
n+1) is a (t+ 1, n)-chain.

Proof of Claim. Notice that, by minimality of |
⋃
P∈P E(P ) −

⋃(m+1)/2
i=2 E(B2i)|, for each

P ∈ P , P intersects B2 only at xP , so P is disjoint from B0, and P intersects Bm−1 only at
yP , so P is disjoint from Bm+1. Therefore, for each i ∈ {1, . . . , n}, B′i∩B0 = B′i∩Bm+1 = ∅,
so (i) holds. Let

B′0 =
2t⋃
j=1

Bj ∪
⋃
P∈P

P [xP , x
4t+2
P ]

and

B′n+1 =
m⋃

j=4t(n+1)+1

Bj ∪
⋃
P∈P

P [x
4t(n+1)+2
P , yP ].

Then V (B′0)∩V (B′1) = {x4t+2
P : P ∈ P}, V (B′n+1)∩V (B′n) = {x4t(n+1)+2

P : P ∈ P}, for each
i ∈ {2, . . . , n+1} V (B′0)∩V (B′i) = ∅ and for each i ∈ {0, . . . , n−1}, V (B′n+1)∩V (B′i) = ∅,
so (B′0, . . . , B

′
n+1) is a (t+ 1, n)-chain. � (Claim)

Claim 4.7.3.4. (B′0, V (B′0) ∩ V (B0), V (B′0) ∩ V (B′1)) is a t-bead.
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Proof of Claim. Let X ⊆ V (B′0) ∩ V (B0) = V (B0) ∩ V (B1) and Y ⊆ V (B′0) ∩ V (B′1) =
{x4t+2

P : P ∈ P}. Choose a collection Q of t vertex-disjoint (V (B0)∩V (B1), V (B2t))-paths
in
⋃2t
j=1Bj. Because |V (B0)∩V (B1)| = t = |Q|, each vertex in V (B0)∩V (B1) is in exactly

one path in Q. By Lemma 4.7.2 with A = {Q : Q∩X 6= ∅}, B = {P [xP , x
4t+2
P ] : x4t+2

P ∈ Y }
and H = {B2j : j ∈ {1, . . . , t}}, B′0 contains t vertex-disjoint (X, Y )-paths, and hence
(B′0, V (B′0) ∩ V (B0), V (B′0) ∩ V (B′1)) is a t-bead. � (Claim)

Therefore, (ii) holds.

Finally V (B′n+1)∩V (Bm+1) = V (Bm)∩V (Bm+1) and, because m−(4t(n+1)+1) = 2t,
an argument similar to Claim 4.7.3.4 shows that (B′0, V (B′n)∩V (B′n+1), V (B′n+1)∩V (Bm+1))
is a t-bead, so (iii) holds.

Now we are able to show that surplus paths between the beads of a jump-free necklace
can be used to increase its connectivity.

Lemma 4.7.4. There exists a function f4.7.4 : N3 → N such that, for t, s,m, n ∈ N with
t ≥ max{s, 1}, n ≥ 3 and m = f4.7.4(t, s, n), if G is a graph, (Bi : i ∈ Zm) is a jump-free
(t, s,m)-necklace in G and, for each i, j ∈ Zm, G contains a collection of (t+s+1) vertex-
disjoint (V (Bi), V (Bj))-paths, then there exists t′, s′ ∈ N such that t′ + s′ = t + s + 1 and
G contains a (t′, s′, n)-necklace (B′i : i ∈ Zn) supported by (Bi : i ∈ Zm).

Proof. Let a = max{df4.7.3(t, n− 1)/2e, 2s + 2} and let f4.7.4(t, s, n) = 4a. Let b = m− a
and let P be a collection of t+ s+ 1 vertex-disjoint (V (Ba), V (Bb))-paths in G minimizing
|
⋃
P∈P E(P )|. If P ∈ P , i ∈ {a + 2, . . . , b − 2}, j ∈ {1, . . . , a − 2} ∪ {b + 2, . . . ,m},

x ∈ V (P ) ∩ V (Bi) and y ∈ V (P ) ∩ v(Bj), then, because (Bi : i ∈ Zm) is jump-free, the
subpath P from x to y must contain a vertex z in V (Ba) or V (Bb). But z 6∈ {x, y}, so z is
not an endpoint of P , so P contains a proper (Ba, Bb)-subpath, contradicting minimality of
|
⋃
P∈P E(P )|. On the other hand, each (Ba, Bb)-path in G must contain a vertex of either

Ba+2 or Ba−2. Therefore, P can be partitioned into P1 = {P ∈ P : V (P ) ∩ V (Ba+2) 6= ∅}
and P2 = {P ∈ P : V (P )∩V (Ba−2) 6= ∅}. Note that |P1|+ |P2| = |P| = t+ s+ 1 so either
|P1| ≥ t+ 1 or |P2| ≥ s+ 1.

Claim 4.7.4.1. If |P1| ≥ t + 1, then G contains a (t + 1, s, n)-necklace supported by
(Bi : i ∈ Zm).

Proof of Claim. Then (Ba−1, . . . , Bb+1) is a (t, b− a+ 1)-chain in G1 =
⋃b+1
i=a−1Bi ∪

⋃
P1.

Note that (Ba−1, . . . , Bb+1) is jump-free in G1 —if J were an (i, j)-jump of (Ba−1, . . . , Bb+1)
in G1 with j > i + 1 then J is a subpath of some P ∈ P1; P is disjoint from

⋃a−2
i′=1Bi′ ∪
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⋃m
i′=b+2Bi′ , so J would also be a (i+ a+ 1, j+ a+ 1)-jump of (Bi : i ∈ Zm), contradicting

the fact that (Bi : i ∈ Zm) is jump-free in G. Because b − a + 1 ≥ f4.7.3(t, n − 1), by
Lemma 4.7.3, G1 contains a (t+1, n−1)-chain (B′0, . . . , B

′
n) supported by (Ba−1, . . . , Bb+1)

such that for each i ∈ {1, . . . , n− 1},

V (B′i) ∩ V (Ba−1) = V (B′i) ∩ V (Bb+1) = ∅,

V (Ba−1) ∩ V (B′0) = V (Ba−1) ∩ V (Ba),

V (B′n) ∩ V (Bb+1) = V (Bb) ∩ V (Bb+1),

(B′0, V (B′0) ∩ V (Ba−1), V (B′0) ∩ V (B′1))

is a t-bead, and
(B′n, V (B′n) ∩ V (Bb+1), V (B′n−1) ∩ V (B′n))

is a t-bead. Then, by Lemma 4.5.5 if B̃ =
⋃a−1
i=1 Bi∪

⋃m
i=b+1Bi∪B′0∪B′n, then (B̃, V (B′0)∩

V (B′1), V (B′n)∩ V (B′n−1)) is an s-bead. Hence, (B̃, B′1, . . . , B
′
n−1) is a (t+ 1, s, n)-necklace

in G supported by (Bi : i ∈ Zm), as desired. � (Claim)

If |P2| ≥ s + 1 and s = t, then the labels of the beads can be shifted to reduce to the
case when |P1| ≥ t+ 1.

Claim 4.7.4.2. If |P2| ≥ s+1 and s < t, then G contains a (t, s+1, n)-necklace supported
by (Bi : i ∈ Zm).

Proof of Claim. Let B̃ =
⋃a+1
i=1 Bi ∪

⋃m
i=b−1Bi ∪

⋃
P2. Note that V (B̃) ∩

⋃b−2
i=a+2 V (Bi) =

(V (Ba+1) ∩ V (Ba+2)) ∪ (V (Bb−2) ∩ V (Bb−1)). It suffices to show that that (B̃, V (Ba+1) ∩
V (Ba+2), V (Bb−2) ∩ V (Bb−1)) is an (s + 1)-bead. Note first that B̃ is connected because⋃a+1
i=1 Bi and

⋃m
i=b−1Bi are both connected and P2 is a non-empty collection of paths

between these two connected graphs. Let X ⊆ V (Ba+1) ∩ V (Ba+2) and Y ⊆ V (Bb−2) ∩
V (Bb−1) such that |X| = |Y | ≤ s+1. It suffices to show that B̃ contains a collection of s+1
vertex-disjoint (X, Y )-paths. LetX0 = V (Ba)∩

⋃
P∈P2

V (P ) and Y0 = V (Bb)∩
⋃
P∈P2

V (P ).

Note that |X| ≤ s + 1 ≤ t so there exists a collection Q of |X| vertex-disjoint
(X, V (Bm))-paths in

⋃a+1
i=1 Bi. For each i ∈ {1, . . . , s + 1}, 2i ≤ a so B2i ⊆ B̃, and,

for each P ∈ P2 and each Q ∈ Q, V (B2i) ∩ V (P ) 6= ∅ and V (B2i) ∩ V (Q) 6= ∅. By
Lemma 4.7.2 with A = Q, B = P2 and H = {B2i : i ∈ {1, . . . , s + 1}}, B̃ contains a
collection P ′ of |X| vertex-disjoint (X, Y0)-paths

Let R be a collection of t vertex-disjoint (Y, V (Bm))-paths in
⋃m−1
i=b−1Bi. For each

i ∈ {1, . . . , s + 1}, m − 2i ≥ b so Bm−2i ⊆ B̃, and, for each P ∈ P2 and each R ∈ R,
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Figure 4.12: An illustration of Proposition 4.7.5. (B0, . . . , B5) is a (4, 4)-chain, and there
are 4 vertex-disjoint paths between X1 ∪ {v3} and X5.

V (Bm−2i) ∩ V (P ) 6= ∅ and V (Bm−2i) ∩ V (Q) 6= ∅. By Lemma 4.7.2 with A = R, B = P ′
and H = {Bm−2i : i ∈ {1, . . . , s + 1}}, B̃ contains a collection of |X| vertex-disjoint
(X, Y )-paths.

Hence (B̃, V (Ba+1)∩V (Ba+2), V (Bb−2)∩V (Bb−1)) is an (s+1)-bead. Thus, (B̃, Ba+2, . . . , Bb−2)
is an (t, s + 1, b− a− 2)-necklace supported by (Bi : i ∈ Zm) and b− a− 2 ≥ n so there
is some (t, s+ 1, n)-necklace in G supported by (Bi : i ∈ Zm), as desired. � (Claim)

In each case, G has the desired necklace, proving the lemma.

4.7.2 Necklaces with jumps to the weak bead

The other alternative in Lemma 4.7.1 is that each bead in a (t, s, n)-necklace (Bi : i ∈ Zn)
has a jump to the weak bead, B0. In this case we won’t be able to directly increase t + s
(the parameter in the induction), but we will be able to mutate the necklace to maintain
the same value of t+ s while decreasing the parameter s; this will be good enough for the
induction needed to prove Lemma 4.5.2.

We need a few technical propositions. Propositions 4.7.5, 4.7.6 and 4.7.7 are used to
show that, if a subgraph that attaches to a chain of beads in a particular way, then paths
can be routed through that subgraph to create a bead with higher connectivity.

Proposition 4.7.5. If (B0, . . . , B5) is a (t, 4)-chain in a graph G and v3 ∈ B3, then, for
each X1 ⊆ V (B0) ∩ V (B1) and each X5 ⊆ V (B4) ∩ V (B5) with |X1| + 1 = |X5| ≤ t, G
contains |X5| vertex-disjoint (X1 ∪ {v3}, X5)-paths; see Figure 4.12.

Proof. Let t̃ = |X5|. Choose a collection P4 of t̃ vertex-disjoint (V (B3)∩V (B4), X5)-paths
in B4 minimizing |

⋃
P∈P4

E(P )|; let X4 = V (B3) ∩
⋃
P∈P4

V (P ), which has size t̃ by mini-

mality of |
⋃
P∈P4

E(P )|. Choose a collection P2 of t̃ vertex-disjoint (V (B1)∩V (B2), V (B2)∩
V (B3))-paths in B2 minimizing |

⋃
P∈P2

E(P )|; let X3 = V (B3) ∩
⋃
P∈P2

V (P ), which has
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Figure 4.13: An illustration of Proposition 4.7.6. One example X ⊆ (V (B0)∩V (B1))∪{x1}
and Y ⊆ V (B4) ∩ V (B5) has been shown, along with a collection of vertex disjoint paths
between X and Y . The vertices where H meets one of the beads only have one neighbor
in H (but possibly other neighbors in the bead).

size t̃ by minimality of |
⋃
P∈P2

E(P )|. Choose a collection P3 of t̃ vertex-disjoint (X3, X4)-
paths in B3, and choose a shortest ({v3},

⋃
P∈P3

V (P ))-path Q in B3. Let P 3
0 ∈ P3 be the

unique path for which V (P 3
0 ) ∩ V (Q) 6= ∅. Let P 2

0 ∈ P2 be the unique path for which
V (P 2

0 ) ∩ V (P 3
0 ) 6= ∅, and let P 4

0 ∈ P4 be the unique path for which V (P 4
0 ) ∩ V (P 3

0 ) 6= ∅.
Let X2 = V (B1) ∩

⋃
P∈P2−{P 2

0 }
V (P ), which has size t̃− 1 by minimality of |

⋃
P∈P2

E(P )|.
Let P1 be a collection of t̃− 1 vertex-disjoint (X1, X2)-paths in B1.

Then
⋃
P1 ∪

⋃
(P2 − {P 2

0 }) ∪
⋃

(P3 − {P 3
0 }) ∪

⋃
(P4 − {P 3

0 }) is the union of t̃ − 1
vertex-disjoint (X1, X5)-paths, and Q ∪ P 3

0 ∪ P 4
0 is disjoint from these paths and contains

an ({v3}, X5)-path, as desired.

Proposition 4.7.6. If (B0, . . . , B5) is a (t, 4)-chain in a graph G, and H is a connected
subgraph of G such that each vertex in V (H)∩

⋃5
i=0 V (Bi) has degree 1 in H and V (H)∩

V (B3) 6= ∅, then, for any x1 ∈ V (H)−
⋃5
i=0 V (Bi),(

4⋃
i=1

Bi ∪H, (V (B0) ∩ V (B1)) ∪ {x1}, V (B4) ∩ V (B5)

)

is a t-bead; see Figure 4.13.

Proof. Let B̃ =
⋃4
i=1Bi ∪H. Let X ⊆ (V (B0) ∩ V (B1)) ∪ {x1} and Y ⊆ V (B4) ∩ V (B5)

such that |X| = |Y | ≤ t. Because B̃ is connected, it suffices to show that B̃ contains |X|
vertex-disjoint (X, Y )-paths. If x1 6∈ X then

⋃4
i=1Bi contains |X| vertex-disjoint (X, Y )

paths, so we may assume x1 ∈ X.
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Figure 4.14: An illustration of Proposition 4.7.7. The vertices where H meets a bead only
have one neighbor in H.

Let v3 ∈ V (H) ∩ V (B3). Note that H contains a path Q from x1 to v3. The only
vertices of Q that could have degree 1 in H are x1 and v3. But x1 6∈

⋃5
j=0 V (Bj), so

V (Q) ∩
⋃5
j=0 V (Bj) = {v3}.

By Proposition 4.7.5,
⋃4
i=1Bi contains |X| vertex-disjoint ((X−{x1})∪{v1}, Y )-paths;

together with Q this gives |X| vertex-disjoint (X, Y )-paths, as desired.

Proposition 4.7.7. If (B0, . . . , B5) is a (t, 4)-chain in a graph G, and H is a connected
graph such that each vertex in V (H)∩

⋃5
i=0 V (Bi) has degree 1 in H and both V (H)∩V (B2)

and V (H) ∩ V (B3) are non-empty, then, for any x1, x4 ∈ V (H)−
⋃5
i=0 V (Bi),(

4⋃
i=1

Bi ∪H, (V (B0) ∩ V (B1)) ∪ {x1}, (V (B4) ∩ V (B5)) ∪ {x4}

)

is a (t+ 1)-bead; see Figure 4.14.

Proof. Let B̃ =
⋃4
i=1Bi ∪ H. Let X ⊆ (V (B0) ∩ V (B1)) ∪ {x1} and Y ⊆ (V (B4) ∩

V (B5)) ∪ {x4} such that |X| = |Y | ≤ t + 1. Because B̃ is connected, it suffices to show
that B̃ contains |X| vertex-disjoint (X, Y )-paths.

If x4 6∈ Y then |Y | ≤ |V (B4)∩V (B5)| = t, so by Proposition 4.7.6
⋃4
i=1Bi∪H contains

|X| vertex-disjoint (X, Y )-paths. Similarly, if x1 6∈ X then
⋃4
i=1Bi ∪ H contains |X|

vertex-disjoint (X, Y )-paths.

Otherwise x1 ∈ X and x4 ∈ Y . Then
⋃4
i=1 V (Bi) contains a collection P of |X| − 1

vertex-disjoint (X − {x1}, Y − {x4})-paths, and H contains a path Q from x1 to x4. The
only vertices in Q that could have degree 1 in H are x1 and x4, but x1, x4 6∈

⋃5
i=0 V (Bi).
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Therefore, Q is an (x1, x4)-path disjoint from
⋃5
i=0 V (Bi), and hence disjoint from each

path in P , as desired.

A jump in a necklace is closely related to the concept of a bridge: Note that a jump
of a necklace is always contained in a bridge of the union of the beads in that necklace
because the only two vertices of the jump that are in the necklace are the endpoints.

Lemma 4.7.8 shows that, if a necklace has a bridge with attachment vertices in each
bead, then we can either find a hub or increase the connectivity of the necklace.

Lemma 4.7.8. There exists a function f4.7.8 : N → N such that, for t, s,m, n ∈ N with
t ≥ max{s, 1}, n ≥ 3 and m = f4.7.8(n), if G is a graph containing a (t, s,m)-necklace
(Bi : i ∈ Zm), and H is a bridge of

⋃m
i=1Bi in G such that, for each i ∈ {1, . . . ,m}, H has

an attachment vertex in V (Bi), then either G contains a (t+ 1, s, n)-necklace supported by
(Bi : i ∈ Zm) or G contains a (t, s, n)-necklace supported by (Bi : i ∈ Zm) with a hub.

Proof. Let f4.7.8(t, s, n) = max{5, f4.6.3((4n+ 3)2 + 3). Note that, because H is a bridge of⋃m
i=1 V (Bi), H −

⋃m
i=1 V (Bi) is connected; choose a spanning tree T ′ of H −

⋃m
i=1 V (Bi).

For each i ∈ {1, . . . ,m}, let vi ∈ V (H) ∩ V (Bi) and let ei ∈ E(H) be an edge from vi to
some vertex in V (H)−

⋃m
i=1 V (Bi); such an edge ei exists because H has at least dm/2e ≥ 3

attachment vertices, so H is not a single edge, so H cannot contain any edge between two
vertices of

⋃m
i=1 V (Bi). Let T = T ′ ∪ {e1, . . . , em}, so, for each i ∈ {1, . . . ,m}, vi is a leaf

of T and V (T ) ∩
⋃m
i=1 V (Bi) = {v1, . . . , vm}.

Let n′ = (4n + 3)2 + 3. Because m ≥ f4.6.3(n
′), by Lemma 4.6.3, T contains a family

{T1, . . . , Tn′} supported by {{v1}, . . . , {vm}} such that either

(a) T contains a hub z of {T1, . . . , Tn′} or,

(b) for each i ∈ {1, . . . , n′ − 1}, T contains an edge between Ti and Ti+1.

Choose such a family minimizing |
⋃n′

i=1 V (Ti)|. If i ∈ {1, . . . , n′} and j, j′ ∈ {1, . . . ,m}
such that vj, vj′ ∈ V (Ti) then vj and vj′ are both leaves of T , and hence leaves of V (Ti), so
removing vj′ from V (Ti) does not affect the external neighbours of Ti, so if j 6= j′, then Ti
could be replaced by Ti−vj′ , contradicting minimality of |

⋃n′

i′=1 V (Ti′)|. Therefore, for each
i ∈ {1, . . . , n′}, |V (Ti) ∩ {v1, . . . , vm}| = 1. For each i ∈ {1, . . . , n′}, let ai ∈ {1, . . . ,m}
such that vai ∈ V (Ti).

Suppose case (a) holds, so T contains a hub z of {T ′1, . . . , T ′n′}. By reordering {T ′1, . . . , T ′n′},
we may assume a1 < · · · < an′ . Note that n ≤ n′. For each i ∈ {1, . . . , n − 1}, let
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Figure 4.15: Illustration of notation in the proof of Lemma 4.7.8

B′i = Ti ∪
⋃ai+1−1
j=ai

Bj and let B′n = Tn ∪
⋃m
j=an
∪
⋃a1−1
j=′ Bj. By Lemma 4.5.6 and the fact

that, for each i Ti ∩
⋃m
j=1Bj = {vai}, we see that (B′i : i ∈ Zn) is a (t, s, n)-necklace

supported by (Bi : i ∈ Zm). z is a non-leaf in T , so z 6∈
⋃m
i=1 V (Bi), so z is a hub of

(B′i : i ∈ Zn), as desired.

Now suppose case (b) holds, so, for each i ∈ {1, . . . , n′−1}, T contains an edge between
Ti and Ti+1. Let ñ = 4n + 4. n′ − 2 = (ñ − 1)2 + 1, so by the Erdős-Szekeres Theorem,
(a2, . . . , an′−1) contains either an increasing subsequence of length ñ or a decreasing sub-
sequence of length ñ. By reversing the order of T1, . . . , Tn′ and a1, . . . , an′ if necessary, we
may assume (a2, . . . , an′−1) contains an increasing subsequence (ã1, . . . , ãñ).

For each i ∈ {1, . . . , ñ}, let T̃i = Tãi , and let P̃i be a shortest path in T from V (T̃i)

to V (T̃i+1); note that V (P̃i) ⊆
⋃ãi+1

j=ãi
V (Tj). By minimality of P̃i, |V (P̃i) ∩ V (T̃i)| =

|V (P̃i)∩V (T̃i+1)| = 1, so {P̃1, . . . , P̃ñ} is a collection of internally vertex-disjoint paths. For
each i ∈ {1, . . . , ñ}, P̃i ⊆ V (T ) and does not contain any leaves of T , so P̃i∩

⋃m
j=1 V (Bj) = ∅.

For each i ∈ {2, . . . , ñ − 1}, let B̃i =
⋃ãi+1−1
j=ãi

Bj let B̃1 =
⋃ã2−1
j=1 Bj, and let B̃0 =⋃m

j=ãñ
Bj. For each i ∈ {1, . . . , ñ − 1} let H̃i = T̃i ∪ P̃i and let H̃ñ = T̃ñ. For each

i ∈ {2, . . . , ñ}, let xi be the unique vertex in V (P̃i−1)∩ V (T̃i). For each i ∈ {1, . . . , n− 1},
let B′i =

⋃4i+4
j=4i+1(B̃j ∪H̃j) and let B′0 =

⋃4n+4
j=4n+1(B̃j ∪H̃j)∪

⋃4
j=1(B̃j ∪H̃j). See Figure 4.15

It now suffices to show that (B′i : i ∈ Zn) is a (t + 1, s, n)-necklace supported by
(Bi : i ∈ Zm).

For each i ∈ Zn, V (B′i)∩V (B′i−1) = (V (Bã4i)∩V (Bã4i+1
))∪{x4i}, which has size t+ 1,
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so necklace axiom (N1) holds.

For each i, j ∈ Zn, if j − i 6∈ {−1, 0, 1}, then V (H̃i) ⊆
⋃ãi+1−1
i′=ãi

V (Ti′), which is disjoint

from
⋃ãj+1−1
j′=ãj

V (Tj′) ⊇ V (H̃j), so V (B′i) ∩ V (B′j) = ∅, and axiom (N2) holds.

Note that, for each i ∈ {1, . . . , n− 1},(
4i+4⋃
j=4i+1

(B̃j ∪ H̃j), V (B̃4i ∪ H̃4i) ∩ V (B̃4i+1 ∪ H̃4i+1), V (B̃4i+4 ∪ H̃4i+4) ∩ V (B̃4i+5 ∪ H̃4i+5)

)

is a (t+ 1)-bead by Proposition 4.7.7, so axiom (N3) holds.

By Proposition 4.7.6,(
4n+4⋃
j=4n+1

(B̃j ∪ H̃j), V (B̃4n ∪ H̃4n) ∩ V (B̃4n+1 ∪ H̃4n+1), V (B̃4n+4 ∪ H̃4n+4) ∩ V (B̃1 ∪ H̃1)

)

is an s-bead; similarly,(
4⋃
j=1

(B̃j ∪ H̃j), V (B̃4n+4 ∪ H̃4n+4) ∩ V (B̃1 ∪ H̃1), V (B̃4 ∪ H̃4) ∩ V (B̃5 ∪ H̃5)

)

is an s-bead; thus, (
B′0, V (B′n−1) ∩ V (B′n), V (B′n) ∩ V (B′1)

)
is an s-bead by Lemma 4.5.5.

Lemma 4.7.9 shows that if a (t, s, n)-necklace has jumps to the weak bead from each
other bead, then we can sacrifice the connectivity of the weak bead (decreasing s) in order
to find a bridge with attachment vertices in each bead, which will allow us to recover the
connectivity lost by decreasing s using Lemma 4.7.8.

Lemma 4.7.9. There exists a function f4.7.9 : N2 → N such that, for t, s,m, n ∈ N with
t ≥ max{s, 1}, n ≥ 3 and m = f4.7.9(s, n), if G is a graph containing a (t, s,m)-necklace
(Bi : i ∈ Zm) and, for each i ∈ {1, . . . ,m−1}, G contains an (i,m)-jump of (Bi : i ∈ Zm)
then G contains either a (t + 1,max{s − 1, 0}, n)-necklace supported by (Bi : i ∈ Zm) or
a (t,max{s− 1, 0}, n)-necklace supported by (Bi : i ∈ Zm) and having a hub z.

Proof. Let f4.7.9(s, n) = max{s, 2}f4.7.8(n)+5. For each i ∈ {2, . . . ,m−2}, choose an (i,m)-
jump Ji of (Bi : i ∈ Zm) in G such that |

⋃m−2
i=2 E(Ji)| is minimized. Let m̃ = f4.7.8(n).
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By Lemma 4.7.8, it suffices to show that G has a (t,max{s − 1, 0}, m̃)-necklace (B̃i :
i ∈ Zm̃) supported by (Bi : i ∈ Zm) and a bridge H of

⋃m̃
i=1 B̃i such that, for each

i ∈ {1, . . . , m̃}, H has an attachment vertex in B̃i.

For i ∈ {2, . . . ,m − 2}, let vi be the end of Ji in V (Bi). Suppose v ∈ V (
⋃m−2
i=2 Ji) ∩

V (
⋃m
i=1Bi) and e1, e2 ∈ E(

⋃m−2
j=2 Ji) are distinct edges incident with v. Let I1 = {i ∈

{2, . . . ,m− 2} : e1 ∈ E(Ji)} and I2 = {i ∈ {2, . . . ,m− 2} : e2 ∈ E(Ji)}. For each i1 ∈ I1
and i2 ∈ I2, both Ji1 and Ji2 have one end at v and the other end in V (Bm), so Ji1 is an
(i2,m)-jump. If, for each i2 ∈ I2, Ji2 is replaced by Ji1 for some i1 ∈ I1, then |E(

⋃m−2
j=2 Jj)|

would be reduced, contradicting minimality. Therefore, for each i ∈ {2, . . . ,m− 2}, vi has
degree 1 in

⋃m−2
i=2 Ji.

Suppose that s = 0. Let B1
m be the connected component of Bm containing V (Bm) ∩

V (B1) and B2
m be the component of Bm containing V (Bm)∩V (Bm−1); by (N6), Bm = B1

m∪
B2
m. Let I1 = {i ∈ {2, . . . ,m− 2} : V (Ji) ∩ V (B1

m) 6= ∅} and let I2 = {i ∈ {2, . . . ,m− 2} :
V (Ji)∩V (B2

m) 6= ∅}. Note that I1∪I2 = {2, . . . ,m−2}, so max{|I1|, |I2|} ≥ (m−3)/2; by
possibly replacing (Bi : i ∈ Zm) by (B−i : i ∈ Zm), we may assume |I1| ≥ (m−3)/2 ≥ m̃.
Let H ′ = B1

m∪
⋃
i∈I1 Ji, which is connected. Note that V (H ′)∩

⋃m−2
i=2 V (Bi) = {vi : i ∈ I1}

and for each i ∈ I1, vi 6∈ B1
m, so vi has degree 1 in H ′. Hence, H ′ is contained in some

bridge H of
⋃m−2
i=2 V (Bi).

Let a0, a1, . . . , am̃ ∈ I1 such that 2 ≤ a0 < a1 < . . . < am̃ ≤ m− 2. For i ∈ {1, . . . , m̃−
1}, let B̃i =

⋃ai+1−1
j=ai

Bj, and let B̃m̃ =
⋃m−2
j=am̃

Bj ∪
⋃a1−1
j=2 Bj. Both

⋃m−2
j=am̃

Bj and
⋃a1−1
j=2 Bj

are connected, V (B̃m̃) ∩ V (B̃m̃−1) ⊆ V (Bam̃) and V (B̃m̃) ∩ V (B̃1) ⊆ V (Ba1−1), so (N6)
holds; (N1)-(N5) hold trivially, so (B̃1, . . . , B̃m̃) is a (t, 0, m̃)-necklace in G supported by
(B1, . . . , Bm). H is a bridge of

⋃m̃
i=1 V (B̃i) and, for each i ∈ {1, . . . , m̃}, vai is an attachment

vertex of H in V (B̃i). Because m̃ = f4.7.8(n), by Lemma 4.7.8, G contains either a (t +
1, 0, n)-necklace supported by (B̃i : i ∈ Zm̃) or a (t, 0, n)-necklace supported by (B̃i : i ∈
Zm̃) and having a hub z, as desired.

Now suppose that s > 0. Choose a collection P of s vertex-disjoint (V (B2)∩V (B1), V (Bm−2)∩
V (Bm−1))-paths inB1∪Bm∪Bm−1 minimizing |

⋃
P∈P E(P )|. By minimality of |

⋃
P∈P E(P )|,

for each P ∈ P , V (P )∩V (B2) and V (P )∩V (Bm−2) each contain exactly one vertex, which
is an endpoint of P ; hence P − (V (B2) ∪ V (Bm−2)) is a path.

For each i ∈ {3, . . . ,m − 3}, let Qi be a shortest path in Bm from V (Ji) ∩ V (Bm)
to
⋃
P∈P V (P ) ∩ V (Bm); by minimality, |V (Qi) ∩

⋃
P∈P V (P )| = 1. For each P ∈ P , let

IP = {i ∈ {3, . . . ,m − 3} : V (Qi) ∩ V (P ) 6= ∅}.
⋃
P∈P IP = {3, . . . ,m − 3}, so there

is some P0 ∈ P such that |IP0| ≥ (m − 5)/s ≥ m̃. Let a0, a1, . . . , am̃ ∈ IP0 such that
3 ≤ a1 < · · · < am̃ ≤ m − 3. For i ∈ {1, . . . , m̃ − 1}, let B̃i =

⋃ai+1−1
j=ai

Bj, and let

B̃0 =
⋃m−2
j=am̃

Bj ∪
⋃

(P − {P0})
⋃a1−1
j=2 Bj.

125



Claim 4.7.9.1. We claim that (B̃i : i ∈ Zm̃) a (t, s− 1, m̃)-necklace:

Proof of Claim. For each i ∈ Zm̃, V (B̃i) ∩ V (B̃i−1) = V (Bai−1) ∩ V (Bai) which has size t,
so necklace axiom (N1) holds.

Note that

B̃0 ⊆
m⋃

j=am̃

Bj ∪
a1−1⋃
j=1

Bj,

so, for each i ∈ {1, . . . , m̃}, B̃i is contained in the union of the beads between Bai and
Bai+1−1; hence, if j − i 6∈ {−1, 0, 1}, then B̃i ∩ B̃j = ∅, so axiom (N2) holds.

For each i ∈ {1, . . . , m̃− 1}, B̃i =
⋃ai+1−1
j=ai

Bj and(
ai+1−1⋃
j=ai

Bj, V (Bai−1) ∩ V (Bai), V (Bai+1−1) ∩ V (Bai+1
)

)

is a t-bead by Lemma 4.5.5, so axiom (N3) holds.

To prove axiom (N4), note that B̃0 is the union of two connected subgraphs, one
containing V (B̃0) ∩ V (B̃1) and the other containing V (B̃0) ∩ V (B̃m̃−1). Let X ⊆ V (B̃1) ∩
V (B̃m̃) = V (Ba1)∩ V (Ba1−1) and Y ⊆ V (B̃m̃)∩ V (B̃m̃−1 = V (Bam̃)∩ V (Bam̃−1) such that
|X| = |Y | ≤ s− 1. It suffices to show that B̃0 contains |X| vertex-disjoint (X, Y )-paths.

Let P ′ ⊆ P − {P0} such that |P ′| = |X|. Let X ′2 = V (B2) ∩
⋃
P∈P ′ V (P ) and X ′m−2 =

V (Bm−2) ∩
⋃
P∈P ′ V (P ), and note that |X ′2| = |X ′m−2| = |X|. Then

⋃ã1−1
j=2 Bj contains

|X| vertex-disjoint (X,X ′2)-paths,
⋃m−2
j=am̃

Bj contains |X| vertex-disjoint (X ′m−2, Y )-paths,
and P ′ is a collection of |X| vertex-disjoint (X ′2, X

′
m−2)-paths that are internally vertex-

disjoint from
⋃ã1−1
j=2 Bj ∪

⋃m−2
j=ãm̃

Bj. Therefore, B̃0 contains |X| vertex-disjoint (X, Y )-
paths. � (Claim)

Let H ′ = (P0 − (V (B2) ∪ V (Bm−2))) ∪
⋃
i∈IP0

(Qi ∪ Ji), which is connected. Note that

H ′ is vertex-disjoint from
⋃
P∈P−{P0} P , so V (H ′) ∩

⋃m̃
i=1 V (B̃i) = V (H ′) ∩

⋃m−3
i=3 V (Bi) =

{vi : i ∈ IP0}. For each i ∈ IP0 , vi 6∈ P0 ∪
⋃
j∈IP0

Qj, and vi has degree 1 in
⋃m−2
j=2 Jj, so

vi has degree 1 in H ′. Hence H ′ is contained in some bridge H of
⋃m̃
i=1 V (B̃i), and, for

each i ∈ {1, . . . , m̃}, vi is an attachment vertex of H in B̃i. Because m̃ ≥ f4.7.8(n), by
Lemma 4.7.8, G contains either a (t+ 1, s− 1, n)-necklace supported by (B̃i : i ∈ Zm̃) or
a (t, s− 1, n)-necklace supported by (B̃i : i ∈ Zm̃) and having a hub z, as desired.
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4.8 Growing a necklace

With Lemma 4.7.1, Lemma 4.7.4 and Lemma 4.7.9, we are now able to prove Lemma 4.8.1,
showing that we can increase the connectivity of a necklace provided there is a surplus of
paths between each pair of beads.

Lemma 4.8.1. There exists a function f4.8.1 : N3 → N such that, for t, s,m, n ∈ N with
t ≥ max{s, 1}, n ≥ 3 and m = f4.8.1(t, s, n), if G is a graph containing a (t, s,m)-necklace
(Bi : i ∈ Zm) and, for each i, j ∈ {1, . . . ,m}, G contains t+ s+ 1 vertex-disjoint (Bi, Bj)-
paths, then there exists t′, s′, `′ ∈ N such that t′ + s′ + `′ = t + s + 1 and G contains a
(t′, s′, n)-necklace (B′i : i ∈ Zn) supported by (Bi : i ∈ Zm) and a set Z ′ of `′ hubs of
(B′i : i ∈ Zn).

Proof. Let

n1 = f4.7.4(t, s, n)

n̂ =

{
n if s = 0

max{f4.8.1(t+ 1, s− 1, n), f4.8.1(t, s− 1, n)} if s > 0

n2 = f4.7.9(s, n̂)

ñ = max{n1, n2}
f4.8.1(t, s, n) = f4.7.1(ñ)

The proof goes by induction on s. By Lemma 4.7.1, either

1. G contains a (t, s, ñ)-necklace (B̃i : i ∈ Zñ) supported by (Bi : i ∈ Zm) such that
(B̃i : i ∈ Zñ) is jump-free in G or

2. G contains a (t, s, ñ)-necklace (B̃i : i ∈ Zñ) supported by (Bi : i ∈ Zm) such that
for each i ∈ {1, . . . , n− 1}, G contains an (i, ñ)-jump.

If case 1 holds then, by Lemma 4.7.4, there exists t′, s′ ∈ N such that t′+ s′ = t+ s+ 1
and G contains a (t′, s′, n)-necklace (B′i : i ∈ Zn) supported by (B̃i : i ∈ Zñ), and hence
supported by (Bi : i ∈ Zm), as desired.

Suppose case 2 holds. By Lemma 4.7.9, G contains a (t̂,max{s − 1, 0}, n̂)-necklace
(B̂i : i ∈ Zn̂) supported by (B̃i : i ∈ Zñ) such that either t̂ = t+1 or t̂ = t and G contains
a hub z of (B̂i : i ∈ Zn̂). If s = 0 then n̂ = n and (B′i : i ∈ Zn) = (B̂i : i ∈ Zn̂) is a
(t̂, 0, n)-necklace such that either t̂ = t+ 1 or z is a hub of (B′i : i ∈ Zn).

127



Suppose then that s > 0, so (B̂i : i ∈ Zn̂) is a (t̂, s − 1, n̂)-necklace. If t̂ = t + 1
let Ẑ = ∅; if t̂ = t let Ẑ = {z}, where z is a hub of (B̂i : i ∈ Zn̂) in G; let ˆ̀ = |Ẑ|.
For each i, j ∈ {1, . . . , n̂}, G contains t + s + 1 vertex-disjoint (B̂i, B̂j)-paths, so G − Ẑ
contains t̂+ s− 1 vertex-disjoint (B̂i, B̂j)-paths. By the induction hypothesis, there exists

t′, s′, `′ ∈ N such that t′ + s′ + `′ = t̂+ (s− 1) + 1 and G− Ẑ contains a (t′, s′, n)-necklace
(B′i : i ∈ Zn) and a set Z ′ of `′ hubs of (B′i : i ∈ Zn). Then (B′i : i ∈ Zn) is a (t′, s′, n)-
necklace in G as well, and Z ′ ∪ Ẑ is a set of `′ + ˆ̀ hubs of (B′i : i ∈ Zn) in G; note that
t′ + s′ + `′ + ˆ̀= t̂+ s+ ˆ̀= t+ s+ 1, as desired.

By an easy induction, it follows that, we can always increase the connectivity of a
necklace up to the number of vertex-disjoint paths between the beads.

Corollary 4.8.2. There exists a function f4.8.2 : N4 → N such that, for θ, t, s,m, n ∈ N
with θ > 2, t ≥ max{s, 1}, n ≥ 3 and m = f4.8.2(θ, t, s, n), if G is a graph containing
a (t, s,m)-necklace (Bi : i ∈ Zm) and, for each i, j ∈ {1, . . . ,m}, G contains θ vertex-
disjoint (Bi, Bj)-paths, then there exists t′, s′, `′ ∈ N such that t′+s′+`′ = θ and G contains
a (t′, s′, n)-necklace (B′i : i ∈ Zn) supported by (Bi : i ∈ Zm) and a set Z ′ of `′ hubs of
(B′i : i ∈ Zn).

Proof. By induction on θ − t− s using Lemma 4.8.1.

Now, finally, we are able to prove Lemma 4.5.2 (restated here for convenience).

Lemma 4.5.2. There exists a function f4.5.2 : N2 → N such that for each θ,m, n ∈ N with
θ ≥ 3, n ≥ 3 and m = f4.5.2(θ, n), if G is a graph containing a θ-tangle T with covering
number at least m, then either G contains a T -aligned Kθ,n-minor or there exists t, s, ` ∈ N
with t ≥ s, t ≥ 1 and t+ s+ ` = θ such that G contains a T -aligned (t, s, n)-necklace with
` hubs.

Proof. Let n′ = f4.8.2(θ, 1, 0, n) and let f4.5.2(θ, n) = f4.6.5(θ,max{n, n′}). By Lemma 4.6.5,
G contains either (a) a T -aligned Kθ,n-minor, or (b) a T -aligned (1, 0, n′)-necklace (B′i :
i ∈ Zn′) such that, for each i, j ∈ {1, . . . , n′}, G contains θ vertex-disjoint (V (Bi), V (Bj))-
paths. Case (a) is one of the desired outcomes, so we may assume that case (b) holds.
By Corollary 4.8.2, there exists t, s, ` ∈ N such that t + s + ` = θ and G contains a
(t, s, n)-necklace (Bi : i ∈ Zn) supported by (B′i : i ∈ Zn′) and a set Z of ` hubs of
(Bi : i ∈ Zn).

For each i ∈ {1, . . . , n′}, there is some i′ ∈ {1, . . . , n′} such that E(B′i′) ⊆ E(Bi); for
each A ∈ T , E(B′i′) 6⊆ A, so E(Bi) 6⊆ A, so Bi is not 1-covered by T .
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Figure 4.16: An illustration of Lemma 4.9.1, showing the new weak bead B′0, containing
the hub z, and showing how an additional path is routed through z in B′0.

4.9 Necklace to wheel

The final piece of the proof is to turn a necklace into a generalized-wheel, which we prove
in this section. The biggest difference between a generalized-wheel and a necklace with
hubs is that the necklace can have a weak bead, whereas the generalized-wheel has the
same number of rim-matching edges all the way around; this is addressed in Lemma 4.9.1,
Lemma 4.9.2 and Lemma 4.9.3

If a necklace has a hub and a weak bead, the hub can be sacrificed to increase the
connectivity of the weak bead.

Lemma 4.9.1. For each `, t, s, n ∈ N with ` > 0, and t > s, if m = n + 4, and G is a
graph containing a (t, s,m)-necklace (Bi : i ∈ Zm) with a set Z of ` hubs then G contains
a (t, s + 1, n)-necklace (B′i : i ∈ Zn) with a set Z ′ of ` − 1 hubs; moreover, for each
i ∈ {1, . . . , n− 1}, B′i = Bi+2; see Figure 4.16.

Proof. Let z ∈ Z and let e2 be an edge from z to B2 and let em−2 be an edge from z to Bm−2.
For each i ∈ {1, . . . , n−1} letB′i = Bi+2 and letB′0 = B0∪B1∪B2∪Bm−2∪Bm−1∪{e2, em−2}.
We claim that (B′i : i ∈ Zn) is a (t, s+ 1, n)-necklace. By Lemma 4.5.6 we know that

(B′0 − {e2, em−2}, B′1, . . . , B′n−1)

is a (t, s, n)-necklace, and we also know that the only additional vertex in B′0 is z, which
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is not in any other bead. Therefore, it suffices to show that

(B′0, V (B2) ∩ V (B3), V (Bm−2) ∩ V (Bm−3))

is an (s+ 1)-bead.

Let X ⊆ V (B2) ∩ V (B3) and Y ⊆ V (Bm−2) ∩ V (Bm−3) such that |X| = |Y | ≤ s+ 1.

Choose a collection P2 of |X| vertex-disjoint (X, V (B1) ∩ V (Bm))-paths in B1 ∪ B2

minimizing |
⋃
P∈P2

E(P )|; by minimality, for each P ∈ P2, P intersects V (B0) only at an
endpoint. Let v2 ∈ V (B2) be the vertex incident with e2. Choose a shortest path Q2 in
B2 from v2 to

⋃
P∈P2

V (P ); by minimality, |V (Q2)∩
⋃
P∈P2

V (P )| = 1. Let P2 ∈ P2 be the
path for which V (P2) ∩ V (Q2) 6= ∅. Let P ′2 be the subpath of P2 from the end in X to v2,
together with Q2 and e2, so P ′2 is an (X, {z})-path; moreover, v2 ∈ V (B2) so v2 6∈ V (B0),
so P ′2 ∩ V (Bm) = ∅. Let X1 = V (B0) ∩

⋃
P∈P2−{P2} V (P ) and note that |X1| = |X| − 1.

Similarly, choose a collection Pm−2 of |X| vertex-disjoint (Y, V (Bm−1) ∩ V (B0))-paths
in Bm−1 ∪Bm−2 minimizing |

⋃
P∈Pm−2

E(P )|. Let vm−2 ∈ V (Bm−2) be the vertex incident
with em−2. Choose a shortest path Qm−2 in Bm−2 from vm−2 to

⋃
P∈Pm−2

V (P ). Let
Pm−2 ∈ Pm−2 be the path for which V (Pm−2) ∩ V (Qm−2) 6= ∅. Let P ′m−2 be the subpath
of Pm−2 from the end in Y to vm−2, together with Qm−2 and em−2, so P ′m−2. Let Xm−1 =
V (B0) ∩

⋃
P∈Pm−2−{Pm−2} V (P ).

Let P0 be a collection of |X1| = |X| − 1 ≤ s vertex-disjoint (X1, Xm−1)-paths in B0.
Then

⋃
(P2−{P2})∪

⋃
P0

⋃
(Pm−2−{Pm−2}) is the union of |X|−1 vertex-disjoint (X, Y )-

paths. P ′2∪P ′m−2 is another (X, Y )-path disjoint from all of these, giving |X| vertex-disjoint
(X, Y )-paths. Therefore, (

B′0, V (B′0) ∩ V (B′1), V (B′0 ∩ V (B′n−1)
)

is an (s + 1)-bead, so (B′i : i ∈ Zn) is a (t, s + 1, n)-necklace in G, and Z ′ = Z − {z} is a
set of `− 1 hubs of (B′i : i ∈ Zn), as desired.

If we run out of hubs to sacrifice with Lemma 4.9.1, but still have a weak bead, we can
sacrifice the connectivity of all of the other beads to produce one more hub.

Lemma 4.9.2. There exists a function f4.9.2 : N → N such that, for t, s,m, n ∈ N with
t > max{s, 1}, n ≥ 3 and m = f4.9.2(t, n), if G is a graph containing a (t, s,m)-necklace
(Bi : i ∈ Zm) then G contains a minor G′ which contains a (t− 1, s, n)-necklace (B′i : i ∈
Zn) with a hub z′; moreover, there exists c1, . . . , cn ∈ {1, . . . ,m} such that c1 < · · · < cn
and, for each i ∈ {1, . . . , n− 1}, E(B′i) ⊆

⋃ci+1−1
j=ci

E(Bj); see Figure 4.17.
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Figure 4.17: An illustration of Lemma 4.9.2. A path through all of the non-weak-beads
can be contracted to a single vertex, forming a hub. This path must be chosen carefully
to avoid breaking too many of the beads in the necklace.

Proof. Let f4.9.2(t, n) = 2t2(n− 1) + 1. By Lemma 4.5.5,(
m−1⋃
i=1

Bi, V (B1) ∩ V (B0), V (Bm−1) ∩ V (B0)

)

is a t-bead, so
⋃m−1
i=1 Bi contains a family P of t vertex-disjoint (V (B1)∩V (B0), V (Bm−1)∩

V (B0))-paths. Note that, for each i ∈ {1, . . . ,m − 1}, there exists Pi ∈ P such that the
paths in P − {Pi} all lie in a single connected component of Bi − V (Pi). Therefore, there
exists some P0 ∈ P such that

|{i ∈ {1, . . . ,m− 1} : Pi = P0}| ≥
m− 1

t
= 2t(n− 1).

Let
I0 = {i ∈ {1, . . . ,m− 1} : i ≡ 0 (mod 2) ∧ Pi = P0}

and
I1 = {i ∈ {1, . . . ,m− 1} : i ≡ 1 (mod 2) ∧ Pi = P0},

so either |I0| ≥ t(n − 1) or |I1| ≥ t(n − 1). In either case there exists a sequence
(a1, . . . , at(n−1)) of integers in {1, . . . ,m − 1} such that for each i ∈ {1, . . . , t(n − 1) − 1},
ai + 1 < ai+1, and, for each i ∈ {1, . . . , t(n− 1)}, Pi = P0. For i ∈ {1, . . . , t(n− 1)}, let B̃i

be the connected component of Bai − V (P0) containing all of the paths in P − {P0}; let
B̃0 = V (B1) ∩ V (B0).
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For i ∈ {1, . . . , n− 1}, let P ′i be the set containing, for each P ∈ P − {P0}, a shortest
subpath of P from V (B̃t(i−1)) to V (B̃ti) and let B′i =

⋃ti
j=t(i−1)+1 B̃j ∪

⋃
P ′i; let B′0 =⋃m

j=(at(n−1))+1Bj. For i ∈ {1, . . . , n}, let ci = at(i−1)+1 and note that, for i ∈ {1, . . . , n− 1},
E(B′i) ⊆

⋃ci+1−1
j=ci

E(Bj). We claim that (B′i : i ∈ Zn) is a (t − 1, s, n)-necklace. The only
non-trivial facts to verify are (N1), that, for each i ∈ {1, . . . , n}, |V (B′i)∩V (B′i+1)| = t− 1
and (N3), that, for each i ∈ {1, . . . , n − 1}, (B′i, V (B′i−1) ∩ V (B′i), V (B′i) ∩ V (B′i+1)) is a
(t− 1)-bead.

For each i ∈ {1, . . . , n − 1}, because the paths in P ′i are shortest paths, they each
intersect V (B̃t(i−1)) in exactly one vertex, and that vertex is in (V (Bat(i−1)

)∩V (Bat(i−1)+1))−
V (P0), which has size t−1 = |P ′i|; hence |V (B′i)∩V (B′i−1)| = t−1. Also V (B′0)∩V (B′n−1) =
(V (Bat(n−1)+1) ∩ V (Bat(n−1)

))− V (P0), which has size t− 1. Therefore (N1) holds.

To prove (N3), suppose i ∈ {1, . . . , n − 1}, X ⊆ V (B′i−1) ∩ V (B′i) = V (Bat(i−1)
) ∩⋃

P∈P ′i
V (P ) and Y ⊆ V (B′i) ∩ V (B′i+1) = V (Bati+1

) ∩
⋃
P∈P ′i

V (P ) such that |X| = |Y | ≤
t− 1. By Lemma 4.7.2 with A = {P ∈ P ′i : V (P )∩X 6= ∅}, B = {P ∈ P ′i : V (P )∩Y 6= ∅}
andH = {B̃1, . . . , B̃t(n−1)}, B′i contains |X| vertex-disjoint (X, Y )-paths, as desired. Hence,
(B′i : i ∈ Zn) is a (t− 1, s, n)-necklace in G.

Let P ′0 be the shortest (V (Ba1), V (Bat(n−1)+1))-subpath of P0; by minimality, P ′0 is in-
ternally vertex-disjoint from V (Ba1) and V (Bat(n−1)+1). Therefore, P ′0 is internally vertex-
disjoint from

⋃n
i=1 V (B′i), and its endpoint in V (Bat(n−1+1) is in B′0. Let e′ be the edge of

P ′0 incident with the endpoint in V (B′0).

Note that, for each i ∈ {1, . . . , n}, there is an edge from P ′0 − {e′} to B′i. Thus, if G′ is
obtained from G by contracting P ′0−{e′} down to a single vertex z′, then (B′i : i ∈ Zn) is
a (t− 1, s, n)-necklace in G′ with a hub, z′, as desired.

By repeatedly applying Lemma 4.9.1 or Lemma 4.9.2, we can arrive at a θ-linked
necklace with no weak bead.

Lemma 4.9.3. There exists a function f4.9.3 : N4 → N such that, for `, t, s,m, n ∈ N with
t ≥ max{s, 1}, t + s + ` > 1, n ≥ 3 and m = f4.9.3(`, t, s, n), if G is a graph containing
a (t, s,m)-necklace (Bi : i ∈ Zm) with a set Z of ` hubs then there exists t′, `′ ∈ N such
that 2t′ + `′ = t + s + ` and G contains a minor G′ which contains a (t′, t′, n)-necklace
(B′i : i ∈ Zn) with a set Z ′ of `′ hubs; moreover, there exists c1, . . . , cn ∈ {1, . . . ,m} such
that c1 < · · · < cn and, for each i ∈ {1, . . . , n− 1}, E(B′i) ⊆

⋃ci+1−1
j=ci

E(Bj).

Proof. By induction on t − s. If t = s then let f4.9.3(`, t, t, n) = n, so (Bi : i ∈ Zm) is a
(t, t, n)-necklace, so the lemma holds in this case.
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Suppose t > s and ` > 0. In this case let ñ = f4.9.3(` − 1, t, s + 1, n) and let
f4.9.3(`, t, s, n) = ñ + 4. By Lemma 4.9.1, G contains a (t, s + 1, ñ)-necklace (B̃i : i ∈ Zñ)
and a set Z̃ of ` − 1 hubs. By the induction hypothesis, there exists a minor G′ of G
containing a (t′, t′, n)-necklace (B′i : i ∈ Zn) with a set Z ′ of `′ hubs, where 2t′ + `′ =
t + (s + 1) + (` − 1) = t + s + `. Moreover, there exists c̃1, . . . , c̃n ∈ {1, . . . , ñ} such that

c̃1 < · · · < c̃n and, for each i ∈ {1, . . . , n},
⋃
E(B′i) ⊆

⋃c̃i+1−1
j=c̃i

E(B̃j). But, by Lemma 4.9.1,

for each i ∈ {1, . . . , ñ − 1}, B̃i = Bi+2, so, if ci = c̃i + 2 then, for each i ∈ {1, . . . , n − 1},
E(B′i) ⊆

⋃ci+1−1
j=ci

E(Bj), as desired. Thus, the lemma holds in this case.

Finally suppose t > s and ` = 0. Note that 1 < t + s + ` ≤ 2t − 1 so t > 1. In
this case let n̂ = f4.9.3(1, t − 1, s, n) and let f4.9.3(`, t, s, n) = f4.9.2(t, n̂). By Lemma 4.9.2,
G contains a minor Ĝ which contains a (t − 1, s, n̂)-necklace (B̂i : i ∈ Zn̂) and a hub ẑ.
By the induction hypothesis, there exists a minor G′ of Ĝ containing a (t′, t′, n)-necklace
(B′i : i ∈ Zn) with a set Z ′ of `′ hubs, where 2t′ + `′ = (t − 1) + s + 1 = t + s + `.
Moreover, there exists c′1, . . . , c

′
n ∈ {1, . . . , n̂} such that c′1 < · · · < c′n and, for each

i ∈ {1, . . . , n − 1}, E(B′i) ⊆
⋃c′i+1−1
j=c′i

E(B̂j). By Lemma 4.9.2, there exists ĉ1, . . . , ĉn̂ such

that ĉ1 < · · · < ĉn̂ and for each i ∈ {1, . . . , n̂ − 1}, E(B̂i) ⊆
⋃ĉi+1−1
j=ĉi

E(Bj). Then, for

each i ∈ {1, . . . , n − 1}, E(B′i) ⊆
⋃c′i+1−1
j=c′i

⋃ĉj+1−1
k=ĉj

E(Bk). For i ∈ {1, . . . , n}, let ci = ĉc′i .

Therefore, for i ∈ {1, . . . , n − 1}, E(B′i) ⊆
⋃ci+1−1
j=ci

E(Bj), as desired. Thus, the lemma
holds.

Once we have a necklace with no weak bead, obtaining a wheel-minor is straight-
forward.

Lemma 4.9.4. There exists a function f4.9.4 : N4 → N such that, for `, t, s,m, n ∈ N with
t ≥ max{s, 1}, t+ s+ ` > 1, n > 2(t+ s+ `− 1) and m = f4.9.4(`, t, s, n), if G is a graph
containing a (t + s + `)-tangle T , a T -aligned (t, s,m)-necklace (Bi : i ∈ Zm), and a set
Z of ` hubs of (Bi : i ∈ Zm), then there exists r, `′ ∈ N such that 2r + `′ = ` + t + s and
G contains an T -aligned (r, `′, n)-wheel-minor.

Proof. Let m = f4.9.4(`, t, s, n) = f4.9.3(`, t, s, 2n). By Lemma 4.9.3, G contains a minor G̃
which contains a (t̃, t̃, 2n)-necklace (B̃i : i ∈ Z2n) with a set Z̃ of ˜̀hubs and 2t̃+˜̀= t+s+`.
Moreover, there exists c1, . . . , c2n ∈ {1, . . . ,m} such that c1 < · · · < c2n and, for each
i ∈ {1, . . . , 2n− 1}, E(B̃i) ⊆

⋃ci+1−1
j=ci

E(Bj).

For each i ∈ {1, . . . , 2n}, let Pi be a collection of t̃ vertex-disjoint paths between
V (B̃i−1) ∩ V (B̃i) and V (B̃i) ∩ V (B̃i+1); because (B̃i : i ∈ Z2n) is a (t̃, t̃, 2n)-necklace,

|V (B̃i−1) ∩ V (B̃i)| = |V (B̃i) ∩ V (B̃i+1)| = t̃ = |Pi|,
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so, for each P ∈ Pi,

|V (P ) ∩ V (B̃i−1)| = |V (P ) ∩ V (B̃i+1)| = 1.

Notice that, because V (Bi−1) ∩ V (Bi+1) = ∅, each P ∈ Pi has at least one edge, eP,i.

For each i ∈ {1, . . . , 2n}, B̃i is connected, so V (B̃i) can be partitioned into {Xi,P : P ∈
Pi} such that, for each P ∈ Pi, V (P ) ⊆ Xi,P and Xi,P is connected; let Ti,P be a spanning
tree of Xi,P . Let

G′ = G̃/
n⋃
i=1

 ⋃
P∈P2i−1

E(T2i−1,P ) ∪
⋃

P∈P2i

E(P )− {eP,i}

 .

For each i ∈ Zn, B̃2i−1 gets contracted to a connected subgraph of G′ with exactly
|Pi| = t vertices, which has a spanning tree Ti. For each i ∈ Zn, B̃2i gets contracted to a
subgraph of G′ containing a perfect matching, Mi, between Ti and Ti+1. For each i ∈ Zn
and each z ∈ Z̃, the neighbour of z in B̃2i−1 in G̃ is contracted onto a vertex of Ti, so z is
a hub of {T1, . . . , Ti} in G′; for i ∈ Zn and z ∈ Z, let ei,z be an edge incident with z and a
vertex in Ti. Thus,

W = ((Ti : i ∈ Zn), (Mi : i ∈ Zn), Z, (ei,z : i ∈ Zn, z ∈ Z))

is a model for a (t̃, ˜̀, n)-wheel, so G′ has a (t̃, ˜̀, n)-wheel subgraph, W , and G contains a
(t̃, ˜̀, n)-wheel-minor.

We must also show that W is T -aligned; that is, we must show that the fundamental
tangle of W , T ′, induces a subset of the tangle T in G. Let θ = t+ s+ `. Let (X, Y ) be a
(θ − 1)-separation in G, so (X ∩ E(W ), Y ∩ E(W )) is a (θ − 1)-separation in W .

Suppose that X ∩ E(W ) ∈ T ′. Let

I = {i ∈ Zn : X ∩ E(T+
i ) 6= ∅}.

By Lemma 4.3.2, |I| ≤ θ − 1 < n/2.

Claim 4.9.4.1. X ∈ T .

Proof of Claim. Let J = {1, . . . , n} − I and note that, for each j ∈ J , E(T ′j) ⊆ Y .
Because |I| < θ, |J | > n − θ > θ. For j ∈ J , the rim-matching between Tj and Tj+1

is a collection of t̃ > 1 edges in B̃2j, each of which are in Y . In particular, Y contains
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an edge in B̃2j, which is an edge in E
(⋃c2j+1−1

i=c2j
Bi

)
. Hence, for j ∈ J , if

⋃c2j+1−1
i=c2j

Bi

contains an edge in X then, because
⋃c2j+1−1
i=c2j

Bi is connected, this subgraph must contains

a vertex in ∂(X). For j, j′ ∈ {1, . . . , n}, if j < j′ then c2j+1 < c2j′ , so
⋃c2j+1−1
i=c2j

Bi and⋃c2j′+1−1
i=c2j′

Bi are vertex-disjoint. Therefore, because |J | > θ, there is some j0 ∈ J such that

E
(⋃c2j0+1−1

i=c2j0
Bi

)
∩X = ∅. Therefore, E(Bc2j0

) ⊆ Y , so, because Bc2j0
is not 1-covered by

T , Y 6∈ T . Hence, X ∈ T , proving the claim. � (Claim)

Thus, T is the tangle induced inG by Tθ(W ), soW is T -aligned, proving the lemma.

Now that we can go from a tangle to a necklace, to a generalized-wheel-minor, the proof
of Theorem 4.4.1 (restated here) is immediate.

Theorem 4.4.1. There exists a function f4.4.1 : N2 → N such that for θ, n,N ∈ N with
θ ≥ 2, n > 2(θ − 1), and N = f4.4.1(θ, n), if G is a graph containing a θ-tangle T with
covering-number at least N , then either G contains a T -aligned Kθ,n-minor or there exists
r, ` ∈ N such that 2r + ` = θ and G contains a T -aligned (r, `, n)-wheel-minor.

Proof. Let
ñ = max

`+t+s=θ
f4.9.4(`, t, s, n)

and let f4.4.1(θ, n) = f4.5.2(θ, ñ). By Lemma 4.5.2, there exists t, s, ` ∈ N such that t+s+` =
θ and G contains a (t, s, ñ)-necklace (Bi : i ∈ Zñ) and a set Z of hubs of (Bi : i ∈ Zñ).
By Lemma 4.9.4, there exists r, `′ ∈ N such that 2r + `′ = t + s + ` = θ and G contains a
(r, `′, n)-wheel-minor.

4.10 Grid Theorem

To conclude this chapter, we will prove Theorem 4.4.2 and use this to prove the Grid
Theorem (Theorem 4.4.3).

4.10.1 Constructing homogeneous wheels

This section proves Theorem 4.4.2, which is a slight refinement of Theorem 4.4.1 that is
useful in some applications, including our proof of the grid theorem.
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Theorem 4.4.2. There exists a function f4.4.2 : N2 → N such that, for each θ, n,N ∈ N,
with θ > 1, n > 2(θ− 1) and N = f4.4.2(θ, n), if G is a graph containing a θ-tangle T with
covering-number at least N , then either G contains a T -aligned Kθ,n-minor or there exists
r, ` ∈ N such that 2r + ` = θ and G contains a T -aligned, homogeneous (r, `, n)-wheel-
minor.

Proof. Let m′ = max{nrr+`−2 : r, ` ∈ N, 2r + ` = θ} and let f4.4.2(θ, n) = f4.4.1(θ,m
′). By

Theorem 4.4.1, G contains an (r, `, n)-wheel-minor G′ with model

W = ((Ti : i ∈ Zm′), (Mi : i ∈ Zm′), Z, (ei,z : i ∈ Zm′ , z ∈ Z)).

Note that
⋃m′−1
i=1 Mi is the union of r vertex-disjoint paths, P1, . . . , Pr. For i ∈ Zm′ and

j ∈ {1, . . . , r}, |V (Ti) ∩ V (Pj)| = 1, so there is a tree T ′i with V (T ′i ) = {1, . . . , r} and an
isomorphism ψi from Ti to T ′i where ψi(v) = j if V (Ti) ∩ V (Pj) = {v}. For i ∈ Z′m and
z ∈ Z, let ai,z ∈ {1, . . . , r} such that ψ−1i (ai,z) is incident with ei,z.

By Cayley’s Formula, there are rr−2 trees with vertex set {1, . . . , r}. There are r` ways
to choose a sequence of ` values in {1, . . . , r}. Therefore, because m′ ≥ nrr+`−2, there
is some tree T ′ with V (T ′) = {1, . . . , r}, some bz ∈ {1, . . . , r} for each z ∈ Z, and some
I ⊆ {1, . . . ,m′} such that for each i ∈ I, T ′i = T ′ and ai,z = bz for each z ∈ Z, and |I| = n.

Let Ĝ be obtained from G′ by contracting each edge in
⋃
i∈{1,...,m′}−IMi. Let i1, . . . , in

be the elements of I where i1 < · · · < in. Then Ĝ is isomorphic to a homogeneous (r, `, n)-
wheel with model Ŵ ; moreover, Ĝ is T -aligned in G because the fundamental tangle of
Ŵ and the fundamental tangle of W both induce the same θ-tangle in G, and that tangle
must be contained in T by Theorem 4.4.1.

4.10.2 Tangle truncation

In this subsection we present a general tool for tangles that has not yet come up in this
thesis but is needed for our proof of the Grid Theorem. If T is a θ-tangle in a connectivity
system (S, λ), and θ′ ≤ θ, then T ′ = {A ∈ T : λ(A) < θ′} is the truncation of T to order
θ′. If each x ∈ S is contained in some Ax ∈ T with λ(Ax) < θ′, then T ′ is a tangle. In the
case of graphs, for each e ∈ E(G), λG({e}) < 3, so if T is a θ-tangle in the graph G and
3 ≤ θ′ ≤ θ, then the truncation of T to order θ′ is a tangle in G.

If a tangle is truncated to a much smaller order, the covering number must increase.

Lemma 4.10.1. For θ, θ′ ∈ N with 2θ′ ≤ θ, if T is a θ-tangle with covering-number δ, T ′
is the truncation of T to order θ′, and δ′ is the covering-number of T ′, then δ′ ≥ δ + 1.
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Proof. Suppose {A1, . . . , Aδ} ⊆ T and
⋃δ
i=1Ai = E(G). But A1 ∪ A2 6∈ T or else {A1 ∪

A2, A3, . . . , Aδ} would be a cover of E(G) by δ − 1 sets in T . Therefore, 2θ′ ≤ θ ≤
λ(A1 ∪ A2) ≤ λ(A1) + λ(A2), so either λ(A1) ≥ θ′ or λ(A2) ≥ θ′. Therefore, E(G) cannot
be covered by δ sets in T each having connectivity less than θ′, so δ′ > δ, proving the
lemma.

4.10.3 Proof of Grid Theorem

Lemma 4.10.2. For a, b, n ∈ N with n ≥ 3, a, b ≥ n2, if T is the fundamental tangle of
Ka,b, then Ka,b contains a T -aligned n× n-grid-minor.

Proof. Contracting a matching of size n2 in Ka,b and deleting the vertices not incident with
this matching yields a Kn2-minor, which has an n × n-grid subgraph, G′. Let T ′ be the
fundamental tangle of G′.

Suppose (A,B) is a (n−1)-separation in Ka,b and A∩E(G′) ∈ T ′. Then, B∩E(G′) 6∈ T ′
by tangle property (T4), so B ∩ E(G′) contains the edge set of some row of G′. Each row
of G′ contains n vertices, so the number of vertices in V (G′) incident with an edge in B is
at least n, and hence the number of vertices in V (Ka,b) incident with an edge in B is also
at least n. Therefore, because (A,B) is an (n− 1)-separation in Ka,b, there is some vertex,
v such that B contains each edge incident with v in Ka,b. Thus, B 6∈ T , so A ∈ T , so G′

is T -aligned.

Lemma 4.10.3. For r, `,m, n ∈ N with n ≥ 3, r ≥ 1, m ≥ n2 and ` ≥ n2, if W is an
(r, `,m) wheel with model W = (T,M, Z, e) and T is the fundamental tangle of W, then
W contains a T -aligned n× n-grid-minor.

Proof. Let G′ be obtained from W by contracting the edges of each rim-tree Ti and deleting
the edges of each rim-matching Mi. Thus, G′ is isomorphic to K`,m.

To see that G′ is T -aligned, let T ′ be the fundamental tangle of G′ and suppose (A,B)
is a (`− 1)-separation in W with A ∩ E(G′) ∈ T ′. It cannot be the case that each vertex
in Z is incident with both an edge in A and an edge in B, so there exists z ∈ Z such that
each edge incident with z is in B. Therefore, B contains an edge in each rim-tree of W , so
B 6∈ T . Hence, A ∈ T , so G′ is T -aligned and, by Lemma 4.10.2, G′ contains a T -aligned
n× n-grid-minor.

Lemma 4.10.4. For r, `,m, n ∈ N with n ≥ 3, m ≥ n2 and r ≥ n3, if W is a homogeneous
(r, `,m) wheel with model W = (T,M, Z, e) and T is the fundamental tangle of W, then
W contains a T -aligned n× n-grid-minor.
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Proof. Because W is a homogenous wheel, there is some r-vertex tree T such that each
rim-tree Ti in W is a copy of T . For v ∈ V (T ) and i ∈ Zn, let vi denote the copy of v in
Ti; for e ∈ E(T ) and i ∈ Zn, let ei denote the copy of e in Ti.

Claim 4.10.4.1. Either T contains at least n2 leaves or T contains a path of length at
least n− 1.

Proof of Claim. Suppose T has no path of length n− 1. Let v0 be leaf in T . For each leaf
v in T , let Pv be the path in T between v0 and v. By assumption, |V (Pv)| ≤ n. Each
vertex in T is in V (Pv) for some leaf v, so⋃

v∈L(T )

V (Pv) = V (T ).

Hence,

n|L(T )| ≥
∑

v∈L(T )

|V (Pv)| ≥ |V (T )| = r ≥ n3,

so |L(T )| ≥ n2, as desired. � (Claim)

Claim 4.10.4.2. If T has at least n2 leaves, then W has a T -aligned n× n-grid-minor.

Proof of Claim. Let v1, . . . , vn2 be leaves of T , and let e1, . . . , en2 be the edges incident with
each of these leaves, respectively. For i ∈ {1, . . . ,m − 1} and j ∈ {1, . . . , n2}, let e′i,j be

the edge in Mi incident with vij and vi+1
j ; such an edge exists because W is a homogeneous

wheel. Let G′ be obtained from W by contracting, for each i ∈ {1, . . . ,m− 1},

(E(Ti)− {ei1, . . . , ein2}) ∪ {e′i,j : j ∈ {1, . . . , n2},

and deleting all remaining edges except

{eij : i ∈ {1, . . . ,m− 1}, j ∈ {1, . . . , n2}}.

For i ∈ {1, . . . ,m−1}, let ui be the vertex formed by the contraction of the edges (E(Ti)−
{ei1, . . . , ein2}) (which is connected). For j ∈ {1, . . . , n2}, let v′j be the vertex formed by
contracting {e′i,j : i ∈ {1, . . . , n−1}}. Note that, for i ∈ {1, . . . ,m−1} and j ∈ {1, . . . , n2},
eij is incident with ui and v′j in G′. Hence, G′ is isomorphic to Kn2,m−1. Let T ′ be the
fundamental tangle of G′.

To see that G′ is T -aligned, let (A,B) be an (n2−1)-separation in W with A∩E(G′) ∈
T ′. It cannot be the case that each vertex in {v′j : j ∈ {1, . . . , n2}} is incident with both
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an edge in A and an edge in B, so there exists j ∈ {1, . . . , n2} such that each edge incident
with v′j is in B. Hence, for i ∈ {1, . . . ,m− 1}, eij ∈ B ∩ E(T+

i ). By Lemma 4.3.2 and the
fact that m > n2, B 6∈ T . Hence, A ∈ T , so G′ is T -aligned and, by Lemma 4.10.2, G′

contains a T -aligned n× n-grid-minor. � (Claim)

Claim 4.10.4.3. If T has a path of length at least n−1, then W has an n×n-grid-minor.

Proof of Claim. Let v1, . . . , vn be vertices of a path in T of length n− 1. Because W is a
homogeneous wheel, for i ∈ {1, . . . ,m− 1}, j ∈ {1, . . . , n}, the rim-matching Mi contains
an edge e′i,j incident with vertices vij and vi+1

j . Therefore, the subgraph of W induced by
the vertices {vij : i, j ∈ {1, . . . , n}} is an n× n-grid, G′. Let T ′ be the fundamental tangle
of G′. Label G′ such that, for each {i ∈ {1, . . . , n}}, row i of the grid G′ contains vertex
set

{vij : j ∈ {1, . . . , n}},

which is contained in rim-tree Ti.

To see thatG′ is T -aligned, let (A,B) be an (n−1)-separation inW with A∩E(G′) ∈ T ′.
By the definition of the fundamental tangle of a grid, for each i ∈ {1, . . . , n}, row i of G′

contains some edge in B; therefore, the augmented tree T+
i contains an edge in B. Hence,

because (A,B) is an (n−1)-separation, there is some i ∈ {1, . . . , n} such that each edge in
the augmented tree T+

i is in B. Thus, B 6∈ T , so A ∈ T and G′ is T -aligned. � (Claim)

In both cases, W has a T -aligned n× n-grid-minor.

Theorem 4.4.3. (Grid Theorem). For each n ∈ N, there exists some N ∈ N such that if
G contains a tangle T of order at least N , then G contains a T -aligned n× n-grid-minor.

Proof. Let θ = n2 + n3 − 1, m = n2, δ = f4.4.2(θ,m) and N = 2δθ. Suppose G is a graph
with a tangle of order N . By Lemma 4.10.1, G contains a θ-tangle T with covering-number
at least δ. By Theorem 4.4.2, G contains a T -aligned minor G′ isomorphic to either Kθ,m-
minor or a homogeneous (r, `,m)-wheel with model W , for some r, ` ∈ N with r ≥ 1 and
2r + ` = θ.

Let T ′ be either the fundamental tangle of G′, if G′ is isomorphic to Kθ,m, or the
fundamental tangle of the model W , if G′ is isomorphic to an (r, `,m)-wheel. Note that it
suffices to show that G′ contains a T ′-aligned n×n-grid-minor. If G′ is isomorphic to Kθ,m,
then G′ contains a T ′-aligned n×n-grid-minor by Lemma 4.10.2. If G′ is isomorphic to an
(r, `,m)-wheel and ` ≥ n2, then G′ contains a T ′-aligned n×n-grid-minor by Lemma 4.10.3.
Otherwise, G′ is isomorphic to an (r, `,m)-wheel and r ≥ n3, so G′ contains a T ′-aligned
n× n-grid-minor by Lemma 4.10.4.
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Chapter 5

Conclusions and Further Work

This research was motivated by a desire to describe the structure of graphs with no K6-
minor. This goal is far from complete, but we have found some promising tools for such a
structure theorem.

Jørgensen’s Conjecture [14] (Conjecture 1.3.6), stating that 6-connected graphs with
no K6-minor are apex, and Kawarabayashi, Norin, Thomas and Wollan’s theorem that
Jørgensen’s Conjecture holds for sufficiently large 6-connected graphs, suggest that it
should be possible to decompose graphs with no K6-minor along 5-separations into pieces
that either have bounded size, or are “almost planar”, in the sense that deleting a small
number of vertices yields a planar graph.

Guided by this intuition, we have shown in Chapters 2 and 3, that any graph has
a tree-decomposition along 5-separations such that each node in the tree-decomposition
either has small degree or displays a tangle of order 6 with large covering number. The
piece of a graph corresponding to a small degree node in a width-5 tree-decomposition, can
only have a small number of vertices. On the other hand, for nodes displaying 6-tangles
with high covering-number, the tangle gives some some local structure, but it is rather
abstract, and far from constructive.

To better understand these 6-tangles with high covering-number, we described the
highly structured families of minors that such tangles force in a graph. These minors are
the (r, `, n)-wheels described in Chapter 4, as well as K6,n. With a little bit of Ramsey
Theory, we showed that any 6-tangle with sufficiently high covering-number forces one of
the minors depicted in Figure 5.1.

To push this work closer to a structure theorem for graphs with no K6-minor, it seems
that we must understand graphs which contain one of the graphs depicted in Figure 5.1
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(a) K6,n (b) 4-wheel

(c) (d)

Cyclic ladder with 2 hubs

(e) (f)

Möbius ladder with 2 hubs

(g) (h) (i) (j)

Twisted-triple-ladder

Figure 5.1: The unavoidable-minors for graphs with 6-tangles of high covering-number.
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as a minor, but do not contain K6 as a minor. We suspect that such graphs are “almost
planar” in some sense; perhaps, as we ventured to guess in Conjecture 1.4.8 these graphs
are 4-apex.

Four of the graphs in Figure 5.1, (a), (b), (e) and (i) contain K6-minors, as shown in
Figure 5.2; the remaining graphs are each planar or 1-apex.

Norin and Thomas [20] have described the minimal non-planar extensions of planar
graphs, and developed some tools for understanding the minimal non-k-apex extensions of
k-apex graphs. Unfortunately, these results do not immediately give an adequate descrip-
tion of the non-4-apex extensions of the six remaining graphs in Figure 5.1. However, the
techniques developed by Norin and Thomas seem promising, and, with further develop-
ment, might be used to complete this structure theorem.

It is also worth pointing out that the techniques developed in this thesis are quite
general, with potential applications in proving structure theorems for graphs that do not
contain certain other small graphs as minors. For example, one might be able to describe
the structure of graphs with no Petersen Graph minor, or the structure of graphs with
no minor in the Petersen Family, including K6, the Petersen Graph, and the five other
graphs. Graphs with no minor in the Peterson Family are exactly the graphs that can be
embedded in R3 in such a way that no two cycles in the graph are linked, in the sense of
knot theory, so a structure theorem for graphs with no minor in the Petersen Family would
be a structure theorem for linklessly embeddable graphs.
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(a) K6,n (b) 4-wheel

(e) Möbius ladder with 2 hubs (i) Twisted-triple-ladder

Figure 5.2: K6-minors in four of the graphs in Figure 5.1. The K6-minor is obtained by
contracting the dashed edges and deleting the light grey edges.
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Notation

(X, Y )-path a path between vertex sets X and Y , page 97

κλ(A,B) connectivity between A and B, page 39

θ-separation a separation of order at most θ, page 7

θ-tangle tangle of order θ, page 26

θ-tangle tangle of order θ, page 41

θ-tree-width the minim node-width of the θ-tree-decomposition of a graph, page 23

H-minor-free a graph with no minor isomorphic to H, page 2

I(T ) the set of node-edge incidences in a tree T , page 58

k-sum a clique-sum of order k, page 2

L(T ) the set of leaves of the tree T , page 45

T+
i augmented tree, page 88

λ a connectivity function, page 38

λG the connectivity function derived from a graph, page 39
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Index

H-minor, 2
∞-robust, 65
θ-branch-degree, 23
θ-complete, 73
θ-connected set, 30, 82
θ-elementary, 60
θ-tree-decomposition, 23
θ-tree-width, 23
k-apex, 5
k-sum, 2
(BDPTT), 72
(CMC), 73
(DC1), 70
(DC2), 70
(FTT), 60
(INIT), 62
(M1), 49
(M2), 49
(M3), 49
(MC1), 73
(MC2), 73
(MC3), 73
(MDC), 71
(N1), 97
(N2), 97
(N3), 97
(N4), 98
(PTT), 65
(T1), 26, 41
(T2), 26, 41

(T3), 26, 41
(T4′), 41
(T4), 27, 41
(T5), 27, 41
(TB1), 69
(TB2), 69
(TIGHT), 73
(TT1), 60, 64
(TT2), 60, 65
0-sum, 2
1-sum, 2
2-wheel, 80

aligned
necklace, 98

aligned Kθ,n-minor, 94
aligned wheel-minor, 94
apex, 9

k-apex, 5
attachment vertex, 102
augmented tree, 88

bead, 97
weak, 98

bounded-degree, 72
bounded-degree tree of θ-tangles, 62
branch-degree

θ-branch-degree, 23, 41
branch-width, 22
bridge, 102

attachment vertex, 102
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chain, 114
clique-sum, 2
complete, 73
connected

θ-connected, 7
θ-connected set, 30, 52
internally 4-connected, 8

connectivity, 39
connectivity function, 38
connectivity system, 38

graphic, 39
covered

m-covered, 103
covering-number, 28, 43
cross, 18
cyclic-ladder, 80
cylindrical grid, 43

displays, 24, 25, 29
tangle in connectivity system, 58

distinguishing covering, 70
minimum, 71

distinguishing separation, 59
λ̂-minimum, 69
minimum-order, 59

dominates, 39
doublecross, 12

edge-bag, 16
edge-contraction, 1
edge-width, 22, 41
elementary

θ-elementary, 60
embed, 5
exact structure theorem, 3
extended connectivity system, 43

full tree of θ-tangles, 60
fundamental tangle

of Kθ,n, 91
of a grid, 96
of a wheel model, 88

generalized wheel, 83
graphic connectivity system, 39
grid, 30, 82
Grid Theorem, 31
ground set, 38, 49

hamburger graph, 13
homogeneous wheel, 84
hose graph, 12
hub, 86

of a family of subgraphs, 102
of a necklace, 98

hub (of (r, `, n)-wheel), 83
hyperplane, 54

incidence, 40
induced, 42
initial, 62
internally 4-connected, 8

jump, 111
jump-free, 111
Jørgensen’s Conjecture, 9

leaf, 40
leaf-incidence, 40
length (of (r, `, n)-wheel), 84
linked necklace, 99
linkless embedding, 12

matroid, 49
maximal tangle, 60
minimum-order distinguishing separation, 59
minor, 1

H-minor-free, 2
model of a wheel, 88
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monotone covering, 73
monotonic, 49
Möbius-ladder, 80

necklace, 97
node-bag, 16
node-width, 22

order
of a connectivity system separation, 38
of a separation, 7

part, 18
partial tree of θ-tangles, 64

bounded-degree, 72
partial tree-decomposition, 45, 63

tight, 73
path

(X, Y )-path, 97
between X and Y , 97

planar-plus-triangle, 11
present, 18
presented

separation, 41, 45
set, 41, 45

rank function, 49
restriction, 54
rim-matching, 83
rim-tree, 83
robust, 65
∞-robust, 65

row, 30, 42, 96

separation
θ-separation, 7
in a connectivity system, 38
in a graph, 7

separation presented, 41, 45

set presented, 41, 45
small, 27
spoke, 83
submodular, 38
supported necklace, 99
symmetric, 38

tangle, 26, 41
truncation, 136

tangle matroid, 82
tangle-matroid, 50
tiebreaker, 69
tight, 73
transversal, 93
tree of θ-tangles, 60

bounded-degree, 62
full, 60
partial, 64

tree-decomposition, 16
θ-tree-decomposition, 23
connectivity system, 40
partial, 63

tree-width, 22
θ-tree-width, 23

truncation of a tangle, 136
twisted-triple-ladder, 88

uniform matroid, 54

Wagner’s Theorem, 3
weak bead, 98
wheel, 80

(r, `, n)-wheel, 32, 83
homogeneous, 84

width, 45, 73
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