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Abstract

EMG signal decomposition is the process of resolving a composite EMG signal into its

constituent motor unit potential trains (classes) and it can be configured as a classifica-

tion problem. An EMG signal detected by the tip of an inserted needle electrode is the

superposition of the individual electrical contributions of the different motor units that are

active, during a muscle contraction, and background interference.

This thesis addresses the process of EMG signal decomposition by developing an in-

teractive classification system, which uses multiple classifier fusion techniques in order to

achieve improved classification performance. The developed system combines heteroge-

neous sets of base classifier ensembles of different kinds and employs either a one level

classifier fusion scheme or a hybrid classifier fusion approach.

The hybrid classifier fusion approach is applied as a two-stage combination process that

uses a new aggregator module which consists of two combiners: the first at the abstract

level of classifier fusion and the other at the measurement level of classifier fusion such

that it uses both combiners in a complementary manner. Both combiners may be either

data independent or the first combiner data independent and the second data dependent.

For the purpose of experimentation, we used as first combiner the majority voting scheme,

while we used as the second combiner one of the fixed combination rules behaving as a

data independent combiner or the fuzzy integral with the λ-fuzzy measure as an implicit

data dependent combiner.

Once the set of motor unit potential trains are generated by the classifier fusion system,

the firing pattern consistency statistics for each train are calculated to detect classification

errors in an adaptive fashion. This firing pattern analysis allows the algorithm to modify

the threshold of assertion required for assignment of a motor unit potential classification

individually for each train based on an expectation of erroneous assignments.

The classifier ensembles consist of a set of different versions of the Certainty classifier,

a set of classifiers based on the nearest neighbour decision rule: the fuzzy k-NN and the
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adaptive fuzzy k-NN classifiers, and a set of classifiers that use a correlation measure as an

estimation of the degree of similarity between a pattern and a class template: the matched

template filter classifiers and its adaptive counterpart. The base classifiers, besides being of

different kinds, utilize different types of features and their performances were investigated

using both real and simulated EMG signals of different complexities. The feature sets

extracted include time-domain data, first- and second-order discrete derivative data, and

wavelet-domain data.

Following the so-called overproduce and choose strategy to classifier ensemble combina-

tion, the developed system allows the construction of a large set of candidate base classifiers

and then chooses, from the base classifiers pool, subsets of specified number of classifiers

to form candidate classifier ensembles. The system then selects the classifier ensemble

having the maximum degree of agreement by exploiting a diversity measure for designing

classifier teams. The kappa statistic is used as the diversity measure to estimate the level

of agreement between the base classifier outputs, i.e., to measure the degree of decision

similarity between the base classifiers. This mechanism of choosing the team’s classifiers

based on assessing the classifier agreement throughout all the trains and the unassigned

category is applied during the one level classifier fusion scheme and the first combiner in

the hybrid classifier fusion approach. For the second combiner in the hybrid classifier fusion

approach, we choose team classifiers also based on kappa statistics but by assessing the

classifiers agreement only across the unassigned category and choose those base classifiers

having the minimum agreement.

Performance of the developed classifier fusion system, in both of its variants, i.e., the

one level scheme and the hybrid approach was evaluated using synthetic simulated signals

of known properties and real signals and then compared it with the performance of the

constituent base classifiers. Across the EMG signal data sets used, the hybrid approach

had better average classification performance overall, specially in terms of reducing the

number of classification errors.
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Chapter 1

Introduction

1.1 Preface

One approach to multiple classifier combination is classifier fusion, where classifier ensem-

bles are applied concurrently and independently and an aggregator combines their results

to achieve a group consensus.

Classifier fusion is based on combining different classifiers using different data represen-

tations, concepts and modelling techniques. The result for combining such a multimodal

set of classifiers is different occurrences of classification errors for different classifiers over

the set of patterns. The aggregation module of the classifier fusion system exploits such

disagreement to errors of individual classifiers, and the greater this disagreement, the lower

the effect of individual errors on the final decision, and effectively the lower the combined

classification error.

This thesis addresses the process of EMG signal decomposition using a classifier fusion

approach in order to achieve better classification performance. The proposed method

jointly uses individual classifier decisions to make a final decision.
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CHAPTER 1. INTRODUCTION 2

1.2 Electromyographic Signals

Electromyography is the detection of the electrical activity associated with muscle con-

traction. An electromyographic (EMG) signal is obtained by measurement of the electrical

activity of a muscle during contraction, and reflects the electrical depolarization of ex-

citable muscle fibre membranes that create electrical signals called muscle fibre potentials

(MFPs).

The forward problem in electromyography is the composition of the electrical signal

detected during a muscle contraction. In normal mammalian skeletal muscle, the fibres

never contract as individuals. Instead, small groups of them contract in concert. All the

fibres of each group of muscle fibres are controlled by the terminal branches of one nerve

fibre or axon whose cell body is in the anterior horn of the spinal cord grey matter. These

cells are the α-motoneurons and directly innervate skeletal muscle fibres.

α-motoneurons consisting of the nerve cell body, the long axon running down the motor

nerve with its terminal branches, and all the muscle fibres controlled by these branches

constitute a motor unit (MU). The summation of all of a MU’s spatially and temporally

dispersed MFPs results in a signal called a motor unit potential (MUP). In order to sustain

a muscle contraction, motor units must be repeatedly activated and each motor unit gen-

erates multiple MUPs. The collection of MUPs generated by one motor unit, positioned

at their times of occurrence or separated by their inter-discharge intervals (IDIs) is called

a motor unit potential train (MUPT). The superposition of the MUPTs of all recruited

motor units and background noise comprises an EMG signal.

Figure 1.1 shows a muscle structure and a schematic representation of the physiological

model and instrumentation for the generation of an EMG signal. α-motoneurons in the

spinal cord send electrical pulses to the muscle fibres, which cause the depolarization and

contraction of groups of muscle fibres. The superposition at the detection site forms the

physiological EMG signal mp(t, F ) which is a function of time (t) and force (F ). The

integer p represents the total number of MUPTs which contribute to the potential field at
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the detection site. When the signal is detected, an electrical noise, n(t), is introduced. The

detected signal will also be affected by the filtering properties of the detection electrode,

r(t), and possibly other instrumentation. The resulting signal, m(t, F ), is the observable

EMG signal.

Clinically, EMG signal analysis, in the form of EMG signal decomposition and MUP

classification into groups of similar shapes, is used to assist in the diagnosis of neuromus-

cular disorders, to analyze the neuromuscular system, and in biofeedback training.

The characteristics of an EMG signal are largely affected by anatomical and physio-

logical properties of the muscle. For example, as the force of contraction increases, the

number of motor units active and the rate at which they are active increases. The EMG

signal therefore becomes more complex with increasing force of contraction. Furthermore,

the fundamental structure of a muscle such as the size, distribution and number of motor

units and how they are controlled can also be reflected in the characteristics of an EMG

signal. For these reasons, many researchers are interested in devising techniques for the

quantitative analysis of EMG signals.

1.3 EMG Signal Decomposition

The inverse problem in electromyography consists of using the detected EMG signal to infer

the MUPTs of the recruited MUs comprising the EMG signal and perform EMG quan-

tification. The process of resolving a composite EMG signal into its constituent MUPTs

is called EMG signal decomposition. Figure 1.2 shows the separation of the MUPs of a

segment of an EMG signal into ten superimposed MUPTs.

The objective of EMG signal decomposition is often the extraction of relevant clinical

information from quantitative EMG (QEMG) analysis of individual MUPs and MU firing

patterns. The first task in EMG signal decomposition is the segmentation of the EMG

signal and detection of possible MUP waveforms, which is then followed by the main task
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CHAPTER 1. INTRODUCTION 6

of MUP classification. The classification task involves dividing detected MUPs into groups

such that each set of grouped MUPs represents the discharges of a single MU and through

which the discharges of each active MU can be discriminated for subsequent processing.

QEMG analysis then often involves the calculation, for each MUPT, of a representative or

template MUP waveform, which reflects information regarding individual MU morphology,

and statistics related to the firing pattern of the MU.

The similarity criterion for grouping MUPs is usually based on a combination of MUP

shape and statistics of the firing patterns of the motor units such that MUPs most likely

belong to the same group if their shapes are closely similar and if their IDI interval is

consistent with the discharge pattern of the considered motor unit. This means that two

kinds of information, the MUP shapes and the times of occurrences of MUPs, should be

considered for classification.

1.4 Combination of Multiple Classifiers

The combination of multiple classifiers can be considered as a generic pattern recognition

problem in which the input consists of the results of individual classifiers, and the out-

put is the combined decision [103]. It is based on the idea that classifiers with different

methodologies or different features can complement each other. Hence if different classifiers

cooperate with each other as a team, the combined decision may reduce errors drastically

and achieve a higher performance.

Combining classifiers is now an established active research area and one of the main

current directions in machine-learning research [19]. It has been applied to a wide range of

real problems with the aim of overcoming the limitations of individual classifiers. In this

thesis we are interested in applying this technique for the MUP classification task in EMG

signal decomposition.

Combining multiple classifiers is called different names in the literature [56], [57]: com-
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bination of multiple classifiers, classifier fusion, mixture of experts, committees of neural

networks, consensus aggregation, voting pool of classifiers, dynamic classifier selection,

composite classifier system, classifier ensembles, divide-and-conquer classifiers, modular

learning, decision forest, and other names. The paradigm of these models differs in the

assumptions about classifier dependencies, type of classifier outputs, aggregation strategy

(local or global), and aggregation procedure (a function, a neural network, an algorithm).

In this thesis, we will use the term classifier ensembles to refer to the whole range of

classifier combining methods and the term classifier fusion to refer to the situation when

the individual classifiers are applied concurrently and independently.

1.4.1 Reasons for Combining Multiple Classifiers

The main motivation for combining classifiers is improving their performance, where multi-

ple classifier systems try to exploit the local differences between base classifiers to enhance

the accuracy and the reliability of the overall combined system. Combining a set of classi-

fiers can be viewed as a way to manage the recognized limitations of the individual classifiers

[111]. Each base classifier is known to make errors in such a way that the patterns that are

misclassified by the different classifiers are not necessarily the same [55]. This means that

the use of multiple classifiers can enhance the decision about the pattern to be classified.

There is also a situation in which some classifiers may be expected to fail in classifying

some patterns and in this situation the overall combined system can recover the error.

1.4.2 Classifier Ensembles

Classifier ensembles are sets of base classifiers that work together to solve a recognition

problem and whose decisions are combined to improve the performance of the overall

system.

The methods that can be used to combine multiple classifier decisions depend on the

type of information produced by the individual classifiers. Individual classifiers produce
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information in any of the following three forms or a combination of them. Either a single

class output that has the highest probability to which the input pattern belongs; or a ranked

list of classes with the highest rank being the first choice; or a measurement value being

assigned to each class label indicating the degree that the corresponding class pertains to

the input pattern.

In this thesis we consider only combination methods based on the first and third types

of classifier output information. Combination methods that can be applied when each

classifier outputs a unique label or class for each input pattern consists of voting schemes.

Combination methods that can be applied when each classifier outputs confidence values

or certainty measures for each input pattern and for each target class, consist of methods

that do not require prior training such as combination schemes based on the product, the

sum, the max, the min, the median, and the average rules.

Instead of using one of the previous fixed combining rules, a training set can be used

to adapt the combining classifier to the classification problem, where in this case the

combination operator also functions as a classifier. The outputs of the base classifiers can

be used as the input features of a general classifier used for fusion. The fuzzy integral

method is one of the trainable combiners and is studied in this thesis.

1.4.3 Architecture of Multiple Classifier Systems

Combination strategies for classifier ensembles can be grouped into three main categories

according to their architecture [47], [61], [82], [91]:

1. Parallel: In this case, all the individual classifiers are invoked concurrently and inde-

pendently, and an aggregator combines their results.

2. Cascading (serial combination): In this case, individual classifiers are applied in

succession one after the other, with each classifier producing a reduced set of possible

classes for each pattern. Through this process, a complicated problem is progressively
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Figure 1.3: Classifier fusion system basic architecture.

reduced to simpler ones.

3. Hybrid: In this case, the advantages of both parallel and serial combinations are

exploited to make the final decision more robust.

The combination architecture scheme implemented in this thesis belongs to the parallel

category, whose basic architecture is shown in Figure 1.3, since our concentration is on

classifier fusion methods, which require the individual classifiers be applied in parallel.

1.5 Objectives and Approach

The main objective of this thesis is to improve the performance and robustness of the

classification task in EMG signal decomposition. We chose to implement a classifier com-

bination paradigm such that we combine the decision of selected multiple classifiers with

a goal to reach a combined decision with a higher performance, in terms of lower rejection

rate and/or better accuracy rate, and get reduced performance variability across sets of

EMG signals..

Traditional pattern recognition problems are solved mainly using a single feature identi-

fier and a single classification procedure to assign a pattern to the class to which it should
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belong. For difficult pattern recognition problems involving high dimensional patterns,

large numbers of classes, and noisy inputs, perfect solutions are often difficult to obtain.

However, improved solutions can be obtained by using systems of multiple classifiers as it

is known that: usually decisions taken by teams are better than decisions taken by indi-

viduals. So that the objective of this thesis is to rely on a team’s decision for providing

better EMG signal decomposition through combining the decisions of different techniques

that work as a team provided that suitable methods for choosing a team’s base classifiers

and combining the individual decisions are provided.

The developed research model is motivated by an attempt to achieve improved solutions

for enhancing classification performance. It employs a hybrid classifier fusion approach

for combining heterogeneous sets of classifier ensembles, which are classifiers built using

different learning paradigms, for EMG signal decomposition.

1.6 Overview of the Thesis

This thesis explores a variety of classification paradigms for EMG signal decomposition

beginning with individual base classifiers and ending with classifier combination techniques.

Base classifiers include Certainty-based classifiers, nearest-neighbor-based classifiers, and

matched template filter classifiers, and each with an adaptive and a non-adaptive version.

Classifier combination techniques with different fusion schemes have been investigated.

We first review the EMG signal decomposition process and describe its modules. A sur-

vey of some of the existing methods is given. Then we review classifier ensemble techniques

accompanied with a survey of existing methods. A multiple classifiers system architecture

with fusion methods is given and a mathematical framework is derived.

The main contribution of this thesis begins from Chapter 3, where a set of base classifiers

have been constructed and adapted for EMG signal decomposition.

In Chapter 4 we design a classifier fusion system for EMG signal decomposition. The
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design involves two stages: the first stage deals with the design of the classifier ensemble,

i.e., specifying which base classifiers comprise the team of classifiers for fusion, and the

second stage deals with the design of the aggregation module. The developed classifier

fusion model architecture is described including its base classifiers, model input space, ag-

gregation module, and the need for data transformation when the model includes different

types of classifiers.

Chapter 5 is devoted to results and comparative study. It presents the EMG signal

data sets used consisting of two sets of simulated EMG signals, independent and related,

and a set of real signals. The evaluation process for base classifiers and the classifier fusion

system along with the approaches employed are described.

Finally, Chapter 6 summarizes the conclusions and presents some recommendations for

future work to enhance the performance of the system.



Chapter 2

Background

2.1 Introduction

The objectives of this thesis are the use of multiple classifier fusion and the study of its ef-

fectiveness for EMG signal decomposition aiming to generate a more accurate classification

than is possible from each of the constituent classifiers.

This chapter presents a survey of some of the existing partial and full EMG signal

decomposition methods and a survey of multi-classification techniques with the related

background necessary to build a multiple classifier fusion system.

2.2 Classification and Decomposition of EMG Signals

EMG signal decomposition is the process of resolving a composite EMG signal into its

constituent MUPTs and it can be considered as a classification problem. Figure 2.1 shows

the results of decomposing 1 s interval of an EMG signal, where the classifier assigns the

MUPs into their MUPTs based on a similarity criterion. Those MUPs that do not satisfy

the classifier similarity criterion are left unassigned.

12
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Automatic EMG signals decomposition techniques have been designed to follow as

closely as possible the manual method [3] and a good system should do the same analysis

that an electromyographer does manually [26]. This is possible only if a robust pattern

recognition algorithm is developed which is the purpose of this thesis.

Many automatic EMG signal decomposition techniques have been developed during the

last two decades with different methodologies in the time, frequency, or wavelet domain

being followed for quantitative analysis.

2.2.1 EMG Decomposition Process

A typical EMG signal decomposition system such as DQEMG (decomposition-based quan-

titative EMG) [96], [97] consists of the following modules, shown in Figure 2.2:

1. Signal acquisition and preprocessing,

2. Segmentation and MUP detection,

3. Clustering,

4. Supervised classification of detected MUPs,

5. Temporal relationships analysis,

6. Resolution of superimposed MUPs,

7. Quantitative EMG (QEMG): MUP characteristic features measurement and MU

activation pattern analysis.

In this thesis we are mainly concerned with the supervised classification module.

An EMG signal acquired from a subject is fed to an analog preprocessing stage in which

the signal is amplified and band-pass filtered (10 Hz to 10 kHz). The low frequency is set

to 10 Hz to make the signal baseline more stable [95] by improving suppression of the

baseline noise with minimum distortion to the MUP shapes [51]. The signal is sampled at
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Figure 2.2: Schematic diagram of an EMG signal decomposition system.
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a rate of 31.25 kHz and then digitized using a 12-bit resolution analog-to-digital converter.

After acquisition, the signal is decomposed off-line.

The first task in EMG signal decomposition is the segmentation and MUP detection

task where the signal is searched for time intervals containing MUPs. It is concerned with

locating the main positive peaks or spikes found in an EMG signal. The detected spikes

or MUPs should have rapid rising edges, which indicates that the electrode is close to

active muscle fibres. Motor units that were active during signal acquisition generate these

MUPs. Conversely, MUPs that have slow rising edges and small amplitude were generated

by motor units whose fibres are far away from the electrode.

The EMG signal is divided into segments of possible MUP waveforms and searching for

time intervals containing these MUPs defines the MUP detection operation. A segment

can either contain one MUP or superimposed MUPs (compound segments). Time intervals

with low energy are without MUPs and represent signal baseline. The detected spikes

within windows of the sampled raw data or its first-order discrete derivative form the

MUP waveforms. A window of 80 sample points represents MUP intervals of 2.56 ms and

forms the MUP waveform.

In the case of real EMG signals, where there is no information about the number of

recruited MUs that contributed to the signal, clustering (unsupervised classification) is

an important step in EMG signal decomposition [100]. Therefore once a set of MUP

waveforms have been detected and stored with their firing times, the part of the signal

with the highest activity, i.e., the portion of the signal containing the largest temporal

concentration of MUPs is chosen for clustering to provide the supervised classification

stage with initial information about the number of active MUs (clusters) and the typical

MUP shape or template for each motor unit. Once the number of active MUs and their

templates are estimated, the classification stage is concerned with estimating the identities

of all of the detected MUP waveforms.
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The shapes and occurrence times of MUPs provide an important source of informa-

tion to assist in the diagnosis of neuromuscular disorders. Some automatic EMG signal

decomposition methods are designed so that the classification task considers only MUP

morphological shape parameters such as: duration, amplitude, area, number of phases,

number of turns, etc without evaluation of MU firing pattern or considering the variability

of the MUP shape during contraction. These parameters can be used for diagnostic pur-

poses since they reflect the structural and physiological changes of a MU. Others use MU

firing patterns so that the central nervous system recruitment and control of MUs can be

studied. Most of the new methods use both MUP shape parameters and either partial or

full firing patterns [74].

The classification task for some of the existing decomposition methods are based on

unsupervised classification, while others combine unsupervised and supervised classification

methods. The unsupervised classification methods major limitation is that they only work

well if there are large differences in the features of the classes involved [22] and because

of the similarity between MUPs from different MUs, unsupervised classification methods

often will not yield acceptable classification results [72]. Where they can result in lumping

together two classes having similarly shaped MUPs into one class, or they can mistakenly

separate one class into two classes [4]. On the other hand, a supervised classifier can

track changing shapes over time, due to muscle fatigue and electrode or muscle movement,

through updating the template of each train with each classification. This is done in the

Certainty classifier [99] when tracking the non-stationarity of the MUP waveform shape,

and in [116], [117] a weighted-average technique based on stochastic approximation is used

to adapt the templates. Mirfakhraei et al. [72] used a bootstrap method for tracking the

changing shapes through retraining a supervised artificial neural network classifier with

new training sets generated based on the classification of the most recently acquired action

potentials.
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The classification task for EMG signal decomposition in this thesis was performed

using multi-classification techniques through combining the results of a set of classifiers

of different kinds and based on multi-features extracted from the acquired data. The

classification scheme was based on information provided by the MUP waveform shapes

and MU firing patterns.

2.2.2 Existing EMG Decomposition Methods

Most of the new automatic EMG signal decomposition methods use both MUP shape

parameters and either partial or full firing patterns [74] for use during the classification

task, which is based on either unsupervised classification or a combination of unsupervised

and supervised classification methods. Below is a survey of some of the existing methods.

LeFever and De Luca [63] developed a decomposition technique that identifies and

classifies MUPs based on both waveform template matching and firing time statistics. The

method uses multiple channels of data to increase the power of identification during strong

muscle contraction. The system is used to decompose EMG signals during constant force

and force varying isometric contractions of up to 80% maximum voluntary contraction

(MVC) with the capability of classifying up to eight concurrent MUPTs from the signal,

and resolving MUPs formed by the superposition of up to two waveforms. The system is

not totally automatic and requires operator intervention.

Stashuk and his research group [96], [97], [99], [100], [101] have developed an EMG signal

decomposition system called DQEMG (decomposition-based quantitative EMG). DQEMG

consists of a series of algorithms for estimating MU firing pattern statistics, clustering based

on MUP shape and MU firing pattern characteristics, certainty-based supervised MUP

classification, and determining temporal relationships between firing patterns of pairs of

motor units.

Loudon et al. [64] used knowledge-based signal processing techniques for the decompo-

sition of EMG signals. They developed a system that uses an expert-system architecture
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and called DEMGES (decomposition of EMG expert system). The system automatically

decomposes EMG signals recorded at force levels up to 20% MVC. Non-overlapping MUPs

are classified using a statistical pattern recognition method. Whereas superimposed MUPs

are decomposed using a combination of procedural and knowledge-based methods.

Hamid Nawab et al. [73] have also undertaken a knowledge-based approach to address

some problems encountered during EMG signal decomposition. They showed that there is

an increase in knowledge-based system’s accuracy from 90% to well above 95% in decom-

posing complex EMG 3-channel data into its constituent MUPT. They concluded that the

key to achieving this improvement is their use of a probabilistic framework for resolving

pulse superpositions through the application of utility maximization at the suprasegmental

level.

Gut and Moschytz [41] presented an approach to the decomposition of EMG signals

based on a communication signal-based interpretation of the EMG signal. They analyzed

the communication between neurons and muscles by communication technical means. The

EMG signal source is modelled as an (N + 1)-ary, where N is the number of detected

MUPs in the signal, digital signalling system with intersymbol-interference, which encodes

a well-defined sparse information sequence. The information is conveyed by sending MUP

waveforms from the source through a transmitter. The receiver observes the noisy EMG

signal and has to estimate the information sequence, i.e., decodes the information sequence.

In recent years, artificial neural networks (ANN) have been used to classify MUPs. One

of their major advantages is that ANN models make no assumption about the underlying

probability density functions of the input data. Spitzer and Hassoun [94], and Hassoun et

al. [44], [45] developed a system for EMG signal decomposition called NNERVE (neural

network extraction of repetitive vectors for electromyography) capable of decomposing

signals of up to 11 MUPTs. NNERVE utilizes an auto-associative algorithm, where the

input vector serves as the target vector, and a pseudo-unsupervised learning approach using

a customized error back-propagation algorithm for classification that uses the time domain
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MUP waveform as input to a four-layer neural network. The input feature vector is 50 time

domain samples and this is presented to the first layer, serving as an input layer, of the

network consisting of 50 neurons. The second layer acts as a feature extractor and consists

of 6, 8, or 10 neurons for different architectures. The third layer acts as an encoder by

which the features from the second layer are encoded and consists of 4, 8, 12, or 16 neurons

for different architectures. These codes are then fed to the output layer consisting of 50

neurons and in which the codes are transformed back into a set of features that represent

the input MUP waveforms. The NNERVE method is computationally demanding due to

the complicated architecture consisting of many layers, which require long training times

and many learning epochs.

Instead of using time domain features, some decomposition methods employ other

feature domains such as the frequency domain or the wavelet domain.

As a variation of the time domain concept of the matched filter technique, McGill

[68], and McGill et al. [69] suggested a different way to perform template matching based

on the coefficients of the Fourier transform. They developed a decomposition system

called ADEMG (automatic decomposition electromyography) which can extract as many

as 15 simultaneously active MUPs from EMG signals detected during contractions up

to 30% MVC. ADEMG used template matching and a specific alignment algorithm for

classification and achieved its high level of performance in identifying the MUPTs through

several signal processing techniques. After identifying the trains, ADEMG examines their

firing patterns to verify that they correspond to valid MUPTs. ADEMG was designed to

be rapid and convenient for clinical use.

To reduce the dimensionality of the MUP patterns in the feature space, Stashuk and

de Bruin [98] developed a method to decompose single fibre EMG signals using power

spectrum matching. The power spectrum coefficients were used as features to represent the

MUPs. Signals recorded during isometric, constant, or slow force varying contractions, up

to 50% MVC were successfully analyzed with an accuracy of 95%. Since phase information
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is lost with the calculation of the power spectrum coefficients, this affects the ability to

discriminate between MUPs belonging to different MUs.

Wavelet features were used for classification in [27], [28]. They developed a technique

to classify single MUPs and to decompose multiunit EMG signals based on spectrum

matching in the wavelet domain and using the nearest neighbor clustering algorithm for

classification. The developed technique was not suitable for on-line analysis and required

operator intervention to reduce the decomposition error. Zennaro et al. [116] developed

a method to decompose multichannel long-term intramuscular EMG signals in which the

classification task is based on template matching using wavelet coefficients.

Fuzzy logic techniques have also been used for performing the classification task in

EMG signal decomposition. Chauvet et al. [9] proposed an iterative algorithm with a

classification method using fuzzy logic techniques to decompose an EMG signal detected

during low to moderate force levels, where the number of detectable MUPTs is less than

six. The fuzzy-based classification uses input variables derived from MU firing patterns

and MUP information to refine the identification of each MUPT.

2.3 Classifier Ensemble Methods

Difficult pattern recognition problems involving high dimensional patterns, large numbers

of classes, and noisy inputs can be solved efficiently using systems of multiple classifiers.

Classifiers of different types, i.e., with different architectures, different classification proce-

dures, and different feature spaces complement one another in classification performance

and increase the probability that the errors of the individual features or classifiers may

be compensated by the correct results of the rest. This has led to a belief that by using

features and classifiers of different types simultaneously, classification accuracy can be im-

proved [46] such that the performance of the classifier ensemble is never worse than the

average of the individual classifiers, but not necessarily better than the best classifier [78].
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There are a large number of methods, directions, and paradigms in designing classifier

ensembles that have been proposed in the literature [115]. Ensemble techniques can be

grouped and analyzed in different ways, depending on the main classification criterion

adopted. Different categorization ways of classifier ensembles can be found in [50], [108],

[109], [111].

2.3.1 Existing Classifier Ensemble Methods

To give an overview of the existing classifier ensemble methods, we follow the taxonomy

proposed by Valentini and Masulli [108], [109]. They adopted an approach to distinguish

between two classes of classifier ensembles: generative and non-generative methods con-

sidering the different ways base classifiers can be generated or combined together.

The class of generative classifier ensembles include methods that generate sets of base

classifiers acting on the base classification algorithm or on the structure of the data set

and try to improve the overall accuracy of the ensemble by directly boosting the accuracy

and the diversity of the base classifiers. Below, we will describe some of these techniques:

1. Boosting: Is a general supervised method that is used to increase the accuracy of

any classifier. The boosting algorithm originally developed was based on a theoreti-

cal model known as the weak learning model [90] and used to significantly reduce the

error of any weak learning algorithm that consistently generates classifiers to achieve

an arbitrary high performance. Several versions of boosting have been proposed, one

of them is the AdaBoost (Adaptive Boosting) [33], and in particular AdaBoost.M1

algorithm, which can be used on classification problems with more than two classes.

AdaBoost is an iterative algorithm with adaptive re-sampling of the training set in

each iteration such that it generates classifiers sequentially. In each iteration it main-

tains a weight for each sample in the training set that reflects its importance, where

it changes the weights of the samples based on the errors of previously generated

classifiers. Adjusting the weights causes the classifier to focus on different examples
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leading to different classifiers. For generating K base classifiers, AdaBoost in the

beginning assigns all samples the same weight, thus forming a uniform distribution,

and they are used to train the first classifier e1. Then, the samples are re-weighted in

such a way that the incorrectly classified samples have more weight than the correctly

classified ones. Based on this new distribution, the classifier of the next iteration e2

is trained. The classifier of iteration i, ei, is therefore based on the distribution

calculated in iteration i − 1. Iteration by iteration, the weight of the samples that

are correctly classified goes down and the weight of the incorrectly classified samples

goes up. Therefore, the algorithm starts concentrating on the difficult samples. At

the end of the procedure, K weighted training sets and K base classifiers have been

generated. The final classification results from aggregating the base classifier results

by weighted voting, i.e., for each sample, the output is a class label that maximizes

the sum of the weights of the base classifiers predicting that label.

2. Bagging: Is an abbreviation of bootstrap aggregating. It can increase the classifica-

tion accuracy significantly if the base classifier is properly selected. The bagging [7]

algorithm is also not very sensitive to noise in the data. The algorithm uses the insta-

bility of its base classifier in order to improve the classification accuracy. Bootstrap

methods are based on randomly and uniformly collecting samples with replacement

from a sample set. The bagging algorithm is a supervised method and it constructs

many different bags of samples by performing bootstrapping iteratively, classifying

each bag, and computing some type of an average of the classifications of each sample

via a vote. Bagging is in some ways similar to boosting, since both methods design

a collection of classifiers and combine their conclusions with a vote. However, the

methods are different. For example, because bagging always uses resampling instead

of reweighting, it does not change the distribution of the samples (does not weight

them), so all classifiers in the bagging algorithm have equal weights during the vot-

ing. It is also noteworthy that bagging can be done in parallel, i.e., it is possible to
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prepare all the bags at once. On the other hand, boosting is always done in series,

and each sample set is based on the latest weights. Each classifier ei is trained on a

bootstrapped set of samples from the original sample set. After all classifiers have

been trained, a simple majority vote is used, but if more than one class jointly re-

ceives the maximum number of votes, then the winner is selected using some simple

mechanism, e.g., random selection.

The class of non-generative classifier ensembles include methods that combine a set

of base classifiers previously constructed with a suitable algorithms: they do not actively

generate new base classifiers but try to combine in a suitable way a set of existing base

classifiers.

In this thesis our goal is to combine a set of existing base classifiers, i.e., to combine a

predetermined set of classifiers previously constructed. Based on that, our concentration

here will be on non-generative ensemble methods.

There are two basic types of non-generative classifier ensemble methods [57], [114]:

1. Dynamic classifier selection: where each classifier is assumed as an expert in some

local area of the feature space. The single classifier that is most likely to be correct for

a given pattern is predicted. Only the output of the selected classifier is considered

in the final decision.

2. Classifier fusion: where all classifiers are assumed to be expert across the whole

feature space, and therefore their votes are equally important for any pattern. They

are trained over the whole feature space and are considered competitive rather than

complementary. Individual classifiers are applied in parallel and their outputs are

combined in some manner to achieve a group consensus.

In this thesis we are interested only in classifier fusion methods, since for the dynamic

classifier selection type, a method of partitioning the input patterns into selection regions
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is required and then the best classifier for each partition is to be determined using training

or validation data.

A large number of classifier fusion schemes have been proposed in the literature [115].

A brief description of some of the most popular methods will be presented.

1. Majority vote [62], [110]: In combining the decision of K classifiers, the pattern is

assigned to the class for which there is a consensus, or when at least over half of the

classifiers agree on a class label, i.e., if K is even (K
2

+ 1) classifiers must agree or if

K is odd (K+1
2

) classifiers must agree. Otherwise, the pattern is rejected.

2. Simple averaging [110]: The individual classifier outputs are averaged across the

ensemble of classifiers. The output yielding the maximum of the averaged values is

chosen as the correct class:

E(x) = arg
M

max
i=1

(
ei(x) =

1

K

K∑

k=1

eik(x)

)
(2.1)

where M is the number of classes, K is the number of classifiers, and eik(x) represents

the ith output of the kth classifier.

3. Weighted averaging [43]: Linear combination of the classifier outputs is performed

with weights for individual classifiers. The combination-weights may be calculated

according to any optimality criterion. Minimizing the mean squared error (MSE)

over observed data may be used.

4. Bayesian combination [115]: The principle underlying this approach is to deal with

the opinions of the classifiers as a data set. Then the aggregator combines the

probability distributions provided by the classifiers via Bayes decision rule.

5. Borda count [46]: It is a generalization of the majority vote. The Borda count for

a class is the sum of the number of classes ranked below it by each classifier and it

measures the strength of agreement of the classifiers that the input pattern belongs
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to that class. The combined ranking is given by arranging the classes so that their

Borda counts are in descending order and the combiner output is the class with the

largest Borda count.

6. Fuzzy logic based combination techniques [52], [105]: The fuzzy integral is a nonlinear

functional that is defined with respect to a fuzzy measure. The fundamental basis of

the fuzzy integral is that the priority of the processing or combination information is

subjective to the degree of importance of the system, e.g., the most important system,

such that the highest accuracy classifier contributes most to the final decision.

7. Stacked generalizations [113]: Is a general method of using a high-level model to

combine lower level models to achieve greater predictive accuracy. Outputs from

individual classifiers are combined in a weighted sum with weights that are based on

the individual performance of the classifiers.

Recently, multiple classifier techniques have been used for classifying extracted MUP

features for the purpose of assisting with the diagnosis of neuromuscular disorders.

Christodoulou et. al [15] developed a modular neural network system and showed its

successful use in EMG decision making in mimicking the tasks carried out by an expert neu-

rophysiologist in MUP analysis. The system employs a combination of multiple classifiers

consisting of three types of neural networks: the back-propagation, radial basis function,

and self-organizing feature map (SOFM) classifiers trained with time domain parameters,

frequency domain parameters, autoregressive coefficients, cepstral coefficients, and four

types of wavelet coefficients: the Daubechies 4, Daubechies 20, Chui, and Battle-Lemarie.

The 24 output results of the eight features sets applied to the three classifiers were com-

bined using majority voting. The system was trained and evaluated using five different

bootstrap sets where in each set 24 different subjects were selected at random for training

and 16 different subjects for evaluation. The mean and the standard deviation of the per-

centage of correct classification score, i.e., diagnostic yield, of the five different bootstrap
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sets was computed for each classifier, for the eight different feature sets. It was found that

the combination of different features and different classifiers based on the majority voting

improved the overall classification performance of the system and gave a diagnostic yield

higher than the average diagnostic yield of the individual feature sets.

Christodoulou and Pattichis [14] extended the above system so that the combination of

different features with an ensemble of neural self organizing feature map (SOFM) classifiers

can be done on a classifier combination measurement level using a confidence measure. The

measure was derived from the SOFM classifier, which weighted the contribution of each

feature set to the final classification result. The diagnostic yield obtained when combination

was based on the confidence measure was improved further and it exceeded that obtained

when combination was based on majority voting.

In a previous paper [84] we applied a classifier fusion approach for the classification

task in EMG signal decomposition with a single type classifier ensemble consisting of six

classifiers. The classifiers used were a modified version of the Certainty classifier [75],

[97], [99] each fed with different feature set. Four classifier fusion schemes: majority

voting, average fixed rule, Sugeno fuzzy integral, and Choquet fuzzy integral were applied

separately and were used across a set of five simulated EMG signals, and all of them

demonstrated improvement in the overall classification performance relative to the average

performance of the individual classifiers across the five signals.

2.3.2 Fusion Methods

The next step after selecting the individual classifiers is combining the classifier outputs by

a module, called the aggregator. Various aggregators can be distinguished from each other

in their trainability, adaptivity, and individual classifier output requirements. Aggregators,

such as voting, averaging or sum, are static, with no training required, while others require

training. Some aggregators are adaptive in the sense that they evaluate (or weigh) the

decisions of individual classifiers depending on the input pattern. In contrast, non-adaptive
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aggregators treat all the input patterns the same. Adaptive combination schemes can

further exploit the detailed error characteristics and expertise of individual classifiers [47].

Different classifiers typically express their decisions and provide information about iden-

tifying a pattern at different levels. Generally speaking, classifiers provide or are able to

provide information divided into three levels [8], [115]:

1. Abstract level: the classifier output is a unique class label or several class labels, in

which case the classes are equally identified without any qualifying information. A

well known fusion method for this level is the majority voting [62], [110].

2. Rank level: the classifier output is a ranked list of the possible labels sorted by

decreasing confidence without supplying the confidence. The Borda count [46] fusion

method is the most frequently used rank level fusion approach.

3. Measurement level: the classifier attributes to each class label a confidence measure

value representing the degree to which the pattern has that label. Simple averaging

[110], weighted averaging [43], and fuzzy integral [52], [105] fusion methods are a few

techniques for this level.

Different aggregators expect individual classifier outputs according to the aforementioned

three output information levels. In this thesis, the developed system combines the individ-

ual classifiers outputs based on the abstract and measurement levels.

To combine the outputs from multiple disparate classifiers based on the abstract level

we may use the voting strategy where the target class that receives the highest number of

votes is selected as the final predicted class. Whereas, if the combination is based on the

measurement level we may use methods that do not require prior training such as fixed

combination schemes based on the product, sum, max, min, median, and average rules or

use methods that require training.

The voting scheme neglects classifier differences in skills. This may be solved by as-

signing areas of expertise, following the best classifier for each new item of discussion, and,
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in addition to the decision, the classifiers may be asked to provide some confidence [23].

To design an optimal decision procedure for combined classifiers, we need to evaluate the

combination using simulated data with known class assignment, study the expert advice,

and construct from that procedure a combined decision rule. In terms of classifiers this is

called training.

2.3.3 Multiple Classifier Combination Framework

Xu et al [115] provided a mathematical framework for multiple classifier combination. To

accomplish this, consider a decision space, P , with M mutually exclusive sets, ωi ∈ Ω =

{ω1, ω2, ..., ωM}. Each set, ωi, represents a class or category into which patterns will be

grouped or classified. The decision space may be written as:

P = ω1

⋃
ω2

⋃
...

⋃
ωM (2.2)

The decision space, P , is the set of all possible patterns from all classes. The set of the

corresponding integer labels, Ω, is defined such that Ω = {ω1 = 1, ω2 = 2, ..., ωM = M}
and it provides all possible integer labels for the defined classes. As some of the patterns

may not be assigned to any of the available classes, the decision space set, P , can then

be extended to include Ω
⋃ {ωM+1} , where ωM+1 designates an unassigned class that by

some established criteria the classifier has decided to not assign the input pattern.

For an ensemble of K classifiers, each recognition engine in the system may be simply

regarded as a functional box that receives an input sample x and outputs a label, ωj denoted

by ek(x) = ωj. This is regardless of what internal structure a classifier has or on what

theory and methodology it is based. The team of K classifiers e1, e2, ..., eK provides a best

choice when evaluating the input pattern x, in the form of an integer index, wj ∈ Ω
⋃

ωM+1

as a label indicating that x belongs to class ωj.

Although the classification given by the index ωj is the final product of any given single

classifier, many existing classification systems can provide additional useful information.



CHAPTER 2. BACKGROUND 30

For example, the Certainty classifier (CC) [75], [99] and the adaptive certainty classifier

(ACC) [85] provide decision function values as a measure of certainty expressing confidence

in the decision of classifying a MUP pattern to a particular train and the final label ωj

is the result of the maximum selection of the product of the decision function values.

Once a classification has been made, the decision function values may not be retained;

however, such discarded information may be useful for a multiple classifier fusion system

when combining classifiers at the measurement level.

2.3.4 Abstract Level Combination

When classifying a pattern x at the abstract level, only the best choice is known from

each classifier, ek(x). Therefore to combine abstract level classifiers, a voting method is

used. The overall decision, E(x), for the combined classifier system is sought given that

the decision functions for the individual classifiers may not agree.

The most conservative form of voting is that all the individual classifiers must agree;

otherwise the pattern is left unassigned. This requirement is a highly stringent condition

and may lead to patterns remaining unassigned that might otherwise have been successfully

classified.

A less conservative form than the above is that only all the classifiers that specify a

preference need to agree, i.e., those choosing the unassigned category do not get a vote.

A more common and less stringent form of voting is the majority voting [62]. A pattern

x is classified as ωj if over half of the classifiers say x ∈ ωj. Majority voting can be

generalized to the case in which some fraction of the classifiers specified by 0 < α ≤ 1 are

required to agree.

The voting rules expressed in a mathematical form are given in [115]. A generalized

expression that includes all the aforementioned voting variants is given in (2.4). Repre-

senting the best choice from each classifier, ek(x), in the form of a binary characteristic
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function:

Tk(x ∈ ωi) =

{
1, when ek(x) = i and ωi ∈ Ω

0, otherwise.
(2.3)

The general expression is:

E(x) =

{
ωj, if TE(x ∈ ωj) = maxωi∈Ω TE(x ∈ ωi) ≥ α . K

ωM+1, otherwise.
(2.4)

where ωM+1 designates the unassigned category.

2.3.5 Measurement Level Combination

When combining classifier outputs based on the measurement level we use the real valued

outputs for each class provided by the respective classifiers. Assuming when classifying

a pattern x, each classifier produces output values, in the interval [0, 1], interpreted as a

confidence Cfi(x) in the decision of classifying pattern x with respect to a particular class

ωi (i = 1, 2, ...,M). One can think of these outputs as a posteriori probabilities but it

might be as a certainty measure about a class as is the case with the Certainty classifier

[75], [99] or as an assertion measure about a class as is the case with the adaptive fuzzy

k-NN classifier [83].

In terms of a posteriori probabilities, the confidence Cfi(x) is defined as:

Cfi(x) = P (ωi|x) (2.5)

and in relation with a specific classifier ek(x), the confidence depends on the outcome eik(x)

of this classifier for class ωi:

Cfik(x) = P (ωi|eik(x)) (2.6)

The confidences in (2.5) and (2.6) are defined over all the detected MUP patterns in an

EMG signal.

Once a set of decision confidences {Cfik(x), i = 1, 2, ..., M ; k = 1, 2, ..., K} for M classes

and K classifiers is computed for a MUP pattern x, they can be combined with a classi-

fier fusion module into a new set of decision confidences that can be used, by maximum
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selection, for the final classification. Either fixed combination rules or trainable combiners

may be used.

In this thesis the fuzzy integral approach trained for a search for a set of densities

was used for combining classifiers. The fuzzy integral [105] is a nonlinear, numeric-based

approach for combining multiple sources of uncertain information. It uses a hierarchical

network of evidence sources to arrive at a confidence value for a particular hypothesis or

decision. In pattern recognition, the integral is evaluated over a set of features. Fuzzy

integrals combine objective evidence for a hypothesis with the prior expectation of the

importance of that evidence to the hypothesis.

A distinguishing characteristic of fuzzy integrals is that they utilize information con-

cerning the worth or importance of subsets of information sources in the decision making

process [52] and it is the only weighted aggregation operator, which takes into account not

only the importance of information sources, but also the importance of all subsets of them

[71]. The worth of subsets of information sources is represented by a fuzzy measure, a gen-

eralization of a probability measure. Fuzzy measures are not necessarily additive, which

provides increased flexibility. Thus, fuzzy integrals can represent situations for which the

measure of the whole is not equal to the sum of the parts.



Chapter 3

Base Classifiers

3.1 Introduction

Base classifiers are used in order to construct a combined classifier that may perform better

than any of the base classifiers. Base classifiers should be different as it makes no sense to

combine identical classifiers, but they should also be comparable, i.e., their outputs should

be represented such that a combining method can use them as inputs. A consistent set of

different classifiers may be generated in the following ways [23]:

1. Different initializations,

2. Different parameter choices,

3. Different architectures,

4. Different training sets,

5. Different feature sets.

The system developed in this thesis follows the so-called overproduce and choose [36], [76]

strategy and the test and select [92] approach to ensemble combination by allowing the

generation of a large set of candidate classifiers and then the choice of base classifiers team

33
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is based on the selection of subsets of classifiers that can be combined to achieve better

accuracy. The system employs, as base classifiers, different kinds of classifiers fed with

different feature sets.

The base classifiers belong to three main types: certainty-based, fuzzy k-NN, and

template matched filter classifiers. For each type there are different configurations. There

are classifier configurations based on MUP shapes only, MUP shape and passive use of

firing pattern information with an adaptive train-wise setting of assignment threshold,

MUP shape and active use of firing pattern information with/without adaptive train-wise

setting of the assignment threshold and others. The base classifiers similarity criterion

is based on a combination of MUP shapes and a passive and an active use of MU firing

patterns.

This chapter describes the passive and active use of MU firing patterns and presents

the IDI statistics used for the detection of MUP misclassifications followed by a supervised

classification of MUPs. Specifics of the Certainty, fuzzy k-NN, and matched template filter

MUP base classifiers are described with the steps necessary to incorporate the IDI statistics

in each of the mentioned base classifiers to form the adaptive version of each.

3.2 Motor Unit Firing Pattern Statistics

Two kinds of data are available for MUP classification in EMG signal decomposition:

MUP shapes and the times of occurrences of MUPs such that the classification of MUPs

to MUPTs cannot be considered independent of MU firing pattern constraints. These

constraints include MU physiological limitations, the likelihood of a particular MU firing

in a given epoch of time, and the expectation that the classification algorithm might not

assign each detected MUP. For these reasons, the generated MUPTs may not represent

the correct discharges of the active MUs and the need will arise to re-classify some MUPs.

Two modes of use of MU firing pattern information have been implemented: passive and
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Figure 3.1: Model for a motor unit potential train.

active. Passive mode use refers to the use of firing pattern information in the adjustment

of the assignment threshold of a MUP to a MUPT based on its firing pattern consistency

statistics that adjust MUP assignments in general but not the assignment of any specific

MUP. Whereas, active mode use refers to the situation in which firing pattern information

is used to determine to which class each specific MUP should be assigned.

To take MU firing pattern constraints into consideration during a classification task,

we specified a set of firing time consistency statistics that assist in the detection of MUP

misclassifications.

3.2.1 IDI Statistics for the Detection of MUP Misclassifications

The MUPTs created by a classification algorithm can be modeled mathematically [5], [60],

[65], by representing each train as a sequence of Dirac delta impulses, δi(t− τk), with

k = 1, 2, ..., Ni, where Ni is the number of discharges of MUi and i = 1, 2, ..., M where

M is the number of MUPTs, which are passed through a filter whose impulse response is

hi(t) as shown in Figure 3.1. If the impulses δi(t− τk) mark the occurrence times of the

train MUPs (i.e., MU firing times), the output of the filter would be the MUPT or yi(t)

expressed by:

yi(t) =

Ni∑

k=1

hi(t− τk) (3.1)

It follows that a MUPT can be expressed as the convolution of the MU firing pattern
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with a linear filter having an impulse response specified by the shape of the MUP. The

MU discharge sequence can be described as a point process, which is a random process

characterized by the times of occurrence of identical events.

Motor unit IDIs have been observed to be irregular and can be described as values of

a random variable with characteristic statistical properties [65], and for finite samples of

data, the IDI histogram serves as an estimator of the actual probability density function

(PDF) [77]. Although Matthews [67] has demonstrated that the IDI PDF of a MU cannot

actually be Gaussian, for MUPTs of MUs that are consistently recruited, the Gaussian

density is a good approximation.

Given these expectations for the pattern of activity of a MU and the ability to char-

acterize this pattern using the IDIs of a MU, errors in the determination of the activation

pattern of a MU, caused by erroneous MUP classifications, can be detected by analyzing

IDI statistics. Specific erroneous IDIs can be identified and determinations regarding the

number of erroneous IDIs can be made. The following firing pattern consistency statistics

can be used to determine if a significant number of IDI errors exist in a MUPT:

1. Percentage of inconsistent IDIs: an IDI inconsistency in a MUPT can be defined

as those IDIs less than µ− 2σ and any IDI less than 15 ms. The latter constraint

is related to the expected firing pattern of an α-motoneuron during constant force

contractions. µ is the MUPT mean IDI and σ is the standard deviation of the dis-

tribution of MUPT IDIs. Using this definition of an inconsistent IDI, approximately

2.5% of the IDIs are expected to be inconsistent. If a greater percentage exists in

a MUPT it can be assumed that a significant number of MUP classification errors

have occurred.

2. IDIs coefficient of variation (CV ) defined as:

CV =
σ

µ
(3.2)

Values of CV larger than 0.25 are suspicious since normal values are in the 0.1-0.15
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range [5]. However, a large value of CV by itself does not necessarily represent MUP

classification errors.

3. IDIs lower coefficient of variation (CVl): defined as the ratio of lower standard devi-

ation σl of the distribution of the MUPT IDIs and the MUPT mean IDI µ, and is

given by:

CVl =
σl

µ
(3.3)

σl is calculated using the IDIs whose values are less than the mean value. CVl

estimates the thickness of the lower portion (below the mean) of the IDI PDF. MUP

classification errors tend to increase the proportion of shorter IDIs and increase CVl

accordingly. If there are no MUP classification errors, CV should approximately

equal CVl. The ratio of CVl to CV measures the skewness of the IDI PDF to shorter

IDIs and is a strong indicator of MUP classification errors.

4. Lower IDI ratio: defined as the ratio of the count of IDIs whose values are less than

0.5 of the MUPT mean IDI µ to the count of the IDIs whose values are less than the

MUPT mean IDI µ. Like the CVl and the ratio of CVl to CV , the value of the lower

IDI ratio will increase with the number of MUP classification errors. This statistic is

however not dependent on estimates of σ or σl and therefore is not affected by errors

in their estimation. This is especially important when a high value of σ and σl exists

because in these situations it is difficult to get an accurate estimate of either.

To calculate the above firing pattern statistics, the mean µ and standard deviation

σ of the train IDIs need to be calculated. The MUPTs identified during EMG signal

decomposition may be incomplete since a train may have missing firings and they may

also include erroneous firings. Therefore using all observed IDIs for estimating these firing

pattern statistics does not work well even when the number of IDI errors is small. To

get accurate estimates of µ and σ, with no a priori information about the firing pattern
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of a MU and even when the number of IDI errors becomes large, an algorithm such as

Error-Filtered Estimation (EFE) [81] must be used.

The EFE algorithm [81], [101] is used for estimating the mean and standard deviation

of a set of time intervals between consecutive MU firing times (IDIs). It consists of three

phases: in the first phase, the IDI histogram is constructed, and the set of IDIs is ordered

such that the IDI histogram is divided into three regions whose boundaries are adjusted

into: the region of low IDI values containing small IDIs due to false detection, the region

of high IDI values containing large IDIs due to missed detection, and a region containing

valid IDIs used to estimate the MU’s true mean and standard deviation. Then the IDI

means for each region is defined properly. In the second phase, the boundaries of the

three regions are iteratively further adjusted so that the erroneous IDIs caused by missed

detections and false detections are moved out of the region containing the valid IDIs into

their corresponding regions. In the third phase, the final estimates are obtained based on

the refinement done in the second phase.

As the input IDI data are filtered and only valid IDIs are used, the EFE algorithm

provides accurate estimates even when the data defining the train MU firing times are

only partially complete or have several erroneous firing times. The EFE algorithm has

been found to provide accurate and unbiased µ and σ estimates, for moderate amounts of

detection errors (up to 5%), even when up to 70% of the IDI data are missing [101].

To illustrate the behaviour of these firing pattern consistency statistics relative to MUP

classification errors, a simulated MUPT of 200 discharges was generated with no errors

and with a Gaussian distribution of the IDIs, whose mean IDI µ = 100 ms and the IDIs

distribution standard deviation σ = 15 ms such that its CV = 0.15. MUP false detections

(equivalent to MUPs incorrectly classified) in the range of 0 - 10% and missed detections

(equivalent to MUPs that are not classified) of 0, 20%, 30%, and 40% were consecutively

introduced into the MUPT. For each MUPT configuration produced, the above four firing

pattern statistics were calculated based on an EFE estimation of the mean IDI µ and
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the IDIs distribution standard deviation σ. Figure 3.2 shows the behaviour of the firing

pattern consistency statistics relative to the percentage of MUP classification errors for

the different percentages of missed detections studied. This figure clearly shows how these

statistics can be useful in detecting MUP classification errors, even for a small number

of classification errors. Each of these statistics are individually correlated to the amount

of false classification error and therefore correlated to each other. Nonetheless, because

they have some conditional independence, we found that an increased number of false

classification errors can be more consistently identified if all of these statistics are considered

rather than using any of them individually.

3.3 Supervised Classification of MUPs

The task of supervised classification during the process of EMG signal decomposition is

involved with the discrimination of the activation patterns of individual motor units, active

during contraction, into distinguishable MUPTs. Therefore, MUPs are most likely belong

to the same train if their shapes are closely similar and if their IDI intervals are consistent

with the discharge pattern of the considered motor unit. This means that two kinds of

information, the MUP shapes and the times of occurrences of MUPs, should be considered

for classification.

For the purpose of MUP classification, we developed classifiers based on MUP shapes

and with a passive and/or active use of firing pattern information. These classifiers follow

an adaptive nature for train-wise setting of the assignment threshold based on firing pattern

consistency statistics.

3.3.1 Adaptive Setting of Train Assignment Threshold

The adaptive aspect of the developed classifier is the setting of a minimal assignment

threshold for each MUPT, which might be changed based on firing pattern statistics of the
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Figure 3.2: Firing pattern consistency statistics behaviour relative to false detection and

with different percentages of missed detections. MD stands for missed detection.
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train.

Following each classification pass through the MUP data, if, based on firing pattern

statistics, it is expected that a train has too many erroneous assignments, its minimal

assignment threshold is increased or otherwise it is decreased. This firing pattern analysis

allows the algorithm to modify the required assignment of a MUP classification for each

train individually based on an expectation of the number of erroneous assignments. Trains

to which MUPs can be confidently assigned will have a lower minimal assignment threshold

and have a higher MUP identification (ID) rate. Alternatively, trains to which MUPs

cannot be confidently assigned will have a higher minimal assignment threshold and have

a lower MUP identification rate. In both cases, the number of errors expected will be

approximately constant. Therefore, over all the trains, a maximum number of MUPs

should be assigned while maintaining an acceptable MUP assignment error rate. The

adjustment of the minimal assignment threshold of each MUPT based on the pattern of

MUP occurrences in the train represents a passive use of firing pattern information. Specific

class assignments are not actively determined by the firing pattern information. Rather

the firing pattern information is used to allow or deny MUP assignments in general.

During MUP classification, the classifier should not assign all detected MUPs as there

are some detected MUPs considered superimposed MUPs comprising of more than one

MUP or there are some MUPs causing dependent errors that have the effect of causing

subsequent assignment errors when are assigned erroneously to a specific MUPT, so that

the classifier should be able to recognize these MUPs and leaves them unassigned.

3.3.2 How does the Adaptive MUP Classification Work?

The adaptive nature of MUP classification is related to the adjustment of the minimal

assignment threshold for each MUPT based on train firing pattern statistics. A MUPT

assignment threshold might be increased to exclude MUPs causing firing pattern incon-

sistencies or decreased as long as firing pattern inconsistencies are not detected. The
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occurrence of a significant number of MUP classification errors is detected by the use of

the firing pattern consistency statistics presented in Section 3.2.1.

Due to the adaptive nature and the temporal dependence of the MUPs within a MUPT,

the developed adaptive classifier employs an iterative multi-pass approach, where all of the

MUPs, ordered based on their times of occurrence, are reconsidered for classification during

each iteration. The iteration passes continue until specific stopping criteria are met.

The adaptive supervised classification task is divided into two stages:

1. The first stage involves only one classification pass that assigns MUPs based on

shape only and passively uses firing pattern information to remove possible erroneous

classifications. Figure 3.3 shows the steps involved in stage 1.

2. The second stage involves multiple classification passes and makes assignments based

on both MUP shape and active and/or passive use of firing pattern information.

Figure 3.4 shows the steps involved in stage 2.

Both classification stages are executed using an initial assignment threshold value. These

values were empirically set based on experimentation applying the adaptive approach with

different types of classifiers to several EMG signals such that the values used provided the

best results or results not far from the best.

The classification passes during both stages are supervised classification passes. Each

candidate MUP j is assigned to the train that has the highest confidence of belonging

to it expressed in terms of the maximum assignment value and if it is higher than the

minimum assignment threshold of that train. During the first stage, the highest confidence

is measured in terms of the highest shape confidence of belonging to a train. Whereas,

during the second stage, it is measured in terms of the best match of MUP shape and

expected firing time represented by the multiplicative combination of the shape confidence

value and the firing time confidence value.

Once each pass is ended, the firing pattern consistency statistics for each MUPT with



CHAPTER 3. BASE CLASSIFIERS 43

Figure 3.3: Flowchart of adaptive classification based on MUP shapes only.
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Figure 3.4: Flowchart of adaptive classification based on the combination of MUP shapes

and MU firing patterns.
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Nsufficient or more IDIs are calculated. Then in the first stage all MUPs causing IDI incon-

sistencies in the firing pattern of a train are removed. While in the second stage, we allow

a small percent of those MUPs causing IDI inconsistencies. The firing pattern consistency

statistics of each MUPT with Nsufficient or more IDIs are then re-calculated and checked

against the following constraints:

Percentage number of IDI inconsistencies = 0% (in first stage) or 2.5% (in second stage).

Absolute value of CVl ≤ 0.35, representing an upper bound of physiological expectation.

Ratio of CVl to CV ≤ 1.25, empirically determined value.

Lower IDI ratio ≤ 0.175, empirically determined value.

If a MUPT meets all the above constraints, it keeps its MUPs and, if during the first stage,

its minimum assignment threshold is unchanged while, if during the second stage, its min-

imum assignment threshold is reduced by ∆decrease. Otherwise, the minimum assignment

threshold for the train is increased by ∆increase and, if during the first stage, its MUPs

confidence values are checked against the new value while, if during the second stage, its

MUPs are re-classified using the new value of the assignment threshold. Those MUPs

causing IDI inconsistencies in the firing pattern of a train and MUPs with confidence val-

ues less than the minimum assignment threshold are designated unassigned and removed

from the train. This process is repeated until all the imposed firing pattern constraints

for all generated MUPTs are satisfied. A MUPT’s minimum assignment threshold is not

decreased or increased below or above extreme values, respectively, or if it has fewer than

a minimum number of MUPs Nsufficient. In all the experiments concerning the evaluation

of base classifiers, the required number of MUPs in a MUPT to make minimum assign-

ment threshold changes, Nsufficient, is taken to be 50 in order to enable the EFE algorithm

estimates the MUPT mean and standard deviation with reasonable error.

The adjustment of the minimum assignment threshold of a train based on its firing

pattern consistency statistic value at the end of the first shape-based pass and the subse-

quent shape and firing pattern passes, represents a passive utilization of MU firing pattern
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information to adjust MUP assignments in general but not the specific class assignment of

any specific MUP.

The classifier stops if no assignment threshold for a train is lowered and if no train

has had a significant number of changes to its MUP assignments in the last pass, or if the

maximum number of iterations (typically 10) has been completed.

3.4 Certainty-Based Classification

A certainty-based classifier classifies a candidate MUP to the MUPT that produces the

greatest estimated certainty, provided this maximal certainty is above a minimum certainty

threshold.

3.4.1 Certainty Classifier

The Certainty classifier (CC) is a template matching classifier that uses a certainty-based

approach for assigning MUPs to trains. A complete description is given in [75], [97], [99]

accompanied with testing and evaluation of its performance.

The CC estimates a measure of certainty expressing confidence in the decision of clas-

sifying a MUP to a particular train. It determines two types of decision functions for each

candidate MUP, the first is based on shape information and the second is based on firing

pattern information. For a set of MUPTs, the decision functions for MUP assignment are

evaluated for only the two trains with the most similar templates.

The shape information decision functions include:

1. Normalized absolute shape certainty CND: represents the distance from a candi-

date MUP to the template of a train normalized by the norm of the template. For

candidate MUP j, CND1 is evaluated by:

Cj
ND1 = max{1− r1

s1

, 0} (3.4)
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and CND2 by:

Cj
ND2 = max{1− r2

s2

, 0} (3.5)

where, r1 and r2 are the Euclidean distances between MUP j and the closest (most

similar) and second closest train templates, respectively; s1 and s2 are the l2 norm

of the closest and second closest train templates to MUP j, respectively.

2. Relative shape certainty CRD: represents the distance from a candidate MUP to

the template of the closest train relative to the distance from the same MUP to the

second closest train. For candidate MUP j, CRD is evaluated by:

Cj
RD1 = 1− r2

1

2 . r2
2

(3.6)

Cj
RD2 =

r2
1

2 . r2
2

(3.7)

where, Cj
RDi is the relative distance certainty associated with classifying MUP j to

MUPT i.

The firing pattern information is represented by the firing certainty decision function

with respect to the established firing pattern of the train. For candidate MUP j, CFC is

evaluated by:

Cj
FC1 = Cf (I

j
b1, µ1, σ1) . Cf (I

j
f1, µ1, σ1)

Cj
FC2 = Cf (I

j
b2, µ2, σ2) . Cf (I

j
f2, µ2, σ2)

(3.8)

where, Cf (I, µ, σ) is a firing time certainty function based on the deviation of an IDI, I,

from the estimated mean IDI, µ , of a train that has an estimated standard deviation,

σ. In the current implementation of the CC, Cf (I, µ, σ) is evaluated using a multi-modal

Gaussian model that takes into consideration missed-firings [68] given by:

Cf (I, µ, σ) =
K∑

n=1

p
(n)
I (I) (3.9)

where, p
(n)
I (I) is based on a Gaussian probability density distribution:

p
(n)
I (I) ∝ N(nµ, nσ2) (3.10)
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Figure 3.5: IDIs density distribution for MUPT with missing firings, mean µ = 50ms,

standard deviation σ = 0.1µ, and detection probability Pd = 0.5, 0.7, 0.9.

p
(n)
I (I) =

1√
n

e−
1

2nσ2 (I−nµ)2 (3.11)

The modes become broader and smaller as n increases. In the current implementation K

is set to a value of 40. Figures 3.5 and 3.6 show the firing time certainty function Cf for

three MUPTs having detection probabilities of Pd = 0.5, 0.7, 0.9. Pd is assumed to be the

same for all MUPs within a MUPT,

Ibi and Ifi are the IDIs that would be created by assigning a MUP j to train ωi; Ibi is

the backward IDI, the interval between MUP j and the previous MUP in the train; Ifi is

the forward IDI, the interval between MUP j and the next MUP in the train. In (3.10)

and (3.11), σ corresponds to the estimated standard deviation of the IDIs in the major

mode (n = 1) from the major mode IDI mean µ.

The decision of assigning a MUP to a train is based on the value for which the multi-

plicative combination of CND, CRD, and CFC given by in (3.12) is the greatest and if it is
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Figure 3.6: IDIs density distribution for MUPT with missing firings, mean µ = 50ms,

standard deviation σ = 0.2µ, and detection probability Pd = 0.5, 0.7, 0.9.

greater than the minimal certainty threshold (Cm) for which a classification is to be made:

Cj
1 = Cj

ND1 . Cj
RD1 . Cj

FC1

Cj
2 = Cj

ND2 . Cj
RD2 . Cj

FC2

(3.12)

where, Cj
i is the overall certainty associated with the classification of MUP j to MUPT i.

MUP j is assigned to the train with the closest template if

Cj
1 > Cj

2 and Cj
1 > Cm (3.13)

or to the train with the second closest template if

Cj
2 > Cj

1 and Cj
2 > Cm (3.14)

Otherwise, MUP j is left unassigned.

The value of each decision function is restricted to the interval [0, 1] and it corresponds

to the confidence in the classification given the information of each function. A value of
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1 corresponds to the ideal situation (maximum certainty) with respect to the information

relevant to that function. However, for a classification that is certainly incorrect with

respect to any source of information the corresponding decision function yields a value

approaching 0.

3.4.2 Adaptive Certainty Classifier

The adaptive Certainty classifier (ACC) is a template matching classifier and it is a mod-

ified version of the Certainty classifier [75], [97], [99]. It uses an adaptive certainty-based

approach for assigning MUPs to trains. The similarity criterion for grouping MUPs is based

on a combination of MUP shapes and an active and passive use of MU firing patterns.

The adaptive nature of MUP classification is related to the adjustment of the minimal

certainty threshold for each MUPT based on train firing pattern statistics and it follows

the algorithms described in Section 3.3.2.

The classification pass during the first stage assigns each candidate MUP j to the train

that has the highest shape certainty of belonging to it expressed in terms of the maximum

shape certainty value calculated from the multiplicative combination of the maximum

value of any of the two normalized absolute shape certainty given by (3.4) and (3.5) and

the maximum value of any of the two relative shape certainty given by (3.6) and (3.7) such

that it is assigned to the train given by:

ω(j) = arg max(Cj
ND1 . Cj

RD1, Cj
ND2 . Cj

RD2) (3.15)

if it is higher than the shape certainty threshold initially set to Cm = 0.1.

The classification passes in the second stage assign each candidate MUP j to the train

that has the best match of MUP j shape and expected firing time only if this match has

a certainty above the current certainty threshold for the train. The overall certainty of

a MUP belonging to a train is given by (3.13) or (3.14) and measured in terms of the

multiplicative combination of the normalized absolute shape certainty CND, the relative
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shape certainty CRD, and the firing time certainty CFC . If the overall certainty is higher

than the minimum certainty threshold initially set to Cm = 0.02, the candidate MUP j is

assigned to the train given by:

ω(j) = arg max(Cj
1 , C

j
2) (3.16)

The adjustment of the minimal certainty threshold follows the adaptive setting of MUPT

assignment threshold algorithm described in Section 3.3.2.

3.5 Nearest Neighbour Classification

The classification task in most EMG signal decomposition techniques is based on template

matching. This section addresses the supervised MUP classification during EMG signal

decomposition using the nearest neighbour (NN) classification rule instead of template

matching. The primary use of nearest neighbour techniques involves situations where the

a priori probabilities and class conditional densities are unknown [70]. Of the many nearest

neighbour techniques, we chose the fuzzy k-NN classification rule, proposed by Keller et

al. [53] as it deals with vagueness and uncertainty; and it provides a confidence measure

regarding the classification results.

3.5.1 k-NN Classifier

The crisp nearest neighbour classification rule assigns a pattern, which is of unknown

classification, to the class with the nearest neighbour. This idea has been extended to the

k-nearest neighbours with the pattern being assigned to the class that has a majority of

the k-nearest neighbours.

The k-NN classifier directly constructs the decision rule without explicitly estimating

the class-conditional densities. The motivation of this classifier is that patterns which are

close to each other in the feature space are likely to belong to the same pattern class [48].



CHAPTER 3. BASE CLASSIFIERS 52

The k-NN decision rule is a suboptimal procedure [22] and it provides a simple non-

parametric procedure for the assignment of a class label to an input pattern based on the

class labels represented by the k-closest neighbors of the input pattern [53]. The k-NN

classifier does not rely on any assumption concerning the statistical distribution of data

but instead it relies on a positive integer k, a metric or distance function between patterns

d, and a labelled reference set that contains correctly classified patterns.

Let X be a feature space and let Ω = {ω1, ω2, ..., ωM} be the set of class labels, where

M is the number of classes. Let V = {(v1, l(v1)), (v2, l(v2)), ..., (vn, l(vn))} be the labelled

reference set, where vi ∈ X and l(vi) ∈ Ω. An input pattern x of unknown classification is

classified using the subset of k-labelled reference patterns that are closest to x with respect

to the distance function d, i.e., pattern x is assigned to the majority class label correspond-

ing to the k nearest neighbour. Statistically, this accounts for assigning the pattern x to

the class with the highest a posteriori probability, i.e., the class most represented amongst

the k nearest neighbors of x. The a posteriori probabilities are obtained as [56]:

P (ωi|x) ≈ ki

k
(3.17)

where ki represents the number of neighbors belonging to class ωi within the subset of k

neighbors.

Figure 3.7 shows how a test pattern x is assigned to a class in a two-classes problem.

The k-NN decision rule with k = 5 starts at the pattern x and grows a spherical region

until it closes k nearest neighbors, and then it labels the pattern x by a majority vote

of these neighbors. In this case, the pattern x would be labelled the class of black filled

circles.

Two major problems are encountered when using a k-NN classifier. First, each of the

neighbors is considered equally important in determining the classification of the input

data. This frequently causes difficulty in those places where the sample sets overlap. A

far neighbour to the input is given the same weight as a close neighbour. Second, the

algorithm only assigns a class label to the input data, it does not determine the strength
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Figure 3.7: Application of k-NN decision rule to pattern x with k = 5.

of membership in the class. These two limitations can be addressed by the incorporation

of fuzzy set theory into the k-NN rule and motivated the development of the fuzzy k-NN

decision rule.

3.5.2 Fuzzy k-NN Classifier

The fuzzy k-NN classifier, designed by Keller et al. [53], is a fuzzy classification tech-

nique that generalizes the k-NN classifier. Rather than assigning a class label to an

input patten x, the fuzzy k-NN algorithm assigns to pattern x a membership vector

(µω1(x), µω2(x), ..., µωM
(x)) as a function of the pattern’s distance from its k nearest neigh-

bors. This ensures that no arbitrary assignments are made. The class membership of the

input patten x is calculated based on the following formula:

µωi
(x) =

∑k
j=1 µωi

(xj) d
− 2

(m−1)

j

∑k
j=1 d

− 2
(m−1)

j

(3.18)
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where x1, x2, ..., xk denote the k nearest neighbour labelled reference patterns of x, and

dj = ‖x − xj‖ is the distance between x and its jth nearest neighbour xj. The pattern x

is assigned to the class given by:

ω(x) = arg
M

max
i=1

(µωi
(x)) (3.19)

The fuzzification parameter m determines how heavily the distance is weighted when

calculating the class membership. As m increases toward infinity, the term d
− 2

(m−1)

j ap-

proaches one regardless of the distance. Consequently, the neighbors xj are more evenly

weighted. As m decreases toward 1, however, the closer neighbors are weighted far more

heavily than those further away. This has the effect of effectively reducing the number of

neighbors that contribute to the class membership value of the input data point. For MUP

classification m was set to 2 as Keller [53] concluded that almost equal error rates have

been obtained over a wide range of values of m.

The fuzzy k-NN classifier relies on the estimation of the membership functions for the

labelled reference patterns. Methods for automatic estimation of membership functions

have been summarized in [70]. We are interested in the fuzzy nearest neighbour labelling

techniques beside the crisp labelling. In crisp labelling, each labelled reference pattern is

assigned complete membership in its class and zero membership in all other classes, i.e.,

l(vi) ∈ [0, 1]M . The fuzzy nearest neighbour labelling, known as soft labelling, assigns

memberships to labelled reference patterns according to the k-nearest neighbors rule. It is

required to estimate M degrees of membership (µω1(vi), µω2(vi), ...µωM
(vi)) for any vi ∈ V

by first finding the k patterns in V closest to each labelled reference pattern vi and then

calculating the membership functions.

We implemented two schemes of soft labelling. The first scheme proposed by Jóźwik [49]

assigns memberships to the labelled reference patterns according to the following formula:

µωi
(vj) =

ki

k
(3.20)

The second scheme proposed by Keller et al. [53] assigns memberships to the labelled
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reference patterns according to the following formula:

µωi
(vj) =

{
0.51 + (ki

k
∗ 0.49), if j = i

(ki

k
∗ 0.49), if j 6= i.

(3.21)

where ki is the number of labelled reference patterns amongst the k closest labelled reference

patterns which are labelled in class ωi, and j ranges from 1 to n. Notice that the classes

share the membership, i.e.,
M∑
i=1

µωi
(vj) = 1, ∀vj ∈ V. (3.22)

3.5.3 Fuzzy k-NN Classifier for MUP Classification

The fuzzy k-NN classifier for MUP classification estimates a measure of assertion expressing

confidence in the decision of classifying a MUP to a particular train. It determines for

each candidate MUP j a class membership µi(j) calculated from (3.18) representing the

shape-based strength of membership of MUP j in MUPT i and a firing assertion decision

function Aj
FAi

assessing the time of occurrence of MUP j with respect to the established

firing pattern of MUPT i.

The firing pattern information is represented by the firing assertion decision function

AFA similar to as is done for the Certainty classifier. For candidate MUP j and MUPT i,

Aj
FAi

is evaluated by:

Aj
FAi

= Af (I
j
bi, µi, σi) . Af (I

j
fi, µi, σi) (3.23)

where, Af (I, µ, σ) is a firing time assertion function based on the deviation of an IDI, I,

from the estimated mean IDI, µ, of a train that has an estimated standard deviation, σ

and Ibi and Ifi are forward and backward IDIs, respectively, all as defined above for the

Certainty classifier (see equations (3.9), (3.10), and (3.11)).

The overall assertion value for assigning MUP j to MUPT i (Aj
i ) is defined as:

Aj
i = µi(j) . Aj

FAi
(3.24)
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MUP j is assigned to the train with the highest assertion value and if this value is above

the minimum assertion value threshold Am of the train to which a classification is to be

made, otherwise MUP j is left unassigned.

The value of class membership µi(j) and the firing time assertion decision function Aj
FAi

is restricted to the interval [0, 1] and it corresponds to the confidence in the classification

given the information of each function. A value of 1 corresponds to the ideal situation

(maximum assertion) with respect to the information relevant to that function. However,

for a classification that is certainly incorrect with respect to any source of information the

corresponding function yields a value approaching 0.

3.5.4 Adaptive Fuzzy k-NN Classifier

The adaptive fuzzy k-NN classifier (AFNNC) uses an adaptive assertion-based approach

for assigning MUPs to trains. The similarity criterion for grouping MUPs is based on a

combination of MUP shapes and an active and passive use of MU firing patterns.

The adaptive nature of MUP classification is related to the adjustment of the minimal

assertion threshold for each MUPT based on train firing pattern statistics and it follows

the algorithm described in Section 3.3.2.

The classification pass during the first stage assigns each candidate MUP j to the train

that has the highest shape assertion of belonging to it expressed in terms of the maximum

membership value calculated from (3.18) such that it is assigned to the train given by:

ω(j) = arg
M

max
i=1

(µωi
(j)) (3.25)

if it is higher than the shape assertion threshold initially set to Am = 0.6.

The classification passes in the second stage assign each candidate MUP j to the train

that has the best match of MUP j shape and expected firing time and if this match has

an assertion above the current assertion threshold for the train. The overall assertion of a

MUP belonging to a train is given by (3.24) and measured in terms of the multiplicative



CHAPTER 3. BASE CLASSIFIERS 57

combination of the membership function value calculated from (3.18) and the firing time

assertion (3.23). If the overall assertion is higher than the minimum assertion threshold

initially set to Am = 0.02, the candidate MUP j is assigned to the train given by:

ω(j) = arg
M

max
i=1

(Aj
i ) (3.26)

The adjustment of the minimal assertion threshold follows the adaptive setting of MUPT

assignment threshold algorithm described in Section 3.3.2.

3.6 Matched Template Filtering Classification

The basic MUP matched template filtering algorithm consists of sliding MUPT templates

over the EMG signal detected MUPs, and for each candidate MUP calculating a distortion,

or correlation, measure estimating the degree of dissimilarity, or similarity, between the

template and the MUP. Then, the minimum distortion, or maximum correlation, position

is taken to represent the instance of the template into the signal under consideration, with

a threshold on the similarity/dissimilarity measure allowing for rejection of poorly matched

MUPs. In this thesis we used correlation measure as estimates of the degree of similarity

between a MUP and MUPT templates.

The correlation between two signals represents the degree to which signals are related,

and cross correlation analysis enables the degree of waveform similarity between two dif-

ferent signals to be determined. It provides a quantitative measure of the relatedness of

two signals as they are progressively shifted in time with respect to each other.

In this section, we present two matched template filters for supervised MUP classifica-

tion during EMG signal decomposition. They are: the normalized cross correlation which

is the most widely used correlation measure [102] and a pseudo-correlation [32] measure.
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3.6.1 Matched Template Filter Classifier for MUP Classification

The matched template filter (MTF) classifier for MUP classification estimates a measure

of similarity between a candidate MUP j and the MUPT templates expressing confidence

in the decision of classifying a MUP to a particular train. It determines for each candidate

MUP j a normalized cross correlation value calculated from (3.27) or a pseudo correlation

value calculated from (3.28) representing the strength of resemblance of the MUP j with

the MUPT templates:

NCCj
ωi

(x) =

∑n
k=1 m(x + k). Ti(k)√∑n

k=1 m(x + k)2.
√∑n

k=1 Ti(k)2
(3.27)

pCj
ωi

(x) =

∑n
k=1 (Ti(k). m(x + k)− |Ti(k)−m(x + k)|. max{|Ti(k)|, |m(x + k)|})∑n

k=1(max{|Ti(k)|, |m(x + k)|})2

(3.28)

Denote ρ to be the matched template filter correlation such that:

ρωi
(x) =

{
NCCj

ωi
(x), when choosing normalized cross correlation,

pCj
ωi

(x), when choosing pseudo correlation.
(3.29)

where, x = 1, 2, ..., n is the shifting position and n is the dimension of the feature vector,

m is the candidate MUP j feature vector, and Ti is the MUPT i template feature vector.

Figure 3.8 shows the similarity between a candidate MUP, drawn in a solid line, and a

MUPT template, drawn in a dashed line, along with the degree of similarity in terms of

the normalized cross correlation and the pseudo correlation measures.

The MTF classifier also determines for MUP j a firing time similarity decision function

Sj
FSi

with respect to the established firing pattern of the train.

The firing pattern information is represented by the firing similarity decision function

SFS similar to as is done for the Certainty classifier. For candidate MUP j, Sj
FSi

is evaluated

by:

Sj
FSi

= Sf (I
j
bi, µi, σi) . Sf (I

j
fi, µi, σi) (3.30)
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Figure 3.8: Illustration of similarity between a candidate MUP and a MUPT template.

where, Sf (I, µ, σ) is a firing time function based on the deviation of an IDI, I, from the

estimated mean IDI, µ, of a train that has an estimated standard deviation, σ and Ibi

and Ifi are forward and backward IDIs respectively, all as defined above for the Certainty

classifier (see equations (3.9), (3.10), and (3.11)).

The overall similarity measure for assigning MUP j to MUPT i (Sj
i ) is given by the

multiplicative combination of ρi(j) and Sj
FSi

defined in (3.31) as:

Sj
i = ρi(j) . Sj

FSi
(3.31)

MUP j is assigned to a train with the highest similarity measure and if it is above

the minimal similarity threshold Sm of the train to which a classification is to be made,

otherwise MUP j is left unassigned.

The value of similarity measure ρi(j) and the firing time similarity decision function Sj
FSi

is restricted to the interval [0, 1] and it corresponds to the confidence in the classification

given the information of each function. A value of 1 corresponds to the ideal situation

(maximum similarity) with respect to the information relevant to that function. However,
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for a classification that is certainly incorrect with respect to any source of information the

corresponding function yields a value approaching 0.

3.6.2 Adaptive Matched Template Filter Classifier

The adaptive matched template filter classifier (AMTF) uses an adaptive similarity ap-

proach for assigning MUPs to trains. The similarity criterion for grouping MUPs is based

on a combination of MUP shapes and an active and passive use of MU firing patterns.

The adaptive nature of MUP classification is related to the adjustment of the minimal

similarity threshold for each MUPT based on train firing pattern statistics and it follows

the algorithm described in Section 3.3.2.

The classification pass during the first stage assigns each candidate MUP j to the train

that has the highest shape similarity measure of belonging to it expressed in terms of the

maximum correlation value calculated from (3.27) or (3.28) such that it is assigned to the

train given by:

ω(j) = arg
M

max
i=1

(ρωi
(j)) (3.32)

if it is higher than the shape similarity threshold initially set to Sm = 0.6.

The classification passes in the second stage assign each candidate MUP j to the train

that has the best match of MUP j shape and expected firing time if this match has a

similarity measure above the current similarity threshold for the train. The similarity

measure of a MUP belonging to a train is given in terms of the multiplicative combination

of the correlation value calculated and the firing time similarity. If the similarity measure

is higher than the similarity threshold initially set to Sm = 0.02, the candidate MUP j is

assigned to the train given by:

ω(j) = arg
M

max
i=1

(Sj
i ) (3.33)

The adjustment of the minimal similarity threshold follows the adaptive setting of MUPT

assignment threshold algorithm described in Section 3.3.2.



Chapter 4

EMG Signal Decomposition Classifier

Fusion Model

4.1 Introduction

Multi-classifier decision level fusion can be defined as the process of fusing information

from individual classifiers after each classifier has given an opinion about the recognition

of a pattern. The output information from the multiple classifiers may agree or conflict

with each other and the task of the designed classifier fusion system becomes the search

for classifiers, from the pool of base classifiers, having the maximum degree of agreement.

The EMG signal decomposition process can be considered a classification problem that

abounds uncertainty. Our goal in this thesis is the management of the uncertainty in clas-

sifying MUP patterns through the fusion of the decisions of multiple classifiers. Instead of

designing a high performance classifier, we designed and constructed a number of classifiers

using different methodologies and different features that can complement each other. Each

classifier itself need not have an excellent performance, but the appropriate choice and

combination of these individual classifiers should produce a highly reliable performance.

This chapter describes the developed classifier fusion model architecture and the stages

61
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employed for designing a classifier fusion system: the design of the classifier ensemble and

the design of the aggregation module; along with the classifier fusion schemes used.

4.2 Classifier Fusion Model Architecture

The developed system deals with EMG signal decomposition and considers it as a classifi-

cation problem by implementing a multiple classifier fusion system.

The system architecture implemented in this thesis belongs to the parallel category,

where all the individual base classifiers are invoked concurrently and independently, and

an aggregator combines their output results as shown in Figure 4.1.

This section describes the system architecture and specifies its base classifiers, model in-

put space, aggregation module, and data transformation when the model includes different

types of classifiers.

4.2.1 Multiple Classifier Fusion System

The multiple classifier system shown in Figure 4.1 consists of a set of individual classifiers

and an aggregator, which combines the results of the individual classifiers to produce the

final classification decision. Various combination configurations can be obtained by using

different classifier architectures, different input features, or different aggregator character-

istics.

The thesis model employs a heterogeneous combination approach by combining classifier

ensembles of different kinds. The first ensemble represents a set of certainty-based classifiers

consisting of the Certainty classifiers [75], [99] and/or adaptive certainty classifiers [85].

The second ensemble represents a set of assertion-based classifiers consisting of the fuzzy

k-NN and/or adaptive fuzzy k-NN classifiers [83]. Whereas the third ensemble represents

a set of matched template filter classifiers consisting of the matched template filter and/or

adaptive matched template filter classifiers.
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Figure 4.1: Developed classifier fusion model architecture.
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4.2.2 Model Base Classifiers

The model base classifiers, in an abstract form, may be considered as systems that process

a MUP feature vector and provide both a decision representing the train (class) label that

the MUP belongs to and a numeric value representing the overall confidence in the MUP

assignment. If the overall confidence associated with the classification of a MUP exceeds an

assignment threshold then the MUP assignment to the train will be accepted. Otherwise,

if the confidence is below the assignment threshold, the MUP pattern is left unassigned.

Generally, the assignment rate of the classifier depends on the internal parameters of the

classifier. In the base classifiers, by varying the minimum assignment threshold one obtains

an accuracy as a function of the assignment rate. Low values of the assignment threshold

correspond to classifications that are not highly certain, i.e., with higher assignment rates

and higher error rates. Whereas higher values of the assignment threshold correspond to

classifications which are quite certain with more conservative assignment and hence lower

assignment rates but with lower error rates.

To improve the overall classification performance, we may make decisions, concerning

the assignment of a candidate MUP, based on the opinion of different classifiers, in analogy

with decisions taken for real world problem solutions, where usually decisions made by

teams are better than decisions made by individuals.

4.2.3 Model Input Space

To build a pool of base classifiers, we consider, as stated in Sections 3.1 and 4.2.1, ensembles

composed of different kinds of classifiers and fed with different input features.

The different kinds of base classifiers are stated in Sections 3.1 and 4.2.1. The model

follows the so-called overproduce and choose [36], [76] strategy and the test and select [92]

approach to ensemble combination by allowing the generation of a large set of candidate

classifiers and then the choice, i.e., the candidate classifiers to be combined, is based on

the selection of classifiers used in the combination.
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For each kind of base classifier, there are approaches to get different classifier configu-

rations:

1. Using different seeding data: The model uses three methods to specify the seeding

MUP data: clustering data, sequential assignment data, and high certainty data.

Details for extracting each type of seeding data are described in Section 5.2.6.

2. Changing the order of input vectors presentation to the classifiers. Where we may use

either an ordering based on a MUP’s time of occurrence within the EMG signal or

may use a random order due to the observation that the base classifiers are sensitive

to the sequence of input vectors and yield different knowledge in the form of different

assignments and accuracy for different orderings of the input set.

3. Varying classifier parameter values such as the minimum confidence threshold.

A second possible way of building a set of base classifiers is through using classifiers

with different input features extracted from the raw data. For this purpose, we may build

classifiers that receive raw data, filtered data using low-pass differentiators of first-order

and second-order, and wavelet-domain features based on the discrete wavelet transform of

the MUP waveforms with different types of wavelets and using different scales. Details of

feature extraction are presented in Section 5.2.1.

4.2.4 Aggregation of Multiple Decisions

In order to combine the decisions of multiple classifiers, it is necessary that all classifiers

provide outputs on the same information level. The developed model may combine the

ensembles of classifiers based on two levels: the measurement level and the abstract level.

The measurement level has the most information and the abstract level has the least

information.

To combine the outputs from the multiple disparate classifiers based on the abstract

level, the voting schemes are used, where the target class that receives the highest number
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of votes is selected as the final predicted class.

If the combination is based on the measurement level, methods that do not require

prior training are used such as combination schemes based on the product, sum, max, min,

median, and average rules.

Beside using the previous fixed combination rules we also used trainable combination

methods. A training set can be used to adapt the combining classifier to the classification

problem, where in this case the combination operator also functions as a classifier. The

outputs of the base classifiers can be used as the input features of a general classifier used

for combining. The fuzzy integral method is one of the trainable combiners that has been

studied in this thesis.

4.2.5 Base Classifier Output Data Transformation

For the abstract level of combination, the confidence output generated when classifying

any candidate MUP by any base classifier does not affect the combined decision. Whereas

for the measurement level of combination, the confidence output plays a critical role in

classification and erroneous information coming from any base classifier can be much more

easily compensated for with the correct output of another base classifier.

As stated in Section 4.2.1, the thesis model employs a heterogeneous combination ap-

proach by combining different kinds of classifier ensembles. The model measurement level

combination creates a major problem due to the incomparability of base classifier outputs.

Certainty classifiers and adaptive certainty classifiers provide outputs in terms of total

certainty based on (3.12), fuzzy k-NN and adaptive fuzzy k-NN classifiers provide out-

puts in terms of total assertion based on (3.24), and matched template filter and adaptive

matched template filter provide outputs in terms of total similarity based on (3.31). All

classifiers provide outputs only for the closest and the second closest MUPTs and zero for

the other MUPTs. Therefore, the scales of the outputs from the different base classifiers

are incomparable and need preprocessing before combination.
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To deal with the different meanings and scales of the base classifier outputs, a prepro-

cessing operation in the form of a data transformation becomes essential before combining

the classifier outputs. The preprocessing operation used is based on normalization of the

classifier outputs so that they satisfy the axioms of probability [2]. The following two

transformation functions were studied:

1. Output sum normalization function:

T1 : eik → tik (4.1)

where tik =
eik∑M
i=1 eik

(4.2)

2. Output square sum normalization function:

T2 : eik → tik (4.3)

where tik =
(eik)

2

∑M
i=1(eik)2

(4.4)

where, i = 1, 2, ..., M ; and k = 1, 2, ..., K for M classes and K classifiers.

After this normalization process is applied, all the outputs of the classifiers are transformed

into the normalized values as follows:

M∑
i=1

tik = 1, 0 ≤ tik ≤ 1.0, ∀ i, ∀ k. (4.5)

4.3 Design of Classifier Fusion System

The overall accuracy of the combined classifier depends not only on the way the base clas-

sifiers are fused but also on the selection of the classifiers used in the fusion. Accordingly,

the design of classifier fusion systems involves two main stages:

1. The design of the classifier ensemble,
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2. The design of the aggregation module.

To design the most appropriate classifier fusion system for MUP classification, we follow

the so-called overproduce and choose [36], [76] paradigm (also called the test and select

[92] approach). The basic idea is to produce an initial large set of candidate classifier

ensembles, and then select the ensemble that can be combined to achieve better accuracy.

Figure 4.2 shows the main phases involved in the classifier fusion system design cycle:

the base classifier overproduction phase, the ensemble choice phase, the aggregator design

phase, and the performance evaluation phase. The classifier ensembles or aggregation

module must be redesigned when the output of the performance evaluation phase is not

satisfactory, and in accordance to that, Figure 4.2 shows feedback from later design phases

to the earlier ones.

The overproduction design phase produces a large set of base classifiers and in Section

4.2.3 we stated how we can produce different candidate classifiers.

The ensemble choice phase selects the subsets of classifiers that can be combined to

achieve better accuracy. The subset giving the best accuracy could be obtained by ex-

haustive enumeration. Such that, if K is the size of the base classifier set produced by

the overproduction phase, the number of possible subsets is equal to
∑K

i=1

(
K
i

)
. Therefore,

there is a need for a strategy to limit the computational complexity of the choice phase

and follow techniques that choose an effective classifier ensemble without hypothesizing a

specific combination rule [86]. Accordingly, techniques to evaluate the error diversity of

classifiers that make up an ensemble have been used for classifier selection purposes. For

this purpose, we chose the kappa statistic to select base classifiers having an excellent level

of agreement to form ensembles giving satisfactory classification performance.

In the aggregator design phase, the choice of the combination function should take into

account the dependency among classifiers. In actual practice, a trial and error procedure

is performed, because a clear model of the dependency among classifiers is difficult to

obtain [86]. If all classifiers in an ensemble are totally positively dependent, i.e., they are
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Figure 4.2: Classifier fusion system design cycle.
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identical, there be will no improvement in performance. However, if there are negatively

dependent, i.e., the base classifiers commit mistakes on different MUP patterns, we could

expect improvement in performance. This raises the issue of quantifying the degree of

agreement among dependent classifiers.

Performance evaluation is performed by assessing the classification accuracy of the

selected classifier ensemble using the classifier fusion module designed in the previous

phase.

4.3.1 Independence of Classifiers

When combining identical classifiers, we do not gain any improvement in performance.

Therefore, the key issue in building multiple classifier systems and the system property

responsible for team strength is the diversity among the team of classifiers.

Diversity in combining classifiers refers to the following terms [61], [93]: independence,

orthogonality, and complementarity.

Orthogonality is used to denote the tendency of classifiers to make different decisions.

Since classifiers may have different strengths and weaknesses, combining them is assumed

to have a compensatory or complementary effect.

A classifier combination is especially useful if the individual classifiers are largely inde-

pendent where independence between individual classifiers is typically viewed as an asset

in classifier fusion [59]. This may be guaranteed by the use of classifiers of different kinds,

and based on different training sets. Also, different feature sets may be used to explicitly

force the individual classifiers to use independent information.

In general, classifiers are considered independent if they produce independent errors

but in classifier fusion systems, despite the fact that they may work independently, their

errors are usually strongly dependent since they act on the same data.
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4.4 The Design of the Classifier Ensemble

The improvement in performance of a classifier fusion system relies on properly choosing

the base classifiers to be fused. As stated in Section 4.3, choosing base classifiers can be

performed directly through exhaustive search with the performance of the fusion being

the objective function. As the number of base classifiers increases, this approach becomes

computationally too expensive.

Instead of the exhaustive search method of choosing base classifiers, in this section we

are interested in exploiting the diversity measure for designing classifier teams. Diversity,

as a measure, has been used for selecting ensembles in design of multiple classifier systems

[87]. Shipp and Kuncheva [93] summarize 10 measures of diversity for pairwise and non-

pairwise base classifiers.

To evaluate the diversity, an appropriate measure is needed [58]. In this thesis, we

chose the kappa measure κ to estimate the level of agreement between the base classifier

outputs [31], i.e., to measure the degree of decision similarity between the base classifier

outputs, for the following reasons:

κ depends on the individual accuracies of the classifiers, and has a specific value

0 for statistically independent classifiers. κ varies between -1 and +1. κ close

to 1 indicates that the classifiers agree in the recognition of the same MUP

patterns and κ = -1 means that the assignment by the classifiers are different

for the same MUP patterns.

4.4.1 Assessing Base Classifiers Agreement

First we consider the case of two classifiers such that each MUP pattern of an EMG signal

consisting of N MUPs is classified independently by the two classifiers into M MUPTs. It
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Table 4.1: 2 x 2 Table of dichotomous outcome for two classifiers.

MUPs correctly classified by MUPs correctly classified by the

both classifiers - Ncc first and incorrectly by the second - Ncw

MUPs incorrectly classified by the MUPs incorrectly classified by

first and correctly by the second - Nwc both classifiers - Nww

is desired to measure the degree of agreement on each MUPT separately as well as across

all MUPTs.

Initially, we will focus on assessing agreement on correct classification and agreement

on error rather than agreement in general. In order to do so we match the results from

individual classifiers for a given EMG signal in a dichotomous outcome based on the correct

or erroneous outcome of the classification by two classifiers. This results in a 2 x 2 table

shown in Table 4.1, where c refers to correct and w refers to wrong.

Let ei and ej be the two base classifiers, and consider that when ei and ej propose the

true MUPT for a candidate MUP, they agree. If they both propose incorrect MUPTs, they

also agree. In all the other situations, they disagree. Putting the entries of Table 4.1 in

proportions of the total number of MUPs N , we get the diversity matrix representing the

percentage of agreement and disagreement between the two classifiers ei and ej shown in

Table 4.2.

The pairwise agreement between classifiers ei and ej can be obtained by the kappa

statistic given by [31]:

κ =
2(ad− bc)

p1q2 + p2q1

(4.6)

The kappa statistic was first proposed by Cohen [16] and it has the same interpretation as

the intraclass correlation coefficient [31]. κ expresses a special type of relationship between

classifiers and it quantifies the level to which the classifiers agree in their decisions beyond
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Table 4.2: Diversity matrix DMij of ei and ej classifiers.

ej correct ej wrong Total

ei correct a b p1 = a + b

ei wrong c d q1 = c + d

Total p2 = a + c q2 = b + d a + b + c + d = 1

a, b, c, d are proportions, such that a = Ncc

N
, b = Ncw

N
, c = Nwc

N
, d = Nww

N
,

and pi, qi are marginal probabilities.

any agreement that could occur due to chance.

The kappa statistic corrects for chance expected agreement meaning that it should

reflect the amount of agreement in excess of what would be expected by chance. It not

only gives a measure of the degree of agreement, but it also has a test associated with it

that can be employed to check if the apparent agreement cannot be attributed to chance

only. It is also helpful that the kappa statistic can show the level of agreement. A value

of 0.40 is considered to represent poor agreement beyond chance, values between 0.40 and

0.75 indicate fair agreement, and values beyond 0.75 indicate excellent agreement [31].

Agreement can also be assessed on a per MUPT basis for two base classifiers. If M

MUPTs are available, then we will have an (M +1) x (M +1) diversity matrix noting that

M + 1 represents the unassigned category. However, this matrix indicates how a pair of

classifiers classify in relation to one another and not the reference data. In this case what

is taken into account is not whether the classification is correct or not, but only if the base

classifiers agree or not in their classification of a particular MUP. Then the kappa statistic

will be computed using the kappa hat statistic formula for multiple outcomes given by
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(4.7) [6]:

κ̂ =
N

∑M+1
i=1 dii −

∑M+1
i=1 di+ . d+i

N2 −∑M+1
i=1 di+ . d+i

(4.7)

where dii is the number of MUPs in row i and column i of the diversity matrix, di+ and

d+i are the marginal totals for row i and column i, respectively, and N is the total number

of MUPs.

The above analysis can be extended to the case of more than two classifiers. For an

ensemble of K base classifiers ek, k = 1, 2, ..., K, known to be dependent on each other as

they work on the same data, used to classify a set of N MUP patterns into M MUPTs

and the unassigned category ωi ∈ Ω = {ω1, ω2, ..., ωM , ωM+1}, we want to estimate the

strength of the association among them through measuring the degree of agreement among

dependent classifiers. For j = 1, 2, ..., N ; i = 1, 2, ..., M + 1 denote by dji the number of

classifiers which assign candidate MUP mj to class ωi, i.e.,

dji =
K∑

k=1

T (ek(mj) = ωi) (4.8)

where T (e = σ) is a binary characteristic function and it equals 1 if e = σ and 0 otherwise.

Note that
∑M+1

i=1 dji = K for each MUP mj. Table 4.3 shows the per MUP pattern diversity

matrix through dji.

Based on the per MUP pattern diversity matrix of K classifiers, the degree of agreement

among dependent classifiers ek(x), k = 1, 2, ..., K is measured using the following kappa hat

statistic formula for multiple outcomes and multiple classifiers [31]:

ˆ̄κ = 1− NK2 −∑N
j=1

∑M+1
i=1 d2

ji

KN(K − 1)
∑M+1

i=1 p̄i q̄i

(4.9)

where pi =
PN

j=1 dji

NK
represents the overall proportions of outputs of classifiers in MUPT ωj,

and qi = 1 − pi. The value of the kappa hat statistic κ̂i for MUPT ωi, i = 1, 2, ..., M and

the unassigned category ωM+1 may be measured using the formula [31]:

κ̂i = 1−
∑N

j=1 dji(K − dji)

KN(K − 1)p̄iq̄i

(4.10)
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Table 4.3: Per MUP pattern diversity matrix of K classifiers.

MUP Pattern MUPT ω1 MUPT ω2 ... MUPT ωM MUPT ωM+1

∑M+1
i=1 d2

ji

m1 d11 d12 ... d1M d1(M+1)

∑M+1
i=1 d2

1i

m2 d21 d22 ... d2M d2(M+1)

∑M+1
i=1 d2

2i

. . . ... . . .

. . . ... . . .

. . . ... . . .

mN dN1 dN2 ... dNM dN(M+1)

∑M+1
i=1 d2

Ni

Total
∑N

j=1 dj1

∑N
j=1 dj2 ...

∑N
j=1 djM

∑N
j=1 dj(M+1)

∑N
j=1

∑M+1
i=1 d2

ji

In this thesis, we proposed a diversity-based hybrid classifier approach consisting of an

aggregator module that contains two combiners and with each combiner there is a pre-

stage classifier selection module responsible for selecting the base classifiers comprising the

ensemble. The selection of base classifiers to be combined by the first combiner is based on

(4.9) where the set of base classifiers having the maximum level of agreement are chosen.

Whereas, the selection of base classifiers to be combined by the second combiner is based on

(4.10) where the set of base classifiers having the minimum level of agreement considering

only the unassigned category are chosen, i.e., when i = M + 1.

4.5 The Design of the Aggregation Module

As stated in Section 1.4.3, our focus in this thesis is on classifier fusion and based on that

a parallel configuration as shown in Figure 1.3 and Figure 4.1 is used. Our interest in this

section is the design of the aggregation module shown in the configuration.
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The aggregator in a classifier fusion system combines the base classifier outputs to

achieve a group consensus. Aggregators may be data independent [50], where they don’t

show any dependence on the data and they solely rely on the output of base classifiers to

produce a final classification decision irrespective of the pattern being classified. Based

on (2.6) and for a set of decision confidences {Cfik(x), i = 1, 2, ..., M ; k = 1, 2, ..., K} for

M classes and K classifiers, the data independent combining scheme outcome for class ωi

takes the form:

Qi(x) = Fk(Cfik(x)) (4.11)

where {Qi(x), i = 1, 2, ...,M} are the combined classifier decision confidences using the

mapping Fk of the combining approach.

Aggregators may be data dependent [50] with implicit or explicit dependency on data.

Implicit data dependent combining schemes take the form:

Qi(x) = Fk(Wik(eik(x)), Cfik(x)) (4.12)

where the weights, Wik, assigned to any output depend on the outcome ek(x) of the base

classifier. Whereas explicit data dependent combining schemes take the form:

Qi(x) = Fk(Wik(x), Cfik(x)) (4.13)

where the weights, Wik, depend on the input pattern x.

The thesis developed system combines heterogeneous sets of base classifier ensembles of

different kinds and employs either a one level classifier fusion scheme or a hybrid classifier

fusion approach. The hybrid aggregation module is a hybrid combination of two classifier

fusion schemes: the first is based on the abstract level and the second is based on the

measurement level. Both combiners may be either data independent or the first combiner

data independent and the second data dependent. For the purpose of this thesis, we used

as first combiner the majority voting scheme, while we used as the second combiner one

of the fixed combination rules behaving as data independent combiner or used the fuzzy

integral with the λ-fuzzy measure as an implicit data dependent combiner.
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4.5.1 Majority Voting Classifier Fusion Scheme

To combine the outputs from the multiple disparate base classifiers based on the abstract

level, the majority voting scheme was used. For majority voting, the mapping function Fk

in (4.11) would be a nonlinear mapping [50].

According to the majority voting generalized expression given in (2.4), the fraction of

the agreed classifiers α varies with each MUP. The target MUPT that receives the highest

number of votes was selected as the final predicted train provided that over half of the

classifiers agreed on that MUPT.

4.5.2 Fixed Combination Rules

The fixed combination rules [1], [23], [55] are data independent aggregators and do not re-

quire prior training and are used for combining the set of decision confidences {Cfik(x), i =

1, 2, ..., M ; k = 1, 2, ..., K}, interpreted by (2.6), for M classes and K base classifiers

{ek(x), k = 1, 2, ..., K} into a combined classifier decision confidences {Qi(x), i = 1, 2, ..., M}.
They are the product, the sum, the max, the min, the median, and the average rules. The

combined decision confidence Qi(x) for class ωi is computed by:

Qi(x) = rulek {Cfik(x)} (4.14)

where rule in (4.14) represents one of the fixed combination rules. Normalization may be

required and formula (4.14) becomes:

Q̀i(x) =
Qi(x)∑
i Qi(x)

(4.15)

The final classification is made by:

ω(x) = arg
M

max
i=1

(Q̀i(x)) (4.16)
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Figure 4.3: Combination of base classifiers using a fuzzy integral.

4.5.3 Fuzzy Integral Classifier Fusion Scheme

Based on the measurement level of classifier fusion, and instead of using fixed combination

rules, one can train an arbitrary classifier using the M x K decision confidences Cfik(x)

(for all i and all k) as features in the intermediate space [23], [24].

The fuzzy integral [104], [105] is a nonlinear functional defined with respect to a fuzzy

measure, a generalization of a probability measure, specifically a gλ-fuzzy measure. It was

used as a numeric-based aggregation connective approach for combining multiple classifiers

[11], [12], [13] to reach a collective decision as illustrated in Figure 4.3. In this thesis, we

implemented two fuzzy integral methods: the Sugeno [105] fuzzy integral and the Choquet

[34] fuzzy integral.
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Fuzzy integral methods utilize information concerning the worth or confidence in subsets

of information sources in the decision making process [52] represented by a fuzzy measure.

In the classifier fusion process, fuzzy integrals combine objective evidence, supplied by the

base classifiers in the form of confidence measures, for a hypothesis with a prior expectation

of the worth (fuzzy density values) of subsets of these classifiers.

Let Ω = {ω1, ω2, ..., ωM} be the set of MUPTs into which MUP patterns will be clas-

sified. Let E = {e1, e2, ..., eK} be the set of base classifiers, and x be the MUP pattern

under consideration for classification. Let H(ek) : E → [0, 1] be the confidence set of base

classifiers ek containing the partial evaluation of the MUP pattern x for classes set Ω, i.e.,

H(ek) = {h1(ek), h2(ek), ..., hM(ek)}, such that hi(ek) is an indication of the confidence

in MUP pattern x classification to class ωi using classifier ek, where 1 indicates absolute

certainty that MUP pattern x belongs to class ωi and 0 implies absolute certainty that it

does not belong to class ωi.

Corresponding to each base classifier ek, the degree of confidence, gi/k, of how accurate

base classifier ek is in the recognition of class ωi must be given. The degree of confidences

gi/k are called fuzzy densities and can be subjectively assigned by an expert, or determined

via some statistical measurements on a training set. However, these methods require some

sort of prior knowledge about the information sources or require assumptions such as a

Gaussian distribution of the training data. Other approaches have involved exhaustive

or heuristic search methods to find density values and optimization methods to learn the

entire measure [54], [106].

In this thesis, the gi/k densities were estimated from the training data by making

them proportional to the correct classification rates of each class with each base classifier.

Consider the confusion matrix of base classifier ek denoted as C(ek), which contains the

results of correctly classified and misclassified patterns. It was constructed for each base

classifier and expressed in the form:

C(ek) = [ck
ij] (4.17)
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where i = 1, 2, ..., M , j = 1, 2, ..., M + 1, and M is the number of classes. For i = j, ck
ij is

the number of correctly classified patterns in class ωi by classifier ek. Whereas for i 6= j, ck
ij

is the number of patterns in class ωi being misclassified as class ωj by classifier ek. Based

on that, the fuzzy density values were defined as:

gi/k =
ck
ii∑M

j=1 ck
ij

(4.18)

Once the gi/k’s were evaluated, the λ-fuzzy measures, gλ(Ak), where Ak = {e1, e2, ..., ek},
were constructed for each class recursively from:

gλ(A1) = gλ({e1}) = gi/1, for 1 ≤ i ≤ M (4.19)

gλ(Ak) = gi/k + gλ(Ak−1) + λig
i/kgλ(Ak−1), for 1 < k ≤ K and 1 ≤ i ≤ M (4.20)

λi is calculated using formula (4.21):

λi + 1 =
K∏

k=1

(1 + λig
i/k), for 1 ≤ i ≤ M (4.21)

This was calculated by solving the (K − 1) degree polynomial and finding the unique root

greater than -1.

The overall confidence for the class is the fuzzy integral value calculated using the

Sugeno fuzzy integral with respect to the fuzzy measure gλ over E [105]:

S =

∫

A

h(e) ◦ g(.) =
K

max
k=1

[min(h(ek), g(Ak))] (4.22)

or using the Choquet fuzzy integral [34]:

Cg(h) =
K∑

i=k

h(ek) [g(Ak)− g(Ak+1)] taking g(AK+1) = 0. (4.23)

Finally, the class ωi with the largest fuzzy integral value is chosen as the final decision.

4.5.4 Hybrid Classifier Fusion Scheme

We propose here a hybrid type of classifier fusion scheme. It was investigated for MUP clas-

sification and across the EMG signal data sets used it had better classification performance
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than applying any of the abstract or the measurement level fusion schemes individually,

especially in terms of reducing the classification errors.

The hybrid classifier fusion scheme is a two-stage process and consists of two combiners:

the first from the abstract level of classifier fusion represented by the majority voting data

independent aggregator in the first stage and the other from the measurement level of

classifier fusion represented by one of the fixed combination rules or the fuzzy integral in

the second stage. It uses both combiners in a complementary manner. Figure 4.4 shows

the overall basis for the hybrid classifier fusion scheme.

The hybrid fusion scheme works as follows:

1. First stage: The outputs of the ensemble candidate classifiers are presented to the

majority voting combiner. If all the classifiers state a decision that a MUP is left

unassigned, then there is no chance to re-assign that MUP to a valid MUPT and it

stays unassigned. If over half of the classifiers assign a MUP to the same MUPT, then

that MUP is allocated to that MUPT and no further assignment is processed. For

these MUPs, an overall confidence value is calculated for each MUPT by averaging the

confidence values given by the ensemble classifiers who contributed in the decision

of assigning the MUP. In all other situations, i.e., when half or less than half of

the classifiers specify a decision for a MUP to be assigned to the same MUPT, the

measurement level combination scheme is used in the second stage to specify to

which MUPT the MUP should be assigned based on which MUPT has the largest

combined confidence value. From the first stage, a set of incomplete MUPTs are

generated missing those MUPs that need to be assigned to a valid MUPT in the

second stage.

2. Second stage: This stage is used for those MUPs for which only half or less than half

of the ensemble classifiers in the first stage specify a decision for a MUP to be assigned

to the same MUPT. The outputs of the ensemble classifiers are presented to one of

the fixed rule combiners, or one of the trainable combiners represented by Sugeno
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Figure 4.4: Hybrid classifier fusion scheme.
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or Choquet fuzzy integral combiner. For each MUP, overall combined confidence

values representing the degree of membership in each MUPT are determined and

accordingly the MUP is assigned to the MUPT for which its determined overall

combined confidence is the largest and if its above the specified combiner confidence

threshold set for that MUPT. The MUPs whose overall combined confidence are

greater than zero, or the specified combiner confidence threshold, are placed in the

assigned MUPT thus forming a more complete set of MUPTs.

4.5.5 Diversity-Based Hybrid Classifier Fusion Scheme

The hybrid classifier fusion scheme described in Section 4.5.4 uses as a classifier ensemble

a fixed set of classifiers and consequently both combiners act on the outputs of the same

classifiers. The drawback of this scheme is apparent when following the overproduce and

choose [36], [76] paradigm for the choice phase in the classifier fusion system design cycle,

where there is a need to perform an exhaustive search for the best accuracy classifier

ensemble. For example, if the pool of base classifiers contain 16 classifiers and the intention

is to choose an ensemble of 6 base classifiers for fusion, so there is a need to compare the

performance of
(
16
6

)
= 8008 ensembles. Therefore, to limit the computational complexity

encountered we modified the hybrid classifier fusion scheme so that the candidate classifiers

chosen for fusion by both combiners are based on a diversity measure.

The diversity-based hybrid classifier fusion scheme is a two-stage process and consists

of two combiners with a pre-stage classifier selection module for each combiner. Once the

pool of base classifiers has been constructed, it is not clear which subset of base classifiers

when combined gives the best performance and as stated in Section 4.3 that the improve-

ment in accuracy of classifier fusion system does not depend only on the method used for

combining the base classifiers but also on the selection of classifiers used for combination.

The ensemble candidate classifiers selected for combination are decided through assessing
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the degree of agreement by exploiting a diversity measure for designing classifier teams.

The kappa statistic measure, given in Sections 4.4 and 4.4.1, was used as the diversity

measure to estimate the level of agreement between the base classifier outputs, i.e., to

measure the degree of decision similarity between the base classifiers.

The MUP data set to be classified may contain MUPs with different complexities.

There may be single MUPs each belonging to one MU, partially superimposed MUPs each

representing the overlap of more than one MUP without their peaks being obscured, com-

pletely superimposed MUPs representing the overlap of more than one MUP and in which

the peaks of the MUPs combine to make one large peak, and destructively superimposed

MUPs representing the overlap of more than one MUP and in which the MUPs are super-

imposed in such a way that their out-of-phase peaks are summed together and cancel each

other [25].

Based on the above MUP data set, the stage of designing the classifier ensemble men-

tioned in Sections 4.3, 4.4 for the diversity-based hybrid classifier fusion system is involved

with the pre-stage classifier selection module for each combiner, such that the first com-

biner deals with combining the outputs of the classifier ensemble having the excellent level

of agreement throughout all the MUPTs and the unassigned category using (4.9). This

means that we want the first combiner to assign a large number of single MUPs correctly

based on the highest level of consensus among the members of the ensemble and leave the

classification of the more complex MUPs to a different classifier ensemble whose outputs

to be combined by the second combiner. At the second combiner, the team’s classifiers

selection is based on assessing the classifier agreement considering only the unassigned

category using (4.10) and choosing the ensemble having the least level of agreement. This

is due to the fact that most classifiers face difficulties when classifying the more complex

MUPs and don’t assign them to any valid MUPTs and also due to the lack of consensus

among the member of the ensemble.

The stage of designing the aggregation module mentioned in Sections 4.3, 4.5 for the
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diversity-based hybrid classifier fusion system is involved with the choice of the combin-

ers themselves. We chose the first combiner at the abstract level of classifier fusion and

represented by the majority voting data independent aggregator. Whereas, we chose the

second combiner at the measurement level of classifier fusion represented by the either one

of the fixed combination rules or the fuzzy integral. Figure 4.5 shows the overall basis for

the diversity-based hybrid classifier fusion scheme.

The diversity-based hybrid fusion scheme works as follows:

1. First stage: The ensemble candidate classifiers selected for combination by the first

combiner are those having the maximum degree of agreement, i.e., having the maxi-

mum value of kappa statistics ˆ̄κ evaluated using (4.9). The outputs of the ensemble

candidate classifiers are presented to the majority voting combiner. If all the clas-

sifiers state a decision that a MUP is left unassigned, then there is no chance to

re-assign that MUP to a valid MUPT and it stays unassigned. If over half of the

classifiers assign a MUP to the same MUPT, then that MUP is allocated to that

MUPT and no further assignment is processed. For these MUPs an overall confi-

dence value is calculated by averaging the confidence values given by the ensemble

classifiers who contributed in the decision of assigning the MUP. In all other situa-

tions, i.e., when half or less than half of the classifiers specify a decision for a MUP to

be assigned to the same MUPT, the measurement level combination scheme is used

in the second stage to specify to which MUPT the MUP should be assigned based on

which MUPT has the largest combined confidence value. From the first stage, a set

of incomplete MUPTs are generated missing those MUPs that need to be assigned

to a valid MUPT in the second stage.

2. Second stage: This stage is used for those MUPs for which only half or less than half

of the ensemble classifiers in the first stage specify a decision for a MUP to be assigned

to the same MUPT. The ensemble candidate classifiers selected for combination at

the second combiner are those having a minimum degree of agreement considering
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Figure 4.5: Diversity-based hybrid classifier fusion scheme.
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only the unassigned category, i.e., having the minimum value of kappa statistics

κ̂i evaluated using (4.10) for i = M + 1. The outputs of the ensemble classifiers

are presented to one of the fixed rule combiners or one of the trainable combiners

represented by Sugeno or Choquet fuzzy integral combiner. For each MUP, overall

combined confidence values representing the degree of membership in each MUPT

are determined and accordingly the MUP is assigned to the MUPT for which its

determined overall combined confidence is the largest and if its above the specified

combiner confidence threshold set for that MUPT. The MUPs whose overall combined

confidence are greater than zero, or the specified combiner confidence threshold, are

placed in the assigned MUPT thus forming a more complete set of MUPTs.

4.5.6 The Adaptive Classifier Fusion Approach

To reduce the number of erroneous assignments in the generated MUPT by the one level

classifier fusion scheme, the hybrid, and the diversity-based hybrid classifier fusion ap-

proach, we adopt the same adaptive setting of train assignment threshold used for base

classifiers and described in Sections 3.3.1 and 3.3.2.

As stated in Section 3.3.2, the adaptive nature of MUP classification is related to the

adjustment of the minimal assignment threshold for each MUPT based on firing pattern

statistics. In the classifier fusion approach we start with a very low assignment threshold

and test all MUPTs against firing pattern constraints. The assignment threshold of a

MUPT might be increased to exclude MUPs causing firing pattern inconsistencies. The

occurrence of a significant number of MUP classification errors is detected by the use of

the firing pattern consistency statistics as presented in Section 3.2.1.

MUP classification using the classifier fusion approach is based on the outputs of the

base classifiers and it does not take into consideration MU firing patterns. Therefore,

following the generation of MUPTs by the classifier fusion system, the MUPTs should be
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tested for any firing pattern inconsistencies and if, based on firing pattern statistics given in

Section 3.2.1, it is expected that a train has too many erroneous assignments, its minimal

assignment threshold is increased or otherwise it is kept constant. This firing pattern

analysis allows the algorithm to modify the assignment of a MUP for each train individually

based on an expectation of the number of erroneous assignments. Trains to which MUPs

can be confidently assigned will have a lower minimal assignment threshold and have

a higher MUP identification (ID) rate. Alternatively, trains to which MUPs cannot be

confidently assigned, possibly because of shape similarity with the MUPs of another train

or MUPT shape and firing pattern variability, will have a higher minimal assignment

threshold and have a lower MUP identification rate. In both cases, the number of errors

expected will be approximately constant. Therefore, over all the trains, a maximum number

of MUPs should be assigned while maintaining an acceptable MUP assignment error rate.

The adjustment of the minimal assignment threshold of each MUPT based on the pattern

of MUP occurrences in the train represents a passive use of firing pattern information.

Specific class assignments are not actively determined by the firing pattern information.

Rather, the firing pattern information is used to allow or deny MUP assignments in general.

Unlike the adaptive supervised classification task employed by base classifiers, during

classifier fusion the adaptive MUP classification consists of only one stage and it is based

on the passive use of firing pattern information to remove possible erroneous classifications.

Figure 4.6 shows the steps involved in this process. Each candidate MUP j is assigned

to the train that has the highest confidence of belonging to it expressed in terms of the

maximum assignment value and if it is higher than the minimum assignment threshold of

that train.

Once the set of MUPTs are created by the classifier fusion system, the firing pattern

consistency statistics for each MUPT with Nsufficient or more IDIs are calculated. A small

percent of those MUPs causing IDI inconsistencies are allowed. The firing pattern con-

sistency statistics of each MUPT with Nsufficient or more IDIs are then re-calculated and
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checked against the following constraints:

Percentage number of IDI inconsistencies ≤ 2.5%.

Absolute value of CVl ≤ 0.35, representing an upper bound of physiological expectation.

Ratio of CVl to CV ≤ 1.25, empirically determined value.

Lower IDI ratio ≤ 0.175, empirically determined value.

If a MUPT meets all the above constraints, it keeps its MUPs and its minimum assign-

ment threshold is unchanged. Otherwise, the minimum assignment threshold for the train

is increased by ∆increase and its MUPs confidence values are checked against the new value.

Those MUPs causing IDI inconsistencies in the firing pattern of a train and MUPs with

confidence values less than the minimum assignment threshold are designated unassigned

and removed from the train. This process is repeated until all the imposed firing pattern

constraints for all generated MUPTs are satisfied. A MUPT’s minimum assignment thresh-

old is not increased above an extreme value or if it has fewer than a minimum number

of MUPs Nsufficient. In all the experiments concerning the evaluation of classifier fusion

systems, the required number of MUPs in a MUPT to make assignment threshold changes,

Nsufficient, is taken to be 50 in order to enable the EFE algorithm estimates the MUPT

mean and standard deviation with reasonable error.
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Figure 4.6: Flowchart of adaptive classification using a classifier fusion scheme.



Chapter 5

Results and Comparative Study

5.1 Introduction

The effectiveness of a classifier fusion system as applied to the EMG signal decomposition

process is demonstrated through a series of simulations and applications to real EMG

signals.

The classification task completed by the base classifiers uses different domain feature

sets: MUP time-domain and wavelet-domain features. The performance of each individual

classifier and classifier fusion system was evaluated in terms of the numbers of assigned

and rejected MUP waveforms and the number of correctly and erroneously classified MUP

waveforms and from which a set of related performance indices was determined. Also a

confusion matrix for each classifier was computed.

The information provided by the individual classifier confusion matrix could be regarded

as a priori knowledge for managing the uncertainty in classifying a MUP. From which we

could collect output information in the form of a posteriori probabilities necessary to

combine classifier decisions at the measurement level.

This chapter describes the evaluation process for the base classifiers and the classifier

fusion system and presents the methods employed for the evaluation. The EMG signal

91



CHAPTER 5. RESULTS AND COMPARATIVE STUDY 92

data sets used, the feature extraction and base classifier seeding methods, and the classifier

performance indices are described. Also provided are results across the sets of simulated

and real EMG signals in terms of the performance indices of the individual different types of

base classifiers; and the multiple classifier fusion system with different fusion schemes and

approaches. Finally a summary of experimental results and a comparative study discussion

is provided.

5.2 Classifier Evaluation

The testing process and evaluation of performance of the base classifiers and the classi-

fier fusion system requires a reference decomposition result. For this purpose, different

approaches can be followed [29], [30], [66]. Two of these approaches are:

1. Using simulated EMG signals with specific properties as a reference,

2. Using real EMG signals decomposed manually by a human expert as a reference.

For testing and evaluating the classifiers, we followed the two approaches mentioned above.

We used simulated EMG signals generated from an EMG signal simulator based on

a physiologically and morphologically accurate muscle model [42]. We also used a set of

real EMG signals of different complexities that were detected during slight to moderate

levels of contraction. The methods employed for the evaluation process are described in

the following sections.

5.2.1 MUP Detection and Representation

The first task in EMG signal decomposition is the segmentation and MUP detection task.

It is concerned with locating the main positive peaks or spikes found in an EMG signal. The

detected spikes or MUPs should have rapid rising edges, which indicates that the electrode

is close to active muscle fibres. Motor units that were active during signal acquisition
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generate these MUPs. Conversely, MUPs that have slow rising edges and small amplitude

were generated from motor units that have fibres far away from the electrode.

The EMG signal is divided into segments of possible MUP waveforms and searching for

time intervals containing these MUPs comprises the MUP detection operation. A segment

can either contain one MUP or superimposed MUPs (compound segments). Time intervals

with low energy are without MUPs and represent the signal baseline. The detected spikes

within windows of sampled raw data or its first and second-order discrete derivatives form

the MUP waveforms. A window of 80 sample points, representing MUP intervals of 2.56 ms

at a sampling rate of 31.25 kHz, formed a MUP pattern feature vector. The collection of

feature vectors form the feature space data set necessary for subsequent pattern recognition

operations.

The other feature space data sets studied were comprised from the wavelet-domain

coefficients and extracted by applying the discrete-time wavelet transform (DTWT) to

MUP raw data or its first-order and second-order discrete derivatives. The use of wavelets

for feature extraction gives the possibility of looking at several different representations

of the MUP pattern data by using different types of wavelet filters and different wavelet

decomposition scale levels.

From the time-domain and wavelet-domain extracted features we applied a soft thresh-

olding de-noising procedure to get a de-noised set of features and fed them to the classifiers

for comparison purposes.

5.2.2 Discrete Derivative Features

Discrete derivative features deal with the phase space of the data [35]. For each EMG signal

investigated, we extracted from the MUP raw data feature space the first-order discrete

derivative features by applying a low-pass differentiation filter to accentuate the MUP’s

rapidly rising edges (high frequency components) and shorten the duration of MUPs, which

reduces their temporal overlap and therefore reduces the number of superimposed wave-
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forms. This filtering also suppresses low frequency background noise. The effect is to

transform the MUPs into narrow spikes that stand out clearly from a flat baseline.

Denoting the discrete samples of the raw data as x[i] and the first-order discrete deriva-

tive data as y(1)[i], then to perform first-order differentiation we used the filter given by

(5.1) and (5.2) [68], [107]:

y(1)[i] = (1
2
)
∑W

k=1 Ck (x[i + k]− x[i− k])

with
∑W

k=1 k. Ck = 1
(5.1)

where, W is the window width for adjusting the cut-off frequency. Taking the window

width W = 3, the optimum coefficients Ck are C1 = C2 = 0, C3 = 1
3
. For these values,

(5.1) becomes:

y(1)[i] = (
1

2
)(

1

3
) (x[i + 3]− x[i− 3]) (5.2)

Denoting the second-order discrete derivative data as y(2)[i], then to perform second-

order differentiation we used the filter given by (5.3) and (5.4) [68], [107]:

y(2)[i] = (1
2
)
∑W

k=1 Ck (x[i + k] + x[i− k])

with
∑W

k=1 k2. Ck = 2
(5.3)

Taking the window width W = 3 and optimum coefficients Ck, (5.3) becomes:

y(2)[i] = (
1

2
)(

1

3
) (x[i− 3]− x[i]− x[i + 3] + x[i + 6]) (5.4)

5.2.3 Wavelet Transform Coefficient Features

The wavelet transform (WT) provides a linear two-dimensional time-frequency representa-

tion by decomposing a signal into different frequency components, and then represents each

component with a resolution matched to its scale [18]. As the EMG signals to be decom-

posed are in discrete-time form, we only investigated the discrete-time wavelet transform

(DTWT) with orthogonal wavelet bases.
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Figure 5.1: Wavelet decomposition algorithm of the fast wavelet transform.

With the goal of extracting meaningful features combined with the intrinsic nonsta-

tionary time behavior nature of EMG signals, time-frequency representations are highly

desirable because they have the ability to localize the changes in the statistics of nonstation-

ary EMG signals. The time-frequency analysis of a signal is processed by decomposing the

signal on dilated and translated versions of a mother wavelet function. The time-frequency

window depends on the dilation factor of the wavelet; it is long at low frequencies and

short at high frequencies.

The wavelet-domain features are extracted by taking the DTWT of the EMG signal

MUP patterns. The DTWT is computed using the wavelet decomposition algorithm of the

fast wavelet transform (FWT) through multiresolution analysis and is implemented using

a filter bank structure consisting of only the analysis bank. At each level of the transform,

two filters are used for processing the data through a low-pass and high-pass filter. The

low-pass filtered data are known as the approximation wavelet coefficients. The high-

pass filtered data are known as the detail wavelet coefficients. The approximation wavelet

coefficients can be sent again as input data to compute the next level approximation and

detail wavelet coefficients; thus we can decompose the signal into its different frequency

components at different scale levels.

The orthogonal wavelet coefficients of MUP samples were computed from the decompo-

sition relation depicted in Figure 5.1. The approximation sm,n and detail dm,n coefficients

were calculated with a cascade of discrete convolutions and subsamplings.
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The discrete-time MUP samples, x[i], with i = 0, 1, ..., N − 1 and N being the MUP

sample size were input directly as the approximation coefficients at scale m0, i.e., s0,n = x[n]

where at scale m = 0, both the coefficient location index n and the MUP waveform

discretization index i have the same range (0 to N−1) and were equal to each other. Then

the multiresolution analysis began by computing the approximation and detail coefficients

at all scales larger than m0 using the following formulas:

sm+1,n =
1√
2

∑

k

gk. sm,2n+k =
1√
2

∑

k

gk−2n. sm,k (5.5)

dm+1,n =
1√
2

∑

k

hk. sm,2n+k =
1√
2

∑

k

hk−2n. sm,k (5.6)

Hence, using (5.5) and (5.6), we generated the approximation and detail coefficients at

a specific scale from the approximation coefficients at the previous scale. The vector

containing the sequences ( 1√
2
)gk is the low-pass filter and ( 1√

2
)hk is the high-pass filter.

Corresponding to each type of wavelet, there is a corresponding sequence for the low-pass

and high-pass filters.

With a discrete-time MUP pattern of sample size N and sequence length of each of the

low-pass and high-pass filters being 2K, the detail d1 and approximation s1 coefficients

sequence length was:

floor(
N − 1

2
+ K) (5.7)

where floor(N−1
2

) rounds N−1
2

to the nearest integer.

The wavelet-domain full MUP pattern feature vector after the full wavelet decom-

position with M scale levels was the concatenation of the detail coefficients at all scale

levels and the approximation coefficients at the last scale level and had the form V (M) =

(sM , dM , dM−1, ..., d2, d1). The wavelet-domain MUP feature vector used for classification

purposes was a subset of the full feature vector containing only the detail coefficients at the

high scale levels. For M = 6 scale levels, we noticed that taking only the detail coefficients

at levels 4, 5, and 6 gave better classification performance.
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5.2.4 Wavelet De-noising Features

We applied an optimal de-noising procedure called soft-thresholding [21] using discrete

wavelet analysis to reduce the interference of white noise. It performed thresholding in the

wavelet domain, and it involved keeping only the portion of the details that exceeded a

certain limit while almost entirely suppressing the noise and then reconstructing the signal

by computing the inverse discrete wavelet transform.

Using wavelets to remove noise from a signal requires identifying which component

or components contain the noise, and then reconstructing the signal without those com-

ponents. When decomposing the MUP waveform using wavelet analysis, we noted that

successive approximations became less and less noisy as more and more high-frequency

information was filtered out of the signal. Therefore we decomposed the signal to a level

at which the approximation signal was somehow clean as compared to the original sig-

nal. In discarding all the high-frequency information, we lost many of the original signal’s

sharpest features. But with soft-thresholding de-noising, the reconstructions had two prop-

erties [20]: the noise was almost entirely suppressed, and significant features sharp in the

original signal remained sharp after reconstruction.

5.2.5 MUP Alignment

The simulated EMG signal data sets used in this thesis for evaluating the base classifiers

contain signals with different MUP shape and/or IDI variability. In order to reduce the

effect of these variabilities and to accurately compare MUPs for the classification task, the

MUPs were first aligned.

We chose the maximum-correlation alignment algorithm [68], [69] for alignment pur-

poses to extract the integer offset that was applied in discrete time to the candidate MUPs

for alignment. For each train a typical MUP was taken to be the mean of all the MUPs

belonging to it.
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5.2.6 Seeding the Classifiers

The supervised classification task of base classifiers relies on a labelled reference set that

contains correctly classified MUPs. The reference set of MUPs are those MUPs used to seed

base classifiers. The developed system uses the following methods to specify the seeding

MUP data:

1. Clustering Data: The clustering operation in the EMG signal decomposition provides

the supervised classification stage with initial knowledge about the number of active

motor units (clusters) and the MUPs assigned to each determined motor unit. The

clustering operation is performed on a portion of the EMG signal that has the highest

activity, i.e., with maximum intensity of MUPs. Clustering operations are based on

the MUP shape information and should take into consideration the firing pattern

information. The shape and temporal based clustering (STBC) algorithm [81], [100]

takes the constraint of incorporating the firing pattern information during clustering

and is used for providing the base classifiers with the labelled reference set.

2. Sequential Assignment Data: A reference set of correctly classified MUPs is chosen

from simulator generated information or manually decomposed real data. For each

MUPT, beginning from its head, we choose as the reference set a number of isolated

MUPs that are apart by more than 3 ms to avoid choosing superimposed MUPs.

3. High Certainty Data: This is data that are generated by a seeding classifier, which

is responsible for accurately calculating MUPT templates. The seeding classifier is a

single-pass Certainty classifier that selects from the set of detected MUPs: a number

of MUPs from each train for accurately calculating the train templates. The single-

pass classifier itself was seeded by a set of MUPs satisfying Forgy’s criterion [48].

This is equivalent to selecting the core class members. Let d(mi, sj) be the distance

from MUP mi to MUPT j centre sj and di be the average distance from MUP mi to
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all M MUPT centres:

di =
1

M

M∑
j=1

d(mi, sj) (5.8)

Each MUPT center is specified to be the mean of all the MUPs belonging to it and

as determined by the simulator or human expert. Then a MUP was added to the

class core if:

|d(mi, sq)− di| ≤ TF |di| (5.9)

where the qth class center sq is the class center closest to MUP mi and TF is a

threshold between zero and one. For larger values of TF , more seeding MUPs are

added to the class core. The threshold TF was set automatically. For each MUPT,

the MUPs that satisfy equation (5.9) were added to the class core using an initial

threshold value of 0.05, which was increased incrementally until the desired number

of MUPs in the class core were selected. The class core MUPs were then used to

calculate the single-pass classifier templates. Once the classification pass ended, a

desired number of MUPs having the highest shape certainty were selected from each

MUPT and those MUPs would be the labelled reference set. The highest shape

certainty decision for assigning a MUP to a MUPT is based on the value for which

the multiplicative combination of the normalized absolute shape certainty CND, given

by (3.4), and the relative shape certainty CRD, given by (3.6), is the highest.

After specifying each train labelled reference set, we made sure that we choose isolated

MUPs that were apart by more than 3 ms to avoid choosing superimposed MUPs.

When using the clustering data or the sequential assignment data for seeding a base

classifier, the classifier was able to track the non-stationarity of the MUPs waveform shape

by updating the labelled reference set once the MUP to be assigned has a shape confidence

higher than an updating confidence threshold.

In case of classifiers based on fuzzy k-NN rule, the MUPs reference set membership

function estimation may be either a crisp labelling or soft labelling using (3.20) or (3.21)
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and based on experimentation with several EMG signals we found that (3.21) gave better

results. The MUPs reference set was used for selecting the nearest neighbours of each

candidate MUP to be classified. The reference set update was performed by replacing the

MUP to be assigned having the high assertion with a MUP having a less assertion in the

same MUPT.

For the certainty-based classifiers or matched-template filter classifiers, the reference

set of MUPs was used to calculate the template of each train. The reference set update

was performed by the following updating rule:

si+1 =
si + Cfc . mc

1 + Cfc

(5.10)

Where s is the moving-average template vector, mc is the classified MUP feature vector

whose confidence Cfc exceeds the updating confidence threshold [75], [99].

5.2.7 Classifier Performance Indices

EMG signal decomposition is performed to obtain information about the individual MUPs

that comprise the signal as well as the individual activation patterns of the MUs that gen-

erate them. As such, a classifier used for EMG signal decomposition must assign as many

detected MUPs as possible while at the same time limiting the number of classification

errors so that accurate MUP templates, or accurate nearest neighbors in the case of the

fuzzy k-NN classifier, and MU activation patterns can be determined. These conflicting

constraints require a classifier to leave MUPs, which cannot be assigned with sufficient

confidence, unassigned.

The classification performance of the base classifiers and the classifier fusion system

were evaluated and compared in terms of their assignment rate, error rate, and correct

classification rate performance indices.

The assignment rate Ar% was defined as the ratio of the total number of assigned

MUPs, which is equal to the total number of MUPs detected minus the number of MUPs
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unassigned, to the total number of MUPs detected:

Ar% =
number of MUPs assigned

total number of MUPs detected
∗ 100 (5.11)

The error rate Er% was defined as the ratio of the number of MUPs erroneously clas-

sified to any valid MUPT to the number of MUPs assigned:

Er% =
number of MUPs erroneously classified

number of MUPs assigned
∗ 100 (5.12)

The correct classification rate CCr% was defined as the ratio of the number of correctly

classified MUPs, which is equal to the number of MUPs assigned minus the number of

MUPs erroneously classified, to the total number of MUPs detected:

CCr% =
number of MUPs correctly classified

total number of MUPs detected
∗ 100 (5.13)

The correct classification rate CCr can be written in terms of the assignment rate Ar and

the error rate Er using the relation CCr = Ar(1− Er).

Classifier performances are compared in terms of the above set of performance indices

such that the classifier with the better performance is the one with the highest correct

classification rate CCr% and lowest error rate Er%. In situations when the highest correct

classification rate CCr% and lowest error rate Er% does not judge the differentiation

between two classifiers, we take the difference between the correct classification rate CCr%

and error rate Er% for each classifier and consider the classifier with the higher difference

as the one with the better performance.

5.2.8 EMG Signal Data Sets Used

The simulator enables us to generate EMG signals of different complexities with knowledge

of the signal intensity represented by the average number of MUP patterns per second (pps),

the numbers of MUPTs, and which motor unit created each MUP pattern. Furthermore,

the amount of MUP shape variability represented by jitter and/or IDI variability can be
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adjusted. Jitter represents the standard deviation of the initiation times of each muscle

fibre potential [42]. In normal subjects, jitter values of about 25 µs are expected. The goal

of these simulations was to produce data to compare the performance of the base classifiers

and the classifier fusion system when fed with time-domain and wavelet-domain first-order

discrete derivative features.

Two sets of simulated EMG signals: independent and related, each of 10 seconds length,

were generated by the simulator. Twenty independent EMG signals with different levels of

intensity, ranging from 30.5 pps to 127.5 pps, and each having unique MUPTs and MUP

distributions, with jitter values ranging from 25 µs to 100 µs, but with equal degree of

IDI variability (CV = 0.15) were created. The characteristics of these signals are listed

in Table 5.1. These data allowed performance related to signal intensity, number of trains

and MUP shape variability to be evaluated.

Three groups of related EMG signals were also created:

1. The first group has 9 signals. Each signal in this group has 9 MUPTs and represents

the contributions from the same 9 MUs. The average signal intensity across these 9

signals was 95 pps, which corresponds to an average MU firing rate of 10.6 pps (or a

mean IDI of 95 ms). However, each EMG signal within the group was generated by

imposing different amounts of biological variability of the MUP shapes from discharge

to discharge within a MUPT using jitter values of 50, 75, and 150 µs, respectively,

and imposing different IDI variability using CV values of 0.1, 0.15, 0.2, 0.3, and 0.45,

respectively, (0.10 to 0.15 is expected for healthy subjects). Therefore, across the 9

signals of the group, the same MUs contribute to the composite EMG signal and each

MU contributes the same MUPs on average, however, the variability of the MUPs in

each train will increase with the jitter value. Likewise, the mean IDI of each train

is the same across the signals of the group but the variability of the IDIs in each

variation increases with the CV value.

2. The second group has 4 signals each has 6 MUPTs. The average signal intensity
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Table 5.1: Characteristics of the independent simulated EMG signals.

EMG signal Intensity (pps) No. of MUPTs Jitter (µs)

1 30.5 3 100

2 35.3 4 50

3 41.8 5 100

4 45.6 4 50

5 54.0 6 50

6 59.4 7 100

7 61.4 6 75

8 68.2 7 50

9 70.7 7 100

10 79.3 8 25

11 82.5 8 100

12 85.2 9 50

13 91.7 7 50

14 97.5 10 100

15 105.2 9 50

16 109.5 9 75

17 116.5 8 75

18 119.4 10 75

19 120.6 11 50

20 127.5 11 50
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across these 4 signals was 62 pps, which corresponds to an average MU firing rate of

10.3 pps (or a mean IDI of 97 ms). Three of the signals in this group were generated

with equally variably MUPs by using a fixed 150 µs jitter value but each had a

different amount of variability in the firing patterns by using IDI CV values of 0.1,

0.15, and 0.3, respectively. A fourth member of this group was created with an IDI

CV value of 0.15 and a 50 µs jitter value.

3. The third group has 3 signals each with 10 MUPTs. The average signal intensity

across these 3 signals was 134 pps, which corresponds to an average MU firing rate

of 13.4 pps (or a mean IDI of 75 ms). The EMG signals in this group were generated

with different biological variability of the MUP shapes by using jitter values of 50,

75, and 150 µs, respectively, and a fixed IDI CV of 0.3.

The characteristics of the groups of related signals are listed in Table 5.2. These three

groups of data allow the performance of the classifiers to be evaluated with respect to

shape and firing pattern variability jointly or independently and to assess performance

consistency across a number of detection sites and signal intensity scenarios.

Five real EMG signals of different complexities, whose characteristics are listed in Table

5.3, were also analyzed for the evaluation process. The real signals were detected during

slight to moderate levels of contraction corresponding to approximately 10 to 25% of max-

imum voluntary contraction (MVC), of the extensor digitorum communis (EDC) muscle

of normal subjects.

The real EMG signals have been decomposed manually by an experienced operator

using a computer-based graphical display algorithm. The manual decomposition results

were assumed to be the reference and were compared with those obtained automatically

by the classifiers.
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Table 5.2: Characteristics of the groups of related simulated EMG signals.

EMG signal Intensity (pps) No. of MUPTs Jitter (µs) CV

1-1 94.4 9 50 0.15

1-2 94.4 9 75 0.15

1-3 94.4 9 150 0.15

1-4 95.5 9 50 0.1

1-5 96.0 9 50 0.2

1-6 95.4 9 50 0.3

1-7 92.9 9 50 0.45

1-8 96.1 9 75 0.3

1-9 94.4 9 150 0.3

2-1 62.4 6 50 0.15

2-2 62.4 6 150 0.1

2-3 61.5 6 150 0.15

2-4 62.7 6 150 0.3

3-1 134.4 10 50 0.3

3-2 135.0 10 75 0.3

3-3 133.6 10 150 0.3

Table 5.3: Characteristics of the real EMG signals.

EMG signal Intensity (pps) No. of MUPTs

1 76.3 6

2 72.3 8

3 96.3 8

4 63.0 6

5 80.4 6
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5.3 Data Analysis Results

This section reports classification performance results of the assigned, rejected, correctly

classified, and erroneously classified MUP waveforms and presents them in terms of the

assignment rate Ar, error rate Er, and correct classification rate CCr defined in Section

5.2.7. The results obtained using the base classifiers and the classifier fusion schemes and

approaches are presented in this section. With respect to the classifier fusion system, we

present, for the purpose of comparison, results of the one level classifier combiner and

the hybrid classifier fusion system. The performance with respect to each signal in the

EMG signal data set given in Section 5.2.8, the mean performance and the mean absolute

deviation (MAD) of the performance are reported.

In each of the EMG signals considered, superimposed waveforms were included in the

set of MUPs to be assigned. Most of these superimposed MUPs were left unassigned

by each of the classifiers. If a superimposed MUP was assigned, it was considered a

correct classification if it was assigned to one of the MUPTs whose MUPs comprised the

superimposed waveform. Otherwise, it was considered a false classification. The EFE

algorithm when estimating the mean IDI and standard deviation successfully excluded

long IDIs caused by missed classifications whether due to superimposed MUPs or other

causes.

5.3.1 Base Classifier Results

Results, in terms of assignment rate Ar, error rate Er, and correct classification rate CCr,

obtained using the ACC, AFNNC and the AMTFC (two variants: the ANCCC and the

ApCC) base classifiers across the two sets of simulated EMG signals are presented in Tables

5.4 and 5.5, 5.7 and 5.8, 5.10 and 5.11, 5.13 and 5.14, respectively. Tables 5.6, 5.9, 5.12,

and 5.15 show the classifiers performance results using the real signals. The performance

with respect to each signal, the mean performance and the mean absolute deviation (MAD)
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of the performance are reported.

The base classifier results presented in this section were obtained for four classifiers

from each kind, i.e., for ACC classifiers e1, e2, e3, e4, for AFNNC classifiers e5, e6, e7, e8,

for ANCCC classifiers e9, e10, e11, e12, and for ApCC classifiers e13, e14, e15, e16. Classifiers

e1, e5, e9, e13 were fed with time-domain first-order discrete derivative features and using

high-certainty MUPs for seeding. Classifiers e2, e6, e10, e14 were fed with time-domain first-

order discrete derivative features and using MUPs with sequential assignment for seeding.

Classifiers e3, e7, e11, e15 were fed with wavelet-domain first-order discrete derivative fea-

tures and using the highest shape certainty MUPs for seeding. Classifiers e4, e8, e12, e16

were fed with wavelet-domain first-order discrete derivative features and using MUPs with

sequential assignment for seeding. Note that, throughout the results presentations, we

follow the previous labeling for base classifier identification.

The seeded data were taken from the reference data supplied by the simulator and the

manually decomposed data. The selected reference set was used to calculate initial train

templates for the ACC, ANCCC, and ApCC, and to establish core membership values for

the AFNNC.

The wavelet-domain features were extracted through multiresolution analysis with Du-

abechies 4 wavelet filters and 6 scale levels and then forming the feature vectors using only

the detail coefficients at levels 4, 5, and 6.

For the adaptive fuzzy k-NN AFNNC classifier, the presented results were produced

using the following settings: number of nearest neighbors k = 5; Keller soft labelling given

by (3.21) and Euclidean distance measure. These settings for the AFNNC were empirically

found to perform better based on experimentation with several EMG signals.
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5.3.2 Sensitivity Analysis

We performed a sensitivity analysis for deciding how many base classifiers to use in an

ensemble.

An exhaustive search for the best performing classifier ensemble was performed and we

concluded that when choosing an ensemble of six base classifiers gives better performing

ensemble as we tried different base classifiers size ensembles.

5.3.3 Fixed Classifier Ensemble Results

An ensemble of six base classifiers e1, e2, e5, e6, e7, e8 was used for carrying on the analysis.

These classifiers were chosen to work as a team as they demonstrate the best classification

accuracy. Two base e1, e2 classifiers were adaptive certainty-based classifiers (ACC) [85]

and four classifiers e5, e6, e7, e8 were adaptive fuzzy k-NN classifiers (AFNNC) [83]. Both

ACC classifiers e1, e2 were fed with time-domain first-order discrete derivative features.

Two of the AFNNC classifiers e5, e6 were fed with time-domain first-order discrete deriva-

tive features, while the other two e7, e8 were fed with wavelet-domain first-order discrete

derivative features. ACC classifier e1 and AFNNC Classifiers e5, e7 were seeded with MUPs

having the highest shape certainty [85]. ACC classifier e2 and AFNNC classifiers e6, e8 were

seeded with a number of isolated MUPs sequentially selected for each MUPT.

The performance with respect to each signal, the mean performance and the mean ab-

solute deviation (MAD) of the performance are reported. Results of the one level classifier

fusion scheme, namely the majority voting, the average fixed combination rule, and the

Sugeno fuzzy integral across the used EMG data set are presented in Tables 5.16, 5.17, and

5.18. Results of the hybrid classifier fusion scheme, i.e., the hybrid combiner consisting

of majority voting and average fixed combination rule and the hybrid combiner consisting

of majority voting and Sugeno fuzzy integral are also presented in Tables 5.16, 5.17, and

5.18, respectively.
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5.3.4 Diversity-Based Classifier Selection Ensemble Results

With the diversity-based hybrid classifier fusion scheme, we performed two experiments.

In the first experiment, we used a base classifier pool containing eight base classifiers

e1, e2, e3, e4, e5, e6, e7, e8 from which we selected six classifiers to work as a team in the

ensemble for every signal at each stage combiners. The number of classifier ensembles that

can be created is
(
8
6

)
= 28 ensembles.

Four base e1, e2, e3, e4 classifiers were adaptive certainty-based classifiers (ACC) [85]

and the other four classifiers e5, e6, e7, e8 were adaptive fuzzy k-NN classifiers (AFNNC)

[83]. Two of the ACC classifiers e1, e2 were fed with time-domain first-order discrete

derivative features, while the other two e3, e4 were fed with wavelet-domain first-order

discrete derivative features. Two of the AFNNC classifiers e5, e6 were fed with time-

domain first-order discrete derivative features, while the other two e7, e8 were fed with

wavelet-domain first-order discrete derivative features. ACC Classifiers e1, e3 and AFNNC

Classifiers e5, e7 were seeded with MUPs having the highest shape certainty [85]. ACC

Classifiers e2, e4 and AFNNC Classifiers e6, e8 were seeded with a number of isolated MUPs

sequentially selected for each MUPTs.

The performance with respect to each signal, the mean performance and the mean

absolute deviation (MAD) of the performance are reported. Results of the diversity-based

hybrid classifier fusion scheme, i.e., the hybrid combiner consisting of majority voting and

average fixed combination rule and the hybrid combiner consisting of majority voting and

Sugeno fuzzy integral with the pre-stage classifier selection module for each combiner are

also presented in Tables 5.19, 5.20, and 5.21.

In the second experiment, we used a base classifier pool containing sixteen base classi-

fiers e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16 from which we selected six clas-

sifiers to work as a team in the ensemble for every signal at each stage combiners. The

number of classifier ensembles that can be created is
(
16
6

)
= 8008 ensembles. The used base

classifiers are the same as the classifiers described in Section 5.3.1.
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The performance with respect to each signal, the mean performance and the mean

absolute deviation (MAD) of the performance are reported. Results of the diversity-based

hybrid classifier fusion scheme, i.e., the hybrid combiner consisting of majority voting and

average fixed combination rule and the hybrid combiner consisting of majority voting and

Sugeno fuzzy integral with the pre-stage classifier selection module for each combiner are

also presented in Tables 5.22, 5.23, and 5.24.

5.3.5 Summary of Data Analysis Results

Table 5.25 and Table 5.26 show the mean performance and the mean absolute deviation

(MAD) of all the base classifiers and the classifier fusion systems, respectively.

The abbreviations employed in Table 5.26 are defined as:

Best base - The base classifier with the best performance,

Weakest base - The base classifier with the weakest performance,

Mean base - The mean performance of the 16 base classifiers,

AMV - Adaptive majority voting,

AAFR - Adaptive average fixed rule,

ASFI - Adaptive Sugeno fuzzy integral,

AMVAFR - Adaptive majority voting with average fixed rule,

AMVSFI - Adaptive majority voting with Sugeno fuzzy integral,

AMVAFRD - Adaptive diversity-based majority voting with average fixed rule,

AMVSFID - Adaptive diversity-based majority voting with Sugeno fuzzy integral,

SC - Single combiner,

HC - Hybrid combiner,

6/8 - Selecting 6 base classifiers from the classifier pool containing 8 classifiers,

6/16 - Selecting 6 base classifiers from the classifier pool containing 16 classifiers.



CHAPTER 5. RESULTS AND COMPARATIVE STUDY 129
T
ab

le
5.

22
:

P
er

fo
rm

an
ce

of
6

ou
t

of
16

d
iv

er
si

ty
-b

as
ed

en
se

m
b
le

cl
as

si
fi
er

fu
si

on
sy

st
em

u
si

n
g

th
e

in
d
ep

en
d
en

t
si

m
u
la

te
d

E
M

G
si

gn
al

s. E
n
se

m
b
le

M
ax

F
ir

st
C

om
b
in

er
E

n
se

m
b
le

A
d
a
p
ti

v
e

M
V

w
it

h
A

d
a
p
ti

v
e

M
V

w
it

h

E
M

G
C

la
ss

ifi
er

K
ap

p
a

M
a
jo

ri
ty

V
ot

in
g

C
la

ss
ifi

er
M

in
A

v
e
ra

g
e

F
ix

e
d

R
u
le

S
u
g
e
n
o

F
u
z
z
y

In
te

g
ra

l

si
gn

al
ID

s
V

al
u
e

A
r
%

E
r
%

C
C

r
%

ID
s

K
ap

p
a

A
r
%

E
r
%

C
C

r
%

A
r
%

E
r
%

C
C

r
%

1
5

6
7

11
15

16
0.

96
97

.6
0.

7
97

.0
4

8
9

10
12

16
-0

.1
8

99
.0

1.
0

98
.0

99
.0

1.
4

97
.6

2
5

6
9

10
11

12
0.

98
97

.4
0.

3
97

.1
1

2
5

7
8

9
0.

02
99

.1
0.

6
98

.5
98

.8
0.

6
98

.3

3
5

6
7

9
10

11
0.

92
96

.8
0.

8
96

.1
1

5
7

9
12

15
-0

.0
2

98
.1

0.
2

97
.8

98
.1

0.
2

97
.8

4
1

2
3

4
13

14
0.

92
87

.9
1.

0
87

.0
4

5
7

10
11

14
0.

32
93

.0
1.

0
92

.2
93

.0
1.

7
91

.5

5
5

7
9

10
11

12
0.

97
99

.0
0.

8
98

.3
1

5
9

10
11

12
-0

.0
8

99
.8

0.
8

99
.0

99
.8

0.
8

99
.0

6
1

2
3

4
15

16
0.

94
92

.6
0.

6
92

.1
4

5
7

8
9

11
-0

.1
4

94
.9

0.
7

94
.2

94
.4

1.
1

93
.3

7
5

6
7

8
9

11
0.

91
95

.3
1.

7
93

.7
1

4
5

7
11

13
-0

.0
8

97
.2

2.
3

94
.9

96
.7

2.
9

93
.9

8
1

2
3

4
13

14
0.

95
92

.0
0.

3
91

.7
1

4
5

7
10

14
-0

.1
1

95
.2

1.
1

94
.1

95
.2

1.
5

93
.8

9
1

5
6

7
9

10
0.

90
95

.2
0.

6
94

.6
1

2
5

7
9

10
0.

01
97

.3
1.

2
96

.1
97

.0
1.

8
95

.2

10
5

6
7

9
10

11
0.

91
94

.5
0.

9
93

.6
5

7
10

11
12

16
0.

02
96

.5
1.

3
95

.3
93

.9
1.

4
92

.6

11
4

5
6

7
8

14
0.

89
90

.6
2.

8
88

.0
1

4
5

6
7

10
-0

.0
8

95
.1

3.
3

92
.0

94
.2

3.
7

90
.7

12
1

2
3

4
5

6
0.

88
89

.6
1.

3
88

.4
1

2
6

7
8

9
-0

.1
3

94
.6

1.
7

93
.0

93
.3

2.
6

91
.0

13
5

7
9

10
11

12
0.

84
90

.0
4.

6
85

.8
1

5
7

10
11

12
-0

.0
3

92
.4

5.
3

87
.5

91
.5

7.
0

85
.1

14
5

6
7

8
9

11
0.

90
94

.4
3.

0
91

.6
2

5
7

8
9

10
-0

.0
7

96
.0

3.
5

92
.6

95
.6

3.
8

92
.0

15
1

2
3

4
13

14
0.

88
80

.2
1.

4
79

.1
1

4
6

9
11

14
-0

.1
1

88
.6

2.
2

86
.6

88
.2

2.
6

85
.9

16
1

2
3

4
5

7
0.

85
86

.2
0.

8
85

.5
1

2
5

7
8

9
-0

.1
3

92
.6

1.
8

90
.9

91
.5

3.
7

88
.1

17
1

2
3

4
13

14
0.

89
82

.5
1.

9
80

.9
1

2
4

5
6

13
-0

.1
3

88
.3

2.
3

86
.3

88
.2

2.
8

85
.8

18
1

2
3

4
6

16
0.

74
69

.8
3.

9
67

.1
2

3
6

11
12

16
-0

.0
8

81
.6

6.
0

76
.7

80
.0

6.
8

74
.5

19
1

2
3

4
15

16
0.

80
71

.6
1.

4
70

.6
1

4
7

9
11

16
-0

.0
8

83
.1

4.
8

79
.1

82
.2

5.
1

78
.0

20
1

2
3

4
13

14
0.

87
80

.4
1.

4
79

.2
2

3
7

9
11

14
-0

.1
2

87
.5

2.
2

85
.5

87
.2

1.
8

85
.6

M
e
a
n

89
.2

1.
5

87
.9

93
.5

2.
2

91
.5

92
.9

2.
7

90
.5

M
A

D
6.

6
0.

9
6.

8
4.

1
1.

2
4.

8
4.

1
1.

4
5.

0



CHAPTER 5. RESULTS AND COMPARATIVE STUDY 130

T
ab

le
5.

23
:

P
er

fo
rm

an
ce

of
6

ou
t
of

16
d
iv

er
si

ty
-b

as
ed

en
se

m
b
le

cl
as

si
fi
er

fu
si

on
sy

st
em

u
si

n
g

th
e

gr
ou

p
s

of
re

la
te

d
si

m
u
la

te
d

E
M

G
si

gn
al

s. E
n
se

m
b
le

M
ax

F
ir

st
C

om
b
in

er
E

n
se

m
b
le

A
d
a
p
ti

v
e

M
V

w
it

h
A

d
a
p
ti

v
e

M
V

w
it

h

E
M

G
C

la
ss

ifi
er

K
ap

p
a

M
a
jo

ri
ty

V
ot

in
g

C
la

ss
ifi

er
M

in
A

v
e
ra

g
e

F
ix

e
d

R
u
le

S
u
g
e
n
o

F
u
z
z
y

In
te

g
ra

l

si
gn

al
ID

s
V

al
u
e

A
r
%

E
r
%

C
C

r
%

ID
s

K
ap

p
a

A
r
%

E
r
%

C
C

r
%

A
r
%

E
r
%

C
C

r
%

1-
1

1
2

3
4

5
7

0.
90

91
.1

1.
0

90
.2

1
4

7
11

12
16

-0
.0

9
94

.5
2.

1
92

.5
93

.0
2.

0
91

.1

1-
2

1
2

3
4

5
7

0.
88

90
.7

1.
3

89
.6

1
4

5
7

9
11

-0
.1

0
93

.5
2.

7
90

.9
93

.2
3.

3
90

.1

1-
3

1
2

3
4

5
7

0.
84

85
.6

1.
6

84
.3

2
3

4
5

7
10

-0
.0

8
91

.7
3.

4
88

.6
91

.4
3.

9
87

.8

1-
4

1
2

3
4

5
7

0.
89

90
.2

1.
3

89
.1

1
2

4
5

6
7

-0
.1

2
93

.4
2.

1
91

.4
92

.8
2.

7
90

.3

1-
5

1
2

3
4

5
7

0.
89

88
.8

2.
6

86
.5

1
2

3
5

7
12

-0
.1

0
92

.6
3.

9
89

.0
91

.9
4.

0
88

.2

1-
6

2
3

4
6

7
8

0.
87

88
.6

2.
8

86
.1

1
2

8
10

11
12

-0
.1

1
95

.4
5.

3
90

.4
95

.3
5.

7
89

.8

1-
7

2
4

6
8

10
16

0.
76

79
.8

2.
4

77
.9

2
4

6
8

10
16

-0
.0

7
88

.4
7.

9
81

.4
87

.9
8.

4
80

.5

1-
8

1
2

4
5

6
8

0.
84

86
.7

4.
2

83
.0

4
6

9
11

12
13

-0
.0

7
94

.3
7.

9
86

.8
94

.9
7.

9
87

.5

1-
9

1
2

3
4

6
8

0.
81

82
.8

6.
3

77
.6

1
4

6
8

9
12

-0
.0

6
91

.1
7.

9
83

.9
92

.0
9.

2
83

.5

2-
1

1
3

5
6

7
8

0.
84

89
.9

2.
3

87
.9

1
2

5
7

11
12

-0
.0

7
94

.0
2.

7
91

.5
94

.0
3.

6
90

.6

2-
2

1
2

3
4

13
14

0.
80

76
.1

2.
7

74
.1

1
2

11
12

13
14

-0
.0

9
85

.4
4.

4
81

.7
85

.4
5.

0
81

.2

2-
3

1
2

3
4

5
7

0.
80

82
.1

1.
9

80
.5

3
4

5
7

9
10

-0
.1

3
90

.2
3.

9
86

.6
88

.8
4.

2
85

.1

2-
4

1
2

3
4

5
7

0.
82

86
.0

2.
3

84
.0

1
3

5
6

7
12

-0
.0

9
93

.9
3.

7
90

.4
93

.9
4.

6
89

.6

3-
1

1
2

3
4

5
7

0.
85

86
.5

3.
6

83
.4

2
5

7
10

11
16

-0
.1

1
92

.8
5.

7
87

.5
92

.4
6.

6
86

.2

3-
2

1
2

3
4

6
8

0.
81

84
.1

4.
7

80
.2

2
3

5
6

7
12

-0
.0

7
94

.0
6.

8
87

.7
93

.1
7.

2
86

.4

3-
3

1
2

3
4

5
7

0.
76

81
.3

5.
1

77
.2

1
2

5
7

11
14

-0
.0

6
93

.3
9.

8
84

.2
93

.2
10

.5
83

.4

M
e
a
n

85
.6

2.
9

83
.2

92
.5

5.
0

87
.8

92
.1

5.
6

87
.0

M
A

D
3.

5
1.

2
4.

0
1.

8
2.

0
2.

8
1.

9
2.

1
2.

8



CHAPTER 5. RESULTS AND COMPARATIVE STUDY 131

T
ab

le
5.

24
:

P
er

fo
rm

an
ce

of
6

ou
t

of
16

d
iv

er
si

ty
-b

as
ed

en
se

m
b
le

cl
as

si
fi
er

fu
si

on
sy

st
em

u
si

n
g

th
e

re
al

E
M

G
si

gn
al

s.

E
n
se

m
b
le

M
ax

F
ir

st
C

om
b
in

er
E

n
se

m
b
le

A
d
a
p
ti

v
e

M
V

w
it

h
A

d
a
p
ti

v
e

M
V

w
it

h

E
M

G
C

la
ss

ifi
er

K
ap

p
a

M
a
jo

ri
ty

V
ot

in
g

C
la

ss
ifi

er
M

in
A

v
e
ra

g
e

F
ix

e
d

R
u
le

S
u
g
e
n
o

F
u
z
z
y

In
te

g
ra

l

si
gn

al
ID

s
V

al
u
e

A
r
%

E
r
%

C
C

r
%

ID
s

K
ap

p
a

A
r
%

E
r
%

C
C

r
%

A
r
%

E
r
%

C
C

r
%

1
2

4
13

14
15

16
0.

88
83

.6
1.

6
82

.3
1

2
4

12
15

16
-0

.0
8

87
.9

3.
3

85
.1

87
.3

2.
9

84
.8

2
2

4
6

8
14

16
0.

69
70

.8
5.

1
67

.2
2

6
7

8
9

16
-0

.0
3

90
.3

8.
4

82
.7

89
.2

9.
6

80
.6

3
1

2
3

4
13

14
0.

88
79

.8
0.

5
79

.3
1

2
4

7
9

13
-0

.1
2

87
.0

1.
6

85
.7

86
.4

2.
0

84
.6

4
2

4
13

14
15

16
0.

91
89

.4
0.

0
89

.4
1

4
9

11
14

16
-0

.1
4

94
.3

0.
8

93
.5

94
.3

0.
7

93
.7

5
2

4
5

7
14

16
0.

79
78

.4
1.

3
77

.4
2

4
5

6
7

11
-0

.0
9

89
.9

3.
3

86
.9

90
.2

4.
3

86
.3

M
e
a
n

80
.4

1.
7

79
.1

89
.9

3.
5

86
.8

89
.5

3.
9

86
.0

M
A

D
4.

9
1.

4
5.

5
1.

9
2.

0
2.

8
2.

2
2.

4
3.

2



CHAPTER 5. RESULTS AND COMPARATIVE STUDY 132

T
ab

le
5.

25
:

S
u
m

m
ar

y
of

ex
p
er

im
en

ta
l
re

su
lt

s
fo

r
b
as

e
cl

as
si

fi
er

s.

B
as

e
In

d
e
p
e
n
d
e
n
t

si
m

u
la

te
d

si
g
n
a
ls

R
e
la

te
d

si
m

u
la

te
d

si
g
n
a
ls

R
e
a
l
si

g
n
a
ls

C
la

ss
ifi

er
A

r
%

E
r
%

C
C

r
%

A
r
%

E
r
%

C
C

r
%

A
r
%

E
r
%

C
C

r
%

e 1
85

.2
(5

.2
)

1.
8

(0
.9

)
83

.7
(5

.8
)

84
.0

(3
.6

)
4.

9
(2

.2
)

79
.9

(4
.7

)
83

.9
(4

.4
)

2.
9

(2
.7

)
81

.4
(3

.6
)

e 2
86

.9
(5

.2
)

1.
6

(0
.9

)
85

.5
(5

.8
)

86
.0

(3
.7

)
5.

1
(2

.3
)

81
.6

(4
.1

)
80

.5
(5

.8
)

4.
7

(5
.8

)
76

.7
(6

.1
)

e 3
86

.6
(4

.6
)

2.
5

(1
.3

)
84

.8
(5

.4
)

86
.2

(3
.8

)
5.

7
(2

.6
)

81
.3

(4
.2

)
82

.6
(2

.2
)

5.
9

(5
.2

)
77

.8
(5

.8
)

e 4
88

.6
(4

.5
)

2.
1

(1
.3

)
86

.6
(5

.3
)

88
.3

(3
.2

)
6.

3
(2

.7
)

82
.7

(4
.2

)
80

.6
(5

.5
)

7.
5

(7
.1

)
74

.6
(8

.5
)

e 5
93

.1
(3

.0
)

4.
1

(2
.4

)
89

.3
(4

.9
)

89
.5

(2
.5

)
8.

4
(2

.5
)

82
.1

(3
.5

)
93

.2
(1

.6
)

6.
4

(2
.6

)
87

.3
(3

.5
)

e 6
96

.6
(1

.9
)

3.
2

(1
.8

)
93

.6
(3

.5
)

91
.4

(4
.0

)
5.

6
(1

.9
)

86
.3

(4
.2

)
91

.2
(5

.9
)

7.
1

(5
.4

)
84

.6
(5

.7
)

e 7
92

.0
(3

.0
)

4.
7

(2
.4

)
87

.8
(4

.8
)

89
.8

(2
.6

)
8.

7
(2

.3
)

82
.0

(2
.8

)
91

.4
(1

.1
)

9.
4

(5
.3

)
82

.9
(5

.7
)

e 8
95

.8
(1

.9
)

3.
6

(2
.0

)
92

.5
(3

.7
)

90
.8

(3
.3

)
6.

2
(1

.8
)

85
.2

(3
.6

)
90

.2
(5

.1
)

8.
8

(6
.8

)
82

.2
(9

.2
)

e 9
93

.4
(3

.9
)

7.
4

(3
.6

)
86

.7
(6

.8
)

88
.4

(4
.4

)
15

.5
(6

.6
)

74
.7

(6
.2

)
90

.2
(3

.4
)

11
.1

(5
.6

)
80

.1
(4

.3
)

e 1
0

94
.2

(3
.8

)
7.

1
(3

.9
)

87
.7

(7
.0

)
86

.2
(5

.5
)

17
.1

(7
.1

)
71

.7
(9

.8
)

88
.1

(6
.3

)
13

.4
(5

.2
)

76
.4

(5
.9

)

e 1
1

92
.4

(3
.6

)
8.

6
(4

.3
)

84
.7

(7
.0

)
88

.7
(4

.3
)

15
.5

(5
.7

)
74

.9
(6

.7
)

92
.1

(2
.6

)
17

.4
(6

.2
)

76
.1

(6
.8

)

e 1
2

93
.7

(3
.5

)
8.

4
(4

.8
)

86
.1

(7
.5

)
86

.5
(5

.6
)

16
.4

(7
.0

)
72

.4
(7

.8
)

90
.4

(3
.0

)
21

.5
(1

0.
4)

71
.0

(1
0.

1)

e 1
3

86
.8

(4
.9

)
4.

8
(2

.6
)

82
.8

(6
.0

)
85

.1
(4

.1
)

12
.2

(4
.7

)
74

.8
(5

.4
)

86
.0

(3
.3

)
7.

9
(6

.1
)

79
.2

(6
.5

)

e 1
4

88
.2

(4
.3

)
5.

6
(3

.6
)

83
.4

(6
.4

)
83

.9
(4

.3
)

13
.3

(5
.7

)
72

.7
(6

.6
)

83
.2

(4
.4

)
9.

5
(8

.1
)

75
.6

(1
0.

8)

e 1
5

90
.2

(3
.8

)
6.

8
(3

.5
)

84
.3

(6
.4

)
86

.5
(4

.0
)

12
.6

(5
.3

)
74

.8
(5

.4
)

85
.4

(3
.6

)
9.

5
(6

.2
)

77
.5

(7
.7

)

e 1
6

91
.4

(3
.2

)
7.

3
(4

.4
)

84
.9

(6
.6

)
85

.4
(3

.2
)

14
.3

(5
.4

)
73

.2
(6

.3
)

83
.1

(7
.1

)
15

.0
(1

2.
6)

71
.6

(1
6.

2)

M
ea

n
91

.0
5.

0
86

.5
87

.2
10

.5
78

.2
87

.2
9.

9
78

.4

M
A

D
3.

0
2.

2
2.

3
2.

0
4.

1
4.

5
3.

8
3.

6
3.

6



CHAPTER 5. RESULTS AND COMPARATIVE STUDY 133

T
ab

le
5.

26
:

S
u
m

m
ar

y
of

ex
p
er

im
en

ta
l
re

su
lt

s
fo

r
cl

as
si

fi
er

fu
si

on
sy

st
em

s.

In
d
e
p
e
n
d
e
n
t

si
m

u
la

te
d

si
g
n
a
ls

R
e
la

te
d

si
m

u
la

te
d

si
g
n
a
ls

R
e
a
l
si

g
n
a
ls

C
la

ss
ifi

er
A

r
%

E
r
%

C
C

r
%

A
r
%

E
r
%

C
C

r
%

A
r
%

E
r
%

C
C

r
%

B
es

t
b
as

e
96

.6
(1

.9
)

3.
2

(1
.8

)
93

.6
(3

.5
)

91
.4

(4
.0

)
5.

6
(1

.9
)

86
.3

(4
.2

)
91

.2
(5

.9
)

7.
1

(5
.4

)
84

.6
(5

.7
)

W
ea

ke
st

b
as

e
93

.7
(3

.5
)

8.
4

(4
.8

)
86

.1
(7

.5
)

86
.5

(5
.6

)
16

.4
(7

.0
)

72
.4

(7
.8

)
90

.4
(3

.0
)

21
.5

(1
0)

71
.0

(1
0)

M
ea

n
b
as

e
91

.0
(3

.0
)

5.
0

(2
.2

)
86

.5
(2

.3
)

87
.2

(2
.0

)
10

.5
(4

.1
)

78
.2

(4
.5

)
87

.2
(3

.8
)

9.
9

(3
.6

)
78

.4
(3

.6
)

A
M

V
-

S
C

90
.9

(4
.3

)
1.

5
(1

.0
)

89
.5

(4
.9

)
85

.0
(3

.6
)

3.
0

(1
.1

)
82

.5
(3

.9
)

82
.4

(6
.4

)
1.

9
(1

.0
)

80
.9

(6
.8

)

A
A

F
R

-
S
C

94
.0

(2
.7

)
3.

3
(1

.8
)

90
.9

(4
.3

)
92

.2
(2

.0
)

5.
4

(1
.4

)
87

.2
(2

.5
)

93
.6

(2
.1

)
4.

1
(2

.2
)

89
.8

(3
.1

)

A
S
F
I

-
S
C

91
.7

(3
.5

)
4.

7
(2

.1
)

87
.4

(4
.8

)
90

.6
(2

.9
)

6.
3

(1
.1

)
84

.8
(3

.1
)

92
.1

(2
.2

)
5.

9
(2

.4
)

86
.8

(3
.9

)

A
M

V
A

F
R

-
H

C
94

.7
(2

.7
)

2.
5

(1
.4

)
92

.4
(3

.8
)

92
.5

(2
.0

)
4.

8
(1

.7
)

88
.1

(2
.4

)
93

.7
(1

.7
)

3.
9

(2
.1

)
90

.1
(2

.8
)

A
M

V
S
F
I

-
H

C
94

.0
(2

.7
)

3.
3

(1
.7

)
91

.0
(4

.1
)

91
.8

(2
.5

)
5.

5
(1

.5
)

86
.7

(2
.7

)
92

.8
(1

.8
)

4.
8

(2
.3

)
88

.4
(3

.3
)

A
M

V
A

F
R

D
-6

/8
94

.7
(2

.7
)

2.
2

(1
.3

)
92

.6
(3

.5
)

92
.1

(2
.1

)
4.

6
(1

.8
)

87
.9

(2
.4

)
92

.9
(2

.5
)

3.
8

(2
.1

)
89

.3
(3

.0
)

A
M

V
S
F
ID

-6
/8

94
.3

(2
.8

)
2.

6
(1

.3
)

92
.0

(3
.7

)
91

.7
(2

.3
)

4.
9

(1
.7

)
87

.2
(2

.6
)

92
.0

(2
.5

)
4.

2
(2

.4
)

88
.1

(2
.9

)

A
M

V
A

F
R

D
-6

/1
6

93
.5

(4
.1

)
2.

2
(1

.2
)

91
.5

(4
.8

)
92

.5
(1

.8
)

5.
0

(2
.0

)
87

.8
(2

.8
)

89
.9

(1
.9

)
3.

5
(2

.0
)

86
.8

(2
.8

)

A
M

V
S
F
ID

-6
/1

6
92

.9
(4

.1
)

2.
7

(1
.4

)
90

.5
(5

.0
)

92
.1

(1
.9

)
5.

6
(2

.1
)

87
.0

(2
.8

)
89

.5
(2

.2
)

3.
9

(2
.4

)
86

.0
(3

.2
)



CHAPTER 5. RESULTS AND COMPARATIVE STUDY 134

5.4 Discussion of Results and Comparative Study

The performance of the base classifiers used and the performance of the classifier fusion

systems can be explained considering the different complexities simulated and real EMG

signals. Simulated EMG signals allowed the performance to be evaluated in a controlled

way. Signals of known compositions and complexities were presented to each base classi-

fier and an aggregator module combines their output decisions such that the performance

in terms of signal characteristics was determined. Real EMG signals that were decom-

posed manually by a human expert were used as a reference to determine and evaluate

performance.

For comparison between classifiers performances, we used the definition of better per-

formance stated in Section 5.2.7. The classifier is with better performance, relative to

another one, if it is with the highest correct classification rate CCr% and lowest error rate

Er%. In situations when there is no clear distinction, we take the difference between the

correct classification rate CCr% and error rate Er% for each classifier and consider the

classifier with the higher difference as the one with the better performance.

The used base classifiers passively use firing pattern information to increase or decrease

the assignment threshold used to make a MUP assignment. The net affect of these ad-

justments over the sets of EMG signals studied was an increase in the number of MUP

classifications with only a minor increase in the number of incorrect classifications result-

ing in overall improved and less variable classification rates. The results demonstrate that

the adjustments made are appropriate when the IDIs of the MUPTs have small or large

variability (CV up to 0.3). However, it is important to realize that these decomposition

performance gains are only expected for EMG signals detected during constant or nearly

constant force contractions. The increases in the firing pattern consistency statistics used

as the number of classification errors increase was studied for MUPTs that had an assumed

constant mean IDI and CV . During changing force contractions, the mean IDI and CV

of the MUPTs will not be constant. This limitation may restrict the use of the adaptive
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base classifiers to research applications. However, for the characterization of the electro-

physiological state of a muscle for its clinical assessment the adaptive base classifiers can

be very useful.

Considering the fixed classifier ensemble, i.e., the ensemble with same six classifiers

e1, e2, e5, e6, e7, e8 used across all EMG signals, results across the data sets we see, and

as is shown in Table 5.27, that the one level classifier fusion schemes give classification

performance better than the average performance of the constituent six classifiers and

also better than the performance of the best one except across the independent simulated

signals. The hybrid classifier fusion approaches on the other hand give performance that

not only exceed the performance of any of the base classifiers forming the ensemble, except

across the independent simulated signals, but also reduce the classification errors for all

data sets relative to the base classifiers and the one level classifier fusion scheme.

Considering the diversity-based hybrid classifier fusion results, and as shown in Table

5.28, the hybrid classifier fusion approaches provide performance that also exceed the per-

formance of any of the base classifiers forming the ensemble, except across the independent

simulated signals, and also reduce the classification errors for all data sets relative to the

base classifiers.

Across the set of independent signals of varying complexity and MUP shape variability

but with consistent and moderate amounts of IDI variability we see, and as is shown in

Tables 5.29 and 5.30, that the one level classifier fusion schemes and the hybrid classifier

fusion approaches, both the fixed and diversity-based versions, and in terms of correct

classification rate (CCr) consistently outperformed the base classifiers. The hybrid classifier

fusion approach has also reduced the error rate (Er) relative to the one level classifier fusion

schemes except the adaptive majority voting scheme and relative to the base classifiers

except the adaptive certainty classifiers that were fed with first-order discrete derivative

features. Overall, the hybrid classifier fusion approach also had a lower MAD of the CCr

performance measure than all the base classifiers except the AFNNC base classifiers; and
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Table 5.29: Results of fixed ensemble using independent simulated signals.

Classifier Ar% Er% CCr%

e1 85.2 (5.2) 1.8 (0.9) 83.7 (5.8)

e2 86.9 (5.2) 1.6 (0.9) 85.5 (5.8)

e5 93.1 (3.0) 4.1 (2.4) 89.3 (4.9)

e6 96.6 (1.9) 3.2 (1.8) 93.6 (3.5)

e7 92.0 (3.0) 4.7 (2.4) 87.8 (4.8)

e8 95.8 (1.9) 3.6 (2.0) 92.5 (3.7)

Mean base 91.6 (3.7) 3.2 (1.0) 88.7 (3.1)

AMV - SC 90.9 (4.3) 1.5 (1.0) 89.5 (4.9)

AAFR - SC 94.0 (2.7) 3.3 (1.8) 90.9 (4.3)

ASFI - SC 91.7 (3.5) 4.7 (2.1) 87.4 (4.8)

AMVAFR - HC 94.7 (2.7) 2.5 (1.4) 92.4 (3.8)

AMVSFI - HC 94.0 (2.7) 3.3 (1.7) 91.0 (4.1)

a lower MAD of Er except the adaptive majority voting scheme and the adaptive certainty

base classifiers. Also on individual signal level, larger performance gains were obtained for

signals with greater MUP variability and/or with higher intensity levels (above 80 pps).

This suggests that the one level classifier fusion scheme and the hybrid classifier fusion

approach has both better and less variable (or more robust) performance.

The groups of related signals allowed performance to be studied as a function of MUP

shape and/or IDI variability. Across the three groups of related signals, and as is shown

in Tables 5.31 and 5.32, the one level classifier fusion schemes and the hybrid classifier

fusion approaches, both the fixed and diversity-based versions, Ar, Er, and CCr perfor-

mances were significantly better than that of base classifiers. This is apparent with either

relatively simple signals, such as signal 1-1 which has medium intensity with stable MUP

shapes and firing patterns, or for more complex signals, such as signals 1-9 and 3-3 which
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Table 5.30: Results of diversity-based ensembles using independent simulated signals.

Classifier Ar% Er% CCr%

e1 85.2 (5.2) 1.8 (0.9) 83.7 (5.8)

e2 86.9 (5.2) 1.6 (0.9) 85.5 (5.8)

e3 86.6 (4.6) 2.5 (1.3) 84.8 (5.4)

e4 88.6 (4.5) 2.1 (1.3) 86.6 (5.3)

e5 93.1 (3.0) 4.1 (2.4) 89.3 (4.9)

e6 96.6 (1.9) 3.2 (1.8) 93.6 (3.5)

e7 92.0 (3.0) 4.7 (2.4) 87.8 (4.8)

e8 95.8 (1.9) 3.6 (2.0) 92.5 (3.7)

e9 93.4 (3.9) 7.4 (3.6) 86.7 (6.8)

e10 94.2 (3.8) 7.1 (3.9) 87.7 (7.0)

e11 92.4 (3.6) 8.6 (4.3) 84.7 (7.0)

e12 93.7 (3.5) 8.4 (4.8) 86.1 (7.5)

e13 86.8 (4.9) 4.8 (2.6) 82.8 (6.0)

e14 88.2 (4.3) 5.6 (3.6) 83.4 (6.4)

e15 90.2 (3.8) 6.8 (3.5) 84.3 (6.4)

e16 91.4 (3.2) 7.3 (4.4) 84.9 (6.6)

Mean base 91.0 (3.0) 5.0 (2.2) 86.5 (2.3)

AMVAFRD-6/8 94.7 (2.7) 2.2 (1.3) 92.6 (3.5)

AMVSFID-6/8 94.3 (2.8) 2.6 (1.3) 92.0 (3.7)

AMVAFRD-6/16 93.5 (4.1) 2.2 (1.2) 91.5 (4.8)

AMVSFID-6/16 92.9 (4.1) 2.7 (1.4) 90.5 (5.0)
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Table 5.31: Results of fixed ensemble using related simulated signals.

Classifier Ar% Er% CCr%

e1 84.0 (3.6) 4.9 (2.2) 79.9 (4.7)

e2 86.0 (3.7) 5.1 (2.3) 81.6 (4.1)

e5 89.5 (2.5) 8.4 (2.5) 82.1 (3.5)

e6 91.4 (4.0) 5.6 (1.9) 86.3 (4.2)

e7 89.8 (2.6) 8.7 (2.3) 82.0 (2.8)

e8 90.8 (3.3) 6.2 (1.8) 85.2 (3.6)

Mean base 88.6 (2.4) 6.5 (1.4) 82.9 (1.9)

AMV - SC 85.0 (3.6) 3.0 (1.1) 82.5 (3.9)

AAFR - SC 92.2 (2.0) 5.4 (1.4) 87.2 (2.5)

ASFI - SC 90.6 (2.9) 6.3 (1.1) 84.8 (3.1)

AMVAFR - HC 92.5 (2.0) 4.8 (1.7) 88.1 (2.4)

AMVSFI - HC 91.8 (2.5) 5.5 (1.5) 86.7 (2.7)

has high intensity with unstable MUP shapes and firing patterns, where the classifier fu-

sion approaches provided a significant improvement in CCr while reducing Er except the

adaptive majority voting scheme which is not a suitable candidate for comparison due to

its lower assignment rate Ar. In addition, the variability of the performance of the classifier

fusion approaches were less than all the base classifiers except the adaptive majority voting

which exhibits a higher MAD in Ar, and CCr and lower MAD in Er.

For the real EMG signals studied, the one level classifier fusion scheme and the hybrid

classifier fusion approach, both the fixed and diversity-based versions whose results were

shown in Tables 5.33 and 5.34, respectively, had improved classification performance in

terms of CCr relative to all base classifiers and also reduced the error rate except for

the adaptive certainty base classifier e1. The variability of the performance of the hybrid

classifier fusion approaches was less than all the base classifiers except classifier e1.
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Table 5.32: Results of diversity-based ensembles using related simulated signals.

Classifier Ar% Er% CCr%

e1 84.0 (3.6) 4.9 (2.2) 79.9 (4.7)

e2 86.0 (3.7) 5.1 (2.3) 81.6 (4.1)

e3 86.2 (3.8) 5.7 (2.6) 81.3 (4.2)

e4 88.3 (3.2) 6.3 (2.7) 82.7 (4.2)

e5 89.5 (2.5) 8.4 (2.5) 82.1 (3.5)

e6 91.4 (4.0) 5.6 (1.9) 86.3 (4.2)

e7 89.8 (2.6) 8.7 (2.3) 82.0 (2.8)

e8 90.8 (3.3) 6.2 (1.8) 85.2 (3.6)

e9 88.4 (4.4) 15.5 (6.6) 74.7 (6.2)

e10 86.2 (5.5) 17.1 (7.1) 71.7 (9.8)

e11 88.7 (4.3) 15.5 (5.7) 74.9 (6.7)

e12 86.5 (5.6) 16.4 (7.0) 72.4 (7.8)

e13 85.1 (4.1) 12.2 (4.7) 74.8 (5.4)

e14 83.9 (4.3) 13.3 (5.7) 72.7 (6.6)

e15 86.5 (4.0) 12.6 (5.3) 74.8 (5.4)

e16 85.4 (3.2) 14.3 (5.4) 73.2 (6.3)

Mean base 87.2 (2.0) 10.5 (4.1) 78.2 (4.5)

AMVAFRD-6/8 92.1 (2.1) 4.6 (1.8) 87.9 (2.4)

AMVSFID-6/8 91.7 (2.3) 4.9 (1.7) 87.2 (2.6)

AMVAFRD-6/16 92.5 (1.8) 5.0 (2.0) 87.8 (2.8)

AMVSFID-6/16 92.1 (1.9) 5.6 (2.1) 87.0 (2.8)



CHAPTER 5. RESULTS AND COMPARATIVE STUDY 142

Table 5.33: Results of fixed ensemble using real signals

Classifier Ar% Er% CCr%

e1 83.9 (4.4) 2.9 (2.7) 81.4 (3.6)

e2 80.5 (5.8) 4.7 (5.8) 76.7 (6.1)

e5 93.2 (1.6) 6.4 (2.6) 87.3 (3.5)

e6 91.2 (5.9) 7.1 (5.4) 84.6 (5.7)

e7 91.4 (1.1) 9.4 (5.3) 82.9 (5.7)

e8 90.2 (5.1) 8.8 (6.8) 82.2 (9.2)

Mean base 88.4 (4.1) 6.6 (1.9) 82.5 (2.4)

AMV - SC 82.4 (6.4) 1.9 (1.0) 80.9 (6.8)

AAFR - SC 93.6 (2.1) 4.1 (2.2) 89.8 (3.1)

ASFI - SC 92.1 (2.2) 5.9 (2.4) 86.8 (3.9)

AMVAFR - HC 93.7 (1.7) 3.9 (2.1) 90.1 (2.8)

AMVSFI - HC 92.8 (1.8) 4.8 (2.3) 88.4 (3.3)
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Table 5.34: Results of diversity-based ensembles using real signals.

Classifier Ar% Er% CCr%

e1 83.9 (4.4) 2.9 (2.7) 81.4 (3.6)

e2 80.5 (5.8) 4.7 (5.8) 76.7 (6.1)

e3 82.6 (2.2) 5.9 (5.2) 77.8 (5.8)

e4 80.6 (5.5) 7.5 (7.1) 74.6 (8.5)

e5 93.2 (1.6) 6.4 (2.6) 87.3 (3.5)

e6 91.2 (5.9) 7.1 (5.4) 84.6 (5.7)

e7 91.4 (1.1) 9.4 (5.3) 82.9 (5.7)

e8 90.2 (5.1) 8.8 (6.8) 82.2 (9.2)

e9 90.2 (3.4) 11.1 (5.6) 80.1 (4.3)

e10 88.1 (6.3) 13.4 (5.2) 76.4 (5.9)

e11 92.1 (2.6) 17.4 (6.2) 76.1 (6.8)

e12 90.4 (3.0) 21.5 (10.4) 71.0 (10.1)

e13 86.0 (3.3) 7.9 (6.1) 79.2 (6.5)

e14 83.2 (4.4) 9.5 (8.1) 75.6(10.8)

e15 85.4 (3.6) 9.5 (6.2) 77.5 (7.7)

e16 83.1 (7.1) 15.0 (12.6) 71.6 (16.2)

Mean base 87.2 (3.8) 9.9 (3.6) 78.4 (3.6)

AMVAFRD-6/8 92.9 (2.5) 3.8 (2.1) 89.3 (3.0)

AMVSFID-6/8 92.0 (2.5) 4.2 (2.4) 88.1 (2.9)

AMVAFRD-6/16 89.9 (1.9) 3.5 (2.0) 86.8 (2.8)

AMVSFID-6/16 89.5 (2.2) 3.9 (2.4) 86.0 (3.2)
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Figures 5.2, 5.3, 5.4, and 5.5 show the decomposition results of base classifiers ACC,

AFNNC, ANCCC, and ApCC for related EMG signal 2-3, respectively. Figure 5.6 presents

decomposition results for related EMG signal 2-3 using the fixed ensemble hybrid classifier

fusion approach consisting of majority voting and average rule aggregator. Signal 2-3 has

6 MUPTs and was simulated to have a jitter value of 150 µs and an IDI CV of 0.15.

The effect of the MUP shape and motor unit firing pattern variability can be seen in the

shimmer, and IDI histogram and MUP firing time plots, respectively. The hybrid classifier

fusion system was able to sufficiently track each MUPT such that accurate estimates of the

mean IDI and the standard deviation of the IDIs for each train were obtained by the EFE

algorithm. When comparing with decomposition results of the base classifiers we see that

the fixed ensemble hybrid classifier fusion system decomposition is better than that for the

ACC in terms of the identification rate for each MUPT and close to the AFNNC, which is

the best base classifier in the fixed ensemble. Specifically, if we look at the firing pattern of

MUPT #4, both base classifiers, i.e., the ACC and AFNNC, recognize a somehow sparse

train due to the similarity with MUPT #2 and MUPT #1 which is apparent in the MUP

template plot, where the identification rate for the ACC = 60% and for the AFNNC = 61%

but for the fixed ensemble adaptive hybrid classifier fusion system it is 76%. This effect

demonstrates the complementary act of the base classifiers in the ensemble to correct the

errors. Now when comparing with the firing pattern of MUPT #4 generated by the two

matched template filter classifiers, i.e., the ANCCC and the ApCC, we see the identification

rate for ANCCC = 89% and for ApCC = 85% but this is not reliable as both shows for

the signal 2-3 a high error rate, which is 15.8% for ANCCC and 9.0% for ApCC.

Figure 5.7 presents decomposition results for related EMG signal 2-3 using the 6 out of 8

diversity-based ensembles adaptive hybrid classifier fusion approach consisting of majority

voting and average fixed rule aggregator. From Figure 5.7, we notice that the decompo-

sition results is close to that for the fixed fixed ensemble adaptive hybrid classifier fusion

approach shown in Figure 5.6.
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Figure 5.2: Signal 2-3 decomposition summary using base classifier ACC with sequential

MUPs seeding.
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Figure 5.3: Signal 2-3 decomposition summary using base classifier AFNNC with sequential

MUPs seeding.
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Figure 5.4: Signal 2-3 decomposition summary using base classifier ANCCC with sequential

MUPs seeding.



CHAPTER 5. RESULTS AND COMPARATIVE STUDY 148

Train #1

Train #2

Train #3

Train #4

Train #5

Train #6

5 V/s

0.5 ms

First−Order DD MUP Template

0.5 ms

Shimmer Plot

72 ms

Train #1

80 ms

Train #2

91 ms

Train #3

119 msTrain #4

123 ms
Train #5

121 msTrain #6

0 250 ms

IDIs Histogram

ID Rate= 80%
std IDI = 10.1 ms
Mean IDI = 72 ms

ID Rate= 86%
std IDI = 9.1 ms
Mean IDI = 80 ms

ID Rate= 100%
std IDI = 13.3 ms
Mean IDI = 91 ms

ID Rate= 85%
std IDI = 17.6 ms
Mean IDI = 119 ms

ID Rate= 97%
std IDI = 14.5 ms
Mean IDI = 123 ms

ID Rate= 88%
std IDI = 18.5 ms
Mean IDI = 121 ms

0 10 s

Firing Patterns

Figure 5.5: Signal 2-3 decomposition summary using base classifier ApCC with sequential

MUPs seeding.
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Figure 5.6: Signal 2-3 decomposition summary using the fixed ensemble adaptive hybrid

classifier fusion approach consisting of majority voting and average fixed rule aggregator.



CHAPTER 5. RESULTS AND COMPARATIVE STUDY 150

Train #1

Train #2

Train #3

Train #4

Train #5

Train #6

5 V/s

0.5 ms

First−Order DD MUP Template

0.5 ms

Shimmer Plot

72 ms

Train #1

81 ms

Train #2

91 ms

Train #3

117 msTrain #4

123 ms

Train #5

123 msTrain #6

0 250 ms

IDIs Histogram

ID Rate= 86%
std IDI = 9.8 ms
Mean IDI = 72 ms

ID Rate= 84%
std IDI = 8.5 ms
Mean IDI = 81 ms

ID Rate= 101%
std IDI = 13.3 ms
Mean IDI = 91 ms

ID Rate= 77%
std IDI = 12.7 ms
Mean IDI = 117 ms

ID Rate= 96%
std IDI = 14.7 ms
Mean IDI = 123 ms

ID Rate= 95%
std IDI = 19.2 ms
Mean IDI = 123 ms

0 10 s

Firing Patterns

Figure 5.7: Signal 2-3 decomposition summary using the 6 out of 8 diversity-based ensem-

bles hybrid classifier fusion consisting of majority voting and average rule aggregator.
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The complementary act of the base classifiers in the ensemble is also demonstrated in

Figure 5.12, which displays a 1 s interval of the decomposition results for the 6 MUPTs of

signal 2-3 and the unassigned MUPs as decomposed by the fixed ensemble adaptive hybrid

classifier fusion approach consisting of majority voting and average fixed rule aggregator.

Portions of MUPTs are displayed with the time scale used for displaying MUPs expanded

by a factor of 10 relative to the time scale used to depict the firing times. This allows

the actual shape of each MUP to be better visualized. An erroneous MUP classification

is indicated by displaying the number of the correct train next to the MUP. Most of the

errors made are related to the shape variability of MUPs occurring at expected firing times

for other trains. In these cases, the information provided by the MUP shape and the

firing pattern information is not sufficient to make a correct decision. When comparing

with MUP traces of the base classifiers ACC, AFNNC, ANCCC, and ApCC shown in

Figures 5.8, 5.9, 5.10, and 5.11, respectively, we see that the fixed ensemble adaptive

hybrid classifier fusion system shows a MUP traces with no error and only five MUPs

unassigned. The complementary effect is evident when the fixed ensemble adaptive hybrid

classifier fusion system detected and corrected the error shown in MUPT #4 and clearly

apparent in Figure 5.9, which is misclassified by AFNNC, ApCC and correctly classified by

ACC, ANCCC, and switched the erroneous MUP belonging to MUPT #2 with the correct

MUP belonging to MUPT #4.

Figure 5.13 shows another improvement in performance using the 6 out of 8 diversity-

based adaptive hybrid classifier fusion approach. The two ensembles in the system works

in a complementary manner such that they reduces the number of unassigned MUPs to

one only and also with no erroneous assignment MUPs.
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On the other hand, Figure 5.15 presents decomposition results for the related EMG

signal 2-4 using the fixed ensemble adaptive hybrid classifier fusion approach consisting

of majority voting and Sugeno fuzzy integral aggregator. Signal 2-4 has 6 MUPTs and

was simulated to have a jitter value of 150 µs and an IDI CV of 0.3. The fixed ensemble

adaptive hybrid classifier fusion decomposition of signal 2-4 is more complete (CCr =

89.4%) and has fewer errors (Er = 5.6%) compared to the best base classifier (CCr =

86.4%, Er = 3.9%). When comparing with the decomposition result of base classifier

ACC shown in Figure 5.14, we see that the fixed ensemble adaptive hybrid classifier fusion

system decomposition is better than that for the ACC in terms of the identification rate

for each MUPT. Specifically, if we look at the firing pattern of MUPT #4, the ACC results

are somewhat sparse with an identification rate of 58% but for the fixed ensemble adaptive

hybrid classifier fusion system the identification rate is 92%. Similarly, the increase in the

identification rate also occurred for MUPTs #1, #2, #5, and #6. Again, this effect is a

result of the base classifiers in the ensemble acting as a team to correct the errors.

The team work of the base classifiers is also shown in Figure 5.17, which displays a 1

s interval of the decomposition results for the 6 MUPTs of signal 2-4 and the unassigned

MUPs as decomposed by the fixed ensemble adaptive hybrid classifier fusion approach.

When compared with classified MUPs of the ACC base classifier shown in 5.16, we see

that the fixed ensemble adaptive hybrid classifier fusion system makes only six erroneous

assignments and shows only two MUPs unassigned for this epoch of time compared to four

erroneous assignments and nine MUPs left unassigned by the ACC. The complementary

effect of the team members is again evident when it is noticed that the fixed ensemble

adaptive hybrid classifier fusion system detected and corrected some errors, but when it

tried to reassign three of the MUPs it erroneously assigned them.
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Figure 5.14: Signal 2-4 decomposition summary using base classifier ACC with high cer-

tainty MUPs seeding.
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Figure 5.15: Signal 2-4 decomposition summary using fixed ensemble adaptive hybrid clas-

sifier fusion approach consisting of majority voting and Sugeno fuzzy integral aggregator.
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Figures 5.18 presents decomposition results for the related EMG signal 2-4 using the 6

out of 16 diversity-based ensembles adaptive hybrid classifier fusion approach consisting of

majority voting and Sugeno fuzzy integral aggregator. From Figure 5.18, we notice that

the decomposition results is close to that for the fixed ensemble adaptive hybrid classifier

fusion approach shown in Figure 5.15. The team work of the base classifiers is also shown

in Figures 5.19 and 5.20, which displays a 1 s interval of the decomposition results for the

6 MUPTs of signal 2-4 and the unassigned MUPs as decomposed by the 6 out of 8 and 6

out of 16 diversity-based ensembles, respectively. When compared with classified MUPs of

the ACC base classifier shown in 5.16 and the fixed ensemble hybrid fusion system shown

in 5.17, we see that the 6 out of 8 diversity-based ensembles makes only three erroneous

assignments and shows only five MUPs unassigned for this epoch of time, but the 6 out

of 16 diversity-based ensembles makes six erroneous assignments and shows five MUPs

unassigned.

The weaker performance of the 6 out of 16 diversity-based ensembles relative to the

6 out of 8 diversity-based ensembles, when decomposing the related EMG signal 2-4, is

mainly due to the fact that the ensemble at the second stage of the diversity-based hybrid

fusion system had joined in its team classifier e12, refer to Table 5.23, which has poor

performance (Ar = 77.7%, Er = 10.0%, and CCr = 69.9%).

The fuzzy densities gi/k play an essential role through the determination of the fuzzy

measures used in the fusion process of the fuzzy integral method. In reality when dealing

with real EMG signals, there is no a priori information related to the signal acquired. This

makes the estimation of fuzzy densities gi/k in terms of the base classifier recognition ac-

curacies impossible. Therefore, there is need for employing other approaches, the densities

gi/k values may be estimated either using an adaptive fuzzy integral [10], [79] or using

genetic algorithms to search for an optimal set of gi/k values [80], [112].

Based on the summary of experimental results shown in Table 5.26, we notice that

the fixed ensemble adaptive hybrid classifier fusion approach consisting of majority voting
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and average fixed rule aggregator has the best performance across the used data sets. This

result is apparent due to the manual selection of ensemble classifiers done in the experiment,

where we chose the best six from the pool of classifiers. We get somehow close results to the

best by using the automatic selection based on the diversity measure. Table 5.26 shows

that the 6 out of 8 diversity-based ensembles adaptive hybrid classifier fusion approach

consisting of majority voting and average fixed rule aggregator has performance close to

the best. This performance shows the potential of the automatic selection of ensemble

classifiers based on assessing the level of agreement between the classifiers in the ensemble.
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Figure 5.18: Signal 2-4 decomposition using the 6 out of 16 diversity-based ensembles

hybrid classifier fusion consisting of majority voting and Sugeno fuzzy integral aggregator.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we studied the effectiveness of using classifier fusion of ensembles of base

classifiers for EMG signal decomposition with an objective to improve performance and

robustness. To achieve this goal, we explored many classification paradigms and adapted

them to the problem we are investigating, evaluated the developed classifiers using simu-

lated and real EMG signals of different complexities, refined the misclassification in created

MUPTs through proposing a set of IDI statistics capable of detecting erroneous MUP clas-

sifications, proposed and tested a new hybrid classifier fusion approach for improving the

results, and finally adopted an iterative adaptive MUP classification approach for train-wise

adjustment of each MUPT assignment threshold based on train firing pattern statistics to

exclude MUPs causing firing pattern inconsistencies.

The classification task in EMG signal decomposition deals with two kinds of data: the

MUP shapes and the time of occurrences of MUPs in such a way that the classification of

MUPs can not be considered independent of MU firing pattern constraints. Therefore, for

the purpose of reducing erroneous MUP classifications to a reasonable extent we devised

IDI statistics for the detection of MUPT misclassifications and then adopted the adaptive

168
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setting of a MUPT assignment threshold based on these statistics. The net affect of

the adaptive setting of the MUPT assignment threshold over the sets of EMG signals

studied was an increase in the number of MUP classifications with only a minor increase

in the number of incorrect classifications resulting in overall improved and less variable

classification rates.

Each EMG signal is a classification problem in itself and there is no a priori knowl-

edge about the distribution of MUP data, where there are no a priori probabilities and

no MUPT conditional densities. Due to the lack of this information, we explored non-

parametric classification procedures based on a certainty measure, nearest neighbour rule,

and a similarity measure.

We developed and used four different kinds of base classifiers that work on time-domain

and wavelet-domain types of features. Base classifiers consist of the Certainty classifiers

and its adaptive versions, classifiers based on the nearest neighbour decision rule: the fuzzy

k-NN and the adaptive fuzzy k-NN classifiers, and classifiers that use correlation measures:

the normalized cross correlation and the pseudo-correlation as an estimation of the degree

of similarity between a pattern and a class template: the matched template filter classifiers

and its adaptive counterpart.

The system we developed is capable of combining the outputs of the heterogeneous

base classifiers in such away that it takes the class labels decided by each base classifier for

each MUP or the confidence assignment values generated by each base classifier for each

MUP and fuses them using classifier fusion schemes to produce a combined decision with

better accuracy.

The developed system capabilities have been extended by incorporating a new hybrid

classifier fusion approach in addition to the one level classifier fusion scheme. The hybrid

classifier fusion approach has been described and evaluated using simulated and real EMG

signals and compared with the performance of the ensemble of constituent base classifiers

and also compared with the performance of a one level classifier fusion approach consisting
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of either the majority voting, fixed combination rules, or fuzzy integral fusion. In these

situations and across the EMG signal data sets, the hybrid approach had better average

classification performance overall, especially in terms of the classification errors.

The developed system capabilities have been extended further by proposing a diversity-

based hybrid classifier fusion approach to overcome the limitation of selecting the base

classifiers comprising the ensemble, where there is a need to perform an exhaustive search

for the best accuracy classifier ensemble. The improvement in accuracy of a classifier

fusion system does not depend only on the fusion method used for combining the base

classifiers but also on the selection of classifiers used for the combination. Based on this,

we modified the hybrid classifier fusion approach by exploiting a diversity measure for

designing classifier teams. We chose the kappa statistics measure for this purpose to

estimate the level of agreement between the base classifier outputs, i.e., to measure the

degree of decision similarity between the base classifiers.

When combining base classifiers having the best performance does not mean that the

classifier fusion system will give the optimal performance. Also if some of the base classifiers

in the ensemble having weak classification performance does not mean that the weak ones

when selected to work as a team with others will not improve the performance. This

behaviour was noticed when the ensemble contains some matched template filters base

classifiers having weak performances relative to the certainty-based and the fuzzy k-NN

classifiers.

6.2 Research Contributions

In the author’s opinion, the original contribution of the work are:

1. Designed, adapted, and adopted different type classifiers for the MUP classification

task in EMG signal decomposition.

2. Formulated a set of IDI statistics for detecting erroneous MUP classifications.
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3. Devised an iterative adaptive approach for train-wise adjustment of MUPT assign-

ment threshold based on MU firing pattern statistics.

4. Proposed a hybrid classifier fusion approach that uses an aggregator module consist-

ing of two classifier combiners working in a complementary manner.

5. Proposed a diversity-based hybrid classifier fusion approach that follows the overpro-

duce and choose strategy. The proposed approach allows the automatic selection of

classifier ensembles from classifiers pool based on the level of agreement among the

classifiers and as determined by the kappa statistics.

6.3 Future Work

For extending this research, we suggest exploring the following ways as a supplement to

multiple classifier fusion approach for further and investigation aiming to further improve

the performance of the classification task in the EMG signal decomposition process:

1. Using the local discriminant bases (LDB) algorithm [88], [89] to construct an or-

thonormal basis, i.e., a redundant set of wavelet packet bases having a binary tree

structure, which maximizes the class separability for the classification task in the

EMG signal decomposition. The LDB algorithm relies on the best basis paradigm

[17] through searching for a wavelet packet basis in a dictionary that best illuminates

the differences among classes by using some class separability measure such as relative

entropy. The LDB reduces the dimensionality of the problem by using these basis

functions, which are well localized in the time-frequency plane, as feature extractors.

2. The fuzzy densities gi/k play an essential role through the determination of the fuzzy

measures used in the fusion process of the fuzzy integral method. Instead of estimat-

ing gi/k through the recognition accuracies of each class with each base classifier used
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in this thesis, the densities gi/k values may be estimated either using an adaptive

fuzzy integral [10], [79] or using genetic algorithms to search for an optimal set of

gi/k values [80], [112].

3. Using the fuzzy integral as a supervised classifier. There are two modes of use of

the fuzzy integral: the classifier-level mode in which the fuzzy integral is used as

an aggregator; and the feature-level mode in which the fuzzy integral is used as a

supervised classifier. In this thesis, the fuzzy integral has been used at the classifier-

level as a trainable aggregator in the classifier fusion domain. The fuzzy integral in

the feature-level is able to model some kind of interaction between features [39]. Each

component of the pattern feature vector is considered a data source and it provides a

degree of confidence for the assignment of the pattern to a specific class, then these

partial degrees of confidence are combined in a consensus-like manner by the fuzzy

integral [37], [38], [40], [71].

4. Re-designing the certainty-based classifiers so that they generate confidence values

for all respective MUPTs instead of just the most closest and the second closest

MUPTs.

5. The adaptive setting of MUPT threshold used in this thesis adopted fixed values for

the firing pattern consistency statistics and based on that the MUPT assignment

threshold is increased or decreased. Instead, we may train a classifier to check the

consistency of a MUPT and based on its decision, the MUPT assignment threshold

is adjusted.

6. As stated in Section 6.1, each EMG signal is a classification problem in itself and

there is no a priori knowledge about the distribution of MUP data. Therefore, due

to the lack of this information and to enable the training for base classifiers and

the data-dependent classifier fusion schemes, there is a need to construct a database

of different complexities EMG signals, both simulated and real, to extract MUP
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features that make the learning of classification approaches practical to a certain

extent. This will enable base classifiers combined in a classifier fusion system to be

evaluated using the MUP features stored in the database and then we use a weighting

system to assign worth values of how important each base classifiers is relative to the

MUP features.

6.4 Publications

1. S. Rasheed, D. Stashuk, and M. Kamel, A classifier fusion modelling environment

for motor unit potential classification, to be submitted to ACM Transactions on

Modeling and Computer Simulation Journal.

2. S. Rasheed, D. Stashuk, and M. Kamel, An interactive modelling environment for

motor unit potential sorting using certainty-based classifiers, to be submitted to Sim-

ulation Modelling Practice and Theory Journal.

3. S. Rasheed, D. Stashuk, and M. Kamel, Integrating heterogeneous classifier ensembles

for EMG signal decomposition classification task based on classifier agreement, to be

submitted to IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems

and Humans Journal.

4. S. Rasheed, D. Stashuk, and M. Kamel, Multiclassifier fusion for motor unit potential

sorting, Submitted for publication in Pattern Recognition Journal.

5. S. Rasheed, D. Stashuk, and M. Kamel, A hybrid classifier fusion approach for motor

unit potential classification during EMG signal decomposition, Submitted for publi-

cation in IEEE Transactions on Biomedical Engineering Journal.
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7. S. Rasheed, D. Stashuk, and M. Kamel, Adaptive certainty-based classification for
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