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Abstract 

Signalized intersections are typically the capacity bottlenecks within urban road networks. 

The performance of signalized intersections is typically quantified on the basis of average 

vehicle delay and maximum queue lengths. In practice, these measures of performance are 

commonly estimated using tools that implement the methods from the Highway Capacity 

Manual. These methods, which have been derived from deterministic and stochastic queuing 

theory, estimate delay and queue length on the basis of geometry, signal timings, turning 

movement counts (TMC), vehicle stream composition, etc. The cost and effort required to 

acquire these data, and particularly the TMCs, result in TMCs being collected for a single 

day every several years. Thus, estimates of intersection performance are often several years 

out of date and do not capture day-to-day and seasonal variations in conditions that occur 

throughout the year.  

Many transit agencies have deployed Automatic Vehicle Location (AVL) and Automatic 

Passenger Count (APC) systems on their fleet of transit vehicle. This thesis proposes a 

methodology to estimate the stopped delay and maximum queue length at signalized 

intersections on the basis of archived AVL/APC data. This provides the advantage of being 

able to: (1) estimate intersection performance on the basis of field measurements rather than 

models; (2) no additional cost or effort is required to acquire the data; and (3) performance 

can be evaluated throughout the year.   

Unlike previous methods, the proposed methodology is applicable to intersections with near-

side transit stations. The proposed model is evaluated using both simulation and field data 

and shown to provide satisfactory results.  
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Chapter 1 

Introduction 

1.1 Background  

Intersections are considered the capacity bottlenecks of the arterial road network. Much of the 

delay experienced within the arterial road network is experienced at the signalized intersections. 

The performance of signalized intersections is commonly quantified in terms of the average 

vehicle delay and the maximum queue length where the average delay is typically mapped to a 

categorical scale called Level of Service (LOS) for which A is best and F is worst. 

Unsatisfactory levels of service typically lead to the implementation of measures to improve the 

LOS, such as retiming of the traffic signals, changes to geometry, or other measures. Queue 

length estimates are typically used to determine the required length of turning lanes, planning 

suitable locations and expected operations of upstream driveways or intersections, or identifying 

opportunities for implementing transit priority measures such as queue jump lanes. For these 

reasons it is important for transportation authorities to have a system with which they can 

evaluate the performance of the intersections within their network and on the basis of these data 

prioritize the allocation of resources for intersection improvements.  

All agencies share two common challenges: 

1. Identifying the problematic/inefficient intersections within the arterial road network.  

2. Obtaining reliable signal delay data under existing conditions in a timely and cost 

effective manner.  

Conventionally, delay and queue length measures are estimated using software tools that 

implement the Highway Capacity Manual methodology (HCM, 2010). Regardless of which tool 

is used, the analysis requires input data such as traffic counts, signal timings, pedestrian volumes, 

traffic stream composition, and saturation flow rates. The accuracy of the measures of 

performance provided by the software tools depends on the accuracy of the input data. 
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In recent years, many transit agencies have deployed Automatic Vehicle Location (AVL) and 

Automatic Passenger Counting (APC) systems on their fleet of public transit vehicles. AVL 

systems utilize GPS and wireless communication systems to track the position of the transit 

vehicle in real time. APC systems utilize sensors on the transit vehicle to count the number of 

passengers boarding and alighting the transit vehicle at each transit station. Typically the data 

from the AVL and APC systems are combined with schedule data and archived into a unified 

historical database. The availability of this database provides bus location and passenger activity 

data (i.e. number passengers boarding and alighting) for large portions of the arterial network by 

time of day, day of week, etc. Being able to use the archived AVL/APC data to quantify the 

performance of signalized intersections provides the obvious cost savings of not having to 

conduct dedicated field data collection surveys, and also provides the benefit that performance 

can be evaluated over the entire year, rather than the current norm in which data (e.g. turning 

movement counts) are collected for a single day (or at best a small number of days).  

AVL/APC systems are deployed by public transportation agencies to ensure safety, efficiency 

and quality of service for transit users. The main applications of AVL/APC data are in real-time 

transit operations monitoring and control (Furth et al., 2006). However, AVL/APC data have 

been used by researchers for other applications as well. Yang and Hellinga (2012) proposed a 

method for estimating the delay and queue length at signalized intersections from archived 

AVL/APC data, but their method was not applicable for intersection approaches with a near-

sided transit station
1
 (i.e. stations located just upstream of the intersection stop line).  

1.2 Motivation 

There is no systematic cost effective tool available to evaluate and rank the performance of the 

signalized intersections within an arterial network. AVL/APC data are available for every 

                                                 
1
 The term transit station is used to refer to any location designated for passenger boarding and alighting. 

The term stop is used to refer to an event in which the transit vehicle becomes stationary.  
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signalized intersection approach traversed by a transit route and therefore provide an opportunity 

to evaluate the performance of signalized intersections without the need for additional 

instrumentation and at no additional cost for data acquisition.   

The study by Yang and Hellinga (2012) illustrated the potential of using archived AVL/APC 

data for estimating delay and maximum queue length at signalized intersections. However, their 

method is not applicable to approaches containing a near-sided transit station. This restriction 

imposes a significant limitation for the application of the model because near-sided transit 

stations are very common.  

Given the cost associated with estimating signal delay by conventional methods and the fact that 

near-sided transit stations are common in transit networks, there is substantial benefit to 

developing a method to estimate the delay and queue length at signalized intersections 

containing a near-sided transit station. In this research a methodology is proposed to use archived 

AVL/APC data for estimating the delay and queue length at signalized intersection approaches 

containing a near-sided transit station.  

1.3 Problem Definition 

 Typically, the AVL/APC data are stored in two sets of records, (1) trip-level records and (2) 

stop-level records. The information pertaining to individual transit trips such as the trip’s date 

and time, route and direction are stored in trip-level records. The information regarding 

individual stops are archived in stop-level records. AVL/APC systems can be configured to 

provide stop data in three ways: 

1. Fixed Frequency – The position of the transit vehicle is recorded at a fixed time 

frequency. 

2. Event Based – Data are recorded when a predefined event occurs. 

3. Combined Fixed Frequency and Event Based – Data are recorded at a fixed time interval 

and when a predefined event occurs.  
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The AVL/APC systems are usually event based and therefore are the focus of this thesis. Events 

of interest typically include: Planned Stops (transit vehicle makes a scheduled stop at a transit 

station regardless of passenger demand); On Call Stops (transit vehicle stops at a transit station 

to board or discharge passengers); Unscheduled Stops (transit vehicle stops at a location that is 

not a transit station); Drive Through (transit vehicle passes by a planned or on call stop without 

stopping). For the purposes of this thesis scheduled stops will refer to both planned and on call 

stops. 

For intersections with near-sided transit stations, stops occurring within the service zone of the 

transit stations are deemed as scheduled stops and stop events outside of the service zones are 

defined as unscheduled stops. Service zone is the distance from the transit station that the transit 

vehicle is allowed to stop to let passengers board and alight the vehicle. 

The events are triggered either by the location of the transit vehicle relative to the known transit 

stations or the speed of the transit vehicle. For each recorded event, the following information is 

provided: 

 Type of event (i.e. scheduled stop) 

 Date and time  

 Route and direction that transit vehicle is serving 

 GPS coordinates 

 Passenger activity (number of passengers boarding or alighting) 

 Scheduled and actual times of arrival and departure of the transit vehicle 

 Total length of time that the transit vehicle is stopped 

 

When an intersection approach does not contain a transit station, then it is likely that the majority 

of recorded bus stop events upstream of the stop-line, defined as unscheduled stops, are caused 

by the traffic signal. However, for intersections with a near-sided transit station, the bus stop 

events on the approach can be caused by either the traffic signal or the bus stopping to serve 

passengers at the transit station, or a combination of both.  
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At an intersection without any transit stations, vehicles approaching the intersection during the 

red interval must stop and wait for the green interval. This will create a backward moving 

formation shockwave. At the onset of the green interval, the queued vehicles will discharge from 

the intersection at the saturation flow rate, causing a backward moving dissipation shockwave. 

The location at which the formation and dissipation shockwave meet represents the tail of the 

queue. The maximum stopped delay is experienced by the vehicle arriving at the stop-line at the 

onset of red interval and experiences a delay equal to the red interval. The minimum delay is 

experienced by the vehicle that arrives at the tail of the queue when the queue has nearly 

dissipated. Therefore, the emerging pattern of delay at the signalized intersection is that which is 

presented in Figure 1-1(a); where the maximum stop delay equal to red interval occurs at the 

stop-line and delay decreases linearly to zero at the tail of the queue upstream of the intersection. 

In an ideal world without sources of variability (i.e. variability of traffic, incidents, parking 

maneuvers, etc.) the unscheduled stop records of transit vehicles’ that occur within the vicinity 

and upstream of the intersection are expected to follow the described pattern by shockwave 

theory. These observations can be used to estimate the delay and queue length at signalized 

intersections.  

However, at an intersection with near-sided transit station, the emerging pattern of transit 

vehicles’ stop observations won’t be consistent with the pattern describe by shockwave theory, 

as illustrated in Figure 1-1(c). A transit vehicle approaching such intersections during the green 

interval may stop to allow passengers to board and alight the transit vehicle. Depending on when 

the transit vehicle arrives at the station relative to the green interval and the duration of its dwell 

time, the bus may either leave the intersection during the green interval (depicted by the green 

line in Figure 1-1(b)) or face the red interval and must wait for the unset of the green interval 

(depicted by the black line in Figure 1-1(b)). At any rate, these stop observations are not a 

reflection of signal operation and should not be considered for stopped delay calculations. On the 

other hand the stop observations that occur when the transit vehicles arrives at the transit station 
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during the red interval must be considered for the stopped delay calculations. Therefore, the 

primary challenge is to setup a method to deduce which scheduled stop observations are due to 

the signal operation and which are the result of transit operation (i.e. serving passengers at the 

transit station). 
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Figure 1-1: Comparison of the Interaction between the Transit Vehicles at Intersection with & without Near–sided Transit 

Station.
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Furthermore, not all unscheduled stops observed upstream of the intersection are caused by the 

traffic signal operation. Transit vehicles may incur stop delay as a result of parking maneuvers, 

incidents, service vehicles blocking the lane, construction activities, detours, emergency vehicle 

activity, or other geometric or traffic control devices (e.g. at grade rail-road crossings). 

For example, Figure 1-2 depicts a roadway segment between an upstream and a downstream 

signalized intersection and an at-grade railway crossing in between the intersections. The 

stopped delay observations depicted are associated with vehicles travelling from right to left (i.e. 

in the direction of the arrow). The stopped delay observations that are not caused by the traffic 

signal operation and are the result of the buses stopping at the rail crossing need to be excluded 

from the delay estimation. 

 

Figure 1-2: Stopped Delay Caused by Multiple Sources. 
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In order to properly estimate transit vehicle delays for intersections with near-sided transit stop, 

the methodology must be able to automatically differentiate between the stop observations 

caused by the traffic signal operations from those caused by transit operations. The methodology 

must determine which stop observations occur because the signal was red and which stops are 

merely associated with the transit vehicle’s necessity to serve passengers. Furthermore, the 

methodology must distinguish which unscheduled stops are due to signal and other causes.  

1.4 Scope and Objectives 

The objective of this thesis is to develop a model to evaluate performance and prioritize 

signalized intersections within the road network using AVL/APC data. This thesis endeavours to 

answer the following questions: 

1. How can archived AVL/APC data be used to automatically quantify the performance of 

signalized intersection approaches (in terms of average vehicle stopped delay and 

maximum queue length), including those approaches that contain a near-sided transit 

station? 

2. How accurate are these estimates? 

3. How can these estimates be used to prioritize intersections for improvement 

countermeasures? 

1.5 Thesis Organization  

The organization of this thesis is as follows: Chapter 2 describes relevant previous studies. 

Chapter 3 describes the proposed methodology. The evaluation of the proposed methodology is 

described in Chapter 4. An application of the proposed methodology to the field data is presented 

in chapter 5. Chapter 6 contains conclusions and recommendations.  
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Chapter 2 

 Literature Review 

Delay estimation and queue length estimation at signalized intersections has been extensively 

studied in literature. This chapter provides a brief description of the Highway Capacity Manual 

procedure for evaluating the performance of signalized intersections. Furthermore, this chapter 

presents previous research on measuring signalized delay and queue length using microscopic 

simulation software and direct field measurements.  

2.1 Delay at Signalized Intersections  

Figure 2-1 depicts a space-time diagram for a section of roadway controlled by a signalized 

intersection. Two vehicle trajectories are depicted. Trajectory A represents a hypothetical vehicle 

traversing the roadway and having to decelerate and stop for the traffic signal. Trajectory B 

represents the same hypothetical vehicle but in this case, the signal is green and the vehicle does 

not need to adjust its speed. On the basis of these trajectories we can define several different 

delays.   

Deceleration delay is the time required for a vehicle to reduce speed from the approach speed to 

come to a stop. Stopped delay is the time the vehicle is stationary. Acceleration delay is the time 

required for the vehicle to increase speed from stopped to cruise speed. The sum of deceleration, 

stopped, and acceleration delay is called control delay (or total delay) and is the difference 

between the times when Trajectory B and Trajectory A reach location P2 downstream of the 

signalized intersection.   

The Highway Capacity Manual (HCM) quantifies the level of service (LOS) of an intersection 

on the basis of control delay. 
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Figure 2-1: Definition of Signal Control Delay Components [Source: Click, 2003] 

The HCM provides an analytical model, based on Webster’s delay formula, to estimate average 

control delay for a given lane group, presented in Equation (1) (HCM, 2010). HCM defines lane 

group as one or more lanes that either (1) exclusively serve one movement, (2) exclusively serve 

turning movements or (3) each lane share by more than 1 movement (HCM, 2010).  

321 )( ddPFdd    (1) 

Where, d1 is uniform delay and represents the delay that is expected to occur when arrivals have 

uniform time headways;  Incremental delay, d2, accounts for both random fluctuations in arrivals 

demand and also the predominant over-saturation condition over the analysis period. The initial 
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queue delay, d3, estimates the delay incurred due to an initial queue not served during the 

previous cycle. PF is a progression factor and accounts for the quality of signal coordination.  

When signals are well coordinated, then vehicles from the upstream intersection arrive at the 

downstream intersection when the downstream signal is green and therefore PF is close to zero. 

However, if coordination is very poor, then vehicles from the upstream intersection arrive at the 

downstream intersection when the downstream signal just turns red and therefore PF is greater 

than 1. The equations for d1, d2, and d3, as defined by the HCM are provided below: 
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where   

C = cycle length, seconds 

T = duration of analysis, hours 

g = effective green time, seconds 

X = Degree of saturation (X = v/c) 

c = capacity, vehicle/hour 

k = incremental delay factor, unitless 

I = upstream filtering factor, unitless 

Qb = Initial queue at the start of period T, vehicles 

Tt = duration of unmet demand in period T, hours 

u = delay parameter. 

v = Volume, veh/hr  
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The HCM model requires many inputs such as traffic volume, initial queue, signal timings and 

so on. Obtaining this information is costly and the values change frequently (i.e. for actuated 

signals the timings change on the basis of traffic conditions; traffic demand changes by time of 

day, day of week, month of year, etc.) Consequently, at best the HCM method provides an 

approximate estimate of intersection performance. 

In practice, software tools are used to estimate average delay and maximum queue length. 

Studies such as, Benekohal et al, (2002) and Washburn and Larson (2002), compare the ability of 

traffic simulation models to estimate the performance measures at the signalized intersections. 

Mulandi et al (2010) evaluated the performance of signal timing optimizations calculated by 

Synchro, TRANSYT-7F, CORSIM and VISSIM and found obvious differences in the 

performance of these simulation and optimization tools. The conclusion of these studies is that 

different software models may provide very different estimates of the measures of performance 

of interest for the same set of input conditions. Furthermore, there does not appear to be 

unanimous agreement among researchers on which model(s) most accurately reflect real-world 

conditions (Almohanna, 2014). These findings also suggest that direct field observations rather 

than models may provide the most accurate estimates of the performance measures of interest.  

Extensive studies have used direct measurements of delay and queue length from an intersection 

for performance evaluation instead of HCM procedures. Olszewski (1993), Mousa (2002), 

Mazloumi et al (2010) traced the trajectories of vehicles between a predefined entrance and exit 

point to measure average delay. Olszewski used two screen lines and estimated control delay by 

subtracting the free flow travel time from the observed travel time. Olszewski (1993) noted that 

stopped delay is easier to measure, however control delay is a better measure for evaluating the 

signal operation.  

Mousa (2002) set up 12 lines at an intersection to measure the average deceleration, acceleration, 

and stopped delay of the intersection approach. Each line was assigned to one observer, to denote 
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the time the randomly selected vehicle passed their assigned line. The recorded data was used to 

trace the trajectory of 182 vehicles. 

Mazloumi et al. (2010) deployed two surveyors to each intersections to records the plate number 

and passing time of the vehicles passing predefined locations. Due to the sheer volume of 

vehicles traversing the intersections, only vehicles with a specific colour were recorded. The 

control delay of the vehicles was calculated as the differences between the observed and the free 

flow travel times. The average delay for the intersection approach was computed as the weighted 

average of the lane groups based on their traffic volume at 5 minute intervals.  

Even though high level of detailed information about different components of delay can be 

acquired by manual screening of traffic flow, these methods suffer from being labour intensive 

and time consuming. Furthermore, the measurement errors inherent in these methods are hard to 

control as they are dependent on the skills and attentiveness of the observers.  

Skabardonis and Geroliminis (2005) calculated signal delay by using second by second traffic 

signal events and vehicle actuation data. This technique requires high resolution traffic volume 

data and precise signal timings which are not typically available.  

Sharma et al. (2007) proposed input-output and hybrid techniques in which the queueing theory 

is used to estimate the delay and maximum queue length. The method requires loop detectors at 

both the upstream of the intersection approach and at the stop-line. The upstream detectors are 

used to track the arrivals at the intersection over time. The stop-line detectors are used to 

measure the number of departures. These two flow profiles are used to estimate the queue and 

the delay. These methods have the ability to estimate delay and maximum queue length for each 

cycle. However, they require upstream and stop line detectors on each approach; infrastructure 

that is not available in many jurisdictions. Moreover, the phase change information for the traffic 

signal needs to be readily available. Collecting these data for a wide-area arterial system is often 

complicated because traffic signals within a network are often operated and maintained by 

multiple agencies. 
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Benekohal et al (1992) measured approach delay by using video image processing system. 

However, this approach relies on the camera’s ability to cover the area within which deceleration 

and acceleration of vehicles occur. In general, video processing technologies such as automated 

number (license) plate recognition (ANPR) systems are not ideal for network analysis due to the 

expensive cost of instrumentation. Furthermore, they may be less well suited to areas 

experiencing adverse environmental conditions such as snow, ice, etc.  

Quiroga and Bullock (1999) measured control delay by finding critical points (i.e. when vehicles 

stopped and started deceleration and acceleration) in GPS data. Similarly, Ko et al. (2008) used 

GPS data to estimate components of control delay. The speed profile was used to estimate 

stopped delay and the acceleration profile was utilized to estimate deceleration and acceleration 

delay. Ko et al. method determines the starting critical points for stopped time interval (t2 and t3 

in Figure 2-2(a)) and searches backward for a critical point when acceleration is non-negative 

and searches forward when the acceleration is non-positive. For cases with no stopped time the 

start of the search is set to the point at which the sign of acceleration changes (t2 in Figure 

2-2(b)). For cases where multiple stops are identified, the stop closer to the downstream 

intersection is used as the starting point for the search of critical points and the other stops are 

assumed not to be associated with the signal. However, this assumption results in 

underestimation of delay during congestion periods. 
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Figure 2-2: Speed and Acceleration Profile Obtained From GPS Data [Source: Ko et al. 

with Permission from ASCE] 

Vehicle re-identification techniques have also been used to obtain intersection delays. Kwong et 

al. (2008) proposed a scheme in which the individual vehicle signatures are obtained from 

wireless magnetic sensors placed at the two ends of the segment. The travel time of a vehicle can 

be obtained by matching the vehicle’s signature at two consecutive sensors. The signal phases 

can be deduced by looking at the start and end of the first vehicle in the queue. Although, this 

procedure does not require measurements of signal settings, it does require both ends of the 

intersection to be equipped with magnetic sensors. Although the proposed methodologies 

provide accurate delay measurements, they tend to be expensive in terms of time and resources. 

Alternatively, AVL/APC data can be used to evaluate the performance of signalized intersections 

within a wide-area arterial network in a timely and cost effective manner.  

2.2 Applications of AVL/APC Data 

In recent years, the deployment of AVL/APC systems on public transit vehicles has provided 

agencies with a new source of data. AVL/APC systems use GPS sensors (for position, speed, and 
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heading) and passenger counting sensors, along with transit route and schedule information to (a) 

track the position of the transit vehicle relative to the scheduled location for real-time command 

and control at a temporal resolution on the order of every second; and (b) to create an archived 

database containing records associated with events of interest rather than all of the GPS data.   

AVL/APC data provide valuable information to transit agencies and enable them to monitor the 

quality of service and assist service planning. Furth et al. (2006) outlined the application of 

AVL/APC data in monitoring schedule adherence using time-point records, passenger crowding 

analysis and route mapping with stop events. Mandelzys (2010) proposed a method to evaluate 

transit schedule adherence and identifying causes of poor performance using time-point records. 

AVL/APC data have been used by researchers for other applications such as real-time traveler 

information (Farhan et al., 2002), transit signal priority (Lin, 2002; Liu et at., 2007), transit route 

performance measurement (Liao and Liu, 2010), and ridership and operational performance 

analysis (Golani, 2007).  

The AVL/APC data can also be used to estimate the performance of signalized intersections. 

Yang and Hellinga (2012) proposed a method to estimate the stopped delay and maximum queue 

length at signalized intersections on the basis of archived AVL/APC data. A summary of their 

methodology is provided in the following section. 

2.2.1 Intersection performance evaluation using AVL/APC data in the absence of 

near-sided Transit Stations 

Yang and Hellinga (2012) modelled the formation and dissipation of traffic queues on an 

approach to a signalized intersection using shockwave theory under the assumption of uniform 

arrivals and a fixed time signal timing plan. As illustrated in Figure 2-3, consider an intersection 

operating in an under-saturated condition (i.e. the arrival demand is less than the capacity). 

During the red interval (r) vehicles arriving at the intersection cannot proceed and must queue 
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until the signal turns to green. This results in a backward moving formation shockwave which 

represents the movement of the tail of the queue upstream of the intersection.  

During the green interval the vehicles discharge from the queue at the saturation flow rate, 

resulting in a backward moving recovery shockwave. The location at which the recovery 

shockwave meets the formation shockwave represents the maximum extent of the queue. 

The stopped delay experienced by a vehicle is a function of the time the vehicle arrived at the tail 

of the queue. The maximum stopped delay, which is experienced by the vehicle that arrives at 

the stop-line just at the start of the red interval, is equal to the duration of the effective red 

interval. A vehicle that arrives at the tail of the queue when the queue is almost entirely 

dissipated experiences minimum stopped delay. Vehicles arriving after this time and before the 

start of the next red interval will not incur any stopped delay. Therefore, the largest delay is 

expected to occur for vehicles that stop close to the stop-line and the magnitude of stopped delay 

decreases linearly as the stop location moves further upstream, until the tail of the queue is 

reached.  
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Figure 2-3: Queue Pattern Analysis Using Shockwave Theory for Under-saturated 

Conditions [Source: Yang, 2012]. Where r Represents Red interval and λ is the Vehicle 

Arrival Rate. 

The magnitude of average stopped delay and maximum queue length experienced at a signalized 

intersection is a function of both the red interval duration and the volume to capacity ratio (v/c). 

If the red interval increases, vehicles will incur longer stopped delay and the maximum queue 

will reach further upstream. Similarly, if the v/c ratio increases the maximum queue length 

moves upstream and hence more vehicles are queued at the intersection waiting for the green 

interval.  

When the approach is oversaturated, demand exceeds capacity, and the queue that forms during 

the red interval cannot be completely discharged during the same cycle. These vehicles remain 

un-served and form an initial queue at the start of the red interval of the next cycle. This results 

in the formation of a fourth shockwave with the same slope as the former recovery shockwave, 
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as illustrated in Figure 2-4. The stopped delay experienced by the vehicles within the queue is 

close to the red interval. The maximum queue length of the second cycle will be longer then the 

first cycle. The queue would theoretically grow to infinity until the demand subsides or supply 

increases. One can see that when the approach is over-saturated the queue patterns change from 

cycle to cycle.   

 

Figure 2-4: Queue Pattern Analysis using Shockwave Theory for Over-saturated 

Conditions [Source: Yang, 2012] 

If the study period is selected such that the traffic demand and signal timings remain relatively 

constant during the analysis, then the queue formation and dissipation over the different cycles 

should maintain a relatively constant pattern.  

Furthermore, if no transit station exists on the approach, then a transit vehicle can be expected to 

be impacted by the queue formation and dissipation in almost the same way as other motorized 

vehicles on the approach. Thus, the stopped delays experienced by transit vehicles and captured 

within the AVL/APC data, can be considered to be an unbiased sample of the stopped delays 

experienced by the population of vehicles traversing the approach.  
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On the basis of this assumption, Yang and Hellinga (2012) proposed a method in which the 

AVL/APC unscheduled stops are used to determine the delay and queue length. The method 

consists of the following four steps which are applied to each direction of each bus route: 

1. Define route segments within GIS software. A segment is defined as the link between 

two consecutive signalized intersections. 

2. Using GIS software, identify all of the unscheduled stop observations associated with 

each route segment, and compute the distance from the location of the stopped delay 

observation to the downstream signalized intersection. 

3. Plot stopped delay versus distance for each route segment and fit a boundary line (BL) 

to the unscheduled stop observations. The BL separates the stop events associated with 

the signalized intersection from other causes of unscheduled stops such as parking 

maneuvers or other geometric characteristics.  

4. The observations under the BL are deemed as stops caused by the traffic signal 

operation and are used to estimate the performance measures such as average stopped 

delay and maximum queue length for a particular intersection approach.  

 

The selection of the optimal BL from a set of candidate BLs is based on the expectation that the 

cumulative number of observations due to the signalized intersection will increase relatively 

quickly as a function of distance from the stop-line until the maximum queue is reached (Figure 

2-5A). The transit vehicles are expected to stop less frequently beyond the tail of the queue. If 

the segment contains other geometric or traffic control features upstream of the stop-line, the 

cumulative number of observations is expected to increase quickly as a function of distance from 

such features as depicted in Figure 2-5B.  
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Figure 2-5: Distribution of Cumulative Number of Stopped Delay Observations as a 

Function of Intermediate Traffic Control Devices 

The process to determine the optimal BL is described below and illustrated in Figure 2-6. First, a 

solution space is defined within which the delay envelope resides. The solution space is defined 

by setting upper bound limits for the X and Y-axis. The upper bound limit on the X-axis is 

defined by the farthest upstream observations within the segment, Xp2. The upper bound limit for 

the Y-axis is defined by maximum delay, dmax, which is calculated as the 99
th

 percentile of the 

stopped delay observations located within 50 meters of the stop-line. The delay defined by the 

boundary line follows a piece-wise linear function: 
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Where, d and x are delay and distance to the stop line, respectively. The variable XP1 defines 

whether the intersection operates at under-saturated or over-saturated conditions. If XP1 is zero 

the intersection is under-saturated and if XP1 is greater than zero then the intersection is 

oversaturated.  

A series of candidate boundary lines are defined and evaluated with each line connecting a 

feasible pair of Xp1 and Xp2 within the solution space. For each candidate boundary line, the 

density of stopped delay event (DS) is defined as the cumulative number of stopped delay 

observations (Ns) divided by the area (A) defined by the delay envelope boundary line (i.e. DS = 

Ns/A). The candidate boundary line with the smallest change in density with respect to the other 

candidate boundary lines, is selected as the optimal BL and the value of Xo represents the 

estimate of the maximum extent of the queue. 

 

Figure 2-6: Candidate Boundary Line Selection 

This methodology assumes that the relationship between stopped delay and location is linear. 

However, in reality variations in traffic composition, driving behaviour, arrival rate, signal 

timing and discrepancies in AVL/APC system’s determination of stop events influence the 
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linearity of this relationship. These variations challenge the accuracy of the boundary line 

algorithm proposed by Yang and Hellinga (2012). The selection of the BL needs to be robust to 

capture the variability in traffic. There are 3 main issues associated with the boundary line 

selection process proposed by Yang and Hellinga (2012). In the following sections we illustrate 

these issues using AVL/APC data from the bus routes in the Region of Waterloo under operation 

of Grand River Transit (GRT). Data from the months of September to November, 2013 are used. 

The data include only the PM peak (4:30 PM – 6:00 PM) weekday non-holiday days. 

1. The first issue lies with the setup of the problem within ArcGIS and is illustrated in Figure 

2-7. As mentioned previously the road network is divided into route segments bounded by 

an upstream (indicated by point A in the figure) and a dowsntream (point B) signalized 

intersection. These segments are represented as a polyline within the ArcGIS framework. 

Yang (2012) created a spatial buffer zone around the polyline route segment to identify 

the stopped delay observations associated with the route segment and to measure the 

distance of the observation within the buffer zone to the downstream intersection. 

However, for some segments, the unscheduled stop observations from the adjacent road 

segments are captured by the buffer zone (i.e. the points shown within the red circle in 

Figure 2-7 are captured as stop observations on Ottawa street, where infact they are 

vehicles stopping on Alpins road because of the signal control at Ottawa and Alpine 

intersection). These observations should not be associated with the segment of interest.  
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Figure 2-7: Invalid Stopped Delay Observations Captured by the Buffer Zone in the 

ArcGIS 

2. The second issue is regarding the data points captured by the boundary line that are caused 

by other geometric characteristics or traffic controls. Figure 2-8 is an example of such a 

case. The downstream intersection is University Avenue at Hazel, represented by point A, 

and the upstream intersection, point B, is at the Wilfrid Laurier University pedestrian 

crossing signal. There is a parking lot entrance 75 meters from the stop line. It is 

suspected that the stopped delay observations in the oval (in Figure 2-8B) are not caused 

by the traffic signal due to the lack of observations between 35 and 80 meters from the 

stop line. It would be reasonable to speculate that the buses may be stopping in response 

to vehicles entering or existing the parking lot. However, there may be other explanations 

but no other influencing causes were observed from the data and the geometry of the 

segment. If these observations are not due to the signal operation they must be removed 

from the analysis. 

B 
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3. Lastly, the distance of the observations are measured from the center of the intersections 

and not the stop line associated with an approach. This caused the overestimation of the  

maximum queue length estimation. 

The method proposed by Yang and Hellinga (2012) is restricted to signalized intersection 

approaches which do not contain a near-sided transit station. To this end, this study seeks to 

build upon the previous work and proposes a method which can be applied to signalized 

intersection approaches that contain a near-sided transit station. The efforts will also endeavour 

to improve the method used to select the boundary line to field data in order to address the 

aforementioned deficiencies.  
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(A)  The Unscheduled Stop Observations Superimposed on Google Maps 

 

(B)  Delay vs. Distance Plot Showing the Error in BL Calibration 

Figure 2-8: Boundary Line Calibrated to Stop Observations of University at Hazel 
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Chapter 3 

Field Data 

The models described and calibrated in the next chapter make use of field data collected from 

Grand River Transit (GRT), the public agency providing public transit within the Region of 

Waterloo located in southwestern Ontario, Canada. At the time of this study, GRT operated 66 

bus routes within the region and serviced approximately 21 million trips annually. GRT has 2724 

transit stations, 1328 of which are considered to be near-sided stops (i.e. located just upstream of 

a signalized intersection). The agency has a fleet of 240 buses all of which are equipped with 

AVL systems and APC data is collected by 90% of the fleet (GRT, 2011).  

The GRT bus routes traverse 435 signalized intersections.  Only 44 signalized intersections 

within the Region’s road network are not traversed by at least one bus route and therefore no 

data are available in the AVL/APC database for these intersections. The majority of these 44 

signalized intersections are located in the outskirts of the Region of Waterloo, as shown in Figure 

3-1. 
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Figure 3-1: The Intersections with Automatic Vehicle Location /Automatic Passenger 

Count Data Available 

The AVL/APC database contains event-based records meaning that records are generated and 

recorded in the database for a specified set of events rather than at a constant time interval (e.g. 

every 5 seconds). The database contains both trip-level and stop-level records. The structure and 

field description of trip-level records and stop-level records are presented in Figure 3-2 and 

Figure 3-3, respectively. 
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Figure 3-2: Description of Fields Within Trip-level Records [Source: Mandelzys, 2011] 
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Figure 3-3: Description of Fields Within Stop-level Records [Source: Mandelzys, 2011] 
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The required data for the proposed analysis is queried from these trip and stop level records. The 

AVL/APC data for the PM peak (4:30 PM to 6 PM) non-holiday weekdays from September to 

November 2013 were extracted from the GRT database. For each in-service route and direction 

the following information is obtained from stop-level records: 

 Stop_type 

 Act_arr_time 

 Act_dep_time 

 Boarding  

 Alighting  

 Longitude  

 Latitude  

The queried AVL/APC data is exported into geographic information system (GIS) software as a 

point layer. The stop location of each observation is determined by its longitude and latitude 

coordinates. The geographic data of transit routes and signalized intersections are also exported 

into GIS in the form of layers. For each route and direction, the transit route layers are segments 

such that each segment is enclosed by two signalized intersections. A polygon buffer zone is 

created around the segment. The stop observations that fall within the buffer zone are selected. In 

order to prevent stop observations from adjacent road segments being captured by the polygon 

buffer zone, a circular buffer of 30m radius is created at the upstream intersection. In this 

methodology the stop observations contained within the overlapping area of the two buffer zones 

are excluded from the analysis, as illustrated in Figure 3-4.  
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Figure 3-4: Example of a Segment Processed in GIS 

The distance between the downstream intersection and the selected stop observations is 

measured using the network analyst tool in ArcGIS. The magnitude of stop delay (D) for 

unscheduled stop observations, defined as the stop_type 3, is calculated as the difference 

between Act_dep_time and Act_arr_time. For scheduled stop observations, defined by stop_type 

0 or 5, the difference between Act_dep_time and Act_arr_time represents the total stop time (TS) 

of the bus.  
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In Figure 3-4, the green circles represent the stop observations selected for analysis, for this 

given segment. The blue lines represent the distance between the downstream stop line and the 

stop observation. 

This process is carried out for all segments on all routes and directions and the resulting set of 

data was used throughout the remainder of this thesis.  

Within the study period approximately 14,227 trips have taken place from which there are 

approximately 141,600 unscheduled and 44,400 scheduled stop observations available. The 

frequency distribution of the total stop time for all unscheduled stops and all scheduled stops is 

provided in Figure 3-5 and Figure 3-6, respectively. The frequency distribution of the boarding 

and alighting passengers for all the scheduled stop observations is provided in Figure 3-7 and 

Figure 3-8, respectively.  

 

Figure 3-5: Frequency Distribution of Total Stop Time of Unscheduled Stop Observations 
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Figure 3-6: Frequency Distribution of Total Stop Time of Scheduled Stop Observations 

 

Figure 3-7: Frequency Distribution of the Number of Boarding Passengers 
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Figure 3-8: Frequency Distribution of the Number of Alighting Passengers 

GRT defines a near-sided transit station as the station which is located immediately before the 

intersection’s stop line. Similarly, a far-sided transit station is located immediately after the 

signalized intersection. Here, near-sided stations are assumed to be located within 40 meters of 

the downstream stop-line.  

The area within which the bus is allowed to stop and permit passenger activity is named the 

service zone of the transit station. GRT defines the service zone as 10 meters before and 5 meters 

after the assumed location of the transit station, plus a 6% buffer that is proportional to the 

difference in distance between the two consecutive transit stations. For example, if the distance 

between the current and previous stop is 100 meters, then the distance before the stop would be 

increased by 6 to 16 meters, and the distance after the stop would be increased by 6 to 11 meters.  

Therefore, anytime the doors open in this 27 meters window the system would recognize that the 

bus has stopped at the transit station. All the stops that occur within the service zone are deemed 

as scheduled stops (i.e. stop-type 0 and 5). The next chapter describes the proposed method.  
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Chapter 4 

Methodology 

The proposed methodology utilizes archived AVL/APC data to evaluate the performance of 

signalized intersections with near-sided transit stations. For intersections with near-sided transit 

stations, the interaction between the transit vehicle and the station must be distinguished from the 

transit vehicle’s interaction with the traffic signal. The general framework of the methodology is 

presented in Figure 4-1.  

As described in the previous chapter, the AVL/APC data consists of scheduled stop observations 

and unscheduled stop observations. No special treatment is required for the unscheduled stop 

observations because the recorded total stop time (TS) is all stopped delay. However, for 

scheduled stop observations a portion of the total stop time may be attributed to time required for 

the transit vehicle to board and discharge passengers. Thus, there is a need to treat these 

observations in order to estimate the stopped delay attributable to the traffic signal. The 

remainder of this chapter describes the methods for doing this treatment.  

 

 

Figure 4-1: Flowchart of Proposed Methodology 
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4.1 Defining Scenarios 

A transit vehicle stopping at a transit station to board and/or discharge passengers generates a 

Scheduled Stop record in the archived AVL/APC data. The length of time for which the transit 

vehicle is stationary is recorded and is designated as TS. The time required to board and 

discharge passengers is designated as the dwell time (DW). Dwell time (DW) may comprise all 

or just a portion of the total stopped time (i.e. TS ≥ DW). Our objective is to utilize transit 

vehicles as probe vehicles in order to estimate the stopped delay (D) experienced by general 

purpose vehicles at the intersection. 

The transit vehicle’s interactions with the transit station and the signal can be categorised into 

three scenarios as illustrated in Figure 4-2. 

 

Figure 4-2: Presentation of Delay Estimation Scenarios Using Space Time Diagram 

1. In the first scenario, the bus arrives at the transit station during the red interval. The bus 

serves passengers at the transit station and then waits until the red interval ends before 
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proceeding. In this case, the delay that would have been experienced by a general purpose 

vehicle arriving at the intersection at the same time as the transit vehicle is approximately
2
 

equal to the transit vehicle’s total stopped time (D = TS), which is less than or equal to the 

red interval, R (DW < TS ≤ R).  

2. In the second scenario, the traffic signal is green when the bus approaches the transit station. 

While the passengers are boarding and alighting, the traffic signal turns red and the bus must 

wait until the signal turns green to clear the intersection. It is noted that in order for the 

transit vehicle to arrive at the transit station, any unserved queue on the approach must not 

extend upstream of the transit station and because the transit station is located close to the 

stop line, any such queue would be small. Therefore, we expect that a general purpose 

vehicle arriving at the transit station at the same time as the transit vehicle would have been 

able to travel through the intersection during the green interval and would not have 

experienced any stop delay (D = 0). In this scenario the stop time of the bus is greater than 

the dwell time and greater than the red interval (TS > R and TS > DW).  

3. In the third scenario, the bus arrives at the intersection during the green interval, serves 

passengers at the transit station, and passes through the intersection before the end of the 

green interval. In this scenario a general purpose vehicle arriving at the same time as the bus 

would have been able to travel through the intersection during the green interval and would 

not have experienced any stopped delay (D = 0). The duration for which the bus is stationary 

is equal to the dwell time ( TS = DW).  

Given the total stop time (TS), dwell time (DW), and the red interval (R), each stopped delay 

observation can be classified as one of the above scenarios and its corresponding delay can be 

estimated as: 

























DWTS

RTS

RTSDWTS

D

0

0  (6) 

 

 

                                                 
2
 We state approximately because it is possible that a general purpose vehicle may have been able to stop 

slightly closer to the stop line than the transit vehicle and therefore depart slightly earlier; however, because the 

transit station is located near to the stop line we assume this error in delay is small compared to TS. 
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However, from AVL/APC data only the total stop time (TS) of the bus is explicitly known. In the 

following sections, models are presented to estimate the dwell time (DW) and the red interval (R) 

using AVL/APC data. 

4.2 Dwell Time 

The Highway Capacity Manual (2010) defines dwell time as the amount of time the transit 

vehicle is stationary at the station to serve passengers. It is the summation of time required to 

open and close the doors plus the time needed to serve passengers at the busiest door (TCQSM, 

2013). The factors that affect dwell times are: 

1. Passenger demand 

2. Transit stations spacing 

3. Method of payment 

4. Vehicle type (i.e. low floor bus) 

5. Distribution of passengers on transit vehicle  

6. Wheelchair and bicycle boarding  

Section 4.2.1 presents a short summary of previous work on transit dwell time followed by the 

description of the proposed dwell time estimation model in Section 4.2.2.  

4.2.1 Existing Dwell Time estimations Models 

The Transit Capacity and Quality of Service Manual (TCQSM) estimates average dwell time 

based on a linear relationship between passenger activity and their corresponding service time, 

the lost time due to opening/closing doors and any boarding lost time as shown in equation (7), 

when hourly passenger boarding and alighting counts are available for a given stop (TCQSM, 

2013). The passenger flow time (the time required for all passengers to board and alight the door 

of their choice) for each bus door is calculated using Equation (8). In absence of local data, the 

average passenger serving times specified in Table 4-1 can be used. 
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blocpfd tttt  max,  
(7) 

ibibiaiaipf tPtPt ,,,,,   (8) 

where  

td = Average dwell time, seconds 

tpf,max = Maximum passenger flow time of all door channels, seconds 

toc = Door opening and closing time, seconds (typically 2-5 seconds) 

tbl = Boarding lost time, seconds (time spent waiting for passengers to walk to bus 

doors from their waiting position at the stop. For stops with 1 loading area
3
 tbl is 

0, for stops with 3 loading areas tbl is 2.5-9 seconds) 

tpf,i = Passenger flow time for door channel i, seconds  

Pa,i = Number of alighting passengers through door channel i, persons 

Pb,i = Number of boarding passengers through door channel i, persons 

ta,i = Average alighting passenger service time for door channel i, second/person 

tb,i = Average boarding passenger service time for door channel i, second/person 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3
 Loading area is defined as curbside space where a single bus can stop and allow passengers to board and 

alight the vehicle. Bus stops may have one or more loading areas. 
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Table 4-1: Service Times for Individual Passenger (Source: TCQSM, 2013) 

Situation 

Average Passenger Service Time 

(Seconds/Person) 

Observed Range Suggested Default 

Boarding 

No fare payment 1.75-2.5 1.75 

Visual inspection (paper transfer/flash pass/mobile 

phone) 
1.6-2.6 2.0 

Single ticket or token into farebox 2.9-5.1 3.0 

Exact change into farebox 3.1-8.4 4.5 

Mechanical ticket validator 3.5-4.0 4.0 

Magnetic strip card 3.7-6.5 5.0 

Smart card 2.5-3.2 2.75 

Alighting 

Front door 1.4-3.6 2.5 

Rear door 1.2-2.2 1.75 

Rear door with smart card check-out 3.4-4.0 3.5 

NOTE: add 0.5 second/person to boarding times when standees are present. Add 0.5 second/person for 

non-level boarding (1.0 second/person for motor coaches) 

 

Studies have analyzed the determinants of dwell time. The majority of studies on dwell time 

have used regression models to relate transit vehicle dwell time to the passenger activities with 

varying level of attention to bus types, door use and payment methods. 

Dwell time can be expressed as either a sequential or a simultaneous process. In a sequential 

process passengers would alight first then board Equation (9), as opposed to a simultaneous 

process where passengers would board and alight at the same time at different doors, Equation 

(10). However, in reality a little of both processes takes place. In majority of bus services where 

payment to the driver is required, all passengers board at the front door (closest to the driver), 

while the majority of alighting passengers step out from the back door and a few may alight at 

the front door. 
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bbaa NtNtcDW   (9) 

),max( bbaa NtNtcDW   (10) 

where   

DW  = Dwell time  , seconds 

c = Dead time (time to open and close the door plus the lost time due to nature of the 

process, such as passengers walking up to the door or drivers making sure everything is 

safe before closing the doors.) 

Nb = Number of Boarding Passengers 

Na = Number of Alighting Passengers 

ta = Average alighting passenger service time 

tb = Average boarding passenger service time 

York (1993) modified Equations (9) and (10) to account for differences in boarding and alighting 

due to demographics and payment methods in the form of: 





n

l

bb

m

k

aa NtNtcDW
11

 (11) 









 


n

l

bb

m

k

aa NtNtcDW
11

max  (12) 

Where, m and n are the number of categories for boarding and alighting passengers, respectively. 

The review of the literature reveals some trends in dwell time duration. Studies (presented in 

Table 4-2) have observed that alighting service times are shorter than boarding service times. 

This is because boarding passengers have to pay upon their arrival which increases their service 

time. 
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Table 4-2: Summary of Selected Studies on Dwell Time (Source: Tirachini, 2010) 

Article Location 
Types of 

vehicles 

Fare 

collection 
Feature 

Dead time, 

 c (s) 

Alighting, a  

(s / pas) 

Boarding, b  

(s / pas) 

Aashtiani and 

Iravani (2002) 

Tehran, Iran Two- and 

three-door 

buses 

– Dwell time function as input for 

transit assignment model 

12.0 0.99–1.04 1.64–2.00 

(from the best 

model) 

Dueker et al. 

(2004) 

Portland, 

USA 

Buses – Use of archived AVL and APC 

data, account of lift operations 

5.14 1.70 (only 

linear term) 

3.48 (only 

linear term) 

Fernándezet a

l. (2009) 

Santiago, 

Chile 

Two-, three- 

and four-door 

buses, Metro 

trains 

Contactless 

card (buses), 

payment in 

station (metro) 

Marginal boarding and alighting 

times depending on number of 

boarders and alighters 

Metro: 3.24 

Buses: 8.04–

9.32 

Metro: 0.70 

Buses: 1.39–

3.32 

Metro: 1.13 

Buses: 2.05–

6.04 

Guenthner 

and Hamat 

(1988) 

Michigan, 

USA 

One-door 

buses 

Cash, tickets 

and passes 

Different fare types found not to 

affect dwell time significantly 

2.25 (plus 

opening/closing 

door time) 

1.81 5.66 (for all 

fare payment 

methods) 

TRB (2000) USA One- to six-

door buses 

Prepaid card 

and cash 

Different boarding and alighting 

times depending on number of 

doors (rigid and articulated buses) 

– 0.4–2.0 0.5–3.0 

 

http://www.tandfonline.com/action/showPopup?citid=citart1&id=CIT0001&doi=10.1080/18128602.2010.520277
http://www.tandfonline.com/action/showPopup?citid=citart1&id=CIT0002&doi=10.1080/18128602.2010.520277
http://www.tandfonline.com/action/showPopup?citid=citart1&id=CIT0003&doi=10.1080/18128602.2010.520277
http://www.tandfonline.com/action/showPopup?citid=citart1&id=CIT0006&doi=10.1080/18128602.2010.520277
http://www.tandfonline.com/action/showPopup?citid=citart1&id=CIT0012&doi=10.1080/18128602.2010.520277
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Table 4-2 (continued): Summary of Selected Studies on Dwell Time (Source: Tirachini, 2010) 

Article Location 
Types of 

vehicles 

Fare 

collection 
Feature 

Dead time, 

 c (s) 

Alighting, a  

(s / pas) 

Boarding, b  

(s / pas) 

Li et al.(2006) Broward, 

FL, USA 

Two-door 

buses 

Prepaid card 

and cash 

Choice model to predict 

alightings on front and rear doors 

– 4.47–4.90 4.59 

Lin and 

Wilson (1992) 

MA, USA One- and two-

car trains 

(light rail) 

Outside trains Differences between model for 

one- and two-car trains 

One car: 8.10–

12.50. Two cars: 

9.69–15.69 

One car: 

0.23–1.41. 

Two cars: 

0.36–0.66 

One car: 0.55–

1.15. Two cars: 

0.27–0.42 

Rajbhandariet 

al. (2003) 

NJ, USA Buses No info (data 

from APC 

devices) 

Nonlinear model is better than 

linear one 

1.32–5.99 1.93–4.63 4.65–6.91 

York (1993) London and 

Exeter, UK 

One- and two-

door buses 

(low floor, 

steps at 

entrance) 

Prepaid card 

and cash 

Peak/off-peak variation on 

boarding and alighting times 

2.38–8.26 0.99–2.94 1.84–5.49 

(passes) 2.74–

8.87 (cash) 

0.88–4.70 

(change giving 

time) 

http://www.tandfonline.com/action/showPopup?citid=citart1&id=CIT0009&doi=10.1080/18128602.2010.520277
http://www.tandfonline.com/action/showPopup?citid=citart1&id=CIT0010&doi=10.1080/18128602.2010.520277
http://www.tandfonline.com/action/showPopup?citid=citart1&id=CIT0011&doi=10.1080/18128602.2010.520277
http://www.tandfonline.com/action/showPopup?citid=citart1&id=CIT0013&doi=10.1080/18128602.2010.520277
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Kraft and Bergen (1974), York (1993) and Dueker et al. (2004) showed that boarding and 

alighting service times are shorter during the peak hours in comparison to off peak. The reason is 

that during the peak hours, passengers are frequent commuters that are familiar with the service 

and generally in a rush to arrive at their destinations, whereas in the off-peak hours there are 

more occasional transit users and senior passengers. Their studies also illustrated that the number 

of steps on the bus impacts the boarding and alighting times where low floor buses have the 

fastest passenger service times. 

Studies have expanded upon Equations (9) and (10) in order to take into account the effect of 

congestion (crowding) inside the bus as well as at the bus stop. For example, Fernandez et al. 

(2009) calibrated a piece-wise linear model using data from Santiago which estimates that when 

there are more than 40 passengers boarding and less than 15 passengers alighting, boarding and 

alighting service times are slower for bus services. Dueker et al. (2004) used squared terms of 

passenger activities to account for the diminishing marginal effects of additional boarding and 

alighting passengers on dwell time. Rajbhandari et al. (2003) proposed linear and non-linear 

regression models using passenger activity (sum of boardings and alightings) and number of 

standees (number of passengers in the transit vehicle who are standing rather than seated) as 

independent variables to estimate dwell time. Rajbhandari et al. (2003) found that the non-linear 

model (Equation (13)) better explains the variability of dwell time than the linear model 

(Equation (9)). 

 )( ab NNDW   (13) 

Triachini (2010) conducted an extensive study on the determinants of dwell time. He proposed 6 

models which evaluates the impacts of passengers’ age, crowding, bus configuration (number of 

steps), fare payment methods and service types (local transit routes vs. intercity transit routes) on 

dwell time. The result shows that payment methods have a significant impact on dwell time. 

Slow payment methods such as cash transactions within the bus increase the dwell times, while 

services with fares paid before boarding the bus have lower dwell times. Triachini also 
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concluded that demographic distribution of the passengers has an impact on the boarding and 

alighting service times.  

Most studies have used ordinary least square regression to estimate dwell times. The models 

developed by various authors have shown that passenger activity is the most effective 

determinant of dwell time. Although the inclusion of other explanatory variables such as 

payment method, demographic, familiarity with the service, lift activity and so on would increase 

the accuracy of dwell time estimation, such information is not available with all AVL/APC data.  

Furthermore, dwell time models are not readily transferable from one region to the next as the 

effects on land use, demographics and passenger behaviour inherent in the models may not be 

representative of other regions. For these reasons a dwell time estimation model is proposed for 

the AVL/APC data from the Region of Waterloo.  

4.2.2 Proposed Dwell Time Estimation Model 

A dwell time estimation model was calibrated using Grand River Transit’s archived AVL/APC 

data from 14 far-sided transit stations located in the Region of Waterloo (Figure 4-3). The 

summary of passenger activity for each of the selected transit stations is provided in Table 4-3. 

On average there are 2 passengers boarding and 2 passengers alighting, although the maximum 

passenger activity can reach up to 16 passengers boarding and 15 passengers alighting. 

The selected transit stations did not have bus bays or layover times scheduled, and were not 

influenced by any traffic control features or other geometric characteristics. Therefore, we make 

the reasonable assumption that the total stopped time recorded in the AVL/APC database is a 

result of dwell time (i.e. time required to open the doors and to board and discharge passengers). 
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Figure 4-3: The Location of the Transit Stations Used to Calibrate the Dwell Time Model 

[Source: Google Map]. 
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Table 4-3: Statistical Summary of Passenger Activity for the 14 Chosen Stations. 

 
Number of 

observations 

Passenger 

Activity 
Average 

Standard 

Deviation 
Minimum Maximum 

Dundas / 

Cambridge 
50 

Boarding 0 0.68 0 2 

Alighting 1 0.73 0 3 

King / Blue 

Springs 
96 

Boarding 1 0.87 0 4 

Alighting 1 1.19 0 5 

King / Dolph 123 
Boarding 1 1.54 0 10 

Alighting 1 1.09 0 5 

Ira needles / Erb 68 
Boarding 1 0.83 0 4 

Alighting 2 2.24 0 13 

Bishop /Duke 52 
Boarding 1 0.67 0 3 

Alighting 2 1.50 0 8 

University / 

Phillip 
905 

Boarding 2 2.32 0 16 

Alighting 2 2.24 0 15 

Victoria / Patricia 27 
Boarding 2 1.25 0 5 

Alighting 0 0.70 0 2 

Wellington / Main 57 
Boarding 2 1.33 0 6 

Alighting 0 0.40 0 2 

Albert / Long 

Wood 
118 

Boarding 1 1.04 0 5 

Alighting 2 1.45 0 7 

King / Sydney 67 
Boarding 2 1.14 0 8 

Alighting 1 0.89 0 5 

King / Montrose 33 
Boarding 1 2.00 0 4 

Alighting 1 1.96 0 2 

Krug / Lydia 22 
Boarding 0 0.53 0 2 

Alighting 1 0.84 0 3 

Queen / Winston 28 
Boarding 1 1.34 0 4 

Alighting 1 0.75 0 3 

King / Erb 245 
Boarding 1 1.65 0 4 

Alighting 2 8.52 0 10 
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Many factors are deemed to be determinants of dwell time in literature such as bus load, number 

of passengers boarding, number of passengers alighting, fare payment method, use of bike rack 

or ramp, demographic, etc. However, the GRT’s AVL/APC database does not contain a record of 

all these factors (i.e. fare payment method or ramp usage are unknown). Consequently, a linear 

regression model was estimated on the basis of the available explanatory variables such as 

boardings, alightings, load and schedule adherence. Passenger activity was found to be the only 

statistically significant explanatory variable (Equation (14)). This is reasonable as the literature 

has found passenger activity as the best determinant of dwell time. 

abOLS NNDW 54.082.172.16
^

  (14) 

where,   

OLSDW
^

 = Estimated dwell time based on ordinary least square regression, seconds 

Nb = Number of Boarding Passengers 

Na = Number of Alighting Passengers 

However, the model is a very poor fit to the data with R
2
 = 0.2, as shown in Table 4-4. The 

model fails to explain the variability in the dwell time. This is due to the fact that there is 

significant variability in the dwell time as a function of passenger activity, as shown in Figure 

4-4. Therefore, a simple regression model based solely on the number of boarding and/or 

alighting passengers cannot explain a large portion of the variability in the observed dwell times. 
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Table 4-4: Dwell Time Estimation Regression Results 

Regression Statistics 

Multiple R 0.45 

R Square 0.2o 

Adjusted R Square 0.20 

Standard Error 7.33 

Observations 1890 

Analysis of Variance (ANOVA) 

Source of 

Variability 

Degree of  

Freedom 

(df) 

Sum of 

Squares 

(SS) 

Mean 

Square 

(MS) 

F-test 
Significance 

F 

Regression 2.00 26097.95 13048.97 242.80 0.00 

Residual 1887.00 101414.20 53.74 
  

Total 1889.00 127512.14 
   

 
Coefficients Standard Error t-test P-value 

Intercept 16.72 0.26 63.21 0.00 

BOARDING 1.82 0.09 21.04 0.00 

ALIGHTING 0.54 0.09 6.11 0.00 

 

Figure 4-4: Variability of Dwell time Unexplained by Passenger Activity 
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To improve the dwell time estimation model, a two-stage approach has been adopted. In the first 

stage, a weighted regression model is calibrated to estimate the average dwell time DW  as a 

function of passenger boarding and alighting activity. Then, in the second stage it is shown that 

dwell time follows the Poisson distribution. A stochastic model is setup in which the average 

dwell time, DW , estimated in the first stage is used as the explanatory parameter to create the 

Poisson distribution. Each of these two stages is described in the following sections.  

4.2.2.1 Estimating Mean Dwell Time 

The passenger activities were grouped based on the number of passengers boarding (Nb) and 

alighting (Na) (i.e. a group is constructed from all observations with one boarding passenger and 

zero alighting passengers; the next group consists of one boarding and one alighting passenger 

and so on). The summary of dwell times associated with each passenger activity group is 

presented in Figure 4-5. The trend of the average dwell time shows that as the number boarding 

and alighting increases the associated dwell time also increases. It is important to note that for 

some passenger activity groups only one observation was available, especially those passenger 

activity groups with large number of boardings and alightings. 
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Figure 4-5: Average, Minimum and Maximum Dwell Time for Each Passenger Activity 

Group 
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constant; meaning the variance of residuals does not vary with the value of the explanatory 

variables. However, heteroskedasticity in the data violates the assumption that errors are 

uncorrelated and their variances are constant (i.e. homoscedasticity). For a simple model, the 
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Xe 2ˆ  (15) 

where   
2ê  = Squared residuals  

  = Coefficients of parameters (P by 1 matrix) 

X  = Explanatory variables (n by P matrix) 

Under homoscedasticity conditions the values of   will be zero. The Breusch-Pegan test for 

heteroskedasticity is a Chi-squared test with p-1 degree of freedoms (where p is the number of 

independent variables). If the value of observed Chi-squared is greater than the critical Chi-

squared then the null hypothesis is rejected and heteroskedasticity is present in the data with 

respect to at least one of the independent variables. 

p

SSE
Observed 2  (16) 

)1(
22

 pCritical   (17) 

where   

SSE = Sum of squared of errors 

p = Number of independent variables 

n = Number of observations 

X
2
 critical = Obtained from a Chi-square distribution table 

 

Stata Statistical Software was used to carry out the Breusch-Pegan test. The X
2

observed value was 

much larger than X
2

critical  (X
2

observed = 30.7, X
2

critical = 0.0), revealing that there is 

heteroskedasticity present in the data with respect to at least one of the independent variables. 
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Figure 4-6: Residual Plot of OLS Regression Model for Average Dwell Time 

Weighted Least Square (WLS) regression is the method used to account for the 

heteroskedasticity in the data. Unlike OLS, WLS can account for the inconsistency in the 

variance across the explanatory variables by applying weights that are inversely proportional to 

the variance at each level of explanatory variables. The general process for WLS is as follow: 

1. Fit Ordinary Least Square (OLS) regression model to the data and obtain the residuals. 

2. Estimate the variance function by regressing the squared residuals on the appropriate 

predictor. 

3. Obtain the weights by using the fitted values from the estimated variance function. 

4. Use the obtained weights to estimate the regression coefficients. 

Stata Statistical Software was used to carry out the WLS regression using passenger activities as 

predictors. Equation (18) is used to estimate the average dwell time of the bus in the proposed 

methodology. The analysis of variance for the WLS regression is presented in Table 4-5. The 

regression constant and parameter coefficients are statistically significant (the Student t-value 
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and associated P-value for the parameters are: constant: t = 47.54, P-value = 0.00; Nb: t = 11.56, 

P-value = 0.00; Na: t = 6.69; P-value = 0.00) and the regression explains 66% of the variation in 

the observed mean dwell times. Figure 4-7 plots the average dwell time estimated from Equation 

(18) versus the observed average dwell time.   

NaNbDW 77.099.147.15   (18) 

where   

DW  = Average Dwell time , seconds  

Nb = Number of Boarding Passengers 

Na = Number of Alighting Passengers 

Table 4-5: Weighted Least Squared Regression of the Average Dwell Time with Respect to 

Passenger Activity 

Source 

of 

variability 

Sums of 

Square 

(SS) 

Degree of 

Freedom 

(df) 

Mean 

Square 

(MS) 
No. of Observations = 105 

F(2,102) = 102.29 

Probability > F = 0.000 

R-Squared = 0.667 

Adjusted R-Squared = 0.661 

Root Mean Square 

Error (MSE) 

= 2.547 

 

 

Model 
1327.75 2 663.87 

Residual 662.01 102 6.49 

Total 1989.77 104 19.13 

Variables Coefficients St. Error t-test P>|t| 90% Confidence Level 

Boarding 1.99 0.17 11.56 0.000 1.65 2.33 

Alighting 0.77 0.12 6.69 0.000 0.54 1.00 

Intercept 15.47 0.32 47.54 0.000 14.82 16.11 
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Figure 4-7: Estimated vs. Observed Average Dwell Time 

4.2.2.2 Modelling the individual dwell times around the mean 

In the second stage, we model the variation in the individual dwell time observations about the 

mean. An examination of the data revealed that this variation can be described by the Poisson 

distribution. 

As mentioned previously the AVL/APC data have been organized into groups based on 

passenger activities. The frequency distribution of dwell time for each passenger activity group 

was constructed. Figure 4-8 is an example of the frequency distribution using the dataset 

consisting of observations with 1 passenger boarding and zero passengers alighting. Using Easy 

Fit software it was determined that dwell time follows Poisson distribution, when data is grouped 

based on passenger activities. The output results from East Fit software are presented in 

Appendix A.   

ved average dwell time 

 

R2 = 0.66 
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Figure 4-8: The Dwell Time of Sample Passenger Activity Group of 1 Passenger Boarding 

Following Poisson Distribution 

The Poisson distribution is discrete and therefore, dwell time can only be represented as integer 

values. However, dwell time is measured in seconds, and consequently, this level of precision is 

adequate. The probability mass function of the Poisson distribution is given in Equation (19).  

!
)()(

DW

e DW
DW

DW
DWYPYf


  (19) 

where   

f(Y) = probability that the dwell time for a specific scheduled stop event = Y seconds.  

DW   = average dwell time (seconds) – estimated from Equation (18) 

DW = dwell time (seconds) associated with a specific scheduled stop event 
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Given that a stochastic model is used, the dwell time estimated from Equation (19) can take a 

wide range of values as illustrated by f(DW) in Figure 4-9. However, the dwell time cannot be 

longer than the observed total stop time (TS). Therefore, Equation (20) is adjusted to ensure the 

probability that dwell time exceeds the total stop time is zero. The probability that dwell time (Y) 

will be in the range of DW and DW + δ given that the total stop time is TS is expressed as: 

)(

)(

)|()()(

TSYP

DWYDWP

TSYDWYDWPDWYPDWf











 (20) 

where   

f’(DW) = probability that the dwell time = Y seconds given that Y ≤ TS 

δ = a small value of dwell time 

TS = total stopped time of the transit vehicle (seconds) 

          

Equation (20) can be expressed in terms of the cumulative distribution function (designated by F) 

as follows: 

)(

)()(
)()(

TSF

DWFDWF
DWYPDWf





 (21) 

The truncated dwell time function is obtained by taking the limit of 0 which results in: 

)(

)(

)(

)(
lim)('

0 TSF

DWf

TSF

DWF
DWf 









 (22) 

The contrast between Equation (19) and Equation (22) is illustrated in Figure 4-9 in which TS = 

19 seconds. 
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Figure 4-9: Probability Density Function of Dwell Time 

This dwell time estimation model is used in the estimation of the red interval of a given 

intersection, as well as to distinguish between the three different delay scenarios. The 

performance of the dwell time estimation model is evaluated in Chapter 5.  

4.3 Red Interval Estimation Model 

Consider a situation in which the bus arrives at the intersection during the green phase, serves 

passengers at the transit station, and then the signal turns red just as the bus finishes serving 

passengers at the station. In this scenario the total stop time consists of the dwell time of the bus 

plus the red interval duration. Assuming that (a) a large database of observations is available; and 

(b) the red interval is constant within each signal cycle during the analysis period, then the red 

interval can be estimated as the maximum difference between the total stop time (TS) and the 

dwell time (DW). However, the dwell time model developed in the previous section (Equation 

0

0.04

0.08

0.12

P
D

F
 

Dwell Time (Sec) 

 f(DW) = Poisson Distribution (Equation (19)) 

f''(DW) = Adjusted Poisson distribution (Equation (22)) 
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(22)) is stochastic, meaning that for each observation a range of valid dwell times can be 

estimated as a function of the number of passengers boarding and alighting. 

Figure 4-10 depicts the elements of the proposed model for estimating the duration of the red 

interval. 

Conduct n Monte Carlo Simulation trials (MCS trail ID=j)

Scheduled

AVL/APC 

Data

For a given intersection with a near-sided transit stop 

Passenger activity (Nai, Nbi)

Total stop time (Tsi)

Observation i

Estimate average dwell 

time using Equation (1)

Compute:

For all j

i=TNobs

YES

NO i=i+1

 

Figure 4-10: Schematics of Red Interval Estimation 
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As indicated in Figure 4-10, given a database containing AVL/APC data for an intersection 

approach with a near-side transit station, the following steps are carried out in order to estimate 

the duration of the red interval.  

1. Define i to represent a scheduled stop observation in the AVL/APC database. For 

observation i, we know the total stop duration (TSi), the number of passengers boarding 

(Nbi), and the number of passengers alighting (Nai).  

2. Use Equation (18) to estimate the mean dwell time ( iDW ).  

3. Conduct n Monte Carlo Simulation (MCS) trials (MCS trial ID = j) using Equation (22)  

( njDW ji ,1;,  ) 

4. Compute jiiji DWTS ,,   for all j. 

5. This process was repeated for all i near-sided scheduled stop observations.  

6. The distribution of 𝛾𝑖𝑗 is compiled considering all MSC trials for all near-sided 

observations. 

7. Suppose 𝛤 represents the cumulative density function (CDF) of 𝛾𝑖𝑗 .The duration of the 

red interval (R) can be estimated as a specified percentile of Γ. Through the use of 

simulation, we calibrated this value to be equal to the 95
th

 percentile instead of the 

largest 𝛾𝑖𝑗, to mitigate the influence of outliers and extreme values. 

 

Once the red interval is estimated, all near-sided scheduled observations can be classified into 

one of the three scenarios identified in Section 4.1 and their corresponding stopped delay (caused 

only by the traffic signal) can be estimated. Note that for each observation the average dwell 

time of the n MCS trials is used to distinguish between Scenarios 1 and 3. Next, the stopped 

delay associated with each scheduled observation can be determined. It should be noted that for 

unscheduled stop events, the total stop time is considered as the stopped delay. Finally, the 

boundary line is fit to the data to distinguish between stop observations due to the signal 

operation and other causes.  
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4.4 Boundary Line Algorithm  

The boundary line (BL) fitting algorithm needs to be robust to manage the variability in traffic 

conditions and to distinguish the stopped delay observations caused by the traffic signal 

operation from the stopped delay observations caused by other factors. 

Here a set of modifications are proposed to Yang and Hellinga’s (2012) boundary line selection 

algorithm. These modifications address the following four issues: 

1. The data captured from the adjacent road segments, by the GIS buffer, must be 

excluded from the analysis. 

2. The extent of the queue must be measured from the stop line and not the center of the 

intersection. 

3. The BL should exclude stopped observations due to other geometric characteristics or 

traffic controls. 

4. The BL should be improved to account for the variability in traffic. If intersections 

are incorrectly identified as under-saturated, their stopped delay and maximum queue 

length will be under-estimated. 

To address the first issue, the setup of the problem within the ArcGIS is altered. As illustrated in 

Figure 4-11, the polyline buffer zone is complemented with a 30 meters circular buffer zone that 

is centred at the centroid of the upstream intersection (point layer). Stopped delay observations 

that fall within both of these buffer zones are excluded from the analysis. The 30 meters radius is 

selected to match the width of the polyline buffer zone.   

Furthermore, for each observation the distance is measured from the stop-line and not the center 

of the intersection as is the case in Yang’s work (Yang, 2012).  
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Figure 4-11: Buffer Zone Excluding the Stop Observations Associated With the Adjacent 

Road 

The 3
rd

 and 4
th

 issues are addressed by redefining the solution space and the candidate boundary 

lines. The determination of the boundary line’s X-intercept is redefined as illustrated in Figure 

4-12. The boundary line algorithm first determines if there is a significant gap between the 

distances of stop observations. 

If buses are random samples of traffic stream, then the location of transit vehicle’s stops are 

randomly distributed from the stop-line to the tail of the queue. A significant gap between the 

clusters of stop data may be the result of: 

1. Bias in sampling 

2. Small sample size 
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3. Stops caused by other factors than the signal operation (e.g., vehicles queuing to enter a 

parking lot) 

 

Figure 4-12: Boundary Line Solution Space 

Here it is assumed that no bias exists in the sample data. In this study, transit vehicles are used as 

probe vehicles to evaluate the performance of intersection approach. The major differences 

between transit vehicles and other vehicles, especially passenger vehicles, are that transit 

vehicles predominantly travel on the right lane (when multiple lanes are available).  

However, the inherent difference in the right lane characteristics is not the source of the gaps 

within the data. Therefore, no bias is being introduced in maximum queue length calculations as 

the result of sampling transit vehicle’s stop locations at the signalized intersection. 
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A significant gap in the data may be observed as a result of small sample size. An insufficient 

sample size provides an incomplete picture of the operational status for a given segment. Gaps 

within the stop locations of transit vehicles may disappear with a larger dataset. On the other 

hand, gaps in the data may be observed due to other features such as railway crossing, stop 

traffic control, parking manoeuvers, etc; such a gap in the data marks the distinction between 

observations due to signal and other causes.  

In this section, we determine the size of gap which distinguishes between the signal operation 

and other causes. Shockwave theory can be used to determine the threshold length (∆) of gaps 

that one would expect to see in data as the result of signal operation for a given number of 

available observations. The cluster of observations which are located upstream of a spatial gap 

larger than the threshold are considered to be caused by factors other than the downstream traffic 

signal.  

As an initial research effort, we start with the assumption that the relationship between flow rate 

(q) and density (k) is triangular, as shown in Figure 4-13. With this assumption, the rate at which 

queues form and dissipate at the intersection can be calculated. During the red interval the 

backward moving formation shockwave that travels upstream from the stop line can be 

represented by Equation (23), while Equation (24), represents the recovery shockwave during the 

green interval. 
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Figure 4-13: Idealized Flow – Density Relationship 
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The transit vehicles approaching a given intersection and encountering a queue will join the tail 

of the queue. The location of their stop is a function of when the transit vehicle arrived at the tail 

of the queue. The time the transit vehicle discharges from the intersection is a function of its 

location in the queue and the signal timing.  
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Figure 4-14: Shockwave diagram 

A simulation model is used to determine the value of gap threshold ( T ) in transit stop 

observations that distinguishes between signal operation and other causes. Signal timing, arrival 

flow and the time the transit vehicles arrives at the signalized intersection are used as inputs into 

the model. The simulation is setup based on the following signal control and road traffic 

conditions: 

 The approach has a constant saturation flow rate  

 The average vehicle arrival rate at the approach follows a Normal distribution 

 No initial queue is present at the beginning of the evaluation time  

 The cycle length is set to be 60 seconds 

 The length of the red interval follows the Normal distribution  

The simulation process is summarized below: 

1. For each trial, the average arrival flow rate ( flowarrivalq ) in vph is generated based on a 

Normally distributed
4
 random number [N(950,190)]. 

2. The red interval, R, is randomly chosen based on the Normal distribution
4
 [N(30,25)] 

3. The green interval, G, is calculated as RcG   

                                                 
4
 The notation N(µ,σ

2
) represent the normal distribution with mean of µ and variance of σ

2
. 
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w
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4. The backward moving formation shockwave, 12W , is calculated based on Equation 

(23);where  and 

FlowMaxFlowMaxFlowArrivalFlowArrival qkqk /))((  

5. The backward moving recovery shockwave, 23W , is calculated based on Equation (24); 

Where )/(50),/(1900 kmVehkhrvehq FlowMaxFlowMax   

6. The time at which the queue dissipates is calculated by Equation (25). 

7. The most upstream position of the tail of the queue is determined by Equation (26). 

8. The time at which the transit vehicle arrives at the intersection, arrivaltransitt _ , is 

randomly selected based on the uniform distribution
5
, [U(0,60)]. 

9. The location of the transit vehicle in the queue is determined by Equation (27). 

10. For transit vehicles that do join the queue, the time at which they are discharged from the 

intersection is calculated by Equation (28). 

11. The stopped delay of transit vehicle is calculated by Equation (29). 
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(28) 

 

arrivaltransitedischtransit ttayStoppedDel  arg  (29) 

 

The analysis of spatial gap between consecutive stop locations is carried out for different 

datasets, each consisting of a different number of stop delay observations (n). Datasets consisting 

                                                 
5
 The notation U(a,b) represent the uniform distribution with defining parameters a and b. 

)/(125),/(0 kmVehkhrvehq DensityJamstationary 
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of n=10, 20, 30, …, 200 observations were considered. The procedure above provides the 

distance from the stop line where the transit vehicle joins the queue and stops for each of the n 

observations. The n stop locations are sorted into ascending order. The gap threshold ( T ) is 

determined as the largest distance between consecutive stop observations.  

The results, shown in Figure 4-15, indicate that as expected, the maximum gap size decreases as 

the number of observations increases. A linear regression model was calibrated to the results as 

shown in Figure 4-15. Both the intercept and slope are statistically significant and the model has 

a relatively high goodness of fit (R
2
 = 0.76). Since the model has a declining linear form a 

minimum threshold must be set to prevent the value of gap threshold from becoming too small. 7 

meters has been chosen as the minimum gap size which corresponds to the width 2 lane of a 

driveway in order to capture the gap due to other geometric feature which may be present. 

Consequently, Equation (30) can be used to determine the value of gap threshold as a function of 

the number of available stop delay observations.  

))(126.028.45,7max( nobservatioNT   (30) 



 

71 

 

 

Figure 4-15: Maximum Gap Size vs. Number of Observations Available 

For each intersection approach the extent of the queue, Xp2, can be computed by undertaking the 

following steps: 

1. The stopped delay observations (i = 1, N) are sorted in ascending order in terms of their 

distance from the stop-line (xi). 

2. The difference between consecutive x values is calculated for each pair of stopped delay 

observations (Δi = xi+1 – xi, i = 1, N-1). 

3. The treshold value is determined by using Equation (30)  

4. If the computed difference is greater or equal to a threshold value (TΔ), then Xp2 is set 

equal to the distance corresponding to the previous stopped delay observation .(i.e. if (Δi 

≥ TΔ) then Xp2 = xi else next i)  

Once the extent of the queue is found, the optimal delay envelope within this feasible region can 

be determined. The shape of the delay envelope is defined as a rectangle enclosed by the line D = 

dmax, and Xp2 = xi, as shown in Figure 4-16. 
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Figure 4-16: Candidate Delay Boundary Line 

4.5 Delay and Maximum Queue Length Estimation 

The stop observations under the boundary line are deemed as stopped delays caused by the 

operation of the traffic signal. The performance measures of an intersection are estimated based 

on these observations. However, estimating stopped delay per vehicle trip is of interest, not per 

stop event. Consequently, for transit trips with multiple stopped delay observations, the multiple 

observations are summed to provide a single observation representing the total stopped delay 

experienced by that transit vehicle at that signalized intersection. Some transit trips do not 

experience any stopped delays so for these trips a total stopped delay value of zero is considered.  
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The result is a single value of total stopped delay observation for each of the transit trips, NT, that 

were observed to traverse this intersection during the period of interest.   

The average stopped delay per vehicle is calculated as the summation of the total stopped delay 

associated with all NT trips divided by the total number of transit trips. 

Measures of variability (e.g. standard deviation, and 95
th

 percentile) are also computed from 

these data. The maximum queue length is determined by the x-intercept of the boundary line, Xp2. 

4.6 Proposed Index for Ranking Intersections 

According to the HCM, control delay is considered as the primary measure to rank the 

performance of signalized intersections. The 90
th

 percentile of delay can also be used to provide 

a sense of the cumulative distribution of the magnitude of delay 

However, it is important to consider the number of road users that are inconvenienced by poorly 

performing intersections. When considering two intersections with equal average delays, it is 

intuitive to first improve the performance of the intersection for which the largest number of 

travelers will benefit. The number of transit trips that experienced delay is used as a proxy for the 

number of travelers that are inconvenienced at a particular intersection. 

It is important to know when the queue spills back into the upstream intersection and impairs its 

operations. However, as the lengths of the segments are not constant, setting a fixed maximum 

queue length criteria is not appropriate. For example, the distance between two consecutive 

intersections could be long (e.g. 1000m) and therefore, a maximum queue of 250 meters would 

be inconsequential. On the other hand, for short segments a maximum queue length of 250 

meters could mean the queue has spilled over into the upstream intersection. 

Based on the above rationale, average stopped delay, 90
th

 percentile of delay, ratio of maximum 

queue length to segment length and percentage  of transit trips that experience delay at a given 

intersection approach are used to prioritize the operational quality of signalized intersection 
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approaches. When multiple bus routes traverse a given intersection approach, it is possible for 

the buses servicing the different routes to make different turning movements at the intersection. 

Within the context of this work, no special provision is given to the different turning movements 

– although this could be an area for additional research.  

The value of the factors used for ranking are aggregated by weighting the values based on the 

number of trips traversing a given intersection approach.  

The proposed index takes a value between 0 and 1, where 1 indicates the worst performing 

intersection. The ranking index is calculated as: 
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where   

RI = Ranking index for intersection approach j 

WTj = Weighted percentage of transit trips incurred delay at intersection approach j  

WSDj = Weighted average stopped delay for intersection approach j (seconds/trip) 

WNDj = Weighted 90
th

 percentile stopped delay for intersection approach j 

(seconds/trip) 
Dij = Average stopped delay for route i on approach j, seconds 
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NTripi = Number of transit trip for a given route 

nr = Total number of routes traversing the intersection approach j 

Tij = Percentage of transit trips on route i incurred delay at intersection approach j 

ij  = 90
th

 percentile delay for route i on approach j, seconds 

WTMAX = max{WTj, j = 1,2,3,…,N} 

WSDMAX = max{WSDj, j = 1,2,3,…,N}  

WNDMAX = max{WNDj, j = 1,2,3,…,N}  

jQ  = Queue length for intersection approach j 

MAXQ  = Max{Qj, j = 1,2,3,…,N} 

WWT = Weighting factor for percentage of transit trips incurred delay  

WWSD = Weighting factor for weighted average stopped delay  

WWND = Weighting factor for weighted 90
th

 percentile  stopped delay 
WQ = Weighting factor for queue length  

i = Index of the routes 

j = Index of the intersections approach being ranked 

N = Number of Intersection approaches 

  

The value of the weighting factors are dependent on the objective that the agency is trying to 

achieve. For example, if the objective is to improve transit performance and reduce transit 

operation cost, then more weight should be given to intersection approaches that are traversed by 

the greatest number of transit vehicles. Each weighting factor must have a value between 0 and 1 

and the sum of the three weighting factors must be equal to 1.  
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Chapter 5 

Evaluation of the Proposed Methodology 

In this chapter the proposed methodology is calibrated and evaluated using field data and 

simulation. Specifically the scheduled and unscheduled stop observations reported by the 

AVL/APC data are used to calibrate the parameters of the proposed dwell time and red interval 

estimation models. Furthermore, the stop location of the unscheduled stop observations are used 

to calibrate the boundary line algorithm. Then the estimates of average delay and maximum 

queue length obtained from the proposed methodology are validated against field measurements 

and simulation. 

5.1 Model Calibration and Evaluation using Monte Carlo Simulation  

The GRT’s AVL/APC data is used to calibrate and evaluate the proposed methodology. Using 

AVL/APC data from the field permits a more accurate representation of the error and variability 

existing in the real world and specifically the variability in dwell time that cannot be explained 

by the dwell time estimation model. 

In the proposed methodology, the red interval of an intersection is estimated based on the 95
th

 

percentile of the difference between the total stop time and the estimated dwell times of the bus. 

The dwell time of the bus is estimated stochastically to account for the variability in dwell time 

data not explained by the passenger activity variables. Therefore, the error associated with the 

dwell time estimation model becomes inherent into the red interval estimation.  

Furthermore, the estimation of red interval duration is dependent on observing the scenario in 

which the transit vehicle arrives at the near-sided station during the green interval, serves the 

station and as it’s about to clear the station the signal turns red. Only in this scenario is the red 

interval equal to the difference between the bus total stop time and dwell time. To be able to 
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estimate the red interval, this particular scenario should be available within the dataset. It is 

assumed that with a large dataset of scheduled observations this scenario is available.  

This chapter endeavours to answer the following questions: 

1. What is the accuracy of the dwell time estimation model? 

2. How many scheduled observations are needed for accurate red interval estimation? 

3. How accurate is the estimated red interval? 

To answer these questions we conduct a Monte Carlo simulation using AVL/APC data for which 

the actual dwell time and red interval are known. 

In the next section we describe how the AVL/APC data are used to generate scenarios that are 

then used to calibrate and evaluate the dwell time and red interval estimation models (described 

in Sections 5.1.2 and 5.1.3, respectively). 

5.1.1 Scenario Generation 

The AVL/APC data from the same 14 transit stations presented in Table 4-3 are used. These 

stations are far-sided transit stations with no bus bay or layover times scheduled and were not 

influenced by any traffic control or other geometric features. Therefore, we can reasonably 

assume that the dwell time is equal to the total stopped time as recorded in the AVL/APC data. 

In the MCS we assume that the observed AVL/APC data were obtained from near-sided transit 

stations and therefore we treat these data as scheduled stops. However, as depicted in Figure 5-1, 

for these near-sided transit stations the duration of the total stop time, TS, is a function of the 

dwell time (DW) and the impact of the traffic signal. From the observed AVL/APC we know the 

dwell time but we must simulate the effect of the traffic signal in order to determine the value of 

TS.  
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Figure 5-1: The Schematic for Generating Total Stop Time of the Bus. 

As indicated in Figure 5-1, if the bus arrives at the intersection during the green interval and 

finishes serving the station before the start of the red interval, then TS will be equal to dwell 

time. However, if the bus arrives at the intersection during the green interval and the signal turns 

red before the end of the dwell time, then TS will be equal to the time the bus arrived at the 

intersection until the end of the red interval.  

Thus TS is a function of the arrival time of the bus relative to the signal timing and the duration 

of the red interval, both of which are treated within the MCS as random variables as described 

below.  

A variable t is defined as the time from the beginning of the green interval until the end of the 

dwell time. A value for t is randomly generated based on the uniform distribution with the 

constraint that DW ≤ t ≤ C (C = cycle length). Variable tarr,i, represents the time the transit 

vehicle, i, arrived at the intersection and is computed as: 
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iiarr DWtt ,  (35) 

The green interval is calculated as the difference between the cycle length and red interval; 

where the cycle length, C, is a known fixed value and the red interval is randomly generated 

based on the range defined in Table 5-1.  

The scenario generation simulation is carried out for a set of cycle times with a defined range of 

red interval, as presented in Table 5-1. Since the analysis is conducted for the peak period, it is 

expected that the traffic volume and the signal timings stay relatively constant. For this reason a 

small variation of 5 seconds in the red interval duration is selected.  

Table 5-1: Cycle Length and Red Interval Duration 

Cycle Length (Seconds) Minimum Red Interval (Seconds) Maximum Red Interval (Seconds) 

60 30 35 

70 35 40 

90 45 50 

105 50 55 

120 55 60 

Figure 5-2, demonstrates the scenario generation process. For each simulation trial, one 

AVL/APC data is selected randomly from the database then the scenario that describes the 

arrival of the bus at the signalized intersection relative to the signal timing is generated. The 

steps taken for each observation i, are as follows: 

1. One of the available scheduled stop observations is randomly selected based on the 

uniform distribution. The passenger activity (Bi, Ai) and the actual dwell time (DWi) of 

the bus are obtained. 

2. The duration of the red interval, 𝑅𝑖 , is randomly chosen between the predetermined 

ranges (obtained from Table 5-1), based on the uniform distribution. 

3. The green interval is calculated as, 
ii RCG   

4. A number between dwell time (DWi) and the cycle length is randomly selected to 

represent variable 𝑡𝑖. 
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5. The time at which the transit vehicle arrives at the station, 𝑡𝑎𝑟𝑟,𝑖, is computed as 

iiiarr DWtt ,  

6. The total stop time can be calculated as follows: 











 


ii

iiii

i

iarr

Gtif

DWtandGtif

DW

tC
TSi

,  (36) 

7. The passenger activity (Bi, Ai) and total stop time (TSi) are used as input in Sections 5.1.2 

and 5.1.3 to estimate the dwell time and the red interval respectively. The actual dwell 

time (DWi) and red interval (Ri) are used to evaluate the proposed methodology. 

 

Once the scenario is generated, the passenger activity information (Bi, Ai) and the generated total 

stop time (TSi) are used to estimate dwell time (
^

iDW ) as described in section 4.2.2. The red 

interval is estimated based on the 95
th

 percentile of the difference between TS and n dwell time 

estimated trials for all the considered observations. Section 5.1.2 evaluates the accuracy of dwell 

time estimation model and Section 5.1.3 examines the accuracy of the red interval estimation.  
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Figure 5-2: Schematic of the Scenario Generation Process Conducted for Each Observation 

5.1.2 Evaluating the Dwell time Estimation Model 

The stochastic form of the dwell time estimation model was hypothesized to account for more of 

the variability in dwell time in comparison to linear and non-linear regression models. However, 

due to the stochastic nature of the model, dwell time can take a range of values. Therefore, a 

certain number of MCS trials, n, is carried out to converge dwell time to its mean value.  

To determine the number of MCS trials (n) required to accurately estimate dwell time the 

following steps are carried out: 
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1. For a randomly selected scheduled observation i, Nbi, Nai, TSi, DWi, information are 

obtained from the scenario generation process described in section 5.1.1. The passenger 

activity information is used to estimate DW  in order to construct the appropriate Poisson 

distribution for the observation. TSi is used to update the distribution, as described in 

section 4.2.2. 

2. n MCS trials are carried out to obtain n estimates of dwell time(where n starts from 5 and 

increases in increments of 5). The notation DWi,j represents the dwell time estimated for 

observation i in MCS trail j of n trials. 

3. The n number of dwell times are averaged , 



n

j

jiestimatei DW
n

DW

1

,,
1

 

4. Absolute error of dwell time is calculated as: 

estimateiactualii DWDWErrorAbsolute ,,   

5. The steps from 1 to 4 are repeated for all the available observations from the 14 stations. 

6. The Root Mean Square Error (RMSE) is calculated using:  





Num

i

ii OP
Num

RMSE

1

2)(
1

 

(37) 

where   

Pi = Predicted value of dwell time for observation i  

Oi = Observed value of dwell time for observation i  

Num = Number of observations  

7. The number of MCS trials, n, is increased by 5 and the process (Steps 1-6) is repeated.  
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RMSE measures the average error of the predicted values. The values of RMSE can range from 

0 to infinity where 0 indicates a perfect match between predicted and observed values. The 

RMSE results from the analysis are presented in Table 5-2. From these results it can be observed 

that the improvement (reduction) in RMSE is marginal for n greater than 20 and consequently n 

= 20 was chosen.  

Table 5-2: The RMSE Associated With Each of the Number of MCS Trials 

Number of MCS, n 5 10 15 20 25 30 

RMSE 8.37 7.45 7.19 4.69 4.68 4.67 

Figure 5-3, presents the estimated vs. observed dwell time plots for the stochastic model 

proposed (using 20 MCS trials) and the deterministic ordinary least square (OLS) regression 

model. The trend-line of the OLS model has a R
2
 of 0.29, while the R

2 
of the proposed stochastic 

model is 0.50. The proposed model can explain 50 percent of the variability in dwell time data - 

a significant improvement over the dwell time regression model suggested by the literature.  
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(a) Performance of the Stochastic Dwell Time 

Estimation Model 

 

(b) Performance of the Deterministic Dwell Time 

Estimation Model 

Figure 5-3: Comparison of Estimated vs. Observed Plots of Stochastic and Deterministic 

Dwell Time Estimation Models 
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5.1.3 Evaluating the Red interval Estimation Model 

To answer the questions: (1) how many scheduled stop observations are needed to estimate the 

red interval and (2) what is the associated error with the red interval estimation, another MCS is 

conducted. 

The simulation process, which consists of two modules, is depicted in Figure 5-4. Module 1 

estimates the dwell time as described in the previous section. Module 2 calculates the red 

interval. As indicated in Figure 5-4, the red interval is estimated on the basis of N scheduled stop 

observations (i = 1, N). We first determine how the red interval duration estimation error varies 

as a function of N.  



 

86 

 

i = i + 1

i <= N

i

N = 200

END 

SIMULATION

TRUE

N = N + 5 FALSE

START

Initial value of N = 5, i = 1
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Observation i
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For all j
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Figure 5-4: Flow Chart of Absolute Error Simulation 
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The simulation process is summarized below: 

Module 1  

a. For a randomly selected scheduled observation i, Nbi, Nai, TSi, Ri, information is obtained 

from the scenario generation process described in section 5.1.1. 

b. Ri, is the input in Module 2 for the actual red interval calculation. 

c. The passenger activity information is used to estimate DW  in order to construct the 

appropriate Poisson distribution for the observation. TSi is used to update the distribution, 

as described in section 4.2.2. 

d. Conduct 20 Monte Carlo Simulation (MCS) trials (MCS trial ID = j) using Equation (22)  

( njDW ji ,1;,  ) 

e. Compute jiiji DWTS ,,  for all j. ji,  is the input for Module 2 in the red interval 

estimation calculation. 

Module 2 

a. The red interval is estimated for the N number of observations. The duration of the red 

interval, EstimatedR , is estimated as the 95
th

 percentile of the difference between the total 

stop time and the dwell time trials for the N considered observations. 

b. The actual red interval, ActualR , is calculated as the average of the red intervals generated 

for the N considered observations. 

c. The absolute error is calculated as, ActualEstimated RRErrorAbsolute   

40 simulation trials are carried out for each cycle length. Since observations are selected 

randomly, the initial pattern of absolute error with respect to the number of observations is 

dependent on which observations and scenarios are selected first. In order to avoid this bias and 

converge to the average absolute error associated with each number of observations, the 

simulation process is repeated 10 times so that there are 10 absolute error values associated with 

each number of observations for a given cycle length. The absolute errors are averaged for each 

number of observations are presented in Figure 5-5. 
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The pattern observed in Figure 5-5, demonstrates that as the number of observations increases 

the average absolute error in the estimate of red interval decreases. 

 

Figure 5-5: Average Absolute Error versus. Number of Observation Plot for Various Cycle 

Lengths 

During the peak service hours GRT routes operate with the following headways: 36 routes with 

30 minute headway; 12 routes with 15 minute headways; and 2 routes with 1 hour headways. 

The summary of the number of scheduled stop observations detected during the peak period 

(4:30 PM– 6 PM) at the near-sided transit stations is provided in Table 5-3. At minimum, there 

are 5 scheduled observations available for each headway category which from Figure 5-5 

suggests absolute error for the red interval estimation ranging from 10.4 to 17.2 seconds. 

However, if instead of considering the minimum number of observations obtained at any of the 

intersections we consider the 10
th

 percentile instead (i.e. 15 observations) then, from Figure 5-5 

we expect the absolute error in the red interval duration to range from 4.6 to 10 seconds 
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(approximately 8% of the cycle length). We assume that this level of accuracy is sufficient for 

estimating the stop delays. Appendix B presents histograms of the number of observations for 

each of the headway categories. 

Table 5-3: Number of Scheduled Stop Observations Available at Near-sided Transit 

Stations During PM Peak Period (4:30 – 6:00 PM) 

 Number of Observations 

Service Headway (minutes) Average   Minimum  10
th

  Percentile Maximum  

15 194 5 31 983 

30 122 5 14 469 

60 53 7 15 118 

5.2 Validating the Model using VISSIM Simulation 

The archived AVL/APC data do not contain any information about signal timing and therefore it 

was not possible to validate the proposed model, particularly the model for estimating the red 

interval duration, using the AVL/APC data. Instead, simulation was chosen as the method of 

validation because one of the main objectives was to validate the proposed red interval 

estimation methodology. Simulation also allows for the validation of the assumption that transit 

vehicles can be used to estimate the average delay incurred by passenger vehicles.  

To this end, a hypothetical arterial segment was constructed in VISSIM, consisting of two 

signalized intersections and one un-signalized intersection as illustrated in Figure 5-6. The 

upstream intersection operates under fixed signal timing for which the through movement 

experiences a signal timing of: red interval = 22 seconds, green interval = 35 seconds and amber 

interval = 3 seconds (cycle length= 60 seconds). 

The downstream intersection is a T-intersection which operates under a four-phase signal timing 

plan in which the protected phase for the westbound left-turn movement is actuated. An actuated 

timing plan is used so that the red interval duration is not fixed, but varies depending on the 

extensions that occur for the actuated phase. Phase one corresponds to the protected left turn on 
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the westbound approach (Figure 5-6 (b)), with a minimum effective green interval of 5 seconds 

and extends at intervals of 3 seconds in response to vehicle actuations to a maximum of 20 

seconds.  

 

Figure 5-6: Hypothetical Arterial Segment Used for Validating the Proposed Models. 
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A transit route runs eastbound on the segment and serves the near-sided station at the 

downstream intersection. This route is served by buses which have a headway of 15 minutes 

corresponding to the shortest headway scheduled for GRT routes. The 15 minute headway 

provides the maximum expected number of observations within a month of operation. It also 

ensures that the interval between the buses arriving at the intersections is large enough to exclude 

the effects of bus bunching.  

The passenger demand at the transit station is assumed to follow a Poisson distribution with the 

mean arrival rate equal to 20 passengers per hour. 20 passengers per hour for boarding 

passengers represents the average number of boarding passengers observed from GRT’s 

AVL/APC data. Alighting demand is set to 3% of the load on the bus (the number of passengers 

already on the bus is set to be 10 passengers). 

One long simulation run, with a duration of 35 hours, was conducted, with a 30 minute warm up 

period. This simulation captured 138 transit trips (equivalent to the number of transit trip 

observations expected in an archived AVL/APC dataset during the peak hour over a one month 

period). The passenger vehicle demand simulated in the network is based on constant demand 

rates provided in Table 5-4. 

Table 5-4: Passenger Vehicle Demand Input for the Simulated Network 

Input No. Volume (veh/hr) 

Eastbound Through 2000 

Westbound Through  1530 

Westbound Left 100 

Northbound Left 170 

Northbound Right 230 

The travel time measurement segment was defined, as indicated in Figure 5-6, to obtain the 

stopped delay incurred by the vehicles due to the downstream signalized intersection. The queue 

length at the downstream intersection was measured by placing a queue counter at the stop line. 

The queue was counted from the location of the queue counter to the most upstream vehicle on 
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the approach having a speed less than 10 km/hr. Figure 5-7 presents the histogram of the 

maximum queue length outputted from VISSIM. 

 

Figure 5-7: Histogram of Maximum Queue Length Obtained From the VISSIM Simulation 

The signal timing was extracted from VISSIM to determine the red interval duration for the 

through lanes on the eastbound approach to the downstream intersection. The red interval 

duration, which varied as a result of the actuated protected left turn phase, ranged from 25 to 30 

seconds, with a mean of 25.5 seconds. For approximately 80% of the cycles, the red interval 

duration was 25 seconds. The histogram of the red interval during the simulation is presented in 

Figure 5-8.  
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Figure 5-8: Histogram of the Red Interval Implemented in the Simulation 

The transit vehicles’ GPS coordinates, passenger activities, dwell times and waiting times 

(defined as the events that the transit vehicle stopped for reasons other than to allow passenger 

activity at the stop (PTV, 2011), i.e. it represents the unscheduled stop observations) were 

obtained from VISSIM. The stop events occurring within 10 meters of the transit station were 

labelled as scheduled stops and their corresponding dwell time was added to their waiting time. 

All other stop events were labeled as unscheduled stops. For each stop event, the total stopped 

time was recorded. For scheduled stop events, the total stopped time included dwell time and any 

additional waiting time as a result of the traffic signal operation.   

The original dwell time estimation model was developed using the Region of Waterloo’s 

AVL/APC data. Considering the simulation environment as another region, the dwell time model 

required recalibration since passenger behavior varies for different regions. Therefore, the dwell 

time estimation model was recalibrated based on passenger activity data obtained from VISSIM.  

The number of boardings (Nb) and number of alightings (Na) from the simulation ranged from 1 

to 19 and from 1 to 3, respectively. The distributions of transit vehicle dwell times as a function 
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of Nb and Na are shown in Figure 5-9(a) and (b) respectively. It can be observed that there is a 

substantially smaller variation in the simulated dwell times than in the field data (i.e. Figure 5-9).  

 
 

 (a) Dwell Time as a Function of Number of 

Boarding Passengers  

 
 

(b) Dwell Time as a Function of Number of Alighting 

Passengers 

  

Figure 5-9: Variation of Simulated Dwell Time and Passenger Activity Data 

Equation (38) presents the linear regression model developed for estimating the dwell time as a 

function of the number of boarding passengers (Nb). The number of alighting passengers was not 

statistically significant, likely as a result of the small range of values for Na, and was excluded 

from the model. The constant and intercept values were statistically significant and the model 

demonstrated a good fit to the data with R
2
 = 0.72 as illustrated in Table 5-5. 

NbDW 22.03.9
^

  
(38) 
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Table 5-5: Dwell Time Estimation Regression Results Based on VISSIM Data 

Regression Statistics 

Multiple R 0.85 

 

R Square 0.72 

Adjusted R Square 0.72 

Standard Error 0.57 

Observations 139.00 

Analysis of Variance (ANOVA) 

 Source 

Degree of 

Freedom 

(df) 

Sum of 

Squares 

(SS) 

Mean 

Square 

(MS) F-test 

Significance 

F 

Regression 1.00 117.52 117.52 357.83 0.00 

Residual 137.00 44.99 0.33 

   Total 138.00 162.51     

  Coefficients 

Standard 

Error t Stat P-value 

 

Intercept 9.30 0.08 110.53 0.00 

Nb 0.22 0.01 18.92 0.00 

 

Equation (38) is used to estimate the dwell time of each scheduled observation. Next the red 

interval duration is estimated based on the 95
th

 percentile of the difference between total stop 

time of the transit vehicles and the dwell time (estimated by Equation (38)).  

Then all the near-sided scheduled observations were classified into one of the aforementioned 3 

scenarios and their corresponding stopped delays were estimated. The stopped delay was 

estimated for all scheduled and unscheduled observations. The proposed BL was calibrated to the 

stop observations, presented in Figure 5-10. The observations under the BL were used to 

estimate the intersection’s average delay and maximum queue length. 
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Figure 5-10: The Boundary Line Calibrated to the Simulated Scheduled and Unscheduled 

Stop Observations 

The delay and queue length estimated by the proposed methodology were compared to the 

measurements extracted from VISSIM (Table 5-6). 
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Table 5-6: Comparison of Performance Measurements Obtained From VISSIM and 

Estimated By the Proposed Methodology. 

Measure of Performance 
 Observed 

(VISSIM Output) 

Estimated Using  

Proposed Method 

 Red Interval Duration
*
 (seconds) 

Minimum 25 -- 
Mean 25.5 -- 

Maximum 30 -- 

95
th 

percentile 28 24 

Stopped Delay (seconds) 

Average 3.70 3.8 

Standard 

Deviation 
6.60 7.4 

Queue Length (meters) Maximum 47.9 45.9 

Number of Trips (Vehicle) Total  67368 138 
*
 Red interval duration for the through lanes on the eastbound approach to the downstream intersection 

The 95
th

 percentile of the red interval durations was extracted from VISSIM. These data show 

that the simulated red interval durations ranged from 25 to 30 seconds with a 95th percentile of 

28 seconds. The 95
th

 percentile red interval duration estimated by the proposed method was 24 

seconds representing a relative error of 14% compared to the 95
th

 percentile red interval duration 

from the simulation. 

A 2-tailed t- test at 95% confidence level was used to determine if the average stopped delay 

estimated by the proposed methodology was statically different from that measured in the 

simulation environment. The results indicate there is no evidence to conclude that the observed 

and estimated average stopped delays are different.  

The t-test cannot be used to compare the observed and estimated queue length as the queue 

lengths are not a mean. Instead the relative error was used to evaluate the accuracy of the 

maximum queue estimation. The relative error of maximum queue length was found to be 4%. 

These results demonstrate that the proposed methodology could accurately estimate the 

downstream intersection’s average stopped delay and maximum queue length.  
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These results indicate that, at least within the simulation environment, the proposed methodology 

can accurately estimate average stopped delay and maximum queue length. We recognize that 

the level of variation encountered within the real world may be larger than the variation 

exhibited by the simulation data and therefore these performance results should be interpreted as 

indicative rather than conclusive. In the next section, we examine the performance using field 

data. 

5.3 Validation of the Maximum Queue length estimated by the Boundary Line 

Algorithm  

Ten intersections were selected for which Yang and Hellinga’s (2012) boundary line fitting 

method provided poor results and as a result, the performance measurements were erroneously 

estimated. The new proposed boundary line algorithm was applied to the data of these segments. 

Figure 5-11 shows for a sample intersection approach (for University at Hazel) a comparison of 

(A) the boundary line  calibrated using Yang and Hellinga’s (2012) BL algorithm, and (B) the 

boundary line calibrated using the BL fitting algorithm proposed in this thesis.  

As mentioned previously there is a parking lot entrance 75m from the stop-line of University at 

Hazel intersection, as shown in Figure 5-12. The proposed BL algorithm correctly distinguished 

the stop observations that are caused by the traffic signal operations from those that are caused 

by other factors (e.g. buses having to stop as a result of vehicles entering or existing the parking 

lot) and estimates the maximum queue length as 35 meters. It should be noted that an 

independent measure of the maximum queue length was not available. Consequently, the ability 

to validate the accuracy of the proposed boundary line fitting algorithm was limited to a 

qualitative assessment of quality of the fit of the boundary line and the estimated queue length 

with respect to the plot of the stopped delay observations within a GIS. Despite these limitations, 

it appears that the proposed fitting algorithm is more robust than the algorithm from Yang and 

Hellinga (2012). The results from the remaining selected segments show similar improvements. 

The remaining plots are presented in Appendix C. 
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(A) Yang and Hellinga’s Algorithm 

 

(B) Proposed Algorithm 

Figure 5-11: Comparison of the BL Fitted to Stop Observations of University at Hazel 

Intersection 

0

20

40

60

80

100

120

140

160

0 50 100 150

D
el

a
y

 (
S

ec
) 

Distance (m) 

all stops selected stops boundary line

0

20

40

60

80

100

120

140

160

0 50 100 150
D

el
a

y
 (

S
ec

) 
Distance (m) 

all stops selected stops boundary line



 

100 

 

 

 

Figure 5-12: The Unscheduled Stop Observations Superimposed on Google Maps for 

University at Hazel Intersection [Source: Google Maps] 

5.4 Validation using field data 

The proposed methodology is applied to 5 intersections that are traversed by one transit route 

serving the far-sided transit station while another route serves the near-sided transit station. This 

permits a direct comparison of the performance measures obtained from buses that service a 

near-sided stop with performance measures obtained from buses that do not service the stop.  

The results illustrate the ability of the proposed methodology to accurately estimate the average 

stopped delay and maximum queue length of the intersections.   

The proposed model addresses the unique challenges of intersection approaches with near-sided 

transit stations and therefore AVL/APC data were extracted for intersections which were 

traversed by at least one transit route servicing a near-sided transit station and at least one transit 

route that did not service a near-sided transit station. Data were obtained for a total of five 

intersections that met these criteria. The boundary line fitting algorithm proposed in this thesis 

was used to fit a boundary line to the stopped delay of the unscheduled stop observations 

35 m 
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obtained from the transit routes which did not service the near-sided transit station. The stop 

observations under the boundary line were used to estimate the average stopped delay and 

maximum queue length (essentially Yang and Hellinga’s methodology is carried out with the 

boundary line fitting algorithm proposed in Section 4.3). These estimates are considered as the 

benchmark.   

The methodology proposed in this study scheduled stop observations was applied to the 

AVL/APC data obtained from the transit routes which did service the near-sided transit station. 

Both transit routes traverse the same intersection approach and therefore we expect the estimates 

of stopped delay and queue length (which are intended to be an estimate of the delays and queue 

lengths experienced by general purpose vehicles) obtained from the proposed method to be 

similar to the benchmark estimates. 

Table 5-7 provides the average stopped delay, HCM Level of Service
6
, standard deviation of 

stopped delay, maximum queue length and number of transit trips from the benchmark method 

and from the proposed method for all five intersection approaches. The benchmark results 

indicate that average stopped delays range from approximately 1 second to 25 seconds 

representing a range in LOS from A to C. The results from the proposed method provide a range 

of stopped delays from 1 to 16 seconds and provide the same LOS for each intersection as the 

benchmark method. A paired t-test (at 95% confidence level) was conducted to determine if the 

average stopped delays estimated by the two methods were statistically different. For all five 

intersections, the calculated t-value is less than the critical value of 1.96 indicating that there is 

not enough evidence to suggest that the two methods provide statistically different estimates of 

average delay. 

                                                 
6
 The Highway Capacity Manual defines LOS on the basis of the average vehicle control delay. Control 

delay is generally considered to be 1.3 times greater than stopped delay and this is the conversion used to establish 

the LOS in Table 2. 
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Relative error was used to measure the accuracy of the queue length estimated. The maximum 

queue lengths calculated are based on a single value and unlike the mean that represents the 

whole distribution, they are prone to extreme variations. This explains the significant differences 

between the maximum queue lengths of some segments estimated from the two methods which 

ranges from 3% to 33%. 

Table 5-7: Comparison of Estimates from Proposed Method With Benchmark Estimates 

  
Charles at 

Benton 

Charles at 

Cedar 

Columbia 

at Albert 

Columbia 

at Hagey 

Courtland 

at Stirling 

B
en

ch
m

ar
k
 

Avg Stopped Delay 

(Sec) 
7.16 2.10 8.45 10.64 19.77 

LOS A A B B C 

Std of Delay (Sec) 11.92 5.80 9.84 16.4 24.89 

Max. Queue (m) 53.00 30.00 112.00 90.00 56.00 

Number of trips 390 390 142 457 194 

P
ro

p
o
se

d
 

M
et

h
o
d
 

Avg Stopped Delay 

(Sec) 
7.22 4.33 9.58 14.64 15.54 

LOS A A B B C 

Std of Delay (Sec) 13.11 8.10 18.92 23.37 22.28 

Max. Queue (m) 48.00 40.00 115.00 98.00 58.00 

Number of Trips 244 295 142 457 244 

 tcalc for Delay 0.02 0.90 0.32 0.96 0.81 

 tcritical for Delay 1.96 1.96 1.96 1.96 1.96 

 
Relative Error of 

Queue Length 
9% 33% 3% 9% 4% 
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Chapter 6  

Ranking Signalized Intersections  

The real world application of ranking signalized intersections on the basis of the performance 

measures estimated from the proposed methodology is demonstrated in this Chapter. Three 

months of AVL/APC data were obtained from the Grand River Transit (GRT) agency (2013/9-

2013/11). The data were filtered to only include the pm peak period (4:30 pm to 6:00 pm) for 

non-holiday weekdays from in-service transit trips. The proposed methodology was used to 

estimate intersection operational performance measures on the basis of the archived AVL/APC 

for the signalized intersections within the road network in the Region of Waterloo. Then the 

intersections are prioritized based on the estimated average stopped delay, 90
th

 percentile of 

stopped delay, percentage of trips that incur delay and maximum queue length. 

The portions of transit routes containing far-sided transit stations have been segmented as part of 

previous work. There are 800 far-sided segments available for analysis. However, due to time 

constraints only 20 intersections with near-sided transit stations have been segmented. The 

proposed methodology is applied to all the available near-side and far-side segments.  

The ranking process is a subjective process. Agencies may define different criteria and weighting 

factors to prioritize intersections based on the objectives they want to achieve. Here intersection 

approaches are ranked using the procedure described in Section 4.6. Equal weights (1/4) have 

been assigned to each factor (i.e. average stopped delay, 90
th

 percentile of stopped delay, 

percentage of trips that incur delay and maximum queue length). Equation (39) is used to rank 

the intersection approaches. 

The worst 20 (worst performing) intersection approaches are identified in Table 6-1. The 

complete list of ranked intersection approaches is provided in Appendix D. 
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where   

RI = Ranking index for intersection approach j 

WTj = Weighted percentage of transit trips incurred delay at intersection approach j  

WSDj = Weighted average stopped delay for intersection approach j (seconds/trip) 

WNDj = Weighted 90
th

 percentile stopped delay for intersection approach j 

(seconds/trip) 
WTMAX = max{WTj, j = 1,2,3,…,N} 

WSDMAX = max{WSDj, j = 1,2,3,…,N}  

WNDMAX = max{WNDj, j = 1,2,3,…,N}  

jQ  = Maximum Queue length for intersection approach j 

MAXQ  = Max{Qj, j = 1,2,3,…,N} 

i = Index of the routes 

j = Index of the intersections approach being ranked 

N = Number of Intersection approaches 
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Table 6-1: Worst 20 Signalized Intersection Approaches in Waterloo Region Ranked Based 

on Equation (39) 
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HESPELER_AT_Eagle_And_Pinebush 3 687 42.94 79.76 0.67 349 0.90 E 

HOMER_WATSON_AT_ManitouAndDoon_Village 4 506 31.14 69.04 0.69 224 0.71 D 

FOUNTAIN_AT_Shantz_Hill 3 521 27.47 51.95 0.70 266 0.68 D 

FAIRWAY_AT_Lackner 1 145 31.99 96.80 0.58 99 0.66 D 

VICTORIA_AT_Natchez 1 141 36.61 75.00 0.75 50 0.65 D 

FRANKLIN_AT_Pinebush 3 393 17.70 52.51 0.50 370 0.64 C 

KING_AT_Fountain 1 142 19.84 43.20 0.76 268 0.63 C 

HESPELER&WATER_AT_Coronation_And_Dundas 6 1906 27.72 77.00 0.53 170 0.62 D 

COURTLANDAndFAIRWAY_AT_Manitou 1 202 24.04 54.00 0.81 157 0.62 C 

WESTMOUNT_AT_Glasgow 1 296 14.76 40.00 0.54 365 0.60 B 

OTTAWA_AT_Homer_Watson 6 1601 26.47 72.85 0.52 163 0.60 C 

FRANKLIN_AT_Savage 1 147 31.54 73.00 0.67 45 0.59 D 

WATER_AT_Main 2 282 25.90 48.58 0.73 142 0.58 C 

WESTMOUNT_AT_Williamsburg 1 290 27.62 66.00 0.78 35 0.57 D 

FISCHER_HALLMAN_AT_Columbia 2 743 23.86 51.96 0.68 155 0.57 C 

NORTHFIELD_AT_Kraus 1 297 29.82 72.00 0.67 34 0.57 D 

HOMER_WATSON_AT_Conestoga_College 5 664 22.82 65.52 0.52 176 0.57 C 

HOMER_WATSON_AT_Bleams 3 557 21.86 62.05 0.57 175 0.56 C 

NORTHFIELD_AT_Skylark 1 285 31.02 69.00 0.66 35 0.56 D 

FRANKLIN_AT_Elgin_And_Saginaw 2 289 25.44 65.73 0.57 125 0.56 C 

Note: 

 The blue shaded rows represent the 7 worse performing intersection approaches that appear in the top 20 regardless 

of the weighting factors values. 
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Figure 6-1, graphs the ranking index calculated using Equation (39) versus the rank of the 

intersection approaches. Figure 6-1, illustrates that the relationship between the ranking index 

and intersection’s ranking is not a linear relationship. In fact merely a handful of intersection 

approaches are clearly ranking higher than the proceeding intersection approach. 

 

Figure 6-1: Ranking Index vs. Rank of Intersection Approaches 

In order to acquire a better understanding of the sensitivity of the ranking results to the weighting 

factors, intersection approaches are ranked based on each factor separately. Table 6-2 to Table 

6-4 summarizes the top 20 worse performing intersection approaches based on average stopped 

delay, 90
th

 percentile of stopped delay, and percentage of trips that incurred stopped delay, 

respectively.  

The survey of the 4 tables (Table 6-1-Table 6-4) reveal that 7 intersections consistently appear in 

the worse 20 intersection approaches. The 7 intersections are shaded in blue in the following 

tables and are listed below: 
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1. Hespeler at Eagle and Pinebush 

2. Homer-Watson at Manitou and Doon Village 

3. Victoria at Natchez 

4. Franklin at Savage 

5. Westmount at Williamsburg 

6. Northfield at Kraus 

7. Northfield at Skylark 

These 7 intersections will be identified as within the top 20 worst performing intersection 

approaches regardless of the value of the weighting factors used. The unscheduled stop 

observations of the buses from these intersections are superimposed on Google maps in 

Appendix E. The figures in Appendix E provide a visual verification of the performance of these 

intersection approaches.   
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Table 6-2: Worst 20 Signalized Intersection Approaches in Waterloo Region Ranked Based 

on Weighted Average Stopped Delay 
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HESPELER_AT_Eagle_And_Pinebush 3 687 42.9 79.8 0.7 349 1.0 E 

VICTORIA_AT_Natchez 1 141 36.6 75.0 0.8 50 0.9 D 

FAIRWAY_AT_Lackner 1 145 32.0 96.8 0.6 99 0.7 D 

FRANKLIN_AT_Savage 1 147 31.5 73.0 0.7 45 0.7 D 

HOMER_WATSON_AT_Manitou&DoonVillage 4 506 31.1 69.0 0.7 224 0.7 D 

NORTHFIELD_AT_Skylark 1 285 31.0 69.0 0.7 35 0.7 D 

NORTHFIELD_AT_Kraus 1 297 29.8 72.0 0.7 34 0.7 D 

KING_AT_Farmers_MarketHwy_85_SB_Ramp 1 148 28.2 68.3 0.7 39 0.7 D 

HESPELER &WATER_AT_Coronation&Dundas 6 1906 27.7 77.0 0.5 170 0.6 D 

WESTMOUNT_AT_Williamsburg 1 290 27.6 66.0 0.8 35 0.6 D 

FOUNTAIN_AT_Shantz_Hill 3 521 27.5 52.0 0.7 266 0.6 D 

OTTAWA_AT_Homer_Watson 6 1601 26.5 72.8 0.5 163 0.6 C 

WATER_AT_Main 2 282 25.9 48.6 0.7 142 0.6 C 

FRANKLIN_AT_Elgin_And_Saginaw 2 289 25.4 65.7 0.6 125 0.6 C 

FAIRWAY_AT_Wilson 4 842 24.4 62.9 0.6 130 0.6 C 

COURTLANDAndFAIRWAY_AT_Manitou 1 202 24.0 54.0 0.8 157 0.6 C 

FISCHER_HALLMAN_AT_Columbia 2 743 23.9 52.0 0.7 155 0.5 C 

FRANKLIN_AT_Can_Amera 1 147 23.8 46.0 0.8 93 0.5 C 

KING_AT_Weber_Wool 1 148 23.4 57.0 0.7 81 0.5 C 

DUNDAS_AT_Beverly 1 246 22.9 60.0 0.6 88 0.5 C 
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Table 6-3: Worst 20 Signalized Intersection Approaches in Waterloo Region Ranked Based 

on 90
th

 Percentile Stopped Delay 
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FAIRWAY_AT_Lackner 1 145 31.99 96.80 0.58 99 1.0 D 

KING_AT_Tu_Lane 1 245 21.10 83.00 0.35 158 0.9 C 

HESPELER_AT_Eagle_And_Pinebush 3 687 42.94 79.76 0.67 349 0.8 E 

HESPELER_&_WATER @Coronation_&_Dundas 6 1906 27.72 77.00 0.53 170 0.8 D 

VICTORIA_AT_Natchez 1 141 36.61 75.00 0.75 50 0.8 D 

FRANKLIN_AT_Savage 1 147 31.54 73.00 0.67 45 0.8 D 

OTTAWA_AT_Homer_Watson 6 1601 26.47 72.85 0.52 163 0.8 C 

NORTHFIELD_AT_Kraus 1 297 29.82 72.00 0.67 34 0.7 D 

HOMER_WATSON_AT_ManitouAndDoon_Village 4 506 31.14 69.04 0.69 224 0.7 D 

NORTHFIELD_AT_Skylark 1 285 31.02 69.00 0.66 35 0.7 D 

KING_AT_Farmers_MarketAndHwy_85_SB_Ramp 1 148 28.22 68.30 0.67 39 0.7 D 

WESTMOUNT_AT_Williamsburg 1 290 27.62 66.00 0.78 35 0.7 D 

FRANKLIN_AT_Elgin_And_Saginaw 2 289 25.44 65.73 0.57 125 0.7 C 

HOMER_WATSON_AT_Conestoga_College 5 664 22.82 65.52 0.52 176 0.7 C 

LANCASTER_AT_Guelph 1 144 22.83 64.20 0.50 44 0.7 C 

FAIRWAY_AT_Wilson 4 842 24.43 62.87 0.58 130 0.6 C 

HOMER_WATSON_AT_Bleams 3 557 21.86 62.05 0.57 175 0.6 C 

UNIVERSITY_AT_Lincoln 1 296 17.78 61.00 0.45 256 0.6 C 

DUNDAS_AT_Beverly 1 246 22.85 60.00 0.59 88 0.6 C 

WEBER_AT_Columbia 1 142 13.70 59.90 0.26 33 0.6 B 
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Table 6-4: Worst 20 Signalized Intersection Approaches in Waterloo Region Ranked Based 

on Weighted Percentage of Transit Trips with Delay 
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COURTLANDAndFAIRWAY_AT_Manitou 1 202 24.0 54.0 0.8 157 1.0 C 

ERBSVILLE_AT_Laurelwood 1 286 22.2 42.0 0.8 64 1.0 C 

WESTMOUNT_AT_Williamsburg 1 290 27.6 66.0 0.8 35 1.0 D 

FRANKLIN_AT_Can_Amera 1 147 23.8 46.0 0.8 93 1.0 C 

KING_AT_Fountain 1 142 19.8 43.2 0.8 268 0.9 C 

VICTORIA_AT_Natchez 1 141 36.6 75.0 0.8 50 0.9 D 

WATER_AT_Main 2 282 25.9 48.6 0.7 142 0.9 C 

COURTLAND_AT_Benton 1 290 18.9 38.0 0.7 63 0.9 C 

VICTORIA_AT_Edna 1 141 14.5 32.0 0.7 47 0.9 B 

FOUNTAIN_AT_Shantz_Hill 3 521 27.5 52.0 0.7 266 0.9 D 

HOMER_WATSON_AT_ManitouAndDoon_Village 4 506 31.1 69.0 0.7 224 0.8 D 

FISCHER_HALLMAN_AT_Columbia 2 743 23.9 52.0 0.7 155 0.8 C 

HESPELER_AT_Eagle_And_Pinebush 3 687 42.9 79.8 0.7 349 0.8 E 

FRANKLIN_AT_Savage 1 147 31.5 73.0 0.7 45 0.8 D 

NORTHFIELD_AT_Kraus 1 297 29.8 72.0 0.7 34 0.8 D 

KING_AT_Farmers_MarketAndHwy_85_SB_Ramp 1 148 28.2 68.3 0.7 39 0.8 D 

PARKHILL_AT_George 1 97 17.4 38.0 0.7 145 0.8 C 

NORTHFIELD_AT_Skylark 1 285 31.0 69.0 0.7 35 0.8 D 

KING_AT_Weber_Wool 1 148 23.4 57.0 0.7 81 0.8 C 

HIGHLAND_AT_Highland_Cres 1 139 20.3 40.0 0.7 30 0.8 C 
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Chapter 7 

Conclusion and Recommendations 

In this thesis a methodology is proposed to estimate the average stopped delay and maximum 

queue length at signalized intersections with near-sided transit stations using archived AVL/APC 

data.  

The performance of the proposed methodology was evaluated through a simulation study which 

demonstrated that the proposed methodology has the ability to estimate intersection performance 

measures with accuracy comparable to microscopic simulation. The proposed model was also 

applied to field data for five signalized intersections. The results confirm that the proposed 

model is able to effectively estimate average delay and queue length for signalized approaches 

containing near-side transit stations. Lastly, the amendment to the boundary line algorithm 

proved to perform better in detecting the extent of the predominant queue. The algorithm is able 

to distinguish between stopped delays caused by the traffic signal and other causes. Furthermore, 

the proposed method appears to be more robust than the method proposed by Yang and Hellinga 

(2012). 

The proposed methodology has only been validated for transit routes making through 

movements. Transit vehicles making turning movements at the intersections may experience 

additional delays as a result of yielding to pedestrians or opposing traffic (e.g. when making left 

turns during a permitted phase). The applicability of the proposed method to intersections where 

transit vehicles make turning movements requires further investigation. 

The methodology assumes that no layover time is scheduled at the near-sided transit stations. If 

layover time is scheduled and is not explicitly labeled in the AVL/APC data, this may introduce 

errors in the model estimates. Consequently, it is recommended that the proposed method not be 

applied to intersections with near-sided transit stations for which layover time is scheduled. 
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The proposed method has the potential to be implemented completely automatically. Currently 

processing of data through GIS involves manual work. This proves to be very time consuming 

when evaluating the entire network. As part of future work, it is suggested the process be 

automated. 

The proposed ranking index evaluated the performance of intersection approaches with no 

special provision given to the different turning movements made at a given intersection approach 

when multiple bus routes traverse that approach. However different turning maneuvers have 

disproportional impacts on the delay experienced at the intersection. The ranking and impacts of 

various turning movements at a given intersection need to be further researched.  
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Appendix A- Model Development  
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Investigation of the data revealed that dwell time follows a Poisson distribution, when the 

passenger activities are grouped based on the number of passengers boarding and alighting. 

Easy Fit software was used to determine which distribution best fit the data. Easy Fit uses the 

Kolmogorov-Smirnov test and the Anderson Darling test to evaluate the goodness of fit of a 

distribution to the data. For all the passenger activity groups, the Poisson distribution was 

ranked as first or second best fit to the data. The result obtained from Easy Fit is presented 

below.  
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Figure A-1: Poisson distribution Fitted to the Dataset including only Observations with 

1 passenger alighting 

 

Figure A-2: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 1 passenger lighting 
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Figure A-3: Poisson distribution Fitted to the Dataset including only Observations with 

2 passenger lighting 

 

Figure A-4 Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 2 passenger lighting 
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Figure A-5: Poisson distribution Fitted to the Dataset including only Observations with 

3 Passenger Alighting 

 

Figure A-6: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 3 Passenger Alighting 
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Figure A-7: Poisson distribution Fitted to the Dataset including only Observations with 

4 Passenger Alighting 

 

Figure A-8: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 4 Passenger Alighting 
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Figure A-9: Poisson distribution Fitted to the Dataset including only Observations with 

5 Passenger Alighting 

 

Figure A-10: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 5 Passenger Alighting 
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Figure A-11: Poisson distribution Fitted to the Dataset including only Observations 

with 1 Passenger Boarding 

 

Figure A-12: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 1 Passenger Boarding 
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Figure A-13: Poisson distribution Fitted to the Dataset including only Observations 

with 1 Passenger Boarding and 2 Passenger Alighting 

 

Figure A-14: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 1 Passenger Boarding and 2 Passenger Alighting 
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Figure A-15: Poisson distribution Fitted to the Dataset including only Observations 

with 1 Passenger Boarding and 3 Passengers Alighting 

 

Figure A-16: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 1 Passenger Boarding and 3 Passenger Alighting 
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Figure A-17: Poisson distribution Fitted to the Dataset including only Observations 

with 1 Passenger Boarding and 4 Passengers Alighting 

 

Figure A-18: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 1 Passenger Boarding and 4 Passenger Alighting 
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Figure A-19: Poisson distribution Fitted to the Dataset including only Observations 

with 2 Passengers Boarding and 1 Passenger Alighting 

 

Figure A-20: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 2 Passenger Boarding and 1 Passenger Alighting 
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Figure A-21: Poisson distribution Fitted to the Dataset including only Observations 

with 2 Passengers Boarding and 2 Passenger Alighting 

 

Figure A-22: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 2 Passenger Boarding and 2 Passenger Alighting 
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Figure A-23: Poisson distribution Fitted to the Dataset including only Observations 

with 2 Passengers Boarding and 3 Passengers Alighting 

 

Figure A-24: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 2 Passenger Boarding and 3 Passenger Alighting 
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Figure A-25: Poisson distribution Fitted to the Dataset including only Observations 

with 2 Passengers Boarding and 4 Passengers Alighting 

 

Figure A-26: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 2 Passenger Boarding and 4 Passenger Alighting 
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Figure A-27: Poisson distribution Fitted to the Dataset including only Observations 

with 3 Passengers Boarding 

 

Figure A-28: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 3 Passenger Boarding 
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Figure A-29: Poisson distribution Fitted to the Dataset including only Observations 

with 3 Passengers Boarding and 1 Passenger Alighting 

 

Figure A-30: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 3 Passenger Boarding and 1 Passenger Alighting 
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Figure A-31: Poisson distribution Fitted to the Dataset including only Observations 

with 3 Passengers Boarding and 2 Passengers Alighting 

 

Figure A-32: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 3 Passenger Boarding and 2 Passenger Alighting 
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Figure A-33: Poisson distribution Fitted to the Dataset including only Observations 

with 3 Passengers Boarding and 3 Passengers Alighting 

 

Figure A-34: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 3 Passenger Boarding and 3 Passenger Alighting 
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Figure A-35: Poisson distribution Fitted to the Dataset including only Observations 

with 4 Passengers Boarding 

 

Figure A-36: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 4 Passenger Boarding 
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Figure A-37: Poisson distribution Fitted to the Dataset including only Observations 

with 4 Passengers Boarding and 1 Passengers Alighting 

 

Figure A-38: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 4 Passenger Boarding and 1 Passenger Alighting 
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Figure A-39: Poisson distribution Fitted to the Dataset including only Observations 

with 4 Passengers Boarding and 2 Passengers Alighting 

 

Figure A-40: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 4 Passenger Boarding and 2 Passenger Alighting 
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Figure A-41: Poisson distribution Fitted to the Dataset including only Observations 

with 5 Passengers Boarding 

 

Figure A-42: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 5 Passenger Boarding 
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Figure A-43: Poisson distribution Fitted to the Dataset including only Observations 

with 5 Passengers Boarding and 1 Passengers Alighting 

 

Figure A-44: Goodness of Fit of the Distributions Fitted to the Dataset including only 

Observations with 5 Passenger Boarding and 1 Passenger Alighting
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Appendix B- Number of Observations Available Based on Headway Category  
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Figure B-1: Histogram of Number of Observations for Routes with 15 Minute Headway 
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Figure B-2: Histogram of Number of Observations for Routes with 30 Minute Headway 
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Figure B-3: Histogram of Number of Observations for Routes with 1 hour Headway 
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Appendix C- Queue Length Validation 
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This appendix presents a set of figures that highlight the differences in performance between the algorithm presented by Yang and 

Hellinga (2012) and the proposed boundary line algorithm. The main differences between the two algorithms are summarized below: 

1. The proposed BL algorithm excludes the stopped delay observations from the adjacent road segments from the analysis.  

2. In the proposed BL algorithm the distance of each observation is measured from the stop-line and not the center of the 

intersection as is the case in Yang’s work (Yang, 2012).  

3. The proposed BL algorithm defines rectangular delay envelop enclosed by maximum delay (on the y-axis) and the maximum 

queue length (on the x-axis).  
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(A) Yang and Hellinga’s BL Algorithm 

 

(B) The Proposed BL Algorithm 

Figure C-1: Comparison of the BL Fitted to Stop Observation of Ottawa at River Intersection 
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Figure C-2: The unscheduled stop observations superimposed on Google Maps for Ottawa at River Intersection 

The observations in Figure C-1(B) are measured from the stop line which accounts for the discrepancy between the x-values of the 

observations in Figure C-1(A) and (B). Also in Figure C-1(B) the observations from adjacent segments are excluded from the analysis.  

53 m 
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(A) Yang and Hellinga’s BL Algorithm 

 

(B) The Proposed BL Algorithm 

Figure C-3: Comparison of the BL Fitted to Stop Observation of Homer Watson at Stirling Ave Intersection 
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Figure C-4: The unscheduled stop observations superimposed on Google Maps for Homer Watson at Stirling Ave Intersection 

The observations in Figure C-3(B) are measured from the stop line which accounts for the discrepancy between the x-values of the 

observations in Figure C-3 (A) and (B).  

15 m 
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(A) Yang and Hellinga’s BL Algorithm 

 

(B) The Proposed BL Algorithm 

Figure C-5: Comparison of the BL Fitted to Stop Observation of Ottawa at Strasburg Intersection 
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Figure C-6: The unscheduled stop observations superimposed on Google Maps for Ottawa at Strasburg Intersection.  

Figure C-6 captures the left turn movement of route 3 buses at this intersection. As the result of the left turn maneuver a number of 

stop observations have occurred in the middle of the intersection. 

56 m 
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(A) Yang and Hellinga’s BL Algorithm 

 

(B) The Proposed BL Algorithm 

Figure C-7: Comparison of the BL Fitted to Stop Observation of Charles and Ontario Intersection 
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Figure C-8: The unscheduled stop observations superimposed on Google Maps for Charles an Ontario Intersection 

In Figure C-7(B) the observations from adjacent segments are excluded from the analysis. 

80 m 
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(A) Yang and Hellinga’s BL Algorithm 

 

(B) The Proposed BL Algorithm 

Figure C-9: Comparison of the BL Fitted to Stop Observation of University at Hazel Intersection 
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Figure C-10: The unscheduled stop observations superimposed on Google Maps for University at Hazel intersection 

35 m 
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(A) Yang and Hellinga’s BL Algorithm 

 

(B) The Proposed BL Algorithm 

Figure C-11: Comparison of the BL Fitted to Stop Observation of Homer Watson at Ottawa Intersection (Route 11 IB) 
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Figure C-12: The unscheduled stop observations superimposed on Google Maps for Homer Watson at Ottawa intersection 

In Figure C-11(B) the observations from adjacent segments are excluded from the analysis. 

142 m 
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(A) Yang and Hellinga’s BL Algorithm 

 

(B) The Proposed BL Algorithm 

Figure C-13: Comparison of the BL Fitted to Stop Observation of Alpine at Ottawa Intersection 
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Figure C-14: The unscheduled stop observations superimposed on Google Maps for Alpine at Ottawa Intersection (route 11 

OB) 

91 m 
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(A) Yang and Hellinga’s BL Algorithm 

 

(B) The Proposed BL Algorithm 

Figure C-15: Comparison of the BL Fitted to Stop Observation of Fountain and Shantz Hill Intersection 
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Figure C-16: The unscheduled stop observations superimposed on Google Maps for Fountain and Shantz Hill Intersection 

 

207 m 
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(A) Yang and Hellinga’s BL Algorithm 

 

(B) The Proposed BL Algorithm 

Figure C-17: Comparison of the BL Fitted to Stop Observation of Fischer-Hallman at Columbia Intersection 
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Figure C-18: The unscheduled stop observations superimposed on Google Maps for Fischer-Hallman at Columbia Intersection 

 

430 m 
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(A) Yang and Hellinga’s BL Algorithm 

 

(B) The Proposed BL Algorithm 

Figure C-19: Comparison of the BL Fitted to Stop Observation of Fischer-Hallman at Glasgow Intersection 
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Figure C-20: The unscheduled stop observations superimposed on Google Maps for Fischer-Hallman at Glasgow Intersection

160 m 
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Appendix D- List of Ranked Intersections based on the Proposed 

Ranking Index  



 

168 

 

Table D-1: Intersection Ranked List based on the Proposed Index 
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HESPELER_AT_Eagle_And_Pinebush 3 687 42.94 79.76 0.67 349 0.9 E 

HOMER_WATSON_AT_ManitouAndD
oon_Village 4 506 31.14 69.04 0.69 224 0.7 D 

FOUNTAIN_AT_Shantz_Hill 3 521 27.47 51.95 0.70 266 0.7 D 

FAIRWAY_AT_Lackner 1 145 31.99 96.80 0.58 99 0.7 D 

VICTORIA_AT_Natchez 1 141 36.61 75.00 0.75 50 0.7 D 

FRANKLIN_AT_Pinebush 3 393 17.70 52.51 0.50 370 0.6 C 

KING_AT_Fountain 1 142 19.84 43.20 0.76 268 0.6 C 

HESPELER_And_WATER_AT_Coronat
ion_And_Dundas 6 1906 27.72 77.00 0.53 170 0.6 D 

COURTLANDAndFAIRWAY_AT_Manit
ou 1 202 24.04 54.00 0.81 157 0.6 C 

WESTMOUNT_AT_Glasgow 1 296 14.76 40.00 0.54 365 0.6 B 

OTTAWA_AT_Homer_Watson 6 1601 26.47 72.85 0.52 163 0.6 C 

FRANKLIN_AT_Savage 1 147 31.54 73.00 0.67 45 0.6 D 

WATER_AT_Main 2 282 25.90 48.58 0.73 142 0.6 C 

WESTMOUNT_AT_Williamsburg 1 290 27.62 66.00 0.78 35 0.6 D 

FISCHER_HALLMAN_AT_Columbia 2 743 23.86 51.96 0.68 155 0.6 C 

NORTHFIELD_AT_Kraus 1 297 29.82 72.00 0.67 34 0.6 D 

HOMER_WATSON_AT_Conestoga_C
ollege 5 664 22.82 65.52 0.52 176 0.6 C 

HOMER_WATSON_AT_Bleams 3 557 21.86 62.05 0.57 175 0.6 C 

NORTHFIELD_AT_Skylark 1 285 31.02 69.00 0.66 35 0.6 D 

FRANKLIN_AT_Elgin_And_Saginaw 2 289 25.44 65.73 0.57 125 0.6 C 

UNIVERSITY_AT_Lincoln 1 296 17.78 61.00 0.45 256 0.6 C 

FAIRWAY_AT_King 8 1500 20.17 51.77 0.48 256 0.6 C 

HOMER_WATSON_AT_Pioneer 2 301 16.12 46.77 0.45 315 0.6 C 

FAIRWAY_AT_Wilson 4 842 24.43 62.87 0.58 130 0.6 C 
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KING_AT_Farmers_MarketAndHwy_
85_SB_Ramp 1 148 28.22 68.30 0.67 39 0.6 D 

FRANKLIN_AT_Can_Amera 1 147 23.76 46.00 0.78 93 0.5 C 

CHARLES_AT_Ontario 9 2137 21.20 54.76 0.58 168 0.5 C 

KING_AT_Tu_Lane 1 245 21.10 83.00 0.35 158 0.5 C 

KING_AT_Weber_Wool 1 148 23.39 57.00 0.66 81 0.5 C 

VICTORIA_AT_Lackner 1 147 18.31 49.00 0.53 206 0.5 C 

HIGHWAY_24_AT_Hwy_401_WB_Ra
mp 2 588 14.05 35.90 0.40 333 0.5 B 

HESPELER_AT_Bishop 4 863 18.98 58.62 0.48 177 0.5 C 

DUNDAS_AT_Beverly 1 246 22.85 60.00 0.59 88 0.5 C 

ERBSVILLE_AT_Laurelwood 1 286 22.20 42.00 0.80 64 0.5 C 

HESPELER_AT_Sheldon_And_Langs 2 588 9.89 40.00 0.31 370 0.5 B 

BRIDGE_AT_University 1 202 17.87 55.60 0.49 169 0.5 C 

MANITOU_AT_Wabanaki 2 301 17.36 44.03 0.57 178 0.5 C 

WESTMOUNT_AT_University 1 296 17.24 45.10 0.57 169 0.5 C 

PARKHILL_AT_George 1 97 17.39 38.00 0.67 145 0.5 C 

OTTAWA_AT_Alpine 1 290 21.21 55.00 0.58 91 0.5 C 

KING_AT_Columbia 1 142 15.47 48.30 0.45 215 0.5 C 

FRANKLIN_AT_Main 1 147 19.46 48.20 0.64 97 0.5 C 

VICTORIA_AT_Belmont 4 601 13.68 38.50 0.52 228 0.5 B 

OTTAWA_AT_Westmount 2 492 21.35 59.06 0.54 84 0.5 C 

KING_AT_Eagle 4 766 14.63 33.65 0.54 225 0.5 B 

NORTHFIELD_AT_Colby_And_Conest
oga 3 867 13.22 35.25 0.41 285 0.5 B 

NORTHFIELD_AT_Highpoint 2 582 22.07 58.29 0.61 43 0.5 C 

VICTORIA_AT_Lancaster 2 288 15.99 40.34 0.62 139 0.5 C 

LANCASTER_AT_Guelph 1 144 22.83 64.20 0.50 44 0.5 C 

KING_AT_Northfield 5 1422 18.44 44.42 0.54 123 0.5 C 
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UNIVERSITY_AT_Seagram 6 1758 17.55 45.96 0.52 135 0.5 C 

COURTLAND_AT_Benton 1 290 18.85 38.00 0.72 63 0.5 C 

FRANKLIN_AT_Jamieson_And_Holida
y_Inn 4 587 13.92 40.39 0.50 186 0.4 B 

NORTHFIELD_AT_Bridge 1 148 18.56 50.60 0.53 96 0.4 C 

HOMER_WATSON_AT_Hwy_401_W
B_RampAnd_New_Dundee 3 372 16.74 39.58 0.65 81 0.4 C 

MANITOU_AT_Bleams 2 498 9.89 34.02 0.43 249 0.4 B 

FISCHER_HALLMAN_AT_Highland 5 1344 13.14 40.86 0.43 196 0.4 B 

FISCHER_HALLMAN_AT_Victoria 3 756 16.13 52.74 0.43 130 0.4 C 

WEBER_AT_CedarAndKrug 2 582 19.21 52.23 0.46 93 0.4 C 

FRANKLIN_AT_Avenue 2 294 10.39 34.70 0.39 253 0.4 B 

WESTMOUNT_AT_Columbia 4 1492 15.38 48.52 0.44 140 0.4 B 

KING_AT_Deer_Ridge 1 245 11.52 37.60 0.43 215 0.4 B 

FISCHER_HALLMAN_AT_Queens 8 2364 13.44 44.02 0.41 176 0.4 B 

HIGHLAND_AT_Highland_Cres 1 139 20.29 40.00 0.65 30 0.4 C 

WESTMOUNT_AT_Highland 3 637 19.26 54.69 0.48 58 0.4 C 

WEBER_AT_Victoria 1 146 18.51 50.00 0.48 76 0.4 C 

FAIRWAY_AT_Fairview_Park_Mall 5 979 13.23 43.59 0.42 164 0.4 B 

MAIN_AT_Wellington 2 391 13.01 37.61 0.46 163 0.4 B 

VICTORIA_AT_Edna 1 141 14.45 32.00 0.72 47 0.4 B 

DUNDAS_AT_Main 1 147 17.69 48.00 0.52 49 0.4 C 

KING_AT_Waterloo 2 388 9.21 34.50 0.32 250 0.4 B 

HIGHLAND_AT_Belmont 1 139 14.14 38.00 0.55 99 0.4 B 

LANCASTER_AT_Bridgeport 2 284 13.28 38.86 0.52 113 0.4 B 

KING_AT_Victoria 2 295 15.87 44.89 0.52 72 0.4 C 

OTTAWA_AT_Strasburg 3 777 13.96 43.17 0.35 167 0.4 B 

NORTHFIELD_AT_Davenport 3 437 14.18 47.18 0.42 118 0.4 B 

CONCESSION_And_MAIN_AT_Chalm 1 147 12.62 34.00 0.48 149 0.4 B 
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WEBER_AT_Frederick 4 731 13.43 41.52 0.45 129 0.4 B 

WEBER_AT_Union 2 290 11.75 39.05 0.44 149 0.4 B 

FRANKLIN_AT_Bishop 2 294 13.65 50.60 0.33 142 0.4 B 

CEDAR_AT_Grand 1 144 13.16 39.60 0.43 132 0.4 B 

ERB_AT_Fischer_Hallman 3 1058 12.93 47.99 0.33 148 0.4 B 

LANCASTER_AT_Wellington 2 284 13.97 36.15 0.46 125 0.4 B 

WEBER_AT_Queen 1 141 15.72 43.00 0.55 37 0.4 C 

OTTAWA_AT_River 4 617 14.01 50.16 0.41 86 0.4 B 

VICTORIA_AT_Strange_And_West 2 295 10.43 28.00 0.52 145 0.4 B 

FAIRWAY_AT_Hwy_8_EB_Ramp 5 1069 13.05 40.43 0.45 110 0.4 B 

STRASBURG_AT_Blockline 7 2022 9.73 35.58 0.36 187 0.4 B 

UNIVERSITY_AT_King 4 1080 13.12 30.83 0.35 182 0.4 B 

UNIVERSITY_AT_Albert 8 2200 10.81 34.65 0.38 172 0.4 B 

WEBER_AT_University 2 498 8.23 27.82 0.28 255 0.4 B 

KING_AT_Northland_And_Wyman 1 146 14.75 47.50 0.45 53 0.4 B 

SPORTSWORLD_AT_Gateway 1 245 15.15 41.50 0.45 60 0.3 B 

UNION_AT_Moore 1 147 14.71 42.00 0.51 31 0.3 B 

AINSLIE_AT_Main 6 1609 10.47 32.73 0.36 159 0.3 B 

WILSON_AT_Kingsway 3 546 12.34 31.28 0.55 66 0.3 B 

KING_AT_Conestoga_Mall 5 979 14.56 41.21 0.41 68 0.3 B 

QUEEN_AT_Charles 9 2277 10.24 28.93 0.42 141 0.3 B 

PARK_AT_Union 2 294 12.43 29.00 0.54 71 0.3 B 

ERB_AT_Amos 1 144 11.56 37.70 0.44 89 0.3 B 

NORTHFIELD_AT_Parkside 3 1124 8.42 30.85 0.34 180 0.3 B 

DOON_VILLAGE_AT_Pioneer 1 155 8.95 22.00 0.53 121 0.3 B 

WEBER_AT_Parkside 3 868 11.05 33.81 0.46 93 0.3 B 

WEBER_AT_Northfield 2 431 12.34 38.95 0.32 126 0.3 B 

WESTMOUNT_AT_Queen 2 588 13.66 48.00 0.38 56 0.3 B 
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FISCHER_HALLMAN_AT_University 4 1208 12.38 34.51 0.34 131 0.3 B 

FISCHER_HALLMAN_AT_Ottawa 4 1497 10.62 44.19 0.25 149 0.3 B 

CHARLES_AT_Benton 11 2961 10.86 32.52 0.38 123 0.3 B 

VICTORIA_AT_Frederick 2 288 7.93 26.62 0.36 177 0.3 B 

KING_AT_Westminster 4 766 5.67 20.58 0.29 245 0.3 A 

FAIRWAY_AT_River 2 230 9.50 29.83 0.40 132 0.3 B 

ARTHUR_AT_Listowel 1 150 7.58 32.00 0.30 180 0.3 A 

SHANTZ_HILL_AT_Preston_Parkway 1 246 11.75 41.00 0.39 72 0.3 B 

MAIN_AT_Elgin 1 147 8.21 24.00 0.43 136 0.3 B 

HIGHLAND_AT_Eastforest_Trail 2 287 12.41 35.45 0.49 30 0.3 B 

WEBER_AT_Columbia 1 142 13.70 59.90 0.26 33 0.3 B 

STRASBURG_AT_Forest_Glen_Plaza 9 2157 7.82 23.68 0.34 169 0.3 B 

VICTORIA_AT_Hazelglen 1 148 11.43 40.70 0.38 64 0.3 B 

HESPELER_AT_600And611_Hespeler
_Road_HomesenseAndTravelodge 2 588 8.46 33.70 0.29 151 0.3 B 

WILLIAM_AT_Caroline 2 301 13.37 44.72 0.39 30 0.3 B 

HIGHLAND_AT_Queen 4 867 11.23 35.17 0.44 58 0.3 B 

BISHOP_AT_Conestoga 3 622 8.25 23.54 0.44 121 0.3 B 

PINEBUSH_AT_Conestoga 4 1077 12.26 47.67 0.30 62 0.3 B 

QUEEN_AT_Goebel 1 294 9.40 29.00 0.41 102 0.3 B 

FISCHER_HALLMAN_AT_Greenbrook
_And_Hwy_7And8_WB_Rmp 4 1497 9.16 41.74 0.25 128 0.3 B 

CHARLES_AT_Gaukel 13 2859 9.53 31.41 0.33 125 0.3 B 

KING_AT_Water 4 585 6.50 28.19 0.29 174 0.3 A 

UNIVERSITY_AT_Hazel 4 1069 9.53 29.64 0.41 95 0.3 B 

COURTLAND_AT_Stirling 2 489 12.99 38.24 0.30 80 0.3 B 

BELMONT_AT_Glasgow 1 147 10.62 31.00 0.45 54 0.3 B 

PINEBUSH_AT_WalmartAndHome_D
epot 2 588 7.55 30.85 0.28 153 0.3 A 



 

173 

 

D
o

w
n

st
re

am
 

In
te

rs
e

ct
io

n
 

C
o

u
n

t 
o

f 
R

o
u

te
 

To
ta

l t
ri

p
 n

u
m

b
er

 

W
e

ig
h

te
d

  A
ve

ra
ge

 

St
o

p
p

e
d

 D
e

la
y 

w
e

ig
h

te
d

 9
0

th
 

p
e

rc
e

n
ti

le
 d

e
la

y 

W
e

ig
h

te
d

 N
u

m
b

e
r 

o
f 

tr
ip

s 
w

it
h

 d
e

la
y 

M
ax

 o
f 

Q
u

e
u

e
 L

e
n

gt
h

 

In
d

e
x 

LO
S 

FREDERICK_AT_Duke 8 1450 7.88 25.38 0.39 119 0.3 B 

FRANKLIN_AT_Sheldon 3 393 8.62 31.20 0.23 156 0.3 B 

FREDERICK_AT_Edna 2 292 10.06 35.51 0.34 79 0.3 B 

FREDERICK_AT_Lancaster 2 290 10.23 32.10 0.40 63 0.3 B 

KING_AT_Bridgeport 2 827 10.60 22.24 0.36 110 0.3 B 

WESTMOUNT_AT_Gage 2 498 9.71 27.23 0.44 59 0.3 B 

FRANKLIN_AT_Clyde 2 294 9.11 32.00 0.38 69 0.3 B 

OTTAWA_AT_Lackner 3 324 10.13 29.60 0.43 48 0.3 B 

WATER_AT_Dando 2 684 1.99 5.21 0.11 334 0.3 A 

HESPELER_AT_Munch 3 873 8.03 30.61 0.30 112 0.3 B 

VICTORIA_AT_Charles 1 437 7.46 25.00 0.36 110 0.3 A 

ARTHUR_AT_Church 1 148 9.45 29.00 0.46 35 0.3 B 

WESTMOUNT_AT_Victoria 5 959 10.61 37.18 0.32 54 0.3 B 

OTTAWA_AT_Laurentian_Power_Ce
ntre 4 1067 5.66 21.73 0.24 182 0.3 A 

SHELDON_AT_Conestoga 1 437 8.90 33.80 0.35 65 0.3 B 

FREDERICK_AT_River 2 286 9.01 32.55 0.38 54 0.3 B 

KING_AT_Union 1 147 7.85 30.00 0.36 77 0.3 B 

OTTAWA_AT_Charles 1 390 10.65 38.00 0.35 30 0.3 B 

HESPELER_AT_Dunbar 5 1405 7.85 31.33 0.29 99 0.3 B 

STRASBURG_AT_Bleams 3 588 8.70 28.70 0.39 54 0.3 B 

BEARINGER_AT_Parkside 1 437 8.59 29.40 0.39 47 0.3 B 

OTTAWA_AT_International 1 295 9.77 37.60 0.34 30 0.3 B 

FOUNTAIN_AT_Hwy_401_EB_Ramp 1 133 7.72 23.80 0.42 59 0.2 B 

PARK_AT_Glasgow 1 147 8.69 27.80 0.40 44 0.2 B 

FAIRWAY_AT_Morgan 2 292 8.94 26.58 0.37 61 0.2 B 

KING_AT_Deer_Ridge_CentreAndSp
ortsworld_Crossing 1 245 4.70 21.50 0.23 172 0.2 A 

KING_AT_Bishop 3 520 7.57 26.55 0.37 65 0.2 A 
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KING_AT_Benton_And_Frederick 6 1160 6.61 24.09 0.34 94 0.2 A 

FISCHER_HALLMAN_AT_Activa 1 288 8.81 36.00 0.28 59 0.2 B 

FISCHER_HALLMAN_AT_Westmount
AndMax_Becker 5 1954 8.46 31.11 0.24 91 0.2 B 

UNIVERSITY_AT_Trans_Canada_Trail 6 1662 6.40 23.46 0.31 103 0.2 A 

COLUMBIA_AT_HageyAndUniversity
_Of_Waterloo 5 1640 7.54 26.98 0.27 98 0.2 A 

KING_AT_Martin_Grove_And_Hwy_
85_NB_Ramp_Wool 2 298 6.66 24.75 0.32 86 0.2 A 

FISCHER_HALLMAN_AT_Laurelwood 1 286 7.73 32.40 0.27 72 0.2 B 

EDNA_AT_Hwy_7And8_WB_Ramp 2 288 9.43 31.79 0.32 36 0.2 B 

CONCESSION_AT_Bishop 2 275 7.09 24.58 0.37 51 0.2 A 

ARTHUR_AT_Oriole_Pkwy 2 298 5.79 19.85 0.33 92 0.2 A 

LEXINGTON_AT_Davenport 2 444 7.21 31.67 0.28 58 0.2 A 

WELLINGTON_AT_Moore 1 147 7.14 25.00 0.39 30 0.2 A 

COLUMBIA_AT_Hazel 1 285 9.11 43.20 0.20 30 0.2 B 

COLUMBIA_AT_Albert 3 741 5.23 23.90 0.20 124 0.2 A 

AINSIE_AT_Parkhill 4 1415 6.52 26.19 0.25 85 0.2 A 

OTTAWA_AT_Heritage 3 384 4.58 18.17 0.29 109 0.2 A 

ARTHUR_AT_First 2 298 5.49 21.04 0.28 95 0.2 A 

HESPELER_AT_Can_AmeraAndYMCA
_Driveway 5 1557 6.23 23.62 0.27 84 0.2 A 

KING_AT_Lowther 2 491 2.48 11.66 0.16 203 0.2 A 

ALBERT_AT_Hazel_And_Bearinger 2 582 6.63 24.29 0.34 47 0.2 A 

WESTMOUNT_AT_Blockline 3 955 7.62 27.08 0.30 47 0.2 A 

FRANKLIN_AT_Kingsway 2 827 6.58 24.66 0.35 41 0.2 A 

HESPELER_AT_Beaverdale_And_Que
en 1 294 6.71 28.70 0.26 64 0.2 A 

RIVER_AT_Holborn 4 821 6.00 21.14 0.31 72 0.2 A 

FREDERICK_AT_Bruce 1 147 6.62 24.00 0.34 46 0.2 A 
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HESPELER_AT_Burger_King_580 1 294 6.44 26.50 0.29 60 0.2 A 

UNIVERSITY_AT_Phillip 5 1225 4.82 14.20 0.20 156 0.2 A 

WEBER_AT_Albert 2 582 5.79 21.11 0.30 77 0.2 A 

WESTMOUNT_AT_Chopin_And_Bryb
eck 3 646 5.44 18.70 0.34 70 0.2 A 

HESPELER_AT_Avenue 2 827 3.61 17.87 0.15 170 0.2 A 

QUEEN_AT_Courtland 3 728 6.82 24.69 0.29 61 0.2 A 

HESPELER_AT_480And499_Hespeler
_Road_WinnersAndShoppers 2 588 3.38 13.90 0.19 169 0.2 A 

KING_AT_River 1 246 5.70 25.50 0.25 78 0.2 A 

FISCHER_HALLMAN_AT_Glasgow 3 1061 3.64 15.72 0.18 160 0.2 A 

KING_AT_Francis 3 443 4.41 18.89 0.25 102 0.2 A 

ERB_AT_Father_David_Bauer 2 301 6.54 20.62 0.19 105 0.2 A 

KING_AT_Dolph 2 378 2.81 12.41 0.20 148 0.2 A 

HOMER_WATSON_AT_Doon_South_
Rd_And_Monarch_Tr 2 292 5.51 21.00 0.31 47 0.2 A 

WELLINGTON_AT_Dickson 1 246 5.50 18.00 0.36 32 0.2 A 

KING_AT_Gaukel 3 583 6.67 32.13 0.17 50 0.2 A 

KRUG_AT_East 1 289 5.14 21.20 0.30 43 0.2 A 

KING_AT_Breithaupt 2 537 6.14 22.03 0.25 52 0.2 A 

COLUMBIA_AT_Phillip 2 914 3.24 16.50 0.16 123 0.2 A 

OTTAWA_AT_Old_Chicopee 1 85 4.85 18.60 0.29 44 0.2 A 

FISCHER_HALLMAN_AT_McGarry 4 1344 3.89 12.54 0.13 139 0.2 A 

BRIDGE_AT_Dansbury 1 202 6.42 23.00 0.25 30 0.2 A 

MARGARET_AT_Wellington 1 143 4.27 16.80 0.28 55 0.2 A 

KING_AT_Erb 2 827 3.98 10.90 0.19 115 0.2 A 

FISCHER_HALLMAN_AT_Keatsway 2 914 3.65 17.70 0.18 95 0.2 A 

HIGHLANDAT_Highland_Hills_Mall 2 299 5.65 17.08 0.30 30 0.2 A 

KING_AT_KCI_AndCentral_Meat 1 437 3.27 14.00 0.24 80 0.2 A 
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RIVER_AT_Lorraine 1 145 4.34 16.20 0.26 54 0.2 A 

MILL_AT_Stirling 4 1067 4.42 14.95 0.21 72 0.2 A 

KING_AT_William 2 547 4.79 8.74 0.19 102 0.2 A 

WESTMOUNT_AT_Greenbrook 2 498 3.79 17.58 0.20 73 0.1 A 

UNIVERSITY_AT_WLU_Ped 6 1373 2.54 12.77 0.16 110 0.1 A 

KING_AT_Green 1 437 3.99 20.00 0.19 56 0.1 A 

CHARLES_AT_Cedar 6 1944 2.26 8.39 0.14 132 0.1 A 

KING_AT_Willis_Way 2 547 4.52 17.14 0.20 52 0.1 A 

HIGHLAND_AT_Westforest_Trail 1 139 3.94 17.00 0.26 30 0.1 A 

WESTMOUNT_AT_Westcourt_And_F
ather_David_Bauer 1 296 3.84 16.00 0.21 56 0.1 A 

ERB_AT_Roslin 2 301 5.43 14.40 0.25 30 0.1 A 

KING_AT_Marshall 1 437 1.82 9.30 0.14 121 0.1 A 

AINSLIE_AT_Dickson 2 684 3.76 20.43 0.19 43 0.1 A 

FAIRWAY_AT_655_Fairway 2 498 4.21 20.05 0.19 38 0.1 A 

WESTMOUNT_AT_William 1 296 2.35 11.00 0.18 89 0.1 A 

CHARLES_AT_Water 2 827 3.23 15.24 0.20 56 0.1 A 

CHARLES_AT_Stirling 5 1700 2.41 6.72 0.14 109 0.1 A 

WEBER_AT_Randall 1 146 3.30 14.00 0.23 30 0.1 A 

KING_And_CORONATION_AT_Conce
ssion 2 491 2.51 9.66 0.13 83 0.1 A 

KING_AT_WLU_Ped 1 437 1.86 10.30 0.13 85 0.1 A 

CONCESSION_AT_Christopher 1 147 2.18 10.40 0.18 56 0.1 A 

KING_AT_Agnes 2 827 3.05 10.62 0.17 52 0.1 A 

QUEEN_AT_Elm_RidgeAndFire_Stati
on_7 1 294 2.82 16.00 0.16 32 0.1 A 

FISCHER_HALLMAN_AT_Highland_Hi
lls_Mall 2 589 3.03 8.06 0.13 69 0.1 A 

KING_AT_Ontario 1 293 3.16 7.00 0.10 83 0.1 A 

BEVERLY_AT_Kerr 1 245 1.59 9.00 0.14 67 0.1 A 
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AINSLIE_AT_SimcoeAndMarket 3 1121 2.38 9.11 0.16 50 0.1 A 

KING_AT_Wellington 1 437 2.60 11.40 0.13 38 0.1 A 

WESTMOUNT_AT_Erb 3 597 1.83 6.00 0.09 71 0.1 A 

HESPELER_AT_Cambridge_Centre 1 294 2.47 11.70 0.13 30 0.1 A 

FAIRWAY_AT_500And589_Fairway 1 202 2.19 9.00 0.14 30 0.1 A 

CHARLES_AT_Francis 1 437 1.93 9.00 0.11 45 0.1 A 

COLUMBIA_AT_Rim_Driveway 3 1056 2.11 6.25 0.12 32 0.1 A 

FISCHER_HALLMAN_AT_CraigleithAn
dRoxton 2 914 1.49 3.55 0.09 40 0.0 A 

WATER_AT_Samuelson 1 294 1.06 0.10 0.09 55 0.0 A 

DUNDAS_AT_Easton 1 246 1.37 0.10 0.09 46 0.0 A 

WEBER_AT_Scott 1 289 1.07 1.40 0.10 30 0.0 A 

CHARLES_AT_Borden 2 827 0.76 0.10 0.07 47 0.0 A 

KING_AT_Central 1 437 0.73 0.10 0.06 45 0.0 A 

ERB_AT_University 2 301 0.67 0.10 0.05 42 0.0 A 

ERB_AT_Caroline 1 144 1.06 0.10 0.03 30 0.0 A 
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Appendix E- Unscheduled Stop Observations of 7 worst Intersection 

Approaches Superimposed on Google Maps 
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Figure E-1: Unscheduled Stop Observations for Hespeler at Eagle and Pinebush 

The buses traversing this route make a through movement at this intersection.  
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Figure E-2: Unscheduled Stop Observations for Homer Watson at Manitou and Doon 

Village 

The buses traversing this route make a through movement at this intersection.  
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Figure E-3: Unscheduled Stop Observations for Franklin at Savage Dr.  

The buses traversing this route make a left turn maneuver at this intersection.  
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Figure E-4: Unscheduled Stop Observations for Northfield at Kraus 

A portion of the buses traversing this route make a right turn maneuver and a portion make 

left turn maneuver at this intersection.  
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Figure E-5: Unscheduled Stop Observations for Westmount at Williamsburg 

Williamsburg is a collector roadway connecting to Westmount arterial. The buses traversing 

this route make a left turn maneuver at this intersection.  
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Figure E-6: Unscheduled Stop Observations for Northfield at Skylark 

Skylark is a collector roadway connecting to Northfield. The buses traversing this route make 

a left turn maneuver at this intersection. 
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Figure E-7: Unscheduled Stop Observations for Fisher-Hallman at Columbia 

The buses traversing this route make a through movement at this intersection.  
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Figure E-8: Unscheduled Stop Observations for Victoria at Natchez Rd 

Natchez is a collector roadway connecting to Victoria Street an arterial. The buses traversing 

this route make a left turn maneuver at this intersection.  


