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Abstract 

 The industrial gram-positive anaerobe Clostridium acetobutylicum is a valued ABE 

(acetone, butanol, ethanol) solvent producer that is able to utilize a vast array of carbon sources 

in fermentation. When glucose is present in the growth medium, however, C. acetobutylicum, 

like many gram-positive organisms, exhibits bi-phasic growth characteristics in which glucose is 

used preferentially over secondary carbon sources, a phenomenon known as carbon catabolite 

repression (CCR). The secondary carbon source is only utilized when the supply of glucose is 

exhausted, resulting in inefficient use of complex carbon sources. As biofuel production is 

sought from cheap feedstock, attention has turned to lignocellulosic biomass. Growth of C. 

acetobutylicum on lignocellulose, however, can be limited by CCR. Here, we present a method 

to relieve the inhibitory effect of CCR and allow simultaneous utilization of the lignocellulosic 

sugars glucose and xylose by C. acetobutylicum. First, we utilized an in vivo gene reporter assay 

to demonstrate that an identified 14-nucleotide catabolic responsive element (CRE) sequence 

was sufficient to introduce CCR-mediated transcriptional inhibition, while subsequent mutation 

of the CRE sequence relieved the inhibitory effect. Next, we demonstrated that C. 

acetobutylicum harboring a CRE-less plasmid-borne xylose and pentose phosphate pathway 

operon afforded a 7.5-fold increase in xylose utilization in the presence of glucose as compared 

to a wild-type-CRE plasmid-borne operon, effectively overcoming native CCR effects. The 

methodology presented here should translate to other members of Clostridium that exhibit CCR 

to enable simultaneous utilization of a vast array of carbon sources. 
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Chapter 1- Overview 

1.1 Research background 

Concerns over energy security, the global supply of fossil fuels, and climate change have 

led to a realigning of research goals toward renewable, sustainable, and environmentally neutral 

energy supplies. Presently, biologically produced ethanol and biodiesel represent the two most 

widely used first-generation biofuels (Peralta-Yahya et al. 2012), however each have substantial 

limitations that render them unattractive energy sources long term: ethanol has only 70% of the 

energy density of petroleum derived gasoline and can only be used as an additive to traditional 

petrol in North America, as opposed to an alternative. Further, ethanol does not fit seamlessly 

with existing infrastructure, as it has a tendency to absorb water from the air leading to corrosion 

of pipes and engines, and distillation from fermentation broth is quite labor intensive. Biodiesel, 

on the other hand, has approximately 91% of the energy density of D2 diesel and can provide an 

additive or alternative to diesel, however has a propensity for developing wax build-up in the 

fuel if the temperature is too low, creating potential problems for engines as well as geographic 

limitations for its production and transport (Peralta-Yahya et al. 2012). Additionally, ethanol and 

biodiesel are predominantly produced from food crops, creating a link between food prices and 

fuel prices (Demirbas 2009).  

Recently, attention has turned to butanol as an attractive biofuel due to its resemblance to 

gasoline in terms of physical, chemical, and combustibility properties (Jang et al. 2012; Szwaja 

and Naber 2010) (Table 1).  
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Table 1 Comparison of properties of several fuels (Adapted from Szwaja and Naber 2010) 

Fuel 

Chemical 

formula 

Specific gravity 

(kg/dm3) 

Specific Energy 

(MJ/kg) 

Energy Density  

(MJ/L) 

Octane  

Number  

Methanol CH3OH 0.7913 20.08 15.9 99 

Ethanol C2H5OH 0.7894 26.83 18.4 100 

n-Butanol C4H9OH 0.8097 36 29.2 86 

Gasoline  CH1.87 0.743 42.9 32 87 

 

 Butanol has 84% of the energy density as compared to gasoline, limited miscibility with 

water and completely miscible in gasoline, and is completely compatible with existing 

infrastructure, so it is essentially ‘ready-made’ for integration (Demirbas 2009; Peralta-Yahya et 

al. 2012).  

Butanol produced from microorganisms using cheap, renewable feedstock represents an 

attractive alternative to petroleum-derived gasoline, and as such, attention has turned to members 

of the genus Clostridium for their ability to produce butanol as a metabolite (Jang et al. 2012). In 

order to compete economically with gasoline, however, microbial-based production platforms 

must be engineered for improvements in overall yield and efficiency of conversion (Zheng et al. 

2009).  

The non-food feedstock lignocellulose is among the most abundant renewable biomass 

on Earth and is among the most underused resources, consisting of approximately 70% sugars 

(Peralta-Yahya et al. 2012). Focusing metabolic engineering efforts on utilization of this 

abundance of stored sugars will serve to make biofuels much more attractive economically as a 

viable alternative to fossil fuels.  
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1.2 Research objectives 

We hypothesize that relief of CCR of xylose can be achieved by mutating the CRE 

sequence found in the xylose catabolic operon leading to improved carbon consumption and 

ABE solvent production. 

The overall objectives of this thesis include: 

1. Experimentally confirm that a 14-nucleotide putative CRE sequence is sufficient to 

impart CCR-type inhibition in its non-native context. 

2. Provide evidence that mutating this CRE sequence relieves CCR-type inhibition. 

3. Investigate the effect of mutating the CRE sequence in its native context to relieve CCR-

type inhibition from a secondary carbon source catabolic operon and permit simultaneous 

co-consumption in the presence of glucose. 
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1.3 Outline of thesis 

Chapter 2 is a review of the relevant literature related to the biotechnological importance of 

members of the genus Clostridium, characterization of the elements of CCR in Gram-positive 

microorganisms, and a synopsis of specific CCR in Clostridium and other Firmicutes. Finally, an 

overview of genetic and bioprocessing strategies for the circumvention of native CCR effects is 

presented, with an emphasis on strategies aimed at introducing the ability to co-utilize secondary 

carbon sources such as xylose in the presence of glucose in C. acetobutylicum. In Chapter 3, all 

materials and methods relevant to this study are described, including strain and plasmid 

construction, media and cultivation, and analytical analyses. In Chapter 4, the results of this 

study are stated including, (1) experimental confirmation that a 14-nucleotide CRE sequence is 

sufficient to impart a phenotype consistent with CCR-type inhibition in a non-native context; (2) 

mutating the degenerate nucleotides of the CRE consensus sequence does not relieve the 

observed inhibition, while non-degenerate nucleotides are sensitive; and (3) over-expression of a 

plasmid-borne, native xylose catabolic operon and pentose phosphate pathway with a mutated 

CRE imparts a dual substrate co-utilization phenotype on C. acetobutylicum. Chapter 5 contains 

a discussion of the results presented in Chapter 4 and comparison to other relevant studies in the 

literature. Finally, Chapter 6 states the conclusions of this study and a proposal for future studies.   
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Chapter 2- Literature Review 

2.1 The genus Clostridium 

 Clostridium is among the largest genera of prokaryotes, comprised of more than 150 

distinct species that satisfy a traditionally simple set of criteria: Gram-positive rods with the 

capacity to form endospores, and an obligate anaerobic metabolism. As a result of these simple 

criteria, Clostridium is well known for its extreme phylogenetic heterogeneity. The arrival of 16S 

rRNA cataloging and accessible genome sequencing technologies, however, has led to a 

proposed re-organization and re-classification of the taxonomy of the genus, as fewer than half of 

the historically-classified members of Clostridium were found to possess sufficient similarity to 

the type species, C. butyricum (Collins et al. 1994; Gupta and Gao 2009; Lawson et al. 1993; 

Yutin and Galperin 2013). The heterogeneity of the genus allows members of Clostridium to 

colonize and thrive in incredibly diverse habitats, owing to endospores resistant to oxygen, heat, 

dessication, and acids (Tracy et al. 2012), and as such, many species of Clostridium are 

recognized for their importance medically, as both causative agents (e.g. C. botulinum, C. 

difficile, C. perfringens, C. tetani, which are implicated in hospital-acquired infections and the 

source of some of the most potent known biological toxic compounds) (Popoff and Bouvet 

2013), and potential therapeutics (e.g. anticancer properties of apathogenic species such as C. 

acetobutylicum, C. butyricum, and C. novyi) (Barbé et al. 2005; Bettegowda et al. 2006; Nuyts et 

al. 2002). Additionally, attention has turned to several apathogenic species of immense industrial 

biotechnological interest for their diverse substrate utilization and unique metabolic capabilities, 

including production of alcohols and solvents of industrial importance as bulk chemicals, 

precursors, and biofuels (Tracy et al. 2012). Of particular interest is production of butanol, which 
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in recent years has garnered interest for its potential as a biofuel that can substitute for 

petroleum-derived gasoline in terms of physicochemical and combustibility properties (Jang et 

al. 2012; Tracy et al. 2012). Butanol production has been investigated in several members of 

Clostridium, including C. acetobutylicum, C. tyrobutyricum, C. pasteurianum, C. beijerinckii, 

and C. saccharoperbutylacetonicum (Jiang et al. 2010; Lütke-Eversloh and Bahl 2011; Moon et 

al. 2011; Noguchi et al. 2013; Xiao et al. 2012), however, fundamental issues regarding process 

shortcomings including high feedstock cost, poor yield, and product toxicity (Demirbas 2009; 

Zheng et al. 2009) must be resolved in order to make biobutanol from Clostridium an attractive 

biofuel production platform. To compound this issue, genetic engineering tools are generally 

lacking in clostridia, as well as seemingly strain-dependent, (Pyne et al. 2014a), resulting in 

lagging tool advancement and significant difficulty in applying procedures in clostridial species. 

 

2.2 C. acetobutylicum and lignocellulosic biomass 

 To date, the most extensively studied member of Clostridium is C. acetobutylicum, and as 

such, availability of genetic engineering tools is by far the most advanced in this organism (Pyne 

et al. 2014a). C. acetobutylicum is a classical ABE (acetone-butanol-ethanol) fermenter, of which 

butanol is the primary product. AB fermentation was the dominant production method of acetone 

and butanol until the introduction of the current petrochemical method in the 1950s, and has 

since experienced a revival of this process in several countries, including most notably, China 

(Green 2011; Ni and Sun 2009). While many metabolic engineering strategies have focused on 

increasing the product yield of butanol from several substrates (Lütke-Eversloh and Bahl 2011; 

Tracy et al. 2012), including combined gene knock-down and over-expression strategies to 
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increase solvent formation to 30 g l-1 (compared to approximately 20 g l-1 for wild-type 

cultivation) and favor product selectivity toward butanol and ethanol production (as opposed to 

butanol and acetone for wild-type) (Sillers et al. 2009), relatively few studies have focused on 

the choice of feedstock itself (Jang et al. 2012; Wang et al. 2014). 

 While many carbon sources such as glucose are readily converted, they often suffer from 

high costs that render biofuel production unsustainable economically, or present political and 

ethical questions of repurposing agricultural land toward biofuel production (Demirbas 2009). 

Lignocellulosic biomass (plant biomass) is among the most abundant renewable feedstock on 

Earth, and as such, has garnered attention as a viable substrate for biofuel production (Hill et al. 

2006; Jang et al. 2012). Lignocellulose is composed of carbohydrate polymers (cellulose and 

hemicellulose) of which glucose, xylose, and arabinose are major constituents, and an aromatic 

polymer (lignin). Conversion of these stored carbohydrates is neither easily nor efficiently 

attained, requiring pre-treatment to release fermentable sugars and engineering strategies to 

enhance the metabolic capabilities of microorganisms to utilize the substrate efficiently (Jang et 

al. 2012; Stephanopoulos 2007).  

 The genome of C. acetobutylicum encodes putative xylose uptake and metabolism genes, 

including a putative xylose proton-symporter (CAC1345) two putative xylose isomerase genes 

(CAC1346, CAC2610), and two putative xyulose kinases (CAC1344, CAC2612). Additionally, 

putative pentose phosphate pathway (PPP) genes have been tentatively identified, including 

transaldolase and transketolase (CAC1347 and CAC1348, respectively) as well as two possible 

ribulose epimerases (CAC1730, CAC1349) and ribulose isomerase (CAC2880) (Grimmler et al. 

2010; Nölling et al. 2001; Servinsky et al. 2010) (Figure 1). Recently, several studies have 

produced experimental correlative evidence demonstrating the roles of many of these genes in 
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xylose metabolism (Grimmler et al. 2010; Jin et al. 2014; Xiao et al. 2011). 

 

 

Figure 1 Xylose utilization pathway in C. acetobutylicum A) xylose degradation pathway via 

pentose phosphate pathway and entrance points into glycolysis. B) genomic organization of C. 

acetobutylicum genes involved in xylose degradation. 

 

 While C. acetobutylicum is able to utilize a remarkable array of carbon sources, including 

the constituents glucose and xylose of lignocellulosic biomass (Tracy et al. 2012), like many 
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Gram-positive organisms, including several species of Clostridium, C. acetobutylicum is subject 

to a phenomenon known as carbon catabolite repression (CCR) wherein utilization of secondary 

carbon sources (i.e. xylose) are restricted when a more preferable, primary carbon source (i.e. 

glucose) is present (Hueck et al. 1994; Tangney et al. 2003) 

 

2.3 A model of CCR for Firmicutes 

 CCR has been extensively studied in the ubiquitous Gram-negative model organism E. 

coli, and more recently the molecular mechanism has been elucidated in the model gram-positive 

Firmicute, B. subtilis. In both species, CCR exhibits global transcriptional control over several 

operon-specific regulatory mechanisms including repression (or lack of activation) of genes 

encoding secondary-carbon source utilization pathways. Although the CCR mechanism in both 

organisms is elegantly intertwined with native PTS enzymes that are additionally involved as 

signaling molecules, the molecular mechanisms of CCR are significantly dissimilar; in E. coli, 

which uses the phosphorylation state of domain A of the glucose-specific enzyme II (EIIA) of the 

phosphoenolpyruvate-dependent phosphotransferase system (PTS) to direct activity of adenylate 

cyclase (AC) and consequently the concentration of cyclic AMP (cAMP) inside the cell, cAMP-

associated catabolite gene-activator protein (CAP; also called cAMP receptor protein (CRP)) 

complexes bind and activate the promoters of catabolic genes (Gorke and Stulke 2008). In the 

Gram-positive B. subtilis, conversely, CCR is mediated through the prevention of transcriptional 

activation of catabolic gene pathways (Gorke and Stulke 2008). Additionally, CCR is facilitated 

through an altogether different molecular signaling cascade, although they are mechanically 

analogous (Gorke and Stulke 2008). Analysis of the C. acetobutylicum genome (Nölling et al. 
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2001; Tangney et al. 2003) has identified all of the requisite proteins involved in the model of 

CCR in B. subtilis, and it is therefore hypothesized that they share similar CCR mechanisms 

(Tangney et al. 2003), and as such, the model of CCR in B. subtilis will now be parlayed to that 

of C. acetobutylicum.  

 The signaling intermediate utilized in C. acetobutylicum is the phospho-carrier protein 

HPr, which is a component of the PTS, the major carbohydrate transport system in clostridia and 

other microorganisms (Postma et al. 1993; Tangney and Mitchell 2007) (Figure 2). Briefly, the 

PTS proteins enzyme I (EI), histone-containing protein (HPr), and enzyme II (EII) form a 

phosphorylation cascade to link carbohydrate uptake with its simultaneous phosphorylation. In 

its native PTS context, HPr is phosphorylated at a conserved histidine residue (HPr-His16-P), 

however in the presence of glycolytic intermediates including fructose-1,6-bisphosphate, the 

expression of a bi-functional ATP-dependent kinase-phosphorylase, HPr kinase (HPrK), is 

induced which competitively phosphorylates HPr at a conserved serine residue (HPr-Ser46-P) 

(Nessler et al. 2003).  This serine-phosphorylated HPr forms a complex with catabolite control 

protein A (CcpA) (HPr-Ser46-P-CcpA), which subsequently forms a dimer by associating with a 

second HPr-Ser46-P-CcpA, and this complex binds at catabolite responsive element (CRE) sites 

within the promoter region or coding sequence of transcriptional units to inhibit transcription 

(Warner and Lolkema 2003). Alternatively, in the presence of inorganic phosphate, HPrK 

catalyzes the dephosphorylation of serine-phosphorylated HPr, presumably relieving CCR 

inhibition (Nessler et al. 2003).  It is also worth noting that analysis of CCR in B. subtilis led to 

the discovery of a novel HPr-like protein, catabolite repression HPr (Crh), that shares homology 

with the B. subtilis HPr. Crh maintains the conserved Ser46 of HPr, however the HPr His16 is 

replaced with a glutamine residue in Crh (Galinier et al. 1997). Further, Crh has been 
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experimentally demonstrated to substitute for HPr in CCR, but not in its PTS function (Galinier 

et al. 1999; Galinier et al. 1997). A Crh homologue is absent from the C. acetobutylicum genome 

(Nölling et al. 2001). 

 

Figure 2 PEP-dependent PTS system and model of CCR-type inhibition. Phospho-relay 

system to couple glucose transport with its simultaneous phosphorylation. Briefly, phosphate 

from PEP is transferred in a relay cascade through EI, HPr, and EII to phosphorylate glucose as 

it is transported into the cell to undergo glycolysis. In the presence of glycolytic intermediates, 

the expression of HPr Kinase is induced, which competitively phosphorylates HPr at a conserved 

Ser-46 residue, which forms a complex with CcpA to bind at CRE sites and inhibit transcription.  
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2.4 Structural characterization of CcpA and its cognate DNA binding site CRE 

 The CcpA protein belongs to the LacI/GalR family of allosteric transcriptional regulators, 

which act in a so-called “roadblock” mechanism in which the regulator binds at an operator 

sequence to provide a physical barrier to transcript elongation by the host RNA Polymerase 

(Swint-Kruse and Matthews 2009). CcpA from C. acetobutylicum shares 63% similarity at the 

amino acid level with CcpA from B. subtilis and B. megaterium, and 48% similarity with the 

more distantly related family-member LacI from E. coli. Although the structure of CcpA from C. 

acetobutylicum has not been solved, structural characterization of several members of this family 

is available, including apo- and holoenzyme structures of the archetypal LacI and PurR regulators 

from E. coli (Choi and Zalkin 1992; Lewis et al. 1996; Schumacher et al. 1994), as well as 

several CcpA regulators, including those from B. subtilis (Schumacher et al. 2011),  B. 

megaterium (Schumacher et al. 2004), and L. lactis (Loll et al. 2007).  These studies have formed 

the basis for detailed structural analysis of the general architecture of these regulators, as well as 

meticulous exploration of the specific amino acid residues that are involved in the various 

functions of the proteins, including dimerization, effector binding, and DNA binding 

(Schumacher et al. 2004; Schumacher et al. 2006; Schumacher et al. 2007).  

 Analysis of CRE sequences in B. subtilis has led to the derivation of a 14-nucleotide 

consensus sequence with bi-fold symmetry and considerable degeneracy (Miwa et al. 2000).  

This has led to the investigation of how CcpA tolerates considerable degeneracy in the CRE sites 

to bind with high-affinity at such diverse sequences. To address this question, crystal structures 

of the CcpA-(HPr-Ser46-P) dimer complex bound to various CRE sites have been solved in B. 

subtilis and B. megaterium (Schumacher et al. 2004; Schumacher et al. 2011) (Figure 3).  The 

most striking observations from these studies revealed that the CcpA-bound operators display 
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differing bend angles, or kinking, which are accommodated by flexibility of CcpA. It is this 

plasticity that permits CcpA binding at diverse operators. CcpA is composed of a DNA-binding 

domain at its N-terminal, which is comprised of two distinct DNA-binding elements: a three-

helix bundle of which helices 1 and 2 form the DNA major-groove-binding helix-turn-helix 

motif (HTH) connected via a flexible linkage to a hinge-helix motif, which inserts into the 

minor-groove of the central CpG step of the CRE sequence and contributes to the kinking of the 

DNA (Schumacher et al. 2004).  Furthermore, these crystal structures exposed the specific amino 

acid residues responsible for binding CRE site DNA and shed light on the significant degeneracy 

tolerated in the CRE site as well as the critical, specified, and most conserved nucleotides in the 

CRE sequence  (i.e TGNAANCGNWNNCW, where the most conserved bases are denoted in 

bold font; N, any base; W, A or T) (Schumacher et al. 2011).  Interestingly, it appears as though 

there are only two, conserved, side chain – base interactions that are specific; the major groove 

contacts from residue arginine-22 (Arg22) of the HTH motif to guanine-2 (Gua2) of CRE, and 

the minor-groove associating hinge-helix residue Leucine-56 (Leu56) to the central CpG step of 

the CRE (Schumacher et al. 2011). It appears as though it is both the DNA-kinking minor-groove 

interactions of the dimer-related “leucine levers” of the hinge-helix (Leu56 residues from each 

CcpA monomer of the dimer complex) that insert into the minor groove of the central CpG step 

and allows the formation of operator-specific, HTH-major groove contacts between Arg22 and 

Gua2 (Schumacher et al. 2011) that are indispensible to CRE site binding. Indeed, mutation of 

only the central CG to TA abolished CCR-type inhibition in B. megaterium (Gosseringer et al. 

1997), and mutating or deleting any of the most conserved bases significantly reduced 

transcriptional repression of amylase activity in B. subtilis (Weickert and Chambliss 1990).  

Other CcpA-CRE site interactions are formed through weak but specific hydrogen bonding 
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between the hinge-helix backbone atoms of alanine-52 (Ala52) and Ala57 with the nucleotides of 

the central CpG step, and van der Waals’ interactions between aspargine-29 (Asn29) and 

thymine-1 (Thy1) and an additional stacking interaction between Arg22 and Thy1, termed a 5’-

pyrimidine-guanine-3’ interaction (Schumacher et al. 2011). Additionally, there are numerous 

non-specific side chain-phosphate backbone interactions and other van der Waals’ interactions 

that contribute to binding affinity, but not specificity (Schumacher et al. 2011). In CcpA of C. 

acetobutylicum, each of these amino acid residues is conserved, except for Ala57, which is a 

lysine residue. Of the N-terminal 59 amino acids comprising the DNA-binding domain and 

linker motif, 32 amino acid residues are identical, and an additional 12 have similar side-chains 

(Figure 3). Given this similarity, it is reasonable to suggest a similar DNA-binding structure 

mechanism in C. acetobutylicum as in B. subtilis and B. megaterium. 
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Figure 3 CcpA of C. acetobutylicum A) Multiple sequence alignment of the amino acid 

sequences of CcpA from C. acetobutylicum, B. subtilis, and B. megaterium showing the DNA 

binding region and relevant amino acid residues necessary for CRE binding (shaded blue).  (* 

indicates conserved residue; : denotes similar residue) B) Ribbon representation of C. 

acetobutylicum CcpA monomer, using solved B. megaterium CcpA (apo-form) structure as 

template. C) Ribbon representation of dimeric CcpA (apo-form) from B. megaterium (image 

taken from Loll et al. 2007)  
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2.5 Elements of CCR in Clostridium and other Firmicutes 

 With the increasing availability of genome sequences for members of Clostridium, 

including the C. acetobutylicum annotated genome, analysis of the elements of CCR has 

progressed. Though most effort is directed in C. acetobutylicum, evidence of CCR has been 

found in other members of Clostridium, including: observations of diauxic growth when glucose 

is present in C. tyrobutyricum and C. saccharoperbutylacetonicum; regulation of expression of 

cellulase components during growth on cellobiose in both C. cellulolyticum and C. 

thermocellum; and identification of potential CREs as well as components necessary for CCR 

including putative CcpA, HPrK and Crh orthologs in C. cellulolyticum, and putative CcpA, HPr, 

and HPrK in C. thermocellum (Abdou et al. 2008; Gorke and Stulke 2008; Jiang et al. 2010; 

Noguchi et al. 2013; Zhang and Lynd 2005). Interestingly, although a putative Crh containing the 

conserved Ser46 but not His15 was found in C. cellulolyticum, no HPr homolog was found, 

consistent with the absence of a putative PTS enzyme II-encoding gene in the C. cellulolyticum 

genome (Abdou et al. 2008). C. beijerinckii, a close relative of C. acetobutylicum and native AB 

fermenter capable of utilizing several hexose and pentose carbon sources, on the other hand, 

appears not to be subject to CCR-type regulation, as it has been shown to utilize both glucose 

and xylose concurrently in batch fermentation (Xiao et al. 2012).  

 In C. acetobutylicum, all of the components required in the B. subtilis model of CCR are 

present in the genome sequence (Tangney et al. 2003), and transcriptional profiling of C. 

acetobutylicum grown on different carbon sources has been conducted (Grimmler et al. 2010; 

Rodionov et al. 2001; Servinsky et al. 2010). Perhaps most notably, several transcriptional units 

were repressed when glucose was included in growth media, including operons encoding 

putative xylose and arabinose utilization genes as well as genes encoding putative pentose 
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phosphate pathway (PPP). Additionally, a genome-wide search for putative CREs was 

conducted, revealing 27 potential CRE sites within either the promoter region or coding 

sequence at a maximum distance of 200 bp from the start codon, including CREs upstream of the 

start codon of a putative arabinose utilization gene, and in the coding sequence of the first gene 

in the putative xylose utilization operon (Grimmler et al. 2010) (Table 2). This analysis agrees 

with previous searches for CRE sequences in B. subtilis, which suggested CCR predominance 

over genes involved in catabolism of secondary carbon sources, nitrogen sources, and other PTS 

components (Grimmler et al. 2010; Marciniak et al. 2012; Miwa et al. 2000). 

 Aside from being extensively studied in B. subtilis and B. megaterium (Fujita 2009), 

evidence of CCR and its molecular basis has been found in several other Firmicutes, including 

other members of Bacillus, Lactobacillus, Lactococcus, and Staphylococcus (Egeter and 

Brückner 1996; Gorke and Stulke 2008; Mahr et al. 2000), and CcpA has been implicated in 

expression of virulence genes in S. pyogenes and S. pneumoniae, L. monocytogenes, S. aureus, 

and members of the pathogenic clostridia, C. perfringens and C. difficile  (Antunes et al. 2011; 

Gorke and Stulke 2008; Seidl et al. 2006; Varga et al. 2004). Further, in B. subtilis and more 

recently in C. acetobutylicum, the pleiotropic nature of CcpA has also been demonstrated 

experimentally: the B. subtilis genes ackA, pta, and the ilv-leu operon are activated by CcpA 

(Fujita 2009), and CcpA is required for full activation of the sol locus of C. acetobutylicum (Wu 

et al. 2015). 
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Table 2 CRE sites identified in C. acetobutylicum (Adapted from Grimmler et all. 2010) 

Gene ID Gene Function Transcriptional 

profile 

CcpA binding site 

  Glucose Xylose Sequence Positiona 

CA_P0066 ptnA, mannose-specific PTS component IIAB * * TGCAATCGGGTGCG +49 

CA_P0098 amyA, alpha-amylase   TGAAAACGATTACT +87 

CA_P0120 Xylan degradation protein * * TGCAAACGTTAACA +25 

CA_C0154 mtlA, PTS system, mannitose-specifc IIBC component * * TGAAAACGATCGCA -64 

CA_C0164 ATP transporter   TGAAAACGCTATCA -24 

CA_C0531 RpiR family transcriptional regulator   TGAAAACGATCTCC +44 

CA_C0672 Fision threonyl-tRNA synthetase (N-terminal) and 

uridine kinase 

* * TGGAAGCGTAAACG +116 

CA_C0674 L-Serine dehydratase, alpha chain   TGAAATCGGCTGCT +148 

CA_C1339 araE, arabinose sugar-proton symporter  | TGAAAGCGATTACC -136 

CA_C1344 xylB, sugar kinase, xylulose kinase * | TGCAAACGATTTCT +95 

CA_C1353 PTS system IIC component |  TGTAAACGGTATCT +174 

CA_C1407 PTS system, beta-glucosides-specific IIABC 

component 

| * TGTAACCGTTATCA +152 

CA_C1551 Nitroreductase family protein   TGCAAGCGCCATCA +91 

CA_C2166 Nucleoside-diphosphate-sugar epimerase |  TGTAACCGTATTCC +70 

CA_C2252 Alpha-glucosidase   TGCAATCGATTTCA -70 

CA_C2807 Endo-1,3(4)-beta-glucanase family protein 16  | TGCAAACGTATTCA +79 

CA_C2891 Bifunctional alpha-glucosidase/glycosidase  | TGCAATCGTTTTCC -59 

* signal intensity intensity after subtracting background  and background standard deviation  ≤100, | ≥2 fold up-regulation comparing 

exponential growth on glucose and xylose 
a distance to start codon 
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2.6 Genetic and non-genetic strategies for circumvention of CCR 

 Despite a sound understanding of the elements of CCR, few studies have circumvented 

CCR through endogenous genetic engineering strategies in either Clostridium or other Gram-

positive organisms such as B. subtilis. Rather through media tailoring efforts, co-fermentation 

strategies, or engineering xylose utilization capabilities through over-expression of heterologous 

genes. As recently as 2012, a recombinant B. subtilis strain with an introduced xylose-utilization 

operon from E. coli was able to utilize glucose and xylose simultaneously to produce 2,3-

butanediol (Liu et al. 2012). In other members of Clostridium, CCR was circumvented in C. 

saccharoperbutylacetonicum by fermentation with xylose and cellobiose, a disaccharide 

comprised of two monomers of glucose covalently bonded by a (1,4)-glycosidic linkage, and 

transported across the membrane as a disaccharide before being hydrolyzed to two glucose 

monosaccharides inside the cell (Noguchi et al. 2013).  

 The insights derived from structural characterization of CcpA from B. subtilis and B. 

megaterium has led to protein engineering and investigation of mutants of the CcpA protein and 

characterization of the phenotypic response these mutations have on CCR-type inhibition, 

including mutations in the co-effector binding and DNA binding regions of CcpA from L. casei 

and B. megaterium (Esteban et al. 2004; Kraus et al. 1998; Küster et al. 1999).  

 Recently, efforts have been made to attenuate the effect of CCR on the xylose catabolic 

operon of C. acetobutylicum, including intron-mediated knock-out of the genes ccpA (Ren et al. 

2010) and glcG, which encodes EII of the PTS (Xiao et al. 2011), and the generation of a ccpA 

mutant deficient in co-effector HPr-Ser46-P binding (Wu et al. 2015). Though these strategies 

proved to be successful in relieving carbon-inhibition, they suffer from potential drawbacks; 
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ccpA knockout mutants have shown impaired growth rates, failure to activate overflow 

metabolism and other biosynthetic pathways (Egeter and Brückner 1996; Grundy et al. 1993; 

Hueck and Hillen 1995; Ren et al. 2010; Tobisch et al. 1999; Tojo et al. 2005), and efficient 

sporulation (Varga et al. 2004). On the other hand, glcG knockout mutants and strains with 

mutated ccpA have shown severely impaired growth on glucose (Eiteman et al. 2008; Paulsen et 

al. 1998; Wu et al. 2015). Additionally, knockouts of PTS enzyme II may not be possible, as is 

the case for C. cellulolyticum, which appears to not possess this gene in its genome (Abdou et al. 

2008). 
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Chapter 3- Materials and Methods 

3.1 Bacterial strains and plasmids 

 Bacterial strains and plasmids employed in this work are listed in Table 3, and 

oligonucleotides in Table 4. E. coli DH5 was utilized for vector construction and routine 

plasmid maintenance, and ER2275 (pAN3) (Al-Hinai et al. 2012) for methylation of E. coli-C. 

acetobutylicum shuttle vectors destined for electrotransformation to C. acetobutylicum. Vectors 

pHT3 and pHT5 (Tummala et al. 1999) were kindly provided by Professor Terry Papoutsakis 

(University of Delaware; Newark, DE). Oligonucleotides were synthesized by Integrated DNA 

Technologies (IDT; Coralville, IA) at the 25 nM scale using standard desalting. 
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Table 3. Strains and plasmids used in this study 

Strains or plasmids Relevant characteristicsa Source or referencea 

Strains   

E. coli 

DH5 

 

hsdR recA1 endA1  

 

Lab stock 

ER2275 hsdR mcrA recA1 endA1  NEB  

C. acetobutylicum DSM 792 Wild-type DSMZ 

  792-Pthl 792/pHT3catP-Pthl This study 

  792 -CRE 792/pHT3catP-Pthl-CRE This study 

  792-14nt 792/pHT3catP-Pthl-14nt This study 

  792 -mutN 792/pHT3catP-Pthl-mutN This study 

  792-xylB 792/pHT3catP-Pthl-xylB This study 

  792-xyl-wt 792/pMTLxyloperon-wt This study 
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  792-CRE-free 792/pMTLxyloperon This study 

Plasmids   

pAN3 3TI; KmR; p15A (Al-Hinai et al. 2012) 

pHT3 ApR; EmR; ColE1; repL; LacZ (Tummala et al. 1999) 

pHT3catP CmR/TmR ; ColE1; repL; LacZ Unpublished data 

pHT5 ApR; EmR; ColE1; repL; thl promoter; LacZ (Tummala et al. 1999) 

pMTL007C-E6 CmR/TmR ; ColE1; repL (Pyne et al. 2014b) 

pHT3catP-Pthl CmR/TmR ; ColE1; repL; Pthl upstream of LacZ This study 

pHT3catP-Pthl-CRE CmR/TmR ; ColE1; repL; Pthl  with CRE sequence inserted 

upstream of LacZ 

This study 

pHT3catP-Pthl-14nt CmR/TmR ; ColE1; repL; Pthl with 14 nt replacing CRE sequence; 

LacZ 

This study 
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pHT3catP-Pthl-mutN CmR/TmR ; ColE1; repL; Pthl with mutated degenerate nucleotides 

of CRE sequence; LacZ 

This study 

pHT3catP-Pthl-xylB CmR/TmR ; ColE1; repL; Pthl with mutated CRE sequence; LacZ This study 

pMTLxyloperon-wt CmR/TmR ; ColE1; repL; cac1344-1349 with ~300 bp of homology 

upstream and downstream 

This study 

pMTLxyloperon CmR/TmR ; ColE1; repL; cac1344-1349 with ~300 bp of homology 

upstream and downstream; mutated CRE 

This study 
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Table 4 Oligonucleotides employed in this study 

Oligonucleotide Sequence (5’ – 3’) 

Pthl.S GCACCATATGCTCGTAGAGCACACGGTTTAACG 

Pthl.AS GGATCCCTACGGGGTAACAGATAAACCATTTCAATC 

Pthl.CRE.AS GGATCCAGAAATCGTTTGCACTACGGGGTAACAGATAAACCATTTC

AATC 

Pthl.14nt.AS GGATCCNNNNNNNNNNNNNNCTACGGGGTAACAGATAAACCATTT

CAATC 

Pthl.mutN.AS GGATCCTGTCGACGCTTACACTACGGGGTAACAGATAAACCATTTC

AATC 

Pthl.xylB.AS GGATCCTAAAATCATTAGCTCTACGGGGTAACAGATAAACCATTTC

AATC 

xylB.S ACATTCGTGAGGTTGGAGAAG 

xylB.AS CTTTTAGATTAAATGCTCTACAGCTGC 

xylB.mut.S AGCTAATGATTTTAGTATATTAGCTAGCGGAAGCTTTGAATGG 

xylB.mut.AS ATAAGGACAGCTTTAATTCGAGTAGAACCA 

1/2xyloperon.S1 GTAGAGCATTTAATCTAAAAGTAAAATTTAGAAGATTATCAG 

1/2xyloperon.AS1 GATATCTGTTAAAGGATGTTTTATTAATTG 

1/2xyloperon.S2 CAATTAATAAAACATCCTTTAACAGATATCGGAATAG 

1/2xyloperon.AS2 CTGAGAATATTGTAGGAGATCTTCTAGAAAGATTGCCATCCTTTATC

CT 

repLcatPcolE1pMTL.S ATCGATCGCCGCATTCACTTCTTTTC 

repLcatPcolE1pMTL.AS GCGGCCGCATCCACAGAATCAGGGGATAACG 
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3.2 Cultivation and maintenance conditions 

 E. coli strains were cultivated aerobically at 37 °C in lysogeny broth (LB) (10 g l-1 

tryptone, 5 g l-1 yeast extract, 10 g l-1 NaCl) and recombinant derivatives were selected, when 

necessary, with chloramphenicol (25 µg ml-1), or kanamycin (30 µg ml-1). C. acetobutylicum  

DSM 792 was cultivated anaerobically at 37 °C in 2×YTG (pH 5.2) medium (16 g l-1 

tryptone, 10 g l-1 yeast extract, 5 g l-1 glucose, 4 g l-1 NaCl), Clostridium Growth Medium 

(CGM) (Abdou et al. 2008), or P2 minimal medium (Baer et al. 1987), within an anaerobic 

containment chamber (Plas-Labs; Lansing, MI) containing an atmosphere of 5% CO2, 10% 

H2, and 85% N2. Strict anaerobic conditions were maintained and monitored through the use 

of a palladium catalyst fixed to the heater of the chamber and addition of resazurin (1 mg l-1) 

to all solid and liquid media preparations. Recombinant C. acetobutylicum strains were 

selected, where necessary, with thiamphenicol (10 µg ml-1). Recombinant E. coli and C. 

acetobutylicum were stored frozen in 15% glycerol at -80 °C or as sporulated colonies on 

solidified 2×YTG (pH 5.8) agar plates. 

3.3 DNA isolation, manipulation, and electrotransformation 

 Plasmid DNA was extracted from E. coli and purified using an EZ-10 Spin Column 

Plasmid DNA Miniprep Kit (Bio Basic, Inc.; Markham, ON). Linear DNA restriction 

fragments and PCR products were purified either from agarose gels or directly using an EZ-

10 Spin Column DNA Gel Kit (Bio Basic, Inc.; Markham, ON). Vectors destined for C. 

acetobutylicum were constructed in E. coli according to standard procedures (Sambrook et al. 

1989), methylated in E. coli ER2275 (pAN3) (Al-Hinai et al. 2012), and electro-transformed 

to C. acetobutylicum as described previously (Mermelstein and Papoutsakis 1993). 
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Restriction enzymes, Standard Taq DNA Polymerase, Phusion High-Fidelity DNA 

Polymerase, and Quick Ligation Kit were purchased from New England Biolabs (Whitby, 

ON). In-Fusion HD Cloning Kit was purchased from Clontech Laboratories (Mountain View, 

CA), and CloneJET PCR Cloning Kit was purchased from Thermo Scientific (Ottawa, ON). 

All commercial enzymes and kits were used according to the manufacturer’s instructions. 

3.4 Vector construction 

 Plasmid pHT3catP is a derivative of pHT3 wherein the erythromycin selectable 

marker is replaced by the chloramphenicol/thiamphenicol catP selectable marker by sub-

cloning a 1.3 kbp ClaI + SacI restriction fragment of pSY6catP and ligating to the similarly 

digested pHT3 (Pyne et al. 2013). 

  To construct plasmids pHT3catP-Pthl, pHT3catP-Pthl-CRE, pHT3catP-Pthl-14nt, 

pHT3catP-Pthl-mutN, and pHT3catP-Pthl-xylB, a 301 bp region corresponding to the 

thiolase (thl) promoter region of plasmid pHT5 was amplified by PCR, (primers Pthl.S + 

Pthl.AS, Pthl.S + Pthl.CRE.AS, Pthl.S +Pthl.14nt.AS, Pthl.S + Pthl.mutN.AS, and Pthl.S + 

Pthl.xylB.mut.AS, respectively), digested with BstAPI + BamHI, and ligated to the BstAPI + 

BamHI restriction sites of pHT3catP. 

 For construction of pMTLxyloperon and pMTLxyloperon-wt, first a 1.8 kbp region 

corresponding to the xylB gene (CAC1344) and 232 bp of upstream DNA were PCR 

amplified from C. acetobutylicum DSM 792 genomic DNA using primers xylB.PCR.S + 

xylB.PCR.AS, and ligated to pJET1.2 blunt cloning vector, yielding pJET-xylB. The putative 

CRE sequence was then mutated in the resulting vector using inverse-PCR (primers 

xylB.mut.S + xylB.mut.AS) to yield pJET-xylB-mut. Next, in two successive In-Fusion 
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cloning steps, 3.9 kbp (primers 1/2xyloperon.S1 + 1/2xyloperon.AS1) and 3.3 kbp (primers 

1/2xyloperon.S2 + 1/2xyloperon.AS2) PCR fragments making up the rest of the xylose and 

pentose phosphate pathway operon as well as 169 bp of downstream sequence were 

amplified from genomic DNA and fused to the vector backbones of pJET-xylB-mut and 

pJET-xylB, creating pJET1.2xyloperon, and pJET1.2xyloperon-wt, respectively. Finally, a 

2.5 kbp PCR fragment comprising repL clostridial ORI, catP for dual selection of 

chloramphenicol and thiamphenicol for E. coli and C. acetobutylicum, respectively, and the 

E. coli ORI colE1 was amplified from vector pMTL007-E6, digested with ClaI + NotI, and 

ligated to the similarly digested pJET1.2xyloperon and pJET1.2xyloperon-wt to generate 

pMTLxyloperon and pMTLxyloperon-wt using primers repLcatPcolEIpMTL.S and 

repLcatPcolEIpMTL.AS. 

3.5 Enzyme assays and fermentation 

 Cells were collected from 50-ml cultures grown in CGM to mid-exponential phase 

(A600 ~ 1.2-1.5) with glucose as the sole carbon source, pelleted by centrifugation, and the 

pellet was immediately frozen at -80 °C. Frozen cell pellets were thawed on ice for 1 hour 

and re-suspended to an A600 of ~16 OD units in Z buffer. Lysozyme (1 mg ml-1) was added 

and the cells were incubated in a 37 °C water bath for 45 minutes. The crude extract was 

harvested by centrifugation and the -galactosidase assay was performed as described 

previously (Tummala et al. 1999). All -galactosidase activity assays were carried out in 

triplicate. 

 Anaerobic static-flask fermentations were carried out with 50 ml working volume in 

P2 medium with glucose (40 g l-1) and xylose (20 g l-1) as carbon sources. Recombinant C. 
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acetobutylicum harboring either the wild-type xylose operon and pentose phosphate pathway 

genes or the mutated CRE version were heat shocked in a 80°C water bath, cooled on ice, 

and serial dilutions were prepared. The cultures were incubated overnight, and the 

fermentation flasks were inoculated with 1% of the highest dilution-factor culture that was 

turbid and growing exponentially. Samples were taken at 12-hour intervals for A600 

measurements as well as HPLC analysis. All fermentations were carried out in duplicate. 

3.6 Analytical Analyses 

 Cell density measurements were conducted by measuring the A600 using a 

spectrophotometer (DU520, Beckman Coulter, Fullerton, CA). Dilutions were made using 

saline as appropriate to ensure the accuracy of OD600 measurements. For measurement of 

glucose, xylose, and ABE solvents concentration, HPLC (LC-10AT, Shimadzu, Kyoto, Japan) 

with a refractive index detector (RID-10A, Shimadzu, Kyoto, Japan) and a chromatographic 

column (Aminex HPX-87H, Bio-Rad Laboratories, CA, USA) was employed. The column 

temperature was maintained at 65 °C and the mobile phase was 5 mM H2SO4 (pH 2.0) 

running at 0.6 mL/min. Data acquisition and analysis were performed using the Clarity Lite 

Chromatographic Station (Clarity Lite, DataApex, Prague, The Czech Republic). 

3.7 CRE search 

 Analogously to previous studies in B. subtilis and recently in C. acetobutylicum, we 

performed our own search for CRE sequences in the C. acetobutylicum ATCC 824 genome 

(chromosome and megaplasmid) using an almost completely degenerate query sequence 

TGNNNNCGNNNNCN (N, any base) using the PRODORIC database and the virtual 

footprint version 3.0 (Grote et al. 2009).  



 

 

 

30 

Chapter 4- Results 

4.1 Introduction of a 14-nucleotide catabolite responsive element (CRE) is sufficient 

to result in CCR-type inhibition 

 We first aimed to evaluate the sufficiency of a putative 14-nucleotide CRE sequence 

to confer CCR-type inhibition by constructing a derivative of the lacZ gene reporter vector 

pHT3catP (Pyne et al. 2013) in which the sequence of the putative CcpA binding site in the 

xylB gene of C. acetobutylicum (Grimmler et al. 2010) is inserted between the thl promoter 

and the ribosome binding site (RBS) of the lacZ coding sequence (Figure 4). Upon electro-

transformation of the promoter-less pHT3catP and pHT3catP-Pthl controls, and pHT3catP-

Pthl-CRE, the resulting recombinant C. acetobutylicum strains were assessed for -

galactosidase activity in CGM using glucose as the carbon source for cultivation. As shown 

in Figure 4, C. acetobutylicum harboring the promoter-less vector yielded negligible -

galactosidase activity (data not shown), while the pHT3catP-Pthl harboring strain, in which 

the endogenous thl promoter is driving expression of the lacZ reporter gene, exhibited a high 

-galactosidase activity of approximately 2000 Miller Units (MU). Conversely, the -

galactosidase activity of C. acetobutylicum harboring pHT3catP-Pthl-CRE was 

approximately 600 MU, a reduction of approximately 70% as compared to C. acetobutylicum 

harboring the CRE-less plasmid construct. Since the only difference between the vectors 

pHT3catP-Pthl-CRE and pHT3catP-Pthl is the introduced putative 14-nucleotide CRE 

sequence from the xylB gene, the observed decrease in  -galactosidase activity suggests that 

the presence of the CRE sequence is responsible for the CCR-inhibition of the transcription 
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of the lacZ gene. 

 To ensure that the inhibition of lacZ expression was not associated with the increased 

length of the mRNA transcript or some other promoter perturbation issue, we constructed 

another derivative of pHT3catP, i.e. pHT3catP-Pthl-14nt, to include 14 additional random 

nucleotides in the same placement and orientation as the introduced CRE sequence.  The 

sequence of the random 14 nucleotides was examined to ensure its inability to act as a 

putative CRE element. The plasmid pHT3catP-Pthl-14nt was introduced to C. acetobutylicum 

and the resulting recombinant strain was assayed for -galactosidase activity. As shown in 

Figure 4, the -galactosidase activity of this recombinant strain was similar to that of the 

positive control of C. acetobutylicum harboring pHT3catP-Pthl, approximately 2000 MU.  

Taken together, this data suggests that the presence of the specific 14-nucleotide consensus 

sequence can potentially activate CCR-mediated inhibition of the lacZ gene expression. 
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Figure 4 -galactosidase activities and relevant plasmid structure for C. acetobutylicum 

harboring plasmids pHT3catP-Pthl, pHT3catP-Pthl-CRE (sequence 5’ 

TGCAAACGATTTCT 3’), pHT3catP-Pthl-14nt (5’ CATCCGTAATCAAC 3’), pHT3catP-

Pthl-mutN (5’ TGTAAGCGTCGACA 3’), and pHT3catP-Pthl-xylBmut (5’ 

AGCTAATGATTTTA 3’). Strains were grown in CGM medium to mid-exponential phase 

and 16OD units were harvested and assayed for -galactosidase activity.  β-galactosidase 

assays were carried out in triplicate. 
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4.2 Mutating key nucleotides of the CRE sequence can potentially affect CCR-type 

inhibition 

 The putative consensus CRE sequence established in previous CCR studies in B. 

subtilis (Miwa et al. 2000) was used as a query sequence to search the C. acetobutylicum 

genome for putative CRE elements (Grimmler et al. 2010). However, the sequence has 

several degenerate nucleotides (i.e. N; any base). Indeed, 7 of the 14 nucleotides (i.e. 

TGNAANCGNNNNCN) used in the search query are undefined. We mutated the degenerate 

nucleotides within our introduced CRE sequence to determine their effect on mediating CCR. 

Interestingly, mutating the degenerate nucleotides in the consensus sequence (i.e. pHT3catP-

Pthl-mutN) resulted in approximately 137% of the -galactosidase activity as compared to 

the CRE vector construct pHT3catP-Pthl-CRE (Figure 4), but the activity was significantly 

lower than that of the positive control of pHT3catP-Pthl, implying that the CCR-type 

inhibition was still present. The results suggest that the degenerate nucleotides are largely 

insensitive to CCR-type inhibition, however mutations may have a modest effect. 

 We next sought to investigate the effect of mutating the non-degenerate nucleotides 

by constructing pHT3catP-Pthl-xylB, in which the endogenous CRE sequence found within 

the xylB coding sequence was replaced with a mutated version. We constrained our mutations 

to "silent" ones without altering the encoding amino acids in the event that we would explore 

similar mutations in the native xylB gene. Indeed, cultivation of C. acetobutylicum harboring 

pHT3catP-Pthl-xylB exhibited a -galactosidase activity similar to that of the positive control 

of approximately 2000 MU (Figure 4). The results suggest that these non-degenerate 

nucleotides of the CRE consensus sequence are critical for CCR-type inhibition and therefore 
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can be proper target nucleotides for mutation in order to relieve the CCR associated with the 

expression of the xylose operon. 

4.3 Expression of a CRE-sequence-free xylose operon relieves CCR inhibition and 

enables simultaneous glucose and xylose dissimilation in C. acetobutylicum  

 Our gene reporter assay data suggested a feasible strategy to abolish CCR-mediated 

inhibition by introducing silent mutations within the CRE sequence in the C. acetobutylicum 

xylose operon. To demonstrate this, we investigated the effect of over-expression of a 

plasmid-borne xylose operon with a compromised CRE sequence on CCR of xylose in the 

presence of glucose. We constructed two expression vectors, containing the endogenous 

xylose operon with either the native CRE sequence (pMTLxyloperon-wt) or a mutated CRE 

sequence (pMTLxyloperon containing the same silent mutations as those in pHT3catP-Pthl-

xylB). Additionally, note that the two vectors also include the pentose phosphate pathway 

(PPP) genes (Figure 5), to avoid potential limitation for xylose utilization, as it is unclear 

whether the native PPP genes (i.e. CAC1347-CAC1349) in C. acetobutylicum are transcribed 

as a separate operon or as part of the CCR-controlled operon encoding xylose dissimilation 

genes (i.e. CAC1344-CAC1346) (Grimmler et al. 2010; Paredes et al. 2004). The resulting 

recombinant C. acetobutylicum strains were cultivated for simultaneous co-dissimilation of 

glucose and xylose in P2 medium containing 40 g l-1 glucose and 20 g l-1 xylose as carbon 

sources. As shown in Figure 5, after 84 hours of cultivation, the strain over-expressing the 

wild-type xylose operon consumed approximately 2 g l-1 of xylose, or approximately 10% of 

the available xylose, while the strain harboring the CRE-free xylose operon utilized 

approximately 6 g l-1, or 30%. More importantly, during the first 48 hours, in which glucose 
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was present in the media, the C. acetobutylicum strain with the CRE-free operon consumed 

7.5-fold more xylose than that with the wild-type operon (Figure 5 inset).  This result 

suggests that mutating the non-degenerate nucleotides of the CRE consensus sequence is 

sufficient to relieve the CCR-mediated repression associated with the expression of the 

xylose and PPP operons and therefore allow C. acetobutylicum to utilize glucose and xylose 

concurrently. 
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Figure 5 Time-course cultivation profile for C. acetobutylicum A) Residual glucose 

(circles) and xylose (diamonds) concentration time-course and consumption at 48 hours 

(inset; solid bar denotes glucose consumption and striped lines denotes xylose) for wild-type 

C. acetobutylicum (red, solid) and C. acetobutylicum harboring a plasmid-borne CRE-free 

xylose operon (green, dashed) in static-flask fermentation. Cells were grown in P2 minimal 

medium grown on a mixture of glucose (40 g/l) and xylose (20 g/l). Samples were taken 

every 12 hours for analysis. Fermentations were performed in duplicate. B) Schematic 

drawing representing the relevant structure of pMTLxyloperon (top; sequence 5’ 

AGCTAATGATTTTA 3’) and pMTLxyloperon-wt (bottom; 5’ TGCAAACGATTTCT 3’).  
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Chapter 5- Discussion 

 Genetic manipulation techniques have enabled rational metabolic engineering 

approaches among the clostridia (Pyne et al. 2014a). A great deal of attention has been 

directed toward increasing the production of target metabolites through gene over-expression 

and knock-out (Lütke-Eversloh and Bahl 2011; Ren et al. 2010; Xiao et al. 2011), as well as 

enhancing a microorganism’s ability to assimilate carbon sources (Gu et al. 2009; Jin et al. 

2014; Ren et al. 2010). CCR is a common transcriptional inhibitory mechanism limiting 

carbon assimilation in the clostridia. Although recent studies have circumvented CCR 

through media-tailoring strategies (Noguchi et al. 2013), applicable genetic-based approaches 

to relieve CCR is needed for Clostridium.  

 Analysis of CRE sequences in B. subtilis has led to the identification of a 14-

nucleotide consensus sequence with bi-fold symmetry and considerable degeneracy (Miwa et 

al. 2000).  This degeneracy of CRE operator sequences suggests high tolerance associated 

with the catabolite control protein, CcpA, upon its binding onto the CRE sites with such 

diverse sequences (i.e. TGNAANCGNWNNCW, N, any base; W, A or T; most conserved 

bases are denoted in bold) (Schumacher et al. 2004; Schumacher et al. 2011).  Major 

molecular interactions between key amino acids of B. subtilis CcpA and CRE nucleotides 

were identified for better understanding of the CcpA-CRE binding nature (Schumacher et al. 

2011). Because of the high similarity in CcpA between C. acetobutylicum and B. subtilis, it is 

reasonable to assume that they share a similar DNA-binding structural mechanism. 

 Our search for CRE sequences in the C. acetobutylicum chromosome and 

megaplasmid sequences identified 782 matches in 268 gene-coding sequences and inter-
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genic regions (Supplementary Figure 1), and 29 matches in 6 gene-coding sequences and 

inter-genic regions (Supplementary Figure 2), respectively, including each of the CRE sites 

reported previously (Grimmler et al. 2010). Importantly, no novel CRE sites were identified 

in either genomic loci encompassing the xylose degradation pathways (i.e. CAC1344-1349 or 

CAC2610-2613) other than those previously reported. No further analysis was conducted 

with respect to this data, as the almost complete degeneracy of the query sequence is very 

likely to match several instances of completely coincidental sequence having no CCR 

functionality and even those instances where the match shows higher stringency, some may 

not be functional due to sequence context, as suggested for B. subtilis (Miwa et al. 2000; 

Turinsky et al. 1998).  

 Through analysis of the purported CRE sequence with gene reporter assays, we 

identified a partially conserved CRE sequence associated with CCR in C. acetobutylicum. 

Interestingly, a recent genome-wide study of B. subtilis revealed CRE boxes of differing 

affinity for CcpA (Marciniak et al. 2012).  Comparing the CRE sequence found in the xylB 

gene of C. acetobutylicum with those identified in B. subtilis revealed that the xylB CRE 

sequence would be classified as a low-affinity CRE binding site. Similar to the CRE 

sequence of B. subtilis (Marciniak et al. 2012; Weickert and Chambliss 1990), mutating the 

degenerate nucleotides of the consensus sequence of the xylB CRE retained significant CCR-

type inhibition, suggesting the relatively insignificant role these nucleotides play in this 

transcriptional repression mechanism.  However, further examination of the mutated 

sequence (i.e. TGTAAGCGTCGACA) revealed divergence from the optimal bi-fold 

symmetry observed for many operator sequences (Sadler et al. 1983). This divergence 
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ostensibly reduced the binding affinity of CcpA to the CRE site and thereby the CCR-

mediated inhibitory effect, as reflected by a marked 37% increase in -galactosidase activity 

compared to the original CRE sequence (i.e.TGCAAACGATTTCT). As such, it appears as 

though mutating the degenerate nucleotides of CRE may have modest, potentially sequence-

specific modulation on the effects of CCR by altering the chemical and spatial environment 

of the CcpA-DNA binding interface. 

 While recombinant C. acetobutylicum containing the CRE-free xylose operon was 

able to assimilate xylose in the presence of glucose more effectively based on its relief from 

CCR, such concurrent utilization of xylose and glucose imparted only a modest effect on 

growth and solvent titer advantage (Supplementary Table 1). This may be associated with the 

fact that xylose, even acting as the sole substrate, is a relatively poor carbon source for C. 

acetobutylicum potentially due to poor affinity of the transporter (encoded by xylT) for xylose 

substrate or weak enzymatic activity of xylose-dissimilation enzymes (i.e. xylose isomerase 

and xylulose kinase encoded xylA and xylB, respectively) (Jin et al. 2014; Xiao et al. 2011). 

Considerable effort has been directed toward enhancing xylose utilization in C. 

acetobutylicum, including over-expression of the E. coli talA gene encoding transaldolase, 

over-expression of native xylose-dissimilation genes xylT, xylA, and xylB, and over-

expression of the genes associated with the native pentose phosphate pathway (Gu et al. 

2009; Jin et al. 2014; Xiao et al. 2011). Additionally, recent studies have shown improved 

xylose utilization in C. beijerinckii (Xiao et al. 2012) and C. acetobutylicum  strains ATCC 

824 and EA 2018 (Hu et al. 2011; Li et al. 2013), in which the xylR gene encoding a putative 

D-xylose repressor was inactivated, suggesting a possible secondary repression mechanism 
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that is independent of CCR. While all these genetic strategies improved the overall rate of 

xylose utilization, it appeared that the engineered strains often consumed minimal xylose 

during the initial cultivation stage due to underlying deficiencies in the biochemical 

properties of the xylose-utilization enzymes. As such, heterologous expression of the xylose-

utilization genes from more efficient xylose-utilizing microorganisms, such as Klebsiella 

oxytoca (Ohta et al. 1991) or Klebsiella pneumoniae (Yu and Saddler 1983), could provide a 

promising solution. On the other hand, it has also been proposed that butanol inhibition 

would be more drastic for C. acetobutylicum grown on xylose (Ounine et al. 1985) due to 

effects on cell membrane functionality (Bowles and Ellefson 1985), suggesting that effort to 

mitigate butanol inhibition can be critical in advancing C. acetobutylicum as a production 

host for lignocellulosic butanol. 

 With the identification of CRE sequences, our proposed methodology for relieving 

CCR can be applied to other CCR-inhibited catabolic operons in C. acetobutylicum, such as 

the arabinose, sucrose, lactose, and maltose operons (Tangney et al. 2003; Xiao et al. 2011; 

Yu et al. 2007), or even to other species of Clostridium, such as C. cellulolyticum, C. 

thermocellum, C. tyrobutyricum, and C. saccharoperbutylacetonicum, for which evidence of 

CCR has been identified (Abdou et al. 2008; Gorke and Stulke 2008; Jiang et al. 2010; 

Noguchi et al. 2013; Zhang and Lynd 2005).  While the improvement in xylose utilization 

based on relieving CCR may be limited in C. acetobutylicum due to the aforementioned 

drawbacks, this approach can be advantageous to other species of Clostridium, in particular 

C. cellulolyticum and C. thermocellum, both of which possess native cellulosomes for 

degradation of cellulosic materials. It has been suggested that the expression of cellulosomic 
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components is subject to CCR-type regulation and the expression of these components may 

be down regulated as glucose is liberated from cellulose into the medium (Abdou et al. 2008; 

Zhang and Lynd 2005). Furthermore, targeting CRE sites for mutation presents an alternative 

method of CCR-relief to disruption of glcG, the gene encoding the sugar-specific Enzyme II 

(EII) of the PEP-dependent PTS for glucose transport and phosphorylation, in C. 

acetobutylicum strains ATCC 824 and EA 2018 (Li et al. 2013; Xiao et al. 2011) since 

impaired cell growth on glucose was observed for similar mutants of other microorganisms 

(Eiteman et al. 2008; Paulsen et al. 1998). Also, this gene disruption may not be feasible in 

microorganisms that do not possess a native glucose PTS system, such as C. cellulolyticum 

(Abdou et al. 2008).  

   

.   
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Chapter 6- Conclusions and Recommendations 

In this study, we presented a method for relieving CCR of xylose through mutation of 

a CRE sequence within an operon involved in xylose metabolism, successfully permitting 

xylose utilization in the presence of glucose. We believe that this method presents a viable 

alternative to those recently published for which the potential drawbacks have been 

discussed.  Further, relief of CCR on a local scale (i.e. for an individual operon or carbon 

source) as opposed to globally (i.e. recombinant strains such as glcG knockout and CcpA 

mutants) may be beneficial in that the pleiotropic effectiveness of the global transcriptional 

regulator CcpA are retained, thereby maintaining regulation of gene expression similar to that 

of the wild-type strain. In this way, this method may reduce the overall metabolic burden of 

diverting cellular resources to producing mRNA transcripts and protein products of genes 

that are not required given the growth conditions, and instead focus host gene expression 

machinery and other cellular resources to only those gene pathways for which expression is 

required or desired.  

 Ideally, the proposed genetic strategy for CRE mutation should be targeted on the 

host chromosome. Plasmid-based relief of CCR for concurrent xylose and glucose utilization 

was used as a target for this proof of concept study due to technical restrictions related to the 

genomic organization of C. acetobutylicum as well as the lack of available genetic 

engineering tools that permit efficient chromosomal modification. As such, the utility of this 

genetic strategy would be affirmed by systematically manipulating the CRE sequence of 

catabolically repressed operons on the host chromosome to relieve CCR, leading to the 

derivation of C. acetobutylicum strains specialized for utilization of desired feedstock while 
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simultaneously minimizing the increased metabolic burden of ungoverned transcription of 

unneeded genes, as well as that of maintaining an extra-chromosomal plasmid for gene over-

expression. Further, this strategy should be transferrable to other members of Clostridium 

and potentially members of Firmicutes for which CCR restricts secondary carbon source 

utilization, such as those discussed previously.  

As evidenced in this study and in agreement with previous reports, relief from the 

effects of CCR afforded minimal benefit on ABE production. Two potential reasons for this 

discussed in this study and in the literature are due to C. acetobutylicum being an innately 

poor xylose utilizer, and butanol toxicity. Therefore, these two issues warrant further study. 

Using a chromosomally engineered C. acetobutylicum strain capable of simultaneous glucose 

and xylose co-consumption as a host strain, metabolic engineering strategies aimed at 

improving the utilization of xylose should be pursued. Identification of potential bottle necks 

in the xylose utilization pathway and pentose phosphate pathway could be analyzed through 

various biochemical assays to evaluate enzyme kinetics, and through analysis of the 

transcriptome of the recombinant strain to observe changes in transcript levels compared to 

the wild-type. In conjunction with the mutated CRE sequence, the promoter driving 

expression of the xylose utilization pathway could be engineered for higher transcription, 

potentially leading to greater xylose utilization efficiency. Additionally, protein engineering 

studies could be undertaken to identify mutants of xylA, xylB, xylT, and proteins of the 

pentose phosphate pathway that show increased specificity and affinity for xylose as 

substrate. To address the issue of butanol toxicity, it has been suggested that butanol affects 

the lipid bi-layer membrane structure, as well as inhibits carbon transport across the 
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membrane, highlighting the necessity of detailed analyses and characterization of these 

effects to understand the role butanol toxicity plays as well as how to direct efforts to 

overcome this obstacle. Detailed transcriptome studies may aid in shedding light on any 

changes in gene expression or endogenous SOS response of C. acetobutylicum under butanol 

challenge and suggest the most prominent course of action to improve ABE production from 

xylose. Alternatively, engineering the constituent profile of the lipid bi-layer may offer 

improvements in reducing butanol toxicity.  
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Appendix A 

 

Supplementary Figure 1 Screenshot of partial CRE search of C. acetobutylicum 

chromosome.
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Appendix B 

 

Supplementary Figure 2 Screenshot of CRE search of C. acetobutylicum megaplasmid 

 



 

 

 

56 

Appendix C 

Supplementary Table 1 Cultivation parameters for strains harboring plasmids pMTLxyloperon-wt (wildtype) and 

pMTLxyloperon (CRE-free) after 60 hours of batch cultivation 

 Initial Carbon 

(g l-1) 

Residual Carbon 

(g l-1) 

Products 

(g l-1) 

Max 

OD600
a 

μnet 

(h-1)b 

Productivity 

(g l-1 h-1) 

ABE 

yield 

(g/g) 

Butanol 

yield 

(g/g) 

 Glucose Xylose Glucose Xylose Butanol ABE      

Wild-type 40.7 22.3 0 20.6 8.1 12.8 4.3 0.2 0.21 0.3 0.19 

CRE-free 40.6 22.7 0 17.9 8.3 14.6 4.7 0.23 0.24 0.32 0.18 

a Maximum OD600 was observed after 36 hours of cultivation 

b based on observed log phase between 12 and 24 hours of cultivation 


