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Abstract 

In this thesis, phenotype switching in cancer cell populations is modeled. We focus on the 

behavior of cells at the phenotypic level and present mathematical models to capture the results 

of available experiments. The models, based on the cancer stem cell hypothesis (in addition to 

the new concept of plasticity in tumor populations), are also employed to predict cancer cell 

growth in vitro and in vivo.  

The models are analyzed in the two limits of large and small cell numbers. We use stochastic 

analysis to capture the random behavior of cells in the limit of low number as observed in 

mammosphere formation assays (MFAs). Stochastic analysis is employed to estimate 

quantities such as survival rate while the deterministic solution of the models is obtained to 

simulate the average behavior of cells. The importance of stochastic analysis and deterministic 

simulations is discussed in detail. 

The primary purpose of the thesis is to highlight the importance of stochastic analysis in cancer 

stem cell experiments. The models are developed or modified based on the idea that both 

stochastic and deterministic behavior of cells should be considered simultaneously. In order to 

describe the behavior of the cells in cancer stem cell assays, the developed models are then 

used to investigate the possible experimental errors in the area and suggest possible filtration 

methods for corresponding experiments. In addition, the models are used to investigate the 

behavior of tumors under radiotherapy; and the effects of phenotype switching on the 

efficiency of therapies are investigated in the final part of the thesis. 
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Chapter 1 

Introduction 

1.1 What is cancer? 

Cells are the building blocks of our tissues and organisms. Our body includes organs, each of 

which contains different tissues, and cells are the building blocks of these tissues. Cells grow 

in a controlled way so that the size of the tissue and its structure remains at a controlled normal 

level. The cells divide and die in order to maintain equilibrium in our body. However, losing 

this equilibrium, causes abnormal growth of the cells, which is called cancer. The extra mass 

of cells aggregates in a tissue is called a tumor, and this can be benign or malignant.  

1.1.1 Benign tumors  

Benign tumors are not usually a threat to life. They can be removed in most cases and do not 

have the capability of spreading to other parts of the body and developing tumors in other 

tissues. Some examples of benign tumors are presented in Table 1. 

  

Table 1 Examples of benign tumor types and a brief description of their characteristics. 

Name Description 

Adenoma Grows in and around the glands 

Osteoma Originating in the bones 

Angioma Usually composed of small blood vessels 

Lipoma A tumor in a fatty tissue 

 

1.1.2 Malignant tumors 

Unlike benign tumors, malignant tumors can invade and damage the nearby tissues. They also 

have the ability to spread to other parts of the body using the lymphatic or vascular system in 

a process called metastasis. They can grow in secondary locations and develop new tumors. 

Some of the important types of malignant tumors (or cancer) are presented in Table 2. 
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Table 2 Examples of malignant tumor types and a brief description of their characteristics. 

Type Description 

Carcinoma Originating from epithelial cells (most cancer 

are carcinomas) 

Sarcoma Originating from bone, fat muscle or connective 

tissues 

Leukemia Malignant white blood cells 

Lymphoma Altered lymphatic system cells 

Myelomas Results from changes in specialized white blood 

cells that make antibodies 

 

Cancer can be caused by environmental factors like chemicals, tobacco and ionizing radiation. 

These factors cause genetic alterations and, subsequently, epigenetic changes result in cancer 

cells in a tissue. 

1.2 The hallmarks of cancer 

The hallmarks of cancer (Fig. 1) are the physiological characteristics or potentials that underlie 

different cancer cells and tumor types [1]. However, some tumor types or a tumor at different 

stages of its development may not show all of these features, e.g. metastasis may not operate 

at the early stages of tumor growth. Acquiring knowledge about the hallmarks of cancer can 

help to estimate the behavior of tumors and to find appropriate therapies (Fig. 1).  

Initially, it was believed that tumors were homogeneous and the result of the evolution of a 

single phenotype. However, it is now widely accepted that any tumor includes different 

phenotypes. The well-known cancer stem cell (CSC) hypothesis has helped scientists in the 

field to explain this heterogeneity [2]. The cells in tumors may be phenotypically 

heterogeneous because of being in different stages of differentiation [1]. We will discuss the 

CSC hypothesis in detail later in this chapter. 
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Figure 1 “Therapeutic targeting of the hallmarks of cancer”(reproduced from [1]). 

1.3  Hypotheses 

The basic hypotheses of theories of tumor cell phenotypes and their growth has evolved over 

the last fifty years of research in the field. Here, we briefly introduce three main ideas: Clonal 

Evolution, Cancer Stem Cell Hypothesis, and Tumor Plasticity. 

Clonal Evolution: Most tumors arise from single cells through the sequential accumulation of 

numerous genetic changes and epigenetic modifications.  

Cancer Stem Cell Hypothesis [2]: Only "cancer initiating cells" have the capacity for 

unlimited proliferation and are therefore responsible for the initiation and maintenance of 

tumors. 

In order to clarify the differences of these two models, the assumptions and the subsequent 

conclusions of the models are presented in Table 3. 
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Table 3 Comparison of CSC and Clonal Evolution models. 

 Cancer Stem Cell Model Clonal Evolution  

Frequency of cancer cells with 

tumorigenic potential 

Rare to Moderate High 

Phenotype of cancer cells Heterogeneous Heterogeneous or 

Homogeneous 

Tumor organization Hierarchical Not hierarchical 

Rational approach to therapy Target only tumorigenic cells Target most or all cells 

 

The CSC hypothesis was originally proposed because of the similarity between some of the 

properties of stem cells in normal tissues and these phenotypes in tumors (Table 4 and 5).  

Table 4 Comparison of normal and cancer stem cells. 

Normal stem 

cells 

Rare cells within organs with the ability to self-renew and give rise to all 

types of cells within the organ to drive organogenesis. 

Cancer stem 

cells 

Rare cells within tumors with the ability to self-renew and give rise to the 

phenotypically diverse tumor cell population to drive tumorigenesis. 

 

Recently a new concept has emerged in the field of cancer biology, which could be also 

considered a new hypothesis. 

Tumor Plasticity: A degree of plasticity between the non-CSC and CSC compartments may 

exist in cancer cell populations (Fig. 2). 
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Table 5 Examples of similarities between normal and cancer stem cells. 

Self-renewal toward generating two cells of the same phenotype as the cells of origin. 

 Tissue-specific stem cells must self-renew to maintain specific organs. 

 Cancer stem cells undergo self-renewal to maintain tumor growth. 

Differentiation into phenotypically diverse mature cell types. 

Give rise to a heterogeneous population of cells of which the organ or tumor is composed 

but lack the ability for unlimited proliferation (hierarchical arrangement of cells). 

Regulation by similar pathways 

Pathways that regulate self-renewal in normal stem cells are also regulated in cancer stem 

cells. 

 

The existence of plasticity means that targeting only CSCs in each tumor may not be the 

solution and that the non-CSCs may dedifferentiate generating more CSCs. 

 

Figure 2 “Stem-differentiation hierarchy. Increased plasticity may be present within cancer 

populations, enabling bidirectional interconvertibility between CSCs and non-CSCs” 

(reproduced from [3]). 
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1.4 Tumor microenvironment 

One of the factors that dynamically affects the behavior of cancer cells in vivo is the tumor 

microenvironment. Oxygen concentration and pH level are among the important parameters in 

the tumor microenvironment that affect the behavior of cells and vary the growth rate and 

aggressiveness of tumors [4]. It has been shown that hypoxia, a low concentration of oxygen, 

reduces the lethal effect of radiotherapy [4]. Hypoxia may cause the cells to go to a resistant 

state and not to show the expected behavior under radiation therapy and chemotherapy.  

Hypoxia may cause switching between the phenotypes, resulting in more CSCs in the 

population [5]. Proliferation capacity, self-renewal and tumorigenicity of cancer cells in 

hypoxic regions can be increased [6]. Higher tumoreginic potential and resistance in hypoxia 

make it a harsh microenvironment for the tumors. Acidity may also have the same effect [7]. 

1.5 Mathematical models 

In general, two types of mathematical models have been proposed based on the biological 

hypotheses of tumor growth: hierarchical and phenomenological. In the hierarchical models, 

we consider a hierarchy of cells similar to the hierarchy of normal cells originating from stem 

cells [8] (Fig. 3 (a)) while in phenomenological models we do not want to exactly simulate the 

hierarchy of differentiation in cancer cell populations. We consider similar phenotypes of 

cancer cells in one compartment in the phenomenological models (for example we can consider 

two compartment of CSCs and non-CSCs as shown in Fig. 3 (b)).  

In both kind of models, other concepts can be added, such as the imperfectness of surface 

biomarkers [8] used in the experiments to recognize CSCs and other phenotypes in the 

population of cancer cells.  

1.5.1 Mathematical analysis 

We can analyze the behavior of cancer cells in the two limits of small and large populations. 

In each model, small populations of cells can be analyzed using stochastic modeling, and large 

populations can be modeled deterministically [9], [10].  
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In stochastic modeling of the tumor cells, we capture random behavior of cells and try to 

understand the behavior of single cells. On the other hand, deterministic analysis gives us the 

average behavior of cells and is useful when we are dealing with large cell populations. The 

importance of stochastic analysis is discussed in detail in the next chapters. 

There are some experiments or biological terminology that are described in the next chapters. 

 

Figure 3 Schematic representation of (a) a hierarchical model (S is used to show CSC and Pi are 

generations of non-CSCs and M is the mature cell in the last stage of the hierarchy) and (b) a 

phenomenological model (red spheres are CSCs and the other colors are other phenotypes in 

the modeled tumor). 

1.6 Order of chapters 

We describe four projects that investigate the behavior of cancer cell populations based on the 

CSC hypothesis. In the first chapter, we suggest that deterministic analysis is not enough to 

capture the behavior of cancer cells and stochastic modeling should be also taken into 

consideration. To show the importance of stochastic analysis, a phenomenological model, two-

compartment model, and a hierarchical model are used. We also discuss in the second chapter 

how the experimental errors in cancer studies can be included in the modeling. We use this 

concept and propose a new model in chapter three to show the importance of imperfectness of 

biomarkers in cancer study. In addition, we briefly discuss possible errors in mammosphere 

formation assays (MFA). Then, we use the modeling in chapter four to analyze and show the 

importance of these errors in MFA. Finally, the last chapter is dedicated to the effect of 

switching between different phenotypes in tumor populations when radiotherapy is applied.  
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Chapter 2 

Plasticity and phenotype switching in cancer cell populations: 

stochastic versus deterministic approaches 

The traditional view of tumor growth is based on the hypothesis of monoclonal cellular 

expansion. The alternative cancer stem cell hypothesis suggests that only a subpopulation of 

so-called cancer stem cells (CSCs) has the capacity to proliferate via a hierarchical model of 

unidirectional differentiation. However, growing experimental evidence suggests the existence 

of a bidirectional hierarchy, in which dedifferentiation of cancer cells toward CSCs is 

permitted. Various mathematical models have been developed over the past few years enabling 

the incorporation of plasticity and phenotype switching in cancer cell populations. The focus 

of most of these models and analysis is on the behavior of the cancer cells in the limit of a large 

population. However, the behavior of these models changes in the limit of small numbers of 

cells, which correlates with biologically relevant assays such as the mammosphere formation 

assay (MFA), in which stochastic effects predominate. We show that the stochastic behavior 

of cancer cells with the same deterministic compartment, defined as the average of random 

behavior of single cells, can be extremely different. We also explore the potential effect of 

plasticity acting to decrease the survival probability of cancer stem cells stochastically, while 

still increasing survival in the large population analysis. Conclusively, we show that both small 

and large populations of cancer cells should be studied at the same time to be able to propose 

a promising model. 

2.1 Introduction 

Heterogeneity among cellular populations has recently been identified as a significantly 

important factor complicating and impeding treatment response in a number of solid tumors. 

This heterogeneity giving rise to diverse phenotypes may be explained by both the standard 

theory of clonal evolution, and the cancer stem cell (CSC) hypothesis[11]. The theory of clonal 

evolution states that most tumors arise from single cells through the sequential accumulation 

of numerous genetic changes and epigenetic modifications. However, the cancer stem cell 

hypothesis suggests that only a sub-population of so-called "cancer initiating cells" have the 
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capacity for unlimited proliferation and are therefore responsible for the initiation and 

maintenance of tumors [12]–[14]. Purported cancer stem cells, in addition to their ability to 

self-renew indefinitely, may undergo symmetric or asymmetric "unidirectional" divisions 

along a hierarchy of differentiation to generate daughter cells with low tumorigenic potential 

(non-CSCs) [12], [15]. However, recent experimental studies have suggested that the 

unidirectional hierarchy model of CSCs should be modified to account for experimental 

evidence suggesting a degree of plasticity between the non-CSC and CSC compartments[9]. 

The dedifferentiation of non-CSCs into CSCs may also arise due to stochastically acquired 

genetic or epigenetic changes in genes governing the CSC state. For instance, recent studies 

have shown that overexpression of BMI1 (polycomb ring finger oncogene) in transformed 

epithelial cells can promote their conversion into a CSC-like state with increasing 

tumorigenicity and metastatic potential[11]. Interestingly, BMI1 has also recently been shown 

to be critical for stem cell self-renewal in brain tumors and is an indicator of poor prognosis 

[16]. The dedifferentiation of non-CSCs into CSCs may also be driven by the epithelial to 

mesenchymal transition (EMT), a cellular differentiation program wherein epithelial cells 

adopt mesenchymal features. Recent studies have also linked the EMT with the acquisition of 

stem-cell-like characteristics [17]. 

The main translational implications of the CSC model and tumor plasticity lie in the planning 

of appropriate and efficacious treatment strategies. Importantly, several studies have indicated 

that CSCs are resistant to many of the standard therapeutic regimes, including chemotherapy 

and radiation therapy [18], [19]. In fact, experimental studies have shown an increase in the 

expression of CSC markers and the self-renewal capacity after these treatments, suggesting the 

presence of a treatment-refractory CSC population. Moreover, therapies that target primarily 

CSCs may ultimately be unsuccessful if non-CSCs are able to dedifferentiate into a CSC state. 

If at least some differentiated cells possess the plasticity enabling them to revert to a stem-like 

state, then reconciliation with the cancer stem cell hypothesis results in a dynamic and robust 

pool of CSCs that is difficult to completely eradicate. Hence, it is of critical importance to 

develop a deeper understanding of the plasticity and heterogeneity of cancer cells to overcome 

these therapeutic limitations. We argue that appropriate mathematical models, based on 
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sufficient experimental data, can help in understanding the cancer stem cell hypothesis and 

characterizing the phenotypic plasticity of cells. 

Several mathematical models have been developed to study the heterogeneity of cancer cells 

and the CSC hypothesis [20]–[26]. Recently, theoretical approaches have been also used to 

better understand and characterize the nature of tumor cell plasticity. Two classes of 

mathematical models have been developed – those that incorporate an essential hierarchy of 

differentiation, and those that do not, and can be thought of as phenomenological models. A 

biological justification for a hierarchical model of phenotypic plasticity is inspired by the 

process of differentiation that is known to occur within normal stem cell populations, whereby 

stem cells differentiate into progenitor cells which have a limited number of possible self-

renewals and then finally into mature, fully differentiated cells. Turner and Kohandel 

generalized the hierarchical model of CSCs to include the dedifferentiation from non-CSCs to 

CSCs due to the EMT [27]. They utilized a stochastic model in the case of a small number of 

cells comprising a tumor (simulating the experimental tumorsphere formation assay), while a 

related deterministic model is used for larger cell populations. Chaffer et al. (2011) and Gupta 

et al. (2011) also developed non-hierarchical deterministic models to quantitatively describe 

phenotype switching between subpopulations of cancer cells [9], [10]. 

Gupta et al. (2011) suggested a model of one stem cell and two epithelial (basal and luminal) 

phenotypes for SUM159 and SUM149 breast cancer cell lines [9]. The CD44hi/CD24lo marker 

is considered the primary marker of stemness while EpCAM (or ESA) is used to distinguish 

basal cells from CSCs. In their model, all three phenotypes have proliferative capacity and a 

finite transition probability between all the three phenotypes is developed to explain the 

observed results. For the SUM149 cell line, it is observed that the dominant transition from the 

stem cell phenotype is switching into a luminal cell, whereas for a SUM159 cancer stem cell, 

the dominant transition is found to be into a basal cell type. The numerical values for stem cell 

and non-stem cell proliferation rates and the phenotype switching transition rates are obtained 

by matching the model results with observed steady state fractions of the three sub-populations 

(after 12 days). The growth rates are measured for either of the sub-populations (filtered by 
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FACS) confirming a proliferation potential of all sub-populations. However, their approach is 

based on a few main assumptions as described below. 

First, in a non-hierarchical model of stem cell proliferation, the mathematical models formed 

often require self-renewal proliferation rates on non-stem cell populations, essentially 

conferring the unique stemness property on inherently non-stem cell populations. Thus, 

mathematically, such a model is sufficient to explain the phenotype switching phenomena up 

to fitting the parameters, but the underlying biology relies upon an assumption that may be 

inherently flawed. Hence, the dynamics of such models, apart from their steady states, should 

not be assumed to be experimentally valid. In fact, mathematical analyses have shown that the 

proliferation potential of non-CSCs may not reproduce biologic observations and that the 

generational hierarchy appears to play an important role in overall tumor growth [25]. 

A second issue arises with regards to the identification of CSCs. All currently available 

methods for isolating, or enriching for CSCs rely upon the use of a biomarker or a combination 

of biomarkers, such as CD133, GD2, or CD44/CD24. However, it has been shown that 

isolating based only on fluorescence levels of these biomarkers is insufficient to purify only 

CSCs, experimentally confirmed by the fact that when these biomarker positive cells are 

disaggregated into single cell suspensions, not all form tumorspheres, or aggregates of 

cells[28]. Thus, the employed biomarkers are imperfect and experimental data supports the 

hypothesis of the existence of a subpopulation of non-CSCs that are biomarker positive. To 

address this imperfectness, Zapperi and La Porta (2012) used a hierarchical model to describe 

the same results via direct inclusion of the effect of imperfectness in biomarkers [29]. The 

imperfectness is considered in following way: the biomarker-positive subpopulation is defined 

such that it may include a small population of non-CSCs, and the biomarker-negative 

subpopulation is defined such that it may include a small population of CSCs. For example, 

differentiated cells generally are biomarker-negative, but within this biomarker-negative 

group, some CSCs are accounted for, to correct for an imperfection in the biomarker 

identification of these CSCs. In each cell division, every positive (or negative) cell has the 

potential to divide into two positive daughter cells, or one positive and one negative cell with 
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different, but fixed, probabilities. Authors were able to fit the growth rate plot of Gupta et al. 

(2011) using this hierarchical model [9]. Turner and Kohandel (2010) used an alternative 

method to incorporate the biomarker imperfectness, supposing that as cells differentiate, they 

become increasingly committed, and therefore downregulate the expression of proteins that 

would make them stem-like [27]. Thus, they assumed that the biomarker is retained for CSCs 

and the first few generations of progenitor cells, to account for its imperfectness, and then after 

those biomarker positive generations of progenitor cells, the remaining cells of the hierarchy 

are biomarker negative. 

A main shortcoming in some of the previous studies, namely Chaffer et al. (2011), Gupta et al. 

(2011), Zapperi and La Porta (2012), is that these studies are fully based on deterministic 

approaches to validate the corresponding experimental data with large numbers of cells 

including fraction of CSCs and population doublings (PD). Although their models agree well 

with the corresponding experimental data, lack of data from mammosphere formation assays 

conceals the stochastic behavior of cancer cells, which becomes relevant when small numbers 

of cells are considered.  

In this work, we show that stochastic effects play a critical role in tumor cell behavior, and that 

model validation using experimental data quantifying these stochastic effects, such as sphere-

formation assays, is critical [30]. To this end, we develop a stochastic model describing a two-

compartment phenotype switching model, as originally suggested in Gupta et al. (2011), and 

compare model simulation results with a hierarchical model of CSC proliferation, adapted from 

the work of Turner and Kohandel (2012). We show that the two models give the same 

deterministic behavior, but give significantly different stochastic behavior. This not only 

supports the application of both deterministic and stochastic approaches to study cancer 

heterogeneity and plasticity, but also it stresses the importance of sphere formation assays to 

obtain a more accurate description of the system being studied. 
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2.2 Method 

We consider two mathematical models: a two-compartment model (TCM), as used by Chaffer 

et al. (2011) and Gupta et al. (2011), depicted in Fig.4(a), and a hierarchy model (HM), adapted 

from the work of Turner and Kohandel (2012), shown in Fig. 4(b). We investigate the behavior 

of the population of cancer cells for both small and large numbers of cells to compare their 

stochastic and deterministic properties. 

The two-compartment model consists of two phenotypically distinct cellular subpopulations 

of biomarker negative and positive cells, for instance CD44highCD24low and 

CD44lowCD24high in breast cancer, each with the ability to self-replicate and the ability to 

transition into the other phenotype. We also add cell death as one of the possible changes in 

each subpopulation, as depicted in Fig. 4(a). Adding a distinct death rate is required to 

accurately model the experimental behavior of the cancer cells in small populations such as 

the growth of the cells in the MFA. We show that the birth and death rate can be combined 

into a proliferation rate without any change in the deterministic properties of the system, but a 

combined net proliferation rate is not a sufficient system descriptor when stochastic effects are 

taken into consideration, in theory. The models also take into account dedifferentiation, or the 

conversion of non-CSCs into CSCs, by accounting for this reverse reaction. Additionally, to 

model the concept that the biomarker used to distinguish the CSCs is imperfect, following 

Turner and Kohandel (2012), we suppose that the first k generations of progenitor cells are 

biomarker positive (Fig. 4(b)). 

Here we present the details of the two-compartment model (TCM) and the hierarchical model 

(HM) as discussed in the main text. The deterministic behavior of each sub-population is 

modeled using ordinary differential equations and the stochastic behavior modeled is described 

by master equations.  
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2.2.1 Two compartment model 

The following system of ordinary differential equations defines the deterministic behavior of 

both CSCs (S), assumed to be positive biomarker, and non-CSCs (P), assumed to be biomarker 

negative, in the TCM: 

𝑑𝑆

𝑑𝑡
= (𝜌𝑠𝑠 − 𝜌𝑠𝑝)𝑆 + 𝜌𝑝𝑠𝑃 

𝑑𝑃

𝑑𝑡
= (𝜌𝑝𝑝 − 𝜌𝑝𝑠)𝑃 + 𝜌𝑠𝑝𝑆 

(2.1) 

 

Here 𝜌𝑠𝑠 and 𝜌𝑝𝑝 are self-renewal rates of CSCs and non-CSCs, respectively. The coefficients 

𝜌𝑠𝑝 and 𝜌𝑝𝑠 represent the switching rates between the two compartments. In order to obtain the 

fraction of each sub-population, we define: 

𝐹positive(𝑡) =
𝑆(𝑡)

𝑆(𝑡) + 𝑃(𝑡)
, 𝐹negative(𝑡) =

𝑃(𝑡)

𝑆(𝑡) + 𝑃(𝑡)
 (2.2) 

In the steady state, we have: 

𝐹positive =
𝛾1 +√𝛾1

2 − 4𝛾2
2

,   𝐹negative = 1 − 𝐹positive,    𝛾1

=
𝜌𝑝𝑝 + 𝜌𝑝𝑠 + 𝜌𝑠𝑝 − 𝜌𝑠𝑠

𝜌𝑝𝑝 − 𝜌𝑠𝑠
,    𝛾2 =

𝜌𝑝𝑠
𝜌𝑝𝑝 − 𝜌𝑠𝑠

 

(2.3) 

In order to investigate the stochastic behavior of the cancer cells in the TCM, we write the 

corresponding master equation for the joint probability function:  

𝜕𝑝(𝑛𝑆, 𝑛𝑃 , 𝑡)

𝜕𝑡
= 𝜌𝑆𝑆(𝑛𝑆 − 1)𝑝(𝑛𝑆 − 1, 𝑛𝑃 , 𝑡) + 𝜌𝑃𝑃(𝑛𝑃 − 1)𝑝(𝑛𝑆, 𝑛𝑃 − 1, 𝑡)

+ 𝜌𝑆𝑃(𝑛𝑆 + 1)𝑝(𝑛𝑆 + 1, 𝑛𝑃 − 1, 𝑡) + 𝜌𝑃𝑆(𝑛𝑃 + 1)𝑝(𝑛𝑆 − 1, 𝑛𝑃 + 1, 𝑡)

+ 𝛤𝑆(𝑛𝑆 + 1)𝑝(𝑛𝑆 + 1, 𝑛𝑃 , 𝑡) + 𝛤𝑃(𝑛𝑃 + 1)𝑝(𝑛𝑆, 𝑛𝑃 + 1, 𝑡)

− [(𝜌𝑆𝑆 + 𝜌𝑆𝑃 + 𝛤𝑆)𝑛𝑆 + (𝜌𝑃𝑃 + 𝜌𝑃𝑆 + 𝛤𝑃)𝑛𝑃]𝑝(𝑛𝑆, 𝑛𝑃 , 𝑡) 

(2.4) 

where we have assumed that at the initial time 𝑡0, the number of each type of cell is known 

and these values are denoted 𝑛𝑆
0 and 𝑛𝑃

0  for CSCs and non-CSCs, respectively. 
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2.2.2 Hierarchy model 

The following ordinary differential equations present the deterministic behavior for each sub-

population of cells in the hierarchy model, based on the divisions and switching shown in Fig. 

4: 

𝑑𝑆

𝑑𝑡
= 𝜌𝑆(𝑟1 − 𝑟3)𝑆 + 𝛾𝑝𝑃1 

𝑑𝑃1
𝑑𝑡

= −(𝛾𝑝 + 𝛤𝑝 + 𝜌𝑝)𝑃1 + 𝜌𝑆(𝑟2 + 2𝑟3)𝑆 + 𝛾𝑝𝑃2 

𝑑𝑃𝑖
𝑑𝑡
= −(𝛾𝑝 + 𝛤𝑝 + 𝜌𝑝)𝑃𝑖 + 2𝜌𝑃𝑃𝑖−1 + 𝛾𝑝𝑃𝑖+1,  𝑖 = [2, … , 𝑘 − 1] 

𝑑𝑃𝑚
𝑑𝑡

= −(𝛾𝑝 + 𝛤𝑝)𝑃𝑚 + 2𝜌𝑃𝑃𝑚−1 

(2.5) 

Similar to the TCM, we may define a function representing the fraction of positive and negative 

cells. We assume that the stem and the first 𝑘 generations of progenitor cells are biomarker 

positive cells. The steady state values for these functions are then solved for numerically. 

The stochastic behavior for the cancer cell population can also be obtained using the master 

equation as follows: 
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𝜕𝑝(𝑛𝑆, 𝑛𝑃1 , … , 𝑛𝑃𝑚 , 𝑡)

𝜕𝑡

= 𝜌𝑆𝑟1(𝑛𝑆 − 1)𝑝(𝑛𝑆 − 1, 𝑛𝑃1 , … , 𝑛𝑃𝑚 , 𝑡)

+ 𝜌𝑆𝑟2𝑛𝑆𝑝(𝑛𝑆, 𝑛𝑃1 − 1,… , 𝑛𝑃𝑚 , 𝑡)

+ 𝜌𝑆𝑟3(𝑛𝑆 + 1)𝑝(𝑛𝑆 + 1, 𝑛𝑃1 − 2,… , 𝑛𝑃𝑚 , 𝑡)

+ 𝛾𝑝(𝑛𝑃1 + 1)𝑝(𝑛𝑆 − 1, 𝑛𝑃1 + 1,… , 𝑛𝑃𝑚 , 𝑡)

+∑𝜌𝑃(𝑛𝑃𝑖−1 + 1)𝑝(𝑛𝑆, 𝑛𝑃1 , … 𝑛𝑃𝑖−1 + 1, 𝑛𝑃𝑖 − 2,… , 𝑛𝑃𝑚 , 𝑡)

𝑚

𝑖=2

+∑𝛾𝑝(𝑛𝑃𝑖 + 1)𝑝(𝑛𝑆, 𝑛𝑃1 , … 𝑛𝑃𝑖−1 − 1, 𝑛𝑃𝑖 + 1,… , 𝑛𝑃𝑚 , 𝑡)

𝑚

𝑖=2

+ 𝛤𝑆(𝑛𝑆 + 1)𝑝(𝑛𝑆 + 1, 𝑛𝑃1 , … , 𝑛𝑃𝑚 , 𝑡)

+∑𝛤𝑃(𝑛𝑃𝑖 + 1)𝑝(𝑛𝑆, 𝑛𝑃1 , … 𝑛𝑃𝑖 + 1,… , 𝑛𝑃𝑚 , 𝑡)

𝑚

𝑖=2

− [(𝜌𝑆 + 𝛤𝑆)𝑛𝑆 +∑(𝜌𝑃 + 𝛤𝑃 + 𝛾𝑝)𝑛𝑃𝑖

𝑚

𝑖=1

] 𝑝(𝑛𝑆, 𝑛𝑃1 , … , 𝑛𝑃𝑚 , 𝑡) 

(2.6) 

 

where the parameters are defined in the reactions presented in Fig.4(b). 

The corresponding equations are either solved analytically or numerically, and stochastic 

simulations are performed employing the well-known Gillespie algorithm [31]. In this 

approach, a random number is generated, and used to determine when the next cell division 

will occur, and what type of division it will be. The time evolution is then simulated over an 

appropriate number of days of a colony of cells originating from one or more cancer cells at 

the initial time. This procedure can be practically described through the following five steps: 

1. Set the initial state 𝑛 = 𝑛0 at 𝑡 = 𝑡0 (the state 𝑛 of the Markov process is a vector quantity). 

2. Consider the waiting time 𝜏 until the next transition occurs. This could be obtained as follows 

 𝜏 = (1 𝑎(𝑛)⁄ )𝑙𝑛 1 𝜎1⁄   

 where 𝜎1 is a random number and 𝑎(𝑛) is defined as 

 𝑎(𝑛) = ∑ 𝑐𝑖𝑛𝑖
𝑀
𝑖=1   
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where the index 𝑖 runs over all possible divisions and switching pathways of the process. In 

addition, 𝑐𝑖 is the probability per unit time that an individual cell will undergo division 𝑖 and 

𝑛𝑖 is the number of cells that may undergo division 𝑖. In the procedure of the Gillespie 

algorithm, we use division as both division and switching for simplification. 

3. Choose 𝑘 so that the system goes to state 𝑛∗ at time 𝑡 + 𝜏. By choosing a random number 𝜎2, 

the division is chosen to satisfy the following relation 

 ∑ 𝑎𝑖
𝑘−1
𝑖=1 < 𝜎2𝑎(𝑛) < ∑ 𝑎𝑖

𝑘
𝑖=1   

4. Update the system according to 𝑡 = 𝑡 + 𝜏, 𝑛 = 𝑛𝑘. 

5. Return to step 2. 

In order to numerically solve the equations representing the TCM and HM for the data 

presented in Gupta et al. (2011), suitable parameters had to be obtained. However, first we note 

that the data in Gupta et al. (2011) is presented for three distinct cellular subpopulations 

comprising the tumor, but within TCM we consider only two. That is, in order to fit the data 

presented by Gupta et al. (2011), we simplify their results to include only CSCs and non-CSCs, 

by summing the experimental data points for the non-stem populations studied, in the same 

method as presented by Zapperi and La Porta (2012). Furthermore, in order to extract 

parameters to model the system given the experimental results of Gupta et al. (2011), a brute 

force parameter search was carried out. The parameter space was sampled discretely, and over 

the space, combinations of parameter sets, chosen between 0 and 1, were simulated with the 

deterministic equations, deriving a steady state value for the system. If this steady state value 

was within a small tolerance of that observed by Gupta et al. (2011), then the parameters used 

were taken as a viable parameter set. The criteria for obtaining a suitable parameter set was 

such that the parameters must have satisfied the steady state within a small tolerance value, 

and reach it by a specified cutoff time for the cases of initial conditions of only biomarker 

positive cells, only biomarker negative cells, and a random number of biomarker positive cells, 

binomially distributed about a known mean value. Additional experimental results that were 

used to obtain parameter sets (Table 7 and 8) were the fraction of CSCs after 6 days of culture 

(Table 6) and PD at 𝑡 = 1 and 𝑡 = 2 (Gupta et al. (2011)). 
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Table 6 Cellular subpopulations in stem-like (SL), and non stem-like (average of basal 

and luminal states) were isolated by FACS with antibodies directed against the CD44, 

CD24, and EpCAM cell surface antigens. The values show the fraction of cells in each 

cell-differentiation state as assessed by FACS after in vitro culture for 6 days. (Gupta et 

al (2011),). 

Subpopulations Fraction of 

CSCs 

Fraction of luminal 

plus basal cells 

SL cells 3.8 96.2 

Average of luminal 

and basal cells 

2.2 97.8 

 

Table 7 Parameter values and their standard deviations for the TCM, obtained by 

fitting to the data available in Gupta et al (2011) (Unit of all numbers is (𝟏 𝒅𝒂𝒚⁄ )). 

Rates 𝝆𝑺𝑺 𝝆𝑷𝑷 𝝆𝑷𝑺 𝝆𝑺𝑷 

Average  0.76 0.6412 0.0168 0.8335 

Standard 

deviation 

0 0.0264 0.0013 0.0023 

 

Table 8 Parameter values and their standard deviation for the HM, obtained by fitting 

to the data available in Gupta et al (2011) (Unit of all numbers is (𝟏 𝒅𝒂𝒚⁄ )). 

Parameters 𝝆𝑺𝒓𝟏 𝝆𝑺𝒓𝟐 𝝆𝑺𝒓𝟑 𝝆𝑷 𝜸𝑷 

𝑵 = 𝟓 0.01(0) 0.43(0.012) 0.07(0.001) 1.72(0.054) 0.64(0.017) 

𝑵 = 𝟏𝟐 0.01(0) 0.05(0.002) 0.64(0.021) 0.93(0.021) 1.01(0.032) 

 

We use the obtained parameter sets to show the accuracy of our analysis (Figs. 5 and 6). It is 

clear that at the considered points, the time stages we have experimental data, our results are 

in good agreement with the experiments. The deterministic results of both TCM and HM used 
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to verify the modeling are almost the same after day 5 at which we have the experimental data 

(Figs. 5 and 6).  

2.3 Results 

2.3.1 Two compartment model 

We begin by fitting parameters using the described parameter search to the TCM for the 

experimental results of Gupta et al. (2011). The simulated data using the obtained parameters 

give us quantitative results that are in strong agreement with the experimental data, suggesting 

a well-fitting model. We observe in Table 7 that the parameter values obtained are scattered 

around average values, with a small standard deviation, suggesting that they are associated in 

the parameter space. Moreover, we point out that these parameter sets are not unique, and 

although the deterministic behavior for each of these parameter sets is the same by their 

definition, we must also analyze how their differences affect the stochastic behavior of the 

population. Specifically, we analyze the stochastic behavior of the system, considering the 

MFA. The start of the MFA typically involves 1000 or more wells with few cells in each well 

and the cells grow for a small number of days, and the MFA is given as the proportion of wells 

with spheres of cells above a certain cutoff size. We simulate this experiment theoretically 

using TCM for two parameter sets in agreement with  
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Figure 4 Schematic representation of (a) Two-compartment model (TCM) and (b) 

Hierarchy model (HM), where 𝒊 = 𝟏, 𝟐,… , 𝒌. 

the deterministic investigation by Gupta et al. (2011). Importantly, examining the number of 

mammospheres with respect to time, for each parameter set, as shown in Fig. 7, shows 

significant differences in the stochastic behavior of the two cases. In essence, this highlights 

the fact that the stochastic and deterministic properties of a system are quite different, and 

using experimentally observed deterministic criteria does not necessarily produce consistent 

stochastic behavior. Thus, in order to more exactly determine parametric descriptions of  
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Figure 5 Time variation of fraction of positive cells based on the TCM. 

 

 

Figure 6 Fraction of positive cells as a function of time in the TCM and the HM (with 12 

progenitor cells in the hierarchy). 

experimental systems, both stochastic and deterministic studies must be carried out, or else 

vital characteristic information is lost.  

The results in Fig. 7 also reveal an important artifact of the mathematical analysis, and a 

shortcoming of the model used that may not be necessarily biologically descriptive. That is, as 
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shown in Fig. 7, after a certain time point, for both parameter sets considered, every well 

contains an observable mammosphere, which almost certainly is not observed experimentally. 

We rectify this issue by the addition of a distinct death rate term in the mathematical modeling, 

which causes the demise of initiating cell populations before they are ever able to form 

mammospheres, resulting in more realistic simulated data. 

 

Figure 7 Variation of MFE with respect to time for two parameters sets: parameter set 

1: 𝝆𝑺𝑺 = 𝟎. 𝟏𝟔𝟓, 𝝆𝑺𝑷 = 𝟎. 𝟓𝟎𝟓𝟎, 𝝆𝑷𝑺 = 𝟎. 𝟎𝟏𝟓, 𝝆𝑺𝑺 = 𝟎. 𝟑𝟖𝟓; parameter set 2: 𝝆𝑺𝑺 =

𝟎. 𝟕𝟔, 𝝆𝑺𝑷 = 𝟎. 𝟓𝟎𝟓𝟎, 𝝆𝑷𝑺 = 𝟎. 𝟎𝟏𝟓, 𝝆𝑺𝑺 = 𝟎. 𝟗𝟒𝟓. (All death rates are considered to be 

zero.) 

Additionally, we now characterize the consequences for the stochastic behavior of the cancer 

cell population that a distinct cellular death rate parameter has. We do this by simulating the 

MFA, and results are illustrated in Fig. 8 using the model with varying death rates. These 

results show the effects of neglecting the death rate in the system, and we observe that in the 

case of no distinct cell death parameter, the mammosphere formation efficiency (MFE) 

approaches 100%, or that all cell colonies form mammospheres, which is an experimentally 

non-viable result, as previously discussed. Thus, in order to obtain a reasonable MFE, we argue 

that considering a separate cellular death rate parameter is a reasonable model consideration. 



 

 23 

The effects of varying the death rate on average mammosphere size (AMS) as an 

experimentally measurable parameter are also significant (Fig. 9).  It is shown that by 

increasing the death rate, the AMS increases. This may be explained in the sense that increasing 

the death rate results in fewer mammospheres developed, but of those that do develop, they 

develop faster and proliferate to a greater degree, because they must proliferate enough to reach 

the mammosphere cutoff size, in the presence of a death rate acting to reduce mammosphere 

size. In essence, this implies that the initial survival probability of the cells (or MFE) is related 

inversely to the AMS. 

 

Figure 8 MFE of a simulated experiment using TCM started from (a) CSCs and (b) non-

CSCs for different death rates. 1,000 single cells are considered initially in the simulated 

experiment.  

In addition to death rate, the initial cellular composition of the mammosphere seeding 

population is an important determinant of the AMS. Although the effect of the initial cellular 

population composition on MFE is negligible (Fig. 8), there is a significant effect of the initial 

cellular population on the AMS (Fig. 9). That is, the AMS in cultures with an initial population 

comprised of CSCs is larger than the AMS for cultures with an initial population comprised of 

non-CSCs, as CSCs have a higher proliferative capacity than non-CSCs. The effect of death 

rate on the stochastic behavior of the cells can be also examined considering the survival 

probability of CSCs.  
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Plasticity is another key factor affecting the survival probability of CSCs, and we note that in 

the modeled system this is represented by the dedifferentiation of non-CSCs into CSCs, which 

results in the repopulation of the system, even when there are initially no CSCs. In order to 

study the effects of death rates on the survival probability of cancer cells, contours of survival 

probability are obtained, for varying degrees of plasticity and death rate (Fig. 10). Specifically, 

the CSC death rate is fixed, and the effects of varying the non-CSC death rate and ratio of 

dedifferentiation to differentiation, 𝑅 = 𝜌𝑃𝑆 𝜌𝑆𝑃⁄  (a measure of plasticity) on the survival 

probability are illustrated. In the case of no CSC death rate (Fig. 10(a)), the survival probability 

increases as R increases, and for higher non-CSC death rates, this effect is more pronounced. 

It is shown that for low death rates of non-CSCs, the contour is stable, and it can be inferred 

that the survival probability is therefore relatively independent of the effects of 

dedifferentiation, or cellular plasticity.  

 

Figure 9 AMS of a simulated experiment using TCM started from (a) CSCs and (b) non-

CSCs for different cell death rates. 1,000 wells, each with a single cell, are considered 

initially in the simulated experiment. 

Increasing the CSC death rate to a nonzero value (0.4) reveals that in a region of high non-

CSC death rate, as depicted in Fig. 10(b), the survival probability of CSCs is increased for 

higher values of R. The biological implication of this result is that increasing dedifferentiation 

results in a higher survival probability of CSCs. The shape of the contour for low non-CSC 

death rates is similar to the behavior of the contour for a zero CSC death rate, in that beneath 
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a certain threshold value, the survival probability of the CSCs decreases as the plasticity 

increases. This means that because of a nonzero CSC death rate, there is a threshold value of 

non-CSC death rate under which it is more advantageous for the survival of the CSCs to have 

a lower rate of dedifferentiation. Moreover, for a death rate of non-CSCs above this threshold, 

we see the reverse effect in which it becomes advantageous for a greater degree of 

dedifferentiation to occur. Interestingly, this analysis suggests that controlling either the death 

rates of CSCs and non-CSCs in certain regimes of plasticity results in non-intuitive behavior, 

which may be exploited clinically to reduce the MFE. 

 

Figure 10 Survival probability contours of the CSCs as functions of non-CSC death rate 

and 𝑹 = 𝝆𝒑𝒔/𝝆𝒔𝒑 for CSC death rate to be equal to 0 (a) and 0.4 (b). The other 

parameters of the model are same as those in Table 7.   

2.3.2 Hierarchy model 

The parameters of the hierarchy model, as considered in this work, are derived in a manner 

similar to that of the TCM, and defined to approximate the experimental results of Gupta et al. 

(2011). Averages and standard deviations of the obtained parameter sets are presented in Table 

8. The importance of stochastic analysis in defining accurate parameters is highlighted in the 

previous section using TCM and to avoid repetition, we proceed by directly analyzing the 

effect of death rate on the behavior of the cancer cell population. The mammosphere formation 

assay is simulated, and we observe that the HM is highly sensitive to the parameter representing 

cellular death rate, as depicted in Fig. 11(a). In this case, the MFE is changed by over 400 out 
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of 1,000 cultures by increasing the death rate only by 12%. To obtain a similar effect for TCM, 

the death rate would have to be increased by more than 30%, and thus it is less sensitive to the 

cellular death rate. Additionally, in HM, as was seen for TCM, the initial cell composition in 

the mammosphere formation assay impacts the behavior of the cancer cell population (Fig. 

11(b)). Specifically, starting from further differentiated cells, or later cell generations, results 

in fewer formed mammospheres, as may be expected since these cells have a reduced 

proliferative capacity, compared to those cells earlier in the hierarchy. Interestingly, we note 

that the dependency of MFE on the initial cell hierarchy level (ICL) is nonlinear and changing 

the ICL significantly changes MFE. In describing this nonlinearity, it appears thatthe MFE is 

relatively insensitive to ICLs at medial levels, but more sensitive to ICLs closer to the upper 

and lower bounds of the generational levels within the hierarchy model. 

 

Figure 11 MFE of a simulated experiment using HM for different (a) death rates (start 

with CSC) and (b) initial cell level (ICL) (death rate=25%). 1,000 cells are considered 

initially in the simulated experiment. 

Within the HM, we suppose that the death rates of CSC and all generations of non-CSCs are 

equal. It is observed that in the case of lower death rates, the number of cells increases very 

quickly, resulting in a higher MFE. Lastly, we notice that for HM, as is the case with TCM, 

the MFE is 100% in the case of a zero death rate, suggesting that every culture would produce 

mammospheres, even though experimentally this is unviable, and underscores again the 

importance of including a distinct cellular death parameter, when describing experimental data. 
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In examining the time variation of the AMS for the HM, as death rate is varied, as is depicted 

in Fig. 12(a), we observe that the saturation for the AMS is highly sensitive to the death rate. 

That is, for lower death rates, much higher AMS values are observed at saturation. We also 

examine the dependency of AMS on ICL, as shown in Fig. 12(b). From this graph, it may be 

observed that the saturation of the AMS is dependent on the ICL in a significant manner. For 

lower ICL, the cellular proliferative capacities are higher, and thus, as expected, form larger 

mammospheres on average. We note that this analysis of the AMS shows that it is sensitive in 

saturation to parameters such as the cellular death rate, and the ICL, and because it is 

experimentally observable, may provide a useful adjunct when validating experimental data 

against mathematical models, to better characterize the behavior of such cell populations. 

 

Figure 12 AMS of a simulated experiment using HM for different (a) death rates (start 

with CSC) and (b) initial cell level (ICL) (death rate=25%). 

The observed sensitivity of experimentally observable model outputs, such as the MFE or 

AMS to the ICL highlights the importance of considering biomarker imperfectness as 

explicative of obtained results. Biomarker imperfectness would result in an ICL that may be 

higher or lower than expected, depending on the unobservable true cellular composition, and 

therefore could potentially significantly affect the observed MFE and AMS.   

We now compare the TCM and HM in the limit of large cellular populations, in contrast to the 

stochastic behavior analysis presented above. In the large number limit for cell population, we 

show that the dynamics for the system described by HM converges to that of TCM. In order to 
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examine this closely, we use the time variation of the number of population doublings. This 

quantity can be defined mathematically as: 

PD = log(cell number initial cell number⁄ ) / log 2
 

We now analyze HM and its fit to the corresponding population doublings curve as determined 

by the results of Gupta et al. (2011). The population doublings diagram depicted in Fig. 13(a) 

is a theoretical result for 5 generations of progenitor cells in HM, whereas the diagram in Fig. 

13(b) is a theoretical population doublings curve for 12 generations of progenitor cells in HM. 

We observe that the degree of fit to experimental data is stronger when HM is considered to 

be comprised of 12 generations of progenitor cells. In addition, we observe in Fig. 13 that 

modeling the time evolution of the population doublings curve for the HM converges to the 

analogous behavior of the TCM in the limit of large cell numbers, implying that 

deterministically, the solutions to each model are the same. 

 

Figure 13 Comparison of population doublings from experiment Gupta et al. (2011) and 

by hierarchy model with (a) 5 and (b) 12 progenitor levels in the hierarchy. 

2.4 Sensitivity analysis 

In this section, we want to obtain the analytical solution of the deterministic equations of TCM 

(Eq. (2.1)) and use to investigate the sensitivity of the model to the rate of plasticity. This 

analysis help us to understand the effect of plasticity on the model results for different ranges 

of the other model parameters.  
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To simplify our analysis we rename the positive fraction to X instead of 𝐹𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒. Therefore, 

the definition of this parameter, as a function of S and P, will be 

𝑋 =
𝑆

𝑆 + 𝑃
 (2.7) 

in which 𝑆 = 𝑆(𝑡) and 𝑃 = 𝑃(𝑡). We want to obtain X as a function of time and independent 

of the variables S and P. Taking derivative of Eq. (2.7) results in 

𝑋̇ =
𝑆̇(𝑆 + 𝑃) − (𝑆̇ + 𝑃̇)𝑆

(𝑆 + 𝑃)2
⇒ 𝑋̇ =

𝑆̇

(𝑆 + 𝑃)
−
(𝑆̇ + 𝑃̇)

(𝑆 + 𝑃)
𝑋 (2.8) 

Substituting the time derivatives of S and P from Eq. (2.1) gives us the following equation. 

𝑋̇ =
(𝜌𝑠𝑠 − 𝜌𝑠𝑝)𝑆 + 𝜌𝑝𝑠𝑃

(𝑆 + 𝑃)
− (𝜌𝑠𝑠

𝑆

(𝑆 + 𝑃)
+ 𝜌𝑝𝑝

𝑃

(𝑆 + 𝑃)
)𝑋 

⇒ 𝑋̇ = (𝜌𝑠𝑠 − 𝜌𝑠𝑝)𝑋 + 𝜌𝑝𝑠(1 − 𝑋) − (𝜌𝑠𝑠𝑋 + 𝜌𝑝𝑝(1 − 𝑋))𝑋 

⇒ 𝑋̇ = −(𝜌𝑠𝑠 − 𝜌𝑝𝑝)𝑋
2 + ((𝜌𝑠𝑠 − 𝜌𝑝𝑝) − (𝜌𝑠𝑝 + 𝜌𝑝𝑠)) 𝑋 + 𝜌𝑝𝑠 

(2.9) 

Considering three new parameters 𝑎 = 𝜌𝑠𝑠 − 𝜌𝑝𝑝, 𝑐 = 𝜌𝑝𝑠 , and 𝑏 = 𝑎 − 𝑐 − 𝜌𝑠𝑝, we can 

rewrite the above equation as follows 

𝑋̇ = −𝑎𝑋2 + 𝑏𝑋 + 𝑐 

⇒ 𝑋̇ = −𝑎 (𝑋 −
𝑏

2𝑎
)
2

+ (𝑐 +
𝑏2

4𝑎
) 

⇒ 𝑋̇ = −𝑎(𝑋 − 𝜅)2 + 𝛾 

(2.10) 

where 𝜅 = 𝑏/2𝑎 and 𝛾 = 𝑐 + 𝑏2/4𝑎. By considering the change of variable 𝑦 = 𝑋 − 𝜅, we 

can obtain the following equation using Eq. (2.10) 

𝑦̇ = −𝑎𝑦2 + 𝛾 (2.11) 

which can be changed to the following integral equation 

∫
𝑑𝑦

𝛾 − 𝑎𝑦2
= ∫𝑑𝑡 (2.12) 

Taking definite integral from both sides of this equation (from initial condition to the present 

state), using a new change of variable√𝑎/𝛾𝑦 = sin (𝑧), results in the following solution  



 

 30 

1

√𝑎𝛾
ln (

sec(𝑧) + tan(𝑧)

sec(𝑧0) + tan(𝑧0)
) = 𝑡 

⇒
1

√𝑎𝛾
ln

(

 
 
 
 
 
 

1 + √
𝑎
𝛾 y

√1 − (
𝑎
𝛾) 𝑦

2

1 + √
𝑎
𝛾 y0

√1 − (
𝑎
𝛾
) 𝑦0

2

)

 
 
 
 
 
 

= 𝑡 

⇒

1 + √
𝑎
𝛾 y

√1 − (
𝑎
𝛾) 𝑦

2

=

1 + √
𝑎
𝛾 y0

√1 − (
𝑎
𝛾) 𝑦0

2

exp(√𝑎𝛾𝑡) 

⇒

1 + √
𝑎
𝛾 y

1 − √
𝑎
𝛾 y

=

1 + √
𝑎
𝛾 y0

1 − √
𝑎
𝛾 y0

exp(2√𝑎𝛾𝑡) 

(2.13) 

If we consider the right hand side of the last equation in Eq. (2.13) to be B, we can obtain y as 

a function of B as follows 

𝑦 = √
𝛾

𝑎

𝐵 − 1

𝐵 + 1
 

⇒ 𝑋 − 𝜅 = √
𝛾

𝑎

𝐵 − 1

𝐵 + 1
 

⇒ 𝑋 = 𝜅 + √
𝛾

𝑎

𝐵 − 1

𝐵 + 1
 

(2.14) 

Which can be rewritten as  

𝑋 = 𝛽1 + 𝛽2
exp(𝛼𝑡) − 𝜆/𝐴

exp(𝛼𝑡) + 𝜆/𝐴
 (2.15) 

where 𝛽1 = 𝜅, 𝛽2 = √
𝛾

𝑎
 , 𝛼 = 2√𝑎𝛾, 𝜆 = 1 − √

𝑎

𝛾
𝑦0, and 𝐴 = 1 + √

𝑎

𝛾
𝑦0. We can also obtain 

the first and second derivative of X as follows 
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𝑋̇ = 𝛽2
𝛼 exp(𝛼𝑡) (exp(𝛼𝑡) +

𝜆
𝐴) − 𝛼 exp

(𝛼𝑡) (exp(𝛼𝑡) −
𝜆
𝐴)

(exp(𝛼𝑡) +
𝜆
𝐴)

2  

⇒ 𝑋̇ = 𝛽2

2𝛼𝜆
𝐴 exp(𝛼𝑡)

(exp(𝛼𝑡) +
𝜆
𝐴)

2 

(2.16) 

and 

𝑋̈ =
2𝛼𝛽2𝜆

𝐴

𝛼 exp(𝛼𝑡) (exp(𝛼𝑡) +
𝜆
𝐴) − 2𝛼 exp

(2𝛼𝑡)

(exp(𝛼𝑡) +
𝜆
𝐴)

3  

⇒ 𝑋̈ =
2𝛼2𝛽2𝜆

𝐴

exp(𝛼𝑡) (
𝜆
𝐴 − exp

(𝛼𝑡))

(exp(𝛼𝑡) +
𝜆
𝐴)

3  

(2.17) 

We used the attained analytical solution of X and its time derivative and show the dependency 

of the time variation of the solution on the plasticity (Fig. 14). Changing the plasticity clearly 

change the time variation of X as illustrated in Fig. 14. In Fig. 14(a) and (c), it is shown that 

the higher plasticity makes the system toward faster equilibrium and change the curvature of 

the diagram. To clarify this dependency, 𝑋̇ is also shown for the same model parameter values 

in Fig. 14(b) and (d). For small values of the plasticity, the diagrams have maximum which 

means that the plasticity has significant effect on the time variation of X. Comparison of Fig. 

14(a) with Fig. 14(c) and Fig. 14(b) with Fig. 14(d) reveals that this behavior can be seen for 

wide range of self-renewal rates of CSCs and progenitor cells. 

Now, we can also obtain sensitivity of the fraction and its time derivatives to the model 

parameters. Here, we obtain the time-dependent sensitivity of X to the plasticity (𝜌𝑝𝑠) as 

follows 
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𝜕𝑋

𝜕𝜌𝑝𝑠
=
𝜕𝛽1
𝜕𝜌𝑝𝑠

+
𝜕𝛽2
𝜕𝜌𝑝𝑠

(
exp(𝛼𝑡) −

𝜆
𝐴

exp(𝛼𝑡) +
𝜆
𝐴

) + 𝛽2

(

 
 
 
 2exp(𝛼𝑡) (𝑡

𝜕𝛼
𝜕𝜌𝑝𝑠

(
𝜆
𝐴) −

𝜕 (
𝜆
𝐴)

𝜕𝜌𝑝𝑠
)

(exp(𝛼𝑡) +
𝜆
𝐴)

2

)

 
 
 
 

 

⇒
𝜕𝑋

𝜕𝜌𝑝𝑠
= −

1

2𝑎
+ √

𝑐

𝑎
+ 𝜅2

2 exp(𝛼𝑡) (𝑡 (
𝜆
𝐴)
𝑎(1 − 𝜅)

√𝑎𝛾
−
2
𝐴2

𝜕𝜖
𝜕𝜌𝑝𝑠

)

(exp(𝛼𝑡) +
𝜆
𝐴
)
2

+
1 − 𝜅

2𝑎√
𝑐
𝑎 + 𝜅

2

(
exp(𝛼𝑡) −

𝜆
𝐴

exp(𝛼𝑡) +
𝜆
𝐴

) 

(2.18) 

 

Figure 14 Time variation of fraction of CSCs (a) and (c), and its time derivative (b) and (d) for 

different model parameter values. 

where 



 

 33 

 

𝜖 =
1

√
𝑐
𝑎 + 𝜅

2

(𝑋0 − 𝜅) 

⇒
𝜕𝜖

𝜕𝜌𝑝𝑠
=

1

2𝑎√
𝑐
𝑎 + 𝜅

2

(
(1 − 𝜅)(𝑥0 − 𝜅)

𝑐
𝑎 + 𝜅

2
− 1) 

(2.19) 

The obtained sensitivity to 𝜌𝑝𝑠 is verified by checking its function at 𝑡 = 0, that is equal to 

zero.  

To clarify the sensitivity of X to the plasticity, we use Eq. (2.18) to obtain Fig. 15. Variation 

of 𝜕𝐹𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒/𝜕𝜌𝑝𝑠 nonlinearly depends on the plasticity. In the other word, there are local 

minimum and maximum for the sensitivity of X to the plasticity. 

 

Figure 15 Sensitivity of X (𝑭𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆) to the plasticity 𝝆𝒑𝒔. 

2.5  Discussion 

In this part of the project, we study the theoretical modeling of phenotype switching within 

cancer cell populations, and compare the model results with experimental results done on large 

numbers of cells (Gupta et al. 2011). We highlight a deficiency present in experimental studies 

only based on the behavior of cancer cells in large populations. Specifically, the analysis of a 

large population of cells does not inherently provide sufficient information about the behavior 

of cancer cells to completely characterize what may be observed at different stages of tumor 
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growth and importantly, tumor initiation. That is, mathematically, the deterministic analysis as 

an average of observed random behavior of single cells conceals the stochastic properties of 

the system. To this end, we show that the stochastic behavior of cancer cells, as may be 

experimentally measured using the mammosphere formation assay, is not defined well by the 

deterministic or large population behavior of the system under consideration. We obtain 

parameters fitting the experimental data of Gupta et al. (2011) to the TCM presented in this 

work, and we show that multiple sets of parameters adequately describe the experimental, 

deterministic results, but because of changes in the cellular death rates and self-renewal rates, 

the stochastic properties of these parameter cases vary greatly. This analysis is also repeated 

using HM including different levels of negative cells and a positive compartment. 

Corresponding MFE and AMS are shown in Figs. 9 and 10. It is clearly shown that the 

stochastic behavior of cancer cells modeled using HM is more sensitive than the ones studied 

by TCM while they have almost the same behavior in large populations (validated by the 

experimental results in [9]). Hence, we can conclude that analysis of small population of cancer 

cells, using stochastic modeling, is as important as a study of large populations of cells, 

employing deterministic modeling. In addition, the modeling should be verified experimentally 

on both scales to be able to obtain a promising model and use it to estimate the behavior of 

cancer cells better than before. 

The concept of plasticity in the cancer cell population and its importance on aggressiveness of 

tumors is also included in the theoretical modeling in this part of the project. We show that 

plasticity affects the survival probability of cancer cells, which in the steady state is 

representative of the MFE as well. However, this dependency may be influenced by other 

parameters such as death rates of the phenotypes, as shown in Fig. 10. That is, the contours 

depicted in Fig. 10 show that increasing plasticity may actually decrease the overall survival 

probability for certain cases of death rates of positive and negative cells. This suggests that 

clinically, if such behavior is indeed observed experimentally, carefully controlling death rates 

may be advantageous in certain cases of cellular plasticity to act to decrease overall cellular 

survival. 
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In addition, we analytically obtained the time dependent solution of fraction of CSCs and 

showed that its time variation depends on the plasticity. We could also attain the sensitivity of 

the result to the plasticity and illustrate that there are local minimum and maximum for the 

sensitivity of the fraction of CSCs to the plasticity.   
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Chapter 3 

Mathematical analysis of experimental errors: effects of 

imperfectness of biomarkers in cancer study 

In this chapter, a new phenomenological model is proposed to investigate the importance of 

experimental errors, as a result of imperfectness of biomarkers, in the study of cancer cell 

populations. Two limits of large and small populations of cells are considered. Stochastic 

analysis is used to investigate the behavior of cancer cells in the limit of low cell number. The 

master equation is written and solved numerically using Gillespie algorithm. The analytical 

solution is also provided using generating functions by considering reasonable approximations. 

We analyze the behavior of large populations of cancer cells using  the average equations. We 

use both deterministic and stochastic analyses to determine the parameter values of the model 

based on the experimental data provided by Dr. Mani’s group, MD Anderson Cancer Centre. 

Then, the model is utilized to investigate the effects of imperfectness of biomarkers on the 

stochastic and deterministic behavior of cancer cells. We show that the imperfectness may 

cause important errors in the study of cancer cells such as overestimation of real proportion of 

positive cells and underestimation of MFE, as a parameter representing the probability of 

forming cancer colonies. In addition to the effect of imperfectness, some predictions are 

presented to show the errors caused by inconsistencies in the time period of culturing in MFA 

experiments. We also provide the analytical solution of the PDE which is obtained for the 

corresponding generating function. The solution reveals that it is possible to control the 

survival probability of positive cells by changing the self-renewal rate of negative cells, even 

in a more effective way than the direct change of the self-renewing capacity of positive cells. 

3.1 Introduction 

The main focus of this chapter is the effect of imperfectness on the stochastic behavior of 

cancer cells. Stochastic analysis can be used widely in interpreting and modeling natural and 

synthetic phenomena whenever randomness comes into the picture. Stochastic analysis has 

been used to model the initiation and progression of cancer since mid-19th century. The 

variation in the number of spleen colony-forming cells per colony was studied by Till et al. 
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(1964) to propose that hematopoietic stem cells (HSCs) may be mathematically modeled by a 

“birth-and-death” process. The experimental measurements showed that the birth-and-death 

process is an appropriate model of HSC proliferation that resulted in the idea of stem cell 

division involving randomness. The cancer stem cell hypothesis, initially proposed for 

hematopoietic cancers [2], [32], helped to use the models and theories developed for HSCs 

also in the area of cancer biology. In this hypothesis, it is assumed that the so called cancer 

stem cells (CSCs) are the small population in any tumor with almost unlimited capacity of self-

renewal and long time-period of survival with respect to the other cells in the population. 

Another example of this is the birth-and-death process used in the radiation therapy modeling 

[33]. 

Different phenomenological models have been developed during the last decade to study the 

initiation and proliferation of cancer cells [9], [34], experimental procedures in cancer biology, 

and therapeutic procedures [35], [36]. Gupta et al. (2011) assumed that the proliferation of 

cancer cells is random and a Markov process is an appropriate method to model it. The detail 

of experimental procedures and how they can be modeled are other important factors which 

should be taken into consideration in the development of a model. We use proportion of 

positive cells and MFE as two parameters in the study of cancer cell populations. The 

proportion of positive cells can be obtained using an experiment in which the initial cell 

population is usually bigger than 105 cells [9]. This experiment can be modeled 

deterministically without losing any accuracy. Mammosphere formation efficiency is another 

parameter, which can be obtained using MFA. The start of the experiment is for example 1000 

separate cancer cells that start to grow and some of them survive and make colonies. To model 

this experiment, individual cells should be considered and thus we are dealing with small 

populations of cells. Therefore, stochastic analysis should be used to model this experiment 

because of the low number of cells. 

A new phenomenological model is proposed in this chapter with the main purpose of 

investigating the imperfectness of biomarkers, e.g., imperfectness in recognizing the cell 

phenotypes in cancer cell populations. Identification of different cell phenotypes and the 
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degree of plasticity are important in the study of cancers and the design of suitable therapies. 

Experimentalists have studies this problem and have designed experiments so that the obtained 

results became more accurate [37]. Our results and analysis clarify the importance of paying 

attention to the results of these errors and trying more to eliminate them. In addition, after more 

experimental validation, the model may be used as a filtration method for the experimental 

data to eliminate the error of imperfectness of biomarkers. We analyzed the effect of 

considering or eliminating plasticity in the switching between different cell types as well. We 

show that the effect of imperfectness of biomarkers can be as important as the effect of 

existence of plasticity. 

3.2 Method 

A phenomenological model is used in this chapter to investigate the effect of imperfectness of 

biomarkers on the study of CSCs. The purpose of the model is to study this imperfectness in 

recognizing real CSCs in both positive and negative biomarker cells. Hence, we consider the 

cancer cell population includes two populations of positive and negative cells. However, what 

we recognize using biomarkers are different from reality because of their imperfectness. It 

means that some of the positive cells are actually progenitors and some of the negative cells 

are real CSCs [38]. Thus, some post-processing should be applied on the experimental data to 

filter errors of the experiments and obtain the actual data with the lowest possible error. 

Therefore, we use a new phenomenological model in this chapter to show the importance of 

investigating imperfectness of biomarkers.  

The proposed model includes four compartments of real cancer stem cells (A), fake cancer 

stem cells (B), fake progenitors (C), and progenitors (D) (Fig. 16). Each compartment is 

capable of self-renewing and switching to other compartments. The death is also included for 

each compartment (Fig. 16). The definitions of the parameters, shown in Fig. 16, are presented 

in Table 9. 
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Figure 16 Schematic representation of the imperfect biomarker model. The parameters shown 

here are described in Table 9. Bold red and green circles are real CSCs and progenitor cells, 

respectively. Pale red and green circles are fake progenitor cells and CSCs, respectively. 

The proposed model is developed for two limits of low and high number of cells. Cancer cell 

growth and switching between different compartments, e.g., different phenotypes in the 

biological context, can be modeled deterministically for large population of cells while 

stochastic analysis should be employed to study the behavior of the system with low number 

of cells. It is based on the fact that individual cells behave randomly and we have to consider 

this randomness in our analysis. Therefore, some quantitative data, such as survival rate, cannot 

be captured using the deterministic analysis. Therefore, both deterministic and stochastic 

mathematical modeling are presented here for the four compartment model and used to validate 

the model and obtain new theoretical results. 

Table 9 Definition of the parameters of the imperfect biomarker model. 

Parameter Description 

𝝆𝒌𝒌 Rate of self-renewal of compartment K 

𝝆𝒌𝒍, 𝒌 ≠ 𝒍 Rate of mutation of compartment K to compartment L 

𝚪𝒌 Death rate of compartment K 
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3.2.1 Deterministic modeling 

The deterministic mathematical modeling includes logistic growth of the cancer cells and 

linear  transitions between different compartments. Time variation of the population of each 

cancer cell phenotype, shown as different compartments in Fig. 16, can be given as the 

following ordinary differential equations 

𝑑𝐴

𝑑𝑡
= (𝜌𝑎𝑎 − Γ𝑎)𝐴 (1 −

𝐴 + 𝐶

𝐾𝑃
) + ∑ (𝜌𝑘𝑎𝐾 − 𝜌𝑎𝑘𝐴)

𝑘(𝑘≠𝑎)

 

𝑑𝐵

𝑑𝑡
= (𝜌𝑏𝑏 − Γ𝑏)𝐵 (1 −

𝐵 + 𝐷

𝐾𝑁
) + ∑ (𝜌𝑘𝑏𝐾 − 𝜌𝑏𝑘𝐵)

𝑘(𝑘≠𝑏)

 

𝑑𝐶

𝑑𝑡
= (𝜌𝑐𝑐 − Γ𝑐)𝐶 (1 −

𝐴 + 𝐶

𝐾𝑃
) + ∑ (𝜌𝑘𝑐𝐾 − 𝜌𝑐𝑘𝐶)

𝑘(𝑘≠𝑐)

 

𝑑𝐷

𝑑𝑡
= (𝜌𝑑𝑑 − Γ𝑑)𝐷 (1 −

𝐵 + 𝐷

𝐾𝑁
) + ∑ (𝜌𝑘𝑑𝐾 − 𝜌𝑑𝑘𝐷)

𝑘(𝑘≠𝑑)

 

(3.1) 

where A, B, C and D are average density of the corresponding compartments in the cancer cell 

population. Carrying capacity for the positive and negative cells are also shown by 𝐾𝑃 and 𝐾𝑁 

(equal to 105), respectively. The other parameters used in Eq. (3.1) are shown in Table 9. It 

should be noted that K can be any compartment except the one determined in each equation 

(Eq. (3.1)). 

The results of the model should be validated using the experimental results to obtain relevant 

parameter values. One of the usual experimental data in the context of cancer stem cell biology 

is the proportion of CSCs [9]. The result of this experiment is related to the large cell population 

that can be mathematically modeled by deterministic solution. The fake and real proportion of 

positive cells can be defined as follows based on the definition of each compartment in the 

imperfect biomarker model (Fig. 16).  

𝑋𝑟𝑒𝑎𝑙 =
𝐴 + 𝐶

𝐴 + 𝐵 + 𝐶 + 𝐷
, 𝑋𝑓𝑎𝑘𝑒 =

𝐴 + 𝐵

𝐴 + 𝐵 + 𝐶 + 𝐷
 (3.2) 

 



 

 41 

where 𝑋𝑟𝑒𝑎𝑙 and 𝑋𝑓𝑎𝑘𝑒 are the proportion of real and fake CSCs, respectively. Therefore, 

solving set of ODEs for different compartments in the model (Eq. (3.1)) gives not only time-

dependent number of cells in each compartment but also the real and fake proportion of 

positive cancer cells versus time. 

3.2.2 Stochastic modeling 

In the limit of small number of cells, taking average and using deterministic modeling is not 

useful in the survival analysis of CSCS, which is equivalent to MFE in the experimental data. 

For example, if we consider a single cell with self-renewal rate bigger than the other rates for 

that cell, it certainly grows toward becoming a big tumor. However, stochastic analysis tells 

us that even in this case we may have no cell after a while (because of the possibility of sudden 

death of the cells). Mammosphere formation assay is among the experiments dealing with 

small cell numbers in a period of culturing. In this assay, usually single cancer cells will be put 

in separate places in a suitable environment and allowed to grow. Hence, each of these single 

cells may grow and form colonies of cancer cells or die after a while. The rates of growth of 

the colonies are not the same. Therefore, number of spheres, colonies greater than a cutoff size, 

will be counted after certain number of days. This data can tell us the probability of forming 

tumor from initial cancer cells, or risk of tumor initiation from initial cancer cells, in the body. 

Therefore, we use the stochastic analysis of the imperfect biomarker model to study the effect 

of imperfectness in the low cell number limit.  

The stochastic modeling of cancer cell proliferation has been developed by considering the 

divisions and switching between different phenotypes as a Markovian process [9]. In any 

Markov process, future of the process can be predicted only based on its present condition. 

Therefore, the master equation of the imperfect biomarker model (Fig. 16) can be written as 

follows based on this assumption. 
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𝜕𝒑

𝜕𝑡
=∑𝛼𝑘𝑘(𝑛𝐾 − 1)𝒑(𝑛𝐾 − 1, 𝑡)

𝑘

+ ∑ 𝜌𝑘𝑙(𝑛𝐾 + 1)𝒑(𝑛𝐾 + 1, 𝑛𝐿 − 1, 𝑡)

𝑘,𝑙(𝑘≠𝑙)

+∑𝛽𝑘(𝑛𝐾 + 1)𝒑(𝑛𝐾 + 1, 𝑡)

𝑘

−∑𝛼𝑘𝑘𝑛𝐾𝒑(𝒕)

𝑘

− ∑ 𝜌𝑘𝑙𝑛𝐾𝒑(𝑡)

𝑘,𝑙(𝑘≠𝑙)

−∑𝛽𝑘𝑛𝐾𝒑(𝑡)

𝑘

 

(3.3) 

where the probability of being at state 𝑝(𝑛𝐴, 𝑛𝐵 , 𝑛𝐶 , 𝑛𝐷 , 𝑡) is defined as 𝒑(𝑡). The parameters 

𝛼𝑖𝑖, 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑and 𝛽𝑖, 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑 are also defined as 

𝛼𝑖𝑖 =∑𝛿𝑖,𝑗𝜌𝑗𝑗
𝑗

(1 −
(𝛿1,𝑗 + 𝛿3,𝑗)(𝑛1 + 𝑛3)

𝐾𝑃
−
(𝛿2,𝑗 + 𝛿4,𝑗)(𝑛2 + 𝑛4)

𝐾𝑁
) 

𝛽𝑖 =∑𝛿𝑖,𝑗Γ𝑗
𝑗

(1 −
(𝛿1,𝑗 + 𝛿3,𝑗)(𝑛1 + 𝑛3)

𝐾𝑃
−
(𝛿2,𝑗 + 𝛿4,𝑗)(𝑛2 + 𝑛4)

𝐾𝑁
) 

(3.4) 

based on the logistic growth modeling. One should note that Eqs. (3.1) have written based on 

phenomenological extension of mass-action laws, however, they can be obtained from the 

above master equation with appropriate approximations. . In order to show the probability of 

being in other states, the difference of the state from 𝑝(𝑛𝐴, 𝑛𝐵, 𝑛𝐶 , 𝑛𝐷 , 𝑡) 
is just shown, such as 

𝒑(𝑛𝐴 − 1, 𝑡) which shows the probability of being at state 𝑝(𝑛𝐴 − 1, 𝑛𝐵, 𝑛𝐶 , 𝑛𝐷 , 𝑡).  

The obtained master equation (Eq. (3.3)) can be solved utilizing the Gillespie algorithm. The 

results of Gillespie algorithm are the average of 100 runs which have been done by MATLAB 

12. 

In the stochastic analysis, for the time periods when the number of cells is so small, 

(𝑛1 + 𝑛3)/𝐾𝑃 ≪ 1 and (𝑛2 + 𝑛4)/𝐾𝑁 ≪ 1, the logistic model can be approximated to be 

linear. Hence, the parameters in Eq. (3.4) will be equal to 𝛼𝑖𝑖 = ∑ 𝛿𝑖,𝑗𝜌𝑗𝑗  𝑗 and 𝛽𝑖 = ∑ 𝛿𝑖,𝑗Γ𝑗𝑗 . 

The formulas obtained for analytical solutions are derived using this approximation while the 

logistic model is used for numerical solution of master equation (Eq. (3.3)). 
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Each compartment in the imperfect biomarker model has separate survival probabilities; we 

can obtain survival probability of real or fake CSCs as well as non-CSCs. This important 

parameter can be obtained using the generating function  

𝑭(𝑡) = ∑ ∑ ∑ ∑ 𝑧𝐴
𝑛𝐴∞

𝑛𝐷=0
𝑧𝐵
𝑛𝐵∞

𝑛𝐶=0
𝑧𝐶
𝑛𝐶∞

𝑛𝐵=0
𝑧𝐷
𝑛𝐷∞

𝑛𝐴=0
𝒑(𝑡). Taking derivatives of both sides of 

this relation and substituting 𝜕𝒑(𝑡) 𝜕𝑡⁄  from Eq. (3.3) result in the following partial differential 

equation. 

𝜕𝑭(𝒕)

𝜕𝑡
=∑𝑧𝐾𝜌𝑘𝑘(𝑧𝐾 − 1)

𝜕𝑭(𝒕)

𝜕𝑧𝐾
𝑘

+ ∑ 𝑧𝐾𝜌𝑘𝑙(𝑧𝐾
−1𝑧𝑙 − 1)

𝜕𝑭(𝒕)

𝜕𝑧𝐾
𝑘,𝑙(𝑘≠𝑙)

+∑𝑧𝐾Γ𝑘(𝑧𝐾 − 1)
𝜕𝑭(𝒕)

𝜕𝑧𝐾
𝑘

. 

(3.5) 

The survival probability should be obtained as 𝑡 → ∞, e.g., at the steady state condition. Hence, 

time derivative is setting to be equal to zero. Therefore, the steady state solution of 𝑧𝑘, 𝑘 =

𝑎, 𝑏, 𝑐, 𝑑 can be obtained using the following equations, by considering Eq. (3.5) in the steady 

state condition. 

𝜌𝑎𝑎(𝑧𝐴 − 1)+ 𝜌𝑎𝑏(𝑧𝐵𝑧𝐴
−1 − 1)+ 𝜌𝑎𝑐(𝑧𝐶𝑧𝐴

−1 − 1)+ 𝜌𝑎𝑑(𝑧𝐷𝑧𝐴
−1 − 1) 

+Γ𝑎(𝑧𝐴
−1 − 1) = 0 

𝜌𝑏𝑏(𝑧𝐵 − 1)+ 𝜌𝑏𝑑(𝑧𝐷𝑧𝐵
−1 − 1)+ Γ𝑏(𝑧𝐵

−1 − 1) = 0 

𝜌𝑐𝑐(𝑧𝐶 − 1)+ 𝜌𝑐𝑎(𝑧𝐴𝑧𝐶
−1 − 1)+ 𝜌𝑐𝑏(𝑧𝐵𝑧𝐶

−1 − 1)+ 𝜌𝑐𝑑(𝑧𝐷𝑧𝐶
−1 − 1) 

+Γ𝑐(𝑧𝐶
−1 − 1) = 0 

𝜌𝑑𝑑(𝑧𝐷 − 1)+ 𝜌𝑑𝑏(𝑧𝐵𝑧𝐷
−1 − 1)+ Γ𝑑(𝑧𝐷

−1 − 1) = 0 

(3.6) 

The set of equations for 𝑧𝐴, 𝑘 = 𝐴, 𝐵, 𝐶, 𝐷 (Eq. (3.6)) can be solved analytically to obtain 

different solutions of these variables. The extinction probability that is equal to “1-survival 

probability” can be obtained using the following definition 

𝑝𝑒𝑥𝑡𝑖𝑛𝑐𝑡𝑖𝑜𝑛(𝐾) = 𝑧𝐾, K=A, B, C, D (3.7) 

where we start the simulation with single K cells. Therefore, those solutions with 0 ≤ 𝑧𝐾 ≤

1, 𝑘 = 𝐴, 𝐵, 𝐶, 𝐷 are only acceptable. 
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3.2.3 Stochastic sensitivity analysis 

We study the sensitivity of the imperfect biomarker model to different parameter values as 

well. The sensitivity of the stochastic model to the model parameters can be obtained 

analytically. Although this analysis is useful and theoretically important, we use numerical 

sensitivity analysis to make the procedure easier. The dependency of the studied stochastic 

variables on the parameter values is obtained numerically by solving the master equation (Eq. 

(3.3)). This analysis is shown later. 

3.3 Results 

We show the significant effects of imperfectness on two limit of small and large cancer cell 

populations using the proposed imperfect biomarker model. The proportion of cells or other 

parameters related to the experiments with large population of cells are obtained using the 

deterministic analysis. Mammosphere formation efficiency and the other random results are 

also attained employing stochastic analysis. 

In addition to the imperfectness of biomarkers, we present another important result related to 

the concept of plasticity in cancer cell population [9], [40]. We show that non-zero steady state 

value of the real-proportion of positive cells can be obtained even without considering 

plasticity in the model. In the work of Zapperi et al. (2012), it has been suggested to model the 

imperfectness of biomarkers and consider the effects of plasticity. However, their model 

includes all possible switching between the cell types of the population without any restriction 

based on the biological criteria. 

3.3.1 Parameter determination 

In this chapter, experimental results provided by Mani’s group are used to obtain the 

parameters of the model (Fig. 16). The comparison of the theoretical and experimental results 

(Fig. 17) shows that the proposed imperfect biomarker model is capable of capturing the 

biological behavior of cancer cells. There are some important assumptions behind the analysis 

of the model including: 1) plasticity rates are considered to be zero(𝜌𝑏𝑎 = 𝜌𝑏𝑐 = 𝜌𝑑𝑎 = 𝜌𝑑𝑐 =

0); 2) rate of producing fake CSCs and progenitor cells from real ones are so small 
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(𝜌𝑎𝑏 = 𝜌𝑎𝑐 = 𝜌𝑑𝑏 = 0.01); 3) the correspondent rates for real and fake compartments are 

considered to be the same (𝜌𝑐𝑏 = 𝜌𝑎𝑏 , 𝜌𝑐𝑐 = 𝜌𝑎𝑎 , 𝜌𝑐𝑑 = 𝜌𝑎𝑑 , 𝜌𝑑𝑑 = 𝜌𝑏𝑏); 4) the initial 

proportion of fake cells are considered to be 1% of the population. The initial cells are 

randomly chosen in the Gillespie algorithm. If the random number is between 0 and 0.01 it is 

fake progenitor and if it is between 0.01 and 1 it is real progenitor cell, because negative cancer 

cells used to obtain the experimental results. The parameters of the model are obtained based 

on these assumptions (Table 10). Henceforth, except the situations in which other values are 

mentioned for the parameters, we use these values. In addition, the time at which the results 

are obtained are considered to be at day 6, the final time at which the experimental results are 

reported, unless other days are mentioned. 

The fake proportion of positive cancer cells is obtained as a function of time using Eq. (3.2) 

for both normoxic and hypoxic conditions (Fig. 17(a)). It is shown that the conditions in which 

the cancer cells grow (microenvironmental condition) may affect both time-dependent and 

steady state values of the fake proportion of positive cells in the experiments. Theory predicts 

that the time the populations need to reach the steady state varies by changing the 

microenvironmental conditions. In addition, hypoxic condition (low oxygen concentration) 

causes the system to finally have larger fraction of biomarker positive cells (Fig. 17). 

We use Gillespie algorithm as a numerical solution of master equation (Eq. (3.3)) to obtain the 

suitable parameters corresponding to the experimental values of MFE (Fig. 17(b)). Our results 

show that the experimental and theoretical results at day 6 are so close and MFE is smaller for 

the population under hypoxic condition. They also show that the number of mammospheres 

increases by growing time (Fig. 17(b)). The steady state value of MFE oppositely predicts that 

MFE becomes larger under hypoxic condition. Hence, the number of days of experimentation 

is really important if we want to compare MFE for the cancer cells under different conditions. 

The conditions should be provided so that the cancer cells grow separately for enough time 

and MFE reaches to its steady state value.  
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Figure 17 Comparison of theoretical and experimental results provided by Dr. Mani’s group at 

MD Anderson Cancer Centre. (a) Proportion of positive cells (starting from 𝟏𝟎𝟓 negative cells) 

and (b) mammosphere formation efficiency for the cancer cells in normal and hypoxic (low 

oxygen) conditions (the initial condition of both experimental and modeling is 1000 single 

negative cells). 

Table 10 Parameters of the imperfect biomarker model obtained to fit the experimental results 

provided by Dr. Mani’s group at MD Anderson Cancer Centre. The numbers in the 

parentheses are standard deviation and the other ones are the averages. 

Mic. 

Cond. 

𝝆𝒂𝒂 𝝆𝒂𝒅 𝝆𝒃𝒃 𝝆𝒃𝒅 𝝆𝒄𝒂 𝚪𝒂 𝚪𝒃 

Normoxic 0.74(0.14) 0.45(0.12) 0.63(0.08) 0.46(0) 0.58(0.21) 0.15(0.12) 0.46(0.08) 

Hypoxic 0.93(0) 0.78(0) 0.48(0) 0.16(0) 0.46(0.21) 0.01(0) 0.31(0) 

3.3.2 Deterministic results (limit of large cell number) 

Proportion of positive cells and population doublings are among the parameters can be 

obtained experimentally using large population of cells. The population doublings is a 

parameter shows that how fast the population of cells grows. It is defined as 

𝑙𝑜𝑔(𝑁/𝑁𝑖)/𝑙𝑜𝑔(2) where N and 𝑁𝑖 are the current and initial number of cancer cells, 

respectively. 

We use the same parameters and the conditions to obtain both fake and real proportion of 

positive cells in Fig. 17(a) and 18, respectively. The real proportion is much less than the fake 
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proportion. In addition, real proportion converges slower to its steady state value for both 

normal and hypoxic conditions. Hence, the imperfect biomarker model shows that by the 

considered conditions, such as no plasticity, real proportion of positive cells may be much less 

than what is obtained in the experiment. 

 

Figure 18 Real proportion of positive cells corresponding to the parameters used to obtain Fig. 

2 (a) for fake proportion of positive cells (starting from 𝟏𝟎𝟓 negative cells). 

In the imperfect biomarker model, non-zero rates of 𝜌𝑏𝑎 = 𝜌𝑑𝑎 and/or 𝜌𝑏𝑐 = 𝜌𝑑𝑐 is equal to 

including plasticity in our theoretical study. Non-zero values of plasticity rates 𝜌𝑏𝑎 and/or 𝜌𝑏𝑐 

change the fake and real proportion of positive cells so that their differences decrease 

dramatically for both normoxic and hypoxic conditions (Fig. 19). The difference of the real 

and fake proportions 𝑋𝑓𝑎𝑘𝑒 − 𝑋𝑟𝑒𝑎𝑙 is almost independent of 𝜌𝑑𝑎 which is the plasticity rate to 

real CSCs under normoxic conditions while it is changed under hypoxic condition more than 

30%  (Fig. 19(a)). The effect of 𝜌𝑑𝑐 is much more than the effect of 𝜌𝑑𝑎 and higher rates causes 

𝑋𝑓𝑎𝑘𝑒 − 𝑋𝑟𝑒𝑎𝑙 to become negative, e.g., real proportion becomes larger than the fake 

proportion. It is also clear that the dependency of 𝑋𝑓𝑎𝑘𝑒 − 𝑋𝑟𝑒𝑎𝑙 on 𝜌𝑑𝑐 is almost the same for 

the cancer cell populations under both normoxic and hypoxic conditions. 
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Figure 19 Difference of fake and real proportions of positive cells versus plasticity rates 𝝆𝒃𝒂 =

𝝆𝒅𝒂 (plasticity to real CSC) (a) and 𝝆𝒃𝒄 = 𝝆𝒅𝒄 (plasticity to fake progenitor cell) (b) (starting 

from 𝟏𝟎𝟓 negative cells). 

 

Figure 20 (a) Population doublings of the cancer cells under both normoxic and hypoxic 

conditions and (b) its difference under these microenvironmental conditions versus plasticity 

rate 𝝆𝒅𝒄 (starting from 𝟏𝟎𝟓 negative cells). 

Variation of population doublings (PD) of cancer cells with respect to time is also shown in 

Fig. 20(a). This figure shows that the population of cancer cells grows faster under hypoxic 

conditions based on the presented mathematical modeling. However, the growth rate seems to 

be slow that also reflects the considered carrying capacity and logistic growth in the modeling. 

We also investigate the effect of plasticity on the population doublings to show the effect of 

𝜌𝑑𝑐 on PD for the cancer cell populations under normoxic and hypoxic conditions (Fig. 20(b)). 
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It is clearly shown that 𝑃𝐷ℎ𝑦𝑝𝑜𝑥𝑖𝑐 − 𝑃𝐷𝑛𝑜𝑟𝑚𝑜𝑥𝑖𝑐 increases by increasing 𝜌𝑑𝑐. The plasticity 

rate 𝜌𝑑𝑎 has also the same effect on the difference of PD. 

 

Figure 21 Average size of the mammospheres versus time for the cancer cell populations under 

normoxic and hypoxic conditions corresponding to the mammospheres with MFE presented in 

Fig. 2 (b) (the initial condition of stochastic modeling is 1000 single negative cells). 

3.3.3 Stochastic results (limit of low number of cells) 

We also tried to capture the stochastic behavior of cancer cells employing the proposed 

imperfect biomarker model. Average mammosphere size, which corresponds to the illustrated 

MFE in Fig. 17(b), is presented in Fig. 18 for the cells under both normoxic and hypoxic 

conditions. The cells exponentially grow under both microenvironmental conditions so that the 

average growth rate between days 20 and 40 is more than 30 times of the average growth rate 

in the first 20 days. Average mammosphere size under normoxic condition is bigger than the 

AMS under hypoxic conditions after day 10 (Fig. 21). However, it is in opposite way for the 

lower time stages. By comparing the diagrams of Figs. 17(b) and 21, we can conclude that in 

the conditions that the MFE is higher AMS is lower. 
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Figure 22 Variation of MFE (1000 separate groups of cells initially considered in the analysis 

using Gillespie algorithm) (a) and AMS (b) with respect to the initial number of cells in each 

initial group of cells in MFA. 

Previously, it was mentioned that in the MFA, single cells are grown to form mammospheres. 

However, it is possible to culture groups of cells that are initially made of more than one cell. 

The initial condition of a stochastic process like this affects the behavior of the system as shown 

in Fig. 22. It can be seen that by increasing the initial number of cells in each group, number 

of mammospheres increases. Moreover, the average size is also larger if there are more initial 

cells in each group. Effect of initial number of cells is almost the same on MFE for the cancer 

cells under both normoxic and hypoxic conditions. However, increase in the size of the 

mammospheres under hypoxic condition is approximately 3 times more than the 

mammospheres under normoxic conditions (in the considered range in Fig. 12(b)). 

The diagrams of Fig. 22 are shown by assuming that the imperfectness of the initial population 

is 0.01. In other word, the initial cells are chosen from a population of negative cells. However, 

there is a fraction of cells in this population that is actually positive and it is considered to be 

0.01 in Fig. 22. This imperfectness may vary in different experiments and can be less or more 

than the considered fraction. Hence, the effect of increasing the initial imperfectness, 

imperfectness in the initial chosen cells, on number of mammospheres and their average size 

are obtained (Fig. 23). The imperfectness in the initial population of cancer cells is considered 

to be between 0.05 and 0.5. Number of mammospheres that formed under both normoxic and 

hypoxic conditions increases by increasing the initial imperfectness (Fig. 23(a)). The effect of 
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imperfectness on cancer cells under hypoxic condition is more than its effect on cancer cells 

under normoxic condition. It causes higher MFE for the cells under hypoxic condition at day 

6 (Fig. 23(a)). The effect of the imperfectness on MFE seems to be an important parameter. 

On average, 10-20 mammospheres will be added by 10% increase in the initial imperfectness. 

Therefore, the stochastic analysis shows that imperfectness should be considered as an 

important parameter to compare the results of MFA in different experiments and draw any 

conclusion from the behavior of cancer cells in this experiment.  

 

Figure 23 Effect of imperfectness in the population of cancer cells, the initial single cells are 

chosen from, on MFE (a) and AMS (b). The initial cells for the MFA is chosen from a 

population of negative cancer cells (based on the results of Dr. Mani’s group) and the initial 

imperfectness is the fraction of this population that is actually positive cell (the initial condition 

of stochastic modeling is 1000 single negative cells). 

In addition to the effect of plasticity on deterministic behavior of the cancer cells, plasticity 

can have an effect on their stochastic behavior. In order to show this effect, variations of MFE 

and AMS with respect to the two plasticity rates 𝜌𝑑𝑎 and 𝜌𝑑𝑐 are illustrated in Fig. 24. 

Increasing plasticity rates increases the probability of forming mammospheres that represents 

the possibility of forming cancer colonies. In addition to the increase in number of 

mammospheres, their size also increases by increasing the plasticity (Fig. 24). It means that 

plasticity causes the initial mutated cells to form more colonies with larger sizes. This effect 

suggests that plasticity increases the aggressiveness of the tumors which is in agreement with 

the results of Chaffer et al. (2013). We also show that the effect of plasticity on the cancer cells 
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under hypoxic conditions is more than its effect on cancer cells under normoxic condition. 

Therefore, controlling the effect of plasticity for cancer cells under hypoxic conditions can be 

effective in therapeutic procedures based on the stochastic analysis of the model. 

As it is shown in Fig. 24, the effects of plasticity rates 𝜌𝑑𝑎 and 𝜌𝑑𝑐 are almost the same. 

Therefore, the experimental errors, which are based on the imperfectness of biomarkers to 

recognize different kind of cancer cells in the population, causes underestimation of the tumor 

formation probability and its growth rate significantly. By an exaggerated example, the 

importance of this parameter can be clarified: let us consider an imaginary experiment in which 

we recognize most of the cancer cells to be negative while there exists high imperfectness. By 

growing time, the negative cells may switch to the positive ones and we still recognize them 

as negative cells. Hence, we do not understand how much plasticity plays a role in this 

experiment. 

3.3.4 General analytical study (stochastic analysis) 

We also analyze the stochastic model analytically to investigate the behavior of the proposed 

imperfect biomarker model. Hence, instead of the parameters obtained for the model in Table 

10, arbitrary variables are used. Equations (3.6) and (3.7) can be used to obtain the survival 

probability of each compartment in the model. The analytical solution of Eq. (3.6) results in 

the following functions for the steady state condition. 

𝑍𝐴 = 𝑍𝐶

=
(Γ𝑎 + 𝜌𝑎𝑎 + 𝜌𝑎𝑑) − √𝜌𝑎𝑎((Γ𝑎 + 𝜌𝑎𝑎 + 𝜌𝑎𝑑)2𝜌𝑏𝑏 − 4𝜌𝑎𝑎(Γ𝑏𝜌𝑎𝑑 + Γ𝑎𝜌𝑏𝑏))

2𝜌𝑎𝑎𝜌𝑏𝑏
 

𝑍𝐵 = 𝑍𝐷 =
Γ𝑏
𝜌𝑏𝑏

 

(3.8) 

where survival probabilities are 1 − 𝑧𝐾. These are the only acceptable results among the sets 

of solutions of Eq. (3.6). The following assumptions are also used to obtain Eq. (3.10): 

𝜌𝑐𝑐 = 𝜌𝑎𝑎;  𝜌𝑑𝑑 = 𝜌𝑏𝑏;  𝜌𝑐𝑑 = 𝜌𝑎𝑑;  Γ𝑎 = Γ𝑐;  Γ𝑏 = Γ𝑑 (3.9) 

and all other parameters are considered to be zero. 
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Figure 24(a) Variation of MFE with respect to 𝝆𝒅𝒂; (b) Variation of AMS with respect to𝝆𝒅𝒂; 

(c) Variation of MFE with respect to𝝆𝒅𝒄; (d) Variation of AMS with respect to 𝝆𝒅𝒄 (the initial 

condition of stochastic modeling is 1000 single negative cells). 

Steady state values of 𝑧𝐵 and 𝑧𝐷 depend only on self-renewals and death rates of negative 

compartments (B and D). Hence, extinction and survival probability 𝑝𝑠𝑢𝑟𝑣 of these 

compartments also just depend on the values of these parameters and do not depend on the 

switching rates and the rate of divisions related to the positive cells (compartments A and B). 

Nevertheless, survival probability of positive cells that is equal to 1 − 𝑧𝐴 = 1 − 𝑧𝐶 depends 

not only on 𝜌𝑎𝑎 and Γ𝑎 but also on the self-renewal and death rates of negative cells. 

Interestingly the effect of 𝜌𝑏𝑏 on the survival probability of positive cells is more than 𝜌𝑎𝑎 

which can be concluded by comparison of Fig. 25(a) and (b). We can see that increasing both 

𝜌𝑎𝑎and 𝜌𝑏𝑏 increases the survival probability of positive cells. In the considered range of 

parameters, 𝑝𝑠𝑢𝑟𝑣 almost linearly changes with respect to 𝜌𝑎𝑎 while its dependency on 𝜌𝑏𝑏 is 

nonlinear (Fig. 25). It is shown that the most effective range of 𝜌𝑏𝑏 is between 0.2 and 0.6. 
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Hence, little increase in this range causes large effect on 𝑝𝑠𝑢𝑟𝑣. Therefore, we can control the 

survival probability of positive cells effectively by controlling the self-renewal rate of negative 

cells that is an interesting analytical prediction which  we hope will be verified experimentally 

in future. 

 

Figure 25 Survival probability of positive cells with respect to the values of the self-renewal 

rates 𝝆𝒂𝒂 (a) and 𝝆𝒃𝒃 (b). The other non-zero parameters of the model are considered to 

be:𝝆𝒂𝒅 = 𝟎. 𝟓, 𝚪𝒂 = 𝚪𝒃 = 𝟎. 𝟐. 

3.4 Discussion 

We used stochastic and deterministic analyses to formulate the proposed imperfect biomarker 

model and study the behavior of small and large numbers of cancer cells, respectively. The 

parameters of the model that include four compartments of cells with different self-renewal 

and switching rates are obtained to validate the model throught experimental data. We showed 

that plasticity may increase or decrease the effect of imperfectness on the difference between 

fake and real proportions of positive cells. We also showed that plasticity may increase the 

difference of the PD of the cancer cells under different microenvironmental conditions. 

It is clearly shown that by growing time, MFE of the cancer cells under hypoxic conditions 

becomes larger than the MFE for the cells under normoxic condition. We could show that by 

the time the probability of forming mammosphere increases, AMS decreases.  

The imperfectness is considered initially to be a certain percentage of the population of cells, 

that we choose the single cells from in MFA. Increasing this imperfectness results in a cancer 
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cell population with higher probability of forming mammospheres even with bigger sizes. In 

addition, if in our stochastic analysis we use groups of few cells instead of single cell, we see 

the same effect on MFE and AMS. 

Our theoretical analysis show that plasticity causes the cancer cells to form more 

mammospheres, and larger in size. We could also figure out the effect of plasticity on survival 

probability of positive cells using analytical stochastic modeling. It is shown that controlling 

the survival probability of positive cells is more effective by using the self-renewal rate of 

negative cells instead of positive cells. 
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Chapter 4 

Experimental errors in cancer studies: sphere formation assay 

Sphere formation assay (SFA) is a method of investigating the capacity of cancer cells to form 

colonies. In spite of a variety of studies using this assay, there is still not enough consistency 

in its application which is may be not required for the experimental analysis, but important in 

quantitative investigation. As a result, there are free parameters in the experiment, but these 

have not been explicitly discussed in the literature. Period of culturing and the initial cell 

number per well are two examples of the free parameters affecting the results including 

frequency of forming spheres and the size of the spheres. We show that without a standardized 

set of free parameters, it is difficult to establish conclusive results. The concept of inactive 

cores in spheres is also proposed, and the effects of this proposition are examined in silico. 

4.1 Introduction 

Sphere formation assay has been used in the last decade to present the capacity of the cancer 

stem cells in different cancer cell lines to form colonies. The spheres can be an aggregation of 

mammary gland cells, called mammospheres, or neural stem cells, called nuerospheres. The 

parameter of interest in this assay is the frequency of forming sphere, usually called sphere 

formation efficiency (SFE). Mammosphere formation efficiency (MFE) is the same parameter 

defined for mammary cells. Scientists have obtained MFE for different cancer cell lines such 

as breast and pancreatic cancer [41], [42]. They have examined the effect of epithelial to 

mesenchymal transition (EMT) [41], chemo- and radio- therapies [42], genetic regulations 

[43], and the microenvironment [35] on MFE. Neurosphere formation efficiency (NFE) can be 

also defined similarly for neural cells, which have been studied for the cancer cells under 

therapy and different microenvironments [7], [30]. Scientists have determined the potential of 

cancer cells to form spheres and how different kinds of stimulations affect this capacity using 

MFE and NFE.  

In spite of several studies on SFA, the goal of the experiment is not about comparing the results 

with available experimental data of the same assay in the literature. Therefore, there is a lack 

http://en.wiktionary.org/wiki/mammary_gland
http://en.wiktionary.org/wiki/cell
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of consistency in the corresponding experimental procedure, which makes the quantitative 

analysis of experimental data incomparable. In its general application, usually 1000 or more 

wells, including a few separate cancer cell wells, are cultured and allowed to grow to form 

spheres for a period of time. By paying attention to the experiments, we can see important 

ambiguities in this procedure: 1) the number of cells in each well can be one or more; 2) the 

phenotypes of the cancer cells considered in the wells are not unique, as they can be CSCs or 

non-CSCs; 3) the time of culturing is not a predefined period. Therefore, the effects of variation 

of these free parameters on SFA should be examined to propose a universal methodology. The 

modification of SFA with due attention to the mentioned sources of errors may be helpful to 

provide a promising and conclusive comparison of the available results in the literature. 

Theoretical prediction is a useful tool to estimate the order of the errors caused by these 

ambiguities in SFA. Stochastic modeling has to be used in order to capture the behavior of 

cells in SFA. The two compartment model (TCM) seems to be a reliable model for this purpose 

and we use it in this chapter. In addition to the cancer stem cell hypothesis [2], [32] the 

existence of plasticity in the cancer cell population has been considered in this model. 

Therefore, the effects of phenotype on the SFA’s results could be also captured using TCM. 

4.2 Method 

We use the two compartment model (TCM) to predict the behavior of cancer cells in SFA. In 

this model, the total population of cancer cells is considered to include two general phenotypes 

of CSCs and non-CSCs (Fig. 26). The divisions in this model include self-renewal and death 

of both phenotypes as well as switching between them.  

On the basis of the definition of SFA, cancer cells are cultured in a medium for a few days. 

Some of the initial cancer cells form spheres (Fig. 26) that are considered to include CSCs and 

non-CSCs. Sphere formation assay should be modeled stochastically because of the low cell 

number limit. The stochastic behavior of the system is assumed to be Markovian. Therefore, 

equation (2.4) can be used to analyze the behavior of CSCs in SFAs. This equation can be 

solved numerically using Gillespie algorithm. 
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Figure 26 Schematic representation of spheres in SFA and the possible divisions hypothesized 

in TCM. 

4.3 Results 

Sphere formation assay has been employed during the last decade to investigate the colony 

formation capacity without a universality. The results of this assay can be used to judge the 

potential of initial cancer cells to form tumors. However, we need a universal methodology to 

compare the results of SFA for different cancer cell lines and under different 

microenvironmental conditions. The theoretical analysis prepared in this chapter is employed 

to clarify the artifacts of lacking a universal methodology for SFA. The experimental results 

of McCord et al., (2009) and Hjelmeland et al., (2011) are employed to show the possible 

errors. All of the results are obtained using TCM with the parameters validated by the 

experimental data of McCord et al., (2009) and Hjelmeland et al., (2011). It should be noted 

that both papers are dedicated to studying the glioma cells. 

4.3.1 Period of experimentation 

One of the important issues in SFA is the period of experimentation. In the usual procedure, 

the number of spheres formed in the culture medium are counted and reported after a period of 

time to show the potential of the considered cancer cells to form colonies under the assumed 

microenvironments, like normal, hypoxic or acidic. Most of the time, these spheres grow so 

that they reach together or reach the boundaries of the culture medium. Hence, the experiment 
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cannot be continued further and the formed spheres are reported as the frequency of forming 

spheres. We can see the large range of period of experimentation (4-14 days) in Table 11. If 

we can prepare the experimental conditions so that the cells reach their in-equilibrium state, 

they might form more spheres and the actual SFE might be larger.  

Sphere formation efficiency is reported as a function of time in Fig. 27. The time variation of 

SFE in Fig. 27 reveals that an in-equilibrium value can be reached far beyond the 10 and 14 

days used in the experiments of Hjelmeland et al., (2011) and McCord et al., (2009), 

respectively. It can be also seen that this steady state time is later in Fig. 27(b) (corresponding 

to the experimental result of McCord et al., (2009)). In addition, the variation of SFE with 

respect to time is different as can be seen in Fig. 25, where we can see that SFE changes faster 

between days 13 and 29 for the cancer cells under acidic and normal conditions, based on the 

results of Hjelmeland et al., (2011), than those validated by the results of McCord et al., (2009). 

As time passes, the difference of SFE between normal and acidic or normal and hypoxic 

conditions decreases. The dependency of this difference is so that, in the steady state condition, 

both normal and acidic conditions result in almost the same SFE (Fig. 27(a)). 

The size of the sphere is another parameter showing the rate of growth of the colonies of cancer 

cells. We can determine the rate of tumor initiation from initial mutated cells using this 

parameter. This parameter can be also affected by changing the microenvironment. We show 

here that the time of measurement is very important (Fig. 28). It is shown in Fig. 28 that the 

difference of average sphere size (ASPS) in harsh and normal microenvironments grows over 

time. The difference grows exponentially so that, at the time stages in which the SFE saturates, 

the growth rate is much more than the difference in the initial time stages (Fig. 28). Hence, 

measuring the difference of ASPS in different microenvironments in initial time stages 

underestimates this difference at the time of saturation of SFE. 
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Table 11 Period of time the cells are cultured in SFA. 

Reference Final time of counting spheres 

[44] Day 4-7 

[45] Day 5 

[46] Day 5-7 

[43] Day 6 

[47] Day 7 

[42] Day 7 

[48] Day 7 

[49] Day 7 

[7] Day 10 

[30] Day 14 

 

 

Figure 27 Variation of SFE with respect to time under different microenvironment obtained 

using TCM with the parameters validated by the experimental data of (a) Hjelmeland et al., 

(2011) and (b) McCord et al., (2009). (Start with 1000 CSCs.) 
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Figure 28 Variation of ASPS(× 𝟏𝟎−𝟑)  with respect to time under different microenvironment 

obtained using TCM with the parameters validated by the experimental data of (a) Hjelmeland 

et al., (2011) and (b) McCord et al., (2009). (Start with 1000 CSCs.) 

4.3.2 Initial separate cells per well 

In SFA, the experiments usually start with single cells. It means that for example 1000 separate 

single cells are in the culture medium and grow to form spheres. However, there are 

experiments with more than one cell in each well. For example, Hjelmeland et al., (2011) used 

5 CSCs in each well.  

We show that increasing the number of cells in each well results in higher SFE which goes 

toward a saturation point for 9 initial cells per well and more (Fig. 29). Figure 29 shows 

variation of SFE with respect to the number of positive cells in each well. The cells under both 

normal and acidic conditions, extension for the data of Hjelmeland et al., (2011), goes toward 

the same saturation point (Fig. 29(a)). It should be noted that the results using 5 cells per well 

is much greater than the results with one cell per well. The extended data of McCord et al., 

(2009) is also obtained (Fig. 29(b)) that shows even with 9 initial cell per well, there is still 

difference between SFE of the cancer cells under hypoxia versus normoxia. 
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Figure 29 Dependency of SFE on the initial cells in each well. (Start with 1000 well of CSCs.) 

 

 

Figure 30 Dependency of ASPS on the initial cells in each well. (a) ASPSacidic-ASPSnormal and (b) 

ASPShypoxic-ASPSnormal(Start with 1000 well of CSCs.) 

The dependency of the difference of ASS for the cells under harsh and normal conditions are 

also obtained (Fig. 30). The variation of both ASPSacidic − ASPSnormal and ASPShypoxic −
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ASPSnormal are almost linear with respect to the variation of the initial number of cells per 

well. The variation of ASPSacidic − ASPSnormal is much more than ASPShypoxic − ASPSnormal 

in the considered range of initial cell number which is clear by comparison of Fig. 30(a) and 

(b). 

4.3.3 Activity of cells 

In the study of every colony of cancer cells there is an open question about their activity. Are 

all of them active? In the in vivo analysis, we usually consider a necrotic and quiescent inner 

regions in which the cells do not have the proliferative capacity. This inner region may exist 

also in the spheres when the cancer cells grow in vitro. We show that existence of this inner 

quiescent region has important effects on the results of SFA  

We define the following relation for the active number of cells in the outer region of spheres 

by assuming the cancer cells have the average diameter of10 m . 

𝑁𝑎𝑐𝑡𝑖𝑣𝑒 = 𝐶𝑒𝑖𝑙 (0.7 (3(2.86𝑁)
2/3 − 6(2.86𝑁)

1
3 − 4)) (4.1) 

where N is the total number of cells in each well. The coefficient 0.7 is applied because of 

existence of unoccupied space between the cells [34]. In this relation, we assume that the active 

cells are only the ones in the out layer of the sphere. Because the number of cells should be an 

integer number, the Ceil function is used in calculating the active number of cells.  

The inactive cells exist in the middle of the spheres and their number increases with time. We 

show some of the differences caused by the existence of inner inactive region using the 

parameters obtained for the experimental results of McCord et al. (2009) (Figs. 31 and 32). 

Sphere formation efficiency of glioma stem cells under normal and hypoxic conditions are 

shown in Fig. 31. The obtained SFE for the spheres with inactive core is much less than the 

SFE for the spheres without inactive core. In normal condition (Fig. 31(a)), the SFE for the 

spheres with inactive core is almost negligible with respect to the SFE for the spheres without 

inactive core. Nevertheless, the variation of SFE with both assumptions, whether there is an 

inactive core or not, is similar. The effect of assuming an inactive core on ASPS is also shown 
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in Fig. 32. We can see that by assuming the inactive core in the spheres, ASPS is almost 

constant in the considered time range while it grows exponentially without this assumption. 

This constant value is less than the ASPS obtained for the spheres without the inactive core 

assumption through the considered time period. 

 

Figure 31 Variation of SFE with respect to time using TCM with the parameters validated by 

the experimental data of McCord et al., (2009) under (a) normal and (b) hypoxic conditions. 

(Start with 1000 single CSCs.) 

4.4 Discussion 

We showed that SFE and ASPS vary by changing the period of culturing (Figs. 27 and 28). 

There is a saturation for SFE which can be considered as the maximum sphere formation 

capacity of the cancer cells in every condition. To get the maximum capacity of cancer cells, 

we have to design the experiment so that the cells have enough time to grow and reach the 

saturation point. 

Average sphere size increases exponentially with time. The variation of SFE and ASPS with 

respect to time in a different microenvironment clearly shows that comparing these parameters 

at different time stage of culturing could give us different results. It is possible that maximum 
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SFE, can be obtained with a longer period of culturing, is higher for some microenvironments 

with respect to others while in initial time stages, for example 10 days or less, it is lower. 

 

 

Figure 32 Variation of ASPS with respect to time using TCM with the parameters validated by 

the experimental data of McCord et al., (2009) under (a) normal and (b) hypoxic conditions. 

(Start with 1000 single CSCs.) 

Another issue in SFA is the initial number of cancer cells in each well. Increasing the initial 

cells per well results in higher SFE toward reaching the full capacity that is 1. However, we 

can see that the difference of SFE under normal and acidic conditions decreases by increasing 

the initial number of cancer cells per well. Therefore, if we want to compare SFE under 

different microenvironments, the initial number of cells should be the same. Other than that, 

the comparison may not be meaningful. Average sphere size also depends on the initial number 

of cells per well and varies linearly with this number. 

We also investigate the effect of existence of an inactive core through each sphere on the 

parameters of interest, SFE and ASPS, in SFA. If there is such a core, caused by dead or 

quiescent cells, both SFE and ASS will be less than the SFE and ASS we expect without this 

assumption (Figs. 31 and 32). This effect not only changes the values of these parameters such 
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as significant change of SFE in normal condition but also affects the dependency of ASPS with 

respect to time. Average sphere size is almost constant and the size of spheres do not grow by 

considering this assumption (Fig. 32).  

We investigate the importance of time period of culturing, initial number of cells in each well 

and existence of inactive core on the results of sphere formation assay. We show the possible 

effects of these factors in this experiment. Experimental study is required following the 

theoretical analysis of this chapter to obtain a universal definition for SFA. 
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Chapter 5 

Effect of phenotype switching on radiation therapy 

In this chapter, two phenomenological models are employed to study the effects of phenotype 

switching on radiation therapy: the two-compartment model (TCM) and the proliferative-

migratory model (PMCM). In the TCM, different ranges of self-renewal, death rates of positive 

and negative cells, and switching rates between these phenotypes are considered. The other 

model (PMCM) is also developed to investigate the effect of migration and switching between 

proliferative and migratory cancer cells on radiation therapy. Logistic growth of cancer cells 

is assumed in each model. The range of the parameters of both models is considered to satisfy 

certain biological criteria. We show that both total number of cells and proportion of positive 

cells, two important parameters after radiation therapy, are affected by changing different 

parameters such as plasticity and switching rate between proliferative and migratory 

phenotypes. More analysis has to be done and corresponding experimental and clinical 

investigation have to be designed properly to target phenotype switching as a method of 

increasing the efficiency of therapeutic procedures. 

5.1 Introduction 

Different phenotypes of cancer cells can migrate in the tumor. Increasing the migration 

capacity of cells increases the probability and rate of metastasis [41]. The epithelial to 

mesenchymal transition (EMT) is a process in which the cells in a tumor develop a  high 

migratory capacity [41]. Mani et al. (2008) showed that Squamous cell carcinoma contains 

CSCs with two distinct phenotypes: 1) similar to normal epithelial cells and 2) migratory cells 

(formed by EMT). Two of the main causes of the tumor malignancy can be considered to be 

the growth of the CSC population and the migratory capacity of CSCs [50]. Similar to the 

theory of plasticity that shows dedifferentiation in cancer cell populations, migratory cells can 

be changed to form epithelial-like cells [50]. Transient expression of epithelial to mesenchymal 

transition-associated genes can be reversed by a mesenchymal to epithelial transition (MET), 

leading to epithelial dedifferentiation [50].  In addition to metastasis, increasing the population 

of migratory cancer cells in tumors affects the therapeutic procedures. Gene-expression 
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profiling showed upregulation of genes related to motility, and functional studies demonstrated 

that cell motility contributes to the invasive phenotype of malignant gliomas [51]. Glioma cells 

show a decreased proliferation rate and a relative resistance to apoptosis, which may contribute 

to chemotherapy and radiation therapy resistance [51]. The radioresistance-associated 

metastatic potential of cervical cancer cells has been also domonstrated experimentally [52]. 

Hence, we can say that metastasis often circumvents the efficacy of radiotherapy. On the other 

hand, radiotherapy can change the proportion of the migratory cell phenotype in the cancer cell 

population. In the absence of stimulation or inhibition, increasing doses of irradiation induced 

a dose-dependent enhancement of migrating cells [53]. Therefore, the effect of phenotype 

switching in radiation therapy and the reverse investigation can be useful to promote the 

efficiency of therapeutic procedures. 

We study the effect of phenotype switching on radiation therapy using the phenomenological 

models. We employ these models to investigate the effects of phenotype switching on total 

numbers of cells and on the proportion of positive cells after hypo-fractionated and 

conventional radiotherapeutic protocols. This study tells us that control of phenotype 

switching, by chemotherapy, can be considered as a tool to reduce the final tumor size and 

recurrence probability. 

5.2 Method 

The two primary modes of medical interventions in treating cancer (apart from surgery) are 

chemotherapy and radiotherapy. Clinically, it is reported that over 50% of North American 

cancer patients undergo radiation therapy as part of their treatment regimen. Radiotherapy can 

be used either for palliative (i.e., to alleviate the pain) or curative (i.e., to eliminate the tumor) 

purposes. Several experimental studies have reported that a small population of cancer stem 

cells is responsible for unlimited growth of tumor, anti-cancer therapy resistance, and 

recurrence of a tumor. Additionally, the existence of different phenotypes with varied 

proliferation rates and radio (and/or chemo) sensitivities in the tumor population can have an 

impact on the treatment efficacy as well as on the recurrence of a tumor. Therefore, the 

dynamics of the cancer cell population during any therapeutic strategy is pivotal for 
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understanding tumor kinetics over time and designing an efficient treatment strategy to 

eliminate the tumor (and if possible decrease relapse). To investigate these effects, two 

mathematical models are used in this chapter that are based on the new theories of existence 

of cancer stem cell and plasticity in tumors. These mathematical frameworks include the TCM 

and an extension model to include proliferative-migratory mechanisms between cancer cells 

(Fig. 33). 

Death rates in the models are assumed to be the cell killing rate of tumor cells by radiation. 

However, it can be caused by different external or internal stimulation in general. To have a 

more realistic prediction, the death rates (or killing rates) are considered to be pulsatile. 

Radiotherapy is given as a step function as 10 minutes per fraction (i.e., dose of d Gy per day). 

From the modeling perspective, the cell killing term due to radiation is assumed to be non-zero 

only during 10 minutes of radiation administered every day (otherwise, it is assumed to be 

zero). 

The population of the positive and negative cells can be dynamically modeled using the 

following ordinary differential equations that are driven using the TCM 

𝑑𝑆

𝑑𝑡
= 𝜌𝑠𝑠 (1 −

𝑆 + 𝑃

𝐾
)𝑆 − 𝜌𝑠𝑝𝑆 + 𝜌𝑝𝑠𝑃 − Γ𝑠𝑆 

𝑑𝑃

𝑑𝑡
= 𝜌𝑝𝑝 (1 −

𝑆 + 𝑃

𝐾
)𝑃 − 𝜌𝑝𝑠𝑃 + 𝜌𝑠𝑝𝑆 − Γ𝑝𝑃 

(5.1) 

where S and P represent number of positive and negative cells, respectively. The parameters 

of the TCM are briefly described in Table 12. Except the logistic self-renewal of both positive 

and negative cell populations, other terms in Eq. (5.1) including the switching and death of the 

phenotypes are considered to be linear. 

 

Figure 33 Schematic representation of proliferative-migratory cell model (PMCM). 
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5.2.1 Proliferative-migratory cell model (PMCM) 

We can consider the tumor cells as proliferative and migratory phenotypes in general (Fig. 33). 

In this framework, we do not consider the difference between the characteristics of the cells 

these phenotypes. In addition, we neglect the proliferative capacity of the migratory phenotype.  

In some tumors, experimental studies support the existence of both proliferative phenotype 

(with zero or non-zero migration) and migratory phenotype (with zero or non-zero 

proliferation) [41]. In this model, we assume that proliferative cells have self-renewing 

potential, while migratory cells can just switch to proliferative ones. Similar to the TCM, the 

death rates are also considered for both populations of cells which are active only during 

radiation and are neglected under normal conditions (i.e., during non-irradiation time). These 

assumptions help us to study the effect of switching between proliferative and migratory 

phenotypes on the radio-resistance of the tumor and also on its probability of recurrence. 

The following ODEs can be written for the time dependent population of proliferative and 

migratory cells. 

𝑑𝑅

𝑑𝑡
= 𝜌𝑟𝑟 (1 −

𝑅 +𝑀

𝐾
)𝑅 − 𝜌𝑟𝑚𝑅 + 𝜌𝑚𝑟𝑀 − Γ𝑟𝑅 

𝑑𝑀

𝑑𝑡
= 𝜌𝑟𝑚𝑅 − 𝜌𝑚𝑟𝑀− Γ𝑚𝑀 

(5.2) 

where M and R represent the population of migratory and proliferative cells, respectively. The 

parameters of this model are also presented in Table 12. 

5.3 Results 

The purpose of cancer treatments is to ideally eliminate the cancerous cells completely or 

reduce the number of cancer cells to a larger extent. Tumor recurrence is another issue in the 

therapeutic procedures of cancer patients. On the basis of the cancer stem cell hypothesis [2], 

[32], more cancer stem cells after treatment results in a higher chance of recurrence. Therefore, 

these two parameters are studied using TCM and PMCM. 
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Table 12 Definition of the parameters used in the TCM and PMCM. 

Two compartment model 

𝝆𝒔𝒔 Self-renewal rate of positive cells 

𝝆𝒔𝒑 Differentiation rate 

𝝆𝒑𝒔 Dedifferentiation rate 

𝝆𝒑𝒑 Self-renewal rate of negative cells 

𝚪𝒔 Death rate of positive cells 

𝚪𝒑 Death rate of negative cells 

N Total number of cells 

K Maximum number of cells 

Proliferative-migratory cell model 

𝝆𝒓𝒓 Self-renewal of proliferative cells 

𝝆𝒓𝒎 Rate of switching to migratory phenotype 

𝝆𝒎𝒓 Rate of switching to proliferative phenotype 

𝚪𝒓 Death rate of proliferative cells 

 

5.3.1 Two compartment model 

It has been shown that there should be a dedifferentiation or plasticity in the population of 

cancer cells that enables negative cells to produce positive ones [10], [40]. Hence, it has been 

also proposed that plasticity can be an important factor to determine aggressiveness of tumors 

[40]. We include this factor in the TCM to investigate its importance in the efficacy of the 

treatment strategies. Another factor that directly affects the efficiency of treatment is the killing 

rate of each phenotype, positive and negative cells. Negative cells are more sensitive to 

radiation therapy or other treatments, based on the assumptions in the cancer stem cell 

hypothesis [2], [32]. The death rates of the phenotypes are considered to be non-zero during 

the time of treatment. By considering death rate of positive cells to be equal to 1 per day, 

variable Γ𝑝/Γ𝑠 shows the killing rate of the negative phenotype. 
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In order to study the effect of radiation therapy, we use two protocols: hypo-fractionated 

radiotherapy and conventional radiotherapy. Total dosage is the same in both procedures. In 

hypo-fractionated radiotherapy, 3 Gray is applied in 20 days while in conventional 

radiotherapy 2 Gray is applied in 30 days. The death rates during radiation can be calculated 

as follows for each treatment strategy [35]. 

Death rate = 𝛼(Dose per day)/𝜏 (5.3) 

where 𝛼 = 18 and 𝜏 = 15 min. 

The variation of the total number of cells after two types of radiotherapies, conventional and 

hypo-fractionation, are shown with respect to the dedifferentiation rate in Fig. 34. It is obvious 

that dedifferentiation decreases the effect of therapy. Hence, the final population of cancer cells 

is bigger in the colonies with higher degree of dedifferentiation. This effect is different for the 

two types of regimens; the population of cancer cells is smaller after hypo-fractionated 

radiotherapy. Different values of Γ𝑝/Γ𝑠 are considered in Fig. 34 which clarifies the importance 

of this ratio. The total number of cancer cells is obviously less for higher values of this fraction. 

 

Figure 34 Total number of cells versus dedifferentiation rate for different 𝚪𝒑 𝚪𝒔⁄  after (a) hypo-

fractionated radiotherapy and (b) conventional radiotherapy. 

Because of the self-renewal capacity of cancer stem cells, recurrence of a tumor depends on 

the proportion of positive cells that are left over at the end of the treatment. Hence, more 

positive cells in the system corresponds to a higher chance of recurrence. 
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The dependency of the proportion of positive cells on plasticity is illustrated in Fig. 35 for both 

hypo-fractionated and conventional regimens. The behavior of cancer cell populations for both 

protocols is almost identical as shown in this figure. Increasing the plasticity increases the 

proportion of positive cells. This result can be also intuitively understood; higher values of 

plasticity increases the population of positive cells, and decreases the negative cancer cell 

population. Therefore, the chance of tumor recurrence is higher for the cancer cell populations 

associated with higher plasticity. 

It has been shown in recent studies that microenvironment is an important factor that changes 

plasticity in cancer cell populations [5]. Hypoxic conditions, or lower oxygen concentrations, 

increase plasticity in tumors. In hypoxia, the effect of radiotherapy is minimal and cancer cells 

that are left over after treatment are increased. Therefore, one of the possible reasons for 

radioresistance in the hypoxic region of the tumor may be due to plasticity. However, several 

biological studies are required to validate this fact. Additionally, the fraction of positive cells 

under hypoxic conditions with higher plasticity is elevated, which may be one of the reasons 

for tumor recurrence. 

We showed that the ratio of death rate of negative cells to positive cells is another important 

factor in the TCM. Dependency of number of cancer cells after radiotherapy on Γ𝑝/Γ𝑠 is shown 

in Fig. 36. As death rate of negative cells increases, total number of cells decreases. 

Interestingly, the effect of plasticity on this trend is different. Near the minimum value of the 

death rate Γ𝑝/Γ𝑠 = 1, the number of cells is higher for lower plasticity. The cell number 

becomes higher for the higher negative cell death rate. It is based on the fact that the 

dependency of the number of cancer cells on Γ𝑝/Γ𝑠 is increased by decreasing plasticity. In 

other words, for lower dedifferentiation rates, the dependency of tumor size on the death rate 

of negative cells increases. 
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Figure 35 Proportion of positive cells versus dedifferentiation rate for different 𝚪𝒑 𝚪𝒔⁄  after (a) 

hypo-fractionated and (b) conventional radiotherapy. 

 

Figure 36 Total number of cells versus 𝚪𝒑 𝚪𝒔⁄  for different dedifferentiation rate after (a) hypo-

fractionated and (b) conventional radiotherapy. 

The effect of the death rate of negative cells on proportion of positive cells is also studied (Fig. 

37). Increasing the death rate of negative cells reduces the population of this phenotype in the 

system which results in higher proportions of positive cells. A higher fraction of positive cells 

leads to an increase in tumor recurrence. Therefore, an efficient treatment strategy should be 

designed with due attention to the effect of death rate of negative cells on increasing the 

probability of recurrence. 
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Figure 37 Proportion of positive cells versus 𝚪𝒑 𝚪𝒔⁄  for different dedifferentiation rate after (a) 

hypo-fractionated radiotherapy and (b) conventional radiotherapy. 

5.3.2 Proliferative-migratory cell model (PMCM) 

The positive and negative phenotypes in TCM can be assumed to be a total population of 

proliferative cancer cells. On the basis of this assumption, total tumor cells can be considered 

to be proliferative or migratory that is the assumption of the PMCM.  

Two important free parameters are chosen in this model to investigate the behavior of tumor 

cells during and after radiotherapy including rate of switching 𝜌𝑚𝑟 and ratio of migratory cell 

death rate to proliferative cell death rate Γ𝑚/Γ𝑟.  

The effects of increasing migratory cell death rate on both protocols, hypo-fractionated and 

conventional, are shown in Fig. 38. Increasing death rate of each phenotype in tumor obviously 

decreases the final number of cells. However, this trend depends on various parameters such 

as migratory-proliferative switching rate 𝜌𝑚𝑟  (which is our concern in this framework). 

Although the number of cancer cells after treatment is less for a lower switching rate, 

dependency of tumor size, e.g., total number of cancer cells, on the death rate of migratory 

phenotype decreases. Therefore, this switching rate affects the efficiency of the treatment. 

In addition to the effect of death rate of migratory phenotype on tumor size, it also affects the 

recurrence risk by changing the proportion of proliferative cells (Fig. 39). The proportion of 

proliferative cells linearly increases as the value of Γ𝑚/Γ𝑟 increases (Fig. 39). Switching rate 
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between phenotypes also are important effect on the proportion of proliferative cells in the 

system. As shown in Fig. 39, increasing switching rate causes higher proportion of proliferative 

cells as well as a higher dependency of this fraction on Γ𝑚/Γ𝑟. 

 

Figure 38 Total number of cells versus 𝚪𝒎 𝚪𝒓⁄  for different switching rates 𝝆𝒎𝒓 after (a) hypo-

fractionated radiotherapy and (b) conventional radiotherapy. 

 

Figure 39 Proportion of positive cells versus 𝚪𝒎 𝚪𝒓⁄  for different switching rates 𝝆𝒎𝒓 after (a) 

hypo-fractionated radiotherapy and (b) conventional radiotherapy. 

It was shown that switching between migratory and proliferative compartment is an important 

factor in cancer cell growth and its treatment [41]. The total number of cancer cells and the 

proportion of proliferative cancer cells versus 𝜌𝑚𝑟 , after radiotherapy, are shown in Figs. 40 

and 41. It should be noted that the variations for various death ratios Γ𝑚/Γ𝑟 are identical. 

Increase in tumor size by increasing switching rate is clearly shown in Fig. 40. It is considered 

that during treatment the switching rate from migratory to proliferative population is 
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negligible, i.e., equal to zero, but the switching between proliferative to migratory phenotype 

is assumed to be enhanced significantly during irradiation. By increasing switching rate, the 

cancer cells go from the proliferative compartment with greater death rate to the migratory 

compartment with smaller death rates. Therefore, the total killing rate decreases and the total 

population of cancer cells will be greater after treatment. 

 

Figure 40 Total number of cells versus 𝝆𝒎𝒓 for different  𝚪𝒎 𝚪𝒓⁄  after (a) hypo-fractionated 

radiotherapy and (b) conventional radiotherapy. 

The switching rate clearly changes the fraction of proliferative cells, as shown in Fig. 41. 

Increasing switching rate is equal to decreasing proliferative cells and consequently 

increasing migratory cells. However, it seems that there is a saturation so that for values 

greater than 𝜌𝑚𝑟 ≈ 0.15 this rate does not have any significant effect on the proportion of 

positive cells (Fig. 41). This behavior can be also seen in Fig. 40 for the total number of 

cancer cells at the end of the treatment. 
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Figure 41 Proportion of positive cells versus 𝝆𝒎𝒓 for different  𝚪𝒎 𝚪𝒓⁄  after (a) hypo-fractionated 

radiotherapy and (b) conventional radiotherapy. 

5.4 Discussion 

Two-compartment model is used to show the effect of switching between positive and negative 

phenotypes in cancer cell populations. Increasing plasticity results in a larger tumor and a 

higher proportion of positive cells after treatments. Therefore, the efficiency of radiation 

therapy decreases by increasing the plasticity and controlling this parameter can effectively 

increase the efficiency of the therapeutic procedures. In addition, we can decrease the 

probability of tumor recurrence and its growth rate by controlling plasticity in tumors.  

Increasing Γ𝑝/Γ𝑠(representing the relative death rate of negative cells) decreases the total 

number of cells while increasing the proportion of positive cells after radiation therapy. It can 

be deduced from the model without calculation that a higher death rate of negative cells results 

in a higher proportion of positive cells. It also decreases the total number of the cells because 

of the higher death rate of one phenotype of the population.  

The death rate proportion Γ𝑚/Γ𝑟 and switching rate 𝜌𝑚𝑟 are also used as two free parameters 

in the PMCM to investigate the behavior of migratory cells in the cancer cell population. The 

total number of cells decreases while the fraction of proliferative cells increases by increasing 

Γ𝑚/Γ𝑟. A lower proportion of migratory cells obtained with higher Γ𝑚/Γ𝑟 results in the higher 

efficiency of radiation therapy [52]. The self-renewal rate of migratory cells are considered to 

be negligible. Hence, augmentation of 𝜌𝑚𝑟 enhances the number of cancer cells and reduces 
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the proportion of proliferative cells. Both of these effects reduce the efficiency of radiotherapy 

and result in a higher number of cancer cells and proportion of migratory cells after treatment. 

Therefore, controlling the switching rate between migratory and proliferative phenotypes may 

have a significant impact on the efficiency of radiotherapy. 
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Chapter 6 

Conclusion and contributions 

We showed in this thesis that both stochastic and deterministic behavior of cancer cells should 

be taken into consideration to properly fit the model parameters in CSC studies. The developed 

models can be used to estimate the behavior of cancer cells under different microenvironments 

as well as for different therapeutic procedures. The models may also help in modifying the 

experimental procedures. 

All of the presented models are temporal and the spatio-temporal growth of the cells is not 

taken into consideration. Hence, the models can be extended to include spatial variables to 

capture the invasion, migration or other spatial biological parameters involved in tumor growth 

in vitro and in vivo. 

In addition to the projects presented in the previous chapters, I have contributed to two other 

projects. In collaboration with Dr. Mani's group, MD Anderson Cancer Centre, the TCM was 

used in to capture the behavior of breast cancer cells under hypoxia. Hypoxia, or oxygen 

deficiency, is known to be associated with breast tumor progression, resistance to conventional 

therapies and poor clinical prognosis. Highly proliferative tumors often outgrow their blood 

supply resulting in a necrotic core surrounded by a hypoxic region, underscoring the 

importance of understanding the clinical relevance of hypoxia and its role in tumor 

progression. In this work, we examined the impact of hypoxia on EMT-associated cancer stem 

cell (CSC) properties, by culturing transformed human mammary epithelial cells under 

normoxic and hypoxic conditions, and applying in silico mathematical modeling to simulate 

the impact of hypoxia on the acquisition of CSC attributes and the transitions between 

differentiated and stem-like states. Our results indicated that both the heterogeneity and the 

plasticity of the transformed cell population are enhanced by exposure to hypoxia, resulting in 

a shift towards a more stem-like population with increased EMT features. 

I was also involved in a project on the synergetic behavior between intracellular antioxidant 

families using kinetic equations for the relevant chemical reaction. We know that glutathione 
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peroxidase (GPx), peroxiredoxin (Prx), and catalase are the major antioxidants at the cellular 

level and protecting cell compartments against hydrogen peroxide (H2O2). In addition, they 

affect cellular processes such as cell signaling by modulating H2O2. In this project, we 

demonstrated that there is a synergetic coupling between GPxs, Prxs themselves and also with 

other antioxidants when the GPxs and Prxs are not in their saturated reduced form. This is due 

to a change in the activity of glutathione peroxidases and peroxiredoxins as a result of a change 

in the concentrations of other antioxidants. We used a perturbative method to analytically 

calculate the concentration of H2O2 as a functions of the production rate of H2O2 and the 

concentration of various antioxidants in a quasi-steady state. This derivation shows clearly that 

why antioxidants behaves in a correlated manner and why any change in the activity of one of 

them translates to a change in the activity of other antioxidants. Our results showed that an 

increase in the activity of GPxs or Prxs might not be due to a genetic switch but that could be 

the result of increase in the activity of other antioxidants. 
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