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Abstract

Finned cylinders are commonly encountered in the design of heat exchangers. Critical
to the design and performance of a heat exchanger are the mean and fluctuating loading
on the tubes, as they relate to pressure losses across the model and may lead to structural
vibrations. The loading characteristics are related to the vortex shedding phenomena in the
wakes of finned tubes, which motivates the need to understand their relationship in detail.
The flow development and structural loading characteristics of cylinders with equispaced
circular fins were studied experimentally in the University of Waterloo water flume facility.
Finned cylinders of diameter ratio Df/D = 2.0, fin thickness ratio t/D = 0.028 and range
of fin pitch ratios 0.083 ≤ c/D ≤ 1.0 were investigated using Particle Image Velocimetry
(PIV), Laser Doppler Velocimetry (LDV), and force balance measurements. The Reynolds
number ranged from ReDeff = 1020− 2040 based on the effective diameter of the models,
corresponding to the shear layer transition turbulent shedding regime. For c/D ≥ 1.0, the
vortex development resembles that of a uniform base cylinder, besides a region of affected
flow near each fin. Further reduction of c/D results in similar scales of vortex formation,
but with increased unsteady flapping of the separated shear layers. Following that, for
c/D ≤ 0.083, boundary layer coalescence between the fins leads to the flow redirection and
separation at the fin diameter. The generation of lateral vorticity between the fins leads
to the progressive weakening of the spanwise shear layers with decreasing c/D. However,
the bleeding of low-energy fluid into the near wake from the viscous regions between the
fins has a stabilizing effect on the mixing of vorticity during vortex formation, thereby
augmenting the structure of turbulence in the wake and inducing stronger wake vortex
shedding. Linear increases in the mean drag with increasing fin density are attributed to
the independent viscous shear contributions introduced by each finned surface, and the fall
off of the linear trend with high fin density is due to the loss of this independence with lateral
boundary layer coalescence. The RMS of the fluctuating lift is shown to increase initially
for decreasing c/D → 0.33, as the wake vortices increase in strength and flow unsteadiness
increases near the cylinder surface. However, the fluctuating lift is severely diminished
for low c/D = 0.083, with vortex formation displaced much further downstream, despite
exhibiting stronger wake vortices. The vortex shedding frequency is shown to decrease
with decreasing c/D. A modification of the definition of the Strouhal number based on
the cylinders effective diameter is proposed which incorporates Reynolds numbers effects
associated with the differences in the added flow blockage created by the boundary layers
developing on the fin surfaces. This definition is found to universally collapse the shedding
frequency data in the study and literature onto a constant StDeff∗ ≈ 0.2 with little scatter.
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Chapter 1

Introduction

Cylindrical bluff-bodies are ubiquitous in engineering designs such as civil structures, bridge

lines, heat exchangers, offshore risers, pipelines and antennae (e.g., [1–6]). Due to the

geometric simplicity of the circular cylinder, it is perhaps counter-intuitive that the char-

acteristics of the fluid flow surrounding it would initiate such a considerable research effort

over the past centuries. However, due to the inherent complexity and intractability of the

governing fluid physics, developing insightful models of the flow and related dynamics has

proven a formidable task [4].

Asymptotic solutions are known for creeping flow (ReD << 1) and analytical solutions

are known for inviscid flow (ReD → ∞) of uniform cross-flow over a uniform cylinder.

However, the bulk of practical interest lies within the domain of intermediate Reynolds

numbers, where the phenomenon of vortex shedding dominates the cylinder wake develop-

ment [7,8]. Vortex shedding is initiated by a global instability in the flow for ReD & 50 [5,9],

and is characterized by a limit cycle oscillation whereby opposite signed vortices originat-

ing from the recirculating fluid region in the near wake of the cylinder alternately advect
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downstream [5,9]. Figure 1.1 shows two snapshots of the prototypical vortex development

in the wake of a uniform circular cylinder. The incoming flow stagnates at the front of the

cylinder and is redirected around the sides. The boundary layer developing on the surface of

the cylinder typically separates near 90° from the front stagnation point (Figure 1.1a) due

to the presence of an adverse pressure gradient along the flow direction and the separated

shear layers roll-up into vortices in the near wake (Figure 1.1b). The supply of vorticity

from each shear layer is eventually cut-off by the shear layer roll-up from the opposing side

of the cylinder and the discrete vortices are advected downstream alternately [5, 10, 11].

This periodic process occurs from opposing sides of the cylinder, creating a trail of vortices

of opposing senses of rotation in the wake, referred to as a Kármán vortex street [8]. The

process of vortex shedding is prevalent in various forms for all bluff-bodies, and the circular

cylinder serves as the foundational example of vortex shedding to which the dynamics of

more complex bluff bodies may be compared to.

Vortex shedding induces periodic fluctuating forces on the cylinder [12] which may

excite so-called Vortex Induced Vibrations (VIV) of the structure [6, 13, 14]. In addition,

the fluctuating pressures in the separated shear layers may lead to substantial acoustic noise

generation [15–18]. The motivation for the utilization of modified cylindrical geometries

in practise is often derived from the need to mitigate these detrimental phenomena and

a detailed study of vortex shedding is therefore of both practical and theoretical interest

[4,6,19–23]. The addition of helical strakes, perforated shrouds, surface wires and bumps,

have been shown to suppress VIV [6] and the introduction of step discontinuities in diameter

[24,25] has led to reductions in the magnitude of the RMS lift force and mean drag force,

simultaneously.
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(a) tUo/D = 0

(b) tUo/D = 15.3

Figure 1.1: Vortex development in the wake of a uniform circular cylinder for ReD = 300.
Vorticity contours from DNS results obtained by the author.

Geometric modifications from a uniform circular cylinder may also be motivated by

fundamental demands of the application. Such is the case for finned cylinders, and their

common arrangement into densely packed arrays in order to facilitate the heat transfer

in the design of heat exchangers [16–18, 24, 26–35]. The geometry of finned tube heat

exchangers may differ significantly depending on the application. A single cylinder may

be placed in isolation [17, 18, 24, 26–30], two cylinders may be configured in a tandem

arrangement [28], or multiple cylinders may be arranged in arrays [31–35]. The fins affixed

to the base cylinder may be either circular [17, 18, 26–30] or rectangular [31–35] in shape,

solid [17, 24, 26, 28, 30] or serrated [18, 27, 29], oriented parallel [24, 26–28, 30] to the flow

direction or helically wound [17, 18, 27] around the base cylinder. The focus of this thesis
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Figure 1.2: Isolated finned cylinder geometry consisting of a base cylinder of diameter D
with fins affixed separated by pitch c, having thickness T and diameter Df .

is on the planar flow development and structural loading of a single, isolated cylinder

with circular, parallel fins in cross-flow. Figure 1.2 defines the geometry of the finned

cylinder, which may be described using three dimensionless parameters, the pitch ratio

c/D, diameter ratio Df/D, and thickness ratio T/D. Specifically, it is worthwhile to

study the salient characteristics of vortex shedding from the geometry, as it is primarily

responsible for the induced fluctuating loading on finned cylindrical structures [12]. Hence,

vortex shedding may lead to detrimental VIV [6, 13, 14] or resonance and catastrophic

failure of the heat exchanging devices caused by the excitation of acoustic modes in its

enclosure [16].

While the effect of geometrical changes (c/D, Df/D, and T/D) to the finned tubes

on heat transfer characteristics is well documented [31–35], with a number of design cor-

relations proposed [33, 34], their effects on the fluid-side flow development are not as well

understood. Previous studies on isolated finned cylinders have all detected periodic vortex

shedding in the wake [17, 18, 24, 26–30]. Numerous studies have found that the coherence

of vortex shedding along the span of the cylinder is typically increased by the addition of
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fins [17,18,27,28]. However, despite increased shedding coherence, increased acoustic noise

generation and fluctuating lift force are not observed concomitantly [17, 18], as would be

the case for uniform cylinders [15]. In contrast, the study of Nakamura and Igarashi [24]

on finned cylinders with high c/D and T/D shows vortex shedding occurs in discrete cells

between each fin spacing and downstream of each fin, implying that the fins disrupt the

coherence of vortex shedding across the span. The hot-wire wake velocity measurements of

Hamakawa et al. [17,18] and the PIV measurements of Khashehchi et al. [30] for low pitch-

ratio finned cylinders c/D = 0.11− 0.16, and c/D = 0.14, respectively, indicate significant

elongation of the vortex formation length occurs below a critical c/D. This displacement

of the vortex formation is reasoned to be the cause of the reduction of fluctuating lift and

far-field sound pressures for low c/D [18]. For higher c/D, Hamakawa et. al [18] show

that the RMS of the fluctuating lift increases for c/D = 0.27 compared to a bare cylinder

of base diameter and for c/D = 0.8, it is approximately the same. The vortex shedding

frequency is reduced by the addition of fins. Mair et. al [26] introduced the definition of

the effective diameter Deff for finned cylinders, which when used to non-dimensionalize

the shedding frequency data, showed a collapse of the Strouhal number near a constant

value StDeff ≈ 0.19. Ryu et. al [29] advocate the use of the hydraulic diameter Dh instead

and Hamakawa et. al [18] have showed better collapse of the Strouhal number data with a

modification of the effective diameter definition for a specific Reynolds number and pitch

ratio range.
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1.1 Study Objectives

The majority of studies on isolated finned cylinders were confined to point measurements in

the wake and hence a comprehensive picture of the unsteady flow development has not yet

been obtained. As a result, trends reported in the vortex shedding spanwise coherence and

fluctuating forces have yet to establish a strong link to the spatio-temporal evolution of the

vortex dynamics. Mean drag measurements have not yet been obtained for isolated finned

cylinders, and fluctuating lift RMS measurements have not been reported for cylinders

with circular, parallel fins. In addition, with various length scales proposed for individual

studies, there is need of some clarity regarding vortex shedding frequency scaling laws in

the literature.

The specific research objectives are formulated as follows:

1. Determine the effect of fin pitch on salient characteristics of the vortex development in

the wake of finned cylinders for fin pitch ratios (c/D = 1.0, 0.33, 0.083) at a diameter

ratio of 2.0 and fin thickness ratio of 0.028.

2. Characterize the fluctuating lift and mean drag forces acting on the structure, and

determine their relation to the flow characteristics.

1.2 Thesis Overview

The thesis is organized as follows: Chapter 2 provides an overview of the relevant literature

on the finned cylinders and related geometries. The experimental methodology employed

and experimental configuration is described in Chapter 3. An analysis of the results is
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given in Chapters 4, followed by concluding remarks and recommendations in Chapters 5

and 6, respectively.
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Chapter 2

Literature Review

In this chapter, the state-of-the-art is examined through a review of the published literature

pertaining to the isolated finned cylinder and its related geometries. This serves as an

instructive, but not exhaustive, discussion of content which will be built upon in this thesis.

The review begins by introducing the uniform circular cylinder in Section 2.1, thereby

establishing a fundamental basis on vortex shedding and the associated aerodynamic forces.

Following that, Sections 2.2-2.3 present research on the related geometries of the porous

cylinder and dual step cylinder, respectively. Section 2.4 then reviews previous studies

on finned cylinder geometries. Section 2.5 presents relevant literature on planar pressure

determination from particle image velocimetry measurements used for the data analysis in

the thesis.
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2.1 Flow around a uniform circular cylinder

The flow development around a uniform, circular cylinder in uniform cross-flow consists

principally of the boundary layer, separated shear layer, and wake regions (Figure 1.1)

[2–5]. The boundary layer develops on the surface of the cylinder due to the no-slip

condition imposed by the solid boundary, growing along the cylinder surface and eventually

separating as a consequence of an adverse pressure gradient. A global instability in the

flow leads to the roll-up of the shear layers in the near wake and the development of wake

vortices for ReD & 50 [5, 9, 36]. The vortices are carried downstream periodically at the

dimensionless shedding frequency (StD = fsD/U) [7], forming a street of alternate signed

vortices [8].

2.1.1 Flow topology and vortex dynamics

The reviews of Roshko [4], Williamson [5], and Zdravkovich [6] include in-depth discussions

of vortex shedding regimes encountered with changes in ReD and the reader is referred to

these works for a comprehensive review of uniform, circular cylinder vortex development.

For ReD . 49, flow over the cylinder is laminar and steady. The wake is symmetric,

comprised of two eddies at the aft of the cylinder. These eddies grow with increasing

Reynolds number up to the onset of the primary shedding instability [3]. Following the

onset of the shedding instability, for 49 . ReD . 194, the flow remains laminar and span-

wise vortices are shed into the wake (Figure 2.1a). The wake vortex shedding is nominally

two-dimensional in this regime; however, three-dimensionalities arise unless laboratory con-

ditions are controlled [9, 38–41]. In particular, oblique shedding typically occurs at angles
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(a) Laminar regime ReD = 150 (b) Mode A instabilities ReD = 220

(c) Mode B instabilities ReD = 300 (d) Shear layer transition regime ReD =
1575

Figure 2.1: Vortex shedding topological regimes. Vortices are visualized using the Q-
criterion (Q = 0.02) [37]. The data are obtained from direct numerical simulations (a-c)
and grid-filtered LES (d) performed by the author.

between 15−20°, leading to a scatter of up to 10% in measured Strouhal numbers [9]. How-

ever, the over-prediction of the shedding frequency caused by measuring velocity traces of

the angled vortices may be corrected by multiplying the shedding frequency by the cosine

of the shedding angle (fS = fs,θcosθ) [9]. For 190 . ReD . 260, secondary streamwise

vortex structures form along with the primary spanwise rollers due to the onset of three-

dimensional flow instabilities and transition to turbulence may occur in the far wake [42].
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The onset of the mode A instability occurs between 180 . ReD . 194, and is characterized

by the formation of vortex loops at a spanwise wavelength of approximately 4D, caused by

the growth of spanwise deformations in the vortex cores (Figure 2.1b) [42]. The deformed

vortex cores form streamwise vortex connections to subsequently shed spanwise vortices.

The mode B instability begins to appear intermittently between 230 . ReD . 250 and

is characterized by smaller scale streamwise vortex pairs manifesting at a wavelength of

approximately 1D in the region between the primary vortex cores (Figure 2.1c) [42]. Fol-

lowing the onset of the mode B instabilities, further increases in ReD lead to increased

three-dimensionality and fine scale streamwise vortices forming in the wake region, ac-

companied by earlier wake transition for 260 . ReD . 1000. The previously identified

secondary coherent structures become more disorganized and deformed in the wake region,

forming complex connections with each other and the spanwise vortices. The shear layer

transition regime occurs for 1.0 × 103 . ReD . 2.0 × 105, where turbulent transition

develops in the separated shear layers before they roll up into the wake vortices (Figure

2.1d). Transition is identified by the eminent Kelvin-Helmholtz vortices produced by the

growth of the convective Kelvin-Helmholtz instability in the shear layers [43, 44]. Beyond

ReD ≈ 2.0 × 105, the separated shear layer may reattach on one or both sides of the

cylinder after undergoing transition, leading to separation bubble regions on the sides of

the cylinder and a drastically narrowing of the wake. This regime is the so-called critical

regime, or drag crisis [6], where flow reattachement leads to a large reduction in the form

drag (CD,p) on the cylinder. Above ReD ≈ 1.0× 106, in the post-critical regime, transition

occurs in the boundary layer before separation and eliminates the presence of separation

bubble reg/ons [5].

12



In addition to the general topological changes in the vortex development with ReD,

features arise in the spanwise development of the vortices in most regimes. For example,

end affected regions develop due to the slowing of the flow near the boundaries of the

cylindrical model. The vortex shedding is subdivided into spanwise cells of lower shedding

frequency near the ends, leading to a complex development of vortex connections at the

cell boundaries as vortices progress in and out of phase [45, 46]. Following wake transi-

tion (ReD & 190) [5, 42], the appearance of spot-like vortex dislocations [47] partitions

the spanwise vortices, whereby similar complex vortex connections between the spanwise

vortices are sustained up to 150D in streamwise extent in localized areas of the wake.

Such dislocations may develop due to slight differences in free-stream conditions or cylin-

der geometry along the span, but also appear to be a fundamental attribute of turbulent

wake transition [47]. Complex vortex interactions and dislocations may also be induced by

geometric modifications to the uniform cylinder, as discussed in later sections [25, 47–49].

Concerning the mechanism and dynamics of the spanwise vortex formation that domi-

nates the flow development across most ReD; the vorticity contained in the wake vortices

is generated entirely by the viscous boundary layers (i.e., wall generated vorticity) [50].

Following boundary layer separation, the quasi-steady separated shear layers feed a nearly

constant rate of circulation into the near wake and the shear layers eventually roll-up dur-

ing the vortex formation process. However, following formation, the wake vortices contain

significantly less circulation than that generated by their respective shear layer of the same

sense [50]. This is known to be attributed to the entrainment of opposite signed vorticity

across the wake from opposing shear layers, leading to some equalization of circulation

between the wake vortices [51, 52]. To develop the analysis, the boundary layer approxi-
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mation yields the rate of circulation production (Ks) in a two-dimensional boundary layer

at the point of separation Ks ≈ 0.5U2
s [50], where Us is the edge velocity at separation.

Using Bernoulli’s equation with the pressure coefficient at the separation point (Cps), the

following estimate can be made for the rate of circulation production in a cylinder shear

layer [50]:

Ks =
(1− Cps)U2

∞
2

(2.1)

As the shear layers roll-up into vortices in the wake, entrainment of vorticity across

the wake leads to a lower rate of circulation being convected downstream within the wake

vortices. This rate of circulation convection can then be written as:

K = ΓfS = ΩU2
∞ (2.2)

where Γ is the circulation contained in each individual vortex, and fS is the vortex shedding

frequency. The ratio of the circulation convected in the wake vortices to that generated in

the same signed cylinder shear layer (K/Ks) is termed the vorticity deficit ratio and Ω is

a dimensionless parameter which can be related to this ratio as follows:

K/Ks =
2Ω

1− Cps
(2.3)

Experimental investigations have found that the vorticity deficit ratio can vary between

0.4 and 0.7 [1, 50], depending on the Reynolds number. The deficit ratio also varies cycle

to cycle, with the strength of the wake vortices not being consistent each shedding cycle
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[53, 54]. Of particular importance is the relationship implied by Equation 2.2, that for

a constant Ω = 0.35 − 0.4 [50] and a constant free-stream velocity, a higher shedding

frequency implies weaker wake vortices.

Beyond initial vortex formation, the vortex dynamics in the wake of the circular cylinder

may become complex, particularly in transitional and turbulent flow regimes. As discussed

earlier, fine scale streamwise vortex structures, cellular shedding and vortex dislocations

can lead to deformed vortex connections in the wake. To facilitate analysis of these vortex

flows, it is necessary to realize that the vortices obey some physical constraints. The

most fundamental laws governing the dynamics of vortices are Helmholtz’ theorems for

irrotational flow. The theorems are stated as [55]:

Helmholtz’s 1st Theorem: Vortex lines move at the velocity of the fluid.

Helmholtz’s 2nd Theorem: The strength of a vortex tube (Γ), that is the circulation,

is constant along its length.

Helmholtz’s 3rd Theorem: A vortex tube cannot end in a fluid. It must either end

at a solid boundary or form a closed loop.

Helmholtz’s 4th Theorem: The strength of a vortex tube remains constant in time

(DΓ/Dt = 0).

While these laws do not hold strictly in real flows due to the action of viscosity, they

nevertheless still retain some general utility when perceiving the behaviour of vortices and

are still often cited when developing models of vortex dynamics in the wakes of complex

geometries [25,47–49,56–58]. In particular, viscous dissipation acts to reduce the strength
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of the vortices in time, leading to a constant violation of theorem 4 and the dissipation rate

depends on the gradients of the surrounding flow field, leading to a violation of theorem 2.

2.1.2 Aerodynamic forces

The flow development around a uniform, circular cylinder induces both steady and un-

steady aerodynamic forces on the structure due to viscous and pressure stresses acting

at the surface [12, 59, 60]. These forces are known to vary considerably with Reynolds

number [12, 59]. Skin drag (CD,v) is dominant for low Reynolds numbers [61], while the

form drag (CD,p) essentially determines the total mean drag (CD) for higher ReD [59].

Wieselsberger [59] tabulates drag measurements of high aspect ratio circular cylinders,

and his data, covering a considerable Reynolds number range (5 < ReD < 5 × 105), has

proved a reliable reference by subsequent studies [61–64]. In the laminar flow regimes,

the drag coefficient shows a nearly linear relationship with Reynolds number, CD decreas-

ing monotonically with increasing ReD [59, 61]. As the viscous stresses lose their domi-

nance, the drag coefficient levels off at CD ≈ 1 over a wide range of Reynolds numbers in

the sub-critical flow regimes (200 < ReD < 2.0 × 105). Once critical Reynolds numbers

(ReD > 2.0×105 [59]) are reached, the so-called drag crisis occurs, whereby boundary layer

reattachment may occur, leading to substantial decreases in the mean drag (CD < 0.4 [59]).

Although the mean flow field is symmetric about the wake centre-plane, periodic vortex

shedding leads to out of phase fluctuating surface pressures, and a resultant fluctuating lift

force coefficient (CL′) [12]. Norberg [12] reviews measurements of the fluctuating lift force

on uniform, circular cylinders from the onset of vortex shedding up to critical Reynolds
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numbers (47 < ReD < 2.0× 105). Out of phase fluctuating surface pressures on the sides

of the cylinder lead to fluctuations in the lift force concentrating at the vortex shedding

frequency (fS). The fluctuating drag force has significantly smaller amplitude compared

to the fluctuating lift, with dominant fluctuations in drag occurring at twice the vor-

tex shedding frequency (2fS) as well as low frequency pulsations [54]. From the onset

of three-dimensionalities in the wake vortices and into the shear layer transition regime

(190 < ReD < 6.0 × 103), the RMS lift is substantially smaller (CL′ < 0.2) compared to

that at other ReD. Fluctuating lift data for this Reynolds number range are difficult to

obtain due to their small magnitude and limitations on the design of the experimental fa-

cilities and sensing hardware, leading to a high degree of scatter between studies [12,65,66].

The total RMS lift acting on a finite cylinder length (CL′,T ) is inherently related to the

three-dimensionality of the vortex shedding across the cylinder span. Any phase differ-

ence between vortex shedding at different spanwise locations leads to reductions in the

total RMS lift compared to a sectional lift coefficient (CL′). A measure of this three-

dimensionality is often expressed by the one-sided spanwise correlation length Λ/D. The

relationship between the sectional lift RMS and the lift on a finite segment of length L

may be expressed exactly as follows:

CL′,T/CL′ =
1

L

[
2

∫ L

0

(L− s)RLL(s)ds

]1/2
(2.4)

RLL(s) =
1

N

∑
(CL(0)− CL(0))(CL(s)− CL(s))∑

(CL(0)− CL(0))2
∑

(CL(s)− CL(s))2
(2.5)

where RLL(s) is the zero-time-delay correlation coefficient between the fluctuating sectional
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lift forces along the span for 0 < s < L. Due to the difficulty in measuring simultaneous

sectional lift forces at multiple spanwise locations, RLL(s) is often approximated by the

correlation between pressure measurements at θ = 90° (Rpp(s)) or by velocity measure-

ments just outside the wake, near the separated shear layer (Ruu(s)) [67]. The one-sided

correlation length can then be expressed as in Equation 2.6 [68], the integration limits

being truncated practically to the length of the cylinder (L):

Λ =

∫ ∞
0

RLL(s)ds ≈
∫ L

0

Ruu(s)ds (2.6)

The link between characteristics of vortex shedding and changes in the aerodynamic

loading is as follows. Measurements near the onset of the shedding instability (ReD ≈ 49)

[5] where flow can either be steady or unstable [4] show that the onset of the shedding

instability acts to decrease base pressure and hence increase mean drag. Moreover, across

the entire Reynolds number range, increases in the base pressure (Cbp) correlate with

increases in vortex formation length (Lf ) [4], a measure of the extent of vortex formation

in the near wake. A simple model often employed to relate the base pressure to the shear

stresses and pressures in the wake [4,69] involves considering the Reynolds decomposition

of the flow field. A picture of the mean flow surrounding a cylinder is then constructed in

Figure 2.2. Taking the mean zero velocity streamline as the bounds of a control volume

yields the approximate momentum balance shown in Equation 2.7. The base pressure (Cbp)

at the aft of the cylinder across its width acts in the positive streamwise direction along

with both viscous (τv) and Reynolds (τu′v′) stresses acting across the formation length

region. These are balanced by the free-stream pressure (po) acting across the wake width
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ψ=0

τ

τ

pbp poD Lf

Figure 2.2: Mean recirculation region in the wake of a circular cylinder, adapted from
Roshko [4], Williamson [5] and Arie and Rouse [69]

.

in the opposing direction.

∮
ψ=0

pdy +

∮
ψ=0

τdx = 0 (2.7)

When vortex shedding occurs, the Reynolds stresses dominate the viscous stresses [5]

and the momentum balance may be simplified by substituting in the base pressure coeffi-

cient to:

(pb − p∞)d = 2τL (2.8)

L/d = −1

4

Cbp
1− Cbp

(
U2
s

¯u′v′
) (2.9)

This relation shows that the base pressure increases as the formation length increases or

the Reynolds stresses decrease. However, it has been noted that this model is inadequate for

the exact determination of variables, due to the arbitrary selection of some parameters [4,5].

Given that, a good experimental fit for the drag force is directly dependent on only the base

pressure (Equation 2.10) [50], it can be concluded that changes in base pressure correlate

directly to the mean drag force.
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CD = Cpf − Cbp = 0.88(1 + 0.11Cbp)− Cbp (2.10)

Regarding the lift RMS (CL′), it is known to increase with decreases in vortex formation

length [5, 70], as unsteadiness in the velocity field close to the cylinder caused by vortex

formation leads to higher surface pressure fluctuations. It has also been observed that

magnitudes of the mean drag and fluctuating lift force are dependent on each other [12],

supporting the relationships implied in the discussion so far that CD ∝ −Cbp, Cbp ∝ Lf ,

and CL′ ∝ −Lf .

2.1.3 Aspect ratio and end effects

The flow development around a uniform, circular cylinder is known to be affected by surface

roughness, flow-uniformity, turbulence intensity, flow blockage, cylinder aspect ratio, and

cylinder end conditions [38, 41, 71, 72]. It’s important in the design of experiments that

these factors are considered, and their effects diminished and accounted for where possible.

In laboratory experiments, end plates affixed to the ends of the cylinder models are

often used to minimize finite aspect ratio effects on the flow development. The works

of Stansby [73] and Mair & Stansby [26] suggest the optimum position and size of end

plates to minimize the extent of the end affected region along the span. West and Fox [72]

studied the effects of changing the aspect ratio (L/D) of the cylinder contained between end

plates. They found that end cells of lower shedding frequency develop due to the lowering

of the convective velocities of vortices near the boundary layer growth on the end plate

surface [38,72,73]. The spanwise extent of the end cells is approximately 3.5D for 1.6×104 <
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ReD < 1.3× 105 [72,73], and hence to achieve nominally two-dimensional vortex shedding

at the mid-span of the cylinder, the aspect ratio must be greater than 7. The work of

Norberg [41] gives more conservative estimates for the minimum aspect ratio for unaffected

flow, recommending L/D > 50 in the shear layer transition regime 4.0 × 103 ≤ ReD ≤

1.0×104 based on both Strouhal number and base pressure measurements converging with

respect to aspect ratio at the midspan. However they utilized an suboptimal end plate

configuration, with the model mounted at the exact centre [41] instead of offset in the

upstream direction [26, 73]. For L/D < 7, bistable, irregular flow develops and vortex

shedding is intermittent [41].

Compared to a cylinder with end plates, a wall junction end condition leads to larger

end affected regions of the vortex shedding, as the wall boundary layer is much thicker.

Indeed, studies have found for L/D < 20, the end cells merge, with shedding frequency

decreasing with further decreases in aspect ratio [38, 74] and the alternate shedding of

vortices transitioning to symmetric shedding below L/D ≈ 6 [74]. For cylinders with two

free-ends, a similar single cell vortex shedding is observed below L/D ≈ 10−30 [41,45,75].

In order to obtain nominally two-dimensional flow at the mid-span, the aspect ratio must

exceed these values.

Numerous studies [41,59,75] finds that decreasing the aspect ratio below L/D = 50 leads

to a steady increase in base pressure, lowering of the shedding frequency, and enlargement

of the vortex formation region for ReD . 8.0 × 103. This agrees with observations of the

end effected regions slowing the flow and enlarging the vortex formation region [38, 41].

However, for higher ReD, Norberg [41] finds this trend reverses, with mean loading on the

cylinder increasing with decreasing L/D. Since the mean drag and fluctuating lift forces
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are dependent on each other [76], the trend in the fluctuating loads with L/D is similar,

confirmed by measurements at higher ReD = 1.0 × 104 − 1.0 × 105, with increases in CL′

observed [70,76,77].

2.2 Porous cylinders

The addition of porous media to the outside of cylinders has been utilized to enhance heat

transfer characteristics [30] and as a passive flow control method for reducing acoustic noise

generation [78,79]. The geometry comprises of a solid base cylinder of diameter D with an

outer shell of porous media extending to a diameter of Do, (Figure 2.3). The porous media

is typically a metallic foam or porous urethane [30, 78–80]. The flow development about

porous cylinders is expected to share similarities to that of finned cylinders, considering a

finned cylinder may be thought of as a type of structured porous media. Sueki et al. [78]

investigated the porous cylinder in cross-flow for 4.6 × 104 < ReD < 8.3 × 104. For the

investigated porosity β ≈ 0.97 and diameter ratio Do/D = 1.8, they found wake vortex

shedding is completely suppressed. A low velocity recirculation region in the wake extended

significantly further downstream than that observed for an equivalent uniform cylinder (Do)

and the shear layers emanating from the sides of the cylinder were stabilized, besides the

formation of Kelvin-Helmholtz vortices, leading to substantially reduced noise generation.

For 1.0×103 ≤ ReD ≤ 1.0×104, Do/D = 1.38, and β = 0.85−0.97, Khaleschi et al. [30] also

found a large low velocity region in the wake, and their Proper Orthogonal Decomposition

(POD) analysis of the planar PIV measurements indicated that less energy is contained

in the first two POD modes describing the vortex shedding phenomenon, compared to
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that of a uniform cylinder and finned cylinder [30]. Naito and Fukagata [79] investigated

a larger range of Reynolds numbers (100 ≤ ReD ≤ 1.0 × 105) for Do/D = 1.2 and 1.5,

and β = 0.8− 0.95, finding the same suppression of vortex shedding for ReD = 1.0× 105.

However, for lower Reynolds numbers (100 ≤ ReD ≤ 3900), vortex shedding is sustained

in the wake. The wake stabilization is attributed to the low energy fluid passing through

the porous media, which is subject to high dissipation, being injected into the near wake.

In combination with the slip-velocity at the porous outer surface decreasing the vorticity

in the shear layers, these mechanisms lead to the observed wake stabilization [79]. The

lift RMS on the porous cylinder is reduced compared to a uniform cylinder, with RMS lift

decreasing with increasing Reynolds number [79]. Mean drag on the porous cylinders is

increased in all cases, and is more pronounced for lower Reynolds numbers [79].

Figure 2.3: Porous cylinder in cross-flow consisting of a solid base cylinder of diameter D
and a layer of porous media extending to diameter Do.
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2.2.1 Base blowing and suction

Fransson et al. [80] studied the porous cylinder with applied suction and blowing for ReD =

8.3 × 103. They find a linear relationship between the rate of blowing or suction applied

(Ψ) and the vortex formation length (Lf ), with the latter increasing for higher blowing

coefficients and decreasing for higher suction coefficients. Blowing (Ψ > 0) causes earlier

boundary layer separation, while suction (Ψ < 0) delays separation. Beyond a critical

level of suction, up to 70% drag reduction can be achieved, with the wake development

resembling that at critical ReD. Blowing acts to increase the mean drag, despite acting

to increase the base pressure. Instead, the pressure on the cylinder surface between θ =

60 − 90° is higher and contributes to the increase in mean drag. Fransson et al. [80] find

the shedding frequency decreases for blowing and increases for suction, which is opposite

to the trend reported for suction applied to a blunt trailing-edge body by Hammond &

Redekopp [81].

2.3 Dual step cylinders

When considering the finned cylinder, which consists of discrete changes in diameter across

its span, it is useful to consider the dual-step geometry, which focuses on the flow devel-

opment of a single ‘fin’ of thickness (L) and diameter (D) affixed at the mid-span of a

uniform base cylinder (d), as shown in Figure 2.4. Williamson [47] investigated low as-

pect ratio (L/d = 0.5) dual step cylinders for 1.1 ≤ D/d ≤ 2 in order to study vortex

dislocations in the wake of circular cylinders. He found that dislocations occur at the

boundaries between the vortices shed in the large cylinder wake and the small cylinder
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Figure 2.4: Dual-step cylinder in cross-flow consisting of a large cylinder of diameter D
and length L, and small cylinder of diameter d.

wake (Figure 2.4) [47, 48, 82]. The dislocation frequency is equal to the beat frequency,

fS − fL [47], where fS is the shedding frequency in the wake of the small cylinder and fL

is the dominant frequency in the wake of the large cylinder. Generally, the large cylinder

wake topology depends on the aspect ratio of the large cylinder (L/D), the diameter ratio

(D/d), and ReD [47,48,82]. Morton & Yarusevych [48,82] investigated the flow past dual

step cylinders for ReD = 1050 and 2100, 0.2 ≤ L/D ≤ 17, and D/d = 2. At low aspect

ratios, L/D < 1, vortex shedding does not occur from the large cylinder, instead vortex

filaments simply connect the small cylinder vortices across the large cylinder wake. The

convective velocity of the filaments is reduced due to the disturbance in the flow induced

by the large cylinder, which results in periodic vortex dislocations terminating with small

cylinder half-loop vortex connections [48,82]. At higher aspect ratios, 2 ≤ L/D ≤ 6, vortex

shedding in the large cylinder wake is less coherent, with large cylinder vortices forming
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vortex loops while vortices in the small cylinder wake form continuous half-loop connec-

tions. For L/D > 8, vortex shedding occurs in the large cylinder wake in a single cell

at a constant frequency, which increases with increasing aspect ratio. Beyond L/D = 15,

shedding in the large cylinder wake at the mid-span approaches that of a uniform cylinder,

while end cells form near the discontinuities in diameter. McClure at al. [25] report that

simultaneous reductions in the mean drag (≈ 5%) and lift RMS (≈ 80%) for the laminar

flow regime (ReD = 150) can be achieved for a cylinder by affixing a larger diameter cylin-

der of approximate dimensions L/D ≈ 1 and D/d ≈ 1.5 at the mid span. The reduction

in CD is produced due to the base pressure increasing on the aft of the large cylinder

which is linked to strong secondary spanwise flows induced by vorticity generated at the

step discontinuities impinging near the mid-span of the large cylinder. Reductions of lift

RMS are attributed primarily to the elongation of the vortex formation length as well as

the decrease in spanwise coherence due to the complex vortex interactions and cellular

shedding in the wakes of the large and small diameter cylinders.

2.4 Finned cylinders

The geometry of a finned cylinder may be described by the following dimensionless parame-

ters: fin pitch ratio c/D, fin thickness ratio T/D, and fin diameter ratio Df/D (Figure 2.5).

Finned-tube cylinders with small pitch ratios (c/D) are typically used in air conditioning

and radiator units due to their enhanced heat transfer characteristics [83], while refrigera-

tors and freezers often utilize flat plate finned-tube heat exchangers with large pitch ratios

due to their improved performance during frosting and defrosting conditions. Practical
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Figure 2.5: Isolated finned cylinder geometry consisting of a base cylinder of diameter D
with fins affixed separated by pitch c, having thickness T and diameter Df

ranges of geometrical parameters fall within: 0.011 . T/D . 0.15, 0.06 . c/D . 0.8,

and 1.2 . Df/D . 2.4 [83,84]. In addition to improving heat transfer characteristics, the

addition of fins or helical strakes has been found to suppress VIV [6,14]; however, acoustic

characteristics may vary in tube banks, where fins have been shown to increase resonance

in some cases [16,28].

2.4.1 Isolated finned cylinders

Isolated finned cylinders in uniform cross-flow with either solid or serrated fins affixed in

parallel (Figure 2.6a) or wound helically (Figure 2.6b) along the span have been shown to

exhibit similarities in flow development over a wide range of fin thickness ratios (T/D),

pitch ratios (c/D), diameter ratios (Df/D), and Reynolds numbers (ReD) (Figure 2.5)

[17, 18, 24, 26–30]. Specifically, von Kármán vortex shedding has been observed in all

investigations to date [17,18,24,26–30] within the following range of parameters for finned

cylinders: 0.0125 ≤ T/D ≤ 0.064, 0.06 ≤ c/D ≤ 1.0, 1.2 ≤ Df/D ≤ 2.0, and 1.0× 103 ≤

ReD ≤ 1.85× 105. Table 2.1 lists previous studies on isolated fin cylinders along with the
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parameter range investigated and experimental methods employed.

The studies of Mair et al. [26] and Ziada et al. [27] report that the velocity fluctuations

at the vortex shedding frequency are enhanced in the wakes of finned cylinders, compared

to that of a base diameter uniform cylinder (D). They compare the streamwise velocity

spectra, which exhibit a sharper, higher magnitude spectral peak at fS [26, 27], and the

velocity traces, which exhibit lower random frequency variation in time. Mair et al.,

conjecture that this is due to an increase in the two-dimensionality of the vortex shedding

with the addition of fins [26]. Along this line, Hamakawa et al. [18] and Ziada et al. [27] find

that the addition of fins leads to more correlated vortex shedding along span in comparison

to uniform cylinders. In contrast, for a multi-step cylinder with comparatively large pitch

ratio (2 < c/D < 9) and thickness ratio (0.33 < T/D < 4), Nakamura & Igarashi [24]

present flow visualization that shows discrete vortex shedding cells between each fin pitch,

implying less correlated vortex shedding along the span. Moreover, studies measuring

profiles of turbulence intensity in the wake [18, 28] find that the addition of fins leads to

a decrease in the maximum turbulence intensities in the wake, and the POD analysis of

Khashehchi et al. [30] found the strength of the coherent structures to be slightly less for

the finned cylinder compared to a uniform cylinder of diameter Df .

Typically, the addition of fins acts to progressively decrease the shedding frequency from

that of a bare tube [17, 26, 27], however Ryu et al. observe that the shedding frequency

may be marginally increased by the addition of fins at large c/D, as they confine the flow

to accelerate over the cylinder [29]. In order to scale the shedding frequency data, Mair

et al. [26] introduced the definition of the effective diameter (Deff ) based on equating the

volume of the finned cylinder to that of a uniform cylinder of diameter Deff (Equation
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(a) (b)

Figure 2.6: Isolated finned cylinders in cross-flow: (a) circular, solid, straight fins and (b)
circular, solid, helically wound fins

2.11). A number of subsequent studies find that the Strouhal number based on the effective

diameter (StDeff ) leads to a reasonable collapse of the shedding frequency data over a wide

range of ReD and geometrical parameters (e.g., [17, 26,27]).

Deff =
(c− T )D + TDf

c
(2.11)

In studies on cylinders with serrated helically wound fins [18], once a minimum c/D

was reached, the shedding frequency from the cylinder decreases to approximately that of

a uniform cylinder with diameter Df instead of scaling with the effective diameter Deff .

When this is the case, flow separation is observed at the fin diameter. Hamakawa et

al,. [18] modified the definition of the effective diameter to Deff = Df for a specific pitch

ratio and Reynolds number range (c/D ≤ 0.16 and 7.6× 104 ≤ ReD ≤ 1.9× 105) to fit the
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experimental data. Alternatively, Ryu et al. [29] find that scaling by the hydraulic diameter

DH (Equation 2.12) provides a better collapse of the frequency and wake profile data for

flow over cylinders with serrated fins with relatively small pitch (0.08 ≤ c/D ≤ 0.17) and

diameter ratios (1.0 ≤ Df/D ≤ 1.82).

DH = Df − 4
(c− T )(Df −D)

c− T +Df −D
(2.12)

The spanwise coherence of vortex shedding is of interest for the finned cylinder due

to its effect on the fluctuating loading (CL′) and far-field oscillating sound pressure levels

(SPL) manifested from the vortex shedding process. The coherence along the span of a

bluff body is often estimated experimentally by the cross correlation of simultaneously

obtained velocity signals in the wake. Ziada et al. [27] found that the addition of fins

was generally accompanied by an increase spanwise coherence. However, variations in the

spanwise coherence were detected at different orientation angles, due to a non-uniform

spanwise waviness in the manufactured finned cylinder models. In addition, for the lowest

pitch ratio model studied (c/D = 0.095), a reduction in coherence length was detected

compared to a uniform cylinder of diameter D. Hamakawa et al. [17, 18] found similar

results, with the addition of fins increasing the coherence of shedding compared to uniform

cylinders of diameter D and Df . The coherence was largest for c/D = 0.27, and decreased

for lower pitch ratios of c/D = 0.16 and 0.11.

Typically, increased shedding coherence leads to increased fluctuating forces (CL′) [12]

and acoustic noise generation [15], however Hamakawa et al. [18] find substantial reductions

in fluctuating loads and far-field sound pressures for finned cylinders of low pitch ratios
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Table 2.1: Compilation of experimental studies on isolated finned cylinders

Authors ReD Df/D T/D c/D Fin Ge-
ometry

Experimental
Techniques

Mair et al.
[26]

16,000-
46,000

1.2,1.4 0.0224-
0.064

0.06-
0.8

solid,
straight

Hot-wire

Ryu et al.
[29]

17,000-
185,000

1.0-
1.82

0.02-
0.025

0.08-
0.17

serrated,
helical

Hot-wire, flow viz

Ziada et al.
[27]

26,100-
49,800

2.0 0.033 0.095-
0.19

serrated,
helical

Dual hot-wire

Hamakawa
et al. [17]

11,000-
63,000

1.8 0.038 0.16-
1.0

serrated,
helical

Hot-wire, flow viz

Nakamura
& Igarashi
[24]

3,000-
38,000

1.2-
2.0

0.33-
4.0

2.0-
9.0

solid,
straight

Force balance, flow
viz, surface pres-
sures

Hamakawa
et al. [18]

5,300-
110,000

1.8 0.038 0.11-
0.8

serrated,
helical

Hot-wire (x-y
plane), force bal-
ance, microphones

Eid & Ziada
[28]

16,000-
110,000

1.6 0.0254 0.067-
0.29

solid,
straight

Hot-wire, micro-
phones

Khashehchi
et al. [30]

1,000-
10,000

2.0 0.0125 0.14 solid,
straight

PIV, flow viz

(0.11 ≤ c/D ≤ 0.16) despite higher spanwise correlations between velocity signals in the

wake. This is attributed to the vortex formation region being displaced downstream for

low c/D, and the associated larger stagnant flow region in the near wake where fluctuating

pressures near the cylinder and in the shear layers are low [5]. For low c/D models (c/D ≤

0.16), lift RMS is reduced compared to a uniform cylinder of diameter Df , and for high

c/D models (c/D ≥ 0.27), lift RMS increases in comparison to a uniform cylinder of

diameter D, and is nearly matching for c/D = 0.8. Eid & Ziada [28] also observe an
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attenuation of acoustic noise generated from finned cylinders compared to uniform cylinders

(0.067 ≤ c/D ≤ 0.29). The sound pressures are attenuated more substantially for lower fin

pitch ratios, despite the strength of shedding being comparable between models. Nakamura

and Igarashi [24] study finned cylinders of relatively large thickness (0.33 ≤ T/D ≤ 4.0)

and pitch (2.0 ≤ c/D ≤ 9.0) ratios and find substantial drag reductions (≈ 20%) compared

to a uniform cylinder, which they attribute to a Reynolds number specific effect of flow

reattachment on the sides of the fins.

2.4.2 Multiple finned cylinder arrangements

In many heat exchanger designs, finned cylinders may also be arranged in tandem [28,85],

in-line [85], staggered [85], or in a compact, parallel array referred to as a tube bundle or

tube bank [31–34]. In such cases, the geometry is not only defined by the fin parameters;

thickness ratio (T/D), pitch ratio (c/D) and diameter ratio (Df/D) (Figure 2.5), but

also the number of tube rows (N), longitudinal spacing (Sl), and transverse spacing (St),

in addition to. Several correlations for the pressure drop coefficient and heat transfer

coefficient have been proposed based on the available experimental data for plate fin and

tube arrays [31–34]. For large spacing ratios, independent wake shedding occurs for each

cylinder [28,84], whereas for smaller spacing ratios the wakes may form single vortex street,

synchronized or coupled streets [84]. As well, for closely spaced tube bundles, the geometry

may considered like a porous medium, in which vortex shedding is suppressed within the

bundle geometry [84]. However, Nemoto et al. [16] studied the acoustic characteristics of

finned tube bundles and found that resonance can be excited, indicating some periodic
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flow activity within the bundle. Moreover, Hamakawa et al. [86, 87] find high frequency

activity within the tube bank (StDeff ≈ 0.4) and lower frequency activity excited in the

wake (StDeff ≈ 0.2), which is presumably related to von Kármán vortex shedding. Despite

the connection between acoustic resonance and flow characteristics to vortex shedding in

the wake not being well-established [86,87], it seems apparent that vortex shedding activity

persists throughout the studies multiple cylinder arrangements [16,28,84–87]. Presumably,

relationships identified for the isolated finned cylinder studied herein may be extended to

multiple cylinder arrangements.

2.5 Pressure PIV

With the measurement of the instantaneous planar velocity field ~u(x, y, t) from PIV and

the extraction of its spatial and temporal derivatives, the pressure gradient field may be

calculated from the two-dimensional Navier-Stokes equation:

∇p(x, y, t) = µ∇2~u− ρ(
∂~u

∂t
+ ~u · ∇~u) (2.13)

The problem of integrating this field to obtain the planar pressure field p(x, y, t) is subject

to a variety of practical, numerical, and theoretical complications and limitations [88].

However, resolving the pressure field both spatially and temporally represents tremendous

analysis potential in experimental work.

Baur and Kongeter [89] utilized an iterative spatial marching scheme in order to in-

tegrate the pressure gradient over the domain. At each time step, the pressure field is
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initialized as p(x, y) = 0. The pressure gradient calculated from the two-dimensional

Navier Stokes equations (Equation 2.13) is then spatially integrated along sequential rows,

starting at an arbitrary corner of the domain. The pressure values at each node are updated

based on the known pressure gradients and pressures at the surrounding nodes. Successive

iterations alternate the direction and starting corner of the spatial integration scheme in

order to avoid the inhomogeneous propagation of errors.

Dabiri et al. [90] propose a simple line integration technique developed for relatively

quick calculation of pressure fields. The pressure gradient is first integrated along the

outer boundary of the domain and the resulting pressure values along the boundary are

stored. The pressure at any point in the domain p(x, y) is then calculated based on the

average of eight symmetric line integrations through the domain from that point to the

outer boundaries. The integrations are initially performed iteratively only on the boundary

points, until the boundary pressures reach acceptable convergence, and then the internal

pressures are calculated in a single loop through the domain. Liu and Katz [91] developed

the omni-directional line integration technique, in which internal domain pressures are

calculated based on the average of many line integrations which pass through the point.

The pressure is first integrated along the outer boundary. A loop is then performed around

the outer boundary, during which a line integration is performed from every point on the

outer boundary to every other point on the outer boundary. Every time a line integration

passes an internal point, the pressure is stored at that point. Once all the line integrations

are performed, the pressure median of the saved pressures at each point determines the

new pressure value. The pressures at the boundaries are then updated and the method

is iterated until converged. The inhomogeneous propagation of pressure error near the
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boundaries of the domain was reduced by performing the line integrations from a virtual

boundary outside of the domain instead of originating directly from the domain boundary

[91].

Rather than integrating the pressure gradient directly, Gurka et al. [92] solved the

pressure Poisson equation in the fluid domain. The pressure Poisson equation is derived

from the divergence of the Navier-Stokes equations (Equation 2.14). Using a standard 5-

point second order central difference scheme for the Laplacian of the pressure field, a sparse

system of equations is obtained for the nodal pressures and are solved simultaneously over

the domain.

∇2p = 2ρ(
∂u

∂x

∂v

∂y
+
∂v

∂x

∂u

∂y
) (2.14)

Charonko et al. [93] compared the Poisson solver, omni-directional and iterative spatial

integration schemes, utilizing analytical solutions for a pulsatile flow and decaying vor-

tex subjected to uncorrelated velocity field noise to test the random error sensitivity of

the methods. Experimental data from internal flow in a diffuser was used to validate the

methods and compare time-filtering methods. The effect of conservative formulations of

the Navier-Stokes equations, which retain terms containing out-of-plane gradient (∂w/∂z)

calculated form the continuity equation, was investigated on the accuracy of the pressure

calculation. The findings indicate that the virtual-boundary, omni-directional integration

method [91] performed overall the best with the standard two-dimensional Navier-Stokes

equations, with errors in the pressure field between 1-100%. However, an optimum method

was not established and was dependent on the type of flow. Analysis of different filter-
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ing approaches (low-pass filtering, Lagrangian minimization with respect to the continuity

equation, and POD smoothing) indicates that POD based filters perform the best, reducing

errors in the pressure field evaluation by up to an order of magnitude. Violato et al. [94]

compared the errors associated with Eulerian and Lagrangian techniques for evaluating

the material acceleration and find Eulerian methods were suitable for higher time steps

compared to Lagrangian methods (∆tLag/∆tEul > 3). De Kat and van Oudheusden [95]

present theoretical considerations on error propagation and frequency response of derived

pressure fields for both Eulerian and Lagrangian approaches and conclude that interroga-

tion window size should be 5 times smaller than the smallest spatial wavelengths of the

flow structures (WS/λx < 0.2) and the acquisition frequency should be 10 times higher

than the corresponding flow frequency (facq > 10fflow) in order to resolve the flow features

with less than 10% peak modulation in the pressure field.
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Chapter 3

Experimental methodology

In this study, cylinders with straight, circular fins were studied experimentally in the water

flume facility at the University of Waterloo. Experiments in the same facility have previ-

ously formed the basis of the works of Bansal [96], Morton [97,98], and Kheirkhah [99] on

cylindrical bluff-body aerodynamics and VIV. Experiments were conducted on three finned

cylinder models and two uniform cylinder models. The diameters of the uniform cylinders

match the base (D) and fin (Df ) diameters to allow comparison with finned cylinders. The

three finned cylinders investigated have pitch ratios c/D = 0.083, 0.33, 1.0, selected to cover

the entire range of pitch ratios used in practical applications [18,26,27,83]. The Reynolds

number was ReDf = 2040. A combination of experimental techniques were employed in

order to obtain a comprehensive description of the planar flow development and structural

loading characteristics on the experimental models. Specifically, planar, time-resolved par-

ticle image velocimetry measurements, laser doppler velocimetry measurements, and force

balance measurements.
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3.1 Experimental facility

A diagram of the water flume facility at the University of Waterloo is shown in Figure

3.1. Water is recirculated through the test section from a large reservoir beneath the

laboratory floor. A pump elevates the fluid from the reservoir into a head tank maintained

at a constant water level. From the head tank, a pipeline carries the water into the settling

chamber, with the flow rate controlled by a gate valve. Flow recirculation in the settling

chamber caused by the injection of fluid from the pipeline is mitigated by a vertical array

of tubes at the bottom of the chamber and a smaller secondary injection pipeline. The

water exiting the settling chamber passes through a series of flow conditioning elements.

First, the flow passes though a plastic grid and two fine wire turbulence screens meant

to improve uniformity and reduce turbulence intensity in the flow. The flow then passes

through a 2.42° diffuser section and enters a honeycomb flow straightener, aluminium

grid and an additional five turbulence screens before entering the test section. The test

section dimensions are 1.2m wide (Cw) and 2.4m long (Cl) with one vertical wall of the

test section made from 19mm thick glass for optical access. The flow then exits though a

perforated plate before recirculating into the water reservoir. The plate design and gate

valve settings maintain a constant water level of 0.8m (Ch) in the test section, and a mean

free-stream velocity of 86.5mm/s (Uo). The specifications of the turbulence screens and

free-stream characterization are presented in Appendix A. Measurements in the free-stream

demonstrated a test section turbulence intensity of |u′| < 1% and flow non-uniformity

αu < 4%.
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Figure 3.1: University of Waterloo water flume facility: (A) head tank pump, (B) head
tank, (C) settling chamber, (D) array of vertical flow conditioning tubes, (E) flow condi-
tioning grids, honeycomb and screens, (F) test section.

3.1.1 Model specifications

Three finned cylinder models of varying pitch ratio (c/D) were manufactured along with

two uniform cylinder models of base and fin diameter, corresponding to ReD = 1020 and

ReDf = 2040, respectively (Figure 3.2). The upper limit on the Reynolds number of mod-

els in the water flume facility wass set by maximum acceptable model blockage ratios, with

< 3% solid blockage corresponding to ReDeff < 2250. The lower limit was set by resolu-

tion considerations associated with the laser based flow diagnostics, imaging hardware and

force balance, typically requiring ReD & 500 [97,98]. The finned cylinder models were con-

structed using a stainless steel support cylinder of diameter (Db) 0.375in, with aluminium

fins of thickness (T ) 0.021in and diameter (Df ) 1.5in slid between aluminium spacers of

base diameter (D) 0.75in. The length of the spacers (c) varied between 0.0625in and 0.75in

depending on the model. The resulting dimensionless geometric and flow parameters for
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Figure 3.2: Illustration of all experimental models investigated.

each experimental model are included in Table 3.1. The pitch ratios c/D = 0.083−1.0, fin

thickness ratio T/D = 0.028 and diameter ratio Df/D = 2 were selected from the practical

range of parameters for finned-tube heat exchangers [18,26,27,83]. The fins were punched

from aluminium sheet, deburred, and compressed together on a jig such that the outer di-

ameter could be turned down to 1.5in with sharp, parallel edges. The aluminium spacers

were bored and reamed out from aluminium rod and the outer surfaces of the fins and

spacers were sanded with 600 grit sand paper and finished with aluminium paste polish.

The inner diameters of the fins and spacers were sized to ensure a tight sliding fit on the

support cylinder (Figure 3.3). Once assembled, a section near the midspan of the model

was spray painted matte-black in order to mitigate reflections in PIV measurements.

The finned cylinder assembly mounted in the water flume free-stream is shown in Fig-

ure 3.3. The models were offset y = −0.1m from the midspan of the test section to

accommodate wake velocity measurements with the fixed focal length LDV system used

in this study. The cylinders were oriented vertically and perpendicular to the incoming

free-stream. All models were mounted between two circular end plates of 10.5in (7Df )
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Table 3.1: Parameters pertaining to the uniform and finned cylinders manufactured for
experimentation.

Model c/D T/D Df/D Deff/D ReDeff L/Deff

Uniform Cylinder ∞ - - 1.0 1020 21.3

Uniform Cylinder 0 - - 2.0 2040 10.6

Finned Cylinder 0.083 0.028 2.0 1.25 1277 17.0

Finned Cylinder 0.33 0.028 2.0 1.08 1100 19.8

Finned Cylinder 1.0 0.028 2.0 1.03 1048 20.7

diameter, with the model positioned 1Df upstream of the end plate center, following the

recommendations of Stansby [73] and West and Fox [72]. The end plates were 1/8in thick

and chamfered 60° on the outer edges in order to cut the incoming flow such that thin

boundary layers form on the inward faces. However, the back edges of the end plates were

ground parallel in order to minimize image distortions when optically accessing the wake

area from above. The models were mounted 0.2m from the bottom of the flume and 0.2m

from the free surface, and when mounted between the end plates, the compressive force

transferring axially ensured the fins and spacers remained stationary and perpendicular to

the cylinder axis. The vertical alignment of the models and the horizontal alignment of the

end plates was performed in air and verified with a laser level to be within ±0.1 deg. The

aspect ratio based on the effective diameter of each model (L/Deff ) was large enough such

that nominal two-dimensional flow would develop in a region surrounding the mid-span of

the models, as per the recommendations of Stansby [73] and West and Fox [72].
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Figure 3.3: Experimental assembly of a finned cylinder for c/D = 1.0.

3.2 Particle Image Velocimetry (PIV) Measurements

Two-component, Time-Resolved Particle Image Velocimetry (TR-PIV) measurements were

employed to estimate the planar velocity fields in the wake. The general operating principle

of the PIV measurments is covered in detail by the works of Willert and Gharib [100],

Westerweel [101], and Raffel et al. [102]. In this work, PIV measurments were obtained

in horizontal and vertical planes using a LaVision PIV system comprising of two high

speed, 1024 × 1024px Photron cameras and a high repetition rate Nd:YLF pulsed laser.

The horizontal x − y plane PIV experimental set-up is shown in Figure 3.4. The two
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Figure 3.4: Experimental configuration for horizontal plane (x − y) PIV measurements.
Illustration for z/D = 0.

Photron cameras were mounted above the free surface of the flume in streamwise alignment,

extending the field of view to cover the wake region of interest. A plexiglass box cut the

free surface of the water in order to eliminate optical distortions created by surface waves.

The Photron cameras were set to an acquisition rate of facq = 100Hz, which was over 50

times the highest detected vortex shedding frequency from the experimental models. The

laser was pulsed in sync with the camera acquisition, and the beam was conditioned with

lens optics to produce a two-dimensional plane sheet approximately 2mm thick. The flow

is seeded with 10µm diameter, nearly mutually buoyant hollow glass spheres with specific

gravities (SG) of approximately 1.05. For each finned cylinder model, horizontal planar

measurements (x−y planes) were obtained at the mid-span (z = 0), intersecting the center

of a fin on the finned cylinder models, and at the mid-pitch plane (z = c/2D). For the
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uniform cylinders, a single plane is measured at the mid-span (z = 0) of the model. The

laser and optics are placed on a vertical traverse which is operated by a stepper motor in

order to precisely control the vertical location of the measurement plane.

In order to obtain vertical plane measurements (x−z planes), the two Photron cameras

are placed on the vertical traverse to the side of the flume in streamwise succession (Figure

3.5a). The Nd:YLF laser is placed outside of the flume, and a vertically aligned laser

sheet is generated through a series of mirrors and optics mounted above the free surface

of the water flume, as shown in Figure 3.5b. The laser sheet is aligned and positioned

by the traversing of the mirrors and optics. Measurements are obtained in vertical planes

at the wake centre (y = 0) and a plane offset transversely by half the effective diameter

for each model (y = 0.5Deff ). The cameras were positioned the same distance from

the measurement plane as in the horizontal plane measurements, such that the spatial

resolution and field of view of the wake measurements was matched.

In both horizontal and vertical configurations, the high speed cameras were offset from

each other in the streamwise direction such that their image planes overlapped by ap-

proximately 10%. Figure 3.6 shows a representative sketch of the imaged region in the

wake for the horizontal plane measurements. The transverse extent of the Field of View

(FOV) was approximately Xfov = 0.2m and each camera had a streamwise FOV of ap-

proximately Xfov = 0.2m. Once the respective vector fields were calculated from the PIV

cross-correlations, ten simultaneous vector fields from the two cameras were correlated,

and the maximal peak in the correlation matrix determined the precise offset position

(Xfov −Xbl, Figure 3.6) of the second camera. In the overlap region, the vector fields are

stitched together using a linear weighting function, creating a single vector field covering
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(a) Vertical plane (x− z) PIV measurement general config-
uration.

(b) Vertical laser sheet optics illustrated for y/Deff = 0.5.

Figure 3.5: Experimental configuration for vertical plane (x− z) PIV measurements.
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Figure 3.6: Imaged region of the wake for horizontal plane PIV measurements, with dimen-
sions of each square imaged region Xfov and hatched overlapped region Xbl, subdivided
into interrogation windows of WS for PIV correlation.

a field of view of approximately 0.2× 0.38m (5.25Df × 10Df ).

Cross-correlations were performed on sequential image pairs, with a sliding sum of

correlation [103] applied over a kernal of four images, in order to reduce random error in the

velocity field measurements. The cross-correlations use an iterative, multi-grid algorithm,

with the final interrogation window size (WS) of 16×16 pixels. The aperture of the camera

was set to an Fstop = 5.6, resulting in 2 − 3px diameter seeding particles in the captured

images. The seeding density is such that the amount of particles within each interrogation

window is maximized, without particles overlapping (6 − 8 particles per window). The

interrogation windows are overlapped by 75%, yielding a minimum of 0.02Df vector pitch

in the vector field measurements. The velocity error in the PIV measurements is calculated

in Appendix B, and is determined to be approximately 1.03 − 2.36% of the free-stream

velocity.
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3.3 Laser Doppler Velocimetry (LDV) Measurements

In order to measure vortex shedding frequencies (fS), as well as resolve the spectral content

of the velocity fluctuations in the wake, wake velocity data were collected using Laser

Doppler Velocimetry (LDV) measurements. The operating principles of LDV are covered

in detail by Tavoularis [104]. The miniLDV system employed in the current study comprises

of a 140mW Argon-Ion laser which produces a dual beam of 628nm wavelength intersecting

at a focal length of 400mm in air (≈ 530mm in water). The intersection of the beams forms

a laser volume of 0.15mm× 1.24mm× 0.15mm in the x, y, and z directions, respectively

(Figure 3.7). One beam is frequency shifted using a Bragg cell, and the doppler burst is

detected by the system in order to measure one-component of velocity. The beams were

aligned such that the streamwise velocity component (u) is measured in the wake region.

The flow was seeded with the same neutrally buoyant glass spheres with mean diameter

10µm and SG ≈ 1.05 used in the PIV measurements.

The laser volume was aligned using the Photron SA4 high-speed cameras calibrated

for PIV measurements. The traces of the two laser beams and their intersection were

captured by digital images and the location of the measurement volume was determined

using a square grid superposed onto the captured images. The measurement volume po-

sition in the wake was set to x/Deff = 0.5 and y/Deff = 5.0 for each model (Figure

3.7). The velocity data were sampled over 60 minutes, with mean data rates over 40Hz

resulting in over 217 samples. The data were resampled at a fixed frequency (facq = 20Hz)

using the sample-and-hold technique proposed by Adrian and Yao [105]. The resampled

velocity signal was partitioned into segments of 2048 samples with 50% overlap between
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Figure 3.7: LDV measurement experimental configuration. Probe location at y/Deff = 0
and x/Deff = 5.

each segment. The fast fourier transform (FFT) algorithm was applied to each segment

and the resulting spectra were then averaged a minimum of 50 times, yielding a spectral

resolution of ±0.002StD. Solid blockage of the models in the test section was between 1.5%

and 3%, hence, no corrections were applied to the shedding frequency based on blockage

effects unless otherwise specified in the text. Appendix B calculates the bias error in the

LDV velocity measurements to be between 0 − 8.4% the free-stream velocity. However,

this error does not affect the frequency content of the velocity signal. The errors in the

frequency determination are set by the resolution of the obtained velocity spectra, which

is ±0.001fD/Uo.
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3.4 Force Balance Measurements

The aerodynamic forces acting on the models in both the drag and lift directions were mea-

sured simultaneously using a strain gauge force balance designed and manufactured at the

University of Waterloo (Figure 3.8). The operating principle involves the measurement of

strain on milled sections of a cantilevered cylinder using 8 high-resistance (350Ω) precision

strain gauges from Vishay Measurement Group with a strain gauge factor (GF ) of 2.05.

Figure 3.8 shows the strain gauge configuration. Two cross-sections of the cantilevered

cylinder were milled out to a flat thickness of 0.08in, with one section normal to the lift

direction and the other normal to the drag direction. Two strain gauges are then adhered

to each side of the flat surface with a polymer compound supplied by the manufacturer,

and covered with heat shrink in order to allow the gauges to be submersible. The four

strain gauges corresponding to each direction are wired in a wheatstone bridge configura-

tion (Figure 3.8) in order mitigate temperature drift and lead resistance effects, as well as

to maximize the output signal. The strain gauges were supplied with a 10V DC excitation

voltage, and the signal output from the wheatstone bridges was amplified using two Futek

CSG110 amplifiers at a gain of 0.5mV/V . The sensitivity of the force balance was ap-

proximately 0.125V/g, though it varied between experimental models and was calibrated

independently for each model. The signal was sampled using a National Instruments (NI)

model 6320 Data Acquisition System (DAQ) with the voltage input range of ±10V . The

absolute accuracy of the DAQ was 1.14mV at this voltage input range with a sensitivity

of 0.67mV . The force balance was calibrated using a set of 1−10g calibration weights, ap-

plied to the mid-span of the experimental models using a string and pulley system. Added
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Figure 3.8: Strain gauge force balance for measurement of simultaneous lift and drag.

details on the calibration method are included in Appendix C.
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Chapter 4

Results

This chapter presents the results of the experiments described in Chapter 3; namely, time-

resolved planar PIV velocity measurements in horizontal and vertical planes in the wake,

LDV streamwise wake velocity measurements, and mean drag and fluctuating lift force

measurements. The data set obtained from these measurements is used to form a com-

prehensive description of the salient features of the wake flow development and structural

loading. To facilitate this discussion, the chapter is divided into five sections: (i) an

overview of the flow development, (ii) the time-averaged flow fields, (iii) characteristics of

vortex shedding, (iv) considerations on scaling laws for the wake vortex shedding frequency,

and (v) structural loading characteristics.
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4.1 Overview of the flow development

Across a large class of bluff-bodies in cross-flow, the wake flow development is dominated

by the vortex shedding phenomena [4, 75, 84]. Likewise, previous investigations on finned

cylinders support the occurrence of vortex shedding in the wake based on various mea-

surement techniques [17, 18, 24, 26–30]. For the current study, instantaneous snapshots of

the spanwise vorticity derived from PIV measurements in a horizontal (x − y) plane, at

the mid-pitch position (z = c/2), are presented in Figure 4.1 and clearly exhibit the von

Kármán vortex shedding occurring in the wakes of both the finned and uniform cylinders,

for ReDeff = 1020− 2040. There are variations in the cycle to cycle characteristics of the

wake vortices [53,54], however the snapshots presented are representative of typical vortex

development in the wake of each model. Inspection of the instantaneous vorticity fields

shows the roll-up of the separated shear layers into the near wake, and the production of

alternating wake vortices. The spanwise wake vortices are the dominant coherent struc-

tures in the wake, however, within the vortex formation region and in the wake, smaller

scale vortex structures are present. The smaller structures are representative of the shear

layer transition regime for the Reynolds number range studied, in which many fine-scale

three-dimensional vortex structures develop [5, 43].

General trends in the vortex development can be immediately identified from the in-

stantaneous vorticity fields. Specifically, the scales of vortex formation are similar for a

uniform cylinder of base diameter (D) and high pitch ratio (c/D = 1.0 and 0.33) finned

cylinders (Figures 4.1a-4.1c). In comparison, the vortex formation region is significantly

enlarged for the lowest pitch ratio (c/D = 0.083) finned cylinder (Figure 4.1d) and a uni-
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form cylinder of fin diameter (Df ) (Figure 4.1e). The changes in the wake development

with c/D will be outlined in more detail in the following sections.
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(a) Instantaneous (b) Instantaneous z/c = 0.5

(c) Instantaneous z/c = 0.5 (d) Instantaneous z/c = 0.5

(e) Instantaneous

Figure 4.1: Instantaneous vorticity fields in the wake for (a) uniform cylinder (D), (b)
finned cylinder (c/D = 1.0), (c) finned cylinder (c/D = 0.33), (d) finned cylinder (c/D =
0.083), and (e) uniform cylinder (Df ).
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4.2 Time-averaged velocity field

From the previously presented instantaneous fields, changes in the scales of vortex shedding

in the wake are identified. The discussion in this section aims to present the trends relating

to these scales, as well as provide a physical explanation for the trends through an analysis

of time-averaged statistics in the wake. Figure 4.2 presents the mean streamwise velocity

contours overlaid with the mean streamlines from the horizontal plane PIV measurements,

Figure 4.3 presents the mean streamwise velocity contours from the vertical plane PIV

measurements, and Figures 4.4, 4.5, and 4.6 present the Reynolds stresses in horizontal

planes in the wake (u′2, v′2, and u′v′, respectively).

4.2.1 Scales of vortex formation

The mean streamline curvature and position of the saddle point in the wake (Figure 4.2)

are associated with the presence and extent of the recirculation region created with the

formation of the wake vortices from the models [11, 106]. The figures indicate substantial

changes in this recirculation region with fin pitch ratio (c/D). Specifically, for larger pitch

ratios of c/D = 1.0 and 0.33 (Figures 4.2c-4.2f) the effect of the fins on the mean flow

development compared to a uniform cylinder of diameter D (Figure 4.2a) is minimal,

with similar recirculation region scales and streamline topology observed. However, for

c/D = 0.33, the saddle point moves upstream compared to its position for a finned cylinder

of c/D = 1.0 and a uniform cylinder of diameter D. A large growth in the recirculation

region is observed in the wake of a finned cylinder with c/D = 0.083 (Figures 4.2g and 4.2h),

with the low velocity stagnant flow region extending to the width of the fin diameter and
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(a) (b)

(c) z/c = 0 (d) z/c = 0.5

(e) z/c = 0 (f) z/c = 0.5

(g) z/c = 0 (h) z/c = 0.5

Figure 4.2: Mean streamwise velocity contours, overlaid by the mean horizontal planar
streamlines for (a) uniform cylinder (D), (b) uniform cylinder (Df ), (c-d) finned cylinder
(c/D = 1.0), (e-f) finned cylinder (c/D = 0.33), and (g-h) finned cylinder (c/D = 0.083).
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(a) (b)

(c)

(d)

(e)

Figure 4.3: Mean streamwise velocity contours in vertical planes at y/Deff = 0.5 for (a)
uniform cylinder (D), (b) uniform cylinder (Df ), (c) finned cylinder (c/D = 1.0), (d) finned
cylinder (c/D = 0.33), and (e) finned cylinder (c/D = 0.083).
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(a) (b)

(c) z/c = 0 (d) z/c = 0.5

(e) z/c = 0 (f) z/c = 0.5

(g) z/c = 0 (h) z/c = 0.5

Figure 4.4: Streamwise Reynolds stress (u′2) for (a) uniform cylinder (D), (b) uniform
cylinder (Df ), (c-d) finned cylinder (c/D = 1.0), (e-f) finned cylinder (c/D = 0.33), and
(g-h) finned cylinder (c/D = 0.083).
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(a) (b)

(c) z/c = 0 (d) z/c = 0.5

(e) z/c = 0 (f) z/c = 0.5

(g) z/c = 0 (h) z/c = 0.5

Figure 4.5: Transverse Reynolds stress (v′2) contours in the wake for (a) uniform cylinder
(D), (b) uniform cylinder (Df ), (c-d) finned cylinder (c/D = 1.0), (e-f) finned cylinder
(c/D = 0.33), and (g-h) finned cylinder (c/D = 0.083).
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(a) (b)

(c) z/c = 0 (d) z/c = 0.5

(e) z/c = 0 (f) z/c = 0.5

(g) z/c = 0 (h) z/c = 0.5

Figure 4.6: Cross-term Reynolds stress (u′v′) contours in the wake for (a) uniform cylinder
(D), (b) uniform cylinder (Df ), (c-d) finned cylinder (c/D = 1.0), (e-f) finned cylinder
(c/D = 0.33), and (g-h) finned cylinder (c/D = 0.083).
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extending into the wake to x/D ≈ 6. The recirculation region for c/D = 0.083 extends

further into the wake than for a uniform cylinder of Df (Figure 4.2b), while retaining

similar transverse scales. This large stagnant flow region in the near wake and associated

downstream displacement of vortex formation was also observed by Hamakawa et al. [18]

for helically finned cylinders with low pitch ratios (c/D ≤ 0.16) and in several investigations

on flows around cylinders with porous shells [30,78–80].

The scales of vortex formation can be quantitatively described by invoking definitions

of the vortex formation length and wake width [5]. The vortex formation length (Lf ) is

defined as the streamwise distance along the wake centreline to the peak in the RMS of

the streamwise velocity fluctuations (u′(x, 0, 0)). The wake width (Lw) is defined as the

transverse distance between the two distinct peaks in the RMS of the streamwise velocity

fluctuations (u′(Lf , y, 0)) at a streamwise location of x = Lf . Figure 4.7 presents the

variation of the two vortex formation region characteristic scales with pitch ratio. Non-

monotonic trends in both Lf and Lw may be identified with c/D. Figure 4.7 shows that

with the addition of fins, for c/D = 1.0, there is slight enlargement of the formation

length compared to a uniform base cylinder, with approximately equal wake width. At

this pitch ratio, formation length differs by 0.2D between planar measurements in-line with

the fin (Figure 4.2c) and at the mid-pitch plane (Figure 4.2d), indicating marginal spanwise

differences in the vortex development at this pitch ratio. For a pitch ratio of c/D = 0.33,

there is again a minor increase in the characteristic dimensions of vortex formation (Figure

4.7). Following that, for the smallest pitch ratio of c/D = 0.083, there is a substantial

enlargement of the formation region (Figures 4.2g, 4.2h and 4.7). The formation length

is approximately 50% larger than that of uniform cylinder of diameter Df , and the wake
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Figure 4.7: Formation length (Lf ) and wake width (Lw) of the formation region versus
fin pitch ratio (c/D) for (�) measurements at the mid-pitch location z/c = 0.5, and (H)
measurements in-line with the fins (z/c = 0).

width is also enlarged, but to a lesser degree. Measurements parallel to the fins and at the

mid-pitch plane show similar estimates of the formation length and wake width for pitch

ratios c/D = 0.33 and c/D = 0.083, indicating no spanwise variation in vortex formation

characteristics for the lower pitch ratios.

It is pertinent to the analysis at this point to discuss some inferred asymptotic char-

acteristics of the flow development. Specifically, as the limit c/D → 0 is approached, the

fins would become so close together that flow between the fins is impeded and the finned

cylinder would act as a solid uniform cylinder of diameter Df . As the limit c/D → ∞

is approached, the fins would be so spaced apart that the flow development matches that

about a uniform cylinder of diameter D, similar to the observed behaviour in studies on

uniform cylinders with end plates with increasing model aspect ratio [41, 72, 73]. Hence,

despite any trends between these limits, it is expected that wake characteristics of finned

cylinders asymptotically approach that of the respective uniform cylinder at sufficiently

high or low c/D. Given the trends discussed referring to Figure 4.7, the asymptotic be-

haviour of the vortex formation scales is well established for c/D → ∞, with gradual
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reduction of the characteristic scales observed as c/D increases for c/D ≥ 0.33. In con-

trast, towards c/D → 0, the asymptotic behaviour isn’t fully established in the presented

results due to a non-monotonic trend developing for low c/D. However, it is expected that

measurements at lower c/D = 0.083 would show a gradual reduction in the characteristic

scales approaching the values for c/D = 0.

The unsteady flow in the wake is dominated by the fluctuations associated with the

vortex shedding phenomena. This gives rise to Reynolds stresses in the wake (u′2, v′2,

and u′v′), which are presented in Figures 4.4, 4.5, and 4.6. The wake Reynolds stresses

exhibit a high degree of similarity between all the models investigated, scaling generally

with the reported changes in the vortex formation and wake widths. The magnitude of the

Reynolds stresses in the wake are comparable for c/D = 1.0 and a uniform base cylinder.

For c/D = 0.33, the Reynolds stresses are similar in magnitudes in the wake, however

higher Reynolds stresses are present near the the surface of the cylinder. In addition,

high u′2 is observed in the separated shear layer, indicating some unsteady flapping of the

separated shear layers for c/D = 0.33. For c/D = 0.083 (Figures 4.4g, 4.4g, 4.5g, 4.5g,

4.6g, and 4.6g), compared to a uniform cylinder of fin diameter (Figures 4.4b, 4.5b, and

4.6b), the peak Reynolds stresses are decreased.

From the vertical plane PIV measurements and horizontal plane PIV measurements

at z/c = 0.5 and z/c = 0, aspects of the spanwise development of the vortices can be

ascertained. For c/D = 0.083, the horizontal plane mean fields in-line with the fin and at

the mid-pitch location are nearly identical (c.f. 4.2g and 4.2h) and in the vertical plane

measurements (Figure 4.3e), the velocity streaks are not observed. For c/D = 1.0 and

c/D = 0.33, differences in the mean flow development between planes taken in-line with a
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fin at z/c = 0 (Figures 4.2c and 4.2e) and those taken parallel to the mid-pitch location at

z/c = 0.5 (Figures 4.2d and 4.2f) develop due to a low velocity region surrounding the fin,

a product of the boundary layers developing on the fin surfaces. These low velocity streaks

can also be seen clearly in the vertical plane PIV measurements (Figures 4.3c and 4.3d)

directly downstream of each fin, a consequence of the low-momentum fluid in the boundary

layers forming on the fin surfaces. However, besides an affected region near the fins, there

does not appear to be any substantial differences in the mean flow development between

the two measured horizontal planes obtained at the mid-pitch (z = c/2) and in-line with

a fin (z = 0) in respect to the topology and size of the recirculation region (Figure 4.2) for

finned cylinders. This can also be seen in the vertical PIV measurments at z/Deff = 0.5

which show that the low velocity perturbations in the wake introduced by the fins do not

extend past the formation region of the vortices (Figure 4.3). This indicates that any

substantial spanwise spatial modulation of the vortex shedding characteristics does not

occur on the scale of the fin pitch, such as the cellular shedding observed by Nakamura

and Igarashi [24] for multi-step cylinders and the vortex dislocations observed in the wake

by Morton and Yarusevych [48,49] and McClure et al. [25] for dual step cylinders. Hence,

vortex shedding occurs nominally two-dimensionally in the wake in the present study,

similar to that observed in the wakes of uniform circular cylinders [5].

4.2.2 Shear layer development

In order to explain the observed changes in the scales of vortex formation with changing

c/D, it is of interest to investigate the mean flow separation characteristics and vorticity
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development in the wake. Figure 4.8 presents the mean vorticity fields in horizontal planes

at the mid-span of uniform cylinders of base (D) and fin (Df ) diameter (Figures 4.8a

and 4.8b, respectively), as well as the two horizontal planes at the mid-pitch and in-line

with a fin for the finned cylinders (Figures 4.8c-4.8h). The vorticity is estimated from

the measured velocity fields using Richardson extrapolation derivative estimators [102],

which is known to mitigate the under prediction of vorticity values due to the smoothing

effect of the derivative estimators, at the cost of higher noise. At the mid-pitch plane

(Figures 4.8d, 4.8f, and 4.8h), the shear layers extend much further into the wake for the

c/D = 0.083 case, diffuse earlier for the c/D = 0.33 case, and are nearly identical to a

uniform base cylinder for c/D = 1.0. Of note are the changes in the vorticity fields between

horizontal planes taken parallel to a fin (z/c = 0) and those taken at the mid-pitch location

(z/c = 0.5) for pitch ratios c/D = 1.0 and 0.33. The shear layers extending from the radial

cylinder surfaces are more diffuse and weaker (Figures 4.8c and 4.8e) than those observed

at the mid-pitch position (Figures 4.8d and 4.8f), due to the surrounding boundary layer

flow inducing lower streamwise velocities in the region.

Figure 4.9 plots the shear layer trajectories for the uniform and finned cylinder models

based on the mid-pitch (z/c = 0.5) planar measurements. The trajectories are determined

by tracking the position of maximum vorticity in the traverse profiles in the wake with

streamwise distance ωz,max(x). Extrapolation of the trajectories show that flow separation

occurs from the base cylinder for c/D = 1.0 and c/D = 0.33, and occurs at the fin

diameter for c/D = 0.083. For c/D = 0.33, while flow separates from the base cylinder,

the trajectory as it extends into the wake exhibits a higher degree of curvature and is angled

more outward compared to the uniform base cylinder and c/D = 1.0 trajectories. This
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(a) (b)

(c) z/c = 0 (d) z/c = 0.5

(e) z/c = 0 (f) z/c = 0.5

(g) z/c = 0 (h) z/c = 0.5

Figure 4.8: Mean spanwise vorticity (ωz) for (a) uniform cylinder (D), (b) uniform cylinder
(Df ), (c-d) finned cylinder (c/D = 1.0), (e-f) finned cylinder (c/D = 0.33), and (g-h) finned
cylinder (c/D = 0.083).
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Figure 4.9: Shear layer trajectories computed by tracking the maximum vorticity with
streamwise distance ωz,max(x). The circular contours indicate the positions of the base
cylinder and fins.

can be seen in the mean vorticity fields in Figures 4.8e and 4.8f, which show the vorticity

development in the wake exhibiting some differing characteristics than for c/D = 1.0.

Specifically, the mean vorticity fields show the shear layers diffusing earlier into the near

wake. This indicates that at a pitch ratio c/D = 0.33, the lateral vorticity generated on

the fins is beginning to affect the flow development at the mid-pitch location. However,

with separation occurring at similar positions from the base cylinder for a uniform base

diameter cylinder and for pitch ratios c/D = 1.0 and 0.33, there is little change in the size

of the vortex formation regions between these models (Figure 4.7). For c/D = 0.083, flow

separation occurs from the fin diameter and the trajectory is angled outward to a higher

degree than for a uniform cylinder of diameter Df , indicative of earlier flow separation and

leading to the enlarged wake width observed for this pitch ratio (Figure 4.7).

The marked change in flow separation and vortex formation scales for low pitch ratios

(e.g., c/D = 0.083) is speculated to be linked to the development of the lateral boundary
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layers on the fin surfaces. As c/D decreases and approaches the scale of the boundary

layer thickness, the boundary layers on neighbouring fin surfaces coalesce, reducing the

flow velocities and changing the related dynamics in the regions between the fins. The

boundary layer thickness on the fin surfaces may be estimated using a Blasius [107] flat

plate solution at a streamwise distance of 0.5Df from the leading edge of the fin. Based on

estimates for the current experimental set-up, it is expected that the boundary layers on

adjacent fin surfaces will coalesce between the fins at approximately c/D ≈ 0.15. Indeed,

for c/D = 0.083 in the present results, the fact that the boundary layers have coalesced is

supported by the vertical plane measurements presented in Figure 4.3e. The figure shows

the absence of low velocity streaks downstream of the fins and a corresponding small

streamwise velocity magnitude between the fin pitch (0 < z/c < 1). This is in contrast to

observations for c/D = 1.0 (Figure 4.3c) and c/D = 0.33 (Figure 4.3d), which show higher

velocities between the fin pitch and independent boundary layer streaks extending from

each fin surface. When flow through the pitch of the fins is impeded by the boundary layer

coalescence, the separated shear layer develops from the fin diameter (Df ). As shown by

Hamakawa et al. [18], once this flow separation behaviour changes, flow field parameters

scale approximately with the fin diameter instead of the cylinder effective diameter (Df

as opposed to Deff = 1.25D in this case, for c/D = 0.083). Specifically, the bulk of the

incoming flow is instead displaced around at the fin diameter (Df ), and the wake width

(Lw, Figure 4.7) thus grows transversely.

In order to investigate the characteristics of the shear layers immediately following

separation, Figure 4.10 plots the magnitude of the mean streamwise velocity in transverse

profiles at x/D = 0.5 for a uniform cylinder of base diameter and x/Df = 0.5 for the
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Figure 4.10: Transverse profiles of the streamwise velocity at x/D = 0.5 for uniform
cylinder of diameter D and x/Df = 0.5 otherwise.

remaining models. The shear layers are displaced transversely with increasing c/D (Figure

4.10), corresponding with the previously discussed increases in wake width (Lw, Figure

4.7) with pitch ratio. Figure 4.11 presents the variation of the shear layer thickness δsl,

derived from these profiles, with pitch ratio c/D. The shear layer thickness is defined as

the distance over which the streamwise velocity changes from 5%− 95% the minimum to

maximum streamwise velocity in the profile. Figure 4.11 demonstrates similarities in the

shear layer development for the uniform base cylinder and finned cylinder with pitch ratios

c/D = 1.0 and c/D = 0.33, with these models having approximately the same shear layer

thickness. For c/D = 0.083, the shear layer is much thicker (Figure 4.11), leading to rather

weak velocity gradients in the profile. In addition, a slip velocity is present at the edge of

the fin diameter (i.e., uslip > 0 at y = −D) (Figure 4.10).
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Figure 4.11: Shear layer thickness δ versus fin pitch ratio c/D. The shear layer thickness is
evaluated from measuring the distance between 5%-95% the min-max streamwise velocity
in the transverse profiles shown in Figure 4.10.

4.3 Vortex Shedding

The previous section outlined mean flow changes with pitch ratio. Specifically, changes in

the scales of the recirculation region in the wake and separated shear layer characteristics

are identified and linked to the lateral boundary layer development on the finned surfaces.

This section aims to provide a description of the unsteady flow development in the wake,

dominated by the vortex shedding phenomenon and characteristics of the wake vortex

shedding frequency and the development of the vorticity into the wake vortices are outlined.

4.3.1 Wake vortex shedding frequency

Figure 4.12a presents the spectra of the streamwise wake velocity measured by LDV at

a position of x/Deff = 5 and y/Deff = 0.5 in the wake for the uniform cylinders and

finned cylinders investigated. The respective spectra are offset from each other by 1.5
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orders of magnitude for clarity of presentation. The spectral characteristics show a high

degree of similarity between both the uniform cylinders and all the finned cylinder models.

A dominant peak at the vortex shedding frequency and a secondary harmonic peak are

discernible for all models, indicating that the transient characteristics of von Kármán

vortex shedding are not altered significantly by the presence of the fins. Figure 4.12b

presents the same spectra, but normalized by the cylinder effective diameter [26]. The

dominant spectral peaks at the vortex shedding frequency for the uniform cylinders are

nearly coincident using this normalization, as indicated by the dashed vertical line in Figure

4.12b, however the spectral peaks remain lower at lower dimensionless frequencies for the

finned cylinder models. Figure 4.13 shows the variation in the frequency energy content

with time by presenting the spectrograms of the streamwise velocity signals obtained from

the LDV measurements. The spectrograms are computed over 4096 samples at a constant

20Hz, with 97% overlap to show the temporal evolution of the spectral energy content.

The results indicate that the dominant shedding frequency shows some variation in time

for all the models. The magnitude of the peak is shown to exhibit higher modulations and

fluctuations over a wider band of frequencies for the high pitch ratio (c/D = 1.0 and 0.33

in Figures 4.13b and 4.13c) and uniform cylinder of diameter D (Figure 4.13a) models in

comparison to the lowest pitch ratio (c/D = 0.083 in Figure 4.13d) and uniform cylinder

of fin diameter (Df in Figure 4.13e). This is attributed to aspect ratio effects on the

flow development, with cellular and oblique shedding for the higher aspect ratio models

leading to frequency variation in time compared to the single cell shedding from the lower

aspect ratio models (e.g., L/Df = 10.6 for the uniform fin diameter cylinder) which are

nearing transitional aspect ratios reported in studies where the end cells developing near
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Figure 4.12: Wake velocity spectra of the streamwise velocity component measured at
x/Deff = 5 and y/Deff = 0.5. The frequency is normalized by (a) the base cylinder
diameter (D) and (b) the effective diameter (Deff ).

the endplate surfaces merge at the midspan [73,108].

The shedding frequency (fS) variation with pitch ratio (c/D) is shown in Figure 4.14.

As c/D →∞ (i.e., the geometry approaches that of a uniform base cylinder), the shedding

frequency asymptotically approaches that of a uniform cylinder of diameter D. As fins are

added, effectively decreasing c/D, the shedding frequency monotonically decreases until the

shedding frequency becomes slightly lower than that of a uniform cylinder of fin diameter

for c/D = 0.083. Following that, the trend implies that the shedding frequency will
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Figure 4.13: Spectrograms showing the frequency content energy variation in time for the
streamwise velocity component measured at x/Deff = 5 and y/Deff = 0.5
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increase to asymptotically approach that of the uniform fin diameter cylinder. Comparing

the trends in shedding frequency in Figure 4.14 to those identified in the wake widths and

formation lengths in Figure 4.7, it can be concluded that the shedding frequency has an

inverse relationship with the vortex formation scales, in agreement with previous studies

on vortex shedding from bluff-bodies [1, 4].
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Figure 4.14: Vortex shedding frequency (fSD/Uo) versus fin pitch ratio (c/D).

4.3.2 POD analysis

The horizontal planar measurements are decomposed using Proper Orthogonal Decompo-

sition (POD), an energy-based decomposition of flow field which may be used as a method

for detecting coherent structures in turbulent flows [109] and provide a description of the

distribution of fluctuating energy in the wake. The decomposition of the zero-mean veloc-

ity field (Equation 4.1) results in a set of spatial modes φi with corresponding temporal

coefficients ai.

~u∗(x, y, t) =
N∑
i=1

ai(t)~φi(x, y) (4.1)
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Figure 4.15 presents the first two spatial modes and their temporal coefficients for a

uniform cylinder of base diameter (Figure 4.15a and 4.15b) and a finned cylinder of pitch

ratio c/D = 0.33 (Figure 4.15c and 4.15d). The first two modes, when superposed in

combination with their respective temporal coefficients, yield a reduced order model of

the vortex shedding in the wake [110, 111]. The temporal modes show regular, sinusoidal

fluctuations at the vortex shedding frequency for both the uniform (Figure 4.15b) and

finned (Figure 4.15d) models, indicative of the nominally two-dimensional vortex shedding

occurring in the wakes of the structures. The first two spatial modes for both models have

similar topologies, however the lower shedding frequency in the wake of the finned cylinder

model and the associated stronger wake vortices [50] leads to larger coherent structures

in the wake. In addition, the spatial modes show higher energy content closer to the

cylinder surface for c/D = 0.33, in agreement with previous discussions on the observed

unsteadiness in the shear layers and movement of the streamline saddle point towards the

cylinder surface at this pitch ratio.

The energy distribution in the spatial modes resulting from the POD decomposition

of the x − y plane velocity fields is presented in Figure 4.16. Figure 4.16a plots the

percentage of the total energy in the wake contained in the respective spatial eigenmodes

for each model investigated, and Figure 4.16b plots the cumulative energy contained in the

first N spatial eigenmodes. For each case, the majority of the energy is in the first two

spatial modes (≈ 55− 70%). For the uniform cylinders, and for c/D = 1.0, the cumulative

energy in the first two modes is approximately equal to 55%. With decreasing pitch ratio,

the proportion of the wake fluctuation energy contained in the first two modes increases to

approximately 60% for c/D = 0.33 and approximately 70% for c/D = 0.083. This indicates
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Figure 4.15: First two POD spatial modes and corresponding temporal coefficients for
(a-b) a uniform cylinder of base diameter (D) and (c-d) a finned cylinder of c/D = 0.33.
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that a decrease in pitch ratio leads to more energetic vortex shedding in the wake.
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Figure 4.16: Mode energy distribution for uniform and finned cylinder, (a) distribution of
energy % per mode and (b) cumulative total energy versus modes.
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4.3.3 Circulation of the wake vortices

Based on the POD analysis, it may be speculated that the addition of fins to a cylinder

leads to stronger wake vortex shedding. In order to form a comprehensive description of the

vortex development in the wake, it is instructive to start with determining the vorticity flux

(Ks) in the boundary layers developing on the models. The vorticity flux in a boundary

layer is conserved in the separated shear layer and should be related to the strength of the

vortices developing downstream in the wake, as it is the singular source of wall generated

vorticity for cylindrical bluff bodies [50–52]. In order to estimate the vorticity flux into the

wake by a single shear layer, the transverse profiles of streamwise velocity at the trailing

edge of the cylinder in Figure 4.10 are integrated according to Equation 4.2. To capture

the total vorticity flux on a single side of the wake, the profiles are numerically integrated

from the wake centreline (y = 0) to the edge of the shear layer (y = y0.95umax).

Ks =

∫ y0.95umax

0

u
∂u

∂y
dy (4.2)

The results of the vorticity flux calculation are presented in Figure 4.17. For the

uniform cylinders of both base (c/D = ∞) and fin diameter (c/D = 0), the vorticity

flux is approximately equal, in agreement with boundary layer theory approximations for

uniform cylinders which estimate Ks ∝ U2
o [50]. For c/D = 1.0, the wake development

exhibits similarities to that of the uniform cylinder of base diameter and the vorticity

flux is also approximately equal. As the pitch ratio is lowered further, the vorticity flux

decreases approximately 15% for c/D = 0.33 and by approximately 30% for c/D = 0.083,

compared to the reported values for the other models. The explanation for the lower
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Figure 4.17: Vorticity flux (Ks) advected in the shear layer entering the wake from a given
side of the cylinder versus fin pitch ratio (c/D). Calculated by integrating udu/dy from
the wake centreline to the edge of the shear layer thickness.

vorticity flux in the shear layers with decreasing c/D is apparent if one considers that

the lateral vorticity from the boundary layer development on the fin surfaces leads to a

reduction in the streamwise momentum of the flow in the regions −1 ≤ y/D ≤ −0.5

or 0.5 ≤ y/D ≤ 1. This leads to decreasing velocities and gradients in the shear layers

extending into the wake which contribute to the vorticity flux. Hence, although the shear

layer is much thicker for c/D = 0.083 (Figure 4.11), the weak gradients present in the high

velocity regions lead to less vorticity flux into the wake (Figure 4.10).

Given that vorticity advected in the shear layers is significantly reduced for lower pitch

ratios (Figure 4.17), it is surprising that higher fluctuation energies are present in the

dominant spatial modes associated with vortex shedding in the wakes of models with low

pitch ratio (Figure 4.16). However, from studies on uniform cylinders, it is known that

the vorticity deficit ratio K/Ks, that is the ratio between the vorticity flux in the shear
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layers and that advected in the wake vortices can vary due to differences in the amount of

opposite-sign vorticity entrained into the vortices from the opposite side of the wake.

In order to compare the resulting vorticity flux of the wake vortices developing from

the models, the following analysis procedure is employed to phase average the TR-PIV

data. For a circular cylinder, the periodic vortex shedding phenomena may be simply

represented in a reduced order model by the mean velocity field and the first pair of spatial

eigenmodes of the decomposition [110,111]. Thus, the temporal coefficients a1(t) and a2(t)

(Figure 4.15) magnitude as it varies in time yield signals which may be used to identify

the phase progression of the vortex shedding process [98, 110, 111]. In order to extract

the phase, the Hilbert transform of the temporal coefficient of the first POD spatial mode

(a1(t)) is used. The extracted phase signal is partitioned into bins of ∆θ = π/36, and the

instantaneous velocity fields falling in each respective bin are then averaged to obtain the

phase averaged velocity field ~uθ(x, y, θ(t)). From the phase averaged fields, the average

circulation of the wake vortices is calculated by the vorticity thresholding method [25,102],

in which the boundary of a vortex is defined by the contour of some percentage of the peak

vorticity at the centre of the vortex (10− 20%ωmax). For each model, the circulation of a

wake vortex is measured immediately following detachment from the separated shear layer.

Figure 4.18 shows the functional definition utilized of an attached and detached vortex.

The vortex is considered attached when the theshold boundary topology is connected to

the shear layer. A vortex is considered detached when the threshold boundary completely

surrounds the wake vortex, and the area integral over this region (Figure 4.18b) of the

phase averaged vorticity field yields the average circulation of the wake vortices. This way,

the circulation calculation is applied such that viscous dissipation effects as the vortices
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Figure 4.18: Circulation estimation of the wake vortices using vorticity thresholding on
the phase averaged fields. Circulation is estimated immediately following the detachment
of the vortices into the wake from the shear layer as determined by the threshold topology
(a) attached vortex, (b) detached vortex.

are carried downstream are consistent across models.

Based on the circulation calculations, Figure 4.19 shows the vorticity flux of the wake

vortices (K) plotted against the fin pitch ratio. The vorticity flux in the wake vortices

is equal to the product of the average circulation of the wake vortices (Γ) and the vortex

shedding frequency (fS). The vortex shedding frequencies are obtained from the LDV

velocity measurements presented earlier (Figure 4.14). The results indicate that there

is a higher vorticity flux in the wake for lower fin pitch ratios, reaching a maximum for

c/D = 0.083 (Figure 4.19). As remarked earlier, the opposite trend is reported for the

amount of vorticity flux in the shear layers for decreasing c/D (Figure 4.17). Based on the

discrepancies between the vorticity flux in the shear layers and the vorticity advected in

the wake by the vortices, clearly there are changes in the vorticity deficit ratio K/Ks with

fin pitch ratio. Figure 4.20 presents the trend in the vorticity deficit ratio K/Ks, that is the

ratio between the vorticity flux in the cylinder shear layers, and that ultimately advected
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Figure 4.19: Vorticity flux (K = fsΓ) advected into the wake by the wake vortices versus fin
pitch ratio. For each model, the circulation is calculated in the wake vortices based on 10%,
15%, and 20% vorticity threshold boundaries, leading to progressively lower circulation
measurements for each.

in the wake by the vortices. The results show that for the uniform cylinders of diameter D

and Df and for the finned cylinder of the highest pitch ratio c/D = 1.0, the vorticity deficit

ratio is approximately equal to K/Ks ≈ 0.4. With decreasing pitch ratio, for c/D = 0.33

and 0.083, the vorticity deficit ratio is increased up to a maximum of K/Ks ≈ 0.7, nearing

the maximum reported deficit ratios for flows over uniform circular cylinders [50].

The results show that for lower c/D, the wake vortices are stronger and more efficiently

transport the vorticity generated in the cylinder boundary layers into the wake vortices.

This agrees with the results of previous studies on finned cylinders, which conjecture that

the vortex shedding process is enhanced by the addition of fins compared to uniform

cylinders due to sharper, high magnitude peaks in the wake velocity spectra [26, 27]. The

lower entrainment of opposing vorticity in the wake vortices for c/D = 0.33 and 0.083 can

be seen in Figure 4.21, which presents both the phase averaged vorticity fields and sample

82



0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

c/D

K
/
K

s c/D → ∞

Figure 4.20: Vorticity deficit ratio (K/Ks) of the vorticity advected in the wake by the
vortices and the vorticity advected in the shear layers versus fin pitch ratio c/D.

instantaneous vorticity fields at the same phase angle of vortex shedding. The figure shows

that despite von Kármán vortices of opposing sign being shed into the wake for each

model, as indicated by the phase averaged fields, there is a significant amount of opposing

sign vorticity entrained into each wake vortex, as shown in the instantaneous fields. For

example, a vortex shed from the shear layer of positive vorticity contains many small scale

vortex structures of negative sign. For c/D = 0.083 (Figure 4.21f), the instantaneous field

shows that the wake vortices contain a significantly smaller amount of entrained vorticity

from the opposing shear layer. This leads to the net circulation of the wake vortices being

significantly higher for this pitch ratio. For c/D = 0.33 (Figure 4.21d), the effect is less

pronounced, however, inspection of the instantaneous fields yields an observation of a lesser

degree of vorticity entrainment from opposing shear layers than observed for the uniform

cylinders and c/D = 1.0 (Figures 4.21b and 4.21h).

An explanation for the addition of fins lowering the mixing of vorticity in the wake,
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(a) Phase averaged (b) Instantaneous z/c = 0.5

(c) Phase averaged z/c = 0.5 (d) Instantaneous z/c = 0.5

(e) Phase averaged z/c = 0.5 (f) Instantaneous z/c = 0.5

(g) Phase averaged z/c = 0.5 (h) Instantaneous

Figure 4.21: Phase averaged and instantaneous vorticity fields in the wake for (a-b) finned
cylinder (c/D = 1.0), (c-d) finned cylinder (c/D = 0.33), (e-f) finned cylinder (c/D =
0.083), and (g-h) uniform cylinder (Df ).
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ultimately leading to stronger wake vortices is not readily apparent. However, it is spec-

ulated that it is linked to the generation of significant lateral vorticity originating from

the boundary layers on the surfaces of the fins. Naito et al. [79] attributes the complete

stabilization of the shear layers and suppression of vortex shedding in the wake of uniform

cylinders with an attached outer shell of porous media, to the low energy fluid injected in

the near wake from through-flow between the porous media which has been subjected to

a high degree of dissipation (|∇u|2). While the addition of low energy fluid into the wake,

and the associated creation of a slip velocity at the surface of the porous cylinder leading to

weaker shear layers can both be reasoned to have stabilization effects on the shear layers,

it is not immediately apparent that these effects would lead to the decrease in opposing

vorticity entrainment observed in the present study, where vortex shedding occurs in the

wake. Nevertheless, stabilization effects in the wake due to the injection of the low energy

fluid, leading to reduced three-dimensional, fine-scale vortex structures, appear a likely

explanation.

4.4 Shedding frequency scaling

The high degree of similarity in the vortex shedding characteristics from finned and uniform

cylinders indicates that a universal scaling for the shedding frequency can be explored.

For a uniform cylinder, universal Strouhal numbers (St = fL/Uo) have been proposed

based on using various length scales associated with the vortex development, such as the

transverse distance between separated shear layers, transverse distance between streamwise

velocity RMS peaks in the wake, and spacing between vortices [1]. For finned cylinders,
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several geometric scaling parameters have been explored. Beginning with the work of Mair

et al. [26], there have been numerous successful attempts at using an a priori, practical

geometric scaling parameter which collapses the shedding frequency data [18, 26, 29]. All

the proposed scalings involve modifying the definition of the diameter of the cylinder, such

that the characteristic length scale is increased with the addition of fins in order to account

for the downward trend in shedding frequency observed for higher fin densities.

The finned cylinder effective diameter (Deff , Equation 4.3) [26] is the most widely

used geometric scaling in both studies of solid, parallel finned cylinders [26, 28] and he-

lical, serrated fins [17, 18, 27]. The definition is a function of the base diameter (D), fin

diameter (Df ), fin thickness (T ), and fin pitch (c), and is based on equating the projected

area of the finned cylinder to that of an equivalent uniform cylinder of diameter Deff .

Modifications to the definition have been proposed in studies on helical, serrated finned

cylinders. Hamakawa et al. [18] proposed that the effective diameter be simply replaced

by the fin diameter Df once a minimum pitch ratio (c/D ≤ 0.16) is reached for a certain

Reynolds number range (7.6 × 104 ≤ ReD ≤ 1.9 × 105). This approach accounted for the

substantial growth of the wake for low c/D, attributed in the current study to be caused

by the boundary layer coalescence between the fins.

Deff =
(c− T )D + TDf

c
(4.3)

Figure 4.22 illustrates the result of scaling the shedding frequency data with the ef-

fective diameter (StDeff ), using the results from the present study, as well as those for

previous investigations on the same fin geometry. The data show that this scaling pro-
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duces relatively high scatter. In particular, the scaling performs poorly for lower Reynolds

numbers (Figure 4.22b) or lower pitch ratios (Figure 4.22a), with the calculated Strouhal

numbers falling outside of the Strouhal number range for uniform cylinders of comparable

Reynolds numbers StDeff ≈ 0.19 [12]. Ryu et al. [29], in their study of helical, serrated

cylinders with low pitch ratios (0.08 ≤ c/D ≤ 0.17), also found a poor collapse of the shed-

ding frequency data for 1.7× 104 ≤ ReD ≤ 1.85× 105 with the cylinder effective diameter.

Instead, they proposed scaling the data by the hydraulic diameter (Dh, Equation 4.4). For

their paramater range, the hydraulic diameter provided a better collapse of the Strouhal

number data from the helical, serrated finned cylinder models [29].

DH = Df − 4
(c− T )(Df −D)

c− T +Df −D
(4.4)

The analysis so far has shown that the effective diameter definition performs poorly in

scaling frequency data for finned cylinders at relatively low Reynolds numbers and relatively

low fin pitch ratios (Figure 4.22). These observations point towards the failure of these

methods to reflect changes in the flow development surrounding the fins. In particular,

none of the proposed scalings take into account the boundary layer growth on the fin

surfaces, shown to be responsible for marked changes in the flow development with c/D

in this study. Since both the effective (Deff ) and hydraulic (DH) diameter definitions are

derived purely from geometric considerations, they do not account for the variation of the

fin boundary layer thickness with Reynolds number. Hence, where the boundary layers

dominate a larger fraction of the span of the cylinder for both lower Reynolds numbers

and lower pitch ratios, the effects are most apparent.
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Figure 4.22: Strouhal number frequency scaling based on the cylinder effective diameter
(StDeff = fSDeff/Uo), the variation is shown with respect to (a) Reynolds number based
on the effective diameter ReDeff and (b) fin pitch ratio c/D.

Figure 4.23, shows a schematic diagram of the boundary layer growth on the finned

surfaces. The boundary layer thickness (δ) and displacement thickness (δ∗) of the bound-

ary layers may be approximated from Blasius’ flat plate boundary layer solution [107]

(Equations 4.5 and 4.6), with the leading edge of the fin taken as the origin (x = 0). The

boundary layer thickness and displacement thickness estimated at a distance Df/2 along

the fin surface are denoted δ0.5π and δ∗0.5π, respectively.
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Figure 4.23: Schematic of the boundary layer development on the finned surfaces and
denoted displacement thickness (δ) and momentum thickness (δ∗) estimates.

δ =
5.0x√
Rex

(4.5)

δ∗ =
1.72x√
Rex

(4.6)

To explore the boundary layer effect more clearly in the measurements, it is instructive

to consider the variation of the Strouhal number data scaled based on the effective diameter

(Figure 4.24a) and the hydraulic diameter (Figure 4.24b), with respect to the ratio of

the expected boundary layer thickness to the fin pitch (δ0.5π/c). The results reveal a

uniform downward trend in the Strouhal number data scaled with the effective diameter,

indicated by the dashed line in Figure 4.24a. This illustrates clearly that as the boundary

layer thickness grows relative to the fin pitch, the Strouhal number based on the effective

diameter does not remain constant. The scaling based on the hydraulic diameter performs

poorly for relatively small δ0.5π/c (Figure 4.24b). The observed scatter in the Strouhal

number data is hence attributed to changes in the shedding frequency which are related to

89



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

δ0.5π/c

S
t D

ef
f

 

 

Mair et al. 1975
Eid and Ziada 2011
Present Study

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

δ0.5π/c

S
t D

h

 

 

Mair et al. 1975
Eid and Ziada 2011
Present Study

(b)

Figure 4.24: Strouhal number frequency scaling based on (a) the cylinder effective diameter
(StDeff = fSDeff/Uo), and (b) the cylinder hydraulic diameter StDh = fSDh/Uo, plotted
against the ratio of the estimated boundary layer thickness over the fin pitch δ0.5π/c.

δ0.5π/c, which cannot be accounted for by Deff or DH since δ0.5π is a function of Reynolds

number.

In order to accommodate for the lateral boundary layer growth on the surfaces of

the fins in the frequency scaling, the following modification to the effective diameter is

proposed to account for the added flow blockage created by the boundary layers. The

thickness of the fins (T ) is modified, such that the effective thickness of the fins (T ∗) is the
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physical thickness of the fin plus two predicted displacement thickness’ of the fin boundary

layer (T ∗ = T + 2δ∗0.5π). With this modification, the effective diameter is now expressed

as in Equation 4.7. Substituting in the Blasius solution estimate for the boundary layer

displacement thickness (δ∗0.5π, Equation 4.6), then results in Equation 4.8. When a critical

c/D is reached and the boundary layers coalesce (c < 2δ0.5π), the vortex formation has been

shown to scale with the fin diameter, with flow being displaced outward and separating

at the fin diameter. Thus, the effective diameter definition should be replaced by the fin

diameter (Deff = Df , Equation 4.9) when this is the case, following the work of Hamakawa

et al. [18].

Deff∗ = D +

[
2δ∗0.5π
D

+
T

D

]
(Df −D)

c/D
: c > 2δ0.5π (4.7)

Deff∗ = D +

[
2.264

(
Df

D

)1/2(
1

ReD

)( c
D

)
+
T

D

]
(Df −D)

c/D
: c > 2δ0.5π (4.8)

Deff∗ = Df : c < 2δ0.5π (4.9)

Figure 4.25 presents the frequency data scaled by the modified effective diameter

(StDeff∗) plotted against the ratio of the expected boundary layer thickness to the fin

pitch (δ∗0.5π/c). The data now obeys a linear relationship, while demonstrating a better

collapse of the results and reduced scatter for all the reported studies. The Strouhal num-

ber data now does not show dependence on the differences in the boundary layer thickness
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Figure 4.25: Strouhal number frequency scaling based on the cylinder effective diameter
(StDeff∗ = fSDeff∗/Uo) versus the ratio of the estimated boundary layer thickness over
the fin pitch δ0.5π/c.

between the models, hence the new effective diameter definition (Deff∗) properly reflects

the effect of both Reynolds number and geometric parameters on the flow development.

Due to the flat plate approximated used to estimate the boundary layer displacement thick-

ness, the Deff∗ scaling is supposed to have some limitations. In particular, the flat plate

estimates are expected to be more inaccurate for low Df/D models. For high Df/D, over

the majority of the fin surface, the incoming flow is approximately parallel, in contrast

to low Df/D, where flow curvature around the base cylinder and the associated changing

pressure gradient will have effects of the lateral boundary layer growth. Considering this,

it is not surprising that the data of Mair et al. [26] exhibits the highest scatter, as they

investigate models of lower diameter ratio (Df/D = 1.2 and 1.4) compared to Eid & Ziada

(Df/D = 1.8) and the present study (Df/D = 2.0).
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4.5 Aerodynamic forces

The force balance measurements were performed for all the uniform and finned cylinder

models investigated (Table 3.1). The force balance signals were filtered using a 7th order,

low-pass butterworth IIR filter with cutoff frequency fc = 2.5Hz in order to eliminate

the effect of structural vibrations. Further details on the error analysis and calibration

procedure developed for the force measurements are included in Appendix C. This section

presents the results and trends in the mean and fluctuating forces on the models, and

uses pressure extraction techniques, as well as spanwise correlation measurements from the

vertical plane PIV data in order to give added insight into the results.

4.5.1 Mean drag

For the presentation of the mean drag coefficient (CD) results, it is useful to define the fin

density (Fρ) which is expressed in fins/D, in place of the pitch ratio c/D, which approaches

infinity for the uniform base cylinder (D). The uniform base cylinder corresponds to Fρ =

0fins/D and the uniform fin diameter cylinder corresponds to the highest packing density

possible for the fin thickness, Fρ = 35.7fins/D in this case. Figure 4.26 presents the mean

drag coefficient normalized by the projected area of the model (CD = FD/0.5ρU
2
oDeffL).

The results show that the drag coefficient for the uniform base cylinder is CD = 0.98, in

close agreement with the measurements of Wieselsberger [59]. As fins are added to the

base cylinder, the mean drag coefficient increases approximately linearly with increasing fin

density (Figure 4.26). The mean drag coefficient continues to increase up to c/D = 0.083

(Fρ = 12.0), reaching a maximum of CD = 1.87, but falls below the linear trend. Following
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Figure 4.26: Mean drag versus fin density for (�) the present results and (•) Wieselsberger’s
[59] uniform cylinder results. Error bars calculated based on estimation of the calibration
errors.

that, the mean drag coefficient decreases to CD = 0.91 for the uniform cylinder of fin

diameter (Df ), in close agreement with the uniform cylinder results of Wieselsberger [59]

(Figure 4.26).

The initial linear increase in the mean drag coefficient with the addition of fins to

the base cylinder is attributed primarily to the added viscous forces acting on the lateral

surfaces of the fins. Hence, with each added fin, the viscous drag increases a constant

amount. Since the flow development around the finned cylinder only shows minor changes

compared to that of a base uniform cylinder for c/D = 1.0 and 0.33, such large changes

in the mean drag are unlikely caused by changes in the pressure forcing on the cylinder.

Based on this argument, the slope of the linear trend is expected to be Reynolds number

dependent, as it relies on the relative contribution of the viscous forces compared to the

pressure forces. The levelling off of the linear trend for high Fρ (Figure 4.26) is attributed

to the boundary layer coalescence between the neighbouring fins (e.g., c/D = 0.083). The
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velocity between the fins is decreased for progressively higher fin densities, reducing the

viscous shear on the fin surfaces. Hence, with each added fin, the viscous drag no longer

increases independently. The fin density at which the lateral boundary layers coalesce

and the linear trend falls off is also expected to be Reynolds numbers dependent since the

boundary layer thickness is a function of Reynolds number. Eventually, the fin density is so

high that viscous forces on the lateral fin surfaces are small, and the mean drag coefficient

will asymptotically approach that of a uniform cylinder of fin diameter (c/D → 0).

4.5.2 Fluctuating lift

Figure 4.27 presents the RMS of the fluctuating lift coefficient (CL′,T ) measured on the

investigated models. The results show that the RMS lift coefficients for a uniform base

cylinder (Fρ = 0fins/D) and a finned cylinder of pitch ratio c/D = 1.0 (Fρ = 0.97fins/D)

are approximately CL′,T = 0.012. For c/D = 0.33 (Fρ = 2.77fins/D), the RMS lift

coefficient increases to CL′,T = 0.015, before decreasing substantially for c/D = 0.083

(Fρ = 8.98fins/D) to CL′,T = 0.006. The fluctuating lift coefficient for a uniform cylinder

of fin diameter (Fρ = 35.7fins/D) is equal to CL′,T = 0.048, substantially higher than the

rest of the models.

It should be emphasized that the total fluctuating lift coefficient (CL′,T ) acting on a

cylinder model depends on how well correlated the shedding is along the span of the model

[12]. Since the spanwise correlation of vortex shedding is sensitive to the aspect ratio [38,41]

and free-stream conditions in a given facility, the total fluctuating lift coefficient result can

vary between experimental facilities and, thus, it is instructive to consider the section lift
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Figure 4.27: RMS fluctuating lift coefficient (CL′,T ) versus fin density (Fρ). Error bars
calculated based on estimation of the calibration errors.

coefficient (CL′) instead [12].

Figure 4.28 presents the spanwise correlation coefficient (Ruu(s)) as it varies along the

span of each model. The correlation coefficient is estimated using streamwise velocity

signals in the wake obtained from the vertical (x− z) plane PIV results at y/Deff = 0.5.

The streamwise distance into the wake where the velocities were sampled for the correlation

measurements was chosen for each model based on the location that yielded the highest

correlations, similar to the procedure employed by Ziada et al. [27] in their selection of the

transverse location of their roaming hot-wire probes. On the average, the figure shows that

the highest correlations are attained for a finned cylinder of pitch ratio c/D = 0.083 and a

uniform cylinder of fin diameter (Df ). In contrast, notably lower correlations are attained

for finned cylinders of pitch ratio c/D = 0.33 and 1.0, as well as a uniform cylinder of

base diameter (D). The high correlations for the uniform fin diameter cylinder (Df ) and

for c/D = 0.083 are attributed to aspect ratio effects on the spanwise vortex development.

For these models, the aspect ratios (L/Deff∗ ≈ 10) are nearing transitional regimes where
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Figure 4.28: Spanwise correlation of vortex shedding Ruu(s) along the span of the models.
Estimated from PIV measurements of the streamwise velocity signals in the wake.

the end cells of lower frequency merge into a single cell of constant frequency across the

span [72, 73]. In contrast, for the higher aspect ratio models, cellular shedding occurs

in three distinct cells in the wake, one cell of constant frequency near the midspan of

the model and two end cells near the boundaries. This leads to lower reported spanwise

correlations compared to the parallel, single cell shedding occurring in the wakes of the

uniform cylinder of fin diameter (Df ) and finned cylinder with c/D = 0.083.

Sectional RMS lift coefficients can be estimated from measurements of the total RMS lift

coefficient (CL,T ) and spanwise correlation (Ruu(s)) using Equation 4.10, which integrates

the correlation over the finite cylinder length [12,67]. Since the FOV of the vertical plane

PIV measurements only covers approximately 10.5D of the cylinder span, in order to

integrate the spanwise correlation over the entire cylinder length, exponentials were fit

to the correlation data and extrapolated to the full span length. In the cases where the

correlations have levelled off to approximately zero within the FOV, the correlation is

extrapolated with zero values.
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CL′ = CL′,T
1

L

[
2

∫ L

0

(L− s)Ruu(s)ds

]1/2
(4.10)

Figure 4.29 presents the estimated sectional lift RMS coefficients plotted against the fin

density. The sectional RMS lift coefficient is a metric which is independent of spanwise

correlation, and hence the observed trends can be related to aspects of the planar flow

development in the wake. The results show that with the addition of fins, the sectional RMS

lift coefficient is slightly reduced for c/D = 1.0 (Fρ = 0.97fins/D) compared a uniform

base cylinder. The sectional RMS lift coefficient then increases substantially for c/D = 0.33

(Fρ = 2.77fins/D) and is substantially reduced for c/D = 0.083 (Fρ = 8.98fins/D).

These results may be attributed to the changes in flow development observed with c/D

discussed in the previous sections. Specifically, c/D = 1.0 shows only small differences in

the flow development compared to the uniform cylinder of base diameter, which is reflected

by similar magnitudes of the sectional fluctuating lift. The increase in sectional fluctuating

lift for c/D = 0.33 is attributed to the strengthening of the wake vortices observed in the

circulation estimates (Figure 4.19) and the increase in unsteadiness of the shear layers and

near wake flow region. The increased unsteadiness in the flow field near the cylinder, for

c/D = 0.33, can be observed in both the wake Reynolds stresses (Figure 4.4, 4.5, and 4.6)

and the first two spatial modes of the POD (Figure 4.15). For c/D = 0.083, the stabilization

of the wake and displacement of the vortex formation far downstream (x/D ≈ 6.0, Figure

4.7) leads to the substantial reduction in the observed sectional fluctuating lift, despite

having stronger wake vortices for this pitch ratio(Figure 4.19).
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4.5.3 Pressure field development

With the mean pressure distribution contributing significantly to the mean drag [59], it is

of interest to investigate the mean pressure field development in the wakes of the models.

The pressure fields are estimated using horizontal (x − y) plane PIV results. Specifically,

the Reynolds averaged Navier-Stokes equations (Equation 4.11) are integrated using the

omni-directional line integration technique [91].

∇p(x, y) = µ∇2~u− ρ(∇ · τu′v′)− ρ(~u · ∇~u) (4.11)

The details of the methodology are discussed in Appendix D. The integration of Equation

4.11 yields the changes in pressure over the domain relative to an integration constant. To

obtain absolute pressure fields, the value of the integration constants needs to be defined.

For this investigation, the pressures at the transverse and downstream streamwise domain
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boundaries (y/D = ±4, x/D = 12) were set such that their average was equal to zero.

Given the FOV of the obtained PIV measurements, this approach minimizes the bias error

caused by selection of a reference in the wake lower than the free-stream pressure. At these

points, the pressure is observed to be closest to the free-stream pressure (po) in numerical

solutions for flow around cylinders at comparable Reynolds numbers (Appendix D).

Figure 4.30 presents the mean pressure fields for the uniform and finned cylinder models

investigated. The pressure fields show the low pressure region in the near wake, associated

with the recirculation region upstream of the formation of the wake vortices. Thus, the

streamwise and transverse extents of the low pressure contours immediately downstream of

the models exhibit the same trends identified in the formation lengths (Lf ) and wake widths

(Lw) in Figure 4.7. In particular, the low pressure region in the wake for c/D = 0.083 is

enlarged drastically with the associated flow separation at the fin diameter and elongation

of the vortex formation length to x/D ≈ 6, while the low pressure regions retain similar

scales for c/D = 1.0, 0.33, and a uniform cylinder of base diameter (D). In the wake of

each model, a band of low pressure extends into the wake along y = 0, a product of the

passage of the low pressure regions in the cores of the wake vortices. This low pressure

deficit in the wake is lower for c/D = 0.083 and c/D = 0.33, compared to for c/D = 1.0 and

uniform cylinder of base diameter (D), due to the higher circulation wake vortex shedding

occurring (Figure 4.19).

Figure 4.31 shows the variation of the base pressure coefficient with fin pitch ratio

(c/D) at the mid-pitch location (z/c = 0.5) of the models. The base pressure coefficient is

estimated from the mean pressure fields at the transverse center (y = 0) and at a streamwise

distance of x = D/2 for the uniform cylinder of base diameter, and x = Df/2 for the
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Figure 4.30: Mean pressure fields for (a) uniform cylinder (D), (b) uniform cylinder (Df ),
(c-d) finned cylinder (c/D = 1.0), (e-f) finned cylinder (c/D = 0.33), and (g-h) finned
cylinder (c/D = 0.083), calculated using the iterative line integration pressure PIV tech-
nique.
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remaining models. The results indicate changes between −0.85 ≤ Cbp ≤ −0.55 in the

base pressure coefficient with pitch ratio. Specifically, the base pressure is approximately

constant between the two uniform cylinders (c/D = ∞ and 0), and the base pressure

decreases slightly with the addition of fins for c/D = 1.0 and c/D = 0.33, before increasing

for c/D = 0.083. Previous studies on uniform cylinders have found that increases in base

pressure are linked to increases in the formation length [4]. Hence, the observed elongation

of the vortex formation length for c/D = 0.083 (Figure 4.7) leads to the increase in the

base pressure on the model.

The pressure drag acting on a cylindrical bluff body is approximately proportionate to

the difference between the stagnation pressure (Cpf ≈ 1) at the front of the cylinder and

the base pressure on the aft of the cylinder [4]. Based on the magnitude of the changes

in base pressure observed on the models for c/D = 0.33−∞, compared to the significant

increases in total mean drag in the force measurements (Figure 4.26), it must be concluded

that the observed trends in the mean drag on the models are entirely attributed to the

additive viscous drag from the fin surfaces. The implied changes in the pressure drag, for

c/D = 0.33 − ∞, are relatively minimal (< 5%CD) compared to the observed trends in

Figure 4.26. Moreover, an increased base pressure would typically lead to a decrease of

the net pressure drag on the structure [4], hence c/D = 0.083 exhibiting the highest mean

drag while simultaneously having the highest base pressure indicates the dominant effect

of the viscous drag.
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Figure 4.31: Base pressure coefficient (Cbp) versus pitch ratio (c/D) from planar measure-
ments at z/c = 0.5 and compared to the uniform cylinder results of Norberg [112] and
Williamson and Roshko [113].
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Chapter 5

Conclusions

The effect of fin pitch ratio (0.083 ≤ c/D ≤ 1.0) on wake development and structural

loading characteristics of cylinders with equispaced circular fins has been studied in the

shear layer transition regime for ReDeff = 1020−2040, Df/D = 2.0 and t/D = 0.028. For

the conditions investigated, vortex shedding occurs in the wake of all models. The near

wake development and the characteristics of vortex formation are not affected significantly

by the presence of fins at high pitch ratios (e.g., c/D = 1.0) compared to a uniform cylinder

of base diameter. For c/D = 0.33, the effects of the fins on the flow development are more

pronounced, with the boundary layer growth on the fin surfaces causing the shear layers

to separate further away from the base cylinder. For the lowest pitch ratio investigated

(c/D = 0.083), the coalescence of the boundary layers between neighbouring fins drastically

affects flow development over the model. In particular, the outer flow is directed around the

outer surface of the fins away from the base cylinder, leading to a significant enlargement

of the vortex formation region. In this case, the wake development is similar to that of
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a porous cylinder [30, 78–80], which also features a significant enlargement in the vortex

formation length.

The addition of fins leads to the generation of lateral vorticity in the region between

the fins due to the boundary layer growth on the fin surfaces. This lateral vorticity leads

to a decrease of the spanwise vorticity in the separated shear layers which feed into the

wake vortices. Despite the vorticity flux being lower in the shear layers for decreasing

c/D, the vorticity advected in the wake vortices is found to be higher for lower c/D.

This is attributed to a lower degree of opposite-sign vorticity entrainment between the

opposing shear layers during the roll-up process. The injection of low-energy fluid into the

vortex formation region from the boundary layers forming on the fins is argued to have a

stabilization effect in the wake, as in the case of porous cylinders where shedding may be

completely suppressed, which leads to lower entrainment of opposite-signed vorticity from

opposing shear layers.

The vortex shedding frequency is shown to decrease with decreasing c/D. When the

boundary layers forming on the fins coalesce (e.g., c/D = 0.083), separation occurs at the

fin diameter, and the shedding frequency becomes comparable to that of a uniform cylinder

of fin diameter. A modification of the frequency scaling based on effective diameter is

proposed. The proposed scaling accounts for the added flow blockage due to the boundary

layer growth using two displacement thickness estimates from Blasius’ flat plate boundary

layer solution. The resultant Strouhal numbers exhibit significantly less scatter compared

to those obtained based on the effective diameter since the proposed formulation accounts

for the effect of both the Reynolds number and the geometry of the finned cylinder on the

flow development.
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Measurements of the structural loading on the models indicate that the mean drag

increases with increasing c/D. The initial increase with the addition of fins (c/D ≥ 0.33)

is nearly linear and is attributed to the addition of viscous drag from the boundary layers

developing on the fin surfaces. Using planar pressure fields estimated from the x− y plane

PIV data, it is shown that the increase of CD with decreasing c/D is driven primarily by

the increase in skin friction, with marginal changes in the pressure field occurring near

the cylinder surface. The sectional lift RMS coefficient shows small changes between a

uniform base cylinder (D) and a finned cylinder with c/D = 1.0. Further decrease in

the pitch ratio to c/D = 0.33 leads to a substantial increase in the sectional lift RMS

coefficient. This increase is attributed to the strengthening of the wake vortices and velocity

fluctuations immediately downstream of boundary layer separation. For the lowest pitch

ratio c/D = 0.083, despite the wake vortices being the strongest, the sectional lift RMS

coefficient is reduced substantially in comparison to all other models. This is due to the

substantial displacement of vortex formation downstream (up to x/D ≈ 6), leading to

lower fluctuating pressures near the cylinder surface.
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Chapter 6

Recommendations

From experience gathered during the course of this study, the author makes the following

recommendations pertaining to extension of the current research.

1. The study looks at a rather small geometric parameter range pertaining to finned

cylinders. Regarding the pitch ratio effect, it would be beneficial to investigate fin

pitch ratios between c/D = 0.083 and 1.0 to elucidate the transitional regime between

the vastly differing flow developments for c/D = 1.0 and c/D = 0.083. In addition,

with respect to the frequency scaling proposed in the present study, there is lack of

data points for the conditions at which the fin boundary layers are nearing coalescence

(δ0.5π/c = 0.25−0.5). The addition of data points in this regime would further confirm

the effectiveness of the proposed frequency scaling.

2. The majority of the observed effect of c/D on the flow development, shedding fre-

quency, and structural loading are linked to the growth of the boundary layers on the
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fins. A fundamental study which explores how the boundary layer growth changes

with geometrical parameters, in particular D/d and ReD, will be beneficial for pre-

dicting changes in flow development with these parameters.

3. The linear trend in mean drag with increasing fin density is expected to be present

for a wide range of Reynolds numbers; however, the slope is hypothesized to change

with ReD as it affects the characteristics of boundary layer development. Thus,

performing experiments at multiple Reynolds numbers would provide a correlation

for estimating the mean drag on a finned cylinder.

4. Flow visualization in the wakes of the finned cylinders would help elucidate the

differences in vorticity entrainment with c/D. It is hypothesized that the lowering of

the vorticity entrainment is linked to a decrease in the fine scale three-dimensional

vortex structures in the wake. The results would elucidate the stabilization effects of

the injection of low energy fluid into the wake.
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Appendix A

Free-stream characterization

The current flow conditioning design in the flume is shown in Figure A.1. Water enters

the settling chamber from the head tank through primary and secondary pipe outlets.

Honeycomb place horizontally in the settling chamber prevents a large recirculating flow

from developing in the settling chamber. The flow exits the settling chamber through a

plastic/wood grid (G1) and through two turbulence screens (SC0 and SC1). The water

then flows through a 2.42 deg diffuser section over 2.46m before entering an aluminium

honeycomb of cell size M = 9.5mm and aspect ratio L/M = 10.1 followed by an aluminium

grid with porosity β = 0.66, cell size M = 5.08cm and w = 0.953cm. Before entering the

test section, the flow passes through five turbulence reducing screens, the first three of

higher porosity and wire Reynolds number (SC2, SC3, and SC4), and the last two fine

screens (SC5, SC6).

The water flume facility free-stream characteristics were extracted from a long sample,

single-point LDV measurement of the streamwise velocity and planar PIV measurements
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Figure A.1: Water flume flow conditioning elements, SC denotes aluminium screens, G
large scale grids, and H aluminium honeycomb.

in horizontal (x − y) and vertical (x − z) planes with the models removed from the test

section. The measurements were centred in-line with the model mounting axis (x, y, z = 0).

Careful control of the water height in the flume and cleanliness of the flow conditioning ele-

ments throughout the experimental campaign minimized deviation from the characteristics

reported in this section.

The LDV signal was collected for a one hour duration and re-sampled at a con-

stant facq = 10Hz. The resulting single-point, streamwise velocity signal had a mean

of 87.4mm/s and turbulence intensity of 1.2%. The spectrum of the velocity signal is

shown in Figure A.2. The spectrum exhibits a small peak at f ≈ 0.1Hz, which has been

attributed to low frequency global oscillations of the mean streamwise velocity associated

with surface waves in the water flume [97].

Mean velocity profiles obtained with PIV measurements along the transverse direc-

tion (Figure A.3a) for −100mm ≤ y ≤ 100mm and vertical direction (Figure A.3b) for

−100mm ≤ z ≤ 100mm show the uniformity of the free-stream (αu) across the test sec-

tion. The min-max flow uniformity is αu = 4.3% in the transverse direction and 1.4% in
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Figure A.2: Spectrum of the streamwise free-stream velocity acquired from LDV measure-
ment.

the vertical direction. This is a slightly higher uniformity estimate than that characterized

upon the installation of the flow conditioning elements (< 3% in 2010) [97]. However, the

condition of the turbulence screens is assumed to have deteriorated over this time period,

and their redesign and/or replacement is the subject of ongoing work. The free-stream

velocity value used as reference in this study (Uo = 86.5mm/s) is the inclusive mean of

both the vertical and horizontal plane velocity measurements.

The free-stream references used in the thesis are the velocity (Uo = 0.0865m/s) as

measured with the LDV system with the models removed, and the water density (ρw =

998.7kg/m3) and viscosity (µw = 1.611× 10−3Pa · s) for a measured water temperature of

17° [114].
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Figure A.3: Profiles of the streamwise free-stream velocity in the (a) transverse direction
for −100mm ≤ y ≤ 100mm and (b) spanwise direction for −100mm ≤ z ≤ 100mm,
acquired from PIV measurement.
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Appendix B

Experimental uncertainty

B.1 LDV Uncertainty

The most significant error source in LDV measurements is typically attributed to a velocity

bias error which originates from higher velocity particles crossing the measurement volume

more often than low velocity particles [104]. Equation B.1 gives an order of magnitude

estimate of the velocity bias, which depends on the mean (U) and RMS (ū′) of the measured

velocity signal in order to calculate the true velocity (UT ).

U/UT ≈ 1 +
ū′

2

U2
T

(B.1)

Based on the wake velocity obtained at x/Deff and y/Deff = 0.5 for each model, the

velocity bias error is estimated based on Equation B.1 to be between 3.44 − 10.74mm/s.

This is a conservative estimate, and it is known that re-sampling of the velocity data at
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a constant frequency reduces this velocity bias error [105]. After re-sampling the velocity

signal, the mean value decreases such that the bias error is estimated to be between 0 −

7.23mm/s. The highest bias error estimate (7.23mm/s) corresponds to the velocity signal

in the wake of the c/D = 0.083 finned cylinder model, where the measurement volume

lies in a low velocity region in the wake. Despite these relatively high error values, the

spectral content of the velocity signals should not be affected, which is the utility of the

LDV measurements in this study.

The MSE miniLDV probe sensor has a repeatability error of 0.1% and a total accuracy

of 0.3% according to the manufacturers specifications. The mean particle diameter is 10µm

and is estimated to vary from 0− 20µm, which will contribute to a slight over prediction

of RMS velocity values due to the randomness associated with the particle size [104]. The

optics within the LDV laser insure that the dual-beam is parallel, and a digital level is

used to insure that it is mounted within ±0.1° of horizontal. The alignment of the laser

volume in the wake is done using the Photron high speed cameras and the alignment is

estimated to be accurate within ±0.01D. Therefore, errors associated with the mounting

and alignment of the probe are assumed negligible.

Error in the extraction of the shedding frequency (fS) from the LDV measurements

is due to the finite resolution of the calculated spectra. The velocity signal was sampled

at a constant facq = 20Hz and partitioned into segments of 2048 samples resulting in a

spectral resolution of ±0.0049Hz or ±0.001fD/Uo, which is ±0.5% the measured shedding

frequency from the base cylinder.
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B.2 PIV Uncertainty

Error estimation for PIV experimentation is known to be difficult to quantify analytically

[101,102]. In general, sources of error may be subdivided into: (i) errors due to geometric

configuration and calibration (i.e., how accurately is the magnification factor (K) known

in mm/pixel) and (ii) errors in determining the particle displacement (δx) from the cross-

correlation and peak detection of the images.

Errors in the determination of the magnification factor (εK) are well-defined from the

calibration procedure. The image calibration is performed with the aid of a calibration plate

with a square grid of milled holes at known spacings 1.5±0.005in. The laser sheet is aligned

parallel with the edge of the calibration plate, such that the error in the difference in height

of the calibration plate and the laser sheet is approximately half the laser sheet thickness

(1mm). This amounts to a total uncertainty in the calibration distance between the grid

points of εlc = ±0.136mm. The magnification factor (K) is then determined by reading the

amount of pixels between the milled holes on the calibration plate (Npix) over the known

distance between the calibration points (lc). There is an uncertainty associated with the

determination of the number of pixels between the grid points. The calibration procedure

uses a number of grid points such that this error is minimized, however a conservative

estimate is εN = ±0.5pixels. These errors combine to determine the total magnification

error according to Equation B.2.

εK = K
√

(εlc/lc)2 + (εN/Npix)2 (B.2)

The magnification factor varies slightly between PIV planes, but is approximately K ≈
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0.2mm/pixel, and typically the calibration involves approximately Npix ≈ 550 over lc =

4.5in. This leads to a calculated error in the determination of the magnification factor of

approximately εK = 0.00102mm/pixel(0.51%).

The errors involved in the cross correlation of the images to recover the particle dis-

placements is more difficult to quantify, but typically is the main contributing factor to

the random error in PIV measurements. For a good experimental set-up, the use of

sub-pixel interpolation has resulted in estimates of the correlation error between εcc =

0.04 − 0.1pixels [115, 116]. Based on Uo = 86.5mm/s and the 16 × 16 interrogation win-

dows used, typical particle displacements are δx = 4pixels. This leads to an error estimate

of 0.8− 2mm/s(0.92− 2.31%). The total error can then be calculated as a combination of

the calibration and cross-correlation error according to Equation B.3. Leading to a total

uncertainty in the velocity field measurements of 0.9− 2.04mm/s(1.03− 2.36%).

εδx =

√
(Kεcc)2 + (δx

εK
K

)2 (B.3)

B.2.1 Uncertainty of the mean and RMS velocity

The maximum PIV sample length is limited to 5454 images at 1024×1024 pixel resolution

by the memory buffer in the SA2 Photron high-speed cameras used in the PIV setup.

Increased sample size would come at the expense of a truncated field of view. In order

to quantify the statistical errors in the mean velocity and RMS velocity measurements

due to the finite sample, the convergence of the mean and RMS statistics can be estimated

analytically using the variance of the mean (Equation B.4),and the variance of the standard
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deviation (Equation B.5). These estimates give estimates of the standard error of the mean

0.58% and standard error of the RMS of 0.96% based on data collected in the wake at

x = 125mm, y = 0mm.

σµ = σ/
√
N (B.4)

σσ = σ/
√

2(N − 1) (B.5)

However due to the data being collected in a time series in a periodic flow, the samples

are not independent and hence these estimates may under predict the observed conver-

gence, i.e. low frequency phenomena in the flume relative to the sample size will hinder

convergence in the finite samples taken. Figure B.1a shows the convergence of the mean

velocity and Figure B.1b the convergence of the RMS velocity versus sample length (N)

both in the free-stream (x = 125mm, y = 75mm) where it is expected convergence will

be quick due to the steadiness of the flow in this region, and along the wake centreline

(x = 125mm, y = 0mm) where RMS fluctuations are much higher.
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Figure B.1: Convergence of the (a) mean and (b) RMS velocities from PIV data obtained
along the wake centreline (x = 125mm, y = 0) and in the free-stream (x = 125mm,
y = 75mm).
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Appendix C

Force balance calibration

The design and set-up of the strain gauge force balance used for the measurement of the

mean and fluctuating forces on the models is presented in Section 3.4. Added details on

the characterization of structural vibrations, calibration procedure and signal filtering are

included herein.

In order to calibrate the force balance, the following procedure is employed. A set of

calibrations weights (1g, 2g, 5g, 10g) are used in combination to apply a known weight to

the midspan of each model in a known direction using the string and pulley system shown

in Figure C.1. The string is lightweight sewing thread and the pulley is a small (0.5in OD)

ball bearing mounted on a moveable stand. The calibration is performed independently

for each model such that differences in the weights of the models and re-assembly of the

system are accounted for. The string is aligned within z = ±1/16in of the midspan of each

model and within ±1° of either the lift or drag direction during calibration. This leads

to an equivalent total of ±0.72% uncertainty in the force applied to the cylinder due to
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Figure C.1: Force balance calibration configuration.

geometrical alignment. The uncertainty in the mass of the calibration weight is negligible

in comparison. In order to ensure that thread elasticity or frictional effects in the pulley

did not effect the consistency of the calibration, five measurements were repeated with

the smallest calibration weight (1g), leading to a repeatability estimate of ±0.0084V or

±0.069g. While the repeatability error is significant for the smallest calibration weight

(6.9%), it is less so for the higher calibration weights. In order to ensure reduce the effect

of the repeatability error on the calibration, a minimum of two measurements are repeated

for each calibration weight applied and used in the determination of the linear calibration

curve. Sample calibration curves for the uniform cylinder model of diameter D are shown
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in Figure C.2. The calibration exhibits good linearity such that knowledge of the force

balance sensitivity S(g/V ), the no load voltage Vnl and the in-flow signal V (t) gives a

measurement of the forcing on the model (Equations C.1 and C.2).

FD = S(V (t))− Vnl) (C.1)

FL′ = SV ′(t) (C.2)

Since the calibration is performed in air, buoyant forces on the models must be ac-

counted for when determining the no load voltage for the mean drag measurements. For

each model, a solid back plate is installed in the flume and the flume is filled with quies-

cent water. Once the voltage signal settles due to the temperature change (≈ 20min), the

mean signal is sampled (Vnl) and the value is used as a zero for the in-flow measurements.

There is a small leakage flow in the flume, however the mean flow velocity is estimated

to be < 0.04167m/s from observations of the free surface flow and the change in water

height with time. This small flow rate produces negligible forces on the model (< 0.2%CD).

Repeatability of the buoyancy correction was 0.005V , and the largest observed difference

between the mean buoyant signal and the mean lift signal in-flow (which is assumed to

be zero-mean) is 0.02V , giving a maximum error estimate of 6.1%CD associated with the

buoyant force correction. In order to ensure the hydrodynamics forces on the isolating

shroud did not affect the force measurements, a known weight which approximates the

mean drag acting on the shroud in the free-stream (5g) was applied to the shroud with the

calibration system. The effect on the mean signal output was minimal (< 0.0005V ) and
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Figure C.2: (a) Drag direction and (b) lift direction calibration curves for uniform cylinder
(ReD = 1020) model

hence is assumed negligible.

It is apparent from analysis of both the in-flow signals and the no-load signals in

air, that structural vibrations of the flume and the force balance assembly have some

effect on the measurements. The force balance was designed so the natural frequency of

the force balance assembly was sufficiently higher than the characteristic vortex shedding

frequencies [98], such that VIV are minimal. However, due to the small magnitude of the

forces being measured, the vibrations of the structure leave a race on the signals and it

is of interest to characterize the vibrations and filter them out. Spectra of the in-flow lift

signal, and the no load in-air signal are shown in Figure C.3. Spectral peaks appear for

frequencies 5− 6× the vortex shedding frequency in both signals which are associated the

vibrations caused by noise sources in the laboratory.
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In order to filter the force balance signals, a low-pass butterworth filter is chosen with

a cut-off frequency between the vortex shedding frequency and the structural vibration

frequencies. Figure C.4 shows that a 7th order filter with cut-off frequency between 1 <

fc < 2.5Hz attenuates the vibrational frequencies without affecting the energy content of
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the fluctuations at the vortex shedding frequency. The filtered lift and drag signals may

be compared to the raw signals in Figure C.5.
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Figure C.5: (a) Raw lift signal, (b) filtered lift signal, (c) raw drag signal, and (d) filtered
drag signal, for uniform cylinder (ReDf = 2040) model.
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Appendix D

Pressure PIV optimization

The use of numerical techniques to extract planar pressure fields (p(x, y)) from PIV data

has become popular in recent years, with proven utility in the analysis of a wide range of

flows [88,90,91,117–119]. A discussion of previous work on multiple methods for integrating

the pressure field and characterizing the errors is provided in Section 2. The focus of this

study is to optimize and compare the application of multiple pressure PIV techniques

to the flow around a uniform cylinder. The effects of velocity error (εu) sensitivity and

flow three-dimensionality are studied using numerical solutions for flow around a uniform

cylinder at ReD = 100, 300, and 1575. A mathematical model is proposed for determining

the optimum spatial and temporal resolutions which minimize velocity error propagation

in computed pressure fields (εp).
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D.1 Numerical Study

The incompressible Navier-Stokes equations were solved numerically using the finite volume

solver in ANSYS CFX 14.0 for flow around a uniform circular cylinder at ReD = 100,

300, and 1575. The equations were discretized and solved on a two-dimensional mesh for

ReD = 100, and three-dimensional meshes for the higher Reynolds numbers (s/D = 6 for

ReD = 300 and s/D = π for 1575) where flow is three-dimensional. Mesh sizing parameters

were scaled based on the Reynolds number in order to ensure acceptable mesh density for

resolving the decreasing temporal and spatial scales of the flow (Table D.1). Solutions

were stepped forward in time such that a Courant number (u∆tsolv/∆xsolv) of less than

one was maintained. No sub-grid-scale modelling was applied for the higher Reynolds

numbers; the numerical dissipation of the mesh mimics the dissipative behaviour of the

small scale eddies instead. Details of the numerical set up are included in Table D.1 and the

accuracy of the numerical results is validated by a comparison to experimental results for

the fluctuating lift force (CL) [12], shedding frequency (StD) [12], and mean drag (CD) [59]

. Vortex visualizations using the Q-criterion of the results are included in Section 2, which

clearly show the increase in flow three-dimensionality and fine scale vortex structures with

increasing ReD.

In order to mimic PIV data, planar velocity fields (~u(x, y)) are extracted from the

numerical solutions at varying temporal resolutions ∆t and sampled on a square grid of

spatial resolution ∆x (Table D.2). The velocity fields coincide with the midspan of the

cylinder across a domain in the wake from 0.5D < x < 4D and −3D < y < 3D. The

sampled velocity fields are then subjected to artificially generated white-noise ũ(x, y) = (1+
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Table D.1: Experimental and numerical results for flow around a circular cylinder.

Nodes StD CL′ CD

Present Results (ReD = 100) 3.5× 104 0.167 0.231 1.351

Experiments (ReD = 100) - 0.164 [12] 0.227 [12] 1.43 [59]

Present Results (ReD = 300) 1.7× 106 0.199 0.423 1.278

Experiments (ReD = 300) - 0.202 [12] 0.457 [12] 1.24 [59]

Present Results (ReD = 1575) 1.7× 107 0.217 0.046-0.086 0.997

Experiments (ReD = 1575) - 0.211 [12] 0.045 [12] 0.95 [59]

εu)u(x, y) ranging from εu = 0−2.5%. The Eulerian spatial and temporal derivatives of the

velocity fields are calculated using second-order central difference schemes on the discretized

domain and used as input into the pressure solvers. Four pressure integration techniques

are compared: (i) omni-directional line integration [91], (ii) iterative line integration [89],

(iii) multiple-path integration [90], and (iv) Poisson equation [92]. A range of temporal

and spacial resolutions are tested for each Reynolds number and are listed in Table D.2.

For every respective temporal and grid resolution, and velocity error level, five pressure

fields are calculated using each pressure solver. The resulting error in the pressure fields

is quantified by the RMS difference (εp) compared to the pressure field from the CFD

solution, according to Equation D.1.

Table D.2: Parameter space investigated for pressure PIV calculations.

ReD Uo (m/s) D (m) ∆t (s) ∆x/D (m) εu (%)

100 0.009108 0.01 0.0065, 0.026, 0.104, 0.208, 0.416 0.03, 0.05, 0.07, 0.1 0-2.5

300 0.02733 0.01 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1 0.03, 0.05, 0.07, 0.1 0-2.5

1575 0.1406 0.01 0.0003, 0.0009, 0.003, 0.009, 0.015 0.03, 0.05, 0.07, 0.1 0-2.5
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εp =

√∑
((pderived − p̄derived)− (pnumerical − p̄numerical))2√

NρU2
o

(D.1)

The results of the parametric study yield a large data set, with over 275 parameter

space realizations for each pressure extraction method and Reynolds number. Optimization

surfaces with respect to ∆t and ∆x may be constructed for each method and velocity error

level. Figures D.1, D.2, and D.3 show the optimization surfaces for εu = 1.5% along

with a sample resulting pressure field from each method for ReD = 100, 300, and 1575,

respectively. The optimization surfaces indicate that once the temporal resolution becomes

sufficiently small, the pressure error levels rise exponentially. This is due to random error

in the velocity field being amplified for smaller ∆t in the temporal derivative term in

the N-S equation. The temporal resolutions investigated do not exceed the convective

time-scales of the flow, hence excessively large errors are not observed for the higher ∆t

investigated. Nevertheless, a local minimum is always observed within the parameter space.

For the range of spatial resolutions investigated, it appears that lower ∆x may be possible

without the propagation of the random error in the spatial derivative estimators disturbing

the results substantially, as minimum pressure error levels occur for ∆x/D = 0.03 in

some cases. Generally high error values are observed for the higher spatial resolutions

∆x/D > 0.07, where truncation errors begin to dominate.

Both the iterative-line integration and omni-directional integration methods exhibit the

lowest sensitivity to random errors in the velocity field (Figures D.1, D.2, and D.3). The

iterative-line integration method produces the lowest error values typically for a given con-

figuration, however the computational time is extensive compared to the omni-directional
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Figure D.1: ReD = 100 optimization surfaces for εu = 1.5% and sample pressure fields for
(a-b) iterative line integrations, (c-d) omni-directional integrations, (e-f) Poisson equation,
and (g-h) multiple path integration.
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Figure D.2: ReD = 300 optimization surfaces for εu = 1.5% and sample pressure fields for
(a-b) iterative line integrations, (c-d) omni-directional integrations, (e-f) Poisson equation,
and (g-h) multiple path integration.
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Figure D.3: ReD = 1575 optimization surfaces for εu = 1.5% and sample pressure fields for
(a-b) iterative line integrations, (c-d) omni-directional integrations, (e-f) Poisson equation,
and (g-h) multiple path integration.
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scheme, so the latter may be a good computationally cheap alternative. The Poisson equa-

tion approach is shown to be very sensitive to random error, with large asymmetries arising

in the pressure fields (Figures D.1, D.2, and D.3), compared to the primarily isotropic noise

observed in the line integration techniques. Charanko et al. [93] also observed the Pois-

son equation approach being highly sensitive to random error in the velocity fields. The

multiple-path line integration technique also performs poorly, the low number of line inte-

grals involved in the pressure calculation results in substantial noise in the resulting fields.

The sensitivity of the methods to εu are compared in Figure D.4, at a single temporal and

spatial resolution for ReD = 100. The figure clearly illustrates the high error sensitivities

of the Poisson equation and multiple path integration methods. In addition, the Poisson

equation method shows high deviation (σεp) between successive calculations with random

white noise applied, while the line integration methods show lower deviation due to the

averaging inherent in their application.

The error introduced in the determination of the pressure gradient (ε∇p) can be ex-

pressed in terms of the contributions of the propagation of the random velocity error

(εu) [91] through the derivative estimators, and the truncation error terms introduced

from the resolution of the derivative estimators. Therefore, for the second-order central

difference schemes used herein, the pressure gradient error can be expressed as:

ε2∇p ≈ ε2Du/Dt ≈ ε2u(
1

2∆t2
+
|u|2

2∆x2
+ |∇u|2) +

∆x4

36
(∇3u)2 +

∆t4

36
(
∂3u

∂t3
)2 (D.2)

Equation D.2 implies that to minimize the pressure error, a balance must be struck
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between the propagation of random error through the derivative estimators (represented

by the first term in Equation D.2), which increases with decreasing ∆t and ∆x, and the

truncation error introduced from the derivative estimators, which increases for increasing

∆t and ∆x. In order to develop a mathematical model for the optimum parameters which

minimize the pressure field error (εp), an optimization problem may be solved for Equation

D.2 with respect to ∆t and ∆x. The solution to the optimization problem for a given εu

is then:

∆topt = (
9ε2u|u|2

(∂3u/dt3)2
)1/6 ≈ (3εu)

1/3

fflow
(D.3)

∆xopt = (
9ε2u|u|2
(∇3u)2

)1/6 ≈ (3εu)
1/3λx (D.4)

The temporal and spatial derivatives in the expressions may be approximated by the

timescales (fflow) and spatial scales (λx) of the given flow, hence the values of the veloc-

ity and it’s gradients will hence be flow dependent. For a circular cylinder, the following

approximations can be made. The characteristic velocity scale is Uo, the time scale is the

period of vortex shedding fflow = StDD/Uo. The length scale is the shear layer thickness,

where the highest pressure gradients appear. The shear layer thickness may be approxi-

mated as λx = δsl = 7.5D/Re
1/2
D [4, 5]. Using these approximations results in a model for

estimating the optimum sample spatial and temporal resolutions for the flow. Figure D.5

presents the optimum spatial and temporal resolutions as determined from the parametric

study for each method and Reynolds number versus velocity error. The model developed

in Equations D.3 and D.4 is validated against this data and is shown to predict the trends

in Reynolds number and velocity error level well. Notably, since only five pressure fields
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were calculated for each parameter point, the mean error response is not converged. In

particular, for the Poisson equation approach, the results exhibited substantial deviation

between evaluations, leading to some scatter in the sensitive determination of the optimum

parameters. For higher Reynolds numbers, ∆t and ∆x are optimally lower in order to ac-

count for the thinning of the shear layers, general onset of smaller scale structures, and

increase in shedding frequency.

In order to determine the Reynolds number effect on the accuracy of the planar pressure

determination techniques, it is useful to compare the base errors present in the pressure

field when zero noise (εu = 0%) is applied to the velocity fields. The base error is simply

representative of: (i) the truncation error due to the derivative estimators, (ii) errors

inherent to the integration method, and (iii) errors introduced by the two-dimensional

assumption on the planar fields. The base error for each method is plotted in Figure

D.6 against Reynolds number. The results show that the base error grows with Reynolds

number, reaching ≈ 2% for ReD = 1575, perhaps indicating that three-dimensionality

errors may be affecting the accuracy. However, the use of alternative formulations of the

N-S equations was found to not affect the base error (Table D.3). A comparison of the

2D formulation, a 2D formulation which preserves dw/dz as calculated from the continuity

equation [89,93], and the full 3D formulation show negligible differences between each other

for each Reynolds number. This is attributed to the relatively weak spanwise velocities

and spanwise gradients in the flow, such that the convective terms wdu/dz and wdv/dz

in the N-S equations are small in comparison to the dominant streamwise and transverse

convective terms. The increase in base error with Reynolds number is therefore solely

attributed to the truncation error growth, which is associated with the smaller spatial and
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Figure D.5: Optimum ∆t and ∆x vs. velocity random error εu for (•) iterative line
integration, (/) omni-directional integrations, (♦) Poisson equation, and (4) multiple path
integration and (a-b) ReD = 100, (c-d) ReD = 300, and (e-f) ReD = 1575. The proposed
models (Equations D.3,D.4) are shown by the dotted lines.
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temporal scales encountered with increasing Reynolds number.
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Figure D.6: Minimum RMS pressure field error εp vs. ReD.

Table D.3: Base error of the pressure evaluation governing formulation vs. ReD

ReD min(εp) 2-D min(εp) 2-D conservative min(εp) 3-D

100 0.21% 0.21% 0.21%

300 1.73% 1.73% 1.74%

1575 2.11% 2.10% 2.09%

D.2 Experimental Study

Due to the substantial computational time involved in calculating the pressure fields (≈ 10

minutes for a single 256 × 256 vector field), time-resolved pressure PIV estimates were

not performed in the thesis. However, the techniques may be used on the mean and

RMS statistics derived from the PIV experiments in order to determine the mean pressure

field. When averaged in time, the Navier-Stokes equation becomes the Reynolds-Averaged

159



Navier-Stokes (RANS) equation (Equation D.5), which can be integrated using the previ-

ously discussed methods.

∇p(x, y) = µ∇2~u− ρ(∇ · τu′v′)− ρ(~u · ∇~u) (D.5)

The mean pressure fields calculated for the experimental results for uniform cylinders

of ReD = 1020 and 2040 are compared to the numerical results for ReD = 1575 in Figure

D.7. The mean pressure field is not fully converged for the numerical results, due to the

high computational time needed, however in the near wake, the pressure fields are fairly

steady in time and hence can be used for comparison. The pressure fields are estimated

using the omni-directional line integration technique [91]. The Figure shows the pressure

fields estimated from the PIV experiments show good agreement with those extracted from

the numerical solution, validating the approach.

160



−3 −2 −1 0 1 2 3
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

y/D

p
/
1 2
ρ
U

2 o

 

 

Experiments ReD = 1020

Experiments ReD = 2040

Numerical ReD = 1575

(a)

−3 −2 −1 0 1 2 3

−1

−0.8

−0.6

−0.4

−0.2

0

y/D

p
/
1 2
ρ
U

2 o

 

 

Experiments ReD = 1020

Experiments ReD = 2040

Numerical ReD = 1575

(b)

Figure D.7: Experimental pressure PIV results for ReD = 1020 and 2040 using the omni-
directional line integration technique compared to the numerical solution for ReD = 1575
with transverse pressure profiles obtained at streamwise locations (a) x/D = 0.5, and (b)
x/D = 2.0.
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