
Combinatorial Algorithms for
Submodular Function Minimization

and Related Problems

by

Christopher Price

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2015

c© Christopher Price 2015

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Submodular functions are common in combinatorics; examples include the cut capacity
function of a graph and the rank function of a matroid. The submodular function mini-
mization problem generalizes the classical minimum cut problem and also contains a num-
ber of other combinatorial optimization problems as special cases. In this thesis, we study
submodular function minimization and two related problems: matroid polyhedron mem-
bership and matroid intersection. A significant contribution concerns algorithms for the
latter problems due to Cunningham. In particular, we identify and correct errors in the
original proofs of the running time bounds for these algorithms.

iii

Acknowledgements

I would like to thank Bill Cunningham for his supervision. Without his guidance, patience
and humility, this work would not have been possible. Additionally, I would like to thank
my readers Joseph Cheriyan, Bertrand Guenin and Chaitanya Swamy for their valuable
input and suggestions. Finally, I would like to thank NSERC, OGS and the University of
Waterloo for their generous financial support.

iv

Table of Contents

List of Figures vii

List of Algorithms and Subroutines viii

1 Preliminaries 1

1.1 Introduction . 1

1.2 Graph Theory . 3

1.3 Matroid Theory . 3

2 Matroid Polyhedron Membership 8

2.1 Introduction . 8

2.2 The Crude Augmentation . 11

2.3 The Grand Augmentation . 15

2.4 Two Lemmas . 22

2.5 Analysis . 26

2.6 Basis Polyhedron Version . 35

3 Matroid Intersection 39

3.1 Introduction . 39

3.2 Improved Matroid Intersection Algorithm 42

v

4 Submodular Function Minimization 53

4.1 Introduction . 53

4.2 Schrijver’s Algorithm . 55

4.3 Matroid Polyhedron Membership: Local Change Algorithm 66

4.4 Matroid Polyhedron Membership: Push-Relabel Algorithm 72

4.5 Push-Relabel Submodular Function Minimization 76

References 81

Index 83

vi

List of Figures

2.1 Counterexample to Lemma 4.4 of [3] . 25

2.2 Counterexample to monotonicity lemma in [3]. 30

2.3 Auxiliary digraph with respect to M , x, y, and λ. 31

2.4 Auxiliary digraph after augmentation - note that d′(s, f) < d(s, f). 31

3.1 Counterexample to Theorem 4.2 of [5]. 43

3.2 Auxiliary digraph with respect to M1, M2, and J = {a, c}. 44

vii

List of Algorithms and Subroutines

1 Crude Augmentation of λ using st-dipath P 13
2 Matroid Polyhedron Membership Algorithm 26
3 Matroid Intersection Algorithm . 41
4 Stage Augmentation . 49
5 Improved Matroid Intersection Algorithm 51
6 Schrijver’s Subroutine . 62
7 Schrijver’s Submodular Function Minimization Algorithm 63
8 Local Augmentation of λ using ef . 69
9 Matroid Polyhedron Membership - Local Augmentation Version 70
10 Push-Relabel Matroid Polyhedron Membership Algorithm 73
11 Push at v with respect to u, ≺i, and y . 77
12 Push-Relabel Submodular Function Minimization Algorithm 78

viii

Chapter 1

Preliminaries

1.1 Introduction

In 1984, Cunningham [3] gave the first efficient combinatorial algorithm for the matroid
polyhedron membership problem. The algorithm, like classical network flow algorithms,
iteratively constructs an auxiliary digraph and performs augmentations along a shortest
source-sink path. The running time bound depends on a monotonicity property of path
lengths in the auxiliary digraph.

Cunningham also applied these ideas to improve the running time of the matroid intersec-
tion algorithm [5]. Once again, the algorithm iteratively constructs an auxiliary digraph
and performs augmentations along shortest source-sink paths. Furthermore, the argument
for the running time bound depends on a similar path-length monotonicity property.

The approach taken by Cunningham to solving the matroid polyhedron membership prob-
lem was adapted by Schrijver [21] and, independently, by Iwata, Fleischer and Fujishige
[16], to give efficient combinatorial algorithms for submodular function minimization, solv-
ing a problem that remained open for many years. Moreover, the running time of Cunning-
ham’s improved version of the matroid intersection algorithm is still the best known. While
the main results of [3] and [5] are correct, their original proofs are not. In particular, the
path-length monotonicity properties on which the running time bounds depend are not true
in general. However, in both cases, a weakened form of the monotonicity property can be
proven, and can in turn be used to provide complete and correct proofs of the main results.

1

In the case of matroid intersection, the errors in [3] have been previously considered. In
his German language diploma thesis, Haselmayr [14] gives a counterexample to the path-
length monotonicity property, a proof of its weakened form, and a proof of the running
time of the algorithm. In the case of matroid polyhedron membership, analogous results
and proofs appear in this thesis for the first time.

A primary purpose of this thesis is to study and correct the errors in Cunningham’s pa-
pers. Most significantly, we establish the validity of Cunningham’s algorithm for matroid
polyhedron membership. Additionally, we consider Haselmayr’s work [14] on the matroid
intersection algorithm, and offer a similar resolution to the problem. Finally, we study the
problem of submodular function minimization, with an emphasis on its relationship to the
matroid polyhedron membership problem.

The remainder of Chapter 1 introduces some background in graph theory and matroid
theory.

In Chapter 2, we study the matroid polyhedron membership problem. We begin by pre-
senting Cunningham’s algorithm. Next, we identify and examine the error found in [3].
After correcting the error, we prove a modified monotonicity property and go on to prove
that the algorithm is indeed polynomial-time. In the last section of Chapter 2, we consider
a slight variant of the algorithm for which Cunningham’s original argument is valid.

Chapter 3 studies the matroid intersection problem. In particular, we present Cunning-
ham’s algorithm and a counterexample to the monotonicity property of [5]. In addition,
we study the work of Haselmayr, and offer a proof of the polynomial running time bound
originally claimed.

Chapter 4 studies submodular function minimization, which contains both matroid poly-
hedron membership and the decision version of matroid intersection as special cases. We
begin by presenting Schrijver’s algorithm [21]. By studying the behaviour of the algorithm
in the special case of matroid polyhedron membership, we arrive at another matroid poly-
hedron membership algorithm. Next, we consider the work of Frank and Miklós [12], who
give a push-relabel algorithm for matroid polyhedron membership. Finally, we extend the
algorithm of [12] to obtain a push-relabel algorithm for submodular function minimization,
due to Fleischer and Iwata [10].

2

1.2 Graph Theory

In what follows, we require some basic terminology from graph theory. Standard terms
and symbols are taken from the text Graph Theory by Bondy and Murty [2].

Let D = (N,A) be a digraph. For distinct nonadjacent vertices s, t ∈ N , a set N ′ ⊆
N \ {s, t} is called an st-separator if there is no st-dipath in the subdigraph of D induced
by N \N ′. Two st-dipaths are said to be disjoint if their only common vertices are s and
t. We will require the following theorem of Menger [2].

Theorem 1.2.1. (Menger’s Theorem) Let D = (N,A) be a digraph and let s, t ∈ N be
two distinct vertices such that (s, t) 6∈ A. Then the minimum cardinality of an st-separator
is equal to the maximum number of pairwise disjoint st-dipaths.

The notation d(s, u) denotes the length of a shortest su-dipath in D, and where X, Y ⊆ N ,
d(X, Y) denotes the length of a shortest dipath from a vertex in X to a vertex in Y . We call
an e1ek-dipath e1,e2, ...,ek in D chordless if there is no arc eiej for any pair i, j satisfying
1 < i+ 1 < j ≤ k.

We will also need to find a shortest path in a digraph. For this, we use a common tech-
nique, known as breadth-first search . Breadth-first search accepts a digraph (N,A) and a
distinguished vertex s as inputs and terminates in O(|N |2) time. It works by visiting each
vertex reachable from s precisely once and considering its neighbours. It chooses the next
vertex to visit by a first-in, first-out rule. Given an ordering on the vertices, if breadth-first
search considers the neighbours of each vertex in increasing order, then it will determine
a lexicographically least shortest st-dipath , that is, the unique shortest st-dipath whose
vertex sequence is lexicographically least.

1.3 Matroid Theory

A matroid is a set system (S, I) consisting of a ground set S together with a set I of
subsets of S satisfying the following axioms.

(M0) ∅ ∈ I.

(M1) If J ∈ I and J ′ ⊆ J , then J ′ ∈ I.

(M2) If J, J ′ ∈ I and |J ′| = |J |+ 1, then there exists e ∈ J ′ \ J such that J + e ∈ I.

3

Throughout this thesis, the identifier n universally refers to the size of the ground set of
the nearest matroid. The results in this section are all standard, and can be found in the
text Matroid Theory by Oxley [19].

Members of I are called independent sets . Given A ⊆ S, we call an inclusionwise maximal
independent subset J ⊆ A an M-basis of A, or where unambiguous, simply a basis of A. A
basic result in matroid theory states that, for any A ⊆ S, every basis of A is equicardinal.

Proposition 1.3.1. Let M = (S, I) be a matroid and A ⊆ S. Let J and J ′ be two maximal
independent subsets of A. Then |J | = |J ′|.

Proof. Suppose |J ′| > |J |. If |J ′| = |J | + 1, then by axiom (M2), J is not a maximal
independent subset of A. If |J ′| > |J | + 1, then by (M2), for any subset I of J ′ with
|I| = |J | + 1, there exists some e ∈ I \ J such that J + e ∈ I, again contradicting the
maximality of J .

We refer to the cardinality of a basis of A as the rank of A. Associated with any matroid
M = (S, I) is its rank function rM : 2S → Z which maps each A ⊆ S to its rank. Where
unambiguous, we abbreviate rM to r. The following submodular property of the rank
function will be useful in later chapters.

Lemma 1.3.2. Let M = (S, I) be a matroid and let A,B ⊆ S. Then

r(A) + r(B) ≥ r(A ∪B) + r(A ∩B).

Proof. Let J1 be a basis of A ∩B, and extend J1 to a basis J2 of A ∪B. Then A ∩ J2 ∈ I
and B ∩ J2 ∈ I, so r(A) ≥ |J2 ∩ A| and r(B) ≥ |J2 ∩B|. Now,

r(A) + r(B) ≥ |A ∩ J2|+ |B ∩ J2|
= |J2 ∩ (A ∩B)|+ |J2 ∩ (A ∪B)|
= |J1|+ |J2|
= r(A ∩B) + r(A ∪B).

A set A ⊆ S is called dependent if is it not independent. A circuit is an inclusionwise
minimal dependent subset of S. For an independent set J and an element e ∈ S \ J , if
J + e 6∈ I, then J + e must contain a circuit. The following result says that there is a
unique circuit in J + e.

4

Lemma 1.3.3. Let M = (S, I) be a matroid, let J ∈ I, and let e ∈ S such that J + e 6∈ I.
Then J + e contains precisely one circuit C and e ∈ C.

Proof. Suppose not. Choose J ∈ I, e ∈ S \ J such that J + e contains two circuits C1 and
C2. Subject to this, choose J as small as possible. Then J = (C1 ∪ C2)− e. As C1 6= C2,
there exists a ∈ C1 \ C2 and b ∈ C2 \ C1. It follows that (C1 ∪ C2) \ {a, b} contains a
basis B of C1 ∪ C2. But J is a basis of C1 ∪ C2 and |B| ≤ |(C1 ∪ C2) \ {a, b} | < |J |, a
contradiction.

We denote this unique circuit, if it exists, by CM(J, e) , and as always, we omit the subscript
where unambiguous. Given matroids M1,M2, ...,Mk, if J is independent in Mi and J + e
is not, then we denote the circuit of Mi contained in J + e by Ci(J, e) . The Strong Circuit
Axiom is another standard result that we will use regularly.

Lemma 1.3.4. (Strong Circuit Axiom) Let M = (S, I) be a matroid and let C1, C2 be two
distinct circuits of M with e ∈ C1 ∩ C2 and f ∈ C1 \ C2. Then there exists a circuit C3 of
M with f ∈ C3 ⊆ (C1 ∪ C2)− e.

Proof. By Lemma 1.3.2, r(C1) + r(C2) ≥ r(C1 ∪ C2) + r(C1 ∩ C2). Since C1 ∩ C2 is a
proper subset of C1, r(C1 ∩C2) = |C1 ∩C2|. Since C1 and C2 are circuits, r(C1) = |C1| − 1
and r(C2) = |C2| − 1. Substituting these values into the inequality and rearranging gives
r(C1∪C2) ≤ |C1∪C2|−2. It follows that C1∪C2−e 6∈ I, so there is a circuit C3 ⊆ C1∪C2−e.

Suppose no circuit of C1 ∪ C2 − e contains f . Subject to this, choose C1 and C2 so that
|C1∪C2| is as small as possible. Evidently e ∈ C2\C3 and since C3 6⊆ C1, there exists some
g ∈ C3∩(C2\C1). Since f ∈ (C1∪C2)\(C2∪C3), |C2∪C3| < |C1∪C2|. Then by the choice
of C1 and C2, there exists a circuit C4 ⊆ C2 ∪ C3 − f with e ∈ C4. Now, e ∈ C1 ∩ C4 and
f ∈ C1 \C4. As C1∪C4 ⊆ C1∪C2−g, there exists a circuit C5 ⊆ C1∪C4−e ⊆ C1∪C2−e
and f ∈ C5, a contradiction.

Let M = (S, I) be a matroid and let A ⊆ S. Then for any element e ∈ S \ A, r(A) ≤
r(A + e) ≤ r(A) + 1. If r(A + e) = r(A), then e is said to be in the closure of A. The
closure of the set A, denoted clM(A) , is equal to the set of all elements e ∈ S such
that r(A + e) = r(A). In what follows, we require the following results about the closure
operator.

Proposition 1.3.5. Let M = (S, I) be a matroid and let J be a basis of A ⊆ S. Then J
is also a basis of cl(A).

5

Proof. Suppose not. Then there exists e ∈ cl(A) \ A such that J + e ∈ I. As e ∈ cl(A),
r(A + e) = r(A). But J + e ⊆ A + e and J + e ∈ I, so r(A + e) ≥ |J | + 1 > r(A), a
contradiction.

Lemma 1.3.6. Let M = (S, I) be a matroid with rank function r and let A ⊆ S. Then
r(A) = r(cl(A)).

Proof. This lemma is a direct corollary of Proposition 1.3.5. Since a basis J of A is a basis
of cl(A), r(A) = |J | = r(cl(A)), as required.

Lemma 1.3.7. Let M = (S, I) be a matroid and let J be a basis of A ⊆ S. Then
cl(J) = cl(A).

Proof. Let e ∈ cl(A). Then r(A + e) = r(A). If e 6∈ cl(J), then J + e ∈ I. But then J is
not a basis of cl(A), contradicting Proposition 1.3.5.

Now let e ∈ cl(J). Then r(J + e) = r(J), so J + e 6∈ I. On the other hand, if e 6∈ cl(A),
then r(A+ e) > r(A), which implies that J + e ∈ I, a contradiction.

Lemma 1.3.8. Let M = (S, I) be a matroid and let A ⊆ S. Let B ⊆ cl(A). Then
cl(A ∪B) = cl(A).

Proof. Let J be a basis of A. By Proposition 1.3.5, J is also a basis of cl(A). Since
B ⊆ cl(A), we have A ⊆ A ∪ B ⊆ cl(A). Now r(A) = r(cl(A)) by Lemma 1.3.6. But
r(A) ≤ r(A ∪ B) ≤ r(cl(A)), so r(A ∪ B) = r(A). It follows that J is a basis of A ∪ B.
Now by Lemma 1.3.7, cl(A) = cl(J) = cl(A ∪B), as required.

Arguments concerning the running time of matroid algorithms are slightly unusual since it
is possible to have exponentially many independent sets in a matroid. Consequently, if we
allow the collection of independent sets of a matroid as the input, then we might achieve a
‘polynomial time’ algorithm in the length of the input, which is itself exponential in n. One
might think that this necessarily precludes the possibility of a polynomial-time algorithm
for optimization problems on matroids, but this is not the case. In many concrete classes
of matroids, even if there are exponentially many independent sets, there exist polynomial-
time algorithms which determine if a set is independent. For a matroid M = (S, I), we
call an algorithm which, given some A ⊆ S, returns true if A ∈ I and false otherwise, an
independence oracle for M . For any matroid algorithm, we assume that the input matroid
is represented as a ground set together with an independence oracle.

6

Since independence oracles can have quite different running times, it makes sense to ab-
stract a matroid algorithm from its independence oracle. This allows us to give a generic
running time, as a function of n and the running time of the independence oracle. We call
a matroid algorithm a polynomial time matroid algorithm if its running time is bounded
from above by a function polynomial in n and the running time of the independence or-
acle. Note that, for a concrete implementation, a polynomial time matroid algorithm is
polynomial time if and only if the independence oracle is polynomial time.

7

Chapter 2

Matroid Polyhedron Membership

2.1 Introduction

In this chapter, we study the matroid polyhedron membership problem. Given a matroid
M = (S, I) with rank function r, the independent set polyhedron of M , denoted PM , is
equal to the convex hull of (incidence vectors of) independent sets of M . In the matroid
polyhedron membership problem, we are given a matroid M = (S, I) and a vector x ∈ RS,
and asked to determine if x ∈ PM .

One might immediately wonder if an efficient algorithm is likely to exist for this problem,
that is, are there succinct certificates which verify a ‘yes’ and a ‘no’ answer? The answer
to this question is provided by the following theorem of Edmonds [7].

Theorem 2.1.1. (Matroid Polytope Theorem) For any matroid M = (S, I) with rank
function r, the system

x(A) ≤ r(A) ∀A ⊆ S

x ≥ 0

defines the convex hull of independent sets of M .

It follows that, if x ∈ PM , then there exists an expression for x as a convex combination of
independent sets of M . Of course, in the event that x 6∈ PM , we would like a certificate,
verifiable in polynomial time, that this is the case. Clearly, if x 6≥ 0, then xe < 0 for some

8

e ∈ S, so the set {e} is a certificate. Providing x ≥ 0, if x 6∈ PM , then there must exist
some A ⊆ S with x(A) > r(A); in this case, we would like to return such a set.

The Matroid Polytope Theorem came in 1970, but no efficient algorithm for solving the
matroid polyhedron membership problem was known even at the time of Khachiyan’s 1979
proof that the ellipsoid method represented a polynomial-time algorithm for solving linear
programs [17]. This proof generated interest in the ellipsoid method and its potential ap-
plications to combinatorial optimization. In particular, a 1981 paper by Grötschel, Lovász,
and Schrijver [13] studied a number of problems through the lens of the ellipsoid method.
One of the focal points of this paper was to prove the equivalence of the separation problem
and the optimization problem.

Let P ⊆ Rn be a polyhedron. The optimization problem is, given a vector w ∈ Rn, to find
a vector x ∈ P such that w>x is maximized. The separation problem is, given a vector
x ∈ Rn, to determine whether or not x ∈ P , and if not, to find a hyperplane separating x
from P . The theorem of Grötschel, Lovász, and Schrijver states that there is a polynomial-
time algorithm to solve the separation problem over a class of polyhedra if and only if there
is a polynomial-time algorithm to solve the optimization problem over that same class.

In our case, we are dealing with matroid polyhedra, that is, those described by the set
of inequalities in the Matroid Polytope Theorem. Furthermore, the matroid polyhedron
membership problem is merely an instance of the separation problem for this class of poly-
hedra. Fortunately, as Edmonds proved in 1971 [8], this is a class of polyhedra for which
the greedy algorithm always delivers an optimal solution. It follows that we can solve the
optimization problem over this class, and therefore we must be able to solve the separation
problem also.

Consider the following theorem of Edmonds, a special case of his “Polymatroid Intersection
Theorem” [7].

Theorem 2.1.2. (Membership Min-Max Theorem) Let M = (S, I) be a matroid and let
x ∈ RS. Then

max
y∈PM :y≤x

{y(S)} = min
A⊆S
{r(A) + x(S \ A)} (2.1)

Evidently, x ∈ PM if and only if the maximizing vector in 2.1 is equal to x. Otherwise, if
A minimizes r(A) + x(S \ A), then it also minimizes r(A) − x(A), that is, it provides an

9

inequality x(A) ≤ r(A) which is most violated by x. The proof of Theorem 2.1.2 is not
difficult, and relies on the following lemma, which also appears in [7].

Lemma 2.1.3. Let M = (S, I) be a matroid, let x ∈ RS and let y ∈ PM . If A,B ⊆ S are
such that y(A) = r(A) and y(B) = r(B), then y(A∪B) = r(A∪B) and y(A∩B) = r(A∩B).

Proof. Let A,B ⊆ S be such that y(A) = r(A) and y(B) = r(B). Then

y(A) + y(B) = y(A ∪B) + y(A ∩B)

≤ r(A ∪B) + r(A ∩B) (Theorem 2.1.1)

≤ r(A) + r(B) (submodularity)

= y(A) + y(B).

Equality must hold throughout. In particular, y(A ∪ B) = r(A ∪ B) and y(A ∩ B) =
r(A ∩B).

Proof. (Of the Membership Min-Max Theorem (2.1.2)) Let Z ⊆ S and let y ∈ PM with
y ≤ x. Then

y(S) = y(Z) + y(S \ Z)

≤ r(Z) + y(S \ Z) (y ∈ PM)

≤ r(Z) + x(S \ Z). (y ≤ x)

Therefore, the maximum in (2.1) is less than or equal to the minimum. It remains to show
that equality always holds.

Suppose y is a maximizing vector in (2.1). Observe that, if for some e ∈ S, we have
ye < xe, then e belongs to some set Y ⊆ S with y(Y) = r(Y). If this were not the case,
then y + εχ{e} = y′ ∈ PM and y′ ≤ x for some sufficiently small ε > 0, contradicting that
y is a maximizer.

Define A to be the union of all sets X ⊆ S with y(X) = r(X). By Lemma 2.1.3, y(A) =
r(A). Since each e ∈ S \ A has ye = xe, we also have y(S \ A) = x(S \ A). Thus
y(S) = r(A) + x(S \ A), as required.

10

The previous discussion having established that the problem is well characterized, we now
begin to describe an algorithm that will yield an optimal pair. Sections 2 through 5 of this
chapter closely follow the work of Cunningham [3], who gives a combinatorial algorithm
for the matroid polyhedron membership problem. Beyond understanding the problem at
hand, the purpose of the chapter is to clarify the presentation of the algorithm, as well as
to correct Cunningham’s proof of its running time.

Section 2 of this chapter presents the basic ideas behind the algorithm, in particular the
notion of a crude augmentation. Section 3 goes on to refine the crude augmentation
to produce a grand augmentation. Section 4 discusses and corrects the error found in
Cunningham’s paper, and Section 5 proves the bound on the running time of the algorithm.
Section 6 presents a similar algorithm for the matroid polyhedron membership problem.

2.2 The Crude Augmentation

Throughout this section, let M = (S, I) and x ∈ RS be an instance of the matroid
polyhedron membership problem. The algorithm is an iterative one, and at a high level,
it works as follows. We keep a vector λ ∈ RI satisfying

λ ≥ 0 and
∑
J∈I

λJ = 1 (2.2)

and for any such vector λ, define

y(λ) =
∑
J∈I

λJχJ ,

where χJ is the incidence vector of the independent set J . Where unambiguous, we write
J instead of χJ . Also where unambiguous, we refer to y(λ) as y and y(λ′) as y′. Since y is
a convex combination of independent sets, we know that y ∈ PM .

Clearly, the vector λ may have exponentially many components if I has exponentially
many sets. Using such a vector is simply a notational convenience; the algorithm will only
consider those sets J ∈ I for which λJ > 0. We call such a set J active , and we will show
that the algorithm only creates polynomially many active sets.

11

The main loop of the algorithm begins with some λ such that y ≤ x. If y = x, then
the algorithm terminates and λ is a certificate that x ∈ PM . If instead y 6= x, then the
algorithm seeks a vector λ′ such that x ≥ y′ ≥ y, and y′ 6= y. If no such vector exists, then
x 6∈ PM , and the algorithm seeks a set A ⊆ S to certify this.

Suppose, for some λ ∈ RI , that y ≤ x, x ∈ PM , and y 6= x. How can we find a vector
λ′ such that x ≥ y′ ≥ y and y′ 6= y? In the simplest case, there is some e ∈ S such that
ye < xe and some active J such that J ′ = J + e ∈ I. In this case, we can set

λ′J ′ = λJ ′ + min {xe − ye, λJ} and λ′J = λJ −min {xe − ye, λJ} and λ′I = λI ∀I 6= J

Then y′ = y+ (min {xe − ye, λJ}) · {e}. Of course, this case will not always occur. It could
be that, for each e ∈ S with ye < xe, and for each active J , J + e 6∈ I. In this case, we
can still find a λ′ satisfying the given conditions if we can find a sequence e1, e2, ..., ek of
elements of S and a sequence J1, J2, ..., Jk of (not necessarily distinct) active independent
sets such that

ei 6∈ Ji for all 1 ≤ i ≤ k (2.3)

ei+1 ∈ Ji for all 1 ≤ i < k (2.4)

ye1 < xe1 , (2.5)

Ji + ei − ei+1 ∈ I for all 1 ≤ i < k, and (2.6)

Jk + ek ∈ I. (2.7)

In this case, it is not too hard to see how to find λ′; essentially, we take all the sets
J ′i = Ji + ei − ei+1 for i = 1, ..., k − 1 and J ′k = Jk + ek and add some δ > 0 to their
coefficients, and we subtract that same δ from the coefficient of each Ji. There are of
course some special considerations for sets Ji which appear more than once in the sequence
J1, J2, ..., Jk, which our proof of the Augmenting Path Theorem expounds upon.

At this point, we hypothesize that we can always find a sequence satisfying (2.3)-(2.7) if
x ∈ PM , y ≤ x and y 6= x. In order to find such a sequence, we construct an auxiliary
digraph D(M,x, λ) = (N,A) as follows. Let N = S ∪ {s, t}, where s, t 6∈ S with the
following arc-set:

• se whenever ye < xe

• et whenever there exists an active J with e 6∈ J such that J + e ∈ I

12

• ef whenever there exists an active J with e 6∈ J , f ∈ J such that J + e− f ∈ I

The following theorem formalizes the above discussion, and also shows how to find a
certificate in the event that no sequence satisfying (2.3)-(2.7) exists.

Theorem 2.2.1. (Membership Augmenting Path Theorem) Let λ ∈ RI such that y ≤ x
and λ satisfies (2.2). Let D = D(M,x, λ). If there exists an st-dipath in D then there
exists λ′ ∈ RI satisfying (2.2) such that y ≤ y′ ≤ x and y′ 6= y. If there is no st-dipath
in D and y 6= x, then there exists A ⊆ S such that x(A) > r(A). Moreover, (y, A) is an
optimal pair in the Membership Min-Max Theorem (2.1.2).

Proof. Suppose there exists an st-dipath P in D with vertex sequence s, e1, e2, ..., ek, t. By
construction, there exist J1, J2, ..., Jk (not necessarily distinct) satisfying (2.3)-(2.7).

For i with 1 ≤ i ≤ k, let µi denote the number of times that Ji appears in the sequence
J1, ..., Jk. Consider the following subroutine.

Subroutine 1 Crude Augmentation of λ using st-dipath P

δ ← min
1≤i≤k

{
λJi
µi

}
λ′ ← λ
for i = 1 to k − 1 do

J ′i ← Ji + ei − ei+1

λ′J ′i
← λJ ′i + δ

λ′Ji ← λ′Ji − δ
end for
J ′k ← Jk + ek
λ′J ′k
← λJ ′k + δ

λ′Jk ← λ′Jk − δ
return λ′

It is easy to see that the above subroutine returns λ′ satisfying (2.2). Consider some
element ei with 2 ≤ i ≤ k. We have

J ′i−1 = Ji−1 + ei−1 − ei and J ′i = Ji + ei − ei+1 or J ′k = Jk + ek.

In particular, ei ∈ J ′i and ei ∈ Ji−1. Furthermore, we have

λ′Ji−1
= λJi−1

− δ and λ′J ′i = λJ ′i + δ.

13

We conclude that ye = y′e for all e 6= e1. There is only one set change involving e1, namely
J ′1 = J1 + e1 − e2. The new coefficients are

λ′J ′1 = λJ ′1 + δ and λ′J1 = λJ1 − δ.

It follows that y′ = y + δ {e1}.

Conversely, suppose y 6= x and there exists no st-dipath in D. Let A = {a ∈ S : there
exists an sa-dipath in D}. We claim that, for each active J , J∩A is a basis for A. Suppose
not. Then there exists some active J and some e ∈ A \ J such that (J ∩ A) + e ∈ I. If
J + e ∈ I, then et is an arc of D, a contradiction. If J + e 6∈ I, then since (J ∩A) + e ∈ I,
we know that C(J, e) 6⊆ A. Therefore, there exists some f ∈ C(J, e) \ (J ∩ A). It follows
from Lemma 1.3.3 that ef is an arc of D. But e ∈ A and f 6∈ A, a contradiction.

Now,

y(A) =
∑
J∈I

λJ · χJ(A)

=
∑
J∈I

λJ · |J ∩ A|

=
∑
J∈I

λJ · r(A)

= r(A), (by 2.2)

where the third equality follows from the fact that J ∩A is a basis for A. Since y 6= x and
y ≤ x, we know that x(A) > y(A) = r(A). By construction, every e ∈ S \ A has ye = xe.
Therefore, y(S \A) = x(S \A). Now, y(S) = y(A) + y(S \A) = r(A) + x(S \A), so (y, A)
is an optimal pair in (2.1).

We nearly have the necessary components of an algorithm: we have a termination condition
and a subroutine which ostensibly brings the algorithm closer to termination. What we
cannot be certain of is the number of iterations required to achieve termination, or indeed,
if the algorithm even terminates. Placing a bound on the running time of the algorithm will
require some significant modifications, including a substantive change to the augmentation
step. This is the subject of the following section. In addition, proving the bound will
require a deep understanding of the behaviour of the digraph from iteration to iteration,
which is the subject of subsequent sections.

14

2.3 The Grand Augmentation

For this section, let M = (S, I) and x ∈ RS be an instance of the matroid polyhedron
membership problem. Additionally, suppose we have some λ ∈ RI satisfying (2.2) such
that y ≤ x, and let D be the auxiliary digraph with respect to x and λ. Let Q be a
chordless st-dipath in D. As alluded to in the previous section, it is not apparent how
to place a bound on the number of augmentations that will occur in the näıve algorithm.
One of the main problems is that if we perform a crude augmentation using path Q, it
is possible that Q will be an st-dipath in the next auxiliary digraph. It is not even clear
how to place a bound on the number of augmentations along Q required to ensure that
some arc of Q disappears. The section begins with some definitions and motivation for the
grand augmentation, and concludes by defining the grand augmentation and proving some
of its properties.

There may be multiple independent sets giving rise to a particular arc of Q. For each arc
ef of Q with e 6= s, let

D(e, f) =

{
{J ∈ I : λJ > 0, f ∈ C(J, e)} : f 6= t
{J ∈ I : λJ > 0, e 6∈ J, J + e ∈ I} : f = t.

That is, D(e, f) is the set of independent sets which give rise to the arc ef . For each arc
ef of D with e 6= s, fix a total ordering ≺ of D(e, f). Notice that the crude augmentation
is defined with respect to just one element J ∈ D(e, f) for each arc ef of the augmenting
path. Given an ordering on the elements of D(e, f) for each arc ef , we assume that the
crude augmentation chooses the first element when augmenting. For an independent set
J ∈ D(e, f), define the level LJ(e, f) of J in ef to be

LJ(e, f) =
∑

I∈D(e,f):I�J

λI .

Intuitively, we imagine each arc ef of Q as having |D(e, f)| blocks stacked on top of one
another. The bottom block corresponds to the first independent set J in the ordering of
D(e, f) and has height λJ . The next block corresponds to the next independent set in
the ordering, and so on. Thus, the level of J in ef is equal to the height of the block
corresponding to J , plus the height of all the blocks corresponding to independent sets
coming before J in the ordering of D(e, f).

15

For each arc ef of Q, define the capacity of ef to be

u(e, f) =

{
xf − yf : e = s∑

J∈D(e,f) λJ : e 6= s.

For an st-dipath Q = s, e1, e2, .., ek, t, the capacity ε of Q is equal to the minimum of the ca-
pacities of its arcs. This is the height of a shortest stack of blocks along the path, or xe−ye,
as the case may be. We seek an augmentation along Q of amount ε whose effect is to re-
duce the capacity of each arc of Q by ε, and to raise ye1 by ε without affecting yf for f 6= e1.

In order to motivate the definition of the grand augmentation, consider the effect of a
single crude augmentation using the chordless st-dipath Q. Due to the chordlessness of Q,
for each arc ef of Q, the capacity of ef has decreased by exactly δ. If we consider some
arc ef of Q, the first independent set J ∈ D(e, f) has had its coefficient λJ decreased by
δ; intuitively, a piece of height δ has been cut from the bottom of the block corresponding
to J in D(e, f). For other arcs ab of Q, if J ∈ D(a, b), then the block corresponding
to J in D(a, b) has been split into two blocks: one corresponding to J whose height has
been reduced by δ, and (for the sake of illustration) directly below that, one correspond-
ing to J + e − f whose height is δ (we will not prove that J + e − f ∈ D(a, b) here, and
only mention this for the purposes of motivating the definition of the grand augmentation).

Performing another crude augmentation along Q will slice another piece from the bottom
block of each stack, and so on. Let us call the independent sets involved in this process
mutations. Specifically, if a set J ′ is the result of any number of alterations to a set J
throughout the process, then J ′ is said to be a mutation of J .

Suppose that after some number of crude augmentations along Q, the capacity of each arc
has been reduced by ε. With respect to the original coefficients λ, for an arc ef of Q, there
are three types of sets in D(e, f). First, there are sets J with LJ(e, f) ≤ ε. For such a set,
the block corresponding to J has been entirely sliced off the bottom of D(e, f). Put another
way, every mutation of J contains e but not f , for otherwise, some part of the block would
remain. Secondly, there are sets J ∈ D(e, f) with ε < LJ(e, f) < ε+λJ . For these sets, the
block corresponding to J has been reduced in height by λJ − LJ(e, f) + ε. The remaining
portion of the block may be split among some mutations of J , so some mutations of J
contain e and some contain f . Last are the sets J ∈ D(e, f) with LJ(e, f) ≥ ε + λJ . For
such a set, the entire block for J remains, but again might be split among mutations of J .

16

Moreover, each mutation of such a J must contain f but not e.

We are now prepared to define the grand augmentation. Given a chordless st-dipath Q,
let ε be the capacity of Q. For some J ∈ I, define CJ = {(e, f) ∈ Q : J ∈ D(e, f)} ,
that is, CJ contains all arcs of Q which J gives rise to. For each independent set J such
that CJ 6= ∅, let `(J) = |CJ | and define an ordering (e1, f1), (e2, f2), ..., (e`(J), f`(J)) on the
elements of CJ such that LJ(ei, fi) ≤ LJ(ei+1, fi+1) for all 1 ≤ i ≤ `(J)− 1.

For each active independent set J , define J i = J∆ {e1, f1, e2, f2, ..., ei−1, fi−1} for i = 1 to
`(J) + 1, where, if t = fj for some j, we ignore it when taking the symmetric difference.
Note that J1 = J . We would like to have the property that

`(J)+1∑
i=1

(λ′Ji − λJi) = 0, (2.8)

that is, the value λJ is distributed completely among the mutations of J . Consider again
the three types of sets J ∈ D(ei, fi). If LJ(ei, fi) ≤ ε, then every mutation of J should
contain ei but not fi. Thus, J i should get a coefficient of 0 for such a J and i. If
ε < LJ(ei, fi) < λJ+ε, then the coefficient of J i should be chosen as LJ(ei, fi)−ε−

∑
j<i λ

′
Jj

so that the coefficients of the mutations of J containing fi but not ei sum to LJ(ei, fi)− ε.
If LJ(ei, fi) > λJ + ε, then every mutation of J should contain fi but not ei, so J i should
get the coefficient λJ −

∑
j<i λ

′
Jj . Formally, define the coefficient of J1 as

λ′J1 = max (0,min (λJ , LJ(e1, f1)− ε)) .

For i > 1, let the coefficient of J i be given by

λ′Ji = λJi + max

(
0,min (λJ , LJ(ei, fi)− ε)−

∑
1≤j<i

λ′Jj +
∑
2≤j<i

λJj

)
. (2.9)

Notice that LJ(e`(J)+1, f`(J)+1) is always undefined, so we will take the convention that
LJ(e`(J)+1, f`(J)+1) =∞. The above definition, along with this convention, guarantees that
the property (2.8) is satisfied. We now show that the grand augmentation has properties
similar to the crude augmentation. The second part of the theorem is particularly impor-
tant, as it allows us to place a polynomial bound on the number of active independent
sets.

17

Theorem 2.3.1. Suppose λ′ is obtained from λ by a grand augmentation along the st-
dipath Q = s, e1, e2, ..., em, t with capacity ε. Then λ′ satisfies (2.2) and y′ = y + ε {e1}.
Moreover, | {J ∈ I : λ′J > 0} | ≤ | {J ∈ I : λJ > 0} |+m.

Proof. We first show that λ′ satisfies (2.2). This is the case if

`(J)+1∑
i=1

λ′Ji =

`(J)+1∑
i=1

λJi .

By the convention that LJ(e`(J)+1, f`(J)+1) =∞, it suffices to show that

j∑
i=1

λ′Ji ≤
j∑
i=1

λJi (2.10)

for j = `(J). We prove that (2.10) holds for j = 1, ..., `(J) by induction on j. For j = 1,
the assertion is trivial. For j > 1,

j∑
i=1

λ′Ji =

j−1∑
i=1

λ′Ji + λ′Jj

=

j−1∑
i=1

λ′Ji + λJj + max

(
0,min (λJ , LJ(ej, fj)− ε)−

j−1∑
i=1

λ′Ji +

j−1∑
i=2

λJi

)
.

If the maximum in the above expression is equal to 0, then the assertion follows from the
inductive hypothesis. Otherwise,

j∑
i=1

λ′Ji =

j−1∑
i=1

λ′Ji + λJj + min (λJ , LJ(ej, fj)− ε)−
j−1∑
i=1

λ′Ji +

j−1∑
i=2

λJi

=

j∑
i=2

λJi + min (λJ , LJ(ej, fj)− ε)

≤
j∑
i=1

λJi ,

as required.

18

We now show that y′ = y + ε {e1}. It is easy to see that y′u = yu for vertices u not on Q.
Consider e = ek for some 1 ≤ k ≤ m. We first calculate

up(e, λ, λ′) = up(e) =
∑

Ji:e∈Ji\J

(λ′Ji − λJi).

Intuitively, up(e) is the amount that ye is increased by a grand augmentation; this happens
whenever a mutation of an independent set J with e 6∈ J contains e.

Notice that e ∈ J i \ J only if J ∈ D(e, f), where ef is the arc of Q with e as its tail.
Therefore, up(e) depends only on the mutations of the sets J ∈ D(e, f). For such a set J ,
let

PJ,e = PJ =
∑

Ji:e∈Ji

(λ′Ji − λJi) .

Evidently, up(e) =
∑

(PJ : J ∈ D(e, f)). Let J ∈ D(e, f) and let (e1, f1), (e2, f2),...,
(e`(J), f`(J)) be the ordering of CJ . Then (e, f) = (er, fr) for some r, 1 ≤ r ≤ `(J). We
consider three cases for J .

First, if LJ(er, fr) ≤ ε, then LJ(es, fs) ≤ ε for all 1 ≤ s ≤ r by the ordering defined on
CJ in the grand augmentation. Hence for all mutations of the form Js for 1 ≤ s ≤ r, the
maximum in (2.9) is 0. Therefore, λ′J1 = 0 and for 2 ≤ s ≤ r, λ′Js = λJs . It follows from
(2.8) that

λJ = λJ1 =
∑

s:r<s≤`(J)+1

(λ′Js − λJs),

and hence PJ = λJ , since every mutation Js in the sum above contains e but not f .

Next suppose LJ(er, fr) ≥ ε+ λJ . In this case, the minimum in (2.9) is λJ . Therefore,

λ′Jr = λJr + λJ −
∑

s:1≤s<r

λ′Js +
∑

s:2≤s<r

λJs ,

and it follows that

0 =
∑

s:1≤s≤r

(λ′Js − λJs), which implies 0 =
∑

r<s≤`(J)+1

(λ′Js − λJs).

19

Since λ′Js ≥ λJs (s 6= 1), equality must hold for all r < s ≤ `(J) + 1. As all mutations in
the first sum above contain f but not e, PJ = 0.

Finally, consider the case ε < LJ(er, fr) < ε+ λJ . The maximum in (2.9) is

LJ(er, fr)− ε−
∑

s:1≤s<r

λ′Js +
∑

s:2≤s<r

λJs .

Note that this value is actually the minimum in (2.9), but it is always non-negative, and
hence is also the maximum. This implies that∑

s:1≤s≤r

(λ′Js − λJs) = LJ(er, fr)− ε− λJ .

It follows from (2.8) that

PJ =
∑

s:r<s≤`(J)+1

(λ′Js − λJs) = λJ + ε− LJ(er, fr).

Now, let I be that set in D(e, f) with LI(e, f) ≥ ε but LJ(e, f) < ε for all J ∈ D(e, f)
with J < I. We have

up(e) = λI + ε− LI(e, f) +
∑

J∈D(e,f),J<I

λJ = ε

A similar argument shows that, for vertices e 6= e1 of Q, down(e) = ε, where

down(e) =
∑

Ji:e∈J\Ji

(λ′Ji − λJi).

Since {J i : e1 ∈ J \ J i} = ∅, down(e1) = 0. It follows that y′ = y + ε {e1}.

For the second part of the theorem, let A =
⋃
ef∈QD(e, f). Note that λJ > 0 for all J ∈ A.

Consider

| {J ∈ I : λ′J > 0} | ≤ | {J ∈ I \ A : λJ > 0} |+ |
{
J i : J ∈ A, λ′Ji > 0

}
|.

20

Now,

|
{
J i : J ∈ A, λ′Ji > 0

}
|

=
∑
J∈A

|
{
J i : λ′Ji > 0

}
|

≤
∑
J∈A

(1 + | {ef ∈ Q : ef ∈ CJ , ε < LJ(e, f) < ε+ λJ} |)

=|A|+

∣∣∣∣∣⋃
J∈A

{ef ∈ Q : ef ∈ CJ , ε < LJ(e, f) < ε+ λJ}

∣∣∣∣∣
≤|A|+m.

The first inequality above holds since each J ∈ A is replaced by one set, plus at most one
extra set for every edge ef ∈ CJ with ε < LJ(e, f) < ε + λJ . The second equality holds
since each arc ef of Q can satisfy ε < LJ(e, f) < ε+λJ for at most one set J ∈ A, and the
last inequality holds since there are at most m arcs which can satisfy the same. It follows
that

| {J ∈ I : λ′J > 0} | ≤ | {J ∈ I : λJ > 0} |+m

as required.

Theorem 2.3.1 verifies that our convex combination is valid, providing that the mutations
we have defined are independent sets. To prove this, we require two results, which are the
subject of the next section. Before moving on, we determine the running time of the grand
augmentation.

Lemma 2.3.2. Given λ, the auxiliary digraph can be constructed, a chordless st-dipath Q
can be selected, and a grand augmentation can be performed along Q in time O(n2 · q · p),
where O(q) is the complexity of the independence oracle, and O(p) is the number of active
independent sets.

Proof. The time to build the auxiliary digraph clearly dominates. This involves testing, for
each potential arc ef of the auxiliary digraph, whether there exists some active J such that
f ∈ C(J, e). Furthermore, note that the grand augmentation actually needs to determine
the sets D(e, f) for each arc ef of D. So indeed, for each potential arc, we will have to
test whether it is an arc with respect to each active J . For each such J , this involves
O(n2) tests of independence. Hence, where O(q) is the running time of the independence
oracle and the number of active independent sets, the time to build the auxiliary digraph
is O(n2 · q · p).

21

2.4 Two Lemmas

We wish to show that the grand augmentation is indeed valid. This only requires us to
show that each mutation is an independent set. The results in this section will establish
just that. However, looking ahead, we will also have to place a bound on the running
time of the algorithm. Lemma 2.3.2 is an important part of that bound, but we still have
the problem of determining what exactly O(p) is, that is, we must bound the number of
positive components of λ. From Theorem 2.3.1, we need only prove that the number of
grand augmentations required to solve an instance is polynomially bounded. Since each
augmentation adds a polynomial number of (newly) positive components to λ, we obtain
a polynomial bound.

Central to the proof of a polynomial number of grand augmentations are necessary pre-
conditions for the appearance of a new arc in the auxiliary digraph. In addition to proving
that the mutations are independent, the main business of the lemmas in this section is to
establish those necessary preconditions.

Note that for each mutation J ′ of J , either |J | = |J ′| or |J | + 1 = |J ′|. These correspond
to, respectively, mutations involving only arcs ef , where e, f ∈ S, and mutations involving
an arc et. The first two results apply to the first type of mutation.

Proposition 2.4.1. Let (S, I) be a matroid and let J ∈ I. Let a1,b1,a2,b2,..., ap,bp be a
sequence of distinct elements of S with a1, ..., ap 6∈ J and b1, ..., bp ∈ J such that

(i) bi ∈ C(J, ai) for 1 ≤ i ≤ p and

(ii) bj 6∈ C(J, ai) for 1 ≤ i < j ≤ p.

Let J ′ = J∆ {a1, b1, ..., ap, bp}. Then J ′ ∈ I and cl(J ′) = cl(J).

Proof. Let X = J ∪ {a1, ..., ap}. By (i), C(J, ai) exists for all 1 ≤ i ≤ p, and hence we
have ai ∈ cl(J). Therefore, {a1, ..., ap} ⊆ cl(J), and so cl(J) = cl(X) by Lemma 1.3.8
and r(J) = r(X) by Lemma 1.3.6. By condition (ii), C(J, ai) ⊆ J ∪ {ai} \ {bp, ..., bi+1} ⊆
J ′∪{b1, ..., bi}. Since C(J, ai) ⊆ J ′∪{b1, ..., bi} and bi ∈ C(J, ai), it follows that C(J, ai) 6⊆
J ′ ∪ {b1, ..., bi−1}. Consequently, bi ∈ cl(J ′ ∪ {b1, ..., bi−1}). It follows by Lemma 1.3.8 that
cl(J ′∪{b1, ..., bi}) = cl(J ′∪{b1, ..., bi−1}) for all 1 ≤ i ≤ p. Therefore cl(J ′) = cl(X) and by
Lemma 1.3.6, r(J ′) = r(X). We conclude that cl(J) = cl(J ′) and |J | = r(J) = r(J ′) = |J ′|,
so J ′ ∈ I, as required.

22

This second lemma gives us the preconditions for the appearance of a new arc in the
auxiliary digraph. This will be important in proving the bound on the number of grand
augmentations.

Lemma 2.4.2. Let (S, I) be a matroid and let J ∈ I. Let a1, b1, ..., ap, bp be a sequence of
distinct elements of S with a1, ..., ap 6∈ J and b1, ..., bp ∈ J such that

(i) bi ∈ C(J, ai) for 1 ≤ i ≤ p and

(ii) bj 6∈ C(J, ai) for 1 ≤ i < j ≤ p.

Let J ′ = J∆ {a1, b1, ..., ap, bp}. If f ∈ C(J ′, e) and (e ∈ J or J + e − f 6∈ I), then there
exist k and ` with 1 ≤ k ≤ ` ≤ p such that f ∈ C(J, ak) and (b` = e or b` ∈ C(J, e)).

Proof. Let Jt = J ′∆ {a1, b1, ..., at, bt} for 0 ≤ t ≤ p. If e ∈ J , then since C(J ′, e) ex-
ists, e 6∈ J ′ and so e = b` for some 1 ≤ ` ≤ p. Otherwise, choose the least ` such that
C(J, e) = C(Ji, e) for all ` ≤ i ≤ p. Then C(J`−1, e) 6= C(J`, e) = C(J`−1 − a` + b`, e), so
b` ∈ C(J`, e) by Lemma 1.3.3. Moreover, C(J`, e) = C(J, e), so b` ∈ C(J, e).

Now, choose the greatest k such that f ∈ C(Ji, e) for all 0 ≤ i < k. Then f ∈ C(Jk−1, e) \
C(Jk, e). As e ∈ C(Jk−1, e) ∩ C(Jk, e), by the Strong Circuit Axiom (Lemma 1.3.4) there
exists a circuit C such that

f ∈ C ⊆ (C(Jk−1, e) ∪ C(Jk, e)) \ {e}
⊆Jk−1 + bk.

Thus, C = C(Jk−1, bk). By condition (ii),

C(J, ak) ⊆J ∪ {ak} \ {bk+1, ..., bp}
⊆Jk−1 + bk.

Hence, f ∈ C = C(Jk−1, bk) = C(J, ak). If e ∈ J , then C(Ji, e) does not exist for ` ≤ i ≤ p,
so we must have k ≤ `. Otherwise, since f 6∈ C(Ji, e) for ` ≤ i ≤ p, we also have k ≤ `.

The following lemma deals with the case where the mutation has one more element than the
original independent set. As above, this lemma shows that the mutation is an independent
set, and gives identical preconditions for a new arc to appear after the augmentation.

23

Lemma 2.4.3. Let (S, I) be a matroid and let J ∈ I. Let a1, b1, ..., ap, bp, ap+1 be a
sequence of distinct elements of S with a1, ..., ap, ap+1 6∈ J and b1, ..., bp ∈ J such that

(i) bi ∈ C(J, ai) for 1 ≤ i ≤ p,

(ii) bj 6∈ C(J, ai) for 1 ≤ i < j ≤ p and

(iii) J + ap+1 ∈ I.

Let J ′ = J∆ {a1, b1, ..., ap, bp, ap+1}. Then J ′ ∈ I. Moreover, if f ∈ C(J ′, e) and (e ∈ J or
J + e − f 6∈ I), then there exist k and ` with 1 ≤ k ≤ ` ≤ p such that f ∈ C(J, ak) and
(b` = e or b` ∈ C(J, e)).

Proof. By Proposition 2.4.1, we have cl(J ′ − ap+1) = cl(J), and hence J ′ ∈ I. It is easy
to see that J + ap+1 and the sequence a1, b1, ..., ap, bp satisfy (i) and (ii) of Lemma 2.4.2.
If e ∈ J , then e ∈ J + ap+1. If J + e − f 6∈ I, then J + ap+1 + e − f 6∈ I. Hence,
the hypothesis of Lemma 2.4.2 is satisfied with respect to J + ap+1 and the sequence
a1, b1, ..., ap, bp. From Lemma 2.4.2, we have k and ` with 1 ≤ k ≤ ` ≤ p such that
f ∈ C(J + ap+1, ak) = C(J, ak) and b` = e or b` ∈ C(J + ap+1, e). If b` ∈ C(J + ap+1, e),
then e 6∈ J , so C(J, e) = C(J + ap+1, e).

There are lemmas very similar to those seen in this section found in Cunningham’s paper [3]
on this topic, where they appear as Lemma 4.3 and Lemma 4.4. For Lemma 4.3 (which
corresponds to Lemma 2.4.2), the antecedent of the conclusion to the Lemma reads as
follows:

If f ∈ C(J ′, e) and f 6∈ C(J, e).

Cunningham also notes that, if f ∈ C(J ′, e) and C(J, e) does not exist, then we consider
the antecedent to be satisfied. Thus, we can restate Cunningham’s antecedent as

If f ∈ C(J ′, e) and (J + e− f 6∈ I or J + e ∈ I or e ∈ J).

This is in contrast to our stronger antecedent, which reads

If f ∈ C(J ′, e) and (J + e− f 6∈ I or e ∈ J).

24

e

f

d

Figure 2.1: Counterexample to Lemma 4.4 of [3]

This change is not without reason; indeed, it is possible to construct an example which
satisfies f ∈ C(J ′, e) and J + e ∈ I without satisfying the consequent of the conclusion.
Consider the following example.

Let M be the graphic matroid of the graph in Figure 2.1, let J = {f}, and let J ′ =
{d, f}. In Lemma 2.4.3, this corresponds to a sequence of length one with a1 = d. Then
f ∈ C(J ′, e) and J + e ∈ I while e 6∈ J and J + e − f ∈ I, so this example does
not satisfy Lemma 2.4.3 but it does satisfy the corresponding version in Cunningham’s
paper. Moreover, since f 6∈ C(J, e), the conclusion of Lemma 2.4.3 is not satisfied. In
Cunningham’s paper [3] the consequent of the implication reads

there exists k, ` with 1 ≤ k ≤ ` ≤ p such that f ∈ C(J, ak) and b` = e or b` ∈ C(J, e) or
e 6∈ J and J + e ∈ I.

In the example above, this difference is not particularly relevant. Since f 6∈ C(J, ak), the
conclusion cannot be satisfied in this case. It follows that there must be an error in Cun-
ningham’s proof of Lemma 4.4 (which corresponds to Lemma 2.4.3 here).

Note that all counterexamples will have to satisfy f ∈ C(J ′, e) and J + e ∈ I and e 6∈ J .
This necessarily implies that C(J ′, e) exists, that is, e ∈ cl(J ′) but e 6∈ cl(J). By Propo-
sition 2.4.1, it must be the case that |J ′| = |J | + 1 (since the closure does not change if
the sets are equicardinal). It follows that all counterexamples occur in the case where our
sequence has the form a1, b1, ...,ap, bp, ap+1, or in other words, that Lemma 4.3 of [3] is
correct and is equivalent to Lemma 2.4.2.

In a subsequent paper [5], Cunningham again makes use of Lemma 4.3 and Lemma 4.4
from [3], in order to give a faster algorithm for the matroid intersection problem. This is

25

the subject of the next chapter. The error in these results which we have just examined was
first pointed out by Haselmayr who, as part of his diploma thesis [14], fixed this problem
and gave a complete proof of correctness of the improved matroid intersection algorithm.
His fix is the same as the fix presented in this section, though his proof of Lemma 2.4.2
is lengthy and relies on induction, as Cunningham’s proof does. The simpler constructive
proof presented in this section is, to our knowledge, a new proof of this result.

To see that the mutations are independent sets, we can use Lemma 2.4.2 or Lemma 2.4.3.
For some mutation J i of J , we simply take the arcs (a1, b1), (a2, b2), ..., (ai−1, bi−1) of
CJ in the order that they appear on Q. If some bj = s for j < i, then we use Lemma
2.4.3; otherwise, we use Lemma 2.4.2. Due to the chordlessness of Q, these arcs, in the
specified order, satisfy the appropriate lemma with respect to the independent set J . Thus,
the mutations are all independent sets, so the grand augmentation produces a convex
combination of independent sets with the properties given in Theorem 2.3.1.

2.5 Analysis

So far, we have defined the grand augmentation and proven it correct. We require one more
definition to give a statement of the algorithm. For this section, and in the algorithm, we
define an ordering on the vertices of D as S = {1, 2, 3, ..., n} with s = 0 and t = n + 1.
Consider Algorithm 2, which requires a matroid M = (S, I) and a vector x ∈ RS as input.

Algorithm 2 Matroid Polyhedron Membership Algorithm

λ← 0
λ∅ ← 1
D ← D(M,x, λ)
while there exists an st-dipath in D do

Q←lexicographically least shortest st-dipath in D
λ←result of grand augmentation on Q
D ← D(M,x, λ)

end while
A← {e ∈ S : there exists an se−dipath in D}
return (λ,A)

We still have said little about the running time of the algorithm. In order to understand

26

the approach, it is helpful to consider an analogy to network flows. In the Ford-Fulkerson
algorithm [11], given a flow x, the algorithm finds an x-augmenting path in the residual
digraph, and performs an augmentation of amount equal to the capacity of the path. As
Ford and Fulkerson observed, there exist flow networks for which the algorithm does not
terminate. The grand augmentation is roughly equivalent to the augmentation step in the
Ford-Fulkerson algorithm. The analogy is not perfect, however, as we are not aware of any
instances in which iteratively choosing any chordless st-dipath and performing a grand
augmentation leads to infinite computation.

Where the analogy is fruitful is in considering the solutions to this problem with the
Ford-Fulkerson algorithm. Dinic [6] and, independently, Edmonds and Karp [9] proposed
a simple, elegant solution. By iteratively selecting a shortest x-augmenting path, the
Edmonds-Karp algorithm achieves a running time of O(|V ||E|2) for a flow network (V,E).
The analogy is again imperfect, since our analog is to choose a lexicographically least short-
est st-dipath; the idea of choosing such a path is originally due to Schönsleben [20], and
independently, Lawler and Martel [18]. Nonetheless, the Edmonds-Karp algorithm, and in
particular, its analysis, guides our analysis of Algorithm 2.

Let (V,E) be a flow network and c ∈ RE be arc capacities. Let s, t ∈ V be a source and a
sink, respectively. For a flow x, let dx(u, v) denote the length of a shortest x-incrementing
uv-path in (V,E) (∞ if none exists). Let x (0 ≤ x ≤ c) be an st-flow in (V,E). The
analysis in [9] proceeds as follows. First, if an arc uv appears in the residual digraph after
augmenting x to x′, then vu was part of the x-augmenting path chosen. Using this, it is
possible to show that the lengths of each path chosen by the Edmonds-Karp algorithm, in
the order in which they are chosen, form a nondecreasing sequence. We call this a mono-
tonicity property. Notice that, by the monotonicity property and since an arc ef appears
in the residual digraph only if fe was part of the augmenting path, any arc appearing
after an augmentation on a path of length k cannot itself be part of an augmenting path
of length k. Next, we observe that an augmentation always destroys some arc of the resid-
ual digraph. Combining this with the previous observation, we can deduce that there are
O(|E|) augmentations using paths of a fixed length. Such a path can be found in O(|E|)
time by breadth-first search, and there are O(|V |) distinct lengths of augmenting paths,
giving the bound.

Due to the manner in which arcs can appear in the auxiliary digraph, the analysis of the
Edmonds-Karp algorithm takes some work to generalize to the present context. However,
it still serves as something of a template for how we will proceed. We start by proving

27

that, after a grand augmentation along an st-dipath Q, some arc of Q is not an arc of the
next auxiliary digraph. Next we prove a technical lemma which serves to translate the
necessary preconditions for the appearance of an arc in the auxiliary digraph into a more
useful form. This facilitates a proof of our analog to the monotonicity property. Following
this, we make a small digression to present a counterexample to a Lemma in [3]. We go on
to prove several results about the successive auxiliary digraphs examined by Algorithm 2
when the length of a shortest st-dipath in those digraphs is constant. Using these results,
we give a polynomial bound on the running time of Algorithm 2. The argument in this
section closely resembles that presented by Cunningham [3], though it has been simplified.

For the remainder of the section, let M = (S, I) and x ∈ RS be an instance of the ma-
troid polyhedron membership problem. Run Algorithm 2 with M and x as inputs. Let
D0, D1,..., Dk be the sequence of auxiliary digraphs constructed by Algorithm 2, and let
d0, d1, ..., dk be their distance functions, respectively. Let Qi be the lexicographically least
shortest st-dipath in Di for 0 ≤ i < k. Let λ0 be the initial λ before entering the main
loop of Algorithm 2 and for 1 ≤ i ≤ k, let λi be the result of a grand augmentation along
the path Qi−1 in the auxiliary digraph Di−1 = D(M,x, λi−1).

We call an arc ab of an st-dipath Q critical if the capacity u(a, b) of ab is equal to the
capacity of Q.

Lemma 2.5.1. For all i, 0 ≤ i < k, if ef is a critical arc of Qi, then ef is not an arc of
Di+1.

Proof. Suppose ef is a critical arc of Qi which is also an arc of Di+1. Let y = y(λi) and
y′ = y(λi+1). If e = s then by Theorem 2.3.1, y′ = y+ ε {f}. In particular, y′f = xf by the
definition of u(e, f), so we may assume e 6= s.

Since ef is a critical arc, for each J ∈ D(e, f), every mutation of J contains e but not f .
Hence, no such set can give rise to the arc ef . Then it must be that, for some arc ab 6= ef
of Qi and for some J ∈ D(a, b) \D(e, f), there is a mutation J ′ of J for which f ∈ C(J ′, e)
while f 6∈ C(J, e). It could be that J + e ∈ I, in which case et is an arc of D, and since Q
is chordless, ef = et. Then J ∈ D(e, f), a contradiction. Hence e ∈ J or J+e−f 6∈ I and
f ∈ C(J ′, e), so we can apply Lemma 2.4.2 or Lemma 2.4.3 to J , e, f , and the subsequence
of arcs of Q which transform J into J ′.

28

Since J 6∈ D(e, f), ef cannot be one of the arcs of this subsequence. It follows that the
lemma gives us some p and q with p preceding q on Q such that f ∈ C(J, p) and q ∈ C(J, e).
Since Q is chordless and pf is an arc of D, it must be that f (and hence also e) precedes
p on Q. Similarly, as eq is an arc of D, it must be that q precedes e (and hence also f) on
Q. But now, e precedes p, p precedes q, and q precedes e on Q, a contradiction.

For some i, 0 ≤ i < k, let D = Di, λ = λi, Q = Qi, and similarly, D′ = Di+1, and λ′ = λi+1.
Let d = di and d′ = di+1. In Cunningham’s paper [3], the monotonicity property (Lemma
3.2) is stated as

For all f ∈ S, d′(s, f) ≥ d(s, f) and d′(f, t) ≥ d(f, t).

This relies on the following lemma (which is no longer true, in light of the previous section)
which appears as Lemma 4.6 in [3].

If ef is an arc of D′ but not of D, then e, f ∈ S and there exist vertices a, b of
Q with a preceding b on Q such that (a = f or af is an arc of D) and (b = e
or eb is an arc of D).

Since the proof of this lemma follows from Cunningham’s version of Lemma 2.4.2 or Lemma
2.4.3, it is true whenever those results hold. The case where they do not hold is, as we
have seen, the case where f ∈ C(J ′, e) and J + e ∈ I. In this case, it is not hard to see
that et is an arc of D. Hence, we have the following lemma.

Lemma 2.5.2. If ef is an arc of D′ but not of D, then e, f ∈ S and one of the following
holds.

(a) There exist vertices a, b of Q with a preceding b on Q such that (a = f or af is an
arc of D) and (b = e or eb is an arc of D).

(b) et is an arc of D.

Proof. Suppose ef is an arc of D′ but not D. Since y′ ≥ y, y′e < xe implies ye < xe,
so we cannot have e = s. Similarly, for every mutation J ′ of J , either cl(J ′) = cl(J) or
cl(J ′) ⊇ cl(J). In either case, J ′ + a ∈ I implies J + a ∈ I. Thus, e, f ∈ S.

Since ef is an arc of D′ but not D, there is some mutation J ′ of some set J with λJ > 0
and λ′J ′ > 0 such that f ∈ C(J ′, e) while f 6∈ C(J, e). If J + e ∈ I, then et is an arc of

29

D, so assume not. Thus, either e ∈ J or J + e − f 6∈ I and f ∈ C(J ′, e). Therefore, we
can apply Lemma 2.4.2 or Lemma 2.4.3 to the subsequence of arcs of Q which transform
J into J ′. From this, we obtain a = ak and b = b` which satisfy (a).

We are now prepared to prove the monotonicity property.

Lemma 2.5.3. For all f ∈ S,

(i) if d(s, f) < d(s, t), then d′(s, f) ≥ d(s, f), and

(ii) if d(f, t) < d(s, t), then d′(f, t) ≥ d(f, t).

Proof. Suppose d(s, f) < d(s, t) but d′(s, f) < d(s, f), and choose f so that d′(s, f) is
minimized. Since y′ ≥ y, it must be that d′(s, f) ≥ 2. Let e be the predecessor of f on
some shortest sf -dipath in D′. Note that d′(s, e) ≥ d(s, e) by the choice of f . Now, since

d(s, f) > d′(s, f) = d′(s, e) + 1 ≥ d(s, e) + 1,

it follows that ef is not an arc of D. Moreover, et is not an arc of D, since d(s, f) < d(s, t).
Therefore, there are vertices a, b of Q satisfying (a) of Lemma 2.5.2. In particular, a
precedes b on Q, and Q is a shortest (chordless) path, so d(s, a) < d(s, b). But now,

d(s, a) ≥ d(s, f)− 1 ≥ d′(s, f) = d′(s, e)− 1 ≥ d(s, e)− 1 ≥ d(s, b),

a contradiction. So (i) is proved, and the proof of (ii) is similar.

There are, in fact, examples which demonstrate that the monotonicity lemma found in [3]
is not always correct. Consider the graphic matroid M = (S, I) of the graph in Figure 2.2.

e

f

d

Figure 2.2: Counterexample to monotonicity lemma in [3].

Suppose we are given the point x = (xd, xe, xf) = (1
2
, 1
2
, 1) and currently have a convex

expression y = χJ where J = {f}. The auxiliary digraph appears below.

30

s

d

e

f

t

Figure 2.3: Auxiliary digraph with respect to M , x, y, and λ.

Note that d(s, f) = ∞. Choosing the path s, d, t, an augmentation will create a set
J ′ = {d, f} with coefficient 1

2
and J = {f} will have coefficient 1

2
also. The auxiliary

digraph with respect to this combination appears below.

s

d

e

f

t

Figure 2.4: Auxiliary digraph after augmentation - note that d′(s, f) < d(s, f).

Now, d′(s, f) = 2, contradicting the monotonicity lemma found in [3]. Note that since
d(s, f) > d(s, t), this example does not disagree with Lemma 2.5.3.

It follows from Lemma 2.5.3 that dj(s, t) ≥ di(s, t) for all i and j with 0 ≤ i < j ≤ k, that
is, the sequence d0(s, t), d1(s, t), ..., dk(s, t) is monotone nondecreasing. Observe that any
chordless st-dipath has at most n+ 2 vertices, and hence at most n+ 1 arcs; similarly, any
chordless st-dipath has at least 3 vertices, and hence at least 2 arcs. Thus, there are at
most n distinct values for di(s, t) over all i, 0 ≤ i < k. Therefore, we can partition the

31

sequence D0,D1,...,Dk−1 into at most n contiguous subsequences, where, for all sets Di, Dj

within a subsequence, di(s, t) = dj(s, t).

With respect to Algorithm 2, the partition of D0, D1, ..., Dk−1 above induces a partition
of the augmentations performed, namely, for i between 2 and n + 1, part i consists of all
augmentations performed on augmenting paths of length i. For a fixed i, note that the
augmentations in part i are necessarily consecutive augmentations of the algorithm. For
each i, we refer to this set of augmentations (that is, part i) as stage i of Algorithm 2.
This simplifies our analysis considerably; since we know that there are O(n) stages, we
can bound the total number of grand augmentations by bounding the number of grand
augmentations within a stage. This is the purpose of the next three results.

Again, let D = Di, λ = λi, Q = Qi, D
′ = Di+1, and λ′ = λi+1 for some i, 0 ≤ i < k. Let

d = di and d′ = di+1. For each i, 0 ≤ i < k, let Hi denote the subdigraph of Di consisting
of all vertices and arcs of Di which belong to some shortest st-dipath in Di. Let H = Hi

and H ′ = Hi+1. The following lemma gives necessary preconditions for an arc to appear
on a shortest st-dipath inside a stage.

Lemma 2.5.4. If d(s, t) = d′(s, t) and ef is an arc of H ′ but not of H, then there exists
an arc ab of Q such that af and eb are arcs of H.

Proof. Suppose d(s, t) = d′(s, t) and ef is an arc of H ′ but not H. By Lemma 2.5.3,

d(s, e) + d(f, t) ≤ d′(s, e) + d′(f, t) = d′(s, t)− 1.

In particular, equality must hold and so ef cannot be an arc of D or else it would also be
an arc of H. Thus, we can apply Lemma 2.5.2. If et is an arc of D, then

d′(s, t) = d(s, t) = d(s, e) + 1 ≤ d′(s, e) + 1 = d′(s, f),

a contradiction. Hence, there must be vertices a, b of Q as in (a) of Lemma 2.5.2. Observe
that d(s, f) ≥ d(s, e) + 1 since d(s, e) + d(f, t) = d(s, t) − 1. Furthermore, we have
d(s, f) ≤ d(s, e) + 1 since

d(s, f) ≤ d′(s, f) = d′(s, e) + 1 = d(s, e) + 1.

A similar argument shows that d(e, t) = d(f, t) + 1. Since a precedes b on Q, d(s, a) +
d(b, t) ≤ d(s, t)− 1. Furthermore,

d(s, a) + d(b, t) ≥ d(s, f)− 1 + d(e, t)− 1 = d(s, e) + d(f, t) = d(s, t)− 1.

32

It follows that d(s, a) + d(b, t) = d(s, t) − 1. In particular, this implies that d(s, a) =
d(s, f)− 1 and d(b, t) = d(e, t)− 1, and so ab, af and eb are arcs of H.

An observation that we will use in the next lemma is that, since af and ab are both arcs
of H (as above), and Q is a lexicographically least shortest st-dipath which contains ab, it
must be the case that b < f in our ordering of N .

For each i, 0 ≤ i < k and for each e ∈ S + s, define the successor σi(e) of e to be the least
f such that ef is an arc of Hi (σi(e) = ∞ if none exists). Note that, for each arc ef of
the lexicographically least shortest st-dipath in Hi, σi(e) = f . For some i, 0 ≤ i < k, let
H = Hi, H

′ = Hi+1, σ = σi, and σ′ = σi+1. We first show that, inside a stage, and for
each e ∈ S, the successor function is a nondecreasing one.

Lemma 2.5.5. If d(s, t) = d′(s, t), then for each e ∈ S + s, σ′(e) ≥ σ(e).

Proof. Suppose not. Then for some f , f = σ′(e) < σ(e). Since σ(e) 6= f , it must be that
ef is an arc of H ′ but not H. By Lemma 2.5.4, there is an arc ab of Q such that af and
eb are arcs of H. Now,

f < σ(e) ≤ b = σ(a) ≤ f,

a contradiction.

We can now bound the number of grand augmentations performed in a stage.

Lemma 2.5.6. For a fixed `, 2 ≤ ` ≤ n+ 1, Algorithm 2 performs O(n2) grand augmen-
tations using paths of length `. Consequently, there are O(n3) digraphs in the sequence D0,
D1, ..., Dk.

Proof. As we have already observed, the number of distinct lengths of st-dipaths that can
occur in the sequence is n, so the second part of the lemma follows immediately from the
first.

To prove the first part, consider a stage having dipaths of length ` for some 2 ≤ ` ≤ n+ 1.
Let Dp, ..., Dq, p ≤ q, be the subsequence of D0, ..., Dk corresponding to this stage.
Consider the sequence of vectors (σi(e) : e ∈ S + s) for i = p to q. By Lemma 2.5.5,
the sequence is componentwise nondecreasing. Moreover, since each component has a
value between 1 and n + 1, there are O(n2) distinct vectors in the sequence. By Lemma

33

2.5.1 and Lemma 2.5.5, for each i, p ≤ i < q, there exists some e ∈ S + s such that
σi(e) < σi+1(e). It follows that each vector in the sequence is distinct, and hence there are
O(n2) augmentations using paths of length `.

At last, we can put the pieces together to prove that Algorithm 2 is polynomial time.

Theorem 2.5.7. Given a matroid M = (S, I) and a vector x ∈ RS, Algorithm 2 returns
(λ,A) such that (y, A) is an optimal pair in the Membership Min-Max Theorem (2.1.2).
Moreover, Algorithm 2 is a polynomial time matroid algorithm with running time O(n9 ·q).

Proof. By Theorem 2.3.1 and the Augmenting Path Theorem (2.2.1), the certificate (λ,A)
returned by Algorithm 2 is valid. By Lemma 2.5.6, there are O(n3) grand augmentations.
By Lemma 2.3.2, each such augmentation is computed in O(n2 ·pq) operations, where O(p)
is the number of active independent sets. By Theorem 2.3.1, each grand augmentation
increases the number of active sets by O(n). Since there are O(n3) augmentations, p ∈
O(n4). It follows that Algorithm 2 terminates in O(n9 · q) operations.

The running time of the algorithm can easily be improved by reducing the number of ac-
tive independent sets to at most n+ 1 after each grand augmentation, per Carathéodory’s
Theorem. Such a reduction can be performed in O(n3) operations, and with this modifica-
tion, there are O(n) active independent sets. By Lemma 2.3.2, each grand augmentation
would then require O(n3 · q) operations, for a total running time of O(n6 · q). However,
this modification sacrifices the following property of λ.

Theorem 2.5.8. The vector λ ∈ RI returned by Algorithm 2 satisfies the following prop-
erties.

(i) every nonzero component of λ is an integer combination of the values {xe : e ∈ S}∪
{1}.

(ii) there are O(n4) nonzero components of λ.

Proof. Property (ii) holds by Theorem 2.3.1. We claim that the following property is in-
variant under the action of the algorithm. For each active J , the coefficient λJ is an integer
combination of the values {xe : e ∈ S} ∪ {1}.

Evidently, the property holds at initialization. Consider a grand augmentation along the
st-dipath Q = s, e1, e2, ..., ek, t, and suppose the property holds before the augmentation.

34

Recall that, for an arc eiei+1 of Q, the capacity u(ei, ei+1) is equal to the sum of λJ over
all active J ∈ I such that J + ei− ei+1 ∈ I. As all values in the series satisfy the property,
so too do the capacities of each arc eiei+1. Similarly, the capacity of se1 is xe1 − ye1 and

ye1 =
∑

J∈I: λJ>0 , e1∈J

λJ .

It follows that the augmentation amount ε satisfies the property. Consider the coefficients
of the mutations of some set J ∈ I. The coefficient of J1 is

λ′J1 = max (0,min (λJ , LJ(e1, f1)− ε)) .

Since 0, λJ , and LJ(e1, f1) − ε each satisfy the property, so too does λ′J1 . Similarly, for
i > 1, the coefficient of J i is

λ′Ji = λJi + max

(
0,min (λJ , LJ(ei, fi)− ε)−

∑
1≤j<i

λ′Jj +
∑
2≤j<i

λJj

)
.

Once again, the quantities λJi , 0, λJ and LJ(ei, fi) − ε each satisfy the property. So too
does the quantity

∑
2≤j<i λJj . Since λ′J1 satisfies the property, we may assume inductively

that
∑

1≤j<i λ
′
Jj does also, and hence the property is invariant under the action of the

algorithm. Property (i) now follows immediately.

2.6 Basis Polyhedron Version

Cunningham’s algorithm (Algorithm 2), and the presentation thereof, can be appreciably
simplified by considering only vectors in the basis polyhedron

BM =
{
y ∈ RS : y ≥ 0, y(S) = r(S), y(A) ≤ r(A) ∀A ⊆ S

}
of M . Recall the min-max relation (2.1)

max
y∈PM , y≤x

{y(S)} = min
A⊆S
{r(A) + x(S \ A)} .

Algorithm 2 works by iteratively raising ye for some e ∈ S such that ye < xe. An iteration
does not affect the quantity yf for any f 6= e. Starting from y = 0, the vector y is both
always in the matroid polyhedron PM and always less than or equal to x. When working
over the basis polyhedron, the point y will certainly always be in the matroid polyhedron

35

PM , but it might not be less than or equal to x. Consequently, the min-max relation above
must be modified to

max
y∈BM

{y′(S)} = min
A⊆S
{r(A) + x(S \ A)} , (2.11)

where y′e = min {ye, xe}. Evidently, for any A ⊆ S,

y′(S) = y′(A) + y′(S \ A) ≤ y(A) + x(S \ A) ≤ r(A) + x(S \ A).

Moreover, given a maximizing vector y ∈ PM in equation (2.1), we can extend y to a basis
vector z ∈ BM . Then it follows easily that z′(S) = y(S) and hence z is a maximizer in
equation (2.11).

The algorithms here and in sections 4.3 and 4.4 actually solve the following more general
problem: Given a matroid M = (S, I) and a vector x ∈ RS, find a vector y ∈ BM such
that y ≥ x or certify that none exists (that is, x 6∈ PM). Evidently, any algorithm to solve
this problem can also solve the matroid polyhedron membership problem.

Consider an st-dipath s,e1,e2,...,ek,t in Algorithm 2. The crude augmentation can be
thought of as having two parts. First, the augmentation raises yei and lowers yei+1

by some
δ > 0 for each i, 1 ≤ i < k. It does this by adding ei to, and removing ei+1 from, some
active J ∈ I. In the final step, it adds ek to some active J ∈ I. The net effect is to raise
ye1 by δ without affecting any other entries in the vector y.

In the basis version, all independent sets in the combination are bases, hence all points y
considered satisfy y(S) = r(S). It follows that an augmentation cannot raise ye for some
e ∈ S without also lowering yf for some f ∈ S. In light of these observations, we formulate
the auxiliary digraph D = (N,A), where N = S ∪ {s, t} with the following arc-set.

• se for e ∈ S with xe < ye.

• et for e ∈ S with xe > ye.

• ef for e, f ∈ S such that f ∈ C(B, e) for some active B.

Let Q = s,e1,e2,...,ek,t be an st-dipath in D. Modify the crude augmentation by simply
omitting the final step; it is easy to see that the modified crude augmentation produces
a valid convex combination of bases. Moreover, the modified crude augmentation raises

36

ye1 and lowers yek by δ. In addition to the bound on the value of δ given by the crude
augmentation, δ must also be chosen to satisfy δ ≤ min {ye1 − xe1 , xek − yek}. This rule
ensures that no new arcs se or et are created during execution.

Conveniently, the grand augmentation is valid for the basis version. The only differ-
ence is that the grand augmentation should be performed with respect to the arcs e1e2,
e2e3,...,ek−1ek, but not ekt. The definition of the grand augmentation itself remains valid,
however the effect is to raise ye1 and lower yek by ε (as opposed to just raising ye1). The
proof of these facts is essentially identical to Theorem 2.3.1, and the bound on the number
of active sets remains valid.

One of the benefits of the basis version is that, since any independent set considered is a
basis, Lemma 2.4.3 is not necessary to prove that mutations are bases, nor to prove the
running time bound. Moreover, as we observed in Section 2.4, the error in Cunningham’s
version of Lemma 2.4.2 (which appears as Lemma 4.3 in [3]) is only a problem when the
lemma is applied to prove the analog of Lemma 2.4.3 (i.e. Lemma 4.4 in [3]). It is therefore
unsurprising that the problems discussed in Section 2.4 and Section 2.5 vanish in the case
of the basis version of the algorithm.

The proof of Lemma 2.5.1, which says that a critical arc of D is not an arc of the next
auxiliary digraph in the sequence is very similar for the basis version. Recall that in [3]
Cunningham proposed a lemma which states

For all f ∈ S, d′(s, f) ≥ d(s, f) and d′(f, t) ≥ d(f, t).

This proposition had to be modified to correct the algorithm. In the basis version, this
assertion is true. To prove the statement, we require the following lemma, which appears
as Lemma 4.6 in [3].

Lemma 2.6.1. If ef is an arc of D′ but not of D, then e, f ∈ S and there exist vertices
a, b of Q with a preceding b on Q such that (a = f or) af is an arc of D and (b = e or) eb
is an arc of D.

Proof. Suppose ef is an arc of D′ but not D. By the choice of ε, y′f < xf implies yf < xf
and y′e > xe implies ye > xe. It follows that e 6= s and f 6= t, so e, f ∈ S.

37

Since ef is an arc of D′ but not D, there exists some mutation B′ of some basis B ∈ I such
that f ∈ C(B′, e) \ C(B, e) where B′ = B∆ {a1, b1, a2, b2, ..., a`, b`} for some subsequence
a1b1,a2b2,...,a`b` of the arcs of Q. Therefore, we can apply Lemma 2.4.2 to e, f , B, B′

and the arcs a1b1,a2b2,...,a`b` (in the order that they appear on Q) to obtain a and b as
asserted.

This lemma now allows us to prove the monotonicity lemma.

Lemma 2.6.2. For all f ∈ S, d′(s, f) ≥ d(s, f) and d′(f, t) ≥ d(f, t).

Proof. Suppose d′(s, f) < d(s, f), and choose f so that d′(s, f) is minimized. By choosing
the augmentation amount δ to satisfy δ ≤ min {ye1 − xe1 , yek − xek} in addition to the
other constraints, no arcs sf or ft are created during execution. Therefore, d′(s, f) > 1,
so there exists a predecessor e 6= f on some shortest sf -dipath in D′. By the choice of f ,
d′(s, e) ≥ d(s, e), and so ef is an arc of D′ but not D. Let a, b ∈ S be as described by
Lemma 2.6.1. Then

d′(s, f) = d′(s, e) + 1 ≥ d(s, e) + 1 ≥ d(s, b) = d(s, a) + 1 ≥ d(s, f),

a contradiction. The proof that d′(f, t) ≥ d(f, t) is similar.

The next lemma will be enough to bound the running time of the basis version of the
algorithm. Recall that the st-dipath chosen at each iteration is the lexicographically least
shortest st-dipath Q in D. Let P be the lexicographically least shortest st-dipath in D′.

Lemma 2.6.3. If d′(s, t) = d(s, t), then P is lexicographically greater than Q.

Proof. Assume d′(s, t) = d(s, t). Let P = p0, p1, ..., pk, pk+1 and Q = q0, q1, ..., qk, qk+1.
Since some critical arc of Q is not an arc of D′, P and Q are nonequal. Suppose P is
lexicographically less than Q, and let i (1 ≤ i ≤ k) be the smallest index such that pi 6= qi;
then pi < qi. It follows that qi−1pi is an arc of D′ but not D. By Lemma 2.6.1, api is an
arc of D for some vertex a 6= qi−1 of Q. Since Q is chordless, it must be that a = qj for
some j ≥ i. But now, b = q` for some ` > j and qi−1q` is a chord of Q, a contradiction.

The remainder of the analysis now follows easily. There are O(n) lengths of st-dipaths,
and for a given length, there are O(n2) distinct st-dipaths, for a total of O(n3) grand
augmentations. By Lemma 2.3.2, each such augmentation can be performed in O(n6 · q)
operations for a total of O(n9 · q) operations. As in the previous section, the vector λ
satisfies the property in Theorem 2.5.8. Similarly, the augmentation step can be extended
to reduce the number of active bases to at most n before returning. This improves the
running time of the algorithm to O(n6 · q) but sacrifices the property in Theorem 2.5.8.

38

Chapter 3

Matroid Intersection

3.1 Introduction

The matroid intersection problem is defined as follows. Given two matroids M1 = (S, I1)
and M2 = (S, I2) with rank functions r1 and r2 defined on a common ground set S, find
a set J ∈ I1 ∩ I2 such that |J | is maximized. The first question one might ask is, is there
likely to be an algorithm to efficiently solve this problem? That is, can we succinctly certify
that a set J ∈ I1 ∩ I2 is of maximum cardinality?

Let J ∈ I1 ∩ I2 and let A ⊆ S. Then

|J | = |J ∩ A|+ |J ∩ (S \ A)| ≤ r1(A) + r2(S \ A).

Therefore, if we can find J ∈ I1 ∩ I2 and A ⊆ S such that |J | = r1(A) + r2(S \ A), then
we know that J is of maximum cardinality. The Matroid Intersection Theorem, due to
Edmonds [7] states that, for any maximum cardinality J ∈ I1∩I2, there exists a set A ⊆ S
achieving equality.

Theorem 3.1.1. (Matroid Intersection Theorem) For any two matroids M1 = (S, I1) and
M2 = (S, I2) with rank functions r1 and r2,

max
J∈I1∩I2

{|J |} = min
A⊆S
{r1(A) + r2(S \ A)} .

39

This theorem can be proved by induction. The proof we offer here will be in the form of
an algorithm which terminates with a maximizing J and minimizing A.

The basic idea of the algorithm is to keep a set J ∈ I1 ∩ I2 whose cardinality is increased
by one at each iteration. For each iteration, we construct an auxiliary digraph D, such that
the existence of an st-dipath in D implies the existence of a larger common independent
set. If there is no st-dipath, then we can use the information contained in the digraph to
find a certificate.

We construct D(M1,M2, J) = (N,A) as follows. Let N = S ∪ {s, t}, where s, t 6∈ S and
let A contain the following arcs:

• se for e ∈ S \ J with J + e ∈ I1

• fe for e ∈ S \ J , f ∈ J with f ∈ C1(J, e)

• ef for e ∈ S \ J , f ∈ J with f ∈ C2(J, e)

• et for e ∈ S \ J with J + e ∈ I2

The following theorem shows that the auxiliary digraph has the desired properties.

Theorem 3.1.2. (Intersection Augmenting Path Theorem) Let M1 = (S, I1) and M2 =
(S, I2) be matroids, let J ∈ I1 ∩ I2, and let D be the auxiliary digraph with respect to M1,
M2, and J . Then there exists an st-dipath in D if and only if there is some J ′ ∈ I1 ∩ I2
such that |J ′| > |J |.

Proof. First suppose that there exists no st-dipath in D. Let

A = {a ∈ S : there exists no sa−dipath in D} .

We claim that J ∩A is an M1-basis for A and J ∩ (S \A) is an M2-basis for S \A. Suppose
not; then there exists e ∈ A \ J such that (J ∩ A) + e ∈ I1. Since J + e 6∈ I1, we must
have f ∈ C1(J, e) for some f ∈ J , so fe is an arc of D. By the choice of A, f ∈ A ∩ J .
Similarly, for any element f 6= e of C1(J, e), there is an arc fe is an arc of D. Consequently,
C1(J, e) ⊆ (J ∩A) + e 6∈ I1, a contradiction. The proof that J ∩ (S \A) is an M2-basis for
S \A is similar. We can conclude that |J | = r1(A) + r2(S \A), and hence |J | is maximized
and A provides a certificate.

40

Conversely, suppose there exists an st-dipath in D, and let s = e0, e1, e2,..., e`, e`+1 = t
be a chordless st-dipath. It is not hard to see that the sequence e`, e`−1, ..., e2 satisfies the
hypothesis of Proposition 2.4.1 with respect to M1 and that the sequence e1, e2, ..., e`−1
satisfies the hypothesis of Proposition 2.4.1 with respect to M2. It follows that J ′ =
(J∆ {e`, e`−1, ..., e2}) + e1 ∈ I1 and J ′ = (J∆ {e1, e2, ..., e`−1}) + e` ∈ I2. Therefore,
J ′ ∈ I1 ∩ I2 and |J ′| > |J |, as required.

The above discussion has established the correctness of Algorithm 3, again due to Ed-
monds [7].

Algorithm 3 Matroid Intersection Algorithm

1: J ← ∅, D ← D(M1,M2, J)
2: while there exists an st-dipath in D do
3: Let s, e1, e2, ..., e`, t be the vertex sequence of a chordless st-dipath
4: J ← J∆ {e1, e2, ..., e`}
5: D ← D(M1,M2, J)
6: end while
7: A← {a ∈ S : there exists no sa−dipath in D}
8: return (J,A)

Note that the algorithm also proves Theorem 3.1.1 since it always terminates with a
J ∈ I1 ∩ I2 and A ⊆ S for which |J | = r1(A) + r2(S \ A).

The correctness having been established, it remains to determine the running time of
the algorithm. We assume that the matroids have been given to us in the form of two
independence oracles. Moreover, we assume that both independence oracles run in time
O(q).

Theorem 3.1.3. Let M1 = (S, I1) and M2 = (S, I2) be matroids with rank functions
r1 and r2 respectively. Then Algorithm 3, executed with M1 and M2 as inputs, returns
a maximum cardinality set J ∈ I1 ∩ I2 and A ⊆ S such that |J | = r1(A) + r2(S \ A).
Moreover, Algorithm 3 terminates in O(n3 · q) operations.

Proof. The Intersection Augmenting Path Theorem 3.1.2 verifies that the algorithm is
correct. For the running time, since each iteration increases the cardinality of J by 1, the
loop is executed O(n) times. In each iteration, the algorithm must first find a chordless st-
dipath, then perform the augmentation, then construct the auxiliary digraph. A chordless

41

st-dipath can be found by breadth-first search in O(n2) time, and the augmentation of J is
accomplished in O(n) time. To construct the arcs of the auxiliary digraph, the algorithm
must make O(n2 · q) tests of independence: two for each pair (e, f) with f ∈ J , e ∈ S \ J ,
and two for each e ∈ S \ J . Therefore, the algorithm runs in time O(n3 · q).

Note that in our analysis, we have used breadth-first search to find a chordless st-dipath
in D. In fact, breadth-first search determines a shortest st-dipath in D. As we shall see in
the next section, the idea of choosing a shortest st-dipath, along with a creative analysis,
can be combined to give an improved version of the algorithm.

3.2 Improved Matroid Intersection Algorithm

In this section, we study a modification of Algorithm 3 with an improved running time.
The algorithm, due to Cunningham [5], is a generalization of the Hopcroft-Karp algorithm
for maximum bipartite matching [15]. The problem of finding a maximum matching in
a bipartite graph is a fundamental one, and is a special case of both network flows and
matroid intersection in the following ways.

Let G = (V,E) be a bipartite graph with vertex bipartition V = X ∪ Y . By orienting all
edges from X to Y , adding a supersource s, arcs sx for all x ∈ X, a supersink t, and arcs
yt for all y ∈ Y , it is not hard to check that a maximum st-flow in the modified graph cor-
responds to a maximum matching in G. To formulate a matroid intersection problem, take
E to be the common ground set. A set A ⊆ E is independent in M1 if no two edges in A
meet at any vertex in X. Similarly, A ⊆ E is independent in M2 if no two edges of A meet
at a vertex in Y . It is easy to check that M1 and M2 are matroids. Moreover, a common
independent set of M1 and M2 is a subset of the edges of G, such that no two edges meet
at any vertex x ∈ X or any vertex y ∈ Y ; that is, a common independent set is a matching.

Perhaps the simplest algorithm to compute a maximum matching in a bipartite graph is to
iteratively search for an alternating path from an exposed vertex in X to an exposed vertex
in Y . Since any maximum matching has size at most |V |/2, there are O(|V |) iterations,
and each augmenting path can be found in O(|E|) time, giving a running time of O(|V ||E|).

In the analysis of the Edmonds-Karp algorithm, it is shown that there are O(|V |) distinct
lengths of augmenting paths, and for each length, there are O(|E|) augmenting paths, each

42

ab

c e

fg

e

f ga
c

b

Figure 3.1: Counterexample to Theorem 4.2 of [5].

of which can be found in O(|E|) time. The Hopcroft-Karp algorithm [15] borrows the
idea of choosing a shortest augmenting path from the Edmonds-Karp algorithm. In their
analysis, Hopcroft and Karp show that there are O(|V | 12) distinct lengths of augmenting
paths, and that for a given length, all augmenting paths are disjoint. Consequently, all
paths of a fixed length can be found in O(|E|) time.

The proof of the running time of Cunningham’s algorithm relies on the results that appear
in [3] discussed in Section 2.4. In light of the problems with these results, the running time
analysis in [5] needs to be modified. The fix presented here is along the lines of that found
in Haselmayr’s thesis [14]; as previously discussed, Haselmayr gave statements and proofs
of Lemmas 2.4.2 and 2.4.3. Additionally, he gave statements and proofs of Lemmas 3.2.1
and 3.2.2.

At a high level, the algorithm works by constructing the auxiliary digraph and finding a
collection of shortest disjoint st-dipaths. After using each path to perform an augmenta-
tion, it iterates. As we will show, there are O(n

1
2) iterations, and each can be performed

in O(n2 · q) time.

The first part of the analysis of the Hopcroft-Karp Algorithm shows that path lengths are
nondecreasing. In the present case, we need the slightly stronger result Lemma 3.2.2. The
theorem found in [5] (Theorem 4.2) simply states that for each f ∈ S, d′(s, f) ≥ d(s, f)
and d′(f, t) ≥ d(f, t). In much the same way as we constructed a counterexample to the
monotonicity lemma of [3] in Section 2.5, we can construct a counterexample to this theo-
rem. The fact that counterexamples exist was first discovered by Haselmayr [14].

Consider the example in Figure 3.1. With respect to the graphic matroids of the graphs

43

s

e

f

g a b c

t

Figure 3.2: Auxiliary digraph with respect to M1, M2, and J = {a, c}.

above and the common independent set {a, c}, the auxiliary digraph is shown in Figure
3.2. Suppose we choose the st-dipath s, e, t and augment J to J ′ = {a, c, e}. Evidently,
J ′ + f ∈ I1, so sf is an arc of the auxiliary digraph D′ with respect to J ′. Note also that
J ′ + f − c ∈ I2, so fc is also an arc of D′. But now, d′(s, c) < d(s, c), contradicting the
monotonicity lemma (Theorem 4.2 of [5]). The problem is that the proof of this Theorem
also relies on the incorrect lemmas of [3]. Using the results of Section 2.4, we can prove a
modified version of the monotonicity lemma.

As in Section 2.5, we first use Lemmas 2.4.2 and 2.4.3 to prove necessary preconditions
for the appearance of a new arc in the auxiliary digraph. We then go on to prove the
monotonicity lemma. The statements and proofs of Lemmas 3.2.1 and 3.2.2 are due to
Haselmayr [14].

Lemma 3.2.1. Let D be the auxiliary digraph with respect to M1, M2 and J and let J ′ be
obtained from J by an augmentation along some shortest st-dipath P in D. Let D′ be the
auxiliary digraph with respect to M1, M2 and J ′. Suppose ef is an arc of D′ but not of D.
Then one of the following holds.

(i) e ∈ J ′ and sf is an arc of D,

(ii) e 6∈ J ′ and et is an arc of D, or

(iii) there exist a and b of P with a preceding b such that (a = f or af is an arc of D)
and (b = e or eb is an arc of D).

44

Proof. Assume that neither (i) nor (ii) holds. Let P = s, e1, e2, ..., e`, t and suppose e 6∈ J ′.
Since ef ∈ A(D′), we have f ∈ J ′ and J ′ + e− f ∈ I2. As (ii) does not hold, either e ∈ J
or J + e 6∈ I2. In the latter case, J + e− f 6∈ I2 since ef 6∈ A(D). Consider the following
mapping:

e1 e2 ... e`−2 e`−1 e`
a1 b1 ... ap bp ap+1

Clearly, a1, ..., ap, ap+1 6∈ J and b1, ..., bp ∈ J . With respect to M2, and by the rules for the
construction of the auxiliary digraph, conditions (i) and (iii) of Lemma 2.4.3 are satisfied.
Since P is a shortest path, condition (ii) is also satisfied. Therefore, there exist k and `
with 1 ≤ k ≤ ` ≤ p such that f ∈ C2(J, ak) and b` = e or b` ∈ C2(J, e). Taking a = ak and
b = b`, a precedes b and we have that af is an arc of D and b = e or eb is an arc of D, as
required.

Now suppose e ∈ J ′. Since ef ∈ A(D′), we must have f 6∈ J ′ and e ∈ C1(J
′, f). As (i) does

not hold, either f ∈ J or J + f 6∈ I1. In the latter case, J + f − e 6∈ I1 since ef 6∈ A(D).
Consider the following mapping:

e1 e2 e3 ... e`−1 e`
ap+1 bp ap ... b1 a1

Clearly, a1, ..., ap, ap+1 6∈ J and b1, ..., bp ∈ J . With respect to M1, and by the rules for the
construction of the auxiliary digraph, conditions (i) and (iii) of Lemma 2.4.3 are satisfied.
Since the path chosen is shortest, it is also chordless, and hence condition (ii) is also
satisfied. Therefore, there exist k and ` with 1 ≤ k ≤ ` ≤ p such that e ∈ C1(J, ak) and
b` = f or b` ∈ C1(J, f) (note that the roles of e and f are the reverse of those found in
Lemma 2.4.3). Taking b = ak and a = b`, a precedes b and we have that a = f or af is an
arc of D and eb is an arc of D, as required.

Lemma 3.2.2. Let D be the auxiliary digraph with respect to M1, M2 and J and let J ′ be
obtained from J by an augmentation along some shortest st-dipath P in D. Let D′ be the
auxiliary digraph with respect to M1, M2 and J ′. For each f ∈ S,

(i) If d(s, f) < d(s, t) then d′(s, f) ≥ d(s, f).

(ii) If d(f, t) < d(s, t) then d′(f, t) ≥ d(f, t).

45

Proof. Suppose there exists f ∈ S such that d(s, f) < d(s, t) and d′(s, f) < d(s, f). Subject
to this, choose f so that d′(s, f) is as small as possible. Evidently f 6= s, so we can
choose the penultimate vertex e of some shortest sf -dipath in D′. By the choice of f ,
d′(s, e) ≥ d(s, e), and therefore ef is an arc of D′ but not of D. By Lemma 3.2.1, there
are three possibilities. As 1 ≤ d′(s, f) < d(s, f), sf is not an arc of D, and hence (i) of
Lemma 3.2.1 cannot be the case. Similarly, if (ii) holds, then

d(s, f) > d′(s, f) = d′(s, e) + 1 ≥ d(s, e) + 1 ≥ d(s, t),

contradicting that d(s, f) < d(s, t). Therefore, we can find a and b of our shortest st-dipath
in D as in (iii) of Lemma 3.2.1. As a precedes b on this path, d(s, a) < d(s, b). However,

d(s, a) ≥ d(s, f)− 1 ≥ d′(s, f) = d′(s, e) + 1 ≥ d(s, e) + 1 ≥ d(s, b),

a contradiction. So (i) is proved, and the proof of (ii) is similar.

Consider the algorithm A, which is the modification of the Matroid Intersection Algorithm
(Algorithm 3) that chooses a shortest st-dipath at each iteration. By Lemma 3.2.2, the
sequence of lengths of the paths chosen is nondecreasing. We first show that A encounters
O(n

1
2) distinct lengths of augmenting paths. The first two results serve to bound the

length of a shortest st-dipath in the auxiliary digraph. The following Theorem is due to
Cunningham [5], and the remainder of the analysis resembles that found in [5].

Theorem 3.2.3. Let M1 = (S, I1) and M2 = (S, I2) be matroids, and let J ∈ I1 ∩ I2.
Let D be the auxiliary digraph with respect to M1, M2, and J , and let J ′ ∈ I1 ∩ I2 with
|J ′| > |J |. Then there exist |J ′|−|J | pairwise disjoint st-dipaths in D, all of whose internal
vertices are contained in J ∪ J ′.

Proof. By Menger’s Theorem (1.2.1), the maximum number of disjoint st-dipaths using
only the vertices in J ∪ J ′ is equal to the minimum cardinality of a set U ⊆ J ∪ J ′ which
separates s from t in the subgraph F of D induced by J ∪ J ′. Let T be the set of vertices
reachable from s in F − U and let V = (J ∪ J ′) \ (T ∪ U).

As there is no arc se for e ∈ V , it must be the case that for all e ∈ V \ J , J + e 6∈ I1.
Similarly, as there is no arc fe for f ∈ T and e ∈ V , it follows that for all f ∈ T ∩ J and
e ∈ V \J , f 6∈ C1(J, e). We claim that J ∩ (T ∪U) is an M1-basis for T ∪ (U ∩J). Suppose
not; then for some e ∈ T \ J , we have J ∩ (T ∪ U) + e ∈ I1. Since et is not an arc of D,
J + e 6∈ I2. Therefore, there exists f ∈ J \ (T ∪ U) = J ∩ V such that f ∈ C2(J, e), which
implies that ef is an arc of D, contradicting the definition of V . Similarly, we can deduce

46

that J ∩ (U ∪ V) is an M2-basis for V ∪ (U ∩ J); if not, then there exists f ∈ V \ J such
that J ∩ (U ∪ V) + f ∈ I2. Since sf is not an arc of D, J + f 6∈ I1. Therefore, there
exists e ∈ T ∩ J with e ∈ C1(J, f), which implies that ef is an arc of D, contradicting the
definition of V .

Now,

|J |+ |J ∩ U | = |J |+ |U | − |U \ J |
= |J ∩ (T ∪ U)|+ |J ∩ (U ∪ V)|
≥ |J ′ ∩ (T ∪ (U ∩ J))|+ |J ′ ∩ (V ∪ (U ∩ J))|
= |J ′ ∩ T |+ |J ′ ∩ U ∩ J |+ |J ′ ∩ V |+ |J ′ ∩ U ∩ J |
≥ |J ′ ∩ T |+ |J ′ ∩ V |+ |U ∩ J ∩ J ′|

By rearranging, we have

|U | ≥ |J ′ ∩ T |+ |J ′ ∩ V |+ |J ′ ∩ J ∩ U |+ |U \ J | − |J |
= |J ′ ∩ T |+ |J ′ ∩ V |+ |J ′ ∩ J ∩ U |+ |J ′ ∩ U | − |J ′ ∩ J ∩ U | − |J |
= |J ′ ∩ T |+ |J ′ ∩ U |+ |J ′ ∩ V | − |J |
= |J ′| − |J |.

The assertion of the lemma follows.

Lemma 3.2.4. Let M1 = (S, I1) and M2 = (S, I2) be matroids, and let J ∈ I1 ∩ I2. Let
D be the auxiliary digraph with respect to M1, M2, and J , and suppose there exists an
st-dipath in D. Let p be the cardinality of a maximum common independent set. Then
there exists an st-dipath in D containing at most |J |/(p− |J |) vertices from J .

Proof. By Theorem 3.2.3, there exist at least p−|J | disjoint st-dipaths in D. As the paths

are disjoint, some path contains at most |J |
p−|J | vertices from J , as required.

During the course of execution, A generates a sequence J0, J1, ..., Jp of common independent
sets, starting with J0 = ∅, and where each Ji (1 ≤ i ≤ p) is obtained from Ji−1 by an
augmentation along a shortest st-dipath Pi−1 in the auxiliary digraph.

Lemma 3.2.5. The number of distinct integers in the sequence |P0|, |P1|, ..., |Pp−1| is at
most 2

√
p.

47

Proof. Let r = p − d√pe and let V (Pr) be the vertex set of Pr. Then |Jr| = r and by
Lemma 3.2.4,

|V (Pr) ∩ Jr| ≤
|Jr|

p− |Jr|
=
p− d√pe
d√pe

≤ √p− 1.

Moreover, as the subsequence |P0|, ..., |Pr| is nondecreasing, the same is true of Pi with
respect to Ji for 0 ≤ i ≤ r. By construction, the nodes of each st-dipath belong alternately
to J and S \ J . Moreover, each st-dipath has even length. It follows that the subsequence
contains at most

√
p distinct integers. The subsequence |Pr+1|, ..., |Pp−1| has d√pe−1 ≤ √p

elements, each of which may be distinct. Therefore, there are at most 2
√
p distinct integers

in the sequence.

It follows from Lemma 3.2.2 and Lemma 3.2.5 that we can partition P0, P1, ..., Pp−1 into
O(
√
p) contiguous subsequences, where all paths in each subsequence have equal length.

As in the previous chapter, the partition of the paths induces a partition of the augmenta-
tions performed, namely, part i consists of all augmentations performed on paths of length
i. By Lemma 3.2.5, there are O(

√
p) stages in the algorithm. It remains to show that we

can find and perform all augmentations for a stage in O(n2 · q) time.

To that end, we define layer i for i = 0 to d(s, t), as

Li = {f ∈ S ∪ {s, t} : d(s, f) = i and d(f, t) = d(s, t)− i} .

Evidently, f ∈ S belongs to some shortest st-dipath if and only if f ∈ Li for some i. Given
M1, M2 and J , let D = (N,A) = D(M1,M2, J). We can find d(s, v) for each v ∈ N us-
ing breadth-first search. Similarly, we can apply breadth-first search to the graph (N,A′)
where A′ = {ef : fe ∈ A} from source vertex t in order to determine d(v, t) for each v ∈ N .
Hence, we can construct the sets Li for i = 0 to d(s, t) in O(n2) time.

We are now ready to give Subroutine 4, which performs all augmentations for a stage. The
input is assumed to be the matroids M1 and M2 together with a common independent set
J . The subroutine is a variant of depth-first search. Given M1, M2 and J , let k be the
length of a shortest st-dipath. The subroutine finds an st-dipath of length k and augments
by it, then iterates. Termination is achieved when no st-dipath of length k remains (with
respect to the augmented set J ′).

48

Subroutine 4 Stage Augmentation

1: (N,A)← D(M1,M2, J)
2: construct the sets Li for i = 0 to d(s, t)
3: J ′ ← J
4: U ← ∅
5: pu ← null for all u ∈ N
6: x← s
7: i← 0
8: while x 6= null do
9: if x = t then
10: follow p to find a sequence t = n0, n1, ..., n`+1 = s
11: J ′ ← J ′∆ {n1, n2, ..., n`}
12: U ← U ∪ {n1, n2, ..., n`}
13: x← s
14: i← 0
15: else
16: i←layer of x
17: if there exists y ∈ Li+1 \ U with xy an arc of D(M1,M2, J

′) then
18: py ← x
19: x← y
20: i← i+ 1
21: else
22: U ← U ∪ {x}
23: x← px
24: i← i− 1
25: end if
26: end if
27: end while
28: return J ′

49

The subroutine keeps a set U ⊆ N , whose vertices are said to be useless. Formally, within
a stage where the length of a shortest st-dipath is k, we label a vertex u ∈ N useless if it
is known to belong to no st-dipath (in the digraph with respect to J ′) of length k. Notice
that the algorithm places an element x in U under one of two conditions: first, if it belongs
to some st-dipath which was already used (and is not s or t), and second, if it belongs to
layer i and there is no arc xy of D(M1,M2, J

′) for some nonuseless y in layer i + 1. In
the latter case, it is easy to see that x is useless. In the former, suppose J ∈ I1 ∩ I2 is
augmented to J ′ using a shortest st-dipath which contains f ∈ S. Then either f ∈ J \ J ′
or f ∈ J ′ \J . In either case, Lemma 3.2.2 implies that we have both that d′(s, f) > d(s, f)
and d′(f, t) > d(f, t), since the parity of the length of each such path changes. It follows
that each f ∈ S belongs to at most one path per stage.

On line 17, the subroutine seeks an element y ∈ Li+1 \ U such that xy is an arc of
D(M1,M2, J

′). It is important to note that in this step, the subroutine does not actually
construct the auxiliary digraph D(M1,M2, J

′), but instead uses a single test of indepen-
dence to determine if the arc would be present. This is actually necessary to achieve the
improved running time; if it did construct the auxiliary digraph for each augmentation,
then there would be O(n) constructions of the auxiliary digraph, each requiring O(n2 · q)
operations, giving a O(n3 · q) running time bound. If instead, the algorithm constructs the

auxiliary digraph just once for each distinct length of augmenting path, then the O(n
5
2 · q)

bound is attainable.

Lemma 3.2.6. Let M1 = (S, I1) and M2 = (S, I2) be matroids, and let J ∈ I1 ∩ I2. Let
D = D(M1,M2, J), d(s, t) = k, and let J ′ be the output of Subroutine 4 with M1, M2 and
J as inputs. Then there is no st-dipath of length k in D(M1,M2, J

′). Moreover, where p is
the maximum cardinality of a common independent set and O(q) is the complexity of the
independence oracles for M1 and M2, Subroutine 4 terminates in O(p · n · q) time.

Proof. Notice that when the algorithm visits a vertex x, there are only two possible out-
comes: either the algorithm will find an st-dipath travelling through the vertex, or it will
attempt to find a path through each valid neighbour of x unsuccessfully. In either case, x
is marked as useless. It follows that each neighbour of s (in L1) will eventually be marked
useless, which implies that s itself will eventually be marked useless. Therefore, the algo-
rithm terminates, since upon marking s as useless, it sets x = null.

As discussed above, the algorithm marks a vertex as useless only if it is contained in no
shortest st-dipath with respect to the current common independent set. By the path length

50

monotonicity property (Lemma 3.2.2), this vertex cannot belong to any shortest st-dipath
for the rest of the stage. Since at termination, s ∈ U , we can be certain that there exists
no st-dipath in D(M1,M2, J

′) of length k, which implies that the stage is over.

To determine the running time of the subroutine, note that the complexity of the while
loop is dominated by the number of tests for arcs xy where y ∈ Li+1 \ U . But since the
algorithm tests for the existence of each such arc at most once, it performs O(p · n) such
tests. Since each test requires a test of independence, the running time is O(p · n · q), as
required.

Algorithm 5 Improved Matroid Intersection Algorithm

J ← ∅
repeat

J ′ ← J
J ← stage augmentation (M1,M2, J)

until J ′ = J
D ← D(M1,M2, J)
A← {e ∈ A : there exists no se−dipath in D}
return (J,A)

The Improved Matroid Intersection Algorithm is shown as Algorithm 5.

Theorem 3.2.7. Given two matroids M1 and M2 as input, Algorithm 5 returns J ∈ I1∩I2
and A ⊆ S such that |J | = r1(A)+r2(S\A). Moreover, Algorithm 5 terminates in O(n

5
2 ·q)

operations.

Proof. We first show that J ∈ I1 ∩ I2. For this, it suffices to show that any st-dipath
along which an augmentation is performed is chordless. Since Subroutine 4 always begins
by augmenting along a shortest st-dipath, it follows inductively from Lemma 3.2.2 that all
st-dipaths chosen are chordless.

When the algorithm breaks the loop, it does so because no st-dipaths were found in the
auxiliary digraph. It follows from the Intersection Augmenting Path Theorem 3.1.2 that
J is a maximum cardinality common independent set and A certifies this. For the running
time, by Lemma 3.2.5, there are O(n

1
2) iterations of the loop. In each iteration, we call

the stage augmentation algorithm (Subroutine 4), which by Lemma 3.2.6, terminates in

51

O(n2 · q) operations. In each iteration, we also construct the auxiliary digraph, which as

before, can be constructed in O(n2 · q) operations, so Algorithm 5 terminates in O(n
5
2 · q)

operations, as required.

52

Chapter 4

Submodular Function Minimization

4.1 Introduction

Let S be a finite set and let g : 2S → R; we call g submodular if, for all A,B ⊆ S, we have
g(A) + g(B) ≥ g(A ∪ B) + g(A ∩ B). The submodular function minimization problem is,
given a submodular function g defined on a set S, to find a subset A of S such that g(A)
is minimized. Since any set minimizing g′(A) = g(A) − g(∅) also minimizes g, we assume
that g(∅) = 0. Moreover, we assume that g is given in the form of a value-giving oracle,
that is, a function which, given A ⊆ S, returns the value g(A).

Submodular function minimization contains both matroid polyhedron membership and the
decision version of matroid intersection as special cases in the following ways. Given an
instance M = (S, I) and x ∈ RS of matroid polyhedron membership, define a function
g(A) = r(A) − x(A). It is easy to see that g is submodular. Moreover, if the mini-
mum of g(A) over all A ⊆ S is non-negative, then x(A) ≤ r(A) for all A ⊆ S, that is,
x ∈ PM . Similarly, given two matroids M1 = (S, I1) and M2 = (S, I2), define a function
g(A) = r1(A) + r2(S \ A). Then g is easily seen to be submodular and, by the Matroid
Intersection Theorem 3.1.1, a minimizer of g determines the maximum cardinality of a
common independent set.

The submodular polyhedron associated with g is defined by

Pg =
{
x ∈ RS : x(A) ≤ g(A) ∀A ⊆ S

}
.

53

In this chapter, algorithms for minimizing a submodular function g will work over the base
polyhedron of g, defined by

Bg =
{
x ∈ RS : x(S) = g(S), x(A) ≤ g(A) ∀A ⊆ S

}
.

The min-max theorem characterizing a minimizer of g is a special case of the Polymatroid
Intersection Theorem of Edmonds [7].

Theorem 4.1.1. (Submodular Min-Max Theorem) Let g : 2S → R be a submodular
function. Then

max
y∈Bg

{
y−(S)

}
= min

A⊆S
{g(A)} (4.1)

where the vector y− is defined by y−e = min {0, ye}.

The proof of this theorem relies on the following two lemmas.

Lemma 4.1.2. Let A,B ⊆ S be such that y(A) = g(A) and y(B) = g(B). Then y(A∪B) =
g(A ∪B) and y(A ∩B) = g(A ∩B).

Proof. Identical to the proof of Lemma 2.1.3.

Lemma 4.1.3. If y is a maximizer in Theorem 4.1.1, then for each pair u, v ∈ S with
yu < 0 and yv > 0, there exists some A ⊆ S with y(A) = g(A) such that u ∈ A but v 6∈ A.

Proof. Suppose not. Then there exists a pair u, v ∈ S with yu < 0 and yv > 0 and
such that every U ⊆ S with u ∈ U and v 6∈ U has y(U) < g(U). Consider the vector
y′ = y + ε(χu − χv) for some sufficiently small ε > 0. Observe that the quantity y′(U)
differs from y(U) only if precisely one of u or v is contained in U . If v ∈ U and u 6∈ U ,
then y′(U) < y(U) ≤ g(U). If u ∈ U and v 6∈ U then y′(U) > y(U), so y′(U) ≤ g(U) is
satisfied only if ε satisfies

ε ≤ min
U⊆S:u∈U, v 6∈U

{g(U)− y(U)} .

If in addition, ε is chosen to satisfy ε ≤ min {yv,−yu}, then we also have that y′v = yv−ε ≥ 0
and y′u = yu + ε ≤ 0. It follows that y is not a maximizer, a contradiction.

54

Proof. (Of the Submodular Min-Max Theorem 4.1.1) Let y be a maximizing vector in
(4.1), and let X ⊆ S. Then

y−(S) = y−(X) + y−(S \X) ≤ y(X) + y−(S \X) ≤ g(X).

So the maximum in (4.1) is always less than or equal to the minimum. It remains to show
that equality holds. By Lemma 4.1.3, for each u ∈ S with yu < 0, and each v ∈ S with
yv > 0, there exists a set Au,v such that y(Au,v) = g(Au,v). For each u ∈ S with yu < 0,
define Au to be the intersection of the sets Au,v for each v ∈ S with yv > 0. Let A be the
union of Au for all such u. By Lemma 4.1.2, the set A satisfies y(A) = g(A). Since e 6∈ Au
for any e ∈ S with ye > 0, e 6∈ A. Moreover, for each e ∈ S with ye < 0, e ∈ A. It follows
that g(A) = y(A) = y−(A) = y−(S), as required.

The first algorithm to solve the submodular minimization problem was the ellipsoid method
[17], which was shown by Grötschel, Lovász and Schrijver [13] to be applicable to rational-
valued submodular functions. However, their running time bound is not strongly polyno-
mial. Based in part on the algorithm seen in Chapter 2, Cunningham gave a combinatorial
algorithm for minimizing submodular functions in 1985 [4]; however the running time of
this algorithm is not polynomial. It was not until 2000 that Schrijver [21], and Fleischer,
Fujishige and Iwata [16] gave combinatorial and strongly polynomial time algorithms for
minimizing a submodular function.

Section 2 of this chapter presents Schrijver’s algorithm. Section 3 considers the behaviour
of Schrijver’s algorithm in the context of the matroid polyhedron membership problem
and refines Schrijver’s algorithm in this special case to give another algorithm for solving
the problem. Section 4 presents a push-relabel algorithm for the matroid polyhedron
membership problem, due to Frank and Miklós. Finally, section 5 applies the push-relabel
framework to Schrijver’s algorithm to obtain a push-relabel algorithm for submodular
function minimization.

4.2 Schrijver’s Algorithm

Schrijver’s algorithm [21] builds on Cunningham’s algorithm for submodular minimiza-
tion [4], which in turn builds on the matroid polyhedron membership algorithm [3]. Cun-
ningham’s submodular minimization algorithm also relies on a subroutine of Bixby, Cun-
ningham, and Topkis [1]. Given an extreme point v of the submodular polyhedron, the

55

subroutine returns a partial ordering which determines nearby extreme points of the form
v + ε(χe − χf) or v + εχe with ε > 0. Cunningham’s algorithm keeps a point y in the
submodular polyhedron as a convex combination of extreme points. The partial orders
returned by the subroutine are then used to construct an auxiliary digraph, and augmen-
tations are similar to augmentations in the matroid polyhedron membership algorithm.

The augmentation step described by Cunningham in [4] can be likened to the crude aug-
mentation of Chapter 2. In particular, after augmenting along an st-dipath, every arc of
that path may occur in the next iteration. Recall that in Chapter 2, this problem was
remedied by designing the grand augmentation, which provably reduces to zero the capac-
ity of at least one arc of the dipath used; this provides the basis for the polynomial bound
on the algorithm. Unfortunately, no analog to the grand augmentation is defined. Instead,
assuming the input function is integer-valued, Cunningham proves that the augmentation
amount δ can be chosen large enough to give a pseudo-polynomial bound on the running
time of the algorithm.

Given the similarities to the matroid polyhedron membership algorithm, it seems that there
should exist an analog to the grand augmentation. Such an analog may exist, but was not
described by Cunningham in [4], nor in the years between 1985 and 2000 while the problem
of submodular minimization remained open. In section 2.6, we saw how the algorithm for
matroid polyhedron membership simplified considerably when modified to work over the
basis polyhedron of M rather than the entire matroid polyhedron. Schrijver’s algorithm
takes this approach.

The principal difference between the algorithms is that Schrijver’s algorithm performs
small, local changes. The algorithm of Section 2.6 looks for a sequence e1, e2, ..., ek of el-
ements of S such that ye1 < xe1 and yek > xek then raises ye1 and lowers yek by ε > 0.
Schrijver’s augmentation step instead works on a single arc, but by a complicated selection
rule for the elements, a similar effect is achieved. This has the advantage of being much
simpler to explain and prove.

Let S be a finite set and g : 2S → R be a submodular function. Let ≺ be an ordering on
S. For each e ∈ S, let e≺ = {a ∈ S : a ≺ e}. Define a vector b≺ ∈ RS by

b≺e = g(e≺ + e)− g(e≺).

We call b a base of g.

56

Proposition 4.2.1. Let g be a submodular function defined on S. Then for any order ≺
on the elements of S, the vector b≺ is an element of Bg.

Proof. We first show that b≺(A) ≤ g(A) for all A ⊆ S, by induction on |A|. For |A| = 0,
the assertion is trivially true, so assume |A| > 0. Let e be the greatest element (according
to ≺) of A. By the submodularity of g,

g(A) ≥ g(A ∪ e≺) + g(A ∩ e≺)− g(e≺).

By the choice of e, A ∩ e≺ = A− e and A ∪ e≺ = e≺ + e. Now,

g(A) ≥ g(e≺ + e) + g(A− e)− g(e≺)

≥ g(e≺ + e)− g(e≺) + b≺(A− e)
= b≺e + b≺(A− e)
= b≺(A).

It remains to show that b≺(S) = g(S). We have

b≺(S) =
∑
e∈S

b≺e

=
∑
e∈S

g(e≺ + e)− g(e≺)

= g(S)− g(∅)
= g(S),

as required.

The basic idea of the algorithm is to keep a point y ∈ Bg which is represented as a convex
combination of bases of g. As in the previous algorithms we have seen, this is accom-
plished by means of an augmenting path scheme. For each ordering ≺i on S, we maintain
a coefficient λi of the base generated by ≺i. We call an ordering ≺i (or equivalently, the
base generated by that ordering) active if λi > 0. The algorithm begins with an arbitrary
ordering ≺1 on S and λ1 = 1.

Given all active orderings ≺1,≺2, ...,≺k, the auxiliary digraph D has vertex set S and arc
set {uv : u ≺i v for some 1 ≤ i ≤ k}. Let y =

∑
1≤i≤k λ

ib≺i and define P = {e ∈ S : ye > 0}
and N = {e ∈ S : ye < 0}.

57

Theorem 4.2.2. If D contains no (P,N)-dipath, then the set

A = {e ∈ S : there exists an (e,N)− dipath in D}

and the vector y are an optimal pair in the Submodular Min-Max Theorem (4.1.1).

Proof. Evidently, P ∩A = ∅, so for each e ∈ A, ye ≤ 0. It follows that y(A) ≤ y(R) for all
R ⊆ S. Moreover, N ⊆ A, so y(A) = y−(S).

Consider the sum

b≺i(A) =
∑
e∈R

b≺i
e

=
∑
e∈R

g(e≺i
+ e)− g(e≺i

).

Note that, if e ∈ A and a ≺i e, then a ∈ A. It follows that the above series is telescoping,
and equal to g(A). Now,

y(A) = y−(S)

=
∑
e∈A

k∑
i=1

λib≺i
e

=
k∑
i=1

λi
∑
e∈A

b≺i
e

=
k∑
i=1

λib≺i(A)

= g(A),

as required.

If there is a (P,N)-dipath in D, then there exists a vector y1 ∈ Bg such that y−(S) < y−1 (S).
In what follows, we describe Schrijver’s augmentation step for the case that there exists a
(P,N)-dipath in D, and prove that repeated application of the augmentation step yields
a polynomial-time algorithm for submodular minimization.

58

As stated, Schrijver’s algorithm is slightly different in that augmentations are performed
on a single arc of the path, and with respect to a single active ordering. Ultimately, the
algorithm seeks to raise yq for elements q ∈ N and lower yp for elements p ∈ P so that
N = ∅ or so that there is no (P,N)-dipath. Then by Theorem 4.1.1 or Theorem 4.2.2, y is
a maximizer. At a high level, the algorithm works as follows. It constructs the auxiliary
digraph and uses a consistent selection rule to select the last arc uv of a shortest (P,N)-
dipath. It chooses v so that d(P, v) is greatest among all v ∈ N . Then the augmentation
step raises yv and lowers yu by some δ ≥ 0. In the δ = 0 case, the algorithm does some
rearranging. In the δ > 0 case, if u 6∈ P ∪N , then u enters N . If u ∈ P and yu ≥ δ, then
u does not enter N . The idea is that, since a shortest path from some element of P to u is
shorter than the shortest path to v, the quantity δ, which should eventually be absorbed
by elements of P , travels ‘closer’ to P with each iteration.

Let ≺ be an ordering on S and let u, v ∈ S with u ≺ v. Define the interval

(u, v]≺ = {e ∈ S : u ≺ e � v} .

Define the open interval (u, v)≺, the half-open interval [u, v)≺ and the closed interval [u, v]≺
similarly. Furthermore, define ≺u,v to be the ordering on S obtained from ≺ by setting
v ≺ e for each e ∈ [u, v)≺. The following lemma is helpful in describing and proving the
augmentation step.

Lemma 4.2.3. For each e ∈ S,

b≺
u,v

e ≤ b≺e if u � e ≺ v

b≺
u,v

e ≥ b≺e if e = v

b≺
u,v

e = b≺e otherwise

Proof. First suppose u � e ≺ v. Consider the sets e≺ + e and e≺u,v = e≺ + v. These sets
have union and intersection e≺u,v +e and e≺, respectively. It follows from the submodularity
of g that

g(e≺u,v + e)− g(e≺u,v) ≤ g(e≺ + e)− g(e≺),

or equivalently, that b≺
u,v

e ≤ b≺e .

Now suppose e = v. Consider the sets e≺u,v + e and e≺. These sets have union and
intersection e≺ + e and e≺u,v , respectively. It follows from the submodularity of g that

g(e≺u,v + e)− g(e≺u,v) ≥ g(e≺ + e)− g(e≺),

59

or equivalently, that b≺
u,v

e ≥ b≺e .

Finally, suppose neither of the above cases holds. Then e≺u,v = e≺ and hence b≺
u,v

e =
b≺e .

The idea of the augmentation step is to work on an arc uv of the auxiliary digraph with
v ∈ N . The step consists of choosing an active order ≺ for which u ≺ v and computing
a representation for the vector b≺ + δ(χv − χu) as a convex combination of the vectors
b≺

u,e
for e ∈ (u, v]≺, and where δ ≥ 0. Equivalently, we show how to express the vector

δ(χv − χu) as a convex combination of the vectors b≺
u,e − b≺ for e ∈ (u, v]≺.

Consider the vectors b≺
u,e− b≺ for e ∈ (u, v]≺. By Lemma 4.2.3, each such vector has value

0 for any element of S not contained in the interval [u, v]≺. Lemma 4.2.3 also implies that,
on the interval [u, v]≺, the vectors b≺

u,e − b≺ have the form

u
e1
e2
e3
...
ek
v

≺u,e1

−
+
0
0
...
0
0


,

≺u,e2

−
−
+
0
...
0
0


,

≺u,e3

−
−
−
+
...
0
0


, ...,

≺u,v

−
−
−
−
...
−
+


The portions of the vectors corresponding to elements of S coming before u or after v
(according to ≺) are not shown above. The first entry in each vector corresponds to u and
the last corresponds to v. The first vector in the list corresponds to the order obtained by
exchanging u and its successor, and the last vector corresponds to the order b≺

u,v
. A +

entry corresponds to a value which is greater than or equal to 0, and a − entry corresponds
to a value which is less than or equal to 0.

By the definition of b≺, we have b≺
u,e

(S) = g(S) = b≺(S). It follows that each vector in
the sequence sums to 0. For the augmentation step, we consider two cases. In the first
case, there exists some e ∈ (u, v]≺ such that b≺

u,e

e = 0. In terms of the vectors above, this
corresponds to a vector whose + entry is equal to 0. It follows that b≺

u,e − b≺ = 0. In this
case, we choose δ = 0 and the representation b≺ = b≺

u,e
.

60

Otherwise, each + entry is strictly positive. In this case, we can convert the sequence of
vectors above into a sequence of the form

u
e1
e2
e3
...
ek
v

≺u,e1

−
+
0
0
...
0
0


,

≺u,e2

−
0
+
0
...
0
0


,

≺u,e3

−
0
0
+
...
0
0


, ...,

≺u,v

−
0
0
0
...
0
+


By the sign pattern, each modified vector in the sequence can be represented as a non-
negative linear combination of the vectors b≺

u,e−b≺ for e ∈ (u, v]≺. Moreover, each modified
vector has component sum 0. In particular, this applies to the vector [− 0 0 0 0 ... 0 +]>,
which is already equal to ∆(χv − χu) for some positive ∆. It follows that by scaling, we
can represent the vector δ(χv − χu) as a convex combination of the vectors b≺

u,e − b≺ for
e ∈ (u, v]≺ and some positive δ. Schrijver’s subroutine is outlined in Subroutine 6. The
subroutine requires a pair u, v ∈ S and an ordering ≺ such that u ≺ v. It returns a vector
κ ≥ 0 parameterized by the elements of (u, v]≺ such that∑

e∈(u,v]≺

κe = 1 and

∑
e∈(u,v]≺

κe · b≺
u,e

= b≺ + δ(χv − χu).

We have seen how to construct the auxiliary digraph, how to find a certificate if no (P,N)-
dipath exists, and how to perform an augmentation when one does. The last part of the
algorithm is the choice of an arc for augmentation. For this part, we require a fixed or-
dering on S, say S = {1, 2, ..., n} with the usual order. Schrijver’s algorithm is outlined in
Algorithm 7.

Let ≺1,≺2, ...,≺k be the set of active orderings and let α = max1≤i≤k {|(u, v]≺i
|}. Assume,

without loss of generality, that |(u, v]≺1| = α. Using the augmentation step, we can repre-
sent the vector b≺1 +δ(χv−χu) as a convex combination of the vectors b≺

u,e
1 for e ∈ (u, v]≺1 .

Substituting this into the equation for y (the current element of Bg), we obtain a repre-
sentation for the vector y′ = y + λ1δ(χv − χu) as a convex combination of the vectors b≺i

61

Algorithm 6 Schrijver’s Subroutine

for each e ∈ (u, v]≺ do
compute b≺

u,e

end for
if there exists e ∈ (u, v]≺ with b≺

u,e
= b≺ then

κe ← 1
else

kv ← 1
b′ ← b≺

u,v − b≺
for each e ∈ (u, v)≺ (in reverse order) do

ke ← b≺e −b′e
b≺

u,e
e −b≺e

b′ ← b′ + ke(b
≺u,e − b≺)

end for
`←

∑
e∈(u,v]≺ ke

for each e ∈ (u, v]≺ do
κe ← ke

`

end for
end if
return κ

62

Algorithm 7 Schrijver’s Submodular Function Minimization Algorithm

≺1← arbitrary order on S
λ1 ← 1
D ← auxiliary digraph with respect to y = b≺1

while there exists a (P,N)-dipath in D do
v ← greatest element of N with d(P, v) <∞ maximum
u← greatest element of S with d(P, u) = d(P, v)− 1 such that u ≺ v for active ≺
≺i← any active ordering maximizing |(u, v]≺i

|
κ← result of Subroutine 6 with u, v and ≺i as inputs
y′ ←

∑
j 6=i λ

jb≺j + λi
∑

e∈(u,v]≺i
κeb
≺u,e

i

if y′v > 0 then
y ← point z on line segment yy′ with zv = 0

else
y ← y′

end if
reduce number of active bases in convex combination for y
D ← auxiliary digraph with respect to y

end while
A← {e ∈ S : there exists an (e,N)− dipath in D}
return (y, A)

63

(i = 2, ..., k) and b≺
u,e
1 (e ∈ (u, v]≺i

).

Note that while yv < 0, it could be the case that y′v > 0. If y′v > 0, then we choose the
point z on the line segment yy′ which has zv = 0. Evidently, this point can be written as
a convex combination of b≺i (i = 1, ..., k) and b≺

u,e
1 (e ∈ (u, v]≺i

). Otherwise, we choose
z = y′. Before continuing on to the next iteration, we reduce the number of active bases
in the convex combination for z to at most n as in Carathéodory’s Theorem.

Theorem 4.2.4. Given a submodular function g defined on S, at most n active orderings
≺1,≺2, ... ≺k and coefficients λ1, λ2, ..., λk, the auxiliary digraph can be constructed, an arc
uv can be selected for augmentation, and an augmentation can be performed in O(n3+n2q)
operations, where O(q) is the running time of the value-giving oracle for g.

Proof. To construct the auxiliary digraph, for each active ordering ≺, and each pair
u, v ∈ S, we check if u ≺ v. There are O(n) orderings and O(n2) pairs of elements
for a total of O(n3) operations.

An arc can be chosen as follows. Add a supersource s to the graph and arcs se for each
e ∈ P . Run breadth-first seach with source node s. This takes O(n2) time. To choose v,
select from among the elements of N that element whose distance from s is greatest, and
subject to this, choose the greatest element. This takes O(n) time. Similarly, the greatest
element among the elements u ∈ S with uv an arc and d(P, u) = d(P, v)−1 can be selected
in O(n) operations.

Subroutine 6, as described, requires O(n2q) operations. After choosing an arc uv and or-
dering ≺ for the augmentation step, the algorithm must compute the vectors b≺

u,e − b≺
for each e ∈ (u, v]≺. There are O(n) such vectors, and O(n) entries in each vector, each of
which can be computed by querying the value-giving oracle.

Finding a point between y and y′ requires O(n) operations, and reducing the number of
terms in the convex combination to at most n requires O(n3) operations.

It remains to show that the algorithm performs polynomially many iterations. Let D be
the auxiliary digraph in iteration i, and D′ be the auxiliary digraph in iteration i + 1.
Suppose that, in iteration i, the algorithm chooses the arc uv and ordering ≺1 on which
to perform an augmentation. Let α be defined as above and let

β = number of i ∈ {1, ..., k} with |(u, v]≺i
| = α.

64

Furthermore, suppose that, in iteration i + 1, the algorithm chooses the arc u′v′. Let α′

and β′ be the quantities α and β in iteration i + 1, and let P ′ be the set P in iteration
i+ 1. We consider the tuples (d(P, v), v, u, α, β) and (d′(P ′, v′), v′, u′, α′, β′). We will need
necessary preconditions for an appearance of an arc after an augmentation.

Lemma 4.2.5. If pq is an arc of D′ but not of D, then u �1 q ≺1 p �1 v.

Proof. Since pq is not an arc of D, we have q ≺1 p. Since pq is an arc of D′, we have
p ≺u,x1 q for some x ∈ (u, v]≺1 . It follows that p, q ∈ [u, v]≺1 , as required.

We are now prepared to prove a monotonicity lemma.

Lemma 4.2.6. For all q ∈ S, d′(P ′, q) ≥ d(P, q).

Proof. Suppose not, and let q ∈ S be such that d′(P ′, q) < d(P, q). Subject to this, choose
q so that d′(P ′, q) is as small as possible. Note that, by the design of the algorithm, P ′ ⊆ P .
Consequently, there is an arc pq of D′ but not D such that d(P, p) ≤ d(P, q)−2. By Lemma
4.2.5, u �1 q ≺1 p �1 v. It follows that d(P, p) ≤ d(P, q) + 1. But now,

d(P, q) ≤ d(P, u) + 1 = d(P, v) ≤ d(P, p) + 1 ≤ d′(P ′, q),

a contradiction.

Lemma 4.2.7. If d′(P ′, e) = d(P, e) for all e ∈ S, then (d(P, v), v, u, α, β) is lexicographi-
cally greater than (d′(P ′, v′), v′, u′, α′, β′).

Proof. Suppose d(P, e) = d′(P ′, e) for each e ∈ S. Since v′ ∈ N ′, either v′ ∈ N or v′ = u.
Since d(P, u) < d(P, v), d′(P ′, v′) ≤ d(P, v). Moreover, if d′(P ′, v′) = d(P, v), then v′ ≤ v.

Assume d′(P ′, v′) = d(P, v) and v′ = v. Then (u′, v) is an arc of D′. If (u′, v) is not an arc
of D, then by Lemma 4.2.5, we have u �1 v ≺1 u

′ �1 v, a contradiction. It follows from
the choice of u that u′ ≤ u.

Now assume that d′(P ′, v′) = d(P, v), v′ = v and u′ = u. Note that, for each e ∈ (u, v]≺1 ,
the set (u, v]≺u,e

1
is a proper subset of (u, v]≺1 . Therefore, the augmentation step replaces

an active base with one or more active bases, and for each such base, the size of the interval
(u, v] does not increase. It follows that α′ ≤ α.

65

Finally, assume α′ = α. Note that v ∈ N ′ and consider the augmentation step. The
penultimate operation in the augmentation step is to choose a point z on the line segment
between the old element of Bg (previously referred to as y) and the new element of Bg

(previously referred to as y′). Recall that z is chosen as the closest point to y′ with zv ≤ 0.
Since v ∈ N ′, it follows that y′v < 0 and hence the algorithm must have chosen the point
z = y′. Observe that the ordering ≺1 does not occur in the convex combination for y′.
Hence, the ordering ≺1 is inactive in iteration i + 1. Since any newly active ordering ≺
satisfies |(u, v]≺| < |(u, v]≺1|, it follows that β′ < β.

All that remains is to determine is the running time of the algorithm.

Theorem 4.2.8. Given a submodular function g defined on a finite set S, the pair (y, A)
returned by Algorithm 7 is optimal in the Submodular Min-Max Theorem 4.1.1. Moreover,
Algorithm 7 has a running time of O(n9 + n8q).

Proof. By Theorem 4.2.2, the pair (y, A) is optimal in the Submodular Min-Max Theorem
4.1.1.

For the running time, first consider the vector (d(P, e) : e ∈ S) ∈ ZS. Since 0 ≤ d(P, e) ≤ n
(where d(P, e) = n if no path exists) for all e ∈ S, this vector assumes O(n2) values during
the course of the algorithm. By Lemma 4.2.6, this vector is nondecreasing as the algorithm
progresses. It follows that the set of all vectors in ZS between [0, 0, ..., 0]> and [n, n, ..., n]>

induce a partition of the iterations of the algorithm. Furthermore, each part consists of a
series of consecutive iterations, which we will refer to as a stage.

Note that u, v ≤ n and since the augmentation step finishes by reducing the number of
active bases to at most n, we also have α, β ≤ n. It follows from Lemma 4.2.7 that there
are O(n4) iterations in each stage, giving a total of O(n6) iterations. By Theorem 4.2.4,
each iteration requires O(n3 + n2q) operations, for a total of O(n9 + n8q) operations, as
required.

4.3 Matroid Polyhedron Membership: Local Change

Algorithm

In this section, we return to the matroid polyhedron membership problem. We start by
studying how Schrijver’s augmentation step works in this special case, and conclude by

66

refining the algorithm to obtain a different algorithm for matroid polyhedron membership.
Schrijver gives a similar algorithm in his text Combinatorial Optimization [22]. The al-
gorithm is similar to Cunningham’s algorithm in that it works by an augmenting path
scheme. The main difference is that Schrijver’s algorithm works with respect to a single
arc of an augmenting path, and this simplifies the analysis considerably. The difference
between the algorithm given here and that of Schrijver is that Schrijver’s augmentation
step is simpler, leading to a slower running time.

Recall that an instance consists of a matroid M = (S, I) and a non-negative vector x ∈ RS,
and we are asked to find a representation for x as a convex combination of independent
sets of M or a set A ⊆ S such that x(A) > r(A). In the current context, we are working
over the base polyhedron of M , and so any point y considered by the algorithm satisfies
y(S) = r(S). It might be the case that x(S) < r(S), and in this case, the algorithm will
compute a vector y ∈ BM such that x ≤ y, providing x ∈ PM .

Note that, by Lemma 1.3.2, the rank function r of M is submodular. Evidently, the
component sum function x(A) =

∑
e∈A xe is submodular, as is −x(A). It follows that

g(A) = r(A)−x(A) is a submodular function. If x ∈ PM , then x(A) ≤ r(A) for all A ⊆ S.
Therefore, x ∈ PM if and only if the minimizing set A satisfies g(A) ≥ 0.

One part of Schrijver’s algorithm which simplifies considerably in the present context is
the notion of a base. Given an ordering ≺ on the elements of S, consider the vector b≺

defined by

b≺e = g(e≺ + e)− g(e≺)

= r(e≺ + e)− r(e≺)− xe

=

{
0− xe : e ∈ cl(e≺)
1− xe : otherwise.

Consider the augmentation step. Recall that the vectors b≺
u,e − b≺ for each e ∈ (u, v]≺

67

have the form (on the interval [u, v]≺)

u
e1
e2
e3
...
ek
v

≺u,e1

−
+
0
0
...
0
0


,

≺u,e2

−
−
+
0
...
0
0


,

≺u,e3

−
−
−
+
...
0
0


, ...,

≺u,v

−
−
−
−
...
−
+


.

Since the rank function is integer valued, these vectors are also. In the δ > 0 case, all
+ entries are equal to 1, and precisely one of the − entries is equal to −1. It follows in
particular that u ∈ C(B≺, v), where B≺ is the basis of M generated by the order ≺.

We are now prepared to give a refinement of Schrijver’s algorithm. As in Section 2.6, the
algorithm works over the basis polyhedron of M , that is, the polyhedron BM described
by
{
y ∈ RS : y ≥ 0, y(A) ≤ r(A) ∀A ⊆ S, y(S) = r(S)

}
. Consequently, every active inde-

pendent set will be a basis of S. In contrast to the algorithms of Chapter 2, the refinement
works by making small ‘local’ changes, that is, an augmentation raises ye and lowers yf
for some arc ef of the auxiliary digraph, as opposed to making changes with respect to a
source-sink path.

Given a convex combination λ of bases of M , let y = y(λ) be defined as before. Let
N = {e ∈ S : ye < xe} and P = {e ∈ S : ye > xe}. The auxiliary digraph D(M,x, λ) has
vertex set S and its arc set contains the arcs

ef for all pairs e, f ∈ S such that f ∈ C(B, e) for some active basis B.

Let u(e, f), D(e, f), and LJ(e, f) be defined as before, and let ≺ be an order on D(e, f).
The modified augmentation step is shown as Subroutine 8. The subroutine requires the
vector λ and elements e, f ∈ S with e ∈ N as input.

Note that Subroutine 8 chooses δ as large as possible so that y′ ∈ PM and y′ ≥ y. Note
also that many independent sets can be involved in an augmentation. This is in contrast
to Schrijver’s algorithm in [22] which only performs augmentations with respect to a single

68

Subroutine 8 Local Augmentation of λ using ef

λ′ ← λ
δ ← min {xe − ye, u(e, f)}
for each J ∈ D(e, f) do

J ′ = J + e− f
if LJ(e, f) ≤ δ then

λ′J = 0
λ′J ′ = λJ ′ + λJ

else if δ < LJ(e, f) < δ + λJ then
λ′J = LJ(e, f)− δ
λ′J ′ = λJ ′ + δ − LJ(e, f) + λJ

end if
end for
return λ′

independent set (and its corresponding mutation).

Trivially, Subroutine 8 produces a convex combination of bases of M , given such a combi-
nation. More importantly, one of two things has happened. In the δ = xe − ye case, the
element e now satisfies xe = ye. In the δ = u(e, f) case, we have xe ≤ ye and ef is not an
arc of the next auxiliary digraph. Observe that in both cases, the augmentation chooses δ
so that no new elements are added to P .

Let D be the auxiliary digraph. Apply Subroutine 8 to the first arc ef of an (N,P)-dipath
in D, and let D′ be the next auxiliary digraph. We can prove the necessary preconditions
for the appearance of a new arc in the auxiliary digraph directly from the Strong Circuit
Axiom.

Proposition 4.3.1. If ab is an arc of D′ but not of D, then (a = f or) af is an arc of D
and (b = e or) eb is an arc of D.

Proof. Since ab is an arc of D′ but not D, there exists J ∈ D(e, f) such that b ∈ C(J +
e− f, a) \ C(J, a). By the Strong Circuit Axiom 1.3.4, there exists a circuit C1 such that

b ∈ C1 ⊆ (C(J + e− f, a) ∪ C(J, a))− a
⊆ J + e.

69

Hence, b ∈ C1 = C(J, e).

If f 6∈ C(J, a), then again by the Strong Circuit Axiom 1.3.4, there exists a circuit C2 such
that

f ∈ C2 ⊆ (C(J, a) ∪ C(J, e))− b
= J − b ∪ {a, e} .

Since b 6∈ C(J, a), f ∈ C2 = C(J, a), a contradiction.

Let d and d′ be the distance functions of D and D′, respectively. Let P ′ and N ′ be the
sets P and N in D′. Note that P ′ ⊆ P . A monotonicity property now follows easily.

Lemma 4.3.2. For all u ∈ S, d′(u, P ′) ≥ d(u, P).

Proof. Assume d′(u, P ′) < d(u, P), and choose u so that d′(u, P ′) is minimized. Then
there must be an arc uv of D′ but not D with d(v, P) ≤ d′(v, P ′). By Proposition 4.3.1,
d(e, P) ≤ d(v, P) + 1 and d(u, P) ≤ d(f, P) + 1. Now,

d(e, P) ≤ d(v, P) + 1 ≤ d′(v, P ′) + 1 = d′(u, P ′) < d(u, P) ≤ d(f, P) + 1 = d(e, P),

a contradiction.

Algorithm 9 Matroid Polyhedron Membership - Local Augmentation Version

λ← 0
B ← arbitrary basis of S
λB ← 1
D ← D(M,x, λ)
while there exists an (N,P)-dipath in D do

e← greatest element of N with d(e, P) maximum
f ← greatest element of S with d(f, P) = d(e, P)− 1 and f ∈ C(B, e) with λB > 0
λ← result of Subroutine 8 using e, f and λ
reduce number of active bases to at most n
D ← D(M,x, λ)

end while
A← {e ∈ S : there exists an (N, e)− dipath in D}
return (λ,A)

70

The local version of the algorithm is given as Algorithm 9. The algorithm requires a
matroid M = (S, I), a vector x ∈ RS, and any total order on S as inputs. By the greatest
element of S, or the greatest element of N , we mean the greatest element according to the
given total order.

Lemma 4.3.3. If d′(e, P ′) = d(e, P) for all e ∈ S, then e ≥ e′, f ≥ f ′, and if e = e′, then
f > f ′.

Proof. Assume that d′(e, P ′) = d(e, P) for all e ∈ S. Then P ′ = P . By the choice of e,
d′(e′, P ′) = d(e′, P) ≤ d(e, P). Assume equality holds. By the choice of e, e′ ≤ e. Assume
equality holds again. Then the augmentation step chose amount δ = u(e, f) < xe − ye, so
ef is not an arc of D′. If f ′ > f , then ef ′ is an arc of D′ but not D. By Proposition 4.3.1,
it must be the case that f ′ = e, a contradiction.

For a vector λ returned by the algorithm, let y = y(λ) be defined as before, and let y′ be
defined by y′e = min {ye, xe}.

Theorem 4.3.4. Given a matroid M = (S, I) and a vector x ∈ RS and any total order
on S, Algorithm 9 returns (λ,A) such that (y′, A) is an optimal pair in the Membership
Min-Max Theorem 2.1.2. Moreover, Algorithm 9 is a polynomial time matroid algorithm
with a running time of O(n7 · q).

Proof. Let (λ,A) be the pair returned by Algorithm 9. Since N ⊆ A and P ∩ A = ∅,
y′(S \A) = x(S \A) and y′(A) = y(A). We claim that, for each active basis B, A∩B is a
basis for A. If not, then there exists some e ∈ A \B such that (A∩B) + e ∈ I. Since B is
a basis, it follows that there exists some f ∈ B \A such that f ∈ C(B, e), a contradiction.
Now,

y(A) =
∑
e∈A

ye =
∑
B∈I

λB · |A ∩B| =
∑
B∈I

λB · r(A) = r(A).

So y′(A) = y(A) = r(A) and y′(S \ A) = x(S \ A), as required.

For the running time, divide the iterations into stages, where each stage consists of all
iterations where d(e, P) is constant for all e ∈ S. Then there are O(n2) stages. By Lemma
4.3.3, there are O(n2) iterations per stage, and hence O(n4) iterations in total. The time
to perform an iteration is dominated by the time to build the auxiliary digraph, which is
O(n3 · q), giving the bound.

71

4.4 Matroid Polyhedron Membership: Push-Relabel

Algorithm

In this section, we study a push-relabel algorithm for the matroid polyhedron membership
problem, due to Frank and Miklós [12]. The algorithm is apparently very similar to the
refinement of Schrijver’s [21] algorithm presented in the previous section, though it has a
simpler selection rule and does not use an auxiliary digraph. The push-relabel algorithm
is a somewhat natural extension of the algorithm of the previous section. Notice how that
algorithm constructs the auxiliary digraph once for each iteration, but uses only very little
information to make its selection of elements. In fact, it only needs some e ∈ N and some
f ∈ S with d(f, P) = d(e, P) − 1. The push-relabel algorithm capitalizes on this obser-
vation by maintaining a labelling of the elements of S which approximates the distance
function of the auxiliary digraph.

Let M = (S, I) and x ∈ RS be an instance of the matroid polyhedron membership prob-
lem. As before, the algorithm keeps a convex combination λ ∈ RI of bases of M . Given
such a vector λ, let y = y(λ) be defined as before. Define the sets P = {e ∈ S : ye > xe}
and N = {e ∈ S : ye < xe}.

In addition, the algorithm keeps a level function L : S → {0, 1, 2, ..., n}. To gain an in-
tuitive understanding of the level function, and indeed the algorithm itself, it is helpful
to consider the algorithm of the previous section and also Cunningham’s algorithm for
matroid polyhedron membership. The push-relabel algorithm, like the algorithm of the
previous section, works by making local changes in the form of basis exchanges. The aug-
mentation step itself consists of repeated single basis exchanges, and is easily seen to be
equivalent to the augmentation step of the previous section’s algorithm. As an advantage,
it does not require an ordering on the elements of S for its selection rule. When e and f are
exchanged, the values of ye and yf are, respectively, increased and decreased by some δ > 0.

In the basis version of Cunningham’s algorithm, the algorithm seeks a sequence e1, e2, ..., ek
of elements of S such that e1 ∈ N , ek ∈ P and such that, for each i ∈ {1, ..., k − 1}, there
exists a basis Bi with λBi

> 0 and ei+1 ∈ C(Bi, ei). The algorithm then applies the aug-
mentation step, which increases ye1 and decreases yek . The idea of the level function is
that it places a lower bound on the number of elements in such a sequence. By managing
this level function, and by a consistent choice of elements for augmentation, it is possible
to simplify the numerous rules for choosing elements in the local version of the algorithm.

72

Algorithm 10 Push-Relabel Matroid Polyhedron Membership Algorithm

λ← 0
B ← arbitrary basis of S
λB ← 1
L(a)← 0 for all a ∈ S
while there exists a ∈ N with L(a) ≤ n− 1 do

e← any element of N for which L(e) ≤ n− 1 is maximum
while xe < ye and a push at e is possible do

λ← result of push at e
end while
if xe = ye then

relabel e
end if

end while
Choose i so that {e ∈ S : L(e) = i} = ∅
A← {e ∈ S : L(e) > i}
return (λ,A)

The push-relabel algorithm, due to Frank and Miklós [12], is given as Algorithm 10. The
algorithm relies on two simple operations, push and relabel. To relabel e is to increase
L(e) by 1. For some e ∈ N , a push at e is possible whenever there exists some f ∈ S
such that L(f) = L(e)− 1 and there exists an active basis B such that f ∈ C(B, e). The
push operation chooses such an element f , basis B, and the quantity δ = min {ye − xe, λB}.
It then reduces and increases (respectively) the coefficients of B and B + e − f by δ. A
push at e which sets ye = xe is called a neutralizing push.

Proposition 4.4.1. Throughout the course of execution, the level function maintains the
following invariants.

(i) L(e) = 0 for all e ∈ P .

(ii) For every active basis B and every e ∈ S \B, minf∈C(B,e) {L(f)} ≥ L(e)− 1.

Proof. First observe that the push operation chooses δ so that e 6∈ P after a push. Hence,
no element of S is ever added to P . Moreover, the algorithm chooses only members of N
for the push operation, and so only relabels members of N . It follows that L(e) = 0 for

73

each e ∈ P .

Evidently, (ii) holds at initialization. Consider the earliest point during execution where
(ii) is violated by the active basis B, the element e ∈ S \ B and the element f ∈ C(B, e)
satisfying L(f) < L(e)− 1. Since (ii) was satisfied before the previous operation, either e
was relabelled or the coefficient of B was increased from 0. The former case is not possible,
since the algorithm would not have relabelled e if the coefficient of B was positive. Thus,
we may assume that the previous operation was a push.

In the latter case, B = B′ + a− b, where the last push was performed at a with respect to
b. Moreover, f ∈ C(B, e) \ C(B′, e). By the Strong Circuit Axiom (1.3.4), there exists a
circuit C of M such that

f ∈ C ⊆ (C(B′ + b− a, e) ∪ C(B′, e))− e ⊆ B′ + a.

It follows that f ∈ C = C(B′, a). Since L(e) − 1 > L(f) and since (ii) was satisfied by
B′, it must be the case that L(e)−1 > L(f) ≥ L(a)−1. By the choice of b, L(b) = L(a)−1.

Consider the circuit C(B′, e) = C(B−a+b, e) = C(B−a+e, b); it follows that b ∈ C(B′, e).
Since B′ satisfies (ii), it must also be that L(b) ≥ L(e)− 1. But now,

L(b) ≥ L(e)− 1 > L(f) ≥ L(a)− 1 = L(b),

a contradiction. It follows that the property (ii) is invariant.

If N = ∅ after an iteration, then y ∈ BM and y ≥ x, so x ∈ PM . Otherwise, the algorithm
seeks to transfer the deficit (that is, xe− ye) at some e ∈ N to some collection of members
of P . It does this by moving some amount δ ≤ xe − ye of the deficit at e to an element
whose level is L(e)−1. In some subsequent iteration, the algorithm will then move some or
all of δ to an element at a lower level, and so on. Assuming x ∈ PM , the deficit eventually
makes its way down to level 1. The algorithm then uses the surplus (that is, yf − xf) at
the elements f ∈ P to neutralize the deficit.

This brings us to the case where x 6∈ PM . In this case, the algorithm should reach a
state where it is provably impossible to transfer the deficit from any e ∈ N to any f ∈ P .
Intuitively, this happens when there is a level which ‘separates’ N from P . That is, a level i
which is empty, and which is below the level of any member of N . Since the algorithm only

74

relabels elements of N , no element will enter level i, and hence no deficit can be transferred
from a member of N to any other element whose level is less than i + 1. Formally, the
termination condition is

there exists i ∈ {0, 1, ..., n} such that {e ∈ S : L(e) = i} = ∅ and for all f ∈ N , L(f) > i.

Lemma 4.4.2. If the termination condition holds, then the vector y′ defined by y′e =
min {ye, xe} and the set A = {e ∈ S : L(e) > i} are an optimal pair in the Membership
Min-Max Theorem 2.1.2.

Proof. It suffices to show that y′(S) = r(A) + x(S \ A). For each e ∈ S \ A, e 6∈ N . It
follows that y′e = xe, and hence y′(S \A) = x(S \A). Note that y′(A) = y(A). By property
(ii) of the level function L, for each active basis B and each e ∈ A \B, the circuit C(B, e)
is contained in A. It follows that A ∩B is a basis of A for each active basis B. Now,

y(A) =
∑
B∈B

λB · |B ∩ A|

=
∑
B∈B

λB · r(A)

= r(A).

Thus, y′(S) = y(A) + y′(S \ A) = r(A) + x(S \ A), as required.

If y 6≥ x, then N 6= ∅. If every e ∈ N satisfies L(e) = n, then by the Pigeonhole Principle,
the termination condition holds. Otherwise, the algorithm is able to select some e ∈ N
with L(e) < n and proceed with an iteration. On the other hand, if y ≥ x, then N = ∅, so
the termination condition holds, either for level n or for some other level.

Theorem 4.4.3. Given a matroid M = (S, I) and a vector x ∈ RS, Algorithm 10 returns
λ and A such that (y′, A) is an optimal pair in the Membership Min-Max Theorem 2.1.2.
Moreover, Algorithm 10 is a polynomial-time matroid algorithm with a running time of
O(n7 · q).

Proof. The pair (y′, A) is optimal in the Membership Min-Max Theorem by Lemma 4.4.2.

For the running time, divide the iterations into stages, where each stage consists of all
iterations where L(e) is constant for all e ∈ S. Evidently, there are O(n2) stages. Since the

75

algorithm chooses an element e ∈ N to maximize L(e), e is neutralized at most once per
stage. Hence, there are O(n3) neutralizing pushes in all. In a non-neutralizing push, λB is
set to 0. Thus, the number of active bases does not increase. Similarly, in a neutralizing
push, the number of active bases increases by at most one. It follows that the number of
active bases is O(n3). Before performing a neutralizing push at e, it may be necessary to
perform a push at e for each active basis. As there are O(n3) such bases, there are O(n6)
pushes in all.

Given a basis B, an element e and the set L = {f ∈ S : L(f) = L(e)− 1}, O(n) queries of
the independence oracle are required to identify a candidate f ∈ C(B, e) ∩ L. The basis
exchange itself can be performed in constant time, giving the algorithm an overall running
time of O(n7 · q), where O(q) is the running time of the independence oracle.

As before, the running time of the algorithm can be improved by reducing the number of
active bases to at most n at the end of each stage, per Carathéodory’s Theorem. A total of
O(n2) such reductions will be performed, each in O(n3) operations. The number of active
bases is then reduced to O(n), which means there are O(n4) pushes in all, giving a running
time of O(n5 · q).

4.5 Push-Relabel Submodular Function Minimization

The push-relabel algorithm of Frank and Miklós [12] presented in the previous section is
very similar to the matroid polyhedron membership version of Schrijver’s algorithm pre-
sented in section 4.3. Indeed, the level function L serves only to simplify the rules for
choosing a pair (u, v) for augmentation. Frank and Miklós extend their algorithm to solve
the polymatroid intersection problem, of which submodular minimization is a special case.
In this section, we consider the algorithm obtained by applying the ideas of Frank and
Miklós to Schrijver’s algorithm.

Although the presentation is different, the algorithm turns out to be identical to an al-
gorithm given by Fleischer and Iwata in 2003 [10]. The algorithm keeps a level function
L : S → {0, 1, 2, ..., n} and begins by setting L(e) = 0 for all e ∈ S, choosing a random
ordering ≺ on S, and setting the coefficient of ≺ to 1. At each iteration, the algorithm
chooses some element v ∈ S with L(v) ≤ n − 1 maximum. If there exists an element
u ∈ S with L(u) = L(v)− 1 and such that u ≺ v for some active ordering ≺, then a push
at v is possible. A push at v with respect to u, the ordering ≺, and the point y ∈ Bg

76

(represented as a convex combination of bases) consists of applying Subroutine 6 to u, v
and ≺ to obtain a point y′ = y+ δ(χv−χu), then choosing the point z on the line segment
yy′ maximizing zv such that zv ≤ 0, and updating the convex combination of bases so that
it represents z. The last step of the push consists of reducing the number of active bases
in the convex combination to at most n. The push operation is defined in Subroutine 11
and the push-relabel algorithm is defined in Algorithm 12.

Subroutine 11 Push at v with respect to u, ≺i, and y

κ← result of Subroutine 6 with u, v and ≺i
y′ ←

∑
j 6=i λ

jb≺j + λi
∑

e∈(u,v]≺i
κeb
≺u,e

i

if y′v > 0 then
y ← point z on line segment yy′ with zv = 0

else
y ← y′

end if
reduce number of active bases in convex combination for y
return convex combination for y

Proposition 4.5.1. During the course of execution, the level function maintains the fol-
lowing invariants.

(i) L(u) = 0 for all u ∈ P .

(ii) For all active orderings ≺ and all u, v ∈ S with u ≺ v, L(u) ≥ L(v)− 1.

Proof. Evidently, the property (i) holds at initialization. Since only elements of N are
relabelled, and since the augmentation step never adds a new element to P , it follows that
(i) is invariant.

Again, (ii) holds at initialization. Consider the first iteration where (ii) is violated for some
active ordering ≺ and u, v ∈ S with u ≺ v. Since (ii) held in the previous iteration, it
held with respect to u, v and every active ordering. Note that the algorithm could not
have relabelled u or v at the end of the previous iteration, so it must be the case that ≺
was not active in the previous iteration. Suppose e and f were chosen for augmentation in
the previous iteration. Then by Lemma 4.2.5, there was an active ordering ≺1 such that
e �1 v ≺1 u �1 f . Since (ii) was satisfied, we have

L(e) ≥ L(v)− 1 > L(u) ≥ L(f)− 1 = L(e),

77

Algorithm 12 Push-Relabel Submodular Function Minimization Algorithm

≺1← arbitrary order on S
λ1 ← 1
y ← b≺1

L(a)← 0 for all a ∈ S
while there exists a ∈ N with L(a) ≤ n− 1 do

v ← any element of N for which L(v) ≤ n− 1 is maximum
while v ∈ N and a push at v is possible do

u←element of S with L(u) = L(v)− 1 and u ≺ v for active ≺
while u ≺ v for some active ≺ and yv < 0 do
≺←active order with u ≺ v maximizing |(u, v]≺|
y ← result of push at v with respect to u and ≺

end while
end while
if v ∈ N then

increase L(v) by 1
end if

end while
Choose i such that {e ∈ S : L(e) = i} = ∅
A = {e ∈ S : L(e) > i}
return (y, A)

78

a contradiction. It follows that the property (ii) is invariant.

The algorithm continues to run while there exists some e ∈ N such that L(e) ≤ n − 1.
Therefore, at termination, every e ∈ N has level n.

Theorem 4.5.2. If every e ∈ N satisfies L(e) = n, then there exists a level i (0 ≤ i ≤ n)
such that {e ∈ S : L(e) = i} = ∅ and such that for each e ∈ N , L(e) > i. Moreover, the
set

A = {e ∈ S : L(e) > i}

and the vector y are an optimal pair in the Submodular Min-Max Theorem (4.1.1).

Proof. The first assertion follows directly from the Pigeonhole Principle. For the second
assertion, observe that N ⊆ A and P ∩A = ∅, so for any R ⊆ S, we have y(A) ≤ y(R); note
also that y(A) = y−(S). As in Theorem 4.2.2, for each active ordering ≺i, b≺i(A) = g(A).
Now let R ⊆ S. We have

y(A) = y−(S)

=
∑
e∈A

k∑
i=1

λib≺i
e

=
k∑
i=1

λib≺i(A)

= g(A),

as required.

All that remains is to determine the running time of the algorithm. Recall that a push at
v is called neutralizing if it sets yv = 0; otherwise, it is non-neutralizing.

Lemma 4.5.3. Algorithm 12 terminates after O(n6) pushes.

Proof. Consider the innermost loop of Algorithm 12. Define

α = max
active i

{|(u, v]≺i
|} and β = number of active i with |(u, v]≺i

| = α.

79

A non-neutralizing push decreases one of the above quantities. Moreover, the sequence of
α and β values generated by repeated (and uninterrupted) iterations of the loop are lexico-
graphically decreasing. It follows that the innermost loop terminates after O(n2) iterations.

Now consider the inner loop of Algorithm 12. By Lemma 4.2.5, each element u ∈ S − v
can be selected at most once without breaking the loop. Furthermore, this loop terminates
with either a neutralizing push at v or by relabeling v.

By the choice of v (element of N with L(v) maximum), and the choice of u (L(u) =
L(v) − 1), each element v ∈ N can be neutralized at most once between two relabel
operations. By the above discussion, there are O(n3) non-neutralizing pushes between two
neutralizing pushes, and O(n) neutralizing pushes between two relabels. Clearly, there are
O(n2) relabels, giving O(n6) pushes in all.

Theorem 4.5.4. Given a submodular function g defined on S, Algorithm 12 returns an
optimal pair in the Submodular Min-Max Theorem 4.1.1. Moreover, the algorithm has
running time O(n9 + n8 · q), where O(q) is the running time of the value-giving oracle for
g.

Proof. By Theorem 4.5.2, the pair (y, A) returned by Algorithm 12 is optimal in Theorem
4.1.1. By Lemma 4.5.3, there are O(n6) calls to Subroutine 11, whose running time is
O(n3 + n2 · q), giving the bound.

80

References

[1] R. E. Bixby, W. H. Cunningham, and D. M. Topkis, The partial order of a polymatroid
extreme point, Mathematics of Operations Research 10 (1985), 367–378.

[2] J.A. Bondy and U. S. R. Murty, Graph Theory, Springer, New York, London, 2007.

[3] William H. Cunningham, Testing membership in matroid polyhedra, Journal of Com-
binatorial Theory, Series B 36 (1984), 161–188.

[4] , On submodular function minimization, Combinatorica 5 (1985), 185–192.

[5] , Improved bounds for matroid partition and intersection algorithms, SIAM
Journal on Computing 15 (1986), 948–957.

[6] E. A. Dinic, Algorithm for solution of a problem of maximum flow in a network with
power estimation, Soviet Math Doklady 11 (1970), 1277–1280.

[7] Jack Edmonds, Submodular functions, matroids, and certain polyhedra, in (R.K. Guy
et al.) Combinatorial Structures and Their Applications (New York), Gordon and
Breach, 1970, pp. 69–87.

[8] , Matroids and the greedy algorithm, Mathematical Programming 1 (1971),
127–136.

[9] Jack Edmonds and Richard M. Karp, Theoretical improvements in algorithmic effi-
ciency for network flow problems, J. ACM 19 (1972), 248–264.

[10] Lisa Fleischer and Satoru Iwata, A push-relabel framework for submodular function
minimization and applications to parametric optimization, Discrete Applied Mathe-
matics 131 (2003), 311 – 322.

81

[11] L. R. Ford and D. R. Fulkerson, Maximal flow through a network., Canadian Journal
of Mathematics 8 (1956), 399–404.

[12] András Frank and Zoltán Miklós, Simple push-relabel algorithms for matroids and
submodular flows, Japan Journal of Industrial and Applied Mathematics 29 (2012),
419–439.

[13] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences
in combinatorial optimization, Combinatorica 1 (1981), 169–197.

[14] Julian Haselmayr, Schnitt von matroiden theorie und algorithmen, Diploma thesis,
University of Augsberg, 2008.

[15] John E. Hopcroft and Richard M. Karp, An O(n
5
2) algorithm for maximum matchings

in bipartite graphs, SIAM Journal on Computing 2 (1973), 225–231.

[16] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige, A combinatorial strongly polyno-
mial algorithm for minimizing submodular functions, J. ACM 48 (2001), 761–777.

[17] L.G. Khachiyan, Polynomial algorithms in linear programming, USSR Computational
Mathematics and Mathematical Physics 20 (1980), 53 – 72.

[18] E. L. Lawler and C. U. Martel, Computing maximal “polymatroidal” network flows.,
Mathematics of Operations Research 7 (1982), 334 – 347.

[19] James G. Oxley, Matroid Theory, second ed., Oxford Graduate Texts in Mathematics,
Oxford University Press, 2011.

[20] Paul Schönsleben, Ganzzahlige polymatroid-intersektions-algorithmen, Ph.D. thesis,
ETH Zürich, 1980.

[21] Alexander Schrijver, A combinatorial algorithm minimizing submodular functions in
strongly polynomial time, Journal of Combinatorial Theory, Series B 80 (2000), 346 –
355.

[22] Alexander Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, Springer,
2003.

82

Index

(u, v)≺, 59
(u, v]≺, 59
Bg, 54
CJ , 17
CM(J, e), C(J, e), 5
Ci(J, e), 5
D(M,x, λ), 12
D(M1,M2, J), 40
D(e, f), 15
LJ(e, f), 15
Li, 48
PM , 8
Pg, 53
[u, v)≺, 59
[u, v]≺, 59
χJ , 11
≺u,v, 59
σi(e), 33
clM(A), 5
d(X, Y), 3
d(s, u), 3
n, 4
u(e, f), 16
y(λ), 11

active, 11, 57
auxiliary digraph, 12

base, 56
base polyhedron, 54
basis, 4

basis polyhedron, 35
breadth-first search, 3

capacity, 16
chordless, 3
circuit, 4
closure, 5
critical arc, 28

dependent set, 4
disjoint paths, 3

ground set, 3

independence oracle, 6
independent set, 4
independent set polyhedron, 8
Intersection Augmenting Path Theorem, 40

layer, 48
level, 15
lexicographically least shortest, 3

matroid, 3
matroid intersection problem, 39
matroid polyhedron membership problem, 8
Matroid Polytope Theorem, 8
Membership Augmenting Path Theorem, 13
Membership Min-Max Theorem, 9
mutation, 16

neutralizing push, 73

83

optimization problem, 9

polynomial time matroid algorithm, 7
push, 73

rank, 4
rank function rM , 4
relabel, 73

separation problem, 9
separator, 3
stage, 32, 66
Strong Circuit Axiom, 5
submodular function, 53
submodular function minimization problem,

53
Submodular Min-Max Theorem, 54
submodular polyhedron, 53
successor, 33

useless, 50

value-giving oracle, 53

84

	List of Figures
	List of Algorithms and Subroutines
	Preliminaries
	Introduction
	Graph Theory
	Matroid Theory

	Matroid Polyhedron Membership
	Introduction
	The Crude Augmentation
	The Grand Augmentation
	Two Lemmas
	Analysis
	Basis Polyhedron Version

	Matroid Intersection
	Introduction
	Improved Matroid Intersection Algorithm

	Submodular Function Minimization
	Introduction
	Schrijver's Algorithm
	Matroid Polyhedron Membership: Local Change Algorithm
	Matroid Polyhedron Membership: Push-Relabel Algorithm
	Push-Relabel Submodular Function Minimization

	References
	Index

