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Abstract

The Internet is now the most important and e�cient way to gain information, and mobile
devices are the easiest way to access the Internet. Furthermore, wearable devices, which
can be considered to be the next generation of mobile devices, are becoming popular.
The more people rely on mobile devices, the more private information about these people
can be gathered from their devices. If a device is lost or compromised, much private
information is revealed. Although today’s smartphone operating systems are trying to
provide a secure environment, they still fail to provide users with adequate control over
and visibility into how third-party applications use their private data. The privacy leakage
problem on mobile devices is still severe. For example, according a field study [1] done by
CMU recently, Android applications track users’ location every three minutes in average.

After the PRISM program, a surveillance program done by NSA, is exposed, people are
becoming increasingly aware of the mobile privacy leakages. However, there are few tools
available to average users for privacy preserving. Most tools developed by recent work
have some problems (details can be found in chapter 2). To address these problems, we
present PrivacyGuard, an e�cient way to simultaneously detect leakage of multiple types
of sensitive data, such as a phone’s IMEI number or location data. PrivacyGuard provides
real-time protection. It is possible to modify the leaked information and replace it with
crafted data to achieve protection. PrivacyGuard is configurable, extensible and useful for
other research.

We implement PrivacyGuard on the Android platform by taking advantage of the
VPNService class provided by the Android SDK. PrivacyGuard does not require root per-
missions to run on a device and does not require any knowledge about VPN technology
from users either. The VPN server runs on the device locally. No external servers are
required. According to our experiments, PrivacyGuard can e↵ectively detect privacy leak-
ages of most applications and advertisement libraries with almost no overhead on power
consumption and reasonable overhead on network speed.
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Chapter 1

Introduction

1.1 Overview

Mobile devices such as smartphones and tablets have become popular and powerful. Such
devices can have many sensors, for example, gyroscopes, GPS, fingerprint sensors and
even heart rate sensors embedded in some wearable devices. These sensors collect a great
deal of personal information. Also, since people carry the devices all day and use the
devices to communicate or work, these devices can contain much private information. This
information makes it possible to track, identify or profile users. All operating systems are
trying to build a mechanism to provide secure access to this information for applications,
such that this information will not be revealed to malicious people. The App Store has
a review process to avoid malicious applications. iOS has a first-time use notification for
access to location, microphones among others, as shown in figure 1.1a. Users can also
manually set the access policy for each application later in the settings. Android uses a
permission-based security model to restrict applications from accessing private data and
privileged resources. When users install an application, there will be prompts such as
figure 1.1b. Users can grant the permissions or cancel the installation. The Windows Store
also has an approval process. When an application wants to access some sensitive data for
the first time, there will also be a notification as shown in figure 1.1c. There is also a way
to configure the location access of applications in the settings.

Although existing platforms have provided the approaches mentioned above to restrict
access and alert users about accesses, these approaches are not e�cient, especially when
users do not understand what happens. Significant e↵orts have been made to explore these
challenges ([3], [4], [15]).
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(a) Notification of iOS (b) Android Permission List
(c) Notification of Windows
phone

Figure 1.1: Access Control of Di↵erent Platforms

The other problem with the approaches employed by existing platforms is that all of
these are all-or-nothing. Users can control only whether an application can access their
private data. Intuitively, there would only be privacy leakages if applications send data
out. However, these existing mechanisms block access no matter how this data is used
or processed before being sent out. These mechanisms may block even if this data is not
sent out. For example, an application may access the location to obtain the current time
zone, or it may implement some anonymity algorithms (such as [11], [20]), and send out
a well-crafted location that does not leak any essential information. These all-or-nothing
approaches would then a↵ect the usability of benign applications.

Much existing work cannot address the problems described above. For example, some
tools (e.g., [8], [2]) leverage taint analysis, which sets a taint flag on the data returned by
privacy-sensitive methods (e.g., getLastKnownLocation()) and checks if the data reaching
some sinks (e.g., Http.request()) has the flag. These tools cannot handle the problems
properly because the taint will be propagated no matter how the data is processed in the
flow. Application rewriting approaches (e.g., [7], [12]), which usually modify the applica-
tion to achieve better access control, however, still do not consider how applications use
the private data. These methods usually have some other problems, such as the require-
ment of root permission, modification of the Android kernel, or problems when updating
applications. The details are discussed in chapter 2.
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1.2 Goals

To solve these problems mentioned above, we present a privacy-preserving application that
alerts the user when it detects leakages of sensitive information. We present the goals of
our design below:

• Functionality: This application should be able to detect leakages of private infor-
mation. When it detects any leakage, it notifies the user of which application is
leaking what information. It should also support the analysis of SSL tra�c.

• Usability: This application should not require root permissions and should work
like a typical application. It should not require much configuration or any specific
knowledge about security and privacy from users. It should be portable to any
Android version greater than Android 4.0 and any Android device.

• Acceptable Overhead: This application runs continuously on the device. There-
fore, it should not use too much battery power. Since it provides real-time protection
by analyzing the network tra�c, it should not a↵ect the network performance much.

• Extensibility: This application should be extensible. Developers can develop their
plugins and take advantage of the access to network tra�c provided by this ap-
plication. Also, researchers can use this application to prototype their designs or
algorithms.

1.3 Contributions

We present PrivacyGuard, a privacy-preserving application that tries to provide a way to
help users control their private data. As far as we know, PrivacyGuard is the first open-
source Android application that uses Android’s VPNService without any remote VPN
server to do network tra�c sni�ng. It analyzes network tra�c in real time and checks if
it contains any private data. Since Android is one of the most popular mobile operating
systems, we implement PrivacyGuard as an Android application. However, it is possible
to port PrivacyGuard to other platforms.

In summary, we make the following contributions:

• We present the design of PrivacyGuard, which we believe to be the first privacy-
preserving application that does customized filtering on network tra�c.
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• We implement PrivacyGuard based on our design.

• PrivacyGuard provides a framework for other research or development to obtain
access to network tra�c.

• PrivacyGuard introduces little overhead in power consumption and acceptable over-
head in network performance.

• PrivacyGuard can detect privacy leakages of most applications e↵ectively and has
better results than TaintDroid [8], a popular taint-based approach.

During the development of PrivacyGuard, we found a proxy-based network interception
tool called SandroProxy1. We had several discussions with its author and benefitted from
his experience in developing SandroProxy. The author of SandroProxy also planned to
develop a VPN-based network interception. The source code of PrivacyGuard is shared
with him, and he provided advice about fixing problems in PrivacyGuard.

In this thesis, we present the design and implementation of PrivacyGuard. Chapter 2
introduces some related work. Chapter 3 explains the design and implementation. Chap-
ter 4 shows the overhead introduced by PrivacyGuard and that it can e↵ectively detect
privacy leakages of most applications. Possible future work is discussed in chapter 5, and
we conclude in chapter 6.

1https://code.google.com/p/sandrop/
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Chapter 2

Related Work

This section presents the related work in this area. The related research to our work can be
classified into several categories by approach. Section 2.1 focuses on prior work that takes
advantage of taint analysis to detect privacy leakages. Section 2.2 presents some work that
modifies the Android operating system to preserve privacy. Section 2.3 describes some
work that tries to analyze and modify the code of existing applications to generate a more
secure version. In section 2.4, some research that uses heuristic approaches is discussed.
In section 2.5, some work that also uses the VPNService is discussed.

2.1 Taint Analysis

Taint analysis detects privacy leakages by analyzing applications. There are some funda-
mental concepts used in taint analysis:

• Source method: pre-defined methods (defined by developers) that can be called to
retrieve sensitive data, e.g., getLastKnownLocation()

• Sink method: pre-defined methods (defined by developers) that can potentially
leak sensitive data, e.g., Http.request()

• Taint: a flag associated with a variable. This flag means the data stored in the
variable is sensitive.

• Propagation: rules of taint passing between variables

5



Developers must define all the concepts above before executing taint analysis. The
analysis tool adds taint to the data returned by any source methods and tracks how the
data flows until the data reaches a sink method or goes to some end. In general, there
are two kinds of approaches to do taint analysis: dynamic taint analysis and static taint
analysis.

2.1.1 Dynamic Taint Analysis

Dynamic taint analysis monitors the data flow simultaneously while applications are run-
ning. The real-time monitoring is often done by modifying the Android kernel. The code of
all source methods is changed to add taint flags to the return values. In all other methods
or operators whose output should have taint flags if their input has taint flags, code for
taint propagations is added. Sink methods are also modified to check if the arguments,
class members or static variables that these methods use are tainted. Dynamic taint anal-
ysis works well, but it has several problems that prevent it from being used by average
users.

• Advantages:

– Only reports when there exists a path from a source to a sink while the appli-
cation is running

– Runs online, is easy to use once set up

• Disadvantages:

– Will report leakages even if the processed data is no longer sensitive

– Is usually implemented as a ROM. It needs to flash the device and is di�cult
to use.

– Usually requires root permissions and may introduce other vulnerabilities

– Is di�cult to port to di↵erent devices or di↵erent Android versions

– Can be detected by some current malicious applications

– Is di�cult to add new source methods or sink methods

– Requires multiple runs to reach appropriate code coverage

6
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Android contains two types of native methods: internal
VM methods and JNI methods. The internal VM methods
access interpreter specific structures and APIs, whereas
JNI methods conform to Java native interface standards
specifications [cite]. The specifications include passing Java
arguments to JNI methods as separate variables, which is
performed automatically by a call bridge in Dalvik. Internal
VM methods do not have this luxury and manually parse
arguments from a byte array of arguments created by the
interpreter.

Android’s middleware Java libraries make frequent use
of the Java Native Interface (JNI). The native methods are
written in C and C++ and expose the POSIX functionality
provided by the underlying Linux kernel and services. An-
droid uses the Apache Harmony implementation of Java [12]
for base Java functionality in the Dalvik VM. Portions of
the Apache Harmony implementation wraps system libraries
(e.g., math libraries) to provide functionality. The Android
binder and parcel interfaces also make use of JNI. Fur-
thermore, Android uses JNI to includes Java interfaces to
third party libraries such as OpenGL and Webkit. Finally,
Android provides the Native Development Toolkit (NDK)
to allow third party application developers to implement
and package native libraries with downloaded applications.
However, NDK use is strongly discouraged, as it impedes
application portability on a platform that runs on different
instruction set architectures, including ARM and x86. The
NDK is primarily seen as a means of providing better
runtime performance.

IV. TAINTDROID ARCHITECTURE

TaintDroid is a system that performs system-wide taint
tracking built upon Android. Figure 2 shows TaintDroid
architecture. TaintDroid propagates taint tags within an
application and between applications.

The goal of TaintDroid is to perform taint to tracking to
enforce security polices to untrusted third-party applications.
For correct taint tracking, TaintDroid’s trusted computing
base includes the firmware, including all system applica-
tions and libraries provided by the stock Android distribu-
tion. Similar assumptions are made by other taint tracking
systems, e.g., Panorama [4]. In addition, we assume all
downloaded (i.e., unknown) code executes within the Dalvik
VM. We do not allow execution of downloaded native code,
which do not propagate taint tags or may maliciously modify
taint tag storage.

Figure 2 shows an example of taint tracking in TaintDroid.
Information is tainted (1) in a trusted application with
sufficient context (e.g., the location provider). The taint
interface invokes a native method (2) that interfaces with the
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Dalvik VM interpreter, storing the specified taint marking(s)
in the virtual taint map. As the trusted application uses the
tainted information, the Dalvik VM propagates taint tags
(3) according to our data flow rules. When the trusted ap-
plication uses the tainted information in an IPC transaction,
the modified binder library (4) ensures the parcel message
carries a taint tag reflecting the combined taint markings
of all contained data. The parcel is passed transparently
through the kernel (5) and received by the remote untrusted
application. Note that the third-party interpreted code is
untrusted. The modified binder library retrieves the taint tag
from the parcel and assigns it to all values read from the
parcel (6). The remote Dalvik VM instance propagates taint
tags (7) identically for the untrusted application. When the
untrusted application invokes a library specified as a taint
sink (8), e.g., sending a data buffer over the network, the
library retrieves the taint tag for the data in question (9-11)
and makes a policy decision.

At a high level, TaintDroid architecture enables system-
wide tracking by combining execution taint tracking, IPC
taint tracking, native interface taint tracking, and secondary
storage taint tracking.
Variable-level taint tracking While previous approaches
such as Panorama [panorama] and TaintBochs [taintbochs]
provide high-accuracy taint tracking via instruction-level
taint propagation, performance is sacrificed. On the other
end of the spectrum, approaches such as PRECIP [precip]
consider only high-level system calls into the kernel, trading
off accuracy for performance; thus, they provide only nomi-
nal advantage over OS permissions (e.g., those implemented
in Android).

In TaintDroid, we choose a middle ground, variable-
level taint tracking. TaintDroid is designed to taint primitive
type variables (e.g., int, float, etc). Our taint source and
sink libraries (Section VI) provide an easy interface to set
and check the taint markings on primitive types. However,
there are cases when object references must become tainted
to ensure taint propagation operates correctly. Applications
are compiled into the Dalvik EXecutable (DEX) byte-code
format. Dalvik, unlike the stack-based virtual machine Java,
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untrusted. The modified binder library retrieves the taint tag
from the parcel and assigns it to all values read from the
parcel (6). The remote Dalvik VM instance propagates taint
tags (7) identically for the untrusted application. When the
untrusted application invokes a library specified as a taint
sink (8), e.g., sending a data buffer over the network, the
library retrieves the taint tag for the data in question (9-11)
and makes a policy decision.

At a high level, TaintDroid architecture enables system-
wide tracking by combining execution taint tracking, IPC
taint tracking, native interface taint tracking, and secondary
storage taint tracking.
Variable-level taint tracking While previous approaches
such as Panorama [panorama] and TaintBochs [taintbochs]
provide high-accuracy taint tracking via instruction-level
taint propagation, performance is sacrificed. On the other
end of the spectrum, approaches such as PRECIP [precip]
consider only high-level system calls into the kernel, trading
off accuracy for performance; thus, they provide only nomi-
nal advantage over OS permissions (e.g., those implemented
in Android).

In TaintDroid, we choose a middle ground, variable-
level taint tracking. TaintDroid is designed to taint primitive
type variables (e.g., int, float, etc). Our taint source and
sink libraries (Section VI) provide an easy interface to set
and check the taint markings on primitive types. However,
there are cases when object references must become tainted
to ensure taint propagation operates correctly. Applications
are compiled into the Dalvik EXecutable (DEX) byte-code
format. Dalvik, unlike the stack-based virtual machine Java,
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Native Methods. [WHE: say a little about how Dalvik
creates a byte-array of arguments that is passed. internal
VM vs JNI. significanlty more JNI than internal VM (more
internal VM methods is unlikely). mention call bridge]
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IV. TAINTDROID ARCHITECTURE
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tracking built upon Android. Figure 2 shows TaintDroid
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Dalvik VM interpreter, storing the specified taint marking(s)
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of all contained data. The parcel is passed transparently
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tags (7) identically for the untrusted application. When the
untrusted application invokes a library specified as a taint
sink (8), e.g., sending a data buffer over the network, the
library retrieves the taint tag for the data in question (9-11)
and makes a policy decision.

At a high level, TaintDroid architecture enables system-
wide tracking by combining execution taint tracking, IPC
taint tracking, native interface taint tracking, and secondary
storage taint tracking.
Variable-level taint tracking While previous approaches
such as Panorama [panorama] and TaintBochs [taintbochs]
provide high-accuracy taint tracking via instruction-level
taint propagation, performance is sacrificed. On the other
end of the spectrum, approaches such as PRECIP [precip]
consider only high-level system calls into the kernel, trading
off accuracy for performance; thus, they provide only nomi-
nal advantage over OS permissions (e.g., those implemented
in Android).

In TaintDroid, we choose a middle ground, variable-
level taint tracking. TaintDroid is designed to taint primitive
type variables (e.g., int, float, etc). Our taint source and
sink libraries (Section VI) provide an easy interface to set
and check the taint markings on primitive types. However,
there are cases when object references must become tainted
to ensure taint propagation operates correctly. Applications
are compiled into the Dalvik EXecutable (DEX) byte-code
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Figure 2: TaintDroid architecture within Android.

included in our trusted computing base (see Section 2).
Android contains two types of native methods: inter-

nal VM methods and JNI methods. The internal VM
methods access interpreter-specific structures and APIs.
JNI methods conform to Java native interface standards
specifications [32], which requires Dalvik to separate
Java arguments into variables using a JNI call bridge.
Conversely, internal VM methods must manually parse
arguments from the interpreter’s byte array of arguments.
Binder IPC: All Android IPC occurs through binder.
Binder is a component-based processing and IPC frame-
work designed for BeOS, extended by Palm Inc., and
customized for Android by Google. Fundamental to
binder are parcels, which serialize both active and stan-
dard data objects. The former includes references to
binder objects, which allows the framework to manage
shared data objects between processes. A binder kernel
module passes parcel messages between processes.

4 TaintDroid
TaintDroid is a realization of our multiple granularity

taint tracking approach within Android. TaintDroid uses
variable-level tracking within the VM interpreter. Mul-
tiple taint markings are stored as one taint tag. When
applications execute native methods, variable taint tags
are patched on return. Finally, taint tags are assigned
to parcels and propagated through binder. Note that
the Technical Report [17] version of this paper contains
more implementation details.

Figure 2 depicts TaintDroid’s architecture. Informa-
tion is tainted (1) in a trusted application with sufficient
context (e.g., the location provider). The taint inter-
face invokes a native method (2) that interfaces with the
Dalvik VM interpreter, storing specified taint markings
in the virtual taint map. The Dalvik VM propagates taint
tags (3) according to data flow rules as the trusted ap-
plication uses the tainted information. Every interpreter
instance simultaneously propagates taint tags. When the
trusted application uses the tainted information in an IPC

transaction, the modified binder library (4) ensures the
parcel has a taint tag reflecting the combined taint mark-
ings of all contained data. The parcel is passed transpar-
ently through the kernel (5) and received by the remote
untrusted application. Note that only the interpreted code
is untrusted. The modified binder library retrieves the
taint tag from the parcel and assigns it to all values read
from it (6). The remote Dalvik VM instance propagates
taint tags (7) identically for the untrusted application.
When the untrusted application invokes a library spec-
ified as a taint sink (8), e.g., network send, the library
retrieves the taint tag for the data in question (9) and re-
ports the event.

Implementing this architecture requires addressing
several system challenges, including: a) taint tag stor-
age, b) interpreted code taint propagation, c) native code
taint propagation, d) IPC taint propagation, and e) sec-
ondary storage taint propagation. The remainder of this
section describes our design.

4.1 Taint Tag Storage
The choice of how to store taint tags influences per-

formance and memory overhead. Dynamic taint track-
ing systems commonly store tags for every data byte or
word [57, 7]. Tracked memory is unstructured and with-
out content semantics. Frequently taint tags are stored
in non-adjacent shadow memory [57] and tag maps [61].
TaintDroid uses variable semantics within the Dalvik in-
terpreter. We store taint tags adjacent to variables in
memory, providing spatial locality.

Dalvik has five variable types that require taint stor-
age: method local variables, method arguments, class
static fields, class instance fields, and arrays. In all cases,
we store a 32-bit bitvector with each variable to encode
the taint tag, allowing 32 different taint markings.

Dalvik stores method local variables and arguments
on an internal stack. When an application invokes a
method, a new stack frame is allocated for all local vari-
ables. Method arguments are also passed via the internal
stack. Before calling a method, the callee places the ar-
guments on the top of the stack such that they become
high numbered registers in the callee’s stack frame. We
allocate taint tag storage by doubling the size of the stack
frame allocation. Taint tags are interleaved between val-
ues such that register vi originally accessed via fp[i] is
accessed as fp[2 · i] after modification. Note that Dalvik
stores 64-bit variables as two adjacent 32-bit registers on
the internal stack. While the byte-code interprets these
adjacent registers as a single 64-bit value, the interpreter
manages these registers as separate values. Therefore,
our modified stack transparently stores and retrieves 64-
bit values to and from separate 32-bit registers (at fp[2·i]
and fp[2 · i + 2]). Finally, native method targets require
a slightly different stack frame organization for reasons

4

Figure 2.1: TaintDroid Architecture [8]

TaintDroid

TaintDroid [8] is a modified Android kernel. Its main architecture is shown in figure 2.1.
TaintDroid sets taint flags on objects returned by source methods and also implements
taint propagation rules. When a tainted object is used as a parameter of a sink method,
TaintDroid will report a privacy leak.

TaintDroid has some limitations; it cannot handle native libraries, and it requires root
permissions. There have been some easy approaches that can bypass the check of Taint-
Droid, such as AntiTaintDroid1. When we used TaintDroid, we found there are many
superfluous reports that we think are false positives.

BayesDroid

BayesDroid [18] is also a modified Android kernel. It leverages the dynamic taint analysis
approaches. The authors identified that there is a high false positive rate in traditional in-
formation flow analysis because existing tools do not take the possible masking on sensitive

1http://gsbabil.github.io/AntiTaintDroid/
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data into consideration. For example, even if only the country information retrieved from
location data is sent out, old approaches will still report a location leakage because there is
a data-flow of tainted data from a source to a sink. BayesDroid does Bayes classifications
on data reaching sink methods. It computes the distance (e.g., Hamming Distance) be-
tween the data to be sent and the original sensitive data. Given the distance, BayesDroid
computes the probability that the sharing is illegitimate or legitimate.

2.1.2 Static Taint Analysis

Static taint analysis usually decompiles application APKs first to obtain the source code
of these applications. Based on the code, static taint analysis tools reconstruct control
flow graphs based on the source code and build a model of the run-time execution. With
the model, the tools can detect if there are any data flows from source methods to sink
methods statically.

• Advantages:

– Static analysis can have a deeper analysis of the code in one run

• Disadvantages:

– Runs o✏ine. Is di�cult to be used by average users.

– Takes too much time to obtain accurate results

– Has a high false positive rate since many detected flows will not happen in real
use

– Can be imprecise because it needs to abstract from program inputs and to
approximate run-time objects

FlowDroid

FlowDroid [2] does static analysis on the source code of applications. It first builds a call
graph. Based on the graph, FlowDroid does backward data analysis to find where the
data reaching a sink method comes from. If the data comes from a defined source method,
FlowDroid will mark it as a leakage. One advantage of FlowDroid is that it also takes the
life cycle of Android components into consideration, e.g., Activity.onCreate(). Flow-
Droid handles these components by analyzing the AndroidManifest.xml file, extracting
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all registered Android components and building a corresponding call graph based on the
documentation of Android.

FlowDroid has several limitations; it takes too much time for a deep analysis, which
is a common problem for static analysis tools. In addition, it does not take the callback
methods, e.g., onLocationChange(), into consideration.

EdgeMiner

EdgeMiner [6] is an enhancement recently proposed. It can be integrated into existing
static analysis tools. The authors identify that one important reason for the impre-
cision of existing static analysis tools is the inadequate consideration of callback (e.g.,
onLocationChange()) and register (e.g., setOnClickListener()) methods. Figure 2.2
gives two examples of how callback methods leak private information. The call graph built
by general static analysis tools will not contain callback methods because these methods
are called by the Android framework, not the application. If that method contains some
unexpected malicious code, EdgeMiner can still detect it. Although the Android framework
declares many callback methods, there is no available documentation for these methods.
One of the most important contributions of EdgeMiner is that it can extract callback and
register methods for the Android framework.

The architecture of EdgeMiner is shown in figure 2.3. EdgeMiner uses some heuristic
rules, such as the function signature, to search for potential callback and register methods.
For each potential callback method, EdgeMiner uses backward data-flow analysis to find if
there is a way back from the method to any potential register method. With the callback
and register method information, static taint analysis tools can build a more accurate
model of the run-time execution.

2.2 Android Retrofitting

Although researchers usually modify Android source code as well in dynamic taint analysis
tools, in this section, we focus on other approaches that use OS-based techniques to achieve
their goals. Existing work usually adds the support for intercepting the location access
and modifies the location data passed to applications.

• Advantages:
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– No need to modify existing applications. In theory, the operating system should
support all existing applications.

• Disadvantages:

– Needs to flash the device. Is di�cult for average users. May be unstable.

– Requires rooting the device

– May not be portable to new Android versions. Even if portable, it may re-
quire flashing again for upgrading. Inability to upgrade is a significant problem
because Android updates usually fix many security issues.

– Is inflexible and di�cult to update the security policies. Is di�cult to customize
security policies for di↵erent applications.

AppFence

With AppFence [14], users can withhold data from imperious applications that demand
information that is unnecessary to perform their functionalities. AppFence takes advantage
of TaintDroid [8] and provides two privacy controls: shadow data and exfiltration blocking.
When an application demands access to sensitive data a user does not want the application
to have, AppFence will substitute an innocuous shadow in its place. For example, AppFence
may replace IMEI with the hash of IMEI. Shadow data may break applications that truly
require this data to provide functionality, e.g., a contact app has to access the contact
data. For the data that is allowed to be accessed, AppFence will prevent it from being sent
out.

LP-Guardian

LP-Guardian [9] provides privacy protection on a per-app basis. The protection works
according to the running states of the application. The principles are shown in figure 2.4.
LP-Guardian analyzes the calling stack trace to determine whether a location request is
from the core app or the advertising library the application includes. To manipulate the
location data, LP-Guardian modifies the platform instead of application rewriting. It adds
application context data into the Location class and adds a location interceptor that will be
informed whenever there is a location update. Based on the security policy, LP-Guardian
executes di↵erent operations in di↵erent situations.
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2.3 App Rewriting

Application rewriting makes modifications to applications to achieve the desired security
policies. It is usually done via Java bytecode rewriting or Dalvik bytecode rewriting.

• Advantages:

– Leaves the underlying platform unmodified. Does not require flashing or rooting
the device.

– Provides flexible security policies. It is possible to set di↵erent policies for
di↵erent applications.

– Supports di↵erent Android versions if the corresponding APIs are not modified

• Disadvantages:

– Is not as powerful as OS-based modifications

– Users have to trust other people’s modifications or know how to set up their
own policies.

– Is inconvenient for updating applications since rewriting will break the signature
of the application. Also, users need to do the rewriting again after updating.

I-ARM

Davis et al. [7] propose a rewriting framework to embed In-App Reference Monitors (I-
ARM) in Android applications. A reference monitor concept defines a set of design
requirements on a reference validation mechanism, which enforces an access control policy
over subject ability to perform operations on objects in a system. With I-ARM, users can
identify which methods of the Android framework that they want to change by specifying
the full method signature. Users can add custom behaviors to each of these methods. I-
ARM also supports rewriting methods called by reflection but not called by native libraries.
This approach provides flexible method-level rewriting. However, it is tedious to rewrite
every security-related method. Furthermore, it does not take into consideration if the data
is sent out.
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Dr. Android and Mr. Hide

Jeon et al. [15] identify that the existing Android permission model is coarse-grained.
Available permissions are often much more powerful than necessary. They propose a new
fine-grained permission model and a tool chain: RefineDroid, Mr. Hide, and Dr. An-
droid. RefineDroid does statistic analysis on Android applications to infer fine-grained
permissions based on their model. To enforce the inferred permissions without modifying
the Android platform or rooting the device, they introduce Mr. Hide, a set of Android
services that wrap several privileged Android APIs. These services run in their own thread
and expose some new APIs that require fine-grained permissions to be called. With Mr.
Hide, developers can easily use fine-grained permissions. For existing applications, Dr. An-
droid can retrofit these applications to enforce these fine-grained permissions by modifying
the APK and changing method calls to the new APIs in Mr. Hide.

AppGuard

Backes et al. [5] use caller-site rewriting to inline the reference monitor into existing third-
party apps. For caller-site rewriting, it means application binaries are rewritten to make
sure a security monitor is invoked at run-time before a security-related function call. The
security monitor dynamically checks if all enforced security policies allow the attempted
operations. AppGuard is implemented as a stand-alone application. Average users can use
AppGuard easily and do not need to do the rewriting on a desktop manually. AppGuard
supports both reflective calls and calls from native libraries to Java methods. However, it
is not able to monitor function calls inside native libraries.

Idea

Idea [19] uses callee-site rewriting to inline the reference monitor into existing applications.
Unlike caller-site rewriting, which does the security checks before the security-relevant
methods are called, callee-site rewriting only instruments the entry of these methods.
Since Android libraries are sealed, and doing direct callee-site rewriting is infeasible, Idea
uses a new technique called call diversion. Call diversion reroutes the function calls from
the security-relevant APIs to methods defined in Idea. These methods invoke the security
monitor to enforce access control policies.
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2.4 Heuristics

Fu et al. [10] use a heuristic way to provide run-time location access disclosures. Accord-
ing to the documentation of getLastKnownLocation(), they devise two heuristics. (1)
The return value of getLastKnownLocation() will change if and only if any application
is requesting location updates; (2) the most likely application requesting the location is
the app the user is actively using. However, these heuristics are not entirely correct since
applications may use getLastKnownLocation() themselves to obtain location fixes. Call-
ing getLastKnownLocation() will not be noticed by this heuristic approach because the
return value of that function does not change after calling. Also, applications registering
a location listener can obtain location fixes in the background.

2.5 VPN-based Approaches

Disconnect

Disconnect2 uses the VPNService class. The Disconnect application blocks all communi-
cations between all other applications running on the device and advertising servers. The
method the Disconnect application uses is setting up a DNS server that responds with
127.0.0.1 to all queries for hosts of advertising servers.

2.6 Summary

All of this related work has advantages. However, there are some obvious disadvantages
compared to PrivacyGuard. (a) Most of this work does not consider whether the accessed
data is sent out or in what form the data is sent out. The lack of consideration will
cause false positives and a↵ect the usability; (b) some of this work requires rooting or
flashing the device. Rooting is usually considered to be a significant source of insecurity
since applications with root permissions can break the device easily. Flashing the device
is both di�cult and inconvenient for average users; (c) furthermore, application rewriting
will cause problems when updating applications.

PrivacyGuard does not have these problems. It works as a typical Android application.
Updating PrivacyGuard is easy and does not require root permissions. PrivacyGuard runs
continuously on the device and provides real-time protections.

2https://disconnect.me/
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1 class MainClass {
2 static int value = 0;
3 static void main(String[] args) {
4 MalComp mal = new MalComp();
5 MainClass.value = 42;
6 Collections.sort(list, mal);
7 sendToInternet(MainClass.value);
8 }
9 }

10 class MalComp implements Comparator {
11 int compare(
12 Object arg0,
13 Object arg1) {
14 MainClass.value = getGPSCoords();
15 return 0;
16 }
17 }

(a) Application Space

1 public interface Comparator<T> {
2 public int compare(T lhs, T rhs);
3 }
4
5 public class Collections {
6 public static <T> void sort(
7 List<T> list,
8 Comparator<? super T> comparator) {
9 ...

10 comparator.compare(element1, element2);
11 ...
12 }
13 }

(b) Framework Space

Fig. 1: An example that shows that without properly linking the sort method (invoked at (a) Line 6) to the compare method (defined at
(a) Line 11) and invoked at (b) Line 10, existing static analyzers would not detect the privacy leak. Note that the framework space code is
simplified for understanding.

1 class MainActivity extends Activity {
2 static int value = 0;
3 onCreate(Bundle bundle) {
4 MalListener mal = new MalListener();
5 MainActivity.value = 42;
6 // get a reference to a button GUI widget
7 Button b = [...]
8 b.setOnClickListener(mal);
9 }

10 }
11 class FinalActivity extends Activity {
12 // This activity is reached towards the
13 // end of the application’s execution.
14 onCreate(Bundle bundle) {
15 sendToInternet(MainActivity.value);
16 }
17 }
18 class MalListener implements OnClickListener {
19 int onClick(View v) {
20 MainActivity.value = getGPSCoords();
21 return 0;
22 }
23 }

(a) Application Space

1 public class ViewRootImpl extends Handler {
2 public void handleMessage (Message msg) {
3 switch (msg.what) {
4 case EVENT:
5 mView.mOnClickListener.onClick();
6 ...
7 }
8 }
9 }

10 public class View {
11 OnClickListener mOnClickListener;
12 public void setOnClickListener (EventListener

li) {
13 mEventListener = li;
14 }
15 interface OnClickListener {
16 void onClick(View v) {
17 }
18 }

(b) Framework Space

Fig. 2: An example that shows that without properly linking the setOnClickListener method (invoked at (a) Line 8) to the onClick
method (defined at (a) Line 19) and invoked at (b) Line 5, existing static analyzers would not detect the privacy leak. Note that the framework
space code is simplified for understanding.

information as opposed to the constant value. Note that the
ICFT in this example is synchronous: in fact, the callback
method (compare) is invoked as soon as its associated
registration method (sort) is invoked.

Similarly, the example provided in Figure 2 shows how
a malicious application could leak sensitive information
through an asynchronous ICFT. In particular, this appli-
cation registers an OnClickListener (by invoking the
setOnClickListener registration method, Line 8), and
it associates it to a specific GUI Button. Once the user
clicks on this button, the associated onClick method will
be invoked, and the current GPS coordinates are stored in
the MainActivity.value static field. Then, when the
FinalActivity activity is reached, the recorded GPS co-
ordinates will be leaked.

A static analysis that analyzes applications in isolation from
the framework will miss these implicit control flows. This
implies that systems that analyze applications for privacy leaks
will incorrectly label the examples in Figure 1 and Figure 2
as benign (i.e., false negatives).

To demonstrate that, indeed, these examples constitute false
negatives, we augmented the DroidBench [8] benchmark suite
with a variety of test cases similar to the presented example. In
Section VII-F, we show how the technique that we described in
these two examples can be used by a malicious application to
evade analysis. We also modified FlowDroid [9] to leverage
our results to correctly model ICFTs, and we show how
our improvement allows FlowDroid to identify previously-
undetected privacy leaks.

Existing Approaches. ICFTs are prolific and static analy-

(a) Synchronous callback methods. The MalComp.compare() method will be called by
Collections.sort(), which is defined in the Android framework. However, there is no explicit
calling of this method in application source code and thus di�cult to be noticed by previous
static analysis tools.
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1 class MainClass {
2 static int value = 0;
3 static void main(String[] args) {
4 MalComp mal = new MalComp();
5 MainClass.value = 42;
6 Collections.sort(list, mal);
7 sendToInternet(MainClass.value);
8 }
9 }

10 class MalComp implements Comparator {
11 int compare(
12 Object arg0,
13 Object arg1) {
14 MainClass.value = getGPSCoords();
15 return 0;
16 }
17 }

(a) Application Space

1 public interface Comparator<T> {
2 public int compare(T lhs, T rhs);
3 }
4
5 public class Collections {
6 public static <T> void sort(
7 List<T> list,
8 Comparator<? super T> comparator) {
9 ...

10 comparator.compare(element1, element2);
11 ...
12 }
13 }

(b) Framework Space

Fig. 1: An example that shows that without properly linking the sort method (invoked at (a) Line 6) to the compare method (defined at
(a) Line 11) and invoked at (b) Line 10, existing static analyzers would not detect the privacy leak. Note that the framework space code is
simplified for understanding.

1 class MainActivity extends Activity {
2 static int value = 0;
3 onCreate(Bundle bundle) {
4 MalListener mal = new MalListener();
5 MainActivity.value = 42;
6 // get a reference to a button GUI widget
7 Button b = [...]
8 b.setOnClickListener(mal);
9 }

10 }
11 class FinalActivity extends Activity {
12 // This activity is reached towards the
13 // end of the application’s execution.
14 onCreate(Bundle bundle) {
15 sendToInternet(MainActivity.value);
16 }
17 }
18 class MalListener implements OnClickListener {
19 int onClick(View v) {
20 MainActivity.value = getGPSCoords();
21 return 0;
22 }
23 }

(a) Application Space

1 public class ViewRootImpl extends Handler {
2 public void handleMessage (Message msg) {
3 switch (msg.what) {
4 case EVENT:
5 mView.mOnClickListener.onClick();
6 ...
7 }
8 }
9 }

10 public class View {
11 OnClickListener mOnClickListener;
12 public void setOnClickListener (EventListener

li) {
13 mEventListener = li;
14 }
15 interface OnClickListener {
16 void onClick(View v) {
17 }
18 }

(b) Framework Space

Fig. 2: An example that shows that without properly linking the setOnClickListener method (invoked at (a) Line 8) to the onClick
method (defined at (a) Line 19) and invoked at (b) Line 5, existing static analyzers would not detect the privacy leak. Note that the framework
space code is simplified for understanding.

information as opposed to the constant value. Note that the
ICFT in this example is synchronous: in fact, the callback
method (compare) is invoked as soon as its associated
registration method (sort) is invoked.

Similarly, the example provided in Figure 2 shows how
a malicious application could leak sensitive information
through an asynchronous ICFT. In particular, this appli-
cation registers an OnClickListener (by invoking the
setOnClickListener registration method, Line 8), and
it associates it to a specific GUI Button. Once the user
clicks on this button, the associated onClick method will
be invoked, and the current GPS coordinates are stored in
the MainActivity.value static field. Then, when the
FinalActivity activity is reached, the recorded GPS co-
ordinates will be leaked.

A static analysis that analyzes applications in isolation from
the framework will miss these implicit control flows. This
implies that systems that analyze applications for privacy leaks
will incorrectly label the examples in Figure 1 and Figure 2
as benign (i.e., false negatives).

To demonstrate that, indeed, these examples constitute false
negatives, we augmented the DroidBench [8] benchmark suite
with a variety of test cases similar to the presented example. In
Section VII-F, we show how the technique that we described in
these two examples can be used by a malicious application to
evade analysis. We also modified FlowDroid [9] to leverage
our results to correctly model ICFTs, and we show how
our improvement allows FlowDroid to identify previously-
undetected privacy leaks.

Existing Approaches. ICFTs are prolific and static analy-

(b) Asynchronous callback methods. The MalListener.onClick() is called by
ViewRootImpl.handleMessage(), which is executed in the UI thread. Apart from no ex-
plicit calling of the method in the application, the calling is actually asynchronous and di�cult
to reveal.

Figure 2.2: Malicious Callback Examples [6]
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sis systems cannot afford to ignore them entirely. Although
existing static analysis systems acknowledge [9, 18, 23] that
callbacks must be handled, they do not address the challenge
comprehensively. Instead, existing systems address this chal-
lenge with one of the following, incomplete techniques. The
majority of the approaches (e.g., [9, 18]) rely on manually
compiled lists for implicit control flow transfers. However,
the large number of ICFTs (i.e., EDGEMINER identified more
than five million) renders manual efforts to identify all ICFTs
intractable. Other approaches attempt to solve the ICFT prob-
lem based on heuristics. CHEX [23], for example, connects
all potential callbacks to the constructor of the containing
object. The example in Figure 1 would cause CHEX’s data
flow analysis to incorrectly conclude that the GPS information
is overwritten by the assignment of the constant value in Line
5.

Another approach would be to treat all the non-reached
methods (such as the compare and the onClick methods
in our examples) as top-level methods. However, this approach
would cause false negatives as well. In fact, if the compare or
the onClick methods are analyzed only after the analysis of
the main application’s codebase has been analyzed, the static
analyzers will miss the information leak.

The only way to properly address this issue is to analyze
such callbacks within the right execution context. In other
words, a static analyzer would need to analyze the compare
method just after the sort method, or analyze the onClick
method when the user could click on the button (i.e., poten-
tially before the final activity is reached). Clearly, a static
analyzer can perform this kind of precise analysis only if it
is aware of such registration-callbacks implicit control flow
transfers. The main goal of our work is to enable existing
static analyzers to perform more precise static analysis, and
to detect privacy leaks even in the scenarios presented in our
motivating examples.

A last, overly conservative, approach would be to add
control flow edges to all callbacks at any function callsite in the
application. To the best of our knowledge, no existing system
adopts this naı̈ve approach. While this heuristic would work
for our examples, the CFG of real-world applications would
explode in size and negatively impact the precision of any data
flow analysis performed on top of such an inflated CFG.

III. OVERVIEW & PROBLEM STATEMENT

Heuristic and manual approaches to tackle the challenge of
ICFTs either do not scale or are incomplete. Thus, we propose
a novel approach to automatically extract all registration func-
tions and their associated callbacks provided by the Android
framework. In this section, we first present an overview of our
system, we then provide a precise definition of registration
and callback methods, and, finally, we specify our problem
statement.

A. Overview

Figure 3 provides a schematic overview of our work. Our
approach takes as input the entire codebase of the Android
framework. The output is a list of ICFTs as pairs of registration
and callback methods along with their corresponding type
signatures. This list summarizes the implicit control flow
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Fig. 3: Overview of EDGEMINER.

behavior of the Android framework and can be used to improve
the precision of existing Android analysis systems (lower part
of Figure 3). Our approach is based on conservative program
analysis techniques and produces only one-sided errors. That
is, while we are willing to tolerate false positive pairs of
registrations and callbacks, no false negative ICFTs can occur
from our analysis.

B. Problem Statement

In this section we first provide definitions of the termi-
nology we use throughout the paper. Then, we formulate the
problem we are trying to solve using this terminology.

Definition 1 An application callback is a method implemented
in application space that can be (implicitly) invoked by the
framework.

From a technical point of view, the callback mechanism
in Java and other object-oriented languages (e.g., Objective-
C) relies on method overriding and the dynamic dispatch
mechanism: First, an application space method overrides a
method defined in framework space. Subsequently, when the
framework invokes this method, the dynamic dispatch mech-
anism invokes the overridden (application-defined) method
corresponding to the dynamic (runtime) type of the object.
We refer to the framework method that is overridden as a
framework callback.

Definition 2 A framework callback is a method defined in the
framework space that can be overridden by an application
space method (i.e., an application callback), in a way that
the overriding method can be (implicitly) invoked by the
framework.

The two callback definitions correspond to two different
views (application and framework) on the same concept. The
difference is that application callbacks are dependent on the
concrete implementation of individual applications, whereas
framework callbacks encompass all possible callbacks any
application can use. As our goal is to identify all ICFTs in the
Android framework, we use the framework callback definition

Figure 2.3: Architecture of Edgeminer [6]

cloud-based service to achieve location privacy protection. It also
requires developers to use a different API for location access that is
based on a location matching criterion, rather than the raw location.
Similarly, Caché [1] requires developers to change the way they ac-
cess location in the apps. LP-Guardian requires no modification to
the existing apps or infrastructure (it is a completely device-based
solution), facilitating its deployment.

Finally, several researchers have studied the problem of private
information leakage in mobile devices. For example, TaintDroid [10]
tracks the information propagation in mobile devices and detects
whether private information (including location) has been leaked.
LP-Guardian is complementary to such approaches; it controls what
location information the app gets access to, while taint tracking re-
veals how the apps are managing the accessed location informa-
tion.

3. THREAT MODEL
We assume an honest-but-curious and passive adversary who is

interested in inferring more information about the user from col-
lected location information. Apps constitute the only mechanism
by which the adversary can access the user’s location through the
available location APIs. The adversary won’t attempt to hack into
the system or circumvent any privacy controls. We view the se-
curity challenges as orthogonal to our work. Our objective is not
to implement a solution that prevents a determined adversary from
overriding the operating system’s controls. The existence of such a
solution will further strengthen LP-Guardian.

The adversary will collect user’s location as part of the app’s
operation. The collected location information will enable the ad-
versary to pose the following three types of threats:

• Tracking Threat: the adversary might receive continuous lo-
cation updates that enable him to locate the user in real time.
The adversary might also be able to identify the user’s mobil-
ity patterns (frequently traveled routes) and predict his future
location with high accuracy by leveraging the typical consis-
tency of people’s mobility patterns [18].

• Identification Threat: Even if the adversary sporadically ac-
cesses user’s location, he might still be able to isolate the
user’s frequently visited locations, such as home and work.
The adversary can use these places as quasi-identifiers to re-
veal the user’s identity from anonymous location traces [13,
19].

• Profiling Threat: The user’s mobility trace might not include
places that would reveal his identity, but places that the ad-
versary can use to profile him. Examples include some health
clinics, places with religious significance, etc.

We treat all apps belonging to the same developer or having the
same signature as one sink of location information. We choose to
trust the underlying operating system, since no practical solution
can be implemented without such a trust. The user also trusts his
own device, including the underlying OS, to manage and store all
his personal information.

4. DESIGN

4.1 High-Level Overview
Before delving into the inner-workings of LP-Guardian, we present

a high-level overview as shown in Fig. 1. This diagram highlights
the main operations performed whenever a new location sample is
to be delivered to an app (Section 6.1).
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Dummy 
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Figure 1: The decision diagram highlighting LP-Guardian’s
main operations when an app receives a new location update

LP-Guardian first determines if an A&A library or the core app is
receiving the location update (Section 4.4). If the A&A library re-
ceives the location update, then the location is automatically coars-
ened to the city-level. If the app is running in the background,
the location is also coarsened to the city-level (Section 4.3). We
base this design decision on our analysis of the location-accessing
apps. The analysis revealed that only 3% of the apps access user’s
location while running in the background. Thus, location coarsen-
ing in the background has little effect on the functionality of most
apps. If the core app, while running in the foreground or percepti-
ble states, is receiving the location update, we rely on the user’s
preference. The location can be released without modification,
completely blocked, or anonymized. In the case of anonymization,
there are three available options as follows.

1. The app can accommodate coarsening without loss of service
(weather apps), in which case the location is automatically
coarsened to the city-level (the location is replaced by a pair
of coordinates representing the center of the city).

2. The app is monitoring the user’s mobility (fitness app), where
LP-Guardian feeds the app a synthetic route that preserves
some features of the user’s actual route (Section 4.7).

3. The app requires location with high granularity (e.g., geo-
search app). LP-Guardian applies a novel mechanism to con-
trol release of the location to prevent any possible identifica-
tion (Section 4.5).

If the location is safe to be released, LP-Guardian consults with
the user to check if he is comfortable with release of the location. If
the user isn’t comfortable, the location is obfuscated (noise added)
to hide the visited place (Section 4.6), else the location is released
as is. On the other hand, if LP-Guardian decides that it is not safe to
release the location, it replaces the real location with a fake location
as described in Section 4.5. Finally, LP-Guardian minimizes user
interaction as much as possible, in order not to hinder the user expe-
rience. At the same time, it keeps the user in the loop by informing

Figure 2.4: Decision diagram of LP-Guardian [9]
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Chapter 3

Design and Implementation

3.1 Design Options

An approach to gain access to all network tra�c is required, similar to tcpdump or wire-
shark. With this access, we can do analysis on the tra�c to detect privacy leakages. Since
Android is based on Linux, porting tcpdump is feasible (in fact, there is a tcpdump for
Android). However, porting tcpdump requires root permissions. The requirement of root
permissions is unacceptable to us.

There are two possible ways to gain access. One is by using a proxy, and the other is
by using a VPN.

A proxy is a server (a computer system or an application) that acts as an intermediary
for requests from clients seeking resources from other servers. Proxies have several types,
such as a Web proxy or a SOCKS proxy. A web proxy cannot fulfill our requirements
because it can only forward HTTP packets. A SOCKS proxy supports both TCP and UDP.
Due to the restrictions of Android, no application can configure the proxy automatically
without root permissions. It is necessary to manually configure the proxy for every WiFi
connection. The manual configuration can be a problem for average users.

We choose to use a VPN, which refers to virtual private network. VPNs extend a private
network across a public network such as the Internet. VPNs are created by establishing
a virtual point-to-point connection through the use of dedicated connections. VPN works
on the IP layer. An application can programmatically set up a VPN connection that can
be used by other applications, and the only user interaction required is tapping OK on the
connection prompt once.
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3.2 Di↵erent Solutions based on VPN

There are several possible solutions based on using a VPN.

3.2.1 Remote VPN server

The easiest way is by setting up a remote VPN server and letting the device connect to it.
All network tra�c will go through the server. The server can do the analysis and report
all privacy leakages to users. A remote VPN server is easy to set up and use, but it has
some problems:

1. The network tra�c is sent to a remote server, which users may not trust

2. All data is revealed if the server is compromised

3. There may be a high load for the server if there are many users

4. Network overhead is introduced

To avoid these problems, we propose the second option.

3.2.2 Local VPN server

A VPN server that can run locally does not have the problems mentioned above. All
network tra�c is available only to the device. The approach is promising, but it has the
following problem:

• Since the VPN server runs on the IP layer, we need to use raw sockets to transmit
IP datagrams directly. However, without root permissions, using raw sockets is not
allowed by Android.

Again, rooting the device is unacceptable and we do not need a fully-featured VPN
server. We need access to all network tra�c, but do not need any other features of a VPN,
such as encryption.
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3.2.3 Fake VPN server

We can use the VPNService class provided by the Android SDK after version 4.0.

The VPNService class is a base class for applications to extend and build their own
VPN solutions. In general, it creates a virtual network interface, configures addresses
and routing rules, and returns a file descriptor to the application. Each read from the
descriptor retrieves an outgoing packet that was routed to the interface. Each write to
the descriptor injects an incoming packet such as that received from the interface. The
interface is running on the IP layer, so packets are always started with IP headers. The
application then completes a VPN connection by processing and exchanging packets with
the remote server over a tunnel.

In our case, there is no real VPN server. The VPNService pretends that we have
connected to a VPN server. PrivacyGuard obtains network tra�c from the virtual network
interface provided by VPNService and retransmits it after the analysis. The details can be
found in later sections.

3.2.4 Main Di�culties

While developing PrivacyGuard, we need to overcome the following di�culties:

• Because a VPN server works on the IP layer, we need to implement an IP and
TCP/UDP stack in Java. The implementation should follow the protocol specifica-
tions and also be e�cient.

• All analysis requires network tra�c in plain text. PrivacyGuard should be able to
decrypt packets encrypted with the SSL protocol.

3.3 Framework

As shown in figure 3.1, PrivacyGuard has five main components.

• FakeVPNService

• TCPForwarder (or UDPForwarder)

• LocalServer
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Figure 3.1: Architecture of PrivacyGuard

• SocketForwarder

• Plugins

Because all components except the forwarders are similar between TCP and UDP and
the forwarding for TCP is more important and complex, all explanations are based on
TCP unless explicitly specified.

3.4 Basic Work Flow

The following is the basic work flow of PrivacyGuard:

1. An application sends a request to a server. The request can then be retrieved from
the virtual network interface in the FakeVPNService.
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2. The FakeVPNService parses the request contained in an IP datagram and dispatches
the request to the corresponding forwarder. In the TCP case, a TCPForwarder will
handle the request.

3. The TCPForwarder implements TCP. The TCPForwarder communicates with the
LocalServer, which is running on the TCP layer. The LocalServer acts like a
man-in-the-middle proxy.

4. For each request received from a TCPForwarder, the LocalServer retransmits the
request to the real server and also retransmits the response from the real server to the
TCPForwarder. In this step, all Plugins are invoked to filter both the request
and the response to preserve privacy.

5. The TCPForwarder packages the response from the LocalServer into an IP datagram
and sends the datagram through the virtual interface to the application.

All components are explained in detail in the following sections.

3.5 FakeVPNService

3.5.1 Android VPN Service

The VPNService1 class is added to the Android SDK after API level 14 (Android 4.0). It
creates a virtual network interface, configures addresses and routing rules, and returns a
file descriptor to the application. From the descriptor, the application can read all network
tra�c.

3.5.2 FakeVPNService

The FakeVPNService extends the VPNService. The FakeVPNService establishes a virtual
network interface with the IP address 10.8.0.1. It also configures routing rules to route
network tra�c sent to all IP addresses to the interface. After properly setting up the
FakeVPNService, the Android system will route all network tra�c from all other applica-
tions to this virtual network interface in the FakeVPNService. The FakeVPNService sets
up several threads. These threads are described below:

1http://developer.android.com/reference/android/net/VpnService.html
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TunReadThread

This thread reads all requests from the virtual network interface. Because there are many
applications and services running on the device, the amount of requests can be large. There
will be heavy performance overhead due to the high network IO cost if the TunReadThread
handles the transmission to other components as well. To avoid the cost, this thread only
adds these requests to a queue.

Dispatcher

This thread is created by the TunReadThread. The Dispatcher keeps reading requests,
which are IP datagrams since VPN works on the IP layer, from the queue mentioned above.
The Dispatcher parses these IP datagrams to obtain necessary information, such as the
IP address.

Each request received from the interface is an IP datagram. The Dispatcher retrieves
the protocol field from the IP header to see whether the datagram wraps a TCP packet
or a UDP packet. If the datagram contains a TCP packet, a TCPForwarder bound to the
source port number of the packet is used to handle this packet. If there has already been
a forwarder for the port number, this forwarder is used. Otherwise, a new forwarder is
created and bound to that port number. The reason for using the old forwarder is that a
TCP connection is stateful. The forwarder maintains the state of the TCP connection.

TunWriteThread

The TunWriteThread retrieves responses from a queue and writes these responses to the
virtual network interface. The responses are added to the queue by forwarders by calling
the TunWriteThread.write() method. Because this method requires IP datagrams as
arguments, forwarders need to reconstruct valid IP datagrams from TCP/UDP data these
forwarders have. The main part of the reconstruction is reversing the source and destination
IP addresses in the request and updating the IP checksum.

Concurrent access to two queues

The two queues in the TunReadThread and TunWriteThread are accessed and modified con-
currently by more than two threads. This concurrent access is a typical producer-consumer
problem. Proper synchronization is required to avoid concurrency issues. Initially, we
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Figure 3.2: TCP Connection Establishment2

implemented these two queues with ArrayLists and did synchronization manually by us-
ing synchronize, wait(), and notify(). However, during the performance evaluation,
we found that this solution would slow down the transmission. Java has a class called
ConcurrentLinkedQueue. It provides e�cient thread-safe access. There is a significant
improvement in the performance after switching to this class.

3.6 TCPForwarder

3.6.1 TCP Connection States

TCP is designed to provide reliable, ordered and error-checked delivery of a stream of octets
between programs. It works on the transport layer and provides an end-to-end connection.

A TCP connection mainly has three states:

1. Connection establishment (see figure 3.2)

2http://www.tcpipguide.com/free/t TCPConnectionEstablishmentProcessTheThreeWayHandsh-
3.htm
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Figure 3.3: TCP Connection Termination3

2. Data transmission

3. Connection termination (see figure 3.3)

To achieve all goals, TCP requires the following information in each packet:

• Sequence number(seq) is used to specify the order of all packets.

3http://www.tcpipguide.com/free/t TCPConnectionTermination-2.htm
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• Acknowledgement number(ack) is calculated by the receiver. The sender deter-
mines if the receiver has received the data successfully by checking the acknowledge-
ment number in the response.

• Flags (e.g., SYN, SYN-ACK) are used to specify the states of connections and pack-
ets.

• Checksum is used to prevent accidental mistakes in transmissions.

State Maintenance

To maintain the connection states required by TCP, we build a mapping relationship
between one TCPForwarder and one TCP connection. Since a TCP connection can be
determined by the IP address (the address is the same for all apps) and the port number,
the relationship is based on the port number.

Implementation Details

The changes of states in TCP can be considered as a state machine. To model the state
machine, we define several states:

• LISTEN: The connection is not established yet. The TCPForwarder is expecting a SYN
packet.

• SYN ACK: The TCPForwarder has received a SYN packet already from the application
and responded to it with a SYN-ACK packet. The TCPForwarder is expecting an ACK
packet to finish the connection establishment.

• DATA: The connection is established, and the TCPForwarder is transmitting data.

• HALF CLOSE BY CLIENT: The client has sent out a FIN packet.

• HALF CLOSE BY SERVER: The server has already responded with a FIN packet.

• CLOSED: The connection is closed.

We implement the state machine in the TCPForwarder as shown in figure 3.4. The
following explains the implementation through a typical TCP connection life cycle:
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Figure 3.4: TCP state machine

1. When a TCPForwarder is initialized, it is in the LISTEN state and waiting for a 3-way
handshake. When the TCPForwarder receives a SYN packet from an application, it
will respond with a SYN ACK packet to the application and go into the SYN ACK state.

2. After receiving the SYN ACK packet, the application will send an ACK packet, and
the TCP connection is established. The TCPForwarder will then go into the DATA
state after receiving that ACK packet. Also, the TCPForwarder will connect to the
LocalServer.

3. In the DATA state, the TCPForwarder transmits each packet received from the Dispatcher
to the LocalServer and responds with an ACK packet to the application. If the
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LocalServer sends anything back, the TCPForwarder will also transmit it to the
application with an appropriate sequence number.

4. Whenever the application sends a FIN packet, the TCPForwarder goes to the
HALF CLOSE BY CLIENT state, does some termination work and then goes to the
CLOSED state.

5. Whenever the TCPForwarder receives a FIN packet from the LocalServer, it goes to
the HALF CLOSE BY SERVER state, does some termination work and then goes to the
CLOSED state.

Connection Status

The TCP connection states (e.g., seq, ack) are stored in TCPConnectionInfos. The
TCPConnectionInfo class implements all necessary methods to read and update the states.

Non-blocking Transmission

Because TCP is a stream delivery service, one request of another protocol using TCP (e.g.,
HTTP) may be divided into di↵erent TCP packets. In this case, using blocking transmis-
sion would be complex and introduce higher performance overhead. In our implementation,
we use two threads. One thread sends requests to the LocalServer and the other reads
responses from the LocalServer when it is readable.

TCP Checksum Recalculation

The TCP checksum is used to provide the error-checked feature. The checksum calculation
requires the entire content of the TCP packet and part of the IP header. Details can be
found online4.

3.6.2 Connection with LocalServer

Each TCPForwarder communicates with the LocalServer on behalf of an application run-
ning on the device. The messages transferred between these two classes are requests (sent
by the application) from the FakeVPNService and responses from real servers.

4http://en.wikipedia.org/wiki/Transmission Control Protocol#Checksum computation
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Figure 3.5: Configuration of the Sockets Used in PrivacyGuard

Each TCPForwarder connects to the LocalServer like connecting to a normal server.
The TCPForwarder creates a socket and connects to the LocalServer. The socket binds
to 127.0.0.1 and the source port in the TCP packets, i.e., the port number used by the
corresponding application. Although the port numbers used by the application and that
socket are the same, the IP addresses are di↵erent (the socket uses 127.0.0.1, and the
application uses 10.8.0.1). Figure 3.5 shows this configuration. The reason we use the
same port number is described in section 3.7.2.

There are two directions for the transmissions between the TCPForwarder to the LocalServer.
These two directions are di↵erent.

Transmissions from TCPForwarder to LocalServer

In this direction, the TCPForwarders retrieve the TCP data from IP datagrams and then
send the data with the socket.
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Transmissions from LocalServer to TCPForwarder

Since TCPForwarders and the LocalServer communicate with sockets, the data read
from these sockets are payloads of TCP packets instead of IP datagrams required by
TunWriteThread.write() as arguments(see section 3.5.2). We need to create an IP data-
gram by using the data and the status we maintain in TCPConnectionInfos (see sec-
tion 3.6.1) and TCPForwarders. The TCP checksum recalculation is also necessary.

3.7 LocalServer

From the point of view of applications, the LocalServer is the real server. Applications
only communicate with the LocalServer. The LocalServer listens on a specific port,
which is known and connected to by all TCPForwarders.

3.7.1 Connection Accepted

When a “client” (in our case, a TCPForwarder) connects to the LocalServer, the LocalServer
creates two sockets: target and client. Then the LocalServer creates a SocketForwarder
(described in section 3.8) with these two sockets.

3.7.2 How to Determine the Real Server

The socket used by a TCPForwarder to connect to the LocalServer uses the same port
number as the corresponding application (but the IP address of the socket is di↵erent, see
section 3.6.2). We can use the same port number to determine to which IP address and
port number the application actually wants to connect. In Linux and therefore also in
Android, this information can be found in /proc/net/tcp or /proc/net/tcp6 files (see
appendix D for examples of these files). With these files, we can also determine the UID
of the application that issues this connection. The application name can be obtained with
the UID as well.

3.8 SocketForwarder

SocketForwarders match one to one with TCP connections. Each SocketForwarder con-
tains two sockets, the client socket and the target socket. These two sockets are created
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by the LocalServer for one particular connection (see section 3.7). A SocketForwarder
contains a pair of threads:

• Outgoing Thread: This thread receives data from the TCPForwarder through the
client socket. It forwards the data to the actual server through the target socket.
Intuitively, since there cannot be privacy leakage in incoming data, the filtering is
only done on messages from the client socket to the target socket. Because the
current filtering approach is simple string matching, which can take much time if the
message is long, we provide two options.

1. Synchronous Filtering: filtering after reading data from the client socket and
before sending to the target socket. With this option, PrivacyGuard can pro-
vide real-time protection and allow modifications to data.

2. Asynchronous Filtering: adding data to a queue after reading data from the
client socket and sending to the target socket right away. Another thread re-
trieves data from the queue and does the filtering. With this option, there is less
network overhead caused by filtering, but we can detect leaks only retroactively.

• Incoming Thread: This thread receives data from the actual server through the
target socket. It forwards the data to the TCPForwarder through the client socket.

3.8.1 Handling SSL Connections

As mentioned in section 3.2.4, the analysis requires plain text. However, SSL connections
encrypt network tra�c. If a client wants to establish an SSL connection with a server, the
client and the server have to do an SSL handshake. In this handshake, the client receives
a certificate from the server and negotiates the encryption key for encrypting all following
messages. The pre-master-secret required to compute the encryption key is encrypted with
the public key of the server contained in the certificate5. To obtain the plain text of the
following messages, we need to obtain the corresponding private key of the public key to
retrieve the pre-master-secret. However, deriving the private key from the public key in
the SSL protocol is infeasible. To reveal the data, we need to deploy a man in the middle
proxy.

Man in the Middle Proxy

5more details can be found in http://en.wikipedia.org/wiki/Transport Layer Security#TLS handshake
6The picture is from http://www.secureworks.com/cyber-threat-intelligence/threats/transitive-trust/
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Figure 3.6: Man in the Middle Proxy6

As shown in figure 3.6, the proxy pretends to be the server in view of the client and pretends
to be the client in view of the server. When a client wants to access the server, the proxy will
send the client its own certificate and also connect to the real server. After the handshake,
all messages from the client are decryptable to the proxy since the public-private key pair
belongs to the proxy. For every message from the client, the proxy retransmits it to the
server after maybe making some modifications.

Implementation of the Man in the Middle Proxy

PrivacyGuard creates a root CA certificate and installs the certificate on the device when
PrivacyGuard launches the first time. Every certificate signed by this root CA certificate
is then trusted by applications.

When an application wants to establish an SSL connection with a remote server, the
LocalServer will first do a hostname lookup for the destination IP address of the remote
server. In the lookup, the LocalServer tries to establish an SSL connection with the
destination IP itself. During the establishment, the LocalServer can obtain the certificate
of the destination server and retrieve necessary information about the server from the
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certificate, such as the subject name. The LocalServer then creates fake certificates with
this information for each website visited by applications with SSL connections. These
certificates are signed by the root CA certificate. With fake certificates, the LocalServer
can finish the SSL handshake with applications. Both the client and target sockets are
also replaced with SSLSockets. Although the tra�c between applications and the client
socket or between the target socket and the Internet is encrypted, we can read data from
the client and target sockets in plain text. The source code for certificate generation
and hostname lookup is from SandroProxy7.

3.9 Customized Plugins

All plugins must implement the IPlugin interface (details of the interface can be found
in appendix C). Since the LocalServer has implemented a man in the middle proxy, all
network tra�c between the client and target sockets is in plain text (see section 3.8.1).
Corresponding methods of all plugins will be called to filter this tra�c. With plugins,
developers can easily set up their own analysis tools.

3.9.1 Implemented Plugins

So far, we have implemented three plugins:

• LocationDetection: detects location data. To detect if a message contains the current
location, the plugin needs to obtain the location data itself. However, invoking
getLastKnownLocation() for each message takes too much time. Instead, we register
a LocationListener for every available location provider (The location provider is
a concept of Android. Developers can obtain location data from available location
providers).

• PhoneStateDetection: detects IMEI, IMSI, AndroidID, and user’s own phone num-
ber.

• ContactDetection: detects email addresses and phone numbers by using regular ex-
pressions.

7https://code.google.com/p/sandrop/
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3.10 Limitations

PrivacyGuard has some limitations:

• Encryption of sensitive information by an application can prevent detection since our
current plugins filter with string matching. In 53 applications evaluated, we observe
that there are three applications where we suspect that these three applications
encrypt the data.

• Although our man-in-the-middle proxy works well in most situations, it cannot ad-
dress the SSL pinning technique. If an application uses SSL pinning, the application
will store the certificates it trusts locally. For any certificate this application receives
while establishing an SSL connection, it rejects the certificate unless the certificate is
one of these certificates installed locally. No man-in-the-middle proxy, including our
implementation, works against SSL pinning unless the proxy modifies the certificates
saved by the application. So far, we observe that only the Twitter8 application uses
SSL pinning.

• Currently, our man-in-the-middle proxy only supports RSA because we use San-
droProxyLib9. This library only generates RSA key pairs.

• PrivacyGuard cannot distinguish legitimate sharings of sensitive data from illegiti-
mate sharings. This limitation is also a common problem of other work. One possible
solution is using Bayes classification [18]. With Bayes classification, we can compute
how similar the data sent out is with the original sensitive data and determine whether
the sharing is legitimate based on the similarity. Inspired by LP-Guardian [9], we
can also use the host or IP address information to distinguish between legitimate and
illegitimate sharings.

• TaintDroid can track data from gyroscopes, cameras and microphones. PrivacyGuard
cannot detect this kind of data.

8https://play.google.com/store/apps/details?id=com.twitter.android
9https://code.google.com/p/sandrop/source/browse/projects/SandroProxyLib/src/org/sandrop/webscarab/plugin/proxy/SSLSocketFactoryFactory.java
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Chapter 4

Evaluation

To evaluate PrivacyGuard, we focus on two aspects: performance and e↵ectiveness. For
performance, we use UpDownLoader, a dummy application developed by ourselves, and
SpeedTest.net1 to test the network performance and power consumption. For e↵ectiveness,
we use a set of applications to train PrivacyGuard and use another set of applications to
test whether PrivacyGuard can detect privacy leakages.

For e↵ectiveness, we compare our results with TaintDroid since TaintDroid is a popular
state-of-the-art taint-based privacy detection tool. It has been used for comparison in
some other work ([18], [17]). For performance, we do not compare with TaintDroid since
TaintDroid has 32% performance overhead on a CPU-bound micro-benchmark ([8]). This
high overhead introduces much higher overhead in battery life than PrivacyGuard.

4.1 Performance Evaluation

For the performance evaluation, we mainly consider two parts: network performance and
power consumption.

4.1.1 Setup

We set up three programs:

1https://play.google.com/store/apps/details?id=org.zwanoo.android.speedtest&hl=en
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• UpDownLoader: an Android application. It has two functionalities:

1. upload and download a file - used for evaluating network performance

2. keep uploading or downloading for a specified period - used for evaluating power
consumption

• DummyServer: a desktop program. It runs on a desktop and cooperates with Up-
DownLoader.

• SpeedTest.net: an Android application for testing network speed and ping delay.

4.1.2 Network Performance

Section 3.9 shows that filtering is done by string matching. String matching may take
much time, especially if the network message is long. Many memory allocations as well as
string operations, such as concatenation or copy, are executed. These operations cost time
and thus may cause a network delay since messages are sent out after the filtering in the
synchronous configuration. Furthermore, there is one additional network I/O operation
between the TCPForwarder and the LocalServer, which may increase the latency. This
evaluation measures how PrivacyGuard a↵ects the network performance (both the latency
and the throughput).

Four scenarios are tested: no PrivacyGuard running, PrivacyGuard without filtering
privacy leakages, PrivacyGuard with synchronous filtering, and PrivacyGuard with asyn-
chronous filtering. For each of the first three scenarios, separate experiments were executed
with di↵erent settings described below. For the fourth scenario, since the asynchronous
filtering does not a↵ect the download speed, we only test it with uploading files.

Experiment Settings

• Download and upload one 1 Mbytes file

• Download and upload one 10 Mbytes file

• Test with SpeedTest.net (ping delay, download speed, upload speed)

In the first two settings, we use UpDownLoader. It simply downloads and uploads files
from a server. The method we use to calculate the delay is System.currentTimeMillis().
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(a) Result of 1 Mbytes File Experiments (b) Result of 10 Mbytes File Experiments

(c) Result of SpeedTest.net Experiments

Figure 4.1: Results of Network Performance Evaluations

Methodology

Because we use the Wi-Fi network to run these experiments, we run the same experiment
10 times for each scenario-setting pair to address potential instability. Also, we test each
scenario one after another to make sure the network conditions are similar on the average.
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Analysis

The experiment results are shown in figure 4.1. All figures show the average values and
the standard deviations. The original data can be found in appendix A.1.

For the downloading part of figures 4.1a, 4.1b, 4.1c, we can see that the downloading
delay is similar between di↵erent scenarios. This observation is as expected because as
described in section 3.8, PrivacyGuard does not filter the incoming network tra�c and
thus does not introduce much overhead.

For the uploading part, we can see that PrivacyGuard (with sync filtering) is 34.3%(164.9ms)
and 12.81%(479.1ms) slower than no PrivacyGuard in the 1Mbytes and 10Mbytes experi-
ments, respectively. PrivacyGuard (with async filtering) is 26.55%(127.7ms) and 9.07%(339.3ms)
slower than no PrivacyGuard in the 1Mbytes and 10Mbytes experiments, respectively. For
PrivacyGuard without filtering, it is 25.64%(123.3ms) and 7.67%(286.8ms) slower than no
PrivacyGuard running in the 1Mbytes and 10Mbytes experiments. In conclusion, filtering
does not introduce much overhead. Furthermore, from the result, we can see that the
relative overhead in uploading gets lower as the size of the file increases.

For the experiments with SpeedTest.net, we can see that the downloading results are
similar for all three settings. For the ping delay, PrivacyGuard introduces about 59.33%
overhead without filtering and 92.0% overhead with sync filtering. Although the percent-
age is high, the absolute increase of the ping delay remains acceptable. PrivacyGuard’s
ping delay is 26ms in average, only 11ms longer than no PrivacyGuard. For the uploading
speed, PrivacyGuard without filtering is 22.19% slower than no PrivacyGuard and Priva-
cyGuard with filtering is 30.22% slower. While doing the experiments, we observed that
the SpeedTest.net application reached high upload speeds at the beginning of an exper-
iment with PrivacyGuard running, but there were sometimes EPIPE errors later in the
experiment. This error often means that the other end of the pipe no longer exists and
the network connection is broken. As we observed, the SpeedTest.net application opens
multiple TCP connections for uploading or downloding. EPIPE errors would shut down
some of the TCP connections and thus slow down the speed. Also, from table A.3, we
can see that PrivacyGuard achieves similar uploading speeds as the scenario without Pri-
vacyGuard running in some tests. We analyzed the TCP packets to see if PrivacyGuard
sends any invalid packets that cause this error, but we could not find any. We also tested
with tPacketCapture2, a close-source application that uses VPNService for packet capture,
and also observed slow uploading speeds. PrivacyGuard should be able to achieve higher
speeds once we figure out the reason for this issue.

2https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.packetcapture&hl=en
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Although PrivacyGuard causes overhead in the uploading tasks, this large-content and
high-frequency uploading is rare in daily use. Usually, the outgoing packets are short
HTTP requests. The latency increase remains acceptable. PrivacyGuard can achieve high
throughput because the filtering takes less time when the packet is small.

4.1.3 Power Consumption

We consider three scenarios: no PrivacyGuard running, PrivacyGuard without filtering,
PrivacyGuard with synchronous filtering. For each scenario, we use UpDownLoader men-
tioned above to run separate experiments for downloading and uploading. This application
downloads or uploads a 1Mbytes file every 10 seconds for a specified period. The method
we use to retrieve the battery level is:

// return the percentage of battery left
double getBatteryLevel() {

// get the status of battery
Intent batteryStatus = this.registerReceiver(

null,
new IntentFilter(Intent.ACTION_BATTERY_CHANGED)

);
// EXTRA_LEVEL returns level of battery left
// EXTRA_SCALE returns the highest level of batter
return 1.0 * batteryStatus.getIntExtra(BatteryManager.EXTRA_LEVEL, -1) /

batteryStatus.getIntExtra(BatteryManager.EXTRA_SCALE, -1);
}

Methodology

For each experiment, we follow these steps:

1. Fully charge the device

2. Connect to the DummyServer running on a desktop

3. Start downloading or uploading a 1Mbyte file every 10 seconds for 60 minutes

4. Turn o↵ the screen

5. The device will vibrate and record the decrease in battery level to a file when the
task finishes
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Table 4.1: Decrease in Battery Level for Power Consumption Experiments

Settings Upload Download
No PrivacyGuard 3.00% 3.99%

PrivacyGuard without filtering 3.00% 4.00%
PrivacyGuard with sync filtering 3.00% 4.00%

Result

The result is shown in table 4.1. From the table, we can see that PrivacyGuard introduces
almost no power consumption even with a high frequency of uploading and downloading.
This result is reasonable since we observe no significant increase on the CPU load by
PrivacyGuard. We are confident that it is practical to use PrivacyGuard in daily life.

4.2 E↵ectiveness Evaluation

In this part, we evaluate whether PrivacyGuard can detect privacy leakages of applications
e↵ectively.

4.2.1 Setup

We test both TaintDroid and PrivacyGuard on both emulators and a real device.

• Emulator: we set up two emulators. One uses TaintDroid 4.3r 1 (which is the most
recent version of Taintdroid), and the other uses stock Android 4.3r 1 with Privacy-
Guard.

• Device: we use a Nexus 4 that runs both TaintDroid 4.3r 1 and PrivacyGuard.

We use both emulators and a device for following reasons:

• Some components of the Google Play service required by some applications are miss-
ing in the emulators.

• Some features are not available in the emulators, such as the network location
provider.
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Initially, we wanted to run all experiments on the emulators because we only have
one device and it is easier to automate experiments on the emulator. We tried to set
up the Google Play service required by some applications. Although the Android virtual
device manager provides emulators with Google API support, we were not able to have
the TaintDroid image support the Google API in the same way. Instead, we downloaded
Google framework apps from Goo.im3 and pushed these to the emulators. The framework
is not complete, but some apps can now run on the emulators. The setup script can be
found in appendix B.

Due to the remaining di�culties, such as the incomplete Google Play service and the
missing features, we also use a real device. Since we only have one device, we run both
TaintDroid and PrivacyGuard on it. Because TaintDroid by default refuses to execute
applications that use third-party native libraries, we modified Taintdroid to have it execute
this kind of apps. This modification is also necessary for PrivacyGuard because it requires
a native library from SandroProxy for hostname lookup.

4.2.2 Methodology

The applications we use to train and test have been used in some other papers ([18], [9]).
In this way, we can compare our results with theirs. We use 13 out of 15 applications from
table 3 of Tripp and Rubin [18] since the other two are not available from Google Play
anymore. For the applications used by Fawaz et al. [9], we asked them for their list. Also,
there are several applications in the list that are not available anymore.

In the training phase, we use the output of TaintDroid as the ground truth to derive
filters to be used by PrivacyGuard. In the testing phase, we use these filters to filter
network tra�c and compare our result with TaintDroid’s result.

For an evaluated application, we do the following:

1. We first uninstall the application if it is already installed, and then install it. We do
this to clear all caches.

2. Before using the app, we first use the monitor tool provided by Android to set up
the GPS location provider of the emulators and then launch our simpleLocation ap-
plication. This app simply reads location values from the provider such that the
getLastKnownLocation() method can return a valid location to the evaluated ap-
plication later. Running this app to make sure getLastKnownLocation() returns a

3https://goo.im/
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Table 4.2: Training Apps List

App Category
TaintDroid PrivacyGuard

Dev.ID Location Contact Dev.ID Location Contact

com.yelp.android Travel&Local X X
com.yahoo.mobile.client.android.weather Weather X X
com.shazam.android Music&Audio X X X X
com.weather.Weather Weather X X
com.groupon Shopping X X X X
com.staircase3.opensignal Tools X X X X
com.yellowpages.android.ypmobile Travel&Local X X
com.urbanspoon Travel&Local X X X X
com.twitter.android Social X X
com.aws.android Weather X X

valid value is necessary because some applications obtain the location only by calling
that method, instead of registering a location update listener.

3. We manually deep crawl the evaluated app in the two emulators at the same time
to make sure we execute the same operations. While crawling the app, we record all
operations by using RERAN4 such that we can replay all operations if we need to
redo the experiments. Initially, we planned to use PUMA [13] for automatic crawling.
However, we gave up for the following reasons: First, we were unable to figure out
how to add PUMA scripts, and the code does not contain the examples shown in
the paper. Also, the crawling approach PUMA has already included was not able
to recognize all UI components. Furthermore, we still need to manually type the
username and password required by some applications, such as Facebook.

4.2.3 Training

We use ten applications from our list of applications for training purposes. In this phase,
PrivacyGuard simply records all network tra�c. From the output of TaintDroid, we can
find the type of information it detects and the tra�c that contains the information. For
each alert raised by TaintDroid for a specific application, we manually look for the corre-
sponding data in the network tra�c of this application recorded by PrivacyGuard. From
the corresponding data, we read the tra�c to find possible patterns and design a filter for
the patterns. The applications we use for training are shown in table 4.2. The checkmark
means the corresponding information is detected in the network tra�c of that application.

The data we try to detect and the filters we find are in table 4.3. For the location

4http://www.androidreran.com/
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Table 4.3: Filters

Data Source Filters
Location all available location providers keep two decimal points
Dev.ID IMEI, IMSI, AndroidID plain text, SHA, MD5
Contact phone number, email address regular expression

data (i.e., latitude and longitude), we keep two decimal points of the floating point values
as filters. For the device identifiers, we also compute the SHA-1 and MD5 hashes of the
original data as filters since some applications send these hashes instead. These filters may
be incomplete, but it is easy to add more.

In the training phase, we observe that there are many network packets that are detected
as leaks by Taintdroid but for which we fail to find obvious variants of private data in these
packets. Therefore we could not derive appropriate filters for these packets. Some of them
are links to pictures. We suspect that these leaks are false positives.

Also, while doing experiments on the real device, there are many SMS leakage notifica-
tions from TaintDroid for almost every application. We read the source code of TaintDroid
and learn that TaintDroid will set the SMS taint flag if the ContentProvider.query()
method finds that there is a sms:// or mms:// string in the given URI for querying.
However, we cannot find any of these two strings in the decompiled source code of these
applications. What makes us even more confused is that these apps do not have any SMS
related permissions in their AndroidManifest.xml files.

4.2.4 Testing Results

For PrivacyGuard, we use the filters from the training phase to analyze network tra�c.
For TaintDroid, we run it and record its notifications. The testing results are shown in
table 4.4 and table 4.5.

We also run PrivacyGuard and TaintDroid on some of the most popular advertising
libraries. For each library, we develop a dummy application to wrap it. As shown in
table 4.5, PrivacyGuard works for four out of five libraries and TaintDroid fails on Amazon’s
library. The reason for the failure of TaintDroid is that Amazon’s library uses native code
to round up floating point numbers.

Table 4.6 shows how many applications have privacy leakages detected by TaintDroid
and PrivacyGuard.
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Table 4.4: Testing Results of Applications

App Category
TaintDroid PrivacyGuard

Dev.ID Location Contact Dev.ID Location Contact
com.google.android.apps.maps Travel&Local X
com.facebook.katana Social X X
com.android.chrome Communication X X
com.google.android.apps.plus Social X X
fr.epicdream.beamy Shopping X X X X
net.flixster.android Entertainment X X
org.zwanoo.android.speedtest Tools X X X X
com.imdb.mobile Entertainment X X X
gbis.gbandroid Travel&Local X X X
com.zc.android Transportation X
org.wikipedia Books&Reference X X
com.starbucks.mobilecard Lifestyle X
com.joelapenna.foursquared Travel&Local X X
com.ikea.app Lifestyle
thecouponsapp.coupon Shopping X X X
com.magnifis.parking Transportation X X
com.levelup.beautifulwidgets.free Personalization
com.chrome.beta Productivity X X
com.fitnesskeeper.runkeeper.pro Health&Fitness X X
ch.search.android.search Books&Reference X
org.mozilla.firefox Communication X
com.evernote.food Lifestyle X X
com.microsoft.bing Books&Reference X
com.walmart.android Business X X X
com.webmd.android Health&Fitness X X
com.antivirus Communication X X
com.appshop.ios7lockscreen 2 Personalization
com.bestcoolfungames.antsmasher Game/Arcade X
com.cleanmaster.mguard Tools X
com.coolfish.cathairsalon Game/Casual X
com.digisoft.TransparentScreen Entertainment X X X
com.g6677.android.cbaby Game/Casual X X
com.g6677.android.chospital Game/Casual X X
com.g6677.android.design Game/Casual X X
com.g6677.android.pnailspa Game/Casual X X
com.g6677.android.princesshs Game/Casual X X
com.goldtouch.mako News&Magazines X
com.dictionary.com Books&Reference X X

Table 4.5: Testing Results of Advertising Libraries

App Category
TaintDroid PrivacyGuard

Dev.ID Location Contact Dev.ID Location Contact
admob Ad Library
amazon Ad Library X
airpush Ad Library X X
inmobi Ad Library X X
mopub Ad Library X X
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Table 4.6: Testing Results Analysis

Number of Applications Detected TaintDroid PrivacyGuard
Location 21 26
Device ID 10 19
Contact 0 0

For the device IDs, the reason TaintDroid fails is that it does not detect IMEI leaks.
We do not know why TaintDroid is unable to detect IMEI leaks.

For the location, we can see that PrivacyGuard can detect more leaks than TaintDroid.
However, there are some applications for which PrivacyGuard is unable to detect leakages,
such as com.starbucks.mobilecard or com.dictionary.com. They use the Google map API
for location-based services. Inspecting the network tra�c indicates that this API seems to
obfuscate the location data. The obfuscation makes it almost impossible for PrivacyGuard
to detect the leakage. This limitation is also mentioned in section 3.10.

4.3 Conclusion

With the result of our evaluations, we can conclude that PrivacyGuard introduces accept-
able overhead on the network performance and almost no overhead on the battery life. It
is possible to use PrivacyGuard in daily life. Also, by using the filters we designed based
on the analysis of network tra�c in the training phase, PrivacyGuard can detect almost
all leakages from all applications.
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Chapter 5

Future Work

There is a great deal of possible future work. We list some topics below.

Privacy Enforcement Algorithms

Since PrivacyGuard provides access to the plain network tra�c, it is possible to implement
anonymity algorithms. These algorithms can coarsen the private data in the network
tra�c without a↵ecting the usability of applications. PrivacyGuard provides an easier
way for prototyping these strategies than modifying Android ([9], [14]). Also, because
PrivacyGuard can do the filtering before sending out a message, it is possible to ask the
user for confirmation before sending the message.

Advanced Filters

Currently, the filtering plugins execute a simple string search to detect privacy leakages.
This simple string searching can be inadequate. Inspired by Tripp and Rubin ([18]), we can
improve the detection rate and reduce the false positive rate by adding Bayes classifications.
In general, it is possible to implement many classification algorithms to make the detection
more accurate.

Destination-Aware Filters

Although it is di�cult to distinguish network tra�c issued by advertising libraries from
network tra�c generated by the core of applications in PrivacyGuard, we can leverage
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the destination information to distinguish. The hostname or the IP address can help us.
For example, we can add a black list of IP addresses where we do not want any sensitive
information to be sent.

Location Based Filtering Policies

Location-based filtering is easy to add in PrivacyGuard. For example, it could be useful to
give users the option to block location data only in a specified period, in specified places
or for some applications.

Bug Fixes and Code Optimization

During the experiments, we observed that there are some EPIPE errors, which dramatically
slow down the uploading speed. From table A.3 for the network performance experiments,
we can see that the uploading speed can reach a high value in some tests. We could not
find the reason, but there is a potential improvement in the uploading speed.

User-friendly Interfaces

PrivacyGuard provides a platform for developers to develop their own plugins. These
plugins may need proper configurations to adapt to di↵erent requirements of di↵erent
users. Also, there may be too many notifications with many plugins installed. Adding
user-friendly interfaces could help users configure their plugins as well as avoid distraction.
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Chapter 6

Conclusion

We propose and implement a new approach, PrivacyGuard, to detect privacy leakages.
PrivacyGuard does not require root permissions and is portable to all devices with Android
versions newer than 4.0. It is easy to use without any knowledge about security or privacy.
It is extensible and configurable, and it provides a new option for prototyping other privacy
enforcement algorithms. With the support of a man-in-the-middle proxy, PrivacyGuard
can also filter SSL tra�c if there is no SSL pinning. In addition, it introduces acceptable
overhead in both the power consumption and the network performance. PrivacyGuard
is practical to use in daily life. According to the experiment results, PrivacyGuard can
e�ciently detect privacy leakages of most applications.

PrivacyGuard is open-source and available in Bitbucket1.

1https://bitbucket.org/Near/locationguard
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Appendix A

Experiment Data

A.1 Network Performance Experiments
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Table A.1: Experiment Data for 1Mbytes file experiments

(ms)
No PrivacyGuard PrivacyGuard (no filter) PrivacyGuard (sync filter) PrivacyGuard (async filter)
Up Down Up Down Up Down Up Down

1 418 563 578 640 563 593 604 N/A
2 425 756 739 515 574 646 553 N/A
3 512 539 532 680 600 757 572 N/A
4 546 569 558 625 541 626 534 N/A
5 618 838 612 742 585 884 608 N/A
6 495 891 596 750 930 946 738 N/A
7 449 1224 793 1213 533 851 520 N/A
8 410 561 524 777 904 938 750 N/A
9 504 759 561 823 672 896 637 N/A
10 432 635 549 583 556 535 570 N/A

Avg 480.9 733.5 604.2 734.8 645.8 767.2 608.6 N/A
Overhead 25.64% 0.18% 34.3% 4.60% 26.55% N/A

Table A.2: Experiment Data for 10Mbytes file experiments

(ms)
No PrivacyGuard PrivacyGuard (no filter) PrivacyGuard (sync filter) PrivacyGuard (async filter)

Up Down Up Down Up Down Up Down
1 3372 4804 3982 6115 4509 6490 4828 N/A
2 4631 4871 4871 5116 4041 4929 4456 N/A
3 3641 5707 3847 5218 3898 5078 3366 N/A
4 3299 5675 4273 7046 5406 5168 4948 N/A
5 4663 5920 3945 5721 4549 6386 4165 N/A
6 4578 5672 4377 6751 3800 5321 3328 N/A
7 3229 5688 3780 4797 3455 4554 3748 N/A
8 3204 4377 3224 4852 3718 5264 3788 N/A
9 3353 4623 3913 5419 3769 4926 3513 N/A
10 3425 4970 4051 5038 5041 6451 4648 N/A

Avg 3739.5 5230.7 4026.3 5607.3 4218.6 5460.3 4078.8 N/A
Overhead 7.67% 7.20% 12.81% 4.39% 9.07% N/A
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Table A.3: Experiment Data for SpeedTest.net

Ping(ms) No PrivacyGuard PrivacyGuard (no filter) PrivacyGuard (sync filter)
Up/Download(Mbps) Ping Down Up Ping Down Up Ping Down Up

1 13 17.39 22.89 19 17.11 20.81 29 15.26 19.04
2 12 19.35 20.71 29 18.41 21.52 25 20.05 21.43
3 14 16.92 18.69 29 15.62 19.03 30 17.05 14.55
4 12 17.72 27.48 25 17.65 23.81 25 18.82 12.34
5 13 18.29 27.60 21 16.58 13.68 25 16.31 13.15
6 39 20.21 27.48 22 19.07 21.02 30 13.69 13.77
7 16 6.84 3.26 25 7.88 11.34 33 13.58 11.82
8 12 19.01 24.24 20 11.67 12.50 31 17.23 13.25
9 10 12.95 24.07 29 15.27 11.89 30 14.41 11.57
10 9 13.49 23.30 20 15.31 15.37 30 19.99 22.40

Average 15 16.217 21.972 23.9 15.457 17.097 28.8 16.639 15.332
Overhead 59.33% -4.69% -22.19% 92.0% 2.60% -30.22%
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Appendix B

Script for Setting up Google Play
Service on Emulators

adb -s $device shell mount -o remount r,w /system
adb -s $device shell chmod 777 /system/app
adb -s $device push "${GOOGLEPLAY_DIR}/GoogleLoginService.apk" /system/app/.
adb -s $device push "${GOOGLEPLAY_DIR}/GoogleServicesFramework.apk" /system/app/.
adb -s $device push "${GOOGLEPLAY_DIR}/Vending.apk" /system/app/.
adb -s $device shell rm /system/app/SdkSetup*
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Appendix C

Interface for Plugins

package com.y59song.Plugin;

import android.content.Context;

public interface IPlugin {
// filter on requests and responses.
// our plugins only implement handlerequest now
public String handleRequest(String request);
public String handleResponse(String response);

// change the request or response to achieve shadow or anonymity
public String modifyRequest(String request);
public String modifyResponse(String response);

// set a context member to get access to device information
public void setContext(Context context);

}
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Appendix D

/proc/net/tcp Files Example

sl local_address rem_address st tx_queue rx_queue tr tm->when retrnsmt
uid timeout inode
0: 62CE140A:95A8 B7A7CDCB:1388 01 00000000:00000000 00:00000000 00000000 10102 0
1854718 1 00000000 310 4 30 10 -1
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