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Abstract

We study a multi-stage capacity expansion problem under demand uncertainty. We con-

sider the problem where there are multiple resources to be expanded at each stage. More-

over, the resources have limited life time after acquisition. Our goal is to determine the

time and size of each resource to be expanded so that the expected expansion cost of

capacities is minimized. Therefore, we formulate the problem as a multi-stage stochastic

mixed-integer program. Capacity shortage and excess are allowed subject to a joint chance

constraint.

We apply the multi-stage stochastic mixed-integer model to formulate vaccine vial opening

decisions in the health clinics. This formulation enables us to find the optimal combination

of vial sizes to be opened. Additionally, a trade off between vaccine wastage and shortage

can be addressed using the chance constraint.

We provide a branch and price algorithm based on a nodal decomposition to solve the

model. In addition, a heuristic algorithm is proposed to solve the subproblems where the

life time of the resources is limited to one period. We implement the branch and price

algorithm assuming continuous capacity expansion decisions. Computational results are

presented for the vaccine vial opening problem with three vial sizes; 1-, 5-, and 10-doses.

The primary results indicate the strength of the proposed algorithm in solving problems

with large dimensions. Moreover we report results that indicate the usage of 10-dose vials

and the portion of 10-dose vials in the total vaccine usage increases with the arrival rate.

Although the total usage of 1- and 5- dose vials increase with the arrival rate, their portion

in the total vaccine usage decreases. This implies that vaccination wastage or shortage can

be managed by keeping moderate amount of smaller size vials while supplying most of the

demand using larger vial sizes to benefit from the economies of scale.
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Chapter 1

Introduction

1.1 Motivation and Background

We provide a novel framework for capacity-expansion problem with multiple perishable

capacities and stochastic demand. We apply this framework to find the optimal vaccine

vials opening policy under the availability of multi-dose vials with varying sizes.

In any industry, there is a set of vital resources. The two main aspects of these resources

are their type and capacity. Firms need to enhance the level or type of their resources at

many times in order to stay competitive in the market.

Increasing the capacity of the resources, upgrading them, or replacing them require enor-

mous amount of investment in most cases. Additionally, as reported by Dixit [9], these

investments are irreversible meaning that once invested, they cannot be retracted. This

point becomes more important as we consider the level of uncertainty that originates from
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different sources such as future operational costs or demand. Therefore, the decision of

investing in any resource capacity expansion needs to be taken after a careful assessment.

Furthermore, decision makers usually face multiple investment opportunities. For example,

an electronic company may want to invest in designing and developing a brand new pro-

duction system or invest in improving and advancing its current one. Similarly, a company

may need to decide between acquiring an expensive equipment with high production or

service rate (to benefit from economies of scale) and a cheaper equipment with moderate

production or service rate (for flexibility) or a combination of them.

Aside from the type and size of expansion, it is sometimes necessary to determine when

the capacity should be expanded. For example, imagine a company is expecting the de-

mand for a product to increase. Therefore, in addition to the size of capacity acquisition,

one should know when to implement the expansion. That is why the capacity expansion

problem is typically studied in multiple time periods.

1.1.1 Objectives

Many studies have addressed the capacity expansion problem with different settings such

as single-period or multi-period decisions, decisions with perfect information about future

or decisions under uncertainty. However, in all of them, it is assumed that the capacities

infinitely endure. In this thesis, we consider a problem where capacities have a limited
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lifetime. A decision maker deals with an investment option that will provide the company

benefits in the short run, but it will most likely be outdated by a new product in the

near future. Therefore, a trade-off needs to be established between benefits and costs of

investment and the future adjustments.

The level of demand satisfaction is also an important factor which we further discuss in

the literature review section. In most cases, it is assumed that all the demand should

be satisfied [3]; while in others, backlogging is allowed [18]. In this thesis, we allow both

capacity shortage and excess. We deal with this concern with a chance constraint model.

We then use the proposed capacity expansion framework to examine the vaccine vial open-

ing problem in health clinics. Vaccination is the most effective method to prevent infectious

diseases especially for infants and against periodic epidemics. Therefore, many optimiza-

tion methods have been employed by researchers to address the challenges in determining

the optimal vaccination strategies.

Vaccines are perishable products; therefore, it is important to plan how the available vac-

cine vials should be used to maximize efficiency and effectiveness. Using the capacity

expansion model enables us to address these concerns.

The remainder of this thesis is organized as follows. Chapter 2 provides a literature review

on capacity expansion and vaccine administration problems. Chapter 3 describes the ca-

pacity expansion problem and the model formulation. Moreover, we provide an application
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of the model in vaccine administration. In chapter 4, Dantzig-Wolf decomposition of the

model and solution method is described. Chapter 5 includes the computational results,

and chapter 6 provides the conclusion as well as future research ideas.

4



Chapter 2

Literature Review

2.1 Capacity Expansion Problem

In many applications, capacity expansion in order to meet growing demand level is an

essential part of the strategic level decision making. This problem requires decision makers

to determine which facilities to be expanded and what is the optimal size and time of

expansion. since 1950s, several studies have used quantitative methods. Manne [19] for-

mulated a capacity expansion problem for heavy industries in India. Demand was known

and increasing in the next 30 years, and capacity adjustments had to be done in order to

meet the demand. His goal was to determine the optimal time and size of expansion such

that the present worth of all costs was minimized.

Eppen et al.[11] studied a capacity planning problem at General Motors. The problem

consisted of multiple locations, each having multiple expansion opportunities. Moreover,
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demand and investment costs were stochastic. Eppen et al. [11] developed a two-stage

stochastic integer program. Their goal was to determine the best choice of expansion and

its size at each of the locations so that the profit is maximized.

Swaminathan [28] studied the capacity expansion problem in the semiconductors industry

where there were demand uncertainty. Swaminathan [28] developed a two-stage stochas-

tic model with recourse to formulate the problem. The main goal was to determine the

expansion size before demand realization and to allocate the new capacities to different

products. The objective function was to minimize the shortage cost.

Examples of the capacity expansion models in service industries, such as restaurants and

hotels can be found in Herman and Ganz [13].

2.1.1 Deterministic Models

We provide a literature review on the deterministic methods in capacity planing problem.

Manne [18] proposed a deterministic optimization model to address the capacity planning

problem for superhighways and/or pipelines. In this problem, demand was given for the

next 20 years, and was linearly growing. The author also assumed that the capacities

should satisfy the demand or exceed it. Also, there was a significant cost advantage for

large expansions. Therefore, the goal was to find a trade-off between investment costs and

economies of scale savings.
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Luss [17] introduced a deterministic capacity expansion model for cable sizing problem

in communication networks. He considered two types of expansion opportunities: either

installing a new cable or converting an existing one. There were three cost elements,

installation, conversion and holding which were nondecreasing and concave. The goal was

to find the time, type, and size of cables to be invested to minimize the total cost.

2.1.2 Stochastic Models

We next give a review of the articles that propose stochastic optimization models.

Sen et al. [25] studied the capacity planning problem for networks that have private line

customers under demand uncertainty. The authors developed a two-stage linear stochastic

model with recourse. In a two-stage model, the capacity expansion decision is made in the

first time stage before the demand is known. In the second stage, demand is realized and

therefore recourse actions such as outsourcing can be taken. Sen et al. [25] targeted to

meet demand under all scenarios. However, with the presence of higher potential errors in

the demand estimation in the long run, satisfying this condition would require enormous

investment costs. Therefore the authors studied the problem over a short time horizon

which was long enough to cover the lead time. Sen et al[25] solved the model with a

sampling based stochastic decomposition algorithm.

See Liu et al. [16], and Eppen et al. [11] for more literature review on two-stage stochastic
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models. We next provide a literature review of some studies that are closely related to our

work.

Ahmed et al. [2] studied the multi-period capacity expansion problem where demand

and costs were stochastic. They considered multiple types of capacity to be acquired and

determined the size and time of each resource to be expanded over a finite horizon. The

fixed-charge expansion costs were also taken into account which infers the presence of the

economies of scales. Ahmed et al. [2] represented the uncertainties with a scenario tree

and formulated a multi-stage stochastic integer program. They [2] proposed a problem

reformulation which resulted in a tighter LP relaxation and developed a heuristic to obtain

a good quality feasible integer solution. Then, they used the integer feasible solution in a

branch and bound algorithm to accelerate the convergence of the algorithm.

The most related article to our research is that of Singh et al. [27]. They suggested a multi-

stage stochastic mixed-integer programming model for capacity expansion problem under

uncertainty. They wanted to minimize the fixed-charge cost of expansions and operating

costs. They also assumed that capacities should meet or excess the operating requirement

which is one of the main differences from our work. Singh et al. [27] provided a variable

disaggregation approach to enable the Dantzig-Wolf decomposition, which is then solved

by column generation method.
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2.2 Vaccination Strategies

Operation Research applications in health care is a growing literature due to the recent

peak in interest in the health care domain. Several recent Operation Research applications

are proposed to address challenges in clinical decision making such as cancer screening [12],

chronic disease treatment [6], infectious disease prevention [20], and health care delivery

[22]. Determining an effective vaccine administration policy can be categorized into health

care delivery literature but it is also related to medical decision making literature as the

performance of the model is likely to affect health outcomes as well.

We now provide a literature review on the vaccination polices. Determining the best vacci-

nation strategies has always been a great concern for health authorities and administrators

in health clinics. Therefore, mathematical modeling and analysis have been widely applied

by researchers to address questions such as what is the most effective policy to order vac-

cine vials in health clinics? [23]; which strategies should be followed when implementing

immunization programs? [8]; which vaccine vial sizes should be produced or ordered? [15]

Early studies have used deterministic methods to primarily evaluate current vaccination

polices [26]. Later, simulation and stochastic methods have been incorporated by majority

of researchers [10].
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2.2.1 Deterministic Models

We first provide a literature review on deterministic models. Most deterministic models

are in the form of compartmental models that represent the progression of infectious dis-

eases and measure the effectiveness of vaccination policies. The decisions analyzed usually

involve how much vaccine inventory should be hold and which patient groups (based on

location, risk factors, etc.) should be prioritized to maximize the health outcomes and

minimize the costs.

For instance, Waaler et al. [30] proposed a mathematical model to evaluate the preva-

lence of the tuberculosis and the effectiveness of the control polices including vaccination

programs. They considered the problem over a twenty-year horizon. In particular, they

investigated the effectiveness of the current vaccination strategies in reducing the infection

prevalence over the years.

Note that there are a few agent-based simulation models and some stochastic process and

stochastic dynamic programming modes proposed of the same problem. However, we con-

sider unlimited available inventory and homogeneous patients, therefore, this literature is

not very related to the current work. See Brogger [5] and Revelle et al. [24] for more

literature review of deterministic modeling in vaccination strategies.
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2.2.2 Stochastic and Simulation Models

Rajgopal et al.[23] studied the effect of ordering policies on the vaccination program per-

formance. They assumed that the demand is unknown and the forecasting and estimation

methods are not available in the clinics. Therefore, the average arrival rate in the past

sessions were used to make the ordering decisions. Another factor is the vaccine vial size.

They also investigated the need for a buffer stock. They developed a spreadsheet simula-

tion model to examine these factors. They measured the performance by the amount of

satisfied demand and did not take wastage into account. Moreover, they never considered

ordering a combination of different vial sizes.

Lee et al.[15] developed a computational model to examine how single dose and multi dose

vials affect the total cost of health clinics and wastage. There were three cost elements:

cost of vaccine usage, cost of diposal of vaccine vials, and storage cost of vaccine vials.

They considered five childhood vaccines, and assumed that they have limited life time af-

ter being opened. They also did a sensitivity analysis to determine how wastage and cost

changes by vial costs and open-vial life time. Additionally, they evaluated the effect of two

arrival processes: Poisson and Uniform distribution.

Dhamodharan and Proano [8] developed a Monte Carlo simulation model to determine the

optimal vial size and optimal reorder point in a vaccination center. They assumed that the

demand is stochastic and the lead times are known and constant. Their goal was to find
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the vial size that minimizes the purchase and wastage costs. For a given vial size, they

generated demand instances and developed a mixed integer model to find the number of

vials to be opened and the resulting wastage. The vial size with the minimum cost was

selected. Their goal was to meet hundred percent of the demand, and their model had the

limitation of selecting only one vial size to order.

Tanner et al.[29] proposed stochastic programming approach along with chance constraints

to determine the optimal vaccination policy for an epidemic disease. They described three

situations in which finding the optimal vaccination strategy is necessary. In the first case,

their goal was to find a minimum cost vaccination policy for which the probability that the

reproduction number after vaccination is less than one, is at least equal to the reliability

parameter. The second case described the situation in which the vaccination budget is lim-

ited. Therefore, they searched for a policy that minimizes the probability of reproduction

number being greater than or equal to one.

In the third case, in addition to the vaccination policy, the reliability was also a variable,

and the goal was to minimize the costs of vaccination strategy which takes the reliability

into account as well.
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Chapter 3

Problem Definition

We study the capacity expansion problem where capacities are outdated after a certain

number of periods. We consider the planning problem over a finite horizon, and we also

assume that at each time period, there are a set of new capacities to be acquired. Moreover,

due to the uncertain nature of demand estimations in the long run, we consider demand

to be probabilistic. We use a scenario tree to represent the uncertainty. An example of a

scenario tree with two periods is shown in Figure 3.1. It is a rooted tree with k possible

outcomes of the random element, e.g., demand in the second stage. Our goal is to answer

the following questions: When a new capacity is needed to be available? What is the best

type of capacity to acquire? For each type of capacity, how much should be acquired?

In addition to the capacity expansion decisions, we want to determine how the available

capacity should be distributed in the successor nodes of the scenario tree. Since the newly

expanded capacities will be expired in the future periods, managing capacity excess is one
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Period 1 
Period 2 

Scenario 1 

Scenario K 

Scenario 2 

Figure 3.1: A two stage scenario tree

of our concerns. We want to avoid the extra capacities as much as possible rather than

eliminating them entirely. As a result, when there are several expansion opportunities,

there is a trade off between unit acquisition cost of the capacities and excess capacity.

Instead of setting a constraint to enforce the model to generate zero wastage, we employ a

chance constraint to keep unused capacities less than a certain threshold with some prob-

ability.

Another issue that we address is the demand coverage. Do we want to meet demand under

each scenario? We deal with this concern as we did with the wastage. Some realizations

of the demand have very small probability; therefore, we can allow the optimal solution

to have shortage in those scenarios if we need to avoid costly choices. So, we set a chance

constraint to assure that unsatisfied demand does not exceed a certain level with a relia-

bility parameter.
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The chance constraint keeps track of scenarios in which either capacity shortage or excess

violates the requirement, and guarantees that the probability of all violated constraints is

less than one minus a reliability parameter.

3.1 Chance Constraint

A chance or probabilistic constraint is used when it is not necessary to satisfy a certain

constraint for all the realizations of a random element. According to Birge and Louveaux

[4], when a random element is discrete, the general format of a chance constraint will be:

P ( g(x, y(w), ξ(w)) ≤ 0 ) ≥ α, (3.1)

where x is the vector of first stage decision variables, w is a random event, ξ(w) is the

random variable, and y(w) is a second stage variable. For instance, x can capture the

decision of how much to produce in a manufacturing system under demand uncertainty.

Then w, y(w), and ξ(w) would respectively represent the demand, second stage variables

(e.g. how much to sell) that is determined after knowing the demand, and the vector of

demand realizations.
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Period 1 Period 2 Period T-1 Period T 

Scenario 1 

Scenario 3 

Scenario 2 

Scenario 2
𝑇−1

 

Scenario 2
𝑇−1

-1 
  

Figure 3.2: A scenario tree with T stages and K = 2 scenarios at each stage.

3.1.1 Notation

We use a scenario tree with T time stages to represent the uncertainty of the demand.

Figure 3.2 shows a scenario tree with T periods. Each path of the scenario tree, starting

from node 0 and ending with a node in the last stage, represents a scenario. The root

node is in the first stage and is refered to as node 0. In node 0, no demand has been

realized. In the second stage, there are K possible outcomes of demand. Each outcome has

a probability of p1(k), and the summation of probabilities over all the outcomes is equal

to one. For each node in the second stage, there are K possible realizations of demand in

the third stage, and this continues until stage T , in which there are KT−1 scenarios.
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Table 3.1: Sets and parameters
Parameters Description

I The set of available resources
dm Demand at node m ∈ N
pm The probability of node m ∈ N
ci Operating cost of capacity i ∈ I
vi Operating capacity that becomes available by expanding one unit of capacity i ∈ I

βs, βw The maximum amount of shortage and wastage allowed
α Reliability rate
ν Life time of acquired capacities in terms of number of periods

The probability of each scenario is calculated as below:

P (Scenario 1) = p1(1)× p2(1)× · · · × pT (1),

P (Scenario 2) = p1(1)× p2(1)× · · · × pT (2),

.

.

.

P (Scenario KT−1) = p1(K)× p2(K)× · · · × pT (K)

(3.2)

Note that
∑K

i=1 P (Scenario i) = 1.

A brief description of the parameters in the model is given in Table 3.1. Besides the

parameters, we need to define a few sets on the scenario tree nodes. Let N be the set of all

nodes in the scenario tree and Nt be the nodes in time stage t. Also, Pmn is the set of all

the scenario tree nodes in the path from node m to node n. In order to take the life time

17



 m 

𝐾𝑖𝑚 

𝐿𝑖𝑚 𝑄𝑚 

Figure 3.3: Notation illustration when T = 5 and ν = 1.

restrictions into account, we define Kim as the leaf nodes of the subtree where capacity i

expanded at node m can be used, and Lim as nodes where capacity of type i used at node

m can come from. Moreover, Qm represents the leaf nodes of the scenario tree which have

node m in their path. The sets Lim, Kim, and Qm are illustrated in Figure 5.1.

There are two types of decisions to be made. First, we want to determine when and how

much of a certain kind of capacity should become available. Therefore, we define variable

xim as the number of capacity type i that is expanded at node m. Note that this decision

results in the availability of the total amount of vixim operating capacity from type i at

node m. Once some new capacities are acquired, they can be used either in the current

node or in the successor nodes as long as they have not expired. So, we define the variable

18



yimn as the amount of capacity type i that become available at node m and is used at node

n.

3.1.2 Formulation

We formulate the problem as a multi-stage stochastic mixed integer model.

min
∑
m∈N

∑
i∈I

pmcixim (3.3a)

subject to (3.3b)

P



∑
i∈I

vixim −
∑
i∈I

∑
k∈Pmn

yimk ≥ βw m ∈ N, n ∈ Kim

or

dm −
∑
i∈I

∑
r∈Lim

yirm ≥ βs m ∈ N


≤ 1− α (3.3c)

vixim −
∑

k∈Pmn

yimk ≥ 0 i ∈ I,m ∈ N, n ∈ Kim (3.3d)

xim ∈ Z+, yimk ≥ 0 i ∈ I, m ∈ N, k ∈Pmn, n ∈ Kim

(3.3e)

The objective function minimizes the expected cost of newly expanded capacities over all

the nodes. Constraint (3.3c) is the joint chance constraint that manages the amount of

unused capacities and unsatisfied demand. As a result of this constraint, with reliability

rate of α, wastage is not greater than βw and unsatisfied demand is less than or equal to
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βs. Constraints (3.3d) make sure that the utilized amount of a capacity does not exceed

the available amount. Constraints 3.3e enforce the integrality conditions on variables xim

and yimn.

Using the probability constraint causes nonlinearity in the model. We follow Birge and

Louveaux [4] to reformulate the model to obtain its linear equivalent. To do so, we introduce

a binary variable (ψq) for each scenario in the scenario tree. This binary variable is 1 if

the chance constraint is violated in at least one node in that scenario. It is zero if both

constraints are satisfied in all the nodes of that scenario. The mixed integer reformulation

of the chance constraint is:

∑
i∈I

vixim −
∑
i∈I

∑
k∈Pmn

yimk ≤ βw + Uwψq m ∈ N, n ∈ Kim, q ∈ Qm (3.4a)

dm −
∑
i∈I

∑
k∈Lim

yikm ≤ βs + dmψq m ∈ N, q ∈ Qm (3.4b)

∑
q∈NT

pqψq ≤ 1− α (3.4c)

Um indicates the upper bound of the left hand side in (3.4a). So if the total wasted

capacity is less than βw, the binary variable will be zero, and if the constraint is violated

at any node of that scenario, the binary variable will be one. Note that dm is the upper

bound of the shortage in (3.4b). Constraints (3.4b) can be explained in the same way as the

wastage constraints (3.4a). Constraint (3.4c) assures that the probability of all the violated
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scenarios does not exceed 1− α. Using this reformulation, the mixed integer equivalent of

the stochastic model is:

[EF] min
∑
m∈N

∑
i∈I

pmcixim (3.5a)

subject to
∑
i∈I

vixim −
∑
i∈I

∑
k∈Pmn

yimk ≤ βw + Uwψq m ∈ N, n ∈ Kim, q ∈ Qm

(3.5b)

vixim −
∑

k∈Pmn

yimk ≥ 0 i ∈ I,m ∈ N, n ∈ Kim

(3.5c)

dm −
∑
i∈I

∑
k∈Lim

yikm ≤ βs + dmψq m ∈ N, q ∈ Qm

(3.5d)∑
q∈NT

pqψq ≤ 1− α (3.5e)

xim ∈ Z+, yimk ≥ 0, ψq ∈ {0, 1} m ∈ N, k ∈Pmn, n ∈ Kim, q ∈ NT

(3.5f)

3.2 An Application to Vaccine Administration

We employ the described capacity expansion model to formulate the optimal vaccine vial

opening problem in health clinics. Vaccine administration can be a challenge at the im-

21



munization centers, especially in rural areas, for several reasons. Vaccines are normally

perishable, and once a multi dose vial is opened, it will be wasted if it is not fully used by

a certain deadline. Therefore, vaccine wastage in the immunization sessions is a great con-

cern. This concern becomes more important in areas where regularly ordering new batches

is not possible. One of the main aspects contributing to the high amount of wastage is the

vaccine vial sizes. Regardless of the expiration date of vaccines, when a vial with multiple

doses is opened, the remaining doses will be wasted at the end of the session.

In this section, we consider an immunization clinic, and assume demand is being realized

gradually. So, we divide each vaccination session into several periods. At each period,

demand for future periods is unknown. We also assume the arrival rate is λ.

Furthermore, we assume that there is a pool of different vaccine vials, and there is unlim-

ited number of available vials from each size. We want to minimize the total expected cost

of purchasing, and determine how many vials from each size should be opened. Variables

xim will serve this purpose. Variables yimn indicate the usage decisions. Note that I is the

set of vial sizes and ci is the purchase cost of vial size i.

The model (3.5a) can be used to formulate the vaccine vial opening problem.
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Chapter 4

Solution Method

Even for a relatively small number of stages and demand realizations, the model (3.5a)

can become a large-scale mixed integer program, and by increasing these factors, the

problem size exponentially grows. Therefore, a commercial optimization tool can only

solve instances that are considered to be very small compared to the real world problems.

We present a branch and price method based on a nodal decomposition approach to address

this difficulty.

4.1 Reformulation

We first provide a reformulation of the model to enable the decomposition of the model.

We define a new binary variable for each node (zm)and use it to keep track of the wastage
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constraint (3.5b). The reformulated model is:

[REF] min
∑
m∈N

∑
i∈I

pmcixim (4.1a)

subject to
∑
i∈I

vixim −
∑
i∈I

∑
k∈Pmn

yimk ≤ βw + Uwzm m ∈ N, n ∈ Kim,

(4.1b)

vixim −
∑

k∈Pmn

yimk ≥ 0 i ∈ I,m ∈ N, n ∈ Kim,

(4.1c)

dm −
∑
i∈I

∑
k∈Lim

yikm ≤ βs + dmψq m ∈ N, q ∈ Qm,

(4.1d)

ψq ≥ zm m ∈ N, q ∈ Qm

(4.1e)∑
q∈NT

pqψq ≤ 1− α (4.1f)

xim ∈ Z+, yimk ≥ 0, ψq, zm ∈ {0, 1} m ∈ N, k ∈Pmn, n ∈ Kim, q ∈ NT

(4.1g)

This formulation allows us to do a Lagrangian relaxation of constraint (4.1d) which leads

to a nodal decomposition of the model.
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4.2 Dantzig-Wolf Decomposition

Constraints (4.1b) and (4.1c) include the opening decisions at each node, and utilizing

decisions for the successor nodes. Therefore they can independently be solved for each

node. However, constraint (4.1d) are the complicating constraints which link the decision

variables from the predecessors of a node. Thus, we decompose the reformulated model

into two sets: the set of constraints that can be solved for each node (4.1b and 4.1c) and

the linking constraint (4.1d).

We define the set Xm as follows:

Xm = {(xim, yimn, zm)i∈I,n∈Kim
|
∑
i∈I

vixim −
∑
i∈I

∑
k∈Pmn

yimk ≤ βw + Uwzm,

vixim −
∑

k∈Pmn

yimk ≥ 0,

xim ∈ Z+, yimn ≥ 0, zm ∈ {0, 1}},

(4.2)

which represents feasible solutions of the constraints 4.1b and 4.1c at each node. Now, let

Fm be the index set of feasible solutions at node m and (x̄im, ȳimn, z̄m)j be an element of

Xm. Then, Xm can be rewritten as {(x̄im, ȳimn, z̄m)j | j ∈ Fm}.
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Each member of Xm can be represented as:

(xim, yimn, zm) =
∑
j∈Fm

(x̄im, ȳimn, z̄m)jwj
m,

∑
j∈Fm

wj
m = 1, wj

m ∈ {0, 1}.
(4.3)

By relaxing constraints 4.1b and 4.1c, and replacing variables xim, yimn, and zm with the

equation 4.3, we obtain an equivalent formulation as follows:

[MP] min
∑
i∈I

∑
m∈N

∑
j∈Fm

pmcix̄
j
imw

j
m (4.4a)

subject to dm −
∑
i∈I

∑
k∈Lim

∑
j∈Fk

ȳjikmw
j
k ≤ βs + dmψq m ∈ N, q ∈ Qm (πmq) (4.4b)

ψq ≥
∑
j∈Fm

z̄jmw
j
m m ∈ N, q ∈ Qm, (γmq) (4.4c)

∑
j∈Fm

wj
m = 1 m ∈ N, (µm) (4.4d)

∑
q∈NT

pqψq ≤ 1− α, (4.4e)

wj
m, ψq ∈ {0, 1} m ∈ N, j ∈ Fm, q ∈ NT (4.4f)

The objective function minimizes the expected opening cost. Constraints (4.4b) enforce

the shortage chance constraint for the selected feasible solutions. Constraints (4.4c) make

sure that the binary variable for each scenario is at least equal to the binary variable of

each node in that scenario. Therefore, if wastage constraint has been violated at node m,
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the binary variable for all the scenarios containing node m needs to be one. Constraints

(4.3) are the convexity constraints which make sure that exactly one feasible solution is

selected for each node. Note that πmq, γmq, and µm are the dual variables of the constraints

4.4b, 4.4c, and 4.4d, respectively.

Even for the small sizes of the problem, the master problem has a huge number of variables

which makes it impracticable to generate all the variables at the beginning and solve the

master problem. Therefore, we start solving the master problem with an initial limited

number of variables. Then we attempt to find new variables with negative reduced cost,

and add them to the restricted master problem.

In order to find a non-basic variable in Xm, we solve the following subproblem for each
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node.

[SP(m)] min
∑
i∈I

pmcixim −
∑
i∈I

∑
n∈Kim

∑
k∈Pmn

∑
`∈Qk

π̄k`yimk +
∑
q∈Qm

γ̄mqzm − µ̄m (4.5a)

subject to
∑
i∈I

(
vixim −

∑
k∈Pmn

yimk

)
≤ βw +Mzm n ∈ Kim,

(4.5b)

vixim −
∑

k∈Pmn

yimk ≥ 0 i ∈ I, n ∈ Kim,

(4.5c)

xim ∈ Z+, yimn ≥ 0, zm ∈ {0, 1}, i ∈ I, n ∈ Kim.

(4.5d)

The subproblem (4.5a) searches for the minimum reduced cost for node m. Therefore if

the objective function is negative, a new variable will be added to the restricted master

problem.

4.3 Solving the Master Problem

As described previously, the master problem has typically a large number of variables.

Therefore, we apply the column generation method to solve the master problem. We first

consider a restricted master problem (RMP) in which only a subset of the variables (F ′m ⊂

Fm) are present. Then we solve the linear programing relaxation of the restricted master
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problem, and obtain the optimal dual solutions. The optimal solution of the restricted

master problem can be considered as a feasible solution of the master problem in which

the value of the variables not included in the master problem is zero. Therefore, we need

to evaluate the reduced cost of the nonbasic variables, and pick a variable with negative

reduced cost to be added to the restricted master problem.

To do so, we use the optimal dual solutions of the restricted master problem, and solve the

subproblem for each node. The objective function of each subproblem (4.5a) is in fact the

reduced cost of the variables corresponding to that node. Moreover, the feasible region of a

subproblem is the set Fm. In other words, subproblems seek for a variable in Fm that has

the most negative reduced cost. Therefore, if the objective function of the subproblem is

negative, the variable will be added to the restricted master problem. The steps of solving

the restricted master problem, obtaining the dual values, and solving the subproblems

are repeated until no variable exist with negative reduced cost, i.e. when the objective

function of all the subproblems are non negative. At this point, the master problem is

solved optimally, and the solution of the restricted master problem is the optimal solution

of the LP relaxation of the master problem.
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4.4 Solving the Subproblems

The subproblems (4.5a) are all mixed integer program which can be solved by any opti-

mization tool. However, by increasing the problem size, the size of each subproblem as

well as the number of subproblems to be solved grow. This results in a high computational

time in the column generation method and thus in the branch and price algorithm.

We provide a heuristic algorithm to solve the subproblems where the opened vial life time

is one period, i.e. once a multi-dose vial is opened, it can be used at either current node

or the successor nodes at the next stage.

To describe the heuristic, let gmn =
∑

l∈Qn
π̄nl be the coefficient of yimn, ∀i ∈ I, n ∈

Pmk, k ∈ Km in the objective function of the subproblem (4.5a) of the node m. Also,

let g′k = max {cmn, ∀n ∈Pmk, } , ∀k ∈ Km. Note that at each subproblem, there are |I|

opening decision variables. Let bi =
∑

i∈I pmci be the coefficient of the xi, ∀i ∈ I in the

objective function of the subproblem. Figure 5.2 demonstrates a given node (m) and its

successor nodes (1 to K). Any vial opened at node m can be used at node m and 1, or

node m and 2, and so on. Moreover, there is one binary variable (z) associated with the

wastage chance constraint of the node m. Let d =
∑

q∈Qm
γ̄mq be the coefficient of the z

in the objective function.

There are two main cases to investigate: 1: g′k are all positive, 2: There is at least one
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Figure 4.1: The current node (m) and its successors.

non positive g′k,∀k ∈ Km.

It is easy to verify that if g′k are all positive, the optimal solution should include opening

the maximum possible amount, and using the maximum amount in the node at which g′k

happens.

If there is at least one non positive g′k,∀k ∈ Km, it is necessary to find a trade off between

not utilizing the opened vials in some scenarios of the current node and setting the variable

z to one.

In both cases, there is a condition to be checked. All the opening and using decisions are

taken as long as bi − vig′k ≤ 0, i.e. the immediate effect of opening some vials and using

them on the objective function is negative. Otherwise, one of the following three options
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should be selected: not opening vial i, opening vial i and fully using them or opening but

not using them at scenarios violating bi − vig
′
k ≤ 0. Note that the latter results in the

variable z to be one. The key steps of the algorithm are summarized as follows:

STEP 1: Calculate bi,∀i ∈ I, g′k,∀k ∈ Km and d.

STEP 2 : If all g′k are non-positive, let

xi = xlb,

yimm = ylb, yim1 = · · · = yimK = 0,

z = 0,

and stop.

STEP 3: For all i ∈ I, if bi − vig′k ≤ 0,

• If all g′k are positive, one of the followings is the optimal solution:

xi = xub, xi = xub,

yimm = yub, yim1 = · · · = yimK = 0, or yimm = 0, yim1 = · · · = yimK = yub,

z = 0 z = 0

• If at least one of g′k is non-positive, for instance g′1, one of the followings is the optimal

solution:
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xi = xub, xi = xub,

yimm = yim1 = 0, yim2 = · · · = yimK = yub, or yimm = 0, yim1 = · · · = yimK = yub,

z = 1 z = 0

4.5 Branching

After the LP relaxation of the master problem is solved to optimality, we check the in-

tegrability of the binary variables associated with the chance constraint. We apply two

branching scheme to make sure that all the integrability requirements are satisfied.

First we consider all the binary variables associated with the chance constraints in the

master problem. Note that there is a binary variable corresponding to each scenario in

the master problem. Let ψ0 be the binary variable for the first scenario and not integer.

We create two branches and apply the bound changes on the master problem of the child

nodes. At the node where the variable is fixed to zero, i.e. its upper bound is changed

to zero, we apply the same upper bound in all the subproblems of the first scenario. The

reason is because ψ0 being equal to zero implies that the chance constraint for all the nodes

in that scenario is satisfied; therefore, their binary variable should also be fixed to zero.

Furthermore, we consider the binary variables in the extended format (3.5a) to be integer.

Therefore, we calculate their value every time the master problem is optimally solved. Let

zm0 be the one with fractional value. We create two child nodes and apply bound changes
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in the subproblem of the node m0. In addition, we evaluate the existing columns in the

master problem and fix them to zero if they do not comply with the branching decisions.

Similar branching strategy can be taken into account to address the integrality require-

ments of the variables xim. However, the implementation of this branching rule is not

provided in this thesis.
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Chapter 5

Computational Results

In this chapter, we present computational experiments using the solution method described

in Chapter 4. We consider the vaccine vial opening problem where there are three vial

sizes. Vial sizes are similar to those used in the analysis of Rajgopal et al. [23]. Table

5.1 represents the vial sizes and the corresponding costs. We implement the branch and

price method where the capacity expansion decisions are continuous, i.e. xim variables

are assumed to be continuous. In the first experiment, we evaluate the performance of

the branch and price algorithm, and then compare it with that of solving the extensive

formulation (EP)(3.5a) with SOPlex-2.0.1. In the second experiment, we investigate the

Table 5.1: Vial sizes
Vial size Cost ($)

1 1
5 4
10 7
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Table 5.2: Problem dimensions
Problem T K N. of Scenarios α Binary Continuous Constraints

P 3 2 0 3 2 4 0.95 4 48 49
P 3 2 1 0.85
P 3 2 2 0.75
P 3 3 0 3 3 9 0.95 9 132 127
P 3 3 1 0.85
P 3 3 2 0.75
P 4 2 0 4 2 8 0.95 8 120 129
P 4 2 1 0.85
P 4 2 2 0.75
P 4 3 0 4 3 27 0.95 27 342 415
P 4 3 1 0.85
P 4 3 2 0.75
P 5 2 0 5 2 16 0.95 16 264 305
P 5 2 1 0.85
P 5 2 2 0.75
P 5 3 0 5 3 81 0.95 81 1071 1441
P 5 3 1 0.85
P 5 3 2 0.75
P 6 2 0 6 2 32 0.95 32 552 689
P 6 2 1 0.85
P 6 2 2 0.75
P 6 3 0 6 3 243 0.95 243 3258 4843
P 6 3 1 0.85
P 6 3 2 0.75
P 7 2 0 7 2 64 0.95 64 1125 1521
P 7 2 1 0.85
P 7 2 2 0.75
P 8 2 0 8 2 128 0.95 128 2280 3313
P 8 2 1 0.85
P 8 2 2 0.75
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impact of mean arrival rate on the combination of vial sizes that are opened. We assume

that the set of the possible demand values is
{
λ−

⌈
K
2

⌉
, . . . , λ+

⌊
K
2

⌋}
in which λ is the

mean arrival rate per period and K is the number of demand realizations. We then calculate

their probability as follows:

P (λ−
⌈
K

2

⌉
) =

dK2 e∑
i=0

p(λ− i),

P (λ+

⌊
K

2

⌋
) =

∑
i=bK2 c

p(λ+ i),

where (λ± i) has Poisson distribution. The probability of the other possible values of the

demand is calculated according to the Poisson distribution.

All experiments are done on a system with 11 GB of RAM and 3.60GHz processor. The

branch and price algorithm is implemented in C++ using SCIP-3.1.1 [1] as the framework

and SoPlex-2.0.1 [31] as the optimization software.

5.1 Performance of the Branch and Price Algorithm

In this experiment, we consider the vaccine vial opening problem with 10 different problem

sizes in which the number of stages and demand realizations varies. For each problem size,

we generate 3 problem instances by changing the reliability rate (α). Table 5.2 summa-

rizes the problem sizes, the values of α, number of binary and continuous variables and

constraints in the extensive formulation (EF) (3.5a). Note that in this table, T indicates
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Table 5.3: Branch and price performance
Problem Obj. Value ($) EF CPU Time (sec) B&P CPU Time (sec) Time Reduction ( %)

P 3 2 0 6.22 0.957 0.72 24.76
P 3 2 1 5.29 1.804 0.73 59.53
P 3 2 2 4.98 0.913 0.99 -8.43
P 3 3 0 6.22 1.001 0.73 27.07
P 3 3 1 5.81 1.947 0.12 93.83
P 3 3 2 5.12 1.001 0.11 89.01
P 4 2 0 1.09 2.028 0.77 62.03
P 4 2 1 1.03 1.032 0.9 12.79
P 4 2 2 9.02 1.068 0.9 15.73
P 4 3 0 1.59 2.436 5.47 -124.54
P 4 3 1 13.6 1.464 7.63 -421.17
P 4 3 2 11.4 0.516 4.48 -768.21
P 5 2 0 21.8 2.184 1.08 50.54
P 5 2 1 19.9 1.248 3.86 -209.29
P 5 2 2 17.4 1.284 4.01 -212.30
P 5 3 0 42.8 19.428 8.01 58.77
P 5 3 1 35.8 71.1 9.72 86.32
P 5 3 2 28.6 21.564 9.11 57.75
P 6 2 0 42.6 1.512 2.92 -93.12
P 6 2 1 38.3 5.268 3.87 26.53
P 6 2 2 33.6 5.496 3.91 28.85
P 6 3 0 966.67 (5.95%) 1076.2 -
P 6 3 1 872.46 (7.27%) 1141.05 -
P 6 3 2 761.38 (8.05%) 1094.66 -
P 7 2 0 84.6 9.444 5.05 46.52
P 7 2 1 74.7 35.052 7.32 79.11
P 7 2 2 64.4 46.932 7.91 83.14
P 8 2 0 167.38 650.43 540.8 16.85
P 8 2 1 105.38 2394.03 821.56 65.68
P 8 2 2 94.4 2875.95 874.52 69.59
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the number of stages and K indicates the number of demand realizations emanating from

each node.

We compare the performance of the proposed branch and price algorithm with the results

of solving the extensive format (3.5a), with the variables xim as continuous, using SCIP-

3.1.1. Table 5.3 presents the objective function value, the CPU time for both methods, and

the reduction in solving time. As can be seen, the proposed branch and price algorithm

provides a lower solving time in majority of the instances. A CPU time limit of 3600

seconds was imposed while running all instances. For instances with 243 scenarios, the

extensive format is not solved to optimality in the time limit. Thus the optimality gap is

reported for them. The largest instance that we have solved has 243 scenarios; larger in-

stances would require more than 3600 seconds of CPU time. We report the time reduction

in percentage for instances up to 128 scenarios. the positive values show the reduction,

and the positive values represent an increase in the solution time.

5.2 Effect of the Mean Arrival Rate on the Optimal

number of opened Vial

In the second experiment, we solve the extensive format (3.5a) for the vaccine vial opening

problem using SoPlex-2.0.1. We consider 6 instances of the vaccine vial opening problem

with 4 stages and 2 realizations of the demand emanating from each scenario tree node, i.e.
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Table 5.4: Problem parameters
Reliability rate (α) 90% ($)
Maximum allowable wastage and shortage (βs, βw) 1 dose
Opened vials’ life time (ν) 1 period

8 scenarios in total. In these instances, we change the mean arrival rate per period from 5

to 30, and examine the number of opened vials from each vial size. Table 5.4 summarizes

the problem parameters used in this experiment.

Our goal is to investigate how the number of vials from each vial size changes by different

arrival rates. Table 5.5 shows the optimal number of each vial size that is opened. As can

be observed, when λ is less than 10, no 10-dose vial is opened in order to avoid wastage.

Yet, the overall usage of 10 dose vials is increasing with the mean arrival rate. However,

5-dose vials do not show a monotonic behavior; as when λ is divisible by 5, number of

opened 5-dose vials is always 1. While for the other values of λ, more than one vial is

opened. This can be explained by the desire to balance between the opening cost and the

wastage.

We next define the ratio Ri which measures the portion of the total vaccine usage that is

provided by each vial size. Ri is calculated as follows:

Ri = vixi∑
i∈I vixi

, ∀i ∈ I.
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Table 5.5: The optimal number of vials
λ per period 1-dose 5-dose 10-dose Total (dose)

5 2.33 1.806 0 11.36
10 1.54 1 2 26.54
15 3.39 1.53 3 41.04
20 1.53 1 5 56.53
25 1.53 2 6 71.53
30 1.52 1 8 86.52

Table 5.6: The values of Ri, i = 1, 5, 10
λ per period R1 R5 R10

5 20.51 79.48 0
10 5.80 18.83 75.35
15 8.26 18.64 73.09
20 2.70 8.84 88.44
25 2.13 13.98 83.88
30 1.75 5.77 92.46

R1, R2, and R3 refers to the ratio of 1, 5, and 10-dose vials, respectively. The values of Ri

are summarized in Table 5.6 .

Figure 5.1 depicts how the ratio (Ri) changes with the mean arrival rate. As can be seen,

the ratio of 10-dose vials increase with the arrival rate in a non monotonic way. It can

be observed that at arrival rates 15 and 25, R10 has dropped, and instead 5-dose usage

has increased. This implies that with higher value of λ, higher portion of the demand is

satisfied by 10-dose vials. However, when the mean arrival rate is a multiple of 5, the

contribution of the 5-dose vials in satisfying the demand increases. This behavior can be

interpreted as a prevention against wastage.
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Figure 5.1: The ratio (Ri), i = 1, 2, and 3

5.3 Effect of the Reliability Rate (α) on the Costs

In the third experiment, we investigate the effect of α on the total cost. Therefore, we solve

the vaccine vial opening problem with three vial sizes, 1-, 5-, and 10-doses. We choose a

problem size of 8 scenarios, i.e. 4 stages and 2 demand outcomes emanating from each

node. Moreover, we use a maximum allowable wastage and shortage of 1 unit.

We solve the described problem where α changes from 0.7 to 1 for the mean arrival rate

of 5 and 10 per period. Note that α = 1 makes the chance constraint equivalent to two

ordinary constraints that require all the scenarios to comply with the maximum allowable

amount of shortage and wastage. Table 5.7 summarizes the value of the objective function
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Table 5.7: Expected cost’s changes with α
Mean arrival rate per period = 5 Mean arrival rate per period = 10

α Obj. Value Obj Value
0.7 9016.69 16929.56
0.75 9020.00 17448.61
0.8 9658.27 20241.15
0.85 10300.00 20241.15
0.9 10891.65 21035.60
0.95 10900.00 21865.38

1 10900.65 21865.38

(costs) for different value of α. As can be seen, the objective function increases with α for

both mean arrival rates.

We also represent the results in Figure 5.2 which shows increasing the objective function

with α. As α increases, the chance constraint enforces the model to satisfy ordinary

wastage and shortage constraints for more scenarios. Therefore, in order to satisfy the

shortage constraint, higher capacity expansion costs are imposed.
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44



Chapter 6

Conclusions and Future Work

We considered a multi-stage capacity expansion problem where demand is unknown and

capacities are perishable. We developed a multi-stage stochastic programming model to

formulate the problem. A scenario tree was used to represent the uncertainty of the de-

mand. The objective function was to minimize the expansion cost of capacities. Our main

purpose was to determine when a capacity should be expanded and the size of expansion.

In our model, the capacity requirements were determined by demand under all scenarios.

We used a probabilistic constraint to address the trade-off between capacity shortage and

capacity excess.

To the best of our knowledge, perishable capacities have not been applied in the stochastic

capacity expansion problem in the literature.

We employed binary variables to reformulate the chance constraint, and obtain a determin-

istic mixed-integer equivalent of the model. As an application, we proposed to formulate the
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vaccine vial opening problem. This formulation enabled us to address important concerns

regarding the vaccine administration. We considered different vial sizes as the resources

that can be used during a vaccination session. We assumed that the demand is realized

during multiple time periods. Our goal was to minimize the purchase cost of vials, and

hedge against the vaccine wastage and shortage using a chance constraint.

We developed a reformulation of the mixed-integer model to enable a nodal decomposition.

Then, we decomposed the model into a Dantgiz-Wolf master problem and a subproblem for

each node. We proposed a heuristic to solve the subproblems, and implemented a branch

and price algorithm where capacity expansion decisions were continuous. The results sup-

ported the performance of the algorithm compared to solving the extensive format using

SoPlex-2.0.1. Implementing the branch and price algorithm with integer capacity expan-

sion decisions can be a potential future work.

We also reported that the total usage of 5 and 10 dose vials increases with the mean arrival

rate. However, unlike the 10 dose vials, the portion of 1 and 5 dose vials in the total vaccine

usage decreases with the arrival rate.

In addition, we examined the behavior of the objective function with the changes in the

reliability rate and mean arrival rate. We reported the results suggesting that the expected

purchase cost increase with the reliability rate.

In this study, we assumed that there is unlimited amount of each resource to be expanded.
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This assumption can be removed in future studies. Moreover, a fixed charge cost can be

considered by which economies of scales can be taken into account. This assumption can

make the model more complex, however, the proposed decomposition approach would still

be valid.
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